
On Symbolic Approaches for Computing
the Matrix Permanent

Supratik Chakraborty1(B), Aditya A. Shrotri2(B), and Moshe Y. Vardi2(B)

1 Indian Institute of Technology Bombay, Mumbai, India
supratik@cse.iitb.ac.in

2 Rice University, Houston, USA
{Aditya.Aniruddh.Shrotri,vardi}@rice.edu

Abstract. Counting the number of perfect matchings in bipartite
graphs, or equivalently computing the permanent of 0-1 matrices, is an
important combinatorial problem that has been extensively studied by
theoreticians and practitioners alike. The permanent is #P-Complete;
hence it is unlikely that a polynomial-time algorithm exists for the prob-
lem. Researchers have therefore focused on finding tractable subclasses
of matrices for permanent computation. One such subclass that has
received much attention is that of sparse matrices i.e. matrices with few
entries set to 1, the rest being 0. For this subclass, improved theoretical
upper bounds and practically efficient algorithms have been developed.
In this paper, we ask whether it is possible to go beyond sparse matrices
in our quest for developing scalable techniques for the permanent, and
answer this question affirmatively. Our key insight is to represent per-
manent computation symbolically using Algebraic Decision Diagrams
(ADDs). ADD-based techniques naturally use dynamic programming,
and hence avoid redundant computation through memoization. This per-
mits exploiting the hidden structure in a large class of matrices that
have so far remained beyond the reach of permanent computation tech-
niques. The availability of sophisticated libraries implementing ADDs
also makes the task of engineering practical solutions relatively straight-
forward. While a complete characterization of matrices admitting a com-
pact ADD representation remains open, we provide strong experimental
evidence of the effectiveness of our approach for computing the perma-
nent, not just for sparse matrices, but also for dense matrices and for
matrices with “similar” rows.

1 Introduction

Constrained counting lies at the heart of several important problems in diverse
areas such as performing Bayesian inference [45], measuring resilience of elec-
trical networks [20], counting Kekule structures in chemistry [23], computing

Author names are ordered alphabetically by last name and does not indicate
contribution.
Work supported in part by NSF grant IIS-1527668, the Data Analysis and Visualization
Cyberinfrastructure funded by NSF under grant OCI-0959097 and Rice University, and
MHRD IMPRINT-1 Project No. 6537 sponsored by Govt of India.

c© Springer Nature Switzerland AG 2019
T. Schiex and S. de Givry (Eds.): CP 2019, LNCS 11802, pp. 71–90, 2019.
https://doi.org/10.1007/978-3-030-30048-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30048-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-30048-7_5

72 S. Chakraborty et al.

the partition function of monomer-dimer systems [26], and the like. Many of
these problems reduce to counting problems on graphs. For instance, learning
probabilistic models from data reduces to counting the number of topological
sorts of directed acyclic graphs [56], while computing the partition function of a
monomer-dimer system reduces to computing the number of perfect matchings
of an appropriately defined bipartite graph [26]. In this paper, we focus on the
last class of problems – that of counting perfect matchings in bipartite graphs. It
is well known that this problem is equivalent to computing the permanent of the
0-1 bi-adjacency matrix of the bipartite graph. We refer to these two problems
interchangeably in the remainder of the paper.

Given an n×n matrix A with real-valued entries, the permanent of A is given
by perm(A) =

∑
σ∈Sn

∏n
i=1 ai,σ(i), where Sn denotes the symmetric group of

all permutations of 1, . . . n. This expression is almost identical to that for the
determinant of A; the only difference is that the determinant includes the sign
of the permutation in the inner product. Despite the striking resemblance of
the two expressions, the complexities of computing the permanent and deter-
minant are vastly different. While the determinant can be computed in time
O(n2.4), Valiant [54] showed that computing the permanent of a 0-1 matrix is
#P-Complete, making a polynomial-time algorithm unlikely [53]. Further evi-
dence of the hardness of computing the permanent was provided by Cai, Pavan
and Sivakumar [11], who showed that the permanent is also hard to compute
on average. Dell et al. [19] showed that there can be no algorithm with sub-
exponential time complexity, assuming a weak version of the Exponential Time
Hypothesis [3] holds.

The determinant has a nice geometric interpretation: it is the oriented vol-
ume of the parallelepiped spanned by the rows of the matrix. The permanent,
however, has no simple geometric interpretation. Yet, it finds applications in a
wide range of areas. In chemistry, the permanent and the permanental polyno-
mial of the adjacency matrices of fullerenes [32] have attracted much attention
over the years [12,13,34]. In constraint programming, solutions to All-Different
constraints can be expressed as perfect matchings in a bipartite graph [43]. An
estimate of the number of such solutions can be used as a branching heuristic to
guide search [42,60]. In physics, permanents can be used to measure quantum
entanglement [58] and to compute the partition functions of monomer-dimer
systems [26].

Since computing the permanent is hard in general, researchers have attempted
to find efficient solutions for either approximate versions of the problem, or for
restricted classes of inputs. In this paper, we restrict our attention to exact algo-
rithms for computing the permanent. The asymptotically fastest known exact
algorithm for general n × n matrices is Nijenhuis and Wilf’s version of Ryser’s
algorithm [38,46], which runs in time Θ(n · 2n) for all matrices of size n. For
matrices with bounded treewidth or clique-width [15,44], Courcelle, Makowsky
and Rotics [16] showed that the permanent can be computed in time linear in the
size of the matrix, i.e., computing the permanent is Fixed Parameter Tractable
(FPT). A large body of work is devoted to developing fast algorithms for sparse

On Symbolic Approaches for Computing the Matrix Permanent 73

matrices, i.e. matrices with only a few entries set to non-zero values [28,34,48,59]
in each row. Note that the problem remains #P-Complete even when the input is
restricted to matrices with exactly three 1’s per row and column [9].

An interesting question to ask is whether we can go beyond sparse matrices
in our quest for practically efficient algorithms for the permanent. For example,
can we hope for practically efficient algorithms for computing the permanent of
dense matrices, i.e., matrices with almost all entries non-zero? Can we expect
efficiency when the rows of the matrix are “similar”, i.e. each row has only a few
elements different from any other row (sparse and dense matrices being special
cases)? Existing results do not seem to throw much light on these questions. For
instance, while certain non-sparse matrices indeed have bounded clique-width,
the aforementioned result of Courcelle et al. [14,16] does not yield practically
efficient algorithms as the constants involved are enormous [24]. The hardness of
non-sparse instances is underscored by the fact that SAT-based model counters
do not scale well on these, despite the fact that years of research and careful
engineering have enabled these tools to scale extremely well on a diverse array
of problems. We experimented with a variety of CNF-encodings of the permanent
on state-of-the-art counters like D4 [33]. Strikingly, no combination of tool and
encoding was able to scale to matrices even half the size of those solved by
Ryser’s approach in the same time, despite the fact that Ryser’s approach has
exponential complexity even in the best case.

In this paper, we show that practically efficient algorithms for the permanent
can indeed be designed for large non-sparse matrices if the matrix is represented
compactly and manipulated efficiently using a special class of data structures.
Specifically, we propose using Algebraic Decision Diagrams [4] (ADDs) to repre-
sent matrices, and design a version of Ryser’s algorithm to work on this symbolic
representation of matrices. This effectively gives us a symbolic version of Ryser’s
algorithm, as opposed to existing implementations that use an explicit represen-
tation of the matrix. ADDs have been studied extensively in the context of formal
verification, and sophisticated libraries are available for compact representation
of ADDs and efficient implementation of ADD operations [50,55]. The literature
also contains compelling evidence that reasoning based on ADDs and variants
scales to large instances of a diverse range of problems in practice, cf. [4,21].
Our use of ADDs in Ryser’s algorithm leverages this progress for computing the
permanent. Significantly, there are several sub-classes of matrices that admit
compact representations using ADDs, and our algorithm works well for all these
classes. Our empirical study provides evidence for the first time that the frontier
of practically efficient permanent computation can be pushed well beyond the
class of sparse matrices, to the classes of dense matrices and, more generally, to
matrices with “similar” rows. Coupled with a technique known as early abstrac-
tion, ADDs are able to handle sparse instances as well. In summary, the symbolic
approach to permanent computation shows promise for both sparse and dense
classes of matrices, which are special cases of a notion of row-similarity.

74 S. Chakraborty et al.

The rest of the paper is organized as follows: in Sect. 2 we introduce ADDs
and other concepts that we will use in this paper. We discuss related work in
Sect. 3 and present our algorithm and analyze it in Sect. 4. Our empirical study
is presented in Sects. 5 and 6 and we conclude in Sect. 7.

2 Preliminaries

We denote by A = (aij) an n×n 0-1 matrix, which can also be interpreted as the
bi-adjacency matrix of a bipartite graph GA = (U ∪V,E) with an edge between
vertex i ∈ U and j ∈ V iff aij = 1. We will denote the ith row of A by ri. A
perfect matching in GA is a subset M ⊆ E, such that for all v ∈ (U ∪V), exactly
one edge e ∈ M is incident on v. We denote by perm(A) the permanent of A,
and by #PM(GA), the number of perfect matchings in G. A well known fact
is that perm(A) = #PM(GA), and we will use these concepts interchangeably
when clear from context.

2.1 Algebraic Decision Diagrams

Let X be a set of Boolean-valued variables. An Algebraic Decision Diagram
(ADD) is a data structure used to compactly represent a function of the form f :
2X → R as a Directed Acyclic Graph (DAG). ADDs were originally proposed as
a generalization of Binary Decision Diagrams (BDDs), which can only represent
functions of the form g : 2X → {0, 1}. Formally, an ADD is a 4-tuple (X,T, π,G)
where X is a set of Boolean variables, the finite set T ⊂ R is called the carrier
set, π : X → N is the diagram variable order, and G is a rooted directed acyclic
graph satisfying the following three properties:

1. Every terminal node of G is labeled with an element of T .
2. Every non-terminal node of G is labeled with an element of X and has two

outgoing edges labeled 0 and 1.
3. For every path in G, the labels of visited non-terminal nodes must occur in

increasing order under π.

We use lower case letters f, g, . . . to denote both functions from Booleans to reals
as well as the ADDs representing them. Many operations on such functions can
be performed in time polynomial in the size of their ADDs. We list some such
operations that will be used in our discussion.

– Product : The product of two ADDs representing functions f : 2X → R and
g : 2Y → R is an ADD representing the function f · g : 2X∪Y → R, where
f · g(τ) is defined as f(τ ∩ X) · g(τ ∩ Y) for every τ ∈ 2X∪Y ,

– Sum: Defined in a way similar to the product.
– If-Then-Else (ITE): This is a ternary operation that takes as inputs a BDD

f and two ADDs g and h. ITE(f, g, h) represents the function f · g + ¬f · h,
and the corresponding ADD is obtained by substituting g for the leaf’1’ of f
and h for the leaf ’0’, and simplifying the resulting structure.

On Symbolic Approaches for Computing the Matrix Permanent 75

– Additive Quantification: The existential quantification operation for Boolean-
valued functions can be extended to real-valued functions by replacing dis-
junction with addition as follows. The additive quantification of f : 2X → R

is denoted as ∃x.f : 2X\{x} → R and for τ ∈ 2X\{x}, we have ∃x.f(τ) =
f(τ) + f(τ ∪ {x}).

ADDs share many properties with BDDs. For example, there is a unique minimal
ADD for a given variable order π, called the canonical ADD, and minimization
can be performed in polynomial time. Similar to BDDs, the variable order can
significantly affect the size of the ADD. Hence heuristics for finding good vari-
able orders for BDDs carry over to ADDs as well. ADDs typically have lower
recombination efficiency, i.e. number of shared nodes, vis-a-vis BDDs. Neverthe-
less, sharing or recombination of isomorphic sub-graphs in an ADD is known to
provide significant practical advantages in representing matrices, vis-a-vis other
competing data structures. The reader is referred to [4] for a nice introduction
to ADDs and their applications.

2.2 Ryser’s Formula

The permanent of A can be calculated by the principle of inclusion-exclusion
using Ryser’s formula: perm(A) = (−1)n

∑
S⊆[n](−1)|S| ∏n

i=1

∑
j∈S aij . Algo-

rithms implementing Ryser’s formula on an explicit representation of an arbi-
trary matrix A (not necessarily sparse) must consider all 2n subsets of [n]. As a
consequence, such algorithms have at least exponential complexity. Our experi-
ments show that even the best known existing algorithm implementing Ryser’s
formula for arbitrary matrices [38], which iterates over the subsets of [n] in Gray-
code sequence, consistently times out after 1800 s on a state-of-the-art computing
platform when computing the permanent of n × n matrices, with n ≥ 35.

3 Related Work

Valiant showed that computing the permanent is #P -complete [54]. Subse-
quently, researchers have considered restricted sub-classes of inputs in the quest
for efficient algorithms for computing the permanent, both from theoretical and
practical points of view. We highlight some of the important milestones achieved
in this direction.

A seminal result is the Fisher-Temperly-Kastelyn algorithm [29,52], which
computes the number of perfect matchings in planar graphs in PTIME. This
result was subsequently extended to many other graph classes (c.f. [40]). Fol-
lowing the work of Courcelle et al. a number of different width parameters have
been proposed, culminating in the definition of ps-width [47], which is considered
to be the most general notion of width [8]. Nevertheless, as with clique-width,
it is not clear whether it lends itself to practically efficient algorithms. Bax and
Franklin [5] gave a Las Vegas algorithm with better expected time complexity
than Ryser’s approach, but requiring O(2n/2) space.

76 S. Chakraborty et al.

For matrices with at most C · n zeros, Servedio and Wan [48] presented
a (2 − ε)n-time and O(n) space algorithm where ε depends on C. Izumi and
Wadayama [28] gave an algorithm that runs in time O∗(2(1−1/(Δ log Δ))n), where
Δ is the average degree of a vertex. On the practical side, in a series of papers,
Liang, Bai and their co-authors [34,35,59] developed algorithms optimized for
computing the permanent of the adjacency matrices of fullerenes, which are
3-regular graphs.

In recent years, practical techniques for propositional model counting
(#SAT) have come of age. State-of-the-art exact model counters like DSharp [37]
and D4 [33] also incorporate techniques from knowledge compilation. A straight-
forward reduction of the permanent to #SAT uses a Boolean variable xij for
each 1 in row i and column j of the input matrix A, and imposes Exact-One
constraints on the variables in each row and column. This gives the formula
Fperm(A) =

∧
i∈[n] ExactOne({xij : aij = 1}) ∧ ∧

j∈[n] ExactOne({xij : aij =
1}). Each solution to Fperm(A) is a perfect matching in the underlying graph,
and so the number of solutions is exactly the permanent of the matrix. A num-
ber of different encodings can be used for translating Exact-One constraints to
Conjunctive Normal Form (see Sect. 5.1). We perform extensive comparisons of
our tool with D4 and DSharp with six such encodings.

4 Representing Ryser’s Formula Symbolically

As noted in Sect. 2, an explicit implementation of Ryser’s formula iterates over
all 2n subsets of columns and its complexity is in Θ(n · 2n). Therefore, any such
implementation takes exponential time even in the best case. A natural question
to ask is whether we can do better through a careful selection of subsets over
which to iterate. This principle was used for the case of sparse matrices by
Servedio and Wan [48]. Their idea was to avoid those subsets for which the row-
sum represented by the innermost summation in Ryser’s formula, is zero for at
least one row, since those terms do not contribute to the outer sum in Ryser’s
formula. Unfortunately, this approach does not help for non-sparse matrices, as
very few subsets of columns (if any) will yield a zero row-sum.

It is interesting to ask if we can exploit similarity of rows (instead of sparsity)
to our advantage. Consider the ideal case of an n×n matrix with identical rows,
where each row has k (≤ n) 1s. For any given subset of columns, the row-
sum is clearly the same for all rows, and hence the product of all row-sums is
simply the nth power of the row-sum of one row. Furthermore, there are only
k + 1 distinct values (0 through k) of the row-sum, depending on which subset
of columns is selected. The number of r-sized column subsets that yield row-
sum j is clearly

(
k
j

) · (
n−k
r−j

)
, for 0 ≤ j ≤ k and j ≤ r ≤ n − k + j. Thus,

we can directly compute the permanent of the matrix via Ryser’s formula as
perm(A) = (−1)n

∑k
j=0

∑n−k+j
r=j (−1)r

(
k
j

) · (n−k
r−j

) · jn. This equation has a more
compact representation than the explicit implementation of Ryser’s formula,
since the outer summation is over (k + 1).(n − k + 1) terms instead of 2n terms.

On Symbolic Approaches for Computing the Matrix Permanent 77

Drawing motivation from the above example, we propose using memoization
to simplify the permanent computation of matrices with similar rows. Specifi-
cally, if we compute and store the row-sums for a subset S1 ⊂ [n] of columns,
then we can potentially reuse this information when computing the row-sums for
subsets S2 ⊃ S1. We expect storage requirements to be low when the rows are
similar, as the partial sums over identical parts of the rows will have a compact
representation, as shown above.

While we can attempt to hand-craft a concrete algorithm using this idea,
it turns out that ADDs fit the bill perfectly. We introduce Boolean variables
xj for each column 1 ≤ j ≤ n in the matrix. We can represent the summand
(−1)|S| ∏n

i=1

∑
j∈S aij in Ryser’s formula as a function fRyser : 2X → R where

for a subset of columns τ ∈ 2X , we have fRyser(τ) = (−1)|τ | ∏n
i=1

∑
j∈τ aij .

The outer sum in Ryser’s formula is then simply the Additive Quantification
of fRyser over all variables in X. The permanent can thus be denoted by the
following equation:

perm(A) = (−1)n . ∃x1, x2, . . . xn.(fRyser) (1)

We can construct an ADD for fRyser incrementally as follows:

– Step 1: For each row ri in the matrix, construct the Row-Sum ADD fri

RS such
that fri

RS(τ) =
∑

j:aij=1 1τ (xj), where 1τ (xj) is the indicator function taking
the value 1 if xj ∈ τ , and zero otherwise. This ADD can be constructed by
using the sum operation on the variables xj corresponding to the 1 entries in
row ri.

– Step 2: Construct the Row-Sum-Product ADD fRSP =
∏n

i=1 fri

RS by apply-
ing the product operation on all the Row-Sum ADDs.

(a) (b) (c)

Fig. 1. (a) fRS , (b) fRSP and (c) fRyser for a 4 × 4 matrix of all 1s

– Step 3: Construct the Parity ADD fPAR = ITE(
⊕n

j=1 xj ,−1,+1), where
⊕

represents exclusive-or. This ADD represents the (−1)|S| term in Ryser’s
formula.

– Step 4: Construct fRyser = fRSP .fPAR using the product operation.

78 S. Chakraborty et al.

Finally, we can additively quantify out all variables in fRyser and multiply
the result by (−1)n to get the permanent, as given by Eq. 1.

The size of the ADD fRSP will be the smallest when the ADDs fri

RS are
exactly the same for all rows ri, i.e. when all rows of the matrix are identical. In
this case, the ADDs fri

RS and fRSP will be isomorphic; the values at the leaves
of fRSP will simply be the nth power of the values at the corresponding leaves of
fri

RS . An example illustrating this for a 4 × 4 matrix of all 1s is shown in Fig. 1.
Each level of the ADDs in this figure corresponds to a variable (shown on the
left) for a column of the matrix. A solid edge represents the ‘true’ branch while
a dotted edge represents the ‘false’ branch. Observe that sharing of isomorphic
subgraphs allows each of these ADDs to have 10 internal nodes and 5 leaves, as
opposed to 15 internal nodes and 16 leaves that would be needed for a complete
binary tree based representation.

The ADD representation is thus expected to be compact when the rows are
“similar”. Dense matrices can be thought of as a special case: starting with a
matrix of all 1s (which clearly has all rows identical), we change a few 1s to 0s.
The same idea can be applied to sparse matrices as well: starting with a matrix
of all 0s (once again, identical rows), we change a few 0s to 1s. The case of very
sparse matrices is not interesting, however, as the permanent (or equivalently,
count of perfect matchings in the corresponding bipartite graph) is small and
can be computed by naive enumeration. Interestingly, our experiments show that
as we reduce the sparsity of the input matrix, constructing fRSP and fRyser in
a monolithic fashion as discussed above fails to scale, since the sizes of ADDs
increase very sharply. Therefore we need additional machinery.

First, we rewrite Eq. 1 in terms of the intermediate ADDs as:

perm(A) = (−1)n . ∃x1, x2, . . . xn.

(

fPAR ·
n∏

i=1

fri

RS

)

(2)

We then employ the principle of early abstraction to compute fRyser incre-
mentally. Note that early abstraction has been used successfully in the past in
the context of SAT solving [41], and recently for weighted model counting using
ADDs in a technique called ADDMC [1]. The formal statement of the principle
of early abstraction is given in the following theorem.

Theorem 1. [1] Let X and Y be sets of variables and f : 2X → R, g : 2Y → R.
For all x ∈ X \ Y , we have ∃x(f · g) = (∃x(f)) · g

Since the product operator is associative and additive quantification is com-
mutative, we can rearrange the terms of Eq. 2 in order to apply early abstraction.
This idea is implemented in Algorithm RysersADD, which is motivated by the
weighted model counting algorithm in [1].

Algorithm RysersADD takes as input a 0–1 matrix A, a diagram variable
order π and a cluster rank-order η. η is an ordering of variables which is used
to heuristically partition rows of A into clusters using a function clusterRank,
where all rows in a cluster get the same rank. Intuitively, rows that are almost

On Symbolic Approaches for Computing the Matrix Permanent 79

Algorithm 1. RysersADD(A, π, η)
1: m ← maxx∈X η(x);
2: for i = m, m − 1, . . . , 1 do
3: κi ← {fr

RS : r is a row in A and clusterRank(r, η) = i};

4: fRyser ← fPAR; � fPAR and each fr
RS are constructed using the diagram variable

order π
5: for i = 1, 2, . . . , m do
6: if κi �= ∅ then
7: for g ∈ κi do
8: fRyser ← fRyser · g;

9: for x ∈ V ars(fRyser) do
10: if x �∈ (V ars(κi+1) ∪ . . . ∪ V ars(κm)) then
11: fRyser ← ∃x(fRyser)

12: return (−1)n × fRyser(∅)

identical are placed in the same cluster, while those that differ significantly are
placed in different clusters. Furthermore, the clusters are ordered such that there
are non-zero columns in cluster i that are absent in the set of non-zero columns
in clusters with rank > i. As we will soon see, this facilitates keeping the sizes
of ADDs under control by applying early abstraction.

Algorithm RysersADD proceeds by first partitioning the Row-Sum ADDs of
the rows A into clusters according to their cluster rank in line 3. Each Row-
Sum ADD is constructed according to the diagram variable order π. The ADD
fRyser is constructed incrementally, starting with the Parity ADD in line 4, and
multiplying the Row-Sum ADDs in each cluster κi in the loop at line 7. However,
unlike the monolithic approach, early abstraction is carried out within the loop
at line 9. Finally, when the execution reaches line 12, all variables representing
columns of the input matrix have been abstracted out. Therefore, fRyser is an
ADD with a single leaf node that contains the (possibly negative) value of the
permanent. Following Eq. 2, the algorithm returns the product of (−1)n and
fRsyer(∅).

The choice of the function clusterRank and the cluster rank-order η sig-
nificantly affect the performance of the algorithm. A number of heuristics for
determining clusterRank and η have been proposed in literature, such as Bucket
Elimination [18], and Bouquet’s Method [7] for cluster ranking, and MCS [51],
LexP [31] and LexM [31] for variable ordering. Further details and a rigorous
comparison of these heuristics are presented in [1]. Note that if we assign the
same cluster rank to all rows of the input matrix, Algorithm RysersADD reduces
to one that constructs all ADDs monolithically, and does not benefit from early
abstraction.

4.1 Implementation Details

We implemented Algorithm 1 using the library Sylvan [55] since unlike
CUDD [50], Sylvan supports arbitrary precision arithmetic – an essential feature

80 S. Chakraborty et al.

to avoid overflows when the permanent has a large value. Sylvan supports par-
allelization of ADD operations in a multi-core environment. In order to leverage
this capability, we created a parallel version of RysersADD that differs from the
sequential version only in that it uses the parallel implementation of ADD oper-
ations natively provided by Sylvan. Note that this doesn’t require any change to
Algorithm RysersADD, except in the call to Sylvan functions. While other non-
ADD-based approaches to computing the permanent can be parallelized as well,
we emphasize that it is a non-trivial task in general, unlike using Sylvan. We
refer to our sequential and parallel implementations for permanent computation
as RysersADD and RysersADD-P respectively, in the remainder of the discussion.
We implemented our algorithm in C++, compiled under GCC v6.4 with the
O3 flag. We measured the wall-times for both algorithms. Sylvan also supports
arbitrary precision floating point computation, which makes it easy to extend
RysersADD for computing permanent of real-valued matrices. However, we leave
a detailed investigation of this for future work.

5 Experimental Methodology

The objective of our empirical study was to evaluate RysersADD and
RysersADD-P on randomly generated instances (as done in [35]) and publicly
available structured instances (as done in [34,59]) of 0-1 matrices.

5.1 Algorithm Suite

As noted in Sect. 3, a number of different algorithms have been reported in the
literature for computing the permanent of sparse matrices. Given resource con-
straints, it is infeasible to include all of these in our experimental comparisons.
This is further complicated by the fact that many of these algorithms appear not
to have been implemented (eg: [28,48]), or the code has not been made publicly
accessible (eg: [34,59]). A fair comparison would require careful consideration of
several parameters like usage of libraries, language of implementation, suitability
of hardware etc. We had to arrive at an informed choice of algorithms, which we
list below along with our rationale:

– RysersADD and RysersADD-P: For the dense and similar rows cases, we use
the monolithic approach as it is sufficient to demonstrate the scalability of
our ADD-based approach. For sparse instances, we employ Bouquet’s Method
(List) [7] clustering heuristic along with MCS cluster rank-order [51] and we
keep the diagram variable order the same as the indices of columns in the
input matrix (see [1] for details about the heuristics). We arrived at these
choices through preliminary experiments. We leave a detailed comparison of
all combinations for future work.

– Explicit Ryser’s Algorithm: We implemented Nijenhuis and Wilf’s version [38]
of Ryser’s formula using Algorithm H from [30] for generating the Gray code
sequence. Our implementation, running on a state-of-the-art computing plat-
form (see Sect. 5.2), is able to compute the permanent of all matrices with

On Symbolic Approaches for Computing the Matrix Permanent 81

n ≤ 25 in under 5 s. For n = 30, the time shoots up to approximately 460 s
and for n ≥ 34, the time taken exceeds 1800 s (time out for our experiments).
Since the performance of explicit Ryser’s algorithm depends only on the size
of the matrix, and is unaffected by its structure, sparsity or row-similarity,
this represents a complete characterization of the performance of the explicit
Ryser’s algorithm. Hence, we do not include it in our plots.

– Propositional Model Counters: Model counters that employ techniques from
SAT-solving as well as knowledge compilation, have been shown to scale
extremely well on large CNF formulas from diverse domains. Years of care-
ful engineering have resulted in counters that can often outperform domain-
specific approaches. We used two state-of-the-art exact model counters, viz.
D4 [33] and DSharp [37], for our experiments. We experimented with 6 differ-
ent encodings for At-Most-One constraints: (1) Pairwise [6], (2) Bitwise [6],
(3) Sequential Counter [49], (4) Ladder [2,22], (5) Modulo Totalizer [39] and
(6) Iterative Totalizer [36]. We also experimented with ADDMC, an ADD-
based model counter [1]. However, it failed to scale beyond matrices of size
25; ergo we do not include it in our study.

We were unable to include the parallel #SAT counter countAtom [10] in our
experiments, owing to difficulties in setting it up on our compute set-up. How-
ever, we could run countAtom on a slightly different set-up with 8 cores instead
of 12, and 16 GB memory instead of 48 on a few sampled dense and similar-
row matrix instances. Our experiments showed that countAtom timed out on all
these cases. We leave a more thorough and scientific comparison with countAtom
for future work.

5.2 Experimental Setup

Each experiment (sequential or parallel) had exclusive access to a Westemere
node with 12 processor cores running at 2.83 GHz with 48 GB of RAM. We
capped memory usage at 42 GB for all tools. We implemented explicit Ryser’s
algorithm in C++, compiled with GCC v6.4 with O3 flag. The RysersADD and
RysersADD-P algorithms were implemented as in Sect. 4.1. RysersADD-P had
access to all 12 cores for parallel computation. We used the python library
PySAT [27] for encoding matrices into CNF. We set the timeout to 1800 s for all
our experiments. For purposes of reporting, we treat a memory out as equivalent
to a time out.

5.3 Benchmarks

The parameters used for generating random instances are summarized in Table 1.
We do not include matrices with n < 30 since the explicit Ryser’s algorithm
suffices (and often performs the best) for such matrices. The upper bound for n
was chosen such that the algorithms in our suite either timed out or came close
to timing out. For each combination of parameters, random matrix instances
were sampled as follows:

82 S. Chakraborty et al.

Table 1. Parameters used for generating random matrices

Experiment Matrix
size n

Cf , where Cf · n
matrix entries
flipped

Starting
matrix row
density ρ

#Instances Total
benchmarks

Dense 30, 40,
50, 60,
70

1, 1.1, 1.2, 1.3,
1.4

1 20 500

Sparse 30, 40,
50, 60,
70

3.9, 4.3, 4.7, 5.1,
5.5

0 20 500

Similar 40, 50,
60, 70,
80

1, 1.1, 1.2, 1.3,
1.4

0.7, 0.8, 0.9 15 1125

1. We started with an n×n matrix, where the first row had ρ ·n 1s at randomly
chosen column positions, and all other rows were copies of the first row.

2. Cf ·n randomly chosen entries in the starting matrix are flipped i.e. 0 flipped
to 1 and vice versa.

For the dense case, we start with a matrix of all 1s while for the sparse case,
we start with a matrix of all 0s, and used intermediate row density values for
the similar-rows case. We chose higher values for Cf in the sparse case because
for low values, the bipartite graph corresponding to the generated matrix had
very few perfect matchings (if any), and these could be simply counted by enu-
meration. We generated a total of 2125 benchmarks covering a broad range of
parameters. For all generated instances, we ensured that there was at least one
perfect matching, since the case with zero perfect matchings can be easily solved
in polynomial time by algorithms like Hopcroft-Karp [25]. In order to avoid
spending inordinately large time on failed experiments, if an algorithm timed
out on all generated random instances of a particular size, we also report a time
out for that algorithm on all larger instances of that class of matrices. We also
double-check this by conducting experiments with the same algorithm on a few
randomly chosen larger instances.

The SuiteSparse Matrix Collection [17] is a well known repository of struc-
tured sparse matrices that arise from practical applications. We found 26 graphs
in this suite with vertex count between 30 and 100, of which 18 had at least
one perfect matching. Note that these graphs are not necessarily bipartite; how-
ever, their adjacency matrices can be used as benchmarks for computing the
permanent. A similar approach was employed in [57] as well.

Fullerenes are carbon molecules whose adjacency matrices have been used
extensively by Liang et al. [34,57,59] for comparing tools for the permanent. We
were able to find the adjacency matrices of C60 and C100, and have used these
in our experiments.

On Symbolic Approaches for Computing the Matrix Permanent 83

6 Results

We first study the variation of running time of RysersADD with the size of
ADDs involved. Then we compare the running times of various algorithms on
sparse, dense and similar-row matrices, as well as on instances from SuiteSparse
Matrix Collection and on adjacency matrices of fullerenes C60 and C100. The
total computational effort of our experiments exceeds 2500 h of wall clock time
on dedicated compute nodes.

Fig. 2. Comparison of ADD Size vs. Time taken for a subset of random benchmarks

6.1 ADD Size Vs Time Taken by RysersADD

In order to validate the hypothesis that the size of the ADD representation
is a crucial determining factor of the performance of RysersADD, we present 3
scatter-plots (Fig. 2) for a subset of 100 instances, of each of the dense, sparse
and similar-rows cases. In each case, the 100 instances cover the entire range of
Cf and n used in Table 1, and we plot times only for instances that didn’t time
out. The plots show that there is very strong correlation between the number of
nodes in the ADDs and the time taken for computing the permanent, supporting
our hypothesis.

6.2 Performance on Dense Matrices

We plot the median running time of RysersADD and RysersADD-P against the
matrix size n for dense matrices with Cf ∈ {1, 1.1, 1.2, 1.3} in Fig. 3. We only
show the running times of RysersADD and RysersADD-P, since D4 and DSharp
were unable to solve any instance of size 30 for all 6 encodings. We observe that
the running time of both the ADD-based algorithms increases with Cf . This
trend continues for Cf = 1.4, which we omit for lack of space. RysersADD-P is
noticeably faster than RysersADD, indicating that the native parallelism provided
by Sylvan is indeed effective.

84 S. Chakraborty et al.

Fig. 3. Performance on Dense Matrices. D4, DSharp (not shown) timeout on all
instances

Fig. 4. Performance on Sparse Matrices

6.3 Performance on Sparse Matrices

Fig. 4 depicts the median running times of the algorithms for sparse matrices with
Cf ∈ {3.9, 4.3, 4.7, 5.1}. We plot the running time of the ADD-based approaches
with early abstraction (see Sect. 5.1). Monolithic variants (not shown) time out
on all instances with n ≥ 40. For D4 and DSharp, we plot the running times

On Symbolic Approaches for Computing the Matrix Permanent 85

only for Pairwise encoding of At-Most-One constraints, since our preliminary
experiments showed that it substantially outperformed other encodings. We see
that D4 is the fastest when sparsity is high i.e. for Cf ≤ 4.3, but for Cf ≥ 4.7
the ADD-based methods are the best performers. DSharp is outperformed by the
remaining 3 algorithms in general.

Fig. 5. Performance on similar-rows matrices. D4, DSharp (not shown) timeout on all
instances.

6.4 Performance on Similar-Row Matrices

Figure 5 shows plots of the median running time on similar-row matrices with
Cf = {1, 1.1, 1.2, 1.3}. We only present the case when ρ = 0.8, since the plots
are similar when ρ ∈ {0.7, 0.9}. As in the case of dense matrices, D4 and DSharp
were unable to solve any instance of size 40, and hence we only show plots for
RysersADD and RysersADD-P. The performance of both tools is markedly better
than in the case of dense matrices, and they scale to matrices of size 80 within
the 1800 s timeout.

6.5 Performance on SuiteSparse Matrix Collection

We report the performance of algorithms RysersADD, RysersADD-P, D4 and
DSharp on 13 representative graphs from the SuiteSparse Matrix Collection in
Fig. 6. Except for the first 4 instances, which can be solved in under 5 s by
all algorithms, we find that D4 is the fastest in general, while the ADD-based
algorithms outperform DSharp. Notably, on the instance “can 61”, both D4 and
DSharp time out while RysersADD and RysersADD-P solve it comfortably within

86 S. Chakraborty et al.

Fig. 6. Performance comparison on structured matrices

the alloted time. We note that the instance “can 61” has roughly 9n 1s, while
D4 is the best performer on instances where the count of 1s in the matrix lies
between 4n and 6n.

Table 2. Running Times on the fullerene C60. EA: Early Abstraction Mono: Monolithic

Tool D4 DSharp RysersADD RysersADD-P

Encoding/Mode 1 2 3 4 5 6 1 2 3 4 5 6 EA Mono EA Mono

Time (sec) 94.8 150.5 150.6 136 158 156 TimeOut 96.4 TimeOut 57.1 TimeOut

6.6 Performance on Fullerene Adjacency Matrices

We compared the performance of the algorithms on the adjacency matrices of
the fullerenes C60 and C100. All the algorithms timed out on C100. The results
for C60 are shown in Table 2. The columns under D4 and DSharp correspond to
6 different encodings of At-Most-One constraints (see Sect. 5.1). It can be seen
that RysersADD-P performs the best on this class of matrices, followed by D4.
The utility of early abstraction is clearly evident, as the monolithic approach
times out in both cases.

Discussion: Our experiments show the effectiveness of the symbolic approach on
dense and similar-rows matrices, where neither D4 nor DSharp are able to solve
even a single instance. Even for sparse matrices, we see that decreasing sparsity
has lesser effect on the performance of ADD-based approaches as compared to
D4. This trend is confirmed by “can 61” in the SuiteSparse Matrix Collection
as well, where despite the density of 1s being 9n, RysersADD and RysersADD-P
finish well within timeout, unlike D4. In the case of fullerenes, we note that the
algorithm in [34] solved C60 in 355 s while the one in [59] took 5 s, which are
in the vicinity of the times reported in Table 2. While this is not an apples-to-
apples comparison owing to differences in the computing platform, it indicates

On Symbolic Approaches for Computing the Matrix Permanent 87

that the performance of general-purpose algorithms like RysersADD and D4 can
be comparable to that of application-specific algorithms.

7 Conclusion

In this work we introduced a symbolic algorithm called RysersADD for perma-
nent computation based on augmenting Ryser’s formula with Algebraic Decision
Diagrams. We demonstrated, through rigorous experimental evaluation, the scal-
ability of RysersADD on both dense and similar-rows matrices, where existing
approaches fail. Coupled with the technique of early abstraction [1], RysersADD
performs reasonably well even on sparse matrices as compared to dedicated
approaches. In fact, it may be possible to optimize the algorithm even further,
by evaluating other heuristics used in [1]. We leave this for future work. Our
work also re-emphasizes the versatility of ADDs and opens the door for their
application to other combinatorial problems.

It is an interesting open problem to obtain a complete characterization of the
class of matrices for which ADD representation of Ryser’s formula is succinct.
Our experimental results for dense matrices hint at the possibility of improved
theoretical bounds similar to those obtained in earlier work on sparse matri-
ces. Developing an algorithm for general matrices that is exponentially faster
than Ryser’s approach remains a long-standing open problem [28], and obtain-
ing better bounds for non-sparse matrices would be an important first step in
this direction.

References

1. Dudek, J.M., Phan, V.H.N., Vardi, M.Y.: ADDMC: Exact weighted model counting
with algebraic decision diagrams. https://arxiv.org/abs/1907.05000

2. Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables to prob-
lems with boolean variables. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 1–15. Springer, Heidelberg (2005). https://doi.org/10.1007/
11527695 1

3. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge (2009)

4. Bahar, R., et al.: Algebraic decision diagrams and their applications. J. Formal
Methods Syst. Des. 10(2/3), 171–206 (1997)

5. Bax, E., Franklin, J.: A permanent algorithm with exp [(n1/3/2ln (n))] expected
speedup for 0–1 matrices. Algorithmica 32(1), 157–162 (2002)

6. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability: Volume
185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam
(2009)

7. Bouquet, F.: Gestion de la dynamicité et énumération d’impliquants premiers: une
approche fondée sur les Diagrammes de Décision Binaire. PhD thesis, Aix-Marseille
1 (1999)

8. Brault-Baron, J., Capelli, F., Mengel, S.: Understanding model counting for β-
acyclic CNF-formulas. arXiv preprint arXiv:1405.6043 (2014)

https://arxiv.org/abs/1907.05000
https://doi.org/10.1007/11527695_1
https://doi.org/10.1007/11527695_1
http://arxiv.org/abs/1405.6043

88 S. Chakraborty et al.

9. Broder, A.Z.: How hard is it to marry at random? (on the approximation of the
permanent). In: Proceedings of the Eighteenth Annual ACM Symposium on Theory
of Computing, pp. 50–58. ACM (1986)

10. Burchard, J., Schubert, T., Becker, B.: Laissez-faire caching for parallel #SAT
solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 46–61.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4 5

11. Cai, J.-Y., Pavan, A., Sivakumar, D.: On the hardness of permanent. In: Meinel,
C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 90–99. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-49116-3 8

12. Cash, G.G.: A fast computer algorithm for finding the permanent of adjacency
matrices. J. Math. Chem. 18(2), 115–119 (1995)

13. Chou, Q., Liang, H., Bai, F.: Computing the permanental polynomial of the high
level fullerene C70 with high precision. MATCH Commun. Math. Comput. Chem.
73, 327–336 (2015)

14. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Formal Models
and Semantics, pp. 193–242. Elsevier (1990)

15. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. J. Comput. Syst. Sci. 46(2), 218–270 (1993)

16. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic. Discrete
Appl. Math. 108(1–2), 23–52 (2001)

17. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans.
Math. Softw. (TOMS) 38(1), 1 (2011)

18. Dechter, R.: Bucket elimination: a unifying framework for reasoning. Artif. Intell.
113(1–2), 41–85 (1999)

19. Dell, H., Husfeldt, T., Marx, D., Taslaman, N., Wahlén, M.: Exponential time
complexity of the permanent and the tutte polynomial. ACM Trans. Algorithms
(TALG) 10(4), 21 (2014)

20. Duenas-Osorio, L., Meel, K.S., Paredes, R., Vardi, M.Y.: Counting-based reliability
estimation for power-transmission grids. In: AAAI, pp. 4488–4494 (2017)

21. Fujita, M., McGeer, P., Yang, J.-Y.: Multi-terminal binary decision diagrams: an
efficient datastructure for matrix representation. Form. Methods Syst. Des. 10(2–
3), 149–169 (1997)

22. Gent, I.P., Nightingale, P.: A new encoding of all different into SAT. In: Inter-
national Workshop on Modelling and Reformulating Constraint Satisfaction, pp.
95–110 (2004)

23. Gordon, M., Davison, W.: Theory of resonance topology of fully aromatic hydro-
carbons. I. J. Chem. Phys. 20(3), 428–435 (1952)

24. Grohe, M.: Descriptive and parameterized complexity. In: Flum, J., Rodriguez-
Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 14–31. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48168-0 3

25. Hopcroft, J.E., Karp, R.M.: An n̂ 5/2 algorithm for maximum matchings in bipar-
tite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

26. Huo, Y., Liang, H., Liu, S.-Q., Bai, F.: Computing monomer-dimer systems through
matrix permanent. Phys. Rev. E 77(1), 016706 (2008)

27. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a Python toolkit for proto-
typing with SAT oracles. In: SAT, pp. 428–437 (2018)

28. Izumi, T., Wadayama, T.: A new direction for counting perfect matchings. In: 2012
IEEE 53rd Annual Symposium on Foundations of Computer Science, pp. 591–598.
IEEE (2012)

https://doi.org/10.1007/978-3-319-24318-4_5
https://doi.org/10.1007/3-540-49116-3_8
https://doi.org/10.1007/3-540-48168-0_3

On Symbolic Approaches for Computing the Matrix Permanent 89

29. Kasteleyn, P.W.: The statistics of dimers on a lattice: I. The number of dimer
arrangements on a quadratic lattice. Physica 27(12), 1209–1225 (1961)

30. Knuth, D.E.: Generating all n-tuples. The Art of Computer Programming, 4 (2004)
31. Koster, A.M., Bodlaender, H.L., Van Hoesel, S.P.: Treewidth: computational exper-

iments. Electron. Notes Discrete Math. 8, 54–57 (2001)
32. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: Buck-

minsterfullerene. Nature 318(6042), 162 (1985)
33. Lagniez, J.-M., Marquis, P.: An improved decision-DNNF compiler. In: IJCAI, pp.

667–673 (2017)
34. Liang, H., Bai, F.: A partially structure-preserving algorithm for the permanents

of adjacency matrices of fullerenes. Comput. Phys. Commun. 163(2), 79–84 (2004)
35. Liang, H., Huang, S., Bai, F.: A hybrid algorithm for computing permanents of

sparse matrices. Appl. Math. Comput. 172(2), 708–716 (2006)
36. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality con-

straints for MaxSAT. In: O’Sullivan, B. (ed.) International Conference on Princi-
ples and Practice of Constraint Programming, pp. 531–548. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10428-7 39

37. Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.: DSHARP: fast d-DNNF compila-
tion with sharpSAT. In: Canadian Conference on Artificial Intelligence (2012)

38. Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms: for Computers and Calcula-
tors. Elsevier (2014)

39. Ogawa, T., Liu, Y., Hasegawa, R., Koshimura, M., Fujita, H.: Modulo based CNF
encoding of cardinality constraints and its application to MaxSAT solvers. In: 2013
IEEE 25th International Conference on Tools with Artificial Intelligence, pp. 9–17.
IEEE (2013)

40. Okamoto, Y., Uehara, R., Uno, T.: Counting the number of matchings in chordal
and chordal bipartite graph classes. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS,
vol. 5911, pp. 296–307. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11409-0 26

41. Pan, G., Vardi, M.Y.: Search vs. symbolic techniques in satisfiability solving.
In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 235–250.
Springer, Heidelberg (2005). https://doi.org/10.1007/11527695 19

42. Pesant, G., Quimper, C.-G., Zanarini, A.: Counting-based search: Branching
heuristics for constraint satisfaction problems. J. Artif. Intell. Res. 43, 173–210
(2012)

43. Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. AAAI 94,
362–367 (1994)

44. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory Ser. B 36(1), 49–64 (1984)

45. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1), 273–302
(1996)

46. Ryser, H.: Combinatorial mathematics, the carus mathematical monographs.
Mathematical Association of America, no. 4 (1963)

47. Sæther, S.H., Telle, J.A., Vatshelle, M.: Solving #SAT and MaxSAT by dynamic
programming. J. Artif. Intell. Res. 54, 59–82 (2015)

48. Servedio, R.A., Wan, A.: Computing sparse permanents faster. Inf. Process. Lett.
96(3), 89–92 (2005)

49. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In:
van Beek, P. (eds) International Conference on Principles and Practice of Con-
straint Programming, pp. 827–831. Springer, Heidelberg (2005). https://doi.org/
10.1007/11564751 73

https://doi.org/10.1007/978-3-319-10428-7_39
https://doi.org/10.1007/978-3-642-11409-0_26
https://doi.org/10.1007/978-3-642-11409-0_26
https://doi.org/10.1007/11527695_19
https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/11564751_73

90 S. Chakraborty et al.

50. Somenzi, F.: CUDD package, release 2.4.1. http://vlsi.colorado.edu/∼fabio/
CUDD/

51. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput. 13(3), 566–579 (1984)

52. Temperley, H.N., Fisher, M.E.: Dimer problem in statistical mechanics-an exact
result. Philos. Mag. 6(68), 1061–1063 (1961)

53. Toda, S.: On the computational power of PP and (+)P. In: Proceedings of FOCS,
pp. 514–519. IEEE (1989)

54. Valiant, L.: The complexity of enumeration and reliability problems. SIAM J. Com-
put. 8(3), 410–421 (1979)

55. van Dijk, T., van de Pol, J.: Sylvan: multi-core framework for decision diagrams.
Int. J. Softw. Tools Technol. Transf. 19(6), 675–696 (2017)

56. Wallace, C., Korb, K.B., Dai, H.: Causal discovery via MML. In: ICML 1996, pp.
516–524 (1996)

57. Wang, L., Liang, H., Bai, F., Huo, Y.: A load balancing strategy for parallel com-
putation of sparse permanents. Numer. Linear Algebra Appl. 19(6), 1017–1030
(2012)

58. Wei, T.-C., Severini, S.: Matrix permanent and quantum entanglement of permu-
tation invariant states. J. Math. Phys. 51(9), 092203 (2010)

59. Yue, B., Liang, H., Bai, F.: Improved algorithms for permanent and permanental
polynomial of sparse graph. MATCH Commun. Math. Comput. Chem. 69, 831–842
(2013)

60. Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered
search heuristics. Constraints 14(3), 392–413 (2009)

http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/

	On Symbolic Approaches for Computing the Matrix Permanent
	1 Introduction
	2 Preliminaries
	2.1 Algebraic Decision Diagrams
	2.2 Ryser's Formula

	3 Related Work
	4 Representing Ryser's Formula Symbolically
	4.1 Implementation Details

	5 Experimental Methodology
	5.1 Algorithm Suite
	5.2 Experimental Setup
	5.3 Benchmarks

	6 Results
	6.1 ADD Size Vs Time Taken by RysersADD
	6.2 Performance on Dense Matrices
	6.3 Performance on Sparse Matrices
	6.4 Performance on Similar-Row Matrices
	6.5 Performance on SuiteSparse Matrix Collection
	6.6 Performance on Fullerene Adjacency Matrices

	7 Conclusion
	References

