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Abstract. Research on argumentation in Artificial Intelligence recently
investigates new methods that contribute to the vision of developing
robust argumentation machines. One line of research explores ways of
reasoning with natural language arguments coming from information
sources on the web as a foundation for the deliberation and synthesis
of arguments in specific domains. This paper builds upon arguments
represented as argument graphs in the standardized Argument Inter-
change Format. While previous work was focused on the development of
semantic similarity measures used for the case-based retrieval of argu-
ment graphs, this paper addresses the problem of clustering argument
graphs to explore structures that facilitate argumentation interpreta-
tion. We propose a k-medoid and an agglomerative clustering approach
based on semantic similarity measures. We compare the clustering results
based on a graph-based semantic measure that takes the structure of the
argument into account with a semantic word2vec measure on the pure
textual argument representation. Experiments based on the Microtext
corpus show that the graph-based similarity is best on internal evalu-
ation measures, while the pure textual measure performs very well for
identifying topic-specific clusters.

Keywords: Argumentation · Argument graph similarity ·
Semantic textual similarity · Text clustering

1 Introduction

As an emerging sub-field in Artificial Intelligence (AI), argumentation includes
research that centers around identifying structures in natural language argu-
ments [1]. In particular, the development of computational methods for extract-
ing arguments and their interrelations from text [13], methods for semantic argu-
ment representation, and methods for reasoning with arguments are topics of
current interest. The German Science Foundation (DFG) currently funds the
special research program RATIO1 which aims at designing robust argumenta-
1 http://www.spp-ratio.de/home/.
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tion machines that enable decision making and problem-solving based on argu-
ments. ReCAP [4] as a project within RATIO focuses on the idea of argumenta-
tion machines to support researchers, decision- and policy-makers in obtaining
a comprehensive overview of topic-related argumentative opinions which enable
the development of a sound and credible perspective justified by convincing argu-
ments. ReCAP aims at combining methods from case-based reasoning (CBR),
information retrieval (IR), and computational argumentation (CA) to contribute
to the foundations of argumentation machines. An argumentation machine can
find supporting and opposing arguments for a user’s topic or synthesize new argu-
ments for an upcoming, not yet well explored topic. Thereby it could support
researchers, journalists, and medical practitioners in various tasks, overcoming
the limited support provided by traditional search engines used today.

This paper deals with a core problem that arises in various forms in argu-
mentation machines, namely the clustering of arguments. Argument clustering is
useful for deliberation as a method to structure a larger set of arguments dealing
with a certain topic. It is also a helpful pre-processing step for the generalization
and segmentation of arguments [11] to obtain reuseable patterns for case-based
synthesis of new arguments. In our work we build upon arguments represented as
argument graphs following the Argument Interchange Format (AIF) developed
by the University of Dundee [7]. Argument graphs capture an important part
of the semantics of arguments by partitioning them into claims and premises
linked by various relations (rules of inference, argumentation schemes) describ-
ing how they interact. We propose a k-medoid and an agglomerative method for
clustering argument graphs based on a semantic graph-based similarity measure
that employs word2vec [15] as a local similarity measure to compare the textual
content of claims and premises [3]. The clustering methods are evaluated using
the Microtext corpus [17] and compared with pure text-based variants of the
cluster methods.

The next section introduces foundations and related work. Section 3 describes
the clustering algorithms, while Sect. 4 presents the experimental setup and the
results obtained. The paper ends with a conclusion and possible future work.

2 Foundations and Related Work

In argumentation theory an argument consists of a set of premises and a claim
together with a rule of inference which concludes from the premises to the claim.
A premise can support or oppose a claim as well as an inference step. Together
premises, claims, and inference steps form an argument graph. Directed graphs
are suitable for formally representing the structure of the individual elements of
an argument [5].

2.1 Representing Arguments as Graphs

In our work, we follow the vision of robust argumentation machines which are
able to explore natural language arguments from information sources on the
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web to reason with them on the knowledge level. While argument mining meth-
ods [13] aim at converting natural language argumentative texts into argument
graphs containing the natural language content, our work aims at supporting the
reasoning with such graphs. Thus we do not build our work upon an argumen-
tation framework based on formal logic such Dung’s argumentation framework
[8] but on a graph representation that encompasses the textual content from
the original natural language source of the argument. Therefore we use an argu-
ment graph representation based on the Argument Interchange Format (AIF)
which was developed by the Argumentation Research Group at the University of
Dundee as a standard for representing and exchanging argument graphs [7]. An
argument graph can be formally defined as a 5-tuple W = (N,E, τ, λ, t). Here,
N describes a set of nodes, E ⊆ N × N describes a set of edges, τ : N → T and
λ : N → L define functions that map nodes to types T and labels L respectively.
The labels represent the textual content of a node. The set of node types T
is declared according to the type ontology used in AIF to represent argumen-
tation schemes. The overall topic of the argument graph is specified by a label
t ∈ L [3].

Figure 1 illustrates an argument graph in AIF. On a high level perspective,
claims and premises are represented as information nodes (I-nodes), depicted
as grey rectangular boxes which are related to each other via scheme nodes (S-
nodes), depicted as small colored rectangles. In the figure, the information node
with the content “Therefore universities should not charge fees in Germany”
without successor node represents the conclusion of this argument.

Fig. 1. Example argument graph in AIF (http://www.aifdb.org/diagram/6407.),
designed with OVA (http://ova.arg-tech.org). (Color figure online)

http://www.aifdb.org/diagram/6407
http://ova.arg-tech.org
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In the simplest form applied in this work here, S-nodes can be classified
into rule application nodes (RA-nodes, depicted in green color), which denote
specific inference relations and conflict application nodes (CA-nodes, depicted
in red color), which indicate specific conflict relations. They roughly correspond
to the support and attacks relations in other frameworks. However, in general a
large variety of different argumentation schemes [21] can be differentiated and
represented as type of an S-node. Such argumentation schemes, correspond to
archetypical forms of arguments. For example, the supporting argument can
of the sub-type Argument from Positive Consequence, Argument from Expert
Opinion, or Argument from Cause to Effect. In an other paper [12], we created
an ontology consisting of 38 argumentation schemes which are arranged in a
taxonomy, which is then used as a more fine grained representation of S-nodes.

2.2 Argument Clustering

In the literature, a few approaches addressing the clustering of arguments can
be found. However, they make use of the pure argument text, not considering
the representation of arguments in an argument graph. Boltužić and Šnajder [6]
identify prominent arguments by using hierarchical clustering based on semantic
textual similarity (STS). It was assumed that statements can be grouped into
clusters representing abstract arguments by analyzing the degree of semantic
similarity between statements. Three methods for semantic textual similarity
were evaluated, including word embeddings, weighted bag-of-words and an off-
the-shelf STS tool. Hierarchical agglomerative clustering was conducted using
complete linkage and Ward’s method. Clustering of arguments can be difficult
since arguments of different topics do not always share clear boundaries. Further
textual similarity might not be able to capture specific aspects of arguments.

Habernal and Gurevych [10] use a clustering of argumentative debate portal
sentences and posts to derive features for argument component identification.
One assumption is that a cluster contains similar arguments and cluster centroids
correspond to prototypical arguments. The clustering-based features outperform
other structural, syntactic and discourse features in cross-domain and cross-
register evaluation.

3 Argument Graph Clustering

Clustering algorithms are used to discover similarity structures within data by
grouping similar objects into clusters [14]. This paper addresses the problem of
clustering argument graphs to explore structures that facilitate further reasoning
through argument deliberation. Additionally, these structures can be used for the
generalization and segmentation of arguments [11] to conduct case-base synthesis
of new arguments. In this chapter the used base algorithms for clustering are
briefly explained before their application to argument graphs is introduced. In
particular the used graph-based similarity measure is described as well as various
ways of deriving symmetric variants from this originally asymmetric measure to
be used in the clustering algorithms.
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3.1 Clustering Algorithms

Clustering algorithms aim at partitioning a data set into clusters of data points.
The quality of the result can be determined by the homogeneity of the data
points within a cluster and the heterogeneity to data points from other clus-
ters. Clustering algorithms can be classified into flat and hierarchical clustering
approaches. In flat clustering, the resulting clusters are without structure or rela-
tion to one another. Hierarchical clustering outputs a hierarchy among clusters.
These structures are more informative and can be utilized to extract additional
insights, such as cluster representatives on multiple levels of granularity. The
advantage of a structured result comes at a cost of higher computational effort
when compared to flat clustering.

K-medoid is a modified version of the well-known flat clustering algorithm k-
means. Its objective is to divide the total quantity of data points into k disjunct
clusters. K-means and k-medoid attempt to minimize the distance between data
points within a cluster to the respective cluster center [14]. For the k-medoid app-
roach the cluster center is an actual data point which is referred to as medoid.
The number of clusters k must be defined prior to the process, the optimal
number can be found by varying k. At the beginning of the algorithm random
initial medoids are selected and the cluster distribution according to the nearest-
neighbor principle is calculated. The cluster distribution is iteratively updated
by improving a quality criterion. K-medoid terminates at a local optimum and
therefore the cluster quality is dependent on the choice of the randomly initial-
ized cluster centers. K-medoid is less sensitive to noisy data and errors than
k-means and similar algorithms.

Agglomerative Nesting (AGNES) is a hierarchical clustering algorithm that
iteratively merges previously created sub-clusters bottom-up, starting initially
with a cluster for each data point [14]. In each iteration the two clusters are
merged that have the smallest distance to one another. There are several alter-
native criteria that can be used to define closeness of two clusters and thereby
the behaviour of the algorithm. In this paper we focus on the following dis-
tances measures for clusters: single linkage, complete linkage, average linkage,
and Ward’s method. Single linkage computes the similarity between two clus-
ters by computing the distance of their respectively closest members. Complete
linkage computes the similarity between two clusters by computing the distance
of their respectively furthest members. Average linkage computes the similar-
ity between two clusters by computing the average distance of all members.
Ward’s method reduces the variance within clusters by minimizing the squared
error [22].

The resulting agglomerative clustering is a binary cluster tree instead of a set
of disjoint clusters as in k-medoid. Although hierarchical clustering algorithms
have a high space and time complexity they are suitable since we are interested
in the hierarchical structure.
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3.2 Similarity Measures for Clustering Argument Graphs

As we aim at clustering argument graphs, the described algorithms require a
distance or similarity measure working on argument graphs. We build upon our
previous work on similarity-based retrieval of argument graphs [3] in which a
graph-based similarity measure for AIF graphs has been developed. This measure
is used during retrieval to compare a query in the form of an argument graph
with the argument graphs from a corpus.

The general principle of argument graph similarity has been adopted from
process-oriented case-based reasoning [2] and follows the local-global princi-
ple [19]. The global similarity is computed from local node and edge similarities.
The local node similarity simN (nq, nc) of a node nq from the query argument
graph QA and a node nc from the case argument graph CA is computed as
follows:

simN (nq, nc) =

⎧
⎨

⎩

simI(nq, nc), if τ(nq) = τ(nc) = I-node
simS(nq, nc), if τ(nq) = τ(nc) = S-node
0, otherwise

The similarity of I-nodes simI is determined using the text contained in the
I-nodes, which are typical fragments of sentences. We use a semantic textual
similarity approach based on word embeddings. An embedding associates each
word with a word vector in a high-dimensional real-valued vector-space. Word
vectors capture the semantics of a word, in the sense that similar words have
similar word vectors. We use the word2vec skip-gram [15] model to transform
each word in the text of an I-node into its vector representation. The embedding
vector of the whole I-node is determined by aggregating the word vectors using
the weighted mean function. Prior to this, stop-words are removed. Weighting is
performed using IDF weighting. Finally, the similarity simI is the result of the
cosine measure applied to the two mean vectors.

The similarity of the S-nodes simS is determined comparing the types of S-
nodes. It is 1, if both S-nodes are of the same type (both are RA or both are
CA nodes) and 0 otherwise.

The similarity of two edges simE(eq, ec) is determined based on the similarity
of the nodes at their endpoints l and r respectively:

simE(eq, ec) = 0.5 · (simN (eq.l, ec.l) + simN (eq.r, ec.r))

To construct a global similarity value, an admissible partial, injective map-
ping m is applied which maps nodes and edges from QA to CA, such that only
nodes of the same type (I-nodes to I-nodes and S-nodes to S-nodes) are mapped.
Edges can only be mapped if the nodes they link are mapped as well by m.
For a given mapping m let sni be the node similarities simN (ni,m(ni)) and sei
the edge similarities simE(ei,m(ei)). The similarity for a query graph QA and a
case graph CA given a mapping m is the normalized sum of the node and edge
similarities (nN is the number of nodes and nE is the number of edges in QA).



Clustering of Argument Graphs Using Semantic Similarity Measures 107

simm(QA,CA) =
sn1 + . . . + snn + se1 + . . . + sem

nN + nE

Finally, the similarity of QA and CA is the similarity of an optimal mapping
m, which can be computed using an A∗ search [2].

sim(QA,CA) = max
m

{simm(QA,CA) | m is admissible}

This similarity measure computes a similarity by considering the correspon-
dence between the elements of the query argument and case argument. One
particular mapping m specifies one possible correspondence which is evaluated
by simm. In general we are interested only in the best possible correspondence,
which is reflected in the overall similarity value. The graph structure of argu-
ments enables the similarity measure to focus on the most relevant elements.
When used during retrieval, it determines the best possible matching argument
graph in a repository (or a case base in the terminology of case-based reasoning).
Given this, it is obvious that this similarity measure is not symmetrical: query
graph and case graph have clearly different roles in these measures. This can be
seen easily when the query graph is a sub-graph of the case graph. In that case
the query graph can be fully mapped onto the case graph and the similarity will
be 1. If instead the case graph is a sub-graph of the query graph, only parts of
the query graph can be mapped to the case graph and thus the similarity value
will be lower than 1.

3.3 Symmetrization of Graph Similarity Measure

For clustering, a symmetric similarity measure is required to compare two argu-
ment graphs from a repository. Thus we need to make the graph similarity mea-
sure symmetric. Therefore, we propose and investigate three options in which
we apply the similarity measure twice, once in each direction. We can define the
symmetric graph similarity value of two argument graphs either as the minimum
(1), the maximum (2), or the average (3) of the two similarity values:

simmin (x, y) = min {sim (x, y) , sim (y, x)} (1)
simmax (x, y) = max {sim (x, y) , sim (y, x)} (2)

simavg (x, y) =
sim (x, y) + sim (y, x)

2
(3)

All symmetrization strategies are used in the evaluation. The resulting sim-
ilarity measures are referred to in the following as Graph-Min, Graph-Max and
Graph-Avg.

3.4 Clustering Based on Topic Vector Similarity

The proposed similarity measure has the advantage that it takes the argument
structure defined by the graph into account, but it comes with the disadvantage
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that it is computationally expensive due to the involved optimization problem. In
order to investigate the benefit of using the graph structure over the pure textual
representation of the argument, we also investigate the result of the clustering
approaches with a simplified similarity measure. Therefore we employ the topic
label t defined for each graph (see Sect. 2.1). This topic vector is constructed as
the mean of all I-node embedding vectors, thus it is a mean value over the full
argument text. Again, stop-words are removed and an IDF-weighting is applied.
The topic vector similarity is again computed using the cosine similarity measure.
It is already symmetric, thus the proposed symmetrization approaches are not
required. Please note that the resulting clustering algorithms resemble those
already investigated in the literature (see Sect. 2.2).

4 Experimental Evaluation

We now evaluate the performance of the proposed clustering methods on argu-
ment graphs. The evaluation is divided into an internal and an external evalu-
ation. The internal evaluation has the objective to examine the quality of the
clustering by using internal evaluation measures, whereas the external evalua-
tion is supposed to determine whether the clustering is able to reconstruct the
various topics reflected in a corpus.

4.1 Hypotheses

The following hypotheses are investigated in this evaluation:

– H1: The clustering of argument graphs is able to discover the topics contained
in the clustered corpus.

– H2: The graph similarity measure produces a clustering which is more in line
with a human classification compared to the clustering using the topic vector
similarity measure.

– H3: A coarser topic classification is easier to reproduce by clustering than a
more fine-grained classification.

4.2 Argument Corpus and Experimental Setup

As argument corpus for the clustering, an annotated corpus of argumentative
microtexts by Peldzsus and Stede [17], the Microtext corpus, will be taken as
basis. The corpus consists of 112 short argumentative texts about 18 different
topics. One benefit of the corpus is that most texts are pre-classified into those
topics. The texts were initially written in German language and then profession-
ally translated into English. We use the English version of the corpus. All texts
are annotated as argument graphs, following the scheme proposed in Peldszus
and Stede [16]. The corpus is available in the AIFdb2 in the previously explained
AIF graph format (see Fig. 1 for an example). As a kind of data cleaning, a few
arguments without relationship to any of the 18 topics have been removed.
2 http://corpora.aifdb.org/.

http://corpora.aifdb.org/
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Table 1. All topics with corresponding cluster number.

Super-Topic Topic # Graphs

Education school uniforms 3

increase weight of BA thesis in final grade 4

charge tuition fees 6

Environment waste separation 1

higher dog poo fines 8

Medicine health insurance cover complementary medicine 8

over the counter morning after pill 5

Politics public broadcasting fees on demand 7

stricter regulation of intelligence services 4

introduce capital punishment 8

allow shops to open on holidays and Sundays 8

buy tax evader data from dubious sources 2

make video games olympic 3

EU influence on political events in Ukraine 3

Living cap rent increases 6

keep retirement at 63 6

partial housing development at Tempelhofer Feld 2

TXL airport remain operational after BER opening 3

To evaluate the effect of coarser-grained topics on the clustering quality, we
manually combined the topics to five classes, or super-topics. The goal is to
reduce the false classification of graphs with similar topics, for instance, the top-
ics “school uniforms” and “charge tuition fees” were merged into the more gen-
eral class “education”. The generated topic groups are about the same size with
the exception of “politics”, which is the largest cluster. Table 1 shows all topics
of the corpus together with the number of argument graphs and the super-topic.
As word representation we used the pre-trained Google News3 word embeddings
for English language.

4.3 Internal Evaluation

In the internal evaluation the quality of the clustering will be evaluated by three
measures. The silhouette coefficient utilizes both cohesion and separation into
one value from [−1, 1] [20]. Cohesion measures how closely objects in a cluster are
related to each other and separation how distinct objects from different clusters
are. A high value indicates that objects are well matched within clusters and
poorly between clusters whereas a low value corresponds to the opposite. The
Dunn index (DI) is a ratio of within cluster and between cluster separations [9].
3 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/
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DI has values in [0,∞] and should be maximized as well. Connectivity measures
to what extent items are placed in the same cluster as their nearest neighbor with
values in [0,∞]. Unlike the other measures lower values correspond to a better
clustering quality. For each measure the optimal k is found, which equates the
highest value of the respective measure. Evaluation was performed with a varying
number k, which ranged from 2 to 18.

Table 2 displays the results for k-medoid clustering using the different similar-
ity measures. In this and the subsequent tables, the best values for the measures
are marked in bold font. The best silhouette coefficient is achieved with two
clusters. It is notable that topic vectors produce 18 clusters which corresponds
to the number of topics in the corpus. Nevertheless, the silhouette coefficient is
clearly lower than for the graph similarity, where the value varies from 0.29 to
0.38. This can be interpreted as a weak cluster structure with high separation
and low cohesion [11]. DI values are comparable and the number of clusters is
relatively high, ranging from 5 to 18 clusters. The connectivity is comparatively
low, which is due to the small number of clusters. Topic vectors produce the
lowest connectivity score.

Table 2. Cluster results for k-medoid.

Graph-Min Graph-Max Graph-Avg Topic vectors

Silhouette 0.38 0.29 0.35 0.11

Optimal k 2 2 2 18

Dunn index 0.52 0.59 0.60 0.57

Optimal k 15 18 5 16

Connectivity 2.96 4.59 7.59 2.90

Optimal k 2 3 2 2

The results for AGNES with different linkage methods (SL = single linkage,
CL = complete linkage, AL = average linkage, W = Ward’s method) are shown
in Table 3. The results are quite comparable to the k-medoid clustering, also with
regard to the number of clusters. DI comes with a higher k, whereas the silhouette
coefficient and connectivity have mostly k = 2. The silhouette coefficient varies
for the graph similarity from 0.26 to 0.39 and the values for the clustering with
topic vectors are much smaller (0.10 to 0.16). The connectivity and DI values
are very similar to the values in Table 2 with topic vectors having the overall
best values for connectivity.

The internal measures show a weak cluster structure for both similarity meth-
ods which could be artificial. For silhouette coefficient and connectivity in most
of the configurations the optimal number of clusters is two. However, DI and
topic vector cluster analysis for silhouette coefficient prefers a higher number
of clusters in k-medoid and AGNES. In comparison, the graph-based similarity
measures produce slightly better results for the internal measures.
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Table 3. Cluster results for AGNES.

Graph-Min Graph-Max Graph-Avg Topic vectors

SL CL AL W SL CL AL W SL CL AL W SL CL AL W

Silhouette 0.39 0.29 0.36 0.38 0.31 0.32 0.32 0.26 0.34 0.35 0.35 0.36 0.10 0.11 0.16 0.12

Optimal k 2 4 2 2 2 2 2 3 2 3 3 2 2 16 2 5

Dunn index 0.52 0.64 0.59 0.64 0.72 0.72 0.72 0.66 0.53 0.66 0.66 0.61 0.62 0.64 0.60 0.61

Optimal k 9 18 15 18 18 14 14 18 10 17 17 17 5 18 17 16

Connectivity 3.27 12.14 4.39 2.96 2.93 11.18 5.14 5.88 4.73 4.73 4.73 2.90 2.93 10.76 3.03 2.90

Optimal k 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4.4 External Evaluation

The external evaluation focuses on the classification of each graph in relation to
their respective topic as shown in Table 1. It is supposed to show whether the
clustering complies with the topics and is applicable for further use within the
envisioned argumentation machine.

As measures, precision and recall are calculated and combined in the Rand
index (RI). RI compares the manual classification (M) and the clustering (C)
based on the agreement and disagreement between object pairs in both parti-
tionings [18]. Precision and recall are calculated based on the number of common
pairs in both sets (true positives), the number of pairs in C but not in the M
(false positives), vice versa (false negatives) and the number of different pairs
in both sets (true negatives). For further analysis the resulting classification
accuracy is calculated for the clustering with the highest RI.

Table 4 displays the RI values with k equal to the number of classes in the
corpus. It shows that all methods achieve very good results, whereas the topic
vectors deliver the best value for all configurations. Only AGNES with single
linkage leads to significantly lower values.

Table 4. Rand index results k = 18.

k-medoid AGNES

SL CL AL W

Graph-Min 0.86 0.67 0.87 0.82 0.85

Graph-Max 0.87 0.83 0.86 0.84 0.87

Graph-Avg 0.89 0.69 0.88 0.85 0.89

Topic vectors 0.97 0.60 0.96 0.92 0.97

In order to gain a more detailed insight we evaluated the quality of the
clustering for k-medoid with topic vector similarity (k = 18). 11 of 18 topics
are perfectly in accordance with the classification, no graph is assigned to a
different cluster. Only for two topics no graph is classified correctly, although
this affects only three graphs. Furthermore, wrongly classified graphs are often
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assigned to a cluster with similar content, for example “waste separation” and
“higher dog poo fines”. 74 of 87 graphs are classified correctly, which leads to an
overall classification accuracy of 85%. Hypothesis H1 can therefore be accepted.
The graph similarity methods classify only about 25 graphs correctly with a
classification accuracy of 29%. The best results are achieved with the topic vector
representations and not the graph representations. Hypothesis H2 needs thus to
be rejected. This also implies that a high RI does not automatically lead to a
good classification. When looking at the parameters of the RI, the pairs of true
positives only have a small influence. Thus the reason for the high RI values are
true negatives, which have a strong impact on the equation.

Table 5 displays the RI values for the five super-topics. The best result is
achieved with topic vectors and k-medoid clustering. AGNES with SL produces
very low RI scores. All values are clearly worse than the ones from Table 4. Thus
it is shown that cluster analysis with a smaller number of clusters does not
automatically lead to better classification.

Table 5. Rand index results for k = 5.

k-medoid AGNES

SL CL AL W

Graph-Min 0.64 0.30 0.59 0.57 0.62

Graph-Max 0.66 0.34 0.58 0.49 0.64

Graph-Avg 0.65 0.32 0.61 0.62 0.62

Topic vectors 0.82 0.31 0.60 0.30 0.66

The overall classification accuracy of k-medoid with topic vectors is 68%. In
comparison to topics, the classification accuracy for the super-topics is lower and
only 59 of 87 graphs are correctly clustered instead of 74. The classification for
education and environment is perfect. For medicine, the value is nearly perfect
(92%). However, the accuracy decreases to 71% or even 0% for the last two
super-topics. Negative outlier is the first cluster, where two topics are covered.

Despite this degradation, the topic vector representation still produces the
best result. The best graph similarity using max symmetrization classifies only
25 graphs correctly which leads to an accuracy of 28%. This emphasizes the
impression that the graph-based similarity measures are not suited for thematic
clustering, since the resulting clusters contain argument graphs of different top-
ics. Overall, the results for the more fine-grained topic classification are better
for both, RI and classification accuracy. Thus, hypothesis H3 also needs to be
rejected.

5 Conclusion

In this paper, we proposed two clustering algorithms for argument graphs which
are based on a graph-based similarity measure. The motivation behind this is the
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hypothesis that the graph structure of the argument provides relevant semantic
information about the argument and thus should enable a better clustering as
when working on the pure text only. The results, however, show that clustering
using the graph-based similarity is only slightly better in the internal evaluation
measures, while the clustering based on the topic vector similarity outperforms
the graph-based approach in identifying the topics of the arguments. Thus it
became obvious that for pure topic discovery the structure of the argument is
not really relevant as the words occurring in the text already allow to identify
the topic appropriately. Here, the use of the structure seems to distract the
clustering process.

However, argument graph clustering shall not only be used to group argu-
ments w.r.t. their topic. In particular for the purpose of generalization, building
clusters of graphs with similar structure but different topic is more important
as the generalization over different topics is desirable. Further investigation is
required to find out whether the proposed clustering approach using the graph-
based measure is appropriate for this purpose.

Further, it should be noted that the current evaluation is only performed
using a quite small corpus. Thus, more extensive evaluations are necessary, in
particular using argument graph corpora automatically mined from text, allow-
ing a larger number of graphs to be used.

During the course of our future work towards argument synthesis with case-
based reasoning involving adaptation methods, clustering will play a pivotal role
to infer a structure on the case base. Only in the context of this application it
will become clear whether the proposed algorithms are able to produce useful
clusters.
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