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Abstract. Inertial measurement units (IMU) are, typically, a cluster of
accelerometers, gyroscopes and magnetometers. Its use was introduced
with military applications, being, nowadays, widely common on indus-
trial applications, namely robot navigation. Since there are a lot of units
in different cost ranges, it is proposed, in this paper, a procedure to
compare their performance in tracking tasks. Once IMU samples are
unavoidably corrupted by systematic and stochastic errors, a calibra-
tion procedure (without any external equipment) to identify sensors’
error models and a Kalman filter implementation to remove white noise
are suggested. Then, the comparison is carried out over two trajecto-
ries, square and circular paths, respectively, being described by a robotic
arm, which acts as reference. The results show that different manufac-
turing quality units can track, with success, orientation references but
are incapable to perform position tracking activities.

Keywords: IMU · Calibration · Kalman Filter · Tracking

1 Introduction

Inertial sensors are based on inertia. Normally, this classification refers to gyro-
scope and accelerometer sensors. The first one measures the angular velocity,
i.e., the rate of change of sensor’s orientation, while the second one provides the
external specific force acting on the sensor, which corresponds to its acceleration
plus the earth’s gravity [7]. These elements are, typically, arranged together on
an inertial measurement unit (IMU). A triad of accelerometers and a triad of
gyroscopes (one sensor per axis) are comprised inside, complemented, in some
units, with a triad of magnetometers, which indicate local magnetic field, ful-
filling a set of tri-axial clusters [14]. Traditionally, its use became popular on
military applications, being, nowadays, exploited to industrial purposes, namely
robot navigation systems as well as body motion tracking, and also included on
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smartphones. For such tasks, an IMU is based on microelectro mechanical sys-
tems (MEMS), characterized for being small, light and low power consumption
[7].

The downside of using low cost MEMS based IMU is that, usually, they
are associated to calibration issues, including non accurate scaling, sensor axis
misalignment, cross-axis sensitivities and non-zero biases [14]. These are related
with imperfections in production process [15]. Additionally, the presence of mag-
netic perturbations largely degrades magnetometers’ performance. That’s why,
a reliable operation implies a previous calibration, which consists in identifying
the enumerated parameters [14]. Some manufactures provide products calibrated
by default and with increased accuracy. However, such procedures cost time and
resources, enriching, naturally, the unit value, invalidating a cost-effective uti-
lization [15].

Despite of a good calibration, sensors’ output is still noisy and can’t be
directly used to provide position, velocity and orientation estimations, increas-
ingly differing from the true value along time. This is a problem commonly
addressed on literature. The solution depends on the necessary application accu-
racy. While with relaxed constraints a low pass filter in each sensor set of sam-
ples is enough [3], for tracking problems, fusion of IMU sensors is mandatory to
obtain a reliable estimation. With that in mind, there are complementary filter
based algorithms and Kalman filter approaches [7]. In this paper, the sensor
information is combined through a Kalman filter implementation. Depending
on processing capability, there are some IMU that already provide filtered sam-
ples due to internal algorithms supported on cited approaches. This feature is
associated with higher cost units.

The purpose of this paper is to evaluate distinct IMU performance over a
proposed comparison procedure. The strategy followed is to take different cost
range products, proceed to calibration and posterior samples filtration, check-
ing whether in the end the results have the same accuracy or if, in fact, the
manufacturing quality limits it.

To achieve such goal, in next subsection, it is exposed the calibration tech-
niques and filter implementations presented in literature, being followed by the
details about the chosen approach for both processing stages. Next, the tests per-
formed are referred. First, the setup configuration supporting those is detailed
and, then, the results are shown, evaluated and compared among IMU. Here,
three models are tested – UM7 from CHRobotics (an average price of $140),
MinIMU-9 v3 from Pololu (an average price of $15) and 10 DOF IMU from
Waveshare (also an average price of $15) – being later detailed. Last, some con-
clusions and further improvements are suggested.

1.1 Related Work and Contributions

The IMU calibration is a problem massively referred in the literature. Although
calibrated IMUs are commercially available, they not always represent the best
solution, namely with respect to size, flexibility and cost criteria [4]. In some
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cases, it is preferable a tailor made (allowing to pick some specific models of
inertial sensors) or cheaper units, introducing, however, the need of calibration.

The basic idea consists in comparing the sensors’ output with the reference
value and use that to quantify error model parameters. The traditional meth-
ods are based on precision centrifuge tests [5], optical [6] and GPS trackers [8],
which provides a ground truth for linear acceleration and/or angular rate. Since
calibration parameters are characterized by slowly time variance, in [13] is also
suggested an extended Kalman filter implementation to achieve an online esti-
mation of bias and axes’ misalignment. However, all these procedures not only
imply an external infrastructure to act as reference, which has an inherent high
cost, as well as treat the sensors as independent entities, ignoring the cross-
misalignment between sensors’ frames. Those drawbacks are overpassed in [14]
proposing a multi-position calibration procedure (which can be even made by
hand) and taking advantage of an optimization algorithm to calculate sensors’
model. This is the work that supports this paper. The approach, however, lacks
in the fact that doesn’t include the magnetometer calibration and can be com-
plemented by the work [12]. Here, the magnetometer calibration is a two step
process: the first one related with sensor model using earth magnetic field as ref-
erence and, then, the alignment with the remaining sensors’ coordinate system.
Additionally, in [9], a similar approach to [14] is promoted but using a robotic
arm to a better trajectory precision. This is only valid if the motion between
positions is slow enough to ignore the linear acceleration regarding to gravity.

Even after calibration, sensors measurements tend to be accurate, but just
for a short time, suffering from integration drift over longer time scales [7]. Such
behavior makes impossible to obtain a reliable estimation in tracking applica-
tions. The solution is to combine all inertial information from sensors. Most
of resources in the literature points to the use of Kalman filters (KF) or the
extended version (EKF) [11]. To decrease algorithm complexity, a typical app-
roach is to decompose the estimation in two stages, separating position from
orientation. In the last one, the quaternions are the preferable choice to rep-
resent rotations, for being compact, singularity free and easily converted from
or to rotation matrix and Euler angles [10]. In [7], an EKF implementation is
proposed, using, in the prediction step, a constant acceleration model and a con-
stant angular velocity model. The approach fuses information from all sensors
and provides a reliable representation of system model, but uses different ways
of representing rotations (mixing quaternions with rotation matrices), requiring
online calculation of several large size matrices which aren’t of easy deduction.
To overcome the computational demand, a simplified EKF implementation is
presented in [2]. Here, the processing effort is transferred to an external algo-
rithm that extracts the quaternion from inertial sensors samples, role which
might be performed by TRIAD method. This is an algebraic algorithm that
obtains the direction cosine matrix (DCM) relating two frames, requiring a pair
of vectors in one of them and the respective counterpart in the other one (for
further detailed explanation see [1]). For all said, this paper provides a solution
that merges both approaches. As additional feature, it is included a magnetome-
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ter validation module that, in each iteration, evaluates the conditions to discard
or not the sensor sample. According to [11], those conditions are related to the
angle between accelerometer and magnetometer measurements (which must be
constant in absence of movement or in a constant velocity trajectory) and sensed
magnetic field norm (which must be also constant and equal to earth field one,
in the absence of disturbances).

2 Calibration

The calibration of sensors consists in identifying the systematic error’s sources,
the consequent sensor error model and quantify its parameters. The acquired
samples are, then, corrected using the calculated model. The procedure flow of
the present topic is the following: the accelerometer is calibrated taking gravity
as reference, the gyroscope is calibrated using accelerometer corrected samples
as reference and then the magnetometer is calibrated using both earth magnetic
field and accelerometer samples as reference.

2.1 Accelerometer and Gyroscope

The accelerometer and gyroscope calibration is supported and implemented by
[14].

First, we need to identify the error’s sources and in what way they affect
sensor’s output. In case of inertial sensors, the samples are dominated by instru-
mentation errors. Assembling imperfections are included in this group. Those
are caused by bad sensors disposition on IMU frame in a way that they are
not orthogonal with each other, as supposed. Thus, they represent an invalid
coordinate system. In addition, it isn’t guaranteed that the coordinate sys-
tems from different sensors match. Therefore, all the frames must be aligned
to a reference one, being selected the corrected accelerometer orthogonal frame.
Then, the gyroscopes’ coordinate system must be aligned with that. To sim-
plify the problem, it is assumed that the reference frame matches the IMU body
frame. Mathematically, the compensation consists in samples multiplication by
a square matrix (T ) where α and β represent the angular displacement between
accelerometer (a) and gyroscope (ω) axes, respectively.

T a =

⎡
⎣

1 −αyz αzy

0 1 −αzx

0 0 1

⎤
⎦ Tω =

⎡
⎣

1 −βyz βzy

βxz 1 −βzx

−βxy βyx 1

⎤
⎦ (1)

Besides that, the measurements may also include scale factors (s) distortions,
compensated by a diagonal matrix (K ).

Ka =

⎡
⎣

sa
x 0 0
0 sa

y 0
0 0 sa

z

⎤
⎦ Kω =

⎡
⎣

sω
x 0 0
0 sω

y 0
0 0 sω

z

⎤
⎦ (2)



A Comparison Procedure for IMUs Performance 335

Finally, there are additive errors. They emerge as an offset value on sen-
sors’ output, tending to diverge over long time runs as well as between turn on
operations. They are classified as bias (b).

The accelerometer and gyroscope calibration models are given, respectively,
by 3 and 4. The superscript o refers to calibrated sample on orthogonal frame
while s refers to non-calibrated sample provided by sensor.

−→a o = T aKa(−→a s +
−→
b a + −→v a) (3)

−→ω o = TωKω(−→ω s +
−→
b ω + −→v ω) (4)

The v parameter refers to white noise (gaussian with zero mean) that is
removed through Kalman filter, presented in next stage.

The model parameters quantification is made by a minimization algorithm.
Its input is the set of samples acquired during a multi-position calibration path
[14]. Shortly, the IMU is moved along several positions, remaining static, during
a some time, in each one. To assure the posterior convergence of the algorithm,
it is recommended a number of positions between 36 and 50 and to stay, at least,
5s in each one. The referred movement can be performed manually, i.e., just by
hand, but, to increase results accuracy, the tests described in this work were
realized with a robotic arm.

The acquired accelerometer samples are the input of the minimization func-
tion, which is formulated as the reference value minus sensor model output (L).
In this case, gravity corresponds to the reference (g) but only if linear accelera-
tion is discarded, which is only valid when the IMU rests at static positions or
performs a constant linear velocity movement. That’s why, only that samples’
subset (of size M ) is used on minimization algorithm, which is an implementation
of Levenberg-Marquardt method [14].

L(T a,Ka, ba) =
M∑

k=1

(‖−→g ‖2 − ‖T aKa(−→a s
k + ba)‖2

)2 (5)

Regarding to gyroscope, the implementation follows the same guidelines.
However, since during static positions the angular rate is zero, the angular
integration (function ψ) occurs on transitions instead. Here, the calibrated
accelerometer samples are used to extract the reference, which is the angular
displacement between the samples immediately before and after the transition
interval (ua). Similarly to accelerometer calibration, a minimization function is
also defined (L).

L(Tω,Kω, bω) =
N∑

k=1

‖ua,k − ψ(Tω,Kω, bω, ωs
k, ua,k−1)‖2 (6)
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2.2 Magnetometer

In magnetometers, besides the previous instrumental errors, their measurements
are also susceptible to magnetic perturbations. In an ideal scenario, the mag-
netometer should only measures earth’s magnetic field. However, when applied
indoors, local magnetic fields tend to overlap it. Such effects may be classified
as hard and soft irons. The first ones are characteristic of some materials that
generate their own magnetic field, actuating equally in all directions/axes. On
the other side, the soft irons result from materials that perturb earth’s field but
in specific directions of actuation.

To exemplify the concepts exposed, three scenarios are now considered. In
absence of any distortion, when the IMU is rotated on a space plane, a circum-
ference is drawn from magnetometer samples, centered at IMU body and with
a radius equal to earth’s magnetic field norm. In presence of hard irons pertur-
bations, a circumference is still obtained but translated from center and with a
different radius value. Finally, the soft irons presence generates an ellipse, cen-
tered at the origin, and with the respective axes indicating the direction of the
distortion.

The compensation of previous effects is made over two steps. Since hard irons
induce an offset on the measurements, the same value must be subtracted to the
data (Hm). On the other hand, to transform an ellipse into a circumference, their
axes must be aligned with body frame axes (Rm), apply a scale factor (Sm) per
axis and turn back to initial orientation (Rm−1

). The resulting sensor model is
presented in Eq. 7.

−→m′ = (Rm−1
SmRm−→ms − −→

Hm) (7)

In addition, it must be also considered the instrumentation errors already
referred. In order to simplify the final model, some simplifications are performed,
concentrating the calibration parameters only in two matrices (A, B).

−→mo = TmKm(−→m′ +
−→
b m + −→v m) = A(−→ms +

−→
B + −→v m) (8)

The calibration procedure is made over two moments. In the first step, the
IMU must be forced to describe circumference based paths (at least one per
space’s plane) and the magnetometer samples must be recorded. Such measure-
ments are the input of the minimization algorithm, already used in previous
sensors. The reference is the earth’s magnetic field vector in that point of the
globe (−→mref ).

L(A,B) =
M∑

k=1

(‖−→mref‖2 − ‖−→mo
k‖2

)2 (9)

In this point, the calculated model already represents the calibrated samples
relatively to the magnetometer orthogonal frame. However, it is still necessary
to align this coordinate system with the other sensors. For that, the accelerom-
eter frame is used as reference and the constant angle between both sensors’
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arrays is included as a problem restriction. Once again, this is a minimization
problem to find the rotation that minimizes the angular displacement between
samples. Such rotation could be represented by a rotation matrix, but would be
a 9-parameter problem and would imply the consideration of SO(3) properties.
To avoid that computational effort, the axe-angle representation is preferred,
reducing the solution to only three parameters. The minimization algorithm fol-
lows the previous implementation rules. The samples used as input are the ones
acquired during multi-position path: the calibrated accelerometer measurements
(the output of 3) and magnetometer samples on orthogonal frame (the output
of 8).

Considering the constant angle between samples, the unitary norm arrays
and taking advantage of inner product properties results in Eq. 10.

−→a · −→
b

‖a‖‖b‖ = cos(−→a ,
−→
b ) (10)

Finally, the problem formulation is presented in Eq. 11, being a the
accelerometer calibrated sample and m the magnetometer orthogonal sample
(output of 8). The goal is to obtain a rotation (given by ω in axis-angle repre-
sentation) which closes as much as possible the sample’s angular displacement
from real angular displacement between gravity and earth’s magnetic field (α).

argmin−→ω
n∑

i=1

(−→
aoT

i · Rot(−→ω )−→mo
i − cos(

π

2
− α)

)2 (11)

3 Kalman Filter

According with the ideas captured from literature and presented in Sect. 1, the
Kalman filter implementation is divided in two subsystems: position and orien-
tation estimation. Although some cross-effects are lost, this decision is justified
by the reduction of complexity.

Regarding to linear motion, the main goal is to estimate the position (p),
linear velocity (v) and acceleration (a) in 3D space. Inspired in [7], it is defined a
constant linear acceleration motion model (where linear acceleration corresponds
to Kalman filter state, x ), being the remaining estimations obtained by pure
integration during sampling time (T ). The system has only one output (y) which
is the linear acceleration on body frame (obtained by rotation from earth to IMU
frame, Rbn), the output of inverse accelerometer model calibrated on previous
stage.

pt+1 = pt + Tvt +
T 2

2
at (12)

vt+1 = vt + Tat (13)
xt+1 = at+1 = at + ea,t (14)

yt = (T aKa)−1Rbn
t (at + gn) − ba + ea,t (15)
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In terms of orientation, it is intended to obtain quaternion and angular veloc-
ity estimations. The quaternion is given by time integration, according with the
angular displacement in each iteration (which is angular velocity integrated dur-
ing sampling time, T ). The angular velocity is directly replaced by the calibrated
value of gyroscope measure (ωo). A constant angular velocity model could be
considered instead, but it would be accomplished by computational complexity
with the advantage of the estimation being less sensitive to perturbations. With
this implementation, although more reactive, a better commitment is achieved.
The system state and output are the same, the quaternion that represents the
rotation from IMU to earth frame (qnb). The observation quaternion is returned
by the application of TRIAD method over the set of accelerometer (ao) and mag-
netometer (mo) calibrated samples and gravity and earth magnetic filed arrays.
Taking the two pair of arrays, the algorithm returns the rotation matrix that
best relates the earth and IMU frames, being, after that, converted to quaternion
representation which constitutes the observation measure.

xt+1 = qnb
t+1 = qnb

t +
dqnb

t

dt
T + eq,t = qnb

t +
1
2
Ω(ωo)qnb

t + eq,t = (16)
⎡
⎢⎢⎣

1 −0.5Tωo
x −0.5Tωo

y −0.5Tωo
z

0.5Tωo
x 1 0.5Tωo

z −0.5Tωo
y

0.5Tωo
y −0.5Tωo

x 1 0.5Tωo
x

0.5Tωo
z 0.5Tωo

y −0.5Tωo
x 1

⎤
⎥⎥⎦ · qnb

t + eq,t (17)

yt = qnb
meas,t(a

o,mo) = qnb
t + eqm,t (18)

ωo = TωKω(ωs + bω) (19)
ao = T aKa(as + ba) (20)
mo = Am(ms + bm) (21)

3.1 Magnetometer Validation

During the movement of IMU, it could interact with a magnetic neighborhood,
generating perturbed magnetometer measurements. In such scenarios, the sam-
ple is not valid and must be discarded, otherwise an unreliable estimate would
be provided. The validation must be performed in each iteration, before applying
Kalman filter, and through two verification steps. First, it is calculated the mag-
netometer array norm (−→mk) and verified if that is within a established acceptance
range (εm). Second, if the first condition is verified with success, the inclination
angle, i.e., the angle between the array and the horizontal plane, is considered
((εdip)). A set of samples is considered valid when it passes with success over the
two tests.

∣∣∣‖−→mk‖ − ‖−→h ‖
∣∣∣ < εm ∩

∣∣∣∣Θdip − arccos(
Rnb−→mo · Rnb−→a o

‖−→mo‖‖−→a o‖ )
∣∣∣∣ < εdip (22)
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When the samples are rejected, there is no valid magnetometer sample and
the TRIAD method is not applied on that iteration. Instead, an Euler angles rep-
resentation is applicable: the roll and pitch angles are extracted from accelerom-
eter samples and the yaw is extracted from predicted quaternion of prediction
step. In the end, a transformation from Euler angles to quaternions form is
applied.

3.2 Allan Variance

The sensors model parameters tend to be characteristics of a specific IMU. How-
ever, the bias, namely from the gyroscope, tend to slowly varies with time when
in operation. That’s why, since such parameters are considered static on fil-
ter model, during long time runs they can become outdated and not correctly
reproduce the initial calibrated model. To avoid that, it is important to calcu-
late instability of the sensors and, that way, know during how long the model
is valid according to acceptable tolerance. That value can be obtained through
the Allan variance calculation. This is a mathematical tool which provides the
stability degree of a set of samples along the time. Since we are looking for low
frequency variations, the samples should be acquired during a large time interval
(8 hours and above) and in static conditions, i.e., with the sensor immobilized.
The minimum value of the graphic indicates the maximum stability in degrees
per second and, with the maximum angular tolerance allowed, the validity of the
model is easily extracted.

In addition, this parameter can be used as a benchmarking indication to com-
pare different sensors. How much lower is the (in)stability, the sensor operation
is more precise during a long interval operation whereby it is suggested that it
has a more quality construction, providing an immediate choice criteria of IMUs
without any further test.

4 Results

4.1 Setup and Methodology

The objective of tests is to compare the performance of different IMUs, with dis-
tinct construction quality, and to conclude whether this premise affects or not the
accuracy of the estimation, even after calibration and filtering of the measured
samples. For that purpose, three units were picked from different cost ranges.
They were UM-7 from CHRobtics, minIMU-9 v3 from Polulu and 10DOF IMU
v2 from Waveshare. All units offer a triad of 3-axis accelerometers, gyroscopes
and magnetometers.

For all of them, raw data was collected, and pros-processing done offline.
The tests were carried out over three trajectories. It was defined, in first

place, a calibration path, characterized by a circumference based movement in
each plane of 3D space (xy, xz, yz) in order to ensure the large number of
positions required to the calibration algorithm convergence. Although this tra-
jectory allows to evaluate the position and orientation tracking, the movements
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were considered, separately, on a square (with a fixed orientation) and circular
paths.

To be able to simulate the indicated motions multiple times and always with
equal spaced points in the trajectory, an ABB IRB2600 was used (see Fig. 1. The
paths’ design was, firstly, supported on a simulated environment, RobotStudio,
and, only then, transferred to real world application.

Additionally, a 3D printed tool was built to remove the magnetic perturba-
tions produced by having the IMus and the end-effort’s metallic material in close
proximity and to ensure a proper accommodation.

Fig. 1. ABB IRB2600 and 3D printed end-effort tool used in the tests.

4.2 Experimental Results

To process the results, the samples were converted from raw data to proper units
(g, rad/s and gauss) and only then were able to be compared with the reference.
Here, it was used the position and orientation feedback provided by the robotic
arm, with an enough accuracy to be considered, in this case, the ground truth.
The comparison criteria was the root mean square error. Such indicator was com-
puted (per coordinate error and Euler angle error) before and after calibration
and after Kalman filter application in order to observe the estimation increments
induced. After, an inter-IMU analysis is carried out, discussing the final accuracy
of each unit. The referred procedure was developed in each configured path.

erms =

√√√√ 1
N

N∑
i=1

e2i (23)

Calibration Trajectory. Resuming what was previously said, the trajectory
path is formed by a large number of positions where the IMU rest during, approx-
imately, 10 s. The trajectory points are included in different planes of 3D space.

Regarding to orientation, this is represented in quaternions format. However,
since its components don’t provide an intuitive error’s interpretation, the Euler
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Table 1. Root mean square orientation error of the IMUs.

IMU Euler angles W/o calibration W/ calibration

UM7 Rollrms 8.287◦ 15.294◦

Pitchrms 6.741◦ 10.772◦

Y awrms 7.341◦ 8.644◦

MinIMU-9 Rollrms 19.267◦ 18.187◦

Pitchrms 16.434◦ 15.464◦

Y awrms 49.066◦ 34.575◦

10DOF Rollrms 36.280◦ 27.033◦

Pitchrms 30.462◦ 20.002◦

Y awrms 30.694◦ 16.302◦

angles representation is applied. Then, the root mean square error is showed on
Table 1.

The purpose of showed results is to present the improvement introduced by
calibration procedure and justify its use. This is applied over the three IMUs.
In no calibration case, the samples are directly used to calculate the orienta-
tion estimation and then compared with the reference returned by robotic arm,
being the result exported on Euler angles format. The same samples are, then,
corrected through calibrated sensors’ error model and the orientation calculated
again. In both cases, the Kalman filter is not considered. For UM7, it can be seen
that, even without any correction, the samples have an acceptable orientation
error, with an equivalent precision in all axes. Since calibration algorithm can’t
provide more accurate measures, its application degrades the estimated angles.
Regarding to remaining units, the calibration effect is more noticeable. With
minIMU, the most yelling improvement is imputed to yaw angle, which might
be justified by an initial deficient magnetometer calibration, while accelerome-
ter provide reasonable measures (used to obtain roll and pitch). Finally, with
10DOF unit, the calibration need is more explicit. The improvement is shared
by all angles, indicating, probably, a worst manufacturing quality construction,
inherent to both accelerometer and magnetometer.

The calibration intends to eliminate the systematic errors, while the sub-
sequent Kalman filter has the purpose to suppress the zero mean noise which
affects the samples. This process results in a smooth and more precise estimation
when compared with calibration data, also due to the inclusion of magnetometer
validation module. The 10DOF IMU case is presented in Fig. 2.

In terms of position tracking, a more detailed analysis is made in square
trajectory topic.

Angular Trajectory. This path is characterized by an axial movement per-
pendicular to horizontal earth’s plane. There is no end-effort translation, stay-
ing rotating on a fixed point until it reaches the joint limit, alternating between
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Fig. 2. 10DOF calibrated and filtered quaternions comparison.

clockwise and anticlockwise. The root mean square error of Euler angles is dis-
criminated on Table 2, being considered the filtered values.

Considering all angles, it is concluded that the UM7 present the best
behaviour, being the error more noticeable only in yaw (the axis direction of
the movement). Regarding to minIMU, an equivalent precision was achieved,
being the 10DOF the worst unit. This result can be partially justified by the
fact of the rotation’s speed be higher than sample rate of sensors, making difficult
the tracking task.

Table 2. Root mean square orientation error on circular path.

Euler Angles UM7 MinIMU-9 10DOF IMU

Rollrms 0.632◦ 3.268◦ 1.384◦

Pitchrms 0.106◦ 8.496◦ 2.590◦

Y awrms 11.523◦ 8.303◦ 22.642◦

Square Trajectory. Despite of already has been concluded that the units
are unable to track a linear displacement, it is, anyway, provided a procedure
to evaluate such capability. Since the path is described by a robotic arm, the
available working area is more restricted. For that reason, it was defined a square
path, in xy plane, with 50 cm of side length. It was performed several turns.
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The filtered position estimation diverges continuously from robot reference
since initial moment. Such behaviour is common to all axes, being justified by the
fact that estimate results from time integration of calibrated linear acceleration
and, that’s why, any offset from real value will affect position estimation by a
quadratic factor, leading to an unbounded estimation error.

To compensate that behaviour, it is proposed the definition of reference posi-
tions which provide a reset of position estimation always they were crossed by
IMU. However, since the tracking with IMU is not possible even in short peri-
ods of time, probably the use of an external accurate position sensor is a more
reliable approach.

5 Conclusion

In this paper, it has been presented an algorithm to process the samples from an
IMU and a further proceeding to compare units performance. The calibration
implementation showed to be reliable and can be realized without any exter-
nal and expensive equipment. The results also confirmed that the Kalman filter
ensures a reliable estimation. Two paths have been proposed to evaluate IMUs’
performance, having been concluded that different manufacturing quality units
can achieve an equivalent accuracy in terms of orientation estimation, but they
are incapable to be used as position tracking sensors. Then, as further improve-
ment, it is suggested the integration of an accurate position sensor for that
purpose.
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