
Constraint-Based Techniques in
Stochastic Local Search MaxSAT Solving

Andreia P. Guerreiro1, Miguel Terra-Neves1,2, Inês Lynce1, José Rui Figueira3,
and Vasco Manquinho1(B)

1 INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
{andreia,ines,vmm}@sat.inesc-id.pt

2 OutSystems, Lisbon, Portugal
miguel.neves@outsystems.com

3 CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
figueira@tecnico.ulisboa.pt

Abstract. The recent improvements in solving Maximum Satisfiability
(MaxSAT) problems has allowed the usage of MaxSAT in several appli-
cation domains. However, it has been observed that finding an optimal
solution in a reasonable amount of time remains a challenge. Moreover,
in many applications it is enough to provide a good approximation of the
optimum. Recently, new local search algorithms have been shown to be
successful in approximating the optimum in MaxSAT problems. Never-
theless, these local search algorithms fail in finding feasible solutions to
highly constrained instances. In this paper, we propose two constraint-
based techniques for improving local search MaxSAT solvers. Firstly, an
unsatisfiability-based algorithm is used to guide the local search solver
into the feasible region of the search space. Secondly, given a partial
assignment, we perform Minimal Correction Subsets (MCS) enumer-
ation in order to improve upon the best solution found by the local
search solver. Experimental results using a large set of instances from
the MaxSAT evaluation 2018 show the effectiveness of our approach.

Keywords: Maximum Satisfiability · Local search ·
Incomplete algorithms

1 Introduction

Over the last decade, a new generation of algorithms for Maximum Satisfiability
(MaxSAT) problems has been proposed [1,13,40,42,44]. These new MaxSAT
algorithms are usually based on iterative calls to a highly efficient Propositional
Satisfiability (SAT) solver. For many industrial benchmarks, the current state-of-
the-art MaxSAT algorithms are several orders of magnitude faster than branch-
and-bound MaxSAT algorithms [35]. As a result, MaxSAT has been used exten-
sively in many application domains, such as timetabling [4], fault localization in
C programs [25], and design debugging [45], among others [20].

c© Springer Nature Switzerland AG 2019
T. Schiex and S. de Givry (Eds.): CP 2019, LNCS 11802, pp. 232–250, 2019.
https://doi.org/10.1007/978-3-030-30048-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30048-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-30048-7_14

Constraint-Based Techniques in Stochastic Local Search MaxSAT Solving 233

Despite the success of the new generation of MaxSAT solvers, there is still a
wide range of large-scale applications where such solvers fail to prove optimality
within a reasonable amount of time. In fact, in some applications, time is so
crucial that it suffices to quickly find a good approximation to the optimum [48].
As a result, several incomplete MaxSAT algorithms [3,12,33,36,47] have been
proposed with the aim of finding good solutions within a limited time window.

It is well-known that stochastic local search (SLS) solvers are known to be
competitive when the problem instances are easy to satisfy. On the other hand,
SAT-based algorithms are more effective in problem instances with more con-
straints, while having more difficulties to deal with the optimization problem.

In the context of SAT solving, there is a large literature on combining SAT-
based procedures and SLS techniques (e.g. [5,6,18,34,51]). Moreover, the inte-
gration of SAT-based complete algorithms and SLS algorithms has already been
proposed for MaxSAT [28]. However, the proposed approaches for MaxSAT are
mostly similar to a portfolio of solvers running in parallel or having some pre-
defined criteria where either an SLS or a SAT solver are used. As a result, the
integration of SLS and SAT-based techniques is limited.

In this paper, we propose an effective integration of SAT-based techniques
in a SLS solver for MaxSAT. In our solver, the control of the solving process
changes from SAT-based procedures to stochastic procedures and vice-versa. At
each step, each procedure tries to build upon the information received from the
other, instead of being independent procedures. The main contributions of the
paper are as follows: (1) a new unsatisfiability-based algorithm to correct the SLS
current assignment into a feasible solution, (2) a new improvement procedure
based on Minimal Correction Subset (MCS) enumeration limited to the context
of the SLS solver, and (3) an extensive experimental evaluation that shows the
effectiveness of the newly proposed ideas.

The paper is organized as follows. Section 2 introduces the SAT and MaxSAT
problems, as well as the notion of unsatisfiable cores and MCSes. Next, Sect. 3
reviews state of the art approximation algorithms for MaxSAT based on complete
algorithms and SLS solvers. In Sect. 4, the new unsatisfiability-based procedure
for assignment correction is presented, as well as a description of the assign-
ment improvement procedure. Section 5 presents a comparison of our new solver
with the top performing solvers on the incomplete track of the 2018 MaxSAT
Evaluation. Finally, the paper concludes in Sect. 6.

2 Preliminaries

This section describes the Maximum Satisfiability (MaxSAT) problem, as well
as the notions of unsatisfiable core and Minimal Correction Subsets (MCSes).
Additional background information and definitions are also provided.

2.1 Maximum Satisfiability

A propositional formula in Conjunctive Normal Form (CNF), defined over a
set X = {x1, x2, . . . , xn} of n Boolean variables, is a conjunction of clauses,

234 A. P. Guerreiro et al.

where a clause is a disjunction of literals. A literal is either a variable xi or
its complement x̄i. A complete assignment is a function ν : X → {0, 1} that
associates each variable in X with a Boolean value. Given an assignment ν,
a literal xi (respectively x̄i) is said to be satisfied if ν(xi) = 1 (respectively
ν(xi) = 0). A clause is said to be satisfied by ν if any of its literals is satisfied.
Otherwise, it is said to be unsatisfied. A formula φ is satisfied by ν if all its clauses
are satisfied. On the other hand, if any of the clauses in φ is unsatisfied by ν,
then φ is unsatisfied. Given a CNF formula φ, the Propositional Satisfiability
(SAT) problem consists of finding a truth assignment ν such that φ is satisfied,
or prove that no assignment exist that satisfies φ.

The Maximum Satisfiability (MaxSAT) problem is an optimization version
of the SAT problem and several versions of MaxSAT can be used [35]. In the
context of this paper, we focus on the partial MaxSAT problem where clauses
in a CNF formula φ = φh ∪ φs are labeled as hard (φh) or soft (φs). The goal
of partial MaxSAT problems is to find an assignment ν that satisfies all hard
clauses in φh, while minimizing the number of unsatisfied soft clauses in φs. In
weighted partial MaxSAT problems, a positive integer weight is associated with
each soft clause and the goal is to satisfy all hard clauses, while minimizing the
total weight of unsatisfied soft clauses.

If an assignment ν satisfies all hard clauses, then we say that ν is a feasible
assignment. Otherwise, we say that ν is infeasible. In this paper, it is assumed
that the set of hard clauses φh can be satisfied, i.e. there is always a feasible
assignment for a given MaxSAT problem instance. Otherwise, the MaxSAT for-
mula would be unsatisfiable.

Throughout the paper, the set notation is used for clauses and CNF formulas.
In particular, a CNF formula is seen as a set of clauses and a clause as a set
of literals. Finally, we extend the notation of satisfiability of a clause and a set
of clauses by an assignment ν. If ci is a clause satisfied by ν, then ν(ci) = 1,
otherwise ν(ci) = 0. Let φ denote a set of clauses. If assignment ν satisfies φ,
then ν(φ) = 1, otherwise ν(φ) = 0.

Example 1. Consider the following weighted partial MaxSAT formula φ = φh ∪
φs where φh = {(x1 ∨ x2 ∨ x̄3), (x2 ∨ x3), (x̄1 ∨ x̄2 ∨ x̄3)} and φs = {((x̄1), 1),
((x̄2), 3), ((x̄3), 1)}. Note that the positive weight associated with each soft clause
denotes the cost of not satisfying the clause. In this case, the assignment ν =
{x1 = 1, x2 = 0, x3 = 1} is an optimal solution with a cost of 2, since soft clauses
(x̄1) and (x̄3) are not satisfied by ν.

2.2 Unsatisfiable Cores and Minimal Correction Subsets

Let φ be an unsatisfiable formula. A subset φC ⊆ φ is an unsatisfiable core of φ
if and only if φC is also unsatisfiable. Several techniques exist in the literature
for computing unsatisfiable cores (e.g. [15,22]) and current state of the art SAT
solvers are able to identify an unsatisfiable core of φ.

Constraint-Based Techniques in Stochastic Local Search MaxSAT Solving 235

Example 2. Consider the following CNF formula φ = {(x1 ∨ x2 ∨ x̄3), (x2 ∨
x3), (x̄1 ∨ x̄2 ∨ x̄3), (x̄1), (x̄2), (x̄3)}. One unsatisfiable core of φ would be φC =
{(x2 ∨ x3), (x̄2), (x̄3)}, since this subset of clauses of φ is unsatisfiable.

Let φh and φs be the sets of hard and soft clauses, respectively, such that φh

is satisfiable and φh∪φs is unsatisfiable. A subset C ⊆ φs is a Minimal Correction
Subset (MCS) if and only if φh ∪ (φs \ C) is satisfiable and φh ∪ (φs \ C) ∪ {c}
is unsatisfiable for all c ∈ C.

Observe that MCS algorithms [8,19,39,41] easily provide an approximation
to the optimal solution of a MaxSAT instance. An MCS algorithm provides an
assignment ν that satisfies φh ∪ (φs \C). Let f(C) denote the sum of the weights
of the clauses in C. Since ν satisfies all hard clauses, its cost will be f(C), thus
providing an approximation to the optimum of the MaxSAT instance. In fact,
solving a MaxSAT instance can be reduced to finding an MCS with minimum
value of f(C) [9].

Example 3. Consider again the weighted partial MaxSAT formula from Exam-
ple 1, where φh = {(x1 ∨ x2 ∨ x̄3), (x2 ∨ x3), (x̄1 ∨ x̄2 ∨ x̄3)} and φs = {((x̄1), 1),
((x̄2), 3), ((x̄3), 1)}. This formula has two MCSs: C1 = {(x̄1), (x̄3)} and C2 =
{(x̄2)}. Observe that the cost of C1 is 2, while the cost of C2 is 3. Actually,
an assignment that satisfies φh ∪ (φs \ C1) is an optimal assignment of φ since
C1 is the lowest cost MCS. On the other hand, an assignment that satisfies
φh ∪ (φs \ C2) is an approximation on the optimum of φ.

3 Algorithms to Approximate MaxSAT

This section briefly reviews algorithms that can approximate the optimal solu-
tion of MaxSAT instances. First, we refer to complete SAT-based algorithms for
MaxSAT that can be adapted to provide an approximate solution. Next, stochas-
tic approaches are presented with focus on stochastic local search algorithms.

3.1 SAT-Based Algorithms

Current state-of-the-art complete algorithms for MaxSAT rely on iterative calls
to a SAT solver. One possible approach is to use the linear Sat-Unsat algorithm
that performs a linear search on the total weight of unsatisfied soft clauses.
These algorithms start by solving the hard clauses using a SAT solver. Next,
whenever a solution is found, a new pseudo-Boolean constraint1 is added, such
that solutions with a higher or equal cost are excluded. The algorithm stops
when the SAT solver returns unsatisfiable. Hence, the last solution found is an
optimal solution to the MaxSAT formula.

In large instances, the performance of these algorithms starts to degrade due
to large weights in soft clauses, or when the number of soft clauses is very large.
Recently, incomplete algorithms have been proposed where only a subset of soft

1 In the case of partial MaxSAT instances, a cardinality constraint is used.

236 A. P. Guerreiro et al.

clauses is considered at each iteration, or the weights are approximated [14,27] to
allow a more effective encoding of the Pseudo-Boolean or cardinality constraints.

While linear Sat-Unsat algorithms perform the search refining an upper
bound on the optimal solutions, linear Unsat-Sat MaxSAT algorithms iteratively
refine a lower bound [2,21,38]. In unsatisfiability-based MaxSAT algorithms, the
lower bound is refined by iteratively finding unsatisfiable cores and the first sat-
isfiable SAT call returns an optimal solution to the MaxSAT instance.

Unsatisfiability-based MaxSAT algorithms can also provide upper bounds [1,
3,43] by applying a stratified approach, i.e. only a subset of soft clauses with
higher weights are considered. The remaining soft clauses are added iteratively
to the solver, after the subproblem considering higher weights has been solved.
Observe that any MaxSAT algorithm that maintains an upper bound on the
optimum can provide an approximate solution. Nevertheless, in many problem
instances, it is hard to quickly find a good quality approximation to the optimum.

3.2 Stochastic Algorithms

Stochastic local search (SLS) algorithms for SAT and MaxSAT have been devel-
oped in the past [23,46,50]. These algorithms are inherently incomplete, since
they are unable to prove unsatisfiability of SAT problems or prove that an assign-
ment is an optimal solution to a MaxSAT instance. Nevertheless, for randomly
generated instances, SLS algorithms have been shown to be very effective at find-
ing very good approximations to the optimal solution. In fact, SLS algorithms
have been used to quickly find a tight upper bound to MaxSAT instances so that
a subsequent branch and bound algorithm could be more effective in pruning
the search space [29].

Given a MaxSAT instance φ = φh ∪ φs, SLS algorithms start by defining a
random assignment ν to all problem variables. While ν does not satisfy all hard
clauses φh, an unsatisfied hard clause ci ∈ φh is selected and ν is updated by
flipping the value of a variable in ci. Hence, ci becomes satisfied by ν. Next, if
ν satisfies all hard clauses, then the algorithm focus on minimizing the weight
of unsatisfied soft clauses φs by flipping assignments in ν. There is a plethora of
heuristics to implement this generic SLS approach. Recently, new SLS algorithms
and techniques have been proposed such as CCLS [37], CCEHC [36], Ramp [17],
and maxroster [47], among others [11,12,33]. In the MaxSAT Evaluation 2018,
SATLike [33] was one of the best performing solvers in the incomplete solver
track. This was particularly surprising, since no randomly generated instances
were selected for the MaxSAT evaluation [7].

Algorithm 1 presents the pseudo-code for SATLike [33]. This algorithm main-
tains a weight associated to each hard clause in φh and each soft clause in φs.
Initially, hard clauses have weight 1 and soft clauses are associated with its
weight in the MaxSAT instance (line 1). After using a procedure based on unit
propagation to compute an initial assignment to ν (line 2), the algorithm per-
forms several iterations until a given cutoff limit is reached. At each iteration,
if ν satisfies all hard clauses and improves upon the best previous assignment,
then ν is saved (lines 5–6). Let score(xi) denote the weight increase in satisfied

Constraint-Based Techniques in Stochastic Local Search MaxSAT Solving 237

Algorithm 1: SATLike Algorithm
Input: φ = φh ∪ φs, cutoff
Output: satisfying assignment to φ

1 InitializeClauseWeights(φh, φs)
2 ν ← InitializeAssignment(V ars(φ))
3 νbest ← ∅
4 while (#iterations < cutoff) do
5 if ((ν(φh) = 1) ∧ (Cost(φs, ν) < Cost(φs, νbest))) then
6 νbest ← ν // A better solution is found

7 D ← {xi ∈ V ars(φ)|score(xi) > 0}
8 if (D �= ∅)) then
9 xs ← SelectBMS(D)

10 else
11 UpdateClauseWeights(φh, φs, ν)
12 if (ν(φh) = 1) then
13 cs ← RandomSelect({ci : ci ∈ φs ∧ ν(ci) = 0})

14 else
15 cs ← RandomSelect({ci : ci ∈ φh ∧ ν(ci) = 0})

16 xs ← SelectMaxScore(V ars(cs))

17 ν ← Flip(ν, xs) // Flip value of xs in ν

18 return (νbest) // Returns the best assignment found

clauses resulting from flipping xi. If there are variables that would improve ν
with respect to the current clause weight (i.e. variables with positive score), then
a variable is selected to be flipped according to a best from multiple selections
(BMS) strategy (line 9)2. Otherwise, the algorithm is at a local minima and the
current clause weights are updated according to the strategy defined in [33] (line
11). Next, if ν satisfies all the hard clauses, then an unsatisfied soft clause is
selected (line 13). Otherwise, an unsatisfied hard clause is selected instead (line
15). The variable to be flipped is the one with the highest score in the selected
clause (line 16). Finally, the best solution found is returned when the cutoff limit
is reached (line 18). The cutoff limit depends on a predefined maximum number
of iterations without improvement. That is, the algorithm ends when it is unable
to find a satisfiable assignment, or when it fails to improve upon the best feasible
solution found, within a given number of iterations (in the implementation the
limit is of 107 iterations). For this purpose, the iteration counter is set to zero
whenever νbest is updated.

4 Using SAT Techniques in Local Search

The idea of integrating SAT techniques in SLS algorithms for MaxSAT is not
new. For example, solver MiniWalk [28] used SAT solver MiniSat [16] to guide the
SLS algorithm WalkSAT [46]. In this case, the SLS algorithm and the SAT solver
2 We refer to the literature for further details [10,33].

238 A. P. Guerreiro et al.

were run in parallel using a shared memory array such that the SLS algorithm
would not flip a variable xi if it would result in a complement assignment to the
assignment in the SAT solver. The goal is to use the SAT solver to deal with
the hard clauses, so that the SLS algorithm can focus on the optimization of the
soft clauses.

Nevertheless, despite some exchange of information in MiniWalk, the SLS
algorithm and the SAT solver are run in parallel and mostly in an indepen-
dent fashion, similar to a parallel portfolio solver. In this paper, the goal is
to have a SLS algorithm where SAT-based techniques are effectively used to
correct and improve the current assignment in the SLS algorithm. Although cor-
rection procedures have already been proposed in evolutionary algorithms for
multi-objective optimization [24], this paper proposes a novel procedure where
unsatisfiable cores are used to identify sets of variable assignments that need to
be changed.

Let SAT(φ,A, budget) denote a call to a SAT solver where φ is a CNF for-
mula, A is a set of literals considered as assumptions, and budget is a positive
value. A SAT solver call returns a triple (st, φC , ν) where st denotes the solver
return status (SAT, UNSAT or UNRES). If the solver returns SAT, then ν contains a
satisfiable assignment to φ. On the other hand, if the solver returns UNSAT, then
φC contains an unsatisfiable core. Note that φ might be satisfiable, but the solver
might still return UNSAT due to the set of assumptions A. This occurs when there
are no models of φ where all assumption literals in A are satisfied. Therefore,
φC might contain a subset of clauses from φ and literals from A. Finally, the
solver returns UNRES if during the SAT call the number of conflicts reaches the
defined budget. Observe that if budget is set to +∞, then the SAT call does not
return UNRES. However, in our context, a conflict limit will be set to avoid the
solver to take too much time in a SAT call.

One of the shortcomings of SLS algorithms is that these solvers have difficul-
ties in dealing with highly constrained formulas. Therefore, it might be the case
that the SLS algorithm is unable to satisfy φh or gets stuck in some local min-
ima. In these cases, using SAT-based techniques to find a satisfiable assignment
to φh would be beneficial.

4.1 Assignment Correction

Consider the case when the SLS algorithm is unable to change from an unsat-
isfiable assignment ν into a better assignment. Algorithm 2 describes our
unsatisfiability-based algorithm which performs a correction to ν in order to
guide the SLS algorithm to the feasible region of the search space.

First, we start by building a set of assumption literals A corresponding to
the assignment ν (lines 1–3). Next, a SAT call on the set of hard clauses φh is
made (line 4). Clearly, if ν is not feasible, then this call returns UNSAT and φC

contains an unsatisfiable core. Therefore, while a satisfiable assignment is not
found, the assumption literals that occur in φC are deemed responsible for the
UNSAT status, removed from A (line 7) and a new SAT call is made (line 8).
Observe that a conflict limit is defined for the correction procedure. Hence, after

Constraint-Based Techniques in Stochastic Local Search MaxSAT Solving 239

Algorithm 2: Assignment Correction Algorithm
Input: φ = φh ∪ φs, ν, confLimit
Output: satisfying assignment to φ

1 A ← ∅
2 foreach (xi ∈ V ars(φ)) do
3 A ← A ∪ {(ν(xi) = 1 ? xi : x̄i)}
4 (st, φC , νnew) ← SAT(φh, A, confLimit)
5 confBudget ← confLimit − satSolverConflicts
6 while (st �= SAT ∧ confBudget > 0) do
7 A ← {lj : lj ∈ A ∧ lj �∈ φC} // remove literals in unsat core

8 (st, φC , νnew) ← SAT(φh, A, confBudget)
9 confBudget ← confBudget − satSolverConflicts

10 if (st �= SAT) then
11 confBudget ← confLimit/10
12 while (st �= SAT ∧ |A| > 0) do
13 A ← ChooseRandom(A, 0.5)
14 (st, φC , νnew) ← SAT(φh, A, confBudget)

15 νnew ← Improve(φ, A, νnew, confLimit) // MCS Enumeration

16 return (νnew) // Returns the best assignment found

each SAT call, the conflict budget is reduced by the number of conflicts in the
last SAT call.

Note that if φh is satisfiable, then a satisfiable assignment is eventually found.
However, since the number of conflicts is limited at each SAT call, it is possible
that the conflict budget is not enough to find a satisfiable assignment. If this is
the case, then our algorithm applies a similar procedure with a more aggressive
strategy (lines 12–14) where at each iteration 50% of the literals in A are removed
(line 13). Since the correction procedure only depends on the hard clauses, there
is no guarantee regarding its quality. As a result, we also apply a SAT-based
improvement procedure (line 15) detailed in Algorithm 3.

4.2 Assignment Improvement

Let φ = φh ∪ φs be a MaxSAT formula and MCS(φh, φs, budget) denote a call to
an MCS algorithm where budget is a positive value. An MCS solver call returns
a pair (st, ν) where st denotes the return status. If the return status st is SAT,
then ν denotes an assignment that satisfies φh ∪ (φs \ C) where C is an MCS
of φ. Therefore, ν provides an approximation to the optimal solution of φ (see
Sect. 2.2). Otherwise, either st is UNSAT if φh is not satisfiable or st is UNRES if
the budget conflict limit is reached.

Algorithm 3 describes our improvement algorithm. Given a MaxSAT instance
φ, a set of assumptions A, a satisfiable assignment ν, and the conflict budget
ConfBudget, the goal of this algorithm is to find a better quality solution for φ
through an MCS enumeration procedure.

240 A. P. Guerreiro et al.

Algorithm 3: Assignment Improvement Algorithm using MCS
enumeration
Input: φ = φh ∪ φs, A, ν, confBudget
Output: satisfying assignment to φ

1 νnew ← ν
2 φw ← φh ∪ {(lj) : lj ∈ A}
3 while (confBudget > 0) do
4 (st, ν) ← MCS(φw, φs, confBudget)
5 if ((st = SAT) ∧ (Cost(φs, ν) < Cost(φs, νnew))) then
6 νnew ← ν

7 if (st = UNSAT) then
8 return (νnew) // All MCSs found

9 φw ← φw∪ BlockingClause(φw, φs, ν)
10 confBudget ← confBudget − mcsSolverConflicts

11 return (νnew) // Returns the best assignment found

Algorithm 4: Assignment Improvement Algorithm using Linear Sat-Unsat
Input: φ = φh ∪ φs, A, ν, confBudget
Output: satisfying assignment to φ

1 φw ← φh ∪ {(lj) : lj ∈ A}
2 (st, νnew) ← LinearSat-Unsat(φw, φs, confBudget)
3 if ((st = SAT) ∧ (Cost(φs, ν) < Cost(φs, νnew))) then
4 return νnew // Linear Sat-Unsat found a better solution

5 else
6 return ν

The algorithm starts by building a working formula φw from the set of hard
clauses φh and the set of assumptions A (line 2). Next, the algorithm iterates
over all MCSes of φ, constrained to the set of assumptions A and returns the
best assignment found (lines 3–10). Each time a new MCS is found, a new clause
is added to φw to prevent the enumeration of the same MCS later on. This new
clause (also known as blocking clause) forces at least one of the current variable
assignments to have the opposite value (line 9). Finally, observe that, at each
iteration, the conflict budget decreases depending on the number of conflicts
used in the MCS algorithm.

Notice that the set of literals A restricts the MCS enumeration procedure. As
a result, Algorithm 3 performs a localized MCS enumeration. Moreover, there is
no guarantee that the MCSes found by this procedure are MCSes of the original
MaxSAT formula φ, since the literals in A must all be satisfied in each MCS
call. The main idea is to quickly perform a localized improvement in order to
find a better solution than ν.

Many different improvement procedures can be devised, including the usage
of complete methods. Algorithm 4 is an alternative to the improvement algo-
rithm where the MCS enumeration is replaced with a call to a Linear Sat-Unsat

Constraint-Based Techniques in Stochastic Local Search MaxSAT Solving 241

algorithm (LSU). Observe that the call to the LSU algorithm is limited to a num-
ber of conflicts (line 2). Additionally, all literals in A are forced to be satisfied.
Hence, the LSU call is also restricted to a localized region of the search space. If
the LSU algorithm finds a feasible assignment, then st equals SAT. In that case,
we check whether the assignment found by the LSU algorithm improves upon
the previous solution ν and the best solution is returned. Finally, we note that
any complete MaxSAT algorithm that is able to produce an approximation to
the optimal solution (see Sect. 3.1) could be used instead of LSU.

4.3 Solvers

Two new solvers were developed: sls-mcs and sls-lsu. In sls-mcs, the
SATLike solver (Algorithm 1)3 is extended with the assignment correction algo-
rithm (Algorithm 2) and the assignment improvement algorithm based on MCS
enumeration (Algorithm 3). The difference from sls-mcs to sls-lsu is on the
assignment improvement algorithm. In sls-lsu, the linear sat-unsat assignment
improvement algorithm (Algorithm 4) is used.

Both sls-mcs and sls-lsu use the Glucose SAT solver (version 4.1) on the
assignment correction procedure. Moreover, the CLD [39] algorithm is used as
the MCS algorithm in sls-mcs. However, for weighted instances, the stratified
CLD algorithm [49] is used. In sls-lsu, the linear sat-unsat algorithm is the
one available at the open-wbo open source MaxSAT solver. In both sls-mcs
and sls-lsu, the assignment correction/improvement algorithm is called just
before line 5 in Algorithm 1 if SATlike has reached half of the maximum number
of iterations without improvement. In such a case, the correction algorithm is
called if the current assignment ν does not satisfy all hard clauses, otherwise the
improvement algorithm is directly called with approximately half of the literals in
the current assignment ν as assumptions. These assumption literals are randomly
chosen from ν using the same procedure as in line 13 in Algorithm 2. Note that
the iteration counter in Algorithm 1 is set to zero if νbest is updated after the
call to the correction/improvement algorithm.

5 Experimental Results

This section evaluates the effectiveness of the ideas proposed in the paper. The
SATLike solver serves as our baseline solver. Nevertheless, we also compare
sls-mcs and sls-lsu against the best performing solvers at the incomplete
track of the last MaxSAT evaluation. No complete solver is included in this
comparison because our preliminary results show that running LSU or enumer-
ating MCSes can be hard for several of the instances used, which led to a poor
performance. The solvers used in our experimental evaluation are as follows:

– SATLike: Stochastic local search solver described in Algorithm 1 [33].
3 The source code of SATLike is publicly available at the 2018 MaxSAT evaluation

https://maxsat-evaluations.github.io/2018/descriptions.html.

https://maxsat-evaluations.github.io/2018/descriptions.html

242 A. P. Guerreiro et al.

– SATLike-c: Version of SATLike submitted to the 2018 MaxSAT Evaluation.
Initially, the SATLike algorithm is applied. If during the first 50 s, SATLike
does not find a feasible solution, then the Linear Sat-Unsat complete algo-
rithm from the open-wbo solver is used [32].

– LinSBPS: Linear sat-unsat algorithm with solution phase saving. In weighted
instances, the algorithm starts by building a MaxSAT formula where all soft
clause weights are divided by a large constant β. After finding an optimal
solution for this formula, a new formula is build where the weights are divided
by a new constant β′ such that β′ < β. The process is repeated until the
original formula is solved (β = 1) [14].

– maxroster: This solver starts by applying the stochastic local search solver
Ramp [17] for 6 s. Next, a complete MaxSAT solver is applied. MSU3 is used
for partial MaxSAT, while OLL is used for weighted instances [47].

– Open-WBO-Inc: Another two-stage solver that starts by applying an incom-
plete algorithm, followed by the complete linear sat-unsat procedure of the
open-wbo solver. For unweighted instances, the incomplete solver can be
based on MCSes (Open-WBO-Inc-MCS) or based on bit vector optimization
(Open-WBO-Inc-OBV). For weighted instances, the incomplete solver can be
based on modifications on the weights of soft clauses and clustering (Open-
-WBO-Inc-Cluster) or partitioning of soft clauses (Open-WBO-Inc-BMO) [26].

All experimental results were obtained on a server with processor Intel(R)
Xeon(R) CPU E5-2630 v2 @ 2.60GHz with 64GB of memory. The benchmark set
corresponds to the one used in the 2018 MaxSAT evaluation for the incomplete
track4. The benchmark set contains 153 partial MaxSAT problem instances,
and 172 weighted partial MaxSAT problem instances. As in the 2018 MaxSAT
competition, two time limits were considered: 60 s and 300 s. For each time limit,
each solver was executed 7 times with each instance. Whenever satlike-c,
satlike, sls-mcs, and sls-slu algorithms reach the cutoff stopping criteria
before the time limit runs out, the algorithm is called again, and the best solution
found among all calls is returned. The conflict limits of the correction and the
improvement algorithms in sls-mcs and sls-lsu were set to 105.

5.1 Partial MaxSAT

Table 1 shows the number of instances for which the final solution of sls-mcs
and sls-lsu solvers were produced by the local search part, and how many were
produced by the correction and the improvement part. Tables 2 and 3 summa-
rize the pairwise comparisons between solvers for the 60 and 300-s time limit
scenarios, respectively. Two variants of the MCS-based local search solver are
considered, one as described in Sect. 4.3 (sls-mcs), and another (sls-mcs2) that
does not consider the assumptions A as hard clauses in the the MCS enumeration
procedure, i.e., it implements Algorithm 3 with line 2 replaced by φw ← φh. Each
one of the new solvers (sls-mcs, sls-mcs2 and sls-lsu) is compared against

4 Instances available at https://maxsat-evaluations.github.io/2018/.

https://maxsat-evaluations.github.io/2018/

Constraint-Based Techniques in Stochastic Local Search MaxSAT Solving 243

Table 1. Number of instances for which the best solution was produced by the local
search (sls), and by the correction/improvement algorithm (mcs/lsu).

Time limit sls-mcs sls-lsu

sls mcs sls lsu

60 s 62 53 65 49

300 s 48 86 50 84

Table 2. Partial MaxSAT. Versus table (row wins, ties, column wins). Time limit 60 s.

sls-mcs sls-mcs2 sls-lsu

satlike (19,71,63) (24,88,41) (23,78,52)

satlike-c (40,70,43) (52,75,26) (50,75,28)

LinSBPS (52,23,78) (57,23,73) (54,24,75)

maxroster (39,36,78) (44,36,73) (40,37,76)

Open-WBO-Inc-mcs (43,20,90) (45,22,86) (47,19,87)

Open-WBO-Inc-obv (50,19,84) (51,20,82) (51,21,81)

sls-mcs – (42,90,21) (29,113,11)

sls-mcs2 (21,90,42) – (23,97,33)

sls-lsu (11,113,29) (33,97,23) –

every other solver considering the median value obtained for each instance. Each
table cell contains a triple, (b, e, w), that represents the number of instances for
which the solver in that row found a better (b), equal (e), or worse (w) quality
solution than the solver in that column. Note that when both solvers are unable
to find a feasible assignment, that fact is counted as a tie (e).

Table 1 shows that the correction and the improvement algorithms contribute
with almost the same amount of final solutions as the local search part in the
60-s scenario, and almost twice as much in the 300-s scenario. Compared to one
another, the mcs and the slu-based improvement algorithms contribute with
nearly the same amount of final solutions to sls-mcs and sls-lsu solvers,
respectively. Tables 2 and 3 show that these solvers found equally good solu-
tions for about two thirds of the instances, while for most of the remaining ones,
sls-mcs found better solutions than sls-lsu. In comparison to the other solvers,
the number of times sls-mcs outperformed the other solvers was always higher
than the number of times sls-lsu did. However, compared to most solvers in
the 60-s scenario, the difference is very small - it is of only 1 to 3 instances. This
means that, for most of the instances for which sls-mcs finds a better solution
than sls-lsu, either sls-lsu provides a solution that is also better than the

244 A. P. Guerreiro et al.

Table 3. Partial MaxSAT. Versus table (row wins, ties, column wins). Time limit 300 s.

sls-mcs sls-mcs2 sls-lsu

satlike (23,69,61) (29,64,60) (30,69,54)

satlike-c (48,68,37) (50,66,37) (62,69,22)

LinSBPS (53,23,77) (46,34,73) (56,25,72)

maxroster (58,29,66) (60,34,59) (66,30,57)

Open-WBO-Inc-mcs (31,17,105) (27,21,105) (42,18,93)

Open-WBO-Inc-obv (35,17,101) (33,21,99) (44,20,89)

sls-mcs – (43,76,34) (40,106,7)

sls-mcs2 (34,76,43) – (51,79,23)

sls-lsu (7,106,40) (23,79,51) –

solution found by other solvers, or the solution found by sls-mcs is still not
good enough.

The sls-mcs solver clearly improves upon satlike, as it obtained better
quality solutions in about 60 instances in both 60 and 300-s scenarios and was
worse than satlike in less than 24 instances. Of those 60 instances, satlike was
unable to find a feasible solution in about 20 and 30 of them, for the 60 and the
300-s scenario, respectively. This means that not only the correction algorithm
was able to help the local search algorithm reach the feasible region, but also
the improvement algorithm helped finding better feasible solutions. Compared
to satlike-c, sls-mcs is competitive in the 60-s scenario, and is slightly worse
in the 300-s scenario. This is not surprising as in the cases where satlike cannot
find a feasible solution in the first 48 s, the additional 4 min are fully used by the
complete solver. Comparing the two MCS-based local search solvers, sls-mcs
had a better performance than sls-mcs2.

Comparing to any other solver in the 60-s scenario, sls-mcs and sls-lsu
outperformed all of them. Apart from maxroster, that becomes more competi-
tive, and satlike-c, this remains true for the 300-s scenario.

Overall, the results show that both the correction and the improvement algo-
rithms are useful to the local search algorithm. The former plays an important
role for highly constrained problems, for which a feasible solution is difficult
to find through local search, and the latter can improve even further upon the
solution found.

5.2 Weighted Partial MaxSAT

As the MCS-based local search solver achieved better results for the partial
MaxSAT problem than the one based on LSU, only the former was tested for the
weighted partial MaxSAT problem. In this scenario, a stratified MCS algorithm is
used to enumerate MCSes, where the step of partitioning the set of soft clauses

Constraint-Based Techniques in Stochastic Local Search MaxSAT Solving 245

Table 4. Number of instances of WPMS for which the best solution was produced by
the local search (sls), and by the correction/improvement algorithm (mcs/mcs2).

Time limit sls-mcs sls-mcs2

sls mcs sls mcs2

60 s 72 70 54 88

300 s 59 93 44 110

Table 5. Weighted partial MaxSAT. Versus table (row wins, ties, column wins). Time
limit 60 s.

sls-mcs sls-mcs2

satlike (31,91,50) (27,66,79)

satlike-c (52,75,45) (40,52,80)

LinSBPS (108,9,55) (104,13,55)

maxroster (91,23,58) (77,23,72)

Open-WBO-Inc-BMO (99,10,63) (89,17,66)

Open-WBO-Inc-cluster (70,10,92) (41,15,116)

sls-mcs – (27,79,66)

sls-mcs2 (66,79,27) –

is performed only once at the beginning. Tables 4, 5 and 6, are analogous to
Tables 1, 2 and 3, respectively.

As in the partial MaxSAT problem, the correction and improvement algo-
rithms contribute directly to solutions reported by the solver(s). They are respon-
sible for at least half, and up to two thirds, of the solutions reported by the
solvers (see Table 4). Solvers sls-mcs and sls-mcs2 had similar performance in
about half of the instances in the 60-s scenario, and in about one third of the
instances in the 300-s scenario (see Tables 5 and 6). Moreover, sls-mcs2 found
better solutions than sls-mcs in about two thirds of the remaining instances
in both scenario. The correction/improvement algorithms in sls-mcs work in
a more restricted search space than in sls-mcs2 because they start with an
already defined partial assignment (through the assumptions). This is advanta-
geous when SATlike’s current assignment is reasonably good, but when SATlike
does not perform so well (in the weighted scenario), it seems more advantageous
not to consider its current assignment (as in sls-mcs2).

Compared to satlike, and despite sls-mcs performing better in the 60-s
scenario, contrary to what was expected its performance decayed in the 300-s
scenario. Conversely, sls-mcs2 performed much better than satlike, and even

246 A. P. Guerreiro et al.

Table 6. Weighted partial MaxSAT. Versus table (row wins, ties, column wins). Time
limit 300 s.

sls-mcs sls-mcs2

satlike (70,40,62) (51,32,89)

satlike-c (90,32,50) (62,24,86)

LinSBPS (111,12,49) (98,19,55)

maxroster (97,19,56) (81,28,63)

Open-WBO-Inc-BMO (102,8,62) (85,16,71)

Open-WBO-Inc-cluster (68,9,95) (37,16,119)

sls-mcs – (36,46,90)

sls-mcs2 (90,46,36) –

better than satlike-c. Compared to the other solvers in the two time-limit
scenarios, sls-mcs showed a weaker performance, except when compared to
Open-WBO-Inc-cluster. On the other hand, sls-mcs2 had, in general, a better
performance but still only outperforms Open-WBO-Inc-cluster.

Overall, sls-mcs has a poor performance, particularly against satlike. On
the other hand, sls-mcs2 showed a performance superior to sls-mcs, and was
more competitive to the remaining solvers. This contrast may be indicative that
the local search part is being too biased towards some regions of the search space,
and that may be restricting too much the search space of the improvement algo-
rithm after the assignment correction step. The inferior performance of satlike
and satlike-c in the 2018 MaxSAT evaluation for weighted MaxSAT problem
instances reinforces the conjecture. Moreover, sls-mcs does not make full use of
stratification, as it does not take into account that, by forcing the assumption to
be satisfied, some of the soft clauses are also satisfied. Thus, considering only the
remaining soft clauses in the stratification process should lead to better results.

6 Conclusions and Future Work

In this paper, we propose the integration of SAT-based algorithms into a state
of the art SLS solver for MaxSAT, where the solving process changes iteratively
between the SLS and SAT-based procedures. A novel algorithm based on the
identification of unsatisfiable cores is used for assignment correction of the SLS
procedure. As a result, the SLS solver is guided into the feasible area of the
search space, thus improving the search process in the SLS solver. Moreover,
assignment improvement procedures are also devised and integrated into the
SLS solver. Experimental results show the effectiveness of our approach, as the
new incomplete MaxSAT solver is able to quickly find better approximations
for a larger number of problem instances than other state of the art incomplete
MaxSAT solvers.

For future work, we plan to extend the usage of unsatisfiable cores in SLS
solvers, since other procedures can be devised where the unsatisfiable cores would

Constraint-Based Techniques in Stochastic Local Search MaxSAT Solving 247

guide the SLS algorithm. Furthermore, a more dynamic interaction between the
SLS procedure and the SAT-based procedure should be tried. Finally, current
results show that SLS algorithms for weighted MaxSAT can be greatly improved.
Currently, SLS solvers still spend many iterations trying to satisfy the hard
clauses. However, a tighter integration of SAT-based procedures would enable
the SLS algorithm to focus on the optimization part of the problem.

Acknowledgments. This work was supported by national funds through
FCT with references UID/CEC/50021/2019, PTDC/CCI-COM/31198/2017 and
DSAIPA/AI/0044/2018.

References

1. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving WPM2 for (Weighted)
partial MaxSAT. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 117–132.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0 12

2. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (Weighted) partial MaxSAT through
satisfiability testing. In: Kullmann [30], pp. 427–440

3. Ansótegui, C., Gabàs, J.: WPM3: an (in)complete algorithm for weighted partial
maxsat. Artif. Intell. 250, 37–57 (2017)

4. Aśın, R., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT and
MaxSAT. Ann. Oper. Res. 218(1), 71–91 (2014)

5. Audemard, G., Lagniez, J.-M., Mazure, B., Säıs, L.: Boosting local search thanks to
cdcl. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp.
474–488. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16242-
8 34

6. Audemard, G., Simon, L.: GUNSAT: a greedy local search algorithm for unsatis-
fiability. In: Proceedings of the 20th International Joint Conference on Artificial
Intelligence, pp. 2256–2261 (2007)

7. Bacchus, F., Järvisalo, M.J., Martins, R., et al.: MaxSAT evaluation 2018 (2018)
8. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints

using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL
2005. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-30557-6 14

9. Birnbaum, E., Lozinskii, E.: Consistent subsets of inconsistent systems: structure
and behaviour. J. Exp. Theor. Artif. Intell. 15(1), 25–46 (2003)

10. Cai, S.: Balance between complexity and quality: local search for minimum ver-
tex cover in massive graphs. In: Twenty-Fourth International Joint Conference on
Artificial Intelligence (2015)

11. Cai, S., Luo, C., Thornton, J., Su, K.: Tailoring local search for partial maxsat. In:
Brodley, C.E., Stone, P. (eds.) Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, Québec City, Québec, Canada, 27–31 July 2014, pp. 2623–
2629. AAAI Press (2014)

12. Cai, S., Luo, C., Zhang, H.: From decimation to local search and back: a new app-
roach to maxsat. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–
25 August 2017, pp. 571–577 (2017). ijcai.org

https://doi.org/10.1007/978-3-642-40627-0_12
https://doi.org/10.1007/978-3-642-16242-8_34
https://doi.org/10.1007/978-3-642-16242-8_34
https://doi.org/10.1007/978-3-540-30557-6_14
https://doi.org/10.1007/978-3-540-30557-6_14
http://www.ijcai.org

248 A. P. Guerreiro et al.

13. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In:
Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5 13

14. Demirovic, E., Stuckey, P.J.: LinSBPS. MaxSAT Evaluation 2018: Solver and
Benchmark Descriptions, volume B-2018-2 of Department of Computer Science
Series of Publications B, University of Helsinki, pp. 8–9 (2018)

15. Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfi-
able core extraction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121,
pp. 36–41. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 5

16. Een, N.: MiniSat: a sat solver with conflict-clause minimization. In: Proceedings
SAT-05: 8th International Conference on Theory and Applications of Satisfiability
Testing, pp. 502–518 (2005)

17. Fan, Y., Ma, Z., Su, K., Sattar, A., Li, C.: Ramp: a local search solver based on
make-positive variables. MaxSAT Evaluation (2016)

18. Fang, L., Hsiao, M.S.: A new hybrid solution to boost SAT solver performance. In:
Design, Automation and Test in Europe Conference, pp. 1307–1313 (2007)

19. Felfernig, A., Schubert, M., Zehentner, C.: An efficient diagnosis algorithm for
inconsistent constraint sets. Artif. Intell. Eng. Des. Anal. Manuf. 26(1), 53–62
(2012)

20. Feng, Y., Bastani, O., Martins, R., Dillig, I., Anand, S.: Automated synthesis of
semantic malware signatures using maximum satisfiability. In: 24th Annual Net-
work and Distributed System Security Symposium, NDSS 2017, San Diego, Cali-
fornia, USA, 26 February–1 March 2017. The Internet Society (2017)

21. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006).
https://doi.org/10.1007/11814948 25

22. Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF for-
mulas. In: Conference and Exposition on Design, Automation and Test in Europe,
pp. 10886–10891 (2003)

23. Gu, J.: Efficient local search for very large-scale satisfiability problems. ACM
SIGART Bull. 3(1), 8–12 (1992)

24. Henard, C., Papadakis, M., Harman, M., Traon, Y.L.: Combining multi-objective
search and constraint solving for configuring large software product lines. In: Inter-
national Conference on Software Engineering, pp. 517–528 (2015)

25. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: Programming Language Design and Implementation, pp. 437–
446. ACM (2011)

26. Joshi, S., Kumar, P., Manquinho, V., Martins, R., Nadel, A., Rao, S.: Open-WBO-
Inc in MaxSAT evaluation 2018. MaxSAT Evaluation 2018: Solver and Benchmark
Descriptions, volume B-2018-2 of Department of Computer Science Series of Pub-
lications B, University of Helsinki, pp. 16–17 (2018)

27. Joshi, S., Kumar, P., Martins, R., Rao, S.: Approximation strategies for incomplete
MaxSAT. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 219–228. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98334-9 15

28. Kroc, L., Sabharwal, A., Gomes, C.P., Selman, B.: Integrating systematic and local
search paradigms: a new strategy for MaxSAT. In: Boutilier, C. (ed.) IJCAI 2009,
Proceedings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, 11–17 July 2009, pp. 544–551 (2009)

29. Kugel, A.: akmaxsat and akmaxsat ls solver description. Technical report, MaxSAT
Evaluation 2012 Solver Descriptions (2012)

https://doi.org/10.1007/978-3-642-39071-5_13
https://doi.org/10.1007/11814948_5
https://doi.org/10.1007/11814948_25
https://doi.org/10.1007/978-3-319-98334-9_15

Constraint-Based Techniques in Stochastic Local Search MaxSAT Solving 249

30. Kullmann, O. (ed.): International Conference on Theory and Applications ofSat-
isfiability Testing, LNCS, vol. 5584. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02777-2

31. Lang, J. (ed.): Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI 2018, 13–19 July 2018, Stockholm, Sweden (2018).
ijcai.org

32. Lei, Z., Cai, S.: SATlike-c. MaxSAT Evaluation 2018: Solver and Benchmark
Descriptions, volume B-2018-2 of Department of Computer Science Series of Pub-
lications B, University of Helsinki, pp. 24–25 (2018)

33. Lei, Z., Cai, S.: Solving (weighted) partial maxsat by dynamic local search for SAT.
In: Lang [33], pp. 1346–1352

34. Letombe, F., Marques-Silva, J.: Hybrid incremental algorithms for booleansat-
isfiability. Int. J. Artif. Intell. Tools 21(6) (2012). https://doi.org/10.1142/
S021821301250025X

35. Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of Satis-
fiability, pp. 613–631. IOS Press (2009)

36. Luo, C., Cai, S., Su, K., Huang, W.: CCEHC: an efficient local search algorithm
for weighted partial maximum satisfiability. Artif. Intell. 243, 26–44 (2017)

37. Luo, C., Cai, S., Wu, W., Jie, Z., Su, K.: CCLS: an efficient local search algorithm
for weighted maximum satisfiability. IEEE Trans. Computers 64(7), 1830–1843
(2015)

38. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for Weighted Boolean
Optimization. In: Kullmann [30], pp. 495–508

39. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On Computing
Minimal Correction Subsets. In: International Joint Conference on Artificial Intel-
ligence, pp. 615–622 (2013)

40. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality con-
straints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–
548. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 39

41. Menćıa, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In: Inter-
national Joint Conference on Artificial Intelligence, pp. 1973–1979 (2015)

42. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardi-
nality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 41

43. Morgado, A., Ignatiev, A., Marques-Silva, J.: MSCG: robust core-guided maxsat
solving. JSAT 9, 129–134 (2014)

44. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: AAAI Conference on Artificial Intelligence, pp. 2717–2723. AAAI
Press (2014)

45. Safarpour, S., Mangassarian, H., Veneris, A.G., Liffiton, M.H., Sakallah, K.A.:
Improved design debugging using maximum satisfiability. In: Formal Methods in
Computer-Aided Design, pp. 13–19. IEEE Computer Society (2007)

46. Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing.
In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring, and Satisfiability, Proceed-
ings of a DIMACS Workshop, New Brunswick, New Jersey, USA, 11–13 October
1993. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 26, pp. 521–532. DIMACS/AMS (1993)

47. Sugawara, T.: Maxroster: solver description. MaxSAT Eval. 2017, 12 (2017)
48. Terra-Neves, M., Machado, N., Lynce, I., Manquinho, V.: Concurrency debugging

with maxSMT. In: AAAI Conference on Artificial Intelligence. AAAI Press (2019)

https://doi.org/10.1007/978-3-642-02777-2
https://doi.org/10.1007/978-3-642-02777-2
http://www.ijcai.org
https://doi.org/10.1142/S021821301250025X
https://doi.org/10.1142/S021821301250025X
https://doi.org/10.1007/978-3-319-10428-7_39
https://doi.org/10.1007/978-3-319-10428-7_41

250 A. P. Guerreiro et al.

49. Terra-Neves, M., Lynce, I., Manquinho, V.M.: Stratification for constraint-based
multi-objective combinatorial optimization. In: Lang [31], pp. 1376–1382

50. Tompkins, D.A.D., Hoos, H.H.: UBCSAT: an implementation and experimentation
environment for SLS algorithms for SAT & MAX-SAT. In: The Seventh Interna-
tional Conference on Theory and Applications of Satisfiability Testing, SAT 2004,
10–13 May 2004, Vancouver, BC, Canada, Online Proceedings (2004)

51. Zhang, J., Zhang, H.: Combining local search and backtracking techniques for
constraint satisfaction. In: Proceedings of the Thirteenth National Conference on
Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence
Conference, pp. 369–374 (1996)

	Constraint-Based Techniques in Stochastic Local Search MaxSAT Solving
	1 Introduction
	2 Preliminaries
	2.1 Maximum Satisfiability
	2.2 Unsatisfiable Cores and Minimal Correction Subsets

	3 Algorithms to Approximate MaxSAT
	3.1 SAT-Based Algorithms
	3.2 Stochastic Algorithms

	4 Using SAT Techniques in Local Search
	4.1 Assignment Correction
	4.2 Assignment Improvement
	4.3 Solvers

	5 Experimental Results
	5.1 Partial MaxSAT
	5.2 Weighted Partial MaxSAT

	6 Conclusions and Future Work
	References

