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Chapter 22
MIMO Input Derivations, Optimizing Input Force Against Output 
Accuracy

Arup Maji

Abstract Multi-Input-Multi-Output (MIMO) vibration testing is considered more representative of the true loading environ-
ment (flight or wind induced vibration) where the inputs are not through a single point. The derivation of N inputs for testing 
typically involves matching the response at M locations (outputs). This involves inversion of a N × M Transfer Functions 
(TRF) matrix corresponding to the N input and M output locations. The matrix inversion is affected by both mathematical and 
physical parameters (ill-conditioned matrix, structural modes, signal noise).

Tikhonov regularization is commonly used in inverting an ill-conditioned N × M matrix. A low value of the Tikhonov 
regularization parameter minimizes the distortion of the original equations while a higher value can minimize error. In prac-
tice this introduces an interesting dilemma where obtaining realistic input loads and maintaining accuracy of output are often 
pitted against each other. A study was conducted using data synthesized from a simply-supported plate structure with known 
vibration modes with added noise at outputs. The objective of the study was to understand how noise or errors in the output 
and the Transfer function affect the input. This leads to a more judicious choice of the Tikhonov parameter that can achieve 
a balance between reducing input loads while preserving desired accuracy of output vibration.
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 Introduction

The vibration of a simply supported plate (1.0 × 1.5 m, 10 cm thick) under multiple input and response locations was studied. 
Force input was applied at various locations on the grid shown in Fig. 22.1 (the grid lines are equally spaced from 0.5 to 
0.95 × length in both x and y axes). Response is also calculated at the same locations. For this specific study the two inputs 
were applied at locations 0.25 and 0.45 × length (circles in Fig. 22.1). Response was monitored at 4 locations, 0.25, 0.45, 
0.65, and 0.85× length (circles and squares in Fig.  22.1). The response and the input are related by the plate response 
(Transfer Function TRF) as shown in Eq. (22.1). Input can be derived from response using Eq. (22.2) where TRF−1 is the 
pseudo-inverse of the rectangular TRF matrix. To invert an ill-conditioned matrix, the Tikhonov regularization parameter is 
used, which prevents the very low values of TRF from resulting in distorted (nearly singular) values in TRF−1.

 
TRF Input Response� � �� � � � �� � �4 2 2 1 4 1  

(22.1)

 
TRF Response Input� � �� � � � ��

� � �

1

2 4 4 1 2 1  
(22.2)

A. Maji (*) 
Org1557, Sandia National Laboratories, Albuquerque, NM, USA
e-mail: amaji@unm.edu

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, 
LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration 
under contract DE-NA0003525.
“This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not 
 necessarily represent the views of the U.S. Department of Energy or the United States Government.”

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30098-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-30098-2_22
mailto:amaji@unm.edu


148

The frequency domain Response of a simply supported rectangular plate to an input force was determined based on ana-
lytical solution provided Fahy and Gardonio [1]. Transverse displacement d(ω) at position x2, y2 due to a force F(ω) at loca-
tion x1, y1 is given by the expression:
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modal shape function.
To obtain velocity instead of displacement the equation is multiplied by jω; to get acceleration a(ω) it is multiplied by 

(–ω2).
D = Eh3/(12(1 − ν2)), is plate stiffness, E, h and ν are elastic modulus, plate thickness and poisson’s ratio. m is the mass 

per unit area of the plate, lx and ly are plate dimensions. r1 and r2 are integers representing mode numbers. Mr is the total mass 
of the plate. η is damping coefficient. Properties of Aluminum were used (E = 70 GPa, ν = 0.2). Table 22.1 shows the modes 
<300 Hz.

The following steps were used in these analyses:

• Frequency domain Transfer function (TRF) relating input force to response acceleration was generated using the equation 
3 above for all 100 points of the grid shown in Fig. 22.1 (only a few of these were used). This was done for frequency 
values 1–8192 radians/s.

Fig. 22.1 Simply-supported plate with input and output locations and mode shapes

Table 22.1 Modes below 300 Hz (numbers refer to values of r1 and r2 in equation above)

Modes 1 2 3 4 5
1 34.04 65.46 117.82 191.14 285.39
2 104.73 136.15 188.52 261.83
3 222.56 253.97
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• Frequency domain Input force was generated using random phase (uniformly distributed between ±180°) and constant 
amplitude = 100 N. Input force values for the first 100 low frequencies were set to zero such that the length of data was 
statistically representative. Input force values at high frequencies were also set 0 to satisfy Nyquist criterion.

• The TRF and Input were used to calculate the response as per Eq. (22.1).
• Response was polluted with increasing amounts of white noise at each frequency and the input was recalculated based on 

Eq. (22.2).
• Error in the new input was determined compared to the original input.
• New Response was calculated using the new input (based on TRF inversion)
• Error in response was calculated relative to the original response.

 Results

Figure 22.2 shows that Input error (=True Input/MIMO-based input) is correlated with condition # of the TRF; ill- conditioning 
of the matrix leads to higher error. However, numerical analysis involved in inverting a 4 × 2 matrix results in negilible error 
(note scale 5 × 10−14 = in Fig. 22.2). It is also worth noting that the relatvely higher errors for Input 2 are at frequencies where 
the input 2 has very little contribution (at location 0.45 × length it is close to the node at the center of the plate).

Figure 22.3 shows the effect of adding a noise of amplitude 1.0 and uniformly distributed random phase (±180°) to the 
response at each frequency. The right side of Fig. 22.3 shows that the noise is very low in comparison to the amplitudes of 
the response (peak response is a 1000), and the response with and without noise is visually indistinguishable. The input error 
is now considerable. At frequencies of 65, 136 and 254 Hz where Input 2 is near a node it has considerably more error than 
Input 1. Input 2 has small error at 118, 223, 285 Hz because it is no longer at a node and can contribute to those modes as 
well as Input 1 can. Also recognizable is the gradual increase in Input error below the 1st mode of 34 Hz, which can be 
attributed to the lack of motion in the plate.
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Fig. 22.2 Condition # vs. 
input error with zero noise

22 MIMO Input Derivations, Optimizing Input Force Against Output Accuracy



150

Figure 22.4 shows results with the noise level increased to 10.0 at each frequency. The resulting error in the input is now 
greater in roughly the same proportion (≈×10 greater than that in Fig. 22.3). The bottom-right plot shows the input error 
when the tolerance value in the MatLab pseudo-inverse function ‘pinv’ is change from 0 to 0.1. This is known as the regulari-
ation parameter and referred to in this paper as tol. The two plots on the left (in Fig. 22.4) are the same data with the lower 
figure with a vertical scale matching the one on the lower right for comparison. The input error is significantly lower at and 
below the 1st mode of 34 Hz. This is because the lower singular values in TRF is set = 0.1 removing the inversion inaccura-
cies caused by extremely low singular values.

Additional insight can be gained by examining the relationship between the results of the Singular-Value-Decompostion 
(SVD) of the Transfer Function Matrix (TRF) at each frequency. The high and low singular values are shown in the top right 
plot of Fig. 22.4 (note long-normal of svd is presented instead of svd to better visualize the effect of singular values and tol 
on the error). The selection of the tolerance value (tol) results in selective minimization of input error. So, when tol is 
increased to 0.165 more of the input errors are reduced as seen in the plot in the right-center. The dotted horizontal lines 
represent the 2 tol values relative to the singular values. The circles show the corresponding decrese in the error in Input 2 
where the lower svd values are below (ln 0.165 = −1.8). Likewise the two dotted lines below 100 Hz show where the lower 
svd values are below (ln 0.1 = −2.3) and the corresponding decrease in Input 2 error in those regions.

Fig. 22.3 Condition # vs. input error with noise = 1.0
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 Conclusions

• Large condition #s associated with resonant modes is the first source of error in MIMO inversion. In the absense of other 
sources of noise this error is negligible.

• When response is polluted with white noise the input error is in proportion to the relative error in the response (effect of 
white noise to the response is low at and near resonances).

• Input error at specific frequencies is higher when the input is near a node for that frequency.
• A 10× increase in the noise results in a corresponding 10× increase in the input error.
• Choosing the regularization parameter based on the lower value from singular-value-decomposition of the complex TRF 

matrix can be used to decrease input error.
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Fig. 22.4 Input error with noise = 10 and effect of regularization parameter
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