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Abstract. We present a MaxSAT algorithm designed to find high-
quality solutions when faced with a tight time budget, e.g. five minutes.
The motivation stems from the fact that, for many practical applica-
tions, time resources are limited and thus a ‘good solution’ suffices. We
identify three weaknesses of the linear MaxSAT algorithm that prevent it
from effectively computing low-violation solutions early in the search and
develop a novel approach inspired by local search to address these issues.
Our varying resolution method initially considers a rough view of the
soft clauses (low resolution) and with time refines and adds the remain-
ing constraints until the original problem is solved (high resolution).
In addition, we combine the technique with solution-guided search. We
experimentally evaluate our approach on test bed benchmarks from the
MaxSAT Evaluation 2018 and show that improvements can be achieved
over the baseline linear MaxSAT algorithm.
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1 Introduction

Satisfiability (SAT) is a fundamental and well-known problem in computer sci-
ence. Given a Boolean formula, it is concerned in determining the existence of
a satisfying interpretation. Its optimisation variant, Maximum Boolean satisfia-
bility (MaxSAT), deals with computing the interpretation that maximises sat-
isfiability. Given the tremendous improvements in solving technology, MaxSAT
has found a wide range of applications in the field of combinatorial optimisation,
such as timetabling [2,13], planning, and scheduling. See [5,24] for more details.

Substantial research efforts in the MaxSAT community have been directed
towards complete MaxSAT solving, i.e. developing algorithms that exhaustively
explore the search space. In theory, these techniques guarantee to compute the
optimum solution. While this is a clear strong point and has proven to be effective
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for a number of problems, for large and difficult problems, such as high school
timetabling, computing the optimum solution with current technology cannot
be done within a reasonable time frame.

As an alternative, incomplete algorithms relax the optimality criteria with the
aim of providing a suitable trade-off between computational time and solution
quality. It is not uncommon for complete MaxSAT algorithms to provide inter-
mediary solutions, playing the role of both complete and incomplete approaches.
However, the main focus is laid on proving optimality later rather than comput-
ing good solutions early in the search.

There has been growing interest in incomplete algorithms in recent years,
with a surge of new methods at the recent MaxSAT Evaluation 2018. It has been
observed that better anytime performance can be achieved when algorithmic
design decisions are centred around finding high-quality solutions quickly. The
algorithm presented in this paper follows this line of work.

The first step towards designing an efficient algorithm is to understand the
underlying issues and limitations that are preventing current incomplete algo-
rithms from effectively computing good solutions early in the search. We focus
on the linear MaxSAT algorithm, an upper-bounding method which repeatedly
calls a Satisfiability (SAT) solver, each time imposing constraints to find a solu-
tion better than previously found. We identified three core problems with the
linear MaxSAT algorithm: scalability, lack of guidance towards good solutions,
and a tendency to focus on poor regions of the search space.

We designed an algorithm that aims to address these issues. There are two
key components to our approach: (1) a novel varying resolution technique and
(2) directed search around the currently best-known solution. The former sim-
plifies the formula to roughly approximate the original instance (low resolution)
and with time refines its view until the original constraints are rebuilt (high
resolution). The benefits are two-fold: from a strategic side, it aims to satisfy
the high impact constraints early in the search, and from a practical side, it
allows the linear MaxSAT algorithm to scale by reducing memory requirements.
The second key component directs the solver to provide incremental improve-
ments to the currently best-known solution. While this technique has been used
in other works [6,7], we provide a subtle yet impactful variation that provides
notable improvements for our purposes of incomplete solving. When the two
key techniques are combined, better results are obtained over the baseline linear
MaxSAT algorithm on benchmarks from the MaxSAT Evaluation 2018.

To summarise, our contributions are as follows:

– We identify three core issues with the linear MaxSAT algorithm that hinders
it in computing high-quality solution early in the search.

– We develop a novel varying resolution approach and combine it with a more
effective solution-guided search strategy.

– We experimentally evaluate of our algorithm in the context of incom-
plete MaxSAT solving and study the impact of each individual component.
Our results demonstrate that varying resolution and solution-guided search
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provide improvements over the baseline. We note that our approach was
ranked as the best performing solver in the incomplete weighted 300 s track
of the MaxSAT Evaluation 2018.

2 Preliminaries

SAT and MaxSAT. The Satisfiability problem (SAT) is concerned with decid-
ing whether or not there exists an assignment of truth values to variables such
that a given propositional logic formula is satisfied. A literal l is a Boolean vari-
able x or its negation ¬x. A clause c is a disjunction of literals, c ≡ l1∨l2∨· · ·∨ln.
A propositional formula is, for our purposes, a set of clauses understood as their
conjunction, thus in conjunctive normal form. An assignment θ is a mapping
from a set of Boolean variables x ∈ vars(θ) to a value true or false. We extend
θ to map negative literals, by defining θ(¬x) = ¬θ(x). An assignment θ satisfies
a clause c, written θ |= c, if for some literal l in the clause c, θ(l) = true. In Par-
tial Weighted MaxSAT, clauses are partitioned into hard H and soft S clauses.
Each soft clause c is given a weight w(c). The goal is to find an assignment that
satisfies the hard clauses and minimises the weighted sum of the unsatisfied soft
clauses. An alternative viewpoint for MaxSAT [9], which we adopt throughout
this paper, is to associate an objective variable with each soft clause and state
the problem as satisfying hard clauses while minimising the weighted sum of
objective variables. See [10] for more information on SAT and MaxSAT.

CDCL Solvers for SAT [31]. The state of the art for solving SAT prob-
lems is based on conflict driven clause learning. The key components are
unit propagation, activity based search, and clause learning. Unit propagation
of a set of clauses P and a partial assignment θ, repeatedly finds a clause
c ≡ l1 ∨ l2 ∨ · · · ln ∈ P where θ(li) = false, 1 ≤ i < n for all literals and extends
θ so that θ(ln) = true. The literal has c recorded as its reason for becoming
true. If θ(l) = false for all literals li in c the solver detects unsatisfiability. The
SAT solver applies unit propagation to extend an initially empty assignment θ.
Afterwards, the solver chooses a literal and extends θ to make the literal true
(treating it as an assumption) and applies unit propagation again. The choice of
literal is usually based on the variables that have been in the most recent fail-
ures. On detecting unsatisfiability, the solver performs conflict analysis to create
a nogood/learned clause which is added to the set of clauses to be solved. Solving
continues until either a satisfying assignment is discovered, or unsatisfiability is
proven.

Phase Saving [27,29]. SAT solvers repeatedly make decisions on both branch-
ing variables and values. Variables are chosen based on their recent activity in
conflicts (VSIDS scheme [25]). A wide-spread approach for truth value assign-
ment is based on phase saving [27], where the solver selects the most recently
used value in the search for the variable. Therefore, after backtracking, the solver
aims to return to its previous state as closely as possible. Hence, clauses learnt
about the previous region of the search space will still be relevant.
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The Generalised Totaliser [19]. The Pseudo-Boolean constraint
∑

wi · xi <
k is converted into propositional logic by encoding a binary tree, where the
leaf nodes are the input variable. Each parent node contains weighted variables
that represent partial sums of its children. The root contains the variables that
represent the total sum of the input variables. The desired constraint is obtained
by forcing violating output variables to false. The encoding roughly depends on
the number of distinct weights, as this is related to the number of possible
partial sums. Thus, the encoding is pseudo-polynomial, but does not depend on
the magnitude of the weights, which can be seen as a unique advantage.

Algorithm 1: The Linear algorithm for MaxSAT
Input: A set of hard H clauses and objective variables X. Each xi ∈ X is

associated with a weight w(xi).
Output: An optimal solution θ∗ minimising

∑
xi∈X w(xi) · xi

1 begin
2 θ∗ ←− ∅
3 P ←− H
4 while ∃ θ, ∀c ∈ P.θ |= c do
5 θ∗ ←− θ
6 k ←− cost(θ, X)
7 P ←− P ∪ (

∑
xi∈X w(xi) · xi < k)

8 return θ∗

Example 1. Consider the encoding of the pseudo-Boolean constraint 8x1+5x2+
3x3 + x4 < 9. We create a node n representing the sum n = 8x1 + 5x2 defined
by Booleans [[n ≥ 5]] and [[n ≥ 8]] and clauses x1 → [[n ≥ 8]], x2 → [[n ≥ 5]] and
x1 ∧ x2 → false. The last clause encodes the fact that the partial sum is already
too big. Similarly we create a node m representing the sum m = 3x3 + x4 using
Booleans [[n ≥ 1]], [[n ≥ 3]], [[n ≥ 4]] and clauses x3 → [[n ≥ 3]], x4 → [[n ≥ 1]]
and x3 ∧ x4 → [[n ≥ 4]]. The root node s encoding the entire sum is encoded
using Booleans [[s ≥ 1]], [[s ≥ 3]], [[s ≥ 4]], [[s ≥ 5]], [[s ≥ 8]] and the clauses
[[m ≥ 1]] → [[s ≥ 1]], [[m ≥ 3]] → [[s ≥ 3]], [[m ≥ 4]] → [[s ≥ 4]], [[n ≥ 5]] → [[s ≥ 5]],
[[n ≥ 5]] ∧ [[m ≥ 1]] → [[s ≥ 6]], [[n ≥ 8]] → [[s ≥ 8]], [[n ≥ 5]] ∧ [[n ≥ 3]] → [[s ≥ 8]],
[[n ≥ 5]]∧ [[m ≥ 4]] → false, [[n ≥ 8]]∧ [[m ≥ 1]] → false, [[n ≥ 8]]∧ [[m ≥ 3]] → false,
and [[n ≥ 8]] ∧ [[m ≥ 4]] → false In fact the s literals are not needed, they are
included to show the general process of building a node from two children. We
only need to keep the clauses encoding incompatible combinations of n and m

Note that we encode the constraint 800x1 + 500x2 + 300x3 + 100x4 < 900
identically. 	


The Linear MaxSAT Algorithm [14,20,21,23]. The optimal solution to a
MaxSAT instance can be obtained by solving a series of SAT problems. This is
depicted in Algorithm 1. It makes repeated calls to a SAT solver. After each call,
it adds a pseudo-Boolean constraint to the formula that enforces the formula to
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only admit solutions that have a cost strictly lower than the current best solution.
In Sect. 5, we discuss different encodings for the pseudo-Boolean constraint and
in the rest of the paper focus our attention on the generalised totaliser encoding
(see above). The algorithm iterates until it proves unsatisfiability, in which case
the optimal solution was computed in the previous iteration.

3 Algorithm

Our algorithm is designed for short run times, e.g. five minutes. The assumption
is that proving optimality within the given time frame is infeasible. Thus, the
aim is to find ‘good solutions’ early during the search. The main challenge is to
determine a strategy which can identify where the ‘good’ solutions reside in the
search space and ensure scalability across a wide range of benchmarks.

Our approach is based on the linear MaxSAT algorithm. This method was
chosen as it was the best performing solvers in the incomplete unweighted 60 s
track of the MaxSAT Evaluation 2017. In addition, it has shown competitive
resulting for certain applications, e.g. high school timetabling [13]. Two tech-
niques play a key role in our algorithm: (1) a novel varying resolution approach
and (2) directed search around the currently best-known solution.

3.1 Issues with the Linear MaxSAT Algorithm

To obtain a better understanding of our algorithm, it is important to note the
core issues with the linear MaxSAT algorithm. We identified three main issues in
the context of incomplete saving: (1) scalability and sensitivity to the values of
the weights of the objective variables, (2) lack of a strategy to guide the search
towards solutions with low objective value, and (3) proneness to falling in “local
optima”, i.e. excessively spending efforts proving unsatisfiability in a certain
region of the search space rather than exploring a different part of the search
space. The varying resolution approach aims to address the first two points,
while the directed search tackles the third point and partially the second. These
issues are described in greater detail below.

Issue #1: Scalability and Weight-Value Sensitivity. The linear MaxSAT
algorithm encodes a single large pseudo-Boolean constraint, which is directly
dependent on the values of the weights of the objective variables.

The generalised totaliser pseudo-Boolean encoding [19], used in this work,
roughly depends on the number of unique values of the weights. Therefore, when
faced with a large number of diverse weights, the number of clauses and auxiliary
variables required to encode the pseudo-Boolean can be prohibitively high. As a
result, the pseudo-Boolean encoding can dominate the algorithmic performance
and become a bottleneck. Other encodings suffer from related issues.

We note that MaxSAT algorithms that do not require explicitly encoding
the pseudo-Boolean constraints are largely unaffected by the variety in weights,
e.g. core-guided approaches. On a related note, WPM3 [6] uses the splitting rule
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to allow using an encoding where the weights are equal, i.e. cardinality con-
straints. However, these algorithms focus on increasing the lower bound rather
than computing good solutions early in the search.

Issue #2: Lack of Guidance Towards Good Solutions. In each iteration of
the linear algorithm, the SAT solver merely seeks to find a satisfying assignment
and not necessarily a solution with low cost. Therefore, there is no guidance
towards good solutions, which might lead the algorithm to spend excessive time
searching in areas that potentially fine-tune small improvements to the objective
even though the crucial soft constraints are left unattended.

Issue #3: Tendency to Focus on Poor Regions of the Search Space. This
issue is linked to the underlying value-selection heuristic of the SAT algorithm:
phase saving. While phase saving is known to be effective for pure satisfiability
problems, it can introduce undesired behaviour when used in the linear MaxSAT
algorithm. The problem stems from the fact that upon conflict detection and
backtracking, phase saving aims to drive the search back into a similar region of
the search space as before. This is systematically done through value-assignments
for variables: once a new variable is selected, the value most recently used for that
variable will be assigned to it. As a result, once the algorithm reaches a region
of the search space where there are no better solutions, it will effectively spend
its efforts in proving unsatisfiability. Unfortunately, this can be time-consuming
and does not lead to finding good solutions quickly.

3.2 Our Approach

There are two key components in our algorithm: the varying resolution approach
and solution-guided search, complementary techniques that aim to address the
identified issues of the linear MaxSAT algorithm. The former ensures scalability
(Issue #1) and guides the search towards good solutions on a high level (Issue
#2), while the latter provides incremental improvements to the current best
solution (Issues #2 and #3). These components are built into the linear MaxSAT
algorithm and exhibit a high degree of synergy, resulting in a better algorithm
than the baseline linear MaxSAT algorithm.

Key Component #1: Varying Resolution Approach. The aim of this part
is to address Issue #1 and #2. It starts by viewing the MaxSAT formula in low
resolution by decreasing the weights for all constraints. The weights reduced
to zero are removed. After the resulting problem is solved, the weight values
are increased (increase the resolution), a portion of the previously ignored con-
straints are added, and the problem is resolved. This process iterates until the
problem is viewed in high resolution, i.e. the original formula is restored and
solved. Weight adjustment results in a heuristic that approximates the formula
and reduces the memory requirements, which in turns offers speed-ups. In theory,
the procedure preserves completeness, i.e. does not remove any optimal solution,
but in practice, only a few iterations of the algorithm are executed within the
allocated time resources. We discuss related approaches, namely stratification
for core-guided approaches [4] and weight-clustering [18], in Sect. 5.
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Algorithm 2: Compute the initial cutoff value
Input: A set of objective variables X, a mapping w : X → N, and the

threshold coefficient β ∈ [0, 1].
Output: Initial cutoff value d

1 begin
2 S ←− ∑

x∈X w(x)
3 k ←− maxx∈X{dec digits(w(x))}
4 for i = 1..k do
5 frac sum[i] ←− ∑

x∈X∧dec digits(x)=i w(x)

6 d ←− k
7 for i = 1..k do
8 if frac sum[i] ÷ S ≥ β then
9 d ←− i

10 break

11 return 10(d−1)

To explain our algorithm in detail, we first discuss the initial cutoff value
computation, present the varying resolution approach, and lastly describe our
modification to the linear MaxSAT algorithm.

Initial Cutoff Value Computation. Algorithm 2 describes the procedure. The
goal is to determine a cutoff threshold that partitions the objective variables
into low- and high-weighted variables. It first computes: S - the sum of the
weights, k - the number of decimal digits used to represent the largest weight,
and frac sum - the array where frac sum[i] represents the sum of weights
with exactly i decimal digits. Note that the number of digits is computed as
dec digits(x) = �log10(x)� + 1. Afterwards, the cutoff value is chosen based on
the total contribution of weights with precisely d digits with respect to the overall
MaxSAT problem. The smallest value d that meets the specified threshold β is
selected, or the default value k if no such value exists. The cutoff value is returned
as 10(d−1). The intuition is that the cutoff point discriminates weights between
those that contribute significantly towards the objective and those that do not.
The parameter β ∈ [0, 1] regulates the sensitivity of the division: lower/higher
values for β lead to lower/higher cutoff values.

Example 2. Consider the formula with X = {xi : i ∈ {0, 1, ..., 8}} and w =
{w0 → 1200, w1 → 800, w2 → 700, w3 → 500, w4 → 50, w5 → 15, w6 → 9, w7 →
8, w8 → 2} and parameter β = 0.20. The sum of weights is 3284 and frac sum =
{1 → 19, 2 → 65, 3 → 2000, 4 → 1200}. The inner if condition is not satisfied
for i ∈ {1, 2}, as neither 19

3284 ≥ 0.20 nor 65
3284 ≥ 0.20, but will trigger for i = 3

since 2000
3284 ≥ 0.20. Therefore, d = 3 and the returned cutoff is 100. 	


Varying Resolution. Algorithm 3 gives an overview. The algorithm starts by com-
puting the initial cutoff value (Algorithm 2). Iteratively, a new MaxSAT formula
is built, where the hard constraints are as in the original formula, and the weights
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of objective variables are divided by the cutoff value (rounded down). The new
formulation, along with the best solution found so far θ∗ and the original formula,
are used to initialise the linear MaxSAT algorithm. The best solution is used by
the solution-guided search component, while the original formula is required due
to our previously discussed modification of the linear MaxSAT algorithm (see
next subsections for both points). After the resulting formula is solved, the cut-
off value is decreased and the process is repeated until the original formula is
solved. Note that if the sum of the weights is lower than a given parameter α, the
varying resolution approach is deemed unnecessary, i.e. the cutoff is set to one
and the algorithm proceeds as a linear MaxSAT algorithm with solution-guided
search (see component #2). The procedure can be viewed as a search by expo-
nentially decreasing steps, where the approximate objective function is refined
at an exponential rate each iteration until the original objective is restored.

Example 3. (continued) Let α = 1000. As
∑

xi
w(xi) ≥ α, the cutoff d is set

to 100 (see Example 2). Therefore, w′ = {x0 → 12, x1 → 8, x2 → 7, x3 →
5, x4 → 0, x5 → 0, x6 → 0, x7 → 0, x8 → 0}, and X ′ = {x0, x1, x2, x3}. After the
simplified formula is solved, d is decreased to 10 and the process is repeated. 	


Learned clauses are kept as usual during the search within each individual
iteration, but the SAT solver is rebuilt at the beginning of each iteration (Algo-
rithm 3, line 11). Learned clauses are not shared in between iterations of varying
resolution, as learned clauses in one iteration might refer to auxiliary variables
in the pseudo-Boolean encoding that are no longer present in the next iteration.

The approximate objective function requires fewer auxiliary variables and
clauses than the original pseudo-Boolean constraint. Recall that the size of the
generalised totaliser encoding [19] is related to the number of unique weight
values, e.g. the smallest encoding is obtained if all weights are the same value.
Dividing the weights by the cutoff results in fewer unique weights, leading to
a smaller encoding, which in turn reduces the memory requirements. Note that
varying resolution is designed for shorter run times and thus are not particularly
suitable for longer runtimes, i.e. the last iteration of varying resolution is the
standard linear MaxSAT algorithm.

Observation 1. Given an initial constraint I ≡ ∑
x∈X w(x) · x ≤ ub − 1, the

r rounded version of the constraint is given by Ir ≡ ∑
x∈X�w(x)

r �· ≤ �ub−1
r �. It

follows that I |= Ir, i.e. all solutions of I are also solutions of Ir, since Ir is a
Gomory cut [16] derived from I. Hence, adding this constraint does not exclude
any optimal solution to the original problem.

Observation 2. The varying resolution algorithm is complete regardless of the
choice for parameters α and β.

Observation 3. The varying resolution is anytime, i.e. it provides intermediary
results during its execution.

Linear MaxSAT Modification. The standard linear MaxSAT algorithm is modi-
fied as follows. It additionally stores the original MaxSAT formula and the best
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Algorithm 3: The Varying Resolution Approach
Input: A set of hard H clauses and objective variables X, a mapping

w : X → N, and threshold coefficients α ∈ N and β ∈ [0, 1]
Output: An optimised solution θ∗

1 begin
2 θ∗ ←− ∅
3 if

∑
x∈X w(x) ≥ α then

4 d ←− compute initial cutoff(X, β)
5 else
6 d ←− 1

7 cutoff ←− 10d−1

8 while cutoff ≥ 1 do

9 w′(x) = 
 w(c)
cutoff

�
10 X ′ = {x : x ∈ X ∧ w′(x) > 0}
11 solver ←− initialiseMaxSAT (H, X, w, X ′, w′)
12 solver.setInitialSolution(θ∗)
13 θ∗ ←− solver.solve()

14 cutoff ←− 
 cutoff
10

�
15 return θ∗

solutions with respect to the current and the original MaxSAT formula. Note
that an assignment with a lower objective value for the simplified problem in
the varying resolution approach does not necessarily lead to a better solution
for the original problem. Therefore, once a new assignment is computed, its cost
is computed with respect to the original formula, and it is kept as the globally
best solution if its cost is lower than the previous best solution. Regardless of
the outcome, the algorithm proceeds as usual, i.e. adds the upper bound with
respect to the newly found locally best solution. Thus, it optimises its current
problem, but only updates the global solution if it is better with respect to the
original MaxSAT formula.

Example 4. Considering the formula within the varying resolution approach with
d = 10: w′ = {x0 → 120, x1 → 80, x2 → 70, x3 → 50, x4 → 5, x5 → 1, x6 →
0, x7 → 0, x8 → 0}. The linear MaxSAT algorithm is called and assume it finds
the solution θ that only violates x5. The objective value of θ is 1 locally and
15 globally. Both values are kept as these are the best values found in their
respective categories. The pseudo-Boolean constraint

∑
w′(x) < 1 is added to

the MaxSAT formula and the SAT solver is called again. Now assume the solver
finds a new solution that violates x6 and x7. The solution is kept as the best local
solution (

∑
w′(x) = 0), but the best global is not updated (

∑
w(x) = 17 ≥ 15).

As locally no further improvements can be made, the linear MaxSAT algorithm
stops, leading to a new iteration of the varying resolution approach with d = 1
where θ is passed as the initial solution. 	
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Key Component #2: Solution-Guided Search. In local search, intensi-
fication aims to provide improvements to the solution by searching through a
neighbourhood of solutions close to the current solution. Thus, a better solution
is found by iteratively performing small incremental changes to the currently
considered solution, driving the solution into a (local) minima. The essence of
this idea can be captured in a complete search algorithm by using the follow-
ing value-selection heuristic: once a branching variable has been chosen, assign
the value to the variable that it assumes in the best-known solution. Hence,
the search progresses close to the best-known solution, resembling local search.
In our algorithm, we use this value-selection heuristic, as it partially addresses
issues #2 and #3 of the linear MaxSAT algorithm.

Similar techniques were used under various names, e.g. solution-based phase
saving [1,6,12], solution-guided search [7], and large neighbourhood search [30].
The phase saving strategy used in WPM3 [6] is the closest to our work. The
difference is subtle yet impactful: we apply solution-guided search to all vari-
ables in the MaxSAT formula, including auxiliary variables introduced by the
pseudo-Boolean encoding, as opposed to only considering variables that appear
in the original MaxSAT formula as in WPM3 [6]. For our experimental setting,
our strategy proved to be more effective, but we note that WPM3 considered a
different setting for their phase saving, i.e. it was considered for solving subprob-
lems generated during the search with the aim of increasing the lower bound.

4 Experimental Results

We performed a detailed computational study to empirically evaluate the effect
of varying resolution and solution-guided search.

4.1 Setting

Our setting is the same as in incomplete track of the MaxSAT Evaluation 2018.
Thus, we consider unweighted and weighted benchmarks with 60 and 300 s time-
outs, for a total of four separate settings. The evaluation uses industrial and
application benchmarks. The comparisons are performed on a total of 153 and
172 unweighted and weighted benchmarks, respectively. The experiments were
performed on the StarExec cluster, allocating 32 GB of RAM per benchmark.

Scoring. The scoring of a solver for the incomplete track is the sum of scores
si for each instance. For instance i, a solver finding a solution with objective oi
is awarded score si = boi/oi where boi is the best objective found by any solver
on that instance during the 60 and 300 s runs. If a solver finds no solution for
an instance i, the corresponding score is si = 0. The best solution is taken from
the 300 s track.

Our Solver: LinSBPS. We implemented varying resolution and solution-
guided search in Open-WBO [23], an open-source MaxSAT solver.

Other Solvers. The remaining solvers used in the evaluation are discussed in
more detail in the Sect. 5.
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4.2 Results and Discussions

We provide experiments that support our previous claims. The same timeouts
and benchmarks are used across experiments. Note that the score metric is rela-
tive to the solvers considered, i.e. the score for a particular benchmark depends
on the best solution computed by the considered solvers. Hence, the score values
may differ in different experiments.

Effect of Varying Resolution and Solution-Guided Search. In Table 1a
we compare the performance of our techniques compared to the baseline lin-
ear algorithm. We consider four variants, depending on whether varying reso-
lution and solution-guided search is used. Note that varying resolution is only
used for weighted benchmarks which are deemed as large enough, as detailed in
Algorithm 3. For the considered benchmark set, varying resolution was used on
89 out of 172 benchmarks (51%).

Each component, varying resolution and solution-guided search, improves the
baseline. The best approach is obtained by combining both techniques.

Number of Unique Weights Produced. Varying resolution reduces the number of
unique weights in the benchmarks, thus leading to more compact encodings with
the GTE. On average, the number of distinct weights drops from 1342 to 29 in
the first iteration of varying resolution.

Number of Objective Variables Considered. The underlying MaxSAT formula is
simplified with varying resolution. Nevertheless, most of the objective variables
are still taken into account, even in the first iteration. On average, the algorithm
considers 87% percent of the total number of objective variables in the first
iteration of varying resolution.

Number of Iterations Performed. For the benchmarks that use varying resolution,
on average, 1.19 iterations were executed with 6.04 iterations needed to restore
the original formula.

GTE vs. Adder Pseudo-Boolean Encoding. One of the benefits of varying
resolution comes from its ability to produce a smaller pseudo-Boolean encoding.
As an alternative, in Table 1b we consider the adder encoding, which represents
numbers in binary form and encodes binary adders. This allows for a significant
reduction in the encoding size, at the expense of arc consistency.

Our comparison was done only on the benchmarks that use varying resolu-
tion. However, while effective for complete solving [20], the adder encoding shows
weaker performance for incomplete solving. We believe the loss of arc consistency
for the adder encodings forces the solver to spend more time in search, which is
detrimental given the tight time budget.

Solution-Guided Search. In Table 1c we compare our variant of solution-
guided search with the phase saving strategy used in WPM3 [6]. The difference
in the techniques is subtle yet impactful. Nevertheless, regardless of the variant
chosen, incrementally improving an existing solution proved to be beneficial for
incomplete MaxSAT solving. Compared to WPM3 [6], our variant considers all
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variables and not only the original variables. This proved to be advantageous
for our setting. As discussed previously in Sect. 3.2, our experimental setting
differs from the one considered in WPM3, and hence it must be emphasised
that our claims only hold for our particular case of incomplete solving with
the linear algorithm. The auxiliary variables in the formula are implied by the
original variables in the pseudo-Boolean constraint. Thus, following the idea of
remaining close to the best solution, all variables must be considered. Setting a
different value to an auxiliary variable reflects on the original variables, which
was undesirable in our setting.

Parameter Choice. The parameter α defines the size of the benchmark
required to activate varying resolution, while β is used to discriminate between
more and less important weights. The final values chosen in the solver are
α = 5 · 105 and β = 0.05. Note that no parameter tuning was performed. The
parameter choice discussion that follows is presented as a post-analysis.

Varying resolution is activated when the sum of weights in a benchmark
exceeds the threshold α. To study other possible choices for α, we sort the
considered benchmarks by the sum of their weights. The 83rd smallest value
is 489 · 103. However, the 73rd and 93rd are 71 · 103 and 1603 · 103, exhibiting
substantial differences in values. Thus, α can be varied significantly with little
effect. Therefore, we selected α = 5 · 105 in an ad hoc manner and decided not
to fine-tune the parameter on the previous competition benchmark set, as doing
so would likely lead to overfitting.

Parameter β was kept low since our intention was to discard low-valued
weights that increase the encoding size but do not provide a significant difference
in the objective. Thus, we selected β = 0.05, i.e. we stop discarding weights with
d digits if their contribution is at least 5%.

Comparison with the MaxSAT Evaluation 2018 Solvers. In Table 2 we
show the results from the MaxSAT Evaluation 2018 as a comparison with other
state-of-the-art incomplete MaxSAT solvers. Our solver, LinSBPS, uses the tech-
niques described in this paper. Our approach can be further improved using
core-boosting [8] as a preprocessing step, but the main aim of these experiments
is to demonstrate the effectiveness of the techniques presented in this paper.

Weighted Track. Our algorithm achieved the best rank in the 300 s category. A
detailed view of these results is given in Fig. 1 (top), which shows the distribution
of scores per instance. For each solver, the scores for every instance is computed,
the resulting array is sorted, and then plotted as a curve. We can see that our
approach provides highly competitive results for the majority of the benchmarks,
with only a handful of cases where the score is below 0.8. This illustrates the
robustness of our technique when handling a diverse set of benchmarks. For the
60 s track, our approach is ranked second.

Our approach takes into account most of the objective variables. Open-WBO-
Inc-BMO, as a solver with comparable performance, in contrast, initially aggres-
sively optimises the most important constraints. This seems to provide better
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results for 60 s runs. However, as more time is allocated, our approach is able to
exploit a broader view of the problem, while the other approach keeps optimising
a rough approximation.

Unweighted Track. Our approach solely relies on solution-guided search to pro-
vide improvements over the baseline for the unweighted track. Nevertheless, our
method ranked second and third in the 60 and 300 s track, respectively. From
Fig. 1 (bottom), we can see that there is a higher deviation in solver perfor-
mance depending on the benchmark. While for the weighted benchmarks our
approach achieved consistently good results when compared with others, for the
unweighted track there are no robust solvers: the score distributions are scat-
tered across the interval [0.1, 1] for each solver. We believe this is because it is
harder to identify the key constraints for unweighted compared to the weighted
instances, and thus there is a higher fluctuation between the results. The best
performing solver in the unweighted track, SATLike, is a local search solver
specialised in exploring different areas of the search space quickly rather than
using sophisticated reasoning technique such as CDCL, which could explain its
effectiveness for these benchmarks.

Table 1. Comparison of different variants of our approach. 300 s. (a) The effect of each
individual component; (b) Comparison with the adder encoding; (c) Comparison with
solution-guided search used in WPM3: SGS(OV).

(a) (b) (c)

Solver Score Solver Score Solver Score

VR+SGS 162.00 VR+SGS 161.55 VR+SGS 161.03

SGS 144.46 VR 140.05 VR+SGS(OV) 148.73

VR 140.47 Adder+SGS 129.87 SGS 143.81

Baseline 128.8 Baseline+Adder 125.26 SGS(OV) 132.43

Table 2. Results from the MaxSAT Evaluation 2018. The score listed for solvers

(a) Weighted 60 s (b) Weighted 300 s (c) Unweighted 60 s (c) Unweighted 300 s

Solver Score Solver Score Solver Score Solver Score

Open-WBO-Inc-BMO 0.810 LinSBPS 0.900 SATLike-c 0.735 SATLike-c 0.854

LinSBPS 0.799 Open-WBO-Inc-BMO 0.842 LinSBPS 0.705 maxroster 0.829

maxroster 0.773 maxroster 0.804 SATLike 0.675 LinSBPS 0.782

Open-WBO-Inc-Cluster 0.743 Open-WBO-Inc-Cluster 0.762 Open-WBO-Inc-OBV 0.654 SATLike 0.702

SATLike-c 0.696 SATLike-c 0.747 Open-WBO-Inc-MCS 0.631 Open-WBO-Inc-OBV 0.842

Open-WBO-Gluc 0.669 SATLike 0.702 Open-WBO-Gluc 0.612 Open-WBO-Inc-MCS 0.762

SATLike 0.661 Open-WBO-Gluc 0.68 Open-WBO-Riss 0.564 Open-WBO-Gluc 0.68

Open-WBO-Riss 0.638 Open-WBO-Riss 0.663 maxroster 0.541 Open-WBO-Riss 0.663
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Fig. 1. Detailed results for the weighted 300 s (left) and unweighted 60 s (right) track.
Image courtesy of the MaxSAT Evaluation 2018.

5 Related Work

Local Search. These methods share a common pattern: start by generat-
ing a random assignment and iteratively select a variable from an unsatisfied
clause and flip its assignment. Complex reasoning mechanisms are typically not
employed as in complete solvers, e.g. CDCL. Rather, the success of the methods
comes from their ability to rapidly explore a large number of solutions through
the use of specialised data structures, careful implementation, and heuristics.

In the recent MaxSAT Evaluation, SATLike [22] won the unweighted incom-
plete track and demonstrated good performance in the weighted track of the
recent MaxSAT Evaluation 2018. Its key component is a novel weighting scheme
that dynamically changes the weights of clauses during the search.

Complete Techniques for Incomplete Solving. In some cases, complete
algorithms report intermediate solutions and thus can take the role of incomplete
methods. The linear MaxSAT [14] solvers fall into this category and approaches
differ in the way the upper bounding constraint is handled: SAT4J [21] uses
linear propagators, a technique from constraint programming to avoid explicitly
encoding the constraint into Boolean formula, while QMaxSAT [20] and Open-
WBO-Gluc use the adder and GTE pseudo-Boolean encoding, respectively. The
winner of the weighted incomplete track in 2017, maxroster [32], uses a stochastic
solver to produce an initial solution before applying complete-based techniques.

Core-guided approaches [3,15,17,26] consider an initial SAT formula where
the soft clauses are treated as hard clauses. Iteratively, a SAT solver is used
to compute either a satisfying assignment, which would represent the optimal
solution, or an unsatisfiable core, i.e. a subset of clauses that cannot simul-
taneously be satisfied. The core is used to rewrite the formula, e.g. relax the
formula by allowing at most one of the clauses from the core to be unsatisfied.
Hitting-set approaches [11,28] utilise unsatisfiable cores to separate MaxSAT
solving into a SAT and an integer programming component. These approaches
are inherently lower bounding and in their pure form do not produce any solution
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other than the optimum, rendering them inapplicable to incomplete scenarios.
However, when combined with other techniques, unsatisfiable cores can be used
for anytime algorithms. For example, WPM3 [6] is a core-guided solver with
a stratified approach [4], where initially only a subset of the soft clauses with
the highest weights are considered, and after satisfiability is detected, a portion
of the remaining soft clauses are added and the process is repeated. Obtaining
cores with high weights contribute towards faster lower bounds, and during this
process upper bounds are additionally computed. This was the best incomplete
solver in the 2016 evaluation. At a high level, our strategy resembles the strat-
ified method, but the underlying solving process and the reasoning behind the
techniques make a clear distinction between the approaches.

Core-boosting [8] has recently been proposed to improve linear MaxSAT algo-
rithms. The main idea is to run the linear MaxSAT algorithm after performing
core-based rewriting for a limited time. The resulting formula has fewer soft
clauses, which simplifies the pseudo-Boolean constraint required in the linear
algorithm. Core-boosting can be seen as a form of preprocessing and can be
combined with other linear algorithms, such as the one presented in this paper.

Incomplete Weight-Relaxation. Inc-BMO and Inc-Cluster [18] from the
MaxSAT Evaluation bear the most similarity to our approach.

These methods cluster the objective variables. Each variable in a cluster is
reassigned a representative weight as follows: the array of weights is sorted and
the difference between adjacent elements is computed. The top k − 1 indices
with the highest differences are selected, effectively partitioning the weights into
k clusters. Each variable within a cluster is reassigned the arithmetic mean of
the weights in the group. As a result, there are at most k different weights values.

The two approaches, Inc-BMO and Inc-Cluster, differ in the next step. In
Inc-Cluster, a linear MaxSAT algorithm is applied to the new formula. In Inc-
BMO, the resulting formula is solved as a lexicographical optimisation problem:
the problem is solved considering only the variables with the highest weight,
the sum of their violations is fixed to the computed value, and the process is
repeated with the second-highest weighted variables, and so forth.

There are two main reasons for the success of these methods: (1) reducing
the number of distinct weights results in more compact pseudo-Boolean encod-
ings, increasing performance, and (2) Inc-BMO aggressively optimises the most
important constraints. Note that, once the problem is simplified, the effects are
irreversible. Therefore, each clustering choice plays an important role. The meth-
ods excel for problems where the clustering can be done effectively.

To further illustrate the difference with our approach, consider the MaxSAT
problem from Example 2. For k = 2, the clustering algorithms partitions the
weights into P1 = {w0, w1, w2, w3} and P2 = X − P1. Thus, violations within
each cluster are treated equally. This is not an issue at the start of the algorithm.
However, as the algorithm progresses, some form of refinement is necessary to
provide better results. Varying resolution with a cutoff of 100 initially considers
only P1 as BMO-INC, but is able to differentiate between violations, i.e. w′ =
{12, 8, 7, 5}. Note that each iteration thereafter refines the formula.
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6 Conclusion

We developed a novel approach to incomplete MaxSAT solving consisting of two
key components: our varying resolution approach, and solution-guided search.
The former initially views the problem in low-resolution and with time refines the
constraints until the formula is solved in high resolution, i.e. the original problem.
Solution-guided search provides incremental improvements by searching close to
the current best solution. Overall, our algorithm has proven to be highly effective
for short runtimes, placing first in the incomplete weighted 300 s track of the
MaxSAT Evaluation 2018.

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able feedback in preparing the final version of this paper.
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2. Achá, R.A., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT and
MaxSAT. Ann. Oper. Res. 218(1), 71–91 (2014)

3. Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality con-
straints of bounded size. In: Proceedings of IJCAI 2015 (2015)
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6. Ansótegui, C., Gabàs, J.: WPM3: an (in)complete algorithm for weighted partial
MaxSAT. Artif. Intell. J. 250, 37–57 (2017)

7. Beck, J.C.: Solution-guided multi-point constructive search for job shop scheduling.
J. Artif. Intell. Res. 29, 49–77 (2007)
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