
Exploiting Counterfactuals for Scalable
Stochastic Optimization

Stefan Kuhlemann1,3, Meinolf Sellmann2(B), and Kevin Tierney1(B)

1 Bielefeld University, Bielefeld, Germany
{stefan.kuhlemann,kevin.tierney}@uni-bielefeld.de

2 GE Research, Niskayuna, USA
meinolf@ge.com

3 Paderborn University, Paderborn, Germany

Abstract. We propose a new framework for decision making under
uncertainty to overcome the main drawbacks of current technology: mod-
eling complexity, scenario generation, and scaling limitations. We con-
sider three NP-hard optimization problems: the Stochastic Knapsack
Problem (SKP), the Stochastic Shortest Path Problem (SSPP), and the
Resource Constrained Project Scheduling Problem (RCPSP) with uncer-
tain job durations, all with recourse. We illustrate how an integration of
constraint optimization and machine learning technology can overcome
the main practical shortcomings of the current state of the art.

1 Introduction

Optimization relies on data. To solve a knapsack problem we need to know the
profits and weights of the items, as well as the knapsack’s capacity. To solve a
shortest path or travelling salesperson problem, we need to know the lengths of
the links in the network. To solve a revenue optimization problem, we need to
know demand and how prices affect demand. In practice, we often lack perfect
knowledge of the situation we ultimately needed to plan for. Profits, transition
times, price sensitivity, and demands frequently have to be estimated.

One simple and still widely used approach is to optimize for point estimates
of the data: We estimate demand, profits, transition times, etc, and optimize
for the resulting optimization problem. The problem with using only one set of
estimates, even if they represented the maximum likelihood scenario, is that the
probability of exactly this scenario taking place is close to zero, and performance
of the solution that is optimal for this one scenario may decline steeply across
a range of scenarios that, together, would have a reasonable probability mass.
In other words, a solution that is sub-optimal for all scenarios but works with
good performance for a large number of potential futures will lead to much
better expected performance than the solution that is provably optimal for the
maximum likelihood scenario yet abysmal otherwise.

c© Springer Nature Switzerland AG 2019
T. Schiex and S. de Givry (Eds.): CP 2019, LNCS 11802, pp. 690–708, 2019.
https://doi.org/10.1007/978-3-030-30048-7_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30048-7_40&domain=pdf
https://doi.org/10.1007/978-3-030-30048-7_40

Exploiting Counterfactuals for Scalable Stochastic Optimization 691

1.1 Stochastic Optimization

The brittleness of solutions obtained by optimizing for one, point-estimated sce-
nario only is well-studied in the field of stochastic optimization (SO). The objec-
tive of SO is to provide a solution that optimizes the expected returns over all
possible futures.

This led to the idea of two-stage stochastic optimization: In the first stage,
we need to take certain decisions based on uncertain data. After taking these
decisions, the uncertainties are revealed and we can take the remaining decisions
based on certain data. This allows us first to make up for certain inconsistencies
our initial decisions might have created (note that the constraints are also based
on estimates) and thus exercise certain recourse actions to regain feasibility, and
second to optimize the second-stage decisions that can wait to be taken until we
know the real data. An overview of two-stage stochastic integer programming
problems can be found in [4], and [21] present a method to solve two-stage
problems using the special form of these problems.

One crucial step in stochastic optimization is the generation of a representa-
tive set of potential futures (scenarios). Many methods exist to generate scenar-
ios, and [13] points out that quality scenario generation is critical to the success
using SO. [12] recommend that a number of different data sources should be
used for scenario generation.

Obviously, solving SO problems to optimality gets harder the more scenarios
are considered. Sample average approximation [14] has been developed to gen-
erate a small random sample of scenarios and approximate the expected value
function. This technique has been be applied to a variety of problems (see, e.g.,
[16,20,22]) and can help the method scale a bit better. However, the fundamen-
tal problem remains that SO relies on a representative set of scenarios to be
considered, and that it must make optimal first and second stage decisions for
every scenario under consideration.

1.2 Multi-stage Stochastic Optimization

One practical aspect that we also need to take into account is that the execution
of a planned solution is frequently disrupted by outside events: equipment or crew
assumed to be available may suddenly go out of service, requiring adjustment
of a plan during operations. Consequently, the plan may need to be adjusted
multiple times.

This leads to the idea of multi-stage stochastic optimization. In multi-stage
SO, uncertainty is revealed in multiple consecutive steps, and more decisions need
to be taken at each stage. In these problems, random variables in later stages
depend on the decisions taken in the earlier stages. Models and solutions to these
problems are therefore structured in the form of a tree [7], with independent
decisions at the root node, and dependencies between decisions modeled with
parent-child relationships in the tree.

Due to their richer modeling power, these types of SO models are especially
relevant for real-world decision making, but unfortunately explode in complexity

692 S. Kuhlemann et al.

very quickly, even when employing advanced decomposition techniques like pre-
sented by [3] who extend the work of [21]. Furthermore, the problem of scenario
generation is even more daunting in this more realistic setting, as conditional
scenarios need to be generated, and often the data needed for this purpose may
not be available. An overview of scenario generation methods for multi-stage
stochastic programs is provided in [7].

1.3 Simulation-Based Optimization

Modeling dynamic recourse and managing a meaningful number of scenarios in
stochastic optimization is often cumbersome. An alternative is to employ a sim-
ulator that can evaluate a given plan on a number of scenarios, whereby the
algorithm to generate recourse actions is built into the simulation. The recourse
policy employed by a real-world organization may involve solving nested opti-
mization problems on the go, as SO assumes, but oftentimes the real-world
operational constraints may not allow for a full-fledged optimization, for exam-
ple because the data needed is not readily available, or because re-optimization
would be too time-consuming. A simulator can easily reflect the real recourse
actions that would be taken, which are usually locally optimal only, or maybe
just best-effort heuristics.

Simulation-based optimization is thus an alternative to stochastic optimiza-
tion [1,9]. In this setting, a simulation is constructed to provide a stochastic
evaluation of a provided solution. The search for good solutions can then be
conducted by employing a meta-heuristic procedure. For example, [10] employs
tabu search for this purpose.

An alternative to using a general local search heuristic is to apply bandit
theory and to conduct a search based on Bayesian optimization [19]. In this
method, the search space is traversed in a statistically principled way which
balances exploitation and exploration by considering new solutions for simulation
next which combine high expected performance with high uncertainty of this
performance.

No matter which search method is employed, to compute an objective func-
tion value for an instance, we need to expose it to certain futures. In SO these
were called scenarios, in simulation-based optimization the “scenario genera-
tion” is hidden in the simulator. However, both methods rely on an adequate
representation of potential futures of the world as it currently presents itself.

2 Technology Gaps

In practice, many organizations do not take the uncertainty in their forecasts
into account when devising their operational plans. In fact, this observation
even holds for those organizations that would stand to benefit the most, because
events disrupting their plans frequently ruin all operational success. Airlines
are one prototypical example. Over decades, the airline industry has spent bil-
lions of dollars on optimization technology to improve their operational planning

Exploiting Counterfactuals for Scalable Stochastic Optimization 693

(e.g., in crew planning [17]). There is certainly no lack of affinity to optimization
technology, nor a lack of understanding that their current optimized plans are
very brittle. The question is, why then is decision-making under uncertainty not
employed?

We believe there are three main factors that prevent current decision making
under uncertainty technology from being applied in practice:

– Complexity of modeling the base problem
– Inability to generate meaningful future scenarios for the current situation
– Computational limitations preventing the scale-up to real-world numbers of

primary and recourse decisions

Take the example of an airline again. Flights may be delayed due to weather
or traffic. Gates may be occupied and have to be changed. Crew may be out of
service because of sickness or because they are delayed and past their maximum
allowed service time. Equipment may not be available because of technical issues
or because other issues in the network prevented the plane from being at the
airport where it was planned to be.

Modeling the operation of an airline is extremely complex to begin with,
which is why airlines break down the original problem into network design,
revenue management, fleet assignment, crew pairing, tail assignment, and crew
scheduling problems. There are literally millions of decision variables to consider.
Secondly, there are frequently no models available for assessing the probabili-
ties of disruptions with any meaningful accuracy. This is especially true for the
joint distributions of disruptions which are frequently correlated. And finally,
the number of recourse decisions taken during operation is staggering: Airlines
literally run their recovery solvers every minute to adjust their plans to ever
new, thankfully usually minor, disruptions.

Stochastic optimization is not applicable, because computation times are
prohibitively long, and the number of recourse decisions far exceeds efficient
modeling capabilities. However, simulation-based optimization cannot handle
the millions of decision variables or the complex constraints that govern whether
solutions are even feasible.

This analysis is the starting point for our research. In the following, we pro-
pose a framework for decision making under uncertainty that overcomes the
limitations of existing technology. In a nutshell, we propose a paradigm shift
away from trying to anticipate the future and towards discovering structures
in the solutions that correlate with historically good performance. In doing so,
we trade dual bounds (i.e., a guarantee of the relative quality of the solution
provided by SO) for scalability and easier modeling.

3 Learning from Counterfactuals

A key limitation of stochastic optimization is the need to model every decision.
Not only does this put an enormous burden on the modeler and the optimization,
it often also falsely assumes that we were able to optimize recourse decisions

694 S. Kuhlemann et al.

during operation. Another problem that both simulation-based optimization and
stochastic optimization share is that they need to generate meaningful scenarios
how the execution of a solution may unfold in the future. Finally, both methods
scale to a hundreds, maybe a few thousand decision variables, before computation
times become impractically long.

Our proposal is to combine both what disruptions are likely, as well as how
well the initial solution is adjusted during execution, into one data-driven
forecast.

Consider a model that, given two solutions to an optimization problem can
provide a classification as to which of the two solutions will fare better when they
are executed. Consider solving this problem in two stages. In the first stage, we
solve the problem as if there were no uncertainty using the expected costs in the
objective function, and generate multiple near-optimal solutions. The goal of the
second stage is to determine which of the near-optimal solutions will likely lead
to better results when executed. We train a model that compares these solutions
on a pairwise basis and choose the solution that wins the most times against the
other solutions. This general method alleviates many of the problems existing
approaches encounter:

– The first-stage problem is as easy to model as the optimization problem with-
out uncertainties.

– There is no need to generate future scenarios for the current data at hand.
– There is no complexity blow-up, no matter how many recourse actions are

needed.

All of the complexity is off-loaded into the second stage model. The crucial
question is, of course: How can we obtain a model that, given two solutions, can
predict which one will fare better in operations?

Thesis: We can learn such a model from historical data.

We argue that all that is needed to learn such a model is to keep track
of our estimates over time, and what eventually happened. Consider, e.g., the
Stochastic Shortest Path Problem (SSPP), a problem that [5] argue is particu-
larly difficult when there are no assumptions about the uncertain travel times.
We can track how the arc transit time estimates for the entire network have
evolved over time, and what they ended up being. Or, for the Stochastic Knap-
sack Problem (SKP), we can examine what our weight and profit estimates were
before each decision for historical solutions and what they turned out to be in
reality. That is to say: Historical data often enables us to compare multiple his-
torical solutions, even though only one of them was actually executed in reality,
whereas all others are essentially counterfactuals.

Please note a subtle but very important difference; the historical data is
enough to compare two potential solutions for the optimization problem as it
presented itself in the past. It would, however, not enable us to simulate two

Exploiting Counterfactuals for Scalable Stochastic Optimization 695

solutions for a new instance of our underlying optimization problem. Take the
SSPP as an example. We may have a historic example where we needed to go
from some node s to node t. We know how our estimated arc transition times
evolved over time and the resulting values on all arcs in the network. With this,
we can compare two paths P1 and P2 that connect s and t.

Now imagine we currently need a solution to go from node s to node t again.
Our initial estimates are of course completely different from those in the historic
example. Consequently, we cannot just simulate two paths Q1 and Q2 in the
old scenario and assume that their relative performance would remain the same
under the current conditions. In fact, if this were the case, we should forget our
estimates altogether and just always go from s to t using the exact same route
all the time.

However, if we could capture estimate-dependent characteristics, or features,
of pairs of paths P1 and P2, and associate these characteristics with the relative
performance of these paths, then, by repeating this exercise many times, we just
might be able to learn to tell which of any given pairs of paths will probably
execute better – albeit with no guarantees.

Through this framework, we have now decomposed the problem of making
primary decisions based on uncertain forecasts and assumptions regarding esti-
mate distributions and recourse policies into two tasks: We first need to model
the primary optimization problem. Second, we need to use historical data to
build a supervised set of examples of pairs of solutions, recording which one
fared, or would have fared, better. Crucially, we need to devise a set of features
to characterize the solutions in the context of the problem instance they were
generated for.

We formalize our framework as follows. We are given a deterministic opti-
mization problem P with decision variables x. Let f(x) be the objective function
of the deterministic problem, and f ′(x, ω) be the objective function when the
decisions are evaluated under scenario ω.

1. Training set generation: We first generate n solutions xi1, . . . ,xin to the
problem instance i in a set of training instances I, where all uncertain parameters
take their expected value. The choice of such solutions is up to the user of this
framework, but we recommend high quality solutions with some diversity. We
associate a label yij =

∑
ω∈Ωi

f ′(xij , ω)/|Ωi| with each solution of each instance
for a set of counterfactual scenarios Ωi that are derived from the true scenario
that unfolded for the historic problem instance i. Finally, we compute problem
dependent feature vectors uij ∈ R

f describing each solution j of instance i.
2. Learning a classifier: Next, we train a binary classifier M that, given

two solutions j, k to a problem instance i, forecasts which of the two solutions will
likely perform better when executed. The training input for this cost-sensitive
learning task are triples (u′

ijk, yij , yik), where u′
ijk ∈ R

3f consists of a concate-
nation of feature vectors uij , uik, and uij − uik. We use the technique from [18]
for this purpose.

3. Deployment: Given a problem instance i, we generate n solutions
using the deterministic optimization model with expected values for uncertain

696 S. Kuhlemann et al.

parameters. We then compute the features u′
ijk for each pair of solutions j, k.

Then, we query the model M for all such pairs and choose the solution that
“wins” the most times.

In the following, we will exercise the above steps for three optimization prob-
lems: the SKP, the SSPP, and the Resource Constrained Project Scheduling
Problem (RCPSP), each with recourse. The objective of this study is to investi-
gate whether we can effectively learn which solution for a problem instance will
perform better.

4 Stochastic Knapsack

The SKP is the stochastic variant of the well-known optimization problem:
Given n ∈ N items {1, . . . , n} with profits p1, . . . , pn ∈ N, expected weights
w1, . . . , wn ∈ N, and a capacity C ∈ N, the objective is to find a subset of
items I ⊆ {1, . . . , n} such that

∑
i∈I′ w′

i ≤ C and P =
∑

i∈I′ pi is maximized,
where w′

1, . . . , w
′
n are the actual weights incurred, and I ′ is the set of items we

ultimately include in our knapsack.

4.1 Stochastic Environment

To complete the setup of our problem, we need to determine how the weights w′
i

are derived from the expected weights wi, and how I ′ derives from I during oper-
ations. This is precisely the task of determining the distributions of stochastic
data, and the incorporation of recourse policies that we aim to avoid estimating
and modeling when solving the stochastic variant of the underlying optimization
problem. However, for the sake of experimentation, we obviously need to fix the
stochastic environment.

We will assume that items have to be decided for inclusion or exclusion in
sequence 1 to n.1 That is, we first decide if we want to insert item 1 in the
knapsack. If not, we can directly move on to the next item. If yes, then we
add the actual weight w′

1 to our knapsack, the remaining capacity is reduced
accordingly, and the profit p1 is achieved. We consider all items in sequence.
At stage i, we sample w′

i from a Pareto distribution with mean wi (note: the
nature of this distribution is not known to the optimization approach). In our
variant of the problem, should the new item overload the knapsack, the item is
automatically not inserted and we proceed as if we had never decided to include
the item. However, if the item fits into the remaining capacity, we have to take
it, even if the actual weight of the item is much larger than we had anticipated.

In terms of recourse, whenever during the sequential consideration of items
our remaining capacity deviates from the anticipated capacity at that point in
the sequence by more than a given percentage threshold p, we are allowed to
reconsider our original plan and change the tail of our plan. However, if we
1 This is in contrast to some theoretical results on the SKP that assume we can decide
in what order we wish to consider the items [6]. We consider having this freedom
less realistic.

Exploiting Counterfactuals for Scalable Stochastic Optimization 697

include an item that was originally not planned to be included, we incur a profit
penalty b (late buy penalty). Similarly, we incur a penalty s for items we do not
include in our knapsack that we had originally committed to include (restocking
fee). Finally, we cannot change the original plan for the next r items (minimum
reaction time).

The recourse policy is to re-optimize the rest of the knapsack based on the
profits adjusted for penalties, the originally estimated weights, and the remaining
items and capacity. The selection of the next r items is fixed.

To support our introductory claim that existing technology is not feasible
even for such a simple practical setting, we invite the reader to try to model this
problem as an n-stage stochastic optimization problem or as a simulation-based
optimization problem with n variables and an uncertain side constraint.

4.2 Winner Forecasting

In stage 1 of our approach, we consider the original knapsack problem with the
given capacity, profits, and estimated weights. We solve the problem to optimal-
ity using dynamic programming and generate a desired number of solutions that
are either optimal or as close to optimal as possible.

In stage 2, we need to characterize each solution with respect to the given
problem instance. Before we list the features we introduce for this purpose, we
define a number of quantities we can compute for any sequences of numbers.

For monotonically increasing (or decreasing) sequences, we define the follow-
ing quantities (leading to 3q + 2 quantities for q quantiles considered):

– The mean, and the mean of the second moment.
– The median and the median of the second moment.
– For a desired number q of quantiles over the range of the sequence, the per-

centage of numbers in the sequence before each quantile is first reached,
depending on whether the sequence is increasing or decreasing (including
the last quantile).

– For a desired number q of quantiles, the value of the sequence at each quantile
of items in the sequence, and the corresponding values in the second moment
(excluding the last quantile).

For general sequences, we define the following 8 quantities:

– The mean and the mean of the second moment.
– The median and the median of the second moment.
– The minimum and maximum, and the corresponding values of the second

moment.

Now, to characterize a given solution to a knapsack instance, we consider the
following five monotone sequences, and the six general sequences thereafter:

M 1: For each item i in the sequence, the total profits achieved so far, as a
percentage of the maximum achievable profit (here and in the following
per the given solution).

698 S. Kuhlemann et al.

M 2: For each item i in the sequence, the remaining capacity as a percent of
the total capacity.

M 3: For each item i in the sequence, the linear programming upper bound
for the remaining items and the remaining capacity, as percentage of the
optimum profit.

M 4: For each item i in the sequence, the linear programming upper bound
for the remaining items and the total original capacity C, as percentage
of the optimum profit achievable.

M 5: For each item i in the sequence, we compute the number di of items
since the last item that was included in the solution. We aggregate and
normalize these numbers by setting Di =

∑
k≤i di/n and considering the

monotone sequence (Di)i.
G 1–3: For each item selected in the given solution, its profit (as percentage of

maximum profit), weight (as percentage of total capacity), and efficiency
(the ratio of profit over weight).

G 4–6: The same three values as above, but over the items not selected in the
solution.

We consider 5 quantiles, therefore the above yields 5(3 ∗ 5 + 2) + 6 ∗ 8 = 133
features. We add two more by also computing the total efficiency of the solution,
defined by the ratio of total profit divided by total capacity, and finally the
LP/IP gap as percentage of maximum achievable profit. In total, for each solution
we thus obtain 135 features. For a given pair of solutions, we concatenate the
features of each solution, as well as the difference of the features of the two
solutions. Our machine learning approach thus has access to 3 ∗ 135 = 405
features to decide which of the two solutions given is likely to perform better
than the other.

To complete the data-driven part of our approach, we choose binary cost-
sensitive classification to rank the solutions, in particular, the cost-sensitive hier-
archical clustering approach from [18]. We use this technique in all following test
cases.

4.3 Numerical Results

We generate knapsack instances with 1,000 items and (expected) weights drawn
between 1 and 100 uniformly at random. The capacity is set to 10% of the
total expected weights of all 1,000 items. Weakly correlated knapsack instances
are generated by choosing the profit of item i with weight wi in the interval
[wi −3, wi +3]. Strongly correlated instances are generated by setting the profits
to wi + 5. Furthermore, almost strongly correlated instances are generated by
choosing the profits in [wi + 4, wi + 6] uniformly at random.

We build a simulation environment where the weight of an item i is drawn
from a random variable following a Pareto distribution with mean wi and mini-
mum value 0.95wi. Note that the Pareto distribution is heavy-tailed: With the
given parameters, there is only about a 20% chance of seeing a value larger than

Exploiting Counterfactuals for Scalable Stochastic Optimization 699

the mean, but a 1.5% chance to see a value of at least 1.5 times the mean, and
about a 0.3% chance of encountering values of twice the mean or more.

We set the recourse threshold p = 5%, the restocking fee and late buying fee
s = b = 10, and the minimum reaction time r = 5. Whenever the remaining
capacity in the knapsack deviates by more than p = 5%, we solve a new knap-
sack problem (with adjusted profits to reflect the respective restocking and late
buying fees) to determine our recourse action for the remaining items beyond
the minimum reaction threshold.

Using this environment, we generate 100 instances of each knapsack type
(weakly, strongly, and almost strongly correlated). To build our test benchmarks,
we solve each knapsack to optimality using dynamic programming and choose
ten near-optimal solutions. We then run each of these solutions through our
simulation environment twenty times, so that each solution is exposed to the
exact same twenty simulations. We then record the average performance for each
near-optimal solution over the twenty simulations to grade them. In practice,
there would only be one reality the selected solution would be exposed to, of
course. We run each test solution through twenty potential futures to lower the
possibility that we are just lucky with the scenario we encountered.

The task for our data-driven solution selector is to pick a solution from the
set of ten that exhibits very good performance in the simulated environment. To
train this assessor, we generate training data as follows: For each knapsack type,
we generate 500 instances. For each instance, we generate twenty near-optimal
solutions. Moreover, for each of these instances, we generate one, and only one,
vector of weights for each item. Note that, in practice, we would equally have
access to our originally expected weights wi, and the actual weights w′

i.
Next, we need to counter-factually assess the performance of each solution.

To lower the variance in these labels, we proceed as follows: First, we build
twenty derived scenarios from each real scenario, by choosing weights w′′

i ∈
[w′

i − α,w′
i + α], where α = |wi−w′

i|
2 , uniformly at random. That is, we derive

scenarios from the historical examples without any assumptions regarding, or
knowledge of, any distributions. We merely consider the actually encountered
deviations from our original estimates and derive scenarios by varying these
deviations a little. Please note that these changes do not affect the direction of
the deviations: A weight that was under-estimated, remains under-estimated in
each derived scenario, and each weight that was over-estimated remains over-
estimated.

700 S. Kuhlemann et al.

Table 1. SKP results

Type Max Mean Min ML GC

Weakly correlated

500-100 10-10 10%-10% 15.29 10.67 5.79 9.10 32

500-100 5-5 10%-10% 14.30 9.93 5.47 8.95 22

500-100 10-10 20%-20% 9.75 6.69 3.82 5.77 32

100-100 10-10 10%-10% 15.29 10.67 5.79 9.39 26

500-100 5-10 10%-10% 15.29 10.67 5.79 9.38 26

Strongly correlated

500-100 10-10 10%-10% 15.56 10.84 6.03 8.88 41

500-100 5-5 10%-10% 14.46 10.03 5.54 8.81 27

500-100 10-10 20%-20% 11.73 8.18 4.58 6.50 47

100-100 10-10 10%-10% 15.56 10.84 6.03 9.31 32

500-100 5-10 10%-10% 15.56 10.84 6.03 8.83 42

Almost strongly correlated

500-100 10-10 10%-10% 15.63 11.12 5.86 9.42 32

500-100 5-5 10%-10% 14.21 10.03 5.44 8.93 24

500-100 10-10 20%-20% 11.82 8.31 4.43 7.31 26

100-100 10-10 10%-10% 15.63 11.12 5.86 9.68 27

500-100 5-10 10%-10% 15.63 11.12 5.86 9.59 29

Heterogeneous mix

500-100 10-10 10%-10% 17.28 11.34 5.31 9.32 34

500-100 5-5 10%-10% 15.73 10.35 4.83 8.83 27

500-100 10-10 20%-20% 11.97 7.86 3.85 6.53 33

100-100 10-10 10%-10% 17.28 11.34 5.31 10.0 22

500-100 5-10 10%-10% 17.28 11.34 5.31 9.51 30

Finally, we execute each of
our twenty near-optimal solu-
tions under each derived sce-
nario (including the recourse
actions we would have taken)
and label each with the average
performance observed. Note
that all that is needed to con-
duct this counterfactual assess-
ment of additional solutions is
the knowledge about our origi-
nal estimates and the real item
weights that were encountered.

Test results on all three
classes of knapsacks are shown
in Table 1. In the first column
we denote the parameters of
the experiment: The number of
training scenarios vs number
of test scenarios (usually 500-
100), late-buying and restock-
ing fees on train vs test (usually
10-10 or 5-5), and the knapsack
capacity on train vs test (usu-
ally 10% or 20% of the weight
of all items for both).

Next, we show the average of the worst of the ten solutions we generated for
each test instance, the expected performance, and the performance if we chose
the best of the ten solutions generated. Note that the latter is the maximum
gain we can hope to achieve by selecting among the ten solutions generated.
The numbers represent percentages above an imaginary best solution (since the
ten we generated may obviously not include the optimum under uncertainty),
which we set at three standard deviations below the average of the ten solutions,
and whose performance itself we measure as percent above the best omniscient
solution. In absolute terms, the numbers presented are thus percentages over
percentages over the true profits.

Finally, we show the performance of counterfactual selection (ML), as well
as the percent gap closed (GC) between the average performance and the best
performance that is achievable by selecting among those select ten solutions for
each instance.

Overall, we close between 22% and 47% of the gap between the average per-
formance and the best solution available to us. That means that our forecasting
models are certainly not optimal, but nevertheless effective at choosing solutions
which are expected to perform better than the average near-optimal solution.
This holds for varying knapsack types as well as different capacities and recourse
penalties.

Exploiting Counterfactuals for Scalable Stochastic Optimization 701

To assess how critical the amount of historical scenarios is, we lowered the
training set to only 100 scenarios. On all knapsack types, this leads to a reduction
in effectiveness, but the approach still works: We close 26%, 32% and 27% for
the three knapsack types using only 20% of scenarios.

Encouragingly, we see that counterfactual forecasting can also be reason-
ably effective when the historical scenarios used were gathered under a different
regime. For example, assume that, historically, the late-buy and restocking fees
were 5, but now they are 10. Please note that what should be done when oper-
ational parameters change is to re-run the historical scenarios under the new
penalties and to generate a new counterfactual training set this way. For exper-
imental purposes only, we did not do that here so we can assess how robust our
forecasting models are under varying parameters. Under [500-100 5–10 10%-10%]
we see that we achieve 26%, 42% and 29% gap closed for weakly, strongly, and
almost strongly correlated knapsacks, respectively.

Finally, we generated a benchmark which consists, in equal parts, of weakly,
strongly, and almost strongly correlated knapsack instances, both for training
and for testing. As the table shows, the counterfactuals-based predictive models
work for heterogeneous mixes of different knapsack types as well.

Overall, we conclude that, for the SKP, we can learn an effective, though sub-
optimal, data-driven model to predict which near-optimal solution has greater
chances of performing well in an uncertain future.

5 RCPSP with Uncertain Job Durations

The RCPSP with uncertain job durations involves the scheduling of a set of jobs
J given a set of resources R and a set of time periods T . Each job j consumes ujr

units of resource r in each time period the job is running. Each resource has a
maximum capacity kr that may be consumed in each time period. A precedence
graph P = J ×J specifies an order in which jobs are executed, i.e., for (i, j) ∈ P
job i must be completed before j can start. In the deterministic case, each job
j has a fixed duration dj . We consider a version of the problem where the job
duration is uncertain, and assume that, if a job takes longer than planned, it
continues to consume ujr resources in each additional time period. This version
of the problem corresponds closely with real-world RCPSPs, such as construction
or software projects in which delays are common, and resource consumption of
jobs continues even if they take longer than expected.

The (deterministic) RCPSP can be modeled with the following constraint
program [2], in which the start time of each job is given by Sj :

min max
j∈J

Sj + dj (1)

subject to Si + di ≤ Sj ∀(i, j) ∈ P (2)
cumulative(S,d,u.r, kr) ∀r ∈ R (3)

702 S. Kuhlemann et al.

5.1 Stochastic Environment

We sample the job durations d′
j from a Pareto distribution with the expected

value dj . The simulation starts at time period 0 and iterates through each time
period until the maximum time is reached or all jobs have been executed. For
some time period t′, all jobs ending in that period (t′ = Sj + d′

j) are ended and
the resources they are consuming freed. We then start jobs that have a start time
of the current time period, if their precedence constraints are satisfied and their
resource consumption requirements can be met. If job j with Sj = t′ cannot
start in t′, Sj ← Sj + 1, i.e., we delay its start by one time period.

If significant delays occur, it may be appropriate to do recourse planning and
find new start times for the remaining jobs based on the current forecast. The
recourse planning involves simply fixing the start times of jobs that are finished,
or running and updating the job durations with either the real duration for fin-
ished/running jobs or the current forecast for scheduled jobs. This deterministic
problem can then be solved by any RCPSP algorithm, based on the CP model
above.

We forecast job durations by assuming that, when a job i that must precede
j is finished (i.e., (i, j) ∈ P), we know more about the duration of j than we did
before i finished. We construct a graph with the same nodes and arcs as in the
precedence graph, and assign the true duration d′

i to every arc (i, j). Let aij be
the shortest path between all pairs of jobs on the newly constructed graph with
Dijkstra’s algorithm. We then compute the forecast as fij := round(dj + (1 −
aij/maxk∈J{aik})(d′

j − dj)), such that fij is the forecast for job j when job i
is finished, assuming j is reachable from i in P . While simulating, when job i
finishes we check fij , and if it is closer to the true duration of j, we update our
expected duration.

5.2 Winner Forecasting

We propose the following groups of features to describe solutions to the RCPSP
with uncertain job durations.

1. The expected makespan of the solution divided by the maximum time.
2. Let Bij := Sj − Si for all (i, j) ∈ P be the buffer between jobs with prece-

dence relations. We compute the mean, median, standard deviation, skew,
25% quantile, and 75% quantile of the values in B.

3. Let BT
ij := Bij(Sj/|T |). We compute the mean and skew of BT .

4. We execute the solution with the expected durations and compute the per-
centage residual resource usage k̂tr for each resource at each time period,
and aggregate this into k̂t :=

∑
r∈R k̂tr/|R|. We compute the mean, standard

deviation, 25% quantile and 75% quantile over all values of k̂t.
5. Let m1 and m2 be the number of jobs directly affected (we do not examine

network effects here) due to insufficient available resources if a job j starts 1
or 2 time periods later than planned, respectively.

Exploiting Counterfactuals for Scalable Stochastic Optimization 703

Table 2. RCPSP results

Class Max Dur. Train Test Max Mean Min ML GC

j30 10 317 157 4.48 3.27 2.67 3.44 −28

50 275 138 3.84 3.08 2.59 3.01 15

100 260 135 3.70 3.05 2.63 3.02 7

j60 10 239 122 4.06 3.29 2.53 3.18 15

50 225 109 3.48 2.88 2.27 2.70 30

100 226 113 3.38 2.82 2.28 2.70 23

6. Let a delay chain be a path in the precedence graph which forms a sequence
of jobs that are separated with buffer less than the 25% quantile of B. We
compute the maximum length delay chain and divide it by the total number
of jobs.

5.3 Numerical Results

We test our approach on the well-known instances from the PSPLIB [15]. We
use the j30 and j60 categories, which have 30 and 60 jobs, respectively, and
split each into 320 training instances and 160 testing instances. The maximum
job duration in these categories is 10 time units, so we add two more instance
categories containing randomly generated job durations with a maximum of 50
and 100 time units, respectively.

We solve the constraint programming model in (1) through (3) with Google
OR Tools CP-SAT solver version 7.0 [11]. We first generate the optimal expected
values solution. We note that, in the RCPSP, shifting the buffer of a few jobs
results in a “new” solution, but this is not desirable for our approach, as the
realized performance will be nearly the same. Therefore, to generate k − 1 solu-
tions in addition to the optimal solution, we begin an iterative process. After a
solution S′ is found, we append the following constraints to require that a given
percentage of the jobs have a different order than the previously found solution:

oij = 1 ⇔ Si ◦ Sj ∀S′
i � S′

j , (◦, �) ∈ {(>,<), (<,>), (
=,=)} (4)
∑

i,j∈J,i<j

oij ≥ h (5)

where the decision variable oij ∈ {0, 1} for i, j ∈ J, i < j is 1 iff jobs i and j
have a different order than in the previous solution. We require the number of
job order changes in (5) to be greater than a threshold h, which we set to 5% of
the unique job pairs (|J ||J − 1|).

As for the SKP and SSPP, we test our approach on 20 simulations per
instance, simulating training and testing instances the same way as the pre-
vious two problems, with training simulations being derived from only one real
simulation without knowledge of the actual distributions of job delays, and test

704 S. Kuhlemann et al.

simulations running 20 real scenarios for proper evaluation. Table 2 shows the
results in the same format as the SKP and SSPP, with the addition of columns
indicating the number of training and testing instances.

We are able to achieve modest gains over using the expected value solution,
except in the case of j30 with a maximum expected duration of 10. On this
instance set, the learning algorithm failed to find a good way of identifying
superior solutions. This may be due to our features, which focus closely on
buffer, and this may not be sufficient when the durations are low.

On the j60 instances, we are able to close between 15% and 30% of the gap
to the best available solution. Even though the absolute gain may seem small, as
with many optimization under uncertainty problems, real-world RCPSP prob-
lems can involve expensive resources (specialized digging equipment, etc.), and
even small absolute improvements often translate into significant cost savings,
as well as time savings for the overall plan. Therefore, even though our method
is heuristic in nature, it can be of high value in practice.

6 Stochastic Shortest Path Problem

In the SSPP, we are given a graph G = (V,A) of nodes V and arcs A. Every
arc (i, j) ∈ A has an uncertain cost with an expected value of cij . The objective
is to find a minimal cost path through the graph between a source node s and
destination node t. The SSPP can model problems such as the routing of ships
under the influence of weather, or routing a vehicle through a road network
considering traffic delays.

6.1 Stochastic Environment

We base the stochastic environment for the SSPP on the one described for the
SKP with a few problem-specific modifications. Given a solution to an SSPP
instance, we first sample the realized costs c′

ij for each arc from a Pareto distri-
bution with mean cij and the minimum at 90% of cij . We then begin executing
the path given to us as one of the ten solutions, using c′

ij for each realized arc.
If the accumulated delay exceeds 10% of the expected costs, we allow recourse
planning every 5 nodes.

In the recourse planning, we adjust our forecast based on the current node.
The assumption is that arcs close to this node have a more accurate forecast
than those far away, since we would traverse these arcs in the nearer future.
To assemble our forecast, let aij be the number of arcs between nodes i and j.
Then, let the forecast cost for (i, j) be fij := round(cij +(1−aij/Δ})(c′

ij − cij))
if aij < 5, and cij otherwise. We set Δ to 7 to keep the forecasts from becoming
too accurate when we get close, but keep them inaccurate when we are far away.

6.2 Winner Forecasting

We introduce the following features to characterize an SSPP solution. For each
feature set, we compute the minimum, maximum, mean, standard deviation,

Exploiting Counterfactuals for Scalable Stochastic Optimization 705

Table 3. SSPP results

Graph Type Nodes Max Mean Min ML GC

Gnm 50k 207.38 91.68 43.00 68.63 47

Bottleneck 50k 165.55 97.06 54.27 71.80 59

Watts-Strogatz 25k 175.88 76.95 33.91 50.79 61

Mixed 50k/25k 182.81 92.98 43.50 61.17 64

skew and kurtosis of the array of values. For features using arc costs, we divide
the costs by the average arc cost of the graph, and for features using node
degrees, we use the average node degree of the entire graph.

1. Array of arc costs on the path
2. Array of arc costs over the set of arcs leaving nodes of the path going to nodes

not on the path
3. Array of arc costs over the set of arcs leaving nodes that are connected to the

path by a single node (excluding any arcs to nodes directly connected to the
path or nodes on the path)

4. Array of node degrees in the path
5. Array of node degrees of nodes that are connected to nodes on the path
6. Array of node degrees over the set of nodes that are connected to the path

by a single node (excluding any nodes directly connected to the path)

As in the case of the SKP, we concatenate the features for two given solutions
with the difference between the features of both solutions, which are then used
by the machine learning approach to determine the most promising solution.

6.3 Numerical Results

We build a dataset of SSPP instances consisting of graphs based on one of three
graph types: Gnm [8], “bottleneck”, and Watts-Strogatz small-world graphs.
The bottleneck instances consist of five Gnm graphs of equal size connected
sequentially with 5 links between each graph. We create 300 instances of each
graph type and size and select random source and sink nodes for the path,
splitting the instances into 200 train and 100 test. The expected arc costs cij are
drawn uniformly random between 1 and 100. We further ensure that all graphs
have no isolated components by adding arcs between such components and the
rest of the graph.

For each SSPP graph, we generate the ten shortest paths for a given graph
between s and t using Yen’s algorithm [23]. We simulate using the same scenario
structure as in the SKP. The “true” arc costs c′

ij are drawn from a Pareto
distribution with an expected value cij , shifted so that the minimum is at 0.9cij .
Training instances are evaluated on 20 scenarios that are all variations of a
single scenario (using the exact same scenario variation as in the SKP), and
test instances are evaluated on 20 scenarios generated independently of each

706 S. Kuhlemann et al.

other. Every 5 nodes we check if the accumulated delay is more than 10% of the
expected cost, and if it is, we run a recourse algorithm that tries to replan the
shortest path to t from the current node.

Table 3 shows the results of our computational experiments. We compute
the gap to the optimal shortest path considering c′

ij and average it over 20
scenarios as described above. Note that, for many graph instances, paths that
were near optimal for the point-estimated scenario may perform much worse than
the shortest path had we known the true arc distances beforehand. This leads to
relatively high values in our table, but is really more a reflection of the inherent
cost of uncertainty in this particular problem than the absolute performance of
the particular algorithm used to optimize under the uncertainty. Looking closer
at our data, we find that the expected path lengths of the solutions is usually
about the same, with the bottleneck graphs exhibiting slightly higher variance
than for the other graph types.

Despite the simplicity of our features (we just measure arc costs and node
degrees), we are able to close the gap by around 50% in all graph types and
64% for the mixed setting. This provides further support that we can learn from
historical data which solution features are favorable for later execution under
stochastic disruption.

7 Conclusion

We have introduced a new methodology for modeling and heuristically solving
stochastic optimization problems. The key idea is to move away from trying to
accurately forecast the uncertainty in the problem instance at hand. Instead,
we propose to use logs of historical estimates and the realities that followed
for comparing various counterfactual solutions. Our thesis is that we can devise
features that capture instance-dependent characteristics of the solutions that
allow us to predict which solution from a solution pool will likely perform well
for a new problem instance at hand.

The objective of this paper was to provide a proof of concept. We considered
three stochastic optimization problems that would each be extremely hard to
model and solve with existing approaches, even heuristically. For all three prob-
lems, we were able to quickly devise sets of features that were effective enough
to choose solutions that were superior to picking an average solution from our
pool of optimal (with respect to the underlying point-estimated optimization
problem) or near-optimal solutions.

Note that we did not spend any time to optimize hyper-parameters of our
learning approaches, or to engineer more effective features. Providing a general
set of features and pairing it with off-the-shelf machine learning methods was
enough to tackle each of the three optimization problems. We believe that the
experimental results provided strongly support our thesis that we can learn from
data which solutions will exhibit superior performance in an uncertain future.
However, this is of course not to say that, in practice, one should not conduct
feature engineering and hyper-parameter optimization to achieve even better
results.

Exploiting Counterfactuals for Scalable Stochastic Optimization 707

The ability to tackle complex stochastic optimization problems with thou-
sands of recourse stages comes at a cost, though. The framework presented
gives no guarantees regarding the quality of the solutions achieved, and dual
bounds are not provided. Therefore, whenever traditional stochastic optimiza-
tion is applicable and full online-reoptimization is feasible during real-world oper-
ations, we would recommend this approach. The framework introduced here is
meant for situations when the traditional methods break down.

In the future, we intend to investigate if the models trained on historic coun-
terfactuals can be mined to infer constraints to guide the search for less brittle
solutions directly: solutions that are not only near-optimal for the “fair weather”
data, but also have high probability of performing well under stochastic disrup-
tion. In this sense, the new framework opens the door for a comprehensive new
research agenda for stochastic constraint optimization.

Acknowledgements. This work is partially supported by Deutsche Forschungsge-
meinschaft (DFG) grant 346183302. We thank the Paderborn Center for Parallel Com-
putation (PC2) for the use of the OCuLUS cluster.

References

1. April, J., Glover, F., Kelly, J.P., Laguna, M.: Practical introduction to simula-
tion optimization. In: Proceedings of the 35th Conference on Winter Simulation:
Driving Innovation, pp. 71–78. Winter Simulation Conference (2003)

2. Berthold, T., Heinz, S., Lübbecke, M.E., Möhring, R.H., Schulz, J.: A constraint
integer programming approach for resource-constrained project scheduling. In:
Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 313–317.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13520-0 34

3. Birge, J.R.: Decomposition and partitioning methods for multistage stochastic lin-
ear programs. Oper. Res. 33(5), 989–1007 (1985)

4. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer Sci-
ence & Business Media, New York (2011). https://doi.org/10.1007/978-1-4614-
0237-4

5. Cao, Z., Guo, H., Zhang, J., Niyato, D., Fastenrath, U.: Finding the shortest path
in stochastic vehicle routing: a cardinality minimization approach. IEEE Trans.
Intell. Transp. Syst. 17(6), 1688–1702 (2015)

6. Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack
problem: the benefit of adaptivity. Math. Oper. Res. 33(4), 945–964 (2008)

7. Dupačová, J., Consigli, G., Wallace, S.W.: Scenarios for multistage stochastic pro-
grams. Ann. Oper. Res. 100(1–4), 25–53 (2000)

8. Erdös, P., Rényi, A.: On random graphs. I. Publicationes Mathematicae (Debrecen)
6, 290–297 (1959)

9. Fu, M.C., Glover, F.W., April, J.: Simulation optimization: a review, new devel-
opments, and applications. In: Proceedings of the Winter Simulation Conference,
p. 13. IEEE (2005)

10. Glover, F., Kelly, J., Laguna, M.: New advances for wedding optimization and
simulation. In: Winter Simulation Conference 1999 Proceedings, vol. 1, pp. 255–
260. IEEE (1999)

11. Google: Google OR-Tools (2019). developers.google.com/optimization/

https://doi.org/10.1007/978-3-642-13520-0_34
https://doi.org/10.1007/978-1-4614-0237-4
https://doi.org/10.1007/978-1-4614-0237-4
http://www.developers.google.com/optimization/

708 S. Kuhlemann et al.

12. Hochreiter, R., Pflug, G.C.: Financial scenario generation for stochastic multi-stage
decision processes as facility location problems. Ann. OR 152(1), 257–272 (2007)

13. Kaut, M., Wallace, S.W.: Evaluation of scenario-generation methods for stochastic
programming. Pac. J. Optim. 3(2), 257–271 (2007)

14. Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average approxi-
mation method for stochastic discrete optimization. SIAM J. Opt. 12(2), 479–502
(2002)

15. Kolisch, R., Sprecher, A.: PSPLIB-a project scheduling problem library. Eur. J.
Oper. Res. 96(1), 205–216 (1997)

16. Long, Y., Lee, L.H., Chew, E.P.: The sample average approximation method for
empty container repositioning with uncertainties. Eur. J. Oper. Res. 222(1), 65–75
(2012)

17. Luo, X., Dashora, Y., Shaw, T.: Airline crew augmentation: decades of improve-
ments from sabre. INFORMS J. Appl. Anal. 45(5), 409–424 (2015)

18. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios
based on cost-sensitive hierarchical clustering. In: Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence (IJCAI), Beijing, China, 2013,
pp. 608–614 (2013)

19. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: the Bayesian optimization algo-
rithm. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary
Computation-Volume 1, pp. 525–532. Morgan Kaufmann Publishers Inc. (1999)

20. Schütz, P., Tomasgard, A., Ahmed, S.: Supply chain design under uncertainty using
sample average approximation and dual decomposition. Eur. J. Oper. Res. 199(2),
409–419 (2009)

21. Van Slyke, R.M., Wets, R.: L-shaped linear programs with applications to optimal
control and stochastic programming. SIAM J. Appl. Math. 17(4), 638–663 (1969)

22. Verweij, B., Ahmed, S., Kleywegt, A.J., Nemhauser, G., Shapiro, A.: The sample
average approximation method applied to stochastic routing problems: a compu-
tational study. Comput. Optim. Appl. 24(2–3), 289–333 (2003)

23. Yen, J.Y.: An algorithm for finding shortest routes from all source nodes to a given
destination in general networks. Q. Appl. Math. 27(4), 526–530 (1970)

	Exploiting Counterfactuals for Scalable Stochastic Optimization
	1 Introduction
	1.1 Stochastic Optimization
	1.2 Multi-stage Stochastic Optimization
	1.3 Simulation-Based Optimization

	2 Technology Gaps
	3 Learning from Counterfactuals
	4 Stochastic Knapsack
	4.1 Stochastic Environment
	4.2 Winner Forecasting
	4.3 Numerical Results

	5 RCPSP with Uncertain Job Durations
	5.1 Stochastic Environment
	5.2 Winner Forecasting
	5.3 Numerical Results

	6 Stochastic Shortest Path Problem
	6.1 Stochastic Environment
	6.2 Winner Forecasting
	6.3 Numerical Results

	7 Conclusion
	References

