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Chapter 21
Development of an Inverse Identification Method for Identifying 
Constitutive Parameters by Metaheuristic Optimization Algorithm: 
Application to Hyperelastic Materials

G. Bastos, A. Tayeb, N. Di Cesare, J.-B. Le Cam, and E. Robin

Abstract  In the present study, a numerical method based on a metaheuristic parametric algorithm has been developed to 
identify the constitutive parameters of hyperelastic models, by using FE simulations and full kinematic field measurements. 
The full kinematic field was measured at the surface of a cruciform specimen submitted to equibiaxial tension. The test was 
simulated by using the finite element method (FEM). The constitutive parameters used in the numerical model were modified 
through the optimization process, for the predicted kinematic field to fit with the experimental one. The cost function was 
then formulated as the minimization of the difference between these two kinematic fields. The optimization algorithm is an 
adaptation of the Particle Swarm Optimization algorithm, based on the PageRank algorithm used by the famous search 
engine Google.
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�Introduction

The constitutive parameters of hyperelastic models are generally identified from three homogeneous tests, basically the uni-
axial tension, the pure shear and the equibiaxial tension. From about 10 years, an alternative methodology has been devel-
oped [1–4], and consists in performing only one heterogeneous test as long as the field is sufficiently heterogeneous. This is 
typically the case when a multiaxial loading is applied to a 3 branch [1] or a 4-branch [2] cruciform specimen, which induces 
a large number of strain states at the specimen surface. The Digital Image Correlation (DIC) technique is generally used to 
characterize the full kinematic field at the specimen surface. The induced heterogeneity is analysed through the distribution 
of the biaxiality ratio and the maximal eigen value of the strain. Thus, a large number of experimental data is provided for 
identifying the constitutive parameters of the considered model.

Several methods have been recently developed to identify parameters from experimental field measurements, typically the 
finite element updating method (FEMU), the constitutive equation gap (CEGM), the virtual fields method (VFM), the equi-
librium gap method (EGM) and the reciprocity gap method (RGM). These methods are fully reviewed in [5].

In the present study a new methodology is proposed in order to minimize the cost function in the FEMU approach. The 
optimization algorithm used is based on the Particle Swarm Optimization (PSO) algorithm and the artificial smart PageRank 
algorithm used by the famous search engine Google. This algorithm enables us to the minimize the full kinematic field dif-
ferences by modifying the constitutive parameters, while minimizing the CPU calculation time. Even though the final objec-
tive is the identification of complex constitutive models, i.e. a large number of constitutive parameters, the two-parameter 
Mooney’s model [6] is presented in this paper to illustrate the methodology.
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�Experimental Setup

The material considered here is a carbon black filled natural rubber. The specimen geometry is shown in Fig. 21.1. It is a 
105 mm long and 2 mm thick cruciform specimen. Figure 21.2 presents an overview of the experimental setup composed of 
a home-made biaxial testing machine and an optical camera. The machine is composed of four independant RCP4-RA6C-I-
56P-4-300-P3-M (IAI) electrical actuators. They were driven by a PCON-CA-56P-I-PLP-2-0 controller and four PCON-CA 
(IAI) position controllers. The actuators were controlled by an in-house LabVIEW program. Two cell loads, whose capacity 
is equal to 1094 N, store the force variation in the two perpendicular directions. In the present study, one equibiaxial loading 
was carried out in such a way that the specimen’s centre was motionless for the displacement measurement to be easier. The 
displacement and loading rate were set at 70 mm and 150 mm/min respectively for the four independent actuators.

Images of the specimen surface at increasing stretches were stored at a frequency equal to 5 Hz with a IDS camera 
equipped with a 55 mm telecentric objective. The charge-coupled device (CCD) of the camera has 1920 × 1200 joined pixels. 
The Digital Image Correlation (DIC) technique is used to determine the displacement field at the specimen surface. The 
software used for the correlation process was SeptD [7], and a uniform cold lighting was ensured by a home-made LED 
lamp. The spatial resolution, defined as the smallest distance between two independent points was equal to 4 pixels corre-
sponding to 0.343 mm. The Region Od Interest (ROI) used for the digital correlation is represented in Fig. 21.3.
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Fig. 21.1  Specimen 
geometry (dimensions in mm)

Fig. 21.2  Home-made 
biaxial testing machine
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�Numerical Model

A finite element calculation is performed by assuming plane stress state and material incompressibility. The four-node 
PLANE182 ANSYS element is used. The mesh is made of 9600 nodes, and 9353 elements. A biaxial traction load is obtained 
by prescribing the same displacement of 70 mm on the four branches of the specimen. The two-parameters hyperelastic 
Mooney model is used for the calculation. The values of the constitutive parameters are changing at each iteration of the 
optimization process, as described in the next section.

As the spatial resolution between the predicted and the measured kinematic field was different, the experimental kine-
matic field was fitted by a polynomial-based function. In this way, the predicted kinematic field was compared, for each node, 
with the experimental field at the same position of the specimen. With the fitting method applied, the difference between the 
experimental field and the polynomial-based function was less than 0.2 mm whatever the point considered.

�Metaheuristic Optimization Strategy

The aim of the optimization process was here to find the constitutive parameters for the numerical kinematic field to fit the 
experimental one. The cost function f was the squared difference between the experimental and the numerical fields, consid-
ering the force too, as follows:
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where N is the number of nodes in the numerical ROI, Ux,exp is the polynomial-based experimental displacement, Ux,num is the 
numerical horizontal displacement, Fexp is the experimental horizontal force, and Fnum is the numerical horizontal force.

The optimization algorithm used is an adaptation of the classical Particle Swarm Optimization algorithm. In this version, 
all the particles are influenced by all the others, by considering this influence to be adapted as a function of the respective 
performance of the particles. The population of PSO particles is then considered as a Markov chain, in which the particles 
are the nodes, and the transition probabilities between them are the links between them. For each particle, the PageRank 
value—that is the steady state of the considered Markov chain—is given by the following equation (2). In this way, the 
PageRank value of each particle is deduced from its performance compared to the best one.
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It is then possible to deduce the transition connectivity matrix C giving the influence of all the particles on all the others 
by using a pseudo-random process. The classical equations of PSO are then modified, weighing the influence of all the par-
ticles by using the components of C, as follow:

Fig. 21.3  Region of interest 
for the DIC technique
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where Vi
t+1  is the speed of the ith particle at iteration t + 1, c1 and c2 are confident parameters, ω is the inertia weight, Xi

t+1  
is the position of particle i at iteration t + 1, rand1 and rand2 are random numbers given in [0, 1], Pj best

t
,
+1  is the personal best 

position of particle i at iteration t + 1, and C is the transition connectivity matrix of the considered Markov chain. This 
Inverse-PageRank-PSO algorithm is fully described in [8].

�Results and Discussion

As the particles are initially randomly defined, the optimization was launched 10 times, to compare the obtained solutions, and be 
sure that the global minimum of the cost function was reached. The convergence curves of the 10 launched optimization calculation 
are represented in Fig. 21.4. The obtained values of the cost function and constitutive parameters are given in Table 21.1.

The validation of the optimized results is checked by comparing the experimental displacements and efforts in the sample 
with the numerical optimized one. In the final numerical model, the values of the constitutive parameters have been set to the 
mean of the obtained optimized values found in the 10 different calculations launched. Figure 21.5 shows the difference 
between the experimental polynomial-based kinematic field, and the optimized numerical one, for every point in the ROI.
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Fig. 21.4  Convergence 
curves of the 10 optimization 
calculation launched

Table 21.1  Obtained results

Obtained results
Optimization number Cost function C01 C10

1 8.05 × 10−3 0.5159 0.01792
2 8.13 × 10−3 0.5116 0.022541
3 7.98 × 10−3 0.5188 0.020369
4 7.98 × 10−3 0.5197 0.018879
5 7.98 × 10−3 0.5176 0.019914
6 7.99 × 10−3 0.5175 0.020986
7 8.01 × 10−3 0.5153 0.02008
8 8.03 × 10−3 0.5146 0.022146
9 8.15 × 10−3 0.5109 0.021573
10 7.98 × 10−3 0.5202 0.019215
Mean 8.03 × 10−3 5.16 × 10−1 2.03 × 10−2

Std 6.475 × 10−5 3.19 × 10−3 1.15 × 10−4
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Fig. 21.5  Comparison between the kinematic fields after the optimization process
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Fig. 21.6  Difference between 
the kinematic fields for every 
point of the ROI

This difference is presented in a quantitative way in Fig. 21.6 showing the difference between the two fields for every 
point of the ROI. One can note that the difference is always less than 6.5% of the experimental kinematic field. Considering 
the force, the experimental value was 176.02 N, while the numerical value obtained with the optimized values of the constitu-
tive parameters is 176.37 N, which leads to a difference up to 0.4%.

�Conclusions

This work is proposing a new inverse identification method based on the coupling of experimental kinematic fields retrieved 
by DIC, and the using of a PSO-based parametric optimization algorithm. Experimental and numerical kinematic fields are 
compared to finally be fitted through the optimization process, while the constitutive parameters are smartly modified. 
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Applied on a Mooney model, this process is able to find the constitutive parameters reproducing the mechanical response of 
the specimen, while minimizing the number of optimization iterations. The constitutive parameters found by the optimiza-
tion process are actually giving a numerical model that retrieves precisely the entire kinematic experimental field.
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