
Automatic Streamlining for Constrained
Optimisation

Patrick Spracklen(B), Nguyen Dang, Özgür Akgün, and Ian Miguel

School of Computer Science, University of St Andrews, St Andrews, UK
{jlps,nttd,ozgur.akgun,ijm}@st-andrews.ac.uk

Abstract. Augmenting a base constraint model with additional con-
straints can strengthen the inferences made by a solver and therefore
reduce search effort. We focus on the automatic addition of streamliner
constraints, which trade completeness for potentially very significant
reduction in search. Recently an automated approach has been proposed,
which produces streamliners via a set of streamliner generation rules.
This existing automated approach to streamliner generation has two key
limitations. First, it outputs a single streamlined model. Second, the app-
roach is limited to satisfaction problems. We remove both limitations by
providing a method to produce automatically a portfolio of streamliners,
each representing a different balance between three criteria: how aggres-
sively the search space is reduced, the proportion of training instances
for which the streamliner admitted at least one solution, and the aver-
age reduction in quality of the objective value versus the unstreamlined
model. In support of our new method, we present an automated approach
to training and test instance generation, and provide several approaches
to the selection and application of the streamliners from the portfolio.
Empirical results demonstrate drastic improvements both to the time
required to find good solutions early and to prove optimality on three
problem classes.

Keywords: Constraint programming · Streamliners

1 Introduction

An initial constraint model can be augmented through additional constraints. If
well chosen, these constraints strengthen the inferences the solver can make and
therefore reduce search. Implied constraints are inferred directly from the initial
model and therefore do not alter the set of solutions to the model. Manual [15,16]
and automated [7,9,17] approaches to generating implied constraints have been
successful.

In contrast, streamliner constraints [20] (our focus herein) are not inferred
from the initial model and often radically alter the set of solutions to the model
in an attempt to focus effort on a highly restricted but promising portion of the
search space. Streamliners trade the completeness offered by implied constraints
c© Springer Nature Switzerland AG 2019
T. Schiex and S. de Givry (Eds.): CP 2019, LNCS 11802, pp. 366–383, 2019.
https://doi.org/10.1007/978-3-030-30048-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30048-7_22&domain=pdf
https://doi.org/10.1007/978-3-030-30048-7_22

Automatic Streamlining for Constrained Optimisation 367

for potentially much greater search reduction. They were originally derived man-
ually by examining solutions of small instances of a problem class for patterns,
which were used as the basis for streamliners [20,22–24]. For example Gomes and
Sellmann added a streamliner requiring a latin square structure when searching
for diagonally ordered magic squares [20].

More recently, an automated approach has been proposed, which produces
streamliners via a set of streamliner generation rules [32,35] operating on the
Essence [12–14] specification of a problem class. Using training instances drawn
from the problem class under consideration, streamliner candidates are evalu-
ated automatically and the most promising ones are used to solve more difficult
instances from the same problem class.

The existing automated approach to streamliner generation has two key lim-
itations. First, it outputs a single streamlined model. If on a test instance this
streamliner excludes all solutions the only remedy is to revert to the initial
model. Second, the approach is limited to satisfaction problems. We remove
both limitations by providing a method to produce automatically a portfolio of
streamliners, each representing a different balance between three criteria: how
aggressively the search space is reduced, the proportion of training instances for
which the streamliner admitted at least one solution, and the average reduction
in quality of the objective value versus an unstreamlined model.

In support of our new method, we present an automated approach to training
and test instance generation, and provide several approaches to the selection
and application of the streamliners from the portfolio. The result is the first
automatic method to produce streamliners for optimisation problems and to
offer alternatives if the most preferred streamliner is unsuccessful.

2 Candidate Streamliner Generation

As in [32], our approach proceeds from a specification of a problem class in the
abstract constraint specification language Essence [14], such as the SONET
example in Fig. 1. An Essence specification comprises the problem class param-
eters (given); the combinatorial objects to be found (find); the constraints the
objects must satisfy (such that); identifiers declared (letting); and an optional
objective function (min/maximising). The key feature of the language is support
for abstract decision variables, such as multiset, relation and function, as well as
nested types, such as the multiset of sets in Fig. 1.

The highly structured description of a problem an Essence specification
provides is better suited to streamliner generation than a lower level representa-
tion, such as a constraint modelling language like MiniZinc [27]. This is because
nested types like multiset of sets must be represented as a constrained collec-
tion of more primitive variables, obscuring the structure that is useful to drive
streamliner generation. We employ the same set of streamliner generation rules
as [32], summarised in Table 1. High-order rules take another rule as an argument
and lift its operation onto a decision variable with a nested domain such as the
complex multi-set structure present in SONET. This allows for the generation

368 P. Spracklen et al.

of a rule such as enforcing that approximately half (with softness parameter)
of the sets in the multiset only contain even numbers. Imposing extra structure
in this manner can reduce search very considerably. Table 2 presents candidate
streamliners automatically generated for the problem classes considered herein.
Although rich, the set of Essence type constructors is not exhaustive. Graph
types, for example, are a work in progress [10]. At present, therefore, we might
specify such a problem in terms of a set of pairs. The streamliner generator
constraints would produce candidate streamliners based on this representation.

Using training instances drawn from the problem class under consideration,
streamliner candidates are evaluated as follows. The Conjure [1,3] automated
modelling tool is used to refine the Essence specification (including streamliner)
into the solver-independent constraint modelling language Essence Prime,
which Savile Row [29] translates into input suitable for the constraint solver
Minion [19].

Fig. 1. Essence specifications for the three problem classes considered herein. Syn-
chronous Optical Networking (SONET) [28] is given in full. For brevity, only the param-
eters and decision variable declarations (from which streamliners are generated) are
shown for the Progressive Party Problem [33] and the Minimum Energy Broadcast
Problem [6]

Automatic Streamlining for Constrained Optimisation 369

3 Searching for a Streamliner Portfolio

Candidate streamliners are often most effectively used in combination [20]. In
an attempt to find a single “best” streamlined model, Spracklen et al. described
a Monte Carlo Tree Search [5] (MCTS)-based algorithm to search the lattice
of models where the root is the original Essence specification and an edge
represents the addition of a streamliner to the combination associated with the
parent node.

This search had a single objective, average search effort reduction across
a set of training instances, which generates only one streamlined model per
problem class. This model tends to achieve a high search effort reduction, but
has difficulty generalising across the problem class. Furthermore, it is designed
only for satisfaction problems. The optimisation problems with which Spracklen
et al. experimented were converted into satisfaction problems by bounding the
objective and searching for a satisfying solution. This is a serious limitation since
a candidate streamlined model may find a solution quickly, but of poor quality,
and may exclude the set of optimal solutions entirely.

Table 1. The rules used to generate conjectures. Rows with a softness parameter
specify a family of rules each member of which is defined by an integer parameter.

Class Trigger domain Name Softness

First-order int odd{even} No

lower{upper}Half No

function int --> int monotonicIncreasing{Decreasing} No

largest{smallest}First{Last} No

function (X,X) --> X commutative No

associative No

non-commutative No

partition from X quasi-regular Yes

sequence montonicIncreasing{Decreasing} No

largest{smallest}First{Last} No

Higher-order matrix/set of X all No

most Yes

half No

approxHalf Yes

function X --> Y range No

defined No

pre{post}fix Yes

allBut Yes

function (X,X) --> Y diagonal No

partition from X parts No

sequence range No

defined No

370 P. Spracklen et al.

Table 2. Sample streamliners generated for the three problem classes we consider (see
Fig. 1 for their Essence specifications). References to odd/even are with respect to
the integer identifiers associated with entities such as nodes or boats. Streamliner Id is
a unique reference given to a streamliner when generated through Conjure; we shall
refer to these examples in Sect. 8.1

Problem Streamliner Id Description

Sonet 6 Exactly half the nodes installed on each ring are odd

13 Approx. half the nodes installed on each ring are odd

15 Approx. half the nodes on each ring are from the
lower half of the Nodes domain

67 The objective variable is constrained to the lower half
of its domain

MEB 18 Approx. half of the entries in the range of the parents
function must be even

41 The range of the depths function contains all odd
entries

PPP 7 For half of the hosts the boats must be in the lower
half of the Boats domain

14 For approx. half of the hosts the Boats must be odd

To address these problems we adopt a multi-objective optimisation approach,
where each point x in the search space X is associated with a d-dimensional (d is
the number of objectives) reward vector rx in Rd. Our three objectives allow us
explicitly to balance considerations of solution quality against how aggressively
the streamlined model reduces search:

1. Applicability. The proportion of training instances for which the stream-
lined model admits a solution.

2. Search Reduction. The mean reduction in time to prove optimality in com-
parison with an unstreamlined model.

3. Optimality Gap. The mean percentage difference between the optimal
value found by the streamlined model and the true optimal value under the
unstreamlined model.

All objectives are transformed such that they can be maximized. With these
three objectives for each streamliner combination we define a partial ordering on
Rd and so on X using the Pareto dominance test. Given x, x′ ∈ X with vectorial
rewards rx = (r1, . . . , rd) and rx′ = (r1′, . . . , rd′) rx dominates rx′ iff ri is greater
than or equal to ri′ for i = 1 . . . d.

To search the lattice structure for a portfolio of Pareto optimal streamlined
models we have adapted the dominance-based multi-objective MCTS (MOMCTS-
DOM) algorithm [34]. This has four phases, as summarised below and in Fig. 2:

Automatic Streamlining for Constrained Optimisation 371

1. Selection: Starting at the root node, the Upper Confidence Bound applied
to Trees (UCT) [5] policy is applied to traverse the explored part of the lattice
until an unexpanded node is reached.

2. Expansion: Uniformly select and expand an admissible child
3. Simulation: The collection of streamliners associated with the expanded

node are evaluated. The vectorial reward (Applicablity, Search Reduction,
Optimality Gap) across the set of training instances is calculated and
returned.

4. BackPropagation: The current portfolio; which contains the set of non
dominated streamliner combinations found up to this point during search;
is used to compute the Pareto dominance. The reward values of the Pareto
dominance test are non stationary since they depend on the portfolio, which
evolves during search. Hence, we use the cumulative discounted dominance
(CDD) [34] reward mechanism during reward update. If the current vectorial
reward is not dominated by any streamliner combination in the portfolio then
the evaluated streamliner combination is added to the portfolio and a CDD
reward of 1 is given, otherwise 0. Dominated streamliner combinations are
removed from the portfolio. The result of the evaluation is propagated back
up through all paths in the lattice to update CDD reward values, as shown
in the figure.

4 Generating Diverse Training Instances

Our method relies on training instances from a given problem class to construct
a high quality portfolio of streamlined models. Ideally these should be diverse,

Fig. 2. MOMCTS-DOM operating on the streamliner lattice. A, B and C refer to
single candidate streamliners generated from the original Essence specification. As
MOMCTS-DOM descends down through the lattice the streamliners are combined
through the conjunction of the individual streamliners (AB, ABC). The nodes are
labelled with CDD reward value/times visited.

372 P. Spracklen et al.

otherwise the portfolio may be skewed towards instances of one type and so
not generalise across the problem class. To ensure diversity, we employ an auto-
mated approach combining a per-class parameter generator and an algorithm
configuration tool, described below.

For each problem class we wrote a simple instance generator that accepts a
parameter setting and a random seed, and outputs a problem instance. At the
moment the instance generator has to be manually created, and is the only part
of the whole system that is not automated. However, this issue has been tackled
in a recent work [2] within the same pipeline, which can be integrated into our
system in the future. To keep the computational cost manageable, we require
a set of relatively easy (but not trivial) instances for the training phase, which
we define as solvable by Minion [19] on an unstreamlined model within a time
limit of [10, 300] s.

To find instances satisfying our criteria, the automatic algorithm configura-
tion tool irace [25] is used. Parameters of each generator are tuned by irace with
a performance measure guiding it towards regions of satisfiable instances within
the required range of solving time. As the tuning procedure usually converges
at certain regions of the search, multiple tunings with two settings of irace (the
default and another that allows more exploration) are performed per problem
class to obtain more diverse sets of instances.

There is an inherent tradeoff with the number of training instances used dur-
ing search. If too few instances are used it diminishes the ability of the generated
portfolios to generalise across the problem class, whereas a larger set reduces the
iteration speed of MOMCTS to the point where it is ineffective in searching the
streamliner lattice. Taking these considerations into account, for the experiments
in this paper we have set the number of training instances to 50.

Table 3. Instance generation and clustering. 50 training instances are selected from
among the generated clusters.

Problem Total number of instances Number of clusters

SONET 517 3

MEB 989 8

PPP 1264 8

We first generate a large instance set using irace. Table 3 (column 2) presents
the results of doing so for the problem classes we consider in this paper. In order
to select our representative subset of 50 instances, instance-specific features are
used to judge instance similarity. We use the features proposed in [18] and gen-
erated by Minion. All features are normalised according to the z-score stan-
dardisation. GMeans clustering is used on the generated features to detect the
number of instance clusters (see column 3 of Table 3). To build the training set
instances are randomly selected from each cluster, with the number of instances
taken from each weighted according to the relative size of each cluster.

Automatic Streamlining for Constrained Optimisation 373

The time limit for training instances, and the size of the training set are both
parameters to our method, which will be investigated in future work.

5 Pruning the Streamliner Portfolio

As the number of objectives increases so, typically, does the size of the Pareto
front, and hence the size of the generated streamliner portfolio. This is demon-
strated in Table 4, which, in column 2, records the size of the streamliner portfo-
lios generated through MOMCTS for our three problem classes. A large portfo-
lio is cumbersome when considering streamliner selection and scheduling. We
observed, however, that the streamlined models were not distributed evenly
across the Pareto front. Therefore, GMeans clustering is used to identify the
number of clusters present in the portfolio and a point from each cluster is then
selected to form a representative subset of the full portfolio (see column 3 of
Table 4).

Table 4. We prune an initially generated streamliner portfolio through GMeans clus-
tering and select a representative point from each cluster.

Problem Initial portfolio size Pruned portfolio size

SONET 57 6

MEB 56 3

PPP 64 9

6 Selecting from the Streamliner Portfolio

Having constructed a streamliner portfolio for a particular problem class using
MOMCTS and the set of training instances, for a given test instance the question
arises as to which streamlined models from the portfolio should be used, in what

Algorithm 1. Lexicographic Streamliner Selection
procedure Selection(Portfolio P, Ordering, Timetotal, Instance)

P ← sort(P, by = Ordering)
TimeTaken ← 0
while TimeTaken ≤ TimeTotal do

Streamliner ← P.next()
Stats ← Apply(Streamliner, Instance)
if Stats→sat() then

setBound(Instance, Stats.bound) � Set new bound on the instance
end if
TimeTaken + = Stats.time

end while
end procedure

374 P. Spracklen et al.

order, and according to what schedule. We consider both static lexicographic
selection methods, which establish a priority order over our three objectives of
Applicability, Search Reduction and Optimality Gap, and a dynamic method,
which adjusts the selection based on the performance on the instance thus far.

6.1 Lexicographic Selection Methods

It is possible to order the streamlined models in a portfolio lexicographically by,
for example, prioritising Applicability, then Search Reduction, and finally the
Optimality Gap. Given three objectives, there are six such orderings to consider.
Through preliminary testing it became apparent that only two of these orderings
are effective, where the Applicability objective is prioritised. The other orderings
trade Applicability for either Search Reduction or a better Optimality Gap. On
more difficult test instances, significant search effort can be required to prove
that an aggressive streamliner has rendered an instance unsatisfiable, which
can lead to poor overall performance. Thus two lexicographic selection meth-
ods are used herein: {Applicability First, Optimality Second, Reduction Third}
and {Applicability First, Reduction Second, Optimality Third}.

The selection process involves traversing the portfolio (using the defined
ordering) for a given time period and applying each streamliner in turn to the
given instance as shown in Algorithm 1. The schedule is static in that it only
moves to the next streamlined model when the search space of the current one is
exhausted. A key parameter is Timetotal, which specifies the total budget in sec-
onds for traversing the streamliner portfolio. In Sect. 8 for each selection method
four different settings for this parameter are experimented with to explore its
effect on overall performance.

6.2 UCB Streamliner Selection

During optimisation, typically a number of feasible solutions are discovered
before the optimal objective value is found. This intermediate information can
be used as an indicator of the performance of the streamlined model. For a given
instance we have no prior knowledge of the suitability of a particular stream-
lined model and as such it is important to balance the time taken exploring the
portfolio to identify the performance of each model while exploiting those that
have already found solutions. Representing this as a multi-armed bandit prob-
lem allows us to employ well known regret-minimising algorithms to deal with
the exploration/exploitation dilemma. The multi-armed bandit can be seen as
a set of real distributions, each distribution being associated with the rewards
delivered by one of the K levers. In our case this is the K streamlined models
that comprise the portfolio. On each iteration a streamliner is selected to search
the given instance and a reward is observed based upon the improvement to the
objective value. The aim is at each iteration to apply the optimal streamliner,
where optimality is defined as producing the largest increase/decrease in the
value of the objective. The regret ρ after T rounds is defined as the expected
difference between the reward sum associated with an optimal strategy and the

Automatic Streamlining for Constrained Optimisation 375

Algorithm 2. UCBSelection
procedure Selection(Portfolio, Ordering, T imetotal, Instance)

T imetaken ← 0
UCBTimeLimit ← 1
NumberOfIterations ← 0
Map � Mapping from Streamliner to Process
while T imetaken ≤ T imetotal do

Streamliner ← UCTSelection(Portfolio)
if Map[Streamliner].restart then

Process ← remodel(instance, streamliner) � Remodel with the new bound
Map[Streamliner].process ← Process
Stats ← run(Process, UCBTimeLimit)

else
Process ← Map[Streamliner].process
Stats ← run(Process, UCBTimeLimit) � Continue running existing process

end if
Map[Streamliner].visits += 1
NumberOfIterations += 1
if Stats→sat() then

Map[Streamliner].reward += 1
setBound(Instance, Stats.bound) � Set new bound on the instance
for S ← Map do

if S != Streamliner then
Map[S].restart = True � New Bound was found; restart all other processes

end if
end for

end if
T imetaken + = Stats.time

end while
end procedure

sum of the collected rewards observed. The UCB1 [4] algorithm was chosen to
solve the multi-armed bandit problem as first and foremost its regret grows log-
arithmically in line with the number of actions taken.

For each streamliner k we record the average reward xk and the number
of times k has been tried in the selection (nj) out of a total of n iterations.
On each iteration a streamliner is chosen that maximizes xk +

√
2 log(n)/nj .

The reward distributions for an individual streamliner are not fixed, so this
is not a Stationary Multi-Armed Bandit problem. However, if a streamliner
performs well, we expect it will continue performing well during search even if
there is a slight variation in the mean reward. We have found that using UCB1
gives good results. Future work could investigate the use of Upper Confidence
Bound policies for non-stationary bandit problems, such as the family of Exp3
algorithms [21,26].

When traversing the portfolio UCB performs incremental evaluation, it runs
a streamliner for a set time, observes the results, and potentially moves on before
the corresponding search space has been exhausted. When the streamliner is pre-
empted it is necessary to pause the search in order to avoid repeating work if it is
rescheduled at a later point. The only exception to this is whenever a new bound

376 P. Spracklen et al.

on the objective is discovered all of the streamliners from the portfolio, aside from
the current streamliner, are restarted and remodeled with the new bound. There
are two main benefits to doing this. Firstly, by restarting the streamliner has
the newly constrained bound at the top of the search tree which allows it to
make more informed decisions higher up without descending into unsatisfactory
subtrees. Secondly, by remodeling it takes advantage of the toolchain (Conjure
and Savile Row) which may be able to reformulate the model based upon this
new information and produce reductions at the solver level. Algorithm 2 shows
the UCBSelection process in detail.

7 Experimental Setting

We evaluate our automated streamlining approach on the three problem classes
in Fig. 1. We selected these problems to give good coverage of the abstract
domains available in Essence, such as set, multi-set and function. Furthermore,
SONET and Progressive Party have nested domains: multi-set of set and set of
function respectively.

Our hypothesis is that a streamliner portfolio, generated automatically on
a set of automatically generated training instances from a given problem class,
can be employed to solve more difficult test instances to deliver substantial per-
formance improvements relative to an unstreamlined model. Training instances
were generated as per Sect. 2, with a time limit of [10, 300] s. Test instances
are generated using the same instance generator and the tuning tool irace but
with a time limit of (300, 3600] s. 50 instances are selected randomly to form the
test set.

Care must be taken when considering the proof of optimality of our test
instances. Although in solving a streamlined model the constraint solver may
exhaust the search space this is not a proof that the current objective value is
optimal. This is because streamliners are not necessarily sound, hence a stream-
lined model may exclude the set of optimal solutions. For this reason, after the
streamliner portfolio has been run for its allotted time, we use the remainder of
the time budget to run the unstreamlined model, starting from the best objec-
tive value found by the streamliner portfolio, to provide the optimality proof.
The benefit of streamlining in this context is in finding high quality solutions
much more quickly than the unstreamlined model.

All experiments were run on a cluster of 280 nodes, each with two 2.1 GHz,
18-core Intel Xeon E5-2695 processors. MOMCTS was run on a single core with
a budget of 4 CPU days for each problem class. Results on 50 test instances
under the unstreamlined and streamlined models are reported, where every test
instance was run with three random seeds.

Source code, instance generators, datasets and detailed results are available
at https://github.com/stacs-cp/CP2019-Streamlining.

https://github.com/stacs-cp/CP2019-Streamlining

Automatic Streamlining for Constrained Optimisation 377

8 Results

Table 5 summarises results on 50 test instances (3 runs/instance) for each of our
three problem classes. We evaluate four different approaches: an unstreamlined
model, and streamliner portfolios with UCB selection, lexicographic ordering
{Applicability First, Optimality Second, Reduction Third} (denoted opt-second),
and lexicographic ordering {Applicability First, Reduction Second, Optimality
Third} (denoted red-second). For each streamliner selection method, a parameter
is the amount of time allocated to the streamliner portfolio before handing over
to the unstreamlined model to prove optimality. Four different values for this
time budget were tested: 30, 60, 120 and 300 s.

Results in Table 5 are strongly positive. They show that all the streamliner
portfolio approaches can not only find an optimal solution and prove optimality
on more test instances than the unstreamlined model, but also vastly reduce
the amount of time required for both tasks. In general, the UCB-30s variant
has the best overall performance across the three problem classes, and provides
consistently robust improvement over the unstreamlined model.

Figure 3 presents more details of how the streamliner approaches improve on
the unstreamlined models on an instance basis. In these plots, we use the time-
reduction ratio, a “normalised” version of the speed-up values reported in Table 5
for presentation: as the speed-up values can be arbitrarily large, many data points
in the speed-up plots can appear in a very small range, making them difficult
to distinguish. The reduction ratio, which is calculated as 1 − 1/speed-up, is
limited to at most one and can be easily scaled. For brevity, we only show in
Fig. 3 results of the streamliner variants with the time limit of 30 s. Each data
point corresponds to a pair of instances and random seeds. The plots show that
the solving time of the test instances are well distributed across the x-axis, which
is a good indication for the diversity of the test instance set. There are several
cases where the unstreamlined model cannot find or prove optimality within the
time budget and the streamliner can, which are represented by the data points
on the rightmost side after the vertical red lines.

The MEB results demonstrate strong performance of all three streamliner
approaches on all test instances. On SONET, UCB-30s clearly has better perfor-
mance compared with the other two approaches, which aligns with the summary
results in Table 5. While still strongly positive, on PPP the reduction provided
by the streamliner approaches is not quite as strong as for the other two problem
classes. There are a minority of cases where even the best streamliner approach,
UCB-30s, cannot find or prove optimality within the time budget, as shown by
the data points in the bottom-right corners.

Table 5 and Fig. 3 demonstrate that the time to prove optimality is very
significantly reduced through the application of streamliners. This stems from
their ability to find high quality feasible solutions quickly. Hence, once the time
allocated to the streamlined models has elapsed, the unstreamlined model begins
from an optimal or very high quality objective value, requiring much less effort
to exhaust the search space.

378 P. Spracklen et al.

Table 5. Summary results on 50 test instances (3 runs/instance) on three optimisation
problem classes: MEB, PPP and SONET. The first column, mean #proved 1-h, repre-
sents the average number of instances solved within one hour. All streamliner portfolio
variants significantly outperform the unstreamlined model by this simple measure. The
remaining columns report results where each run is now given a maximum amount of
96 CPU-hours (as tuning and generation of test instances is performed on the basis
of one seed, on the two other seeds it is possible for the unstreamlined model to time
out at one CPU hour). They include the time to reach an optimal solution, the time
to both reach an optimal solution and prove its optimality; and the corresponding
speed-up ratios when compared to the unstreamlined model. For each measurement,
we report the 10th percentile (p10), the median (p50), and the 90th percentile (p90).
These values are reported as the mean can be skewed by outliers. In particular, if the
optimal solution is not proved this results in a large time value (96 h = 345600 s) for
that run. The percentiles avoid this situation and show a clearer overall trend.

mean Finding an optimal solution Finding and prove optimality
Strategy #proved time(s) speed-up ratio time(s) speed-up ratio

(1-hour) p10 p50 p90 p10 p50 p90 p10 p50 p90 p10 p50 p90

M
EB

unstreamlined 35 157.9 1185.2 13893.9 311.1 1976.2 16781.3
UCB-30s 50 6.1 8 11.0 14.2 158.2 1583 15.2 22.2 176.7 6.6 43.6 492.2
UCB-60s 50 4.4 7.2 12 15 150.3 1552.2 16.1 24.6 188.7 6.9 35.6 521.9
UCB-120s 50 4.5 7.8 12.1 14.9 158 1604 15.1 24.8 220.9 6.2 36.1 518.4
UCB-300s 50 4.5 7.1 12.1 15 157.5 1605.4 14.9 24.9 345.1 5.2 32.1 416.6
opt-second-30s 49.7 4.1 6.3 13.4 14.1 171.1 1701.5 11.6 22.9 221.3 7.3 44.6 605.9
opt-second-60s 49.7 4.1 6.6 14.9 15.7 174.3 1833.4 11.7 22.5 199.6 7 45.3 625.4
opt-second-120s 50 4.2 6.2 13.6 19.9 178.3 1776.7 11.7 21.8 181.6 7.3 46.5 594.9
opt-second-300s 50 4.1 6.1 12.8 19.9 170.9 1865.8 11.5 21.8 176.9 7.5 47.6 647.0
red-second-30s 49.7 4.1 6.7 13.6 14.1 156 1845.1 11.8 22.8 249.1 7.3 43 532.2
red-second-60s 49.7 4.2 6.1 12.8 15.3 187.0 1878.3 11.8 21.7 198.7 7.3 45 646.3
red-second-120s 50 4.1 6.2 12.6 16.9 177.4 1903.5 11.6 22.1 178.1 7.2 46.3 605.4
red-second-300s 50 4.1 6.1 13.5 16.8 167.5 1891 11.7 22.3 178.8 7.6 47.5 625.1

PP
P

unstreamlined 41.3 73.4 564.3 3123 313 1339.7 6908.1
UCB-30s 47.7 13 73.7 1007.9 1.2 4.1 52 49.2 350.8 1946.6 1.0 3.0 29.3
UCB-60s 48.3 19.2 105.9 1078.7 0.9 2.9 28.7 86.1 428.8 2141.5 0.9 2.5 24.4
UCB-120s 48.3 18.9 163.3 1129.7 0.7 2.5 31.8 135.5 449.6 1936.2 0.9 2.1 16.8
UCB-300s 48.3 19 344.6 1311.3 0.4 1.6 30.1 323.9 646.3 2273.2 0.6 1.4 10.5
opt-second-30s 46.7 8.3 105.1 1340.5 0.9 3.5 75.1 44.1 419.4 2592.5 0.9 2.4 26.2
opt-second-60s 47 8.1 105.8 1444.2 0.8 3.4 75.2 73.7 453.5 2640.3 0.8 2.3 18.9
opt-second-120s 47.3 8.9 142.9 1765.1 0.7 3.6 76.5 113.1 486 2716.7 0.8 1.9 17.6
opt-second-300s 47.7 8.9 211 1349.3 0.5 3.1 72.4 110.8 599.1 2703.2 0.7 1.8 15.5
red-second-30s 45 14.7 177.7 2344.7 0.7 2 18.9 73.3 626.2 3537.7 0.8 1.7 14.8
red-second-60s 45.3 21.2 195.2 2341.6 0.6 2.1 15.6 96.1 643.2 3174.7 0.7 1.8 13.8
red-second-120s 45.7 13.6 175.7 2384 0.6 2.1 17.5 136.5 591.5 3095 0.6 1.8 11.1
red-second-300s 45.3 13.6 228 2731.5 0.6 1.9 16.8 157 657.6 3339.1 0.6 1.4 8.4

SO
N
ET

unstreamlined 43 539.5 1263.2 3820.3 574.4 1417.8 3954
UCB-30s 50 5 21.8 121.9 10.3 49.7 341.5 34 42.3 174.0 6.6 23.4 60.5
UCB-60s 50 6.1 28 131.9 8.5 38.1 300.3 63.3 75.3 198.7 4.9 14.4 42.1
UCB-120s 46 6 31.1 246.8 3.4 31.5 321.9 121.2 132.2 581.2 2.3 7.6 32.1
UCB-300s 50 7 30.7 344.5 3.8 33.4 287.3 111.8 310.8 437.8 1.7 4.2 22.9
opt-second-30s 49.3 3.5 9 1023.8 1.4 112.7 553.9 27.7 72.7 1023.2 1.4 19.2 70.5
opt-second-60s 49.7 3.5 9 443.2 1.5 113.1 611.4 27.6 93.6 644 1.5 15.9 66.9
opt-second-120s 49.3 3.3 8.3 455.6 1.3 117.3 677.9 26.9 120.7 701 1.3 14.6 68.6
opt-second-300s 49.3 3.7 8.4 549 3.6 121.0 549.9 28 123.1 770.6 1.1 10.3 69.4
red-second-30s 47.7 3.0 115.4 1749.6 0.8 10.6 483.5 27.7 227.3 2167.4 0.8 5.2 61.7
red-second-60s 47.7 3.0 105.3 1760.9 0.8 14.2 530.9 28.1 185 2137.2 0.8 7.2 64.1
red-second-120s 47.3 3.0 96.7 1532.5 0.8 16 506.3 28.3 157.8 2295.6 0.8 7.6 62.6
red-second-300s 47.7 3.0 96 1451.4 0.9 18.2 533.8 27.1 221.4 1717.6 0.8 6.1 65.2

Automatic Streamlining for Constrained Optimisation 379

8.1 UCB Streamliner Selection: Discussion

In this section, we discuss the UCB approach for streamliner selection in more
detail, as UCB-30s achieves the best overall performance across the three prob-
lem classes, both in terms of reduction to finding the optimal objective value
and reduction to proving optimality. In contrast to the lexicographic methods,
which only move on to the next streamlined model when the search space of
the current one is exhausted, UCB benefits from its ability to sample the entire
streamliner portfolio. After the initial exploration phase, where each streamliner
is given its initial application, UCB then selects streamliners based upon the
observed rewards. Its main advantage is the ability to balance the exploration
and exploitation of the streamlined models in the portfolio.

(a) MEB - time to optimal (b) MEB - time to proof

(c) PPP - time to optimal (d) PPP - time to proof

(e) SONET - time to optimal (f) SONET - time to proof

Fig. 3. Reduction ratio of streamliner methods with 30 s for scheduling of the stream-
liner portfolio. Two reduction ratio values are reported: reduction in time to reach
an optimal solution, and reduction in time to reach an optimal solution and prove its
optimality. The x-axis represents the time required by the unstreamlined model. The y-
axis shows the the reduction value. Each data point corresponds to a pair of (instance,
random seed). These plots focus on the region within a 1-h time limit: all data points
outside that ranges are shrunk into the same region. More specifically, runs where the
(unstreamlined model) streamliner methods do not reach an optimal solution or does
not prove optimality in one hour are separated by the red (vertical) horizontal lines.
The reduction values, however, are still the true values calculated based on the 4-day
CPU limit. As most data points lie within the range of y ∈ [0, 1], the plot is rescaled
so that this range is zoomed in for better visualisation.

380 P. Spracklen et al.

Fig. 4. Objective value progression from the unstreamlined model compared with its
progression under the UCB selection method for a representative SONET instance.

It is not always the case that the objective is found purely through the
application of one streamliner. For SONET, on average three streamliners are
used across the 50 test instances to arrive at the optimal objective value. Access
to the whole portfolio allows UCB to descend upon the optimal objective value
more quickly and is one reason for its success. The application of several different
streamliners at different time points can be used to reduce the bound of the
objective in an effective manner as per Fig. 4.

The UCB algorithm exploits the streamliners that have previously been
shown to produce an improvement in the objective value. This can be very
clearly shown from Fig. 4 where for an instance from SONET the streamliners
13, 13–67 and 6–671 (explained in Table 2) improve the objective multiple times
during the course of the selection process. This is due to the fact that UCB is
continuing to exploit those streamliners as previously they had success. However,
it is also crucial to continually explore the portfolio in an attempt to find stream-
liners that did not initially have success but may do after a certain number of
iterations. Streamliner 13–15 is an example of such a case.

8.2 Time Allocated to the Streamliner Portfolio: Discussion

From Table 5 it can be seen that the TimeTotal parameter as defined in Algo-
rithms 1 and 2 can have a large impact on the overall performance of the selection
method. There is a general trend (excluding MEB which will be discussed sep-
arately) that as the TimeTotal increases the time both to find and prove the
optimal objective value increases. This may seem puzzling initially: if using a
TimeTotal of 30 s reduces the time to find the optimal objective value to a cer-
tain extent, it might be expected that a TimeTotal of 300 s will do equally well.
However, there are two things to consider. First, streamliners from the portfolio
are not guaranteed to preserve the optimal value and so there is the potential for
an optimality gap between what the streamliners can find and the true optimal
of the instance. Therefore, the true optimal is only found after the switch to
the unstreamlined model occurs. Second, on average the streamliners converge

1 13–67, for example, indicates a streamlined model including both streamliner 13 and
67.

Automatic Streamlining for Constrained Optimisation 381

upon their optimal value in a very short period of time, 17 s, 7 s and 12 s for
SONET, MEB and PPP respectively. By increasing the TimeTotal parameter it
delays the point at which the switch occurs to the unstreamlined model which in
turn delays the point at which the true optimal is found. However, for MEB the
TimeTotal does not have a large impact on performance and this is due to the
fact that the streamliners in the portfolio generally exhaust their search space
very quickly. Hence, the whole portfolio can be traversed before TimeTotal is
reached and so the time at which the switch to the unstreamlined model occurs
is generally the same across all parameter settings.

The increase in time to prove optimality occurs as if the Ttotal parameter
is set too large then when the optimal value is found at time Topt, the whole
duration from Topt → Ttotal is spent proving the optimality of that solution in the
streamlined subspaces. Since proving optimality with respect to the streamliners
does not prove optimality on the unstreamlined model and so the whole time
from Topt → Ttotal is wasted.

9 Conclusion and Future Work

We have presented the first automated approach to generating streamliners
automatically for optimisation problems, and for their selection and scheduling
when employed on unseen instances. On three quite different problem classes
the results are very encouraging, with vastly reduced effort both to find and to
prove optimal objective values.

An important question we plan to investigate further is the applicability
of our method to identify in which contexts our streamliner can and cannot
help. In the context of optimisation the benefit of streamlining lies in the early
identification of the optimal, or at least high quality, values for the objective.
Where an unstreamlined model is able to identify the optimal value quickly, the
benefit of streamlining will be limited. When considering satisfaction problems,
however, streamlining can be used throughout the search and we will compare
the portfolio approach developed herein with the single selection provided by
the method presented in Spracklen et al. [32].

Furthermore, there are several methods for devising good search strategies
for constrained optimisation problems. Recent research suggest using machine
learning to design a promising search ordering [8], using solution density as a
heuristic indicator [31] and a number of value ordering heuristics to find good
solutions early [11,30]. Streamlining constraints can potentially be used in com-
bination with the existing methods for devising good variable and value selection
heuristics to achieve even better results.

Acknowledgements. This work is supported by UK EPSRC grant EP/P015638/1.
It used the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.
uk) funded by the University of Edinburgh and EPSRC (EP/P020267/1).

http://www.cirrus.ac.uk
http://www.cirrus.ac.uk

382 P. Spracklen et al.

References

1. Akgün, Ö.: Extensible automated constraint modelling via refinement of abstract
problem specifications. Ph.D. thesis, University of St Andrews (2014)

2. Akgün, Ö., Dang, N., Miguel, I., Salamon, A.Z., Stone, C.: Instance generation via
generator instances. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802,
pp. 3–19. Springer, Cham (2019)

3. Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Breaking condi-
tional symmetry in automated constraint modelling with Conjure. In: ECAI, pp.
3–8 (2014)

4. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2), 235–256 (2002). https://doi.org/10.1023/A:
1013689704352

5. Browne, C., et al.: A survey of Monte Carlo tree search methods. IEEE Trans.
Comput. Intell. AI 4, 1–43 (2012)

6. Burke, D.A., Brown, K.N.: CSPLib problem 048: minimum energy broadcast
(MEB). http://www.csplib.org/Problems/prob048

7. Charnley, J., Colton, S., Miguel, I.: Automatic generation of implied constraints.
In: ECAI, vol. 141, pp. 73–77 (2006)

8. Chu, G., Stuckey, P.J.: Learning value heuristics for constraint programming. In:
Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 108–123. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-18008-3 8

9. Colton, S., Miguel, I.: Constraint generation via automated theory formation. In:
Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 575–579. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45578-7 42

10. Dunlop, F., Enright, J., Jefferson, C., McCreesh, C., Prosser, P., Trimble, J.:
Expression of graph problems in a high level modelling language. In: Proceedings
of the International Workshop on Graphs and Constraints (2018)

11. Fages, J.G., Prud’Homme, C.: Making the first solution good! In: 2017 IEEE 29th
International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1073–
1077. IEEE (2017)

12. Frisch, A.M., Grum, M., Jefferson, C., Hernández, B.M., Miguel, I.: The essence
of essence. Modelling and Reformulating Constraint Satisfaction Problems, p. 73
(2005)

13. Frisch, A.M., Grum, M., Jefferson, C., Hernández, B.M., Miguel, I.: The design of
essence: a constraint language for specifying combinatorial problems. In: IJCAI,
vol. 7, pp. 80–87 (2007)

14. Frisch, A.M., Harvey, W., Jefferson, C., Mart́ınez-Hernández, B., Miguel, I.:
Essence: a constraint language for specifying combinatorial problems. Constraints
13(3), 268–306 (2008)

15. Frisch, A.M., Jefferson, C., Miguel, I.: Symmetry breaking as a prelude to implied
constraints: a constraint modelling pattern. In: ECAI, vol. 16, p. 171 (2004)

16. Frisch, A.M., Miguel, I., Walsh, T.: Symmetry and implied constraints in the steel
mill slab design problem. In: Proceedings of the CP01 Workshop on Modelling and
Problem Formulation (2001)

17. Frisch, A.M., Miguel, I., Walsh, T.: CGRASS: a system for transforming constraint
satisfaction problems. In: O’Sullivan, B. (ed.) CologNet 2002. LNCS, vol. 2627, pp.
15–30. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36607-5 2

18. Gent, I.P., et al.: Learning when to use lazy learning in constraint solving. In:
ECAI, pp. 873–878. Citeseer (2010)

https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
http://www.csplib.org/Problems/prob048
https://doi.org/10.1007/978-3-319-18008-3_8
https://doi.org/10.1007/3-540-45578-7_42
https://doi.org/10.1007/3-540-36607-5_2

Automatic Streamlining for Constrained Optimisation 383

19. Gent, I.P., Jefferson, C., Miguel, I.: Minion: a fast scalable constraint solver. In:
ECAI, vol. 141, pp. 98–102 (2006)

20. Gomes, C., Sellmann, M.: Streamlined constraint reasoning. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 274–289. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-30201-8 22

21. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

22. Kouril, M., Franco, J.: Resolution tunnels for improved SAT solver performance. In:
Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 143–157. Springer,
Heidelberg (2005). https://doi.org/10.1007/11499107 11

23. Le Bras, R., Gomes, C.P., Selman, B.: On the Erdős Discrepancy Problem. In:
O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 440–448. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10428-7 33

24. LeBras, R., Gomes, C.P., Selman, B.: Double-wheel graphs are graceful. In: IJCAI,
pp. 587–593 (2013)

25. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspectives 3, 43–58 (2016)

26. Munos, R.: From bandits to Monte-Carlo tree search: the optimistic principle
applied to optimization and planning. FTML 7(1), 1–129 (2014). https://doi.org/
10.1561/2200000038

27. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

28. Nightingale, P.: CSPLib problem 056: synchronous optical networking (SONET)
problem. http://www.csplib.org/Problems/prob056

29. Nightingale, P., Akgün, O., Gent, I.P., Jefferson, C., Miguel, I., Spracklen, P.:
Automatically improving constraint models in Savile Row. Artif. Intell. 251, 35–
61 (2017). https://doi.org/10.1016/j.artint.2017.07.001

30. Palmieri, A., Perez, G.: Objective as a feature for robust search strategies. In:
Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 328–344. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98334-9 22

31. Pesant, G.: Counting-based search for constraint optimization problems. In: Thir-
tieth AAAI Conference on Artificial Intelligence (2016)

32. Spracklen, P., Akgün, Ö., Miguel, I.: Automatic generation and selection of stream-
lined constraint models via Monte Carlo search on a model lattice. In: Hooker, J.
(ed.) CP 2018. LNCS, vol. 11008, pp. 362–372. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98334-9 24

33. Walsh, T.: CSPLib problem 013: progressive party problem. http://www.csplib.
org/Problems/prob013

34. Wang, W., Sebag, M.: Hypervolume indicator and dominance reward based multi-
objective monte-carlo tree search. Mach. Learn. 92(2–3), 403–429 (2013)

35. Wetter, J., Akgün, Ö., Miguel, I.: Automatically generating streamlined constraint
models with essence and conjure. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp.
480–496. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 34

https://doi.org/10.1007/978-3-540-30201-8_22
https://doi.org/10.1007/978-3-540-30201-8_22
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11499107_11
https://doi.org/10.1007/978-3-319-10428-7_33
https://doi.org/10.1561/2200000038
https://doi.org/10.1561/2200000038
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
http://www.csplib.org/Problems/prob056
https://doi.org/10.1016/j.artint.2017.07.001
https://doi.org/10.1007/978-3-319-98334-9_22
https://doi.org/10.1007/978-3-319-98334-9_24
https://doi.org/10.1007/978-3-319-98334-9_24
http://www.csplib.org/Problems/prob013
http://www.csplib.org/Problems/prob013
https://doi.org/10.1007/978-3-319-23219-5_34

	Automatic Streamlining for Constrained Optimisation
	1 Introduction
	2 Candidate Streamliner Generation
	3 Searching for a Streamliner Portfolio
	4 Generating Diverse Training Instances
	5 Pruning the Streamliner Portfolio
	6 Selecting from the Streamliner Portfolio
	6.1 Lexicographic Selection Methods
	6.2 UCB Streamliner Selection

	7 Experimental Setting
	8 Results
	8.1 UCB Streamliner Selection: Discussion
	8.2 Time Allocated to the Streamliner Portfolio: Discussion

	9 Conclusion and Future Work
	References

