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Chapter 5
Calibration of Anisotropic Plasticity Models with an Optimized 
Heterogeneous Test and the Virtual Fields Method

J. M. P. Martins, S. Thuillier, and A. Andrade-Campos

Abstract An accurate calibration of a constitutive model for finite element analysis is as important as an adequate choice of 
the constitutive model itself. The calibration strategy and the experimental database have determinant roles for the success 
of this stage. Over recent years, the increasing use of full-field measurement techniques has changed significantly the amount 
of data that compose the experimental database and suppressed some of the design constraints of the mechanical tests. These 
techniques enable to capture complete displacement/strain fields during a mechanical test, a feature that has been conve-
niently used to explore heterogeneous mechanical tests. The use of full-field measurements and heterogeneous tests has 
proven to be an interesting approach to calibrate complex models with a high number of material parameters, such as the case 
of anisotropic plasticity models. Usually, the inverse strategies selected to identify the material parameters from heteroge-
neous fields are based on the so-called finite element model updating (FEMU) method, which is known for being computa-
tionally demanding. Nevertheless, novel inverse strategies, such as the virtual fields method, have demonstrated much better 
results in terms of the computational cost without deterioration of the calibration results. Therefore, the aim of the present 
study, in the framework of full-field measurements, is to explore the combination of a previously designed heterogeneous test 
and the virtual fields method (VFM). The heterogeneous test consists of a uniaxial standard test with an optimized specimen 
shape, called butterfly shape. This specimen was specifically designed to obtain a wide range of strain paths and strain ampli-
tudes and has given promising results when combined with a FEMU-based strategy. A set of virtual fields is developed to 
combine the butterfly test and the VFM. This set is tested with virtual experimental data generated and the sensitivity of the 
VFM to the number of virtual fields is confirmed. Moreover, experimentally acquired full-field measurements of butterfly 
test for a DC04 mild steel are used to assess the performance of this calibration strategy. An anisotropic plasticity model 
composed by Hill’48 and Swift’s law is calibrated.

Keywords Calibration of constitutive models · Anisotropic metal plasticity · Heterogeneous test · Full-field measurements 
· Virtual fields method

 Introduction

The use of numerical simulation tools to support the mechanical design of a manufacturing process or a part has long been 
employed by the industry. The demands for better accuracy of these tools led to the development of more and more complex 
constitutive models to mimic the real mechanical behaviour of materials. Nevertheless, before using any of these models, a 
calibration phase is required, in which the material parameters of the model are adjusted to have a close prediction of the 
material in hands. The predictive capabilities of constitutive models largely depend on this phase. Moreover, the applicability 
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of the models is also dependent on the experimental effort required for this phase. Frequently, the need for a large and diversi-
fied set of experimental tests to calibrate a constitutive model restrains the use of more advanced and accurate constitutive 
models [1].

The advent of full-field measurement techniques (e.g. Digital Image Correlation, DIC in short [2]) is changing signifi-
cantly the calibration process of constitutive models. These techniques allow access to dense maps of data (displacements, 
strains, etc.) from a single mechanical test, which after post-treatment can be used to retrieve the material parameters of a 
selected constitutive model. Moreover, these techniques enable the use of complex sample geometries to test the mechanical 
behaviour of materials, which, if correctly designed, produce heterogeneous strain fields with enough information to extract 
several material parameters from a single test. However, to extract the material parameters from this type of data, it is 
required to solve an inverse problem that is time-consuming. Therefore, the quest for both efficient inverse methods and 
appropriate test geometries has been intense in the past few years. Nevertheless, inverse methods and new test geometries for 
mechanical testing are usually developed and validated separately and consequently, the symbiosis between these two is not 
fully explored.

In this work, a heterogeneous test specially optimized to calibrate constitutive models [3, 4] for sheet metal plasticity is 
combined with the Virtual Fields method (VFM) [5]. This heterogenous test, called butterfly test, is firstly presented as well 
as the experimental data previously acquired for a DC04 mild steel [4]. This study focuses on the selection of a set of virtual 
fields suitable for the above-mentioned test, as well as the influence of the number of virtual fields used. Finally, the 
 performance of the VFM combined with the data acquired from a single butterfly test is assessed. An anisotropic model 
composed by Hill’48 yield criterion and Swift’s hardening law is selected to be calibrated.

 The Virtual Fields Method

The virtual fields method is an inverse method which relies on the principle of virtual work and kinematic full-field measure-
ments to retrieve constitutive material parameters. Due to the nature of the principle of virtual work, this method can be 
applied to any constitutive model. In the case of non-linear models, such as elasto-plastic models, the inverse problem is 
solved by minimizing the squared difference of the gap between internal and external virtual work, with respect to the sought 
constitutive parameters and for different time steps. The objective function, in the large strain framework and assuming static 
equilibrium, can be written as:
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where P is the first Piola-Kirchhoff stress tensor that is a function of the constitutive parameters ξ and the experimental strain 
field εexp. T  is the first Piola-Kirchhoff stress vector calculated on the boundary Γ0

f  where surface forces are applied. U∗ can 
be any kinematically admissible virtual field and GradU∗ is the respective gradient calculated with respect to the reference 
coordinates of the body. dV and dS are the infinitesimal volume and area of the body in the reference configuration Ω0. nv and 
nt are the number of virtual fields selected and time steps considered, respectively. This large strain formulation is a conve-
nient description to write the principle of virtual work, since for the computation of the internal and external work the geo-
metric quantities are defined on the reference configuration. More details on this formulation can be found in [6].

One of the key parts of this method are the virtual fields selected to build the objective function, which can be any continu-
ous and differentiable function. Nevertheless, these functions are usually selected from a set of kinematically admissible 
functions, i.e. it is required that the virtual fields vanish on the boundaries of prescribed displacement. In this work, the vir-
tual fields are developed manually, which is addressed in the section Manually Defined Virtual Fields. The other key part of 
this method is the reconstruction of the stress field from the strain field εexp, which is derived from the measured displacement 
field. Usually, the displacement field is acquired on the surface of the specimen and, therefore, to reconstruct the stress field, 
the plane stress conditions are assumed. Moreover, to reconstruct the stress field, it is necessary to adopt a priori a constitu-
tive model to make the link between strains and stresses. In this work, the adopted constitutive model is defined by: (1) linear 
isotropic elastic behavior (generalized Hooke’s law) and; (2) plastic behaviour described by the orthotropic Hill’48 yield 
criterion and isotropic hardening (Swift’s law). The calibration of the plastic part of the model is the focus of the present 
work, whereas the material parameters that govern elastic part are assumed to be known. Regarding the plastic behaviour, the 
equivalent Hill’48 yield criterion assumes the following form in plane stress conditions:
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where σxx, σyy and σxy are the components of the stress tensor with respect to the anisotropic material axes. F, G, H and N are 
the constitutive parameters that must be calibrated. Nevertheless, the relation G + H = 1 is assumed which leaves only F, G 
and N to be identified. The isotropic hardening law (Swift’s law) has the following form:
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where σ0, K and n are the material parameters. ε p  is the equivalent plastic strain. Thus, the adopted model contains 6 mate-
rial parameters which must be identified according to the studied material.

The methodology presented in this section was implemented in an in-house code using the programming language 
Fortran. This code contains bilinear shape functions to derive the strain field from the measured displacement field. Due to 
the non-linearity of the model, the stress reconstruction is performed using an algorithm of the type Backward-Euler return 
[7]. The minimization of the objective function is conducted by the gradient-based Levenberg-Marquardt optimization 
method.

 The Butterfly Test

The butterfly test was first proposed by Souto et al. [3]. The geometry of the specimen was numerically designed through a 
shape optimization procedure which aimed a heterogeneous test to calibrate complex constitutive models for sheet metals. 
The optimization process was governed by an objective function that rated the information provided by the test in terms of 
range and diversity of strain states and strain level reached. The final geometry was able to produce a spectrum of strain states 
ranging from simple shear to plane strain. More recently, this final geometry was adapted by Aquino et al. [4] to facilitate the 
cutting process of the specimen. This adapted specimen was experimentally validated using special grips (Fig. 5.1a), and an 
attempt to calibrate a complex anisotropic constitutive model was performed through the inverse method FEMU. The speci-
men was obtained from 0.7 mm thick sheet metal of a DC04 mild steel. The tests were performed on a common tensile 
machine. The DIC-system employed to carried out the measurements was the ARAMIS 3D 5M system developed by 
GOM. Figure 5.1b shows the strain distribution in the principal strain space for a displacement of the tool equal to 7.1 mm. 
As can be seen, the adapted geometry produces a range of strains from simple shear to plane strain.
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Fig. 5.1 (a) Grips and specimen used for the adapted butterfly test and (b) principal strains distribution for a tool displacement of 7.1 mm
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In this work, the same experimental data used by Aquino et al. [4] is adopted. The displacement fields acquired for the 
specimen with the rolling direction orientated along the traction axis are used. These displacements fields are projected onto 
a 2D mesh generated by the Abaqus software (Fig. 5.2a) that represents one-fourth of specimen, in order to be processed by 
the VFM. A total of 398 steps from the load/displacement history of the grip are considered (Fig. 5.2b). Only the load history 
between the two red dots is considered, because most of the points in the early stages of the test have a low value of strain 
and were highly affected by noise. Yet, larger load histories were analysed, and the results were not significantly affected.

 Manually Defined Virtual Fields

In non-linear cases, the VFM relies on the minimization of Eq. (5.1) to retrieve the constitutive parameters. As mentioned 
before, the virtual fields selected to build the objective function have a fundamental role in the results of the identification. 
Currently, there are three main approaches to select a suitable set of virtual fields, two of them rely on automatic procedures 
to select the virtual fields and require a low-level of user’s intervention [6, 8]. The other approach, called manually defined 
virtual fields, depends exclusively on the user’s intervention, since it is the user that must develop the suitable set according 
to the boundary conditions of the test. This last strategy has been the most used and its main advantages are the computa-
tional cost and the ease of implementation. For these reasons, this is the strategy adopted in the present work.

Generally, the manually defined virtual fields are developed using polynomial and/or periodic functions. These functions 
are manipulated to generate kinematically admissible virtual fields [5]. In terms of objective function, the components of the 
virtual field gradient can be seen as weights for the components of the stress tensor. Specially in anisotropic plasticity, all the 
components of the stress tensor contain information about the yield criterion, hence must be considered within the 
 identification process. Based on these considerations, a set of 8 virtual fields is developed and the influence of the number of 
virtual fields on the identification results is assessed. The developed virtual fields can be written as:
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Fig. 5.2 (a) Zone of interest (ZOI) and regular mesh used for the VFM identification. (b) Load history for the butterfly test
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where W and L are the maximum value of the width and length of the zone of interest (ZOI) of the specimen surface in the 
reference configuration (see Fig. 5.2a). X and Y are the coordinates in the reference configuration. In case of static equilib-
rium, the first virtual field is the only one that gives a non-zero value of internal virtual work, which should be balanced with 
the external virtual work. It also gives maximum weight to the normal component of the stress tensor in the y-direction and 
neglects the remaining components. The other virtual fields distribute the weight between two components, normal and shear 
components.

In order to assess the influence of the number of virtual fields in the identification process, virtual experimental data gen-
erated by finite element (FE) analysis is used. A two-dimensional FE model representing one-fourth of the butterfly test is 
built assuming plane stress conditions. A displacement of 1.5 mm is prescribed to a rigid tool, which is modelled assuming 
tie contact with the irregular boundary on top of the specimen (see Fig. 5.2a). A reference set of material parameters repre-
senting a mild steel is adopted and its values are listed in Table 5.1. The test is simulated in Abaqus standard software and 
the displacement field of a total of 375 load steps is retrieved to build the objective function (Eq. (5.1)).

A total of 8 identifications with an increasing number of virtual fields are performed. The presented virtual fields are 
added to the objective function in order to enrich the identification process. The results are presented in Fig. 5.3, in which the 
value of the optimized parameter is normalised by the respective reference value. The results show that for one virtual field 
(Eq. (5.4)) the errors are the highest, particularly for the yield criterion parameters. Nevertheless, the results are significantly 
improved when the second virtual field (Eq. (5.5)) is added and tend to stabilize for 5 virtual fields. For a total of 8 virtual 
fields, the maximum error attained is lower than 1.5% and corresponds to the parameter n.

This confirms that the number of virtual fields plays an important role in the accuracy of the VFM. Moreover, the set of 
the developed virtual fields is able to retrieve simultaneously the hardening law and yield criterion parameters using a single 
virtual butterfly test. This also demonstrates that the butterfly test provides a heterogenous strain field that contains enough 
information to identify the present model.
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 Identification of Material Parameters: Results and Analysis

In this section, it is assessed the performance of the VFM combined with the experimental database acquired from the but-
terfly test to calibrate the constitutive model composed by Hill’48 yield criterion and Swift’s hardening law. According to the 
results of the previous section, the 8 virtual fields presented are used to build the objective function. Moreover, since the 
optimization method is a gradient-based, the sensitivity to the initial set of parameters given to start the optimization process 
is also assessed. The initial sets are arbitrarily chosen.

The obtained set of parameters is presented in Table 5.2. Regardless of the initial set of parameters, the results converged 
always for the same solution set shown in Table 5.2. Moreover, Table 5.2 also shows the yield stress values and plastic aniso-
tropic parameters calculated based on the retrieved parameters. The plastic anisotropic coefficient at 0 degrees (rolling direc-
tion) presents a value characteristic of mild steel [9], whereas the other two coefficients present values lower than the 
characteristic ones of this material.

The evolution of the internal virtual work calculated using the parameters of Table 5.2 and the first virtual field (Eq. (5.4)), 
and the evolution of the external virtual work calculated based on the measured load are presented in Fig. 5.4a. The evolu-
tions of the internal and external virtual works show a good agreement. Nevertheless, the internal virtual work evolution 
suffers from minor oscillations, which can result from the presence of noise in the full-field measurements.

In order to check the validity of the retrieved parameters, the butterfly test is simulated with a two-dimensional FE model 
assuming plane stress conditions and using the retrieved parameters. The results of the force evolution for the FE model are 
compared with the measured load in Fig. 5.4b. Note that the results are plotted for the displacement of point A (see Fig. 5.4b), 
in order to minimise the impact of a possible sliding under the grips. Figure  5.4b shows a good agreement between the two 
load curves and a slight overestimation of the displacement at the end of the test. These results confirm that the material 
behaviour for the rolling direction is well captured by the constitutive model and its retrieved material parameters.

Table 5.1 Reference material parameters for Swift’s hardening law and Hill’48 yield criterion

Swift’s hardening law Hill’48 yield criterion

σ0 (MPa) n K (MPa) F G N
160 0.26 565 0.2782 0.3731 1.5568
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 Conclusions

The present work is a first attempt to link an optimized heterogenous mechanical test with VFM. The aim is to propose a 
strategy to identify all the parameters of an anisotropic constitutive model using a single test. A set of manually defined 
virtual fields to link the VFM and the butterfly test is proposed. This set is analysed using virtual experimental data, gener-
ated according to the adopted constitutive model. The analysis shows the dependence of the VFM on the number of virtual 
fields used to build the objective function. In this specific case, for a number superior to 5 virtual fields, there is a reasonable 
error (maximum error lower than 1.5%) in the identification results. Finally, the constitutive model composed by Hill’48 
yield criterion and Swift’s hardening law is calibrated using experimental data from a single test on a mild steel. The results 
revealed insensitivity of the VFM to the initial set of parameters used to start the identification process. Regarding the 
retrieved parameters, its performance is assessed through the predicted anisotropic plastic coefficients and FE analysis of 
the test. The predicted anisotropic plastic coefficient for the rolling direction is characteristic of mild steel, but the remain-
ing coefficients suggest that the model was unable to predict them. The FE analysis of the test with the retrieved material 
parameters confirm this conclusion. The load curve predicted by the FE model shows a good agreement with the experi-
mentally measured load, meaning that the overall behaviour of the material for the rolling direction was well captured. 
Nevertheless, a thorough study on the influence of the DIC parameters on the acquired data from the butterfly test should 
be performed.

Table 5.2 Identification results for Swift’s hardening law and Hill’48 yield criterion

Swift’s hardening law Hill’48 yield criterion

σ0 (MPa) n K (MPa) F G N
166.4 0.31 593.9 0.5503 0.3439 1.4797

Normalised yield stresses σα Plastic anisotropic coefficients rα
σ0 σ45 σ90 r0 r45 r90

1.0 1.02 0.91 1.90 1.15 1.19

Normalised yield stress values and plastic anisotropic coefficients calculated based on the obtained parameters
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