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Abstract. Using constraint programming (CP) to explore a local-search
neighbourhood was first tried in the mid 1990s. The advantage is that
constraint propagation can quickly rule out uninteresting neighbours,
sometimes greatly reducing the number actually probed. However, a
CP model of the neighbourhood has to be handcrafted from the model
of the problem: this can be difficult and tedious. That research direc-
tion appears abandoned since large-neighbourhood search (LNS) and
constraint-based local search (CBLS) arose as alternatives that seem
easier to use. Recently, the notion of declarative neighbourhood was
added to the technology-independent modelling language MiniZinc, for
use by any backend to MiniZinc, but currently only used by a CBLS
backend. We demonstrate that declarative neighbourhoods are indeed
technology-independent by using the old idea of CP-based neighbour-
hood exploration: we explain how to encode automatically a declarative
neighbourhood into a CP model of the neighbourhood. This enables us to
lift any CP solver into a local-search backend to MiniZinc. Our prototype
is competitive with CP, CBLS, and LNS backends to MiniZinc.

1 Introduction

Technology-independent modelling is an paradigm where we model a prob-
lem and choose among solvers of several technologies in order to solve it for
given data. This helps avoid early commitment to a technology and solver, and
enables the easy comparison of technologies and solvers on the same model.
MiniZinc [17] is a technology-independent modelling language, supported by
solvers of many technologies, such as constraint programming (CP), lazy clause
generation (LCG), integer programming (IP), Boolean satisfiability (SAT), sat-
isfiability modulo theories (SMT), constraint-based local search (CBLS [27]),
and hybrids.

Many solvers can work in a black-box way, where we only need to provide a
model and the instance data. Some technologies, notably CP and LCG, also allow
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a search strategy to be attached to a model; in practice, a good search strategy
is often key to an efficient solving process. MiniZinc has had from its inception a
notation for declaratively indicating a search strategy for CP and LCG solvers.
Recently, MiniZinc was extended with a notation [3] for declaratively specifying
a local-search neighbourhood, that is a set of candidate moves that re-assign
some variables within the current valuation of a local-search method. At present,
these declarative neighbourhoods are only supported by the CBLS backend fzn-
oscar-cbls [4]: experiments showed that, as expected, CBLS via MiniZinc can be
accelerated via a neighbourhood specification.

In this paper, we revisit the idea of encoding a local-search neighbourhood
for a CP solver so that, given the current valuation of the variables in a local-
search method, the CP solver finds by systematic search a best neighbour of that
current valuation, under some heuristic. The local-search method then moves to
that neighbour, using some meta-heuristic for escaping local optima, such as sim-
ulated annealing or tabu search. The idea of encoding a neighbourhood was first
proposed in [20] and then refined in [25]: exploring a neighbourhood by using a
CP solver on such a neighbourhood model can lead to the efficient pruning of both
infeasible and sub-optimal neighbours, sometimes greatly reducing the number
of actually probed neighbours. However, this idea was presented as a method-
ology, where a neighbourhood model has to be handcrafted from the problem
model, and there is limited reusability of encodings between neighbourhoods.

Large-neighbourhood search (LNS) [24] is another popular method for per-
forming local search by using a CP solver. An LNS neighbourhood is constructed
by freezing some variables, that is fixing them to their values in the current valua-
tion of a local-search method, and it is explored by performing systematic search
on the problem model in order to find an improving valuation for the remaining
variables. However, this is fundamentally different from the neighbourhoods clas-
sically explored by CBLS solvers and ad hoc local-search methods. For example,
a relocation neighbourhood (e.g., [22, Chapter 23]) cannot be explored by LNS
without also exploring a very large number of neighbours that are not obtainable
by relocation moves: LNS does not have the classical notion of move. Another
crucial difference is that LNS uses one copy of the variables of the problem model
and freezes some variables in each move, whereas a neighbourhood model uses
two copies of the variables and freezes most variables in each move.

Putting all these ingredients together, the organisation and contributions of
this paper are as follows:

– an encoding of a declarative neighbourhood [3] for any CP solver;
– the new global constraint Writes for encoding local-search moves;
– a good definition of Writes using constraints available in most CP solvers;
– a recipe for building a local-search backend to MiniZinc from any CP solver;
– evidence that declarative neighbourhoods are technology-independent.

We wrap the paper up with an experimental evaluation of our prototype against
CP, CBLS, and LNS backends to MiniZinc, as well as directions for future work.
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2 Background

After discussing in Sect. 2.1, with the example of a vehicle routing problem, the
technology-independent modelling language MiniZinc and its extension with the
notion of declarative neighbourhood [3], conceived for local-search backends, we
briefly summarise in Sect. 2.2 the principles of local search (e.g., [14]).

For brevity, we discuss constrained minimisation problems: the maximisation
of an objective function amounts to minimising its opposite, and the satisfaction
of constraints amounts to satisfying them while minimising a constant.

2.1 MiniZinc and Declarative Neighbourhoods

Conceptually, a MiniZinc model for a constrained minimisation problem is in
this paper a tuple 〈V, C, o,S,N〉, where V is the set of variables; C is the set of
constraints on these variables, including their domain membership constraints;
the variable o ∈ V is the objective variable, whose value is to be minimised; S is
the optional annotation for suggesting a systematic-search branching strategy
on the variables; and N is the optional annotation for suggesting a declarative
neighbourhood [3].

As a running example, we use the model for the travelling salesperson prob-
lem with time windows (TSPTW) used in [2], but extended with a relocation
neighbourhood. Given are n locations; an array TravTime, where TravTime[i,j]
is the travel time from location i to location j plus the service time at i; and an
array ArrWin of arrival-time windows, where ArrWin[i,1] is the earliest arrival
time and ArrWin[i,2] the latest arrival time at location i. The objective is to
find a shortest Hamiltonian circuit that visits each location exactly once and
within its arrival-time window.

Listing 1 has a MiniZinc model for TSPTW with a relocation neighbourhood,
with the data above declared in lines 1 to 3. The route is modelled in line 4 by
an array Pred, where variable Pred[i] denotes the location visited before loca-
tion i. The circuit constraint in line 5 requires Pred to represent a Hamiltonian
circuit. Location 1 is assumed in line 6 to be the depot, that is the start of the
route. The arrival times are modelled in line 7 using the array ArrTime, where
variable ArrTime[i] denotes the arrival time at location i. Each arrival time is
constrained, in lines 8 to 11, to be at least either the arrival time at the preceding
location plus the travel time, or the start of its arrival-time window, whichever
is greater, and at most the end of its arrival-time window. The objective is to
minimise the travel time of the entire circuit, which is stated in lines 12 and 15.

The relocation neighbourhood is used in the annotation (prefixed by ::) of
line 13 and declared in lines 16 to 22. It considers in line 18 all combinations
of two locations i and j such that they are distinct and the predecessor of i is
not j: this is prescribed by the where pre-condition in line 18 on the elements of
the moves set comprehension of candidate moves. Each candidate move consists
of the composition of three parallel re-assignments that relocates the predecessor
of i so that it goes between j and the predecessor of j, as prescribed by lines 19
to 21. The initialisation post-condition of the neighbourhood is that Pred forms
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1 int: n; set of int: Loc = 1..n; % number and set of locations

2 array[Loc,Loc] of int: TravTime; % travel times

3 array[Loc,1..2] of int: ArrWin; % arrival-time windows: earliest, latest

4 array[Loc] of var Loc: Pred; % predecessor locations

5 constraint circuit(Pred);

6 int: depot = 1; % location 1 is the depot

7 array[Loc] of var int: ArrTime; % arrival times

8 constraint ArrTime[depot] = ArrWin[depot,1];

9 constraint forall(i in Loc where i != depot)(

10 ArrTime[i] = max(ArrTime[Pred[i]]+TravTime[Pred[i],i], ArrWin[i,1]));

11 constraint forall(i in Loc)(ArrTime[i] <= ArrWin[i,2]);

12 var int: time = sum(i in Loc)(TravTime[Pred[i],i]); % objective variable

13 solve :: use_neighborhood(relocate())

14 :: int_search(Pred,first_fail,indomain_min,complete)

15 minimize time;

16 function ann: relocate() :: neighborhood_definition =

17 initially(circuit(Pred)) /\

18 moves(i, j in Loc where i != j /\ Pred[i] != j)(

19 Pred[i] := Pred[Pred[i]] /\

20 Pred[j] := Pred[i] /\

21 Pred[Pred[i]] := Pred[j] % /\ ensuring(circuit(Pred)) % implied

22 );

Listing 1. A MiniZinc model for TSPTW and a relocation neighbourhood.

a Hamiltonian circuit, as prescribed by the initially condition in line 17: every
(re-)start must be from a valuation satisfying this condition. Together, this ini-
tialisation post-condition, the pre-condition on candidate moves, and the nature
of the candidate moves imply that each candidate move reaches a valuation
of Pred that forms a Hamiltonian circuit, so we do not need to include the
commented-out ensuring post-condition on candidate moves in line 21.

The initially, where, and ensuring conditions of a declarative neighbour-
hood are constraint satisfaction problems, expressed on the data and variables
of the problem model, using the existing and full MiniZinc syntax.

2.2 Local Search

Given a model 〈V, C, o,S,N〉 for a constrained minimisation problem, a local-
search method iteratively maintains a current valuation θ that maps each variable
in V to a value in its domain prescribed in C, and that is initialised under
some amount of randomisation so as to satisfy the initialisation condition of N ,
usually a subset of the constraints in C. At each iteration, the local-search method
considers the set of candidate moves defined by the neighbourhood N (θ): it
selects under some amount of randomisation a candidate move, as specified by
some heuristic such as best-improving or first-improving, and makes the selected
candidate move by updating the current valuation θ accordingly. The idea is that
each move made should reduce the value of some cost function cost(θ), which
does not necessarily return the current objective value θ(o), as seen below.
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In order to escape local optima of cost(θ), a meta-heuristic, such as simu-
lated annealing or tabu search [12], is used. Together, the neighbourhood N ,
the heuristic, and the meta-heuristic form the local-search strategy of the local-
search method. A local-search method typically also involves restarts, where
periodically the search may be begun again from scratch, in order to avoid being
trapped in local minima. It also may use intensification, where more search effort
is applied around a current valuation that seems promising.

All constraints in C are to be satisfied. Existing local-search backends to Mini-
Zinc automatically choose for each constraint among three ways of handling it:

– A constraint c ∈ C can be satisfied when initialising the current valuation θ
and its satisfaction can be preserved by all candidate moves. Hence c is hard :
it cannot be violated during search.

– A constraint c that functionally defines some variable v ∈ V in terms of other
variables W ⊂ V can be made hard by extending every made move on at
least one variable in W into also re-assigning v accordingly.

– A constraint c can be made soft, meaning it can be violated during search
but should be satisfied in the final valuation, by using a violation function
giving 0 if c is satisfied under θ, and otherwise a positive value that indi-
cates how violated c is under θ. For example, for linear expressions x and y,
the linear constraints x = y and x ≤ y are softened [27] into v1 = |x − y|
and v2 = if x ≤ y then 0 else x − y endif, respectively, defining an intro-
duced violation variable vi.

For example, for the model in Listing 1, a typical way of handling its constraints
is: the circuit constraint in line 5 is satisfied by every valuation explored dur-
ing the search; the constraint that functionally defines time in line 12 is made
hard and moves do not consider changing this variable; the time-window end
constraint in line 11 is made soft; finally, although the constraints in lines 8
to 10 define the ArrTime[i] variables functionally, it is hard to detect that the
definition is not circular: hence they are made soft and moves must consider
changing these variables.

Let soft(C, g) denote the constraint set where some constraints in C are
softened under some scheme, including a new variable g, denoting the global
violation, constrained to be the sum of all the introduced violation variables. We
assume that the individual violation variables and the global violation variable g
are implicitly added to the variable set of the model containing C. Replacing C
by soft(C, g) requires changing the model containing C to minimising both the
objective variable o and the global violation variable g. For example, in fzn-
oscar-cbls [4], a weighted sum α · o + β · g is used as the cost function cost(θ),
where the values of α and β are dynamically tuned during search.

If too many constraints are made hard, then this may disconnect the search
space, since local search only moves from one valuation to another via a move
of the neighbourhood: it may be that no sequence of moves in the declarative
neighbourhood are able to move between two given valuations. If this is the case,
then we can seriously weaken the local-search capability to find good valuations.
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Given a neighbourhood N , we can partition the variables V of a model into
three sub-sets: Vtarg is the set of variables that are targeted by the moves of N
(such as the array Pred in line 4 of Listing 1); Vfunc is the set of non-targeted
variables that are each functionally defined by some constraint (such as time
being functionally defined by Pred in line 12); and Vaux is the set of the remaining
variables, which we call auxiliary variables (such as the array ArrTime in line 7).
Search must be over Vtarg ∪ Vaux, but local search over Vtarg ∪ Vaux was shown
in [2] to degrade greatly the performance of CBLS solvers, unless every move
on Vtarg is somehow automatically extended by a corresponding re-assignment
of Vaux.

3 Encoding a Declarative Neighbourhood as a CP Model

We show how to encode automatically a declarative neighbourhood, specified in
MiniZinc, as a CP model, which we call the neighbourhood model. We show in
Sect. 3.1 how to encode two states of a local-search method, namely its current
and next valuations, using variables. We explain in Sect. 3.2 how to encode a
move as constraints on these variables. The exploration of the neighbourhood
then amounts to solving the neighbourhood model, as discussed in Sect. 3.3.

3.1 Encoding the Current and Next Valuations

Given a MiniZinc model 〈V, C, o,S,N〉, we extract the following sets:

– Vgen has variables for the generators of the moves set comprehension of N ;
– M has the move expressions of the moves comprehension of N ;
– Vtarg ⊆ V has the targeted variables of V, that is those re-assigned in M;
– Cwhere has the constraints on V ∪ Vgen of the where pre-condition of N ; and
– Censure has the constraints on V ∪ Vgen of the ensuring post-condition of N .

For example, for the model in Listing 1, the set Vgen has variables, called gen-
erator variables, for the generators i and j in line 18; the set M has the three
re-assignments in lines 19 to 21; the set Vtarg has the entire array Pred since any
variable thereof can be referred to in the left-hand sides of the re-assignments
in M; the set Cwhere has the two constraints of the where pre-condition in line 18;
and the set Censure is empty since there is no ensuring post-condition.

Since our encoding must reason on the current and next valuations of the
variables in a local-search method, we must use in the neighbourhood model two
copies of some variables of the given problem model: for a set X of variables, we
denote by Xc the set of variables corresponding to X in the current valuation,
and by Xn the set of variables corresponding to X in the next valuation. We use
the same notation for individual variables.

The variable set of the neighbourhood model is Vc ∪ Vn ∪ Vc
gen. We give its

constraint set in Sect. 3.3, after focussing on the constraints encoding a move.
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3.2 Encoding a Move

A move is a transition from Vc
targ to Vn

targ, so we must constrain each variable
in Vn

targ to take the same value as its corresponding variable in Vc
targ, except those

re-assigned by the move, which are constrained to take new values accordingly.
Towards encoding this, we introduce the constraint Writes(O, I, P, V ) on

two arrays O and I of the same number n of variables and two arrays P and V
of the same number m of variables: it holds if and only if O, called the output
array, is point-wise equal to I, called the input array, except that O[P [ j]] is
constrained to be equal to V [ j] for each j in {1, . . . ,m}. We assume that all
indexing in this paper starts from 1.

We encode using Writes the set M of move expressions. The basic moves
are x:=y, X[i]:=y, x:=:y, and X[i]:=:Y [ j], specified and encoded as follows:

– x := y means re-assign to x the current value of y, which is encoded as either
xn = yc or Writes([xn], [xc], [1], [yc]);

– X[i] := y means re-assign to X[i] the current value of y, which is encoded
as Writes(Xn,Xc, [ic], [yc]);

– x :=: y means swap the current values of x and y, which is encoded as either
xn = yc ∧ yn = xc or Writes([xn, yn], [xc, yc], [1, 2], [yc, xc]);

– X[i] :=: Y [ j] means swap the current values of X[i] and Y [ j], which is
encoded the way the compound move X[i]:=Y [ j] /\ Y [ j]:=X[i] is; see
below.

The first and third Writes-based encodings are only useful when we merge
them with others in order to preserve the semantics of moves, as discussed next.

A compound move is the parallel composition of basic moves, which is written
by overloading the /\ logical-and connective. The composition of basic moves
that always re-assign different variables, such as X[i] := u /\ Y [ j] := v when
the arrays X and Y share no variables, is the conjunction of the encodings of
the basic moves. However, the composition of basic moves that can re-assign the
same variable, such as X[i] := u /\ X[ j] := v, must be encoded by merging
the encodings of the basic moves, since Writes(Xn,Xc, [ic], [uc]) requires ∀k �=
ic : Xn[k] = Xc[k], which prevents any value other than Xc[ jc] from being
written at index jc by Writes(Xn,Xc, [ jc], [vc]), unless jc = ic.

Rules 1, 2 and 3 below show how to merge Writes constraints; we only give
rules for the cases that can appear in our prototype backend to MiniZinc:

Rule 1. The constraints Writes(O, I, P, V ) and Writes([x], [y], [1], [v]),
where for some constant index p we have that O[ p] is x and I[ p] is y, are merged
into Writes(O, I, P ++ [ p], V ++ [v]), where ++ denotes array concatenation.

Rule 2. The constraints Writes(O, I, P1, V1) and Writes(O, I, P2, V2) on the
same output and input arrays are merged into Writes(O, I, P1 ++P2, V1 ++ V2).

Rule 3. Consider Writes(O1, I1, P1, V1) and Writes(O2, I2, P2, V2), where a
non-empty set J has the indices j for which there exists an index i such that O2[ j]
is O1[i] and I2[ j] is I1[i]. Let O2 and I2 have length n. Let O′ = O1 ++ [O2[k] |
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k ∈ {1, . . . , n} \ J ] and I ′ = I1 ++ [I2[k] | k ∈ {1, . . . , n} \ J ] be the non-
redundant mergers of the two O� arrays and the two I� arrays, respectively.
Let M be the array that maps indices of I2 to indices of I ′ defined so that
∀i ∈ {1, . . . , n} : O2[i] = O′[M [i]]∧I2[i] = I ′[M [i]]. Let P2 and V2 have length m.
Let P ′ = P1 ++ [M [P2[i]] | i ∈ {1, . . . ,m}]. The two Writes constraints above
are merged into Writes(O′, I ′, P ′, V1 ++V2).

For example, for the model in Listing 1, the compound move is encoded,
after maximal merging, as the single constraint Writes(Predn, Predc, [ic, jc,
Pred[ic]c], [Pred[Pred[ic]c]c, Pred[ic]c, Pred[jc]c]).

Let the maximally merged encodings of the move expressions in M, together
with the constraint ∃v ∈ Vtarg : vn �= vc requiring at least one variable in Vn

targ to
be different from the corresponding one in Vc

targ, form the constraint set Cmove.

3.3 The Neighbourhood Model and Neighbourhood Exploration

The neighbourhood model has the variable set Vc ∪ Vn ∪ Vc
gen mentioned in

Sect. 3.1 and the following constraint set for channelling between Vc and Vn:

– the set Cwhere{V/Vc,Vgen/Vc
gen}, for meeting the where pre-condition;

– the set Cmove defined at the end of Sect. 3.2, for encoding a move;
– the set soft(C, g){V/Vn}, for evaluating and pruning neighbours; and
– the set Censure{V/Vn,Vgen/Vc

gen}, for meeting the ensuring post-condition.

where R{X/Y } denotes the copy of the constraint set R where the variables of
the set X are point-wise substituted by those of the same-sized set Y of variables.

A declarative neighbourhood can have the union of several moves set com-
prehensions with possibly different pre- and post-conditions, effectively giving
the union of sub-neighbourhoods. In order to encode such a neighbourhood, we
propose that each sub-neighbourhood be separately encoded in its own neigh-
bourhood model, each being explored under its own instantiation of a CP solver.
We believe that the disjunctive encoding of the sub-neighbourhoods would be at
most as efficient as encoding and exploring the sub-neighbourhoods separately.

Thus, given the current valuation θ of a local-search method, exploring its
neighbourhood amounts to solving the neighbourhood model, but with the addi-
tional constraints {vc = θ(v) | v ∈ V} for enforcing θ, using a CP solver: either
we apply systematic search in order to find one or all neighbours, or we add to the
neighbourhood model the objective function that corresponds to the cost func-
tion of the local-search method and apply systematic branch-and-bound search
in order to find a best neighbour and prune sub-optimal ones on-the-fly.

4 Implementing a Local-Search Solver Using a CP Solver

Since we can explore a declarative neighbourhood using a CP solver, we now
show how to lift any CP solver into a local-search backend for MiniZinc. We use
OscaR.cp [18] in order to implement our prototype backend, called LS(cp).
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1 predicate writes(array[int] of var int: O, array[int] of var int: I,

2 array[int] of var int: P, array[int] of var int: V) =

3 forall(j in index_set(P))(O[P[j]] = V[j]) /\

4 forall(i in index_set(I) where forall(j in index_set(P))(P[j]!=i))(

5 O[i]=I[i]);

Listing 2. A straightforward definition of the Writes constraint in MiniZinc syntax.

1 predicate writes(array[int] of var int: O, array[int] of var int: I,

2 array[int] of var int: P, array[int] of var int: V) =

3 let { int: k = min(index_set(P));

4 array[index_set(I)] of var 0 .. length(P): S;

5 } in forall(i in index_set(I))(S[i] = 0 -> O[i] = I[i] /\

6 forall(j in 1..length(P))(S[i] = j -> P[j+k-1] = i)) /\

7 alldifferent_except_0(S) /\forall(j in index_set(P))(O[P[j]] = V[j]);

Listing 3. An improved definition of the Writes constraint in MiniZinc syntax.

We use only existing components of OscaR.cp (including the FlatZinc parser
of the CBLS solver OscaR.cbls [4,7] of the same OscaR framework), provide
a good implementation of Writes (Sect. 4.1), motivate a particular constraint
softening scheme (Sect. 4.2), and discuss the control flow (Sect. 4.3).

4.1 Implementation of the WRITES Global Constraint

A straightforward definition (or: decomposition) of the Writes(O, I, P, V )
constraint of Sect. 3.2 is given in Listing 2 using MiniZinc syntax. We
also propose the improved definition in Listing 3, which reasons on a
matching between the variables of P and O: an array S denotes for
each index i of I if its element is unchanged in O (when Si =
0) or denotes the value at index j of P that determines its change
(when Si = j).The improved definition propagates Writes([1..3, 1..3, 1..3],
[4, 4, 4], [1..3, 2..3, 2..3], [1, 1, 1]), where �..u denotes a variable of that domain,
to Writes([1, 1..3, 1..3], [4, 4, 4], [1, 2..3, 2..3], [1, 1, 1]), whereas the first defini-
tion propagates nothing. However, neither achieves domain consistency, namely
Writes([1, 1, 1], [4, 4, 4], [1, 2..3, 2..3], [1, 1, 1]). Given that the max-clique prob-
lem reduces to achieving domain consistency on a Writes constraint, domain-
consistent propagation is NP-hard and we do not investigate this further in this
paper. In practice, we provide special cases in the definition when O and I
have length n ∈ {1, 2}, capturing the Writes-free encodings of the x := y and
x :=: y moves shown in Sect. 3.2.

4.2 Constraint Softening Scheme

As hard constraints decrease the neighbourhood size and exploration time [20], it
can be beneficial to soften only a few constraints, if any. We argue that one should
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Algorithm 1. Control flow of a CP-based local-search backend to MiniZinc.
while no time-out do

θ := initialise(τinit) {create a new current valuation}
while no time-out and no restart do {the meta-heuristic decides when to restart}

θ′ := explore(θ, τexplo) {select a neighbour}
θ := intensify(θ′, τintens) {improve the selected neighbour}

soften neither constraints that functionally define variables, nor constraints on
auxiliary variables. The former rule is what the MiniZinc CBLS backend fzn-
oscar-cbls [4] does, and the latter rule allows us to leverage propagation for
determining values of the auxiliary variables, which was shown to be benefi-
cial in [2]. In our LS(cp), the soft(C, g) operator of Sect. 2.2 softens each linear
(in)equality constraint that neither functionally defines some variable nor con-
strains auxiliary variables, and we change the objective function into the cost
function α · o + β · g, as in [4], but currently statically with α = 1 = β.

4.3 Control Flow

Given a MiniZinc model 〈V, C, o,S,N〉 with a declarative neighbourhood N , our
local-search backend consists of three major components—initialisation, explo-
ration, and intensification—which are used under the control flow in Algorithm 1.
Each component has its own instantiation of a CP solver for its own model, but
the exploration has several in case of sub-neighbourhoods.

Initialisation. Let Cinit denote the constraint set in the initialisation post-
condition of N : the initialisation model is 〈V, soft(C, g) ∪ Cinit, o + g, Sinit, 〉,
where the systematic-search strategy Sinit is a randomisation of S, if present,
and otherwise a randomising default strategy. The CP solver is limited to return
the best solution found within τinit seconds, or, if no solution was found yet,
then to return the first solution found thereafter. The CP solution returned by
initialise(τinit) is used as the initial or re-start valuation θ by the local search.

Exploration. Let Cexplo denote the four constraint sets at the start of Sect. 3.3:
the neighbourhood model is

〈Vc ∪ Vn ∪ Vc
gen, Cexplo, on + gn, Sexplo,

〉
. We

describe everything for a trail-based CP solver. Before applying the constraints
{vc = θ(v) | v ∈ V} for enforcing the given current valuation θ of the local search,
a choice point (recording the current state of the CP solver) is pushed onto the
trail of the CP solver. This allows us to backtrack, when the local search has
a new current valuation θ, to the choice point before the variables were fixed,
by popping the trail, thus reusing rather than re-building the neighbourhood
model in the next iteration of local search. Note that in an LCG solver this also
allows us to keep all generated nogoods, since any dependence on the current
valuation θ is included in the nogood.
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The search strategy Sexplo is similar to the one of [25], which argues that
branching by domain bisection on the generator variables Vc

gen propagates better.
However, in general this only guarantees fixing the targeted variables Vn

targ ⊆ Vn

by propagation. We therefore then also branch on the remaining variables.
Many local-search heuristics for selecting a neighbour are easy to implement.

For example, for the first-improving heuristic used by our LS(cp), we limit the
CP branch-and-bound search to stop after finding a solution within τexplo seconds
where 〈gn, on〉 is lexicographically strictly less than 〈gc, oc〉; if no such solution
was found yet, then the best solution found so far is returned, if any. Further,
the best-improving heuristic can be implemented by searching exhaustively.

We implement a greedy local-search phase by enforcing gc and oc as upper
bounds on gn and on: this prunes all non-improving neighbours to θ. After some
iterations, once θ is a local minimum, these bounds will empty the neighbourhood
and we end the greedy local-search phase by no longer using these bounds. This
allows the best-found CP solution to become a non-improving neighbour.

Let σ be the solution returned by the CP solver, if any: explore(θ, τexplo)
returns the valuation θ′ = {v → σ(vn) | v ∈ V} if σ is defined, otherwise θ′ = θ.

Intensification. Let θ′ be the local-search valuation of V = Vtarg ∪Vfunc ∪Vaux

returned by the exploration; recall the end of Sect. 2.2 for the semantics of
these variable sets. The projection of θ′ onto only Vtarg may have several exten-
sions for Vfunc and Vaux that have a better objective value than under θ′. This
may happen for example upon a first-improving heuristic. In order to try and
improve θ′, the function intensify(θ′, τintens) calls a CP solver on the intensi-
fication model 〈V, soft(C, g) ∪ {v = θ′(v) | v ∈ Vtarg} , o + g, S, 〉, where S is
from the original model. The CP solver is limited to return a best solution found
within τintens seconds, if any. This intensification is essentially a single LNS iter-
ation where Vtarg is frozen and values for Vfunc ∪ Vaux are sought.

Let σ be the solution returned by the CP solver, if any: intensify(θ′, τintens)
returns the valuation θ = {v → σ(v) | v ∈ V} if σ is defined, otherwise θ = θ′.

Meta-Heuristic: Tabu Search, Aspiration, and Restarts. In order to help
local search escape local minima, we improve on Algorithm 1 by implementing
a tabu search meta-heuristic by extending explore(θ, τexplo) to return also which
variables in Vtarg were re-assigned in the selected neighbour: after the latter is
intensified into the new current valuation, each re-assigned variable in Vtarg is
called tabu for δ+u local-search iterations, where u is taken uniformly at random
between 0 and the tabu tenure δ. Before starting exploration, each tabu variable
in Vn

targ is required to be equal to its corresponding variable in Vc
targ. We need

not do this algorithmically: the constraint ∀v ∈ tabu(Vtarg) : vn = vc, where
tabu(Vtarg) denotes the set of tabu variables, is added to the neighbourhood
model before starting CP search on it.

We improve this tabu search by adding the aspiration criterion that allows
re-assigning tabu variables if this yields a new overall best valuation, under
lexicographic order on 〈g, o〉. This is achieved by instead posting the constraint
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gn < best(g) ∨ (gn = best(g) ∧ on < best(o)) ∨ ∀v ∈ tabu(Vtarg) : vn = vc,
where best(v) denotes the value of variable v in the overall best valuation.

In order to further help the local search escape local minima, we also imple-
ment a restart mechanism: if the exploration step does not return a new valua-
tion for γ iterations of local search or does not improve the overall best valuation
since the last restart for λ iterations, then a restart is made. Our LS(cp) per-
forms restarts from the initialisation step. Recall that the initialisation step uses
randomisation in its branching strategy.

5 Experimental Evaluation

Our aim is to show that declarative neighbourhoods are technology independent
and enable lifting any CP solver into also being a MiniZinc local-search backend.

We evaluate our prototype LS(cp) against fzn-oscar-cbls [4], a CBLS backend
that uses declarative neighbourhoods (but can be run black-box); Yuck,1 a CBLS
backend that only runs black-box; Gecode [11], a CP backend that uses CP
search annotations such as line 14 of Listing 1; and Gecode-lns, an LNS backend
that uses Gecode upon adding the relax_and_reconstruct annotation, with
an 80% probability of freezing for each variable, to the MiniZinc model and the
-restart luby flag when running the backend. These settings for Gecode-lns
were decided upon after observing robust performance in initial experiments. We
use two configurations of LS(cp) in order to see the impact of better neighbour
pruning at the cost of possibly disconnecting the search space: LS(cp)-soft uses
the constraint softening scheme of Sect. 4.2, and LS(cp)-hard sets soft(C, g) = C.
For both configurations, we use the parameters τinit = 10 s, τexplo = 30 s,
τintens = 10 s, δ = 0.1 · |Vtarg|, γ = 3 · δ, and λ = 1000 and the first-improving
heuristic during exploration, as initial experiments showed these settings were
robust. For all backends that use randomisation, we report the best-found and
median objective values of 10 independent runs, as well as, in prefixed superscript
if non-zero, the number of runs where feasibility was not established. For Gecode,
we report the best-found objective of a single run. For each run we use a 15-min
timeout, under Linux Ubuntu 18.04 (64 bit) on an Intel Xeon E5520 of 2.27 GHz,
with 4 processors of 4 cores each, with 24 GB RAM.

Since we must handcraft declarative neighbourhoods for each model, which
requires a good understanding of both the model and the underlying problem,
we evaluated LS(cp) on the models, instances, and declarative neighbourhoods
of [3], namely steel-mill slab design [23], generalised balanced academic cur-
riculum design (GBAC) [6], car sequencing [8], and community detection [10].
For space reasons, we omit the last two, which give results similar to GBAC.
We also evaluated on the TSPTW model in Listing 1, and added declarative
neighbourhoods to models used in the MiniZinc Challenge [26] for a capaci-
tated vehicle routing problem (CVRP), a time-dependent travelling salesperson
problem (TDTSP), and the seat moving problem. Table 1 has the results, where
boldface indicates the best objective value by all backends for the instance of
1 https://github.com/informarte/yuck.

https://github.com/informarte/yuck
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the corresponding row and a “–” indicates that no feasible valuation was found
in any run by the backend in the corresponding column.

CVRP. We used the model and instances of the MiniZinc Challenge 2015, except
the easiest instance, ‘simple2’. We extended the model with a declarative neigh-
bourhood similar to the one in Listing 1, as CVRP is here also modelled using a
circuit constraint. Gecode-lns was never worse and usually much better than
both versions of LS(cp), but they significantly outperformed fzn-oscar-cbls, Yuck,
and Gecode on all instances. Yuck and fzn-oscar-cbls here make moves on auxil-
iary variables (recall the end of Sect. 2.2): this explains why LS(cp) was better.
LS(cp)-hard gave better valuations than LS(cp)-soft, which suggests that soft-
ening constraints is not important for this model. Hence it is unsurprising that
LNS was best.

GBAC. Yuck and fzn-oscar-cbls overall outperformed the other backends, and
fzn-oscar-cbls was best, possibly due to the declarative neighbourhoods. For the
UD3, UD7, and UD9 instances, LS(cp) did not find any feasible valuation in any
run, while Gecode-lns and Gecode found very bad valuations. This indicates that
finding a feasible valuation for these instances is difficult using CP-style search,
which LS(cp) and Gecode-lns use for initialisation. Clearly, this is an example
where softening many constraints is important to find reasonable valuations.

Seat Moving. We used the model and instances of the MiniZinc Challenge 2018,
except the hardest instance, 15-12-00, for which no solutions were found by any
backend. We extended the model with a declarative neighbourhood defining
moves that either swap two variables in a row of a 2D array or re-assigns one.
LS(cp) and Gecode-lns performed best, with LS(cp)-soft being the sole best on
one instance. Yuck and fzn-oscar-cbls failed to find a feasible valuation for the
instances 10-12-00 and 20-20-00, and found poor valuations for the other ones.
It would therefore appear that CP-style search is here more suitable for finding
initial valuations, and that keeping more (but not all) constraints hard improves
local search.

Steel Mill. We used the hard_steelmill neighbourhood of [3]. Arguably, fzn-
oscar-cbls was best, followed by LS(cp)-hard, LS(cp)-soft, and then Gecode-lns,
but each of these approaches wins on some instances. There is no clear pattern
here, illustrating the importance of trying multiple technologies on the same
model for each instance.

TDTSP. We used the model and instances of the MiniZinc Challenge 2017. We
extended the model with a declarative neighbourhood defining moves preserves
the satisfaction of an inverse constraint. Gecode-lns significantly outperformed
all the other backends, and both versions of LS(cp) outperformed fzn-oscar-cbls,
Yuck, and Gecode. As with the CVRP model, fzn-oscar-cbls and Yuck here make
moves on auxiliary variables, which explains why LS(cp) was better.

TSPTW. We used the model in Listing 1 and medium-sized GendreauDumas-
Extended *.001 instances.2 LS(cp) and Gecode-lns outperformed all the other
2 http://lopez-ibanez.eu/tsptw-instances.

http://lopez-ibanez.eu/tsptw-instances


50 G. Björdal et al.

Table 1. Experimental results on various minimisation problems.

Declarative neighbourhood Black-box CP search annotation

LS(cp)-soft LS(cp)-hard fzn-oscar-cbls Yuck Gecode-lns Gecode

CVRP best med. best med. best med. best med. best med. best

A-n37-k5 773 920 722 773 2530 2736 – – 693 693 1673

A-n64-k9 3187 3273 3113 3202 – – – – 1617 1617 3544

B-n45-k5 1833 2019 1633 1848 3633 4004 – – 769 769 2408

P-n16-k8 450 455 450 450 – – 559 559 450 450 530

GBAC

UD1 8577 9776 7635 9722 438 624 944 944 31263 31264 45420

UD2 174 213 189 217 189 206 289 289 354 376 12305

UD3 – – – – 191 267 413 413 37576 37654 57681

UD4 470 1190 974 1190 401 472 485 485 904 904 11925

UD5 386 427 368 489 272 327 626 626 2039 2244 23028

UD6 124 135 125 144 122 153 154 154 55 55 9846

UD7 – – – – 519 639 745 761 27330 27330 44044

UD8 65 87 74 107 63 86 105 105 48 48 9472

UD9 – – – – 463 572 692 692 29213 29213 44010

UD10 126 176 107 162 81 91 138 138 53 53 12101

Seat Moving

10-12-00 463 465 464 467 – – – – 735 735 555

10-20-05 90 90 90 90 130 132 132 132 90 90 139

15-20-00 199 199 199 199 209 7210 – – 199 199 207

20-20-00 262 262 262 262 – – – – 262 262 286

Steel Mill

bench 3 0 11 13 11 14 12 15 629 629 8 8 64

bench 3 1 31 46 29 42 22 31 – – 77 77 167

bench 3 2 31 43 28 43 42 60 – – 33 33 83

bench 3 3 36 48 38 54 38 76 896 896 70 70 326

bench 3 4 20 41 23 31 71 111 – – 14 14 38

bench 3 5 40 50 46 54 54 56 925 925 98 98 270

bench 3 6 27 48 33 58 54 106 – – 55 55 292

bench 3 7 81 103 82 103 79 101 1039 1039 109 109 203

bench 3 8 128 173 132 161 116 205 1400 1400 183 183 341

bench 3 9 212 230 183 260 205 252 1678 1678 240 240 331

TDTSP

10 35 20 9114 9764 9055 9279 14424 17217 10847 10847 9055 9055 9055

10 42 00 8421 8421 8421 8421 15866 18751 9248 9248 8421 8421 8421

10 58 20 11043 11435 10800 10986 15581 19021 12319 12323 10306 10306 13799

20 26 00 16124 17677 15105 17427 22752 522961 17906 19956 12741 12741 18197

20 36 10 15272 16045 15028 15772 22020 122602 17727 17727 12308 12308 15051

TSPTW

n40w120 434 434 434 434 – – – – 434 434 490

n40w140 328 328 328 328 – – – – 328 328 380

n40w160 348 348 348 348 – – – – 348 348 425

n60w120 384 384 384 384 – – – – 387 387 513

n100w80 720 8856 679 8694 – – – – – – 772
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backends on all instances. In fact, the best-found objective values on all but the
n100w80 instance are optimal. For the latter, Gecode-lns did not find any feasible
valuation, but both versions of LS(cp) found feasible valuations in 10 − 8 = 2
runs. Like with the CVRP and TDTSP models, both fzn-oscar-cbls and Yuck
here make moves on auxiliary variables, namely the ArrTime[i] ones.

6 Conclusion, Related Work, and Future Work

Conclusion. We have demonstrated that declarative neighbourhoods, which
were originally conceived for CBLS backends to MiniZinc, can also be used in
order to generate automatically an LS(cp) method for local search, where the
neighbourhood is initialised and explored using CP models and a CP solver. In
fact, since we propose a decomposition for our new Writes constraint, nothing
in our recipe for lifting any CP solver into a local-search backend to MiniZinc is
specific to CP: our recipe equally applies to any IP, SAT, or SMT solver.

While we see a wide variety of behaviour across the benchmarks against CP,
CBLS, and LNS backends to MiniZinc, our prototype LS(cp) backend finds the
best solutions for the seat moving and TSPTW benchmarks and is competitive
on all others, except GBAC, where it sometimes even struggles to find initial
valuations. Hence there seems to be a sweet spot for the CP-based exploration
of local-search neighbourhoods, where auxiliary variables make CBLS backends
slow and non-LNS neighbourhoods are important for local search.

Related Work. We have already discussed the differences between LS(cp) and
LNS (large-neighbourhood search, [24]) near the end of Sect. 1

Structured neighbourhood search (SNS, [1]) is a local-search framework for
models written in Essence [9]. In SNS, a set of neighbourhoods is automati-
cally inferred from the variables of a model and their types. This is done via
a set of predefined rules for each basic variable type and predefined rules for
variables of nested types, such as lists of sets of integers. Although the connec-
tion is not explicitly made in [1], the SNS framework is defined using the ideas
in [20]. Specifically, in SNS, the variables of the given model of a problem are
referred to as active variables. For each active variable, a corresponding primary
variable is introduced to represent the next valuation. Each neighbourhood is
then expressed as a neighbourhood model connecting the active and primary
variables, which is essentially the same approach as in [20] and in this paper.
Because multiple neighbourhoods are inferred, a multi-armed-bandit algorithm
is used for selecting which neighbourhood to use.

The StoreElement( p, v, I, O) constraint used in [13] for constraint-based
testing, with a propagator in [5], is the particular case Writes(O, I, [ p], [v]),
which is equivalent to O = write(I, p, v) in the theory of arrays [16]. The
Writes(O, I, P, V ) constraint encodes a parallel series of writes on an array
I giving an array O = write(· · · write(write(I, p1, v1), p2, v2) · · · pm, vm) with
∀i, j : pi = pj ⇒ vi = vj . However, encoding Writes as a sequence of
StoreElement generates m copies of the input array in the encoding, but
we only need the initial input array and the final output array.
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Future Work. More advanced versions of LNS, such as propagation-guided
LNS [19], cost-impact-guided LNS [15], and explanation-guided LNS [21], should
be compared with LS(cp) to better understand the problems suitable for LS(cp)
and LNS respectively.

Our LS(cp) is limited by initialisation being able to find an initial valuation,
just like LNS. While the softening of some constraints makes initialisation more
likely to succeed, the finding of an initial valuation is not guaranteed. Further-
more, the initialisation, exploration, and intensification steps all rely on appro-
priate CP search strategies being used, and our initial experiments indicate that
these branching strategies have a significant impact on the performance. Clearly
there is scope here for further investigation.

We also need to determine how best to soften constraints and which ones to
soften, trading search over larger neighbourhoods for better robustness. Ideally,
some form of dynamic adjustment, automatically softening when it is difficult
to find improving moves, seems attractive to pursue.
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