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Abstract. Water resources are essential for sustainable economic and
social development, as well as be a vital element for the conservation
of ecosystems and the life of all beings on our planet. On the other
hand, natural and anthropic disasters from floods and droughts may
occur. The modeling of hydrological historical series has extensively been
studied in the literature for important applications involving the water
resources’ planning and management. There are several temporal series
prediction’s techniques in the literature. Some of them are characterized
as classical linear methods whose adjusts for multivariate or multi-input
prediction problems can be difficult. On the other hand, artificial neural
networks can learn complex nonlinear relationships from time series, and
the deep learning model LSTM is considered the most successful type
of recurrent neural network capable of directly supporting multivariate
prediction problems. This work presents a comparison between two fore-
casting’s models of time series: ARIMA, a classical linear model, and an
LSTM neural network, a nonlinear model. As a case study, we used the
time series of four measurings’ substations of one of the very important
Brazilian rivers - the Paraiba do Sul river. These time series are difficult
to predict since their history series has flaws and high oscillation in the
data. The LSTM, which is a robust model, performs better in analyzing
the behavior of this type of time series.
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1 Introduction

The effective management of available water resources in a river basin requires
several aspects, including proper models to be as accurate as possible in pre-
dicting future outflows. The economic development and life of the vast majority
of people rely on these water resources, which increases the need for improve-
ment in their administration tools. The modeling of hydrological historical series
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has been extensively studied in the literature for important applications such as
drought management, water quality policies, flood forecasting, electric genera-
tion, environmental management, water services, and more efficient land use in
human, industrial and agricultural supply [3,6,12,17].

In recent decades, artificial neural networks have been a valuable tool in many
areas of research. The uses of these techniques have also gained ground in the
area of water resources, where, in most times, its use in flow prediction presented
results compatible or superior to traditional techniques [4,15,21,26,29,33].

Artificial neural networks (RNA) contain adaptive weights along paths
between neurons, which can be adapted by a learning algorithm, whose learning
occurs through data that are observed until the prediction of the model has a
satisfactory result [35].

These techniques are capable of representing complex and non-linear rela-
tionships, as well as investigating phenomena from multiple data sources and
transform forecast simulations for a data-based practice.

A breakthrough in the artificial neural network field is Deep Learning. Deep-
learning networks are distinguished from the more commonplace single-hidden-
layer neural networks by their depth; that is, the number of node layers through
which data must pass in a multistep process of data’s learning. A special kind of
recurrent neural network (RNN) architecture used in the field of Deep Learning
is Long Short Term Memory networks — called “LSTMs”. They are capable of
learning long-term dependencies and they work tremendously well on a large
variety of problems, like as Natural language processing [24], speech recognition
[11] and extreme events requesting [22].

LSTM networks are well-suited to classifying, processing and making pre-
dictions based on time series data since there can be lags of unknown duration
between important events in a time series. LSTMs were developed to deal with
the exploding and vanishing gradient problems that can be encountered when
training traditional RNNs, which motivated this work [20,30,36].

This paper aims to assess the viability of using LSTM in forecasting short-
term streamflows for time series. To assess the performance of LSTM, we have
used historical data from the Paraiba do Sul River (PSR), Brazil. The PSR basin
has as main economic activities the industrial and agricultural sectors, and it is
characterized by conflicts of multiple uses of its water resources [28,34]. In the
last few years, the research on the PSR has been gained increasing attention in
several areas. Some efforts include the research on degradation of the aquatic
system due to human activities [16], dynamics of sediment transportation [23,32],
geological studies [5] and drought identification and characterisation [31]. The
prediction of the natural flow of PSR is one of the most important factors for
analyses involving the management of this basin. In this way, accurate forecasting
tools are essential for a robust and reliable decision-making process.

Historical data from PSR basin have high oscillating and missing data. The
success of LSTM in dealing with these data comes from its capacity to capture
long-range dependencies over time, which is acquired by the structure of its cell.
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The cell is composed of an update gate, output gate and forget gate. These three
gates regulate the flow of information into and out of the cell [14].

The secondary aim of the study accomplishes a comparison between ARIMA
model [27], a well established statistical approach to streamflow forecasting and
the LSTM model, a data-driven non-linear model.

The results of this work show the robust performance of the LSTM model
compared to a classic ARIMA model, ensuring that LSTM adheres well to the
prediction of the PSR river flow problem.

The rest of this paper is organized as follows: Sect. 2 presents the fundamen-
tal concepts around the subject which give context to other sections. Section 3
presents the executed experiment and the results. Section 4 shows the final results
and supplies the reader with our contributions to the literature, promoting dis-
cussion around the research method with future suggestions.

2 Material and Methods

2.1 Dataset

The dataset used in this paper was provided by the Brazilian National Water
Agency (ANA) and compounded by four daily measurement stations located on
Parafba do Sul’s river basin. These stations are referenced as 58218000 (UHE
FUNIL MONTANTE 2), 58235100 (QUELUZ), 58880001 (SAO FIDELIS),
58974000 (CAMPOS - PONTE MUNICIPAL) and keeps observations from 1920
until 2016 [2].

Figure 1 shows the location of the Paraiba do Sul river basin and the four
cited fluviometric/rainfall stations.
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Fig. 1. Location of the Paraiba do Sul river basin and the four fluviometric/rainfall
stations. Adapted from [1].

Figure 2 presents time series of the four cited measure stations. It’s possible
to see, at the raw data, that these series have inconsistencies in their values,
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containing missing values with long time gaps without registration. In this work,
the missing values are treated with the imputation of median values to keep every
observation of the series and them improving LSTM performance, once it fits
the data.
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Fig. 2. Streamflow raw data of each measure station, supplied from the Brazilian
Agency ANA [2]

2.2 Long Short Term Memory (LSTM)

LSTM is a special type of RNN which are networks with structures of the internal
self-looped cell, that allows them to capture data’s dynamic temporal behavior.
In cases of architectures such as LSTMSs, they can capture long time sequences,
hence they have been used for time series with success.

LSTM as in Fig.3 address this problem with an input gate, that specifies
the information that will be stored to the cell state, an output gate that speci-
fies which information from cell state will flow as output and a forget gate that
decides which information will be removed from cell state. Therefore, these mech-
anisms from LSTM allows information easily flow through the cells unchanged,
providing better learning of long-term dependencies [9].

2.3 Autoregressive Integrated Moving Average (ARIMA)

The autoregressive integrated moving average (ARIMA) models are the most
general class of models for forecasting a time series that can to become “station-
ary” by differencing (when necessary), perhaps in conjunction with nonlinear
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Fig. 3. LSTM cell [25].

transformations such as logging or deflating (when necessary). The process of
fitting an ARIMA model is sometimes referred to as the Box-Jenkins method [8].

Lags of the differenced series appearing in the forecasting equation are called
“auto-regressive” terms (AR), lags of the forecast errors are called “moving
average” terms (MA), and a time series which needs to be differenced to be
made stationary is said to be an “integrated” version of a stationary series (I).
Each of these components is explicitly specified in the model as a parameter,
characterized by 3 terms: p is the order of the AR term, ¢ is the order of the
MA term and d is the number of differences required to make the time series
stationary.

Given a time series of data X; where ¢ is an integer index and the X; are
real numbers, the notation ARIMA (p, d, q) model:

1. First, let & denote the dy, difference of X, which means:

- Ifd=0: Tt :Xt'

- Ifd=1: Tt :Xt—Xt,1

- Ifd=2: 2 = (Xt — thl) — (Xt,1 — thg) =X; —2X; 1+ Xi o
2. In terms of x, the general forecasting equation is present at the Eq. 1:

=pu+ P11+ ... +¢pxt—p — 01621 — ... —qut_q (1)

where 2, is the forecast of the time series at time ¢, ¢1 ... ¢, and 0, ...6, are
the parameters of the model, and €;_; ... €;—4 is the residual error series and
they are white noises, that is, the residuals themselves are independent and
identically distributed (i.i.d.).

2.4 Time Series Cross-validation (TSCV)

Cross-validation is a statistical sampling technique to evaluate the generaliza-
tion of a model from a data set [19]. K-Fold [13] is one of the most used meth-
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ods among the cross-validation techniques, it eliminates dependency on subsets
of validation that compromises most general model selection preventing over-
fitting.

In a Time series scope, a variation of K-Fold technique that is called Time
Series Split (T'SS) permits this same generalization gains without shuffling
observations.

TSCV as illustrated by Fig. 4 splits all train data in n consecutive samples
with train followed by validation, on each split, it maintains already trained and
validation subsets as new train data and aggregates another split dividing in
train and validation subsets. Validation subsets are the same sized and train
keeps growing at each step, in the end, it selects the best model measured by
validation set.

u Train Data

‘ Validation
~ Data

}

i
7‘7‘0 E]FutureData
l 1

Fig. 4. Time series split example with k£ = 6.

3 Streamflow Estimation Model with LSTM

To carry out the predictions, we selected periods with 14 days in the historical
flow series. At every step in the moving window predicting the seventh day ahead.

The predicted flow was considered as a function of finite sets of antecedent
flow observations at the stations. The predictive model has the following form:

Q7= F(Q1, Qi—1, -+ ,Qi—13) (2)

where Q¢ is the streamflow at day ¢ + j and F' is an estimation function.

Figure 5 depicts the framework of the proposed approach. The missing data
are imputed by the median of the time series, 14-sized rolling windows are gen-
erated from data, the last 30% of data is reserved to test set and rest is to train
and validate models. The TSCV is the cross-validation method to select the best
model and prevent overfitting, this process culminates in the final MAPE eval-
uation in the test set. This process is performed 30 times resulting in averaged
MAPE.
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Fig. 5. Streamflow estimation model

3.1 Description of Experiments

ARIMA hyper-parameters as shown in Tablel was chosen by a grid search
with the best in-sample result determining the predictor models configuration

as in [27].

Table 1. Hyper-parameters for the ARIMA model at each station.

Station |P|D|Q
58880001 |3 |0 |1
589740002 |1 |0
58218000 |2 [0 |3
58235100 |1 |0 |0

LSTM hyperparameters were set as follows: kernel was initialized in the
hidden layer using Xavier algorithm in order to achieve fast convergence [10],
mini-batch size equals to 256 as suggested in the literature, and 200 neurons in

hidden-layer.

LSTM layer needs two non-linear activation functions that were set to
hard—sigmoid and hyperbolic tangent (tanh) as defined in [14] to avoid gradient
vanishing problem. The last Layer with one neuron to forecast was composed of

a linear activation.
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Fig. 6. Last 1000 days of the test set with the best LSTM forecast and historical values
at left, and the best ARIMA forecast and historical values at right.
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This model was optimized by Adam algorithm [18], time series cross-
validation and early-stopping were applied to prevent overfitting [7].

Table 2. Comparison of models MAPEs.

Station | ARIMA | LSTM Best LSTM
58880001 | 32.78 27.73 + 1.01 | 25.83
58974000 | 26.43 21.29 + 0.76 | 19.74
58218000 | 18.53 18.20 4+ 0.24 | 17.60
58235100 | 17.61 15.26 £ 0.32 | 14.77

The main objective of this study was to evaluate the performance of the
LSTM in the forecast of the flow of the time series of four stations of measurement
of the Paraiba do Sul river. These series, represented in Fig.2, record strong
oscillations, besides present long periods with missing data.

Forecasting in these conditions is a tough mission but we found evidence that
LSTM effectively was capable to learn the adversity in this series and predict
reasonably well as indicated by Table 2 and Fig. 6.

Figure 6 shows an important problem that this study confronted, the LSTM
forecast has some delay when compared to the historical time series. This prob-
lem occurs because LSTM is limited by past days, in this sense, we suggest
increasing information supply with exogenous variables for future researches.

A limitation of the machine learning approach employed here is that the esti-
mated river flows are reliable only under conditions similar to those that such
models have historically experienced. The use of these models to generate predic-
tions in conditions that exceed historical variability may introduce considerable
uncertainty into their flow forecasts.
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Fig. 7. Comparison of models MAPE for each station
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In sum of that, Arima as a well-known statistical model to forecast flow per-
formed considerably poor in comparison to LSTM in three of the four stations
as saw in Fig. 7 with LSTM out-performing in every Station which corroborates
the statement that artificial intelligence algorithms can capture the noise com-
plexity, non-stationarity, dynamism and non-linearity in the data as reported
in [35].

4 Conclusions

This work proposes to make the short-term forecast for the time series of the
Paraiba River the South through deep learning, more precisely, a model using
LSTM. The results of the experiments show that LSTM is a viable approach
to prediction time series with high oscillation in data and long periods of miss-
ing data. Thus, the prediction results of the model using LSTM surpassed the
ARIMA model, a statistical model widely used in forecasting time series of flow.
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