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Abstract. Access to good benchmark instances is always desirable when
developing new algorithms, new constraint models, or when comparing
existing ones. Hand-written instances are of limited utility and are time-
consuming to produce. A common method for generating instances is
constructing special purpose programs for each class of problems. This
can be better than manually producing instances, but developing such
instance generators also has drawbacks. In this paper, we present a
method for generating graded instances completely automatically start-
ing from a class-level problem specification. A graded instance in our
present setting is one which is neither too easy nor too difficult for a
given solver. We start from an abstract problem specification written
in the Essence language and provide a system to transform the prob-
lem specification, via automated type-specific rewriting rules, into a new
abstract specification which we call a generator specification. The gener-
ator specification is itself parameterised by a number of integer param-
eters; these are used to characterise a certain region of the parameter
space. The solutions of each such generator instance form valid problem
instances. We use the parameter tuner irace to explore the space of pos-
sible generator parameters, aiming to find parameter values that yield
graded instances. We perform an empirical evaluation of our system for
five problem classes from CSPlib, demonstrating promising results.

Keywords: Automated modelling · Instance generation ·
Parameter tuning

1 Introduction

In constraint programming, each problem class is defined by a problem speci-
fication; many different specifications are possible for the same problem class.
A problem specification identifies a class of combinatorial structures, and lists
constraints that these structures must satisfy. A solution is a structure satisfy-
ing all constraints. Problem specifications usually also have formal parameters,
which are variables for which the specification does not assign values but are not
intended to be part of the search for solutions. Values for such formal parameters
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are provided separately, and the specification together with a particular choice
of values for these formal parameters defines a problem instance.

Instance generation is the task of choosing particular values for the formal
parameters of a problem instance, and is often a key component of published
work when existing benchmarks are inadequate or missing. Our goal is to auto-
mate instance generation. We aim to automatically create parameter files con-
taining definitions of the formal parameters of a problem specification, from the
high level problem specification itself, and without human intervention.

We automate instance generation by rewriting a high level constraint speci-
fication in the Essence language [7] into a sequence of generator instances for
the problem class. Values for the parameters of the generator specification are
chosen based on the high level types in the problem specification. A solution to
a generator instance is a valid parameter file defining a problem instance. We
use irace [15], a popular tool for the automatic configuration of algorithms, to
search the space of generator parameters for regions where “graded instances”
exist. Graded instances have specific properties; in this work they are satisfiable,
and neither too trivial nor too difficult to be solved. However, our methodology
does not depend on a specific definition of grading, and can be applied more
generally. We first prove the soundness of our rewriting scheme. The system is
then empirically evaluated over 5 different problem classes that contain differ-
ent combinations of integers, functions, matrices, relations and sets of sets. We
show the viability of our system and the efficacy of the parameter tuning against
randomised search over all problem classes.

2 Related Work

In combinatorial optimisation a wide variety of custom instance generators have
been described. These are used to construct synthetic instances for problem
classes where too few benchmarks are available. In just the constraint program-
ming literature generators have been proposed for many problem classes, includ-
ing quasigroup completion [4], curriculum planning [17], graph isomorphism [26],
realtime scheduling [11], and bike sharing [6]. Different evolutionary methods
have also been proposed to find instances for binary CSPs [18], Quadratic Knap-
sack [13], and TSP [23]. In particular, Ullrich et al. specified problem classes with
a formal language, and used this system to evolve instances for TSP, MaxSAT,
and Load Allocation [24]. Efforts have also been made to extend existing repos-
itories of classification problems via automated instance generation [19].

Instance generators are typically built to support other parts of the research,
such as verifying robustness of models. However, a generator often requires signif-
icant effort to develop, and it cannot be applied to new problem classes without
major modifications [24]. A generator is typically controlled by means of parame-
ters, and a further challenge of instance generation is to find regions of parameter
values where an instance generator can reliably create interesting instances.

Gent et al. developed parametric generators of instances for several problem
classes [8]. They developed a semi-automated prototype to produce instances for
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discriminating among potential models for a given high-level specification. Their
system requires manual rewriting of the domains when there are dependencies
between parameters, and does not support all of Essence. In contrast, our
system works in a completely automated fashion, for all Essence types, and
supports dependencies between formal parameters.

We use the irace system to sample intelligently from the space of instances.
irace is a general-purpose tool for automatic configuration of an algorithm’s
parameters, and its effectiveness has been shown in a wide range of applica-
tions [5,12,14,15]. Our system uses irace to find values of the generator param-
eters covering graded instances.

Our generator instance method could be applied to many constraint mod-
elling languages such as MiniZinc [20], Zinc [16], Essence Prime [22], or OPL [25].
In this paper we focus on the Essence language [7] because of its support for
high level types, and since the open-source Conjure system [1–3] provides a
convenient basis on which to build an automated instance generation system.
We exploit the high level types of Essence to guide the rewriting process.

3 Background

We now introduce notation used in the remainder of the paper.
A problem class is the set of problem instances of interest. A problem specifi-

cation is a description of a problem class in a constraint specification language.
A problem specification defines the types but not the values of several formal
parameter variables. An assignment of specific values to the formal parameters is
called an input , and a parameter file contains an input. A variable that occurs in
the problem specification, but which neither occurs within the scope of a quan-
tifier over that variable, nor is a formal parameter, is called a decision variable.
We refer to a specification together with an input as an instance. A solution to
an instance is an assignment of values to the decision variables in the instance.
An instance is satisfiable if it has a solution. If all input values are of the correct
type for the corresponding formal parameters, then the input is valid . An valid
instance consists of a specification and a valid input for that specification. Valid
instances may have many, one, or no solutions. For optimisation problems, we
further wish to search among satisfying solutions to find those of high quality,
where quality is determined by an expression to be optimised.

We use the abstract constraint specification language Essence [7]. This com-
prises formal parameters (given), which may themselves be constrained (where);
the combinatorial objects to be found (find); constraints the objects must sat-
isfy (such that); identifiers declared (letting); and an optional objective func-
tion (min/maximising). Essence supports abstract decision variables, such as
multiset, relation and function, as well as nested types, such as multiset of sets.

We seek graded instances. With this we mean instances that satisfy pre-
defined criteria. The criteria should be tailored to the use to which the instances
will be put. In this work, we require graded instances to be neither too easy nor
too difficult. To ensure an instance is not too easy, we require that the back-end
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solver (in our case, Minion [9]) takes at least 10 s to decide the instance. To
ensure an instance is not too difficult, we exclude instances for which the solver
has not returned a solution in 5 min. Our choices of grading criteria were guided
by our computational budget and available resources, and so in this work we
have chosen to accept only satisfiable instances as graded. We do not advocate a
specific definition of grading, and other criteria for grading would be reasonable,
such as “the instance is decided or solved to optimality by at least one solver
from a portfolio of solvers in a reasonable amount of time”.

A key step of our method is a process of automatic rewriting, discussed in
more detail in Sect. 4.1. Briefly, the rewriting steps are:

1. remove all constraints (such that statements) and decision variables (find
statements),

2. replace all input parameters (given statements) with decision variables (find
statements) and type specific constraints, and

3. promote parameter constraints (where statements) to constraints.

We call the result of this process a generator specification.

Definition 1. A generator instance consists of a generator specification together
with a particular choice of generator parameters, which restrict the domains of
decision variables appearing in the generator instance.

Rewriting is one step in an iterative process. The choice of generator parame-
ters is performed automatically using the parameter tuning tool irace. Solutions
to the generator instance are then filtered according to our grading criteria,
retaining graded instances. We want the rewriting procedure to have the follow-
ing two properties: soundness (the solutions of the generator instance should
always be valid inputs for the instance), and completeness (every valid instance
should be obtainable as a possible solution of the generator instance). We now
discuss the semantics of generator instances and our approach.

Variables may represent tuples, and for clarity of presentation we take some
liberties with the corresponding Essence syntax. When referring to a specifi-
cation s with variables v, we omit the variables that occur within the scope of
a quantifier, and partition the remaining variables so that s(x | y) denotes a
specification s with formal parameters x and decision variables y, both of which
are generally tuples. With s(x := a | y) we denote the specification s′(| y) (with
no formal parameters and only decision variables) which is obtained from s by
substituting the tuple of formal parameters x by a fixed tuple of values a.

Start with an Essence specification of the form

s(x | y) := given x : D where h(x) find y : E such that f(x, y)

where the specification has formal parameters x and decision variables y. We
are interested in valid inputs a, such that s(x := a | y) is a valid instance. Here
domain D may be a product of component domains, of arbitrarily nested types
as allowed in the Essence language. Now let

s′(| x) := find x : D such that h(x)
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be a specification obtained from s(x) by our rewriting process, which drops the
original constraints f(x, y), replaces the given by a find, and modifies where

statements into such that statements, leaving a specification with no formal
parameters but only decision variables (Note that many possible but equivalent
specifications are possible for s′). In principle we could search for a solution
x := a to this specification s′(| x), as this would be a valid input for s(x | y),
yielding the instance s(x := a | y). Such search seldom finds graded instances in
a reasonable amount of time, unless more guidance is provided.

Thus, we want to introduce a new parameter p with domain P to structure
our search for instances. We then rewrite the specification s(x | y) differently, as

s′′(p | x) := find x : D(p) such that c(p, x)

so that as the values assigned to the formal parameters p vary, the solutions
to the instance s′′(p := q | x) form valid inputs to s(x | y). The specification
s′′(p | x) will be our generator specification, instead of s′(| x). We can then treat
P as a space of parameters, and explore this space with a parameter tuning tool.

The types or domain expressions of the formal parameters x with domain D
in the specification s′(| x) may have a lot of structure and be quite complex.
Exploring such parameter spaces successfully is a challenging problem. We there-
fore aim to simplify our task of instance generation by replacing these structured
domains by the usually smaller domains D(p) in the new specification s′′(p | x),
and automatically incorporate this structural information into the constraints
c(p, x) instead; the constraints c(p, x) include both the constraints h(x) and also
the additional constraints to capture structural information. Like D, the param-
eter domain P is usually a product of domains, but for P these are usually just
intervals of reals, ranges of integers, or Booleans.

4 Methodology

In Fig. 1 we show how our system turns an abstract problem specification into
concrete problem instances with the use of rewriting rules and an iterated
sequence of tuned generator instances. The steps of the automated process are:

1. Start with a specification of a problem in the Essence language.
2. Rewrite the problem specification into a generator specification (Sect. 4.1).
3. Create a configuration file for the parameter tuner irace.
4. irace searches for promising values of the generator parameters (Sect. 4.3).
5. At each iteration the current generator instance is used to create multiple

problem instances which are solved by Savile Row [21].
6. The time to solve an instance and its satisfiability are used as feedback to

irace about the quality of the current parameters.
7. At the end of the process several problem instances are generated.

The rest of this section describes the details of this process, correctness of the
rewriting procedure, how we use tuning based on instance difficulty, the problem
classes we studied, and our experimental setup.
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Fig. 1. Essence specifications (top-left) are fed to the Conjure parameter generator
(left-red). Here they are rewritten into a generator specification and a configuration file
for irace (bottom-green), which selects parameter values to generate a synthetic instance
(centre-purple). Solution meta-data are used to inform the tuner. (Color figure online)

4.1 Rewriting Rules

For each Essence type we deploy a set of rules that transform a given state-
ment into a different Essence statement or set of statements that captures the
problem of finding valid input parameters for the initial given. Whenever a given
type is nested inside other types, such as an input parameter, the rewriting rules
are applied recursively until an explicit numerical value is obtained.

4.1.1 Rewriting int
For every integer domain, we generate two configurator parameters, middle and
delta. The domains of these configurator parameters are identical to that of the
original integer domain. If the original domain is not finite, we use MININT and
MAXINT values as bounds, which are to be provided to Conjure. Default values
for MININT and MAXINT are 0 and 50, respectively. For an integer decision variable
x we generate the following constraints to relate it to the corresponding middle

and delta parameters: x >= middle - delta and x <= middle + delta.

given x : int (1..50)

is rewritten as:

given x_middle : int (1..50)

given x_delta : int (0..24)

find x : int (1..50)

such that x >= x_middle - x_delta , x <= x_middle + x_delta
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4.1.2 Rewriting function
For every parameter with a function domain, we produce a decision variable
that has a finite function domain and additional constraints to ensure it can
only be assigned to the allowed values. Total function domains are rewritten as
function (without the total attribute) and add an extra constraint to ensure
the function is defined (NB defined(f) returns the set of elements of the range
of function f that have an image) up to the value required.

given d : int (1..10)

given f : function (total) int (1..d) --> int (1..50)

is rewritten as:

given d_middle : int (1..10)

given d_delta : int (0..4)

find d : int (1..10)

such that d >= d_middle - d_delta , d <= d_middle + d_delta

given f_range_middle : int (1..50)

given f_range_delta : int (0..24)

find f : function int (1..10) --> int (1..50)

such that

forAll i : int (1..10) .

i >= 1 /\ i <= d <-> i in defined(f),

forAll i in defined(f) .

f(i) >= f_range_middle - f_range_delta /\

f(i) <= f_range_middle + f_range_delta

4.1.3 Rewriting matrix
Each matrix is rewritten into a function and the rewriting rules for functions
are utilised.

4.1.4 Rewriting relation
For relations we generate two configurator parameters that bound the cardinality
of the relations, two that bound the left-hand side values of the relation (R_1),
and another two for the right-hand side values (R_2).

letting DOM1 be domain int: (1..10)

letting DOM2 be domain int: (1..50)

given R: relation of(DOM1*DOM2)

is rewritten as:

given R_cardMiddle : int (1..50)

given R_cardDelta : int (0..24)

given R_1_middle : int (1..10)

given R_1_delta : int (0..4)

given R_2_middle : int (1..50)
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given R_2_delta : int (0..24)

find R: relation (maxSize 50) of (int (1..10) * int (1..50))

such that

|R| >= R_cardMiddle - R_cardDelta /\

|R| <= R_cardMiddle + R_cardDelta ,

forAll i in defined(R) .

i[1] >= R_1_middle - R_1_delta /\

i[1] <= R_1_middle + R_1_delta /\ i[1] <= 10 /\

i[2] >= R_2_middle - R_2_delta /\

i[2] <= R_2_middle + R_2_delta /\ i[2] <= 50

4.1.5 Rewriting set
We discuss the case of a set of set. Here we generate a pair of configurator
parameters for the cardinality of the outer set with the usual bounds, then for
the cardinality of the inner set we use a much smaller delta and use the size of the
set as middle. Finally another pair of parameters bounds the size of the innermost
set. The outer cardinality and the innermost bounds parameters are omitted as
they are equivalent to the ones for relation and function, respectively.

letting DOM be domain int: (1..50)

given S : set of set (size 2) of DOM

is rewritten as:

<<middle/delta cardinality parameters as in relation >>

<<middle/delta parameters as in function >>

given S_inner_cardMiddle: int (2)

given S_inner_cardDelta: int (0..3)

find S: set of set (minSize 2, maxSize 2) of int (1..50)

such that

<<middle/delta cardinality bound as in relation >>

<<middle/delta bounds as in functions >>

forAll s1 in S .

|s1| >= S_inner_cardMiddle - S_inner_cardDelta /\

|s1| <= S_inner_cardMiddle + S_inner_cardDelta /\

|s1| >= 2 /\ |s1| <= 2 /\ forAll s2 in s1 . s2 <= 50

4.2 Correctness of Instance Generation via Generator Instances

We need to prove that the rewriting that Conjure does to turn an Essence
specification into a generator instance is sound, in that rewriting should always
produce an instance that is a valid input to the specification. We show soundness
by means of a decomposition based on types; we illustrate the proof for the case
of total functions and leave the remaining cases to the full version of the paper.
We also wish rewriting to be complete, in that every possible instance for the
specification should be an output of the instance generator specification as long
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as it is given the right parameter file as input, but this is only possible for
instances that satisfy some additional assumptions.

We illustrate the rewriting process with the following example, which demon-
strates the rewriting of the function type for a restricted instance. Given the
specification s(d, f | x) as in the example Sect. 4.1.2 our system rewrites this into
the generator specification
s′′(d_middle, d_delta, f_range_middle, f_range_delta | d, f).

We have built our system to ensure soundness by design.

Proposition 1. The semantics of our rewriting rule for function types is sound.

Proof. Consider a solution of the generator instance

s′′(d_middle := u, d_delta := v, f_range_middle := r, f_range_delta := s | d, f)

where the values u, v, r, s are provided in a parameter file, created by our system.
This solution consists of an integer d in the range int(1..10) and a function f

with domain int(1..10) and codomain int(1..50). The constraints force f to
be defined over the entire range int(1..d), and for its values to be in the range

int((f_range_middle - f_range_delta)..(f_range_middle + f_range_delta)).

Moreover f_range_middle − f_range_delta ≥ 1 must hold as a consequence of
the choices made by the system for f_range_middle and f_range_delta. Similarly
the system ensures that f_range_middle+f_range_delta ≤ 50. Hence f is a total
function with domain int(1..d) and codomain int(1..50). Therefore s(d, f | x)
together with a solution of the generator instance is a valid instance. ��

The other types can be dealt with similarly; in particular, proofs for nested
types follow a standard compositional style.

In contrast, it seems challenging to ensure completeness. One issue is infinite
domains: when a formal parameter of a specification has a type that allows an
infinite domain, then any restriction of this domain to a finite set means that the
rewriting process cannot be complete. However, our current system is built on
Conjure and requires finite domains for all decision variables. Our generator
specifications therefore restrict all domains to be finite, and in such cases com-
pleteness is necessarily lost. For specifications where the domains of the formal
parameters are all finite, it seems possible to guarantee completeness. Parame-
ters that are dependent can be another obstacle to achieving completeness. To
avoid this issue the generator parameters must all be sampled independently and
the rewriting process must ensure that no dependencies between parameters are
introduced. We leave issues of completeness to further work.

4.3 Tuning Instance Difficulty

Posing the problem of finding valid instances as Essence statements is a fun-
damental step but not sufficient for the reliable creation of problem instances.
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Efficient and effective searching in the instance space for graded instances is not
a trivial task. We solve this problem by utilising the tuning tool irace. In this
section, we first describe the tuning procedure of irace. We then explain how
we have applied irace, including details of the input to irace and the feedback
provided by each generator’s evaluation to guide the search of irace.

4.3.1 The Tuning Procedure of irace

We give a brief summary of the specific tuning procedure implemented by irace
and explain why such an automatic algorithm configurator is a good choice
for our system in the next section. For a detailed description of irace and its
applications, readers are referred to [15].

The algorithm configuration problem irace tackles is as follows: given a
parameterised algorithm A and a problem instance set I, we want to find algo-
rithm configurations of A that optimise a performance metric defined on I, such
as minimising the average solving time of A across all instances in I. The main
idea of irace is using racing , a machine learning technique, in an iterated fashion
to efficiently use the tuning budget. Each iteration of irace is a race. At the first
iteration, a set of configurations is randomly generated and these are evaluated
on a number of instances. A statistical test is then applied to eliminate the statis-
tically significantly worse configurations. The remaining configurations continue
to be tested on more instances before the statistical test is applied again. At
the end of the race, the surviving configurations are used to update a sampling
model. This model is then used to generate a set of new configurations for the
next iteration (race). This process repeats until the tuning budget is exhausted.
The search mechanism of irace allows it to focus more on the regions of promis-
ing configurations: the more promising a configuration is, the more instances it
is evaluated on and the more accurate the estimate of its performance over the
whole instance set I will be. This is particularly useful when I is a large set
and/or A is a stochastic algorithm.

4.3.2 Using irace to Find Graded Instances
In our instance generation context, the parameterised algorithm A is our gener-
ator instance. Each input for the generator instance, which we call a generator
configuration, will cover a part of the instance space. The instance set I in our
context is a set of random seeds. The search procedure of irace enables efficient
usage of the tuning budget, as the more promising an instance region covered
by a configuration proves, the more instances will be generated from it.

Paired with each Essence generator specification there is a configuration file
that is utilised by irace to tune the parameters of the generator specification. The
configuration file is automatically created by Conjure and defines a generator
configuration.

Given a random seed, an evaluation of a generator configuration involves two
steps. First, a problem instance is generated by solving the generator instance
using Conjure, Savile Row, and Minion. The generator configuration normally
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covers several instances, and the random seed is passed to Minion for deciding
which instance is to be returned.

Second, the generated instance is solved by Minion, and its satisfaction prop-
erty and the solving time are recorded. We use these values to assign a score to
the generator configuration. The highest score is given if the instance satisfies our
grading criteria, so that irace is guided to move towards the generator’s configura-
tion spaces where graded instances lie. The assignment of scores depends on the
specific definition of instance grading. In our case, we define graded instances
as satisfiable (SAT) and solvable by Minion within [10, 300] seconds. We also
place a time limit of 5 min on Savile Row for the translation from the Essence
instance parameter to Minion input format. A score of 0 is given if the generated
instance is either UNSAT, or too difficult (Minion times out), or too large (Sav-
ile Row times out). If the instance is SAT but too easy (solvable by Minion in
less than 10 s), the Minion solving time is returned as the score. If the instance
satisfies our grading criteria, a score of 10 is returned. The scale of the scores is
not important, as the default choice for the statistical test used in irace is the
Friedman test, a non-parametric test where scores are converted to ranks before
being compared. Following tuning, we collect the set of graded instances gener-
ated. irace also returns a number of promising generator configurations. These
configurations can be kept for when we want to sample more graded instances
that are similar to the ones produced by the tuning procedure.

4.4 Problem Classes

CSPlib is a diverse collection of combinatorial search problems, covering ancient
puzzles, operational research, and group theory [10]. Most of these problems
have Essence specifications. To test our system we have selected representative
problems that span most of the Essence types used for formal parameters in
CSPlib. We now briefly describe each of these problems (with CSPlib problem
numbers).

Template Design (2): The objective is to minimise the wastage in a printing
process where the number of templates, the number of design variations and the
number of slots are given, while satisfying the demand. The formal parameters
are 3 integers and 1 total function.

The Rehearsal Problem (39): The objective is to produce a schedule for a set of
musicians that have to practice pieces with specified durations in groups. The
goal is to minimise the total amount of time the musicians are waiting to play.
The formal parameters are 2 integers, 1 total bijective function and 1 relation.

A Distribution Problem with Wagner-Whitin Costs (40): The objective is to
find an ordering policy minimising overall cost, given the number of products,
their cost, maximum stock available, their demand, holding costs, and the dis-
tribution hierarchy. The formal parameters are 4 integers and 4 matrices.

Synchronous Optical Networking (SONET) Problem (56): Consider a set of
nodes and a demand value for each pair of nodes. A ring connects nodes and a

http://www.csplib.org/Problems/prob002/
http://www.csplib.org/Problems/prob039
http://www.csplib.org/Problems/prob040
http://www.csplib.org/Problems/prob056
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Table 1. Number of graded instances produced for each problem class and parameter
search method within a budget of 1000 evaluations.

CSPlib Problem name Types Problem kind irace random irace random

Linear Linear Log Log

2 Template Design 3 integer,
1 function

Optimisation 788 491 464 49

39 Rehearsal 2 integers,
1 function,
1 relation

Optimisation 10 0 25 0

40 Wagner-Whitin 4 integers,
4 matrices

Optimisation 48 4 60 2

56 SONET 3 integers,
1 set of sets

Optimisation 37 7 78 40

135 Van der Waerden
Numbers

3 integers Satisfaction 121 64 33 18

node can be installed into the ring using an add-drop multiplexer (ADM). Net-
work traffic can be routed between two nodes only if they are on the same ring.
The objective is to minimise the number of ADMs to install while satisfying all
demands. The formal parameters are 3 integers and 1 set of sets of integers.

Van der Waerden Numbers (135): The goal is to decide if a given number n is
smaller than the Van der Waerden number predefined by a number of colors and
an arithmetic length. The problem has 3 formal integer parameters.

4.5 Experimental Setup

We demonstrate our methodology on the five problem classes described in
Sect. 4.4. A budget of 1000 generator configuration evaluations is given to the
tuning. To illustrate the tuning’s efficiency, we also run the same experiment
with uniformly randomly sampling using the same budget.

The system parameter MAXINT defines the maximum value for any unbounded
integer parameters. Here we set it to 50. We leave for future work the questions
about the impact of this parameter and the tuning budget on the effectiveness
of the system, and how to set them properly given a specific problem class.

We also consider two options for sampling each generator parameter’s values,
both of which are supported by irace. The first is linear-scale sampling , where
all values in the domain are treated equally at the start of tuning (or during the
whole random search). The second is logarithmic-scale sampling , where the log-
arithms of the lower and upper bounds of the parameter domains are calculated
first, and a value is sampled from this new domain before being converted back
into the original range. The logarithmic scale makes smaller ranges finer-grained
and vice versa, and can potentially help search in scenarios where larger param-
eter values tend to make instances become either too large or too difficult. This
will be demonstrated in our experimental results in the next section.

http://www.csplib.org/Problems/prob135
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Each generated instance is solved using Minion for 5 random seeds. During an
evaluation of a generator configuration, as soon as the generated instance violates
the criteria on one of the seeds, the evaluation is stopped, and the violated run
is used as a result for scoring the generator configuration. We use this early-
stopping mechanism to maximise the information gained per CPU-hour, as little
information is gained from multiple runs on an uninteresting instance.

Experiments were run on two servers, one with 40-core Intel Xeon E5-2640
2.4 GHz, and one with 64-core AMD Opteron 6376 2.3 GHz. All experiments for
the same problem class were performed on the same server. Each experiment
used between 7 and 95 CPU core hours, depending on problem class and search
variants. The experiments we report here used 700 CPU core hours in total.

5 Results and Analysis

In Table 1 we report the number of graded instances found by the four search
variants: irace or random search in combination with linear or logarithmic scale-
sampling. Across the five problem classes, the winner is always an irace tuning
variant. irace with linear-scale sampling works best on Template Design and Van
der Waerden Numbers, while irace with logarithmic-scale sampling is able to find
more graded instances for Rehearsal, Wagner-Whitin Distribution, and SONET.

In Table 2 we juxtapose plots of the progress over time with the total numbers
of instances produced during the process for each problem class, divided into
categories. It can be seen that irace vastly outperforms randomised search. In all
cases, during the first half of the tuning budget, the difference in performance
between irace and random search is not always clearly visible as irace is still in
its exploration mode (the few first iterations/races where the sampling model
of irace was still initialised). However, by the second half of the budget the
tuning has gained some knowledge about the promising regions of the generator
configuration space, and irace starts showing a significant boost in the number
of graded instances found compared with random search.

In the case of the Rehearsal Problem, where we generate relatively fewer
instances compared with other classes, the plot shows that by the end of the
tuning budget the system is just picking up pace and it is fair to expect that
with more iterations it would produce significantly more instances.

Looking at the category results in Table 2, we can infer some knowledge about
the instance space of a specific problem class based on those statistics and the
difference in performance between the two scales for sampling (linear vs loga-
rithmic). For example, in the Template Design case, most generated instances
are SAT, and are either too easy or graded. The larger number of too easy
instances found by the logarithmic scale sampling suggests a strong correlation
between the domains of the generator parameters and easiness of the instances
generated. Smaller generator configuration values mostly cover SAT and easy-to-
solve instances, while larger configurations cover more difficult instances. Since
we prefer sufficiently difficult instances to too easy instances, this explains why
linear sampling works better than log-scale for this particular problem. A similar
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Table 2. Progress of the four search variants for each problem class, with a budget
of 1000 evaluations. Each plot shows how the number of graded instances found grows
as the number of evaluations increases. The table displays the number of instances for
each problem class, instance category, and search variant. (SR refers to Savile Row.)
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explanation can be applied for the Van der Waerden case. However, the large
number of too-difficult instances suggests that MAXINT=50 is probably too large
for this problem, and reducing this parameter value could potentially boost per-
formance of the search within our limited budget. Another example is Rehearsal
where the statistics indicate a strong correlation between the numbers of UNSAT
and too-difficult instances, and between the number of too easy instances and
infeasible generator configurations. These suggest that a smaller MAXINT value
combined with linear sampling could potentially improve search performance.

6 Conclusions and Future Work

We have developed a system that automates the production of graded instances
for combinatorial optimisation and decision problems. Our system creates a gen-
erator specification from an abstract problem specification. Generator parame-
ters are explored using the irace parameter tuning system. We demonstrated the
soundness of our approach and performed an empirical evaluation over several
problem classes. The experiments showed that automated tuning of generator
parameters outperforms random sampling for all problem classes under study,
and is able to discover significant numbers of graded instances automatically.
The system and all data produced by this work is publicly available as a github
repository https://github.com/stacs-cp/CP2019-InstanceGen.

Much future work remains. We first would like to extend our approach to
generate instances for every problem class in CSPlib, or at least the ones for
which exhibiting a valid instance does not involve first solving long-standing
open problems. Many of the classes in CSPlib only have trivially easy instances,
or have none, and we would like to remedy this situation. We further seek to auto-
mate creation of balanced and heterogeneous sets of instances, by refining our
system’s notion of a graded instance, and by further investigating the diversity
of the generated instances. We believe much work also remains in investigating
grading of instances more generally. As we saw in Sect. 5, some problem classes
are especially amenable to automatic discovery of their features; in particular, we
plan to automate the choice of sampling regime based on performance of tuning
in its early stages. A comparison with existing hand-crafted instances/instance-
generators will also be considered. Furthermore the system can be adapted to
find instances that are easy for one solver but challenging for other solvers; we
believe automating the generation of such instances would greatly assist those
researchers who build solvers to improve performance of their solvers. Another
application is to find instances with certain structures that reflect real-world
instances. Finally, we intend to work toward automatic instance generation for
specifications involving infinite domains.
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