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Abstract. Kriging is one of the most used spatial estimation methods
in real-world applications. Some kriging parameters must be estimated in
order to reach a good accuracy in the interpolation process, however, this
task remains a challenge. Various optimization methods have been tested
to find good parameters of the kriging process. In recent years, many
authors are using bio-inspired techniques and achieving good results in
estimating these parameters in comparison with traditional techniques.
This paper presents a comparison between well known bio-inspired tech-
niques such as Genetic Algorithms and Particle Swarm Optimization in
the estimation of the essential kriging parameters: nugget, sill, range,
angle, and factor. In order to perform the tests, we proposed a method-
ology based on the cluster-based kriging method. Considering the Fried-
man test, the results showed no statistical difference between the evalu-
ated algorithms in optimizing kriging parameters. On the other hand, the
Particle Swarm Optimization approach presented a faster convergence,
which is important in this high-cost computational problem.

Keywords: Bio-inspired algorithms - Artificial Intelligence -
Geostatistic - Kriging

1 Introduction

Kriging is a geostatistical interpolation technique that predicts the value of obser-
vations in unknown locations, based on previously collected data. The kriging
error or interpolation error is minimized by studying and modeling the spatial
distribution of points already obtained. This spatial distribution or spatial vari-
ation is expressed in the form of an experimental variogram [9].

The variogram is the basis for the application of the kriging method. Thus,
the kriging process is defined in three main steps. First, the experimental vari-
ogram is calculated. Then, the theoretical variogram is modeled to represent the
experimental variogram. Finally, the value of a given point is predicted using
the built theoretical model.
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Artificial Intelligence techniques have been used to improve the kriging pro-
cess as shown in [2,8,10,13,15], however, it is still a challenge to determine what
method is better suited for a given database. As stated in [8] and applied in [10],
bio-inspired algorithms, in general, are suitable to help define the theoretical
variogram parameters. Furthermore, these types of algorithms do not require a
single initial seed value as input, but rather an interval.

Several researchers have implemented bio-inspired algorithms to optimize
theoretical variogram parameters, such as Genetic Algorithms (GA) [2,10,15],
and more recently Particle Swarm Optimization (PSO) [12]. However, which to
the best of the authors knowledge, there is no systematic comparison in relation
to accuracy and convergence of the kriging parameters estimation as well com-
putational processing effort of these algorithms considering the same scenario of
study.

This paper applies the cluster-based kriging method designed by [1]. In this
method, the spatial data are divided into different subgroups by the K-means
clustering method [14], where each data point is interpolated using only data
from the same group. A limitation of the cluster-based method proposed by [1]
is the task of defining a single theoretical variogram model for all groups, without
considering that distinct regions of the analyzed database may present specific
behaviors during the kriging process. Therefore, we propose the estimation and
optimization of different parameters to each group. Some problems encountered
in this kind of improvement, such as cluster overlapping and unknown point
classification, are solved using the K-Nearest Neighbour (KNN) algorithm [14]
and data preprocessing.

In this context, the purpose of this paper is to evaluate well known bio-
inspired techniques such as Genetic Algorithms and Particle Swarm Optimiza-
tion when applied in the estimation of the essential kriging parameters. As said,
in order to perform tests, the cluster-based kriging method was applied and
a GA and PSO model was built for each cluster. The results showed that both
algorithms were statistically equal in optimizing the variogram parameters. How-
ever, PSO converged faster than GA. This conclusion is important because the
adopted methodology (cluster-based kriging, interpolation cost function, and so
forth) presents a high computational cost. Therefore, it is essential to reduce the
number of iterations of optimization algorithms.

This paper is organized as follows. Section 2 consists of the theoretical back-
ground involving important concepts for the understanding of this paper. In
Sect. 3, the steps of the proposed methodology are detailed. Section 4 presents
the database used in this work besides the results of the experiments performed.
Finally, Sect. 5 presents the final considerations.

2 Background

2.1 Kriging

Kriging is an interpolation technique widely used in geostatistics to predict spa-
tial data. This method takes into account the characteristics of regional variables
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autocorrelation. These variables have some spatial continuity, which allows the
data obtained by the sampling of specific points to be used to parameterize the
prediction of points where the value of the variable is unknown [9].

Let Z be a set of observations of a target variable (response variable) denoted
as {z(s1), z(s2), ..., z(sn)}, where s; = (x;,y;) is a point in a geographical
space; x; and y; are its coordinates (primary locations); and N is the number of
observations.

Values of the target variable at some new location sy can be derived using
a spatial prediction model. The standard version of kriging is called ordinary
kriging (OK), where the predictions are based on the model:

Zok (so) = Zwi(so)-z(si) = Ag.z (1)

where )\ is a vector of kriging weights (w; ), and z is the vector of N observations
at primary locations.

So, in order to estimate the weights, we calculate the semivariances y(h)
based on the differences between the neighboring values:

1(h) = 3 Bl(=(s:) — (51 + )Y 2)

where z(s;) is the observation of the target variable at some point location, and
z(s; + h) is the observation of the neighbour at a distance s; + h.

Suppose that there are N point observations, this yields N x (N — 1)/2
pairs for which a semivariance can be calculated. If we plot all semivariances
versus their separation distances a variogram cloud is produced. For an easier
visualization of this variogram cloud, the values are commonly averaged for a
standard distance called “lag”. If we display such averaged data, then we get the
standard experimental variogram, which can be seen in Fig. 1.

¥ (h)
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C+C, sill /\\./_/o

e—e—e Experimental Variogram
= === Theoretical Variogram

Nugget

0 Range (R) l:

Fig. 1. Example of a final variogram model.

Once we calculate the experimental variogram, we can fit it using a theo-
retical model, such as linear, spherical, exponential, Gaussian, among others.
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The variograms are commonly fitted using a cost function (e.g. weighted least
squares [3]). Hence, the main objective is to minimize this cost function. In this
work, in order to simplify the experiments, we only use the exponential theoret-
ical model, which is given by

v(h) = Co + Cy (1 — EXP (—3 <Z)2>> (3)

where R is the range of influence or simply range, which is the coordinate where
the model starts to flatten out; Cy is the nugget effect, which can be attributed
to measurements errors or spatial sources of variation at distances smaller than
the sampling interval; and Cp + C is the sill, which is the value that the model
attains at the range R. These parameters, also called coefficients, determine the
theoretical variogram as illustrated in Fig. 1.

Once we have estimated the theoretical model, we can use it to derive semi-
variances at all locations and solve the kriging weights. The ordinary kriging
(OK) weights are solved multiplying the covariances:

Ao = Ctco; C(|n| =0)=Co+ Cy (4)

where C is the covariance matrix derived for N x N observations and cg is the
vector of covariances at a new location. Note that the C is in fact a (N + 1) x
(N 4+ 1) matrix if it is used to derive kriging weights, since one extra row and
column are used to ensure that the sum of weights is equal to one:

0(81,81) 0(51781\/) 1 C(So,sl) wl(So)

. . . . . : — . (5)
C(SN:SI) s C(SN’SN) 1 C(SO,SN) wN(SO)

1 ... 1 0 1 ©

where ¢ is the Lagrange multiplier. After calculating the weights, the prediction
is then given by Eq. 1.

When the experimental variogram is distinct for two or more directions, we
have an anisotropic phenomenon [9]. The anisotropy is calculated considering a
certain angle from 0 to 180°, and a factor given by

Anisotropy factor = Z—Q (6)
1
where a; and ag are the biggest and smallest radius of the ellipse (area of effect
in the kriging process), respectively. This factor varies between 0 and 1, with 1
being an isotropic model. Therefore, in case of anisotropy, five parameters are
used to estimate the theoretical variogram model: nugget, sill, range, angle, and
the anisotropy factor.
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2.2 Population Diversity Index

The standard population diversity (SPD) describes the level of variation in a
certain population. Greater diversity implies greater variability of the popula-
tion [16]. Considering a population with P individuals (G1, Gs,...,Gp), given that
each individual (or particle) has T parameters (or genes), we can denote G; =
(Gi1y Gi2,...,Gi1). So, the general mean for each gene T' is given by

1 P
G%ve = F ZG’L,T (7)
i=1

In the normalization step, the standard deviation for each gene T in relation
to the population P is calculated by

P
1
o(GT°) = P Z(Gi,T — G7¥¢)? (8)
i=1

Finally, the variability of the population P in each generation of the bio-
inspired algorithm is given by

T o(Gave
SPD = ;Z((G;jve)) 9)

j=1

3 Methodology

The cluster-based kriging method [1] was adopted to evaluate GA and PSO
algorithms. In this scenario, we first applied a preprocessing step using stan-
dardization algorithms and a statistical measure to remove outliers. After that,
the K-means algorithm was used to find U groups of data. In this clustering
step, the KNN algorithm was used to minimize the cluster overlapping problem,
improving the clustering groups. For each group, the bio-inspired algorithms
were used to find the kriging parameters, in other words, a model was built for
each cluster u. Then, the unknown points (test data) were allocated via KNN
to one of the previously built clusters and interpolated by the respective model.

The flow chart that describes the proposed methodology can be seen in Fig. 2.
For each number of cluster (1 to 5), this process was repeated 10 times in the
10-fold cross-validation. Each iteration was performed using different training
and test data sets.

3.1 Cost Function and Evaluation Metric

The fitness function used in GA and PSO algorithms was obtained by applying
the kriging process at each data point (leave-one-out cross-validation) of the
training data (90% of the database). Regarding the evaluation metric, the 10-
fold cross-validation was applied. For both cases, fitness and evaluation, the
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Fig. 2. Flowchart of the proposed methodology.

interpolation cost function (Eq.10) was employed [10]. More specifically, the
normalized mean squared error (NMSE) index was used as figure of merit and
calculated by
1 &, )
NMSE, = mz;[z(si) = 2(si)] (10)
1=

where £(s;) is the predicted value of the target variable obtained by the kriging
method at the hidden point s;; z(s;) is the real value of the target variable at
the hidden point s;; n is the total number of points in the cluster u; and o2 is
the variance of the target variable considering the cluster v data. A lower NMSE
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indicates a better prediction value. The NMSE index of the database is given by

U
NMSE =) NMSE, (11)

u=1

It is important to point out that the leave-one-out cross-validation was used
only to calculate the fitness function of each solution (GA and PSO). In order
to measure the accuracy, we applied the 10-fold cross-validation. So, the studied
database was randomly partitioned in 90% for training and 10% for test in each
iteration. In all, 10 iterations with different partitions were performed for each
number of clusters. The average of these 10 tests was calculated in the end.

3.2 Data Preprocessing

In the data preprocessing step, the spatial information = and y, and the target
variable, piezometric wells in this work, were normalized between 0 and 1. This
procedure is important to ensure that every variable has the same weight in the
clustering process and to avoid cluster overlapping. In the sequel, we used the
Z-score measure with 99% confidence level to remove outliers.

3.3 Data Clustering

K-means [14] is one of the simplest unsupervised learning algorithms that solve
the clustering problem. This clustering algorithm partitions the database into
U clusters, where the user provides the value of U. In this work, the K-means
method was chosen based on the solution proposed by [1], however, it is impor-
tant to observe that any other clustering method can be used in the proposed
methodology. Remembering that the main objective is to evaluate the perfor-
mance and behavior of GA and PSO bio-inspired optimization methods.

After the preprocess and partition tasks, the training data was split into
U clusters using the spatial information =z and y, and the target variable. As
shown in [1], the clustering process often results into overlapped clusters. This
problem impairs the correct allocation of unknown (new) data into the clusters.
So, in order to minimize the overlapping, all data were previously normalized
between 0 and 1, and the KNN algorithm was applied in order to enhance the
data grouping by allocating the current point based on the k neighbors. For
example, the black circle highlighted in Fig. 3(a) demonstrates data overlapping,
which was reduced with the application of the proposed methodology, as can be
seen in Fig. 3(b).

3.4 Optimization Phase

For each cluster obtained by the K-means technique, we applied an optimization
algorithm (GA and PSO) to find optimal kriging parameters: nugget, sill, range,
factor, and angle. The accuracy of the interpolation are directly correlated to
how good these parameters are. Each bio-inspired algorithm was evaluated based
on the best set of parameters.
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Fig. 3. Example of data clustering: (a) Original data clustering with overlapping and
(b) Normalization + KNN data clustering.

3.5 Classification

The KNN algorithm was applied in order to classify the test data points into
one of the previously built clusters based only on the spatial coordinates. Then,
the kriging process was carried out and the error was calculated.

4 Experiments and Results

4.1 Database

The studied database represents the mountainous region of Wolfcamp Aquifer
in West Texas/New Mexico [1]. This study area was already employed in other
works [1,3] and classified as irregularly spaced with anisotropic data. This
database contains 85 data points, including the spatial coordinates (z and y)
and piezometric wells information (target variable).

4.2 Experiments

In order to evaluate and compare the results for the two studied bio-inspired
algorithms, a manual tuning process was performed. The population size and
the number of iterations were the same for both algorithms, and other specific
parameters were manually tested. The final values are shown in Table1. The
GA code was designed on the R package GA [11] and the PSO code was also
implemented using the R language programming.

For convenience, some parameters of the experimental variogram were fixed,
such as the number of lags (= 1), the model type (= exponential), and the
nugget effect (= 0). So, the chromosome (GA) and the particle (PSO) had the
following variables: sill, range, angle, and factor. Their lower and upper bounds
were defined, after the normalization step, as: range (= 0 to d); sill (= 0 to o?);
angle (= 0 to 180°); and factor (= 0 to 1); where d is the maximum distance
between two points and o2 is the target variable variance.
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Table 1. GA and PSO parameters.

Algorithm | Parameter Value

GA Population Size 100
Generations 50
Crossover Probability | 0.8
Mutation Probability | 0.1
Elitism 5%
Selection Method Roulette

Crossover Method
Mutation Method

Real Coded [4]
Real Coded [5]

PSO Particles 100
Iterations 50
Social Constant 2

Cognitive Constant |2
0.4 to 0.8

Inertia Range

GA and PSO fitness from one to five clusters in the optimization phase are
described in Table 2. For more than one cluster settings, the results were obtained
by summing the NMSE errors (Eq. 11). Because of the computational cost, 10
executions for each number of clusters were performed, each one using 90% of
the database and the leave-one-out process. Note that the best results (or lowest
errors) were obtained with five clusters for both algorithms and the average and
standard deviation tend to decrease as the number of clusters increases. PSO
always achieved better fitness than GA, but we can infer that GA is more stable,
since PSO presented a higher standard deviation.

Table 2. Best fitness/NMSE, fitness average and fitness standard deviation.

Number of clusters
1 2 3 4 5
GA | Best fitness | 0.357 | 0.341 | 0.353 | 0.310 | 0.287
Average 0.458 1 0.457 | 0.441 | 0.407 | 0.381
Std. Dev. 0.098 | 0.051 | 0.036 | 0.038 | 0.044
PSO | Best fitness | 0.354 | 0.299 | 0.314 | 0.269 | 0.222
Average 0.73910.625 | 0.537 | 0.513 | 0.498
Std. Dev. 0.7120.300 | 0.114 1 0.111 | 0.110

Figure 4 presents GA and PSO convergence curves from one to five clusters
in the optimization phase. The results showed that PSO converges faster than
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GA, in other words, PSO reached the best result found by GA before the tenth
generation in most cases. Since it is a high computational cost process, this kind
of information is relevant considering future works. This better convergence is
probably explained by the fact that PSO presented populations with higher
diversity level, as will be discussed in the sequel.
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Fig. 4. Convergence charts for one to five clusters. Each line represents the average of
10 executions of GA or PSO.

In Fig. 5, we can see the standard population diversity (SPD) calculated for
both algorithms. PSO had a much higher variation in the population than its
counterpart GA. Obviously, a high diversity does not guarantee a better result,
but it is a good indicator that the population is well spread out in the search
space. Figure 5 shows the SPD values for the configuration with one cluster, just
as an example, since the behavior was similar in the other settings.

Figure 6 presents the results of the classification step that were calculated
using the 10-fold cross-validation process. More specifically, each iteration (=
10 for each number of clusters) used 10% of the database to test the kriging
parameters previously estimated with the remaining 90%. The p-value obtained
by the Friedman test [7] was 0.17, indicating that the error difference between
GA and PSO was not statistically significant.



760 C. Yasojima et al.

06- ¢
0.5- 0,0 e 000‘0..'."‘..‘.'.......'.‘.;.olo
Q04- Algorithm
o . GA
(7] \ PSO
0.3- \
02 1 .. .. .
d '1‘0 Zb SIO 4I0 5IO

Generations

Fig. 5. SPD for GA and PSO. Average of 10 executions for only one cluster.

0.3-

0.2- | | Algorithm
GA
PSO

|

‘ LI \ [
0.1- |

i muiy ulling
0.0- ‘ L N

1 Cluster 2 Clusters 3 Clusters 4 Clusters 5 Clusters
Number of Clusters

Fig. 6. Boxplot of NMSE considering the classification step for GA and PSO from one
to five clusters. Average of 10 executions for each number of clusters.

5 Conclusions

The results obtained with the proposed methodology demonstrated that, based
on the Friedman test, the evaluated algorithms (GA and PSO) are statistically
equivalents when estimating the kriging parameters on the studied database.
However, in the optimization phase, PSO converged faster than GA in all sce-
narios (1 to 5 clusters), which is an important conclusion.

Furthermore, exploring different parameters and customizing other operators
could be interesting tasks to thoroughly assess the strengths of each method.
Other topics that would add value to this research are: (i) reduce the computa-
tional processing time; (ii) test other techniques and databases in the proposed
methodology; and (iii) discuss the impact of the clustering-based method on the
stationary hypothesis. Stationary data is one whose statistical properties such
as mean, variance, among others, are all constant over the spatial domain, which
is suitable for the kriging process [9]. In [6], the author states that including the
spatial coordinates in the clustering step, like the proposed methodology, does
not guarantee the stationary hypothesis.
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