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Abstract. The semantic segmentation of high-resolution aerial images
concerns the task of determining, for each pixel, the most likely class label
from a finite set of possible labels (e.g., discriminating pixels referring
to roads, buildings, or vegetation, in high-resolution images depicting
urban areas). Following recent work in the area related to the use of
fully-convolutional neural networks for semantic segmentation, we eval-
uated the performance of an adapted version of the W-Net architecture,
which has achieved very good results on other types of image segmen-
tation tasks. Through experiments with two distinct datasets frequently
used in previous studies in the area, we show that the proposed W-
Net architecture is quite effective in this task, outperforming a baseline
corresponding to the U-Net model, and also some of the other recently
proposed approaches.

Keywords: Semantic segmentation of satellite imagery ·
Fully-convolutional neural networks · W-Net architecture

1 Introduction

Large amounts of high-resolution remote sensing images are acquired daily
through satellites and aerial vehicles, and used as base data for mapping and
Earth observation activities. An intermediate step for converting these raw
images into map layers in vector format is semantic image segmentation, which
aims at determining, for each pixel, the most likely class label from a finite set
of possible labels, corresponding to the desired object categories to map (i.e.,
discriminating pixels referring to roads, buildings, or vegetation). In the par-
ticular case of urban areas, semantic segmentation is quite challenging, given
that objects in cities can be small, composed of many different materials, and
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have interactions with each other through occlusions, cast shadows, and inter-
reflections. One can easily formulate the segmentation task as a pixel classifi-
cation problem, to be addressed through supervised learning (i.e., given some
labeled training data, infer the parameters of a model that estimates the con-
ditional probabilities of the different classes, with basis on pixel intensities in
the different color channels), although high within-class variability of the image
intensities, and low inter-class differences, can be simultaneously expected.

In this paper, following on recent work in the area, we explore the poten-
tial of deep neural networks for semantic segmentation of high-resolution aerial
images depicting urban regions. We propose to perform the segmentation using
an adapted version of recent neural network architectures that have achieved
very good results on other image segmentation tasks, namely W-Net architec-
tures [1,2]. Through experiments with distinct datasets used in previous studies
and competitions, we compared the performance of our particular W-Net archi-
tecture against simpler baselines, including the standard U-Net architecture.
The obtained results attest to the effectiveness of the proposed method, which
outperforms the baseline on the considered datasets, and also other recently
proposed methods.

The rest of this document is organized as follows: Sect. 2 presents previous
research in the area. Section 3 presents the deep learning method that was consid-
ered for aerial image segmentation, specifically detailing the adaptations imple-
mented over previous W-Net approaches, as well as the hyper-parameters and the
model training strategy. Section 4 details the evaluation methodology, including
the selected datasets and evaluation metrics, and discusses the obtained results.
Finally, Sect. 5 summarizes our conclusions and discusses possible directions for
future work.

2 Related Work

Several previous studies have addressed the semantic segmentation of high-
resolution aerial images through deep neural networks. For instance, Audebert
et al. adapted previous deep learning models to use with multi-modal remote
sensing data, i.e., multispectral imagery and digital surface model data [3]. In
particular, the authors combined SegNet [4], an encoder-decoder architecture,
and ResNet [5], a general convolutional architecture for image classification, that
uses residual blocks as base models. Audebert et al. also proposed early and late
fusion strategies for the multi-modal data. Early fusion is a strategy that learns
fused feature maps of multi-modal features during the encoding process, whereas
late fusion considers a separate network for each modality and fuses predictions
after the decoding process. The proposed architectures were validated on multi-
label datasets from previous challenges, particularly the ISPRS Vaihingen1 and
the ISPRS Potsdam2 datasets, also used in our study.

1 http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html.
2 http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html.

http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
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Mou and Zhu advanced a model named RiFCN for semantic segmentation of
high-resolution remote sensing imagery [6], based on what can be captured by the
feature maps outputted at different depths of a deep neural network, as suggested
in previous studies [7,8] that argued that shallower layers can capture low-level
features such as object boundaries, while deeper layers are capable of learning
high-level features. The RiFCN architecture is based on a bidirectional network
that has a forward stream to extract multi-level feature maps and a backward
stream that uses recurrent connections to fuse these multi-level feature maps
from both streams. The forward stream is inspired by VGG-16 [9], a model
with convolution blocks composed of multiple convolutional and max-pooling
layers. In turn, the backward stream has autoregressive recurrent connections
to embed the multi-level feature maps hierarchically. The authors demonstrated
the effectiveness of the RiFCN architecture on the multi-label ISPRS Potsdam
dataset, and on a binary dataset named INRIA Aerial Image Labeling3.

In turn, Chen et al. proposed two similar encoder-decoder architectures with
shortcut blocks [10], based on deep fully convolutional networks [11]. The short-
cut block employed by the authors has two branches, namely a main branch
with three convolutional layers, and a shortcut branch with one convolutional
layer to help the direct gradient propagation. Both branches are merged in the
complete network, and a ReLU activation function is applied to the result. The
encoder is also composed of max-pooling layers, whereas the decoder has trans-
pose convolutional layers. Leveraging the previous ideas, the authors propose two
encoder-decoder architectures with convolutional and shortcut blocks, namely a
symmetrical normal-shortcut fully convolutional network (SNFCN) and a sym-
metrical dense-shortcut fully convolutional network (SDFCN). The latter differs
because it has three additional identity mappings between symmetrical pairs of
the encoder and the decoder parts of the network. For validation, tests were
conducted with the ISPRS Vaihingen and ISPRS Potsdam datasets.

Liu et al. described a self-cascaded convolutional neural network (Scas-
Net) [12], which corresponds to an architecture that has an encoder with mul-
tiple convolutional layers to extract features based on previous works, such as
a 16-layer VGG-Net [9] and a 101-layer ResNet [5]. Dilated convolutions with
different rates are applied in the last layer of the encoder to capture multi-level
contexts. These contexts are sequentially aggregated from global to local in a
self-cascaded approach to maintain the information about hierarchical depen-
dencies. Then, to obtain an output with the same dimensionality of the input,
corresponding to the segmentation mask, upsampling is performed, while shal-
low layers of the encoder are reused to identify low-level details of objects. The
authors conducted experiments in two multi-label datasets, i.e. ISPRS Vaihin-
gen and ISPRS Potsdam, and in a binary dataset, namely the Massachusetts
Buildings Dataset [13], verifying the advantages of ScasNet.

3 http://project.inria.fr/aerialimagelabeling.

http://project.inria.fr/aerialimagelabeling
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Fig. 1. Graphical representation for the considered W-Net network architecture.

3 The Proposed Segmentation Method

This section details the segmentation method used in our experiments. First,
Sect. 3.1 presents the fully-convolutional neural network architecture adapted
from previously proposed W-Net models [1,2]. Then, Sect. 3.2 presents the train-
ing and hyper-parameter tuning strategies that were considered.

3.1 The W-Net Neural Architecture

The neural network architecture used in our experiments borrows on ideas from
previously proposed W-Net models, used for instance in the context of unsu-
pervised image segmentation [1], or in the context of supervised medical image
segmentation [2]. These models extend the typical U-shaped architecture (also
commonly referred to as an hour-glass architecture) of the U-Net model [14]. Our
network architecture is illustrated in Fig. 1, stacking/bridging together encoder
(on the left-side) and decoder (on the right) U-Nets that, together, form a W-
shaped architecture. The model is trained to simultaneously reconstruct the
original input images from intermediate representations, and to predict the seg-
mentation maps for the input aerial images. The input images are provided to
the model in the LAB colour space, due to the fact that this representation is
better at capturing human perceptual differences, important for segmentation
and image reconstruction problems [15].

In total, our W-Net model has 44 convolutional layers which are structured
into 22 modules. Each module consists of two 3 × 3 convolutional layers, each
followed by a Leaky ReLU non-linearity [16] and batch normalization [17] oper-
ations. The first eleven modules form the dense prediction base of the network,
and the second eleven modules correspond to a reconstruction decoder.
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As in the regular U-Net architecture, the encoder consists of a contracting
path (i.e., the first half of the first U-Net) to capture context, and a correspond-
ing expansive path (the second half) that ends with a 1× 1 convolutional layer,
followed by a fully-connected layer with a softmax activation. The contracting
path starts with an initial module which performs a convolution on the input
images. In the figure, the output sizes are reported for an example input image
resolution of 320 × 320 (i.e., the size of the image patches used in our experi-
ments). Modules are connected via 2× 2 max-pooling layers, and we double the
number of feature channels at each down-sampling step. In the expansive path,
modules are connected via transposed 2D convolution layers. The number of fea-
ture channels is halved at each up-sampling step. The input of each module in
the contracting path is also bypassed to the output of its corresponding module
in the expansive path, to recover lost spatial information due to down-sampling.
The combination of the representations from the contractive and the expansive
paths is made through a concatenation operation, following the ideas from Chen
et al. [2]. The final 1 × 1 convolution maps each 32-component feature vector
to the desired number of segmentation classes K, and then the softmax activa-
tion re-scales the values so that the elements of the K-dimensional output lie in
the range [0, 1] and sum to 1, thus forming a probability distribution over the
segmentation classes.

The architecture of the decoder U-Net is similar to that of the encoder, in this
case reading the output of the encoder with a dimensionality of 320 × 320 ×K.
The final 1×1 convolutional layer of the decoder, considering a sigmoid activation
function, maps a 32-component feature vector back to a reconstruction of the
original input, with the 3 channels of the LAB colour model.

The W-Net proposal from Xia et al. [1] considered the task of unsupervised
image segmentation, using a soft normalized cut loss as a global criterion for the
segmentation [18], which measures both the total dissimilarity between differ-
ent classes and the total similarity within the same classes. We instead consider
a supervised setting, in which the output semantic segmentation classes are
pre-established, and having the ground-truth segmentation labels informing the
training of the encoder part of the W-Net. We specifically used the Dice coef-
ficient loss function [19]. When considering multi-class segmentation problems,
the Dice coefficient loss is computed for each class separately, and then summed
(i.e., all the classes contribute equally to the final loss, thus addressing issues of
class imbalance in the training images).

In turn, the decoder part of the W-Net is trained to minimize a reconstruc-
tion loss (i.e., the mean squared error between the predicted and the true LAB
values for the images), forcing the encoded representations to contain as much
information of the original inputs as possible. In our specific context, the model
promotes the idea that semantic categories relate to how one can perceive and
distinguish colors and pixel intensities on the images, jointly optimizing a seman-
tic segmentation loss and a reconstruction loss for the input coloured images.
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3.2 Hyper-parameters and Model Training Strategy

The selection of hyper-parameters and model training strategies relied on the
general guidelines discussed by Xie et al. [20]. The last layer of the first U-Net
features a number of nodes compatible with the number of classes in the segmen-
tation task. If considering a binary segmentation mask, this last layer would con-
sist of a single channel with a sigmoid activation function, and the model training
would involve minimizing a binary cross-entropy loss or the standard Dice coef-
ficient. The tests reported on this paper always considered multiple classes, and
the last layer of the first U-Net consists of multiple channels. In this case, train-
ing involves a softmax activation function together with the multi-class Dice
coefficient loss. An initial set of tests verified that this loss function always out-
performed the traditional categorical cross-entropy loss. Moreover, also through
initial tests, we verified that the LAB colour space lead to slightly better results
than those obtained with the standard RGB colour space, in terms of both the
reconstruction and segmentation quality. Besides converting the input images to
the LAB colour space, we also applied a contrast enhancement procedure, ana-
lyzing the distribution of pixel intensities and re-scaling the representation to
include all intensities that fall within the 2nd and 98th percentiles. This simple
pre-processing procedure was also found to improve the results.

Training relied on the Adam [21] optimization algorithm together with a
Cyclical Learning Rate (CLR) update procedure, as described by Smith [22].
In more detail, the learning rate varied between 10−5 and 10−4, according to a
triangular policy that decreases the cycle amplitude by half after each period
(i.e., annealing the learning rate), while keeping the base learning rate constant.
We used mini-batches of 5 image patches with dimensionality 320 × 320 × 3,
created through a generator that considered simple real-time data augmenta-
tion procedures (i.e., randomly flipping the input images horizontally, vertically
or diagonally when providing them as input to the training algorithm). The
loss function regulating the training of the complete network corresponds to
a weighted combination of the segmentation (i.e., with a weight of 0.95) and
reconstruction (i.e., with a weight of 0.05) losses.

Model training proceeded for up to a maximum of 50 epochs. However, a
small validation set was used to define an early stopping criterion, and the train-
ing stopped if the validation loss (i.e., the weighted sum of the segmentation and
reconstruction losses over the validation data) did not decrease for 5 consecutive
epochs. The final model weights were taken from the training epoch with the
smallest value for the validation loss.

4 Experimental Evaluation

This section presents the experimental evaluation of the proposed method, com-
paring it against a standard U-Net model, and also against other proposals in
the literature. Section 4.1 starts by presenting the datasets and the experimental
methodology, and then Sect. 4.2 discusses the obtained results. The model was
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Table 1. Characterization of the aerial imagery datasets.

Dataset Size (pixels) Number (train/test) Resolution (cm/pixel)

ISPRS Vaihingen 2100 × 2100 16/17 9

ISPRS Postdam 6000 × 6000 24/14 5

implemented through a Python deep learning library named Keras4, and the
corresponding source code is available online5.

4.1 Datasets and Evaluation Metrics

We conducted experiments on two datasets from a previous challenge focused on
semantic segmentation of high resolution aerial imagery, namely from the ISPRS
2D Semantic Labeling Contest, with images of the cities of Potsdam and Vaihin-
gen. These datasets have been extensively used within previous studies in the
area, as discussed in Sect. 2. The task proposed in the context of both datasets
is to classify each pixel in the image with a given class from a fixed set of six
classes: impervious surface, car, building, background, low vegetation, and tree.
Overall, the Vaihingen dataset has 33 images with different sizes, approximately
with 2100× 2100 pixels each and a Ground Sample Distance (GSD) of 9 cm. We
used 12 images for training, 4 for validation, and 17 for testing. The Potsdam
dataset has 38 images of 6000 × 6000 pixels each and a GSD of 5 cm. For this
dataset, we used a split of 18 images for training, 6 for validation, and 14 for test-
ing. Table 1 features a characterization of both datasets. In both cases, the data
splits that we considered are common to those used in most previous studies.
All images were initially converted from the RGB to the LAB colour space [15],
and we also pre-processed them with a contrast enhancement procedure based
on the distribution of pixel intensities, as described in Sect. 3.2.

To assess the quantitative performance of the segmentation methods, we com-
puted the precision, recall, and F1 scores over each segmentation class, macro-
averages and class-weighted averages for precision, recall, and F1 scores, and
the overall accuracy (OA). Following the practice of other studies leveraging the
datasets used in our tests, all the evaluation scores were computed over just five
classes, ignoring the background pixels. Additionally, as suggested by the chal-
lenge organizers that made available the datasets, we evaluated the results on an
alternative ground truth with the borders of the objects eroded by a radius of 3
pixels, to reduce the impact of ambiguous boundaries in the evaluation results.

4.2 Experimental Results

Table 2 features a comparison between the results of state-of-the-art methods in
the selected datasets, against our U-Net and W-Net models, specifically consid-
ering the overall accuracy. Additionally, Table 3 presents the per-class metrics
4 http://keras.io.
5 http://github.com/martamaria96/deep-wnet.

http://keras.io
http://github.com/martamaria96/deep-wnet
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that were used to assess the quantitative performance, together with the percent-
age of pixels, in each dataset, associated to each of the classes (not considering
the background class). Summarizing the results, Table 3 also presents macro-
averaged results and a weighted average of the metrics that takes into account
the percentage of pixels belonging to each class. Notice that the results presented
for previous models are merely indicative, given that we are directly reporting
the values given in previous publications, obtained from the author’s own tests,
and not all those studies used exactly the same experimental protocol.

The results show that the classes corresponding to impervious surfaces, cars,
and buildings achieved better results than the other classes. The results also
show that the proposed W-Net model outperformed a standard U-Net (i.e., a
model using just the first U-Net from Fig. 1, relying just on the loss function cor-
responding to the Dice coefficient) on both datasets, at the same time achiev-
ing comparable results to some of the previous state-of-the-art approaches. A
more detailed analysis of previous results is available online, in the leader-boards

Table 2. Comparison in terms of the overall accuracy for different methods over the
ISPRS Potsdam and ISPRS Vaihingen test datasets.

Model Overall accuracy

Vaihingen Potsdam

RiFCN [6] - 86.6

CONC 2 [23] 86.5 -

ScasNet [12] 91.1 91.1

UOA [24] 87.6 -

SegNet-RC [3] 89.8 89.0

SDFCN [10] 88.3 89.0

UFMG 4 [25] 89.4 87.9

U-Net (ours) 87.05 89.12

W-Net (ours) 88.08 89.14

Table 3. Per-class precision, recall, and F1 metrics over the ISPRS Potsdam and
ISPRS Vaihingen test datasets, with the W-Net model.

Class Potsdam Vaihingen

Percentage Precision Recall F1-score Percentage Precision Recall F1-score

Impervious 31.07 92.88 90.59 91.69 30.87 89.82 90.04 89.79

Car 1.88 98.26 90.56 94.22 1.84 73.19 83.66 76.37

Building 26.99 95.29 94.73 94.98 26.94 93.77 91.95 92.75

Low vegetation 23.75 77.13 90.97 83.29 23.63 81.33 73.00 76.66

Tree 16.30 89.91 78.52 83.48 16.72 81.32 92.42 86.08

Macro-average - 90.69 89.07 89.53 - 83.89 86.22 84.33

Weighted average - 89.41 89.83 89.29 - 87.15 86.81 86.62
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associated to the Potsdam6 and Vaihingen7 datasets. Many of the ideas advanced
in state-of-the-art models for the task can also be combined with our W-Net app-
roach, perhaps further improving the results. For instance, the state-of-the-art
model named UFMG 4 [25] uses convolutional blocks inspired by the DenseNet
architecture, i.e. an idea that can be easily combined with our W-Net [26,27].

Figure 2 illustrates the segmentation results for an example image taken from
each dataset, where the third column presents the results of the W-Net model,
and the fourth column compares our results with the ground truth, highlighting
in red the pixels corresponding to incorrect predictions.

(a) Image (b) Ground Truth (c) W-Net (d) Comparison

Fig. 2. Qualitative results on the ISPRS Vaihingen (first row) and Potsdam (second
row) datasets. The mask has six categories: impervious surface (white), building (blue),
low vegetation (cyan), tree (green), car (yellow) and background/clutter (red). The
columns correspond to (i) the original image, (ii) the W-Net results, (iii) the ground
truth mask, and (iv) an indication of pixels corresponding to wrong predictions. (A
color version of the figure is given in the online version)

5 Conclusions and Future Work

This paper reported on a set of experiments for evaluating the performance of
an adapted version of the recently proposed W-Net neural network architecture,
6 http://www2.isprs.org/commissions/comm2/wg4/potsdam-2d-semantic-labeling.

html.
7 http://www2.isprs.org/commissions/comm2/wg4/vaihingen-2d-semantic-labeling-

contest.html.

http://www2.isprs.org/commissions/comm2/wg4/potsdam-2d-semantic-labeling.html
http://www2.isprs.org/commissions/comm2/wg4/potsdam-2d-semantic-labeling.html
http://www2.isprs.org/commissions/comm2/wg4/vaihingen-2d-semantic-labeling-contest.html
http://www2.isprs.org/commissions/comm2/wg4/vaihingen-2d-semantic-labeling-contest.html
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originally proposed for the segmentation of medical images, on the semantic seg-
mentation of high-resolution satellite images. Through experiments with several
distinct datasets used in previous studies and in competitions, we showed that
the W-Net architecture is quite effective in this task, outperforming the standard
U-Net model and other approaches on common datasets in the area.

Despite the interesting results, there are also many ideas for future work. Sev-
eral previous studies have proposed alternative connectivity patterns for U-Nets,
which we could also explore. Besides the two W-Net architectures that inspired
the model used in our tests, other studies have also proposed to stack/bridge
multiple U-Nets together [28–30], with features going sequentially from the first
U-Net to the last in an attempt to better capture high-order spatial relationships.
Several ideas from these other approaches can also be borrowed, e.g. related to
the use of residuals [31] or other intermediate supervisions. Other authors still
have proposed to combine dense connectivity with the original U-Net architec-
ture, following the general design of DenseNets for image classification [26,27]. In
particular, each top-down or bottom-up module can feature a dense block with
densely connected convolutional layers. Besides dense connections in the encoder
and decoder blocks, one can also consider dense connections across both these
parts [32]. Tang et al. proposed the coupled U-Net model, i.e. a hybrid of the
dense U-Net and the stacked U-Net that integrates the merits of both dense
connectivity and multi-stage top-down and bottom-up refinement [33]. Given
several stacked U-Nets, these authors proposed to add shortcut connections for
each U-Net pair, thus generating the coupled U-Net. Similar ideas can easily be
considered as extensions to our model.

Besides taking ideas from previous developments in fully-convolutional net-
works for image segmentation, other recent developments in CNNs for image clas-
sification can also be integrated into the proposed approach. Examples include
octave convolutions [34] or attention augmented CNNs [35].

Currently ongoing experiments relate to the use of W-Net model variants
for the semantic segmentation of historical aerial photos available as gray-scale
images. The segmentation of historical aerial photos can have many interesting
practical applications, and we are interested in exploring the segmentation of
building footprints for dasymetric disaggregation [36] of historical census data. In
particular, we are studying the application of W-Net models for jointly coloring
and segmenting the aerial photos, in which the first fully-convolutional part
performs semantic segmentation from gray-scale inputs, and the second part
returns a colored version of the original image. The entire model can be trained
with modern datasets of colored aerial photos, such as the ones used in the
experiments reported on this paper, ignoring the color information from the
input images in the encoder part, and instead using the color information for
computing the loss function from the second part of the model.
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