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Preface

This volume contains the proceedings of the 25th International Conference on the
Principles and Practice of Constraint Programming (CP 2019), which was held in
Stamford, Connecticut, USA, during September 30 – October 4, 2019. Detailed
information about the conference should be available at http://cp2019.a4cp.org. The CP
conference is the annual international conference on constraint programming. It is
concerned with all aspects of computing with constraints, including theory, algorithms,
environments, languages, models, systems, and applications such as decision making,
resource allocation, scheduling, configuration, planning, or automated design. These
two facets of CP are represented by the technical and application track of the
conference.

The CP community is increasingly keen to ensure CP remains open to interdisci-
plinary research at the intersection between constraint programming and other directly
related fields. The senior Program Committee of the CP 2019 edition, therefore,
included people with mixed backgrounds beyond CP – propositional logic and integer
linear programming, among others. To reach out beyond these direct ‘discrete opti-
mization’ connections, the CP 2019 edition continued to offer specialized thematic
tracks targeted at the frontier between CP and another specific area. With the current
progress and excitement around machine learning technology and the new opportu-
nities that such progress offers for modeling and solving, the CP, Data Science and
Machine Learning Track was the most successful thematic track of this edition,
attracting even more submissions than the application track. Other thematic tracks were
targeted at specific application domains that often raise specific challenges for CP,
including the Testing and Verification Track, the Multi-agent and Parallel CP Track,
the Computational Sustainability Track and the CP and Life Sciences Track. Each track
has a specific sub-committee to ensure that specialist reviewers from the relevant
domains vetted papers in their track.

We invited submissions to all tracks and we received 118 submissions (excluding
abstracts). The review process of CP 2019 relied on a multitier approach involving one
senior Program Committee with Program Committees for all tracks and additional
reviewers recruited by Program Committee members. Authors could submit either full
papers, with a maximum length of 15 pages without references and abstracts that are
not included in these proceedings. All full paper submissions were assigned to a senior
Program Committee member and three members of the relevant track Program
Committee. Authors were given the opportunity to respond to reviews, generating
discussions overseen by the senior Program Committee members and the chairs.
Abstracts were directly managed by the chairs. Meetings between the conference chairs
and all members of the senior Program Committee were held at the end of June, chaired
by the program chairs, where the reviews, author feedback, and discussions were
revisited in detail, based on meta-reviews previously prepared by senior Program
Committee members. The result of this was that the acceptance rate was 39%. The

http://cp2019.a4cp.org


senior Program Committee and the chairs awarded the Best Conference Paper Prize to
Alex Mattenet, Ian Davidson, Siegfried Nijssen, and Pierre Schaus for “Generic
Constraint-based Block Modeling using Constraint Programming,” the Best Student
Paper Prize to Rocsildes Canoy and Tias Guns for “Vehicle Routing by Learning from
Historical Solutions,” and the Distinguished Student Paper Price to Mohd Hafiz Hasan
and Pascal Van Hentenryck for “The Flexible and Real-Time Commute Trip Sharing
Problems.” The program chairs also invited two papers for direct publication in the
Constraints journal (Editor-in-Chief Michela Milano). These papers were presented at
the conference like any other paper and appeared later in the Constraints journal.
Awarded papers and nominated papers were also invited to submit an extended version
of their paper in the JAIR journal (with its own rigorous reviewing process being
applied to these extended submissions).

The conference program featured four invited talks by Ian Davidson, Bistra Dilkina,
Nina Narodystka, and Phebe Vayanos. These invited talks were selected with the senior
Program Committee with the general idea of supporting the current trend of
hybridization between CP and machine learning, and the increasing importance of
‘algorithms’ in everybody’s life. This volume includes one-page abstracts of their talks.
The conference also included four tutorials and three satellite workshops, whose topics
are listed in this volume. The doctoral program gave Ph.D. students an opportunity to
present their work to more senior researchers, to meet with an assigned mentor for
advice on their research and early career, to attend special invited talks, and to interact
with each other. Doctoral program papers went through an internal reviewing process
that allowed young scientists to familiarize themselves with reviewing, discussion, and
with the usage of EasyChair, the usual CP conference submissions management tool.

The program chairs are grateful to the many people that made this conference such a
success. First of all, we are grateful to the authors who provided the material from
which the conference is made. Then to the senior Program Committee members who
helped us in several of the crucial phases of the conference organization, be it for
tutorial and invited speaker selection or for reviews, rebuttal, and discussion man-
agement, meta-review writing, and participation in live remote meetings for final
acceptance decisions (sometimes at extreme hours). The chairs are also extremely liable
to the members of the program committees. By filtering the most novel and original
contributions and maintaining high standards of quality in rigor and writing quality,
their work is essential for both authors and the community at large. The chairs also
address a very special thanks to the authors of various additional reviews that were
needed to give all papers enough reviews from qualified persons.

Of course, there is a whole team standing around us, who directly managed specific
aspects of the conference: Pierre Schaus (Application track chair), Michele Lombardi
and Tias Guns (CP, Data Science and Machine Learning track), Arnaud Gotlieb and
Nadjib Lazaar (Testing and Verification track), Ferdinando Fioretto and William Yeoh
(Multi-agent and Parallel CP track), Michela Milano and Barry O’Sullivan (Compu-
tational Sustainability track), François Fages and Sylvain Soliman (CP and Life Sci-
ences track), Javier Larrosa (workshop and tutorial chair), and Charlotte Truchet
(publicity chair).

We would also like to thank the Association for Constraint Programming (ACP).
The ACP has been managing the conference for fifteen years now, the conference
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benefits from very helpful organization support. The program chairs are grateful for the
help of the ACP president (Maria Garcia de la Banda) and the ACP conference
coordinator (Claude-Guy Quimper) for their support and availability when we needed
them.

The conference would not have been possible without the great job done by all the
people involved in the local organization. The program chairs heavily relied on the
local chair (David Bergman) to provide support for all the special contributors to the
CP 2019 program such as invited talks and tutorial speakers and to speedily announce
program updates on the conference website. David was supported in this endeavor by
Ugochukwu Etudo, Tamilla Triantoro, Niam Yaraghi, Mohsen Emadikhiav, Teng
Huang, Saharnaz Mehrani, and Arvind Raghunathan. We would therefore also like to
thank the institutions that supported them during the organization: the University of
Connecticut first, but also the Quinnipiac University and the Mitsubishi Electric
Research Lab.

We acknowledge the generous support of all our sponsors. They include, at the time
of this writing:

– The Artificial Intelligence Journal (Elsevier)
– Cosling (a French CP startup)
– Huawei
– IBM Research
– AIMMS
– Mitsubishi Electric Research Laboratories Inc.
– The Optimization Firm
– Springer

Thanks to these donations, the local chairs have been able to make CP even better,
especially by supporting some of the doctoral program expenses.

July 2019 Thomas Schiex
Simon de Givry
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Using Constraints in Machine Learning

Ian Davidson

Department of Computer Science, University of California, Davis, USA
davidson@cs.ucdavis.edu

Abstract. We will give a broad overview of our decade long effort to add
constraints to machine learning. We will begin by exploring motivating exam-
ples of the need for constraints from applications in social network analysis,
medical imaging, and intelligent tutoring systems. We then discuss how con-
straints can be used such as for encoding domain knowledge, for transfer
learning, and for adding humans to the machine learning loop.
We overview our results on encoding constraints in terms of their computa-

tional difficulty in general and for encoding in different types of solvers
including SAT and CP solvers. With the benefit of hindsight, we will then
discuss successful and unsuccessful formulations we have worked on in the past
from clustering, regression, block modeling, and outlier detection.
We will conclude by overviewing future new directions and challenges for

using CP and other discrete solvers in machine learning such as encoding rules a
priori for deep learning, post-processing results for explanation, and encoding
notions of fairness.



Discrete Optimization and Machine Learning
for Sustainability

Bistra Dilkina

Viterbi School of Engineering, University of Southern California, USA
dilkina@usc.edu

Abstract. My research focuses on advancing the state of the art in combinatorial
optimization techniques for solving real-world large-scale problems, particularly
ones that arise in sustainability areas such as biodiversity conservation planning
and urban planning. The work I will present is at the intersection of discrete
optimization and machine learning. One key area of research is designing
machine-learning-driven combinatorial optimization algorithms, by leveraging
the plethora of data generated by solving distributions of real world optimization
problems.



Verification and Explanation of Deep Neural
Networks

Nina Narodytska

VMware Research, Palo Alto, CA, USA
n.narodytska@gmail.com

Abstract. Deep neural networks are among the most successful artificial intel-
ligence technologies making an impact in a variety of practical applications.
However, many concerns were raised about the ‘magical’ power of these net-
works. It is disturbing that we are clearly lacking an understanding of the
decision making process behind this technology. Therefore, a natural question is
whether we can trust decisions that neural networks make.
There are two ways to address this problem that are closely related. The first

approach is to define properties that we expect a neural network to satisfy.
Verifying whether a neural network fulfills these properties sheds light on the
properties of the function that it represents. Verification guarantees can reassure
the user that the network has an expected behavior. The second approach is to
better understand the decision making process of neural networks. Namely, the
user can require that a neural network decision must be accompanied by an
explanation for this decision. Such explanations help the user to understand the
decision making process of the network function.
In this talk, we consider both research directions. We take a logic-based

approach to analysis of neural networks, where the network is represented in a
logical formalism, like Boolean Satisfiability (SAT) or Satisfiability Modulo
Theories (SMT). From this standpoint, we overview the progress in verification
and explainability. In particular, we will discuss recent progress in verification
of neural networks, focusing on a special class of neural networks – Binarized
Neural Networks – that can be represented and analyzed using Boolean Satis-
fiability. We discuss how we can take advantage of the training procedure and
the structure of the network to speed up verification. In particular, we demon-
strate that the choice of the training procedure can have significant impact on
scalability of the network verification procedure. For the explainability, we
present our work on producing logical explanations for machine learning model
decisions. We also explain how logic-based tools can be used to verify the
quality of explanations produced by well-known explainer tools.



AI and Robust Optimization for Social Good

Phebe Vayanos

Center for Artificial Intelligence in Society, University of Southern California,
USA

phebe.vayanos@usc.edu

Abstract. In the last decades, significant advances have been made in AI and
optimization. Recently, systems relying on these technologies are being tran-
sitioned to the field with the potential of having tremendous positive influences
on people and society. With increase in the scale and diversity of deployment of
AI- and optimization-driven algorithms in the open world come several chal-
lenges including the need for tractability and resilience, issues of data scarcity
and bias, information endogeneity, ethical considerations, and issues of shared
responsibility between humans and algorithms. In this talk, we focus on the
problems of homelessness, wildlife conservation, and public health in vulner-
able communities, and present research advances in AI and robust optimization
to address one key cross-cutting question: how to effectively allocate scarce
intervention resources in these domains while accounting for the challenges of
open world deployment? We will show concrete improvements over the state
of the art in these domains based on both real world data and deployments in the
LA area. We are convinced that, by pushing this line of research, AI and robust
optimization can play a crucial role to help fight injustice and solve complex
problems facing our society.
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Abstract. Access to good benchmark instances is always desirable when
developing new algorithms, new constraint models, or when comparing
existing ones. Hand-written instances are of limited utility and are time-
consuming to produce. A common method for generating instances is
constructing special purpose programs for each class of problems. This
can be better than manually producing instances, but developing such
instance generators also has drawbacks. In this paper, we present a
method for generating graded instances completely automatically start-
ing from a class-level problem specification. A graded instance in our
present setting is one which is neither too easy nor too difficult for a
given solver. We start from an abstract problem specification written
in the Essence language and provide a system to transform the prob-
lem specification, via automated type-specific rewriting rules, into a new
abstract specification which we call a generator specification. The gener-
ator specification is itself parameterised by a number of integer param-
eters; these are used to characterise a certain region of the parameter
space. The solutions of each such generator instance form valid problem
instances. We use the parameter tuner irace to explore the space of pos-
sible generator parameters, aiming to find parameter values that yield
graded instances. We perform an empirical evaluation of our system for
five problem classes from CSPlib, demonstrating promising results.

Keywords: Automated modelling · Instance generation ·
Parameter tuning

1 Introduction

In constraint programming, each problem class is defined by a problem speci-
fication; many different specifications are possible for the same problem class.
A problem specification identifies a class of combinatorial structures, and lists
constraints that these structures must satisfy. A solution is a structure satisfy-
ing all constraints. Problem specifications usually also have formal parameters,
which are variables for which the specification does not assign values but are not
intended to be part of the search for solutions. Values for such formal parameters
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are provided separately, and the specification together with a particular choice
of values for these formal parameters defines a problem instance.

Instance generation is the task of choosing particular values for the formal
parameters of a problem instance, and is often a key component of published
work when existing benchmarks are inadequate or missing. Our goal is to auto-
mate instance generation. We aim to automatically create parameter files con-
taining definitions of the formal parameters of a problem specification, from the
high level problem specification itself, and without human intervention.

We automate instance generation by rewriting a high level constraint speci-
fication in the Essence language [7] into a sequence of generator instances for
the problem class. Values for the parameters of the generator specification are
chosen based on the high level types in the problem specification. A solution to
a generator instance is a valid parameter file defining a problem instance. We
use irace [15], a popular tool for the automatic configuration of algorithms, to
search the space of generator parameters for regions where “graded instances”
exist. Graded instances have specific properties; in this work they are satisfiable,
and neither too trivial nor too difficult to be solved. However, our methodology
does not depend on a specific definition of grading, and can be applied more
generally. We first prove the soundness of our rewriting scheme. The system is
then empirically evaluated over 5 different problem classes that contain differ-
ent combinations of integers, functions, matrices, relations and sets of sets. We
show the viability of our system and the efficacy of the parameter tuning against
randomised search over all problem classes.

2 Related Work

In combinatorial optimisation a wide variety of custom instance generators have
been described. These are used to construct synthetic instances for problem
classes where too few benchmarks are available. In just the constraint program-
ming literature generators have been proposed for many problem classes, includ-
ing quasigroup completion [4], curriculum planning [17], graph isomorphism [26],
realtime scheduling [11], and bike sharing [6]. Different evolutionary methods
have also been proposed to find instances for binary CSPs [18], Quadratic Knap-
sack [13], and TSP [23]. In particular, Ullrich et al. specified problem classes with
a formal language, and used this system to evolve instances for TSP, MaxSAT,
and Load Allocation [24]. Efforts have also been made to extend existing repos-
itories of classification problems via automated instance generation [19].

Instance generators are typically built to support other parts of the research,
such as verifying robustness of models. However, a generator often requires signif-
icant effort to develop, and it cannot be applied to new problem classes without
major modifications [24]. A generator is typically controlled by means of parame-
ters, and a further challenge of instance generation is to find regions of parameter
values where an instance generator can reliably create interesting instances.

Gent et al. developed parametric generators of instances for several problem
classes [8]. They developed a semi-automated prototype to produce instances for
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discriminating among potential models for a given high-level specification. Their
system requires manual rewriting of the domains when there are dependencies
between parameters, and does not support all of Essence. In contrast, our
system works in a completely automated fashion, for all Essence types, and
supports dependencies between formal parameters.

We use the irace system to sample intelligently from the space of instances.
irace is a general-purpose tool for automatic configuration of an algorithm’s
parameters, and its effectiveness has been shown in a wide range of applica-
tions [5,12,14,15]. Our system uses irace to find values of the generator param-
eters covering graded instances.

Our generator instance method could be applied to many constraint mod-
elling languages such as MiniZinc [20], Zinc [16], Essence Prime [22], or OPL [25].
In this paper we focus on the Essence language [7] because of its support for
high level types, and since the open-source Conjure system [1–3] provides a
convenient basis on which to build an automated instance generation system.
We exploit the high level types of Essence to guide the rewriting process.

3 Background

We now introduce notation used in the remainder of the paper.
A problem class is the set of problem instances of interest. A problem specifi-

cation is a description of a problem class in a constraint specification language.
A problem specification defines the types but not the values of several formal
parameter variables. An assignment of specific values to the formal parameters is
called an input , and a parameter file contains an input. A variable that occurs in
the problem specification, but which neither occurs within the scope of a quan-
tifier over that variable, nor is a formal parameter, is called a decision variable.
We refer to a specification together with an input as an instance. A solution to
an instance is an assignment of values to the decision variables in the instance.
An instance is satisfiable if it has a solution. If all input values are of the correct
type for the corresponding formal parameters, then the input is valid . An valid
instance consists of a specification and a valid input for that specification. Valid
instances may have many, one, or no solutions. For optimisation problems, we
further wish to search among satisfying solutions to find those of high quality,
where quality is determined by an expression to be optimised.

We use the abstract constraint specification language Essence [7]. This com-
prises formal parameters (given), which may themselves be constrained (where);
the combinatorial objects to be found (find); constraints the objects must sat-
isfy (such that); identifiers declared (letting); and an optional objective func-
tion (min/maximising). Essence supports abstract decision variables, such as
multiset, relation and function, as well as nested types, such as multiset of sets.

We seek graded instances. With this we mean instances that satisfy pre-
defined criteria. The criteria should be tailored to the use to which the instances
will be put. In this work, we require graded instances to be neither too easy nor
too difficult. To ensure an instance is not too easy, we require that the back-end
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solver (in our case, Minion [9]) takes at least 10 s to decide the instance. To
ensure an instance is not too difficult, we exclude instances for which the solver
has not returned a solution in 5 min. Our choices of grading criteria were guided
by our computational budget and available resources, and so in this work we
have chosen to accept only satisfiable instances as graded. We do not advocate a
specific definition of grading, and other criteria for grading would be reasonable,
such as “the instance is decided or solved to optimality by at least one solver
from a portfolio of solvers in a reasonable amount of time”.

A key step of our method is a process of automatic rewriting, discussed in
more detail in Sect. 4.1. Briefly, the rewriting steps are:

1. remove all constraints (such that statements) and decision variables (find
statements),

2. replace all input parameters (given statements) with decision variables (find
statements) and type specific constraints, and

3. promote parameter constraints (where statements) to constraints.

We call the result of this process a generator specification.

Definition 1. A generator instance consists of a generator specification together
with a particular choice of generator parameters, which restrict the domains of
decision variables appearing in the generator instance.

Rewriting is one step in an iterative process. The choice of generator parame-
ters is performed automatically using the parameter tuning tool irace. Solutions
to the generator instance are then filtered according to our grading criteria,
retaining graded instances. We want the rewriting procedure to have the follow-
ing two properties: soundness (the solutions of the generator instance should
always be valid inputs for the instance), and completeness (every valid instance
should be obtainable as a possible solution of the generator instance). We now
discuss the semantics of generator instances and our approach.

Variables may represent tuples, and for clarity of presentation we take some
liberties with the corresponding Essence syntax. When referring to a specifi-
cation s with variables v, we omit the variables that occur within the scope of
a quantifier, and partition the remaining variables so that s(x | y) denotes a
specification s with formal parameters x and decision variables y, both of which
are generally tuples. With s(x := a | y) we denote the specification s′(| y) (with
no formal parameters and only decision variables) which is obtained from s by
substituting the tuple of formal parameters x by a fixed tuple of values a.

Start with an Essence specification of the form

s(x | y) := given x : D where h(x) find y : E such that f(x, y)

where the specification has formal parameters x and decision variables y. We
are interested in valid inputs a, such that s(x := a | y) is a valid instance. Here
domain D may be a product of component domains, of arbitrarily nested types
as allowed in the Essence language. Now let

s′(| x) := find x : D such that h(x)
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be a specification obtained from s(x) by our rewriting process, which drops the
original constraints f(x, y), replaces the given by a find, and modifies where

statements into such that statements, leaving a specification with no formal
parameters but only decision variables (Note that many possible but equivalent
specifications are possible for s′). In principle we could search for a solution
x := a to this specification s′(| x), as this would be a valid input for s(x | y),
yielding the instance s(x := a | y). Such search seldom finds graded instances in
a reasonable amount of time, unless more guidance is provided.

Thus, we want to introduce a new parameter p with domain P to structure
our search for instances. We then rewrite the specification s(x | y) differently, as

s′′(p | x) := find x : D(p) such that c(p, x)

so that as the values assigned to the formal parameters p vary, the solutions
to the instance s′′(p := q | x) form valid inputs to s(x | y). The specification
s′′(p | x) will be our generator specification, instead of s′(| x). We can then treat
P as a space of parameters, and explore this space with a parameter tuning tool.

The types or domain expressions of the formal parameters x with domain D
in the specification s′(| x) may have a lot of structure and be quite complex.
Exploring such parameter spaces successfully is a challenging problem. We there-
fore aim to simplify our task of instance generation by replacing these structured
domains by the usually smaller domains D(p) in the new specification s′′(p | x),
and automatically incorporate this structural information into the constraints
c(p, x) instead; the constraints c(p, x) include both the constraints h(x) and also
the additional constraints to capture structural information. Like D, the param-
eter domain P is usually a product of domains, but for P these are usually just
intervals of reals, ranges of integers, or Booleans.

4 Methodology

In Fig. 1 we show how our system turns an abstract problem specification into
concrete problem instances with the use of rewriting rules and an iterated
sequence of tuned generator instances. The steps of the automated process are:

1. Start with a specification of a problem in the Essence language.
2. Rewrite the problem specification into a generator specification (Sect. 4.1).
3. Create a configuration file for the parameter tuner irace.
4. irace searches for promising values of the generator parameters (Sect. 4.3).
5. At each iteration the current generator instance is used to create multiple

problem instances which are solved by Savile Row [21].
6. The time to solve an instance and its satisfiability are used as feedback to

irace about the quality of the current parameters.
7. At the end of the process several problem instances are generated.

The rest of this section describes the details of this process, correctness of the
rewriting procedure, how we use tuning based on instance difficulty, the problem
classes we studied, and our experimental setup.
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Fig. 1. Essence specifications (top-left) are fed to the Conjure parameter generator
(left-red). Here they are rewritten into a generator specification and a configuration file
for irace (bottom-green), which selects parameter values to generate a synthetic instance
(centre-purple). Solution meta-data are used to inform the tuner. (Color figure online)

4.1 Rewriting Rules

For each Essence type we deploy a set of rules that transform a given state-
ment into a different Essence statement or set of statements that captures the
problem of finding valid input parameters for the initial given. Whenever a given
type is nested inside other types, such as an input parameter, the rewriting rules
are applied recursively until an explicit numerical value is obtained.

4.1.1 Rewriting int
For every integer domain, we generate two configurator parameters, middle and
delta. The domains of these configurator parameters are identical to that of the
original integer domain. If the original domain is not finite, we use MININT and
MAXINT values as bounds, which are to be provided to Conjure. Default values
for MININT and MAXINT are 0 and 50, respectively. For an integer decision variable
x we generate the following constraints to relate it to the corresponding middle

and delta parameters: x >= middle - delta and x <= middle + delta.

given x : int (1..50)

is rewritten as:

given x_middle : int (1..50)

given x_delta : int (0..24)

find x : int (1..50)

such that x >= x_middle - x_delta , x <= x_middle + x_delta
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4.1.2 Rewriting function
For every parameter with a function domain, we produce a decision variable
that has a finite function domain and additional constraints to ensure it can
only be assigned to the allowed values. Total function domains are rewritten as
function (without the total attribute) and add an extra constraint to ensure
the function is defined (NB defined(f) returns the set of elements of the range
of function f that have an image) up to the value required.

given d : int (1..10)

given f : function (total) int (1..d) --> int (1..50)

is rewritten as:

given d_middle : int (1..10)

given d_delta : int (0..4)

find d : int (1..10)

such that d >= d_middle - d_delta , d <= d_middle + d_delta

given f_range_middle : int (1..50)

given f_range_delta : int (0..24)

find f : function int (1..10) --> int (1..50)

such that

forAll i : int (1..10) .

i >= 1 /\ i <= d <-> i in defined(f),

forAll i in defined(f) .

f(i) >= f_range_middle - f_range_delta /\

f(i) <= f_range_middle + f_range_delta

4.1.3 Rewriting matrix
Each matrix is rewritten into a function and the rewriting rules for functions
are utilised.

4.1.4 Rewriting relation
For relations we generate two configurator parameters that bound the cardinality
of the relations, two that bound the left-hand side values of the relation (R_1),
and another two for the right-hand side values (R_2).

letting DOM1 be domain int: (1..10)

letting DOM2 be domain int: (1..50)

given R: relation of(DOM1*DOM2)

is rewritten as:

given R_cardMiddle : int (1..50)

given R_cardDelta : int (0..24)

given R_1_middle : int (1..10)

given R_1_delta : int (0..4)

given R_2_middle : int (1..50)
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given R_2_delta : int (0..24)

find R: relation (maxSize 50) of (int (1..10) * int (1..50))

such that

|R| >= R_cardMiddle - R_cardDelta /\

|R| <= R_cardMiddle + R_cardDelta ,

forAll i in defined(R) .

i[1] >= R_1_middle - R_1_delta /\

i[1] <= R_1_middle + R_1_delta /\ i[1] <= 10 /\

i[2] >= R_2_middle - R_2_delta /\

i[2] <= R_2_middle + R_2_delta /\ i[2] <= 50

4.1.5 Rewriting set
We discuss the case of a set of set. Here we generate a pair of configurator
parameters for the cardinality of the outer set with the usual bounds, then for
the cardinality of the inner set we use a much smaller delta and use the size of the
set as middle. Finally another pair of parameters bounds the size of the innermost
set. The outer cardinality and the innermost bounds parameters are omitted as
they are equivalent to the ones for relation and function, respectively.

letting DOM be domain int: (1..50)

given S : set of set (size 2) of DOM

is rewritten as:

<<middle/delta cardinality parameters as in relation >>

<<middle/delta parameters as in function >>

given S_inner_cardMiddle: int (2)

given S_inner_cardDelta: int (0..3)

find S: set of set (minSize 2, maxSize 2) of int (1..50)

such that

<<middle/delta cardinality bound as in relation >>

<<middle/delta bounds as in functions >>

forAll s1 in S .

|s1| >= S_inner_cardMiddle - S_inner_cardDelta /\

|s1| <= S_inner_cardMiddle + S_inner_cardDelta /\

|s1| >= 2 /\ |s1| <= 2 /\ forAll s2 in s1 . s2 <= 50

4.2 Correctness of Instance Generation via Generator Instances

We need to prove that the rewriting that Conjure does to turn an Essence
specification into a generator instance is sound, in that rewriting should always
produce an instance that is a valid input to the specification. We show soundness
by means of a decomposition based on types; we illustrate the proof for the case
of total functions and leave the remaining cases to the full version of the paper.
We also wish rewriting to be complete, in that every possible instance for the
specification should be an output of the instance generator specification as long
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as it is given the right parameter file as input, but this is only possible for
instances that satisfy some additional assumptions.

We illustrate the rewriting process with the following example, which demon-
strates the rewriting of the function type for a restricted instance. Given the
specification s(d, f | x) as in the example Sect. 4.1.2 our system rewrites this into
the generator specification
s′′(d_middle, d_delta, f_range_middle, f_range_delta | d, f).

We have built our system to ensure soundness by design.

Proposition 1. The semantics of our rewriting rule for function types is sound.

Proof. Consider a solution of the generator instance

s′′(d_middle := u, d_delta := v, f_range_middle := r, f_range_delta := s | d, f)

where the values u, v, r, s are provided in a parameter file, created by our system.
This solution consists of an integer d in the range int(1..10) and a function f

with domain int(1..10) and codomain int(1..50). The constraints force f to
be defined over the entire range int(1..d), and for its values to be in the range

int((f_range_middle - f_range_delta)..(f_range_middle + f_range_delta)).

Moreover f_range_middle − f_range_delta ≥ 1 must hold as a consequence of
the choices made by the system for f_range_middle and f_range_delta. Similarly
the system ensures that f_range_middle+f_range_delta ≤ 50. Hence f is a total
function with domain int(1..d) and codomain int(1..50). Therefore s(d, f | x)
together with a solution of the generator instance is a valid instance. ��

The other types can be dealt with similarly; in particular, proofs for nested
types follow a standard compositional style.

In contrast, it seems challenging to ensure completeness. One issue is infinite
domains: when a formal parameter of a specification has a type that allows an
infinite domain, then any restriction of this domain to a finite set means that the
rewriting process cannot be complete. However, our current system is built on
Conjure and requires finite domains for all decision variables. Our generator
specifications therefore restrict all domains to be finite, and in such cases com-
pleteness is necessarily lost. For specifications where the domains of the formal
parameters are all finite, it seems possible to guarantee completeness. Parame-
ters that are dependent can be another obstacle to achieving completeness. To
avoid this issue the generator parameters must all be sampled independently and
the rewriting process must ensure that no dependencies between parameters are
introduced. We leave issues of completeness to further work.

4.3 Tuning Instance Difficulty

Posing the problem of finding valid instances as Essence statements is a fun-
damental step but not sufficient for the reliable creation of problem instances.
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Efficient and effective searching in the instance space for graded instances is not
a trivial task. We solve this problem by utilising the tuning tool irace. In this
section, we first describe the tuning procedure of irace. We then explain how
we have applied irace, including details of the input to irace and the feedback
provided by each generator’s evaluation to guide the search of irace.

4.3.1 The Tuning Procedure of irace

We give a brief summary of the specific tuning procedure implemented by irace
and explain why such an automatic algorithm configurator is a good choice
for our system in the next section. For a detailed description of irace and its
applications, readers are referred to [15].

The algorithm configuration problem irace tackles is as follows: given a
parameterised algorithm A and a problem instance set I, we want to find algo-
rithm configurations of A that optimise a performance metric defined on I, such
as minimising the average solving time of A across all instances in I. The main
idea of irace is using racing , a machine learning technique, in an iterated fashion
to efficiently use the tuning budget. Each iteration of irace is a race. At the first
iteration, a set of configurations is randomly generated and these are evaluated
on a number of instances. A statistical test is then applied to eliminate the statis-
tically significantly worse configurations. The remaining configurations continue
to be tested on more instances before the statistical test is applied again. At
the end of the race, the surviving configurations are used to update a sampling
model. This model is then used to generate a set of new configurations for the
next iteration (race). This process repeats until the tuning budget is exhausted.
The search mechanism of irace allows it to focus more on the regions of promis-
ing configurations: the more promising a configuration is, the more instances it
is evaluated on and the more accurate the estimate of its performance over the
whole instance set I will be. This is particularly useful when I is a large set
and/or A is a stochastic algorithm.

4.3.2 Using irace to Find Graded Instances
In our instance generation context, the parameterised algorithm A is our gener-
ator instance. Each input for the generator instance, which we call a generator
configuration, will cover a part of the instance space. The instance set I in our
context is a set of random seeds. The search procedure of irace enables efficient
usage of the tuning budget, as the more promising an instance region covered
by a configuration proves, the more instances will be generated from it.

Paired with each Essence generator specification there is a configuration file
that is utilised by irace to tune the parameters of the generator specification. The
configuration file is automatically created by Conjure and defines a generator
configuration.

Given a random seed, an evaluation of a generator configuration involves two
steps. First, a problem instance is generated by solving the generator instance
using Conjure, Savile Row, and Minion. The generator configuration normally
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covers several instances, and the random seed is passed to Minion for deciding
which instance is to be returned.

Second, the generated instance is solved by Minion, and its satisfaction prop-
erty and the solving time are recorded. We use these values to assign a score to
the generator configuration. The highest score is given if the instance satisfies our
grading criteria, so that irace is guided to move towards the generator’s configura-
tion spaces where graded instances lie. The assignment of scores depends on the
specific definition of instance grading. In our case, we define graded instances
as satisfiable (SAT) and solvable by Minion within [10, 300] seconds. We also
place a time limit of 5 min on Savile Row for the translation from the Essence
instance parameter to Minion input format. A score of 0 is given if the generated
instance is either UNSAT, or too difficult (Minion times out), or too large (Sav-
ile Row times out). If the instance is SAT but too easy (solvable by Minion in
less than 10 s), the Minion solving time is returned as the score. If the instance
satisfies our grading criteria, a score of 10 is returned. The scale of the scores is
not important, as the default choice for the statistical test used in irace is the
Friedman test, a non-parametric test where scores are converted to ranks before
being compared. Following tuning, we collect the set of graded instances gener-
ated. irace also returns a number of promising generator configurations. These
configurations can be kept for when we want to sample more graded instances
that are similar to the ones produced by the tuning procedure.

4.4 Problem Classes

CSPlib is a diverse collection of combinatorial search problems, covering ancient
puzzles, operational research, and group theory [10]. Most of these problems
have Essence specifications. To test our system we have selected representative
problems that span most of the Essence types used for formal parameters in
CSPlib. We now briefly describe each of these problems (with CSPlib problem
numbers).

Template Design (2): The objective is to minimise the wastage in a printing
process where the number of templates, the number of design variations and the
number of slots are given, while satisfying the demand. The formal parameters
are 3 integers and 1 total function.

The Rehearsal Problem (39): The objective is to produce a schedule for a set of
musicians that have to practice pieces with specified durations in groups. The
goal is to minimise the total amount of time the musicians are waiting to play.
The formal parameters are 2 integers, 1 total bijective function and 1 relation.

A Distribution Problem with Wagner-Whitin Costs (40): The objective is to
find an ordering policy minimising overall cost, given the number of products,
their cost, maximum stock available, their demand, holding costs, and the dis-
tribution hierarchy. The formal parameters are 4 integers and 4 matrices.

Synchronous Optical Networking (SONET) Problem (56): Consider a set of
nodes and a demand value for each pair of nodes. A ring connects nodes and a

http://www.csplib.org/Problems/prob002/
http://www.csplib.org/Problems/prob039
http://www.csplib.org/Problems/prob040
http://www.csplib.org/Problems/prob056
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Table 1. Number of graded instances produced for each problem class and parameter
search method within a budget of 1000 evaluations.

CSPlib Problem name Types Problem kind irace random irace random

Linear Linear Log Log

2 Template Design 3 integer,
1 function

Optimisation 788 491 464 49

39 Rehearsal 2 integers,
1 function,
1 relation

Optimisation 10 0 25 0

40 Wagner-Whitin 4 integers,
4 matrices

Optimisation 48 4 60 2

56 SONET 3 integers,
1 set of sets

Optimisation 37 7 78 40

135 Van der Waerden
Numbers

3 integers Satisfaction 121 64 33 18

node can be installed into the ring using an add-drop multiplexer (ADM). Net-
work traffic can be routed between two nodes only if they are on the same ring.
The objective is to minimise the number of ADMs to install while satisfying all
demands. The formal parameters are 3 integers and 1 set of sets of integers.

Van der Waerden Numbers (135): The goal is to decide if a given number n is
smaller than the Van der Waerden number predefined by a number of colors and
an arithmetic length. The problem has 3 formal integer parameters.

4.5 Experimental Setup

We demonstrate our methodology on the five problem classes described in
Sect. 4.4. A budget of 1000 generator configuration evaluations is given to the
tuning. To illustrate the tuning’s efficiency, we also run the same experiment
with uniformly randomly sampling using the same budget.

The system parameter MAXINT defines the maximum value for any unbounded
integer parameters. Here we set it to 50. We leave for future work the questions
about the impact of this parameter and the tuning budget on the effectiveness
of the system, and how to set them properly given a specific problem class.

We also consider two options for sampling each generator parameter’s values,
both of which are supported by irace. The first is linear-scale sampling , where
all values in the domain are treated equally at the start of tuning (or during the
whole random search). The second is logarithmic-scale sampling , where the log-
arithms of the lower and upper bounds of the parameter domains are calculated
first, and a value is sampled from this new domain before being converted back
into the original range. The logarithmic scale makes smaller ranges finer-grained
and vice versa, and can potentially help search in scenarios where larger param-
eter values tend to make instances become either too large or too difficult. This
will be demonstrated in our experimental results in the next section.

http://www.csplib.org/Problems/prob135
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Each generated instance is solved using Minion for 5 random seeds. During an
evaluation of a generator configuration, as soon as the generated instance violates
the criteria on one of the seeds, the evaluation is stopped, and the violated run
is used as a result for scoring the generator configuration. We use this early-
stopping mechanism to maximise the information gained per CPU-hour, as little
information is gained from multiple runs on an uninteresting instance.

Experiments were run on two servers, one with 40-core Intel Xeon E5-2640
2.4 GHz, and one with 64-core AMD Opteron 6376 2.3 GHz. All experiments for
the same problem class were performed on the same server. Each experiment
used between 7 and 95 CPU core hours, depending on problem class and search
variants. The experiments we report here used 700 CPU core hours in total.

5 Results and Analysis

In Table 1 we report the number of graded instances found by the four search
variants: irace or random search in combination with linear or logarithmic scale-
sampling. Across the five problem classes, the winner is always an irace tuning
variant. irace with linear-scale sampling works best on Template Design and Van
der Waerden Numbers, while irace with logarithmic-scale sampling is able to find
more graded instances for Rehearsal, Wagner-Whitin Distribution, and SONET.

In Table 2 we juxtapose plots of the progress over time with the total numbers
of instances produced during the process for each problem class, divided into
categories. It can be seen that irace vastly outperforms randomised search. In all
cases, during the first half of the tuning budget, the difference in performance
between irace and random search is not always clearly visible as irace is still in
its exploration mode (the few first iterations/races where the sampling model
of irace was still initialised). However, by the second half of the budget the
tuning has gained some knowledge about the promising regions of the generator
configuration space, and irace starts showing a significant boost in the number
of graded instances found compared with random search.

In the case of the Rehearsal Problem, where we generate relatively fewer
instances compared with other classes, the plot shows that by the end of the
tuning budget the system is just picking up pace and it is fair to expect that
with more iterations it would produce significantly more instances.

Looking at the category results in Table 2, we can infer some knowledge about
the instance space of a specific problem class based on those statistics and the
difference in performance between the two scales for sampling (linear vs loga-
rithmic). For example, in the Template Design case, most generated instances
are SAT, and are either too easy or graded. The larger number of too easy
instances found by the logarithmic scale sampling suggests a strong correlation
between the domains of the generator parameters and easiness of the instances
generated. Smaller generator configuration values mostly cover SAT and easy-to-
solve instances, while larger configurations cover more difficult instances. Since
we prefer sufficiently difficult instances to too easy instances, this explains why
linear sampling works better than log-scale for this particular problem. A similar
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Table 2. Progress of the four search variants for each problem class, with a budget
of 1000 evaluations. Each plot shows how the number of graded instances found grows
as the number of evaluations increases. The table displays the number of instances for
each problem class, instance category, and search variant. (SR refers to Savile Row.)
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explanation can be applied for the Van der Waerden case. However, the large
number of too-difficult instances suggests that MAXINT=50 is probably too large
for this problem, and reducing this parameter value could potentially boost per-
formance of the search within our limited budget. Another example is Rehearsal
where the statistics indicate a strong correlation between the numbers of UNSAT
and too-difficult instances, and between the number of too easy instances and
infeasible generator configurations. These suggest that a smaller MAXINT value
combined with linear sampling could potentially improve search performance.

6 Conclusions and Future Work

We have developed a system that automates the production of graded instances
for combinatorial optimisation and decision problems. Our system creates a gen-
erator specification from an abstract problem specification. Generator parame-
ters are explored using the irace parameter tuning system. We demonstrated the
soundness of our approach and performed an empirical evaluation over several
problem classes. The experiments showed that automated tuning of generator
parameters outperforms random sampling for all problem classes under study,
and is able to discover significant numbers of graded instances automatically.
The system and all data produced by this work is publicly available as a github
repository https://github.com/stacs-cp/CP2019-InstanceGen.

Much future work remains. We first would like to extend our approach to
generate instances for every problem class in CSPlib, or at least the ones for
which exhibiting a valid instance does not involve first solving long-standing
open problems. Many of the classes in CSPlib only have trivially easy instances,
or have none, and we would like to remedy this situation. We further seek to auto-
mate creation of balanced and heterogeneous sets of instances, by refining our
system’s notion of a graded instance, and by further investigating the diversity
of the generated instances. We believe much work also remains in investigating
grading of instances more generally. As we saw in Sect. 5, some problem classes
are especially amenable to automatic discovery of their features; in particular, we
plan to automate the choice of sampling regime based on performance of tuning
in its early stages. A comparison with existing hand-crafted instances/instance-
generators will also be considered. Furthermore the system can be adapted to
find instances that are easy for one solver but challenging for other solvers; we
believe automating the generation of such instances would greatly assist those
researchers who build solvers to improve performance of their solvers. Another
application is to find instances with certain structures that reflect real-world
instances. Finally, we intend to work toward automatic instance generation for
specifications involving infinite domains.

Acknowledgements. This work is supported by EPSRC grant EP/P015638/1 and
used the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk)
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https://github.com/stacs-cp/CP2019-InstanceGen
http://www.cirrus.ac.uk
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Abstract. Pseudo-Boolean (PB) constraints often have a critical role
in constraint satisfaction and optimisation problems. Encoding PB con-
straints to SAT has proven to be an efficient approach in many appli-
cations, however care must be taken to encode them compactly and
with good propagation properties. It has been shown that at-most-one
(AMO) and exactly-one (EO) relations over subsets of the variables can
be exploited in various encodings of PB constraints, improving their com-
pactness and solving performance. In this paper we detect AMO and EO
relations completely automatically and exploit them to improve SAT
encodings that are based on Multi-Valued Decision Diagrams (MDDs).
Our experiments show substantial reductions in encoding size and dra-
matic improvements in solving time thanks to automatic AMO and EO
detection.

Keywords: Automatic CSP reformulation · SAT · Pseudo-Boolean ·
At-most-one constraint

1 Introduction

Solving constraint satisfaction and optimisation problems often requires dealing
with Pseudo-Boolean (PB) constraints, either explicitly stated in the original

Work supported by grants TIN2015-66293-R, TIN2016-76573-C2-1/2-P (MINECO/
FEDER, UE), Ayudas para Contratos Predoctorales 2016 (grant number BES2016-
076867, funded by MINECO and co-funded by FSE), RTI2018-095609-B-I00 (MICINN/
FEDER, UE), and EPSRC EP/P015638/1.

c© Springer Nature Switzerland AG 2019
T. Schiex and S. de Givry (Eds.): CP 2019, LNCS 11802, pp. 20–36, 2019.
https://doi.org/10.1007/978-3-030-30048-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30048-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-30048-7_2


Automatic Detection of AMO and EO for Improved SAT Encodings of PB 21

model or as a product of some reformulation process. A successful approach to
solving constraint problems is by translation to SAT and the use of SAT solvers.
Example tools that support this method include MiniZinc [18,24], Picat [28],
and Savile Row [25]. Ideally, such encodings would be compact (in terms of the
number of clauses and additional variables) and would have good propagation
properties.

In this paper we focus on efficiently translating PB constraints to SAT within
Savile Row, which produces a reformulated SAT model from an input constraint
model in the Essence Prime language [26]. There exist several approaches for
compactly encoding PB constraints to SAT based on different representations,
such as Decision Diagrams [2,13], Sequential Weight Counters [17], Generalised
Totalisers [19], and Polynomial Watchdog schemes [5].

There are also attempts to exploit collateral constraints to shrink these
encodings further [1,8]. In particular, in [8], it is shown how to use existing
At-Most-One (AMO) and Exactly-One (EO) relations on subsets of the vari-
ables of a PB constraint to obtain very compact decision diagram-based repre-
sentations. In that work, the authors provide empirical evidence of the utility
of using this technique in several scheduling problems. Specifically, they pro-
vide specialised SAT Modulo Theories (SMT) encodings exploiting AMO and
EO relations. However, these relations are found by hand and are not always
obvious.

In this work we propose a technique for exploiting such collateral constraints
when encoding PB constraints to SAT in a fully automatic manner. By collat-
eral constraints we mean constraints that are derived from the entire model in
some way. They may appear directly in the model, or they may be implied by
constraints in the model. One can then use a declarative constraint modelling
language and forget about collateral constraints when posting PB constraints.
The proposed system is able to automatically identify AMO and EO relations
and to take them into account when encoding PB constraints. In particular,
we use the approach described in [3] to detect sets of Boolean variables in a
SAT formula that model finite-domain variables, which essentially corresponds
to detecting the AMO (i.e., cardinality constraints with ≤ operator and k = 1)
and At-Least-One (ALO) relations among a set of Boolean variables. Later, in [7],
a method to detect arbitrary cardinality constraints (k ≥ 1) was introduced. To
the best of our knowledge, [7] is the first attempt to apply in practice reformula-
tion techniques through the automatic detection of cardinality constraints. They
reformulate the input SAT formula by erasing the clauses entailed by the cardi-
nality constraints detected so far. In our work, we tackle a different goal since
our aim is to use the automatically detected cardinality constraints to improve
the encoding of more general constraints, specifically PB constraints.

The proposed techniques are embedded in Savile Row. In preparing the SAT
encoding Savile Row employs the propagation facilities of the constraint solver
Minion [15] in order to identify AMOs, plus a syntactic technique for identifying
At-Least-One (ALO) relations (which together with AMOs comprise EO rela-
tions). The use of propagation techniques to obtain semantic information has
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already been used in other scenarios. For example, in [11] unit propagation was
used to deduce sub-clauses from implication graphs, and also unit propagation
was used in [14] to detect redundant clauses in SAT formulas.

We apply the technique to several problem classes and highlight the charac-
teristics of each regarding the automatically found AMO and EO relations. Our
experiments show dramatic improvements of encoding size and solving time.

2 Preliminaries

Essence Prime is typical of solver-independent constraint modelling languages
in providing integer and Boolean variable types, as well as multidimensional
matrices of these types. It supports arbitrarily nested arithmetic and logical
constraint expressions, as well as a suite of global constraints. Savile Row is able
to translate any Essence Prime model into SAT, which we define here.

A Boolean variable is a variable than can take truth values 0 (false) and 1
(true). A literal is a Boolean variable x or its negation ¬x. A clause is a dis-
junction of literals. A propositional formula in conjunctive normal form (CNF)
is a conjunction of clauses. Any propositional formula can be transformed into
CNF.

A CNF formula represents a Boolean function, i.e. a function of the form
f : {0, 1}n → {0, 1}. An assignment is a mapping of Boolean variables to truth
values, which can also be seen as a set of literals (e.g., {x = 1, y = 0, z = 0}
is usually denoted {x,¬y,¬z}). A satisfying assignment of a Boolean function
f is an assignment that makes the function evaluate to 1. In particular, an
assignment A satisfies a CNF formula F if at least one literal l of each clause in
F belongs to A. Such an assignment is called a model of the formula.

SAT is the problem of determining if there exists a satisfying assignment for
a given propositional formula. Given two formulas F and G, we say that G is a
logical consequence of F , written F |= G, iff every model of F is also a model of
G. We say that two Boolean functions F and G are logically equivalent, denoted
F ≡ G, if F |= G and G |= F .

Unit propagation (UP) is the core deduction mechanism in modern SAT
solvers: whenever each literal of a clause but one is false, the remaining literal
must be set to true in order to satisfy the clause. We say that G is a logical
consequence of F by UP, written F |=UP G, iff F ∧ ¬G can be determined to
be unsatisfiable by UP.

Savile Row encodes integer variables to provide SAT literals for (x = a) and
(x ≤ a) for each integer variable x and value a. Each constraint type is then
encoded using these SAT literals, as described in [25]. For this work we have
added the MDD encoding of PB constraints as defined below.

Definition 1. A pseudo-Boolean (PB) constraint is a Boolean function of the
form

∑n
i=1 qili �K where K and the qi are integer constants, li are literals, and

� ∈ {<,≤,=,≥, >}.
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Fig. 1. Left: BDD for P = 2x1 + 3x2 + 4x3 + 5x4 ≤ 7; Right: MDD for P , assuming
AMO(x1, x2) and AMO(x3, x4), where each xi branch means choosing xi = 1, and the
else branches mean choosing xi = 0 for all xi in the corresponding source node.

Definition 2. An at-most-one (AMO) constraint is a Boolean function of the
form

∑n
i=1 li ≤ 1, where all li are literals.

Definition 3. An at-least-one (ALO) constraint is a Boolean function of the
form

∑n
i=1 li ≥ 1, where all li are literals.

Definition 4. An exactly-one (EO) constraint is a Boolean function of the form∑n
i=1 li = 1, where all li are literals.

One of the best methods to encode PB constraints to SAT is to use Binary
Decision Diagrams (BDDs) [13]. In [2] an even more efficient encoding is given
for PB constraints where all coefficients, literals and K are positive and the
relational operator is ≤. Such a constraint has the important property of being
monotonic decreasing, i.e. any model remains a model after flipping inputs from 1
to 0. In [8] it is shown how the encoding can be dramatically reduced in size
in the presence of AMO constraints over subsets of the variables. The improved
encoding is based on Multi-Valued Decision Diagrams (MDDs) and is intended
also for monotonic decreasing PB constraints. Figure 1 shows an example of this
situation. The number of nodes and edges in the second diagram is substantially
reduced, and the number of clauses and variables needed to encode the diagram
is reduced accordingly. The input of this encoding is a PB constraint, and a
partition of its literals, where each part must satisfy an AMO constraint. We
will refer to each of the parts as an AMO group.

An interesting particular case occurs when there are not only AMO con-
straints, but EO constraints over subsets of the variables in the PB constraint.
In this case, the number of variables can be reduced [8]: by subtracting the same
integer from all the coefficients of a set of variables in an EO relation, as well
as from K, we can make at least one coefficient become zero, and then remove
the zero-coefficient terms. The result of reducing the set of variables with an EO
relation is also an AMO group.
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3 Background: AMO and ALO Detection

In this section we present the approach described in [3] to semantically detect
AMO and ALO constraints in a SAT formula F . The idea is to compute for each
literal in F which other literals are entailed by unit propagation (UP). Then an
undirected graph G = (V,E) is constructed, where all vertices u ∈ V are literals
of F and an edge (u, v) ∈ E iff F ∧u |=UP ¬v, i.e. F ∧u∧¬v can be determined
to be unsatisfiable by UP. In other words, if (u, v) ∈ E then F |= (¬u ∨ ¬v),
therefore there is an AMO constraint between literals u and v. We refer to these
AMO constraints between two literals as mutexes. Accordingly, we refer to the
graph G as the UP-mutex graph of F .

Recall that a clique of a graph G = (V,E) is a subset of vertices of G such
that every pair of vertices u, v are adjacent, i.e. (u, v) ∈ E. Therefore, every
clique C = (V ′, E′) in the UP-mutex graph of a SAT formula F corresponds to
an AMO A =

∑
v∈V ′ v ≤ 1 such that F |= A. By construction, we know that

there is a mutex between all pairs of literals u, v ∈ V ′, hence F |= u+ v ≤ 1 and
so F |= ∑

v∈V ′ v ≤ 1. Thus we can identify all the AMO constraints in a SAT
formula F that can be detected by UP by finding the cliques in the UP-mutex
graph of F .

In [7] the authors propose an approach to detect cardinality constraints
(Boolean functions of the form

∑n
i=1 li ≤ k where all li are literals and k ≥ 1 is

an integer) which generalize AMO constraints. As pointed out by the authors,
this methodology is particularly useful for k > 2, compared to other approaches
for detecting cardinality constraints.

Given a set of literals L of a formula F we can also automatically detect
whether F |=UP ∨l∈Ll, i.e. F entails by UP an ALO constraint on L, by testing
whether F ∧ ∧

l∈L ¬l is unsatisfiable by UP.
There are two key details in the procedure we have described to semantically

detect the AMO constraints in a SAT formula F . First of all, how do we detect
the mutexes, i.e. the level of local consistency (power of propagation) we use
to find them. Notice that by enforcing stronger consistency than UP we may
identify more mutexes and consequently more AMO constraints. Second, how
do we detect the cliques in the UP-mutex graph. Depending on the goal of the
particular application, the challenge is to properly address these two key details.
In the following section, we adapt this procedure to our context by replacing
the SAT formula F with a CSP instance, replacing unit propagation with the
propagation of the constraint solver Minion [15].

4 AMO and EO Relations in Savile Row

In this section we describe our approach and how it is integrated into Savile Row.
As part of this process we must deal with sum constraints that contain integer
terms, negative coefficients, and any comparator � ∈ {<,≤,=, 
=,≥, >}. The end
result is a monotonic decreasing PB constraint and a partition of its literals into
AMO groups. This is achieved by a sequence of reformulations, where the AMO
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groups will arise either from the decomposition of an integer variable, or from
the detection of a clique of mutexes in the mutex graph. As described in [25]
Savile Row performs two tailoring processes, the first of which uses the constraint
solver Minion [15] to filter variable domains, and the second produces output for
the desired solver (SAT in this case). Our approach adds mutex detection to
Minion, and finds AMO and EO groups during the second tailoring process.

4.1 Mutex Inference

The mutex inference step is performed on Minion’s CSP representation of the
problem at hand. This representation contains integer constraints that will be
transformed into PB constraints later. These integer constraints are of this form∑n

i=1 qiei �K. An expression ei may be an integer variable, a Boolean literal, or
(xi � ki) where xi is an integer variable or a Boolean literal. Next, any Boolean
expressions of the form (xi �ki) are replaced with a new Boolean variable bi and
the constraint bi ↔ (xi � ki) is added to the model. By adding the bi variables,
the mutex detection algorithm is able to see the mutex between x < 5 and x ≥ 5
for example.

Minion is called to perform domain filtering [25] and to find mutexes between
literals of Boolean variables. For each Boolean variable b in the CSP, each value of
b is assigned in turn and the propagation loop of Minion is called. Consequences
of the assignment are propagated through the entire constraint model, includ-
ing integer variables and global constraints. All assignments of other Boolean
variables (to either 0 or 1) by propagation are recorded in the mutex graph G.

Mutex inference is very similar to [3] (described in Sect. 3) with the SAT
formula replaced by the CSP, and unit propagation replaced by Minion’s propa-
gation algorithms. Comparing propagation power is not straightforward because
it depends on the SAT encoding on the one hand, and fine details of prop-
agators on the other. However, there is one key advantage to using the CSP
representation: we avoid generating the (potentially very large) encoding of the
problem instance without considering AMO and EO relations. See, for example,
the Nurse Scheduling Problem (Sect. 5.3) where the encoding that uses AMO
and EO relations is ten times smaller than the one without.

4.2 Normalisation

To use the MDD encoding referred to in Sect. 2 we must have monotonic decreas-
ing PB constraints in ≤ form. Reformulations are required both before and
after the AMO and EO groups are constructed. In the first step, all PB and
sum constraints are rearranged into the form

∑n
i=1 qiei ≤ K with arithmetic

transformations [13].
Terms qiei where ei is integer are dealt with as follows. Let q = qi and e = ei.

First, if q < 0, then q ← −q and e ← −e. Second, if the smallest possible value
c of e is less than 0, then e ← e+ c and K is adjusted by adding qc. Finally, the
term qe with n possible values becomes an AMO group of n−1 terms containing
e = ki by enumerating all values ki except the smallest value, and K is adjusted
accordingly.
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At this point, all expressions ei in the constraint are Boolean. All terms qiei
where qi < 0 are made positive by replacing with qi(1 − ¬ei), then multiplying
out and subtracting the constant from both sides. The constraint is now a mono-
tonic decreasing ≤ PB constraint, suitable for encoding to SAT via an MDD as
described in Sect. 2. However, the next steps may require inverting the polarity
of some Boolean expressions ei in order to match the detected AMOs, losing
the normal form. In this case, the normal form will be restored after making the
polarities match.

4.3 AMO and EO Detection

For each PB constraint, we take the subgraph G′ = (V ′, E′) of the mutex graph
G where V ′ is a set containing both literals of all Boolean variables in the
constraint. The algorithm has a list of vertices L, initially containing all vertices
in V ′. L is sorted by descending degree in G′. A clique cover is constructed by
iterating a greedy clique finding algorithm. To construct one clique, the algorithm
takes the first vertex from L then adds as many as possible other vertices in the
order of L, breaking ties (where the degree is equal) by choosing the vertex
whose coefficient is most common within the clique (as a heuristic to reduce the
number of outgoing edges of the corresponding nodes in the MDD). Whenever a
vertex v is added to a clique, both v and ¬v are removed from L. The end result
is a clique cover containing one literal of each Boolean variable in the constraint.

For each clique in the cover, a new AMO or EO group is built as follows.
If the negations of literals in the clique correspond with negations in the PB
constraint (or the clique has one literal) then we do (1), otherwise (2).

1. The AMO group is constructed directly from the clique. If all literals in the
group form an EO corresponding to an integer variable (i.e. literals correspond
to (x = a) or ¬(x 
= a) for all values a of some integer variable x), then we
can exploit the EO relation to reduce the size of the group. We delete the
term(s) with the smallest coefficient c, and subtract c from K and from the
other coefficients within the AMO group.

2. If the negation of the term qiei does not match the literal in the clique, the
term is rewritten as qi(1 − ¬ei) (and rearranged as above), creating a term
with a negative coefficient. Once all terms of the group have the appropriate
sign, an EO is created by making a new Boolean variable b (constrained to be
true iff all expressions ei in the group are false) and adding a term 0b to the
group. All coefficients within the group and K are adjusted by subtracting
the smallest coefficient. Terms with coefficient zero are removed to create an
AMO group.

The result in all cases is an AMO group whose size is at most the size of the
clique. In case (1), if an EO is detected then at least one term can be removed
relative to the clique. In case (2), if multiple terms have the smallest coefficient
then the AMO group is smaller than the clique. Each AMO group detected in
this way will be added to the model as an AMO constraint.
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We find EO groups by a syntactic check in case (1) above. EO groups can also
be detected semantically using propagation (Sect. 3), and the semantic approach
may find more EO groups. In our case this would involve calling Minion a second
time, with more overhead than the syntactic check.

4.4 Reformulation Example

In this section we give an example of the normalisation and reformulation process
that illustrates the described steps and cases. Suppose we have a CSP instance
C with the following variables:

– x which is an integer variable with domain {1, 2, 3};
– y which is an integer variable with domain {−2,−1, 0, 1}; and
– z and t that are Boolean variables.

Suppose C has the following two constraints to be translated to SAT:

C1 : 2(x = 1) + 4(x = 2) + 3(x = 3) − 3y + 4z + 5t ≤ 13
C2 : ¬z ∨ ¬t

Before performing the mutex inference, we replace each of the expressions of
the form (x � k) with a Boolean auxiliary variable b, and add the constraint
b ↔ (x � k). C1 is replaced with the following four constraints:

b1 ↔ (x = 1)
b2 ↔ (x = 2)
b3 ↔ (x = 3)

C3 : 2b1 + 4b2 + 3b3 − 3y + 4z + 5t ≤ 13

The inference mechanism described in Sect. 4.1 detects the following mutexes,
where the first three come from the decomposition of integer variable x, and the
last one is due to constraint C2:

¬b1 ∨ ¬b2
¬b1 ∨ ¬b3
¬b2 ∨ ¬b3
¬z ∨ ¬t

The following two AMO relations are inferred from the above mutexes:

b1 + b2 + b3 ≤ 1
z + t ≤ 1

These two AMO relations are added to the model as AMO constraints.
An EO relation is detected among b1, b2, and b3, as described in Sect. 4.3. The

EO relation is converted into an AMO by removing the term with the smallest
coefficient in C3 (b1 in this case), and adjusting the coefficients of the other
terms (as described in Sect. 4.3). The two Boolean variables z and t form an
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AMO group. Finally, the integer variable y with four values will form an AMO
group of three terms, as described in Sect. 4.2.

C3 is reformulated into C4 as follows:

C4 : 2b2 + 1b3 + 9[y = −2] + 6[y = −1] + 3[y = 0] + 4z + 5t ≤ 14

Note that the right hand side constant has been adjusted to 14, and the coef-
ficients of the terms corresponding to x and y have been adjusted as well. The
variables of C4 are partitioned into the following three AMO groups:

{b2, b3}
{[y = −2], [y = −1], [y = 0]}

{z, t}
If the AMO and EO detection process is enabled, the SAT encoding has

18 variables and 33 clauses. Without the detection, it has 33 variables and 53
clauses. The SAT encoding of the MDD derived from C4 has only 7 clauses,
whereas the MDD derived from the constraint without AMO and EO detection
(which has only one non-singleton AMO group derived from y) is encoded with
37 clauses.

5 Experimental Evaluation

In this section we evaluate our approach on four diverse case studies: Combina-
torial Auctions (CA), the Multi-Mode Resource-Constrained Project Scheduling
Problem (MRCPSP), the Nurse Scheduling Problem (NSP), and the Multiple-
Choice Multidimensional Knapsack Problem (MMKP). Each of these problem
classes have AMO and EO relations that could be identified by expert mod-
ellers, and we show that our system is able to identify them without any human
effort. The effects on the size and solving time of the resulting SAT formula are
dramatic.

All problems except MRCPSP use a PB objective function. To abstract solv-
ing performance from any particular optimisation process of the PB objective
function, we converted CA, NSP and MMKP problem classes into decision prob-
lems. Specifically, we bound the objective function with the best known value of
the objective function, so we are searching for a solution that is as good as the
best known solution.

For the decision problems CA, NSP, and MMKP, we use the Glucose 4.1
SAT solver [4]. For MRCPSP, where we minimise an integer variable, we use
the MaxSAT solver Open-WBO version 2.0 [23], which uses Glucose 4.1 as its
core SAT solver. All the experiments were run on an 8GB Intel R© Xeon R© E3-
1220v2 machine at 3.10 GHz. In a preliminary experiment we ran the SAT solver
Lingeling (version bcj) [6] on the CA problem and obtained similar results to
those reported below with Glucose.

In our experiments we use three configurations. The first (PB) has no AMO
or EO detection, however normalisation is always applied when encoding a con-
straint via an MDD (Sect. 4.2). The second configuration (PB(AMO)) performs
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AMO detection but not EO detection (i.e. the EO check in step (1) of Sect. 4.3
is switched off). The third configuration (PB(EO)) has both AMO and EO
detection.

Reported solving times include both reformulation preprocessing and time
spent by the SAT solver.

Fig. 2. Scatter plots comparing the median of the solving time among all 10 executions
for each instance in the dataset. From left to right and top to bottom: CA, MRCPSP,
NSP, MMKP.

5.1 Combinatorial Auctions

The Combinatorial Auctions (CA) problem can be stated as the problem of
assigning items to bidders in such a way that the maximum profit is obtained [22].
Every bidder makes an offer for a set of items (a package), and it has to be
decided whether to sell the whole package to the bidder. It is not allowed to
sell only a proper subset of the demanded items. A natural viewpoint to model
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Table 1. Summary statistics of configurations PB, PB(AMO) and PB(EO) for the
four case studies. — indicates time out.

problem setting Q1 med Q3 t.o. vars clauses

CA PB 1.11 3.74 — 42 506 1006

PB(AMO) 0.98 1.40 3.33 0 47 236

PB(EO) 0.98 1.40 3.33 0 47 236

MRCPSP PB 2.55 3.68 9.33 29 54 112

PB(AMO) 2.89 4.70 8.57 8 12 59

PB(EO) 2.89 4.68 8.41 8 12 57

NSP PB — — — 199 116 231

PB(AMO) 1.30 1.85 6.81 4 26 120

PB(EO) 0.76 0.86 1.26 3 8 22

MMKP PB 0.82 4.98 21.09 0 31 62

PB(AMO) 0.33 0.47 1.53 0 3 17

PB(EO) 0.28 0.39 1.43 0 2 10

the problem is to introduce a Boolean variable sold[b] for each package b, that
states whether it is sold or not. Then, the decision version of the problem can
be stated as:

forAll b1: int(1..nBids-1) .
forAll b2: int(b1+1..nBids) .

incompBids[b1,b2] ->
(!sold[b1] \/ !sold[b2]),

(sum b : int(1..nBids) .
sold[b] * profit[b] ) >= lb

where nBids is the number of bids, profit[b] is the bid value for package b,
incompBids[b1,b2] is true when two bids have a non-empty intersection, and
lb is the minimum total profit that is required.

The first constraint ensures that no item is sold in two different packages, or
equivalently that every item is sold in at most one package. This will allow Savile
Row to detect mutexes between variables sold[b] where packages share some
item. Typically the sets of packages that contain each particular item will not
be disjoint, so the clique cover finding algorithm plays an especially important
role when reformulating this problem.

In this work we consider the dataset reported in [9] which was generated using
the Combinatorial Auctions Test Suite [22], and have an appropriate complexity
to illustrate the effects of our techniques. It consists of 170 instances with the
number of bids between 70 and 200. For this problem the syntactic check does
not identify any EO relation, so PB(AMO) and PB(EO) are identical.
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5.2 MRCPSP

The Multi-mode Resource-Constrained Project Scheduling Problem (MRCPSP)
is an iconic problem in the scheduling field [10]. The problem requires deciding
a start time (schedule) and an execution mode (schedule of modes) for each
job of a project. The jobs are non-preemptive, i.e. they cannot be paused once
they have started. Also, the jobs have demands over a set of resources, that can
be either renewable, i.e. the amount of resource assigned to a job is recovered
once the job finishes, or non-renewable, i.e. availability is not restored when jobs
finish. For each job, its duration and its demands depend on the chosen execution
mode. The schedule must ensure that a given set of precedence relations between
jobs are all satisfied, that the given availability of renewable resources is never
surpassed during the execution of the project, and that the given availability of
non-renewable resources is enough to supply the demands. Moreover, the project
completion time (makespan) must be minimised.

We model the resource constraints as follows. We introduce an auxiliary
integer variable mode[j] for each job j, which represents the selected execution
mode for job j. To deal with renewable resources constraints we also introduce a
Boolean variable jobActive[j,m,t] for each job j, execution mode m and time
instant t within a scheduling horizon, which is constrained to be true iff job i
is running in mode m at time t. The renewable resource constraints are:

forAll t: int(0..horizon) .
forAll res: int(1..resRenew) . (

sum j: int(1..jobs) .
sum m: int(1..nModes[j]) .

jobActive[j,m,t]*resUsage[j,m,res]
) <= resLimits[res]

We model non-renewable resource constraints as:

forAll res : int(resRenew+1..nRes) . (
sum j: int(1..jobs) .
sum m: int(1..nModes[j]) .

(mode[j]=m) * resUsage[j,m,res]
) <= resLimits[res]

where horizon is a scheduling horizon which accepts a valid schedule (if
the instance is satisfiable), 1..resRenew and resRenew+1..nRes are the sets
of renewable and non-renewable resources respectively, 1..jobs is the set of
all jobs, 1..nModes[j] is the set of available execution modes for job j,
resUsage[j,m,res] is the consumption of job j on resource res when it runs
in mode m, and resLimits[res] is the availability of resource res.

MRCPSP contains many notions of activity and mode incompatibilities,
which allow the reformulation process to find AMO constraints on the variables
of resource PB constraints. For instance, every activity must run in exactly one
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execution mode, and if an activity precedes another they will never run in par-
allel. Further, two modes of a pair of activities are incompatible if the combined
demands for the two modes surpass the availability of some resource.

For this problem we have used the 552 satisfiable instances of the j30 dataset,
which is the hardest from PSPLib [21]. These instances contain projects of 30
activities, 3 possible execution modes for each activity, 2 renewable resources
and 2 non-renewable resources.

5.3 NSP

The Nurse Scheduling Problem (NSP) is the problem of finding an optimal
assignment of nurses to shifts per day considering some coverage and shift pref-
erence constraints. There are plenty of variants of this problem depending on the
constraints considered [12,27]. In this work we consider the basic version of the
problem where solutions must satisfy all shift coverage constraints, i.e. each shift
and day must have a certain number of nurses assigned, and must satisfy the
constraint that each nurse only works a certain number of days per week, and
must minimise the total penalisation according to the preferences of the nurses.

PB constraints appear in the Essence Prime model when bounding the total
amount of penalisation allowed. We use integer variable nS[n,d] to state the
shift assignment of each nurse n and day d, and the penalisation constraint is as
follows:

(sum n: int(1..nNurses) .
sum d: int(1..nDays) .
sum st: int(1..nShiftTypes) .
(nS[n,d]=s) * p[n,d,st] ) <= ub

where nNurses is the number of nurses, nDays the number of days, nShiftTypes
the number of shift types and p[n,d,st] is the penalty of assigning shift st to
nurse n on day d. Finally, since we are computing the decision version of NSP,
ub is the maximum cost allowed. Notice that EO relations occur among the
penalties for each nurse and day, since nS ranges over integer values from 1 to
nShiftTypes.

In this work we consider a set of instances from NSPLib, a repository of
thousands of NSP instances grouped into classes by several complexity indica-
tors. Details can be found in [27]. We focus on a sample of 200 instances taken
uniformly and independently at random from the N25 Set: 25 nurses, 7 days and
4 shift types (including the free shift). Each instance has a minimum number of
nurses required per shift and day, and includes the nurses preferences to work
on each shift and day (a penalty is between 1 and 4, where 1 is the rank of the
most preferred shift).

5.4 MMKP

The Multiple-choice Multidimensional Knapsack Problem (MMKP) is a max-
imisation problem. Given a set of classes of items and a knapsack with several
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capacity-bounded dimensions, it is required to pack exactly one item of each
class without surpassing the knapsack capacities. Each item of each class has a
given profit, and a weight in each dimension. It is also required to maximise the
profit of the chosen items [20]. The decision version of the problem requires that
the profit is greater than or equal to a lower bound lb.

The PB constraints appear in our Essence Prime model when bounding
capacities and profit. We use integer variables item[c] to state which item of
class c has been chosen. The constraints are as follows:

forAll d: int(1..nDimensions) . (
sum c: int(1..nClasses) .
sum i: int(1..classSize) .
(item[c]=i) * weight[c,i,d]

) <= cap[d],

(sum c: int(1..nClasses) .
sum i: int(1..classSize) .
(item[c]=i) * profit[c,i] ) >= lb

where nDimension is the number of dimensions, nClasses is the number of
classes, classSize is the number of items in each class (n.b. in this dataset all
classes have the same number of items), weight[c,i,d] is the weight of item i
of class c for dimension d, cap[d] is the capacity of dimension d, profit[c,i]
is the profit of item i of class c and lb is the minimum profit to be achieved.

Notice that EO relations occur because item ranges over integer values from
1 to classSize.

For conducting the experimental evaluation we have chosen the 1983 satis-
fiable instances from the 2000 instances of dataset (10-5-5-G-R-W) from [16],
that contain 10 classes of 5 items each, and the knapsack has 5 dimensions. This
dataset turns out to be reasonably hard in comparison to others from the same
work that appear to be easy for SAT solvers.

5.5 Experimental Results

Our results in Table 1 show a very significant reduction in the sizes of the SAT
formulas for all four studied problems, both in the number of variables and
number of clauses, thanks to the AMO and EO detection and reformulation
process. The greatest reduction with approach PB(AMO) occurs in CA, where
the number of variables is divided by 10 and the number of clauses by 4. In all
four problem classes, the reduction in size directly translates to improved solving
time. The most extreme case is NSP, in which only one instance is solved within
the given timeout if AMO detection is not used, whereas almost all instances are
solved with PB(AMO). Only 4 instances reach the time limit with PB(AMO).
PB(EO) gives a further size reduction on all problems except CA, and it has
a particular impact on NSP, where the additional size reduction reduces the
number of clauses by ten times overall.
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Figure 2 compares total time (including reformulation and solving) of PB and
PB(EO) for every instance of each problem class. The solving time improvements
are remarkable for all four problem classes. There are improvements between one
and two orders of magnitude in many cases between PB and PB(EO), although
there is a small overhead on some of the easiest instances.

6 Conclusion and Future Work

We have presented a fully automatic approach to find and exploit at-most-one
(AMO) and exactly-one (EO) relations in SAT encodings of PB constraints.
The approach is integrated into Savile Row, a constraint modelling tool that
can automatically produce a SAT encoding of any constraint model written
in the language Essence Prime. Until now, AMO and EO relations have been
exploited for this purpose only in problem-specific encodings constructed by
experts. Results show dramatic improvements in SAT formula size and solving
time on four problem classes.

In future work we will explore stronger inference mechanisms for the detection
of mutexes, which could lead to larger and more effective AMO relations. We
also plan to study whether we can reformulate PB constraints more efficiently
through detection of cardinality constraints with k ≥ 2 applying the approach
in [7].
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Abstract. Using constraint programming (CP) to explore a local-search
neighbourhood was first tried in the mid 1990s. The advantage is that
constraint propagation can quickly rule out uninteresting neighbours,
sometimes greatly reducing the number actually probed. However, a
CP model of the neighbourhood has to be handcrafted from the model
of the problem: this can be difficult and tedious. That research direc-
tion appears abandoned since large-neighbourhood search (LNS) and
constraint-based local search (CBLS) arose as alternatives that seem
easier to use. Recently, the notion of declarative neighbourhood was
added to the technology-independent modelling language MiniZinc, for
use by any backend to MiniZinc, but currently only used by a CBLS
backend. We demonstrate that declarative neighbourhoods are indeed
technology-independent by using the old idea of CP-based neighbour-
hood exploration: we explain how to encode automatically a declarative
neighbourhood into a CP model of the neighbourhood. This enables us to
lift any CP solver into a local-search backend to MiniZinc. Our prototype
is competitive with CP, CBLS, and LNS backends to MiniZinc.

1 Introduction

Technology-independent modelling is an paradigm where we model a prob-
lem and choose among solvers of several technologies in order to solve it for
given data. This helps avoid early commitment to a technology and solver, and
enables the easy comparison of technologies and solvers on the same model.
MiniZinc [17] is a technology-independent modelling language, supported by
solvers of many technologies, such as constraint programming (CP), lazy clause
generation (LCG), integer programming (IP), Boolean satisfiability (SAT), sat-
isfiability modulo theories (SMT), constraint-based local search (CBLS [27]),
and hybrids.

Many solvers can work in a black-box way, where we only need to provide a
model and the instance data. Some technologies, notably CP and LCG, also allow
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a search strategy to be attached to a model; in practice, a good search strategy
is often key to an efficient solving process. MiniZinc has had from its inception a
notation for declaratively indicating a search strategy for CP and LCG solvers.
Recently, MiniZinc was extended with a notation [3] for declaratively specifying
a local-search neighbourhood, that is a set of candidate moves that re-assign
some variables within the current valuation of a local-search method. At present,
these declarative neighbourhoods are only supported by the CBLS backend fzn-
oscar-cbls [4]: experiments showed that, as expected, CBLS via MiniZinc can be
accelerated via a neighbourhood specification.

In this paper, we revisit the idea of encoding a local-search neighbourhood
for a CP solver so that, given the current valuation of the variables in a local-
search method, the CP solver finds by systematic search a best neighbour of that
current valuation, under some heuristic. The local-search method then moves to
that neighbour, using some meta-heuristic for escaping local optima, such as sim-
ulated annealing or tabu search. The idea of encoding a neighbourhood was first
proposed in [20] and then refined in [25]: exploring a neighbourhood by using a
CP solver on such a neighbourhood model can lead to the efficient pruning of both
infeasible and sub-optimal neighbours, sometimes greatly reducing the number
of actually probed neighbours. However, this idea was presented as a method-
ology, where a neighbourhood model has to be handcrafted from the problem
model, and there is limited reusability of encodings between neighbourhoods.

Large-neighbourhood search (LNS) [24] is another popular method for per-
forming local search by using a CP solver. An LNS neighbourhood is constructed
by freezing some variables, that is fixing them to their values in the current valua-
tion of a local-search method, and it is explored by performing systematic search
on the problem model in order to find an improving valuation for the remaining
variables. However, this is fundamentally different from the neighbourhoods clas-
sically explored by CBLS solvers and ad hoc local-search methods. For example,
a relocation neighbourhood (e.g., [22, Chapter 23]) cannot be explored by LNS
without also exploring a very large number of neighbours that are not obtainable
by relocation moves: LNS does not have the classical notion of move. Another
crucial difference is that LNS uses one copy of the variables of the problem model
and freezes some variables in each move, whereas a neighbourhood model uses
two copies of the variables and freezes most variables in each move.

Putting all these ingredients together, the organisation and contributions of
this paper are as follows:

– an encoding of a declarative neighbourhood [3] for any CP solver;
– the new global constraint Writes for encoding local-search moves;
– a good definition of Writes using constraints available in most CP solvers;
– a recipe for building a local-search backend to MiniZinc from any CP solver;
– evidence that declarative neighbourhoods are technology-independent.

We wrap the paper up with an experimental evaluation of our prototype against
CP, CBLS, and LNS backends to MiniZinc, as well as directions for future work.
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2 Background

After discussing in Sect. 2.1, with the example of a vehicle routing problem, the
technology-independent modelling language MiniZinc and its extension with the
notion of declarative neighbourhood [3], conceived for local-search backends, we
briefly summarise in Sect. 2.2 the principles of local search (e.g., [14]).

For brevity, we discuss constrained minimisation problems: the maximisation
of an objective function amounts to minimising its opposite, and the satisfaction
of constraints amounts to satisfying them while minimising a constant.

2.1 MiniZinc and Declarative Neighbourhoods

Conceptually, a MiniZinc model for a constrained minimisation problem is in
this paper a tuple 〈V, C, o,S,N〉, where V is the set of variables; C is the set of
constraints on these variables, including their domain membership constraints;
the variable o ∈ V is the objective variable, whose value is to be minimised; S is
the optional annotation for suggesting a systematic-search branching strategy
on the variables; and N is the optional annotation for suggesting a declarative
neighbourhood [3].

As a running example, we use the model for the travelling salesperson prob-
lem with time windows (TSPTW) used in [2], but extended with a relocation
neighbourhood. Given are n locations; an array TravTime, where TravTime[i,j]
is the travel time from location i to location j plus the service time at i; and an
array ArrWin of arrival-time windows, where ArrWin[i,1] is the earliest arrival
time and ArrWin[i,2] the latest arrival time at location i. The objective is to
find a shortest Hamiltonian circuit that visits each location exactly once and
within its arrival-time window.

Listing 1 has a MiniZinc model for TSPTW with a relocation neighbourhood,
with the data above declared in lines 1 to 3. The route is modelled in line 4 by
an array Pred, where variable Pred[i] denotes the location visited before loca-
tion i. The circuit constraint in line 5 requires Pred to represent a Hamiltonian
circuit. Location 1 is assumed in line 6 to be the depot, that is the start of the
route. The arrival times are modelled in line 7 using the array ArrTime, where
variable ArrTime[i] denotes the arrival time at location i. Each arrival time is
constrained, in lines 8 to 11, to be at least either the arrival time at the preceding
location plus the travel time, or the start of its arrival-time window, whichever
is greater, and at most the end of its arrival-time window. The objective is to
minimise the travel time of the entire circuit, which is stated in lines 12 and 15.

The relocation neighbourhood is used in the annotation (prefixed by ::) of
line 13 and declared in lines 16 to 22. It considers in line 18 all combinations
of two locations i and j such that they are distinct and the predecessor of i is
not j: this is prescribed by the where pre-condition in line 18 on the elements of
the moves set comprehension of candidate moves. Each candidate move consists
of the composition of three parallel re-assignments that relocates the predecessor
of i so that it goes between j and the predecessor of j, as prescribed by lines 19
to 21. The initialisation post-condition of the neighbourhood is that Pred forms
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1 int: n; set of int: Loc = 1..n; % number and set of locations

2 array[Loc,Loc] of int: TravTime; % travel times

3 array[Loc,1..2] of int: ArrWin; % arrival-time windows: earliest, latest

4 array[Loc] of var Loc: Pred; % predecessor locations

5 constraint circuit(Pred);

6 int: depot = 1; % location 1 is the depot

7 array[Loc] of var int: ArrTime; % arrival times

8 constraint ArrTime[depot] = ArrWin[depot,1];

9 constraint forall(i in Loc where i != depot)(

10 ArrTime[i] = max(ArrTime[Pred[i]]+TravTime[Pred[i],i], ArrWin[i,1]));

11 constraint forall(i in Loc)(ArrTime[i] <= ArrWin[i,2]);

12 var int: time = sum(i in Loc)(TravTime[Pred[i],i]); % objective variable

13 solve :: use_neighborhood(relocate())

14 :: int_search(Pred,first_fail,indomain_min,complete)

15 minimize time;

16 function ann: relocate() :: neighborhood_definition =

17 initially(circuit(Pred)) /\

18 moves(i, j in Loc where i != j /\ Pred[i] != j)(

19 Pred[i] := Pred[Pred[i]] /\

20 Pred[j] := Pred[i] /\

21 Pred[Pred[i]] := Pred[j] % /\ ensuring(circuit(Pred)) % implied

22 );

Listing 1. A MiniZinc model for TSPTW and a relocation neighbourhood.

a Hamiltonian circuit, as prescribed by the initially condition in line 17: every
(re-)start must be from a valuation satisfying this condition. Together, this ini-
tialisation post-condition, the pre-condition on candidate moves, and the nature
of the candidate moves imply that each candidate move reaches a valuation
of Pred that forms a Hamiltonian circuit, so we do not need to include the
commented-out ensuring post-condition on candidate moves in line 21.

The initially, where, and ensuring conditions of a declarative neighbour-
hood are constraint satisfaction problems, expressed on the data and variables
of the problem model, using the existing and full MiniZinc syntax.

2.2 Local Search

Given a model 〈V, C, o,S,N〉 for a constrained minimisation problem, a local-
search method iteratively maintains a current valuation θ that maps each variable
in V to a value in its domain prescribed in C, and that is initialised under
some amount of randomisation so as to satisfy the initialisation condition of N ,
usually a subset of the constraints in C. At each iteration, the local-search method
considers the set of candidate moves defined by the neighbourhood N (θ): it
selects under some amount of randomisation a candidate move, as specified by
some heuristic such as best-improving or first-improving, and makes the selected
candidate move by updating the current valuation θ accordingly. The idea is that
each move made should reduce the value of some cost function cost(θ), which
does not necessarily return the current objective value θ(o), as seen below.
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In order to escape local optima of cost(θ), a meta-heuristic, such as simu-
lated annealing or tabu search [12], is used. Together, the neighbourhood N ,
the heuristic, and the meta-heuristic form the local-search strategy of the local-
search method. A local-search method typically also involves restarts, where
periodically the search may be begun again from scratch, in order to avoid being
trapped in local minima. It also may use intensification, where more search effort
is applied around a current valuation that seems promising.

All constraints in C are to be satisfied. Existing local-search backends to Mini-
Zinc automatically choose for each constraint among three ways of handling it:

– A constraint c ∈ C can be satisfied when initialising the current valuation θ
and its satisfaction can be preserved by all candidate moves. Hence c is hard :
it cannot be violated during search.

– A constraint c that functionally defines some variable v ∈ V in terms of other
variables W ⊂ V can be made hard by extending every made move on at
least one variable in W into also re-assigning v accordingly.

– A constraint c can be made soft, meaning it can be violated during search
but should be satisfied in the final valuation, by using a violation function
giving 0 if c is satisfied under θ, and otherwise a positive value that indi-
cates how violated c is under θ. For example, for linear expressions x and y,
the linear constraints x = y and x ≤ y are softened [27] into v1 = |x − y|
and v2 = if x ≤ y then 0 else x − y endif, respectively, defining an intro-
duced violation variable vi.

For example, for the model in Listing 1, a typical way of handling its constraints
is: the circuit constraint in line 5 is satisfied by every valuation explored dur-
ing the search; the constraint that functionally defines time in line 12 is made
hard and moves do not consider changing this variable; the time-window end
constraint in line 11 is made soft; finally, although the constraints in lines 8
to 10 define the ArrTime[i] variables functionally, it is hard to detect that the
definition is not circular: hence they are made soft and moves must consider
changing these variables.

Let soft(C, g) denote the constraint set where some constraints in C are
softened under some scheme, including a new variable g, denoting the global
violation, constrained to be the sum of all the introduced violation variables. We
assume that the individual violation variables and the global violation variable g
are implicitly added to the variable set of the model containing C. Replacing C
by soft(C, g) requires changing the model containing C to minimising both the
objective variable o and the global violation variable g. For example, in fzn-
oscar-cbls [4], a weighted sum α · o + β · g is used as the cost function cost(θ),
where the values of α and β are dynamically tuned during search.

If too many constraints are made hard, then this may disconnect the search
space, since local search only moves from one valuation to another via a move
of the neighbourhood: it may be that no sequence of moves in the declarative
neighbourhood are able to move between two given valuations. If this is the case,
then we can seriously weaken the local-search capability to find good valuations.
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Given a neighbourhood N , we can partition the variables V of a model into
three sub-sets: Vtarg is the set of variables that are targeted by the moves of N
(such as the array Pred in line 4 of Listing 1); Vfunc is the set of non-targeted
variables that are each functionally defined by some constraint (such as time
being functionally defined by Pred in line 12); and Vaux is the set of the remaining
variables, which we call auxiliary variables (such as the array ArrTime in line 7).
Search must be over Vtarg ∪ Vaux, but local search over Vtarg ∪ Vaux was shown
in [2] to degrade greatly the performance of CBLS solvers, unless every move
on Vtarg is somehow automatically extended by a corresponding re-assignment
of Vaux.

3 Encoding a Declarative Neighbourhood as a CP Model

We show how to encode automatically a declarative neighbourhood, specified in
MiniZinc, as a CP model, which we call the neighbourhood model. We show in
Sect. 3.1 how to encode two states of a local-search method, namely its current
and next valuations, using variables. We explain in Sect. 3.2 how to encode a
move as constraints on these variables. The exploration of the neighbourhood
then amounts to solving the neighbourhood model, as discussed in Sect. 3.3.

3.1 Encoding the Current and Next Valuations

Given a MiniZinc model 〈V, C, o,S,N〉, we extract the following sets:

– Vgen has variables for the generators of the moves set comprehension of N ;
– M has the move expressions of the moves comprehension of N ;
– Vtarg ⊆ V has the targeted variables of V, that is those re-assigned in M;
– Cwhere has the constraints on V ∪ Vgen of the where pre-condition of N ; and
– Censure has the constraints on V ∪ Vgen of the ensuring post-condition of N .

For example, for the model in Listing 1, the set Vgen has variables, called gen-
erator variables, for the generators i and j in line 18; the set M has the three
re-assignments in lines 19 to 21; the set Vtarg has the entire array Pred since any
variable thereof can be referred to in the left-hand sides of the re-assignments
in M; the set Cwhere has the two constraints of the where pre-condition in line 18;
and the set Censure is empty since there is no ensuring post-condition.

Since our encoding must reason on the current and next valuations of the
variables in a local-search method, we must use in the neighbourhood model two
copies of some variables of the given problem model: for a set X of variables, we
denote by Xc the set of variables corresponding to X in the current valuation,
and by Xn the set of variables corresponding to X in the next valuation. We use
the same notation for individual variables.

The variable set of the neighbourhood model is Vc ∪ Vn ∪ Vc
gen. We give its

constraint set in Sect. 3.3, after focussing on the constraints encoding a move.
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3.2 Encoding a Move

A move is a transition from Vc
targ to Vn

targ, so we must constrain each variable
in Vn

targ to take the same value as its corresponding variable in Vc
targ, except those

re-assigned by the move, which are constrained to take new values accordingly.
Towards encoding this, we introduce the constraint Writes(O, I, P, V ) on

two arrays O and I of the same number n of variables and two arrays P and V
of the same number m of variables: it holds if and only if O, called the output
array, is point-wise equal to I, called the input array, except that O[P [ j]] is
constrained to be equal to V [ j] for each j in {1, . . . ,m}. We assume that all
indexing in this paper starts from 1.

We encode using Writes the set M of move expressions. The basic moves
are x:=y, X[i]:=y, x:=:y, and X[i]:=:Y [ j], specified and encoded as follows:

– x := y means re-assign to x the current value of y, which is encoded as either
xn = yc or Writes([xn], [xc], [1], [yc]);

– X[i] := y means re-assign to X[i] the current value of y, which is encoded
as Writes(Xn,Xc, [ic], [yc]);

– x :=: y means swap the current values of x and y, which is encoded as either
xn = yc ∧ yn = xc or Writes([xn, yn], [xc, yc], [1, 2], [yc, xc]);

– X[i] :=: Y [ j] means swap the current values of X[i] and Y [ j], which is
encoded the way the compound move X[i]:=Y [ j] /\ Y [ j]:=X[i] is; see
below.

The first and third Writes-based encodings are only useful when we merge
them with others in order to preserve the semantics of moves, as discussed next.

A compound move is the parallel composition of basic moves, which is written
by overloading the /\ logical-and connective. The composition of basic moves
that always re-assign different variables, such as X[i] := u /\ Y [ j] := v when
the arrays X and Y share no variables, is the conjunction of the encodings of
the basic moves. However, the composition of basic moves that can re-assign the
same variable, such as X[i] := u /\ X[ j] := v, must be encoded by merging
the encodings of the basic moves, since Writes(Xn,Xc, [ic], [uc]) requires ∀k �=
ic : Xn[k] = Xc[k], which prevents any value other than Xc[ jc] from being
written at index jc by Writes(Xn,Xc, [ jc], [vc]), unless jc = ic.

Rules 1, 2 and 3 below show how to merge Writes constraints; we only give
rules for the cases that can appear in our prototype backend to MiniZinc:

Rule 1. The constraints Writes(O, I, P, V ) and Writes([x], [y], [1], [v]),
where for some constant index p we have that O[ p] is x and I[ p] is y, are merged
into Writes(O, I, P ++ [ p], V ++ [v]), where ++ denotes array concatenation.

Rule 2. The constraints Writes(O, I, P1, V1) and Writes(O, I, P2, V2) on the
same output and input arrays are merged into Writes(O, I, P1 ++P2, V1 ++ V2).

Rule 3. Consider Writes(O1, I1, P1, V1) and Writes(O2, I2, P2, V2), where a
non-empty set J has the indices j for which there exists an index i such that O2[ j]
is O1[i] and I2[ j] is I1[i]. Let O2 and I2 have length n. Let O′ = O1 ++ [O2[k] |
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k ∈ {1, . . . , n} \ J ] and I ′ = I1 ++ [I2[k] | k ∈ {1, . . . , n} \ J ] be the non-
redundant mergers of the two O� arrays and the two I� arrays, respectively.
Let M be the array that maps indices of I2 to indices of I ′ defined so that
∀i ∈ {1, . . . , n} : O2[i] = O′[M [i]]∧I2[i] = I ′[M [i]]. Let P2 and V2 have length m.
Let P ′ = P1 ++ [M [P2[i]] | i ∈ {1, . . . ,m}]. The two Writes constraints above
are merged into Writes(O′, I ′, P ′, V1 ++V2).

For example, for the model in Listing 1, the compound move is encoded,
after maximal merging, as the single constraint Writes(Predn, Predc, [ic, jc,
Pred[ic]c], [Pred[Pred[ic]c]c, Pred[ic]c, Pred[jc]c]).

Let the maximally merged encodings of the move expressions in M, together
with the constraint ∃v ∈ Vtarg : vn �= vc requiring at least one variable in Vn

targ to
be different from the corresponding one in Vc

targ, form the constraint set Cmove.

3.3 The Neighbourhood Model and Neighbourhood Exploration

The neighbourhood model has the variable set Vc ∪ Vn ∪ Vc
gen mentioned in

Sect. 3.1 and the following constraint set for channelling between Vc and Vn:

– the set Cwhere{V/Vc,Vgen/Vc
gen}, for meeting the where pre-condition;

– the set Cmove defined at the end of Sect. 3.2, for encoding a move;
– the set soft(C, g){V/Vn}, for evaluating and pruning neighbours; and
– the set Censure{V/Vn,Vgen/Vc

gen}, for meeting the ensuring post-condition.

where R{X/Y } denotes the copy of the constraint set R where the variables of
the set X are point-wise substituted by those of the same-sized set Y of variables.

A declarative neighbourhood can have the union of several moves set com-
prehensions with possibly different pre- and post-conditions, effectively giving
the union of sub-neighbourhoods. In order to encode such a neighbourhood, we
propose that each sub-neighbourhood be separately encoded in its own neigh-
bourhood model, each being explored under its own instantiation of a CP solver.
We believe that the disjunctive encoding of the sub-neighbourhoods would be at
most as efficient as encoding and exploring the sub-neighbourhoods separately.

Thus, given the current valuation θ of a local-search method, exploring its
neighbourhood amounts to solving the neighbourhood model, but with the addi-
tional constraints {vc = θ(v) | v ∈ V} for enforcing θ, using a CP solver: either
we apply systematic search in order to find one or all neighbours, or we add to the
neighbourhood model the objective function that corresponds to the cost func-
tion of the local-search method and apply systematic branch-and-bound search
in order to find a best neighbour and prune sub-optimal ones on-the-fly.

4 Implementing a Local-Search Solver Using a CP Solver

Since we can explore a declarative neighbourhood using a CP solver, we now
show how to lift any CP solver into a local-search backend for MiniZinc. We use
OscaR.cp [18] in order to implement our prototype backend, called LS(cp).
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1 predicate writes(array[int] of var int: O, array[int] of var int: I,

2 array[int] of var int: P, array[int] of var int: V) =

3 forall(j in index_set(P))(O[P[j]] = V[j]) /\

4 forall(i in index_set(I) where forall(j in index_set(P))(P[j]!=i))(

5 O[i]=I[i]);

Listing 2. A straightforward definition of the Writes constraint in MiniZinc syntax.

1 predicate writes(array[int] of var int: O, array[int] of var int: I,

2 array[int] of var int: P, array[int] of var int: V) =

3 let { int: k = min(index_set(P));

4 array[index_set(I)] of var 0 .. length(P): S;

5 } in forall(i in index_set(I))(S[i] = 0 -> O[i] = I[i] /\

6 forall(j in 1..length(P))(S[i] = j -> P[j+k-1] = i)) /\

7 alldifferent_except_0(S) /\forall(j in index_set(P))(O[P[j]] = V[j]);

Listing 3. An improved definition of the Writes constraint in MiniZinc syntax.

We use only existing components of OscaR.cp (including the FlatZinc parser
of the CBLS solver OscaR.cbls [4,7] of the same OscaR framework), provide
a good implementation of Writes (Sect. 4.1), motivate a particular constraint
softening scheme (Sect. 4.2), and discuss the control flow (Sect. 4.3).

4.1 Implementation of the WRITES Global Constraint

A straightforward definition (or: decomposition) of the Writes(O, I, P, V )
constraint of Sect. 3.2 is given in Listing 2 using MiniZinc syntax. We
also propose the improved definition in Listing 3, which reasons on a
matching between the variables of P and O: an array S denotes for
each index i of I if its element is unchanged in O (when Si =
0) or denotes the value at index j of P that determines its change
(when Si = j).The improved definition propagates Writes([1..3, 1..3, 1..3],
[4, 4, 4], [1..3, 2..3, 2..3], [1, 1, 1]), where �..u denotes a variable of that domain,
to Writes([1, 1..3, 1..3], [4, 4, 4], [1, 2..3, 2..3], [1, 1, 1]), whereas the first defini-
tion propagates nothing. However, neither achieves domain consistency, namely
Writes([1, 1, 1], [4, 4, 4], [1, 2..3, 2..3], [1, 1, 1]). Given that the max-clique prob-
lem reduces to achieving domain consistency on a Writes constraint, domain-
consistent propagation is NP-hard and we do not investigate this further in this
paper. In practice, we provide special cases in the definition when O and I
have length n ∈ {1, 2}, capturing the Writes-free encodings of the x := y and
x :=: y moves shown in Sect. 3.2.

4.2 Constraint Softening Scheme

As hard constraints decrease the neighbourhood size and exploration time [20], it
can be beneficial to soften only a few constraints, if any. We argue that one should
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Algorithm 1. Control flow of a CP-based local-search backend to MiniZinc.
while no time-out do

θ := initialise(τinit) {create a new current valuation}
while no time-out and no restart do {the meta-heuristic decides when to restart}

θ′ := explore(θ, τexplo) {select a neighbour}
θ := intensify(θ′, τintens) {improve the selected neighbour}

soften neither constraints that functionally define variables, nor constraints on
auxiliary variables. The former rule is what the MiniZinc CBLS backend fzn-
oscar-cbls [4] does, and the latter rule allows us to leverage propagation for
determining values of the auxiliary variables, which was shown to be benefi-
cial in [2]. In our LS(cp), the soft(C, g) operator of Sect. 2.2 softens each linear
(in)equality constraint that neither functionally defines some variable nor con-
strains auxiliary variables, and we change the objective function into the cost
function α · o + β · g, as in [4], but currently statically with α = 1 = β.

4.3 Control Flow

Given a MiniZinc model 〈V, C, o,S,N〉 with a declarative neighbourhood N , our
local-search backend consists of three major components—initialisation, explo-
ration, and intensification—which are used under the control flow in Algorithm 1.
Each component has its own instantiation of a CP solver for its own model, but
the exploration has several in case of sub-neighbourhoods.

Initialisation. Let Cinit denote the constraint set in the initialisation post-
condition of N : the initialisation model is 〈V, soft(C, g) ∪ Cinit, o + g, Sinit, 〉,
where the systematic-search strategy Sinit is a randomisation of S, if present,
and otherwise a randomising default strategy. The CP solver is limited to return
the best solution found within τinit seconds, or, if no solution was found yet,
then to return the first solution found thereafter. The CP solution returned by
initialise(τinit) is used as the initial or re-start valuation θ by the local search.

Exploration. Let Cexplo denote the four constraint sets at the start of Sect. 3.3:
the neighbourhood model is

〈Vc ∪ Vn ∪ Vc
gen, Cexplo, on + gn, Sexplo,

〉
. We

describe everything for a trail-based CP solver. Before applying the constraints
{vc = θ(v) | v ∈ V} for enforcing the given current valuation θ of the local search,
a choice point (recording the current state of the CP solver) is pushed onto the
trail of the CP solver. This allows us to backtrack, when the local search has
a new current valuation θ, to the choice point before the variables were fixed,
by popping the trail, thus reusing rather than re-building the neighbourhood
model in the next iteration of local search. Note that in an LCG solver this also
allows us to keep all generated nogoods, since any dependence on the current
valuation θ is included in the nogood.
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The search strategy Sexplo is similar to the one of [25], which argues that
branching by domain bisection on the generator variables Vc

gen propagates better.
However, in general this only guarantees fixing the targeted variables Vn

targ ⊆ Vn

by propagation. We therefore then also branch on the remaining variables.
Many local-search heuristics for selecting a neighbour are easy to implement.

For example, for the first-improving heuristic used by our LS(cp), we limit the
CP branch-and-bound search to stop after finding a solution within τexplo seconds
where 〈gn, on〉 is lexicographically strictly less than 〈gc, oc〉; if no such solution
was found yet, then the best solution found so far is returned, if any. Further,
the best-improving heuristic can be implemented by searching exhaustively.

We implement a greedy local-search phase by enforcing gc and oc as upper
bounds on gn and on: this prunes all non-improving neighbours to θ. After some
iterations, once θ is a local minimum, these bounds will empty the neighbourhood
and we end the greedy local-search phase by no longer using these bounds. This
allows the best-found CP solution to become a non-improving neighbour.

Let σ be the solution returned by the CP solver, if any: explore(θ, τexplo)
returns the valuation θ′ = {v → σ(vn) | v ∈ V} if σ is defined, otherwise θ′ = θ.

Intensification. Let θ′ be the local-search valuation of V = Vtarg ∪Vfunc ∪Vaux

returned by the exploration; recall the end of Sect. 2.2 for the semantics of
these variable sets. The projection of θ′ onto only Vtarg may have several exten-
sions for Vfunc and Vaux that have a better objective value than under θ′. This
may happen for example upon a first-improving heuristic. In order to try and
improve θ′, the function intensify(θ′, τintens) calls a CP solver on the intensi-
fication model 〈V, soft(C, g) ∪ {v = θ′(v) | v ∈ Vtarg} , o + g, S, 〉, where S is
from the original model. The CP solver is limited to return a best solution found
within τintens seconds, if any. This intensification is essentially a single LNS iter-
ation where Vtarg is frozen and values for Vfunc ∪ Vaux are sought.

Let σ be the solution returned by the CP solver, if any: intensify(θ′, τintens)
returns the valuation θ = {v → σ(v) | v ∈ V} if σ is defined, otherwise θ = θ′.

Meta-Heuristic: Tabu Search, Aspiration, and Restarts. In order to help
local search escape local minima, we improve on Algorithm 1 by implementing
a tabu search meta-heuristic by extending explore(θ, τexplo) to return also which
variables in Vtarg were re-assigned in the selected neighbour: after the latter is
intensified into the new current valuation, each re-assigned variable in Vtarg is
called tabu for δ+u local-search iterations, where u is taken uniformly at random
between 0 and the tabu tenure δ. Before starting exploration, each tabu variable
in Vn

targ is required to be equal to its corresponding variable in Vc
targ. We need

not do this algorithmically: the constraint ∀v ∈ tabu(Vtarg) : vn = vc, where
tabu(Vtarg) denotes the set of tabu variables, is added to the neighbourhood
model before starting CP search on it.

We improve this tabu search by adding the aspiration criterion that allows
re-assigning tabu variables if this yields a new overall best valuation, under
lexicographic order on 〈g, o〉. This is achieved by instead posting the constraint



48 G. Björdal et al.

gn < best(g) ∨ (gn = best(g) ∧ on < best(o)) ∨ ∀v ∈ tabu(Vtarg) : vn = vc,
where best(v) denotes the value of variable v in the overall best valuation.

In order to further help the local search escape local minima, we also imple-
ment a restart mechanism: if the exploration step does not return a new valua-
tion for γ iterations of local search or does not improve the overall best valuation
since the last restart for λ iterations, then a restart is made. Our LS(cp) per-
forms restarts from the initialisation step. Recall that the initialisation step uses
randomisation in its branching strategy.

5 Experimental Evaluation

Our aim is to show that declarative neighbourhoods are technology independent
and enable lifting any CP solver into also being a MiniZinc local-search backend.

We evaluate our prototype LS(cp) against fzn-oscar-cbls [4], a CBLS backend
that uses declarative neighbourhoods (but can be run black-box); Yuck,1 a CBLS
backend that only runs black-box; Gecode [11], a CP backend that uses CP
search annotations such as line 14 of Listing 1; and Gecode-lns, an LNS backend
that uses Gecode upon adding the relax_and_reconstruct annotation, with
an 80% probability of freezing for each variable, to the MiniZinc model and the
-restart luby flag when running the backend. These settings for Gecode-lns
were decided upon after observing robust performance in initial experiments. We
use two configurations of LS(cp) in order to see the impact of better neighbour
pruning at the cost of possibly disconnecting the search space: LS(cp)-soft uses
the constraint softening scheme of Sect. 4.2, and LS(cp)-hard sets soft(C, g) = C.
For both configurations, we use the parameters τinit = 10 s, τexplo = 30 s,
τintens = 10 s, δ = 0.1 · |Vtarg|, γ = 3 · δ, and λ = 1000 and the first-improving
heuristic during exploration, as initial experiments showed these settings were
robust. For all backends that use randomisation, we report the best-found and
median objective values of 10 independent runs, as well as, in prefixed superscript
if non-zero, the number of runs where feasibility was not established. For Gecode,
we report the best-found objective of a single run. For each run we use a 15-min
timeout, under Linux Ubuntu 18.04 (64 bit) on an Intel Xeon E5520 of 2.27 GHz,
with 4 processors of 4 cores each, with 24 GB RAM.

Since we must handcraft declarative neighbourhoods for each model, which
requires a good understanding of both the model and the underlying problem,
we evaluated LS(cp) on the models, instances, and declarative neighbourhoods
of [3], namely steel-mill slab design [23], generalised balanced academic cur-
riculum design (GBAC) [6], car sequencing [8], and community detection [10].
For space reasons, we omit the last two, which give results similar to GBAC.
We also evaluated on the TSPTW model in Listing 1, and added declarative
neighbourhoods to models used in the MiniZinc Challenge [26] for a capaci-
tated vehicle routing problem (CVRP), a time-dependent travelling salesperson
problem (TDTSP), and the seat moving problem. Table 1 has the results, where
boldface indicates the best objective value by all backends for the instance of
1 https://github.com/informarte/yuck.

https://github.com/informarte/yuck
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the corresponding row and a “–” indicates that no feasible valuation was found
in any run by the backend in the corresponding column.

CVRP. We used the model and instances of the MiniZinc Challenge 2015, except
the easiest instance, ‘simple2’. We extended the model with a declarative neigh-
bourhood similar to the one in Listing 1, as CVRP is here also modelled using a
circuit constraint. Gecode-lns was never worse and usually much better than
both versions of LS(cp), but they significantly outperformed fzn-oscar-cbls, Yuck,
and Gecode on all instances. Yuck and fzn-oscar-cbls here make moves on auxil-
iary variables (recall the end of Sect. 2.2): this explains why LS(cp) was better.
LS(cp)-hard gave better valuations than LS(cp)-soft, which suggests that soft-
ening constraints is not important for this model. Hence it is unsurprising that
LNS was best.

GBAC. Yuck and fzn-oscar-cbls overall outperformed the other backends, and
fzn-oscar-cbls was best, possibly due to the declarative neighbourhoods. For the
UD3, UD7, and UD9 instances, LS(cp) did not find any feasible valuation in any
run, while Gecode-lns and Gecode found very bad valuations. This indicates that
finding a feasible valuation for these instances is difficult using CP-style search,
which LS(cp) and Gecode-lns use for initialisation. Clearly, this is an example
where softening many constraints is important to find reasonable valuations.

Seat Moving. We used the model and instances of the MiniZinc Challenge 2018,
except the hardest instance, 15-12-00, for which no solutions were found by any
backend. We extended the model with a declarative neighbourhood defining
moves that either swap two variables in a row of a 2D array or re-assigns one.
LS(cp) and Gecode-lns performed best, with LS(cp)-soft being the sole best on
one instance. Yuck and fzn-oscar-cbls failed to find a feasible valuation for the
instances 10-12-00 and 20-20-00, and found poor valuations for the other ones.
It would therefore appear that CP-style search is here more suitable for finding
initial valuations, and that keeping more (but not all) constraints hard improves
local search.

Steel Mill. We used the hard_steelmill neighbourhood of [3]. Arguably, fzn-
oscar-cbls was best, followed by LS(cp)-hard, LS(cp)-soft, and then Gecode-lns,
but each of these approaches wins on some instances. There is no clear pattern
here, illustrating the importance of trying multiple technologies on the same
model for each instance.

TDTSP. We used the model and instances of the MiniZinc Challenge 2017. We
extended the model with a declarative neighbourhood defining moves preserves
the satisfaction of an inverse constraint. Gecode-lns significantly outperformed
all the other backends, and both versions of LS(cp) outperformed fzn-oscar-cbls,
Yuck, and Gecode. As with the CVRP model, fzn-oscar-cbls and Yuck here make
moves on auxiliary variables, which explains why LS(cp) was better.

TSPTW. We used the model in Listing 1 and medium-sized GendreauDumas-
Extended *.001 instances.2 LS(cp) and Gecode-lns outperformed all the other
2 http://lopez-ibanez.eu/tsptw-instances.

http://lopez-ibanez.eu/tsptw-instances
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Table 1. Experimental results on various minimisation problems.

Declarative neighbourhood Black-box CP search annotation

LS(cp)-soft LS(cp)-hard fzn-oscar-cbls Yuck Gecode-lns Gecode

CVRP best med. best med. best med. best med. best med. best

A-n37-k5 773 920 722 773 2530 2736 – – 693 693 1673

A-n64-k9 3187 3273 3113 3202 – – – – 1617 1617 3544

B-n45-k5 1833 2019 1633 1848 3633 4004 – – 769 769 2408

P-n16-k8 450 455 450 450 – – 559 559 450 450 530

GBAC

UD1 8577 9776 7635 9722 438 624 944 944 31263 31264 45420

UD2 174 213 189 217 189 206 289 289 354 376 12305

UD3 – – – – 191 267 413 413 37576 37654 57681

UD4 470 1190 974 1190 401 472 485 485 904 904 11925

UD5 386 427 368 489 272 327 626 626 2039 2244 23028

UD6 124 135 125 144 122 153 154 154 55 55 9846

UD7 – – – – 519 639 745 761 27330 27330 44044

UD8 65 87 74 107 63 86 105 105 48 48 9472

UD9 – – – – 463 572 692 692 29213 29213 44010

UD10 126 176 107 162 81 91 138 138 53 53 12101

Seat Moving

10-12-00 463 465 464 467 – – – – 735 735 555

10-20-05 90 90 90 90 130 132 132 132 90 90 139

15-20-00 199 199 199 199 209 7210 – – 199 199 207

20-20-00 262 262 262 262 – – – – 262 262 286

Steel Mill

bench 3 0 11 13 11 14 12 15 629 629 8 8 64

bench 3 1 31 46 29 42 22 31 – – 77 77 167

bench 3 2 31 43 28 43 42 60 – – 33 33 83

bench 3 3 36 48 38 54 38 76 896 896 70 70 326

bench 3 4 20 41 23 31 71 111 – – 14 14 38

bench 3 5 40 50 46 54 54 56 925 925 98 98 270

bench 3 6 27 48 33 58 54 106 – – 55 55 292

bench 3 7 81 103 82 103 79 101 1039 1039 109 109 203

bench 3 8 128 173 132 161 116 205 1400 1400 183 183 341

bench 3 9 212 230 183 260 205 252 1678 1678 240 240 331

TDTSP

10 35 20 9114 9764 9055 9279 14424 17217 10847 10847 9055 9055 9055

10 42 00 8421 8421 8421 8421 15866 18751 9248 9248 8421 8421 8421

10 58 20 11043 11435 10800 10986 15581 19021 12319 12323 10306 10306 13799

20 26 00 16124 17677 15105 17427 22752 522961 17906 19956 12741 12741 18197

20 36 10 15272 16045 15028 15772 22020 122602 17727 17727 12308 12308 15051

TSPTW

n40w120 434 434 434 434 – – – – 434 434 490

n40w140 328 328 328 328 – – – – 328 328 380

n40w160 348 348 348 348 – – – – 348 348 425

n60w120 384 384 384 384 – – – – 387 387 513

n100w80 720 8856 679 8694 – – – – – – 772
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backends on all instances. In fact, the best-found objective values on all but the
n100w80 instance are optimal. For the latter, Gecode-lns did not find any feasible
valuation, but both versions of LS(cp) found feasible valuations in 10 − 8 = 2
runs. Like with the CVRP and TDTSP models, both fzn-oscar-cbls and Yuck
here make moves on auxiliary variables, namely the ArrTime[i] ones.

6 Conclusion, Related Work, and Future Work

Conclusion. We have demonstrated that declarative neighbourhoods, which
were originally conceived for CBLS backends to MiniZinc, can also be used in
order to generate automatically an LS(cp) method for local search, where the
neighbourhood is initialised and explored using CP models and a CP solver. In
fact, since we propose a decomposition for our new Writes constraint, nothing
in our recipe for lifting any CP solver into a local-search backend to MiniZinc is
specific to CP: our recipe equally applies to any IP, SAT, or SMT solver.

While we see a wide variety of behaviour across the benchmarks against CP,
CBLS, and LNS backends to MiniZinc, our prototype LS(cp) backend finds the
best solutions for the seat moving and TSPTW benchmarks and is competitive
on all others, except GBAC, where it sometimes even struggles to find initial
valuations. Hence there seems to be a sweet spot for the CP-based exploration
of local-search neighbourhoods, where auxiliary variables make CBLS backends
slow and non-LNS neighbourhoods are important for local search.

Related Work. We have already discussed the differences between LS(cp) and
LNS (large-neighbourhood search, [24]) near the end of Sect. 1

Structured neighbourhood search (SNS, [1]) is a local-search framework for
models written in Essence [9]. In SNS, a set of neighbourhoods is automati-
cally inferred from the variables of a model and their types. This is done via
a set of predefined rules for each basic variable type and predefined rules for
variables of nested types, such as lists of sets of integers. Although the connec-
tion is not explicitly made in [1], the SNS framework is defined using the ideas
in [20]. Specifically, in SNS, the variables of the given model of a problem are
referred to as active variables. For each active variable, a corresponding primary
variable is introduced to represent the next valuation. Each neighbourhood is
then expressed as a neighbourhood model connecting the active and primary
variables, which is essentially the same approach as in [20] and in this paper.
Because multiple neighbourhoods are inferred, a multi-armed-bandit algorithm
is used for selecting which neighbourhood to use.

The StoreElement( p, v, I, O) constraint used in [13] for constraint-based
testing, with a propagator in [5], is the particular case Writes(O, I, [ p], [v]),
which is equivalent to O = write(I, p, v) in the theory of arrays [16]. The
Writes(O, I, P, V ) constraint encodes a parallel series of writes on an array
I giving an array O = write(· · · write(write(I, p1, v1), p2, v2) · · · pm, vm) with
∀i, j : pi = pj ⇒ vi = vj . However, encoding Writes as a sequence of
StoreElement generates m copies of the input array in the encoding, but
we only need the initial input array and the final output array.
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Future Work. More advanced versions of LNS, such as propagation-guided
LNS [19], cost-impact-guided LNS [15], and explanation-guided LNS [21], should
be compared with LS(cp) to better understand the problems suitable for LS(cp)
and LNS respectively.

Our LS(cp) is limited by initialisation being able to find an initial valuation,
just like LNS. While the softening of some constraints makes initialisation more
likely to succeed, the finding of an initial valuation is not guaranteed. Further-
more, the initialisation, exploration, and intensification steps all rely on appro-
priate CP search strategies being used, and our initial experiments indicate that
these branching strategies have a significant impact on the performance. Clearly
there is scope here for further investigation.

We also need to determine how best to soften constraints and which ones to
soften, trading search over larger neighbourhoods for better robustness. Ideally,
some form of dynamic adjustment, automatically softening when it is difficult
to find improving moves, seems attractive to pursue.
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Abstract. The goal of this paper is to investigate a decision support
system for vehicle routing, where the routing engine learns from the
subjective decisions that human planners have made in the past, rather
than optimizing a distance-based objective criterion. This is an alterna-
tive to the practice of formulating a custom VRP for every company
with its own routing requirements. Instead, we assume the presence of
past vehicle routing solutions over similar sets of customers, and learn to
make similar choices. The approach is based on the concept of learning a
first-order Markov model, which corresponds to a probabilistic transition
matrix, rather than a deterministic distance matrix. This nevertheless
allows us to use existing arc routing VRP software in creating the actual
route plans. For the learning, we explore different schemes to construct
the probabilistic transition matrix. Our results on a use-case with a small
transportation company show that our method is able to generate results
that are close to the manually created solutions, without needing to char-
acterize all constraints and sub-objectives explicitly. Even in the case of
changes in the client sets, our method is able to find solutions that are
closer to the actual route plans than when using distances, and hence,
solutions that would require fewer manual changes to transform into the
actual route plan.

1 Introduction

Route planning at SME companies is constrained by the limited number of
vehicles, the capacity of each delivery vehicle, and the scheduling horizon within
which all deliveries have to be made. The objective, often implicitly, can include
a wide range of company goals including reducing operational costs, minimizing
fuel consumption and carbon emissions, as well as optimizing driver familiarity
with the routes and maximizing fairness by assigning tours of similar duration
to the drivers. Daily plans are often created in a route optimization software
that is capable of producing plans that are optimal in terms of route length and
travel time. We have observed, however, that in practice, route planners heavily
modify the result given by the software, or simply pull out, modify, and reuse
an old plan that has been used and known to work in the past. The planners,
by performing these modifications, are essentially optimizing with their own set
of objectives and personal preferences.
c© Springer Nature Switzerland AG 2019
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The goal of this research is to learn the preferences of the planners when
choosing one option over another and to more effectively reuse all of the knowl-
edge and effort that have been put into creating previous plans. Our focus is
on intelligent tools that learn from historical data, and can hence manage and
recommend similar routes as used in the past.

In collaboration with a small transportation company, one of our initial steps
was to analyze their historical data. Close data inspection has confirmed that
the route planners often rely on historical data in constructing the daily plans,
which is consistent with the observations gathered during company visits.

To learn from historical data, we take inspiration from various machine learn-
ing research on route prediction for a single vehicle. Markov models developed
from historical data have been applied to driver turn prediction, prediction of
the remainder of the route by looking at the previous road segments taken by the
driver, and predicting individual road choices given the origin and destination.
These studies have produced positive and encouraging results for those tasks.
Hence, in this work, we investigate the use of Markov models for predicting the
route choices for an entire fleet, and how to use these choices to solve the VRP.

With a first-order Markov model, route optimization can be done by maxi-
mizing the product of the probabilities of the arcs taken by the vehicles, which
corresponds to maximizing the sum of log likelihoods. Hence, a key property of
our approach is that it can use any existing VRP solution method. This is a
promising, novel approach to the vehicle routing problem.

This paper’s contributions are presented in the succeeding sections as follows.
After a brief literature review, we present in Sect. 3 our transition probability
matrix reformulation of the VRP. In Sect. 4, we introduce the algorithm for
learning the transition matrix from historical data and its different variants. The
comparison of the different construction schemes and the experimental results
on actual company data are shown in Sect. 5.

2 Related Work

The first mathematical formulation and algorithmic approach to solving the
Vehicle Routing Problem (VRP) appeared in 1959 in the paper by Dantzig &
Ramser [6] which aimed to find an optimal routing for a fleet of gasoline delivery
trucks. Since its introduction, the VRP has become one of the most studied
combinatorial optimization problems. Faced on a daily basis by distributors and
logistics companies worldwide, the problem has attracted a lot of attention due
to its significant economic importance.

A large part of the research effort concerning the VRP has focused on its
classical and basic version—the Capacitated Vehicle Routing Problem (CVRP).
The presumption is that the algorithms developed for CVRP can be extended
and applied to more complicated real-world cases [13]. Due to the recent devel-
opment of new and more efficient optimisation methods, research interest has
shifted towards realistic VRP variants known as Rich VRP [4,9]. These prob-
lems deal with realistic, and sometimes multi-objective, optimisation functions,
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uncertainty, and a wide variety of real-life constraints related to time and dis-
tance factors, inventory and scheduling, environmental and energy concerns,
personal preferences of route planners and drivers, etc. [4].

The VRP becomes increasingly complex as additional sub-objectives and
constraints are introduced. The inclusion of preferences, for example, necessitates
the difficult, if not impossible, task of formalizing the route planners’ knowledge
and choice preferences explicitly in terms of constraints and weights. In most
cases, it is much easier to get examples and historical solutions rather than to
extract explicit decision rules from the planners, as observed by Potvin et al. in
the case of vehicle dispatching [17]. One approach is to use learning techniques,
particularly learning by examples, to reproduce the planners’ decision behavior.
To this end, we develop a new method that learns from previous solutions by
using a Markov model, and which also simplifies the problem by eliminating the
need to characterize preference constraints and sub-objectives explicitly.

Learning from historical solutions has been investigated before within the
context of constraint programming, e.g., in the paper of Beldiceanu and Simonis
on constraint seeker [1] and model seeker [2], and Picard-Cantin et al. on learning
constraint parameters from data, where a Markov chain is used, but for individ-
ual constraints [16]. In this respect, our goal is not to learn constraint instanti-
ations, but to learn choice preferences, e.g., as part of the objective. Related to
the latter is the work on Constructive Preference Elicitation [8], although that
actively queries the user, as does constraint acquisition [3].

Our motivation for Markov models is that they have been previously used in
route prediction of individual vehicles. Krumm [12] has developed an algorithm
for driver turn prediction using a Markov model. Trained from the driver’s histor-
ical data, the model makes a probabilistic prediction based on a short sequence
of just-driven road segments. Experimental results showed that by looking at the
most recent 10 segments into the past, the model can effectively predict the next
segment with about 90% accuracy. Ye et al. [19] introduced a route prediction
method that can accurately predict an entire route early in the trip. The method
is based on Hidden Markov Models (HMM) and also trained from the driver’s
past history. Another route prediction algorithm that predicts a driving route
for a given pair of origin and destination was presented by Wang et al. [18]. Also
based on the first-order Markov model, the algorithm uses a probability tran-
sition matrix that was constructed to represent the knowledge of the driver’s
preferred links and routes. Personalized route prediction has been used in trans-
portation systems that provide drivers with real-time traffic information and in
intelligent vehicle systems for optimizing energy efficiency in hybrid vehicles [7].

3 Formalisation

3.1 Standard CVRP

In its classical form, the CVRP can be defined as follows. Let G = (V,A) be a
graph where V = {0, 1, . . . , N} is the vertex set and A = {(i, j) : i, j ∈ V, i �= j} is
the arc set. The vertex 0 denotes the depot, whereas the other vertices represent
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the customers to be served. A non-negative cost matrix C = [cij ] is associated
with every arc (i, j), i �= j, where the cost cij can be instantiated based on true
distance, travel time, travel costs or a combination thereof. A homogeneous fleet
of m vehicles, each with capacity Q, is available at the depot. Each customer
i ∈ V for i > 0 is associated with a known non-negative demand qi.

The Capacitated Vehicle Routing Problem is to determine a set of least-cost
vehicle routes such that

(i) each customer vertex i ∈ V , is visited exactly once by exactly one vehicle;
(ii) each vehicle must start and finish the route at the depot, i = 0;
(iii) the sum of demands of each route must not exceed the vehicle capacity Q.

A common way to formulate the CVRP is by using Boolean decision variables
which indicate whether a vehicle travels between a pair of vertices in G. Let xij be
such a Boolean decision variable, which takes the value 0 or 1, with xij = 1 when
arc (i, j) is traveled and xij = 0 otherwise. The CVRP can then be expressed as
the following integer program whose objective is to minimize the total routing
cost [14,15,20]:

(CVRP) min
∑

(i,j)∈A

cijxij (3.1)

subject to
∑

j∈V, j �=i

xij = 1 i = 1, . . . , N (3.2)

∑

i∈V, i�=j

xij = 1 j = 1, . . . , N (3.3)

n∑

j=1

x0j ≤ m, (3.4)

if xij = 1 ⇒ ui + qj = uj (i, j) ∈ A : j �= 0, i �= 0 (3.5)
qi ≤ ui ≤ Q i = 1, . . . , N (3.6)
xij ∈ {0, 1} (i, j) ∈ A (3.7)

Constraints (3.2) and (3.3) impose that every customer node must be visited
by exactly one vehicle and that exactly one vehicle must leave from each node.
Constraint (3.4) limits the number of routes to the size of the fleet, m. In con-
straint (3.5), uj denotes the cumulative vehicle load at node j. The constraint
plays a dual role—it prevents the formation of subtours, i.e., cycling routes that
do not pass through the depot, and together with constraint (3.6), it ensures
that the vehicle capacity is not exceeded. While the model does not make explicit
which stop belongs to which route, this information can be reconstructed from
the active arcs in the solution.

We will consider the case where the exact number of vehicles to use is given,
i.e., constraint (3.4) becomes

∑n
j=1 x0j = m. This is the operational setting in

which the company works, where work is divided among the vehicles and drivers
available on the given day.
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3.2 CVRP with Arc Probabilities

In the subsequent section, we will study how to learn, from historical solu-
tions, a Markov model that represents the following probability distribution:
Pr(next stop = j | current stop = i). That is, it represents the probability of
moving from a current stop to a next stop.

The goal then, is to find the routing X that is most likely, i.e., the set of
routes that maximizes the joint probability over the arcs taken:

max
∏

(i,j)∈X

Pr(next stop = j | current stop = i),

The question is how to efficiently search for the most likely routing among all
the valid routings.

For this, we observe that the first-order Markov model can be represented
as a transition probability matrix T = [tij ], with tij = Pr(next stop = j |
current stop = i). Furthermore, maximizing

∏
(i,j)∈X tij is equivalent to maxi-

mizing the sum of log probabilities: max
∑

(i,j)∈X log(tij).
Formulated with respect to Boolean decision variables xij as in the CVRP

formulation, the goal is to maximize the joint probability:

max
∑

(i,j)∈A

log(tij)xij . (3.8)

Hence, to find the most likely routing, we can solve the CVRP with, as cost
matrix C = [cij ], the transformed transition probability matrix: cij = −log(tij).

As a result, any existing CVRP solver can be used to find the most likely
solution once the transition probability matrix is learned.

4 Learning Transition Probabilities from Data

We now explain how to learn the transition probability matrix from historical
solutions (Sect. 4.1), followed by different ways of using data (Sect. 4.2) and of
weighing the instances (Sect. 4.3). Finally, in Sect. 4.4 we discuss how to combine
a learned probability matrix with a distance-based probability matrix.

4.1 Constructing the Transition Probability Matrix

To compute the probabilities, we assume given a sequence 〈hk〉 of historical
instances as input, e.g., ordered by date. Each hk is a VRP solution over a set
of customers Sk. Note that the Sk can change from instance to instance. Let
Sk = {s1, s2, . . . , sp} be a given set of customers of solution hk. A solution, or
routing plan, hk over Sk is a set of routes {r1, . . . , rm} servicing each customer
in Sk exactly once. Each route rl starts at the depot, serves some number of
customers at most once, and returns to the depot. Using s0 to denote the depot,
rl can then be represented by a sequence 〈s0, sl1, ..., slq, s0〉, where sli ∈ Sk and
all sli are distinct.
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Algorithm 1. Building a transition matrix from historical instances
Input: A sequence of n historical data instances H = 〈h1, . . . , hn〉 sorted such that h1

is the oldest and hn is the most recent instance, a weight wk per data instance, where
the default value is wk = 1 for k = 1, . . . , n, and the Laplace smoothing parameter
α ≥ 0.
1. Extract and gather all the stops visited in H into a set Σ = {s0, s1, . . . , st}, where

stop s0 denotes the depot.
2. For each hk, k = 1, . . . , n, do:

Construct an adjacency matrix Ak
t+1× t+1 = [ak

ij ], where ak
ij = 1 if (si, sj) ∈ hk,

and 0 otherwise.
3. Build the arc transition frequency matrix Ft+1× t+1 with the weights wk and the

adjacency matrices constructed in Step 2:

F =

n∑

k=1

wkA
k. (4.1)

4. Apply the Laplace smoothing technique to get the transition matrix Tt+1× t+1:
For every element tij of T,

tij =
fij + α

Ni + αd
,

where d = t + 1 is the row length (=total number of stops), and Ni =
∑t+1

j=1 fij is
the row sum.

Output: Transition matrix Tt+1× t+1 = [tij ], where

tij = Pr(next stop = sj | current stop = si)

=
fij + α∑t+1

j=1 fij + α(t + 1)
.

Probability Computation. The conditional probability of a vehicle moving to the
next stop sj given its current location si can be computed as follows:

Pr(next stop = sj | current stop = si) =
Pr(next stop = sj , current stop = si)

Pr(current stop = si)
,

with Pr(current stop = si) =
∑

k Pr(next stop = sk, current stop = si).
Empirically, the algorithm counts as fij the number of times (current stop = si)
and (next stop = sj) have occurred together in the historical solutions. We then
have

Pr(next stop = sj | current stop = si) =
fij∑
k fik

. (4.2)

Laplace Smoothing. To account for the fact that the number of samples may
be small, and some fij may be zero, we can smooth the probabilities using the
Laplace smoothing technique [5,11,19]. Laplace smoothing reduces the impact
of data sparseness arising in the process of building the transition matrix. Our
proposed construction method adopts the technique to deal with arcs with zero
probability. As a result of smoothing, these arcs are given a small, non-negative
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probability, thereby eliminating the zeros in the resulting transition matrix. Con-
ceptually, with α as the smoothing parameter (α = 0 corresponds to no smooth-
ing), we add α observations to each event. The probability computation now
becomes:

Pr(next stop = sj | current stop = si) =
fij + α∑
k fik + αd

, (4.3)

with d denoting the number of stops |S|.

Construction Algorithm. Algorithm 1 shows the algorithm for constructing the
probability transition matrix. The dimensions of the matrix, that is, the total
set of unique stops, are determined in Step 1. In Step 2, an adjacency matrix
is constructed for each historical instance. A frequency matrix is constructed in
Step 3 by computing the (weighted) sum of all the adjacency matrices (4.1); by
default, wk = 1 for all instances. Finally, during normalisation in Step 4, Laplace
smoothing is applied if α > 0.

4.2 Evaluation Schemes

In a traditional machine learning setup, the dataset is split into a training set and
a test set. The training set is used for training, and the test set for evaluation.
This is a batch evaluation as all test instances are evaluated in one batch. The
best resulting model is then deployed (and should be periodically updated).

Our data has a temporal aspect to it, namely the routing is performed
every day. Hence, each day one additional training instance becomes available,
allowing us to incrementally grow the data. In this case, we should perform an
incremental evaluation. The incremental evaluation procedure is depicted in
Algorithm 2.

4.3 Weighing Schemes

Training instances are ordered over time, and the set of stops visited can vary
from instance to instance. In order to account for this, Algorithm 1 can weigh
each of the instances differently during construction of the transition probability
matrix (Step 3).

Algorithm 2. Training and testing with an incrementally increasing training
set
Input: H = 〈h1, . . . , hn〉, an ordered sequence of n historical instances.
1. Start from an initial m training instances, e.g., m = �0.75n� for a 75% − 25% split.
2. For j = m, . . . , n − 1 do:

2.1. Build the probability transition matrix Tj on 〈h1, . . . , hj〉 using Algorithm 1.
2.2. Solve CVRP using Tj , by using the log transform of equation (3.8).
2.3. Evaluate the CVRP solution against hj+1.
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We propose three weighing schemes, namely, to uniformly distribute weights,
to distribute weights according to time, and to distribute weights according to
the similarity of the stop sets. Table 1 shows the three schemes and the variants
that we will consider.

As before, we assume that the training instances used during matrix con-
struction are ordered chronologically from old to new as H = 〈h1, . . . , hn〉 and
we need to define a weight wk for each instance hk.

Table 1. An overview of the proposed weighing schemes

Name Weights Squared weights

Uniform (UNIF) wk = 1 —

Time-based (TIME) wk = k/n wk = (k/n)2

Similarity-based (SIMI) wk = J(hk, hn+1) wk = J(hk, hn+1)
2

Uniform Weighing. The first weighing scheme is the default and simply assumes
a uniform weight across all instances:

wk = 1, k = 1, . . . , n. (4.4)

Time-Based Weighing. It is well known that streaming data can have concept
drift [10], that is, the underlying distribution can change over time. To account
for this, we can use a time-based weighing scheme where older instances are
given smaller weights, and newer instances larger ones. Using index k as time
indicator, we can weigh the instances as:

wk =
k

n
, k = 1, . . . , n. (4.5)

This assumes a linearly increasing importance of instances. We can also consider
a squared importance wk = (k/n)2, or an exponential importance, etc.

Similarity-Based Weighing. The stops in each instance typically vary, and the
presence or absence of different stops can lead to different decision behaviors. To
account for this, we consider a weighing scheme that uses the similarity between
the set of stops of the current instance, which is part of the input of the CVRP,
and the set of stops of each historical instance. The goal is to assign larger
weights to training instances that are more similar to the test instance, and
smaller weights if they are less similar.

The similarity of two stop sets can be measured using the Jaccard similar-
ity coefficient. The Jaccard similarity of two sets is defined as the size of the
intersection divided by the size of the union of the two sets:

J(A,B) =
|A ∩ B|
|A ∪ B| (4.6)
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for two non-empty sets A and B. The Jaccard similarity coefficient is always a
value between 0 (no overlapping elements) and 1 (exactly the same elements).

Given test instance hn+1, we consider the following similarity-based weighing
scheme:

wk = J(hk, hn+1), k = 1, . . . , n. (4.7)

To further amplify the importance of similarity, we can also use the squared
Jaccard similarity wk = J(hk, hn+1)2, etc.

4.4 Adding Distance-Based Probabilities

The probability matrix captures well what stops often follow each other. How-
ever, if a new stop location is added, Laplace smoothing will give an equal
probability to all arcs leaving from this new stop. Also in case of rarely visited
stops, the probabilities can be uninformative, and in general there can be equal
conditional probabilities among the candidate next stops given a current stop.

We know that human planners take the number of kilometers into account
when lacking further information. Indeed, this is the basic assumption of the
CVRP. Hence, we wish to be able to bias our system to also take distances into
account. To do this, we will mix the transition probability matrix built from
historical instances with a transition probability matrix based on distances (or
any other cost used in a traditional CVRP formulation).

The goal is to give two stops that have a low cost between them, e.g., are
close to each other, a high probability, and to give stops that have a high cost a
low probability. Hence, we construct a probability matrix where the likelihood
of moving from one stop to the next is inversely proportional to the cost to that
next stop, relative to all candidate next stops:

dij = Prdist(next stop = sj | current stop = si) (4.8)

=
c′
ij∑
k c′

ik

(4.9)

with

c′
ij =

∑
k cik
cij

, (4.10)

where cij is the standard cost between stop i and stop j, and c′
ij is the inverse

of the relative cost, computed in equation (4.10). This is then normalized in
Equation (4.9) to obtain valid transition probabilities.

Combining Transition Probability Matrices. Given transition probability matri-
ces T = [tij ] and D = [dij ], we can take the convex combination as follows:

t′ij = βtij + (1 − β)dij . (4.11)
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Fig. 1. No. of stops by weekday (WD)

Before drift Entire data

WD Train Test Train Test

1 14 5 23 7
2 12 5 21 7
3 11 5 19 7
4 13 5 22 7
5 14 5 22 7
6 14 5 22 7
7 15 5 23 7

Total 93 35 152 49

Fig. 2. Training and test set
sizes after 75% − 25% split

Taking β = 1 corresponds to using only the history-based transition proba-
bilities, while β = 0 will only use distance-based probabilities, with values in
between resulting to a combination of the two probabilities.

Note that this approach places no conditions on how the history-based transi-
tion matrix T = [tij ] is computed, and hence is compatible with Laplace smooth-
ing and weighing during the construction of T.

5 Experiments

Description of the Data. The historical data used in the experiments consist
of daily route plans collected within a span of nine months. The plans were gener-
ated by the route planners and used by the company in their actual operations.
Each data is a numbered instance and the entire data is ranked by time. An
instance contains the set of stops visited by the fleet, with the stop set divided
into sequences corresponding to individual routes.

Data instances are grouped by day-of-week including Saturday and Sunday.
This mimics the operational characteristic of the company. The entire data set is
composed of 201 instances, equivalent to an average of 29 instances per weekday.
The breakdown of the entire data set after the train-test split is shown in Fig.
2. An average of 8.7 vehicles servicing 35.1 stops are used per instance in the
data before drift, and 6.4 vehicles (25.4 stops) for the 73 instances after drift
(see next paragraph).

Data Visualization. Figure 1 shows the number of customers served per week-
day during the entire experimental time period. A concept drift is clearly dis-
cernible starting Week 53, where a change in stop set size occurs. This observa-
tion has prompted us to conduct two separate experiments—one with data from
the entire period, and the other using only data from the period before the drift.
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Fig. 3. Batch evaluation (BE) and incremental evaluation (IE) on UNIF with capacity
(Cap) and without capacity constraints (data from entire period)

Evaluation Methodology. We made a comparison of the prediction accuracy
of the proposed schemes. Performance was evaluated using two evaluation mea-
sures, based on two properties of a VRP solution, namely stops and active arcs.
Route Difference (RD) counts the number of stops that were incorrectly assigned
to a different route. Intuitively, RD may be interpreted as an estimate of how
many moves between routes are necessary when modifying the predicted solu-
tion to match the grouping of stops into routes. To compute route difference, a
pairwise comparison of the routes contained in the predicted and test solution
is made. The pair with the smallest difference in stops is greedily selected with-
out replacement. RD is the total number of stops that were placed differently.
Arc Difference (AD) measures the number of arcs traveled in the actual solution
but not in the predicted solution. AD is calculated by taking the set difference
of the arc sets of the test and predicted solution. Correspondingly, AD gives an
estimate of the total number of modifications needed to correct the solution.

Capacity demand estimates for each stop were provided by the company.
Note, however, that in our approach, route construction is based primarily on
the arc probabilities. This allows for solving the VRP even without capacity
constraints. When evaluating, in order to keep the subtour elimination constraint
(3.5), each qi will be assigned a value of 1 while using the number of stops as
fictive bound on the vehicle capacities, e.g., Q = n.

5.1 Numerical Results

The numerical experiments were performed using Python 3.6.5 and the CPLEX
12.8 solver with the default setting, on a Lenovo ThinkPad X1 Carbon with an
Intel Core i7 processor running at 1.8 GHz with 16 GB RAM. The time limit for
solving the CVRP is set to 600 s. Unless otherwise stated, α = 1 and β = 1 are
used as parameters. Recall from Table 1 that UNIF stands for uniform weighing,
TIME for time-based, and SIMI for similarity-based.

Batch Evaluation and Incremental Evaluation on UNIF with and with-
out Capacity Constraints. The first experiment (Fig. 3) was done with UNIF



Vehicle Routing by Learning from Historical Solutions 65

Fig. 4. Route and arc difference (period before drift)

Fig. 5. Route and arc difference (entire period)

to compare the prediction accuracy of batch evaluation and incremental evalu-
ation with and without the capacity (Cap) demand estimates. The motivation
is to investigate how UNIF will perform even without the capacity constraints.
As a baseline, we included the solution (DIST) obtained by solving the standard
distance-based CVRP. Computation was done on a subset of the weekdays with
data from the entire period. The subset contains 55 historical instances, split
into 41 and 14 for training and testing, respectively.

Results show that DIST is consistently outperformed by the other methods.
Moreover, in all cases batch evaluation (BE) performed worse than incremental
evaluation (IE). This is likely because IE can incrementally use more data.

As for the computation time, DIST often reached the time limit of 600 s
and returned a non-optimal solution, with an average optimality gap of 3.65%.
With all the other schemes, it took only an average of 0.096 s to obtain the
optimal solution. We observed that the learned matrices are much more sparse
(containing more 0 or near-0 values) than the distance matrices.

Remarkably, when using the transition probability matrices, we can even
solve the VRP without capacity constraints and still get meaningful results. This
shows the ability of the method to learn the structure underlying the problem
just from the solutions. In all cases, adding capacity constraints, however, does
slightly improve the results and especially reduces the variance.
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Fig. 6. Route and arc difference for values of Laplace parameter α (entire period)

Fig. 7. Route and arc difference for varying values of β (entire period)

Evaluation of Schemes on Historical Data Set. In the next two experiments
(Figs. 4 and 5), we tested the proposed schemes: UNIF, TIME, TIME2, SIMI,
and SIMI2, with TIME2 and SIMI2 indicating squared weights (see Table 1). As
a consequence of the previous experiment, here we used incremental evaluation
and also included the capacity constraints.

Figure 4 is on data before drift (week 53 in Fig. 1). It shows that all the
proposed schemes gave better estimates than DIST. In all cases, the schemes with
the squared weights (TIME2, SIMI2) performed better than their counterparts
(TIME, SIMI). While using similarity-based weights (SIMI, SIMI2) did not seem
to improve the solutions given by UNIF, time-based weighing (TIME, TIME2)
did. Among all schemes, TIME2 gave the most accurate predictions. Hence, more
recent routings are more relevant for making choices here.

Results on data from the entire period (Fig. 5) exhibit a slightly different
behavior. As before, all the schemes outperformed DIST. In terms of route dif-
ference, there is no significant difference in the results. The route difference values
seem lower than before the drift, but it should be noted that these instances also
involve fewer stops. In terms of arc difference, both TIME and SIMI outper-
formed UNIF. As before, TIME2 and SIMI2 are better than TIME and SIMI,
with TIME2 also giving the most accurate predictions among all schemes.
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Fig. 8. Actual solution Fig. 9. Learned probabilities,
only relevant stops shown

Fig. 10. Predicted sol.

5.2 Parameter Sensitivity

Effects of Varying Laplace Parameter Values. To understand the effect of
varying the Laplace parameter α (Fig. 6), we perform an experiment on a subset
of the weekdays. For simplicity, capacity demands were not taken into account
and TIME2 was selected based on the previous experiments. It is interesting to
note that TIME2 worked well even with no smoothing (α = 0). It can also be
observed that the scheme produced stable results with α within the range [0, 2],
with a slight improvement discernible at α = 2. The accuracy, notably in arc
prediction, appeared to diminish for alpha values greater than 2. In general, we
see that on our data, Laplace smoothing has very little effect.

Effects of Adding Distance-Based Probabilities. We investigate the poten-
tial benefit of combining the learned transition probability matrix with a
distance-based probability matrix. Figure 7 shows the result for varying β on
a subset of the weekdays. TIME2 was again used and no capacity demands were
taken into account. Compared to using the absolute distances (DIST), using only
the distance-based probability matrix leads to worse results. This is not entirely
surprising as the model loses the ability to compare distance trade-offs between
arbitrary arcs, as the probabilities are conditional on a ‘current node’.

When combined with the learned probability matrix, we see that even small
values of β, i.e., more importance given on the distance-based probabilities,
already lead to better results than using pure distances. For values in between 0
and 1 there seems to be little effect, with some improvement in arc difference for
higher values. However, the best result is obtained when only the history-based
probability matrix is used.

5.3 Detailed Example

A visual example of the way the routes are predicted by the transition matrix
can be observed from Figs. 8, 9 and 10. Figure 8 shows the actual solution that
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we wish to reconstruct. Figure 9 shows a visualization of the probability matrix
learned with the UNIF scheme from the previous data of the same weekday.
Darker arcs indicate higher probabilities. The visualization shows a clear struc-
ture, with distinct connections, e.g., to the furthest stops, but also a higher
variability in the denser regions and near the depot. Figure 10 shows our pre-
dicted solution, constructed with the probability matrix of Fig. 9. It captures
key structural parts and makes trade-offs elsewhere to come up with a global
solution, e.g., making a connection from stop 3 to 9. The actual solution, in
comparison, has made a number of distinct choices such as a reversed green tour
and a swap of stops 16 and 17, which are not obvious to predict by looking at
the probability matrix map. However, we see that the routes generally match
and that it would require only a small amount of modifications to the predicted
solution to obtain the actual solution.

6 Concluding Remarks

One of the crucial first steps in solving vehicle routing problems is explicitly
formulating the problem objectives and constraints, as the quality of the solu-
tion depends, to a great extent, on this characterization. Oftentimes in prac-
tice, the optimization of the route plans takes into account not only time and
distance-related factors, but also a multitude of other concerns. Specifying each
sub-objective and constraint may be tedious. Moreover, as we have observed in
practice, computed solutions seldomly guarantee the satisfaction of the route
planners and all involved stakeholders.

We presented an approach to solving the VRP which does not require explicit
problem characterization. Inspired by existing research on the application of
Markov models to individual route prediction, we developed an approach that
learns a probability transition matrix from previous solutions, to predict the
routes for an entire fleet. This learned model can be transformed so that any
CVRP solver can be used to find the most likely routing. We have shown how
the structure of the solution can be learned, resulting in more accurate solutions
than using distances alone. The algorithm performs well even without capac-
ity demands, confirming its ability to learn the solution structure. An added
advantage is that solving is fast, due to the sparsity of the transition matrix.

This paper shows the potential of learning preferences in VRP from historical
solutions. Results on real data have been encouraging, although validation on
other real-life data should also be considered, as other data may have more (or
less) structure. Our approach could be plugged into existing VRP software today,
but as with all predictive techniques there should be human oversight to avoid
unwanted bias.

Future work on the routing side will involve applications to richer VRP,
e.g., problems involving time windows, multiple deliveries, etc. On the learning
side, the use of higher-order Markov models or other probability estimation
techniques will be investigated. Also, using separate learned models per vehicle
or per driver is worth investigating. Finally, extending the technique so that
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the user can be actively queried, and learned from, during construction is an
interesting direction, e.g., to further reduce the amount of user modifications
needed on the predicted solutions.
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Abstract. Counting the number of perfect matchings in bipartite
graphs, or equivalently computing the permanent of 0-1 matrices, is an
important combinatorial problem that has been extensively studied by
theoreticians and practitioners alike. The permanent is #P-Complete;
hence it is unlikely that a polynomial-time algorithm exists for the prob-
lem. Researchers have therefore focused on finding tractable subclasses
of matrices for permanent computation. One such subclass that has
received much attention is that of sparse matrices i.e. matrices with few
entries set to 1, the rest being 0. For this subclass, improved theoretical
upper bounds and practically efficient algorithms have been developed.
In this paper, we ask whether it is possible to go beyond sparse matrices
in our quest for developing scalable techniques for the permanent, and
answer this question affirmatively. Our key insight is to represent per-
manent computation symbolically using Algebraic Decision Diagrams
(ADDs). ADD-based techniques naturally use dynamic programming,
and hence avoid redundant computation through memoization. This per-
mits exploiting the hidden structure in a large class of matrices that
have so far remained beyond the reach of permanent computation tech-
niques. The availability of sophisticated libraries implementing ADDs
also makes the task of engineering practical solutions relatively straight-
forward. While a complete characterization of matrices admitting a com-
pact ADD representation remains open, we provide strong experimental
evidence of the effectiveness of our approach for computing the perma-
nent, not just for sparse matrices, but also for dense matrices and for
matrices with “similar” rows.

1 Introduction

Constrained counting lies at the heart of several important problems in diverse
areas such as performing Bayesian inference [45], measuring resilience of elec-
trical networks [20], counting Kekule structures in chemistry [23], computing
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the partition function of monomer-dimer systems [26], and the like. Many of
these problems reduce to counting problems on graphs. For instance, learning
probabilistic models from data reduces to counting the number of topological
sorts of directed acyclic graphs [56], while computing the partition function of a
monomer-dimer system reduces to computing the number of perfect matchings
of an appropriately defined bipartite graph [26]. In this paper, we focus on the
last class of problems – that of counting perfect matchings in bipartite graphs. It
is well known that this problem is equivalent to computing the permanent of the
0-1 bi-adjacency matrix of the bipartite graph. We refer to these two problems
interchangeably in the remainder of the paper.

Given an n×n matrix A with real-valued entries, the permanent of A is given
by perm(A) =

∑
σ∈Sn

∏n
i=1 ai,σ(i), where Sn denotes the symmetric group of

all permutations of 1, . . . n. This expression is almost identical to that for the
determinant of A; the only difference is that the determinant includes the sign
of the permutation in the inner product. Despite the striking resemblance of
the two expressions, the complexities of computing the permanent and deter-
minant are vastly different. While the determinant can be computed in time
O(n2.4), Valiant [54] showed that computing the permanent of a 0-1 matrix is
#P-Complete, making a polynomial-time algorithm unlikely [53]. Further evi-
dence of the hardness of computing the permanent was provided by Cai, Pavan
and Sivakumar [11], who showed that the permanent is also hard to compute
on average. Dell et al. [19] showed that there can be no algorithm with sub-
exponential time complexity, assuming a weak version of the Exponential Time
Hypothesis [3] holds.

The determinant has a nice geometric interpretation: it is the oriented vol-
ume of the parallelepiped spanned by the rows of the matrix. The permanent,
however, has no simple geometric interpretation. Yet, it finds applications in a
wide range of areas. In chemistry, the permanent and the permanental polyno-
mial of the adjacency matrices of fullerenes [32] have attracted much attention
over the years [12,13,34]. In constraint programming, solutions to All-Different
constraints can be expressed as perfect matchings in a bipartite graph [43]. An
estimate of the number of such solutions can be used as a branching heuristic to
guide search [42,60]. In physics, permanents can be used to measure quantum
entanglement [58] and to compute the partition functions of monomer-dimer
systems [26].

Since computing the permanent is hard in general, researchers have attempted
to find efficient solutions for either approximate versions of the problem, or for
restricted classes of inputs. In this paper, we restrict our attention to exact algo-
rithms for computing the permanent. The asymptotically fastest known exact
algorithm for general n × n matrices is Nijenhuis and Wilf’s version of Ryser’s
algorithm [38,46], which runs in time Θ(n · 2n) for all matrices of size n. For
matrices with bounded treewidth or clique-width [15,44], Courcelle, Makowsky
and Rotics [16] showed that the permanent can be computed in time linear in the
size of the matrix, i.e., computing the permanent is Fixed Parameter Tractable
(FPT). A large body of work is devoted to developing fast algorithms for sparse
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matrices, i.e. matrices with only a few entries set to non-zero values [28,34,48,59]
in each row. Note that the problem remains #P-Complete even when the input is
restricted to matrices with exactly three 1’s per row and column [9].

An interesting question to ask is whether we can go beyond sparse matrices
in our quest for practically efficient algorithms for the permanent. For example,
can we hope for practically efficient algorithms for computing the permanent of
dense matrices, i.e., matrices with almost all entries non-zero? Can we expect
efficiency when the rows of the matrix are “similar”, i.e. each row has only a few
elements different from any other row (sparse and dense matrices being special
cases)? Existing results do not seem to throw much light on these questions. For
instance, while certain non-sparse matrices indeed have bounded clique-width,
the aforementioned result of Courcelle et al. [14,16] does not yield practically
efficient algorithms as the constants involved are enormous [24]. The hardness of
non-sparse instances is underscored by the fact that SAT-based model counters
do not scale well on these, despite the fact that years of research and careful
engineering have enabled these tools to scale extremely well on a diverse array
of problems. We experimented with a variety of CNF-encodings of the permanent
on state-of-the-art counters like D4 [33]. Strikingly, no combination of tool and
encoding was able to scale to matrices even half the size of those solved by
Ryser’s approach in the same time, despite the fact that Ryser’s approach has
exponential complexity even in the best case.

In this paper, we show that practically efficient algorithms for the permanent
can indeed be designed for large non-sparse matrices if the matrix is represented
compactly and manipulated efficiently using a special class of data structures.
Specifically, we propose using Algebraic Decision Diagrams [4] (ADDs) to repre-
sent matrices, and design a version of Ryser’s algorithm to work on this symbolic
representation of matrices. This effectively gives us a symbolic version of Ryser’s
algorithm, as opposed to existing implementations that use an explicit represen-
tation of the matrix. ADDs have been studied extensively in the context of formal
verification, and sophisticated libraries are available for compact representation
of ADDs and efficient implementation of ADD operations [50,55]. The literature
also contains compelling evidence that reasoning based on ADDs and variants
scales to large instances of a diverse range of problems in practice, cf. [4,21].
Our use of ADDs in Ryser’s algorithm leverages this progress for computing the
permanent. Significantly, there are several sub-classes of matrices that admit
compact representations using ADDs, and our algorithm works well for all these
classes. Our empirical study provides evidence for the first time that the frontier
of practically efficient permanent computation can be pushed well beyond the
class of sparse matrices, to the classes of dense matrices and, more generally, to
matrices with “similar” rows. Coupled with a technique known as early abstrac-
tion, ADDs are able to handle sparse instances as well. In summary, the symbolic
approach to permanent computation shows promise for both sparse and dense
classes of matrices, which are special cases of a notion of row-similarity.
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The rest of the paper is organized as follows: in Sect. 2 we introduce ADDs
and other concepts that we will use in this paper. We discuss related work in
Sect. 3 and present our algorithm and analyze it in Sect. 4. Our empirical study
is presented in Sects. 5 and 6 and we conclude in Sect. 7.

2 Preliminaries

We denote by A = (aij) an n×n 0-1 matrix, which can also be interpreted as the
bi-adjacency matrix of a bipartite graph GA = (U ∪V,E) with an edge between
vertex i ∈ U and j ∈ V iff aij = 1. We will denote the ith row of A by ri. A
perfect matching in GA is a subset M ⊆ E, such that for all v ∈ (U ∪V ), exactly
one edge e ∈ M is incident on v. We denote by perm(A) the permanent of A,
and by #PM(GA ), the number of perfect matchings in G. A well known fact
is that perm(A) = #PM(GA ), and we will use these concepts interchangeably
when clear from context.

2.1 Algebraic Decision Diagrams

Let X be a set of Boolean-valued variables. An Algebraic Decision Diagram
(ADD) is a data structure used to compactly represent a function of the form f :
2X → R as a Directed Acyclic Graph (DAG). ADDs were originally proposed as
a generalization of Binary Decision Diagrams (BDDs), which can only represent
functions of the form g : 2X → {0, 1}. Formally, an ADD is a 4-tuple (X,T, π,G)
where X is a set of Boolean variables, the finite set T ⊂ R is called the carrier
set, π : X → N is the diagram variable order, and G is a rooted directed acyclic
graph satisfying the following three properties:

1. Every terminal node of G is labeled with an element of T .
2. Every non-terminal node of G is labeled with an element of X and has two

outgoing edges labeled 0 and 1.
3. For every path in G, the labels of visited non-terminal nodes must occur in

increasing order under π.

We use lower case letters f, g, . . . to denote both functions from Booleans to reals
as well as the ADDs representing them. Many operations on such functions can
be performed in time polynomial in the size of their ADDs. We list some such
operations that will be used in our discussion.

– Product : The product of two ADDs representing functions f : 2X → R and
g : 2Y → R is an ADD representing the function f · g : 2X∪Y → R, where
f · g(τ) is defined as f(τ ∩ X) · g(τ ∩ Y ) for every τ ∈ 2X∪Y ,

– Sum: Defined in a way similar to the product.
– If-Then-Else (ITE): This is a ternary operation that takes as inputs a BDD

f and two ADDs g and h. ITE(f, g, h) represents the function f · g + ¬f · h,
and the corresponding ADD is obtained by substituting g for the leaf’1’ of f
and h for the leaf ’0’, and simplifying the resulting structure.
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– Additive Quantification: The existential quantification operation for Boolean-
valued functions can be extended to real-valued functions by replacing dis-
junction with addition as follows. The additive quantification of f : 2X → R

is denoted as ∃x.f : 2X\{x} → R and for τ ∈ 2X\{x}, we have ∃x.f(τ) =
f(τ) + f(τ ∪ {x}).

ADDs share many properties with BDDs. For example, there is a unique minimal
ADD for a given variable order π, called the canonical ADD, and minimization
can be performed in polynomial time. Similar to BDDs, the variable order can
significantly affect the size of the ADD. Hence heuristics for finding good vari-
able orders for BDDs carry over to ADDs as well. ADDs typically have lower
recombination efficiency, i.e. number of shared nodes, vis-a-vis BDDs. Neverthe-
less, sharing or recombination of isomorphic sub-graphs in an ADD is known to
provide significant practical advantages in representing matrices, vis-a-vis other
competing data structures. The reader is referred to [4] for a nice introduction
to ADDs and their applications.

2.2 Ryser’s Formula

The permanent of A can be calculated by the principle of inclusion-exclusion
using Ryser’s formula: perm(A) = (−1)n

∑
S⊆[n](−1)|S| ∏n

i=1

∑
j∈S aij . Algo-

rithms implementing Ryser’s formula on an explicit representation of an arbi-
trary matrix A (not necessarily sparse) must consider all 2n subsets of [n]. As a
consequence, such algorithms have at least exponential complexity. Our experi-
ments show that even the best known existing algorithm implementing Ryser’s
formula for arbitrary matrices [38], which iterates over the subsets of [n] in Gray-
code sequence, consistently times out after 1800 s on a state-of-the-art computing
platform when computing the permanent of n × n matrices, with n ≥ 35.

3 Related Work

Valiant showed that computing the permanent is #P -complete [54]. Subse-
quently, researchers have considered restricted sub-classes of inputs in the quest
for efficient algorithms for computing the permanent, both from theoretical and
practical points of view. We highlight some of the important milestones achieved
in this direction.

A seminal result is the Fisher-Temperly-Kastelyn algorithm [29,52], which
computes the number of perfect matchings in planar graphs in PTIME. This
result was subsequently extended to many other graph classes (c.f. [40]). Fol-
lowing the work of Courcelle et al. a number of different width parameters have
been proposed, culminating in the definition of ps-width [47], which is considered
to be the most general notion of width [8]. Nevertheless, as with clique-width,
it is not clear whether it lends itself to practically efficient algorithms. Bax and
Franklin [5] gave a Las Vegas algorithm with better expected time complexity
than Ryser’s approach, but requiring O(2n/2) space.
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For matrices with at most C · n zeros, Servedio and Wan [48] presented
a (2 − ε)n-time and O(n) space algorithm where ε depends on C. Izumi and
Wadayama [28] gave an algorithm that runs in time O∗(2(1−1/(Δ log Δ))n), where
Δ is the average degree of a vertex. On the practical side, in a series of papers,
Liang, Bai and their co-authors [34,35,59] developed algorithms optimized for
computing the permanent of the adjacency matrices of fullerenes, which are
3-regular graphs.

In recent years, practical techniques for propositional model counting
(#SAT) have come of age. State-of-the-art exact model counters like DSharp [37]
and D4 [33] also incorporate techniques from knowledge compilation. A straight-
forward reduction of the permanent to #SAT uses a Boolean variable xij for
each 1 in row i and column j of the input matrix A, and imposes Exact-One
constraints on the variables in each row and column. This gives the formula
Fperm(A) =

∧
i∈[n] ExactOne({xij : aij = 1}) ∧ ∧

j∈[n] ExactOne({xij : aij =
1}). Each solution to Fperm(A) is a perfect matching in the underlying graph,
and so the number of solutions is exactly the permanent of the matrix. A num-
ber of different encodings can be used for translating Exact-One constraints to
Conjunctive Normal Form (see Sect. 5.1). We perform extensive comparisons of
our tool with D4 and DSharp with six such encodings.

4 Representing Ryser’s Formula Symbolically

As noted in Sect. 2, an explicit implementation of Ryser’s formula iterates over
all 2n subsets of columns and its complexity is in Θ(n · 2n). Therefore, any such
implementation takes exponential time even in the best case. A natural question
to ask is whether we can do better through a careful selection of subsets over
which to iterate. This principle was used for the case of sparse matrices by
Servedio and Wan [48]. Their idea was to avoid those subsets for which the row-
sum represented by the innermost summation in Ryser’s formula, is zero for at
least one row, since those terms do not contribute to the outer sum in Ryser’s
formula. Unfortunately, this approach does not help for non-sparse matrices, as
very few subsets of columns (if any) will yield a zero row-sum.

It is interesting to ask if we can exploit similarity of rows (instead of sparsity)
to our advantage. Consider the ideal case of an n×n matrix with identical rows,
where each row has k (≤ n) 1s. For any given subset of columns, the row-
sum is clearly the same for all rows, and hence the product of all row-sums is
simply the nth power of the row-sum of one row. Furthermore, there are only
k + 1 distinct values (0 through k) of the row-sum, depending on which subset
of columns is selected. The number of r-sized column subsets that yield row-
sum j is clearly

(
k
j

) · (
n−k
r−j

)
, for 0 ≤ j ≤ k and j ≤ r ≤ n − k + j. Thus,

we can directly compute the permanent of the matrix via Ryser’s formula as
perm(A) = (−1)n

∑k
j=0

∑n−k+j
r=j (−1)r

(
k
j

) · (n−k
r−j

) · jn. This equation has a more
compact representation than the explicit implementation of Ryser’s formula,
since the outer summation is over (k + 1).(n − k + 1) terms instead of 2n terms.
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Drawing motivation from the above example, we propose using memoization
to simplify the permanent computation of matrices with similar rows. Specifi-
cally, if we compute and store the row-sums for a subset S1 ⊂ [n] of columns,
then we can potentially reuse this information when computing the row-sums for
subsets S2 ⊃ S1. We expect storage requirements to be low when the rows are
similar, as the partial sums over identical parts of the rows will have a compact
representation, as shown above.

While we can attempt to hand-craft a concrete algorithm using this idea,
it turns out that ADDs fit the bill perfectly. We introduce Boolean variables
xj for each column 1 ≤ j ≤ n in the matrix. We can represent the summand
(−1)|S| ∏n

i=1

∑
j∈S aij in Ryser’s formula as a function fRyser : 2X → R where

for a subset of columns τ ∈ 2X , we have fRyser(τ) = (−1)|τ | ∏n
i=1

∑
j∈τ aij .

The outer sum in Ryser’s formula is then simply the Additive Quantification
of fRyser over all variables in X. The permanent can thus be denoted by the
following equation:

perm(A) = (−1)n . ∃x1, x2, . . . xn.(fRyser) (1)

We can construct an ADD for fRyser incrementally as follows:

– Step 1: For each row ri in the matrix, construct the Row-Sum ADD fri

RS such
that fri

RS(τ) =
∑

j:aij=1 1τ (xj), where 1τ (xj) is the indicator function taking
the value 1 if xj ∈ τ , and zero otherwise. This ADD can be constructed by
using the sum operation on the variables xj corresponding to the 1 entries in
row ri.

– Step 2: Construct the Row-Sum-Product ADD fRSP =
∏n

i=1 fri

RS by apply-
ing the product operation on all the Row-Sum ADDs.

(a) (b) (c)

Fig. 1. (a) fRS , (b) fRSP and (c) fRyser for a 4 × 4 matrix of all 1s

– Step 3: Construct the Parity ADD fPAR = ITE(
⊕n

j=1 xj ,−1,+1), where
⊕

represents exclusive-or. This ADD represents the (−1)|S| term in Ryser’s
formula.

– Step 4: Construct fRyser = fRSP .fPAR using the product operation.
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Finally, we can additively quantify out all variables in fRyser and multiply
the result by (−1)n to get the permanent, as given by Eq. 1.

The size of the ADD fRSP will be the smallest when the ADDs fri

RS are
exactly the same for all rows ri, i.e. when all rows of the matrix are identical. In
this case, the ADDs fri

RS and fRSP will be isomorphic; the values at the leaves
of fRSP will simply be the nth power of the values at the corresponding leaves of
fri

RS . An example illustrating this for a 4 × 4 matrix of all 1s is shown in Fig. 1.
Each level of the ADDs in this figure corresponds to a variable (shown on the
left) for a column of the matrix. A solid edge represents the ‘true’ branch while
a dotted edge represents the ‘false’ branch. Observe that sharing of isomorphic
subgraphs allows each of these ADDs to have 10 internal nodes and 5 leaves, as
opposed to 15 internal nodes and 16 leaves that would be needed for a complete
binary tree based representation.

The ADD representation is thus expected to be compact when the rows are
“similar”. Dense matrices can be thought of as a special case: starting with a
matrix of all 1s (which clearly has all rows identical), we change a few 1s to 0s.
The same idea can be applied to sparse matrices as well: starting with a matrix
of all 0s (once again, identical rows), we change a few 0s to 1s. The case of very
sparse matrices is not interesting, however, as the permanent (or equivalently,
count of perfect matchings in the corresponding bipartite graph) is small and
can be computed by naive enumeration. Interestingly, our experiments show that
as we reduce the sparsity of the input matrix, constructing fRSP and fRyser in
a monolithic fashion as discussed above fails to scale, since the sizes of ADDs
increase very sharply. Therefore we need additional machinery.

First, we rewrite Eq. 1 in terms of the intermediate ADDs as:

perm(A) = (−1)n . ∃x1, x2, . . . xn.

(

fPAR ·
n∏

i=1

fri

RS

)

(2)

We then employ the principle of early abstraction to compute fRyser incre-
mentally. Note that early abstraction has been used successfully in the past in
the context of SAT solving [41], and recently for weighted model counting using
ADDs in a technique called ADDMC [1]. The formal statement of the principle
of early abstraction is given in the following theorem.

Theorem 1. [1] Let X and Y be sets of variables and f : 2X → R, g : 2Y → R.
For all x ∈ X \ Y , we have ∃x(f · g) = (∃x(f)) · g

Since the product operator is associative and additive quantification is com-
mutative, we can rearrange the terms of Eq. 2 in order to apply early abstraction.
This idea is implemented in Algorithm RysersADD, which is motivated by the
weighted model counting algorithm in [1].

Algorithm RysersADD takes as input a 0–1 matrix A, a diagram variable
order π and a cluster rank-order η. η is an ordering of variables which is used
to heuristically partition rows of A into clusters using a function clusterRank,
where all rows in a cluster get the same rank. Intuitively, rows that are almost
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Algorithm 1. RysersADD(A, π, η)
1: m ← maxx∈X η(x);
2: for i = m, m − 1, . . . , 1 do
3: κi ← {fr

RS : r is a row in A and clusterRank(r, η) = i};

4: fRyser ← fPAR; � fPAR and each fr
RS are constructed using the diagram variable

order π
5: for i = 1, 2, . . . , m do
6: if κi �= ∅ then
7: for g ∈ κi do
8: fRyser ← fRyser · g;

9: for x ∈ V ars(fRyser) do
10: if x �∈ (V ars(κi+1) ∪ . . . ∪ V ars(κm)) then
11: fRyser ← ∃x(fRyser)

12: return (−1)n × fRyser(∅)

identical are placed in the same cluster, while those that differ significantly are
placed in different clusters. Furthermore, the clusters are ordered such that there
are non-zero columns in cluster i that are absent in the set of non-zero columns
in clusters with rank > i. As we will soon see, this facilitates keeping the sizes
of ADDs under control by applying early abstraction.

Algorithm RysersADD proceeds by first partitioning the Row-Sum ADDs of
the rows A into clusters according to their cluster rank in line 3. Each Row-
Sum ADD is constructed according to the diagram variable order π. The ADD
fRyser is constructed incrementally, starting with the Parity ADD in line 4, and
multiplying the Row-Sum ADDs in each cluster κi in the loop at line 7. However,
unlike the monolithic approach, early abstraction is carried out within the loop
at line 9. Finally, when the execution reaches line 12, all variables representing
columns of the input matrix have been abstracted out. Therefore, fRyser is an
ADD with a single leaf node that contains the (possibly negative) value of the
permanent. Following Eq. 2, the algorithm returns the product of (−1)n and
fRsyer(∅).

The choice of the function clusterRank and the cluster rank-order η sig-
nificantly affect the performance of the algorithm. A number of heuristics for
determining clusterRank and η have been proposed in literature, such as Bucket
Elimination [18], and Bouquet’s Method [7] for cluster ranking, and MCS [51],
LexP [31] and LexM [31] for variable ordering. Further details and a rigorous
comparison of these heuristics are presented in [1]. Note that if we assign the
same cluster rank to all rows of the input matrix, Algorithm RysersADD reduces
to one that constructs all ADDs monolithically, and does not benefit from early
abstraction.

4.1 Implementation Details

We implemented Algorithm 1 using the library Sylvan [55] since unlike
CUDD [50], Sylvan supports arbitrary precision arithmetic – an essential feature
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to avoid overflows when the permanent has a large value. Sylvan supports par-
allelization of ADD operations in a multi-core environment. In order to leverage
this capability, we created a parallel version of RysersADD that differs from the
sequential version only in that it uses the parallel implementation of ADD oper-
ations natively provided by Sylvan. Note that this doesn’t require any change to
Algorithm RysersADD, except in the call to Sylvan functions. While other non-
ADD-based approaches to computing the permanent can be parallelized as well,
we emphasize that it is a non-trivial task in general, unlike using Sylvan. We
refer to our sequential and parallel implementations for permanent computation
as RysersADD and RysersADD-P respectively, in the remainder of the discussion.
We implemented our algorithm in C++, compiled under GCC v6.4 with the
O3 flag. We measured the wall-times for both algorithms. Sylvan also supports
arbitrary precision floating point computation, which makes it easy to extend
RysersADD for computing permanent of real-valued matrices. However, we leave
a detailed investigation of this for future work.

5 Experimental Methodology

The objective of our empirical study was to evaluate RysersADD and
RysersADD-P on randomly generated instances (as done in [35]) and publicly
available structured instances (as done in [34,59]) of 0-1 matrices.

5.1 Algorithm Suite

As noted in Sect. 3, a number of different algorithms have been reported in the
literature for computing the permanent of sparse matrices. Given resource con-
straints, it is infeasible to include all of these in our experimental comparisons.
This is further complicated by the fact that many of these algorithms appear not
to have been implemented (eg: [28,48]), or the code has not been made publicly
accessible (eg: [34,59]). A fair comparison would require careful consideration of
several parameters like usage of libraries, language of implementation, suitability
of hardware etc. We had to arrive at an informed choice of algorithms, which we
list below along with our rationale:

– RysersADD and RysersADD-P: For the dense and similar rows cases, we use
the monolithic approach as it is sufficient to demonstrate the scalability of
our ADD-based approach. For sparse instances, we employ Bouquet’s Method
(List) [7] clustering heuristic along with MCS cluster rank-order [51] and we
keep the diagram variable order the same as the indices of columns in the
input matrix (see [1] for details about the heuristics). We arrived at these
choices through preliminary experiments. We leave a detailed comparison of
all combinations for future work.

– Explicit Ryser’s Algorithm: We implemented Nijenhuis and Wilf’s version [38]
of Ryser’s formula using Algorithm H from [30] for generating the Gray code
sequence. Our implementation, running on a state-of-the-art computing plat-
form (see Sect. 5.2), is able to compute the permanent of all matrices with
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n ≤ 25 in under 5 s. For n = 30, the time shoots up to approximately 460 s
and for n ≥ 34, the time taken exceeds 1800 s (time out for our experiments).
Since the performance of explicit Ryser’s algorithm depends only on the size
of the matrix, and is unaffected by its structure, sparsity or row-similarity,
this represents a complete characterization of the performance of the explicit
Ryser’s algorithm. Hence, we do not include it in our plots.

– Propositional Model Counters: Model counters that employ techniques from
SAT-solving as well as knowledge compilation, have been shown to scale
extremely well on large CNF formulas from diverse domains. Years of care-
ful engineering have resulted in counters that can often outperform domain-
specific approaches. We used two state-of-the-art exact model counters, viz.
D4 [33] and DSharp [37], for our experiments. We experimented with 6 differ-
ent encodings for At-Most-One constraints: (1) Pairwise [6], (2) Bitwise [6],
(3) Sequential Counter [49], (4) Ladder [2,22], (5) Modulo Totalizer [39] and
(6) Iterative Totalizer [36]. We also experimented with ADDMC, an ADD-
based model counter [1]. However, it failed to scale beyond matrices of size
25; ergo we do not include it in our study.

We were unable to include the parallel #SAT counter countAtom [10] in our
experiments, owing to difficulties in setting it up on our compute set-up. How-
ever, we could run countAtom on a slightly different set-up with 8 cores instead
of 12, and 16 GB memory instead of 48 on a few sampled dense and similar-
row matrix instances. Our experiments showed that countAtom timed out on all
these cases. We leave a more thorough and scientific comparison with countAtom
for future work.

5.2 Experimental Setup

Each experiment (sequential or parallel) had exclusive access to a Westemere
node with 12 processor cores running at 2.83 GHz with 48 GB of RAM. We
capped memory usage at 42 GB for all tools. We implemented explicit Ryser’s
algorithm in C++, compiled with GCC v6.4 with O3 flag. The RysersADD and
RysersADD-P algorithms were implemented as in Sect. 4.1. RysersADD-P had
access to all 12 cores for parallel computation. We used the python library
PySAT [27] for encoding matrices into CNF. We set the timeout to 1800 s for all
our experiments. For purposes of reporting, we treat a memory out as equivalent
to a time out.

5.3 Benchmarks

The parameters used for generating random instances are summarized in Table 1.
We do not include matrices with n < 30 since the explicit Ryser’s algorithm
suffices (and often performs the best) for such matrices. The upper bound for n
was chosen such that the algorithms in our suite either timed out or came close
to timing out. For each combination of parameters, random matrix instances
were sampled as follows:
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Table 1. Parameters used for generating random matrices

Experiment Matrix
size n

Cf , where Cf · n
matrix entries
flipped

Starting
matrix row
density ρ

#Instances Total
benchmarks

Dense 30, 40,
50, 60,
70

1, 1.1, 1.2, 1.3,
1.4

1 20 500

Sparse 30, 40,
50, 60,
70

3.9, 4.3, 4.7, 5.1,
5.5

0 20 500

Similar 40, 50,
60, 70,
80

1, 1.1, 1.2, 1.3,
1.4

0.7, 0.8, 0.9 15 1125

1. We started with an n×n matrix, where the first row had ρ ·n 1s at randomly
chosen column positions, and all other rows were copies of the first row.

2. Cf ·n randomly chosen entries in the starting matrix are flipped i.e. 0 flipped
to 1 and vice versa.

For the dense case, we start with a matrix of all 1s while for the sparse case,
we start with a matrix of all 0s, and used intermediate row density values for
the similar-rows case. We chose higher values for Cf in the sparse case because
for low values, the bipartite graph corresponding to the generated matrix had
very few perfect matchings (if any), and these could be simply counted by enu-
meration. We generated a total of 2125 benchmarks covering a broad range of
parameters. For all generated instances, we ensured that there was at least one
perfect matching, since the case with zero perfect matchings can be easily solved
in polynomial time by algorithms like Hopcroft-Karp [25]. In order to avoid
spending inordinately large time on failed experiments, if an algorithm timed
out on all generated random instances of a particular size, we also report a time
out for that algorithm on all larger instances of that class of matrices. We also
double-check this by conducting experiments with the same algorithm on a few
randomly chosen larger instances.

The SuiteSparse Matrix Collection [17] is a well known repository of struc-
tured sparse matrices that arise from practical applications. We found 26 graphs
in this suite with vertex count between 30 and 100, of which 18 had at least
one perfect matching. Note that these graphs are not necessarily bipartite; how-
ever, their adjacency matrices can be used as benchmarks for computing the
permanent. A similar approach was employed in [57] as well.

Fullerenes are carbon molecules whose adjacency matrices have been used
extensively by Liang et al. [34,57,59] for comparing tools for the permanent. We
were able to find the adjacency matrices of C60 and C100, and have used these
in our experiments.
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6 Results

We first study the variation of running time of RysersADD with the size of
ADDs involved. Then we compare the running times of various algorithms on
sparse, dense and similar-row matrices, as well as on instances from SuiteSparse
Matrix Collection and on adjacency matrices of fullerenes C60 and C100. The
total computational effort of our experiments exceeds 2500 h of wall clock time
on dedicated compute nodes.

Fig. 2. Comparison of ADD Size vs. Time taken for a subset of random benchmarks

6.1 ADD Size Vs Time Taken by RysersADD

In order to validate the hypothesis that the size of the ADD representation
is a crucial determining factor of the performance of RysersADD, we present 3
scatter-plots (Fig. 2) for a subset of 100 instances, of each of the dense, sparse
and similar-rows cases. In each case, the 100 instances cover the entire range of
Cf and n used in Table 1, and we plot times only for instances that didn’t time
out. The plots show that there is very strong correlation between the number of
nodes in the ADDs and the time taken for computing the permanent, supporting
our hypothesis.

6.2 Performance on Dense Matrices

We plot the median running time of RysersADD and RysersADD-P against the
matrix size n for dense matrices with Cf ∈ {1, 1.1, 1.2, 1.3} in Fig. 3. We only
show the running times of RysersADD and RysersADD-P, since D4 and DSharp
were unable to solve any instance of size 30 for all 6 encodings. We observe that
the running time of both the ADD-based algorithms increases with Cf . This
trend continues for Cf = 1.4, which we omit for lack of space. RysersADD-P is
noticeably faster than RysersADD, indicating that the native parallelism provided
by Sylvan is indeed effective.
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Fig. 3. Performance on Dense Matrices. D4, DSharp (not shown) timeout on all
instances

Fig. 4. Performance on Sparse Matrices

6.3 Performance on Sparse Matrices

Fig. 4 depicts the median running times of the algorithms for sparse matrices with
Cf ∈ {3.9, 4.3, 4.7, 5.1}. We plot the running time of the ADD-based approaches
with early abstraction (see Sect. 5.1). Monolithic variants (not shown) time out
on all instances with n ≥ 40. For D4 and DSharp, we plot the running times
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only for Pairwise encoding of At-Most-One constraints, since our preliminary
experiments showed that it substantially outperformed other encodings. We see
that D4 is the fastest when sparsity is high i.e. for Cf ≤ 4.3, but for Cf ≥ 4.7
the ADD-based methods are the best performers. DSharp is outperformed by the
remaining 3 algorithms in general.

Fig. 5. Performance on similar-rows matrices. D4, DSharp (not shown) timeout on all
instances.

6.4 Performance on Similar-Row Matrices

Figure 5 shows plots of the median running time on similar-row matrices with
Cf = {1, 1.1, 1.2, 1.3}. We only present the case when ρ = 0.8, since the plots
are similar when ρ ∈ {0.7, 0.9}. As in the case of dense matrices, D4 and DSharp
were unable to solve any instance of size 40, and hence we only show plots for
RysersADD and RysersADD-P. The performance of both tools is markedly better
than in the case of dense matrices, and they scale to matrices of size 80 within
the 1800 s timeout.

6.5 Performance on SuiteSparse Matrix Collection

We report the performance of algorithms RysersADD, RysersADD-P, D4 and
DSharp on 13 representative graphs from the SuiteSparse Matrix Collection in
Fig. 6. Except for the first 4 instances, which can be solved in under 5 s by
all algorithms, we find that D4 is the fastest in general, while the ADD-based
algorithms outperform DSharp. Notably, on the instance “can 61”, both D4 and
DSharp time out while RysersADD and RysersADD-P solve it comfortably within
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Fig. 6. Performance comparison on structured matrices

the alloted time. We note that the instance “can 61” has roughly 9n 1s, while
D4 is the best performer on instances where the count of 1s in the matrix lies
between 4n and 6n.

Table 2. Running Times on the fullerene C60. EA: Early Abstraction Mono: Monolithic

Tool D4 DSharp RysersADD RysersADD-P

Encoding/Mode 1 2 3 4 5 6 1 2 3 4 5 6 EA Mono EA Mono

Time (sec) 94.8 150.5 150.6 136 158 156 TimeOut 96.4 TimeOut 57.1 TimeOut

6.6 Performance on Fullerene Adjacency Matrices

We compared the performance of the algorithms on the adjacency matrices of
the fullerenes C60 and C100. All the algorithms timed out on C100. The results
for C60 are shown in Table 2. The columns under D4 and DSharp correspond to
6 different encodings of At-Most-One constraints (see Sect. 5.1). It can be seen
that RysersADD-P performs the best on this class of matrices, followed by D4.
The utility of early abstraction is clearly evident, as the monolithic approach
times out in both cases.

Discussion: Our experiments show the effectiveness of the symbolic approach on
dense and similar-rows matrices, where neither D4 nor DSharp are able to solve
even a single instance. Even for sparse matrices, we see that decreasing sparsity
has lesser effect on the performance of ADD-based approaches as compared to
D4. This trend is confirmed by “can 61” in the SuiteSparse Matrix Collection
as well, where despite the density of 1s being 9n, RysersADD and RysersADD-P
finish well within timeout, unlike D4. In the case of fullerenes, we note that the
algorithm in [34] solved C60 in 355 s while the one in [59] took 5 s, which are
in the vicinity of the times reported in Table 2. While this is not an apples-to-
apples comparison owing to differences in the computing platform, it indicates
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that the performance of general-purpose algorithms like RysersADD and D4 can
be comparable to that of application-specific algorithms.

7 Conclusion

In this work we introduced a symbolic algorithm called RysersADD for perma-
nent computation based on augmenting Ryser’s formula with Algebraic Decision
Diagrams. We demonstrated, through rigorous experimental evaluation, the scal-
ability of RysersADD on both dense and similar-rows matrices, where existing
approaches fail. Coupled with the technique of early abstraction [1], RysersADD
performs reasonably well even on sparse matrices as compared to dedicated
approaches. In fact, it may be possible to optimize the algorithm even further,
by evaluating other heuristics used in [1]. We leave this for future work. Our
work also re-emphasizes the versatility of ADDs and opens the door for their
application to other combinatorial problems.

It is an interesting open problem to obtain a complete characterization of the
class of matrices for which ADD representation of Ryser’s formula is succinct.
Our experimental results for dense matrices hint at the possibility of improved
theoretical bounds similar to those obtained in earlier work on sparse matri-
ces. Developing an algorithm for general matrices that is exponentially faster
than Ryser’s approach remains a long-standing open problem [28], and obtain-
ing better bounds for non-sparse matrices would be an important first step in
this direction.
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Abstract. The Max-SAT problem consists in finding an assignment
maximizing the number of satisfied clauses. Complete methods for this
problem include Branch and Bound (BnB) algorithms which use max-
resolution, the inference rule for Max-SAT, to ensure that every com-
puted Inconsistent Subset (IS) is counted only once in the lower bound
estimation. However, learning max-resolution transformations can be
detrimental to their performance so they are usually selectively learned
if they respect certain patterns. In this paper, we focus on recently intro-
duced patterns called Unit Clause Subsets (UCSs). We characterize the
transformations of certain UCS patterns using the UP-resilience prop-
erty. Finally, we explain how our result can help extend the current
patterns.

Keywords: Max-resolution · UP-resilience · Unit Clause Subset

1 Introduction

Max-SAT is an optimization extension of the satisfiability (SAT) problem. For
a given formula in Conjunctive Normal Form (CNF), it consists in finding an
assignment of the variables which maximizes the number of satisfied clauses.
Complete methods for this problem include SAT based approaches (e.g. MAXHS
[7], OPEN-WBO [13], EVA [14], WPM1 [5]) and Branch and Bound (BnB)
algorithms (e.g. AHMAXSAT [3], AKMAXSAT [9], MAXSATZ [10,12]) among
others. The former which iteratively call SAT solvers are particularly efficient
on industrial instances while the latter are competitive on random and crafted
instances.

BnB based approaches construct a search tree and compute, at each node,
the Lower Bound (LB) by counting the disjoint Inconsistent Subsets (ISs) of the
formula using Simulated Unit Propagation (SUP) [11]. When an IS is found,
it is either temporarily deleted or transformed by max-resolution, the inference
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rule for Max-SAT [6,8], to ensure that it will be counted only once. However,
learning max-resolution transformations, i.e., memorizing them in the current
subtree (including the current node), may affect negatively the quality of the
lower bound estimation [2,4,12]. Therefore, state of the art solvers learn trans-
formations selectively mainly in the form of patterns [12].

Recently, new patterns called Unit Clause Subsets (UCSs) were introduced
and empirically studied in [2]. The most significant feature of these patterns is
producing unit clauses after the transformation by max-resolution. The empirical
study of these patterns lead to the first observations on the relation between
max-resolution transformations and the efficiency of the SUP mechanism which
is indispensable for the lower bound estimation. These observations were formally
stated by the introduction of a new property called UP-resilience [4].

In this paper, we conduct a theoretical study of particular UCS patterns and,
more specifically, their relation with UP-resilience: we prove that binary UCSs
are UP-resilient and we generalize this result on UCSs where only one clause
of any size is involved in the conflict. We also explain how our results can help
extend the current patterns by showing that the current mechanisms in BnB
solvers can’t ensure UP-resilience for these patterns.

This paper is organized as follows. In Sect. 2, we give basic definitions and
notations. In Sect. 3, we show how the UP-resilience property highlights the
impact of max-resolution transformations on the SUP mechanism. We charac-
terize UCS transformations and we show the limit of the current mechanisms in
Sect. 4 and we conclude in Sect. 5.

2 Definitions and Notations

Let X be a set of propositional variables. A literal l is a variable x ∈ X or its
negation x and a clause is disjunction of literals, represented as a set of literals.
A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses and
can be represented as a set of clauses. An assignment I: X −→ {true, false}
maps each variable to a Boolean value and is represented as a set of literals.
For a given literal l, var(l) denotes the variable appearing in l. A clause c is
satisfied by an assignment I if at least one of its literals is satisfied, i.e., ∃l ∈ c
such that l ∈ I. The empty clause � is always falsified. An Inconsistent Subset
(IS) of a formula Φ is an unsatisfiable set of clauses ψ ⊆ Φ. Solving the Max-
SAT problem consists in finding an assignment which maximizes the number of
satisfied clauses for a given CNF formula.

Definition 1 (Max-resolution [6,8]). The inference rule for Max-SAT, max-
resolution, is defined as follows:

c = {x, y1, ..., ys}, c′ = {x, z1, ..., zt}
cr = {y1, ..., ys, z1, ..., zt}, cc1, ..., cct, cct+1, ..., cct+s

where the compensation clauses are defined as follows:
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cc1 = {x, y1, ..., ys, z1}
cc2 = {x, y1, ..., ys, z1, z2}

...
cct = {x, y1, ..., ys, z1, ..., zt−1, zt}

cct+1 = {x, z1, ..., zt, y1}
cct+2 = {x, z1, ..., zt, y1, y2}

...
cct+s = {x, z1, ..., zt, y1, ..., y2, ys}

Unlike the SAT inference rule, max-resolution replaces the premises in the
rule by its conclusions. Furthermore, it produces an equivalent formula, i.e.,
it preserves the number of unsatisfied clauses for any assignment. The results
established in this paper can be easily extended to weighted Max-SAT formulas
(hard clauses can be included with infinite weights in the case of partial formulas)
using the weighted version of max-resolution introduced in [6].

Notation. Let ψ be an IS of a CNF formula Φ and S = 〈x1, ..., xk〉 be a sequence
of variables appearing in ψ. We denote Θ(ψ, S) the set of clauses obtained from
ψ after the application of max-resolution steps in accordance to the sequence S,
i.e., Θ(ψ, S) = θ(θ...(θ(ψ, x1), x2)..., xk) where θ(ψ, x) denotes the application of
the max-resolution step defined above on two clauses c and c′ such that x ∈ c
and x ∈ c′.

Next, we recall the notion of UP-resilience [4]. The empirical study conducted
in [2] shows a correlation between the decrease of the number of propagations,
the decrease of the number of detected ISs and the increase of the number of
decisions, i.e., if the number of propagations is reduced, then less ISs will be
detected and the quality of the LB estimation will be reduced. This observation
was stated more clearly in [4] as the fragmentation phenomenon which was the
main motivation behind the introduction of the UP-resilience property. This
phenomenon, showcased in Example 1, occurs when clauses are fragmented into
two (or more) clauses after transformation by max-resolution which may obstruct
their exploitation by the SUP mechanism.

Example 1. we consider the IS ψ = {{x1}, {x2}, {x3}, {x3, x4}, {x1, x2, x4}}
detected by the sequence of unit propagations represented in the form of an
implication graph [15] in Fig. 1. The max-resolution transformation of this
IS with respect to the variable sequence S = 〈x4, x3, x2, x1〉 (in the reverse
order of propagation) is given on the right in Fig. 1. If the unique neighbor
of x1 in the implication graph is set to true in the transformed IS, we obtain
Θ(ψ, S)|{x4} = {{x1, x3}, {x1, x3}, {x1, x2}, {x1, x2, x3}, {x1, x2, x3}}. Clearly,
the literal x1 can’t be propagated in Θ(ψ, S)|{x4}. We can produce the resolvent
x1 if we perform a max-resolution step between the clauses {x1, x3} and {x1, x3}
but the SUP mechanism alone cannot ensure the propagation of this literal in the
transformed IS even with respect to its neighborhood in the implication graph.
We say that the information leading to the propagation of x1 was fragmented
into several compensation clauses.



94 M. S. Cherif and D. Habet

x1

x2

x4

x3

�

{x1} {x
1 , x

2 , x
4}

{x2} {x1, x
2, x

4}

{x3}

{x3, x4}

{x3
, x4

}

{x1, x2, x4} {x3, x4}

{x1, x2, x3} {x3}

{x1, x2} {x2}

{x1} {x1}

�

{x1, x2, x3, x4}
{x1, x3, x4}
{x1, x2, x3, x4}

{x1, x3}
{x1, x2, x3}

{x1, x2}

x4

x3

x2

x1

Fig. 1. Implication graph corresponding to a propagation sequence of ψ in Example
1 and its transformation by max-resolution, where compensation clauses for each step
are represented in boxes.

As an IS can be detected by different propagation sequences each corre-
sponding to an implication graph [15]. So, before recalling the definition of the
UP-resilience property, we give the formal definition of an implication graph of
an IS in the context of BnB solvers for MaxSAT and of possible neighborhoods
of a literal appearing in an IS.

Definition 2 (Implication graph of an IS). Let Ψ be an IS of a CNF formula
Φ and I an assignment. We suppose that exactly one clause is falsified by I (SUP
stopped when the first empty clause is generated). An implication graph of Ψ is
a directed acyclic graph G = (V,A) defined as follows:

– V = {l ∈ I} ∪ {	c|c ∈ Ψ and |c| = 1} ∪ {�}
– A = {(l, l′, c) | l, l′ ∈ I and c ∈ Ψ is reduced by l and propagates l′}⋃

{(	c, l, c) | l ∈ I and c = {l} ∈ Ψ}⋃

{(l,�, c) | l ∈ I and c ∈ Ψ is falsified by I and l ∈ Ψ}
The directed edges are labeled by clauses and the nodes 	 are omitted in G.

Definition 3 (Possible neighborhoods [4]). Let φ be a CNF formula and
ψ an IS. For a literal l appearing in ψ, we define its possible neighborhoods as
pneigh(l) = {neighG(l)|G = (V,A) implication graph of ψ s.t. l ∈ V } where
neighG(l) denotes the neighbors of l in G. We extend this definition on any
set of literals L appearing in ψ as pneigh(L) = {⋃l∈L neighG(l)|G = (V,A)
implication graph of ψ s.t. L ⊆ V }.
Definition 4 (UP-resilience [4]). Let φ be a CNF formula, ψ an IS and S a
sequence of variables appearing in ψ. The transformation Θ(ψ, S) is UP-resilient
for a literal l appearing in ψ iff ∀N ∈ pneighψ(l): � ∈ N or l can be propagated
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in Θ(ψ, S)|N where Θ(ψ, S)|N denotes the set of clauses in Θ(ψ, S) with the
literals appearing in N set to true. We say that Θ(ψ, S) is UP-resilient if it is
UP-resilient for all the literals appearing in ψ.

We finish this section by a brief overview of UCS patterns which were intro-
duced and empirically studied in order to extend the learning mechanisms in
BnB Max-SAT solvers [2].

Definition 5 (Unit Clause Subset [2]). Let φ be a CNF formula and k ≥ 2.
A k-Unit Clause Subset, denoted k-UCS, is a set of clauses {c1, ..., ck} ⊆ φ such
that there exists a sequence of max-resolution steps on c1, ..., ck that produces a
unit clause resolvent. In particular, if ∀i ∈ {1, ..., k} we have |ci| = 2, it is a
binary k-UCS, denoted kb-UCS.

Example 2. The following patterns:

{l1, l2}, {l1, l2} (P1){l1}
{l1, l2}, {l1, l3}, {l2, l3} (P2){l1}, {l1, l2, l3}, {l1, l2, l3}

which are learned in state of the art BnB solvers, correspond respectively to a
2b-UCS and a 3b-UCS.

Definition 6 (First Unique Implication Point [15]). Let G be an implica-
tion graph. A Unique Implication Point (UIP) is any node in G such that any
path from the literals propagated by unit clauses to the conflict node must pass
through it. The First UIP (FUIP) is the UIP closest to the conflict node.

It is important to note that UCS patterns have a high apparition frequency
(in more than 57% of the detected ISs [2]). Furthermore, certain k-UCS patterns
are easily detectable by analyzing the implication graph of the obtained IS [2].
Indeed, the clauses which are between the conflict and the FUIP produce a
unit resolvent clause if they are transformed by max-resolution in the reverse
propagation order. From here on, we will focus on such k-UCS patterns.

3 Preliminaries and Motivation

In this section, we explain how the notion of UP-resilience quantifies the impact
of max-resolution on the SUP mechanism and thus on the detection of Incon-
sistent Subsets. This is highlighted in Property 1 which proves that UP-resilient
transformations maintain the propagations which are not necessary anymore to
an inconsistent subset. We provide a different proof for this property that is
shorter and simpler than the one in [4]. We also show, in Propositions 1 and
2, that the transformations corresponding to patterns (P1) and (P2) are UP-
resilient which contributes to explain from a theoretical point of view the empir-
ical efficiency of these patterns. We give detailed proofs of these propositions to
emphasize the fact that they are valid for any possible order of application of
max-resolution, a fact that will be of importance in the discussion of our results
in Sect. 4.
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Property 1. Let φ be a CNF formula, ψ an IS of φ and S a sequence of vari-
ables appearing in ψ. For any set of literals L appearing in ψ, if the transforma-
tion Θ(ψ, S) is UP-resilient for L then ∀N ∈ pneigh(L) : � ∈ N or every literal
l ∈ L can be propagated in Θ(ψ, S)|N\{l}.

Proof. We prove this property by induction on |L| = n:

– If n = 1 then L = {l} and the property is verified.
– Suppose the property is true for every set of size n. Let L be of size n + 1

and l a literal in L. We set L′ = L \ {l} and let N ∈ pneigh(L). Clearly,
N = N1 ∪ N2 where N1 ∈ pneigh(L′) and N2 ∈ pneigh(l). Moreover, since
|L′| = n, we know by induction that ∀N ∈ pneigh(L′) : � ∈ N or every literal
l′ in L′ can be propagated in Θ(ψ, S)|N\{l′}. In particular, � ∈ N1 or every
literal l′ in L′ can be propagated in Θ(ψ, S)|N1\{l′}. Also, The transformation
Θ(ψ, S) is UP-resilient for L and particularly for l and thus, we have ∀N ∈
pneigh(l) : � ∈ N or l can be propagated in Θ(ψ, S)|N . In particular, � ∈ N2

or l can be propagated in Θ(ψ, S)|N2 . Thus, We have the following cases:
• If � ∈ N1 or � ∈ N2 then � ∈ N
• Else every literal l′ in L′ and l can be propagated respectively in

Θ(ψ, S)|N1\{l′} and Θ(ψ, S)|N2 . Therefore, the clauses that ensure the
propagation of every literal l′ in L′ in Θ(ψ, S)|N1\{l′} also ensure
their propagation in Θ(ψ, S)|(N1∪N2)\{l′} and, similarly, the clauses that
ensure the propagation of l in Θ(ψ, S)|N2 also ensure its propagation in
Θ(ψ, S)|(N1∪N2)\{l}.

We deduce that ∀N ∈ pneigh(L) : � ∈ N or every literal l in L can be
propagated in Θ(ψ, S)|N\{l}. �

Proposition 1. Let Φ be a CNF formula, Ψ an IS and Ψ ′ ⊂ Ψ such that Ψ ′

matches the premises of pattern (P1). Then, the max-resolution transformation
described in (P1) is UP-resilient.

Proof. ψ′ = {{l1, l2}, {l1, l2}}. Therefore, there are two possible propagation
sequences whose implication graphs are represented in Fig. 2. Since all possible
neighborhoods of literals l1, l2 and l2 contain the empty clause, the transfor-
mation of ψ′ as in (P1), with respect to the only possible variable sequence
S = < var(l2) >, is UP-resilient. �

l1

l2

�

{l1, l2} {l1, l2}

{l1, l2}
l1

l2

�

{l1, l2} {l1, l2}

{l1, l2}

Fig. 2. Implication graphs corresponding to the possible propagation sequences for an
IS containing the premises of pattern (P1).
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Proposition 2. Let Φ be a CNF formula, Ψ an IS and Ψ ′ ⊂ Ψ such that Ψ ′

matches the premises of pattern (P2). Then, the max-resolution transformation
described in (P2) is UP-resilient.

Proof. ψ′ = {{l1, l2}, {l1, l3}, {l2, l3}}. Therefore, there are two possible prop-
agation sequences whose implication graphs are represented in Fig. 3. There
are two max-resolution application orders S1 = <var(l2), var(l3)> and S2 =
<var(l3), var(l2)> that produce the same transformation described by pat-
tern (P2). Since all possible neighborhoods of l2 and l2 contain the empty
clause, the transformation of ψ by max-resolution is UP-resilient for l2 and l2.
We have pneigh(l1) = {{l3,�} ∪ pred(l1), {l2, l3} ∪ pred(l1)}, where pred(l1))
denotes the predecessors of l1, and clearly the clause c = {l1, l2, l3} propa-
gates l1 when the literals l2, l3 in its second neighborhood are set to true. Also,
pneigh(l3) = {{l1,�}, {l1, l2}} and similarly the clause c′ = {l1, l2, l3} propa-
gates l3 when the literals in its neighborhood {l1, l2} are set to true. �

l1

l3 l2

�

{l1, l3}
{l2, l3}

{l1, l2}

{l1, l2} l1

l3

l2

�
{l1, l

3}

{l1 , l2}

{l2 , l3}

{l2, l
3}

Fig. 3. Implication graphs corresponding to the possible propagation sequences for an
IS containing the premises of pattern (P2).

Corollary 1. For k ∈ {2, 3}, kb-UCSs are UP-resilient.

Proof. 2b-UCSs and 3b-UCSs are all of the respective forms Ψ2b = {{l1, l2},
{l1, l2}} and Ψ3b = {{l1, l2}, {l1, l3}, {l2, l3}} which correspond to the premises
of patterns (P1) and (P2). Thus, we obtain the wanted result using Propositions
1 and 2. �

The previous results establish that UP-resilient transformations can’t nega-
tively impact the SUP mechanism and that the transformations learned in state
of the art BnB solvers for Max-SAT in the form of patterns (P1) and (P2) are UP-
resilient. One major challenge is to use this property to help decide the relevance
of application of max-resolution transformations either by devising an efficient
algorithm to verify the property on potential transformations or by using it to
characterize the transformation of certain patterns. Since checking the property
on potential transformations seems computationally costly, we tackle in the next
section the second problem by generalizing the result of Corollary 1.
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4 Contributions

In this section, we prove that binary k-UCSs are UP-resilient by providing two
different orders that ensure the UP-resilience of their transformation by max-
resolution. We also show that unlike the given orders, the current used mecha-
nisms can’t ensure UP-resilience for these patterns which provides an explanation
to the empirical results in [2] and shows that our results can help extend the
current used patterns in state of the art solvers. Furthermore, we generalize our
result on the resilience of kb-UCSs to k-UCSs where all clauses are binary except
one of any size that is involved in the conflict. We start by proving the following
lemma in order to characterize the detected implication graphs of such k-UCSs.

Lemma 1. Let k ≥ 2 and ψ be a k-UCS whose clauses are binary except for the
conflict clause of size s ≥ 2, recognized by the FUIP l in an implication graph G
of an IS such that |succ(l)| = s. Then, there exists exactly s disjoint paths from
l to � in G.

Proof. Since l is a UIP, all the paths from the literals propagated by unit clauses
to the conflict node in G pass through it. We have |succ(l)| = s. Therefore, there
are at least s different paths from l to � in G. Let p1,...,ps be those paths.
Suppose we have a different path ps+1 from l to �. We have two possible cases:

– |pred(�)| = s. This is absurd since the conflict clause c is of size s and thus
|pred(�)| = s.

– Else, since |pred(�)| = s, there exists l′ = l ∈ ps+1 and i ∈ {1, ..., s} such
that l′ ∈ pi and |pred(l′)| > 1. This is absurd since all clauses of the k-UCS
except c are binary.

We deduce that there are exactly s different paths from l to � in G. The same
argument of the second case ensures that these paths are disjoint. �

As explained in Sect. 2, when a UCS is detected, we know that the reverse
propagation order ensures the production of a unit clause after the transforma-
tion but, in general, this is not necessarily true for all the orders. Since this is
the main feature of UCS patterns, we must ensure that the introduced orders
produce unit clauses. It is important to note that the condition on the succes-
sors of the FUIP in Lemma 1 ensures this property for all possible orders. We
start by proving the UP-resilience of kb-UCSs. To this end, we show in the next
proposition that the condition on the FUIP successors in Lemma 1 is always
verified for kb-UCSs. Later, when we generalize our result, we only consider the
graphs described by Lemma 1, i.e., which verify the condition on the successors
of the FUIP.

Proposition 3. Let k ≥ 2 and ψ be a kb-UCS recognized by the FUIP l in an
implication graph G of an IS. Then, |succ(l)| = 2.

Proof. Suppose that |succ(l)| = 2. We have two possible cases:
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– if |succ(l)| > 2 then, since |succ(�)| = 2, there exists a literal with two
predecessors. This is absurd since all the clauses are binary.

– if |succ(l)| = 1 then l is not the FUIP which is absurd. �

Definition 7 (Path Resolvent Order). Let p1 = 〈l, lp1
1 , ..., lp1

n1
,�〉(n1 ≥ 0)

and p2 = 〈l, lp2
1 , ..., lp2

n2
,�〉(n2 ≥ 0) denote two disjoint paths from l to �.

The Path Resolvent Order (PRO) of p1 and p2 is defined as PRO(p1, p2) =
〈var(lp1

1 ), ..., var(lp1
n1

), var(lp2
1 ), ..., var(lp2

n2
)〉.

Theorem 1. For any k ≥ 2, the transformation of kb-UCSs with respect to
PRO is UP-resilient.

Proof. Let k ≥ 2 and ψ be a kb-UCS recognized by the FUIP l in the implication
graph G of an IS. By Lemma 1 and Proposition 3, we know that there are 2
disjoint paths from l to � in G. Let p1 = 〈l, lp1

1 , ..., lp1
n1

,�〈(n1 ≥ 0) and p2 =
〈l, lp2

1 , ..., lp2
n2

,�〉(n2 ≥ 0) denote these paths in G where n1 + n2 = k − 1. And,
suppose w.l.o.g that lp1

n1
= l′ is the conflict literal, i.e., the last propagated literal.

We have two possible propagation sequences whose implication graphs are G and
G′ represented in Fig. 4.

l

lp11

lp21

lp1n1 = l′

lp2n2

�G l

lp11

lp21

lp1n1−1

lp2n2 l′

�G′

Fig. 4. Implication graphs corresponding to the possible propagation sequences for
kb-UCSs.

We prove that the max-resolution transformation relatively to the order O =
PRO(p1, p2) is UP-resilient:

– The clause propagating l is not deleted after the transformation by max-
resolution relatively to the order O so it clearly propagates l if its predecessors
are set to true and thus the transformation by max-resolution relatively to
the order O is UP-resilient for l. This argument also applies for the literals
that were involved in the propagation of l.

– All possible neighborhoods of literals lp1
n1

= l′ and l′ contain the empty clause.
Therefore, the transformation by max-resolution relatively to the order O is
UP-resilient for l′ and l′.

– For i ∈ {1, 2}, we set lpi

0 = l. Every literal lpi

j such that 1 ≤ j < ni admits
exactly one neighborhood neigh(lp1

j ) = {lpi

j−1, l
pi

j+1} that doesn’t contain the
empty clause. Similarly, for lp2

n2
we have neigh(lp2

n2
) = {lpi

n2−1, l
′}. The max-

resolution step on var(lp1
j )(1 ≤ j < ni) is of the form:
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{l, lpi

j }, {lpi

j , lpi

j+1}
{l, lpi

j+1}, {l, lpi

j , lpi

j+1}, {l, lpi

j , lpi

j+1}
The clause c = {l, lpi

j , lpi

j+1} clearly ensures the propagation of literal lpi

j+1 if
lpi

j ∈ neigh(lpi

j+1) is set to true since l is propagated by the unit resolvent
clause {l}. Also, for j = 1, the clause c′ = {l, lp1

1 , lp1
2 } ensures the propaga-

tion of lp1
1 if l, lp1

2 ∈ neigh(lp1
1 ) are set to true. Thus, We deduce that the

transformation is UP-resilient for lpi

j where 1 ≤ j ≤ ni (j = n1).

We conclude that the transformation of ψ by max-resolution relatively to the
order O is UP-resilient. �

Definition 8 (Path Resolvent Circular Order). Let p1 = 〈l, lp1
1 , ..., lp1

n1
,�〉

(n1 ≥ 0) and p2 = 〈l, lp2
1 , ..., lp2

n2
,�〉(n2 ≥ 0) denote two disjoint paths from l

to �. The Path Resolvent Circular Order (PRCO) of p1 and p2 is defined as
PRCO(p1, p2) = 〈var(lp1

1 ), ..., var(lp1
n1

), var(lp2
n2

), ..., var(lp2
1 )〉.

Theorem 2. For any k ≥ 2, the transformation of kb-UCSs with respect to
PRCO is UP-resilient.

Proof. Let k ≥ 2 and ψ be a kb-UCS recognized by the FUIP l in the implication
graph G of an IS. By Lemma 1 and Proposition 3, let p1 = 〈l, lp1

1 , ..., lp1
n1

,�〉(n1 ≥
0) and p2 = 〈l, lp2

1 , ..., lp2
n2

,�〉(n2 ≥ 0) denote the two disjoint paths from l to � in
G where n1 +n2 = k−1. And, suppose w.l.o.g that lp1

n1
= l′ is the conflict literal.

We have two possible propagation sequences whose implication graphs are G
and G′ represented in Fig. 4. We prove that the max-resolution transformation
relatively to the order O = PRCO(p1, p2) is UP-resilient:

– The same arguments in the proof of Theorem 1 ensure the UP-resilience of
the transformation respectively to O for lp1

j (1 ≤ j ≤ n1) and l′ as well as l
and all the literals involved in its propagation.

– Every literal lp2
j such that 1 ≤ j ≤ n2 admits exactly one neighborhood

neigh(lp2
j ) = {lp2

j−1, l
p2
j+1} that doesn’t contain the empty clause (we set lp2

0 = l

and lp2
n2+1 = l′). The max-resolution step on var(lp2

j ) (j = 1) is of the form:

{l, lp2
j }, {lp2

j , lp2
j−1}

{l, lp2
j−1}, {l, lp2

j , lp2
j−1}, {l, lp2

j , lp2
j−1}

The clause c = {l, lp2
j , lp2

j−1} clearly ensures the propagation of literal lp2
j when

lp2
j−1 ∈ neigh(lp2

j ) is set to true since l is propagated by the unit resolvent
clause {l}. Also, the clause c′ = {l, lp2

2 , lp2
1 }, generated by the max-resolution

step on var(lp2
2 ), clearly ensures the propagation of lp2

1 when its neighbors
l, lp2

2 ∈ neigh(lp2
1 ) are set to true. Thus, the transformation is UP-resilient for

lp2
j where 1 ≤ j ≤ n2.

We conclude that the transformation by max-resolution relatively to the order
O is UP-resilient. �
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There is a major difference between the orders we introduced. Indeed, PRCO
ensures a linear input resolution transformation, i.e., at each intermediary max-
resolution step we use the resolvent obtained in the previous step and a clause
from the detected kb-UCS. This is not always the case for PRO. The following
result is an immediate consequence of either Theorems 1 or 2.

Corollary 2. For any k ≥ 2, there exists a UP-resilient transformation of kb-
UCSs.

Empirical results show that 2b-UCSs and 3b-UCSs, which correspond respec-
tively to the patterns (P1) and (P2) have a positive impact on the performance
of BnB solvers for Max-SAT [2,10]. The result in Corollary 1 obtained through
properties 1 and 2 prove that 2b-UCSs and 3b-UCSs are UP-resilient for any given
order of application of max-resolution which explains why learning them has a
positive impact regardless of the chosen order. This is not the case for kb-UCSs
when k > 3. Empirical studies on the AHMAXSAT solver in [2] show that learn-
ing 4b-UCSs and 5b-UCSs had a major negative impact on its performance. This
can be explained by the inadequacy of the max-resolution application orders
used in state of the art BnB solvers for kb-UCSs when k > 3. Indeed, it was
shown in [4] that the order impacts the UP-resilience of the transformations by
comparing the following heuristics:

– Reverse Propagation Order (RPO) which applies max-resolution steps in the
reverse order of propagation.

– Smallest Intermediary Resolvent (SIR) which applies the max-resolution steps
based on the size of the resolvents between clauses, favoring the smallest
ones [1].

In particular, the results show that the average percentage of UP-resilience of the
transformations is comparatively higher with SIR. In the case of kb-UCSs, these
orders don’t always ensure the UP-resilience property on the transformations.
More specifically, the SIR heuristic becomes unusable since all the intermediary
resolvents have the same size (binary) as shown in the proofs of Theorems 1
and 2, whereas the Reverse Propagation Order doesn’t always ensure the UP-
resilience of the transformation as shown in the following example on a 4b-UCS
which can be easily extended to any kb-UCS for k > 4.

Example 3. We consider the IS ψ = {{l}, {l, l1}, {l, l2}, {l1, l3}, {l2, l3}} detected
by one of the possible implication graphs represented on the left in Fig. 5 after
the respective propagation of literals l1, l2 and l3 (or l3). Clearly, the subset
ψ′ = {{l, l1}, {l, l2}, {l1, l3}, {l2, l3}} ⊂ ψ is a 4b-UCS recognized by the FUIP l.
The max-resolution transformation of ψ′ with respect to RPO which corresponds
to the variable sequence S = 〈var(l3), var(l2), var(l1)〉 is represented on the
right in Fig. 5. The literal l1 has one neighborhood neigh(l1) = {l, l3} that
doesn’t contain the empty clause. Clearly, the literal l1 can’t be propagated in
Θ(ψ, S)|neigh(l1) = {{l1, l2}, {l1, l2}}. Similarly, the fragmentation phenomenon
also occurs for l2 and we conclude that the transformation of ψ′ relatively to
RPO is not UP-resilient.
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l l1 l3

l2

�
{l} {l, l1} {l1, l3}

{l, l2} {l2, l
3}

{l2, l3}

l l2 l3

l1

�
{l}

{l, l2} {l2, l3}

{l, l1
} {l1 , l3}

{l1, l3}

{l2, l3} {l1, l3}

{l1, l2} {l, l2}

{l, l1} {l, l1}

{l}

{l1, l2, l3}
{l1, l2, l3}

{l, l1, l2}
{l, l1, l2}

var(l3)

var(l2)

var(l1)

Fig. 5. Implication graphs corresponding to the possible propagation sequences of ψ
in Example 3 and the application of max-resolution steps relatively to RPO

Now, we want to generalize our result to k-UCSs where all clauses are binary
except one of any size that is involved in the conflict when the implication
graph corresponds to the description in Lemma 1. A clause involved in the
conflict is either the falsified clause or contains the conflict literal, i.e., the last
propagated literal. Unfortunately, although PRCO has the advantage of ensuring
a linear input transformation, we couldn’t generalize it to obtain the wanted
result. Nevertheless, we managed to prove our result using a generalization of
PRO to a multitude of paths.

Definition 9 (Multiple Path Resolvent Order). Let s ≥ 2 and p1 =
〈l, lp1

1 , ..., lp1
n1

,�〉, ..., ps = 〈l, lp2
1 , ..., lps

ns
,�〉 denote s disjoint paths from l to �.

The Multiple Path Resolvent Order (MPRO) of p1, ..., ps is defined inductively
on s as follows:

– If s = 2, MPRO(p1, p2) = PRO(p1, p2)
– Else MPRO(p1, ..., ps) = PRO(〈l,MPRO(p1, ..., ps−1),�〉, ps).

Theorem 3. Let k ≥ 2 and ψ be a k-UCS whose clauses are binary except
for the conflict clause c of size |c| = s ≥ 3, recognized by the FUIP l in the
implication graph G of an IS such that |succ(l)| = s. The transformation of ψ
with respect to MPRO is UP-resilient.

Proof. We suppose w.l.o.g that c = {l1, ..., ls}. By Lemma 1, there are exactly
s disjoint paths p1 = 〈l, lp1

1 , ..., lp1
n1

,�〉, ..., ps = 〈l, lps

1 , ..., lps
ns

,�〉 from l to � in
the implication graph G, represented in Fig. 6, such that

∑s
i=1 ni = k − 1 and

lpi
ni

= li for i ∈ {1, ..., s}. Other than G, there are exactly
(
s−1

s

)
= s possible

implication graphs all similar to the graph G′ represented in Fig. 6. We prove that
the max-resolution transformation relatively to the order O = MPRO(p1, ..., ps)
is UP-resilient:
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l

lp21

lp11

lps1

lp1n1 = l1

lp2n2 = l2

lpsns
= ls

�
c

c

c
l

lp21

lp11

l
ps−1
1

lps1

lp1n1 = l1

lp2n2 = l2

l
ps−1
ns−1 = ls−1

ls

lpsns−1

�
c

c

c

Fig. 6. Implication graphs corresponding to the possible propagation sequences for
k-UCSs with binary clauses except for the conflict clause

– The same arguments in the proof of Theorem 1 ensure the UP-resilience of
the transformation respectively to O for lpi

j where 1 ≤ i ≤ s and 1 ≤ j < ni

as well as l and all the literals involved in its propagation. Furthermore, all
the neighborhoods of literals l1, ..., ls contain the empty clause.

– For i ∈ {1, ..., s}, ∀N ∈ pneigh(lpi
ni

) (ni > 1) s.t � /∈ N , we have lpi

ni−1 ∈ N

(exists since ni > 1). Clearly, the clause c = {l, lpi

ni−1, l
pi
ni

} obtained by the
application of max-resolution on var(lpi

ni−1) ensures the propagation of lpi
ni

in
any of these neighborhoods when lpi

ni−1 is set to true since l is propagated by
the unit resolvent clause {l}. We deduce that the transformation relatively to
the order O is UP-resilient for lpi

ni
where 1 ≤ i ≤ s and ni > 1.

– We still need to prove the UP-resilience of the transformation for literals
lpi
ni

= li when ni = 1, with respect to their possible neighborhoods {l, lj} for
j ∈ {1, .., s} \ {i} not containing the empty clause. For this end, we prove
by induction on |c| ≥ 3 that the compensation clauses produced by the max-
resolution steps on var(l1), ..., var(ls) ensure the propagation of each literal
li if we consider the neighborhoods as mentioned above. For simplification,
in the first max-resolution step, we replace c by the clause c′ = {l, l1, ..., ls}.
This doesn’t affect our result since we only omit a single clause containing
the literal l:

• If |c| = 3, c = {l1, l2, l3}. The max-resolution steps are represented on
the left in Fig. 7 and we can easily check that the compensation clauses
ensure the propagation of the literals li, for 1 ≤ i ≤ 3, if we consider the
neighborhoods mentioned above.

• Suppose the property is true for any clause of size s ≥ 3. Let c =
{l1, ..., ls+1} of size s + 1. The first max-resolution step is represented
on the right in Fig. 7. The resolvent clause is {l, l2, ..., ls+1} and if we
consider c′ = {l2, ..., ls+1} of size s we ensure by induction the propaga-
tion of any literal li where 2 ≤ i ≤ s + 1 with respect to the neighbor-
hoods {l, lj} for j ∈ {2, .., s + 1} \ {i}. Thus, each compensation clause
cck = {l, l1, l2, ..., lk, lk+1} for k ∈ {1, ..., s} ensures the propagation of
literal l1 with respect to the neighborhood {l, lk+1} since by induction
the propagation of literals l2, ..., lk is ensured in the same neighborhood.
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Now, we prove by induction on k ∈ {1, ..., s} that the clause cck ensures
the propagation of lk+1 with respect to the neighborhood {l, l1}:

* If k = 1, cc1 = {l, l1, l2} clearly ensures the propagation of l2 with
respect to the neighborhood {l, l1}.

* Suppose for 1 ≤ k′ < k ≤ s, cck′ ensures the propagation of lk′+1

with respect to the neighborhood {l, l1}. cck = {l, l1, l2, ..., lk, lk+1}
clearly ensures the propagation of literal lk+1 with respect to the
neighborhood {l, l1} since by induction the propagation of l2, ..., lk is
ensured in the same neighborhood by the clauses cc1, ..., cck−1.

We conclude that the transformation by max-resolution relatively to the order
O is UP-resilient. �

{l, l1, l2, l3} {l, l1}

{l, l2, l3} {l, l2}

{l, l3} {l, l3}

{l}

{l, l1, l2}
{l, l1, l2, l3}

{l, l2, l3}

var(l1)

var(l2)

var(l3)

{l, l1, ..., ls+1} {l, l1}

{l, l2, ..., ls+1} {l, l2}

cc1 = {l, l1, l2}

ccs = {l, l1, l2, ..., ls, ls+1}

var(l1)

Fig. 7. Application of max-resolution steps on the variables of the non binary clause c
by induction on its size

Corollary 3. Let k ≥ 2 and ψ be a k-UCS whose clauses are binary except for
a single clause c of size |c| = s ≥ 3 involved in the conflict, recognized by the
FUIP l in the implication graph G of an IS such that succ(l) = s. There exists
a UP-resilient transformation of ψ.

Proof. If c is the conflict clause then we obtain the result by Theorem 3. Else, c
contains the conflict literal and the detected implication graph G has the same
form as the second graph represented in Fig. 6. Clearly, there is a propagation
sequence where c is falsified, i.e., corresponding to an implication graph G′ simi-
lar to the first graph represented in Fig. 6. Thus, we deduce the UP-resilience of
the transformation with respect to MPRO through the same arguments in the
proof of Theorem 3. �

The SIR order is defined relatively to the size of the intermediary resolvents.
Thus, it may theoretically simulate any order when the sizes of the resolvents
are the same or many different orders when many resolvents share the same
size which is the case of the studied UCSs. That’s why this heuristic remains
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practically unusable even in the generalized case. Furthermore, RPO doesn’t
necessarily ensure the UP-resilience of k-UCSs described in the previous corol-
lary. We finish this section by an example that highlights this fact. This example
where the non binary clause is tertiary can be easily extended to any size s > 3.

Example 4. We consider the IS ψ = {{l}, {l, l1}, {l, l2}, {l, l3}, {l1, l4}, {l2, l3, l4}}
(we name the tertiary clause c) detected by the first implication graph repre-
sented on the left in Fig. 8 after the respective propagation of literals l1, l2, l3
and l4. In the second graph on the left in the same figure, we represent
another possible propagation sequence which outlines the possible neighbor-
hood of l4, neigh(l4) = {l1, l3} not containing the empty clause. Clearly, the
subset ψ′ = ψ \ {{l}} is a 5-UCS recognized by the FUIP l such that c partici-
pates in the conflict and |succ(l)| = |c| = 3. The max-resolution transformation
of ψ′ with respect to RPO which corresponds to the variable sequence S =
〈var(l4), var(l3), var(l2), var(l1)〉 is represented on the right in Fig. 8. Clearly,
the literal l4 can’t be propagated in Θ(ψ, S)|neigh(l4) = {{l}, {l, l2}, {l2, l4},

{l2, l4}}. We conclude that the transformation of ψ′ relatively to RPO is not
UP-resilient.

l l1 l4

l2

l3

�
{l} {l, l1} {l1, l4}

{l, l2}

{l, l3 }

c

c

c

l l1 l4

l2

l3

�

{l} {l, l1} {l1, l4}
{l, l2}
{l, l3}

c {
l,l3 }

c

{l1, l4} {l2, l3, l4}

{l1, l2, l3} {l, l3}

{l, l1, l2} {l, l2}

{l, l1, l2} {l, l1}

{l}

{l1, l2, l3, l4}
{l1, l2, l4}
{l1, l2, l3, l4}

{l, l1, l2, l3}
{l, l1, l3}
{l, l1, l2, l3}

{l, l1, l2}

var(l4)

var(l3)

var(l2)

var(l1)

Fig. 8. Implication graphs corresponding to the possible propagation sequences of ψ
in Example 4 and the application of max-resolution steps relatively to RPO

5 Conclusion

In this paper, we proved that kb-UCSs are UP-resilient with respect to two
different orders PRO and PRCO. Then, we generalized this result to k-UCSs
where all clauses are binary except one of any size involved in the conflict. We
showed that unlike our orders, the current mechanisms don’t necessarily ensure
UP-resilience for these patterns. Thus, our orders can help extend the current
patterns used in state of the art BnB solvers.
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Until now, UP-resilience was mainly used to explain the impact of max-
resolution transformations on the SUP mechanism. To our best knowledge, this
is the first work in which this property is used to characterize the transformations
by max-resolution in order to decide the relevance of their application. Indeed,
this can be a starting point of a new approach to extend max-resolution patterns.
In our case, we chose UCS patterns because they present several advantages: the
introduction of unit clauses as well as the high frequency of their apparition. We
also showed the limits of the current orders of application of max-resolution. In
fact, this is the first work in which the proposed orders are introduced relatively
to the structure of the implication graphs representing the possible propagation
sequences of an IS.

The prospects of our research include the extension of our studies to k-
UCSs in general. It also opens a new perspective for finding orders of applica-
tion of max-resolution that ensure UP-resilience or maximizes its percentage by
thoroughly studying the implication graphs corresponding to the propagation
sequences of certain ISs. Finally, increasing knowledge about max-resolution
can be useful for SAT-based solvers, which are mainly efficient on industrial
instances, as some solvers, such as EVA [14], already exploit max-resolution to
transform cores returned by SAT solvers.
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Abstract. When optimising under uncertainty, it is desirable that solu-
tions are robust to unexpected disruptions and changes. A possible for-
malisation of robustness is given by super solutions. An assignment to
a set of decision variables is an (a, b, c) super solution if any change
involving at most a variables can be repaired by changing at most b
other variables; the repair solution should have a cost of at most c units
worse than a non-robust optimum. We propose a method exploiting Logic
Based Benders Decomposition to find super solutions to an optimisa-
tion problem for generic disruptions. The master deals with the original
problem, while subproblems try to find repair solutions for each possible
disruption. As a case study, we consider the Kidney Exchange Problem,
for which our method scales dramatically better on realistic instances
than a reformulation-based approach from the literature.

1 Introduction

Dealing with uncertainty in optimization is increasingly recognized as a key
necessity for tackling real-world problems [28]. One such example is given by kid-
ney exchange programs which provide broader access to transplants, by allow-
ing incompatible patient-donor pairs to exchange donors. Centralised kidney
exchange programs exist in many countries, including the US, the Netherlands
and the UK [24], and require that a complex optimisation problem is solves at
fixed intervals (the Kidney Exchange Problem - KEP) to find the best matching.
About one per thousand European citizens suffers from end-stage renal disease.1

Since most algorithms use a virtual crossmatch to identify compatibility,
different types of failures can occur that will prevent a donor from donating
his/her kidney to the target recipient. Surprisingly, most planned matches fail
to go to transplant, 93% of matches fail [10]. Planned exchanges may fail for
a number of reasons, making robust solutions for the KEP highly desirable.

1 http://www.enckep-cost.eu/page/introduction.
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Cycles cannot be executed in parts because if someone backs out of a cycle, then
someone has lost a kidney unnecessarily. If a failure occurs in a cycle, then the
entire cycle does not take place. Ideally, for any exchange lost, one wishes to
have some ready alternative, making super solutions particularly appealing in
this context.

Due to improved computational power and advances in optimisation tech-
niques, approaches to stochastic problem-solving are becoming more viable and
effective. Most of such methods rely on some form of probabilistic or statistical
model, which requires reliable knowledge from the domain experts or substan-
tial amounts of data. Sometimes, however, such probabilistic information is not
available or cannot be used (due to fairness concerns), or it is desirable to be
resilient against any of a given set of disruptions. In such cases, super solutions
provide a fully combinatorial approach to robust decision making. An assignment
x of decision variables is a super solution if any disruption causing a change in
a bounded number of those variables can be countered by changing a bounded
number of other variables.

Uncertainty and robustness have been studied before. For example, in [12,29]
the authors generalise the notion of robust solutions and fault tolerance using a
SAT encoding. More recently, robustness has been studied in combinatorial prob-
lems, such as jobshop scheduling [8,14,15] and combinatorial auctions [16,17].

There are two main approaches to find super solutions: reformulation and
search-based algorithms. The reformulation approach is to extend the initial
instance in such way that the extended version finds both a robust solution as
well as its repairs [12]. Unfortunately, this approach has poor scalability. The
search-based approach requires low-level modifications to constraint solvers and
is, therefore, difficult to implement and maintain. These factors have historically
limited the practical applicability of the super solutions concept in practice.

In this paper, we introduce a new method to build super solutions for the Kid-
ney exchange problem, inspired by Logic-Based Benders Decomposition (LBBD).
The main idea is to search for a solution that can be repaired with minimum per-
turbation when a disruption occurs. Therefore, the approach broadens the scope
of super solutions to include disruptions in a wide range of forms, i.e. pairs,
edges. Our method is more scalable than a reformulation-based one, and easier
to manage than specialised algorithms. The method also provides somewhat of
an anytime approach, since robust solutions for some disruptions are available in
case of an early stop. The approach can also be parallelised. We use the KEP as
a case study, and compare our methods against a reformulation-based approach.

The paper is structured as follows. In Sect. 2 we cover the necessary back-
ground and briefly survey related work. In Sect. 3 we describe our method. In
Sect. 4 we ground it on the KEP and discuss an alternative, reformulation-based,
model. We provide experimental results in Sect. 5 and concluding remarks in
Sect. 6.
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2 Background and Related Work

In this section we recall the main definitions and approaches related to super
solutions, the KEP, and LBBD.

2.1 Super Solutions

The concept of super models and super solution was first introduced by [12].
Formally, an assignment of the decision variables x is an (a, b) super solution
if, in case of a loss of values for any set of at most a variables, it is possible to
construct an alternative solution by reassigning those a variables and changing
at most b others. More flexibility can be added by specifying which variables
are subject to breaks, the so called break-set, and which values and variables
can be used for the repair [15]. Notice that a robust solution is not necessarily
an optimal solution, however in many real world situation it is worth sacrificing
some optimality for a solution that is resilient to change; this is often referred
to as the the price of robustness [11].

The super solutions framework was generalized in [18] to (a, b, c) super solu-
tions. The c parameter constrains the cost of the robust and repair solutions
to be at most c units (or equivalently a factor c) from the cost c∗ of an opti-
mal, non-robust solution. After c∗ is known, finding an (a, b, c) super solution is
equivalent to finding an (a, b) super solution for the original problem with the
cost bounding constraint.

Super solutions are obtained in [14,15,18] via specialized constraint pro-
gramming algorithms. Those employ local consistency as a sufficient condition
to check robustness, and to prune a branch of the search tree when such check
fails. When all variables are assigned, the check turns also into a necessary
condition, thus ensuring soundness. All such algorithms require low-level modi-
fications to a constraint solver, making the approach difficult to deploy and to
maintain. The special case of (1, 0) super solutions (which remain solutions once
any variable changes value) had been considered earlier as supermodels [12], and
as fault tolerant solutions for Constraint Satisfaction Problems. In both cases, a
robust solution was found by means of a reformulated model, corresponding to
the problem of finding a robust solution and all its repair solutions. This app-
roach can be implemented on top of any off-the-shelf solver, but unfortunately
has poor scalability.

In [29] the authors study the complexity of finding σ-models given a SAT for-
mulation. There are other papers on fault tolerant solutions using SAT encodings
such as [5] which improves the work of [12] using a weighted Partial MaxSAT
formulation. Their approach strengthens the complexity to O(na) for each han-
dled variable change, where n is the number of variables, and a is the number
of breaks, instead of O(na+b) of [12], where b is the number of repairs. How-
ever, our method is more general and can deal with variables with non-binary
domains, or disruptions that may affect multiple variables at the same time. We
use a baseline formulation that has the same asymptotic space complexity, i.e.
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O(na), for handling each variable change as [5]. Robust solutions for combinato-
rial auctions are studied in [17,19]. The work of [7] introduces recoverable team
formation (RTF) in the coalition context.

2.2 The Kidney Exchange Problem

The KEP can be formulated as a non-bipartite matching problem on a directed
graph (V,A). Nodes in the set V correspond to patient/donor pairs, or to “altru-
istic” donors willing to donate a kidney with no return. An arc between nodes i
and j is present in the A set if the donor at node i is compatible with patient
at node j, and a cycle (or chain starting from an altruistic donor) corresponds
a viable set of exchanges. The goal is to maximize a utility function, which is
often the number of transplants.

Cycles may involve any number of nodes, in which case they are referred
to as k-way exchanges. However, dealing with more than three pairs is hard in
practice, since all the operations must take place simultaneously to avoid donor
withdrawal after their pair received the organ. The KEP is known to be NP-
complete [1] for k ≥ 3. Solution approaches for the KEP have been proposed in
[3,4,6,23,24].

A classical Mathematical Programming model for the KEP is the cycle for-
mulation. Let C = [1, . . . , nc] denote the set of indices of all cycles in a graph
(chains starting from altruistic donors are equivalent to cycles). Let xi be a
binary variable such that xi = 1 iff the exchanges corresponding to cycle i are
selected. Then, the formulation is given by:

max z =
∑

i∈C
wixi (CF) (1)

s.t.
∑

i∈C:k∈Ci

xi ≤ 1 ∀k ∈ V (2)

xi ∈ {0, 1} ∀i ∈ C (3)

where Eq. (2) prevents the selection of two cycles involving the same node. The
wi parameters typically represent the number of exchanges associated to each
cycle: with this convention, the goal of the model is to maximize the number
of transplants. Due to the requirement to enumerate all cycles, the formulation
does not scale, but this can be tackled via Column Generation [10,13,21,27], or
by switching to alternative models, i.e. compact formulations [2,9].

Not all the planned exchanges translate into actual transplants: some may
fail due to last-minute clinical tests, patient withdrawal, or worsening health
conditions. Failure-aware approaches in the KEP have been studied in [10,22,26],
by adjusting the weights of the cycles or including some failure probabilities.
However, those approaches tend to favor more reliable exchanges, rather than to
define repair actions in case of failures: for this reason they are complementary,
rather than a replacement, for super solutions.
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2.3 Logic-Based Benders Decomposition

Our method relies on Logic-Based Benders Decomposition (LBBD) [20], an iter-
ative method that breaks down a decision making task into a master problem
and a subproblem, over different subsets of variables. At each iteration, the solu-
tion produced by the master is fed to the subproblem, which tries to extend
it into a full assignment. If this is not feasible, a procedure generates one or
more constraints (cuts) that are added in the master formulation. However, the
LBBD method does not have a standard template for the production of valid
cuts. Instead, they must be tailored to the problem at hand, typically based
on knowledge of its structure. These cuts invalidate a set of master solutions,
always including the current one. If the problem cost does not depend on the
subproblem variables, then once all subproblems are feasible, the current master
solution is also optimal. In the opposite case, cuts should be generated even for
feasible subproblems, until the master becomes infeasible.

3 Super Solutions via Benders Decomposition

We define a method to obtain super solutions for problems in the generic form:

min z = f(x) (MP) (4)
subject to x ∈ X (5)

where x is a vector of n decision variables, f(x) is a cost function, and the X set
corresponds to the feasible decision space, which can be expressed by any means
(constraints, equations, logical clauses, etc.).

3.1 Generic Disruptions

Our method supports, and it is best described in terms of, generic disruptions.
These are characterized via a triplet 〈D,E, P 〉, where D(x̂) denotes the set of
all possible disruptions for a given solution x̂, by associating each of them to an
index d. For example, in classical (1, b) super solutions:

D(x̂) = {1, . . . , n}. (6)

In other words, in this case there is one potential disruption per variable. In
general, a disruption is always uniquely identified by a (d, x̂) pair. P is a set of
predicates Pd,x̂(x), each corresponding to the preconditions of disruption (d, x̂).
For example, in (1, b) super solutions:

Pd,x̂(x) = �xd = x̂d� (7)

where �·� denotes the truth value of a predicate. Informally, the precondition
represents a condition that should hold for disruption (d, x̂) to happen. E is a
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set of predicates Ed,x̂(x), each corresponding to the effects of disruption (d, x̂).
For example, in (1, b) super solutions:

Ed,x̂(x) = �xd �= x̂d� . (8)

As another example, often only a particular set of variables in the solution may
be subject to change and these are said to be members of the break-set. For
each variable in the break-set, a repair-set is required that comprises the set of
variables whose values may change to provide another solution. For this case we
can write the Eqs. (6), (7), (8) as follows:

D(x̂) = B (9)

Pd,x̂(x) = �xd = x̂d� (10)

Ed,x̂(x) = �xd �= x̂d� ∧
∧

i/∈Rd

�xi = x̂i� (11)

where B is the break-set and Rd is the repair set associated to the disruption.
The precondition predicates are as in the previous case. Concerning the effect
predicates, a disruption of the variables of the break-set prevents the variable xd

from taking the value it had in the x̂ solution. Moreover, since the disruption can
be handled by changing only the variables in the repair set, all other variables
are forced to maintain their value.

The framework can handle more general cases, and with particular disrup-
tions with domain-specific preconditions and domain-specific effects.

Remark 1. If Pd,x̂(x) holds for solution x, then Ed,x̂(x) holds in any repair solu-
tion for disruption (d, x̂), where d denotes a single possible disruption.

The result holds by construction, since as long as the disruption identified by the
pair (d, x̂) applies, all of its repair solutions should take its effects into account.
As in all super solution approaches, we assume that repairs can change at most
b variables. The c parameter from (a, b, c) super solutions can be supported as
described in Sect. 2.

3.2 Decomposition Scheme

We exploit the basic properties of super solutions to obtain an LBBD scheme,
and more importantly cut generation procedures, that can be applied to any
target problem. The method will inherit some classical benefits of LBBD, such
as the ability to use different solvers for the master and the subproblem, and pro-
vides some unique benefits. We task our master problem to find a solution, and
the subproblem to identify how to repair every disruption. This choice provides
two advantages: (a) since disruptions in super solutions are unrelated, we can
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handle each of them in a separate subproblem; and (b) having multiple subprob-
lems allows us to determine in a procedural fashion which disruptions should be
handled : this is precisely what makes our method capable of dealing with generic
disruptions.

Formally, the master is the same as the target problem, i.e. MP. Given a
master solution x̂ and a disruption index d, the basic form of one subproblem is:

Ed,x̂(y) (SP0) (12)
y ∈ X (13)

where the y variables correspond one-to-one to the master variables and are
used to define the repair solution. Hence, the subproblem is the same as the
original problem, without the cost function and with the addition of the dis-
ruption effects. Since the subproblem has no impact on the cost of the master
solution, if at any point all subproblems are feasible, the current x̂ represents an
optimal robust solution.

Pseudo-code for a basic version of this process is provided in Algorithm 1,
whose name stands for “Benders Decomposition For Super Solutions”. Note
that, while stopping every iteration at the first infeasible subproblem is enough
for convergence, processing all potential disruptions may lead to more cuts and
be beneficial in the long run. We will show the difference of these two options in
Sect. 5.

3.3 Basic Cuts

A trivial cut can be obtained by observing that there are two options for dealing
with a non-repairable disruption: (a) making sure that it cannot occur; and
(b) changing some assignments in the current solution. Hence, a valid cut for a
disruption (d, x̂) which lead to an unfeasible subproblem is:

¬Pd,x̂(x) ∨ �H(x, x̂) ≥ 1� (14)

where H is the Hamming distance, i.e.

Algorithm 1. bd4ss
Require: Triplet 〈D, E, P 〉

repeat
solve master problem to find x̂
if master infeasible then break
robust = �
for d ∈ D(x̂) do

if the subproblem for (x̂, d) is infeasible then
robust = ⊥
generate cuts for (x̂, d)
break

until robust
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H(x′, x′′) =
n∑

i=1

�x′
i �= x′′

i � . (15)

Equation (14) states that either the precondition for d should be violated, or at
least one change should be made with respect to x̂.

An improved cut can be obtained by modifying the subproblem so that its
objective is to minimize the distance between the repair solution and the current
master solution, i.e.

min β = H(y, x̂) (SP) (16)
s.t. Ed,x̂(y) (17)

y ∈ X. (18)

If the optimal subproblem cost β∗ is not greater than b, then a repair solution
exists. This counts as a “feasible” result for the purpose of Algorithm 1. However,
if β∗ > b, then we know that any repair solution will need to change at least β∗

variables. Based on this observation, we can derive a tightened version of Eq.
(14), which serves as our basic cut

¬Pd,x̂(x) ∨ �H(x, x̂) ≥ β∗ − b� . (19)

Lemma 1. Any new master solution should either violate the precondition
Pd,x̂(x), or β∗ − b is the minimum number of variables that needs to be changed.

Proof. In the case of a violation of the precondition for (d, x̂), then the cut is
correct. Otherwise, Pd,x̂(x) holds and finding a repair solution is necessary. Due
to Remark 1, we have that:

Pd,x̂(x) ⇒ Ed,x̂(y). (20)

Hence, the same Ed,x̂(y) will be part of any possible subproblem for the disrup-
tion. This means that all such subproblems will share the same feasible space.
Let such feasible space be Xd,x̂. We know that

min{H(y, x̂) : y ∈ Xd,x̂} ≥ β∗. (21)

Then, due to triangular inequality in the Hamming distance

min{H(y, x) + H(x, x̂) : y ∈ Xd,x̂} ≥ β∗. (22)

We wish for x to be repairable, hence the maximum value for H(y, x) is b. From
this, we obtain

min{b + H(x, x̂) : y ∈ Xd,x̂} ≥ β∗. (23)

And, therefore,

min{H(x, x̂) : y ∈ Xd,x̂} ≥ β∗ − b (24)

which proves correctness. �
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3.4 Strengthened Cuts

Our basic cuts can be strengthened by proving that a subset of assignments in
the master solution is enough to prevent repairability. Generic cut strengthening
procedures for Bender Decomposition exist, but they are computationally very
expensive. Here, we leverage the structure of super solutions to obtain insights
into which variables should be included in the cut. In particular, given a set of
indices I, let HI be the Hamming distance restricted to I, i.e.

HI(x′, x′′) =
∑

i∈I

�x′
i �= x′′

i � . (25)

Given an infeasible subproblem, we will try to identify a subset of indices I such
that the minimum HI distance from the master solution x̂ is still greater than
b. We do this heuristically and iteratively, by starting from the variables that
are different from x̂ in the solution of SP, and then by solving the modified
subproblem:

minHI(y, x̂) +
1
n

HI(y, x̂) (SPI) (26)

subject to Ed,x̂(y) (27)
y ∈ X. (28)

where I is the set of variable indices that are not in I. The cost function is a
lexicographic composition, whose main goal is to minimize the distance HI(y, x̂).
Let y∗ be the optimal solution of this subproblem. If HI(y∗, x̂) > b, we can
generate the strengthened cut

¬Pd,x̂(x) ∨ �HI(x, x̂) ≥ b − β∗
I � (29)

where β∗
I = HI(y∗, x̂). We can then expand the I set by including all variables

that take different values in y∗ and x̂. The term 1/nHI(y, x̂) exists to reduce the
number of variables that are added to I in this fashion at each step.

Algorithm 2. strengthen
Require: A disruption (d, x̂)

solve SP to find y∗ and β∗

I = {i ∈ [1..n] : y∗
i �= x̂i}

β∗
I = 0

repeat
Solve SPI to find y∗

if HI(y
∗, x̂) > max(b, β∗

I ) then
β∗
I = HI(y

∗, x̂)
Generate the cut from Equation (29)

until β∗
I = β∗

Pseudo-code for the procedure is given in Algorithm 2, and adds two opti-
mizations. First, it generates cuts only when the value of HI(y∗, x̂) increases:
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since the I set grows monotonically, subsequent iterations with the same HI

distance result in redundant cuts. Second, the process is stopped as soon as β∗
I

becomes equal to β∗, which is guaranteed to happen when all variable indices
are included in the I set.

3.5 Combined Cuts

A third cut generation method can be defined via a linear combination of pairs
of existing cuts. In particular, let us suppose we have:

¬Pdk,x̂k(x) ∨ �
HIk(x, x̂k) ≥ b − β∗

Ik

�
(30)

¬Pdh,x̂h(x) ∨ �
HIk(x, x̂h) ≥ b − β∗

Ih

�
. (31)

The cuts are built for disruptions (dk, x̂k) and (dh, x̂h), respectively, and are
expressed in the form of Eq. (29), which subsumes that of Eq. (19). First, we
observe that any inequality concerning a HI distance holds true if we expand
the set I. Hence, we can write:

¬Pdk,x̂k(x) ∨ �
HIkh(x, x̂k) ≥ b − β∗

Ik

�
(32)

¬Pdh,x̂h(x) ∨ �
HIkh(x, x̂h) ≥ b − β∗

Ih

�
(33)

where both Hamming distances are defined on the same set Ikh = Ik ∪ Ih. Due
to triangular inequality, we have that:

HIkh(x, x̂k) + HIkh(x, x̂h) ≥ HIkh(x̂k, x̂h). (34)

Therefore, the two cuts can always be merged to yield a valid combined cut :

¬Pdk,x̂k(x) ∨ ¬Pdh,x̂h(x)∨
�
HIkh(x, x̂k) + HIkh(x, x̂h) ≥ HIkh(x̂k, x̂h)

�
(35)

which is non-redundant if HIkh(x̂k, x̂h) > 2b−β∗
Ik −β∗

Ih . A simple procedure for
generating all non-redundant combined cuts is provided in Algorithm 3, where
nc is assumed to be the number of basic or strengthened cuts generated so far.

Algorithm 3. combine
Require: C = {(dk, x̂k, Ik, β∗

Ik) : ∀k ∈ [1..nc]}
for k ∈ [1..nc − 1] do

for h ∈ [k + 1, nc] do
if HIkh(x̂k, x̂h) > 2b − β∗

Ik − β∗
Ih then

Generate the cut from Equation (35)
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Some Remarks. The master and the subproblem for our decomposition corre-
spond very closely to the original target problem in terms of both structure
and size. This makes them easy to implement (in contrast to specialized search
methods), and typically not harder to solve than the target problem (in contrast
to reformulated models).

Finding super solutions, however, remains very challenging, as it should be
expected of any method providing strong robustness guarantees. Each iteration
of the method requires to solve multiple (typically NP-hard) problems. Moreover,
as the number of iterations grows, the master tends to become more difficult due
to the accumulated cuts.

The use of procedural code for many sections of our methods provides a
substantial degree of flexibility. In particular, it allows our method to deal with
generic disruptions. The available flexibility could be further exploited: for exam-
ple, one could conceive a hybrid chance-constraint/super solution method to pro-
vide robustness against disruptions with a given total probability of occurrence.

Another advantage of the approach is that, in case of early stops, one can
still access a master solution that is robust against some disruptions. This can
be achieved via reformulated models, but not via specialized search algorithms,
at least not trivially.

4 A Case Study on the Kidney Exchange Problem

We now proceed to demonstrate our method on the Kidney Exchange Problem
(KEP), using the cycle formulation from Sect. 2 as a basis. For sake of simplicity
and of maximal compatibility with earlier super-solution formulations, we are
interested in finding (1, b, c) super solutions that are repairable with respect to
the loss of cycles. Hence we have:

D(x̂) = {d ∈ [1..nc] : x̂d = 1} (36)

Ed,x̂(x) = �xd = 0� (37)

Pd,x̂(x) = �xd = 1� (38)

where nc is the number of cycles, and a disruption index d corresponds to a
cycle. Each cut is in the form:

¬Pd,x̂(x) ∨ �HI(x, x̂) ≥ b − β∗
I � (39)

and can be translated into the mathematical constraint:
∑

i∈[1..n]
x̂i=0

xi +
∑

i∈[1..n]
x̂i=1

(1 − xi) ≥ (b − β∗
I )(1 − xd). (40)
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The right hand side is non-trivial, i.e. larger than 0, iff xd is equal to 0, if the
precondition for the disruption is violated. This information is sufficient to apply
all the techniques described in Sect. 3 to the KEP.

Since we are dealing with (1, b, c) super solutions, we need to include an
additional cost-bounding constraint both in the master and in the subproblems:

∑

i∈C
wixi ≥ c∗ − c (41)

where c∗ is the cost of an optimal non-robust solution. Intuitively, in a robust
solution we do not want to lose too many lives, which makes sense from a medical
perspective.

We choose to use the (1, b, c) configuration to align with prior work on super
solutions in CP, see [14–16]. However, it is not particularly difficult to obtain
〈D,E, P 〉 triplets and cut expressions for other disruptions, including the loss of
multiple nodes, edges, or cycles. Below we show the example of robust solution
when a node disruption may occur:

D(x̂) = {d ∈ [1..V ] :
∑

c∈C:d∈c

x̂d ≥ 1} (42)

Pd,x̂(x) =

�

�
∑

c∈C,d∈c

xd ≥ 1

�

	 (43)

Ed,x̂(x) =

�

�
∑

c∈C,d∈c

xd = 0

�

	 (44)

where V is the set of pairs. The disruption in this case is associated with each
node d that is part of at least one selected cycle, and its effect is to forbid the
selection of other cycles that it is part of. In real life, it is more realistic to
consider a node disruption, since it happens quite often that a pair pulls out
from the program due to worsening health conditions.

4.1 Model Reformulation

As a basis for comparison we obtained a model reformulation by generalising the
approach from [31]. In particular, we generate a model with a “main” vector of
n decision variables x, and a vector of n repair variables yi for each xi. Overall,
the model has n × (n + 1) variables, and corresponds to the problem of finding
an (1, b) super solution and all its repair solutions:
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max z =
∑

i∈C
wixi (FTFKEP) (45)

s.t.
∑

i∈C:k∈Ci

xi ≤ 1 ∀k ∈ V (46)

∑

j∈C:k∈Cj

yij ≤ 1 ∀i ∈ C,∀k ∈ V (47)

yii = 1 − xi ∀i ∈ C (48)
xi ∈ {0, 1} ∀i ∈ C (49)
yij ∈ {0, 1} ∀i, j ∈ C (50)

where Eqs. (46) and (47) ensure that neither the super solution nor any repair
solution can use a node twice. Equation (48) corresponds to the effects of the
disruption. We then need to add constraints to limit the Hamming distance
between the super solution and the repair solutions. In particular, for each i ∈ C
we have:

∑

j∈C
yij(1 − xj) +

∑

j∈C
(1 − yij)xj ≤ b + |C|(1 − xi)

which is a quadratic constraint, with a right-hand side term that is non-trivial
iff xi = 1, i.e. if cycle i is used. Finally, we need one last set of constraints to
handle the cost bound:

∑

j∈C
wjyij ≥ c∗ − c ∀i ∈ C (51)

Overall, the reformulated model is not only considerably larger, but also non-
linear, although a big-M based linearization is, of course, possible.

5 Experiments

In this section we present our experimental evaluation, which was designed with
two main goals: first, to compare the effectiveness of our method against one
with a similar applicability and flexibility, i.e. the reformulation from Sect. 4;
and, second, testing the effectiveness of different cut generation procedures.

We use the benchmarks from [25], which were obtained via the state-of-the-
art donor pool generation method described in [30]. We consider all transplants
equally worthy, hence the weight of each cycle corresponds to its number of
exchanges. The maximum length of a cycle is 3. We use the docplex library2 to
model the problems which uses IBM R© Decision Optimization CPLEX solver.
All the tests run on Intel Xeon E5430 processors with Linux.

2 https://pypi.org/project/docplex/.

https://pypi.org/project/docplex/
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5.1 Choosing the (a, b, c) Parameters

As mentioned in Sect. 4, we focus on finding (1, b, c) super solutions, where dis-
ruptions correspond to (single) selected cycles becoming non-viable. Therefore,
we have a = 1, and we are left with two main parameters to tune, i.e. b and c.

The b parameter refers to how many variables can be changed in a repair
solution excluding, as in classical super solution approaches, the variables that
have lost their values. In our formulation, this requires to exclude such variables
in the computation of the Hamming distance. For most problems, finding a repair
solution by changing just one variable (i.e. b = 1) is a difficult task, and the KEP
is no exception. Interestingly, however, we found that setting b = 2 was enough
for the solution of the cycle formulation to be robust for most of the instances
in our benchmarks. Therefore, we chose to limit our experiments to b = 1.

The use of the cost-bounding parameter c is in this case mandatory. In fact,
any KEP solution remains feasible if a cycle is removed: hence, without some cost
bound, the loss of a cycle could be countered by doing nothing at all. In general,
if k is the largest size of an allowed exchange, then any solution is trivially (a, b)
robust, unless we require not losing more than ak − 1 units from the non-robust
optimum (i.e. c ≤ ak − 1). In our case, there are therefore only two reasonable
values for c, i.e. 1 and 2. We chose to keep c = 2 in our experiments.

5.2 Results

We performed experiments over groups of 10 instances with number of nodes
npairs ∈ {16, 32, 64, 128}. We solved them via the reformulation-based model,
and via our Benders Decomposition approach, using different cut generation
procedures, and always stopping the process after 5 × npairs master iterations.
We investigated approaches that stop each iteration of Algorithm 1 after the
first infeasible subproblem (with the 1st suffix), and approaches that process all
disruptions (with the all suffix). The all-suffix approaches will generate more
cuts: this may reduce the number of iterations, but require more time and makes
the master more difficult to solve. We considered the following combination of
the cuts from Sect. 3: only basic cuts, identifiable from the cut1 prefix; basic cuts
+ combined cuts, identifiable by cut2; strengthened cuts, identifiable by cut3;
and strengthened cuts + combined cuts, identifiable by cut4. Strengthened cuts
are expensive to produce, but may reduce the number of iterations. Combined
cuts are cheap to obtain, but their large number may make the master more
difficult to solve.

The results of the experiments are reported in Tables 1, 2, Figs. 1 and 2.
The tables report, for each approach and each size: (a) the fraction of instances
for which a robust solution was found; (b) the fraction of instances for which
robustness was proved infeasible; and (c) the fraction of open instances, for
which the iteration limit was reached. In particular Table 1 contains the results
for the reformulation approach and the first infeasible subproblem approach, and
Table 2 contains only the approaches that process all disruptions. Overall, the
reformulation scales very poorly, leading to consistent memory problems for sizes
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Table 1. Solutions of the Reformulation and Benders decomposition

#Pairs Reform Benders decomposition

cut1 1st cut2 1st cut3 1st cut4 1st

%sol %sol nosol open %sol nosol open %sol nosol open %sol nosol open

16 50 100 0 0 100 0 0 100 0 0 100 0 0

32 10 80 0 20 80 0 20 80 20 0 80 20 0

64 - 60 0 40 60 0 40 70 30 0 70 30 0

128 - 90 0 10 90 0 10 90 0 10 90 0 10

Table 2. Solutions of Benders decomposition

#Pairs Benders decomposition

cut1 all cut2 all cut3 all cut4 all

%sol nosol open %sol nosol open %sol nosol open %sol nosol open

16 100 0 0 100 0 0 100 0 0 100 0 0

32 80 0 20 70 0 30 80 20 0 80 20 0

64 60 0 40 60 30 10 70 30 0 70 30 0

128 90 0 10 90 10 0 100 0 0 90 10 0

Fig. 1. Resolution time with b = 1 log scale

larger than 32. Using combined cuts does not have a large impact on the number
of open instances but it does have a huge impact on increasing the size of the
instances, whereas strengthened cuts are very effective. Processing all disruption
at each iteration seems to be slightly detrimental.

In Fig. 1 we show the average solution time of all approaches on a logarithmic
scale, including the non-robust cycle formulation, referred to as optimal. The
time for the reformulation grows very quickly with the number of pairs, and the
series has only two data points. The approaches using strengthened cuts tend
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to be the most effective, while the time for methods using combined cuts are
consistently higher than those who do not generate them.

Fig. 2. Number of master’s iterations with b = 1 log scale

In Fig. 2 we plot the average number of master iterations for the Benders
Decomposition, again on a logarithmic scale. Strengthened cuts are the clear win-
ner. The all-suffix approaches do sometimes iterate less than the corresponding
1st-suffix ones, although this is not always the case. The reason is that adding

more cuts may force the master to produce different sequences of solutions, and
therefore have a non-monotonic effect on the number of iterations. Combined
cuts seem to have a more consistent effect, although not a dramatic one: this
suggests that a more difficult master is the main reason for their increased solu-
tion time, and that controlling the number of generated cuts per iteration may
make them more useful.

6 Conclusion and Future Work

We have proposed a Benders Decomposition approach to obtain super solutions
for the kidney exchange problem that dramatically outperforms reformulation-
based approaches in terms of scalability, and is more flexible and much easier to
apply compared to specialised algorithms from the literature. As part of future
work, we believe our contributions can be applied to other real-world satisfac-
tion and optimisation problems, which we are investigating at the moment. The
method is not without drawbacks and, in our current research, many improve-
ment directions are still open, such as defined using multiple subproblems, or
principled approaches to limit cut generation, improvements to the anytime fea-
tures of the approach, and hybridisation with probabilistic models.
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Abstract. In conflict-directed clause learning (CDCL) SAT solving, a
state-of-the-art criterion to measure the importance of a learned clause
is called literal block distance (LBD), which is the number of distinct
decision levels in the clause. The lower the LBD score of a learned clause,
the better is its quality. The learned clauses with LBD score of 2, called
glue clauses, are known to possess high pruning power. In this work, we
relate glue clauses to decision variables. First, we show experimentally
that branching decisions with variables appearing in glue clauses, called
glue variables, are more conflict efficient than with nonglue variables.
This observation motivated the development of a structure-aware CDCL
variable bumping scheme, which increases the heuristic score of a glue
variable based on its appearance count in the glue clauses that are learned
so far by the search. Empirical evaluation shows the effectiveness of the
new method on the main track instances from SAT Competitions 2017
and 2018 with four state-of-the-art CDCL SAT solvers. Finally, we show
that the frequency of learned clauses that are glue clauses can be used as
a reliable indicator of solving efficiency for some instances, for which the
standard performance metrics fail to provide a consistent explanation.

Keywords: CDCL SAT · Branching heuristics · Glue clauses

1 Introduction

Given a formula F of boolean variables, the task of SAT solving is to deter-
mine a variable assignment that satisfies F or to report the unsatisfiability of
F in case no such assignment exists. SAT is known to be NP-complete [5].
Despite the hardness, modern CDCL SAT solvers can solve large real-world prob-
lems from important domains, such as hardware design verification [8], software
debugging [4], planning [21], and encryption [18,23], sometimes with surpris-
ing efficiency. This is the result of a careful combination of its key components,
such as preprocessing [6,10] and inprocessing [11,17], robust branching heuris-
tics [13,14,19], efficient restart policies [2,20], intelligent conflict analysis [22],
and effective clause learning [19].

Clause learning prunes search space. As conflict discovery is the only way to
learn clauses, the rate of discovery is critical for CDCL SAT solvers. As a large
c© Springer Nature Switzerland AG 2019
T. Schiex and S. de Givry (Eds.): CP 2019, LNCS 11802, pp. 126–143, 2019.
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amount of learned clauses reduces the overall performance, the management of
the learned clause database also becomes a key component of a modern CDCL
SAT solver [19,22].

In earlier CDCL SAT solvers, the size and recent activities of learned clauses
were the dominant criteria for determining the relevance of learned clauses [7].
The CDCL SAT solver Glucose [1] was the first to apply a new measure called
literal block distance (LBD), which indicates the number of distinct decision
levels in a learned clause. The learned clauses with LBD score of 2, called glue
clauses, are of particular interest [1,20] because a glue clause connects a block
of closely related variables, and thus a relatively small number of decisions are
needed to make it a unit clause (i.e., a clause that has all but one literals assigned
under the current partial assignment). A glue clause therefore may cause a faster
generation of conflicts within fewer numbers of decisions, which leads to pruning
of the search space. Simply put, glue clauses have higher potential to reduce
search space more quickly than other learned clauses. For this reason, all modern
CDCL SAT solvers permanently store glue clauses.

Inspired by the intuitive characteristics of glue clauses, we ask the following
question: Can glue clauses be used to help re-rank decision variables to improve
search efficiency? We call the decision variables that have appeared in at least
one glue clause up to the current search state glue variables, and others nonglue
variables.

The main contributions of this paper are:

– We conduct an experiment using the 750 instances from the main track
of SAT Competition 2017 and 2018 (abbreviated as SAT-2017 and SAT-
2018, respectively) with four state-of-the-art CDCL SAT solvers: glucose
4.11 (just called Glucose), MAPLECOMSPS PURE LRB2 (abbreviated as
MapleLRB), Maple LCM Dist3 (abbreviated as MLD, winner of SAT-2017)
and MapleLCMDistChronoBT4 (abbreviated as MLD CBT, winner of SAT-
2018). Our experiment shows that decisions with glue variables are more con-
flict efficient than those with nonglue variables. Furthermore, glue variables are
picked up by CDCL branching heuristics disproportionately more often.

– We design a structure-aware variable score bumping method called Glue
Bumping (GB), which dynamically bumps activity score of a glue variable
based on its current activity score and (normalized) glue level, which is a mea-
sure of the count of glue clauses in which the variable appears. The method
is simple to implement.

– We implemented the GB method on top of the same four SAT solvers
mentioned above. For the 750 instances from SAT-2017 and SAT-2018, all
GB extensions solve more instances than the baselines and achieve lower

1 https://www.labri.fr/perso/lsimon/glucose/.
2 https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/.
3 https://baldur.iti.kit.edu/sat-competition-2017/solvers/.
4 http://sat2018.forsyte.tuwien.ac.at/solvers/main and glucose hack/.

https://www.labri.fr/perso/lsimon/glucose/
https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/
https://baldur.iti.kit.edu/sat-competition-2017/solvers/
http://sat2018.forsyte.tuwien.ac.at/solvers/main_and_glucose_hack/


128 Md. S. Chowdhury et al.

PAR-2 scores5. One of our extended solver solves 9 additional instances over
the instances from SAT-2017. According to [2], this level of performance gain
closely resembles to the introduction of a critical feature, which is remarkable,
given the simplicity of the new method.

– We provide evidence that the frequency of glue clauses in learned clauses may
serve as a reliable indicator of solving efficiency. In [16], the authors reported
correlations between solving efficiency of branching heuristics and standard
metrics based on the global learning rate (GLR) and average LBD (aLBD)
scores - higher solving efficiency is indicated by higher average GLR and lower
average aLBD. We show that these two measures do not provide a consistent
explanation of solving efficiency for some subsets of SAT-2017 and SAT-2018,
for which the correlations are highly expected to hold. However, using a new
measure based on the frequency of learned clauses that are glue, we are able
to provide a consistent explanation.

The next section provides preliminaries. Section 3 reports an experiment on
the role of glue variables in CDCL SAT solving, which motivates the design
of a bumping scheme in Sect. 4. Section 5 reports an experimental analysis. In
Sect. 7 we explain why our standard bumping scheme does not work very well for
Glucose and how to fix the issue. Section 8 reports some additional experimental
results with the GB method. Section 9 is about related work and future directions
can be found in Sect. 10.

2 Preliminaries

2.1 Inner Working of a CDCL Solver

A CDCL SAT solver works by extending an initially empty partial assignment
using two operations in an interleaving fashion: a branching decision and unit
propagation (UP). A branching decision selects an unassigned variable by using
a branching heuristic and assigns a boolean value to it. Following a branching
decision, UP simplifies F by deducing a new set of implied variable assignments.
UP may lead to a conflict due to a falsified or conflicting clause. Conflict analy-
sis determines the root cause of a conflict and generates a learned clause that is
added to F to prevent the conflict from reappearing in the future, thereby pruning
the search. Search continues from a backjumping level computed from the learned
clause. We refer the reader to [3] for more details on CDCL SAT solving.

2.2 Terminologies

We review some terminologies used in this paper.

5 A metric used in SAT competitions. Defined as the sum of all runtimes for solved
instances + 2 ∗ timeout for unsolved instances; lowest score wins.
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– Activity Based Branching Heuristics: The standard CDCL branching
heuristic, such as VSIDS [19], LRB [14] and CHB [13], maintains an activity
score for each variable of a given formula. During the search, a variable’s
involvement in conflicts contribute to the increments of its activity score. At
any given state of the search, the activity score of a variable measures its
involvement in the recent conflicts.

– Global Learning Rate (GLR): This is defined as nc

nd
, where nc is the number

of conflicts generated in nd decisions [16], i.e., GLR measures the average
number of conflicts that a solver generates per decision.

– Literal Block Distance (LBD): The LBD of a learned clause θ indicates
the number of distinct decision levels in θ [1]. If LBD(θ) = k, then θ con-
tains k propagation blocks, where each block has been propagated within the
same branching decision. Intuitively, variables in a block are closely related.
Learned clauses with lower LBD score tend to have higher quality.

– Glue Clauses: These are the learned clauses with LBD score of 2 [1],
which have the potential for fast propagations of truth values under a partial
assignment.

Let F be a SAT formula. Suppose a CDCL solver Ψ is solving F and s is
its current search state. At s, Ψ has taken d > 0 decisions and has learned a set
of glue clauses. A glue variable is a variable that has appeared in at least one
glue clause up to the search state s. Other variables that have not appeared in a
glue clause are called nonglue variables. A glue decision is the branching decision
that selects a glue variable and a nonglue decision is the branching decision that
selects a nonglue variable. Suppose that until s, Ψ has taken gd glue decisions
(resp. ngd nonglue decisions) which generated gc conflicts (resp. ngc conflicts).

– Learning Rate (LR): In contrast with GLR (global learning rate) where the
rate of conflict generation is over all decisions, we are also interested in such
rates over glue decisions only or over nonglue decisions only, up to a search
state. LR with glue decisions is defined as gc

gd , while LR with nonglue decisions
is defined as ngc

ngd .
– Average LBD (aLBD): This is the average LBD score per conflict generated

solely by glue decisions or solely by nonglue decisions. Let sumLBDgc (resp.
sumLBDngc) be the sum of LBD scores of the learned clauses derived from
those gc (resp. ngc) conflicts. The aLBD with glue decisions (resp. nonglue
decisions) is defined as sumLBDgc

gc (resp. sumLBDngc

ngc ).

3 Conflict Efficiency of Glue Variables

In this section, we report an experiment that studies the role played by glue
variables in CDCL SAT solving, which shows that glue decisions are more con-
flict efficient (i.e., achieve higher average LR and lower average aLBD, in gen-
eral) than nonglue decisions and the branching heuristics of modern CDCL SAT
solvers exhibit bias towards selection of glue variables over nonglue variables.
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The solvers in this experiment are Glucose, MapleLRB, MLD, and MLD
CBT. The branching heuristics used in the first two solvers are, respectively,
VSIDS [19] and LRB [14]. For the next two, the branching heuristics are based
on a combination of three heuristics, VSIDS, LRB, and Dist [24].

We run all 750 instances used in the main track of SAT-2017 (350 instances)
and 2018 (400 instances) with 5000 s timeout limit per instance. We instrumented
the four solvers to collect the following statistics for each instance: (i) the num-
bers of glue and nonglue decisions, (ii) LR and aLBD for both glue and nonglue
decisions, and (iii) the numbers of glue and nonglue variables. For each instance,
all the measurements are taken at the final search state (i.e., either after satisfi-
ability/unsatisfiability is determined or after timeout). All experiments are run
on a Linux workstation with 64 GB RAM and processor clock speed of 2.40 GHZ.

3.1 Conflict Generation Power of Glue Variables

Table 1 shows a comparison of average LR and average aLBD for glue and
nonglue decisions, grouped by satisfiable, unsatisfiable and unsolved instances.
Comparing column D1 and D2, on average, all solvers achieve significantly higher
LR with glue decisions. For all three categories of instances, MLD and MLD CBT
achieve significantly lower average LBD (compare columns E1 and E2) for glue
decisions. For Glucose and MapleLRB, the numbers under E1 and E2 are largely
comparable, without showing significant gaps.

Table 1. Comparison of average LR (higher is better) and average aLBD (lower is
better) for glue and nonglue decisions.

(A) Systems (B) Type (C) #Inst (D) Average of Learning

Rate (LR)

(E) Average of aLBD

(D1) Glue

decisions

(D2) Nonglue

decisions

(E1) Glue

decisions

(E2) Nonglue

decisions

Glucose SAT 180 0.55 0.41 18.44 18.18

UNSAT 191 0.56 0.44 11.2 11.4

Unsolved 379 0.57 0.48 24.76 25.48

MapleLRB SAT 194 0.47 0.38 20.18 19.25

UNSAT 190 0.58 0.46 11.92 12.39

Unsolved 366 0.48 0.44 34.86 33.39

MLD SAT 235 0.47 0.19 31.76 40.55

UNSAT 207 0.59 0.27 12.8 30.1

Unsolved 308 0.52 0.37 24.23 34.09

MLD CBT SAT 238 0.51 0.21 32.1 41.9

UNSAT 215 0.61 0.27 13.17 24.74

Unsolved 297 0.53 0.37 25.25 36.7

To confirm that the average values for these 2 measures reported in Table 1
reflect the actual distribution of these measures, we plot the LR and aLBD values
for the 750 instances for the four solvers.
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Fig. 1. Comparison of LR values for glue and nonglue decisions. Instances are sorted
by the LR values of glue decisions. The number at the top of each plot represents the
percentage of instances, for which LR of glue decisions are higher than LR of nonglue
decisions.

Fig. 2. Comparison aLBD scores (in Log Scale). Instances are sorted by the aLBD
of glue decisions. The number at the top of each plot represents the percentage of
instances, for which aLBD of glue decisions are lower than aLBD of nonglue decisions.

Figure 1 shows per instance LR values for both glue and nonglue decisions
for the four solvers in four subplots. For all solvers and for large majority of the
instances, glue decisions achieve higher LR than nonglue decisions.

Figure 2 shows per instance aLBD scores (in Log scale) for the 750 instances
for glue and nonglue decisions.
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– For Glucose and MapleLRB (first and second plots, Fig. 2), for more than half
of the instances, the aLBD score of the learned clauses by nonglue decisions
is lower than the aLBD score of the learned clauses by glue decisions. The
average values of aLBD under columns E1 and E2 in Table 1 for Glucose and
MapleLRB reflect the ground data.

– We observe quite a different scenario in case of MLD and MLD CBT (third
and fourth plot, Fig. 2). The aLBD scores of the learned clauses by glue
decisions are lower for large majority of the instances. Again, the average
values of aLBD under columns E1 and E2 in Table 1 for MLD and MLD CBT
reflect the ground data.

Overall, glue decisions are more conflict efficient than nonglue decisions for
all the tested solvers. For average aLBD with glue decisions, the winners of the
last two SAT competitions, MLD and MLD CBT, generate substantially lower
(better) values.

3.2 Selection Bias of Glue Variables

We are interested in the question: Do conflict guided CDCL branching heuristics
exhibit any bias towards glue variables over nonglue variables?

Given a SAT formula F and a solver Ψ, we define glue fraction (GF) (resp.
nonglue fraction (NF)) as the fraction of variables in F that are glue (resp.
nonglue) variables, after Ψ ends its run with F . GF (resp. NF) measures the
pool size of glue (resp. nonglue) variables in F with respect to the total number
of variables in F .

Over the 750 instances, column B of Table 2 shows the average GF and average
percentage of glue decisions and column C shows the average nonglue fraction and
the average percentage of nonglue decisions. It shows that for all the four solvers,
on average, the pool size of glue variables is significantly smaller than the pool size
of nonglue variables (columns B1 and C1). For all the four solvers, on average, glue
decisions relative to glue variables pool size are higher (column B2) than nonglue
decisions (column C2) relative to the nonglue variables pool size.

Table 2. Biased selection of glue variables

(A) Systems (B) Average for glue variable (C) Average for nonglue variables

GF (B1) Glue decisions % (B2) NF (C1) Nonglue decisions % (C2)

Glucose 0.25 65.43% 0.75 34.57%

MapleLRB 0.21 63.14% 0.69 36.86%

MLD 0.22 47.60% 0.78 52.60%

MLD CBT 0.22 48.76% 0.78 51.24%

In summary, the four state-of-the-art CDCL SAT solvers make a much larger
percentage of glue decisions against relatively smaller pools of glue variables.
This shows the bias of these solvers towards selecting glue variables in branching
decisions.
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4 Activity Score Bumping for Glue Variables

From the above analysis, it is clear that decisions with glue variables are more
conflict efficient than with nonglue variables. An interesting question is how we
can exploit this empirical characteristic for more efficient SAT solving. Here,
we present a score bumping method, called Glue Bump (GB), which bumps
the activity score of glue variables. The amount of bumping for a glue variable
depends on the appearance count of that variable in glue clauses and its current
activity score.

Glue Level. Let G be the set of learned glue clauses until search state s. The
glue level of a glue variable v, denoted gl(v), is defined to be the number of glue
clauses in G in which v appears.6 A higher glue level indicates higher potential
to create conflicts.

4.1 The GB Method

By using the current activity scores and (normalized) glue levels of glue vari-
ables (we will comment on normalization shortly), the GB method bumps the
activity scores of glue variables. This gives higher preference to recently active
glue variables with high glue levels. The GB method is simple to implement and
conveniently integrates with activity based standard CDCL heuristics.

The GB method modifies a CDCL SAT solver Ψ by adding the following two
procedures, which are called at different states of the search. We denote by Ψgb

the GB extension of the baseline solver Ψ.

Alg. 1: Increase Glue Level Alg. 2: Bump Glue Variable
Input: A newly learned glue clause θ Input: A glue variable v
1 For i ← 1 to |θ|
2 v ← varAt(θ, i)
3 gl(v) ← gl(v) + 1
4 End

1 bfv ← activity(v) ∗ ( gl(v)
|G|

)

2 activity(v) ← activity(v) + bfv

Increase Glue Level: Whenever Ψgb learns a new glue clause θ, it invokes
Algorithm 1. For each variable v in θ, the glue level of v is increased by 1
(line 3).

Bump Glue Variable: Algorithm 2 bumps a glue variable v. It computes the
bumping factor for v, denote bfv, by combining both of the current activity score
and normalized glue level of v (line 1). The bumping is performed by adding the
bumping factor of v to the activity score of v, which becomes the new activity
score for v (line 2).

Glue Level Normalization: The glue level of a glue variable can grow
unboundedly with the discovery of more and more glue clauses. The activity
score of a glue variable also grows, but at a different rate. Thus scaling the glue
level is necessary.
6 We omit the parameter s since the glue level of a variable is always computed w.r.t.

a underlying search state by default, without confusion.
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We normalize gl(v) to (0,1]7 by

gl(v)
|G|

where G is the set of glue clauses discovered by the search so far. The normal-
ization scales the glue levels of glue variables by the total number of glue clauses
discovered by the search so far.

Delayed Bumping of Glue Variables: Ψgb does not perform the bumping of
v right after its hosting clause θ is discovered. It delays the bumping (i.e., the
invocation of the Bump Glue Variable procedure) of v until it is unassigned by
backtracking. This is a subtle point which we explain below.

– The glue clause θ is the latest learned clause and all the variables in θ including
v are assigned at the current search state. At this stage, any score bumping
that v receive would not be used until it gets unassigned.

– Let T = de − ds > 0 be the decision window starting from the decision ds

that generates θ and ending at the decision de in which v gets unassigned.
Within T , the search may generate more glue clauses in some of which v may
appear. Furthermore, v may get involved in several conflicts during T and
may have its activity score increased. It is clear that the bumping factor of
v computed at de reflects a more recent measure than the one computed at
ds. By delaying the bumping of v until de when v has just got unassigned
and become a candidate variable for branching, the GB method boosts the
activity score of v by a more recent bumping factor.

5 Implementation and Experiments

5.1 Implementation

We implemented the GB method on top of the CDCL SAT solvers Glucose,
MapleLRB, MLD, and MLD CBT and call the extended solvers Glucosegb,
MapleLRBgb, MLDgb, and MLD CBTgb, respectively. The baseline solvers do not
distinguish between glue and nonglue variables, except Glucose, which bumps
activity scores of variables that are propagated from a glue clause.

In Glucosegb and MapleLRBgb, on the unassignment of a glue variable, the
GB method updates the activity score of that glue variable by VSIDS and LRB,
respectively, which are the heuristics used in their baselines. As remarked earlier,
the baseline solvers MLD and MLD CBT employ three heuristics, namely DIST,
VSIDS and LRB, which are activated at different phases of the search. At any
given phase, on the unassignment of a glue variable, MLDgb and MLD CBTgb

update the activity score of that glue variable for the currently active heuristic
at that phase.
7 At a given state of the search, a given glue variable v appears in at least one glue

clause. So, the glue level of v (which is the count of number of glue clauses in which v
appears), gl(v) > 0. After dividing gl(v) with |G|, the normalized glue level remains
larger than 0. Hence, the normalization normalizes the glue level within the range
(0,1].
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5.2 Experiments

We conduct our experiments with four extended solvers with the same set of 750
instances on the same machine with 5000 s timeout per instance. Here, we present
comparisons between the extended solvers and their counterpart baselines in
terms of solved instances, solved time and PAR-2 score.

Table 3. Comparison of the four baseline solvers with their GB extensions for the
instances from SAT-2017 and SAT-2018. The PAR-2 scores are scaled down by the
factor of 1

10,000
.

Systems SAT Comp-17 SAT Comp-18 Combined
SAT UNSAT Total PAR-2 SAT UNSAT Total PAR-2 SAT UNSAT Total PAR-2

Glucose 83 96 179 1893 97 95 192 2274 180 191 371 4167
Glucosegb 86 (+3) 96 (+0) 182 (+3) 1868 96 (-1) 97 (+2) 193 (+0) 2273 182 (+2) 193 (+2) 375 (+4) 4141
MapleLRB 80 95 175 1897 114 95 209 2069 194 190 384 3966
MapleLRBgb 87 (+7) 97 (+2) 184 (+9) 1824 117 (+3) 96 (+1) 213 (+4) 2027 204 (+10) 193 (+3) 397 (+13) 3851
MLD 99 106 205 1635 136 101 237 1807 235 207 442 3442
MLDgb 103 (+4) 107 (+1) 210 (+5) 1593 143 (+7) 102 (+1) 245 (+8) 1725 246 (+11) 209 (+2) 455 (+13) 3318
MLD_CBT 103 113 216 1565 135 102 237 1800 238 215 453 3365
MLD_CBTgb 102 (-1) 114 (+1) 216 (+0) 1539 138 (+3) 101 (-1) 239 (+2) 1756 240 (+2) 215 (+0) 455 (+2) 3295

Solved Instances Comparison. Table 3 compares the four extended solvers
with their baselines. Both MapleLRBgb and MLDgb solves 13 more instances (9
SAT, 4 UNSAT for the former and 11 SAT, 2 UNSAT for the latter). Glucosegb

solves 4 more instances (2 SAT, 2 UNSAT), and MLD CBTgb solves 2 additional
instances (both SAT).

According to Audemard and Simon [2], solving 10 or more instances on a
fixed set of instances from a competition by using a new technique, generally
shows a critical feature. MapleLRBgb solves 9 more instances over the instances
from SAT-2017 and MLDgb solves 8 additional instances over the instances from
SAT-2018. The gains with MapleLRBgb and MLDgb are significant and closely
resemble to the introduction of a critical feature.

Solve Time Comparison. Figure 3 compares the performance of Glucosegb

(blue line), MapleLRBgb (red line), MLDgb (yellow line) and MLD CBTgb (pur-
ple line) against their baselines. This figure plots the difference in the num-
ber of instances solved as a function of time. At most points in time, each of
MapleLRBgb, MLDgb, and MLD CBTgb solves more problems. This is particu-
larly pronounced for MLDgb (yellow line) at earlier time points, for MLD CBTgb

(purple line) on mid range time points. The improvement for MapleLRBgb (red
line) remains steady, with a brief downward slope in the middle. Glucosegb per-
forms slightly worse than Glucose at most of the times.
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Fig. 3. Solve time comparisons. For any point above 0 in the vertical axis, our exten-
sions solve more instances than their baselines at the time point in the horizontal axis.
(Color figure online)

PAR-2 Score Comparison. In SAT competitions, solvers are ranked based
on their PAR-2 scores. A PAR-2 score is computed as the sum of all runtimes
for solved instances + 2∗ timeout for unsolved instances; solvers of lower PAR-2
scores are better.

Table 3 shows that all our extended versions achieve a lower PAR-2 score
than the baselines for all the problem sets. Overall, the percentage of PAR-
2 score reductions (computed from the last column of Table 3) with MLDgb,
MapleLRBgb and MLD CBTgb are 3.73%, 2.98% and 2.12%, respectively, which
are considered significant with respect to SAT competition. For example, in SAT-
2018 the winning solver has a PAR-2 score which is a reduction of only 0.81%
over the runner-up.8

Glucosegb also lowers the PAR-2 score but only by 0.60%. The improvement is
less impressive than with other three GB extensions. In Sect. 7, we will discuss the
reason and show that this performance gap is not an indication of ineffectiveness
of the GB method.

Finally in this section, as many benchmarks in SAT-2017/SAT-2018 are of
industrial strength, we provide the information about the benchmark families,
for which our GB method is particularly efficient. Table 4 lists those benchmark
families for which our GB extended solvers solve at least 2 more instances than
their baselines.

8 http://sat2018.forsyte.tuwien.ac.at/index.php?cat=rules.

http://sat2018.forsyte.tuwien.ac.at/index.php?cat=rules
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Table 4. Benchmark families for which the GB extended solvers solve at least two
more instances than their baselines.

GB extensions Benchmarks/SAT Comp Solved by baseline Solved by GB extensions % Improvements

Glucosegb Integer Prefix/2017 28 32 (+4) 14.32%

Soos/2018 8 11 (+3) 37.5%

Ofer/2018 9 11 (+2) 18.18%

MapleLRBgb T/2017 28 31 (+3) 9.67%

Integer Prefix/2017 27 30 (+3) 10.00%

Klieber/2017 17 19 (+2) 10.52%

Chen/2018 2 4 (+2) 50.00%

Ofer/2018 5 7 (+2) 28.57%

Scheel/2018 18 20 (+2) 10.00%

MLDgb ak128/2017 11 13 (+2) 15.38%

Heule/2018 16 20 (+4) 20.00%

MLD CBTgb Xiao/2018 7 9 (+2) 22.22%

Collatz/2018 7 10 (+3) 30.30%

6 A New Measure of Solving Efficiency

In [16], the authors show that on average, better branching heuristics have higher
GLR values and lower average LBD (aLBD) scores of the learned clauses. In
Table 5, we compare our extended solvers and their baselines in terms of the
average GLR values and average aLBD scores. All the solvers with GB extension
generate conflicts at about the same rate as their corresponding baselines and
achieve slightly smaller average aLBD scores. These results are largely consistent
with [16].

Of course, one can pick up some subset of the benchmarks and show that the
standard metrics that are based on average GLR and average aLBD may not be
always applicable. On the other hand, for some subsets of benchmarks it may
be highly expected that these metrics should be re-enforced. In this section, we
select two subsets of this kind, but surprisingly the standard metrics do not pro-
vide a consistent explanation; they even lead to opposite conclusions. However,
we show that a simple new measure, based on the fraction of learned clauses
that are glue clauses, provides a consistent explanation of solving efficiency.

Table 5. Comparison of average GLR and aLBD score for GB extension solvers and
baselines over the 750 test instances.

Systems Glucose Glucosegb MapleLRB MapleLRBgb MLD MLDgb MLD CBT MLD CBTgb

Avg. GLR 0.49 0.49 0.48 0.48 0.40 0.40 0.40 0.41

Avg. aLBD 20.09 19.93 24.88 24.79 27.73 27.36 27.59 27.26

6.1 Metrics for Solving Efficiency

We define a new performance metric called Glue to Learned (G2L). Then we
present an analysis with three metrics, two standard ones and G2L on two dif-
ferent types of instances, where the baseline heuristics and their GB extensions
show opposite strengths.
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Glue to Learned (G2L). G2L represents the fraction of learned clauses that are
glue clauses. More precisely, it is defined by #glue clauses

#learned clauses , where our solver Ψ
has learned #learned clauses clauses for a given run on a given formula, among
which #glue clauses are glue clauses.

Relating G2L to Solving Efficiency. The performance of branching heuris-
tics correlates well with average GLR and the average aLBD scores at large
scale. However, these two metrics fail to explain the performance of the baseline
heuristics and their GB extensions for two specially designed subsets of instances
from SAT-2017 and SAT-2018:

– GBexclusive : These instances are solved by Ψgb, but not by Ψ.
– Baselineexclusive : These instances are solved by Ψ, but not by Ψgb.

Table 6 compares the four baseline solvers and their GB extensions in
terms of average GLR, average aLBD, and average G2L for GBexclusive and
Baselineexclusive instances. For these two types of instances, it is expected that
the solving efficiency will positively (resp. negatively) correlate with average
GLR (resp. average aLBD).

We observe:

– Average GLR: For instances from GBexclusive (Column C) and
Baselineexclusive (Column D), the better branching heuristics have lower
average GLR values. This is surprising since the performance of branching
heuristics is negatively correlated with average GLR values. This is highly
inconsistent with the results reported in [16].

– Average aLBD: In both GBexclusive and Baselineexclusive, the better heuris-
tics have lower average aLBD in Glucose and MapleLRB based systems. This
is consistent with the results from [16]. However, in MLD and MLD CBT

Table 6. Comparison between baselines and their GB extensions for average GLR,
average aLBD and average G2L for instance sets GBexclusive and Baselineexclusive;
Column B shows the heuristics employed for the systems in column A, where {x}gb

in column B is the GB extension of baseline heuristic x. Column C (resp. Column
D) shows three metrics: avg. GLR, avg. aLBD and avg. G2L for instance category
GBexclusive (resp. Baselineexclusive), where the sub-column #inst shows the number
of GBexclusive (resp. Baselineexclusive) instances for which we are comparing the
heuristics in Column B.

(A) Systems (B) Employed heuristics (C) GBexclusive (D) Baselineexclusive

#inst Avg. GLR Avg. aLBD Avg. G2L #inst Avg. GLR Avg. aLBD Avg. G2L

Glucose {VSIDS} 33 0.56 28.60 0.0005 29 0.59 18.52 0.0015

Glucosegb {VSIDS}gb 0.53 24.69 0.0016 0.62 20.14 0.00078

MapleLRB {LRB} 27 0.50 26.06 0.00073 14 0.47 30.75 0.00046

MapleLRBgb {LRB}gb 0.46 20.38 0.00126 0.48 32.02 0.00037

MLD {Dist/VSIDS/LRB} 28 0.55 23.60 0.00029 15 0.53 26.70 0.0011

MLDgb {Dist/VSIDS/LRB}gb 0.51 26.04 0.00032 0.58 23.21 0.0009

MLD CBT {Dist,VSIDS,LRB} 26 0.49 26.08 0.0006 24 0.51 29.64 0.00065

MLD CBTgb {Dist/VSIDS/LRB}gb 0.43 36.24 0.0011 0.55 25.42 0.00037
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based systems, the better branching heuristics have higher average aLBD
scores, which is inconsistent with the results of [16].

– Average G2L: For both GBexclusive and Baselineexclusive, the better heuris-
tics always achieve higher average G2L values. The biggest difference in G2L
is 220% (0.0016–0.0005) for VSIDS and VSIDSgb in Glucose and Glucosegb

for the GBexclusive. We observe a significantly larger average G2L values for
all the other cases as well (compare the bold values in avg. G2L subcolumn
with the values not in bold, for both columns C and D in Table 6).

To summarize, for instances for which one heuristic is better than the other,
the correlation between the performance of branching heuristics and average
GLR and average aLBD is not always consistent with the results of [16]. The
average value of the new metric G2L positively correlates with the performance
of the branching heuristics in each case.

7 Effect of Glue Level Normalization

Earlier, we noticed that Glucosegb showed less improvement than the other GB
extensions. Compared to its baseline, Glucosegb solves 4 additional instances,
lowers the PAR-2 score only by 0.60% (Table 3), and solves instances at a slower
rate than its baseline at most time points (Fig. 3).

Unlike the other 3 baseline solvers used in our experiments, the baseline solver
Glucose already bumps variables that are propagated from glue clauses by using
VSIDS [1]. These variables are a subset of what we call glue variables. Thus in
Glucosegb, these variables get bumped from two sources: from GB bumping and
from VSIDS. We hypothesize that the relatively weak performance of Glucosegb

comes from this imbalance.
We tested this hypothesis by changing the glue level normalization method

in GB to decrease the bumping factor in Algorithm 2. For a given glue variable
v, instead of dividing gl(v) by |G|, we divide by a bigger factor: gl(v)∑

θ∈G len(θ) ,
where len(θ) is the number of variables in the glue clause θ. The sum is the total
number of the glue variables discovered so far in the search. If the average length
of the glue clauses in G is n, then in this version, gl(v) is scaled-down n times
more than before.

We repeated our experiment with this version. Over the 750 instances from
SAT-2017 and 2018, Glucosegb now solves 11 more instances than Glucose and
and lowers the PAR-2 score by 2.86%. For the other three GB extensions, this
reduction does not work well.
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8 Additional Experimental Results

8.1 Results with Benchmarks from SAT-2016

We performed an additional experiment with all of our GB extended solvers for
the bumping factor gl(v)

|G| for the benchmark instances from SAT-20169. In the
below, we summarize the results:

– Both Glucose and its GB extension solve equal number of problems (SAT 64,
UNSAT 123, total 187).

– MapleLRBgb solves (SAT 69, UNSAT 102, total 171) equal number of
instances as its baseline MapleLRB (SAT 67, UNSAT 104, total 171).

– MLDgb solves 2 more instances (SAT 73, UNSAT 135, total 208) than MLD
(SAT 69, UNSAT 137, total 206).

– MLD CBTgb solves 2 less instances (SAT 66, UNSAT 137, total 203) than its
baseline MLD CBT (SAT 65, UNSAT 140, total 205).

For this benchmark set, the GB method does not work as well as it works for
the benchmarks from SAT-2017 and 2018. Further tuning of the GB method
is expected to improve the performance of the GB extended solvers on this
benchmark set.

8.2 Experiment with Non-Delayed Bumping

We performed a smaller scale experiment with MLD over the 350 instances from
SAT competition-2017, where we bump the score of the glue variables as soon as
their hosting glue clause is learned (i.e., without delaying the bumping). MLD,
with this version of glue variable bumping, solves 2 more UNSAT instances, but
2 less SAT instances than the baseline. As this non-delayed bumping did not
appear to be promising with MLD, we did not perform any further experiment.

9 Related Work

As remarked earlier, Glucose [1] explicitly increases the activity scores of vari-
ables of the learned clause that were propagated by a glue clause. In their work,
the bumping was based on VSIDS score bumping scheme. In contrast, we increase
the activity scores of all variables that appear in glue clauses based on their nor-
malized glue level.

In [12], the authors studied the behavior of Glucose with respect to eigen-
centrality, a precomputed static measure of ranking of the variables in industrial
SAT instances. They show that the branched and propagated variables in Glu-
cose have high eigencentrality and compared to the variables that appear in

9 A total of 483 instances (283 applications, 200 crafted) after removing 17 duplicate
instances between SAT-2016 and SAT-2017.
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conflict clauses, the variables that appear in learned clauses are more eigencen-
tral. In contrast, we dynamically characterize glue and nonglue variables within
the course of a search and show that decisions with glue variables are more
conflict efficient than decisions with nonglue variables.

The authors of [15] show that the VSIDS heuristic branches disproportion-
ately more often on variables that are bridges between communities. Here, we
have shown that CDCL heuristics branch disproportionately more often on glue
variables with respect to their relatively smaller pool size.

In [9], the authors exploit the betweeness centrality measure of variables in
industrial SAT formulas to design new heuristics. This measure is precomputed
for a given instance. In contrast, we compute the normalized glue level of the
variables dynamically during the search.

10 Summary and Future Work

In this work, we showed experimentally that decisions with variables appearing
in glue clauses are more conflict efficient than decisions with other variables,
and state-of-the-art CDCL SAT solvers tend to make glue decisions more often.
Motivated by these observations, we developed a structure-aware CDCL variable
bumping scheme, which increases the heuristic score of a glue variable based on
the frequency of its appearance in glue clauses. Our empirical evaluation showed
the effectiveness of the new method on the main track instances from SAT-2017
and SAT-2018 with four state-of-the-art CDCL SAT solvers. Lastly, we found
that for some subsets of SAT-2017 and SAT-2018 benchmarks, our experimental
data are surprisingly inconsistent with the standard performance metrics based
on GLR and average LBD. We showed that for these subsets of benchmarks, the
measure based on the fraction of learned clauses that are glue clauses provides
a consistent explanation of our experimental data.

A number of questions deserve further considerations. The first is on the
relationships between normalized glue level and other centrality measures, such
as eigencentrality or betweenness centrality. The notion of glue level is central
in our glue bumping scheme. Can we design clause deletion heuristics based on
the notion of glue level? A similar question can be asked for the G2L metric: can
we design more efficient branching heuristics based on this measure of solving
efficiency?
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Abstract. The job shop scheduling problem (JSSP) is an abstraction
of industrial scheduling and has been studied since the dawn of the com-
puter era. Its combinatorial nature makes it easily expressible as a con-
straint satisfaction problem. Nevertheless, in the last decade, there has
been a hiatus in the research on this topic from the constraint com-
munity; even when this problem is addressed, the target instances are
from benchmarks that are more than 20 years old. And yet, constraint
solvers have continued to evolve and the standards of today’s industry
have drastically changed. Our aim is to close this research gap by testing
the capabilities of the best available CP solvers on the JSSP. We tar-
get not only the classic benchmarks from the literature but also a new
benchmark of large-scale instances reflecting nowadays industrial scenar-
ios. Furthermore, we analyze different encodings of the JSSP to measure
the impact of high-level structures (such as interval variables and no-
overlap constraints) on the problem solution. The solvers considered are
OR-Tools, Google’s open-source solver and winner of the last MiniZ-
inc Challenge, and IBM’s CP Optimizer, a proprietary solver targeted
towards industrial scheduling problems.

Keywords: Constraint programming · Job shop scheduling · JSSP ·
OR-Tools · CP Optimizer · Large-scale benchmark

1 Introduction

The job shop scheduling problem (JSSP) is among the first combinatorial prob-
lems ever studied [11]. Due to its relevant application to, both, computer and
manufacturing systems, it is one of the most studied and analyzed.

The problem is presented as a set of jobs that must be processed by a set of
machines. In the classical formulation, every job has to go through each machine
exactly once. The processing of a job by one machine is called operation and the
processing time is called duration. Every job has a specific ordering of operations
that must be respected. An admissible solution for an instance of this problem
is a sequence of operations on every machine where there is no time overlap
between two operations in the same machine and the ordering of the operations
is respected. The most typical optimization criterium is the minimization of the
c© Springer Nature Switzerland AG 2019
T. Schiex and S. de Givry (Eds.): CP 2019, LNCS 11802, pp. 144–160, 2019.
https://doi.org/10.1007/978-3-030-30048-7_9
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makespan, i.e. the time interval between the start of the first operation and the
end of the last.

The structure of the problem makes it easily representable as a constraint
satisfaction problem. In fact, there have been many successful applications of
constraint-based approaches to this problem over the past years, e.g. [2,5,14].

Among the various CP techniques, a particularly successful one is Large
Neighborhood Search (LNS) [7]. This method consists of an iterative process of
relaxation and re-optimization of the problem, progressively selecting the most
promising partial schedules to improve the final solution. This idea was also
applied to MIP approaches (in the form of Relaxation Induced Neighborhood
Search [4]). Hybrid CP-MIP methods have been considered as well, in order to
take the best of the two worlds [13], and in some cases it has been shown that
hybrid approaches perform better than MIP alone [6].

Despite these advancements in constraint solving, the last decade has expe-
rienced a decrease of research interest of CP applied to the classic JSSP. The
major contributor in this period was IBM, which stole the scene with their pro-
prietary CP Solver, CP Optimizer. This solver has been capable of finding better
solutions for many JSSP instances from the classic benchmarks [19]. They also
use a hybrid CP-MIP approach in case of non-regular objective functions, as in
scheduling problems with earliness costs [8].

This evolution of solving capabilities, however, does not correspond to an evo-
lution of benchmarks instances, which are almost the same as twenty years ago.
In the meantime, industrial standards have changed to the point that scheduling
problems from modern manufacturing systems can easily require up to 2000 jobs
to be scheduled on 100 machines [3,17]. In comparison, the biggest instance of the
Taillard benchmark [16], which reflected real dimensions of industrial problems
in 1993 and it is still among the largest available, has 50 jobs on 20 machines.
To close this gap, we created a new benchmark of JSSP instances, based on
Taillard’s specification, but in line with today’s industrial scenarios.

The aim of this paper is twofold. First, we want to close the gap on the JSSP
research, testing the capabilities of the best available CP solvers on, both, classic
benchmarks and our large-scale one. Second, we want to investigate how different
design choices affect the search process. In fact, while CP allows a compact
representation, it still offers multiple ways to encode a problem. In particular,
we focus on the application of high-level structures like interval variables and
no-overlap global constraints.

As anticipated, one of the most successful CP solvers on scheduling prob-
lems is CP Optimizer (abbreviated CPO). To find a worthy opponent, we took
the winner of the last years MiniZinc challenge1. The MiniZinc challenge is a
recurring competition where all the constraint solvers that support the MiniZinc
modeling language [12] compete on various combinatorial problems, including
scheduling. OR-Tools2 (ORT), an open-source solver developed by Google, won
the gold medal in all categories in 2018. While preliminary studies done on

1 https://www.minizinc.org/challenge2018/challenge.html.
2 https://developers.google.com/optimization/.

https://www.minizinc.org/challenge2018/challenge.html
https://developers.google.com/optimization/
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global constraints suggest the advantage of CP Optimizer over OR-Tools [9], a
direct comparison of these two solvers on the JSSP has never been conducted,
especially on industrial-size instances.

2 Experimental Setup

We implement three encodings for the JSSP to measure the effectiveness of high-
level constraint structures:

– A Naive encoding, which uses primitive CP constraints and integer variables;
– A SemiNaive encoding, which takes advantage of the interval variables, par-

ticularly well suited to represent operations in JSSP;
– An Advanced encoding, which combines the interval variables with global con-

straints designed for scheduling problems, such as the no-overlap constraint.

The comparison is carried out measuring the quality of the final solution
(makespan) and the time needed to reach that solution. Each solver is tested
with all three encodings on all benchmark instances. The search procedure runs
on a single core.

On the classic instances, the time allowed for each instance is 20 min, instan-
tiation time included; this time limit complies with the MiniZinc challenge rules.

On the large-scale instances, the time allowed is 6 h, instantiation time
included. The time limit is extended because the size of large-scale instances
demands more time to have a thorough exploration of the search space. Nev-
ertheless, given that these instances were generated with industrial scenarios in
mind, we selected a time limit which would allow the calculation to be completed
overnight, to minimize gaps in the production flow. Concerning the solvers’ ver-
sion, we use version 12.8.0 for CP Optimizer and version 6.10.6025 for OR-Tools.
Since CPO does not support MiniZinc as modeling language, but both solvers
offer Java APIs, we decided to use Java to interface with the solvers, to avoid
the bias that different modeling languages might introduce. We conducted a
short preliminary experiment to test the various solver configurations. Concern-
ing CPO, we found the default configuration to be the most performant. In ORT,
we tested both the classic CP Solver and the new CP-SAT Solver, finding the
latter to be better than the former in most cases.

The experiment is conducted on a system equipped with a 2 GHz AMD
EPYC 7551P 32 Cores CPU and 128 GB of RAM. Each run was performed on
a single core with a maximum cap of 10 GB of RAM.

2.1 Problem Instances

Our tests on the various models are conducted on the classic benchmark and the
large-scale benchmark. All the instances of both benchmarks are rectangular
JSSP instances. This means that every job has to go through all the machines,
therefore every job will have a number of operations equal to the total number
of machines and every machine will have assigned a number of operations equal
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to the total number of jobs. The classic benchmark consists of a selection of
problem instances and comprises the most used JSSP benchmarks in the litera-
ture. In particular, we used the same problem instances selected for the MiniZinc
benchmark3:

– FT: This is one of the oldest benchmarks for JSSP [11]. It includes 3 problem
instances of sizes 6 × 6, 10 × 10 and 20× 5. The square instance 10 × 10 is
famous for remaining unsolved for more than 20 years.

– LA: This benchmark contains 40 problem instances from 10 × 5 to
30 × 10 [10].

– ABZ: 5 problem instances from the work about shifting bottleneck by [1].
– ORB: 10 problem instances proposed by [2].
– YN: 1 randomly generated problem instance of size 20 × 20 [20].
– SWV: A set of 14 problem instances from [15].
– VW: 1 instance from [18].

The large-scale benchmark consists of 90 instances that we generated follow-
ing the Taillard benchmark specification [16]. We generated our own benchmark
instead of using Taillard’s because our aim is to verify the performance of the
two solvers on problem instances with a size comparable with modern industrial
problems4. The benchmark is structured with instances of increasing sizes, as
follows:

– 10 instances 10 × 10 (i.e. 10 jobs to be scheduled on 10 machines, for a total
of 100 operations)

– 10 instances 10 × 100 (i.e. 10 jobs to be scheduled on 100 machines, for a total
of 1000 operations)

– 10 instances 10 × 1000 (10000 operations)
– 10 instances 100 × 10 (1000 operations)
– 10 instances 100 × 100 (10000 operations)
– 10 instances 100 × 1000 (100000 operations)
– 10 instances 1000 × 10 (10000 operations)
– 10 instances 1000 × 100 (100000 operations)
– 10 instances 1000 × 1000 (1000000 operations)

2.2 Encodings

One of the main advantages of adopting a constraint programming approach is
that it allows a compact and formal definition of the problem, which is easily
maintainable and adaptable to sudden changes in the problem configuration.
Nevertheless, various decisions can be made during the modeling process to
affect the search phase. In particular, we are interested in the impact of high-
level structures and constraints on the solving capabilities of solvers, i.e. :

3 https://github.com/MiniZinc/minizinc-benchmarks/tree/master/jobshop.
4 complete encodings and benchmarks are available at https://goo.gl/qarP3m.

https://github.com/MiniZinc/minizinc-benchmarks/tree/master/jobshop
https://goo.gl/qarP3m
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– Interval variable: a special type of variable well suited to represent job oper-
ations in scheduling. This variable incorporates a start time, an end time
and a duration, and automatically enforces a duration constraint, such that
start + duration = end;

– No overlap constraint: given a sequence of interval variables v1 . . . vn, if vi
starts before vj , then vj cannot start before the end of vi ( for every variable
index i, j ∈ {1 . . . n }| i �= j ). This constraint is designed to work with interval
variables, and cannot be used without them.

INPUT
opDurations : IntegerArray[1..numJobs][1..numMachines]
opSuccessors : IntegerArray[1..numJobs][1..numMachines]

VARIABLES
opStarts : IntegerVariableArray[1..numJobs][1..numMachines]
opEnds : IntegerVariableArray[1..numJobs][1..numMachines]

CONSTRAINTS
opStarts[j][m] + opDurations[j][m] = opEnds[j][m],
∀j ∈ {1, . . . , numJobs},∀m ∈ {1, . . . , numMachines}

opEnds[j][m] ≤ opStarts[j][opSuccessors[j][m]],
∀j ∈ {1, . . . , numJobs},∀m ∈ {1, . . . , numMachines}
with opSuccessors[j][m] �= NULL

opEnds[j][m] ≤ opStarts[k][m] ∨ opEnds[k][m] ≤ opStarts[j][m],
∀j ∈ {1, . . . , numJobs}, ∀k ∈ {1, . . . , numJobs}, ∀m ∈ {1, . . . , numMachines}
with j �= k

OBJECTIVE
minimize max({end|end ∈ opEnds})

Encoding 1. Naive encoding for the job shop scheduling problem

Based on these constructs, we created three encodings for the JSSP:
The Naive encoding does not take advantage of any of the specialized struc-

tures, and relies on integer variables and primitive constraints to model the
JSSP. Encoding 1 shows the model of the naive encoding. Keeping in mind
that all the adopted instances are rectangular, we use a matrix structure with
a number of rows equal to the number of jobs and a number of columns equal
to the number of machines of an instance. In the input data there are two such
matrices, one to store the durations and one for the succession of the operations
of each job on the machines. In the model, opStarts and opEnds are matri-
ces of integer variables that store respectively the start and end variables of
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each operation. The first constraint imposes that for each operation of each job,
start + duration = end. The second constraint enforces the precedence relation
between operations within a job (as long as a certain operation has a successor).
The third constraint ensures that on each machine, for every couple of operations
oj and ok (with j different from k), either oj comes before than ok or viceversa,
without any overlap. The objective function aims to minimize the largest of the
opEnds (i.e. the makespan).

INPUT
opDurations : IntegerArray[1..numJobs][1..numMachines]
opSuccessors : IntegerArray[1..numJobs][1..numMachines]

VARIABLES
ops : IntervalVariableArray[1..numJobs][1..numMachines]
with ops[j][m].duration = opDurations[j][m]
∀j ∈ {1, . . . , numJobs},∀m ∈ {1, . . . , numMachines}

CONSTRAINTS
ops[j][m].end ≤ ops[j][opSuccessors[j][m]].start
∀j ∈ {1, . . . , numJobs},∀m ∈ {1, . . . , numMachines}
with opSuccessors[j][m] �= NULL

ops[j][m].end ≤ ops[k][m].start ∨ ops[k][m].end ≤ ops[j][m].start,
∀j ∈ {1, . . . , numJobs}, ∀k ∈ {1, . . . , numJobs}, ∀m ∈ {1, . . . , numMachines}
with j �= k

OBJECTIVE
minimize max({op.end|op ∈ ops})

Encoding 2. SemiNaive encoding for the job shop scheduling problem

The SemiNaive encoding makes use of interval variables to encode job oper-
ations. The model described in Encoding 2 is more compact compared to the
Naive encoding. In fact, the interval variables already contain the information
about start and end of each operation, as well as the duration constraints. There-
fore, the only constraints that have to be explicitly expressed are the precedence
constraints and the no-overlap constraints, done by manually instantiating a dis-
junctive constraint for every couple of operations in the machine, as in the Naive
encoding.

The Advanced encoding (Encoding 3) also exploits interval variables,
like the SemiNaive encoding, but instead of a quadratic number of primi-
tive constraints per machine, one no overlap global constraint is used. Given
that this procedure condenses two iterations over the number of jobs, a wise
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implementation of such procedure can lead to a great speed-up of both the
instantiation and the solving process.

INPUT
opDurations : IntegerArray[1..numJobs][1..numMachines]
opSuccessors : IntegerArray[1..numJobs][1..numMachines]

VARIABLES
ops : IntervalVariableArray[1..numJobs][1..numMachines]
with ops[j][m].duration = opDurations[j][m]
∀j ∈ {1, . . . , numJobs},∀m ∈ {1, . . . , numMachines}

CONSTRAINTS
ops[j][m].end ≤ ops[j][opSuccessors[j][m]].start
∀j ∈ {1, . . . , numJobs},∀m ∈ {1, . . . , numMachines}
with opSuccessors[j][m] �= NULL

noOverlap({op|op ∈ ops[1..numJobs][m]}),
∀m ∈ {1, . . . , numMachines}

OBJECTIVE
minimize max({op.end|op ∈ ops})

Encoding 3. Advanced encoding for the job shop scheduling problem

3 Results

This section illustrates the results of the experiment carried out on the classic
benchmark and on the large-scale benchmark. The tests are conducted on pairs
of solver-encoding configurations, e.g. OR-Tools solver using Naive encoding, CP
Optimizer solver using Advanced encoding, and so on. For the sake of synthe-
sis, from now on we will refer to any solver-encoding configuration simply as a
system.

3.1 Results of Classic Benchmark

The results of the classic benchmark are summarized in Table 1. In the makespan
columns, the listed values correspond to the best solution achieved after 20 min
of computation (or earlier, if the optimal solution is detected). The best solutions
found are highlighted in bold. The last column indicates whether the best solu-
tion found is optimal or not. In the solving time columns, the time is measured
in seconds. The best values are highlighted in bold.
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Table 1. Results of the experiment on the classic benchmarks.

Problem Makespan Solving Time
Instances CP Optimizer OR-Tools CP Optimizer OR-Tools

naive seminaive advanced naive seminaive advanced naive seminaive advanced naive seminaive advanced optimal
abz5 1238 1234 1234 1234 1234 1234 1200 6.32 2.19 2.03 2.01 1.75 Yes
abz6 943 943 943 943 943 943 1200 1.25 0.68 0.43 1.19 0.7 Yes
abz7 685 700 656 689 671 660 1200 1200 1170.24 1200 1200 1200 Yes
abz8 700 705 682 706 685 679 1200 1200 1200 1200 1200 1200 No
abz9 728 739 685 703 687 695 1200 1200 1200 1200 1200 1200 No
ft06 55 55 55 55 55 55 0.04 0.04 0 0.03 0.02 0.01 Yes
ft10 930 930 930 930 930 930 1200 22.81 3.76 5.42 4.4 4.85 Yes
ft20 1196 1197 1165 1206 1174 1165 1200 1200 1.36 1200 1200 4.88 Yes
la01 666 666 666 666 666 666 1200 0.66 0 0.25 0.25 0.08 Yes
la02 655 655 655 655 655 655 1200 2.25 0.3 0.51 0.46 0.04 Yes
la03 597 597 597 597 597 597 816.38 2.14 0.07 0.53 0.52 0.06 Yes
la04 590 590 590 590 590 590 1200 1.27 0.34 0.19 0.35 0.18 Yes
la05 593 593 593 593 593 593 1200 1.5 0 0.76 0.64 0.02 Yes
la06 926 926 926 926 926 926 1200 1200 0 1200 1200 1.04 Yes
la07 890 890 890 890 890 890 1200 1200 0.02 1200 1200 0.11 Yes
la08 863 863 863 863 863 863 1200 1200 0.02 1200 1200 0.26 Yes
la09 951 951 951 951 951 951 1200 1200 0 1200 1200 0.48 Yes
la10 958 958 958 958 958 958 1200 1200 0 1200 1200 0.87 Yes
la11 1222 1222 1222 1222 1222 1222 1200 1200 0.01 1200 1200 0.7 Yes
la12 1039 1039 1039 1039 1039 1039 1200 1200 0.14 1200 1200 0.64 Yes
la13 1150 1150 1150 1150 1150 1150 1200 1200 0.02 1200 1200 3.02 Yes
la14 1292 1292 1292 1292 1292 1292 1200 1200 0.01 1200 1200 1.92 Yes
la15 1207 1207 1207 1207 1207 1207 1200 1200 0.14 1200 1200 5.61 Yes
la16 945 945 945 945 945 945 1200 2.38 1.45 0.73 0.95 0.6 Yes
la17 784 784 784 784 784 784 1200 1.71 1.12 0.54 1.7 0.32 Yes
la18 848 848 848 848 848 848 93.2 1.67 0.9 0.55 1.85 0.88 Yes
la19 842 842 842 842 842 842 1200 3.83 2.93 0.93 1.44 1.65 Yes
la20 902 902 902 902 902 902 1200 2.03 1.6 0.55 2.49 0.7 Yes
la21 1059 1051 1046 1048 1046 1046 1200 1200 22.56 1200 534.25 83.03 Yes
la22 932 927 927 927 927 927 1200 173.47 5.28 103.93 80.29 6.62 Yes
la23 1032 1032 1032 1032 1032 1032 1200 303.5 0.12 118.82 257.44 2.8 Yes
la24 969 935 935 935 935 935 1200 314.42 15.42 113.99 47.07 24.5 Yes
la25 982 977 977 977 977 977 1200 218.82 14.63 60.28 47.45 18.82 Yes
la26 1218 1246 1218 1237 1218 1218 1200 1200 7.35 1200 1200 78.47 Yes
la27 1293 1275 1235 1289 1266 1235 1200 1200 129.38 1200 1200 509.21 Yes
la28 1297 1248 1216 1250 1224 1216 1200 1200 17.53 1200 1200 13.97 Yes
la29 1198 1226 1152 1236 1191 1153 1200 1200 1200 1200 1200 1200 No
la30 1426 1355 1355 1355 1355 1355 1200 1200 0.28 1200 1200 20.79 Yes
la31 1791 1784 1784 1841 1784 1784 1200 1200 0.44 1200 1200 23.74 Yes
la32 1853 1850 1850 1882 1850 1850 1200 1200 0.04 1200 1200 29.09 Yes
la33 1747 1719 1719 1746 1719 1719 1200 1200 0.25 1200 1200 14.16 Yes
la34 1793 1721 1721 1781 1746 1721 1200 1200 1.57 1200 1200 69.39 Yes
la35 1888 1898 1888 1922 1888 1888 1200 1200 0.24 1200 1200 25.14 Yes
la36 1281 1268 1268 1268 1268 1268 1200 108.6 10.37 32.34 40.16 10.79 Yes
la37 1399 1397 1397 1397 1397 1397 1200 330.43 4.03 179.52 158.46 8.5 Yes
la38 1202 1196 1196 1196 1196 1196 1200 856.21 84 462.06 135.24 260.72 Yes
la39 1248 1233 1233 1233 1233 1233 1200 110 5.93 51.89 40.1 13.81 Yes
la40 1240 1222 1222 1222 1222 1222 1200 707.27 9.87 396.79 187.83 52.46 Yes
orb01 1079 1059 1059 1059 1059 1059 1200 167.49 7.09 110.33 38.87 22.69 Yes
orb02 888 888 888 888 888 888 1200 3.6 2.23 0.92 1.56 1.9 Yes
orb03 1005 1005 1005 1005 1005 1005 1200 48.16 6.54 56.56 23.45 20.6 Yes
orb04 1011 1005 1005 1005 1005 1005 1200 5.03 2.73 2.99 1.96 2.86 Yes
orb05 887 887 887 887 887 887 1200 7.98 3.62 1.81 2.71 2.4 Yes
orb06 1023 1010 1010 1010 1010 1010 1200 41.35 4.64 15.61 10.04 8.59 Yes
orb07 397 397 397 397 397 397 1200 4.77 1.57 1.53 1.25 1.33 Yes
orb08 899 899 899 899 899 899 1200 9.78 1.09 2.45 2.29 1.36 Yes
orb09 934 934 934 934 934 934 1200 8.48 1.19 2.36 3.92 1.38 Yes
orb10 944 944 944 944 944 944 1200 4.68 0.72 1.57 2.6 1.8 Yes
swv01 1517 1544 1445 1541 1483 1412 1200 1200 1200 1200 1200 1200 No
swv02 1620 1590 1491 1571 1502 1475 1200 1200 1200 1200 1200 901.91 Yes
swv03 1491 1582 1420 1547 1493 1410 1200 1200 1200 1200 1200 1200 No
swv04 1568 1667 1520 1597 1553 1482 1200 1200 1200 1200 1200 1200 No
swv05 1537 1618 1424 1559 1518 1436 1200 1200 1134.75 1200 1200 1200 Yes
swv06 1947 1886 1728 1841 1784 1746 1200 1200 1200 1200 1200 1200 No
swv07 1699 1816 1672 1759 1711 1677 1200 1200 1200 1200 1200 1200 No
swv08 2072 2063 1785 1920 1881 1855 1200 1200 1200 1200 1200 1200 No
swv09 1942 1841 1713 1825 1779 1715 1200 1200 1200 1200 1200 1200 No
swv10 1953 1974 1823 1920 1872 1807 1200 1200 1200 1200 1200 1200 No
swv11 3472 3468 3041 3815 3696 3317 1200 1200 1200 1200 1200 1200 No
swv12 3447 3282 3114 3753 3794 3358 1200 1200 1200 1200 1200 1200 No
swv13 3616 3477 3205 3934 3938 3421 1200 1200 1200 1200 1200 1200 No
swv14 3474 3293 3032 3832 3807 3162 1200 1200 1200 1200 1200 1200 No
vw3x3 256 256 256 256 256 256 0 0 0 0 0 0 Yes
yn4 1048 1054 980 1030 1005 994 1200 1200 1200 1200 1200 1200 No
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While perfect for a complete view on the classic benchmark experiment,
Table 1 falls short when it comes to direct comparisons of systems. Figure 1 offers
a more eye-friendly summary of the experiment. Every cell of the map represents
the difference between number of instances where the row system beats the
column system and number of instances where the row system is beaten by the
column one. In this case, to beat means to achieve a makespan strictly lower
or, in case of a draw, to achieve the same makespan faster. in case of a draw
in both makespan and solving time (e.g. instance vw3×3), the corresponding
instance is not counted. The scale goes from –74 (the corresponding row system
is beaten in all the instances by the column one) to 74 (the system beats the
corresponding column one in every instance). Hence, the map has to be read
row-wise, and the “greener” the row, the better the corresponding system.

It is noticeable that the greenest of the rows corresponds to CPO Advanced,
which is better than the other CPO systems in almost all the instances, and
scores a positive 35 against ORT Advanced, winning on 53 instances and losing
on 18. ORT Advanced also achieves good performance against the Naive and
SemiNaive encodings, going “in the red” only against CPO Advanced. The worst
performer is unarguably CPO Naive, which is defeat on almost all the instances
by the Advanced encodings and on more than 50% of the instances by the
other systems. In general, CPO performs better than ORT with the Advanced
encoding, but poorly with the other encodings. If we consider the percentage
of instances solved optimally, the difference between the two solvers is even
narrower on the Advanced encodings, with CPO solving optimally 77.03% of the
instances and ORT following at 75.68%. In both solvers, there is an improvement
from Naive to SemiNaive encoding (better results on about 60% of the instances),
but the improvement is even larger from SemiNaive to Advanced (better on 89%
of instances for ORT and 99% for CPO).

Fig. 1. Map on the pairwise confrontation between systems on the classic benchmarks.
To be read row-wise, the greener the better. (Color figure online)
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3.2 Results of the Large-Scale Benchmark

The results of the large-scale benchmark are summarized in Table 2. The results
are grouped by instance size. Given that there are 10 instances per group, every
value represents the mean of the final makespans of the corresponding group.
In the first two groups, every system is able to solve all the instances optimally.
From the 10×1000 group on, we do not refer anymore to optimal solutions,
because it is not possible for any of the systems to solve all the instances opti-
mally. On 10×1000, all systems converge to the same solution besides ORT
SemiNaive, which reaches almost double the makespan compared to the others.

OR-Tools provides worst solutions on the 100×10 and 100×100 instances;
in fact, in CP Optimizer the Advanced and the SemiNaive encodings achieve the
best results among the other systems, with even the Naive encoding achieving
better results than the OR-Tools ones. In the remaining instances, the role of the
global constraint becomes crucial. In fact, it is possible to solve those instances
only with the Advanced encodings, while with Naive and SemiNaive encodings
it is not manageable to even instantiate the problem. The high number of oper-
ations, and in particular the number of jobs, makes the number of disjunctive
constraints explode. Concerning the biggest instances 1000×1000, only CP
Optimizer is able to find a solution in each of the 10 instances. OR-Tools is able
to instantiate the problem instances but does not manage to find any solutions
within the timeout of 6 h.

Table 2. Average makespan over the 9 instance groups of the large-scale benchmark.

Problem
instances

CP Optimizer OR-Tools

Naive SemiNaive Advanced Naive SemiNaive Advanced

10×10 8169.9 8169.9 8169.9 8169.9 8169.9 8169.9

10×100 55224.5 55224.5 55224.5 55224.5 55224.5 55224.5

10×1000 514393.3 514393.3 514393.3 514393.3 1139284.3 514393.3

100×10 55084.9 54858.6 54858.6 59623.6 82619.6 55493.5

100×100 93827.1 89311.4 80570.5 141524.5 3327955.9 117332.8

100×1000 Timeout Timeout 545687.7 Timeout Timeout 604119.2

1000×10 Timeout Timeout 515429.7 Timeout Timeout 550534.4

1000×100 Timeout Timeout 536403.6 Timeout Timeout 686811.1

1000×1000 Timeout Timeout 1017974.1 Timeout Timeout Timeout

We analyzed also the evolution of intermediate solutions during the search,
in order to have a better understanding of the solving process. Figures 2, 3 and
4 offer a detailed view of the search process: every plot shows the results of
one instance class, showing time (in seconds) on the x-axis and makespan on
the y-axis. In each plot, every line is linked with a system and, conforming to
Table 2, represents the mean makespan of the intermediate solutions at each



154 G. Da Col and E. C. Teppan

time x. Basically, Table 2 shows the situation when x = timeout, while the plots
show the evolution of the search as x varies from 0 to timeout.

Fig. 2. (a) Plot of instance group 10×10 (b) Plot of instance group 10×100.

Figure 2 shows the results regarding 10×10 (a) and 10×100 (b), the only
instance groups where it was possible to achieve optimal makespan in all the
instances. In (a) the time interval is limited between 0 and 70 s, since all the
systems converge hastily to the optimal solution in all cases. The slowest is CPO
Naive, achieving the optimal makespan on all instances after 70 s. Concerning
the other systems, we can see that both CPO Advanced and ORT Naive converge
to the optimum after 2 s, ORT Advanced after 3 and ORT SemiNaive after 4. In
(b) the slowest system is ORT SemiNaive, reaching optimal results after 1330 s.
The other ORT encodings follow at 77 s for the Advanced and 37 for the Naive.
All CPO encodings reached the optimum within 3 s.

The fact that in OR-Tools the Naive encoding is faster than both SemiNaive
and Advanced is peculiar. Concerning the Advanced encoding, this is due to one
particular instance (10×100 4) which needs 77 s to be solved by ORT Advanced
and 32 by ORT Naive. However, the average solving time of the 10×100 group
(without instance 4) is 15 s for ORT Advanced and 25 for ORT Naive. Thus,
we can see this case as an outlier. Concerning ORT SemiNaive, we see a general
performance decline in all the instances of this benchmark. The reason for this
behavior is more complex and will be treated in detail in Sect. 4.

Figure 3 illustrates the last instance group with 10 jobs (10×1000) and all
groups with 100 jobs. In Fig. 3(a) we omitted the legend for space reasons, but we
maintained the line colors consistent across plots, therefore the legend from any
other plot can be used as a reference. The worst performer is ORT SemiNaive,
which is visibly far from all other systems. In fact, the improvement of the solu-
tions is very slow compared to the others and, albeit continuing until the timeout
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Fig. 3. (a) Plot of instance group 10×1000 (b) Plot of instance group 100×10
(c) Plot of instance group 100×100 (d) Plot of instance group 100×1000. (Color
figure online)

occurs, it stops being effective after around 8000 s (about 2 h and 20 min). The
other systems are much faster and they all converge to the same result: ORT
Naive in 1484 s, CPO Naive in 188 s, ORT Advanced in 202 (although already
at 40 s is just 0.08% off CPO’s result, and at 188 is 0.002% off) and finally CPO
SemiNaive in 10 s and CPO Advanced in 4.

In Fig. 3(b) the trend continues, with ORT SemiNaive being the worst per-
former, followed by ORT Naive, which comes as close as 8% off CPO Advanced
after 195 s, and then does not improve this result. ORT Advanced arrives at 10%
off CPO Advanced already after 100 s, and then continues to slowly improve the
solutions until 1.16% off. CPO Naive behaves in a similar way, being able to
find solutions just 1% off in the first 30 s, improving them until 0.41% off when
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Fig. 4. (a) Plot of instance group 1000×10 (b) Plot of instance group 1000×100
(c) Plot of instance group 1000×1000.

the timeout occurs. Both CPO SemiNaive and Advanced converge to the same
result after 27 and 4 s respectively.

Figure 3(c) does not show a significant difference from (b) in terms of systems’
behavior. In (d) however, we see the first instance with 100000 operations. In
this case, only the Advanced encodings are able to solve the instances, while the
others cannot even instantiate the problem. CPO finds good solutions already
after 160 s, with just a marginal improvement in the following 6 h. ORT shows
a more regular improvement, on average reaching final solutions which is 10%
worse than the ones from CPO.

Figure 4 shows the results of the three instance groups with 1000 jobs. As
anticipated in Table 2, only the Advanced encodings are able to instantiate these
instances. In (a) we see a rapid convergence to final solutions in CPO after 70 s,
while ORT manages to achieve a result that is about 7% worse than the CP
Optimizer one. In (b), CP Optimizer achieves the average makespan of 536454.1
in 11 s, with an improvement in the following 6 h of just 400.5 makespan on
average (about 0.07% improvement). OR-Tools, after the 3-hour mark, manages
to greatly improve its solutions, achieving a result 28% above CPO’s.

Finally, (c) shows the test on the largest instances of the benchmark. As we
can see, CP Optimizer finds first solutions after 5 h of computation, and then
gradually improves its results until it reaches an average makespan of 1017974.1.
Although it is hard to judge these results without any comparison from other
solvers, it is still remarkable that CP Optimizer tackles all 10 instances with
1 million operations within 6 h. Moreover, based on the plots of all the other
instance groups, the fast convergence to a value often corresponds to a (near)
optimal solution. This belief is strengthened by a further test that we launched
on the largest instance group, doubling the solving time. In 7 out of 10 instances,
there was no improvement in the solutions. In the remaining 3, the improvement
was less than 0.01% of the makespan.

In the large-scale benchmark, CP Optimizer dominates the scene, being
both faster and better than the OR-Tools counterparts, and managing to solve
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instances up to one million operations. OR Tools, albeit with higher makespans,
is able to solve all the instances of the large benchmark up to 100 thousand
operations, and is even able to instantiate (but not solve) the biggest instances
1000×1000. In general, we can confirm the conclusions on the classic bench-
mark on the benefits of interval variables and no-overlap constraint5. Moreover,
we can add that the global constraints are not only helpful during the solving
process, but also crucial to instantiate the larger instances.

4 Discussion

In our experiment we thoroughly tested two state of the art CP solvers with dif-
ferent encodings on a vast selection of instances. The best overall combination of
solver-encoding is, without a doubt, CP Optimizer with the Advanced encoding.
OR-Tools with Advanced encoding performed not much worse than CPO on the
classic benchmark but was not able to keep the same pace on the large-scale
instances. To understand why, we looked at the different implementation choices
of the two solvers.

In CPO the interval variables are represented compactly using primitive
types to express the bounds (startmin, startmax, endmin, endmax) and few other
parameters to deal with optional intervals and no-fixed lengths (which are not
used in our JSSP scenario). On the other hand, ORT instantiates two integer
variables for start and end bounds in addition to the interval variable (for each
operation). Therefore, ORT has effectively three times the number of variables
of CPO, slowing down the propagation of constraints.

The two solvers use a similar search strategy based on large neighborhood
search (LNS), which iteratively relax and re-optimize the problem instance. To
decide what to fix and what to vary on the partial schedules, CPO uses port-
folio strategies in combination with machine learning to converge to the best
neighborhoods [8]; ORT uses a less sophisticated method with random vari-
ables, random constraints and local neighborhood in the var-constraint graph.
Furthermore, CPO uses a “plan B” strategy called failure directed search (FDS),
which is triggered when LNS is not able to improve the current solution [19].

While negligible on the small instances, these differences appear to be partic-
ularly impactful on the large problem instances, as it appears from our experi-
ment. In fact, considering the Naive and SemiNaive encoding, OR-Tools performs
even better than CPO on the classic benchmarks. Even looking at the 10×10
instances of the large-scale benchmark (which are the most similar in size to
the classic benchmarks), we see that ORT Naive is at pair with CPO Advanced
(Fig. 2(a)) and much better than CPO Naive to converge to the optimum. How-
ever, CPO takes the lead already with the 10×100 instances, which, albeit
being among the smallest of our benchmark, are still bigger than any of the
instances of the classic benchmark.

A particularly unexpected performance is registered by the SemiNaive encod-
ing on OR-Tools, which is among the best performer on the classic benchmark,
5 With the exception of ORT SemiNaive.
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but is by far the worst in the large-scale one, even compared with the Naive
encoding on ORT. This unforeseen behavior is explained by the fact that in
the SemiNaive encoding the interval variables ensure that start and end values
always respect the duration, without an explicit constraint. However, in ORT,
the relaxation process will pick up the equality constraint on the Naive encod-
ing, but not the interval equivalent. Thus, even if the Naive encoding has to
instantiate more constraints, it can take full advantage of the relaxation process
which, as the results show, becomes more impactful the bigger the instances.
To be useful in OR-Tools, the interval variables have to be coupled with the no
overlap constraint, which is also picked up in the relaxation process.

In CP Optimizer, on the other hand, there is no such issue because the
interval variables are also treated during the relaxation process. In particular,
each interval is treated as four numerical variables, while the duration of the
interval is imposed with a “precedence” constraint with a delay between the start
and the end of the interval. As a result, the use of interval variables is always
beneficial in CP Optimizer, both in the classic and the large-scale benchmark.

5 Conclusions

In this paper, we tested two of the best current CP Solvers, OR-Tools and CP
Optimizer. The experiment was conducted on, both, a set of famous benchmark
instances from literature as well as a large-scale benchmark generated by us,
testing three encodings of increasing sophistication for each solver. Based on the
results, we can draw the following conclusions:

– CPO with the Advanced encoding was the best overall solver-encoding sys-
tem, followed by OR-Tools Advanced.

– The difference between ORT and CPO is marginal in small instances (e.g. clas-
sic benchmark) but becomes more significant the larger the problem instances.

– The use of interval variables in the model brings a tangible benefit compared
to a naive approach, both in terms of solving time and quality of solution,
but does not help during the instantiation of the problem.

– The use of global constraints further improves solving time and solution qual-
ity, and makes possible to instantiate large problem instances.

A more efficient implementation of the interval variables, an additional strategy
to avoid the local optima and more a sophisticated algorithm to select the best
partial schedules played a major role in the supremacy of CP Optimizer, with was
able to solve instances up to 1 million operations. However, one has to consider
that CP Optimizer is a proprietary solution mainly targeted at solving scheduling
problems. Despite being an open-source solver, OR-Tools performance was able
to solve instances up to 100000 operations, which means that it could be applied
even for real-world industrial problems.



Industrial Size Job Shop Scheduling Tackled by Present Day CP Solvers 159

References

1. Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job
shop scheduling. Manage. Sci. 34(3), 391–401 (1988). http://www.jstor.org/stable/
2632051

2. Applegate, D., Cook, W.: A computational study of the job-shop scheduling prob-
lem. ORSA J. Comput. 3(2), 149–156 (1991). https://doi.org/10.1287/ijoc.3.2.149

3. Da Col, G., Teppan, E.C.: Declarative decomposition and dispatching for large-
scale job-shop scheduling. In: Friedrich, G., Helmert, M., Wotawa, F. (eds.) KI
2016. LNCS (LNAI), vol. 9904, pp. 134–140. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46073-4 11

4. Danna, E., Rothberg, E., Le Pape, C.: Integrating mixed integer programming and
local search: a case study on job-shop scheduling problems. In: Fifth International
Workshop on Integration of AI and OR techniques in Constraint Programming for
Combinatorial Optimisation Problems (CP-AI-OR’2003), pp. 65–79 (2003)

5. Fox, M.S., Allen, B.P., Strohm, G.: Job-shop scheduling: an investigation in
constraint-directed reasoning. In: AAAI, pp. 155–158 (1982)

6. Ku, W.Y., Beck, J.C.: Mixed integer programming models for job shop scheduling:
a computational analysis. Comput. Oper. Res. 73, 165–173 (2016)

7. Laborie, P., Godard, D.: Self-adapting large neighborhood search: application to
single-mode scheduling problems. In: Proceedings MISTA-07, Paris, vol. 8 (2007)

8. Laborie, P., Rogerie, J.: Temporal linear relaxation in IBM ILOG CP optimizer.
J. Sched. 19(4), 391–400 (2016)

9. Laborie, P., Rogerie, J., Shaw, P., Viĺım, P.: IBM ILOG CP optimizer for schedul-
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Abstract. Given a boolean formula F and a weight function ρ, the prob-
lem of discrete integration seeks to compute the weight of F , defined as
the sum of the weights of satisfying assignments. Discrete integration,
also known as weighted model counting, is a fundamental problem in
computer science with wide variety of applications ranging from machine
learning and statistics to physics and infrastructure reliability. Given the
intractability of the exact variant, the problem of approximate weighted
model counting has been subject to intense theoretical and practical
investigations over the years.

The primary contribution of this paper is to investigate development
of algorithmic approaches for discrete integration. Our framework allows
us to derive two different algorithms: WISH, which was already discov-
ered by Ermon et al. [8], and a new algorithm: SWITCH. We argue that
these algorithms can be seen as dual to each other, in the sense that their
complexities differ only by a permutation of certain parameters. Indeed
we show that, for F defined over n variables, a weight function ρ that can
be represented using p bits, and a confidence parameter δ, there is a func-
tion f and an NP oracle such that WISH makes O (f(n, p, δ)) calls to NP
oracle while SWITCH makes O (f(p, n, δ)) calls. We find f(x, y, δ) polyno-
mial in x, y and 1/δ, more specifically f(x, y, δ) = x log(y) log(x/δ). We
first focus on striking similarities of both the design process and structure
of the two algorithms but then show that despite this quasi-symmetry,
the analysis yields time complexities dual to each other. Another con-
tribution of this paper is the use of 3-wise property independence of
XOR based hash functions in the analysis of WISH and SWITCH. To the
best of our knowledge, this is the first usage of 3-wise independence in
deriving stronger concentration bounds and we hope our usage can be
generalized to other applications.
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1 Introduction

Given a set of constraints F and a weight function ρ that assigns a non-negative
weight to every assignment of values to variables, the problem of discrete inte-
gration seeks to compute the weight of F , defined as the sum of weights of
its satisfying assignments. If every assignment has weight 1, the corresponding
problem is often simply called model counting. For clarity of presentation, we
use unweighted model counting to denote this variant. Discrete integration is
a fundamental problem in computer science. A wide variety of problems such
as probabilistic inference [14], partition function of graphical models, perma-
nent of a matrix [18], un-reliability of a network [13] can be reduced to discrete
integration.

In his seminal work, Valiant [18] established the complexity of discrete inte-
gration as #P-complete for all polynomially computable weight functions, where
#P is the complexity class comprised of counting problems whose decision vari-
ant lies in NP. Given the computational intractability of discrete integration,
approximate variants have been subject of intense theoretical and practical inves-
tigations over the past few decades.

Approaches to discrete integration can be classified into three categories: vari-
ational techniques, sampling techniques, and hashing-based techniques. Inspired
from statistical physics, variational methods often scale to large instances but
do not provide guarantees on the computed estimates [17,19]. Sampling-based
techniques focus on approximation of the discrete integral via sampling from the
probability distribution induced by the boolean formula and the weight func-
tion [11]. The estimation of rigorous bounds, however, requires exponential mix-
ing times for the underlying chains and therefore, practical implementations such
as those based on Markov Chain Monte Carlo methods [2] or randomized branch-
ing choices [9] fail to provide rigorous estimates [7,12]. Recently, hashing-based
techniques have emerged as a promising alternative to variational and sampling
techniques to provide rigorous approximation guarantees [4,5,8]. The hashing-
based algorithm WISH seeks to utilize progress made in combinatorial solving
over the past two decades and to this end, the problem of discrete integration is
reduced to linear number of optimization queries subject to randomly generated
parity constraints [8].

The primary contribution of this paper is to investigate the development
of algorithmic approaches for discrete integration. Our framework allows us to
derive two different algorithms, which can be seen as dual to each other: WISH,
which was already discovered by Ermon et al. [8], and a new algorithm: SWITCH.
In particular, WISH reduces the problem of discrete integration to optimization
queries while SWITCH proceeds via reduction to unweighted model counting.
Both WISH and SWITCH compute constant factor approximations with arbi-
trarily high probability 1 − δ via usage of universal hash functions, a concept
invented by Carter and Wegman in their seminal work [3]. We first focus on the
design process of WISH and SWITCH. We study discrete integration through
the framework of general integration and reduce the task to optimization and
counting subproblems. Then we present WISH and SWITCH as hashing-based
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algorithms solving the aformentionned subproblems to approximate a discrete
integral. Finally we analyse these algorithms, proving that both compute con-
stant factor approximations of the integral with high probability. However we
show that they have dual time complexities in the sense that, for F defined over
n variables and a weight function ρ that can be represented using p bits, there
is a function f and an NP oracle such that WISH makes O (f(n, p, δ)) calls to
NP oracle while SWITCH makes O (f(p, n, δ)). We find f(x, y, δ) polynomial in
x, y and 1/δ, more specifically f : x, y, δ �→ x log(y) log(x/δ).

Another contribution of this paper is the use of 3-wise property independence
of XOR based hash functions in the analysis of WISH and SWITCH. To the best of
our knowledge, this is the first usage of 3-wise independence in deriving stronger
concentration bounds. The hardness of usage of 3-independence for concentration
bounds is well documented by absence of such analyses (c.f.: wonderful blogpost
by Mihai Pătraşcu:1).

The duality obtained may not seem surprising in retrospect but such has not
been the case for the past few years. The prior work has often, without complete
evidence, asserted that the corresponding dual approach would be inferior both
theoretically and empirically [4,8]. Our work, in turn, contradicts such assertions
and shows that the two approaches indeed have dual time complexity from the-
oretical perspective and empirical analysis will be key in determining their use-
fulness. Since the work on development of MaxSAT solvers that support XORs
and SAT solvers that support XORs and Pseudo-Boolean (PB) constraints is in
its infancy; our work provides a strong argument for the need and potential of
both of these solvers as queries generated by WISH require MaxSAT solvers with
the ability to handle XORs while the queries by SWITCH requires SAT solvers
that support XORs and PB constraints.

The rest of the paper is organized as follows. We introduce notations and
preliminaries in Sect. 2. We then provide general framework for discrete integra-
tion in Sect. 3, which is employed to derive the aforementioned algorithms, WISH
and SWITCH, in Sect. 4. We finally conclude in Sect. 5.

2 Preliminaries and Notations

Let F be a boolean formula over n variables. Let X be the set of variables
appearing in F . A literal is a variable x or its negation ¬x. An assignment σ of
all n variables is a satisfying assignment or witness of F if it makes F evaluate
to true, which we note σ |= F . We note #F the number of witnesses of F .

Weight Function. Let ρ : {0, 1}n → Q+ be the weight function mapping each
truth assignment to a positive value such that

• ∀σ ∈ {0, 1}n, weight ρ(σ) is computable in polynomial time
• ∀σ ∈ {0, 1}n, weight ρ(σ) is written in binary representation with less than p

bits.
1 http://infoweekly.blogspot.com/2010/01/moments.html.

http://infoweekly.blogspot.com/2010/01/moments.html
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We extend the weight function to sets of truth assignments and boolean formulas.
Let Y be a subset of {0, 1}n, the weight of Y is defined as the cumulative weight
of the truth assignments in Y : ρ(Y ) =

∑
σ∈Y ρ(σ). By definition the weight

of the empty set is 0. The weight of a formula F is defined as the cumulative
weight of its witnesses ρ(F ) =

∑
σ|=F ρ(σ). For notational clarity, we overload ρ

to indicate weight of an assignment, set of assignments, and formula depending
on the context.

Given a formula F and weight function ρ, we define the effective weight
function w as the restriction of ρ to the witnesses of F

w(σ) =

{
ρ(σ) if σ |= F

0 otherwise

We will note wmin = minσ|=F w(σ) and wmax = maxσ|=F w(σ) the minimum
and maximum weights of a witness of F . Due to the hypothesis on ρ we have
wmax ≤ 2p and wmin ≥ 2−p if F is satisfiable. Note that the expression for the
weight of a formula can be rewritten ρ(F ) =

∑
σ∈{0,1}n w(σ).

Tail Function. Dual to the effective weight function is the tail function τ . It
is defined from the space of weights to N. The tail function on some weight u
counts the number of truth assignments heavier than u (i.e. of weight greater
than u).

τ(u) =
∣
∣{σ ∈ {0, 1}n : w(σ) ≥ u}∣∣

For notational clarity we extend the tail function to truth assignments using the
notation τ(σ) for τ(w(σ)). Note that

1. The tail function is non-increasing.
2. The maximum tail is τ(0) = 2n.
3. For any 0 < u ≤ wmin there is τ(u) = #F .
4. If u > wmax then τ(u) evaluates to 0, but the minimal non-zero tail τ(wmax )

is not necessarily 1 since more than one truth assignment can weight wmax .

MPE-MAP Queries. Following standard definitions, MPE (most probable
explanation) corresponds to solving max(ρ(σ) : σ |= F ), which is to find wmax . It
is worth noting that MPE is related to another query: MAP (maximum a poste-
riori), and different communities use different definitions for MAP and MPE, to
the extent that what one community calls MAP is called MPE by another [4,8].

(ε, δ)-Approximation Algorithms. Given computational intractability of
computing ρ(F ), we are interested in approximation schemes. For a tolerance
ε > 0 and a confidence δ > 0, an algorithm A generates a (ε, δ)-approximation
of W if it returns a quantity in

[
W (1 + ε)−1, (1 + ε)W

]
with probability at least

1 − δ.

Pr
[
(1 + ε)−1W ≤ A(F, ρ, ε, δ) ≤ (1 + ε)W

] ≥ 1 − δ



Dual Hashing-Based Algorithms for Discrete Integration 165

3-Universal Hash Functions. We focus on hashing-based methods to approx-
imate ρ(F ). We use particular classes of hash functions based on parity con-
straints. A constraint specifies a set of indices S from [n] and a bucket value β
in {0, 1}. The assignment σ is said to satisfy the constraint if the xored value
of its coordinates on S matches β, or more formally if

⊕
i∈S σ[i] = β, where ⊕

denotes the “xor” operation. Using the binary vector representation of subsets S
in {0, 1}n, one can rewrite the left hand side of the constraint as a scalar prod-
uct in the field F

n
2 which addition and product operations are, respectively, the

“xor” and the “and” operations. Therefore we will use matrix representations
when applying several constraints. For m given constraints represented with the
matrix A ∈ {0, 1}m×n and the vector of bucket values b ∈ {0, 1}m, σ satisfies
all m constraints if Aσ = b, or equivalently Aσ ⊕ b = 0. A hash function h from
{0, 1}n to {0, 1}m is defined by a collection of m constraints embedded in A and
b. An assignment σ is hashed through h to h(σ) = Aσ⊕b. So the i-th component
of h(σ) is

h(σ)[i] = bi ⊕
n⊕

j=1

A[i, j]σ[j]

Let Hxor(n,m) be the class of all such hash functions from {0, 1}n to {0, 1}m.

Hxor(n,m) =
{
σ �→ Aσ ⊕ b : A ∈ {0, 1}m×n, b ∈ {0, 1}m

}

We note h
R← Hxor(n,m) the action of choosing a hash function uniformly at

random from Hxor(n,m), which is equivalent to sampling A from B1/2(m,n) and
b from B1/2(m). Hash functions in Hxor(n,m) have uniformity property, meaning
that for all y in {0, 1}m and σ in {0, 1}n, there is

Pr
[
h

R← Hxor(n,m) : h(σ) = y
]

=
1

2m

It was also shown in [10] that they display 3-wise independence property, mean-
ing that for all three images y1, y2, y3 in {0, 1}m and for all three distinct
assignments σ1, σ2, σ3 in {0, 1}n, there is

Pr
[
h

R← Hxor(n,m) : h(σ1) = y1 and h(σ2) = y2 and h(σ3) = y3

]
=

1
23m

They do not display independence at higher order. For instance for 4-wise inde-
pendence, consider three assignments σ1, σ2, σ3 and four images y1, y2, y3, y4.
Define σ4 = σ1 ⊕ σ2 ⊕ σ3 and see that if h(σi) = yi for i ∈ {1, 2, 3}, then
h(σ4) = y1 ⊕ y2 ⊕ y3. So the probability for all four assignments to be projected
on their respective images is null when y4 
= y1 ⊕ y2 ⊕ y3.

3 A Framework for Discrete Integration

This section presents a framework for discrete integration. Methods from this
framework follow a two-steps strategy:
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1. translate the task of discrete integration into an integration problem for a
real non-increasing function

2. apply a method to approximate the integral of a real function

In the first step, we specifically ask for a non-increasing function so that we can
ensure constant factor approximations when estimating its integral. Examples
of approximation methods for real function integrals are the upper and lower
rectangles approximations or Monte Carlo integrators.

3.1 From Discrete Integration to Real Function Integration

Given F a boolean formula and a weight function ρ, let u1, · · · , uK be all possible
weights taken by the satisfying assignments of F . To obtain the discrete integral
ρ(F ), i.e. the sum of weights of satisfying assignments of F , one can gather
assignments in packets of same effective weight and sum over these packets. For
the weight ui, the pre-image w−1 (ui) is the set of all witnesses of F mapped to
ui by ρ. So the discrete integral can be written

ρ(F ) =
K∑

i=1

ui|w−1 (ui) | (1)

We observe the following tail transformation:

• For i < K, there is |w−1 (ui) | = τ(ui) − τ(ui+1)
• In the case i = K, there is |w−1 (uK) | = τ(uK)

Applying this transformation to Eq. (1) gives:

ρ(F ) = uKτ(uK) +
K−1∑

i=1

ui (τ(ui) − τ(ui+1)) (2)

and after rearranging the terms:

ρ(F ) = u1τ(u1) +
K−1∑

i=1

τ(ui+1) (ui+1 − ui) (3)

These two representations of the discrete integral have a graphical interpreta-
tion: draw the curve of τ as a function of the weight, and observe that both
τ(ui+1) (ui+1 − ui) and ui (τ(ui) − τ(ui+1)) are areas of rectangles under the
curve as illustrated in Fig. 1. Equation (2) decomposes the integral into rectan-
gles built along the τ axis while Eq. (3) is a decomposition into rectangles built
along the w axis.

The discrete integral ρ(F ) is the area under the curve of τ .

ρ(F ) =
∫

τ(u)du (4)
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Fig. 1. Decomposition into rectangle areas

The effective weight function w can be expressed as a function of the tails which
extension to R+ is w : t �→ maxσ(w(σ) : τ(σ) ≥ t). Graphically, one can just
rotate the graph of τ to obtain that of w and see that:

ρ(F ) =
∫

w(t)dt (5)

Both (4) and (5) are integrals of non-increasing functions defined over R+ and
of finite support.

3.2 From Discrete Integration to Optimization

Direct computation of any form previously obtained is intractable. We resort to
approximations of ρ(F ) when it is written as (4) or (5). Given that τ and w are
staircase functions, rectangles approximation seems to be the only method fitted
to approximate their integrals. First we apply the method on Eq. (4). The first
step is the partition of the weight axis into linearly many intervals. We split the
axis at the quantile weights, defined as followed:

Definition 1. The 2i-th quantile weight of the weight distribution is the maxi-
mal weight qi such that τ(qi) ≥ 2i.

The quantile weights q0, · · · , qn are all well-defined, and form a non-increasing
sequence. Consecutive quantile weights can be equal. For instance if F has < 2m

witnesses for some m < n, then qm = qm+1 = · · · = qn = 0. Note that for each
quantile weight qi, there exists some truth assignment σ such that qi = w(σ).

The partition of integral (4) at the quantile weights gives:

ρ(F ) = qn2n +
n∑

i=1

∫ qi−1

qi

τ(u)du

where
∫ qi−1

qi
represents the integral on ]qi, qi−1]. Since the weight qn does not lie

in any interval we add the term qnτ(qn) = qn2n manually.
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If u is in ]qi, qi−1], then τ(u) < 2i, otherwise qi would not be the maximal
weight of tail ≥ 2i. Furthermore τ(u) ≥ τ(qi−1) which is ≥ 2i−1 by definition.
So for each weight in ]qi, qi−1] we bound the corresponding tail within a factor of
2. Figure 2 illustrates this rectangle approximation on the interval ]qn−1, qn−2].

2i−1

∫ qi−1

qi

du ≤
∫ qi−1

qi

τ(u)du ≤ 2i

∫ qi−1

qi

du

2i−1 (qi−1 − qi) ≤
∫ qi−1

qi

τ(u)du ≤ 2i (qi−1 − qi)

Note that the bound holds when ]qi, qi−1] is empty (qi = qi−1). Summing all
bounds together and rearranging the terms to get rid of differences of quantiles,
we obtain:

q0 +
n−1∑

i=0

qi+12i ≤ ρ(F ) ≤ q0 +
n−1∑

i=0

qi2i

The two bounds are within a ratio of 2 of each other because the integral on
each interval was bounded within a ratio of 2. Let us choose the lower bound to
be our first estimate of ρ(F ) and name it W1 = q0 +

∑n−1
i=0 qi+12i. We have

W1 ≤ ρ(F ) ≤ 2W1 (6)

Given q0, · · · , qn, the estimate W1 can be computed in polynomial time. For
all i, the weight qi is, by definition, the solution of the following optimization
problem:

qi = max
{
w(σ) : τ(w(σ)) ≥ 2i

}

So the approximation of the discrete integral ρ(F ) has been reduced to n + 1
optimization sub-problems.

3.3 From Discrete Integration to Counting

To find W1 we have done rectangles approximation on Eq. (4). In this section
we investigate the estimate resulting from a similar approximation on Eq. (5).
The first step is the partition of the tail axis. We will assume, for notational
clarity, that wmax ≤ 1. This bound is legitimate in the context of probabilistic
inferences [14], and the results of this paper can be extended to any arbitrary
but fixed bound. Recall that the weights are written with p bits in binary repre-
sentation, so the bounds wmax ≤ 2p and wmin ≥ 2−p are always valid. For our
partition, we define the splitting tails as followed:

Definition 2. The i-th splitting tail τi is the tail at weight 1/2i: τi = τ(1/2i).

Given the assumption on the range value of w, the interesting tails are
τ0, · · · , τp. They form a non-decreasing sequence. The partition of integral (5)
at the splitting tails gives:

ρ(F ) = τ0 +
p−1∑

i=0

∫ τi+1

τi

w(t)dt
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where
∫ τi+1

τi
represents the integral on ]τi, τi+1]. Since the tail τ0 does not lie in

any interval we add the term τ0w(τ0) manually. τ0 is the number of assignments
heavier than weight 1. Either there are no such assignment and τ0 = 0, or
there are some, in which case w(τ0) = wmax = 1. In both cases we find that
τ0w(τ0) = τ0. If t is in ]τi, τi+1], then 2−i−1 ≤ w(t) ≤ 2−i. So for each tail
in ]τi, τi+1], we bound the corresponding weight within a factor of 2. Figure 3
illustrates this rectangle approximation on the interval ]τ1, τ2].

2−i−1

∫ τi+1

τi

dt ≤
∫ τi+1

τi

w(t)dt ≤ 2−i

∫ τi+1

τi

dt

2−i−1 (τi+1 − τi) ≤
∫ τi+1

τi

w(t)dt ≤ 2−i (τi+1 − τi)

Note that the bound holds when ]τi, τi+1] is empty (τi = τi+1). Summing all
bounds together and rearranging the terms to get rid of differences of tails, we
obtain:

τp2−p +
p−1∑

i=0

τi2−(i+1) ≤ ρ(F ) ≤ τp2−p +
p−1∑

i=0

τi+12−(i+1)

The two bounds are within a ratio of 2 of each other because the integral on
each interval was bounded within a ratio of 2. Let us choose the lower bound
to be our first estimate of ρ(F ) and name it W2 = τp2−p +

∑p−1
i=0 τi2−(i+1). We

have
W2 ≤ ρ(F ) ≤ 2W2 (7)

Given τ0, · · · , τp, the estimate W2 can be computed in polynomial time. For all
i, the tail τi is, by definition, the solution of the following counting problem:

τi =
∣
∣
{
σ : w(σ) ≥ 2−i}∣

∣

So the approximation of the discrete integral ρ(F ) has been reduced to p + 1
counting sub-problems.

3.4 On the Limitations of the Estimates

The two estimates W1 and W2 are not only similar in terms of construction but
also in terms of theoretical guarantees and limitations. Both are lower bounds of
ρ(F ) and approximate ρ(F ) within a ratio of 2. Furthermore, both W1 and W2

use some unknown quantities, respectively the weights q0, · · · , qn and the tails
τ0, · · · , τp. These are to be approximated.

Assuming that for positive some ε and δ we have an algorithm A returning C,
a (δ, ε)-approximations of W1 (resp. W2). Then with probability at least 1−δ, C

is a bounded estimate of ρ(F ) such that ρ(F )
2(1+ε) ≤ C ≤ (1 + ε)ρ(F ). In any case,

the quality of the estimate is capped: the best approximation interval possible is
[ρ(F )/2, ρ(F )]. However, note that we obtained 2-approximations of ρ(F ) using
base-2 partitions of the tail and weight axis for the rectangles approximations. If
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we use base-β partitions instead, with β < 2, we can improve our estimates. For
instance for β = 1 + ε, we partition the weight axis at the (1 + ε)i-th quantile
weights and the tail axis at the tails τ((1 + ε)−i). Rectangles approximations
W ′

1 and W ′
2 are then both in [ρ(F ), (1 + ε)ρ(F )]. Now, algorithm A returns

some quantity in
[
ρ(F )/(1 + ε)2, (1 + ε)ρ(F )

]
with probability at least 1 − δ.

So A computes a (3ε, δ)-approximation of ρ(F ) (for ε < 1 we have (1 + ε)−2 ≥
(1 + 3ε)−1).

Fig. 2. Rectangles approximation on
Eq. (2)

Fig. 3. Rectangles approximation on
Eq. (3)

4 Algorithms

In this section we present two algorithms to approximate the discrete inte-
gral ρ(F ). The first one approximates W1. It uses a hashing-based approach
to approximate solutions for the optimization/MPE sub-problems described in
Sect. 3.2. Given the lack of any approach to find 2i-th quantiles, hashing is
used to reduce the task to that of standard optimization. The second algorithm
approximates W2 and also implements a strategy based on hashing functions to
approximately solve the counting sub-problems described in Sect. 3.3, this choice
is motivated by the success of hashing-based technique for model counting [5].
Since it is known that (1 + ε)-approximations can be obtained from constant
factor approximations by standard amplification techniques [8], we will focus
on obtaining constant factor approximations. Possibilities of extension of the
algorithms to reach arbitrary precision approximations following the strategy of
Sect. 3.4 will be discussed in Sect. 4.4.

4.1 An NP Oracle

The procedure for discrete integration via optimization was first discovered by
Ermon et al. [8]. They expressed the complexity of their algorithm as the number
of calls to an MPE oracle. It is customary to express complexity with respect to
oracles corresponding to decision problems. Therefore, we express complexities in
terms of invocations of an NP oracle. The oracle is a system capable of solving
a decision problem in O(1) time. In this paper, the oracle is given a boolean
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formula F , a weight function ρ computable in polynomial time and a real number
u, and returns YES if and only if there exists a satisfying assignment of F of
weight greater than u. More formally, it solves the problem SAT(F ∧{ρ(σ) ≥ u})
where the constraint ρ(σ) ≥ u is not necessarily boolean. Given a solution σ,
the condition σ |= F can be tested in polynomial time, and so is ρ(σ) ≥ u by
hypothesis on ρ. So the decision problem is in NP.

4.2 Discrete Integration by Optimization: WISH

We present a modified version of the algorithm of Ermon et al. [8]: WISH
(Weighted Integration and Sum by Hashing). When comparing our version of
WISH to the original, we will refer to the latter as WISH EGSS, from the initials
of its authors. WISH takes in a formula F , a weight function ρ, and a confidence
parameter δ, and returns an estimate for W1.

Algorithm 1. WISH(F , ρ, δ)
1: T ← ⌈

128 ln(2n/δ)
⌉

2: for all 1 ≤ t ≤ T do
3: A0 ← [ ] , b0 ← [ ]
4: for all 0 ≤ i ≤ n do
5: Sample constraint Ci in {0, 1}n and βi in {0, 1}
6: Ai+1 ← concat(Ai, Ci) , bi+1 ← concat(bi, βi)

Let mt
i be maxσ(w(σ) : Ai+1σ ⊕ bi+1 = 0)

7: m̂t
i ← 2κ where κ = max(k : 2k ≤ mt

i)
8: end for
9: end for

10: ∀i , q̂i ← Median(m̂1
i , · · · , m̂T

i )
11: return

√
2

(
q̂0 +

∑n−1
i=0 q̂i+12

i
)

WISH’s main task is to estimate the quantiles weights qi. The general idea
is to use hash functions projecting the truth assignments into 2i buckets and to
take the heaviest assignment in a random bucket. Hash functions are built adding
xor constraints incrementally: concat(A,C) adds the line C to the matrix of con-
straints A. By uniformity property, an arbitrary bucket contains in expectation
2n−i truth assignments after i constraints. Since there are roughly 2i−1 assign-
ments heavier than qi−1, the expected amount mapped to the chosen bucket
should be close to zero. So hopefully the heaviest weight of the bucket (noted
mt

i for the t-th run) is in [qi, qi−1], and it is chosen as candidate for the estimate
q̂i. The following lemma gives guarantees on the range of the heaviest weight of
a bucket (proof is deferred to appendix).

Lemma 1. For all t in [[1, T ]] and all i in [[1, n]], there is

Pr
[
mt

i ≥ qi

] ≥
(

3
4

)2

and Pr
[
mt

i ≤ qi−1

] ≥
(

3
4

)2
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Iterating this process T times and taking the median candidate amplifies the
confidence of the estimation.

Lemma 2. For i > 0, let q̂i be the median of m1
i , · · · ,mT

i resulting from the T
independent iterations. And let Ii be the interval [qi, qi−1]. There is:

Pr [q̂i ∈ Ii] ≥ 1 − 2 exp
(

−T

α

)

where α = 27 = 128.

In the algorithm, q̂i is actually not the median of m1
i , · · · ,mT

i but the median
of their 2-approximations m̂1

i , · · · , m̂T
i . With this modification, the statement

of the lemma holds for Ii = [qi/2, qi−1]. An estimate of the integral is finally
generated using the formula for W1 and replacing the qi by their estimates q̂i.

We make several contributions to WISH EGSS in WISH. We first reduce the
MPE queries employed in WISH EGSS to find the weights mt

i to binary searches
using the NP oracle queries. Weights are written with p bits so finding mt

i takes
O(p) oracle queries. However we prefer the approximate variant in which the
binary search explores [[0, p]] to find κ = �log(mt

i) and returns 2κ. This variant
reduces the cost to O(log(p)) queries while approximating mt

i within a factor
of 2. A second contribution is the usage of dependence among different hash
functions: hash functions of i+1 constraints are no longer sampled independently
but built upon hash functions of i constraints (hence the concat(·,·) function).
Our last contribution is the significant improvement of WISH EGSS’s guarantees:
the original analysis used only the pairwise independence of hash functions,
but we use 3-wise independence to obtain the improved Lemma 1. This lemma
ultimately allows us to prove that WISH approximates ρ(F ) within a factor of 8,
while the initial factor was 256. The reduce factor is still quite large but greatly
accelerates the amplification process described in [8].

Theorem 1. For any δ > 0, WISH (F, ρ, δ) makes O (n log(p) log(n/δ)) calls to
NP oracle and returns an approximation of ρ(F ) within

[
ρ(F )/(2

√
2), 2

√
2ρ(F )

]

with probability at least 1 − δ.

4.3 Discrete Integration by Counting: SWITCH

We now describe an algorithm for discrete integration that utilizes the reduction
to counting sub-problems. We call the algorithm SWITCH (Sum of Weights and
Integral via Threshold Counting and Hashing). SWITCH takes in a formula F ,
a weight function ρ, and a confidence parameter δ, and returns an estimate for
W2. SWITCH’s main task is to estimate the tails τi = τ(2−i). The core idea is to
view tails as cardinals of some subsets of witnesses of F and use hashing to esti-
mate these cardinalities. The approximation method is very similar to previous
hashing-based techniques [5,16]. For a given subset of size τi, we successively
apply constraints until its projection on an arbitrary bucket is empty. Each new
randomly sampled constraint halves the remaining set in expectation, so the
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number of constraints necessary to reach the empty set can be viewed as a good
approximation of li = log(τi) and its power of 2 approaches τi.

Algorithm 2. SWITCH(F , ρ, δ)
1: T ← �128 ln(4p/δ)�
2: for all 1 ≤ t ≤ T do
3: Sample A in {0, 1}n×n and b in {0, 1}n

4: for all 0 ≤ i ≤ p do
5: l̂ t

i ← max
{
k | ∃ σ such that σ |= F , ρ(σ) ≥ 2−i and Akσ ⊕ bk = 0

}

where Ak ← A[1..k] and bk ← b[1..k]
6: end for
7: end for
8: ∀i , l̂i ← Median(l̂ 1

i , · · · , l̂ T
i ) , τ̂i = 2

̂li

(handle cases τi = 0 and τi = 1 exactly)
9: return

√
2

(
τ̂p2−p +

∑p−1
i=0 τ̂i2

−i−1
)

Lemma 3. If li > 0 (τi > 1), then there is for all t in [[1, T ]]:

Pr
[
l̂ t
i ≤ �li�

]
≥

(
3
4

)2

and Pr
[
l̂ t
i ≥ �li

]
≥

(
3
4

)2

One may note that τi is not necessarily a power of 2, so our method of approxi-
mating logarithms by integers is imprecise and the estimation error is amplified
as a power of 2. Furthermore, there are two cases not handled by the lemma

• The case τi = 0 (li = −∞): there are no witness of F of weight greater than
2−i. One call to the NP oracle is enough to spot this case.

• The case τi = 1 (li = 0): a set of 1 element stays intact after 1 constraint with
probability 1/2, so we overestimate is size with probability 1/2. This case is
spotted with two NP oracle queries (adding a block clause before the second
query).

Assuming we are not in any such cases, we amplify the confidence on the esti-
mates of li repeating the process T times and choosing the median candidate.

Lemma 4. Let l̂i be the median of the T independent l̂ 1
i , · · · , l̂ T

i . Assume τi > 1
and let Ji be the interval [�log(τi), �log(τi)�]. There is:

Pr
[
l̂i ∈ Ji

]
≥ 1 − 2 exp

(

−T

α

)

where α = 27 = 128. Therefore τ̂i = 2̂li is an estimate of τi that lies in
[

τi
2 , 2τi

]

with same probability.
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The tails estimates are finally used to compute an estimate of W2.
The NP oracle is called to check if a set is empty after application of con-

straints. When approximating li line 5, the constraints are taken from the same
set of n constraints stored in A and b (Ak and bk representing the first k lines
of A and b). Consequently, if there are witnesses satisfying Ajσ ⊕ bj = 0 for
some j, they also satisfy Aiσ ⊕ bi = 0 for all i ≤ j. Similarly if no witness
satisfy Ajσ ⊕ bj = 0, none satisfy Aiσ ⊕ bi = 0 for i ≥ j. So to find how many
constraints are enough to empty the set of witnesses of F heavier than 2−i, one
can proceed by binary search in [[0, n]]. Following this idea, the procedure line 5
makes O(log(n)) calls to the NP oracle.

Theorem 2. For any δ > 0, SWITCH (F, ρ, δ) makes O(p log(n) log(p/δ))
calls to NP oracle and returns a approximation of ρ(F ) within

[
ρ(F )/(2

√
2),

2
√

2ρ(F )
]

with probability at least 1 − δ.

Theorems 1 and 2 show that WISH and SWITCH approximate the discrete
integral within a factor of 8 but have dual complexities, in the sense that there
is a function f , such that WISH makes O(f(n, p, δ)) NP oracle calls against
O(f(p, n, δ)) calls for SWITCH. We have found this function to be f(n, p, δ) =
n log(p) log(n/δ). Furthermore, the analysis shows that the constants hidden by
the O notation are of same order of magnitude. So depending on the value of n
and p, one may prefer one algorithm to the other.

4.4 On the Extension to Arbitrary Precision Algorithms

In the discussion on the limitation of the estimates Sect. 3.4, we pointed out
that generating approximations of W1 or W2, one could not hope for better than
approximations of the discrete integral within a factor 2. This capped approxi-
mation factor comes from doing base 2 partitions of the integration axis when
defining the quantiles weights qi and the splitting tails τi. We explained that
using base β (β in ]0, 1[) partitions, one could easily find estimates of arbitrarily
close approximations.

Typically WISH and SWITCH should be adapted so as to ensure arbitrarily
close approximations of the quantiles weights and splitting tails defined from base
β partitions. Both algorithm rely on hash functions which particularity is to halve
cardinality with each new constraint added. For WISH, such hash functions are
fitted when computing base 2 quantile weights, because the tails are also halved
from one quantile to the next. But for base β quantile weights, we have yet to find
how to adapt the algorithm. Another alternative would be to use Stockmeyer’s
trick for converting an algorithm A returning constant factor approximation into
arbitrary precision algorithm by invoking A on multiple copies of F [1,8].

For SWITCH, there exists hashing-base algorithms for approximate model
counting which return (ε, δ)-approximations [5,6,15]. SWITCH can be adapted
taking inspiration from these algorithms so as to generate arbitrarily close
approximations of all base β splitting tails.
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5 Conclusion

In this paper, we provide a framework for developing algorithms for approxi-
mate discrete integration. In this framework, discrete integrals are transformed
into integrals of non-increasing real functions which are subsequently approxi-
mated using classical methods. We build two algorithms from this framework:
we demonstrate how transformations over the discrete integral give rise to two
different algorithmic approaches. One approach, WISH, relies on usage of opti-
mization queries while the other, SWITCH, reduces the problem of discrete inte-
gration to that of several unweighted counting problems. The analysis that lead
to these two reductions were shown to be very alike, in that they follow similar
steps in the transformation of the discrete integral. The similarity extends to
the algorithms as we have shown that SWITCH makes O(p log(n) log(p/δ)) calls
to NP oracle in contrast to O (n log(p) log(n/δ)) calls in the context of WISH,
so that the two complexities are dual on n and p. This result provides insight
on deciding which approach to use depending on the context, as the approach
expected to do fewer oracle queries depends on n and p.

It would be of interest to understand empirical performance comparison of
WISH and SWITCH and we hope that the aforementioned algorithmic approaches
will motivate practitioners to develop the underlying required solvers: (i) SAT
solvers capable of handling XOR and PB constraints, and (ii) MaxSAT solvers
capable of handling XOR constraints. The current MaxSAT solvers and the
CNF-PB solvers handle these XOR constraints blasting them into CNF after
performing top-level Gaussian elimination. The recent success of BIRD frame-
work owing to a tighter integration of CNF and XOR solving for CNF-XOR
formulas motivates the tighter integration of (i) XOR and PB constraints, and
(ii) MaxSAT solving with XOR constraints [15].
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Abstract. We present a MaxSAT algorithm designed to find high-
quality solutions when faced with a tight time budget, e.g. five minutes.
The motivation stems from the fact that, for many practical applica-
tions, time resources are limited and thus a ‘good solution’ suffices. We
identify three weaknesses of the linear MaxSAT algorithm that prevent it
from effectively computing low-violation solutions early in the search and
develop a novel approach inspired by local search to address these issues.
Our varying resolution method initially considers a rough view of the
soft clauses (low resolution) and with time refines and adds the remain-
ing constraints until the original problem is solved (high resolution).
In addition, we combine the technique with solution-guided search. We
experimentally evaluate our approach on test bed benchmarks from the
MaxSAT Evaluation 2018 and show that improvements can be achieved
over the baseline linear MaxSAT algorithm.

Keywords: MaxSAT · Solution-guided search · Incomplete MaxSAT

1 Introduction

Satisfiability (SAT) is a fundamental and well-known problem in computer sci-
ence. Given a Boolean formula, it is concerned in determining the existence of
a satisfying interpretation. Its optimisation variant, Maximum Boolean satisfia-
bility (MaxSAT), deals with computing the interpretation that maximises sat-
isfiability. Given the tremendous improvements in solving technology, MaxSAT
has found a wide range of applications in the field of combinatorial optimisation,
such as timetabling [2,13], planning, and scheduling. See [5,24] for more details.

Substantial research efforts in the MaxSAT community have been directed
towards complete MaxSAT solving, i.e. developing algorithms that exhaustively
explore the search space. In theory, these techniques guarantee to compute the
optimum solution. While this is a clear strong point and has proven to be effective
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for a number of problems, for large and difficult problems, such as high school
timetabling, computing the optimum solution with current technology cannot
be done within a reasonable time frame.

As an alternative, incomplete algorithms relax the optimality criteria with the
aim of providing a suitable trade-off between computational time and solution
quality. It is not uncommon for complete MaxSAT algorithms to provide inter-
mediary solutions, playing the role of both complete and incomplete approaches.
However, the main focus is laid on proving optimality later rather than comput-
ing good solutions early in the search.

There has been growing interest in incomplete algorithms in recent years,
with a surge of new methods at the recent MaxSAT Evaluation 2018. It has been
observed that better anytime performance can be achieved when algorithmic
design decisions are centred around finding high-quality solutions quickly. The
algorithm presented in this paper follows this line of work.

The first step towards designing an efficient algorithm is to understand the
underlying issues and limitations that are preventing current incomplete algo-
rithms from effectively computing good solutions early in the search. We focus
on the linear MaxSAT algorithm, an upper-bounding method which repeatedly
calls a Satisfiability (SAT) solver, each time imposing constraints to find a solu-
tion better than previously found. We identified three core problems with the
linear MaxSAT algorithm: scalability, lack of guidance towards good solutions,
and a tendency to focus on poor regions of the search space.

We designed an algorithm that aims to address these issues. There are two
key components to our approach: (1) a novel varying resolution technique and
(2) directed search around the currently best-known solution. The former sim-
plifies the formula to roughly approximate the original instance (low resolution)
and with time refines its view until the original constraints are rebuilt (high
resolution). The benefits are two-fold: from a strategic side, it aims to satisfy
the high impact constraints early in the search, and from a practical side, it
allows the linear MaxSAT algorithm to scale by reducing memory requirements.
The second key component directs the solver to provide incremental improve-
ments to the currently best-known solution. While this technique has been used
in other works [6,7], we provide a subtle yet impactful variation that provides
notable improvements for our purposes of incomplete solving. When the two
key techniques are combined, better results are obtained over the baseline linear
MaxSAT algorithm on benchmarks from the MaxSAT Evaluation 2018.

To summarise, our contributions are as follows:

– We identify three core issues with the linear MaxSAT algorithm that hinders
it in computing high-quality solution early in the search.

– We develop a novel varying resolution approach and combine it with a more
effective solution-guided search strategy.

– We experimentally evaluate of our algorithm in the context of incom-
plete MaxSAT solving and study the impact of each individual component.
Our results demonstrate that varying resolution and solution-guided search
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provide improvements over the baseline. We note that our approach was
ranked as the best performing solver in the incomplete weighted 300 s track
of the MaxSAT Evaluation 2018.

2 Preliminaries

SAT and MaxSAT. The Satisfiability problem (SAT) is concerned with decid-
ing whether or not there exists an assignment of truth values to variables such
that a given propositional logic formula is satisfied. A literal l is a Boolean vari-
able x or its negation ¬x. A clause c is a disjunction of literals, c ≡ l1∨l2∨· · ·∨ln.
A propositional formula is, for our purposes, a set of clauses understood as their
conjunction, thus in conjunctive normal form. An assignment θ is a mapping
from a set of Boolean variables x ∈ vars(θ) to a value true or false. We extend
θ to map negative literals, by defining θ(¬x) = ¬θ(x). An assignment θ satisfies
a clause c, written θ |= c, if for some literal l in the clause c, θ(l) = true. In Par-
tial Weighted MaxSAT, clauses are partitioned into hard H and soft S clauses.
Each soft clause c is given a weight w(c). The goal is to find an assignment that
satisfies the hard clauses and minimises the weighted sum of the unsatisfied soft
clauses. An alternative viewpoint for MaxSAT [9], which we adopt throughout
this paper, is to associate an objective variable with each soft clause and state
the problem as satisfying hard clauses while minimising the weighted sum of
objective variables. See [10] for more information on SAT and MaxSAT.

CDCL Solvers for SAT [31]. The state of the art for solving SAT prob-
lems is based on conflict driven clause learning. The key components are
unit propagation, activity based search, and clause learning. Unit propagation
of a set of clauses P and a partial assignment θ, repeatedly finds a clause
c ≡ l1 ∨ l2 ∨ · · · ln ∈ P where θ(li) = false, 1 ≤ i < n for all literals and extends
θ so that θ(ln) = true. The literal has c recorded as its reason for becoming
true. If θ(l) = false for all literals li in c the solver detects unsatisfiability. The
SAT solver applies unit propagation to extend an initially empty assignment θ.
Afterwards, the solver chooses a literal and extends θ to make the literal true
(treating it as an assumption) and applies unit propagation again. The choice of
literal is usually based on the variables that have been in the most recent fail-
ures. On detecting unsatisfiability, the solver performs conflict analysis to create
a nogood/learned clause which is added to the set of clauses to be solved. Solving
continues until either a satisfying assignment is discovered, or unsatisfiability is
proven.

Phase Saving [27,29]. SAT solvers repeatedly make decisions on both branch-
ing variables and values. Variables are chosen based on their recent activity in
conflicts (VSIDS scheme [25]). A wide-spread approach for truth value assign-
ment is based on phase saving [27], where the solver selects the most recently
used value in the search for the variable. Therefore, after backtracking, the solver
aims to return to its previous state as closely as possible. Hence, clauses learnt
about the previous region of the search space will still be relevant.
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The Generalised Totaliser [19]. The Pseudo-Boolean constraint
∑

wi · xi <
k is converted into propositional logic by encoding a binary tree, where the
leaf nodes are the input variable. Each parent node contains weighted variables
that represent partial sums of its children. The root contains the variables that
represent the total sum of the input variables. The desired constraint is obtained
by forcing violating output variables to false. The encoding roughly depends on
the number of distinct weights, as this is related to the number of possible
partial sums. Thus, the encoding is pseudo-polynomial, but does not depend on
the magnitude of the weights, which can be seen as a unique advantage.

Algorithm 1: The Linear algorithm for MaxSAT
Input: A set of hard H clauses and objective variables X. Each xi ∈ X is

associated with a weight w(xi).
Output: An optimal solution θ∗ minimising

∑
xi∈X w(xi) · xi

1 begin
2 θ∗ ←− ∅
3 P ←− H
4 while ∃ θ, ∀c ∈ P.θ |= c do
5 θ∗ ←− θ
6 k ←− cost(θ, X)
7 P ←− P ∪ (

∑
xi∈X w(xi) · xi < k)

8 return θ∗

Example 1. Consider the encoding of the pseudo-Boolean constraint 8x1+5x2+
3x3 + x4 < 9. We create a node n representing the sum n = 8x1 + 5x2 defined
by Booleans [[n ≥ 5]] and [[n ≥ 8]] and clauses x1 → [[n ≥ 8]], x2 → [[n ≥ 5]] and
x1 ∧ x2 → false. The last clause encodes the fact that the partial sum is already
too big. Similarly we create a node m representing the sum m = 3x3 + x4 using
Booleans [[n ≥ 1]], [[n ≥ 3]], [[n ≥ 4]] and clauses x3 → [[n ≥ 3]], x4 → [[n ≥ 1]]
and x3 ∧ x4 → [[n ≥ 4]]. The root node s encoding the entire sum is encoded
using Booleans [[s ≥ 1]], [[s ≥ 3]], [[s ≥ 4]], [[s ≥ 5]], [[s ≥ 8]] and the clauses
[[m ≥ 1]] → [[s ≥ 1]], [[m ≥ 3]] → [[s ≥ 3]], [[m ≥ 4]] → [[s ≥ 4]], [[n ≥ 5]] → [[s ≥ 5]],
[[n ≥ 5]] ∧ [[m ≥ 1]] → [[s ≥ 6]], [[n ≥ 8]] → [[s ≥ 8]], [[n ≥ 5]] ∧ [[n ≥ 3]] → [[s ≥ 8]],
[[n ≥ 5]]∧ [[m ≥ 4]] → false, [[n ≥ 8]]∧ [[m ≥ 1]] → false, [[n ≥ 8]]∧ [[m ≥ 3]] → false,
and [[n ≥ 8]] ∧ [[m ≥ 4]] → false In fact the s literals are not needed, they are
included to show the general process of building a node from two children. We
only need to keep the clauses encoding incompatible combinations of n and m

Note that we encode the constraint 800x1 + 500x2 + 300x3 + 100x4 < 900
identically. 	


The Linear MaxSAT Algorithm [14,20,21,23]. The optimal solution to a
MaxSAT instance can be obtained by solving a series of SAT problems. This is
depicted in Algorithm 1. It makes repeated calls to a SAT solver. After each call,
it adds a pseudo-Boolean constraint to the formula that enforces the formula to
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only admit solutions that have a cost strictly lower than the current best solution.
In Sect. 5, we discuss different encodings for the pseudo-Boolean constraint and
in the rest of the paper focus our attention on the generalised totaliser encoding
(see above). The algorithm iterates until it proves unsatisfiability, in which case
the optimal solution was computed in the previous iteration.

3 Algorithm

Our algorithm is designed for short run times, e.g. five minutes. The assumption
is that proving optimality within the given time frame is infeasible. Thus, the
aim is to find ‘good solutions’ early during the search. The main challenge is to
determine a strategy which can identify where the ‘good’ solutions reside in the
search space and ensure scalability across a wide range of benchmarks.

Our approach is based on the linear MaxSAT algorithm. This method was
chosen as it was the best performing solvers in the incomplete unweighted 60 s
track of the MaxSAT Evaluation 2017. In addition, it has shown competitive
resulting for certain applications, e.g. high school timetabling [13]. Two tech-
niques play a key role in our algorithm: (1) a novel varying resolution approach
and (2) directed search around the currently best-known solution.

3.1 Issues with the Linear MaxSAT Algorithm

To obtain a better understanding of our algorithm, it is important to note the
core issues with the linear MaxSAT algorithm. We identified three main issues in
the context of incomplete saving: (1) scalability and sensitivity to the values of
the weights of the objective variables, (2) lack of a strategy to guide the search
towards solutions with low objective value, and (3) proneness to falling in “local
optima”, i.e. excessively spending efforts proving unsatisfiability in a certain
region of the search space rather than exploring a different part of the search
space. The varying resolution approach aims to address the first two points,
while the directed search tackles the third point and partially the second. These
issues are described in greater detail below.

Issue #1: Scalability and Weight-Value Sensitivity. The linear MaxSAT
algorithm encodes a single large pseudo-Boolean constraint, which is directly
dependent on the values of the weights of the objective variables.

The generalised totaliser pseudo-Boolean encoding [19], used in this work,
roughly depends on the number of unique values of the weights. Therefore, when
faced with a large number of diverse weights, the number of clauses and auxiliary
variables required to encode the pseudo-Boolean can be prohibitively high. As a
result, the pseudo-Boolean encoding can dominate the algorithmic performance
and become a bottleneck. Other encodings suffer from related issues.

We note that MaxSAT algorithms that do not require explicitly encoding
the pseudo-Boolean constraints are largely unaffected by the variety in weights,
e.g. core-guided approaches. On a related note, WPM3 [6] uses the splitting rule
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to allow using an encoding where the weights are equal, i.e. cardinality con-
straints. However, these algorithms focus on increasing the lower bound rather
than computing good solutions early in the search.

Issue #2: Lack of Guidance Towards Good Solutions. In each iteration of
the linear algorithm, the SAT solver merely seeks to find a satisfying assignment
and not necessarily a solution with low cost. Therefore, there is no guidance
towards good solutions, which might lead the algorithm to spend excessive time
searching in areas that potentially fine-tune small improvements to the objective
even though the crucial soft constraints are left unattended.

Issue #3: Tendency to Focus on Poor Regions of the Search Space. This
issue is linked to the underlying value-selection heuristic of the SAT algorithm:
phase saving. While phase saving is known to be effective for pure satisfiability
problems, it can introduce undesired behaviour when used in the linear MaxSAT
algorithm. The problem stems from the fact that upon conflict detection and
backtracking, phase saving aims to drive the search back into a similar region of
the search space as before. This is systematically done through value-assignments
for variables: once a new variable is selected, the value most recently used for that
variable will be assigned to it. As a result, once the algorithm reaches a region
of the search space where there are no better solutions, it will effectively spend
its efforts in proving unsatisfiability. Unfortunately, this can be time-consuming
and does not lead to finding good solutions quickly.

3.2 Our Approach

There are two key components in our algorithm: the varying resolution approach
and solution-guided search, complementary techniques that aim to address the
identified issues of the linear MaxSAT algorithm. The former ensures scalability
(Issue #1) and guides the search towards good solutions on a high level (Issue
#2), while the latter provides incremental improvements to the current best
solution (Issues #2 and #3). These components are built into the linear MaxSAT
algorithm and exhibit a high degree of synergy, resulting in a better algorithm
than the baseline linear MaxSAT algorithm.

Key Component #1: Varying Resolution Approach. The aim of this part
is to address Issue #1 and #2. It starts by viewing the MaxSAT formula in low
resolution by decreasing the weights for all constraints. The weights reduced
to zero are removed. After the resulting problem is solved, the weight values
are increased (increase the resolution), a portion of the previously ignored con-
straints are added, and the problem is resolved. This process iterates until the
problem is viewed in high resolution, i.e. the original formula is restored and
solved. Weight adjustment results in a heuristic that approximates the formula
and reduces the memory requirements, which in turns offers speed-ups. In theory,
the procedure preserves completeness, i.e. does not remove any optimal solution,
but in practice, only a few iterations of the algorithm are executed within the
allocated time resources. We discuss related approaches, namely stratification
for core-guided approaches [4] and weight-clustering [18], in Sect. 5.
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Algorithm 2: Compute the initial cutoff value
Input: A set of objective variables X, a mapping w : X → N, and the

threshold coefficient β ∈ [0, 1].
Output: Initial cutoff value d

1 begin
2 S ←− ∑

x∈X w(x)
3 k ←− maxx∈X{dec digits(w(x))}
4 for i = 1..k do
5 frac sum[i] ←− ∑

x∈X∧dec digits(x)=i w(x)

6 d ←− k
7 for i = 1..k do
8 if frac sum[i] ÷ S ≥ β then
9 d ←− i

10 break

11 return 10(d−1)

To explain our algorithm in detail, we first discuss the initial cutoff value
computation, present the varying resolution approach, and lastly describe our
modification to the linear MaxSAT algorithm.

Initial Cutoff Value Computation. Algorithm 2 describes the procedure. The
goal is to determine a cutoff threshold that partitions the objective variables
into low- and high-weighted variables. It first computes: S - the sum of the
weights, k - the number of decimal digits used to represent the largest weight,
and frac sum - the array where frac sum[i] represents the sum of weights
with exactly i decimal digits. Note that the number of digits is computed as
dec digits(x) = �log10(x)� + 1. Afterwards, the cutoff value is chosen based on
the total contribution of weights with precisely d digits with respect to the overall
MaxSAT problem. The smallest value d that meets the specified threshold β is
selected, or the default value k if no such value exists. The cutoff value is returned
as 10(d−1). The intuition is that the cutoff point discriminates weights between
those that contribute significantly towards the objective and those that do not.
The parameter β ∈ [0, 1] regulates the sensitivity of the division: lower/higher
values for β lead to lower/higher cutoff values.

Example 2. Consider the formula with X = {xi : i ∈ {0, 1, ..., 8}} and w =
{w0 → 1200, w1 → 800, w2 → 700, w3 → 500, w4 → 50, w5 → 15, w6 → 9, w7 →
8, w8 → 2} and parameter β = 0.20. The sum of weights is 3284 and frac sum =
{1 → 19, 2 → 65, 3 → 2000, 4 → 1200}. The inner if condition is not satisfied
for i ∈ {1, 2}, as neither 19

3284 ≥ 0.20 nor 65
3284 ≥ 0.20, but will trigger for i = 3

since 2000
3284 ≥ 0.20. Therefore, d = 3 and the returned cutoff is 100. 	


Varying Resolution. Algorithm 3 gives an overview. The algorithm starts by com-
puting the initial cutoff value (Algorithm 2). Iteratively, a new MaxSAT formula
is built, where the hard constraints are as in the original formula, and the weights
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of objective variables are divided by the cutoff value (rounded down). The new
formulation, along with the best solution found so far θ∗ and the original formula,
are used to initialise the linear MaxSAT algorithm. The best solution is used by
the solution-guided search component, while the original formula is required due
to our previously discussed modification of the linear MaxSAT algorithm (see
next subsections for both points). After the resulting formula is solved, the cut-
off value is decreased and the process is repeated until the original formula is
solved. Note that if the sum of the weights is lower than a given parameter α, the
varying resolution approach is deemed unnecessary, i.e. the cutoff is set to one
and the algorithm proceeds as a linear MaxSAT algorithm with solution-guided
search (see component #2). The procedure can be viewed as a search by expo-
nentially decreasing steps, where the approximate objective function is refined
at an exponential rate each iteration until the original objective is restored.

Example 3. (continued) Let α = 1000. As
∑

xi
w(xi) ≥ α, the cutoff d is set

to 100 (see Example 2). Therefore, w′ = {x0 → 12, x1 → 8, x2 → 7, x3 →
5, x4 → 0, x5 → 0, x6 → 0, x7 → 0, x8 → 0}, and X ′ = {x0, x1, x2, x3}. After the
simplified formula is solved, d is decreased to 10 and the process is repeated. 	


Learned clauses are kept as usual during the search within each individual
iteration, but the SAT solver is rebuilt at the beginning of each iteration (Algo-
rithm 3, line 11). Learned clauses are not shared in between iterations of varying
resolution, as learned clauses in one iteration might refer to auxiliary variables
in the pseudo-Boolean encoding that are no longer present in the next iteration.

The approximate objective function requires fewer auxiliary variables and
clauses than the original pseudo-Boolean constraint. Recall that the size of the
generalised totaliser encoding [19] is related to the number of unique weight
values, e.g. the smallest encoding is obtained if all weights are the same value.
Dividing the weights by the cutoff results in fewer unique weights, leading to
a smaller encoding, which in turn reduces the memory requirements. Note that
varying resolution is designed for shorter run times and thus are not particularly
suitable for longer runtimes, i.e. the last iteration of varying resolution is the
standard linear MaxSAT algorithm.

Observation 1. Given an initial constraint I ≡ ∑
x∈X w(x) · x ≤ ub − 1, the

r rounded version of the constraint is given by Ir ≡ ∑
x∈X�w(x)

r �· ≤ �ub−1
r �. It

follows that I |= Ir, i.e. all solutions of I are also solutions of Ir, since Ir is a
Gomory cut [16] derived from I. Hence, adding this constraint does not exclude
any optimal solution to the original problem.

Observation 2. The varying resolution algorithm is complete regardless of the
choice for parameters α and β.

Observation 3. The varying resolution is anytime, i.e. it provides intermediary
results during its execution.

Linear MaxSAT Modification. The standard linear MaxSAT algorithm is modi-
fied as follows. It additionally stores the original MaxSAT formula and the best
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Algorithm 3: The Varying Resolution Approach
Input: A set of hard H clauses and objective variables X, a mapping

w : X → N, and threshold coefficients α ∈ N and β ∈ [0, 1]
Output: An optimised solution θ∗

1 begin
2 θ∗ ←− ∅
3 if

∑
x∈X w(x) ≥ α then

4 d ←− compute initial cutoff(X, β)
5 else
6 d ←− 1

7 cutoff ←− 10d−1

8 while cutoff ≥ 1 do

9 w′(x) = 
 w(c)
cutoff

�
10 X ′ = {x : x ∈ X ∧ w′(x) > 0}
11 solver ←− initialiseMaxSAT (H, X, w, X ′, w′)
12 solver.setInitialSolution(θ∗)
13 θ∗ ←− solver.solve()

14 cutoff ←− 
 cutoff
10

�
15 return θ∗

solutions with respect to the current and the original MaxSAT formula. Note
that an assignment with a lower objective value for the simplified problem in
the varying resolution approach does not necessarily lead to a better solution
for the original problem. Therefore, once a new assignment is computed, its cost
is computed with respect to the original formula, and it is kept as the globally
best solution if its cost is lower than the previous best solution. Regardless of
the outcome, the algorithm proceeds as usual, i.e. adds the upper bound with
respect to the newly found locally best solution. Thus, it optimises its current
problem, but only updates the global solution if it is better with respect to the
original MaxSAT formula.

Example 4. Considering the formula within the varying resolution approach with
d = 10: w′ = {x0 → 120, x1 → 80, x2 → 70, x3 → 50, x4 → 5, x5 → 1, x6 →
0, x7 → 0, x8 → 0}. The linear MaxSAT algorithm is called and assume it finds
the solution θ that only violates x5. The objective value of θ is 1 locally and
15 globally. Both values are kept as these are the best values found in their
respective categories. The pseudo-Boolean constraint

∑
w′(x) < 1 is added to

the MaxSAT formula and the SAT solver is called again. Now assume the solver
finds a new solution that violates x6 and x7. The solution is kept as the best local
solution (

∑
w′(x) = 0), but the best global is not updated (

∑
w(x) = 17 ≥ 15).

As locally no further improvements can be made, the linear MaxSAT algorithm
stops, leading to a new iteration of the varying resolution approach with d = 1
where θ is passed as the initial solution. 	
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Key Component #2: Solution-Guided Search. In local search, intensi-
fication aims to provide improvements to the solution by searching through a
neighbourhood of solutions close to the current solution. Thus, a better solution
is found by iteratively performing small incremental changes to the currently
considered solution, driving the solution into a (local) minima. The essence of
this idea can be captured in a complete search algorithm by using the follow-
ing value-selection heuristic: once a branching variable has been chosen, assign
the value to the variable that it assumes in the best-known solution. Hence,
the search progresses close to the best-known solution, resembling local search.
In our algorithm, we use this value-selection heuristic, as it partially addresses
issues #2 and #3 of the linear MaxSAT algorithm.

Similar techniques were used under various names, e.g. solution-based phase
saving [1,6,12], solution-guided search [7], and large neighbourhood search [30].
The phase saving strategy used in WPM3 [6] is the closest to our work. The
difference is subtle yet impactful: we apply solution-guided search to all vari-
ables in the MaxSAT formula, including auxiliary variables introduced by the
pseudo-Boolean encoding, as opposed to only considering variables that appear
in the original MaxSAT formula as in WPM3 [6]. For our experimental setting,
our strategy proved to be more effective, but we note that WPM3 considered a
different setting for their phase saving, i.e. it was considered for solving subprob-
lems generated during the search with the aim of increasing the lower bound.

4 Experimental Results

We performed a detailed computational study to empirically evaluate the effect
of varying resolution and solution-guided search.

4.1 Setting

Our setting is the same as in incomplete track of the MaxSAT Evaluation 2018.
Thus, we consider unweighted and weighted benchmarks with 60 and 300 s time-
outs, for a total of four separate settings. The evaluation uses industrial and
application benchmarks. The comparisons are performed on a total of 153 and
172 unweighted and weighted benchmarks, respectively. The experiments were
performed on the StarExec cluster, allocating 32 GB of RAM per benchmark.

Scoring. The scoring of a solver for the incomplete track is the sum of scores
si for each instance. For instance i, a solver finding a solution with objective oi
is awarded score si = boi/oi where boi is the best objective found by any solver
on that instance during the 60 and 300 s runs. If a solver finds no solution for
an instance i, the corresponding score is si = 0. The best solution is taken from
the 300 s track.

Our Solver: LinSBPS. We implemented varying resolution and solution-
guided search in Open-WBO [23], an open-source MaxSAT solver.

Other Solvers. The remaining solvers used in the evaluation are discussed in
more detail in the Sect. 5.
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4.2 Results and Discussions

We provide experiments that support our previous claims. The same timeouts
and benchmarks are used across experiments. Note that the score metric is rela-
tive to the solvers considered, i.e. the score for a particular benchmark depends
on the best solution computed by the considered solvers. Hence, the score values
may differ in different experiments.

Effect of Varying Resolution and Solution-Guided Search. In Table 1a
we compare the performance of our techniques compared to the baseline lin-
ear algorithm. We consider four variants, depending on whether varying reso-
lution and solution-guided search is used. Note that varying resolution is only
used for weighted benchmarks which are deemed as large enough, as detailed in
Algorithm 3. For the considered benchmark set, varying resolution was used on
89 out of 172 benchmarks (51%).

Each component, varying resolution and solution-guided search, improves the
baseline. The best approach is obtained by combining both techniques.

Number of Unique Weights Produced. Varying resolution reduces the number of
unique weights in the benchmarks, thus leading to more compact encodings with
the GTE. On average, the number of distinct weights drops from 1342 to 29 in
the first iteration of varying resolution.

Number of Objective Variables Considered. The underlying MaxSAT formula is
simplified with varying resolution. Nevertheless, most of the objective variables
are still taken into account, even in the first iteration. On average, the algorithm
considers 87% percent of the total number of objective variables in the first
iteration of varying resolution.

Number of Iterations Performed. For the benchmarks that use varying resolution,
on average, 1.19 iterations were executed with 6.04 iterations needed to restore
the original formula.

GTE vs. Adder Pseudo-Boolean Encoding. One of the benefits of varying
resolution comes from its ability to produce a smaller pseudo-Boolean encoding.
As an alternative, in Table 1b we consider the adder encoding, which represents
numbers in binary form and encodes binary adders. This allows for a significant
reduction in the encoding size, at the expense of arc consistency.

Our comparison was done only on the benchmarks that use varying resolu-
tion. However, while effective for complete solving [20], the adder encoding shows
weaker performance for incomplete solving. We believe the loss of arc consistency
for the adder encodings forces the solver to spend more time in search, which is
detrimental given the tight time budget.

Solution-Guided Search. In Table 1c we compare our variant of solution-
guided search with the phase saving strategy used in WPM3 [6]. The difference
in the techniques is subtle yet impactful. Nevertheless, regardless of the variant
chosen, incrementally improving an existing solution proved to be beneficial for
incomplete MaxSAT solving. Compared to WPM3 [6], our variant considers all
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variables and not only the original variables. This proved to be advantageous
for our setting. As discussed previously in Sect. 3.2, our experimental setting
differs from the one considered in WPM3, and hence it must be emphasised
that our claims only hold for our particular case of incomplete solving with
the linear algorithm. The auxiliary variables in the formula are implied by the
original variables in the pseudo-Boolean constraint. Thus, following the idea of
remaining close to the best solution, all variables must be considered. Setting a
different value to an auxiliary variable reflects on the original variables, which
was undesirable in our setting.

Parameter Choice. The parameter α defines the size of the benchmark
required to activate varying resolution, while β is used to discriminate between
more and less important weights. The final values chosen in the solver are
α = 5 · 105 and β = 0.05. Note that no parameter tuning was performed. The
parameter choice discussion that follows is presented as a post-analysis.

Varying resolution is activated when the sum of weights in a benchmark
exceeds the threshold α. To study other possible choices for α, we sort the
considered benchmarks by the sum of their weights. The 83rd smallest value
is 489 · 103. However, the 73rd and 93rd are 71 · 103 and 1603 · 103, exhibiting
substantial differences in values. Thus, α can be varied significantly with little
effect. Therefore, we selected α = 5 · 105 in an ad hoc manner and decided not
to fine-tune the parameter on the previous competition benchmark set, as doing
so would likely lead to overfitting.

Parameter β was kept low since our intention was to discard low-valued
weights that increase the encoding size but do not provide a significant difference
in the objective. Thus, we selected β = 0.05, i.e. we stop discarding weights with
d digits if their contribution is at least 5%.

Comparison with the MaxSAT Evaluation 2018 Solvers. In Table 2 we
show the results from the MaxSAT Evaluation 2018 as a comparison with other
state-of-the-art incomplete MaxSAT solvers. Our solver, LinSBPS, uses the tech-
niques described in this paper. Our approach can be further improved using
core-boosting [8] as a preprocessing step, but the main aim of these experiments
is to demonstrate the effectiveness of the techniques presented in this paper.

Weighted Track. Our algorithm achieved the best rank in the 300 s category. A
detailed view of these results is given in Fig. 1 (top), which shows the distribution
of scores per instance. For each solver, the scores for every instance is computed,
the resulting array is sorted, and then plotted as a curve. We can see that our
approach provides highly competitive results for the majority of the benchmarks,
with only a handful of cases where the score is below 0.8. This illustrates the
robustness of our technique when handling a diverse set of benchmarks. For the
60 s track, our approach is ranked second.

Our approach takes into account most of the objective variables. Open-WBO-
Inc-BMO, as a solver with comparable performance, in contrast, initially aggres-
sively optimises the most important constraints. This seems to provide better
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results for 60 s runs. However, as more time is allocated, our approach is able to
exploit a broader view of the problem, while the other approach keeps optimising
a rough approximation.

Unweighted Track. Our approach solely relies on solution-guided search to pro-
vide improvements over the baseline for the unweighted track. Nevertheless, our
method ranked second and third in the 60 and 300 s track, respectively. From
Fig. 1 (bottom), we can see that there is a higher deviation in solver perfor-
mance depending on the benchmark. While for the weighted benchmarks our
approach achieved consistently good results when compared with others, for the
unweighted track there are no robust solvers: the score distributions are scat-
tered across the interval [0.1, 1] for each solver. We believe this is because it is
harder to identify the key constraints for unweighted compared to the weighted
instances, and thus there is a higher fluctuation between the results. The best
performing solver in the unweighted track, SATLike, is a local search solver
specialised in exploring different areas of the search space quickly rather than
using sophisticated reasoning technique such as CDCL, which could explain its
effectiveness for these benchmarks.

Table 1. Comparison of different variants of our approach. 300 s. (a) The effect of each
individual component; (b) Comparison with the adder encoding; (c) Comparison with
solution-guided search used in WPM3: SGS(OV).

(a) (b) (c)

Solver Score Solver Score Solver Score

VR+SGS 162.00 VR+SGS 161.55 VR+SGS 161.03

SGS 144.46 VR 140.05 VR+SGS(OV) 148.73

VR 140.47 Adder+SGS 129.87 SGS 143.81

Baseline 128.8 Baseline+Adder 125.26 SGS(OV) 132.43

Table 2. Results from the MaxSAT Evaluation 2018. The score listed for solvers

(a) Weighted 60 s (b) Weighted 300 s (c) Unweighted 60 s (c) Unweighted 300 s

Solver Score Solver Score Solver Score Solver Score

Open-WBO-Inc-BMO 0.810 LinSBPS 0.900 SATLike-c 0.735 SATLike-c 0.854

LinSBPS 0.799 Open-WBO-Inc-BMO 0.842 LinSBPS 0.705 maxroster 0.829

maxroster 0.773 maxroster 0.804 SATLike 0.675 LinSBPS 0.782

Open-WBO-Inc-Cluster 0.743 Open-WBO-Inc-Cluster 0.762 Open-WBO-Inc-OBV 0.654 SATLike 0.702

SATLike-c 0.696 SATLike-c 0.747 Open-WBO-Inc-MCS 0.631 Open-WBO-Inc-OBV 0.842

Open-WBO-Gluc 0.669 SATLike 0.702 Open-WBO-Gluc 0.612 Open-WBO-Inc-MCS 0.762

SATLike 0.661 Open-WBO-Gluc 0.68 Open-WBO-Riss 0.564 Open-WBO-Gluc 0.68

Open-WBO-Riss 0.638 Open-WBO-Riss 0.663 maxroster 0.541 Open-WBO-Riss 0.663
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Fig. 1. Detailed results for the weighted 300 s (left) and unweighted 60 s (right) track.
Image courtesy of the MaxSAT Evaluation 2018.

5 Related Work

Local Search. These methods share a common pattern: start by generat-
ing a random assignment and iteratively select a variable from an unsatisfied
clause and flip its assignment. Complex reasoning mechanisms are typically not
employed as in complete solvers, e.g. CDCL. Rather, the success of the methods
comes from their ability to rapidly explore a large number of solutions through
the use of specialised data structures, careful implementation, and heuristics.

In the recent MaxSAT Evaluation, SATLike [22] won the unweighted incom-
plete track and demonstrated good performance in the weighted track of the
recent MaxSAT Evaluation 2018. Its key component is a novel weighting scheme
that dynamically changes the weights of clauses during the search.

Complete Techniques for Incomplete Solving. In some cases, complete
algorithms report intermediate solutions and thus can take the role of incomplete
methods. The linear MaxSAT [14] solvers fall into this category and approaches
differ in the way the upper bounding constraint is handled: SAT4J [21] uses
linear propagators, a technique from constraint programming to avoid explicitly
encoding the constraint into Boolean formula, while QMaxSAT [20] and Open-
WBO-Gluc use the adder and GTE pseudo-Boolean encoding, respectively. The
winner of the weighted incomplete track in 2017, maxroster [32], uses a stochastic
solver to produce an initial solution before applying complete-based techniques.

Core-guided approaches [3,15,17,26] consider an initial SAT formula where
the soft clauses are treated as hard clauses. Iteratively, a SAT solver is used
to compute either a satisfying assignment, which would represent the optimal
solution, or an unsatisfiable core, i.e. a subset of clauses that cannot simul-
taneously be satisfied. The core is used to rewrite the formula, e.g. relax the
formula by allowing at most one of the clauses from the core to be unsatisfied.
Hitting-set approaches [11,28] utilise unsatisfiable cores to separate MaxSAT
solving into a SAT and an integer programming component. These approaches
are inherently lower bounding and in their pure form do not produce any solution
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other than the optimum, rendering them inapplicable to incomplete scenarios.
However, when combined with other techniques, unsatisfiable cores can be used
for anytime algorithms. For example, WPM3 [6] is a core-guided solver with
a stratified approach [4], where initially only a subset of the soft clauses with
the highest weights are considered, and after satisfiability is detected, a portion
of the remaining soft clauses are added and the process is repeated. Obtaining
cores with high weights contribute towards faster lower bounds, and during this
process upper bounds are additionally computed. This was the best incomplete
solver in the 2016 evaluation. At a high level, our strategy resembles the strat-
ified method, but the underlying solving process and the reasoning behind the
techniques make a clear distinction between the approaches.

Core-boosting [8] has recently been proposed to improve linear MaxSAT algo-
rithms. The main idea is to run the linear MaxSAT algorithm after performing
core-based rewriting for a limited time. The resulting formula has fewer soft
clauses, which simplifies the pseudo-Boolean constraint required in the linear
algorithm. Core-boosting can be seen as a form of preprocessing and can be
combined with other linear algorithms, such as the one presented in this paper.

Incomplete Weight-Relaxation. Inc-BMO and Inc-Cluster [18] from the
MaxSAT Evaluation bear the most similarity to our approach.

These methods cluster the objective variables. Each variable in a cluster is
reassigned a representative weight as follows: the array of weights is sorted and
the difference between adjacent elements is computed. The top k − 1 indices
with the highest differences are selected, effectively partitioning the weights into
k clusters. Each variable within a cluster is reassigned the arithmetic mean of
the weights in the group. As a result, there are at most k different weights values.

The two approaches, Inc-BMO and Inc-Cluster, differ in the next step. In
Inc-Cluster, a linear MaxSAT algorithm is applied to the new formula. In Inc-
BMO, the resulting formula is solved as a lexicographical optimisation problem:
the problem is solved considering only the variables with the highest weight,
the sum of their violations is fixed to the computed value, and the process is
repeated with the second-highest weighted variables, and so forth.

There are two main reasons for the success of these methods: (1) reducing
the number of distinct weights results in more compact pseudo-Boolean encod-
ings, increasing performance, and (2) Inc-BMO aggressively optimises the most
important constraints. Note that, once the problem is simplified, the effects are
irreversible. Therefore, each clustering choice plays an important role. The meth-
ods excel for problems where the clustering can be done effectively.

To further illustrate the difference with our approach, consider the MaxSAT
problem from Example 2. For k = 2, the clustering algorithms partitions the
weights into P1 = {w0, w1, w2, w3} and P2 = X − P1. Thus, violations within
each cluster are treated equally. This is not an issue at the start of the algorithm.
However, as the algorithm progresses, some form of refinement is necessary to
provide better results. Varying resolution with a cutoff of 100 initially considers
only P1 as BMO-INC, but is able to differentiate between violations, i.e. w′ =
{12, 8, 7, 5}. Note that each iteration thereafter refines the formula.
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6 Conclusion

We developed a novel approach to incomplete MaxSAT solving consisting of two
key components: our varying resolution approach, and solution-guided search.
The former initially views the problem in low-resolution and with time refines the
constraints until the formula is solved in high resolution, i.e. the original problem.
Solution-guided search provides incremental improvements by searching close to
the current best solution. Overall, our algorithm has proven to be highly effective
for short runtimes, placing first in the incomplete weighted 300 s track of the
MaxSAT Evaluation 2018.

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able feedback in preparing the final version of this paper.
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6. Ansótegui, C., Gabàs, J.: WPM3: an (in)complete algorithm for weighted partial
MaxSAT. Artif. Intell. J. 250, 37–57 (2017)

7. Beck, J.C.: Solution-guided multi-point constructive search for job shop scheduling.
J. Artif. Intell. Res. 29, 49–77 (2007)

8. Berg, J., Demirović, E., Stuckey, P.J.: Core-boosted linear search for incom-
plete MaxSAT. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS,
vol. 11494, pp. 39–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
19212-9 3

9. Berg, J., Järvisalo, M.: Unifying reasoning and core-guided search for maximum
satisfiability. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS
(LNAI), vol. 11468, pp. 287–303. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-19570-0 19

10. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiabil-
ity, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,
Amsterdam (2009)

11. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7 19

https://doi.org/10.1007/978-3-642-21581-0_22
https://doi.org/10.1007/978-3-642-21581-0_22
https://doi.org/10.1007/978-3-642-33558-7_9
https://doi.org/10.1007/978-3-030-19212-9_3
https://doi.org/10.1007/978-3-030-19212-9_3
https://doi.org/10.1007/978-3-030-19570-0_19
https://doi.org/10.1007/978-3-030-19570-0_19
https://doi.org/10.1007/978-3-642-23786-7_19


Varying Resolution and Solution-Guided Search for MaxSAT 193
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Abstract. We propose joinwidth, a new complexity parameter for the
Constraint Satisfaction Problem (CSP). The definition of joinwidth is
based on the arrangement of basic operations on relations (joins, projec-
tions, and pruning), which inherently reflects the steps required to solve
the instance. We use joinwidth to obtain polynomial-time algorithms (if
a corresponding decomposition is provided in the input) as well as fixed-
parameter algorithms (if no such decomposition is provided) for solving
the CSP.

Joinwidth is a hybrid parameter, as it takes both the graphical struc-
ture as well as the constraint relations that appear in the instance
into account. It has, therefore, the potential to capture larger classes
of tractable instances than purely structural parameters like hypertree
width and the more general fractional hypertree width (fhtw). Indeed,
we show that any class of instances of bounded fhtw also has bounded
joinwidth, and that there exist classes of instances of bounded joinwidth
and unbounded fhtw, so bounded joinwidth properly generalizes bounded
fhtw. We further show that bounded joinwidth also properly generalizes
several other known hybrid restrictions, such as fhtw with degree con-
straints and functional dependencies. In this sense, bounded joinwidth
can be seen as a unifying principle that explains the tractability of several
seemingly unrelated classes of CSP instances.

1 Introduction

The Constraint Satisfaction Problem (CSP) is a central and generic computa-
tional problem that provides a common framework for many theoretical and
practical applications in AI and other areas of Computer Science [31]. An
instance of the CSP consists of a collection of variables that must be assigned
values subject to constraints, where each constraint is given in terms of a relation
whose tuples specify the allowed combinations of values for specified variables.

CSP is NP-complete in general. A central line of research is concerned with
the identification of classes of instances for which the CSP can be solved in poly-
nomial time. The two main approaches are to define classes either in terms of the
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constraint relations that may occur in the instance (syntactic restrictions; see,
e.g., [4]), or in terms of the constraint hypergraph associated with the instance
(structural restrictions; see, e.g., [18]). There are also several prominent propos-
als for utilizing simultaneously syntactic and structural restrictions called hybrid
restrictions (see, e.g., [6–8,28]).

Grohe and Marx [20] showed that CSP is polynomial-time tractable when-
ever the constraint hypergraph has bounded fractional hypertree width, which
strictly generalizes previous tractability results based on hypertree width [15]
and acyclic queries [33]. Bounded fractional hypertree width is the most general
known structural restriction that gives rise to polynomial-time tractability of
CSP.

Our Contribution: Joinwidth. We propose a new hybrid restriction for the CSP,
the width parameter joinwidth, which is based on the arrangement of basic rela-
tional operations along a tree, and not on hypertree decompositions. Interest-
ingly, as we will show, our notion strictly generalizes (i) bounded fractional
hypertree width, (ii) recently introduced extensions of fractional hypertree width
with degree constraints and functional dependencies [24], (iii) various prominent
hybrid restrictions [5], as well as (iv) tractable classes based on functionality and
root sets [5,9,10]. Hence, joinwidth gives rise to a common framework that cap-
tures several different tractable classes considered in the past. Moreover, none of
the other hybrid parameters that we are aware of [8], such as classes based on the
Broken Triangle Property or topological minors [6,7] and directional rank [28],
generalize fractional hypertree width and hence all of them are either less general
or orthogonal to joinwidth.

Joinwidth is based on the arrangement of the constraints on the leaves of a
rooted binary tree which we call a join decomposition. The join decomposition
indicates the order in which relational joins are formed, where one proceeds in
a bottom-up fashion from the leaves to the root, labeling a node by the join of
the relations at its children, and projecting away variables that do not occur in
relations to be processed later. Join decompositions are related to (structural)
branch decompositions of hypergraphs, where the hyperedges are arranged on the
leaves of the tree [2,19,29]. Related notions have been considered in the context
of query optimization [1,22]. However, the basic form of join decompositions
using only relational joins and projections is still a weak notion that cannot
be used to tackle instances of bounded fractional hypertree width efficiently.
We identify a further operation that—in conjunction with relational joins and
projections—gives rise to the powerful new concept of joinwidth that captures
and extends the various known tractable classes mentioned. This third operation
prunes away all the tuples from an intermediate relation that are inconsistent
with a relation to be processed later.

A join decomposition of a CSP instance specifies the order in which the
above three operations are applied, and its width is the smallest real number
w such that each relation appearing within the join decomposition has at most
mw many tuples (where m is the maximum number of tuples appearing in any
constraint relation of the CSP instance under consideration). The joinwidth of a
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CSP instance is the smallest width over all its join decompositions. Observe that
joinwidth is a hybrid parameter—it depends on both the graphical structure as
well as the constraint relations appearing in the instance.

Exploiting Joinwidth. Similarly to other width parameters, also the property
that a class of CSP instances has bounded joinwidth can only be exploited for
CSP solving if a decomposition (in our case a join decomposition) witnessing the
bounded width is provided as part of the input. While such a join decomposition
can be computed efficiently from a fractional hypertree decomposition or when
the CSP instance belongs to a tractable class based on functionality or root
sets mentioned earlier, we show that computing an optimal join decomposition
is NP-hard in general, mirroring the corresponding NP-hardness of computing
optimal fractional hypertree decompositions [13].

However, this obstacle disappears if we move from the viewpoint of
polynomial-time tractability to fixed-parameter tractability (FPT). Under the
FPT viewpoint, one considers classes of instances I that can be solved by a
fixed-parameter algorithm—an algorithm running in time f(k)|I|O(1), where k
is the parameter (typically the number of variables or constraints), |I| is the
size of the instance, and f is a computable function [14,16,17]. We note that
it is natural to assume that k is much smaller than |I| in typical cases. The
use of fixed-parameter tractability is well motivated in the CSP setting; see, for
instance, Marx’s discussion on this topic [27].

Here, we obtain two single-exponential fixed-parameter algorithms for
instances of bounded joinwidth (i.e., algorithms with a running time of 2O(k) ·
|I|O(1)): one where k is the number of variables, and the other when k is the num-
ber of constraints. In this setting, we do not require an associated join decom-
position to be provided with the input.

Under the FPT viewpoint, Marx [27] previously introduced the struc-
tural parameter submodular width (bounded submodular width is equivalent
to bounded adaptive width [26]), which is strictly more general than fractional
hypertree width, but when bounded only gives rise to fixed-parameter tractabil-
ity and not polynomial-time tractability of CSP. In fact, Marx showed that
assuming the Exponential Time Hypothesis [21], bounded submodular width
is the most general purely structural restriction that yields fixed-parameter
tractability for CSP. However, as joinwidth is a hybrid parameter, it can (and
we show that it does) remain bounded even on instances of unbounded submod-
ular width—and the same holds also for the recently introduced extensions of
submodular width based on functional dependencies and degree bounds [24].

Roadmap. After presenting the required preliminaries on (hyper-)graphs, CSP,
and fractional hypertree width in Sect. 2, we introduce and motivate join decom-
positions and joinwidth in Sect. 3. We establish some fundamental properties of
join decompositions, provide our tractability result for CSP for the case when a
join decomposition is given as part of the input, and then obtain our NP-hardness
result for computing join decompositions of constant width. Section 4 provides
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an in-depth justification for the various design choices underlying join decompo-
sitions; among others, we show that the pruning step is required if the aim is to
generalize fractional hypertree width. Our algorithmic applications for joinwidth
are presented in Sect. 5: for instance, we show that joinwidth generalizes frac-
tional hypertree width, but also other known (and hybrid) parameters such as
functionality, root sets, and Turan sets. Section 6 contains our fixed-parameter
tractability results for classes of CSP instances with bounded joinwidth. Finally,
in Sect. 7, we compare the algorithmic power of joinwidth to the power of algo-
rithms which rely on the unrestricted use of join and projection operations.

2 Preliminaries

We will use standard graph terminology [11]. An undirected graph G is a pair
(V,E), where V or V (G) is the vertex set and E or E(G) is the edge set. All
our graphs are simple and loopless. For a tree T we use L(T ) to denote the set
of its leaves. For i ∈ N, we let [i] = {1, . . . , i}.

Hypergraphs. Similarly to graphs, a hypergraph H is a pair (V,E) where V or
V (H) is its vertex set and E or E(H) ⊆ 2V is its set of hyperedges. We denote
by H[V ′] the hypergraph induced on the vertices in V ′ ⊆ V , i.e., the hypergraph
with vertex set V ′ and edge set { e ∩ V ′ : e ∈ E }.

The Constraint Satisfaction Problem. Let D be a set and n and n′ be natural
numbers. An n-ary relation on D is a subset of Dn. For a tuple t ∈ Dn, we
denote by t[i], the i-th entry of t, where 1 ≤ i ≤ n. For two tuples t ∈ Dn and
t′ ∈ Dn′

, we denote by t ◦ t′, the concatenation of t and t′.
An instance of a constraint satisfaction problem (CSP) I is a triple 〈V,D,C〉,

where V is a finite set of variables over a finite set (domain) D, and C is a set
of constraints. A constraint c ∈ C consists of a scope, denoted by S(c), which
is a completely ordered subset of V , and a relation, denoted by R(c), which
is a |S(c)|-ary relation on D. We let |c| denote the number of tuples in R(c)
and |I| = |V | + |D| +

∑
c∈C |c|. Without loss of generality, we assume that each

variable occurs in the scope of at least one constraint.
A solution for I is an assignment θ : V → D of the variables in V to

domain values (from D) such that for every constraint c ∈ C with scope S(c) =
(v1, . . . , v|S(c)|), the relation R contains the tuple θ(S(c)) = (θ(v1), . . . , θ(v|S(c)|)).
We denote by SOL(I) the constraint containing all solutions of I, i.e., the
constraint with scope V = {v1, . . . , vn}, whose relation contains one tuple
(θ(v1), . . . , θ(vn)) for every solution θ of I. The task in CSP is to decide whether
the instance I has at least one solution or in other words whether SOL(I) 
= ∅. Here
and in the following we will for convenience (and with a slight abuse of notation)
sometimes treat constraints like sets of tuples.

For a variable v ∈ S(c) and a tuple t ∈ R(c), we denote by t[v], the i-th entry
of t, where i is the position of v in S(c). Let V ′ be a subset of V and let V ′′ be
all the variables that appear in V ′ and S(c). With a slight abuse of notation, we
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denote by S(c) ∩ V ′, the sequence S(c) restricted to the variables in V ′ and we
denote by t[V ′] the tuple (t[v1], . . . , t[v|V ′′|]), where S(c) ∩ V ′ = (v1, . . . , v|V ′′|).

Let c and c′ be two constraints of I. We denote by S(c)∪S(c′), the ordered set
(i.e., tuple) S(c)◦ (S(c′)\S(c)). The (natural) join between c and c′, denoted by
c �� c′, is the constraint with scope S(c)∪S(c′) containing all tuples t ◦ t′[S(c′) \
S(c)] such that t ∈ R(c), t′ ∈ R(c′), and t[S(c) ∩ S(c′)] = t′[S(c) ∩ S(c′)]. The
projection of c to V ′, denoted by πV ′(c), is the constraint with scope S(c) ∩ V ′,
whose relation contains all tuples t[V ′] with t ∈ R(c). We note that if c contains
at least one tuple, then projecting it onto a set V ′ with V ′∩S(c) = ∅ results in the
constraint with an empty scope and a relation containing the empty tuple (i.e., a
tautological constraint). On the other hand, if R(c) is the relation containing the
empty tuple, then every projection of c will also result in a relation containing
the empty tuple.

For a CSP instance I = 〈V,D,C〉 we sometimes denote by V (I), D(I), C(I),
and �tup(I) its set of variables V , its domain D, its set of constraints C, and the
maximum number of tuples in any constraint relation of I, respectively. For a
subset V ′ ⊆ V , we will also use I[V ′] to denote the sub-instance of I induced by
the variables in V ′ ⊆ V , i.e., I[V ′] = 〈V ′,D, {πV ′(c) : c ∈ C }〉. The hypergraph
H(I) of a CSP instance I = 〈V,D,C〉 is the hypergraph with vertex set V and
edge set {S(c) : c ∈ C }.

It is well known that for every instance I and every instance I′ obtained by
either (1) replacing two constraints in C(I) by their natural join or (2) adding
a projection of a constraint in C(I), it holds that SOL(I) = SOL(I′). As a
consequence, SOL(I) can be computed by performing, e.g., a sequence of joins
over all the constraints in C.

Fractional Hypertree Width. Let H be a hypergraph. A fractional edge cover
for H is a mapping γ : E(H) → R such that

∑
e∈E(H)∧v∈e γ(e) ≥ 1 for every

v ∈ V (H). The weight of γ, denoted by w(γ), is the number
∑

e∈E(H) γ(e). The
fractional edge cover number of H, denoted by fec(H), is the smallest weight of
any fractional edge cover of H.

A fractional hypertree decomposition T of H is a triple T = (T, (Bt)t∈V (T ),
(γt)t∈V (T )), where (T, (Bt)t∈V (T )) is a tree decomposition [12,30] of H and
(γt)t∈V (T ) is a family of mappings from E(H) to R such that for every t ∈ V (T ),
it holds that γt is a fractional edge cover for H[Bt]. We call the sets Bt the
bags and the mappings γt the fractional guards of the decomposition. The width
of T is the maximum w(γt) over all t ∈ V (T ). The fractional hypertree width
of H, denoted by fhtw(H), is the minimum width of any fractional hypertree
decomposition of H. Finally, the fractional hypertree width of a CSP instance I,
denoted by fhtw(I), is equal to fhtw(H(I)).

Proposition 1. Let I be a CSP instance with hypergraph H and let T =
(T, (Bt)t∈V (T ), (γt)t∈V (T )) be a fractional hypertree decomposition of H of width
at most ω. For every node t ∈ V (T ) and every subset B ⊆ Bt, it holds that
|SOL(I[B])| ≤ (�tup(I))ω.
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3 Join Decompositions and Joinwidth

This section introduces two notions that are central to our contribution: join
decompositions and joinwidth. In the following, let us consider an arbitrary CSP
instance I = 〈V,D,C〉.

Definition 2. A join decomposition for I is a pair (J, �), where J is a rooted
binary tree and � is a bijection between the leaves L(J) of J and C.

Let j be a node of J . We denote by Jj the subtree of J rooted at j and we
denote by X(j), V (j), V (j), and S(j) the (unordered) sets { �(�) : � ∈ L(Jj) },⋃

c∈X(j) S(c),
⋃

c �∈X(j) S(c), and V (j) ∩ V (j), respectively; infuitively, X(j) is
the set of constraints that occur in the subtree rooted at j, V (j) is the set
of variables that occur in the scope of constraints in X(j), V (j) is the set of
variables that occur in the scope of constraints not in X(j), and S(j) is the set
of variables that occur in V (j) and V (j). In some cases, we will also consider
linear join decompositions, which are join decompositions where every inner node
is adjacent to at least one leaf.

Semantics of Join Decompositions. Intuitively, every internal node of a join
decomposition represents a join operation that is carried out over the constraints
obtained for the two children; in this way, a join decomposition can be seen as a
procedure for performing joins, with the aim of determining whether SOL(I) is
non-empty (i.e., solving the CSP instance I). Crucially, the running time of such
a procedure depends on the size of the constraints obtained and stored by the
algorithm which performs such joins. The aim of this subsection is to formally
define and substantiate an algorithmic procedure which uses join decompositions
to solve CSP.

A naive way of implementing the above idea would be to simply compute and
store the natural join at each node of the join decomposition and proceed up to
the root; see for instance the work of [3]. Formally, we can recursively define
a constraint Cnaive(j) for every node j ∈ V (J) as follows. If j is a leaf, then
Cnaive(j) = �(j). Otherwise Cnaive(j) is equal to Cnaive(j1) �� Cnaive(j2), where
j1 and j2 are the two children of j in J . It is easy to see that this approach can
create large constraints even for very simple instances of CSP: for example, at
the root r of T it holds that SOL(I) = Cnaive(r), and hence Cnaive(r) would have
superpolynomial size for every instance of CSP with a superpolynomial number
of solutions. In particular, an algorithm which computes and stores Cnaive(j)
would never run in polynomial time for CSP instances with a superpolynomial
number of solutions.

An efficient way of joining constraints along a join decomposition is to only
store projections of constraints onto those variables that are still relevant for
constraints which have yet to appear; this idea has been used, e.g., in algorithms
which exploit hypertree width [15]. To formalize this, let Cproj(j) be recursively
defined for every node j ∈ V (T ) as follows. If j is a leaf, then Cproj(j) =
πV (j)(�(j)). Otherwise Cproj(j) is equal to

(
πV (j)(Cproj(j1) �� Cproj(j2)

)
), where
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j1 and j2 are the two children of j in J . In this case, I is a YES-instance if
and only if Cproj(r) does not contain the empty relation. Clearly, for every node
j of J it holds that Cproj(j) has at most as many tuples as Cnaive(j), but can
have arbitrarily fewer tuples; in particular, an algorithm which uses join decom-
positions to compute Cproj in a bottom-up fashion can solve CSP instances in
polynomial time even if they have a superpolynomial number of solutions (see
also Observation 8).

However, the above approach still does not capture the algorithmic power
offered by dynamically computing joins along a join decomposition. In partic-
ular, similarly as has been done in the evaluation algorithm for fractional edge
cover [20, Theorem 3.5], we can further reduce the size of each constraint Cproj(j)
computed in the above procedure by pruning all tuples that would immediately
violate a constraint c in I (and, in particular, in C \ C(j)). To formalize this
operation, we let prune(c) denote the pruned constraint w.r.t. I, i.e., prune(c) is
obtained from c by removing all tuples t ∈ R(c) such that there is a constraint
c′ ∈ C with t[S(c′)] /∈ πS(c)(c′). This leads us to our final notion of dynamically
computed constraints: for a node j, we let C(j) = prune(Cproj(j)). We note that
this, perhaps inconspicuous, notion of pruning is in fact critical—without it, one
cannot use join decompositions to efficiently solve instances of small fractional
hypertree width or even small fractional edge cover. A more in-depth discussion
on this topic is provided in Sect. 4.

We can now proceed to formally define the considered width measures.

Definition 3. Let J = (J, �) be a join decomposition for I and let j ∈ V (J).
The joinwidth of j, denoted jw(j), is the smallest real number ω such that
|C(j)| ≤ (�tup(I))ω, i.e., ω = log�tup(I) |C(j)|. The joinwidth of J (denoted
jw(J )) is then the maximum jw(j) over all j ∈ V (J). Finally, the joinwidth
of I (denoted jw(I)) is the minimum jw(J ) over all join decompositions J for I.

In general terms, an instance I has joinwidth ω if it admits a join decomposition
where the number of tuples of the produced constraints never increases beyond
the ω-th power of the size of the largest relation in I. Analogously as above, we
denote by ljw(I) the minimum joinwidth of any linear join decomposition of a
CSP instance I.

Example 4. Let N ∈ N and consider the CSP instance I having three variables
a, b, and c and three constraints x, y, and z with scopes (a, b), (b, c), and (a, c),
respectively. Assume furthermore that the relations of all three constraints are
identical and contain all tuples (1, i) and (i, 1) for every i ∈ [N ]. Refer also to
Fig. 1 for an illustration of the example. Then |x| = |y| = |z| = �tup(I) = 2N − 1
and due to the symmetry of I any join-tree J of I has the same joinwidth, which
(as we will show) is equal to 1. To see this consider for instance the join-tree J
that has one inner node j joining x and y and a root node r joining C(j) and z.
Then jw(�) = 1 for any leaf node � of J . Moreover |C(j)| = |prune(Cproj(j))| =
|z| = �tup(I) since the pruning step removes all tuples from Cproj(j) that are
not in z and consequently C(r) = z and jw(J ) = 1. Note that in this example
jw(I) = 1 < fhtw(I) = 3/2.
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Fig. 1. The join decomposition given in Example 4 for N = 3 together with the inter-
mediate constraints obtained for the node j

Finally, we remark that one could in principle also define joinwidth in terms of
a (rather tedious and technically involved) variant of hypertree decompositions.
However, the inherent algorithmic nature of join-trees makes them much better
suited for the definition of joinwidth.

Properties of Join Decompositions. Our first task is to formalize the intuition
behind the constraints C(j) computed when proceeding through the join tree.

Lemma 5. Let (J, �) be a join decomposition for I = 〈V,D,C〉 and let j ∈ V (J).
Then C(j) = πV (j)(SOL(I′)), where I′ = I[V (j)].

Proof. We prove the lemma by leaf-to-root induction along J . If j is a leaf such
that �(j) = c, then C(j) is the constraint obtained from c by projecting onto
V (j) and then applying pruning with respect to I. Crucially, pruning c w.r.t.
I′ produces the same result as pruning c w.r.t. I. Since pruning cannot remove
tuples which occur in SOL(I′), each tuple in SOL(I′) must also occur in C(j)
(as a projection onto V (j)). On the other hand, consider a tuple α in C(j)
and assume for a contradiction that α is not present in πV (j)(SOL(I′)). Since
variables outside of V (j) do not occur in the scopes of constraints other than c,
this means that there would exist a constraint c′ in I′ which is not satisfied by
an assignment corresponding to α—but in that case α would be removed from
C(j) via pruning. Hence C(j) = πV (j)(SOL(I′)) holds for every leaf in T .
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For the induction step, consider a node j with children j1 and j2 (with their
corresponding instances being I′

1 and I′
2, respectively), and recall that C(j) is

obtained from C(j1) �� C(j2) by projecting onto V (j) and then pruning (w.r.t.
I or, equivalently, w.r.t. I′). We will also implicitly use the fact that V (j) ⊆
V (j1)∪V (j2) and V (j) = V (j1)∪V (j2). First, consider for a contradiction that
there exists a tuple β in SOL(I′[V (j)]) which does not occur in C(j). Clearly,
β could not have been removed by pruning, and hence this would mean that
there exists no tuple in C(j1) �� C(j2) which results in β after projection onto
V (j); in particular, w.l.o.g. we may assume that every tuple in C(j1) differs
from β in (the assignment of) at least one variable. However, since β occurs
in SOL(I′[V (j)]), there must exist at least one tuple, say β′, which occurs in
SOL(I′), and consequently there exists a tuple in SOL(I′

1) which matches β in
(the assignment of) all variables. At this point, we have reached a contradiction
with the inductive assumption that SOL(I′

1[V (j1)]) = C(j1).
For the final case, consider a tuple γ in C(j) and assume for a contradiction

that γ is not present in πV (j)(SOL(I′)). This means that there exists at least one
constraint, say c′, in πV (j)(SOL(I′)) which would be invalidated by (an assign-
ment corresponding to) γ. Let us assume that c′ occurs in the subtree rooted in
j2, and let γ1 be an arbitrary “projection” of γ onto V (j1). Since V (j1) ⊇ S(c′),
this means that γ1 would have been removed from C(j1) by pruning; in partic-
ular, we see that there exists no tuple γ1 in C(j1) which could produce γ in a
join, contradicting our assumptions about γ. By putting everything together, we
conclude that indeed C(j) = πV (j)(SOL(I′)). ��

Next, we show how join decompositions can be used to solve CSP.

Theorem 6. CSP can be solved in time O(|I|2ω+4) provided that a join decom-
position of width at most ω is given in the input.

Proof. Let J = (J, �) be the provided join decomposition of width ω for I. As
noted before, the algorithm for solving I computes C(j) for every j ∈ V (J)
in a bottom-up manner. Since J has exactly 2|C| − 1 nodes, it remains to
analyse the maximum time required to compute C(j) for any node of J . If
j is a leaf, then C(j) = prune(πS(j)(�(j))) and since the time required to
compute the projection P = πS(j)(�(j)) from �(j) is at most O(�tup(I)|S(j)|)
and the time required to compute the pruned constraint prune(P ) from P is
at most O(|C|(�tup(I))2|S(j)|), we obtain that C(j) can be computed in time
O(|C|(�tup(I))2|S(j)|) ∈ O(|I|4). Moreover, if j is an inner node with children j1
and j2, then C(j) = prune(πS(j)(C(j1) �� C(j2))) and since we require at most
O((�tup(I))2ω|S(j1) ∪ S(j2)|) time to compute the join Q = C(j1) �� C(j2) from
C(j1) and C(j2), at most O((�tup(I))2ω|S(j)|) time to compute the projection
P = πS(j)(Q) from Q, and at most O(|C|(�tup(I))2ω+1 · |S(j)|) time to compute
the pruned constraint prune(P ) from P , we obtain O(|C|(�tup(I))2ω+1 · |S(j1) ∪
S(j2)|) = O(|I|2ω+3) as the total time required to compute C(j). Multiplying
the time required to compute C(j) for an inner node j ∈ V (J) with the number
of nodes of T yields the running time stated in the lemma. ��
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Computing Join Decompositions. Next, let us address the problem of computing
join decompositions of bounded joinwidth, formalized as follows.

ω-Join Decomposition
Input: A CSP instance I.
Question: Compute a join decomposition for I of width at most ω, or cor-
rectly determine that jw(I) > ω.

We show that ω-Join Decomposition is NP-hard even for width ω = 1.
This is similar to fractional hypertree width, where it was only very recently
shown that deciding whether fhtw(I) ≤ 2 is NP-hard [13], settling a question
which had been open for about a decade. Our proof is, however, entirely different
from the corresponding hardness proof for fractional hypertree width and uses
a reduction from the NP-complete Branchwidth problem [32].

Theorem 7. 1-Join Decomposition is NP-hard, even on Boolean CSP
instances.

4 Justifying Joinwidth

Below, we substantiate the use of both pruning and projections in our definition
of join decomposition. In particular, we show that using pruning and projections
allows the joinwidth to be significantly lower than if we were to consider joins
carried out via Cnaive or Cproj. More importantly, we show that join decomposi-
tions without pruning do not cover CSP instances with bounded fractional edge
cover (and by extension bounded fractional hypertree width). To formalize this,
let jwnaive(I) and jwproj(I) be defined analogously as jw(I), with the distinction
being that these measure the width in terms of Cnaive and Cproj instead of C.

We also justify the use of trees for join decompositions by showing that there
is an arbitrary difference between linear join decompositions (which precisely
correspond to simple sequences of joins) and join decompositions.

Observation 8. For every integer ω there exists a CSP instance Iω such that
jwproj(Iω) ≤ 1, but jwnaive(Iω) ≥ ω.

Proof. Consider the CSP instance Iω with variables x, v1, . . . , vω and for each
i ∈ [ω] a constraint ci with scope {x, vi} containing the tuples 〈0, 1〉 and 〈0, 0〉.
Since SOL(Iω) contains 2ω tuples, it follows that every join decomposition with
root r must have |C(r)naive| = (�tup(I))ω = 2ω tuples, hence jwnaive(Iω) ≥ ω.

On the other hand, consider a linear join decomposition which introduces
the constraints in an arbitrary order. Then for each inner node j, it holds that
S(j) = {x} and in particular Cproj(j) contains a single tuple (0) over scope {x}.
We conclude that jwproj(Iω) ≤ 1. ��

The next proposition justifies the use of trees instead of just linear join decom-
positions. Its proof employs an interesting connection between branchwidth and
joinwidth.
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Proposition 9. For every integer ω there exists a CSP instance Iω such that
jw(Iω) ≤ 1 but ljw(Iω) ≥ ω.

The next proposition shows not only that pruning can significantly reduce the
size of stored constraints, but also that without pruning (i.e., with projections
alone) one cannot hope to generalize structural parameters such as fractional
hypertree width.

Proposition 10. For every integer ω there exists a CSP instance Iω with hyper-
graph Hω such that jw(Iω) ≤ 2 and fec(Hω) ≤ 2 (and hence also fhtw(Hω) ≤ 2),
but jwproj(Iω) ≥ ω.

We believe that the above results are of general interest, as they provide
useful insights into how to best utilize the joining of constraints.

5 Tractable Classes

Here, we show that join decompositions of small width not only allow us to
solve a wide range of CSP instances, but also provide a unifying reason for the
tractability of previously established structural parameters and tractable classes.

5.1 Fractional Hypertree Width

We begin by showing that joinwidth is a strictly more general parameter than
fractional hypertree width. We start with a simple example showing that the
joinwidth of a CSP instance can be arbitrarily smaller than its fractional hyper-
tree width. Indeed, this holds for any structural parameter ψ measured purely
on the hypergraph representation, i.e., we say that ψ is a structural parameter
if ψ(I) = ψ(H(I)) for any CSP instance I. Examples for structural parame-
ters include fractional and generalized hypertree width, but also submodular
width [27].

Observation 11. Let ψ be any structural parameter such that for every ω there
is a CSP instance with ψ(I) = ψ(H(I)) ≥ ω. Then for every ω there is a CSP
instance Iω with jw(Iω) ≤ 1 but ψ(Iω) ≥ ω.

The following theorem shows that, for the case of fractional hypertree width,
the opposite of the above observation is not true.

Theorem 12. For every CSP instance I, it holds that jw(I) ≤ fhtw(I).

Proof. Let H be the hypergraph of the given CSP instance I = (V,D,C) and let
T = (T, (Bt)t∈V (T ), (γt)t∈V (T )) be an optimal fractional hypertree decomposi-
tion of H. We prove the theorem by constructing a join decomposition J = (J, �)
for I, whose width is at most fhtw(H). Let α : E(H) → V (T ) be some function
from the edges of H to the nodes of T such that e ⊆ Bα(e) for every e ∈ E(H).
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Note that such a function always exists, because (T, (Bt)t∈V (T )) is a tree decom-
position of H. We denote by α−1(t) the set { e ∈ E(H) : α(e) = t }.

The construction of J now proceeds in two steps. First we construct a par-
tial join decomposition J t = (J t, �t) for I that covers only the constraints in
α−1(t), for every t ∈ V (T ). Second, we show how to combine all the partial join
decompositions into the join decomposition J for I of width at most fhtw(H).

Let t ∈ V (T ) and let J t = (J t, �t) be an arbitrary partial join decomposi-
tion for I that covers the constraints in α−1(t). Let us consider an arbitrary
node j ∈ V (J t). By Lemma 5, we know that C(j) = πS(j)(SOL(I[V (j)])).
Moreover, the fact that

⋃
e∈α−1(t) e ⊆ Bt implies V (j) ⊆ Bt. Since

|πS(j)(SOL(I[V (j)]))| ≤ |SOL(I[V (j)])|, by invoking Proposition 1 we obtain
that |C(j)| ≤ |SOL(I[V (j)])| ≤ �tup(I)fhtw(I). Hence we conclude that jw(j) ≤
fhtw(H).

Next, we show how to combine the partial join decompositions J t into the
join decomposition J for I. We will do this via a bottom-up algorithm that
computes a (combined) partial join decomposition F t = (F t, ρt) (for every node
t ∈ V (T )) that covers all constraints in α−1(Tt) =

⋃
t∈V (T ) α−1(t). Initially, we

set F l = J l for every leaf l ∈ L(T ). For a non-leaf t ∈ V (T ) with children
t1, . . . , t� in T , we obtain F t from the already computed partial join decomposi-
tions F t1 , . . . ,F t� as follows. Let P be a path on the new vertices p1, . . . , p� and
let rt and rt1 , . . . , rt�

be the root nodes of J t and F t1 , . . . , F t� , respectively. Then
we obtain F t from the disjoint union of P , J t, F t1 , . . . , F t� after adding an edge
between rt and p1 and an edge between rti

and pi for every i with 1 ≤ i ≤ � and
setting p� to be the root of F t. Moreover, ρt is obtained as the combination (i.e.,
union) of the functions �t, ρt1 , . . . , ρt� . Observe that because α assigns every
hyperedge to precisely one bag of T , it holds that every constraint assigned to
Tt is mapped to precisely one leaf of F t. At this point, all that remains is to
show that F t has joinwidth at most fhtw(H).

Since we have already argued that |SOL(I[V (j)])| ≤ �tup(I)fhtw(H) for every
node j of J t and moreover we can assume that the same holds for every node
j of F t1 , . . . ,F t� by the induction hypothesis, it only remains to show that the
same holds for the nodes p1, . . . , p�. First, observe that since (T, (Bt)t∈V (T )) is
a tree decomposition of H, it holds that S(rt), S(rt1), . . . , S(rt�

) ⊆ Bt. Indeed,
consider for a contradiction that, w.l.o.g., there exists a variable x ∈ S(rt1) \Bt.
Then there must exist a hyperedge e1 � x mapped to t1 or one of its descendants,
and another hyperedge ei � x mapped to some node t′ that is neither t1 nor one
of its descendants. But then both Bt′ and Bt1 must contain x, and so Bt must
contain x as well. Moreover, since S(pi) ⊆ (S(rt)∪S(rt1)∪· · ·∪S(rt�

)) for every
i ∈ [�], it follows that S(pi) ⊆ Bt as well.

Finally, recall that C(pi) = πS(pi)(SOL(I[V (pi)])) by Lemma 5, and observe
that |πS(pi)(SOL(I[V (pi)]))| ≤ |SOL(I[S(pi)])|. Then by Proposition 1 com-
bined with the fact that S(pi) ⊆ Bt, we obtain |C(pi)| ≤ |SOL(I[S(pi)])| ≤
�tup(I)fhtw(H), which implies that the width of pi is indeed at most fhtw(H). ��
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5.2 Functionality and Root Sets

Consider a CSP instance I = 〈V,D,C〉 with n = |V |. We say that a constraint
c ∈ C is functional on variable v ∈ V if c does not contain two tuples that
differ only at variable v; more formally, for every t and t′ ∈ R(c) it holds that
if t[v] 
= t′[v], then there exists a variable z ∈ S(c) distinct from v such that
t[z] 
= t′[z]. The instance I is then called functional if there exists a variable
ordering v1 < · · · < vn such that, for each i ∈ [n], there exists a constraint c ∈ C
such that π{v1,...,vi}(c) is functional on vi. Observe that every CSP instance that
is functional can admit at most 1 solution [5]; this restriction can be relaxed
through the notion of root sets, which can be seen as variable sets that form
“exceptions” to functionality. Formally, a variable set Q is a root set if there
exists a variable ordering v1 < · · · < vn such that, for each i ∈ [n] where vi 
∈ Q,
there exists a constraint c ∈ C such that π{v1,...,vi}(c) is functional on vi; we say
that Q is witnessed by the variable order v1 < · · · < vn.

Functionality and root sets were studied for Boolean CSP [9,10]. Cohen
et al. [5] later extended these notions to the CSP with larger domains. Our
aim in this section is twofold: (1) generalize root sets through the introduction
of constraint root sets and (2) show that bounded-size constraint root sets (and
also root sets) form a special case of bounded joinwidth. Before we proceed, it
will be useful to show that one can always assume the root set to occur at the
beginning of the variable ordering.

Observation 13. Let Q be a root set in I witnessed by a variable order α,
assume a fixed arbitrary ordering on Q, and let the set V ′ = V (I) \Q be ordered
based on the placement of its variables in α. Then Q is also witnessed by the
variable order α′ = Q ◦ V ′.

For ease of presentation, we will say that I is k-rooted if k is the minimum
integer such that I has a root set of size k. It is easy to see, and also follows
from the work of David [9] and Cohen et al. [5], that for every fixed k the class
of k-rooted CSP instances is polynomial-time solvable: generally speaking, one
can first loop through and test all variable-subsets of size at most k to find a
root Q, and then loop through all assignments Q → D to get a set of functional
CSP instances, each of which can be solved separately in linear time.

While even 1-rooted CSP instance can have unbounded fractional hypertree
width (see also the discussion of Cohen et al. [5]), the class of k-rooted CSP
instances for a fixed value k is, in some sense, not very robust. Indeed, consider
the CSP instance W = 〈{v1, . . . , vn}, {0, 1}, {c}〉 where c ensures that precisely
a single variable is set to 1 (i.e., its relation can be seen as an n × n identity
matrix). In spite of its triviality, it is easy to verify that W is not k-rooted for
any k < n − 2.

Let us now consider the following alternative to measuring the size of root sets
in a CSP instance I. A constraint set P is a constraint-root set if

⋃
c∈P S(c) is a

root set, and I is then called k-constraint-rooted if k is the minimum integer such
that I has a constraint-root set of size k. Since we can assume that each variable
occurs in at least one constraint, every k-rooted CSP also has a constraint-root
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set of size at most k; on the other hand, the aforementioned example of W shows
that an instance can be 1-constraint-rooted while not being k-rooted for any
small k. The following result, which we prove by using join decompositions and
joinwidth, thus gives rise to strictly larger tractable classes than those obtained
via root sets:

Proposition 14. For every fixed k ∈ N, every k-constraint-rooted CSP instance
has joinwidth at most k and can be solved in time |I|O(k).

Proof. Consider a CSP instance I with a constraint-root set P of size k. We
argue that I has a linear join decomposition of width at most k where the
elements of P occur as the leaves farthest from the root. Indeed, consider the
linear join decomposition (J, �) constructed in a bottom-up manner, as follows.
First, we start by gradually adding the constraints in P as the initial leaves.
At each step after that, consider a node j which is the top-most constructed
node in the join decomposition. By definition, there must exist a variable v and
a constraint c such that π⋃

c∈P S(c)(c) is functional on v. Moreover, this implies
that |π⋃

c∈P S(c)(c) �� C(j)| ≤ |C(j)|, and thus |c �� C(j)| ≤ |C(j)|. Hence this
procedure does not increase the size of constraints at nodes after the initial k
constraints, immediately resulting in the desired bound of k on the width of
(J, �).

To complete the proof, observe that a join decomposition with the properties
outlined above can be found in time at most |I|O(k): indeed, it suffices to branch
over all k-element subsets of C(I) and test whether the union of their scopes is
functional using, e.g., the result of Cohen et al. [5, Corollary 1]. Once we have
such a join decomposition, we can solve the instance by invoking Theorem 6. ��

As a final remark, we note that the class of k-constraint rooted CSP instances
naturally includes all instances which contain k constraints that are in conflict
(i.e., which cannot all be satisfied at the same time).

5.3 Other Tractable Classes

Here, we identify some other classes of tractable CSP instances with bounded
joinwidth. First of all, we consider CSP instances such that introducing their
variables in an arbitrary order always results in a subinstance with polynomially
many solutions. In particular, we call a CSP instance I hereditarily k-bounded if
for every subset V ′ of its variables it holds that |SOL(I[V ′])| ≤ �tup(I)k. Exam-
ples of hereditarily k-bounded CSP instances include k-Turan CSPs [5, page 12]
and CSP instances with fractional edge covers of weight k [20].

Proposition 15. The class of hereditarily k-bounded CSP instances has join-
width at most k and can be solved in time at most O(|I|k).

Proof. Consider an arbitrary linear join decomposition (J, �). By defini-
tion, for each j ∈ V (J) it holds that |SOL(I[V (j)])| ≤ �tup(I)k. Then
|πV (j)(SOL(I[V (j)]))| ≤ �tup(I)k, and by Lemma 5 we obtain |C(j)| ≤ �tup(I)k,
as required. ��
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Another example of a tractable class of CSP instances that we can solve using
joinwidth are instances where all constraints interact in a way which forces a
unique assignment of the variables. In particular, we say that a CSP I = 〈V,D,C〉
is unique at depth k if for each constraint c ∈ C there exists a fixing set C ′ ⊆ C
such that c ∈ C ′, |C ′| ≤ k, and |(��c′∈C′ c′)| ≤ 1.

Proposition 16. The class of CSP instances which are unique at depth k has
joinwidth at most k and can be solved in time at most |I|O(k).

6 Solving Bounded-Width Instances

This section investigates the tractability of CSP instances whose joinwidth is
bounded by a fixed constant ω. In particular, one can investigate two notions of
tractability. The first one is the classical notion of polynomial-time tractability,
which asks for an algorithm of the form |I|O(1). In this setting, the complexity
of CSP instances of bounded joinwidth remains an important open problem.
Note that the NP-hardness of the ω-Join Decomposition problem established
in Theorem 7 does not exclude polynomial-time tractability for CSP instances
of bounded joinwidth. For instance, tractability could still be obtained with a
suitable approximation algorithm for computing join decompositions (as it is the
case for fractional hypertreewidth [25]) or by using an algorithm that does not
require a join decomposition of bounded width as input.

The second notion of tractability we consider is called fixed-parameter
tractability and asks for an algorithm of the form f(k) · |I|O(1), where k is a
numerical parameter capturing a certain natural measure of I. Prominently,
Marx investigated the fixed-parameter tractability of CSP and showed that
CSP instances whose hypergraphs have bounded submodular width [27] are
fixed-parameter tractable when k is the number of variables. Moreover, Marx
showed that submodular width is the most general structural property among
those measured purely on hypergraphs with this property.

Here, we obtain two single-exponential fixed-parameter algorithms for CSP
instances of bounded joinwidth (i.e., algorithms with a running time of 2O(k) ·
|I|O(1)): one where k is the number of variables, and the other where k is the
number of constraints. Since there exist classes of instances of bounded join-
width and unbounded submodular width (see Observation 11), this expands the
frontiers of (fixed-parameter) tractability for CSP.

Parameterization by Number of Constraints. To solve the case where k is the
number of constraints, our primary aim is to obtain a join decomposition of
width at most ω, i.e., solve the ω-Join Decomposition problem defined in
Sect. 3. Indeed, once that is done we can solve the instance by Theorem 6.

Theorem 17. ω-Join Decomposition can be solved in time O(4|C| +
2|C||I|2ω+1) and is hence fixed-parameter tractable parameterized by |C|, for a
CSP instance I = 〈V,D,C〉.
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From Theorems 17 and 6 we immediately obtain:

Corollary 18. A CSP instance I with k constraints and joinwidth at most ω
can be solved in time 2O(k) · |I|O(ω).

Parameterization by Number of Variables. Note that Corollary 18 immediately
establishes fixed-parameter tractability for the problem when k is the number
of variables (instead of the number of constraints), because one can assume
that |C| ≤ 2|V | for every CSP instance I = (V,D,C). However, the resulting
algorithm would be double-exponential in |V |. The following theorem shows that
this can be avoided by designing a dedicated algorithm for CSP parameterized
by the number of variables. The main idea behind both algorithms is dynamic
programming, however, in contrast to the algorithm for |C|, the table entries
for the fpt-algorithm for |V | correspond to subsets of V instead of subsets of
C. Interestingly, the fpt-algorithm for |V | does not explicitly construct a join
decomposition, but only implicitly relies on the existence of one.

Theorem 19. A CSP instance I with k variables and joinwidth at most ω can
be solved in time 2O(k) · |I|O(ω).

7 Beyond Join Decompositions

Due to their natural and “mathematically clean” definition, one might be
tempted to think that join decompositions capture all the algorithmic power
offered by join and projection operations. It turns out that this is not the case,
i.e., we show that if one is allowed to use join and projections in an arbitrary
manner (instead of the more natural but also more restrictive way in which they
are used within join decompositions) one can solve CSP instances that are out-
of-reach even for join decompositions. This is interesting as it points towards the
possibility of potentially more powerful parameters based on join and projections
than joinwidth.

Theorem 20. For every ω, there exists a CSP instance Iω that can be solved
in time O(|I|4) using only join and projection operations but jw(Iω) ≥ ω.

8 Conclusions and Outlook

The main contribution of our paper is the introduction of the notion of a join
decomposition and the associated parameter joinwidth (Definitions 2 and 3).
These notions are natural as they are entirely based on fundamental operations
of relational algebra: joins, projections, and pruning (which can equivalently
be stated in terms of semijoins). It is also worth noting that our algorithms
seamlessly extend to settings where each variable has its own domain (this can
be modeled, e.g., by unary constraints).

Our results give rise to several interesting directions for future work. We
believe that Theorem 6 can be generalized to other problems, such as #CSP or
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the FAQ-Problem [23]. Theorem 7 gives rise to the question of whether there
exists a polynomial-time approximation algorithm for computing join decom-
positions of suboptimal joinwidth, similar to Marx’s algorithm for fractional
hypertree-width [25].

Observation 11 shows that submodular width is not more general than join-
width. We conjecture that also the converse direction holds, i.e., that the two
parameters are actually incomparable. Motivated by Theorem 20, one could try
to define a natural parameter that captures the full generality of join and pro-
jection operations, or to at least define a parameter that is more general than
join decompositions without sacrificing the simplicity of the definition.
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Abstract. We propose and evaluate a new CNF encoding based on
Zykov’s tree for computing the chromatic number of a graph. Zykov
algorithms are branch-and-bound procedures, that branch on pairings of
vertices that express whether or not two non-adjacent vertices have the
same colour. Thus, vertices with the same colour are contracted whereas
edges are added between vertices when they have different colours. Such
pairings make possible the use of a well-known recurrence relation, that
states that the chromatic number of a graph cannot be lower than the
chromatic number of its subgraphs. Our encoding associates with any
graph and integer k a CNF formula that is satisfiable if and only if the
chromatic number of the graph is at least k. We first show that any
colouring satisfying a complete pairing always required a fixed number
of colours. Then, we establish a CNF encoding that counts the number of
colours required by a pairing. However, due to a large number of clauses
required to encode transitivity constraints on pairings, a direct encod-
ing does not scale well in practice. To avoid this pitfall, we designed a
CEGAR-based (Counter-Example Guided Abstraction Refinement) app-
roach that only encodes a part of the problem and then adds the missing
constraints in an incremental way until a valid solution with k colours
is found or the unsatisfiability of the problem is proven, meaning that
the chromatic number of the graph is greater than k. We show that our
encoding scheme performs in many cases significantly better than the
state-of-the-art approaches to the graph colouring problem.

Keywords: Chromatic number · Zykov · CEGAR · SAT encoding

1 Introduction

Graph colouring is the problem of assigning a minimum number of colours to all
vertices of a graph such that no adjacent vertices, i.e. vertices that are linked by
an edge, receive the same colour. The smallest number of colours needed to colour
the graph is called the chromatic number of the graph. The problem appears in
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a variety of areas included (but not limited to) scheduling problem [1], sudokus
[2], register allocation used in compiler optimization [3], sports scheduling [4]
and exam timetabling [5].

Determining the chromatic number of a graph is an NP-hard task. Sev-
eral computational approaches for the colouring problem, that prove empirically
viable for many instances, have been pointed out [6–13]. They can be divided into
two categories: complete methods and incomplete methods. Incomplete methods
are usually based on greedy or meta-heuristic algorithms and are able to deal
with graph containing a large number of vertices. Nevertheless, such methods
are only able to find bounds that can be far from the optimal solution. Com-
plete approaches are commonly based on the branch-and-bound paradigm and
are able to guarantee that the returned solution is optimal. In this work, we
propose a complete approach to compute the chromatic number of a graph.

Recently, the authors of [13] proposed a hybrid CP/SAT approach, called
gc-cdcl, using new lower bound and branching heuristic, and that is so far
the most efficient approach to the graph colouring problem. In the CP-based
approaches cited before, seeing all the colours as a domain for each vertex is
common. However, because of the interchangeability of colours, such a represen-
tation leads to many symmetries which have to be broken. As done previously
[7,13], we propose to take advantage of Zykov’s tree to break symmetries. More
precisely, our CNF encoding does not represent the allowed colours but choose to
encode with propositional variables the fact that two vertices are coloured in the
same way. Thus, instead of colouring the graph, our encoding tries to pair ver-
tices between them. We demonstrate that, once all vertices are correctly paired,
the number of colours required to colour the graph, while satisfying the pairing,
is fixed and can be computed efficiently by a Boolean circuit. Then, we present a
CNF encoding of this Boolean circuit together with the set of clauses represent-
ing the constraints ensuring the pairing correctness, allows us to represent as a
whole the k-Colouring decision problem. We empirically tested Partial MaxSAT
solvers, as well as linear and binary searches on the number of colours, using this
encoding to see the performances against state-of-the-art approaches. Unfortu-
nately, we quickly observed that this encoding cannot scale on large graphs: a
cubic number of clauses are needed to ensure the correctness of pairings.

To make our approach scalable in practice, we propose a CEGAR approach
using our new CNF encoding. The idea is as follows: instead of designing an
equisatisfiable propositional formula, we generate an under-abstraction (a for-
mula which is under-constrained, also called relaxation in other domains). If
this under-abstraction is unsatisfiable, then, by construction the original for-
mula is unsatisfiable; otherwise, the SAT solver outputs a model that can then
be checked in polynomial time. It could be the case that the approach is lucky
and the model of the under-abstraction is also a model of the original formula, in
which case the problem is solved. In general, the under-abstraction is continually
refined, i.e., it comes closer to the original formula and, in the worst-case, will
eventually become equisatisfiable with the original formula after a finite number
of refinements. Notably, CEGAR has been successfully proposed in many prob-
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Fig. 1. Illustration of a graph G with 4 vertices such that χ(G) = 3.

lems such as Bounded Model Checking [14], Satisfiability Modulo Theory [15],
Planning [16], the Hamiltonian Cycle Problem [17], and more recently RCC8-
Reasoning [18] and Minimal S5 Satisfiability Problem [19].

Abstracting decision problems with a CEGAR-under approach is well-known
in the SAT community. However, the CP/OR community is more familiar with
the Logic-based Benders decomposition (LBBD) [20], which can be viewed as
the CEGAR-under approach for optimization. It is used in many domains where
one wants to abstract and solve an optimization problem. LBBD approaches are
orders of magnitude faster than state-of-the-art MIP for all problems where it
has been applied [21–23]. One could also see the CEGAR-under approach as
a Lazy-SMT approach [24,25], where the problem-specific knowledge extracted
from the abstraction is used to guide the refinement process, instead of a theory
solver.

The paper is organized as follows: after a few preliminaries, we present our
new CNF based encoding and demonstrate its soundness and completeness.
Then, we demonstrate how it can be adapted to be used in a CEGAR-based
approach. Then, we show empirically that first: the direct SAT encoding, either
with a linear/binary search on the number of colours or via a MaxSAT solver
is quite competitive against the state-of-the-art approaches for minimal graph
colouring, but, more importantly, that the CEGAR-based approach outperforms
all the tested approaches on the benchmarks that have been considered.

2 Preliminaries

2.1 k-Colouring Problem

An undirected graph is a pair G = (V, E), where V it the set of |V| = n vertices
(or nodes) and E ⊆ V ×V a set of edges. A sub-graph G′ = (V ′, E′) of G = (V, E)
is a graph such that V ′ ⊆ V and E′ ⊆ E. Let us note G′ = G \ V ′ the sub-
graph G′ obtained by removing from G vertices of V ′, i.e. G′ = (V \ V ′, {(u, v) ∈
E | {u, v}∩V �= ∅}). The contraction G/uv of a graph G is the graph obtained by
removing any edge containing the vertices u and v, and by merging the vertices.
G + uv is the graph G with the edge (u, v) added.

A graph colouring problem aims to assign colours to certain elements of a
graph subject to certain constraints. Vertex colouring is the most common graph
colouring problem and is defined as follows: given an undirected graph G = (V, E)
and an integer k (number of colours), find a mapping c : V �→ {1, 2, . . . , k} that
associates, each vertex i ∈ V of G, a colour c(i) so that no adjacent vertex j ∈ V
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shares the same colour (i.e. ∀(i, j) ∈ E we have c(i) �= c( j)). A mapping c which
verifies that c(i) �= c( j),∀(i, j) ∈ E is called a valid colouring. We assume that
V contains only integers from 1 to n. Moreover, for obvious reasons, we suppose
that �i ∈ V such (i, i) ∈ E.

The most common type of vertex colouring seeks to minimise the number of
colours for a given graph. The smallest number of colours needed for a graph G
is called its chromatic number and is denoted by χ(G). An illustration of a
graph G such that χ(G) = 3 is given in Fig. 1. The problem of finding a minimum
colouring for a graph is known to be NP-hard [26]. In fact, graph colouring is
even NP-hard to approximate in specific scenarios [27]. Because its NP-hardness,
k-colouring problem can be naturally translated into CNF.

2.2 Logical Preliminaries and CEGAR Framework

Let L be a standard Boolean logical language built on a finite set P of Boolean
variables and usual connectives (namely, ∧, ∨, ¬, ⇒ and ⇔ standing for conjunc-
tion, disjunction, negation, material implication and equivalence, respectively).
Formulas will be noted using lower-case Greek letters such as α, β, . . . Regarding
the semantics aspect of the propositional logic, an interpretation I assigns valu-
ation from {1, 0} to every Boolean variable, thus, following usual compositional
rules, to all formulas of L. We denote by I(l) is 1 if l is satisfied by I, and 0

otherwise. A formula α is satisfiable (also called consistent) when there exists at
least one interpretation that satisfies α, i.e., that makes α true: such an inter-
pretation is called a model of α and is represented by the set of variables that it
satisfies. If a formula is false for any interpretation, this formula is unsatisfiable.
|= denotes deduction, i.e., α |= β denotes that β is a logical consequence of α,
namely that β is satisfied in all models of α. Without loss of generality, any
formula in L can be represented (while preserving satisfiability) in conjonctive
normal form (CNF) i.e., as a conjunction of clauses [28], where a clause is a
finite disjunction of literals and where a literal is a Boolean variable that can be
negated.

Example 1 (Basic graph colouring encoding). Let G = (V, E) be a graph, the
following CNF formula encodes the problem of deciding if it is possible to colour
the graph G with at most k colours (xv j is true when the vertex v takes colour j):

∧

v∈V

(
k∨

i=1

xvi ∧
∧

1≤i< j≤k

(¬xvi ∨ ¬xv j)) ∧
∧

(u,v)∈E

(
k∧

i=1

(¬xui ∨ ¬xvi))

Counter-Example-Guided Abstraction Refinement (CEGAR) is an incremen-
tal way to decide the satisfiability of problems. It has been originally designed
for model checking [14], i.e., to answer questions such as “Does α |= β hold?”
or, likewise, “Is φ = (α ∧ ¬β) unsatisfiable?”, where α describes a system and β
a property. For such highly structured problems, it is often the case that only
a small part of the formula is needed to answer the question. The keystone of
CEGAR is to replace φ by an abstraction φ′, easier to solve in practice. There



An Incremental SAT-Based Approach to the Graph Colouring Problem 217

Fig. 2. Zykov’s tree for the graph in Fig. 1

are two kinds of abstractions: an over-abstraction (resp. under-abstraction) of φ
is a formula φ̂ (resp. φ̌) such that φ̂ |= φ (resp. φ |= φ̌) holds. φ̂ has at most as
many models as φ and φ̌ has at least as many models as φ.

Roughly, the CEGAR-based methods work on an abstraction of the original
model, which is the current problem targeted by the solver. If it is an over-
abstraction (resp. under-abstraction) which is proven satisfiable (resp. unsatis-
fiable), then the initial problem is also proven satisfiable (resp. unsatisfiable).
Otherwise, the result returned by the solver can be spurious, and in this case,
several situations may arise. If it is possible to check that the outcome is a solu-
tion to the initial problem, in the positive case, then the initial problem is also
solved. It is also possible to decide the problem with the current result when the
abstraction is equisatisfiable to the input problem. In all other situations, the
CEGAR method refines the abstraction using information from the outcome in
order to carefully select the next abstraction.

3 From Colouring to Zykov, and Vice Versa

A straightforward algorithm for deciding whether or not a graph can be coloured
with k colours is to search among all mappings from the set of vertices to the
set of colours (brute force). This algorithm, despite being correct, is inefficient
for all but the smallest input graphs. Its lack of effectiveness can be partially
explained by the fact that colours are interchangeable. When a colouring is
incorrect, conflicting colourings exist that can be obtained by permutation. This
observation can reveal, partially, why CP solvers are not able to decide the k-
colouring problem for big graphs when the basic encoding (see Sect. 1) is used.
Even if CP solvers are efficient on a wide range of problems, it is also known that
they do not perform well on symmetric problems [29]. To break symmetries, [7]
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propose to take advantage of Zykov’s tree in order to add conflict clauses on the
fly, in such a way that they cover all permutations of the colours.

We now move on towards the definitions of Zykov trees. Let consider
G = (V, E) a graph, and x and y two non-adjacent vertices of G. In any proper
colouring of G, either x and y have different colours or they have the same colour.
Thus, a well-known result, so-called Zykov’s deletion-contraction1 recurrence is
defined as follows:

χ(G) = min{χ(G/(i j)), χ(G + (i j)))} ∀(i, j) �∈ E (1)

Zykov’s tree can be recursively constructed by starting with the single node
G, the root of our binary tree, and branching repeatedly using vertex-contraction
on one side and edge-deletion on the other side on vertices that are not yet
connected. Each leaf of a Zykov tree for G is a complete graph. Of course, we
cannot branch on G if G is complete, and if G = (V, E) is complete, it is easy
to show that χ(G) = |V|. By Eq. 1, we know that χ(G) is the minimum value
among all leaves of a Zykov tree for G. Let us consider the graph of Figs. 1, 2
shows the related Zykov tree.

The search space of the coloured graphs visited when using Zykov’s tree is
more succinct than the one visited by an approach that branches on colours.
Indeed, it is enough to observe that methods that branch on colours implicitly
construct a Zykov tree. Except for the first vertex, each time a new vertex is
coloured, it can be contracted with all the vertices previously coloured in the
same way; and an edge can be added between the newly coloured one and the
vertices we already coloured differently. When the colouring c gives colour at
each vertex, each pair of vertices is either contracted or an edge is added between
them. The resulting graph is then complete, and it is present in the Zykov’s tree
as leaf. Because the tree is constructed in a deterministic manner, it is easy
to show that with each colouring c it is possible to associate only one leaf of
the Zykov tree. Note that the opposite does not hold: each permutation c′ of
a colouring c leads to the same Zykov’s tree leaf. Even if Zykov’s trees contain
symmetric nodes, there are fewer symmetries in them than in the search space
explored by methods that colour vertices.

As explained in [7,13], it is possible to explore the search space represented
by Zykov’s tree using a CNF encoding. For a graph G = (V, E), this encoding
considers a set S of Boolean variables si j for all i, j ∈ V that are used to pair the
vertices together. Because edges are not oriented, we only consider si j s.t. i < j.
In the case when i > j, si j is a renaming for s ji. A variable si j set to true means
that i and j are coloured in the same way (contraction). When set to false, it
means there exists an edge between i and j (deletion). The set of clauses tr(G)
consists in unit literals ¬si j for all (i, j) ∈ E, and a cubic number of clauses to
ensure path consistency between Boolean variables. For every triplet i, j and k,
we have to encode si, j∧ s j,k ⇒ si,k (transitivity) and si, j∧ si,k ⇒ s j,k (Euclideanity).
In the following, we call pairing an assignment that gives a value for each si j.
1 The historical name is misleading: it either merges vertices or adds non-existing

edges.
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A valid pairing is a pairing that satisfies both path consistency and unit clauses.
Let G = (V, E) be a graph, the clauses tr(G) that encode valid pairings are
given by:

tr(G) := ¬si j ∀(i, j) ∈ E ∧ transitivity() ∧ euclideanity()
transitivity(i, j, k) := (¬si j ∨ ¬s jk ∨ sik)
euclideanity(i, j, k) := (¬si j ∨ ¬sik ∨ s jk)

transitivity() := transitivity(i, j, k) ∀i, j, k ∈ Vs.t (i < j) and ( j < k)
euclideanity() := euclideanity(i, j, k) ∀i, j, k ∈ Vs.t (i < j) and ( j < k)

Example 2. The following CNF formula encodes the Zykov search space induced
by the graph given in Fig. 1:

tr(G) = ¬s12 ∧ ¬s13 ∧ ¬s23 ∧ ¬s24
∧ (¬s12 ∨ ¬s23 ∨ s13) ∧ (¬s13 ∨ ¬s23 ∨ s12) ∧ (¬s13 ∨ ¬s12 ∨ s23)
∧ (¬s12 ∨ ¬s24 ∨ s14) ∧ (¬s12 ∨ ¬s14 ∨ s24) ∧ (¬s14 ∨ ¬s24 ∨ s12)
∧ (¬s23 ∨ ¬s34 ∨ s24) ∧ (¬s23 ∨ ¬s24 ∨ s34) ∧ (¬s24 ∨ ¬s34 ∨ s23)
∧ (¬s13 ∨ ¬s34 ∨ s14) ∧ (¬s13 ∨ ¬s14 ∨ s34) ∧ (¬s14 ∨ ¬s34 ∨ s13)

which is, after unit propagation: tr(G) = (¬s14 ∨¬s34). As saw earlier on Fig. 2,
either we assign s14 to true, and s34 to false, which gives us the graph G/(1, 4),
or we assign s14 to false, and s34 to true, and thus we obtain the graph G +
(1, 4)/(3, 4), or finally, we assign both variables to true, which gives us the final
leaf, the graph G + (1, 4) + (3, 4).

Thus, searching among the Zykov’s tree leaves, amounts to searching among
the set of valid pairings. Unfortunately, the previous encoding does not give the
number of colours associated with a valid pairing. If we look back at the Zykov’s
tree, every leaf is a complete graph; their chromatic number is their number of
vertices. In our case, the graph is not explicitly constructed and the information
is missing. However, Property 1 shows that it is enough to know which vertices
are paired together to compute the number of colours needed while respecting
a specific pairing. The general idea is that if we try to colour the graph vertex
by vertex, following the information contained in the pairing, then an additional
colour is required for the vertex j exactly when all the already coloured vertices
i are such that the si j are false. Thus, it is enough to consider vertices in a given
order to compute the number of required colours.

Property 1. Let us consider G = (V, E) a graph s.t. |V| > 0 and S the set of
pairing variables associated to G. If IS ∈ 2S is a valid pairing, then the number
of colours needed to colour G w.r.t. IS is given by the following formula:

Ψ(IS ) = 1 +
n∑

j=2

min(IS (si j) s.t. si j ∈ S and i < j)
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Proof. Let us demonstrate this result by structural induction on the number of
nodes.

Base case: Show that the statement is true for the sub-graph G\{v2, v3, . . . , vn}.
It is clear that the number of colours needed to colour a graph with only one
node is Ψ(IS ) = 1.

Inductive step: Show that if this property holds for G \{vn}, then it also holds
for G. Let us consider S ′ = {si j ∈ S s.t. i < j ≤ n − 1}. Using the induction
hypothesis, we have Ψ(IS ′) = 1 +

∑n−1
j=2 min(IS ′(si j) s.t. si j ∈ S ′ and i < j). By

construction of S ′, we also have Ψ(IS ′) = 1+
∑n−1

j=2 min(IS (si j) s.t. si j ∈ S and i <
j). Now, let us consider G with the associated pairing IS . It is easy to show that if
there exists sin ∈ S that is true under IS and s.t. i < n, then no additional colour is
required (actually, the vertex vn can be coloured as the vertices vi). Otherwise, if
∀sin ∈ S s.t. i < n the value of IS (sin) is false, then it is impossible to colour the last
node with an already used colour. Consequently, the number of additional colours
needed when considering the last vertex is min(IS (sin) s.t. sin ∈ S and i < j), and
then we have:

Ψ(IS ) = Ψ(IS ′) + min(IS (sin) s.t. sin ∈ S and i < j)

= 1 +
∑n−1

j=2
min(IS (si j) s.t. si j ∈ S and i < j) + min(IS (sin) s.t. sin ∈ S and i < j)

= 1 +
∑n

j=2
min(IS (si j) s.t. si j ∈ S and i < j) ��

It is well known that computing the minimum value of a Boolean vector can
be encoded as an AND gate. We can rewrite the previous sum as one on the
set of Boolean variables C = {c2, c3, . . . , cn} s.t. Ψ(IS ) = 1 +

∑n
j=2 c j where c j is

defined ∀1 < j ≤ n as follows:

c j ⇔
∧

si j∈S and i< j

¬si j (2)

By considering tr(G) and the constraint generated by Eq. 2, it is possible to
compute the chromatic number of a given graph G by considering the minimisa-
tion problem that consists in satisfying a maximum number of ci to false. This
problem can be encoded as a partial MaxSAT problem where the hard clauses Σ
are given by (tr(G)∧ Eq. 2) and the soft clauses Δ are given by the units literals
ci ∈ C. Thus, the minimum number of colours required is 1 + MaxSAT(Σ, Δ).

To deal with the decision problem that consists in deciding if the chromatic
number of a given graph is at least k, it is enough to consider the CNF for-
mula composed with the clauses of (tr(G)∧ Eq. 2) and the set of clauses that
encodes (

∑n
j=2 c j ≤ k − 1) which can be represented using classical encoding,

such as a Cardinality Network Encoding [30]. In the following, we consider dif-
ferent Partial MaxSAT solvers to determine whether the approach that consists
in minimising the number of c j assigned to true is a competitive approach to the
minimum graph colouring problem. However, by looking at the CNF encoding,
we can observe that transitivity() and euclideanity() add a cubic number
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of ternary clauses which slow down the whole approach (see Sect. 6). One way
to circumvent them is to use a CEGAR version of the encoding and find a way
to refine it by adding as few clauses as possible while minimising the number of
SAT calls.

4 A CEGAR Version of the Encoding

The main concern with our encoding is the number of clauses needed to guar-
antee pairing validity. To overcome this difficulty, we propose to relax transi-
tivity and Euclideanity constraints and incrementally execute a SAT solver on
an under-approximation φ̌ of the problem. If the solution violates some transi-
tivity or Euclideanity constraints, we prevent them in the new abstraction by
adding clauses. To compute the violated constraints, we should consider each
triple (likely a large number) and check its consistency with the result. Such an
approach is clearly impractical when the number of vertices grows.

To avoid this pitfall, we propose to colour the graph using the information
contained in the returned pairing λ. Indeed, we assign each vertex u with the set
c[u] of the k possible colours. Then, we consider each vertex u incrementally in
the natural order and, when it is possible (c[u] �= ∅), select an available colour
i for it in c[u]. Afterward, the pairings are used in order to colour as u every
vertex v such that suv ∈ λ. If v cannot be coloured as u because i /∈ c[v], then
c[v] becomes empty and we consider a vertex w that removes i in c[v]. In such
a case, transitivity and Euclideanity constraints on (u, v,w) are added in φ̌. We
next consider every vertex v s.t. ¬suv ∈ λ and remove from c[v] the colour i. If
c[v] becomes empty, we search for a vertex w that forces v to be coloured with
the colour i. In the case when such w exists, the transitivity or/and Euclideanity
constraints on the triple (u, v,w) are missing and must be added. In both cases,
the solver is run once more on the updated under-approximation and the all
process is repeated until spurious triples can be identified. Algorithm 1 gives
the pseudo-code of our checking method. The following property shows that if
check(λ,G, k) returns ∅ then it is possible, following λ, to colour G with k colours.

Property 2. Let G = (V, E) a graph, k an integer and λ an interpretation that
satisfies an under-abstraction of tr(G) that contains at least: the unit clauses
¬suv for all (u, v) ∈ E, the clauses encoding Eq. 2 and the clauses that encodes∑n

ci
ci ≤ k − 1. If T = check(λ,G, k) returns ∅ then it is possible, following λ, to

colourG with k colours. Otherwise, ∃(i, j, k) ∈ T then λ �|= transitivity(i, j, k)∧
euclideanity(i, j, k).

Proof. First, let us demonstrate that if ∃(i, j, k) ∈ T then λ �|= transitivity
(i, j, k) ∧ euclideanity(i, j, k). Let us consider the two cases where a triple t can
be added:

– t is added line 10, that means we have two vertices u and v s.t. u < v, c[u] =
{i}, ¬suv ∈ λ and c[v] \ {i} = ∅. By the if condition (line 9), we also have
∃w s.t. w < u svw ∈ λ and c[w] = c[u]. Since c[u] = {i} and w < u then
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Algorithm 1. check(λ s.t λ |= φ̌,G = (V, E) a graph, k an integer) : T a set
1 T ← ∅; c a map;
2 for u ← 1 to |V| do c[u] ← {1, 2, . . . , k};
3 for u ← 1 to |V| do
4 if c[u] �= ∅ then
5 c[u] = {i} s.t. i ∈ c[u];
6 for v ← u + 1 to |V| do
7 if ¬suv ∈ λ then
8 c[v] = c[v] \ c[u];
9 if c[v] = ∅ and ∃w s.t. w < u, swv ∈ λ and c[w] = c[u] then

10 T ← T ∪ {(u, v,w)}
11 else
12 c[v] = c[v] ∩ c[u];
13 if c[v] = ∅ then
14 let w s.t. w < u, svw ∈ λ and c[w] �= c[u] or ¬swv ∈ λ and c[w] = c[u];
15 T ← T ∪ {(u, v,w)};

16 return T ;

swu ∈ λ (otherwise i would have been removed from c[u] by w). Thus, we have
{swu, swv,¬suv} ⊆ λ which implies that λ �|= euclideanity(w, u, v).

– t is added line 15, that means we have two vertices u and v s.t. u < v, c[u] = {i},
suv ∈ λ and i /∈ c[v]. i /∈ c[v] means that i has been previously removed (line
8 or line 12) when some vertex w < u has been considered. Two cases have
to be considered. Either c[w] = {i}, in this case ¬swv ∈ λ and we neces-
sary have {¬swv, swu, suv} ⊆ λ (swu ∈ λ because i ∈ c[u] and w < u). Or
c[w] �= {i}, which implies that swv ∈ λ and then we have {swv,¬swu, suv} ⊆ λ
(similarly, ¬swu ∈ λ because i ∈ c[u] and w < u). In both cases, we have
λ �|= transitivity(u, v,w) ∧ euclideanity(u, v,w).

Therefore, if ∃(i, j, k) ∈ T then λ �|= transitivity(i, j, k)∧euclideanity(i, j, k).
Now, let us demonstrate that if check(λ,G) returns ∅ then λ makes possible the
construction of a k-colouring for G = (V, E). First, we show that if T is empty
then all the vertices v are coloured in c[v], i.e. �v ∈ V s.t. c[v] = ∅. Towards a
contradiction, suppose that after the for-loop (line 16) ∃v ∈ V s.t. c[v] = ∅ and
T = ∅. By considering the first emptied vertex v, it is easy to show that the only
situation, where c[v] can be emptied whereas no triple are added in T , is line 10
where no vertex w can be found when u is considered. Indeed, if c[v] becomes
empty at line 12, then a triple is added immediately (lines 13–15). Otherwise, if
we can find w < u s.t. swv ∈ λ and c[w] = c[u] then a triple is necessary added.
Therefore, ∀w < v we have ¬swv ∈ λ and then by Eq. 2 we also have cu ∈ λ. Thus,
since

∑n
i=2 ci <= k − 1 must be satisfied by λ then

∑v−1
i=2 ci <= k − 2 should be

satisfied by λ as well. Since c[v] is empty and ¬swv ∈ λ for all w < v, then there
exist k vertices wj s.t. c[wj] = { j} for each j ∈ {1, 2, . . . , k}. Thus, for each colour



An Incremental SAT-Based Approach to the Graph Colouring Problem 223

j it is possible to determine the vertex w′
j that has been assigned first to the

colour j.
Let us show that ∀w′

j,¬sww′
j

∈ λ,∀w < w′
j. Towards a contradiction, let us

suppose that ∃w s.t. sww′
j
∈ λ. Since the vertices are considered in the natural

order, w is coloured before w′
j. But since w′

j is the first vertex assigned to j, we
have c[w] �= { j}. Thus, since w < v, we have c[w] �= ∅, and thus the following
instructions are executed. Because sww′

j
∈ λ the else part of the if/else instruction

(lines 11–15) should have deleted the colour j from c[w′
j], making impossible to

colour w′
j in j. Consequently, ∀w′

j we have ¬sww′
j
∈ λ,∀w < w′

j.
Therefore, there exist k vertices w′

j s.t. ¬sww′
j

∈ λ, ∀w < w′
j. Since vertex

1 is necessary coloured first, it is easy to show that w′
1 = 1. By construc-

tion, φ̌ encodes Eq. 2, and then we have λ |= ∧n
j=2(c j ⇔ ∧

si j∈S and i< j ¬si j).
Consequently, λ satisfies cv at least k − 1 literals ci s.t. i < v and then
λ �|= ∑v−1

i=2 ci <= k − 2, proving the claim.
We conclude by proving that c is a k-colouring for G. Since 1 ≤ i ≤ k, stating

that c is a valid colouring necessary implies it is a k-colouring. Thus, it is enough
to show that c is a valid colouring. Towards a contradiction, suppose c is not
valid. Then, there exist two vertices u and v s.t. c[u] = c[v] = {i} and (u, v) ∈ E.
Without loss of generality, suppose that u < v. Because (u, v) ∈ E, ¬suv is a unit
clause of φ̌ and therefore ¬suv ∈ λ. Thus, when u is coloured (line 4), the set
c[v] is updated w.r.t. λ. Since ¬suv ∈ λ, i should be removed from c[v] (line 8)
and c[v] is necessary different from {i}. To conclude, if T = ∅ then c is a valid
colouring of G and a k-colouring of G. ��

5 Related Work

Brelaz’ Dsatur (degree of saturation) [11] greedy algorithm, is one of the oldest
but still successful technique for graph colouring. It works as follows: for each
vertex v, we compute the degree of saturation of v and we use this value and the
degree of each vertex to determine an order to colour the vertices. This heuristic
is used within a branch-and-bound algorithm with one variable per vertex whose
domain is the set of possible colours.

Another way to compute the chromatic number of a graph is to take advan-
tage of its NP-hardness and use the constraint programming paradigm. Since it is
trivial to encode colouring problems into propositional logic, several SAT-based
approaches have been proposed. To be efficient in practice, such approaches also
add constraints to break symmetries or to represent explicitly the information
between non-adjacent vertices [7,12]. Let us cite color6 that is one of the most
efficient solvers [12].

Schaafsma et al. [7] CP approach is very clever but unfortunately, we cannot
compare our approach to it. As explained in [13]: “We could not compare our
method to the method of Schaafsma et al. directly. [...] Firstly, the algorithm is
restricted to instances with at most 32 colours. Secondly it solves the satisfia-
bility problem χ(G) ≤ K and uses a file converter. Finally, the changes made
to Minisat’s code do not seem to be robust.”. However, their approach deserves
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some explanations. The authors also exploit Zykov’s contraction. They introduce
additional variables ei j in the encoding if the vertices i and j should be merged
using Zykov’s contraction. However, a fundamental difference with our approach
is that they encode the colours as a CP domain. For each colour c and each ver-
tex v, a Boolean variable xvc stating that the vertex v has the colour c is used.
Even though they propose symmetry breaking [31] to speed-up their approach,
they, unfortunately, suffer lack of efficiency when the number of colours is large.

The second work, closely related to our own one, is the most recent (and most
efficient) approach to the minimum graph colouring problem, namely gc-cdcl

[13]. Unlike Schaafsma et al. [7], they do not need to encode colours as a CP
domain since they have a variable for every non-edge in the input graph. Again,
as in [7] and our approach, they rely on Zykov’s recurrence.

Hebrard and Katsirelos [13] made the same analysis as us about the perfor-
mance of Schaafsma et al. They propose a CP hybridisation introducing peculiar
propagators to enforce constraints on the bounds. Contrastingly, we have devel-
oped a complete SAT-based approach when the constraints are relaxed by per-
forming a CEGAR-based search on the spurious examples that the SAT solver
may find.

6 Experimental Evaluation

To assess our approach, we created a tool called Picasso. Picasso is an open-
source solver (written in C++)2. In the following, we compare different versions
of our method:

– Full *Decision*, full encoding that decides the bound by using sum con-
straints and oracle calls (ascending (1toN), descending (Nto1) and binary
search (Dicho);

– Full *MaxSAT solver*, full encoding in combination with a MaxSAT
solver;

– CEGAR *Decision*, the relaxed counterpart of the full encoding that
decides the bound by using sum constraints and oracle calls (ascending
(1toN), descending (Nto1) and binary search (Dicho).

We used, as SAT solver, glucose (4.0) [32,33], in incremental mode (with
its caching activated). We also tried several Partial MaxSAT solvers, such as:
maxHS-b [34], mscg2015b [35], RC2-B [36] and MSUnCore [37]. We selected
MaxSAT solvers which have shown good performances in the 2018 MaxSAT com-
petition [38]. We considered the state-of-the-art approaches for graph colouring
according to [13]: gc-cdcl [13], color6 [12] and DSatur [11]. We used instances
from a colouring webpage3, the “Graph coloring” and the “Quasi-random color-
ing” problems. This leads to a list of 159 instances. The experiments ran on a
4 cores Xeon at 3.3 GHz with CentOS 7.0. The memory limit was set to 32GB
and the runtime limit to 900 seconds per solver per benchmark.
2 The source are accessible at: https://github.com/Mystelven/picasso.
3 https://mat.tepper.cmu.edu/COLOR03/.

https://github.com/Mystelven/picasso
https://mat.tepper.cmu.edu/COLOR03/
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6.1 Overall Evaluation of the Different Methods

We start with an overall evaluation of the effectiveness of each approach. The
results are presented in Fig. 3 under the form of cactus plots. It makes explicit the
number of instances solved in a given amount of time per instance. As expected,
the methods using our full encoding are not very effective. Even if the methods
using MaxSAT solvers are more efficient than the one that computes the bound,
our best version is no more effective than the weaker state-of-the-art approach.
Actually, having a closer look at their behaviour, the lack of efficiency does not
come from SAT solver, but is due to the encoding itself. 97.3% of the transla-
tions have been solved. Hence, there is definitely a bottleneck here due to the
translation.

Fig. 3. Cactus-plot of the runtime.

One can observe in Fig. 3, that CEGAR approaches outperform state-of-
the-art approaches. They manage to solve more instances than gc-cdcl, which
solves 102 instances out of 159, which was definitely the best overall approach,
as explained in [13]. It is important to note that the results do not depend on
the way the optimisation problem is solved: the three types of search perform
better than gc-cdcl. We can also note that, either in Full or in CEGAR mode,
it seems that the 1toN approaches perform better than their Nto1 and Dicho
counterparts. This can be explained because the chromatic number is generally
far from the number of vertices. Thus, it is better to start from 1 than to start
from the number of vertices. Table 1 reports the results regarding the number
of problems solved depending on the family of the instance under consideration.
As we can see, CEGAR approaches work well on all the families except for the
other and random categories, where color6 outperforms it. On the random
benchmarks, the six unsolved instances are due to the SAT solving phase. These
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problems seem to have a random nature for which CDCL SAT solvers are ill-
suited, whereas color6 seems to deal with them extremely well. In the other

category, it is more sparse, we do not lose on one big category but few instances
here and there, except somewhat for the school one, which represents Class
Scheduling Problems. All the state-of-the-art approaches solve these instances
except us. In our case, it seems that verifying solutions with the checker is time-
consuming. It returns only a few triples each time, therefore lacking time to solve
the instance.

Table 1. Number of instances of each sub-family solved by the approaches in consid-
eration, in bold the best approach for each sub-family.

Fig. 4. Picasso vs. gc-cdcl.
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Fig. 5. Progression of Picasso towards the chromatic number of instances.

We also report a comparison between gc-cdcl and CEGAR 1toN (now
denoted Picasso) in Fig. 4. Each dot corresponds to a colouring instance. The
x-axis of the figure represents the computation time needed to compute the
chromatic number when Picasso is considered, while the y-axis depicts the time
needed to compute the chromatic number when gc-cdcl is considered. As we
can see, there is a clear trend above the diagonal, especially on the instances
solved in less than 10 s by Picasso which require almost a hundred seconds for
gc-cdcl. Moreover, it seems that it does not depend on the chromatic number
that needs to be found. Indeed, one could think that the higher the chromatic
number is, more CEGAR loops in Picasso and therefore the worst the over-
all performances. However, as depicted in Fig. 4 the chromatic-number of the
instance does not have much influence. Actually, the models returned by glucose
help to refine quickly the bound and therefore provide a tremendous speed-up in
comparison to a simple increasing loop. This is a result already known for peo-
ple working with NP-oracles: an oracle able to output a model can provide to
provide a large speed-up compared to one answering only yes or no [39]. Indeed,
there are problem solvable with a polynomial number of calls to an oracle that
can be solved with a logarithmic number of calls to an oracle outputing a model.

6.2 Analysis on the CEGAR Behaviour

Now that we have analysed how good Picasso in CEGAR mode is, let us see
how it is behaving exactly, i.e. let us determine where is the bottleneck in our
approach. First, let us take a look at the number of CEGAR loops that Picasso
is performing. We got that:

min = 2; 1stqu. = 3; median = 6; mean = 10.3; 3rdqu. = 11; max = 88
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Table 2. Time distribution details for the three phases in Picasso

This shows that Picasso does not loop so many times. Figure 5 reports
for some categories of benchmarks the number of CEGAR loops (x-axis) with
respect to the chromatic number of the instance (y-axis). One can observe on
this picture that the instances have generally a chromatic number higher than
the number of CEGAR loops. The sole exception is fpsol2.1.1.col which has
a chromatic number of 65, where we identified that, at each step, the model does
not provide any information on the chromatic number. The models returned by
the SAT solver help to quickly improve the bound. This implies that in many
cases, checker provides a quite precise refinement and not just one spurious
triple at a time.

Finally, we report in Table 2 the cumulative time spent by the different phases
of CEGAR (encoding, checking and solving) with respect to the chromatic num-
ber of the instance considered. One can observe that, on the instances that we
managed to solve, the SAT encoding is not really time-consuming, neither is the
SAT solving phase. Except for a few cases, we can observe that the checking
phase definitely is the bottleneck of the approach. This is not really surprising.
Indeed, Glucose [32] is a very efficient SAT solver, and we used the Cardinality
Network Encoding from open-wbo [40] which allows us to refine the bound by
adding as few clauses as possible. Therefore, the only time-consuming task is for
each satisfiable answer from Glucose to check the model returned and determine
whether clauses must be added. The median times may look relatively low, how-
ever, the reader must keeping in mind Fig. 3. Indeed, most of the instances solved
by Picasso are solved in less than 100 s. If we have a look at the instances for
which a time-out was reached, it turns out that we spent in median 89.3% of the
time to check models. To be convinced that the checker is indeed a bottleneck, we
tried to implement a naive one, which consists in testing whether for all i, j and
k we have that the constraints transitivity(i, j, k) ∧ euclideanity(i, j, k) are
respected. With such a checker, CEGAR 1toN solves 100 instances, CEGAR Dicho
solves 96 and CEGAR Nto1 solves 95 instances.

7 Conclusion

In this paper, we proposed a new approach for solving the minimal graph colour-
ing problem using an under-abstraction refinement approach within the CEGAR
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framework. We showed that our encoding is sound and complete and we imple-
mented our approach in the solver Picasso. We compared our solver with the
state-of-the-art solvers for the graph colouring problem, on a wide range of
benchmarks of different size and difficulty. We conclude that a basic direct-
encoding approach is not competitive; many of the available benchmarks are
large and require a lot of clauses to be encoded. However, by considering clauses
carefully, our CEGAR approach outperforms the other solvers on most of the
benchmarks. As future we plan to avoid checking unmodified sub-graphs twice
by flagging some nodes, i.e., checking only the part which was modified due
to the previous assignment. Moreover, extending the CEGAR approach into
a RECAR (Recursively Explore and Check Abstraction Refinement) one [41]
could be interesting. The unit propagation of the embedded SAT solver would
be stronger, and it could provide us quickly a good upper-bound. Such double-
abstraction functions could make the binary search much faster and improve the
overall performance. This is an exciting perspective for future work.
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works: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)

31. Roney-Dougal, C.M., Gent, I.P., Kelsey, T., Linton, S.: Tractable symmetry break-
ing using restricted search trees. In: de Mántaras, R.L., Saitta, L., (eds.) Pro-
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Abstract. The recent improvements in solving Maximum Satisfiability
(MaxSAT) problems has allowed the usage of MaxSAT in several appli-
cation domains. However, it has been observed that finding an optimal
solution in a reasonable amount of time remains a challenge. Moreover,
in many applications it is enough to provide a good approximation of the
optimum. Recently, new local search algorithms have been shown to be
successful in approximating the optimum in MaxSAT problems. Never-
theless, these local search algorithms fail in finding feasible solutions to
highly constrained instances. In this paper, we propose two constraint-
based techniques for improving local search MaxSAT solvers. Firstly, an
unsatisfiability-based algorithm is used to guide the local search solver
into the feasible region of the search space. Secondly, given a partial
assignment, we perform Minimal Correction Subsets (MCS) enumer-
ation in order to improve upon the best solution found by the local
search solver. Experimental results using a large set of instances from
the MaxSAT evaluation 2018 show the effectiveness of our approach.

Keywords: Maximum Satisfiability · Local search ·
Incomplete algorithms

1 Introduction

Over the last decade, a new generation of algorithms for Maximum Satisfiability
(MaxSAT) problems has been proposed [1,13,40,42,44]. These new MaxSAT
algorithms are usually based on iterative calls to a highly efficient Propositional
Satisfiability (SAT) solver. For many industrial benchmarks, the current state-of-
the-art MaxSAT algorithms are several orders of magnitude faster than branch-
and-bound MaxSAT algorithms [35]. As a result, MaxSAT has been used exten-
sively in many application domains, such as timetabling [4], fault localization in
C programs [25], and design debugging [45], among others [20].
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Despite the success of the new generation of MaxSAT solvers, there is still a
wide range of large-scale applications where such solvers fail to prove optimality
within a reasonable amount of time. In fact, in some applications, time is so
crucial that it suffices to quickly find a good approximation to the optimum [48].
As a result, several incomplete MaxSAT algorithms [3,12,33,36,47] have been
proposed with the aim of finding good solutions within a limited time window.

It is well-known that stochastic local search (SLS) solvers are known to be
competitive when the problem instances are easy to satisfy. On the other hand,
SAT-based algorithms are more effective in problem instances with more con-
straints, while having more difficulties to deal with the optimization problem.

In the context of SAT solving, there is a large literature on combining SAT-
based procedures and SLS techniques (e.g. [5,6,18,34,51]). Moreover, the inte-
gration of SAT-based complete algorithms and SLS algorithms has already been
proposed for MaxSAT [28]. However, the proposed approaches for MaxSAT are
mostly similar to a portfolio of solvers running in parallel or having some pre-
defined criteria where either an SLS or a SAT solver are used. As a result, the
integration of SLS and SAT-based techniques is limited.

In this paper, we propose an effective integration of SAT-based techniques
in a SLS solver for MaxSAT. In our solver, the control of the solving process
changes from SAT-based procedures to stochastic procedures and vice-versa. At
each step, each procedure tries to build upon the information received from the
other, instead of being independent procedures. The main contributions of the
paper are as follows: (1) a new unsatisfiability-based algorithm to correct the SLS
current assignment into a feasible solution, (2) a new improvement procedure
based on Minimal Correction Subset (MCS) enumeration limited to the context
of the SLS solver, and (3) an extensive experimental evaluation that shows the
effectiveness of the newly proposed ideas.

The paper is organized as follows. Section 2 introduces the SAT and MaxSAT
problems, as well as the notion of unsatisfiable cores and MCSes. Next, Sect. 3
reviews state of the art approximation algorithms for MaxSAT based on complete
algorithms and SLS solvers. In Sect. 4, the new unsatisfiability-based procedure
for assignment correction is presented, as well as a description of the assign-
ment improvement procedure. Section 5 presents a comparison of our new solver
with the top performing solvers on the incomplete track of the 2018 MaxSAT
Evaluation. Finally, the paper concludes in Sect. 6.

2 Preliminaries

This section describes the Maximum Satisfiability (MaxSAT) problem, as well
as the notions of unsatisfiable core and Minimal Correction Subsets (MCSes).
Additional background information and definitions are also provided.

2.1 Maximum Satisfiability

A propositional formula in Conjunctive Normal Form (CNF), defined over a
set X = {x1, x2, . . . , xn} of n Boolean variables, is a conjunction of clauses,
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where a clause is a disjunction of literals. A literal is either a variable xi or
its complement x̄i. A complete assignment is a function ν : X → {0, 1} that
associates each variable in X with a Boolean value. Given an assignment ν,
a literal xi (respectively x̄i) is said to be satisfied if ν(xi) = 1 (respectively
ν(xi) = 0). A clause is said to be satisfied by ν if any of its literals is satisfied.
Otherwise, it is said to be unsatisfied. A formula φ is satisfied by ν if all its clauses
are satisfied. On the other hand, if any of the clauses in φ is unsatisfied by ν,
then φ is unsatisfied. Given a CNF formula φ, the Propositional Satisfiability
(SAT) problem consists of finding a truth assignment ν such that φ is satisfied,
or prove that no assignment exist that satisfies φ.

The Maximum Satisfiability (MaxSAT) problem is an optimization version
of the SAT problem and several versions of MaxSAT can be used [35]. In the
context of this paper, we focus on the partial MaxSAT problem where clauses
in a CNF formula φ = φh ∪ φs are labeled as hard (φh) or soft (φs). The goal
of partial MaxSAT problems is to find an assignment ν that satisfies all hard
clauses in φh, while minimizing the number of unsatisfied soft clauses in φs. In
weighted partial MaxSAT problems, a positive integer weight is associated with
each soft clause and the goal is to satisfy all hard clauses, while minimizing the
total weight of unsatisfied soft clauses.

If an assignment ν satisfies all hard clauses, then we say that ν is a feasible
assignment. Otherwise, we say that ν is infeasible. In this paper, it is assumed
that the set of hard clauses φh can be satisfied, i.e. there is always a feasible
assignment for a given MaxSAT problem instance. Otherwise, the MaxSAT for-
mula would be unsatisfiable.

Throughout the paper, the set notation is used for clauses and CNF formulas.
In particular, a CNF formula is seen as a set of clauses and a clause as a set
of literals. Finally, we extend the notation of satisfiability of a clause and a set
of clauses by an assignment ν. If ci is a clause satisfied by ν, then ν(ci) = 1,
otherwise ν(ci) = 0. Let φ denote a set of clauses. If assignment ν satisfies φ,
then ν(φ) = 1, otherwise ν(φ) = 0.

Example 1. Consider the following weighted partial MaxSAT formula φ = φh ∪
φs where φh = {(x1 ∨ x2 ∨ x̄3), (x2 ∨ x3), (x̄1 ∨ x̄2 ∨ x̄3)} and φs = {((x̄1), 1),
((x̄2), 3), ((x̄3), 1)}. Note that the positive weight associated with each soft clause
denotes the cost of not satisfying the clause. In this case, the assignment ν =
{x1 = 1, x2 = 0, x3 = 1} is an optimal solution with a cost of 2, since soft clauses
(x̄1) and (x̄3) are not satisfied by ν.

2.2 Unsatisfiable Cores and Minimal Correction Subsets

Let φ be an unsatisfiable formula. A subset φC ⊆ φ is an unsatisfiable core of φ
if and only if φC is also unsatisfiable. Several techniques exist in the literature
for computing unsatisfiable cores (e.g. [15,22]) and current state of the art SAT
solvers are able to identify an unsatisfiable core of φ.
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Example 2. Consider the following CNF formula φ = {(x1 ∨ x2 ∨ x̄3), (x2 ∨
x3), (x̄1 ∨ x̄2 ∨ x̄3), (x̄1), (x̄2), (x̄3)}. One unsatisfiable core of φ would be φC =
{(x2 ∨ x3), (x̄2), (x̄3)}, since this subset of clauses of φ is unsatisfiable.

Let φh and φs be the sets of hard and soft clauses, respectively, such that φh

is satisfiable and φh∪φs is unsatisfiable. A subset C ⊆ φs is a Minimal Correction
Subset (MCS) if and only if φh ∪ (φs \ C) is satisfiable and φh ∪ (φs \ C) ∪ {c}
is unsatisfiable for all c ∈ C.

Observe that MCS algorithms [8,19,39,41] easily provide an approximation
to the optimal solution of a MaxSAT instance. An MCS algorithm provides an
assignment ν that satisfies φh ∪ (φs \C). Let f(C) denote the sum of the weights
of the clauses in C. Since ν satisfies all hard clauses, its cost will be f(C), thus
providing an approximation to the optimum of the MaxSAT instance. In fact,
solving a MaxSAT instance can be reduced to finding an MCS with minimum
value of f(C) [9].

Example 3. Consider again the weighted partial MaxSAT formula from Exam-
ple 1, where φh = {(x1 ∨ x2 ∨ x̄3), (x2 ∨ x3), (x̄1 ∨ x̄2 ∨ x̄3)} and φs = {((x̄1), 1),
((x̄2), 3), ((x̄3), 1)}. This formula has two MCSs: C1 = {(x̄1), (x̄3)} and C2 =
{(x̄2)}. Observe that the cost of C1 is 2, while the cost of C2 is 3. Actually,
an assignment that satisfies φh ∪ (φs \ C1) is an optimal assignment of φ since
C1 is the lowest cost MCS. On the other hand, an assignment that satisfies
φh ∪ (φs \ C2) is an approximation on the optimum of φ.

3 Algorithms to Approximate MaxSAT

This section briefly reviews algorithms that can approximate the optimal solu-
tion of MaxSAT instances. First, we refer to complete SAT-based algorithms for
MaxSAT that can be adapted to provide an approximate solution. Next, stochas-
tic approaches are presented with focus on stochastic local search algorithms.

3.1 SAT-Based Algorithms

Current state-of-the-art complete algorithms for MaxSAT rely on iterative calls
to a SAT solver. One possible approach is to use the linear Sat-Unsat algorithm
that performs a linear search on the total weight of unsatisfied soft clauses.
These algorithms start by solving the hard clauses using a SAT solver. Next,
whenever a solution is found, a new pseudo-Boolean constraint1 is added, such
that solutions with a higher or equal cost are excluded. The algorithm stops
when the SAT solver returns unsatisfiable. Hence, the last solution found is an
optimal solution to the MaxSAT formula.

In large instances, the performance of these algorithms starts to degrade due
to large weights in soft clauses, or when the number of soft clauses is very large.
Recently, incomplete algorithms have been proposed where only a subset of soft

1 In the case of partial MaxSAT instances, a cardinality constraint is used.
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clauses is considered at each iteration, or the weights are approximated [14,27] to
allow a more effective encoding of the Pseudo-Boolean or cardinality constraints.

While linear Sat-Unsat algorithms perform the search refining an upper
bound on the optimal solutions, linear Unsat-Sat MaxSAT algorithms iteratively
refine a lower bound [2,21,38]. In unsatisfiability-based MaxSAT algorithms, the
lower bound is refined by iteratively finding unsatisfiable cores and the first sat-
isfiable SAT call returns an optimal solution to the MaxSAT instance.

Unsatisfiability-based MaxSAT algorithms can also provide upper bounds [1,
3,43] by applying a stratified approach, i.e. only a subset of soft clauses with
higher weights are considered. The remaining soft clauses are added iteratively
to the solver, after the subproblem considering higher weights has been solved.
Observe that any MaxSAT algorithm that maintains an upper bound on the
optimum can provide an approximate solution. Nevertheless, in many problem
instances, it is hard to quickly find a good quality approximation to the optimum.

3.2 Stochastic Algorithms

Stochastic local search (SLS) algorithms for SAT and MaxSAT have been devel-
oped in the past [23,46,50]. These algorithms are inherently incomplete, since
they are unable to prove unsatisfiability of SAT problems or prove that an assign-
ment is an optimal solution to a MaxSAT instance. Nevertheless, for randomly
generated instances, SLS algorithms have been shown to be very effective at find-
ing very good approximations to the optimal solution. In fact, SLS algorithms
have been used to quickly find a tight upper bound to MaxSAT instances so that
a subsequent branch and bound algorithm could be more effective in pruning
the search space [29].

Given a MaxSAT instance φ = φh ∪ φs, SLS algorithms start by defining a
random assignment ν to all problem variables. While ν does not satisfy all hard
clauses φh, an unsatisfied hard clause ci ∈ φh is selected and ν is updated by
flipping the value of a variable in ci. Hence, ci becomes satisfied by ν. Next, if
ν satisfies all hard clauses, then the algorithm focus on minimizing the weight
of unsatisfied soft clauses φs by flipping assignments in ν. There is a plethora of
heuristics to implement this generic SLS approach. Recently, new SLS algorithms
and techniques have been proposed such as CCLS [37], CCEHC [36], Ramp [17],
and maxroster [47], among others [11,12,33]. In the MaxSAT Evaluation 2018,
SATLike [33] was one of the best performing solvers in the incomplete solver
track. This was particularly surprising, since no randomly generated instances
were selected for the MaxSAT evaluation [7].

Algorithm 1 presents the pseudo-code for SATLike [33]. This algorithm main-
tains a weight associated to each hard clause in φh and each soft clause in φs.
Initially, hard clauses have weight 1 and soft clauses are associated with its
weight in the MaxSAT instance (line 1). After using a procedure based on unit
propagation to compute an initial assignment to ν (line 2), the algorithm per-
forms several iterations until a given cutoff limit is reached. At each iteration,
if ν satisfies all hard clauses and improves upon the best previous assignment,
then ν is saved (lines 5–6). Let score(xi) denote the weight increase in satisfied
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Algorithm 1: SATLike Algorithm
Input: φ = φh ∪ φs, cutoff
Output: satisfying assignment to φ

1 InitializeClauseWeights(φh, φs)
2 ν ← InitializeAssignment(V ars(φ))
3 νbest ← ∅
4 while (#iterations < cutoff) do
5 if ((ν(φh) = 1) ∧ (Cost(φs, ν) < Cost(φs, νbest))) then
6 νbest ← ν // A better solution is found

7 D ← {xi ∈ V ars(φ)|score(xi) > 0}
8 if (D �= ∅)) then
9 xs ← SelectBMS(D)

10 else
11 UpdateClauseWeights(φh, φs, ν)
12 if (ν(φh) = 1) then
13 cs ← RandomSelect({ci : ci ∈ φs ∧ ν(ci) = 0})

14 else
15 cs ← RandomSelect({ci : ci ∈ φh ∧ ν(ci) = 0})

16 xs ← SelectMaxScore(V ars(cs))

17 ν ← Flip(ν, xs) // Flip value of xs in ν

18 return (νbest) // Returns the best assignment found

clauses resulting from flipping xi. If there are variables that would improve ν
with respect to the current clause weight (i.e. variables with positive score), then
a variable is selected to be flipped according to a best from multiple selections
(BMS) strategy (line 9)2. Otherwise, the algorithm is at a local minima and the
current clause weights are updated according to the strategy defined in [33] (line
11). Next, if ν satisfies all the hard clauses, then an unsatisfied soft clause is
selected (line 13). Otherwise, an unsatisfied hard clause is selected instead (line
15). The variable to be flipped is the one with the highest score in the selected
clause (line 16). Finally, the best solution found is returned when the cutoff limit
is reached (line 18). The cutoff limit depends on a predefined maximum number
of iterations without improvement. That is, the algorithm ends when it is unable
to find a satisfiable assignment, or when it fails to improve upon the best feasible
solution found, within a given number of iterations (in the implementation the
limit is of 107 iterations). For this purpose, the iteration counter is set to zero
whenever νbest is updated.

4 Using SAT Techniques in Local Search

The idea of integrating SAT techniques in SLS algorithms for MaxSAT is not
new. For example, solver MiniWalk [28] used SAT solver MiniSat [16] to guide the
SLS algorithm WalkSAT [46]. In this case, the SLS algorithm and the SAT solver
2 We refer to the literature for further details [10,33].
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were run in parallel using a shared memory array such that the SLS algorithm
would not flip a variable xi if it would result in a complement assignment to the
assignment in the SAT solver. The goal is to use the SAT solver to deal with
the hard clauses, so that the SLS algorithm can focus on the optimization of the
soft clauses.

Nevertheless, despite some exchange of information in MiniWalk, the SLS
algorithm and the SAT solver are run in parallel and mostly in an indepen-
dent fashion, similar to a parallel portfolio solver. In this paper, the goal is
to have a SLS algorithm where SAT-based techniques are effectively used to
correct and improve the current assignment in the SLS algorithm. Although cor-
rection procedures have already been proposed in evolutionary algorithms for
multi-objective optimization [24], this paper proposes a novel procedure where
unsatisfiable cores are used to identify sets of variable assignments that need to
be changed.

Let SAT(φ,A, budget) denote a call to a SAT solver where φ is a CNF for-
mula, A is a set of literals considered as assumptions, and budget is a positive
value. A SAT solver call returns a triple (st, φC , ν) where st denotes the solver
return status (SAT, UNSAT or UNRES). If the solver returns SAT, then ν contains a
satisfiable assignment to φ. On the other hand, if the solver returns UNSAT, then
φC contains an unsatisfiable core. Note that φ might be satisfiable, but the solver
might still return UNSAT due to the set of assumptions A. This occurs when there
are no models of φ where all assumption literals in A are satisfied. Therefore,
φC might contain a subset of clauses from φ and literals from A. Finally, the
solver returns UNRES if during the SAT call the number of conflicts reaches the
defined budget. Observe that if budget is set to +∞, then the SAT call does not
return UNRES. However, in our context, a conflict limit will be set to avoid the
solver to take too much time in a SAT call.

One of the shortcomings of SLS algorithms is that these solvers have difficul-
ties in dealing with highly constrained formulas. Therefore, it might be the case
that the SLS algorithm is unable to satisfy φh or gets stuck in some local min-
ima. In these cases, using SAT-based techniques to find a satisfiable assignment
to φh would be beneficial.

4.1 Assignment Correction

Consider the case when the SLS algorithm is unable to change from an unsat-
isfiable assignment ν into a better assignment. Algorithm 2 describes our
unsatisfiability-based algorithm which performs a correction to ν in order to
guide the SLS algorithm to the feasible region of the search space.

First, we start by building a set of assumption literals A corresponding to
the assignment ν (lines 1–3). Next, a SAT call on the set of hard clauses φh is
made (line 4). Clearly, if ν is not feasible, then this call returns UNSAT and φC

contains an unsatisfiable core. Therefore, while a satisfiable assignment is not
found, the assumption literals that occur in φC are deemed responsible for the
UNSAT status, removed from A (line 7) and a new SAT call is made (line 8).
Observe that a conflict limit is defined for the correction procedure. Hence, after



Constraint-Based Techniques in Stochastic Local Search MaxSAT Solving 239

Algorithm 2: Assignment Correction Algorithm
Input: φ = φh ∪ φs, ν, confLimit
Output: satisfying assignment to φ

1 A ← ∅
2 foreach (xi ∈ V ars(φ)) do
3 A ← A ∪ {(ν(xi) = 1 ? xi : x̄i)}
4 (st, φC , νnew) ← SAT(φh, A, confLimit)
5 confBudget ← confLimit − satSolverConflicts
6 while (st �= SAT ∧ confBudget > 0) do
7 A ← {lj : lj ∈ A ∧ lj �∈ φC} // remove literals in unsat core

8 (st, φC , νnew) ← SAT(φh, A, confBudget)
9 confBudget ← confBudget − satSolverConflicts

10 if (st �= SAT) then
11 confBudget ← confLimit/10
12 while (st �= SAT ∧ |A| > 0) do
13 A ← ChooseRandom(A, 0.5)
14 (st, φC , νnew) ← SAT(φh, A, confBudget)

15 νnew ← Improve(φ, A, νnew, confLimit) // MCS Enumeration

16 return (νnew) // Returns the best assignment found

each SAT call, the conflict budget is reduced by the number of conflicts in the
last SAT call.

Note that if φh is satisfiable, then a satisfiable assignment is eventually found.
However, since the number of conflicts is limited at each SAT call, it is possible
that the conflict budget is not enough to find a satisfiable assignment. If this is
the case, then our algorithm applies a similar procedure with a more aggressive
strategy (lines 12–14) where at each iteration 50% of the literals in A are removed
(line 13). Since the correction procedure only depends on the hard clauses, there
is no guarantee regarding its quality. As a result, we also apply a SAT-based
improvement procedure (line 15) detailed in Algorithm 3.

4.2 Assignment Improvement

Let φ = φh ∪ φs be a MaxSAT formula and MCS(φh, φs, budget) denote a call to
an MCS algorithm where budget is a positive value. An MCS solver call returns
a pair (st, ν) where st denotes the return status. If the return status st is SAT,
then ν denotes an assignment that satisfies φh ∪ (φs \ C) where C is an MCS
of φ. Therefore, ν provides an approximation to the optimal solution of φ (see
Sect. 2.2). Otherwise, either st is UNSAT if φh is not satisfiable or st is UNRES if
the budget conflict limit is reached.

Algorithm 3 describes our improvement algorithm. Given a MaxSAT instance
φ, a set of assumptions A, a satisfiable assignment ν, and the conflict budget
ConfBudget, the goal of this algorithm is to find a better quality solution for φ
through an MCS enumeration procedure.
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Algorithm 3: Assignment Improvement Algorithm using MCS
enumeration
Input: φ = φh ∪ φs, A, ν, confBudget
Output: satisfying assignment to φ

1 νnew ← ν
2 φw ← φh ∪ {(lj) : lj ∈ A}
3 while (confBudget > 0) do
4 (st, ν) ← MCS(φw, φs, confBudget)
5 if ((st = SAT) ∧ (Cost(φs, ν) < Cost(φs, νnew))) then
6 νnew ← ν

7 if (st = UNSAT) then
8 return (νnew) // All MCSs found

9 φw ← φw∪ BlockingClause(φw, φs, ν)
10 confBudget ← confBudget − mcsSolverConflicts

11 return (νnew) // Returns the best assignment found

Algorithm 4: Assignment Improvement Algorithm using Linear Sat-Unsat
Input: φ = φh ∪ φs, A, ν, confBudget
Output: satisfying assignment to φ

1 φw ← φh ∪ {(lj) : lj ∈ A}
2 (st, νnew) ← LinearSat-Unsat(φw, φs, confBudget)
3 if ((st = SAT) ∧ (Cost(φs, ν) < Cost(φs, νnew))) then
4 return νnew // Linear Sat-Unsat found a better solution

5 else
6 return ν

The algorithm starts by building a working formula φw from the set of hard
clauses φh and the set of assumptions A (line 2). Next, the algorithm iterates
over all MCSes of φ, constrained to the set of assumptions A and returns the
best assignment found (lines 3–10). Each time a new MCS is found, a new clause
is added to φw to prevent the enumeration of the same MCS later on. This new
clause (also known as blocking clause) forces at least one of the current variable
assignments to have the opposite value (line 9). Finally, observe that, at each
iteration, the conflict budget decreases depending on the number of conflicts
used in the MCS algorithm.

Notice that the set of literals A restricts the MCS enumeration procedure. As
a result, Algorithm 3 performs a localized MCS enumeration. Moreover, there is
no guarantee that the MCSes found by this procedure are MCSes of the original
MaxSAT formula φ, since the literals in A must all be satisfied in each MCS
call. The main idea is to quickly perform a localized improvement in order to
find a better solution than ν.

Many different improvement procedures can be devised, including the usage
of complete methods. Algorithm 4 is an alternative to the improvement algo-
rithm where the MCS enumeration is replaced with a call to a Linear Sat-Unsat
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algorithm (LSU). Observe that the call to the LSU algorithm is limited to a num-
ber of conflicts (line 2). Additionally, all literals in A are forced to be satisfied.
Hence, the LSU call is also restricted to a localized region of the search space. If
the LSU algorithm finds a feasible assignment, then st equals SAT. In that case,
we check whether the assignment found by the LSU algorithm improves upon
the previous solution ν and the best solution is returned. Finally, we note that
any complete MaxSAT algorithm that is able to produce an approximation to
the optimal solution (see Sect. 3.1) could be used instead of LSU.

4.3 Solvers

Two new solvers were developed: sls-mcs and sls-lsu. In sls-mcs, the
SATLike solver (Algorithm 1)3 is extended with the assignment correction algo-
rithm (Algorithm 2) and the assignment improvement algorithm based on MCS
enumeration (Algorithm 3). The difference from sls-mcs to sls-lsu is on the
assignment improvement algorithm. In sls-lsu, the linear sat-unsat assignment
improvement algorithm (Algorithm 4) is used.

Both sls-mcs and sls-lsu use the Glucose SAT solver (version 4.1) on the
assignment correction procedure. Moreover, the CLD [39] algorithm is used as
the MCS algorithm in sls-mcs. However, for weighted instances, the stratified
CLD algorithm [49] is used. In sls-lsu, the linear sat-unsat algorithm is the
one available at the open-wbo open source MaxSAT solver. In both sls-mcs
and sls-lsu, the assignment correction/improvement algorithm is called just
before line 5 in Algorithm 1 if SATlike has reached half of the maximum number
of iterations without improvement. In such a case, the correction algorithm is
called if the current assignment ν does not satisfy all hard clauses, otherwise the
improvement algorithm is directly called with approximately half of the literals in
the current assignment ν as assumptions. These assumption literals are randomly
chosen from ν using the same procedure as in line 13 in Algorithm 2. Note that
the iteration counter in Algorithm 1 is set to zero if νbest is updated after the
call to the correction/improvement algorithm.

5 Experimental Results

This section evaluates the effectiveness of the ideas proposed in the paper. The
SATLike solver serves as our baseline solver. Nevertheless, we also compare
sls-mcs and sls-lsu against the best performing solvers at the incomplete
track of the last MaxSAT evaluation. No complete solver is included in this
comparison because our preliminary results show that running LSU or enumer-
ating MCSes can be hard for several of the instances used, which led to a poor
performance. The solvers used in our experimental evaluation are as follows:

– SATLike: Stochastic local search solver described in Algorithm 1 [33].
3 The source code of SATLike is publicly available at the 2018 MaxSAT evaluation

https://maxsat-evaluations.github.io/2018/descriptions.html.

https://maxsat-evaluations.github.io/2018/descriptions.html
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– SATLike-c: Version of SATLike submitted to the 2018 MaxSAT Evaluation.
Initially, the SATLike algorithm is applied. If during the first 50 s, SATLike
does not find a feasible solution, then the Linear Sat-Unsat complete algo-
rithm from the open-wbo solver is used [32].

– LinSBPS: Linear sat-unsat algorithm with solution phase saving. In weighted
instances, the algorithm starts by building a MaxSAT formula where all soft
clause weights are divided by a large constant β. After finding an optimal
solution for this formula, a new formula is build where the weights are divided
by a new constant β′ such that β′ < β. The process is repeated until the
original formula is solved (β = 1) [14].

– maxroster: This solver starts by applying the stochastic local search solver
Ramp [17] for 6 s. Next, a complete MaxSAT solver is applied. MSU3 is used
for partial MaxSAT, while OLL is used for weighted instances [47].

– Open-WBO-Inc: Another two-stage solver that starts by applying an incom-
plete algorithm, followed by the complete linear sat-unsat procedure of the
open-wbo solver. For unweighted instances, the incomplete solver can be
based on MCSes (Open-WBO-Inc-MCS) or based on bit vector optimization
(Open-WBO-Inc-OBV). For weighted instances, the incomplete solver can be
based on modifications on the weights of soft clauses and clustering (Open-
-WBO-Inc-Cluster) or partitioning of soft clauses (Open-WBO-Inc-BMO) [26].

All experimental results were obtained on a server with processor Intel(R)
Xeon(R) CPU E5-2630 v2 @ 2.60GHz with 64GB of memory. The benchmark set
corresponds to the one used in the 2018 MaxSAT evaluation for the incomplete
track4. The benchmark set contains 153 partial MaxSAT problem instances,
and 172 weighted partial MaxSAT problem instances. As in the 2018 MaxSAT
competition, two time limits were considered: 60 s and 300 s. For each time limit,
each solver was executed 7 times with each instance. Whenever satlike-c,
satlike, sls-mcs, and sls-slu algorithms reach the cutoff stopping criteria
before the time limit runs out, the algorithm is called again, and the best solution
found among all calls is returned. The conflict limits of the correction and the
improvement algorithms in sls-mcs and sls-lsu were set to 105.

5.1 Partial MaxSAT

Table 1 shows the number of instances for which the final solution of sls-mcs
and sls-lsu solvers were produced by the local search part, and how many were
produced by the correction and the improvement part. Tables 2 and 3 summa-
rize the pairwise comparisons between solvers for the 60 and 300-s time limit
scenarios, respectively. Two variants of the MCS-based local search solver are
considered, one as described in Sect. 4.3 (sls-mcs), and another (sls-mcs2) that
does not consider the assumptions A as hard clauses in the the MCS enumeration
procedure, i.e., it implements Algorithm 3 with line 2 replaced by φw ← φh. Each
one of the new solvers (sls-mcs, sls-mcs2 and sls-lsu) is compared against

4 Instances available at https://maxsat-evaluations.github.io/2018/.

https://maxsat-evaluations.github.io/2018/
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Table 1. Number of instances for which the best solution was produced by the local
search (sls), and by the correction/improvement algorithm (mcs/lsu).

Time limit sls-mcs sls-lsu

sls mcs sls lsu

60 s 62 53 65 49

300 s 48 86 50 84

Table 2. Partial MaxSAT. Versus table (row wins, ties, column wins). Time limit 60 s.

sls-mcs sls-mcs2 sls-lsu

satlike (19,71,63) (24,88,41) (23,78,52)

satlike-c (40,70,43) (52,75,26) (50,75,28)

LinSBPS (52,23,78) (57,23,73) (54,24,75)

maxroster (39,36,78) (44,36,73) (40,37,76)

Open-WBO-Inc-mcs (43,20,90) (45,22,86) (47,19,87)

Open-WBO-Inc-obv (50,19,84) (51,20,82) (51,21,81)

sls-mcs – (42,90,21) (29,113,11)

sls-mcs2 (21,90,42) – (23,97,33)

sls-lsu (11,113,29) (33,97,23) –

every other solver considering the median value obtained for each instance. Each
table cell contains a triple, (b, e, w), that represents the number of instances for
which the solver in that row found a better (b), equal (e), or worse (w) quality
solution than the solver in that column. Note that when both solvers are unable
to find a feasible assignment, that fact is counted as a tie (e).

Table 1 shows that the correction and the improvement algorithms contribute
with almost the same amount of final solutions as the local search part in the
60-s scenario, and almost twice as much in the 300-s scenario. Compared to one
another, the mcs and the slu-based improvement algorithms contribute with
nearly the same amount of final solutions to sls-mcs and sls-lsu solvers,
respectively. Tables 2 and 3 show that these solvers found equally good solu-
tions for about two thirds of the instances, while for most of the remaining ones,
sls-mcs found better solutions than sls-lsu. In comparison to the other solvers,
the number of times sls-mcs outperformed the other solvers was always higher
than the number of times sls-lsu did. However, compared to most solvers in
the 60-s scenario, the difference is very small - it is of only 1 to 3 instances. This
means that, for most of the instances for which sls-mcs finds a better solution
than sls-lsu, either sls-lsu provides a solution that is also better than the
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Table 3. Partial MaxSAT. Versus table (row wins, ties, column wins). Time limit 300 s.

sls-mcs sls-mcs2 sls-lsu

satlike (23,69,61) (29,64,60) (30,69,54)

satlike-c (48,68,37) (50,66,37) (62,69,22)

LinSBPS (53,23,77) (46,34,73) (56,25,72)

maxroster (58,29,66) (60,34,59) (66,30,57)

Open-WBO-Inc-mcs (31,17,105) (27,21,105) (42,18,93)

Open-WBO-Inc-obv (35,17,101) (33,21,99) (44,20,89)

sls-mcs – (43,76,34) (40,106,7)

sls-mcs2 (34,76,43) – (51,79,23)

sls-lsu (7,106,40) (23,79,51) –

solution found by other solvers, or the solution found by sls-mcs is still not
good enough.

The sls-mcs solver clearly improves upon satlike, as it obtained better
quality solutions in about 60 instances in both 60 and 300-s scenarios and was
worse than satlike in less than 24 instances. Of those 60 instances, satlike was
unable to find a feasible solution in about 20 and 30 of them, for the 60 and the
300-s scenario, respectively. This means that not only the correction algorithm
was able to help the local search algorithm reach the feasible region, but also
the improvement algorithm helped finding better feasible solutions. Compared
to satlike-c, sls-mcs is competitive in the 60-s scenario, and is slightly worse
in the 300-s scenario. This is not surprising as in the cases where satlike cannot
find a feasible solution in the first 48 s, the additional 4 min are fully used by the
complete solver. Comparing the two MCS-based local search solvers, sls-mcs
had a better performance than sls-mcs2.

Comparing to any other solver in the 60-s scenario, sls-mcs and sls-lsu
outperformed all of them. Apart from maxroster, that becomes more competi-
tive, and satlike-c, this remains true for the 300-s scenario.

Overall, the results show that both the correction and the improvement algo-
rithms are useful to the local search algorithm. The former plays an important
role for highly constrained problems, for which a feasible solution is difficult
to find through local search, and the latter can improve even further upon the
solution found.

5.2 Weighted Partial MaxSAT

As the MCS-based local search solver achieved better results for the partial
MaxSAT problem than the one based on LSU, only the former was tested for the
weighted partial MaxSAT problem. In this scenario, a stratified MCS algorithm is
used to enumerate MCSes, where the step of partitioning the set of soft clauses
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Table 4. Number of instances of WPMS for which the best solution was produced by
the local search (sls), and by the correction/improvement algorithm (mcs/mcs2).

Time limit sls-mcs sls-mcs2

sls mcs sls mcs2

60 s 72 70 54 88

300 s 59 93 44 110

Table 5. Weighted partial MaxSAT. Versus table (row wins, ties, column wins). Time
limit 60 s.

sls-mcs sls-mcs2

satlike (31,91,50) (27,66,79)

satlike-c (52,75,45) (40,52,80)

LinSBPS (108,9,55) (104,13,55)

maxroster (91,23,58) (77,23,72)

Open-WBO-Inc-BMO (99,10,63) (89,17,66)

Open-WBO-Inc-cluster (70,10,92) (41,15,116)

sls-mcs – (27,79,66)

sls-mcs2 (66,79,27) –

is performed only once at the beginning. Tables 4, 5 and 6, are analogous to
Tables 1, 2 and 3, respectively.

As in the partial MaxSAT problem, the correction and improvement algo-
rithms contribute directly to solutions reported by the solver(s). They are respon-
sible for at least half, and up to two thirds, of the solutions reported by the
solvers (see Table 4). Solvers sls-mcs and sls-mcs2 had similar performance in
about half of the instances in the 60-s scenario, and in about one third of the
instances in the 300-s scenario (see Tables 5 and 6). Moreover, sls-mcs2 found
better solutions than sls-mcs in about two thirds of the remaining instances
in both scenario. The correction/improvement algorithms in sls-mcs work in
a more restricted search space than in sls-mcs2 because they start with an
already defined partial assignment (through the assumptions). This is advanta-
geous when SATlike’s current assignment is reasonably good, but when SATlike
does not perform so well (in the weighted scenario), it seems more advantageous
not to consider its current assignment (as in sls-mcs2).

Compared to satlike, and despite sls-mcs performing better in the 60-s
scenario, contrary to what was expected its performance decayed in the 300-s
scenario. Conversely, sls-mcs2 performed much better than satlike, and even
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Table 6. Weighted partial MaxSAT. Versus table (row wins, ties, column wins). Time
limit 300 s.

sls-mcs sls-mcs2

satlike (70,40,62) (51,32,89)

satlike-c (90,32,50) (62,24,86)

LinSBPS (111,12,49) (98,19,55)

maxroster (97,19,56) (81,28,63)

Open-WBO-Inc-BMO (102,8,62) (85,16,71)

Open-WBO-Inc-cluster (68,9,95) (37,16,119)

sls-mcs – (36,46,90)

sls-mcs2 (90,46,36) –

better than satlike-c. Compared to the other solvers in the two time-limit
scenarios, sls-mcs showed a weaker performance, except when compared to
Open-WBO-Inc-cluster. On the other hand, sls-mcs2 had, in general, a better
performance but still only outperforms Open-WBO-Inc-cluster.

Overall, sls-mcs has a poor performance, particularly against satlike. On
the other hand, sls-mcs2 showed a performance superior to sls-mcs, and was
more competitive to the remaining solvers. This contrast may be indicative that
the local search part is being too biased towards some regions of the search space,
and that may be restricting too much the search space of the improvement algo-
rithm after the assignment correction step. The inferior performance of satlike
and satlike-c in the 2018 MaxSAT evaluation for weighted MaxSAT problem
instances reinforces the conjecture. Moreover, sls-mcs does not make full use of
stratification, as it does not take into account that, by forcing the assumption to
be satisfied, some of the soft clauses are also satisfied. Thus, considering only the
remaining soft clauses in the stratification process should lead to better results.

6 Conclusions and Future Work

In this paper, we propose the integration of SAT-based algorithms into a state
of the art SLS solver for MaxSAT, where the solving process changes iteratively
between the SLS and SAT-based procedures. A novel algorithm based on the
identification of unsatisfiable cores is used for assignment correction of the SLS
procedure. As a result, the SLS solver is guided into the feasible area of the
search space, thus improving the search process in the SLS solver. Moreover,
assignment improvement procedures are also devised and integrated into the
SLS solver. Experimental results show the effectiveness of our approach, as the
new incomplete MaxSAT solver is able to quickly find better approximations
for a larger number of problem instances than other state of the art incomplete
MaxSAT solvers.

For future work, we plan to extend the usage of unsatisfiable cores in SLS
solvers, since other procedures can be devised where the unsatisfiable cores would
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guide the SLS algorithm. Furthermore, a more dynamic interaction between the
SLS procedure and the SAT-based procedure should be tried. Finally, current
results show that SLS algorithms for weighted MaxSAT can be greatly improved.
Currently, SLS solvers still spend many iterations trying to satisfy the hard
clauses. However, a tighter integration of SAT-based procedures would enable
the SLS algorithm to focus on the optimization part of the problem.
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Abstract. We present a method to gradually compute a smaller and
smaller unsatisfiable core of a propositional formula by minimizing proofs
of unsatisfiability. The goal is to compute a minimal unsatisfiable core
that is relatively small compared to other minimal unsatisfiable cores of
the same formula. We try to achieve this goal by postponing deletion
of arbitrary clauses from the formula as long as possible—in contrast to
existing minimal unsatisfiable core algorithms. We applied this method
to reduce the smallest known unit-distance graph with chromatic number
5 from 553 vertices and 2 720 edges to 529 vertices and 2 670 edges.

1 Introduction

Today’s satisfiability (SAT) solvers can not only determine whether a proposi-
tional formula can be satisfied, but they can also produce a certificate in case
no satisfying assignments exists. These certificates, known as proofs of unsatisfi-
ability, can be used for multiple purposes ranging from checking the correctness
of the unsatisfiability claim [8,9,14,16,26] to computing interpolants [11]. In this
paper, we focus on another application of proofs of unsatisfiability: computing an
unsatisfiable core of the formula [1,3,15,27]. We observed that the size of proofs
tends to correlate to the size the corresponding unsatisfiable cores: the smaller
the proof, the smaller the unsatisfiable core. We present a method to exploit this
relation by computing a smaller and smaller proof of unsatisfiability to compute a
small unsatisfiable core. This method was developed to improve the upper bound
of the smallest unit-distance graph with chromatic number 5, which is currently a
Polymath project. Details about the problem and this project are described below.
The presented method was developed as existing techniques performed poorly on
this application. Yet it could help with other applications that use unsatisfiable
cores too—which we plan to study in the near future.

The chromatic number of the plane, a problem first proposed by Nelson in
1950 [25], asks how many colors are needed to color all points of the plane
such that no two points at distance 1 from each other have the same color. Early
results showed that at least four and at most seven colors are required. By the de
Bruijn–Erdős theorem, the chromatic number of the plane is the largest possible
chromatic number of a finite unit-distance graph [4]. The Moser Spindle, a unit-
distance graph with 7 vertices and 11 edges, shows the lower bound [24], while
the upper bound is shown by a 7-coloring of the entire plane by Isbell [25].
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In a breakthrough for this problem in April 2018, Aubrey de Grey improved
the lower bound by providing a unit-distance graph with 1 581 vertices with
chromatic number 5 [10]. This discovery by de Grey started a Polymath project
to find smaller graphs. The current record is a graph with 553 vertices and 2 720
edges [13]. We present a new technique to construct a large unit-distance graph
with chromatic number 5, which we reduce with the proposed method to a graph
with “only” 529 vertices and 2 670 edges. This graph is much more symmetric
compared to earlier small unit-distance graphs with chromatic number 5. The
total costs to compute this graph were roughly 100 000 CPU hours.

2 Preliminaries

Propositional Formulas. We will minimize graphs on the propositional level.
We consider formulas in conjunctive normal form (CNF), which are defined as
follows. A literal is either a variable x (a positive literal) or the negation x of a
variable x (a negative literal). The complement l of a literal l is defined as l = x
if l = x and l = x if l = x. For a literal l, var(l) denotes the variable of l. A
clause is a disjunction of literals and a formula is a conjunction of clauses.

An assignment is a function from a set of variables to the truth values 1 (true)
and 0 (false). A literal l is satisfied by an assignment α if l is positive and
α(var(l)) = 1 or if it is negative and α(var(l)) = 0. A literal is falsified by an
assignment if its complement is satisfied by the assignment. A clause is satisfied
by an assignment α if it contains a literal that is satisfied by α. A formula is satis-
fied by an assignment α if all its clauses are satisfied by α. A formula is satisfiable
if there exists an assignment that satisfies it and unsatisfiable otherwise.

For a formula F and assignment α, we denote by F |α a reduced copy of F
without clauses satisfied by α and literals falsified by α. A unit clause is a clause
with only one literal. The result of applying the unit clause rule to a formula F
is the formula F |l where (l) is a unit clause in F . The iterated application of
this rule to a formula, until no unit clauses are left, is called unit propagation. If
unit propagation yields the empty clause ⊥, we say that it derived a conflict.

Clausal Proofs. A clause C is redundant with respect to a formula F if F and
F ∧C are satisfiability equivalent. For instance, the clause C = (x∨ y) is redun-
dant with respect to the formula F = (x∨y) since F and F ∧C are satisfiability
equivalent (although they are not logically equivalent). This redundancy notion
allows us to add redundant clauses to a formula while preserving satisfiability.

Given a formula F = {C1, . . . , Cm}, a clausal derivation of a clause Cn from
F is a sequence Cm+1, . . . , Cn of clauses. Such a sequence gives rise to formulas
Fm, Fm+1, . . . , Fn, where Fi = {C1, . . . , Ci}. We call Fi the accumulated formula
corresponding to the i-th proof step. A clausal derivation is correct if every clause
Ci (i > m) is redundant with respect to the formula Fi−1 and if this redundancy
can be checked in polynomial time with respect to the size of the proof. A clausal
derivation is a proof of a formula F if it derives the unsatisfiable empty clause.
Clearly, since every clause-addition step preserves satisfiability, and since the
empty clause is always false, a proof of F certifies the unsatisfiability of F .



Trimming Graphs Using Clausal Proof Optimization 253

Checking the correctness of a clause Ci in a derivation consists of computing
a justification why Ci is redundant with respect by formula Fi−1. The most
commonly used method for this purpose is reverse unit propagation (RUP): Let
α be the assignment that falsifies all literals in Ci. Clause Ci has the RUP
property if and only if unit propagation on Fi−1 |α results in a conflict. In this
case the justification of Ci consists of all clauses that were required to derive the
conflict. Clausal proofs that can be validated using this method are called RUP
proofs. Most SAT-solving techniques can be compactly expressed as RUP.

Example 1. Consider the formula below consisting of 3 variables and 7 clauses:

F := (y ∨ z) ∧ (x ∨ z) ∧ (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ y) ∧ (y ∨ z) ∧ (x ∨ z)

A clausal proof of F is y, z,⊥. A justification of this proof is shown in Fig. 1.
This justification shows that y and z do not depend on each other. As a con-
sequence, swapping them results in another correct proof. Notice that clause
(x ∨ z) is not used in this justification and it is thus not part of the core of F .

y∨z x∨z x∨y x∨y x∨y y∨z x∨z

z

y

⊥

Fig. 1. A justification of the proof of the example formula. Each clause in the proof
depends on its incoming arcs. The clauses without incoming arcs represent the formula.

In practice, clausal proofs also contain deletion information. The presence
of deletion information significantly reduces the cost to compute a justification.
Clausal proofs, which can be validated using the RUP method and include dele-
tion information, are known as DRUP proofs. We mostly ignore the deletion
information aspect of clausal proofs to simplify the presentation. All techniques
discussed in this paper work with deletion information as well.

Chromatic Number of the Plane. The Chromatic Number of the Plane
(CNP) [25] asks how many colors are required in a coloring of the plane to
ensure that there exists no monochromatic pair of points with distance 1. A unit-
distance graph is a graph formed from a set of points in the plane by connecting
two points by an edge whenever the distance between the two points is exactly
one. A lower bound for CNP of k colors can be obtained by showing that a
unit-distance graph has chromatic number k.
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Fig. 2. From left to right: illustrations of unit-distance graphs A, B, A ⊕ B, and the
Moser Spindle. The graphs shown have chromatic number 2, 2, 3, and 4, respectively.
The illustrations show valid colorings with the fewest number of colors. (Color figure
online)

We will use three operations to construct larger and larger graphs: the
Minkowski sum [12], rotation, and merging. Given two sets of points A and B,
the Minkowski sum of A and B, denoted by A⊕B, equals {a+b | a ∈ A, b ∈ B}.
Consider the sets of points A = {(0, 0), (1, 0)} and B = {(0, 0), (1/2,

√
3/2)},

then A ⊕ B = {(0, 0), (1, 0), (1/2,
√

3/2), (3/2,
√

3/2)}.
Given a positive integer i, we denote by θi the rotation around point (0, 0)

with angle arccos( 2i−1
2i ) and by θki the application of θi k times. Let p be a point

with distance
√

i from (0, 0), then the points p and θi(p) are exactly distance
1 apart and thus would be connected with an edge in a unit-distance graph.
Consider again the set of points A⊕B above. The points A⊕B∪θ3(A⊕B) form
the Moser Spindle [24] with chromatic number 4. Figure 2 shows visualizations
of these sets with connected vertices colored differently.

3 Overview of the Approach

The smallest known unit-distance graph with chromatic number 5 has 553 ver-
tices and 2 720 edges [13]. This graph was found using the following method.
Start with a large unit-distance graph G with chromatic number 5. Now reduce
the size of that graph by solving the formula that encodes whether the graph
can be colored with 4 colors. That formula is unsatisfiable. From the proof of
unsatisfiability, an unsatisfiable core can be extracted that represents a subgraph
with chromatic number 5. This step is repeated again and again as long as the
graph is reduced. In the last step, vertices are randomly eliminated to make the
graph vertex-critical: removing any additional vertex introduces a 4-coloring.

In this paper we present two improvements. The most important one is a
new method, presented in Sect. 4, to produce short proofs of unsatisfiability. We
observed that for the formulas studied in this paper that the shorter the proof,
the smaller the unsatisfiable core and thus the smaller the subgraph. The second
improvement is the construction of a new large unit-distance graph G that we use
as a starting point to find a smaller unit-distance graph with chromatic number
5. The construction of this graph is explained in Sect. 5. These two methods
allowed us to find a unit-distance graph with 529 vertices and 2 670 edges. This
graph is much more symmetric compared to the graph with 553 vertices.
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4 Clausal Proof Optimization

Most SAT solvers can emit a clausal proof of unsatisfiability. There exist several
checkers for such proofs, including formally-verified ones [7,19]. We extended
the checker DRAT-trim [15] that allows optimizing the clausal proof as well as
extracting an unsatisfiable core. One can obtain multiple unsatisfiable cores from
a single clausal proof—in contrast to a resolution proof [28]. The existing method
works via backward checking [9]: Given a proof of unsatisfiability, the last clause
(the empty clause) of the proof is marked. Now the proof is validated in reverse
order. For each marked clause it is determined which clauses (occurring earlier in
the proof or in the formula) are required for the validation. Those clauses will be
marked (if they were not marked already). The order in which unit propagation
is applied influences which clauses become marked. Unmarked clauses are not
validated. After the proof is verified, the marked clauses in the formula form an
unsatisfiable core and the marked clauses in the proof form an optimized proof.
We present two new extensions that further reduce the size of the formula.

4.1 Justification Order Shuffling

A clausal proof typically has many different justifications and a justification can
typically be converted into many different clausal proofs, i.e., clauses appear in a
different order in the sequence. Here we exploit this property by 1) computing a
justification for a given clausal proof, 2) removing the clauses that are redundant
based on that justification, and 3) shuffle the remaining clauses in the proof based
on that justification. These steps are repeated multiple times.

Figure 3 shows the pseudo code of that algorithm. The procedure RemoveRe-
dundancy removes from a given clausal proof P and justification J all the clauses
in P that do not occur in any of the justifications of J . Given a justification J ,
the procedure ShuffleProof produces a random permutation of the clauses in J
such that each clause C appears 1) later in the proof than all the clauses in
the justification of C and 2) before all clauses that list C in their justification.
Additionally, ShuffleProof randomly shuffles the literals of each clause in J .

Clause deletion is not mentioned in the algorithm, but can also be helpful
to optimize proofs. A clause C can be deleted in a proof as soon as none of
the clauses occurring later in the proof uses C in their justification. On the
other hand, one could delete C at a later point in the proof (or not at all) to

OptimizeProof (clausal proof P , formula F )
1 do
2 J := ComputeJustification (P , F )
3 J := RemoveRedundancy (J)
4 P := ShuffleProof (J)
5 while (progress)
6 return P

Fig. 3. Optimizing a proof by iterative computing a new justification.
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allow clauses later in the proof to incorporate C in their justification in the next
iteration. We randomly postpone deleting clauses in proofs in a certain window.
The window is slightly increased in each next iteration.

4.2 Iterative Trimming the Formula

Given a unsatisfiable formula that encodes the existence of a k-coloring of a
graph, an unsatisfiable core of that formula represents a subgraph that cannot
be colored with k colors. To find a small subgraph we would like a minimal
unsatisfiable core and ideally the smallest minimal unsatisfiable core. Although
there has been some research in to the latter [17,20,23], it is already hard to
compute a minimal unsatisfiable core. Existing algorithms for computing a mini-
mal unsatisfiable core [21,22] focus more on easy problems. For harder problems
it is required to trim the formulas using a preprocessing step [3].

In preliminary experiments we observed that existing algorithms got stuck.
It turned out that if a “wrong” vertex is removed from the graph, then proving
that the remaining graph still has chromatic number 5 is very expensive. A proof
that the initial graph has chromatic number 5 consists of roughly 10,000 clauses.
After removing a clause that represents a “wrong” vertex, the proof consists of
millions of clauses. We concluded that existing tools are not effective for this
application, because they remove clauses arbitrary. This will eventually result in
removing a clause representing a “wrong” vertex. Although the checking costs
are a serious problem, there is a more problematic issue: as soon as it requires
millions of clauses to prove that the graph has chromatic number five, then
many vertices are involved in the proof and the minimal unsatisfiable core will
be relatively large. As a consequence, this also holds for the graph represented
by this core. We address this issue by taking away the elimination of arbitrary
clauses. Instead, we only remove clauses via trimming and proof optimization.

Figure 4 shows the pseudo codes of two algorithms to trim a formula: one
algorithm, called TrimFormulaPlain, that simply adds proof optimization to the
trimming loop and another one, called TrimFormulaInteract, that additionally
interacts with the original formula to further optimize the proof. We focus on
the latter algorithm, which is one of the main contributions of this paper.

TrimFormulaPlain (formula F )
1 Fcore := F
2 do
3 P := ComputeProof (Fcore)
4 P := OptimizeProof (P , Fcore)
5 Fcore := ComputeCore (P , Fcore)
6 while (progress)
7 return Fcore

TrimFormulaInteract (formula F )
1 Fcore := F
2 do
3 P := ComputeProof (Fcore)
4 P := OptimizeProof (P , Fcore)
5 P := OptimizeProof (P , F )
6 Fcore := ComputeCore (P , F )
7 while (progress)
8 return Fcore

Fig. 4. Pseudo code of two algorithms to trim the size of a formula using proof opti-
mization: TrimFormulaPlain and TrimFormulaInteract. The latter algorithm interacts
with the original formula to further optimize the proof.
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Algorithm TrimFormulaInteract takes advantage of the following property of
(D)RUP proofs: If (D)RUP proof P is a correct proof of formula F , then P is a
correct proof of any formula F ′ such that F ′ ⊇ F . Observe that additional clauses
cannot break the RUP check: if unit propagation on F results in a conflict, then
unit propagation on F ′ results in a conflict.

In each step of the main loop of TrimFormulaInteract, we first compute a proof
of unsatisfiability of the trimmed formula Fcore. The size of this proof is crucial
for the quality of the trimming. One could therefore solve Fcore multiple times by
shuffling the clauses and select the smallest proof of these runs. Afterwards, this
proof is optimized using Fcore via the algorithm shown in Fig. 3. Next, we use the
property discussed above and further optimize the proof using F and the same
optimization algorithm. The algorithm has now more options to minimize the
proof as F ⊇ Fcore. Moreover, the algorithm allows for a novel way to compute
a smaller core: In an earlier step a clause may have been removed that allows
for a small proof of unsatisfiability and/or small unsatisfiable core. Since each
step considers again all clauses of F , that clause may be pulled back into Fcore.

The size of Fcore does not necessarily decrease with each iteration and may
actually increase if a low quality proof is computed in line 3. We repeat the
algorithm as long as there is progress. In this case, we measured progress by the
reduction of the size of Fcore.

The result of these trimming algorithms is rarely a minimal unsatisfiable
core of the formula. We applied the classical destructive method [5] to reduce
Fcore to a minimal unsatisfiable core. We observed (some details are presented
in Sect. 6.2) that the size of the minimal unsatisfiable core can vary significantly
based on the selection of the clauses to remove. As a consequence we ran this
method multiple (thousands of) times on the cluster to obtain a relatively small
minimal unsatisfiable core of Fcore.

5 Observed Patterns of Points in Q[
√
3,

√
11]×Q[

√
3,

√
11]

The smallest known unit-distance graph with chromatic number 5, called G553,
has 553 vertices [13]. Its key component is a set of 420 points embedded in
Q[

√
3,

√
11]×Q[

√
3,

√
11] that have a limited number (19) of the colorings of the

points at distance 2 from the origin (central vertex) when coloring the set with
4 colors. Our strategy to compute a small unit-distance graph with chromatic
number 5 is finding a small set of vertices with the same property. We explored
many large graphs with points in Q[

√
3,

√
11] × Q[

√
3,

√
11] and computed the

size of proofs of unsatisfiability of the formula that determines the existence of
a 4-coloring while blocking the limited number of the colorings of the points
at distance 2. This section describes how we obtained the large graph with the
smallest proof of unsatisfiability that we encountered.

We denote by HR the graph consisting of i) a regular hexagon with maximal
radius R and ii) its center. The points of HR in the plane are (0, 0), (R, 0),
(R/2, R

√
3/2), (−R/2, R

√
3/2), (−R, 0), (−R/2,−R

√
3/2) and (R/2,−R

√
3/2).

Furthermore, we denote by H ′
R a copy of HR rotated by 90 degrees.
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Fig. 5. A 3-coloring of the graph H 1
3

⊕ H 1
3

⊕ H 1
3

(left) and a 4-coloring of the graph

H 1
3

⊕ H 1
3

⊕ H 1
3
⊕ H ′√

3+
√

11
6

(right). (Color figure online)

We observed some interesting patterns when combining the graphs H 1
3

and
H ′√3+

√
11

6
. Figure 5 (left) shows the graph H 1

3
⊕ H 1

3
⊕ H 1

3
, which is a triangular

grid with diameter 1. This graph has 37 vertices and 48 edges and can be colored
with 3 colors. However, the Minkowski sum of this triangular grid and H ′√3+

√
11

6
,

shown in Fig. 5 (right), is not 3-colorable. Notice that there are many edges
between the seven triangular grids. Actually, the graph has 259 vertices and 1 056
edges and most of these edges (720) are between triangular grids. There exist
many 4-colorings of this graph and most of them have no observable pattern.

Patterns start to emerge when applying the Minkowski sum again. Figure 6
shows a 4-coloring of the resulting graph H 1

3
⊕H 1

3
⊕H 1

3
⊕ H ′√3+

√
11

6
⊕ H ′√3+

√
11

6
.

Observe the clustering of vertices with the same color in circles of roughly a
diameter of 1 in size. This pattern can be observed in many of the found 4-
colorings of this graph, although there also exist some 4-colorings without this
pattern. It appears that assigning the same color to nearby vertices is the easiest
way to color this graph (using a SAT solver).

Applying the Minkowski sum another time breaks the prior pattern com-
pletely, as no more 4-colorings exist with clusters of vertices having the same
color. However, new patterns emerge, as can be seen in Fig. 7. For example,
notice the reflection in the central vertical axis of the blue and green vertices.

Based on these observations, we experimented with ways to combine H 1
3

and H ′√3+
√

11
6

. An effective combination turned out to be unit-distance graph
G2167. This graph is constructed as follows. Let C13 denote the union of H 1

3
and
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Fig. 6. A 4-coloring of the graph H 1
3

⊕H 1
3

⊕H 1
3
⊕ H ′√

3+
√

11
6

⊕ H ′√
3+

√
11

6
. (Color figure

online)

H ′√3+
√

11
6

. Now G2167 equals C13 ⊕ C13 ⊕ C13 ⊕ C13 ⊕ C13 ⊕ C13 ⊕ C13 ⊕ C13

without the points that have a distance larger than 2 from the central vertex.
This graph has 2 167 vertices and 16 512 edges and is shown in Fig. 8. Notice
that the average vertex degree is larger than 15. This is quite high for a graph
with chromatic number 4.

Observe the vertical monochromatic lines in Fig. 8: Points with the same
horizontal coordinate have the same color. This pattern appears in many4-
colorings (modulo a rotation of 60 degrees). There are solutions with vertical
lines with two colors, but none of the 4-colorings have more colors on a single
vertical line (again, modulo a rotation of 60 degrees). The only reason why such
solutions can exist is that the construction of G2167 does not generate points
with distance 1 that have the same horizontal coordinate. There appears no
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Fig. 7. A 4-coloring of the graph H 1
3

⊕H 1
3

⊕H 1
3
⊕ H ′√

3+
√

11
6

⊕ H ′√
3+

√
11

6
⊕ H ′√

3+
√

11
6

.

(Color figure online)

obvious way to add such points in a way that the resulting graph has chromatic
number 5. Another pattern that can be observed in Fig. 8 is that points with the
same vertical coordinate that are 2/3 apart from each other also have the same
color. Also any two points that are 1/3 apart have a different color. For example,
forcing that any vertex at distance 1/3 from the origin has the same color as the
central vertex eliminates all 4-colorings. Hence 1/3 is a so-called virtual-edge in
4-colorings of unit-distance graphs.

6 Small Unit-Distance Graph with Chromatic Number 5

In this section we present our SAT-based approach to improve the smallest
known unit-distance graph with chromatic number 5. We first explain how we
encode the problem and afterwards apply the new trimming algorithm presented
in Sect. 4.2.
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Fig. 8. A 4-coloring of graph G2167. (Color figure online)

6.1 Encoding

We can compute the chromatic number of a graph G as follows. Construct two
formulas, one asking whether G can be colored with k−1 colors, and one whether
G can be colored with k colors. Now, G has chromatic number k if and only if
the former is unsatisfiable while the latter is satisfiable.

The construction of these two formulas can be achieved using the following
encoding [13]: Given a graph G = (V,E) and a parameter k, the encoding uses
k|V | boolean variables xv,c with v ∈ V and c ∈ {1, . . . , k}. These variables have
the following meaning: xv,c is true if and only if vertex v has color c. Now we
can construct a propositional formula Fk that is satisfiable if and only if G can
be colored with k colors:

Fk :=
∧

v∈V

(xv,1 ∨ · · · ∨ xv,k) ∧
∧

{v,w}∈E

∧

c∈{1,...,k}
(xv,c ∨ xw,c)
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Fig. 9. The size (number of clauses) of the unsatisfiable core and the optimized proof of
unsatisfiability (y-axis) of the first twenty steps (x-axis) of the OptimizeProof algorithm,
when starting with F+

4 and the smallest proof (left) or the largest proof (right).

The first type of clauses, called vertex clauses, ensures that each vertex has
at least one color, while the second type of clauses, called edge clauses, forces
that two connected vertices are colored differently. Additionally, we could include
clauses to require that each vertex has at most one color. However, these clauses
are redundant and would be eliminated by blocked clause elimination [18], a
SAT preprocessing technique. We experimented using formulas with and without
blocked clauses. Although the results were quite similar, we had the impression
that without blocked clauses is slightly better.

We added symmetry-breaking predicates [6] during all experiments to speed
up solving and proof minimization. The color symmetries were broken by fixing
the vertex at (0, 0) to the first color, the vertex at (1, 0) to the second color, and
the vertex at (1/2,

√
3/2) to the third color. These three points are at distance 1

from each other and occurred in all our graphs. The speedup is roughly a factor
of 24 (= 4 · 3 · 2), when proving the absence of a 4-coloring.

6.2 Reducing the Large Part

The smallest known unit-distance graph with chromatic number 5 has 553 ver-
tices and consists of two parts: a large part with 420 vertices and a small part
with 134 vertices. The large part and small part have one vertex in common: the
origin. Analysis of these parts [13] showed that they have different purposes: the
large part limits the number of valid 4-coloring of 12 vertices at distance 2 from
the origin to 19. The small part prevents these 12 vertices to having any of these
19 4-colorings. Some important details are missing from this analysis and they
will be discussed later. We focused our effort to search for a small unit-distance
graph with chromatic number 5 by looking for a more compact large part.

In the first step, we constructed the formula whether graph G2167 has a 4-
coloring. Apart from the symmetry-breaking predicates, we added 19 clauses
that block the above mentioned 4-colorings that remain in the large part. This
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formula, called F+
4 , is unsatisfiable and has 8 668 variables and 68 237 clauses. In

the next step we produce a proof of unsatisfiability of this formula. We used the
SAT solver glucose 3.0 [2] (without preprocessing techniques) for this purpose.
This solver allows to randomly initialize the decision heuristics (VSIDS), which
is a feature that can easily be added to most SAT solvers. This initialization can
have a significant impact on the size of the proof and on the size of the core. For
example, we solved the formula with 100 different seeds for the initialization. The
smallest proof had 1 809 clause addition steps, while the largest proof had 49 838
clause addition steps. The default glucose 3.0, i.e., without decision heuristics
initialization, produced a proof with 2 475 clause addition steps.

Figure 9 shows the effect of using the smallest and largest proof as input
for the OptimizeProof algorithm, which has been implemented in the DRAT-trim
proof checker (available at https://github.com/marijnheule/drat-trim) [15]. In
both cases the size of the proof reduction is modest. However, a much smaller
unsatisfiable core can be extracted from the optimized smallest proof compared
to the optimized largest proof. The smaller core also corresponds to a smaller
subgraph (963 versus 1 609 vertices).

We also experimented with the two algorithms presented in Sect. 4.2.
Figure 10 shows the size of the subgraph (extracted from the core) for the first
20 iterations with formula F+

4 as input using TrimFormulaPlain (left) or Trim-
FormulaInteract (right). Each experiment was run five times. The figure shows
that TrimFormulaInteract produces significantly smaller subgraphs. The TrimFor-
mulaPlain algorithm, as shown in Fig. 4, actually performs significantly worse
than the performance presented in Fig. 10. This poor performance is caused by
the removal of edge clauses and symmetry-breaking predicates from the core.
We improved the TrimFormulaPlain algorithm by adding back the removed edge
clauses and symmetry-breaking predicates in each iteration.

We studied the resulting graphs and observed that they were close to sym-
metric: Taking the union of the graph with rotated copies (120 degrees rotation
in the origin) added only a few dozen vertices. We decided to check whether
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Fig. 10. The size of subgraphs corresponding to the unsatisfiable cores when using the
algorithms TrimFormulaPlain (left) and TrimFormulaInteract (right).

https://github.com/marijnheule/drat-trim
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this observation could be used to further shrink the large part by taking this
union as initial graph (instead of G2167) and rerun the procedure. This turned
out to be effective and allowed removing some additional vertices. We ran the
entire experiment many times on a cluster Several runs resulted in a graphs with
“only” 393 vertices. These graphs turned out to be the same (modulo rotation
and reflection). We call this graph L393. One can make L393 symmetric, i.e., it
maps onto itself when rotating it by 120 degrees along the central vertex, by
adding a single vertex.

6.3 Finalizing the Graph

The graph L393, produced in the previous subsection, needs to be extended
with a “small part” to establish a unit-distance graph with chromatic number 5.
Initially we tried to use the small part of G553. However, the resulting graph is
4-colorable, because L393 has fewer connections with that small part compared
to the large part of G553. We fixed this as follows: The small part of G553 got
expanded by merging it with copies that are 60 degrees rotated in the origin.
This resulted in a graph with 181 vertices (while the small part of G553 has 134
vertices), which we call S181. The union of L393 and S181 has chromatic number
5. We applied the same techniques as described in the previous subsection to
further reduce the size of this graph. This resulted in a graph being the union
of L393 and a new small part with 137 vertices.

Figure 11 shows the final graph G529 consisting of 529 vertices and 2 670
edges. This graph almost maps onto itself when rotating it with 120 degrees in
the origin. The figure shows a coloring in which only the origin has the fifth color
(white). Such a coloring exists for each vertex as the graph is vertex critical. The
shown coloring is a randomly selected one. Observe the clustering of vertices with
the same color. This pattern looks similar to the one shown in Fig. 6.

Graph G529 is available at https://github.com/marijnheule/CNP-SAT as a
list of points in the plane and a list of unit-distance edges. The repository also
contains a CNF formula encoding whether G529 is 4-colorable and a proof of
unsatisfiability that can be validated in a few seconds.

7 Conclusions

We presented a new algorithm to trim a formula by first optimizing a proof of
unsatisfiability. The algorithm optimizes the proof using both the shrinking for-
mula and the original formula. This allows reintroducing clauses in the shrinking
formula, which could further improve the trimming.

We constructed a unit-distance graph with points inQ[
√

3,
√

11]×Q[
√

3,
√

11].
The 4-colorings of this graph, G2167, have some interesting properties such as 1)
many (and in some 4-colorings all) vertices with the same horizontal coordinate
have the same color; 2) vertices that are 1/3 apart having a different color; and 3)
vertices with the same vertical coordinate that are 2/3 apart have the same color.
All these properties are for a rotation of G2167 by 0, 120, or 240 degrees.

https://github.com/marijnheule/CNP-SAT


Trimming Graphs Using Clausal Proof Optimization 265

Fig. 11. A 529-vertex unit-distance graph with chromatic number 5. In the shown
coloring, only the origin has the fifth color (white). (Color figure online)

By combining the new algorithm and the new graph, we were able to reduce
the smallest known unit-distance graph with chromatic number 5 to a graph
with 529 vertices and 2670 edges (down from 553 vertices and 2720 edges).
This graph is also much more symmetric. It is generally easier to understand
why a symmetric object has a certain property compared to an asymmetric
object. It may thus provide some insight how to obtain a unit-distance graph
with chromatic number 6 (if they exist). Using the techniques in the paper we
constructed several graphs with up to 100 000 vertices, but all were 5-colorable.

As future work, we plan to study the effectiveness of the new algorithm on
other applications that require minimal unsatisfiable cores.
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Abstract. We introduce a general method for relaxing decision dia-
grams that allows one to bound job sequencing problems by solving a
Lagrangian dual problem on a relaxed diagram. We also provide guide-
lines for identifying problems for which this approach can result in useful
bounds. These same guidelines can be applied to bounding deterministic
dynamic programming problems in general, since decision diagrams rely
on DP formulations. Computational tests show that Lagrangian relax-
ation on a decision diagram can yield very tight bounds for certain classes
of hard job sequencing problems. For example, it proves for the first time
that the best known solutions for Biskup-Feldman instances are within
a small fraction of 1% of the optimal value, and sometimes optimal.

Keywords: Job sequencing · Decision diagrams ·
Lagrangian relaxation

1 Introduction

In recent years, binary and multivalued decision diagrams (DDs) have emerged
as a useful tool for solving discrete optimization problems [5,6,24]. A key fac-
tor in their success has been the development of relaxed DDs, which represent
a superset of the feasible solutions of a problem and provide a bound on its
optimal value. While an exact DD representation of a problem tends to grow
exponentially with the size of the problem instance, a relaxed DD can be much
more compact when properly constructed. The tightness of the relaxation can
be controlled by adjusting the maximum allowed width of the DD.

Relaxed DDs are normally used in conjunction with a branching procedure
[5,12], much as is the linear programming (LP) relaxation in an integer program-
ming solver. As branching proceeds, the relaxed diagram provides a progressively
tighter bound. However, combinatorial problems are often solved with heuristic
methods that do not involve branching. This is true, in particular, of job sequenc-
ing problems. In such cases it is very useful to have an independently derived
lower bound that can provide an indication of the quality of the solution.

Recent research [20] has found that a relaxed DD can yield good bounds for
hard job sequencing problems without branching. In fact, a surprisingly small
relaxed DD, generally less than 10% the width of an exact DD, can yield a bound
c© Springer Nature Switzerland AG 2019
T. Schiex and S. de Givry (Eds.): CP 2019, LNCS 11802, pp. 268–283, 2019.
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equal to the optimal value. On the other hand, since exact DDs grow rapidly with
the instance size, relaxed DDs that are 10% of their width likewise grow rapidly.
As a result, relaxed DDs of reasonable width tend to provide progressively weaker
bounds as the instances scale up.

It is suggested in [20] that Lagrangian relaxation could help strengthen the
bounds obtained from smaller relaxed DDs. In this paper, we propose a general
technique for relaxing a DD while preserving the ability to obtain Lagrangian
bounds from the DD. The relaxed DD is constructed by merging nodes only when
they agree on certain state variables that are crucial to forming the Lagrangian
relaxation.

We find that for certain types of job sequencing problems, Lagrangian relax-
ation in relaxed DDs of reasonable width can provide very tight bounds on the
optimal value. For example, we prove for the first time that the best known solu-
tion values of Biskup-Feldman single-machine scheduling instances are within a
small fraction of one percent of the optimum, and sometimes optimal.

Furthermore, we identify general conditions under which Lagrangian relax-
ation can be implemented in a relaxed DD for purposes of obtaining bounds. The
conditions are expressed in terms of structural characteristics of the dynamic pro-
gramming model that defines the DD. They lead to a new tool for bounding not
only job sequencing problems with suitable structure, but general deterministic
dynamic programming models that satisfy the conditions.

2 Previous Work

Decision diagrams were introduced as an optimization method by [15,18]. The
idea of a relaxed diagram first appears in [1] as a means of enhancing propagation
in constraint programming. Relaxed DDs were first used to obtain optimization
bounds in [4,7]. Connections between DDs and deterministic dynamic program-
ming are discussed in [19].

Bergman, Ciré and van Hoeve first applied Lagrangian relaxation to decision
diagrams in [3], where they use it successfully to strengthen bounds for the trav-
eling salesman problem with time windows. They also use Lagrangian relaxation
and DDs in [2] to improve constraint propagation.

We advance beyond Bergman et al. [3] in two ways. First, we show how
to obtain bounds on tardiness and a variety of other objective functions from a
stand-alone relaxed DD. The DD in [3] represents only an all-different constraint
and can provide bounds only on total travel time (without taking time windows
into account). The DD is embedded in a constraint programming (CP) model
that contains the time window constraints. While constraints could be added to
the CP model to obtain tardiness and other kinds of bounds from the CP solver,
the DD itself cannot provide them. One or more additional state variables are
necessary, which results in a more complicated DD than the one used in [3]. Our
contribution is to define a new node merger scheme that relaxes such a DD while
allowing Lagrangian relaxation to be applied.

Our second contribution is to analyze, in general, when and how Lagrangian
relaxation can be combined with DDs. We introduce the concepts of an exact
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state and an immediate penalty function and use these concepts to formulate
sufficient conditions for implementing Lagrangian relaxation in a relaxed DD.
This leads to a general method for bounding dynamic programming models that
satisfy the conditions. We find that while the method generates impracticably
large relaxed DDs for the job sequencing problems in [3,20], it is quite practical
for several important types of job sequencing problems.

3 Decision Diagrams

For our purposes, a decision diagram can be defined as a directed, acyclic multi-
graph in which the nodes are partitioned into layers. Each arc of the graph is
directed from a node in layer i to a node in layer i + 1 for some i ∈ {1, . . . , n}.
Layers 1 and n + 1 contain a single node, namely the root r and the terminus
t, respectively. Each layer i is associated with a finite-domain variable xi ∈ Di.
The arcs leaving any node in layer i have distinct labels in Di, representing pos-
sible values of xi at that node. A path from r to t defines an assignment to the
tuple x = (x1, . . . , xn) as indicated by the arc labels on the path. The decision
diagram is weighted if there is a length (cost) associated with each arc.

Any discrete optimization problem with finite-domain variables can be repre-
sented by a weighted decision diagram. The diagram is constructed so that its r–t
paths correspond to the feasible solutions of the problem, and the length (cost)
of any r–t path is the objective function value of the corresponding solution. If
the objective is to minimize, the optimal value is the length of a shortest r–t
path. Many different diagrams can represent the same problem, but for a given
variable ordering, there is a unique reduced diagram that represents it [10,19].

As an example, consider a job sequencing problem with time windows. Each
job j begins processing no earlier than the release time rj and requires processing
time pj . The objective is to minimize total tardiness, where the tardiness of
job j is max{0, sj + pj − dj}, and dj is the job’s due date. Figure 1 shows a
reduced decision diagram for a problem instance with (r1, r2, r3) = (0, 1, 1),
(p1, p2, p3) = (3, 2, 2), and (d1, d2, d3) = (5, 3, 5). Variable xi represents the ith
job in the sequence, and arc costs appear in parentheses.

4 Dynamic Programming Models

Decision diagrams most naturally represent problems with a dynamic program-
ming formulation, because in this case a simple top-down compilation procedure
yields a DD that represents the problem. A general dynamic programming for-
mulation can be written

hi(Si) = min
xi∈Xi(Si)

{
ci(Si, xi) + hi+1

(
φi(Si, xi)

)}
(1)

Here, Si is the state in stage i of the recursion. Typically the state is a tuple
Si = (Si1, . . . , Sik) of state variables. Also Xi(Si) is the set of possible controls
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Fig. 1. Decision diagram for a small job sequencing instance, with arc labels and costs
shown. States and minimum costs-to-go are indicated at nodes.

(values of xi) in state Si, φi is the transition function in stage i, and ci(Si, xi) is
the immediate cost of control xi in state Si. We assume there is single initial state
S1 and a single final state Sn+1, so that hn+1(Sn+1) = 0 and φn(Sn, xn) = Sn+1

for all states Sn and controls xn ∈ Xn(Sn). The quantity hi(Si) is the cost-to-go
for state Si in stage i, and an optimal solution has value h1(S1).

In the job sequencing problem, the state Si is the tuple (Vi, ti), where state
variable Vi is the set of jobs scheduled so far, and state variable ti is the finish
time of the last job scheduled. Thus the initial state is S1 = (∅, 0), and Xi(Si)
is {1, . . . , n} \ Vi. The transition function φi(Si, xi) is given by

φi

(
(Vi, ti), xi

)
=

(
Vi ∪ {xi}, max{rxi

, ti} + pxi

)

The immediate cost is the tardiness that results from scheduling job xi in state
(Vi, ti). Thus if α+ = max{0, α}, we have

ci

(
(Vi, ti), xi

)
=

(
max{rxi

, ti} + pxi
− dxi

)+

(2)

We recursively construct a decision diagram D for the problem by associating
a state with each node of D. The initial state S1 is associated with the root node
t and the final state Sn+1 with the terminal node t. If state Si is associated with
node u in layer i, then for each vi ∈ Xj(Si) we generate an arc with label vi

leaving u. The arc terminates at a node associated with state φi(Si, vi). Nodes
on a given layer are identified when they are associated with the same state.

The process is illustrated for the job sequencing example in Fig. 1. Each
node is labeled by its state (Vi, ti), followed (in parentheses) by the minimum
cost-to-go at the node. The cost-to-go at the terminus t is zero.
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5 Relaxed Decision Diagrams

A weighted decision diagram D′ is a relaxation of diagram D when D′ represents
every solution in D with equal or smaller cost, and perhaps other solutions as
well. To make this more precise, suppose layers 1, . . . , n of both D and D′ corre-
spond to variables x1, . . . , xn with domains X1, . . . , Xn. Then D′ is a relaxation
of D if every assignment to x represented by an r–t path P in D is represented
by an r–t path in D′ with length no greater than that of P . The shortest path
length in D′ is a lower bound on the optimal value of the problem represented
by D. We will refer to a diagram that has not been relaxed as exact.

We can construct a relaxed decision diagram in top-down compilation by
merging some nodes that are associated with different states. The object is to
limit the width of the diagram (the maximum number of nodes in a layer).
When we merge nodes with states S and T , we associate a state S ⊕T with the
resulting node. The operator ⊕ is chosen so as to yield a valid relaxation of the
given recursion.

The job sequencing problem discussed above uses a relaxation operator

(Vi, ti) ⊕ (V ′
i , t′i) = (Vi ∩ V ′

i ,min{ti, t
′
i})

Vi is now the set of jobs scheduled along all paths to the current node, and
ti is the earliest finish time of the last scheduled jobs along these paths. The
operator is illustrated in Fig. 2, which is the result of merging states ({1, 2}, 6)
and ({2, 3}, 5) in layer 3 of Fig. 1. The relaxed states (V, f) are shown at each
node, followed by the minimum cost-to-go in parentheses. The shortest path now
has cost 2, which is a lower bound on the optimal cost of 4 in Fig. 1.

Sufficient conditions under which node merger results in a relaxed decision
diagram are developed in [20]. A state S′

i relaxes a state Si when (a) all feasible
controls in state Si are feasible in state S′

i, and (b) the immediate cost of any

x1
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r

{}0(2)
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t
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1(4)
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Fig. 2. A relaxation of the decision diagram in Fig. 1.
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given feasible control in Si is no less than its immediate cost in S′
i. That is,

Xi(Si) ⊆ Xi(S′
i), and ci(Si, xi) ≥ ci(S′

i, xi) for all xi ∈ Xi(Si).

Theorem 1 ([20]). If the following conditions are satisfied, the merger of nodes
with states Si and Ti within a decision diagram results in a valid relaxation of
the diagram.

– Si ⊕ Ti relaxes both Si and Ti.
– If state S′

i relaxes state Si, then given any control v that is feasible in Si,
φ(S′

i, v) relaxes φ(Si, v).

All relaxed diagrams we consider are associated with a dynamic programming
model that satisfies the conditions of the theorem. The shortest path problem
in the relaxed DD requires a modification of the original dynamic programming
model that accounts for the merger of states. Also, it is sometimes necessary to
use additional state variables to obtain a valid relaxation [5], and so we replace
the state vector Si with a possibly enlarged vector S̄i. The recursive model
becomes

h̄i(S̄i) = min
xi∈Xi(S̄i)

{
ci(S̄i, xi) + h̄i+1

(
ρi+1

(
φi(S̄i, xi)

))}
(3)

where ρi+1(S̄i+1) is a relaxation of state S̄i+1 that reflects the merger of states
in stage i+1 of the recursion. In the example, S̄i = Si, since no additional states
are necessary to formulate the relaxation.

It will be convenient to distinguish exact from relaxed state variables in model
(3). A state variable Sij in (3) is exact if any sequence of controls x1, . . . , xi−1

that leads to a given value of Sij in the original recursion (1) leads to that same
value in the relaxed recursion (3). Otherwise Sij is relaxed. In the example,
neither Vi nor ti is exact if any pair of states can be merged. However, if we
permit the merger of (Vi, ti) and (V ′

i , t′i) only when ti = t′i, then state variable
ti is exact. In general we have the following, which is easy to show.

Lemma 1. A state variable Sij is exact if states Si, S′
i are merged only when

Sij = S′
ij.

6 Lagrangian Duality and Decision Diagrams

Consider an optimization problem

z∗ = min
x∈X

{
f(x)

∣∣ g(x) = 0
}

(4)

where x = (x1, . . . , xn), g(x) = (g1(x), . . . , gm(x)) and 0 = (0, . . . , 0). The
condition that x ∈ X is typically represented by a constraint set. A Lagrangian
relaxation of (4) has the form

θ(λ) = min
x∈X

{
f(x) + λT g(x)

}
(5)
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where λ = (λ1, . . . , λm). The relaxation dualizes the constraints g(x) = 0. It is
easy to show that θ(λ) is a lower bound on z∗ for any λ ∈ R

m. The Lagrangian
dual of (4) seeks the tightest bound θ(λ):

max
λ∈Rm

{
θ(λ)

}
(6)

The motivation for using a Lagrangian dual is to obtain tight bonds while dual-
izing troublesome constraints. If g(x) depends on a very small number of state
variables, then dualizing the constraint g(x) = 0 may allow one to solve the
problem within time and space constraints.

Lagrangian duality can be illustrated in the minimum tardiness job sequenc-
ing problem discussed earlier. The variables x1, . . . , xn should have different val-
ues, or equivalently, that each job j should occur in a given solution exactly once.
Since a relaxed DD does not enforce this condition, we dualize the constraint
g(x) = 0, where g(x) = (g1(x), . . . , gn(x)) and

gj(x) = −1 +
n∑

i=1

(xi = j), with (xi = j) =
{

1 if xi = j
0 otherwise

As observed in [3], the Lagrangian penalty λjgj(x) can be represented in a
relaxed DD by adding λj to the cost of each arc corresponding to control j
and subtracting

∑
j λj from the cost of each arc leaving the root node. Then

the length of each r–t path includes the Lagrangian penalty λT g(x) for the
corresponding solution x, which is zero if x satisfies the all-different constraint.

In general, g(x) can be computed recursively in a relaxed DD when there is
a vector-valued immediate penalty function γi(S̄L

i , xi) for which

g(x) =
n∑

i=1

γi(S̄L
i , xi) (7)

where each S̄L
i is a tuple consisting of exact state variables Si� for � ∈ L. In

the example, the constraint function g(x) requires no state information, and S̄L
i

is empty. The immediate penalty γi((Vi, ti), xi) can be written simply γi(xi),
where

γij(xi) =
{

(xi = j) if i ∈ {2, . . . , n}
(xi = j) − 1 if i = 1 (8)

for j = 1, . . . , n.
Implementing a Lagrangian relaxation (4) in a relaxed DD also requires that

the original objective function value f(x) be computed as part of the path length.
Normally, the path length is only a lower bound on f(x). To compute f(x)
exactly in the relaxed recursion (3), we must have an immediate cost function
that depends only on exact state variables. That is, we must have

f(x) =
n∑

i=1

c̄i(S̄K
i , xi) (9)
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where S̄K
i is a tuple consisting of exact state variables Sik for k ∈ K. In the

example, the immediate cost function (2) depends on the state variable ti, which
must therefore be exact. We therefore have S̄K

i = (ti). Due to Lemma 1, we can
ensure that ti is exact by merging nodes only when ti has the same value in the
corresponding states. Thus Lagrangian relaxation can be implemented in the
minimum tardiness example if we merge nodes in this fashion.

The above observations can be summed up as follows.

Theorem 2. Lagrangian relaxation (5) can be implemented in a relaxed DD if
there are immediate cost functions c̄i(S̄K

i , xi) for which (9) holds and immedi-
ate penalty functions γi(S̄L

i , xi) for which (7) holds, where S̄K
i and S̄L

i consist
entirely of exact state variables in S̄i. In this case the recursion for computing
shortest paths in the relaxed DD becomes

h̄i(S̄i,λ) = min
xi∈Xi(S̄i)

{
c̄i(S̄K

i , xi) + λT γi(S̄L
i , xi) + h̄i+1

(
ρi+1

(
φi(S̄i, xi)

)
,λ

)}

Corollary 1. Lagrangian relaxation (5) can be implemented in a relaxed DD if
nodes are merged only when their states agree on the values of the state vari-
ables on which the immediate cost functions and the immediate penalty functions
depend. That is, nodes with states S̄i and T̄i are merged only when S̄K

i = T̄ K
i

and S̄L
i = T̄ L

i , where K and L are in as Theorem 2.

7 Problem Classes

We now examine a few classes of job sequencing problems to determine whether
they are suitable for Lagrangian relaxation on a relaxed DD. All of these prob-
lems have an all-different constraint that is dualized as before using the immedi-
ate penalty function (8). Since this function depends on no state variables, the
state variables that must be exact are simply those on which the immediate cost
function depends. That is, S̄L

i is empty, and suitability for relaxation depends on
which variables are in S̄K

i . We note that even when DD-based Lagrangian relax-
ation is not suitable for a given problem class, it may be useful when combined
with branching, or when the relaxed DD is embedded in a larger model.

7.1 Sequencing with Time Windows

Problems in which jobs with state-independent processing times are sequenced,
possibly subject to time windows, are generally conducive to Lagrangian relax-
ation on DDs. The problem of minimizing total tardiness is discussed above,
and computational results are presented in Sect. 8. Minimizing makespan or the
number of late jobs is treated similarly.

A popular variation on the problem minimizes the sum of penalized earliness
and tardiness with respect to a common due date [8,9,11,16,17,22,25]. Earliness
of job j is weighted by αj and lateness by βj . The recursive model for an exact DD
uses the same state variables (Vi, ti) as the minimum tardiness problem. However,
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a valid relaxed DD requires an additional state variable si that represents latest
start time, while ti again represents earliest finish time. The transition and
immediate cost functions are

φ̄i

(
(Vi, si, ti), xi

)
=

(
Vi ∪ {xi}, si + pxi

, ti + pxi

)
c̄i

(
(Vi, si, ti), xi

)
= αxi

(
si + pxi

− dxi

)+ + βxi

(
ti + pxi

− dxi

)+

The merger operation is

(Vi, si, ti) ⊕ (V ′
i , s′

i, t
′
i) =

(
Vi ∩ V ′

i ,max{si, s
′
i},min{ti, t

′
i}

)

The immediate cost depends on both si and ti, which means that both of these
state variables must be exact. This may appear to result in a large relaxed DD,
because nodes can be merged only when they agree on both state variables.
However, since si and ti are initially equal, and these state variables are exact,
they remain equal throughout the relaxed DD construction. The resulting DD
is therefore the same that would result if a single state variable were exact.
Computational results are presented Sect. 8.

7.2 Time-Dependent Costs and/or Processing Times

Costs and processing times can be time-dependent in two senses: they may
depend on the position of each job in the sequence, or on the clock time at
which the job is processed. Both senses occur in the literature, and both can be
treated with Lagrangian relaxation on DDs.

If the processing time pij of job j depends on the position i of the job in the
sequence, then the immediate cost in the relaxation is

c̄i((Vi, ti), xi) =
(
max{ti, rxi

} + pixi
− dxi

)+

which depends only on the state variable ti. Since c̄i is already indexed by the
position i, any other element of cost that depends on i is easily incorporated into
the function. Thus we need only ensure that states are merged only when they
agree on ti, a condition that is already satisfied in the relaxed model described
above for minimum-tardiness sequencing problems.

If the processing time pj(s) of job j depends on the time s at which job j
starts, the immediate cost is

c̄i((Vi, ti), xi) =
(
max{ti, rxi

} + pxi
(max{ti, rxi

}) − dxi

)+

which again depends only on state variable ti. Any other time-dependent element
of cost likewise depends only on ti, and so states can be merged whenever they
agree on ti.

7.3 Sequence-Dependent Processing Times

We refer to a job j’s processing time as sequence dependent when its processing
time pj′j depends on the immediately preceding job j′ in the sequence. When
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there are no time windows and the objective is to minimize travel time, the
problem is a traveling salesman problem. The state variables are Vi and the
immediately preceding job yi. The transition and immediate cost functions are

φ̄i

(
(Vi, yi), xi

)
=

(
Vi ∪ {xi}, xi

)
c̄i

(
(Vi, yi), xi

)
= pyixi

(10)

Since the immediate cost depends only on state yi, nodes can be merged when-
ever they are reached using the same control. This permits a great deal of reduc-
tion in the relaxed DD and suggests that a Lagrangian approach to bounding
can be effective. While pure traveling salesman problems are already well solved,
a DD-based Lagrangian bounding technique may be useful when there are side
constraints.

When there are time windows in the problem, an additional state variable
ti representing the finish time of the previous job is necessary for a stand-alone
relaxed DD. The transition function is

φ̄i

(
(Vi, yi, ti), xi

)
=

(
Vi ∪ {xi}, xi,max{rxi

, ti} + pyixi

)
(11)

The immediate cost functions for minimizing travel time and total tardiness,
respectively, are

c̄i

(
(Vi, yi, ti), xi

)
= (rxi

− ti)+ + pyixi
(12)

c̄i

(
(Vi, yi, ti), xi

)
=

(
max{rxi

, ti} + pyixi
− dxi

)+ (13)

In either case, the immediate cost depends on two state variables yi and ti, and
nodes can be merged only when they agree on these variables. This is likely to
result in an impracticably large relaxed DD. For example, if there are 50 jobs and
a few hundred possible values of ti, a layer of the relaxed DD could easily expand
to tens of thousands of nodes. We confirmed this with preliminary experiments
on the Dumas instances [14]. Lagrangian relaxation on a stand-alone relaxed DD
therefore does not appear to be a promising approach to bounding TSP problems
with time windows. One can, of course, use the simpler DD described by (10)
to bound travel time (although not total tardiness), as is done in [3]. However,
this relaxation ignores time windows altogether and would yield a weaker bound
than (11)–(12).

7.4 State-Dependent Processing Times

We refer to a job’s processing times as state dependent when they depend on one
or more of the state variables in the recursion, such as the set Vi of jobs already
processed. Such a problem is studied in [20], where the processing time is less
if a certain job has already been processed. State variables are again Vi and ti,
but to build a relaxed DD we need an additional state variable Ui representing
the sets of jobs that have been processed along some path to the current node.
The transition function and immediate cost function are

φ̄i

(
(Vi, Ui, ti), xi

)
=

(
Vi ∪ {xi}, Ui ∪ {xi},max{rxi

, ti} + pxi
(Ui)

)
c̄i

(
(Vi, Ui, ti), xi

)
=

(
max{rxi

, ti} + pxi
(Ui) − dxi

)+
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where the processing time is pxi
(Ui). The merger operation is

(Vi, Ui, ti) ⊕ (V ′
i , U ′

i , t
′
i) =

(
Vi ∩ V ′

i , Ui ∪ U ′
i ,min{ti, t

′
i}

)

Since the cost depends on both ti and Ui, these state variables must be exact,
and states can be merged only when they agree on the values of ti and Ui.
This predicts that the relaxed DD will grow rapidly with the number of jobs.
DD-based Lagrangian relaxation is therefore not a promising approach to this
type of problem.

8 Computational Experiments

8.1 Problem Instances

To assess the quality of bounds obtained from Lagrangian relaxation on relaxed
DDs, it is necessary to obtain problem instances with known optimal values,
or values that are likely to be close to the optimum. We carry out tests on
two well-known sets of instances, corresponding to two sequencing problems
identified earlier to be suitable for bounding. One is the set of minimum weighted
tardiness instances of Crauwels, Potts and Wassenhove [13], which we refer to
as the CPW instances. The other is the Biskup-Feldman collection of minimum
weighted earliness-plus-tardiness instances with a common due date [8].

The CPW set consists of 125 instances of each of three sizes: 40 jobs, 50
jobs, and 100 jobs. We compute bounds for first 25 instances in the 40- and 50-
job sets. These instances exhibit a wide range of gradually increasing tardiness
values, thus providing a diverse selection for testing. Optimal solutions are given
in [8] for all of these instances except instance 14 with 40 jobs, and instances
11, 12, 14 and 19 with 50 jobs. Solution values presented in [8] for the unsolved
instances are apparently the best known.

The Biskup-Feldman collection includes 10 instances of each size, where the
sizes are 10, 20, 50, 100 and 200 jobs. We study the instances with 20, 50
and 100 jobs. The instances specify only the processing times pj and the ear-
liness/tardiness weights αj , βj described earlier. The common due date for all
jobs in an instance is not specified. Typical practice is to set the due date equal
to d(h) = 	h ∑

j pj
, where h is a parameter.
We compare our lower bounds against the best known solution values

reported in [25]. These authors compute the earliness penalty with respect to
d(h1) and the tardiness penalty with respect to d(h2) for h1 < h2, so that
the penalty for each job j is αj(d(h1) − tj)+ + βj(tj − d(h2))+, where tj is
the finish time of job j. Heuristics are used in [25] to solve instances with
(h1, h2) = (0.1, 0.2), (0.1, 0.3), (0.2, 0.5), (0.3, 0.4), and (0.3, 0.5). We study
instances with (h1, h2) = (0.1, 0.2) and (0.2, 0.5) to provide a look at contrasting
cases. To our knowledge, none of these instances have been solved to proven
optimality.
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8.2 Solving the Lagrangian Dual

We use subgradient optimization to solve the Lagrangian dual problem (6). Each
iterate λk is obtained from the previous by the update formula

λk+1 = λk + σkg(xk)

where xk is the value of x obtained when computing θ(λk) in (5). The art of
Lagrangian optimization is choosing the step size σk. This choice is avoided
in [3] by using the Kelly-Cheney-Goldstein bundle method [21] of deriving λk

from previous iterates. However, Polyak’s method [23] seems better suited to our
purposes, because it is much easier to implement, and it requires as a parameter
only an upper bound θ∗ on the optimal value of θ(λ). Such a bound is available
in practice, because one seeks to estimate how far a known solution value lies
from the optimal value, and that solution value is an upper bound θ∗. Polyak’s
method defines the step size to be

σk =
θ∗ − θ(λk)
‖g(xk)‖22

8.3 Building the Relaxed Diagram

In previous work [1,4,6], heuristically-selected nodes are merged in each layer
after all states obtainable from the previous layer are generated. Since we wish
to merge all nodes that agree on ti, and no others, we merge these nodes as we
generate the states, rather than first generating all possible states and then merg-
ing nodes. This drastically reduces computation time and results in reasonable
widths that gradually increase as layers are created.

8.4 Computational Results

The computational tests were run on a Dell XPS-13 laptop computer with Intel
Core i7-6560U (4M cache, 3.2 GHz) and 16 GB memory. Results for the CPW
instances appear in Table 1. The table displays optimal (or best known) values
and DD-based bounds, as well as the absolute and relative gap between the two.
It also shows the maximum width of the relaxed DD (always obtained in layer
n), the time required to build the DD, and the time consumed by the subgradient
algorithm. Since a subgradient iteration requires only the solution of a shortest
path problem in the relaxed DD, we allowed the algorithm to run for 50,000
iterations to obtain as much improvement in the bound as seemed reasonably
possible. Due to slow convergence, which is typical for subgradient algorithms,
a bound that is nearly as tight can be obtained by executing only, say, 20% as
many iterations.

The bounds in Table 1 are reasonably tight. The gap is well below one percent
in most cases, and below 0.1% in about a quarter of the cases, although a few of
the bounds are rather weak. The optimal value was obtained for one instance.
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The gap for instance 14 in the 40-job table suggests that the best known value is
probably not optimal, while no such inference can be drawn for the 4 unsolved
50-job instances.

Results for the Biskup-Feldman instances appear in Table 2, where the
bounds are compared with the best known solutions. The relaxed DDs are the
same for the two sets of due dates (h1, h2) = (0.1, 0.2), (0.2, 0.5); only the costs
differ. The bounds are very tight, resulting in gaps that are mostly under 0.1%.
This indicates that the known solutions are, at worst, very close to optimality.
In fact, optimality is proved for 8 instances, which represents the first time that
any of these instances have been solved. The bounds may be equal to the optimal
value for other instances, since the known values displayed may not be optimal.

Table 2. Comparison of bounds with best known values (target) of Biskup-Feldman
instances.

(h1, h2) = (0.1, 0.2) (h1, h2) = (0.2, 0.5)

Instance Target Bound Gap Percent

gap

Subgr

time

Target Bound Gap Percent

gap

Subgr

time

Max

width

Build

time

20 jobs

1 4089 4089 0 0% 1 1162 1162 0 0% 1 323 0.12

2 8251 8244 7 0.08% 28 2770 2766 4 0.14% 27 287 0.08

3 5881 5877 4 0.07% 27 1675 1669 6 0.36% 28 287 0.08

4 8977 8971 6 0.07% 27 3113 3108 5 0.16% 27 287 0.08

5 4028 4024 4 0.10% 32 1192 1187 5 0.42% 32 341 0.10

6 6306 6288 18 0.29% 26 1557 1557 0 0% 1 271 0.09

7 10204 10204 0 0% 1 3573 3569 4 0.11% 29 305 0.09

8 3742 3739 3 0.08% 25 990 979 11 1.11% 25 267 0.08

9 3317 3310 7 0.21% 21 1056 1055 1 0.09% 22 230 0.07

10 4673 4669 4 0.09% 29 1355 1349 6 0.44% 30 320 0.09

50 jobs

1 39250 39250 0 0% 16 12754 12752 2 0.02% 501 931 2.8

2 29043 29043 0 0% 191 8468 8463 5 0.06% 524 931 2.9

3 33180 33180 0 0% 300 9935 9935 0 0% 66 836 2.4

4 25856 25847 9 0.03% 549 7373 7335 38 0.52% 521 932 2.8

5 31456 31439 17 0.05% 540 8947 8938 9 0.10% 529 932 3.0

6 33452 33444 8 0.02% 544 10221 10213 8 0.08% 532 932 2.9

7 42234 42228 6 0.01% 491 12002 11981 21 0.17% 465 835 2.4

8 42218 42203 15 0.04% 491 11154 11141 13 0.12% 478 833 2.4

9 33222 33218 4 0.01% 503 10968 10965 3 0.03% 508 884 2.7

10 31492 31481 11 0.03% 529 9652 9650 3 0.03% 522 932 2.9

100 jobs

1 139573 139556 17 0.01% 4075 39495 39467 28 0.07% 3968 1882 42

2 120484 120465 19 0.02% 4065 35293 35266 27 0.08% 4068 1882 44

3 124325 124289 36 0.03% 3957 38174 38150 24 0.06% 4059 1882 42

4 122901 122876 25 0.02% 3903 35498 35467 31 0.09% 3964 1882 42

5 119115 119101 14 0.01% 3925 34860 34826 34 0.10% 4016 1882 42

6 133545 133536 9 0.007% 3987 35146 35123 23 0.07% 3961 1882 43

7 129849 129830 19 0.01% 4027 39336 39303 33 0.08% 3974 1882 43

8 153965 153958 7 0.005% 3722 44963 44927 36 0.08% 3865 1784 39

9 111474 111466 8 0.007% 3930 31270 31231 39 0.12% 4008 1882 42

10 112799 112792 7 0.006% 3936 34068 34048 20 0.06% 4003 1882 42
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9 Conclusion

We have shown how Lagrangian relaxation in a stand-alone relaxed decision
diagram can yield tight optimization bounds for certain job sequencing problems.
We also characterized problems on which this approach is likely to be effective;
namely, problems in which a relaxed DD of reasonable width results from a
restricted form of state merger. The restriction is that states may be merged
only when they agree on the values of state variables on which the cost function
and dualized constraints depend in a recursive formulation of the problem.

Based on this analysis, we observed that job sequencing problems with state-
independent processing times and time windows are suitable for this type of
bounding, whether one minimizes tardiness, makespan or the number of late
jobs. The same is true when processing times are dependent on when the job
is processed or its position in the sequence. The traveling salesman problem
can also bounded in this fashion. However, the TSP with time windows, as
well as problems with state-dependent processing times in general, are normally
unsuitable for DD-based Lagrangian relaxation, unless the relaxed diagram is
combined with branching or embedded in a larger model.

We ran computational experiments on 110 instances from the well-known
Crauwels-Potts-Wassenhove and Biskup-Feldman problem sets, with sizes rang-
ing from 20 to 100 jobs. We found that DD-based Lagrangian relaxation can
provide tight bounds for nearly all of these instances. This is especially true
of the Biskup-Feldman instances tested, all of which were unsolved prior to this
work. We showed that the best known solutions are almost always within a small
fraction of one percent of the optimum, and we proved optimality for 8 of the
solutions. To our knowledge, these are the first useful bounds that have been
obtained for these instances.

More generally, our analysis can be used to identify dynamic programming
models that may have a useful relaxation based on relaxed decision diagrams
and Lagrangian duality.
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Abstract. Several models based on constraint programming have been
proposed to solve the traveling salesman problem (TSP). The most effi-
cient ones, such as the weighted circuit constraint (WCC), mainly rely
on the Lagrangian relaxation of the TSP, based on the search for span-
ning tree or more precisely “1-tree”. The weakness of these approaches
is that they do not include enough structural constraints and are based
almost exclusively on edge costs. The purpose of this paper is to correct
this drawback by introducing the Hamiltonian cycle constraint associated
with propagators. We propose some properties preventing the existence
of a Hamiltonian cycle in a graph or, conversely, properties requiring that
certain edges be in the TSP solution set. Notably, we design a propagator
based on the research of k-cutsets. The combination of this constraint
with the WCC constraint allows us to obtain, for the resolution of the
TSP, gains of an order of magnitude for the number of backtracks as well
as a strong reduction of the computation time.

Keywords: Global constraint · TSP · Propagator

1 Introduction

The traveling salesman problem (TSP) is an NP-Hard problem. It has many
applications and has been motivated by concrete problems, such as school bus
routes, logistics, routing, etc. Almost all types of resolution methods (MIP, SAT,
CP, evolutionary algorithms, etc.) have been used to solve it. When the graph
is Euclidean, the most efficient program is the Concorde software [1]. Unfor-
tunately, it cannot deal with additional constraints that are very present in
real-world problems such as Pickup & Delivery, Dial-a-Ride, automatic harvest-
ing, etc.

Solving the TSP is difficult since it involves finding a single cycle passing
through all the vertices of a graph such that the sum of the costs of the edges it
contains is minimal. It is quite easy to model the fact that each vertex belongs to
a cycle. Indeed, it is sufficient that each vertex has at least two distinct neighbors,
in other words, each vertex must be the end of at least two edges. Such a result
can be obtained by modeling the problem as an assignment problem, which is
solved in polynomial time. However, this model is not sufficient to obtain a
c© Springer Nature Switzerland AG 2019
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single cycle in the graph, because the assignment corresponds to a coverage of
the vertices by a set of disjoint cycles. From this model, we obtain solutions
where each vertex belongs to a cycle, but not to a unique cycle. The covering
by a unique cycle can be achieved by imposing that the subgraph generated by
the selected edges is connected. The combination of these two aspects is what
makes the TSP so difficult.

Unlike the previous approach, a model can be built based on the notion
of a connected subgraph. It was exactly the idea of Held and Karp [7,8] who
represented this notion by a 1-tree that is formed by a node x, two adjacent
edges of x and a spanning tree of the graph without x. A 1-tree such that each
node has a degree 2 is a Hamiltonian cycle, and a minimum 1-tree with these
constraints is an optimal solution of the TSP. The use of a 1-tree is interesting
because a minimum 1-tree is a good lower bound of the TSP. In addition, its
computation is strongly related to the computation of a minimum spanning tree.

Held and Karp proposed to relax the degree constraints with a Lagrangian
relaxation. More precisely, the cost of the edges are modified in order to inte-
grate the violation of these degree constraints. If a node has a degree strictly
greater than 2, then the cost of its adjacent edges are decreased, and if the
degree is strictly less than 2 then the cost of its adjacent edges are increased. A
convergence towards the optimal solution is obtained by computing a succession
of minimum 1-tree based on the Lagrangian relaxation.

The weighted circuit constraint (WCC) [2] implements the approach in con-
straint programming. This constraint can be considered as the state of the art
in CP as mentioned by Ducomman et al. [4]: “The best approach regarding the
number of instances solved and quality of the bound is the Held and Karp’s
filtering”.

In this paper, we propose to improve the WCC by adding methods for solving
Hamiltonian cycles (i.e. TSP without costs). To do this, we consider the work of
Cohen and Coudert [3] on the structure of the Hamiltonian cycles carried out for
the FHCP Challenge [6]. Figure 1 shows an example in which the structure of the
graph is important for the Hamiltonian cycle search. There is no Hamiltonian
cycle in this graph, because it is impossible to find a cycle that visits all the
vertices that pass only once through node C. Such a graph is said to be 1-
connected: there is a vertex in the graph such that its removal disconnects it.
We can therefore define a new structural constraint: if a graph is 1-connected,
then it does not contain a Hamiltonian cycle.

A

B

C

D

E

Fig. 1. Butterfly graph.
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This idea can be extended to edges. For instance, consider two edges a1 and
a2 whose deletion disconnects the graph (i.e. it is 2-edge-connected). If there
exists an Hamiltonian cycle then it necessarily contains a1 and a2. We propose
to study k-edge-connected graphs for k > 1, and in particular values k = 2 and
k = 3, which are common in practice. From this study, we defined a general
filtering algorithm named k-cutset propagator.

This article is organized as follows: first, we recall some concepts of graph
theory. Then, we formally define the structural constraints used in our method
of solving the TSP. Next, we define a new data structure called cycled spanning
tree, which is used to define a new algorithm to exploit structural constraints.
The last part experimentally shows the advantages of our method. Finally, we
conclude.

2 Preliminaries

2.1 Definitions

The definitions about graph theory are taken from [12].
A directed graph or digraph G = (X,U) consists of a vertex set X and

an arc set U, where every arc (u, v) is an ordered pair of distinct vertices. We
will denote by X(G) the vertex set of G and by U(G) the arc set of G. The
cost of an arc is a value associated with the arc. An undirected graph is a
digraph such that for each arc (u, v) ∈ U , (u, v) = (v, u). If G1 = (X1, U1) and
G2 = (X2, U2) are graphs, both undirected or both directed, G1 is a subgraph
of G2 if V1 ⊆ V2 and U1 ⊆ U2. A path from node v1 to node vk in G is a
list of nodes [v1, ..., vk] such that (vi, vi+1) is an arc for i ∈ [1..k − 1]. The path
contains node vi for i ∈ [1..k] and arc (vi, vi+1) for i ∈ [1..k − 1]. The path is
simple if all its nodes are distinct. The path is a cycle if k > 1 and v1 = vk. A
cycle is Hamiltonian if [v1, ..., vk−1] is a simple path and contains every vertex
of X. The length of a path p, denoted by length(p), is the sum of the costs of
the arcs contained in p. For a graph G, a solution to the traveling salesman
problem (TSP) in G is a Hamiltonian cycle HC ∈ G minimizing length(HC).
An undirected graph G is connected if there is a path between each pair of
vertices, otherwise it is disconnected. The maximum connected subgraphs of
G are its connected components. A k-edge-connected graph is a graph in
which there is no edge set of cardinality strictly less than k disconnecting the
graph. A tree is a connected graph without a cycle. A tree T = (X ′, U ′) is a
spanning tree of G = (X,U) if X ′ = X and U ′ ⊆ U . The U ′ edges are the
tree edges T and the U − U ′ edges are the non-tree edges T . A bridge is
an edge such that its removal increases the number of connected components. A
partition (S, T ) of the vertices of G = (X,U) such that S ⊆ X and T = X − S
is a cut. The set of edges (u, v) ∈ U having u ∈ S and v ∈ T is the cutset of
the (S, T ) cut. A k-cutset is a cutset of cardinality k. A k-cutset is minimum
iff there is no subset of the k-cutset that disconnects the graph.
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2.2 HCWME : Hamiltonian Cycle with Mandatory Edges

CP-based algorithms solving the TSP tend to:

• Eliminate edges that cannot be part of the optimal solution.
• Define edges belonging to any optimal solution, called mandatory edges.

Since each optimal solution of the TSP is a Hamiltonian cycle, the TSP
solution set is a subset of the solutions of the Hamiltonian cycle problem (HCP).

Property 1. Given G = (X,U). If a ∈ U belongs to all HCP(G) solutions, then
a necessarily belongs to all TSP(G) solutions.

Property 2. Given G = (X,U). If HCP(G) has no solution, then TSP(G) has no
solution.

As the concept of mandatory arc is introduced, we formulate the Hamilto-
nian cycle with mandatory edges problem (HCWMEP):
INSTANCE: A graph G = (X,U) and a set of mandatory edges M ⊆ U .
QUESTION: Is there a Hamiltonian cycle in G containing all the edges of M?

Since the HCP is an NP-Complete problem, HCWMEP(G,M) is NP-
Complete.

3 Structural Constraints

We will use the following notations G = (X,U), n = |X|, m = |U |, M ⊆ U the
set of mandatory edges of G, P = HCMWEP(G,M). When not specified we will
assume that G is symmetrical, connected and that a k-cutset is minimum.

Proposition 1. Let K be a k-cutset, then any Hamiltonian cycle C contains
an even and strictly positive number of edges from K.

Proof. Consider a k-cutset of G and C a hamiltonian cycle. The k-cutset parti-
tion G into two sets of vertices X1 and X2. Let u be our starting vertex in X1,
by definition C visits all the vertices of G and ends up visiting u (its starting
vertex). Thus, visiting the vertices of X2 involves taking one edge of the k-cutset
and taking a different one to come back into X1, at that moment: either all the
vertices of X2 have been visited and we end up joining u without using other
edges of the k-cutset, or we have to visit X2 again and return to X1, every time
we visit X2 from X1 we need an edge to go in, and another to go back: this
means an even number of edges and the proposition holds. ��

From Proposition 1, we define Properties 3, 4, 5, 6 and 7.

Property 3. If there is {a1, a2}, a 2-cutset in G, then a1 and a2 become manda-
tory: M ← M + {a1, a2}.
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Property 4. If there is a k-cutset with k odd containing k − 1 mandatory edges
in G, then the non-mandatory edge a is deleted because it cannot be part of a
Hamiltonian cycle: E ← E − {a}.

Property 5. If there is a k-cutset with k even containing k − 1 mandatory edges
in G, then the non-mandatory edge a becomes mandatory: M ← M + {a}.

Property 6. If there is a 1-cutset in G, then P has no solution.

Property 7. If there is a k-cutset with k odd containing k mandatory edges in
G, then P has no solution.

Definition 1. It is said that two problems P and P ′ are equivalent if their
solution sets are in bijection. We then note that P = P ′.

Corollary 1. Given P ′ = P. If one or more of Properties 3, 4, 5, 6 or 7 are
applied to P, then P and P ′ remain equivalent.

Proof. Immediate from Proposition 1. ��
We write a∗ ∈ U a mandatory edge.

Example 1:

A

C

B

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

a∗
1

a3

a∗
2

a5

a4

a∗
6

a∗
7

a∗
8

a9

Fig. 2. Graph G1.

From Properties 3, 4 and 5, we can remove some edges from Fig. 2 and make
them mandatory:

• {a4, a5} is a 2-cutset: if we want to connect the “left” part of H and I to the
“right” part of J and K by a cycle we must take (H, J) and (I, K) so a4 and
a5 become mandatory.

• {a∗
1, a

∗
2, a3} is a 3-cutset and with {a∗

1, a
∗
2} mandatory: it is a cutset with an

odd cardinality with an even number of mandatory edges. Then we can delete
a3, because by choosing it the cutset would become a mandatory set of edges
with an odd cardinality.
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Fig. 3. Application of Properties 3, 4 and 5 on G1.

• {a∗
6, a

∗
7, a

∗
8, a9} is a 4-cutset and with {a∗

6, a
∗
7, a

∗
8} mandatory: it is a cutset

with an even cardinality with 3 mandatory edges, so a9 must be mandatory.
Figure 3 shows how G1 is modified when Properties 3, 4 and 5 are applied.

Example 2:
Now, consider Fig. 4. From Property 7, there is no Hamiltonian cycle:

• {a4} is a 1-cutset: there is no Hamiltonian cycle connecting {I, J,K} to the
other part of the graph.

• {a∗
1, a

∗
2, a

∗
3} forms a 3-cutset with three mandatory edges.

Properties 3, 4, 5, 6 or 7 are based on the cardinality of the cutsets, so it is
reasonable to ask how many cutsets a graph can have.

A

C

B

D

E

F

G

H I

J

K

a∗
1

a∗
3

a∗
2 a4

Fig. 4. Graph G2.

Property 8. The number of cutset of a graph of order n is 2n.

Proof. Any part S ⊆ X forms an (S, T ) cut. The cardinality of the powerset of
S ⊆ X is 2n, so there are 2n cutsets. ��
In the case of the undirected graph, an (S, T ) cut has the same cutset as the
(T, S) cut. Hence, the number of distinct cutsets is 2n/2 = 2n−1.

In the case of a very dense graph, there is a low probability of satisfying
Properties 3, 4, 5, 6 or 7 for a small value of k. Nor does it seem very reasonable
to apply these properties with a high value of k for at least two reasons:
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• The complexity of the algorithms of k-cutset increases with k because they
are enumeration algorithms [14].

• The relationship between the cardinality of the cutset and the number of
mandatory edges is strong. The more k increases and the less chance we have
of satisfying one of Properties 3, 4, 5, 6 or 7.

Consequently, we propose to study k = 1, 2 and 3 with the following
behaviors:

• 1-cutsets: raise a fail.
• 2-cutsets: make the edges of the 2-cutset mandatory.
• 3-cutsets: consider only the 3-cutsets with at least 2 mandatory edges. If it

contains a non-mandatory edge, then it must be removed, otherwise a fail is
raised.

4 k-cutset Propagator

We must be able to find the k-cutsets with k = 1, 2, 3 and two mandatory edges
for k = 3. If we split the problem, finding the 1-cutset, which are actually bridges,
can be done with the Tarjan algorithm [11] in O(m+n); finding 2-cutset can be
done with the Tsin algorithm [13] in O(m+n). The strength of Tsin’s algorithm
is that it also allows us to find bridges, so we can manage k = 1, 2 at the same
time. We now have to manage k = 3 with at least two mandatory edges.

By the cut definition, if you remove a k-cutset edge, then it becomes a
(k − 1)-cutset. We can then propose a first simple algorithm:

For each mandatory edge a∗ ∈ M , we look for the 2-cutsets of G − {a∗}. In
this way, each of the 2-cutset found forms a 3-cutset with at least one mandatory
edge. It is then sufficient to keep only the 3-cutsets with 2 mandatory edges.

The number of considered mandatory edges can be reduced. To do this, we
will build a special structure called CST. The CST is not a required structure
for the proper functioning of the k-cutset propagator, just an improvement.

4.1 CST: Cycled Spanning Tree

A CST is a 2-edge-connected subgraph of G such that for each edge a of G there
is a cycle in G formed only by edges of the CST and a.

One way to build a CST is to calculate T a spanning tree, then add some
edges to T until all the edges, those of T and those outside of T , belong to a
CST cycle. Any edge a �∈ T belongs to a cycle composed of a and only T edges.

For the edges of T , the CST is built by adding edges to the spanning tree
such that each tree edge belongs to a cycle of CST. This can be done in linear
time by marking the tree edges each time a cycle is found. More precisely, we
consider three graphs at the same time: G the graph, T the spanning tree, and
CST the CST, initially equal to T . All tree edges are unmarked. We traverse
the non tree edges of G until we find aT = (i, j) /∈ T such that there is a cycle
formed by at least an unmarked edge of T , some edges of T and aT . We add
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aT to CST and we mark all the tree edges of C. We repeat this operation until
there is no more unmarked edge in T . Clearly, at the end, each tree edge which
has been marked belongs to a cycle. In addition, there is at least one tree edge
in each cycle, so the number of added edges is bound by n. An example of a
construction is shown in Fig. 5. This algorithm can be efficiently implemented,
similarly to Kruskal’s algorithm, by using a union-find data structure to avoid
traversing each edge of each cycle. If we consider first the non mandatory edges
for the construction of the spanning tree and for the construction of the CST,
then we can expect to reduce the number of mandatory edges in the CST.

W.l.o.g. we assume that G is a connected bridgeless graph. Thus, there exist
a CST in G.

A

B

C

D

E

1. Graph G
A

B

C

D

E

2. Spanning tree of G
A

B

C

D

E

3. CST of G

Fig. 5. Example of building a CST.

Corollary 2. Given k >1. If there is a k-cutset in G, then at least two edges of
the cutset are in the CST.

Proof. By construction, the CST is connected and covers the graph with cycles.
So each cut has a cardinality greater than or equal to two. ��
Corollary 3. If there is a 3-cutset containing at least two mandatory edges,
then at least one mandatory edge belongs to the CST.

Proof. Immediate from Corollary 2. ��
Definition 2. The identification edges are the mandatory edges for which a
2-cutset algorithm is run.

From Corollary 3, the simple algorithm can be improved by reducing the
number of mandatory edges that are considered. Considering the identification
edges as each mandatory edge a∗ of CST, the algorithm becomes: for each iden-
tification edges, search for the 2-cutsets of G − {a∗}. For each 3-cutset found,
we obtain either a 3-cutset with three mandatory edges, or a 3-cutset with two
mandatory edges or a 3-cutset with one mandatory edge. Then, we apply Prop-
erties 3, 4, 5, 6 and 7.

Since mandatory edges outside the CST are not considered as identification
edges and the edges in the CST are chosen during construction, it is a good idea
to minimize the number of mandatory edges in the CST.
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4.2 Additional Improvement

The proposed algorithm is highly dependent on the number of identification
edges. From Corollary 2, if two edges belong to the same 2-cutset and are manda-
tory, then they are identification edges. However, when searching for the 3-cutsets
with an identification edge, it is not necessary to repeat the search for all the
edges forming a 2-cutset with it. More precisely, the problem of searching for
3-cutsets with a∗ as an identification edge has the same set of solutions as the
problem of searching for 3-cutsets with each of the edges forming a 2-cutset with
a∗. Figure 6 illustrates it well since the 2-cutset is a path.

A

B

C

D

E

a5
a6

a3

a∗
1

a4

a∗
2

a7

Fig. 6. {a∗
1, a

∗
2} is a 2-cutset. {a∗

1, a4, a5} and {a∗
1, a6, a7} are 3-cutsets including a∗

1.
We can deduce that {a∗

2, a4, a5} and {a∗
2, a6, a7} are 3-cutsets including a∗

2.

Property 9. Let S1 be a k-cutset and S2 be a 2-cutset such that k > 1 and
S2 �⊆ S1. If ∃a ∈ S1 such that a ∈ S2 then (S1 ∪ S2) − {a} forms a k-cutset.

Proof. Given S2 = {a1, a2} a 2-cutset and a1 ∈ S1. Removing S1 from the
graph disconnects it into two connected components. In the modified graph,
S2 − {a1} = {a2} is a bridge. Removing a2 further increases the number of
connected components: there are now three. If we put back a1, G is disconnected
into two connected components, its cutset is (S1 − {a1}) ∪ {a2} = (S1 − {a1}) ∪
(S2 − {a1}) = (S1 ∪ S2) − {a1}. Since S1 is a k-cutset, there is no subset of
it that disconnects the graph other than the k-cutset itself. If (S1 ∪ S2) − {a1}
disconnects the graph then it is a k-cutset because we delete and add an edge
in a set of initial cardinality k. ��

Consider S1 a 3-cutset, S2 = {a1, a2} and S3 two distinct 2-cutsets. From
Property 9 the number of identification edges is reduced:

• If a1 ∈ S1, then (S1 − {a1}) ∪ {a2} is a 3-cutset.
• If a1 ∈ S3, then (S3 − {a1}) ∪ {a2} is a 2-cutset.

Thus, the set of identification edges is defined by the mandatory edges of the
CST that do not belong to any 2-cutset and the subset of edges belonging to all
2-cutsets of G that maximizes its cardinality such that there is no combination
of it forming a 2-cutset.

To avoid any inconsistency, all 2-cutsets must be searched before performing
the 3-cutset search. Otherwise, there may be a 2-cutset containing at least one
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non-mandatory edge. This may result in a edge being marked as removable when
searching for 3-cutsets while it is necessary for the existence of a Hamiltonian
cycle. In addition, deleting an edge in a 3-cutset may create a 2-cutset and so
either we perform a 2-cutset search immediately or we wait until the end of the
search of all 3-cutsets to make the deletions effective. The first possibility is too
time-consuming, a better solution is to postpone the deletions.

With this method we consider a subset of the identification edges. The higher
the mandatory number of edges required, the more likely it is that the number
of edges considered will be reduced.

Finally, CST has another advantage: it is incremental. Indeed, as long as no
CST edges are removed, all edges outside the CST belong to a cycle composed
of CST edges, so there is no need to rebuild it.

4.3 Implementation

Algorithm 1 is a possible implementation of the k-cutset filtering. The main func-
tion is propagKCutset(G,M). Function propag2Cutset(G,M, set) defines
a 2-cutset filtering. Function propag3Cutset(G,M, a∗) defines a 3-cutset fil-
tering. Both filtering functions use find2Cutset(G, bridge, 2cutsandFound)
which finds all 2-cutsets in G as proposed in [13] with a complexity in O(n+m),
this function is used as a black box. Filtering functions also have two sub-
functions, bridge() and 2cutsetFound(M, a1, a2) describing the behavior that
the find2Cutset(G, bridge, 2cutsetFound) algorithm must have when it finds
a bridge or a 2-cutset in G. Function mergeCutpairs(S, set, id) allows the
use of the improvement proposed in Sect. 4.2. We will now describe the over-
all behavior of the algorithm. In Function propagKCutset(G,M), we define
set as a set of pairs of edges forming 2-cutsets in G. Then, we use the filtering
propag2Cutset(G,M, set) to find and make mandatory all the edges belong-
ing to a 2-cutset in G, the 2-cutsets are stored in set. The id array represents for
each edge its 2-cutset identifier. In order to create sets of edges forming 2-cutsets
between them Function mergeCutpairs(S, set, id) is called. Each disjoint set
will finally have a different identifier and each edge belonging to the same set will
have the same identifier. Then, we define an array visited to allow us to consider
only one edge per set described above. The identificationEdges set contains the
mandatory edges which are in the CST. Then, we consider one edge per set cal-
culated by mergeCutpairs(S, set, id) and all the edges of the CST not being
in any set. For each of its edges, the filtering propag3Cutset(G,M, a∗) is
performed, i.e. the Properties 4, 5 and 7 are used. As recommended in Sect. 4.2,
deletions are postponed. The final complexity of the Algorithm 1 is O(k∗(n+m))
where k <= |M | <= n. Tsin’s algorithm (O(n + m)) is called k times.
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Algorithm 1. k-cutset(G,M)

propagKCutset(G,M) :

set ← ∅ /* set of pairs of edges representing the 2-cutset */

if not propag2Cutset(G,M,set) then return False;

∀e ∈ U(G) : id[e] ← nil /* contains the 2cutset identifier of each edge */

mergeCutpairs(identificationEdges,set,id)

U’ ← U ∀e ∈ U(G) : visited[e] ← False

identificationEdges ← CST(G).getMandatoryEdges()

for each a∗ ∈ identificationEdges do

if id[a∗] = nil or ¬visited[id[a∗]] then

if not propag3Cutset(G,M,U ′, a∗) then return False;

if id[a∗] 	= nil then visited[id[a∗]] ← True;

G ← (X,U’) /* As deletion are postponed, update G */

return True

propag2Cutset(G,M,set):

/* Return False if the graph isn’t 3-edge-connected */

define bridge(){Exit propagation}
define 2cutsetFound(M,a1, a2){

if a1 /∈ M then M ← M ∪ {a1};
if a2 /∈ M then M ← M ∪ {a2};
set ← set ∪ (a1, a2);

}
return find2Cutset(G,bridge,2cutsetFound)

propag3Cutset(G,M,U’,a∗):
/* Return False if the graph contains a 3-cutset with 3 mandatory edges */

define bridge(){ continue; }
define 2cutsetFound(M,a1, a2){

if a1 ∈ M and a2 ∈ M then Exit propagation;

else if a1 ∈ M then U ′ ← U ′ − {a2};
else if a2 ∈ M then U ′ ← U ′ − {a1};

}
G′ ← (X(G), U(G) − {a∗})
return find2Cutset(G′,bridge,2cutsetFound)

mergeCutpairs(S,set,id):

cpt ← 0

for each (a1, a2) ∈ set do
/* if both a1 and a2 do have an identifier */

if id[a1] 	= nil and id[a2] 	= nil then
/*(a1, a2) is a 2-cutset: id[a1] must be equals to id[a2] : id are merges*/

for each s′ ∈ S do

if id[s′] = id[a1] then
id[s′] ← id[a2]

/* if both a1 and a2 do not have an identifier */

if id[a1] = nil and id[a2] = nil then
id[a1] ← id[a2] ← cpt

cpt ← cpt + 1

/* if a2 does not have an identifier and a1 have one */

if id[a1] 	= nil and id[a2] = nil then
id[a2] ← id[a1]

/* if a1 does not have an identifier and a2 have one */

if id[a1] = nil and id[a2] 	= nil then
id[a1] ← id[a2]
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5 Experiments

The algorithms are implemented in Java 11 in a locally developed constraint
programming solver. The experiments were performed on a Windows 10 machine
using an Intel Core i7-3930K CPU @ 3.20 GHz and 64 GB of RAM. The reference
instances are from the TSPLib [9], a library of reference graphs for the TSP. For
fairness, we naturally took up the instances given by the state of the art [5]. All
instances considered are symmetrical graphs.

We present the results in tables. Each of them reports the solving time in
milliseconds. Timeout (t.o) is set at 30 min. The number of backtracks is denoted
by #bk. Tables include a column expressing the ratio of solving time and number
of backtracks.

Table 1. Improvement of k-cutset filtering.

maxCost
(1)

maxCost
k-cutsetNotImproved

(2)

Ratios
(1)/(2)

maxCost
k-cutset

(3)

Ratios
(1)/(3)

Instance time #bk time #bk time #bk time #bk time #bk
gr96 13456 14970 3308 1492 4.1 10.0 3064 1492 4.4 10.0
rat99 132 40 321 40 0.4 1.0 196 40 0.7 1.0

kroA100 82296 96252 18594 9442 4.4 10.2 17632 9442 4.7 10.2
kroB100 243514 294148 15736 7286 15.5 40.4 15382 7286 15.8 40.4
kroC100 5937 4238 3677 1540 1.6 2.8 3646 1540 1.6 2.8
kroD100 806 480 944 286 0.9 1.7 819 286 1.0 1.7
kroE100 1213859 1628090 24986 9352 48.6 174.1 22968 9352 52.9 174.1
eil101 309 116 489 112 0.6 1.0 326 112 0.9 1.0
gr120 6610 3872 3089 980 2.1 4.0 2730 980 2.4 4.0
pr124 1876 566 1611 310 1.2 1.8 1530 310 1.2 1.8
bier127 822 402 770 146 1.1 2.8 641 146 1.3 2.8
ch130 18520 11810 7466 2250 2.5 5.2 6465 2250 2.9 5.2
pr136 t.o. 1733604 155283 35150 ≥ 11.6 ≥ 49.3 137675 35150 ≥ 13.1 ≥ 49.3
gr137 27828 11968 24223 6788 1.1 1.8 22579 6788 1.2 1.8
pr144 1622 466 1999 434 0.8 1.1 1603 434 1.0 1.1
ch150 11983 5684 6190 1424 1.9 4.0 5314 1424 2.3 4.0

kroA150 1290205 620080 174954 48892 7.4 12.7 171972 48892 7.5 12.7
kroB150 t.o. 791880 1222756 304630 ≥ 1.5 ≥ 2.6 1124443 304630 ≥ 1.6 ≥ 2.6
brg180 250527 2957988 t.o. 1000666 ≤ 0.1 ≤ 3.0 492962 2741812 0.5 1.1
rat195 t.o. 638322 1166767 271352 ≥ 1.5 ≥ 2.4 980190 271352 ≥ 1.8 ≥ 2.4
d198 440621 171294 273510 47838 1.6 3.6 179474 47838 2.5 3.6

kroB200 t.o. 647992 1586292 303282 ≥ 1.1 ≥ 2.1 1432978 303282 ≥ 1.3 ≥ 2.1
gr202 19681 9812 13385 2282 1.5 4.3 8261 2282 2.4 4.3
pr264 9520 1502 7817 256 1.2 5.9 6852 256 1.4 5.9

Table 1 shows the performance of adding k-cutset filtering to the WCC. This
table is composed of three main columns (1, 2 and 3) showing the following
results respectively: WCC without k-cutset filtering, WCC with k-cutset filtering
without the improvement proposed in Sect. 4.2 and k-cutset improved filtering.
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A static strategy such as maxCost, selecting arcs by decreasing costs allows us
to compare the performance of the filtering without any disruption due to the
strategy. These results show that using structural filtering is very interesting.
For example, the search space of pr136 has been reduced by a factor of 49.3 and
its solving time by a factor of 11.6 if the improvement proposed in Sect. 4.2 is not
considered, by a factor of 13.1 otherwise. Indeed, the number of backtracks is
generally reduced by a large factor (mean equal to 14.4, geometric mean equal to
4.3), which allows a good reduction in solving time (mean equal to 5.3, geometric
mean equal to 2.4). The improvement allows the results to be refined by further
improving the solving times.

We are now considering different strategies, including LCFirst maxCost intro-
duced by Fages et al. [5]. It keeps one of its two extremities for the last branching
edge and selects the edges from the neighborhood of the kept node by decreasing
costs. It is currently considered the best current strategy for resolving the TSP
in CP.

Table 2. Dynamic strategies.

(1) LCFirst
minDeltaDeg

(2) LCFirst
minDeltaDeg

k-cutset

Ratios
(1) / (2)

(3) LCFirst
maxCost

(4) LCFirst
maxCost
k-cutset

Ratios
(3) / (4)

(5) LCFirst
minRepCost

(6) LCFirst
minRepCost
k-cutset

Ratios
(5) / (6)

Instance time #bk time #bk time #bk time #bk time #bk time #bk time #bk time #bk time #bk
gr96 2327 1376 744 212 3.1 6.5 1951 1272 3113 1372 0.6 0.9 1534 746 1818 610 0.8 1.2
rat99 291 88 323 80 0.9 1.1 271 56 278 46 1.0 1.2 278 50 256 28 1.1 1.8

kroA100 9092 6278 4315 1846 2.1 3.4 5643 4048 7305 3726 0.8 1.1 3602 1884 3559 1288 1.0 1.5
kroB100 5321 3392 8380 3764 0.6 0.9 6359 4868 23181 10812 0.3 0.5 8232 4022 4419 1514 1.9 2.7
kroC100 2025 1126 2601 1076 0.8 1.0 1434 902 4451 2070 0.3 0.4 693 202 721 160 1.0 1.3
kroD100 868 410 917 290 0.9 1.4 705 286 778 240 0.9 1.2 410 76 453 80 0.9 1.0
kroE100 30414 26932 4304 1776 7.1 15.2 5488 4218 5604 2316 1.0 1.8 7650 3790 3479 1152 2.2 3.3
eil101 302 104 343 86 0.9 1.2 319 74 337 74 0.9 1.0 294 52 279 40 1.1 1.3
gr120 1311 468 685 112 1.9 4.2 1200 548 1791 578 0.7 0.9 1014 312 1062 214 1.0 1.5
pr124 6358 2336 7898 2462 0.8 0.9 1611 448 2387 582 0.7 0.8 1851 424 1415 208 1.3 2.0
bier127 520 128 466 56 1.1 2.3 609 216 728 180 0.8 1.2 533 84 1203 194 0.4 0.4
ch130 6953 3902 5301 1804 1.3 2.2 5287 2726 10243 3682 0.5 0.7 5028 1852 2826 750 1.8 2.5
pr136 19710 9822 28683 7448 0.7 1.3 262470 144980 160126 48370 1.6 3.0 181842 65974 55240 9926 3.3 6.6
gr137 8130 3640 6418 2092 1.3 1.7 5580 2158 13664 4208 0.4 0.5 4953 1548 3053 602 1.6 2.6
pr144 2742 648 3060 668 0.9 1.0 1463 256 1892 316 0.8 0.8 782 88 972 92 0.8 1.0
ch150 7189 2954 4824 1310 1.5 2.3 5100 1988 12350 3514 0.4 0.6 5034 1422 5348 1042 0.9 1.4

kroA150 34168 14996 14197 3874 2.4 3.9 21362 9510 63307 17526 0.3 0.5 14018 3724 8747 1702 1.6 2.2
kroB150 730330 320634 726592 207550 1.0 1.5 799195 373076 1194191 319360 0.7 1.2 1096412 331548 563570 114116 1.9 2.9
brg180 706 86 760 86 0.9 1.0 13423 125018 56323 267004 0.2 0.5 535 62 574 62 0.9 1.0
rat195 60531 17460 110822 25566 0.5 0.7 132012 41758 732018 178312 0.2 0.2 189821 40362 240102 32958 0.8 1.2
d198 26347 7062 27677 5686 1.0 1.2 71567 23740 93713 24048 0.8 1.0 119257 31262 51608 8044 2.3 3.9

kroB200 614139 191058 315601 67666 1.9 2.8 346683 114372 1393679 288336 0.2 0.4 360004 66452 149824 21622 2.4 3.1
gr202 4949 1582 7268 2004 0.7 0.8 8043 3248 7073 1906 1.1 1.7 5285 1066 6007 876 0.9 1.2
pr264 5816 190 6682 290 0.9 0.7 6631 322 7194 278 0.9 1.2 6663 206 6119 122 1.1 1.7

geo mean 6431 2274 5418 1324 1.2 1.7 6788 2911 11559 3490 0.6 0.8 5376 1271 4341 731 1.2 1.7
mean 65856 25695 53703 14075 1.2 1.8 71017 35837 158155 49119 0.4 0.7 83989 23217 46361 8225 1.8 2.8

Surprisingly, Table 2 shows that the k-cutset filtering is not interesting for
the LCFirst maxCost strategy. The fact is that for the selected instances, the
geometric mean of the solving times increases from 6788 ms to 11559 ms when
k-cutset filtering is used. From our experiments, the strategy seems very ad
hoc in regards to the propagator of the WCC constraint and in particular to
the Lagrangian relaxation. It seems to partially correct the lack of structural
constraints of the WCC. However, Fages et al. [5] have proposed other strategies:
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Table 3. General results

(1) LCFirst
maxCost

(2) LCFirst
minRepCost
k-cutset

Ratios
(1)/(2)

Instance time #bk time #bk time #bk

gr96 1951 1272 1818 610 1.1 2.1

rat99 271 56 256 28 1.1 2.0

kroA100 5643 4048 3559 1288 1.6 3.1

kroB100 6359 4868 4419 1514 1.4 3.2

kroC100 1434 902 721 160 2.0 5.6

kroD100 705 286 453 80 1.6 3.6

kroE100 5488 4218 3479 1152 1.6 3.7

eil101 319 74 279 40 1.1 1.9

gr120 1200 548 1062 214 1.1 2.6

pr124 1611 448 1415 208 1.1 2.2

bier127 609 216 1203 194 0.5 1.1

ch130 5287 2726 2826 750 1.9 3.6

pr136 262470 144980 55240 9926 4.8 14.6

gr137 5580 2158 3053 602 1.8 3.6

pr144 1463 256 972 92 1.5 2.8

ch150 5100 1988 5348 1042 1.0 1.9

kroA150 21362 9510 8747 1702 2.4 5.6

kroB150 799195 373076 563570 114116 1.4 3.3

brg180 13423 125018 574 62 23.4 2016.4

rat195 132012 41758 240102 32958 0.5 1.3

d198 71567 23740 51608 8044 1.4 3.0

kroB200 346683 114372 149824 21622 2.3 5.3

gr202 8043 3248 6007 876 1.3 3.7

pr264 6631 322 6119 122 1.1 2.6

geo mean 6788 2911 4341 731 1.6 4.0

mean 71017 35837 46361 8225 2.5 87.4

LCFirst minDeltaDeg and LCFirst minRepCost, with performances comparable
to LCFirst maxCost. The strategy LCFirst minRepCost is more suited to our
model. It consists in selecting the edges by increasing replacement costs [2] with
the LCFirst policy. This strategy has a slightly better sensitivity to the addition
of k-cutset filtering and has the advantage of being generally more efficient.
Indeed, between LCFirst minDeltaDeg and LCFirst minRepCost, we notice that
when the k-cutset filtering is present, the geometric mean of the solving time of
LCFirst minDeltaDeg is 5418 while that of LCFirst minRepCost is 4341, which
is approximately 25% better. LCFirst minRepCost shows a significant reduction
of the search space and a smaller reduction of the reduction time. For example,
kroB200 gains a factor of 2.4 on solving time and a factor of 3.1 on the size of
the search space.
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Table 3 underlines the interest of using a structural filtering such as the k-
cutset filtering. In comparison to the state of the art, we reduced the size of the
search space for most instances by a very significant factor in order to obtain
an improvement in solving time. There is a huge gain (solving time improved by
23.4) for the problem brg180. If we exclude this problem we improve the mean
of the solving times by a factor of 1.5 and the mean of the number of backtracks
by a factor of 3.6. The number of backtracks is reduced for each instance. The
solving time is improved for 92% of the instances.

Note that the interaction of the k-cutset filtering with Lagrangian relaxation
is not clear (the WCC is built around Lagrangian relaxation), a more in-depth
study will have to be conducted to better understand it. Adding filtering can
then disrupt the convergence of the latter and sometimes slow it down [10]. This
explains why the gain factor of the number of backtracks is always much higher
than that of the solving time.

6 Conclusion

We introduced a new structural constraint in the WCC based on the search
for k-cutsets in the graph. The experimental results show the interest of our
approach in practice. We observed that the number of backtracks is reduced by
an order of magnitude depending on the chosen strategy and resolution times are
significantly improved. The interactions between this constraint and the research
strategy, as well as between this constraint and the Lagrangian model of the
WCC, deserve further study.

Acknowledgements. We would like to thank Pr. Tsin for sending us his 2-cutset
search algorithm implementation.
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Abstract. Local search is widely used to solve combinatorial optimisa-
tion problems and to model biological evolution, but the performance of
local search algorithms on different kinds of fitness landscapes is poorly
understood. Here we introduce a natural approach to modelling fitness
landscapes using valued constraints. This allows us to investigate min-
imal representations (normal forms) and to consider the effects of the
structure of the constraint graph on the tractability of local search. First,
we show that for fitness landscapes representable by binary Boolean
valued constraints there is a minimal necessary constraint graph that
can be easily computed. Second, we consider landscapes as equivalent
if they allow the same (improving) local search moves; we show that a
minimal normal form still exists, but is NP-hard to compute. Next we
consider the complexity of local search on fitness landscapes modelled
by valued constraints with restricted forms of constraint graph. In the
binary Boolean case, we prove that a tree-structured constraint graph
gives a tight quadratic bound on the number of improving moves made
by any local search; hence, any landscape that can be represented by
such a model will be tractable for local search. We build two families of
examples to show that both the conditions in our tractability result are
essential. With domain size three, even just a path of binary constraints
can model a landscape with an exponentially long sequence of improving
moves. With a treewidth two constraint graph, even with a maximum
degree of three, binary Boolean constraints can model a landscape with
an exponentially long sequence of improving moves.

1 Introduction

Local search techniques are widely used to solve combinatorial optimisation
problems, and have been intensively studied since the 1980’s [1,13,14,16,20].
They have also played a central role in the theory of biological evolution, ever

c© Springer Nature Switzerland AG 2019
T. Schiex and S. de Givry (Eds.): CP 2019, LNCS 11802, pp. 300–316, 2019.
https://doi.org/10.1007/978-3-030-30048-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30048-7_18&domain=pdf
https://doi.org/10.1007/978-3-030-30048-7_18


Representing Fitness Landscapes by Valued Constraints 301

since Sewall Wright [23] introduced the idea of viewing the evolution of popula-
tions of organisms as a local search process over a space of possible genotypes
with associated fitness values that became known as a “fitness landscape”.

The term fitness landscape is now used to designate any structure (A, f,N)
consisting of a set of points A, a function f defined on those points, and a
neighbourhood function N on those points, that indicates which pairs of points
are sufficiently close to be considered neighbours. A point x is said to be locally
optimal if all neighbours are non-improving (i.e. ∀y ∈ N(x) f(x) ≥ f(y)) and
globally optimal if all points are non-improving. The local search problem for a
fitness landscape is to find such a local optimum. We say the problem is solved
by a local search algorithm if the only moves allowed in the procedure are from
a point x to a point x′ with x′ ∈ N(x) and f(x′) > f(x).

Many approaches have been developed to try to distinguish fitness landscapes
where a local or global optimal point can be found efficiently by local search from
those where such optimal points cannot be found efficiently. In the 1980’s and 90’s
these attempts focused on statistical measures such as correlation between func-
tion values at various distances and various notions of ruggedness [14]. But, by the
late 90’s there were several studies highlighting the existence of fitness landscapes
that were not rugged and yet were hard to optimise. Several new approaches have
been developed recently, but the performance of local search algorithms on many
kinds of fitness landscapes is still poorly understood [14,16,20].

An approach that has not yet been explored in any detail, is to extend the
modelling and analysis techniques recently developed for valued constraint satis-
faction problems [2,4,8,12,21,22] to analyse the computational difficulty of local
search. In this paper we begin the development of a novel approach to under-
standing fitness landscapes based on representing those landscapes as valued
constraint satisfaction problems (VCSPs), and studying the properties of the
associated constraint graphs. In Sect. 3, we show how to efficiently construct a
minimal representation (normal form) of fitness landscapes as VCSPs. In Sect. 4,
we equate all fitness landscapes that have the same improving local search moves
and show that a minimal form still exists for each equivalence class but is, in
general, NP-hard to compute. Building on these results, the VCSP representa-
tion allows us to classify fitness landscapes in new ways, and hence to distinguish
new classes of fitness landscapes with specific properties.

Since the weighted 2-sat problem can be cast as a VCSP, finding a locally
optimal solution for an arbitrary VCSP is a complete problem for the class of
problems known as polynomial local search (PLS) [3,10,19]. This means that
for a general VCSP it is expected to be computationally intractable even to
find a local optimum by any method (not just by a local search algorithm). If
we restrict to local search algorithms, then there exist standard constructions
that produce families of fitness landscapes where every sequence of improving
moves to a local optimum from some starting points is exponentially long [19].
On such landscapes, from such points, any local-search algorithm will require an
exponentially long sequence of improving moves to reach a local optimum.



302 A. Kaznatcheev et al.

A key goal, therefore, is to identify classes of VCSPs where finding a locally
optimal solution by local search is tractable (i.e., solvable in polynomial-time).
In Sect. 5, we prove that fitness landscapes that can be represented by binary
Boolean VCSPs with tree-structured constraint graphs can have only quadrat-
ically long sequences of improving moves – hence they are tractable for any
local search algorithm. This is especially useful for investigating properties of
biological evolution, as we discuss in the conclusion.

2 Background, Notation, and General Definitions

We will model the points, A, in our fitness landscapes as assignments to a collec-
tion of n variables, indexed by the set [n] = 1, 2, . . . , n, with domains D1, . . . , Dn.
Hence each point corresponds to a vector x ∈ D1 × · · · × Dn. We will generally
focus on uniform domains (i.e., cases where D = D1 = · · · = Dn), where this sim-
plifies to x ∈ Dn. In particular, we will often be interested in Boolean domains,
where x ∈ {0, 1}n, so each point can be seen as a bit-vector.

The restriction of a variable assignment to some subset of variables, with
indices in a set S ⊆ [n], will be denoted x[S], so x[S] ∈ ∏

j∈S Dj . To reference
the assignment to the variable at position i, we will usually write xi unless it is
ambiguous, in which case we’ll use the more general notation x[i]. If we want to
modify x by changing a single variable, say the variable at position i, to some
element b ∈ Di, then we’ll write x[i �→ b].

Given a set of points, A, a fitness function on A is defined to be an integer-
valued function defined on A, that is, a function f : A → Z. Because we are
modelling fitness, rather than cost, we maximise our objective functions in this
paper. All results can be carried over directly to the minimisation context.

To complete the definition of a fitness landscape, we will define a neigh-
bourhood function on the set of points A to be a function N : A → 2A.
For simplicity, we will assume this function is symmetric in the sense that if
y ∈ N(x), then x ∈ N(y), and we will call such a pair x and y adjacent points.
Throughout the paper, we will focus on the case where the set of points A is the
set of assignments D1 × · · · × Dn and N is the 1-flip neighbourhood defined
by y ∈ N(x) if and only if there is a variable position i such that xi �= yi and
this is the only difference (i.e., ∀j �= i xj = yj). In the case of the Boolean
domain, the graph of the function N , where the edges are the pairs of adjacent
points, is the n-dimensional hypercube.

Definition 1 ([6,7]). Given any fitness landscape (A, f,N), the correspond-
ing fitness graph G has vertex set V (G) = A and directed edge set E(G) =
{xy | y ∈ N(x) and f(y) > f(x)}.
Note that the edges of the fitness graph consist of all pairs of adjacent points
which have distinct values of the fitness function, and are oriented from the lower
value of the fitness function to the higher value; such directed edges represent
the possible moves that can be made by a local search algorithm.

A (valued) constraint with scope S ⊆ [n] is a function CS :
∏

j∈S Dj →
Z. The arity of a constraint CS is the size |S| of its scope. For unary and
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binary constraints we will omit the set notation and just write Ci for C{i} or
Cij for C{i,j}. We will represent the values taken by a unary constraint Ci for
each domain element by an integer vector of length |Di|, and represent the
values taken by a binary constraint Cij for each pair of domain elements by an
integer matrix, where xi selects the row and xj selects the column. A zero-valued
constraint (of any arity) will be denoted by 0.

Definition 2. An instance of the valued constraint satisfaction problem
(VCSP) is a set of constraints C = {CS1 , . . . , CSm

}. We say that a VCSP-
instance C implements a fitness function f if f(x) =

∑m
k=1 CSk

(x[Sk]).

The arity of a VCSP-instance is the maximum arity over its constraints; if this
maximum arity is 2, then we will call it a binary VCSP-instance. The instance-
size of a VCSP-instance is the number of bits needed to specify n, m and each
constraint.

Given any VCSP-instance C, we can take A as the set of all possible assign-
ments, f as the fitness function implemented by C, and N as the 1-flip neigh-
bourhood, to obtain an associated fitness landscape, (A, f,N), and hence an
associated fitness graph, GC , by Definition 1. Note that the vertex set of GC is
the set of possible assignments, A, and hence is exponential in the size of the
instance, C, in general. Each binary VCSP-instance also has an associated con-
straint graph, defined as follows, whose vertex set is polynomial in the size of the
instance:

Definition 3. Given any binary VCSP-instance C, the corresponding con-
straint graph has vertices V (C) = [n], edges E(C) = {ij | Cij ∈ C, Cij �= 0},
and constraint-neighbourhood function NC(i) = {j | ij ∈ E(C)}.

3 Magnitude-Equivalence

It is clear from Definition 2 that different VCSP-instances can implement the
same fitness function. Consider, the following two small VCSP-instances:

x1 x2 C∅ = 1 x1

(
0
1

)

x2

(
0
1

)(
1 2
2 3

)

vs.

Although these two instances have different constraint graphs, the fitness func-
tion they implement is [f(00), f(01), f(10), f(11)] = [1, 2, 2, 3] in both cases. We
capture this equivalence with the following definition:

Definition 4. If two VCSP-instances C1 and C2 implement the same fitness
function f , then we will say they are magnitude-equivalent.

We will show in this section that for binary Boolean VCSP-instances each equiva-
lence class of magnitude-equivalent VCSP-instances has a normal form: a unique,
minimal, and easy to compute representative member with special properties.
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Definition 5. A binary Boolean VCSP-instance C is simple if every unary

constraint has Ci =
(

0
ci

)

and every binary constraint has Cij =
(

0 0
0 cij

)

.

In drawings of constraint graphs of simple VCSP-instances we will often denote

the unary constraint
(

0
ci

)

by ci, and the binary constraint
(

0 0
0 cij

)

by cij .

We now give a direct proof of the following simplification result which is
analogous to similar results using constraint propagation in standard VCSP [5].

Theorem 1. Any binary Boolean VCSP-instance C′ can be transformed into a
unique simple VCSP-instance C that is magnitude-equivalent to C′. Moreover, C
can be constructed from C′ in linear time.

Proof. First two key observations: (1) Any unary Boolean constraint C ′
i can be

rewritten as a linear function: c′
i(x) = (1−xi)C ′

i(0)+xiC
′
i(1); and (2) any binary

Boolean constraint C ′
ij can be rewritten as a multilinear polynomial of degree

2: c′
ij(x) = (1 − xi)(1 − xj)C ′

ij(0, 0) + (1 − xi)xjC
′
ij(0, 1) + xi(1 − xj)C ′

ij(1, 0) +
xixjC

′
ij(1, 1). From this, we can simplify C′ just by simplifying polynomials:

f(x) = C ′
∅ +

n∑

i=1

C ′
i(xi) +

∑

ij∈E(C′)

C ′
ij(xi, xj) = C ′

∅ +
n∑

i=1

c′
i(x) +

∑

ij∈E(C′)

c′
ij(x) (1)

= C∅ +
n∑

i=1

xici +
∑

1≤i<j≤n

xixjcij (2)

where we note that the last part of Eq. 1 is a sum of a constant, some linear
functions, and some multilinear polynomials of degree 2, and is thus itself a
multilinear polynomial of degree 2 (or less). Equation 2 then follows from Eq. 1
by multiplying out into monomials and then grouping the coefficients of each
similar monomial. This can be done in time linear in the number of constraints
and the number of bits needed to encode their coefficients. We note that Eq. 2
corresponds to a VCSP-Instance C comprising a null-term C∅, unary constraints

Ci =
(

0
ci

)

, and binary constraints Cij =
(

0 0
0 cij

)

. 	


The next result shows that a simple VCSP-instance has the minimal constraint
graph of any binary instance that implements the same fitness function:

Theorem 2. Let C be a simple binary Boolean VCSP-instance. If the binary
Boolean VCSP-instance C′ is magnitude-equivalent to C, then E(C) ⊆ E(C′).

Proof. Let ei ∈ {0, 1}n be a variable assignment that sets the ith variable to
one, and all other variables to zero. Similarly, let eij ∈ {0, 1}n be a variable
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assignment that sets the ith and jth variables to one, and all other variables to
zero. Since C implements f , we have:

f(eij) − f(ei) − f(ej) + f(0n) = cij (3)

where we take cij = 0 if ij /∈ E(C). Similarly, if C′ also implements f , we have:

f(eij) − f(ei) − f(ej) + f(0n) = C ′
ij(1, 1) − C ′

ij(1, 0) − C ′
ij(0, 1) + C ′

ij(0, 0)

If ij ∈ E(C) then cij �= 0, so C ′
ij(1, 1) − C ′

ij(1, 0) − C ′
ij(0, 1) + C ′

ij(0, 0) �= 0 and
hence ij ∈ E(C′). 	


4 Sign-Equivalence

In the previous section we considered the equivalence class of all VCSP-instances
which implement precisely the same fitness function. However, when investigat-
ing the performance of local search algorithms, the exact values of the fitness
function are not always relevant; it may be sufficient to consider only the fitness
graph.

For example, consider a fitness function f , implemented by a VCSP-instance
C, where all fitness values are distinct, but there is at least one pair i, j of
positions with no constraint Cij . Now consider the new fitness function f ′(x) =
2f(x)+Cij(xi, xj) where Cij = [0, 0; 0, 1]. The fitness graph corresponding to f ′

is unchanged (since all fitness values given by 2f(x) differ by at least 2, every
edge is still present in the fitness graph, and no orientations are changed by
the new constraint), but we cannot eliminate this new Cij constraint without
changing the precise values of the fitness function. To capture this similarity
between f and f ′, we introduce a more abstract equivalence relation:

Definition 6. If two VCSP-instances C1 and C2 give rise to the same fitness
graph, then we will say they are sign-equivalent.

As with magnitude-equivalence, we will show that for binary Boolean VCSP-
instances it is possible to define a normal form or minimal representative member
of each equivalence class of sign-equivalent VCSP-instances with a unique min-
imal constraint graph. Unfortunately, we will see that, unlike the situation for
magnitude-equivalence, this minimum sign-equivalent constraint-graph is NP-
hard to compute.

Definition 7. In a Boolean fitness graph G with vertex set {0, 1}n, we will say
that i sign-depends on j if there exists an assignment x ∈ {0, 1}n such that:

xx[i �→ xi] ∈ E(G) but x[j �→ xj ]x[i �→ xi, j �→ xj ] �∈ E(G) (4)

Note that i sign-depends on j if and only if, for any fitness function f that
corresponds to the fitness graph G, there exists x ∈ {0, 1}n such that:

sgn(f(x[i �→ xi]) − f(x)) �= sgn(f(x[i �→ xi, j �→ xj ]) − f(x[j �→ xj ])). (5)

We will say that i and j sign-interact if i sign-depends on j or j sign-depends
on i (or both). If i and j do not sign-interact then we will say that they are
sign-independent.
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Definition 8. A simple binary Boolean VCSP-instance C with associated fitness
graph GC is called trim if for all ij ∈ E(C), i and j sign-interact in GC.

Our sign-equivalent analog of Theorem 1 guarantees a normal form:

Theorem 3. Any simple binary Boolean VCSP-instance C′ can be transformed
into a trim VCSP-instance C that is sign-equivalent to C′.

To prove Theorem 3 we now establish two propositions: Proposition 1 connects
the magnitude of constraints with their effect on fitness graphs, and Proposition 2
connects the magnitude of constraints to sign-interaction.

Proposition 1. Given a simple binary Boolean VCSP-instance C implementing
a fitness function f , if removing the constraint Cij changes the corresponding
fitness graph, then for at least one k ∈ {i, j} there exists some x ∈ {0, 1}n with
xi = xj = 1 such that:

cij ≥ f(x) − f(x[k �→ 0]) > 0 or cij ≤ f(x) − f(x[k �→ 0]) < 0 (6)

Proof. Without loss of generality (by swapping i and j in the variable numbering
if necessary), we can suppose that k = i. Consider two cases:

Case 1 (cij > 0): If removing Cij changes the fitness graph, then there exists
some x ∈ {0, 1}n with xi = xj = 1 such that:

f(x) > f(x[i �→ 0]) but f(x) − cij ≤ f(x[i �→ 0]). (7)

We can re-arrange Eq. 7 to get cij ≥ f(x) − f(x[i �→ 0]) > 0

Case 2 (cij < 0): This is the same as case 1, except that the direction of the
inequalities in Eq. 7 are reversed. 	

Proposition 2. Given a simple binary Boolean VCSP-instance C implementing
a fitness function f , if there exists a constraint Cij in C, some assignment x ∈
{0, 1}n with xi = xj = 1, and some k ∈ {i, j} such that:

cij ≥ f(x) − f(x[k �→ 0]) > 0 or cij ≤ f(x) − f(x[k �→ 0]) < 0 (8)

then i sign-depends on j in the associated fitness graph GC.

Proof. As in the proof of Proposition 1, we can suppose that k = i (by swapping
i and j in the variable numbering if necessary). Also, as in the proof of Proposi-
tion 1, the case for cij < 0 is symmetric (by flipping the direction of inequalities)
to cij > 0. Thus, we will just consider the case where k = i and cij > 0:

Given that Eq. 8 tells us that f(x) > f(x[i �→ 0]) (i.e., that x[i �→ 0]x ∈
E(GC)), to establish that i sign-depends on j per Definition 7, we need to show
that f(x[j �→ 0]) ≤ f(x[i �→ 0, j �→ 0]) (i.e., that x[i �→ 0, j �→ 0]x[j �→ 0] �∈
E(GC)). So, let us look at the difference of the latter:

f(x[j �→ 0]) − f(x[i �→ 0, j �→ 0]) = f(x) − f(x[i �→ 0]) − cij ≤ 0 (9)

where the equality follows from Definition 2 (C implements f) and Definition 5
(C is simple), and the inequality follows from the first part of Eq. 8. 	
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Proof (of Theorem 3). Note that Eqs. 6 and 8 specify the same conditions,
hence the negation of this condition can be used to glue together the contra-
positives of Proposition 2 (if i and j are sign-independent then Eq. 6 does not
hold) and Proposition 1 (if Eq. 8 does not hold then C ′

ij can be removed from
C′ without changing the corresponding fitness graph). So we can convert C′ to a
trim VCSP-instance that is sign-equivalent to C′ by simply removing all C ′

ij ∈ C′

where i and j are sign-independent in the associated fitness graph GC′ . 	

The next result is the sign-equivalence analog of Theorem 2. It shows that

a trim VCSP-instance has the minimal constraint graph of any binary instance
with the same associated fitness graph.

Theorem 4. Let C be a trim binary Boolean VCSP-instance. If the binary
Boolean VCSP-instance C′ is sign-equivalent to C, then E(C) ⊆ E(C′).

To prove Theorem 4, we just need to show that constraints between sign-
interacting positions cannot be removed while preserving sign-equivalence. That
is, we just need the following proposition:

Proposition 3. Let C be a binary Boolean VCSP-instance with associated fit-
ness graph GC. If i, j sign-interact in GC, then the constraint Cij in C is non-zero.

Proof. Without loss of generality, assume that we have an edge in GC from
x[i �→ xi] to x. Thus, the fitness function f implemented by C must satisfy the
following two inequalities:

f(x) > f(x[i �→ xi]) and f(x[j �→ xj ]) ≤ f(x[i �→ xi, j �→ xj ]) (10)

Define gi(xi) = Ci(xi) +
∑

k �=j Cik(xi, xk) and similarly for gj . Also let Kij(x)
be the part of f independent of xi, xj : i.e., f(x) = Kij(x) + gi(xi) + gj(xj) +
Cij(xi, xj). Rewriting (and simplifying) the two parts of Eq. 10, we get:

gi(xi) + Cij(xi, xj) > gi(xi) + Cij(xi, xj) (11)
gi(xi) + Cij(xi, xj) ≤ gi(xi) + Cij(xi, xj) (12)

These equations can be rotated to sandwich the gi terms:

Cij(xi, xj) − Cij(xi, xj) > gi(xi) − gi(xi) ≥ Cij(xi, xj) − Cij(xi, xj) (13)

which simplifies to Cij(xi, xj) − Cij(xi, xj) > Cij(xi, xj) − Cij(xi, xj) and – due
to the strict inequality – establishes that Cij is non-zero. 	


However, unlike with magnitude-equivalence, it is NP-hard to determine a
minimal sign-equivalent VCSP-instance, as the next result shows:

Theorem 5. The problem of deciding whether i and j sign-interact in a given
simple binary Boolean VCSP-instance is NP-complete.
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Proof. To see that this problem is in NP, note that we can provide a variable
assignment x as a certificate and check that under that variable assignment
either i sign-depends on j or j sign-depends on i (or both).

We will establish NP-hardness by reduction from the SubsetSum problem,
which is known to be NP-complete [9]: A set of integers {s1, . . . , sn} and a target
t is a yes-instance of the SubsetSum problem if there exists some subset S ⊆ [n]
such that

∑
i∈S si = t.

Now consider a simple binary Boolean VCSP-instance C on n + 2 variables,
that implements fitness function f and has associated fitness graph GC , whose
constraint graph has the shape of a star, with central variable position n + 2:

x1

1

x2

1

· · · xn−1

1

xn

1

xn+2

−(3t + 1)

xn+1

1

3s23s1 3sn−1 3sn

2

Claim: 〈{s1, . . . , sn}, t〉 is a yes-instance of SubsetSum if and only if n+1 and
n + 2 sign-interact.

We clearly have that for all x ∈ {0, 1}n+2, f(x[n + 1 �→ 1]) > f(x[n + 1 �→ 0]),
so n + 1 does not sign-depend on n + 2. Thus our claim becomes equivalent to
verifying the conditions under which n + 2 sign-depends on n + 1. Let’s look at
the two directions of the if and only if in the claim:

Case 1 (⇒): If 〈{s1, . . . , sn}, t〉 ∈ SubsetSum, then there is a subset S ⊆ [n]
such that

∑
i∈S si = t. Let eS ∈ {0, 1}n be the variable assignment such that for

any i ∈ S, eS [i] = 1 and for any j �∈ S, eS [j] = 0. We have that:

f(eS01) = |S| − 1 f(eS11) = |S| + 2
f(eS00) = |S| f(eS10) = |S| + 1

By Eq. 5, these imply that n + 2 sign-depends on n + 1.

Case 2 (⇐): If 〈{s1, . . . , sn}, t〉 �∈ SubsetSum, then for any S ⊆ [n] we either
have

∑
i∈S si ≤ t − 1 or

∑
i∈S si ≥ t + 1. Thus, given an arbitrary assignment

eS ∈ {0, 1} we have two subcases:

If
∑

i∈S

si ≤ t − 1 then: Or, if
∑

i∈S

si ≥ t − 1 then:

f(eS01) − f(eS00) ≤ −4 f(eS01) − f(eS00) ≥ 2
f(eS11) − f(eS10) ≤ −2 f(eS11) − f(eS10) ≥ 4

In either subcase, sgn(f(eS01)−f(eS00)) = sgn(f(eS11)−f(eS10)), so by Eq. 5,
n + 2 does not sign-depend on n + 1. 	




Representing Fitness Landscapes by Valued Constraints 309

5 Tree-Structured Boolean VCSP-instances

In this section, we will prove the following:

Theorem 6. For a binary Boolean VCSP instance C on n variables, if the
constraint-graph of C is a tree, then any directed path in the associated fitness
graph GC has length at most

(
n
2

)
+ n.

Note that this result bounds the length of any directed path in GC , not just
the path taken by a particular local-search algorithm. Thus, on such landscapes
even choosing the worst possible sequence of improving moves results in a local
optimum being found in polynomial time.

We will show in Sect. 6 that the conditions of being Boolean and tree-
structured are essential to obtain a polynomial bound on the length of all paths.
To see that the bound in Theorem 6 is the best possible for binary Boolean
tree-structured VCSP-instances, consider the example below:

Example 1. (Path of length
(
n
2

)
+ n) Consider the following binary Boolean

VCSP-instance C:

x1 x2 x3 · · · xn

(
0
n

)(
1 0
0 1

) (
2 0
0 2

) (
3 0
0 3

) (
n − 1 0

0 n − 1

)

To obtain a path of length
(
n
2

)
+n in the corresponding fitness graph GC , consider

an initial variable assignment of x = (10)
n
2 if n is even and x = 0(10)

n−1
2 if n is

odd, and always select the leftmost variable that is able to flip. This will increase
the fitness by 1 at each step, starting from 0 to

(
n
2

)
+ n.

For example, when n = 4, this gives the following sequence of 11 assignments,
each of which increases the value of the fitness function by 1:

0101→1101→1001→0001→0011→0111→1111→1110→1100→1000→0000 (14)

For the proof of Theorem 6, we introduce some further definitions.

Definition 9. Given any directed path p = x1 . . . xt . . . xT in a fitness graph G,
define the flip function as m(t) = (i �→ b) where xt+1 ⊕ xt = ei and b = xt+1

i

(i.e., the i-th variable is flipped at time t to value b).

For illustration, consider the sequence of moves listed in Eq. 14 of Example 1. It
corresponds to the following flip function:

t 1 2 3 4 5 6 7 8 9 10
m(t) 1 �→ 1 2 �→ 0 1 �→ 0 3 �→ 1 2 �→ 1 1 �→ 1 4 �→ 0 3 �→ 0 2 �→ 0 1 �→ 0

To obtain the bound on the length of paths given in Theorem 6, we will identify
a structure in the flip function, to bound the maximum possible value for T .
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Definition 10. We say that a flip m(t′) = (j �→ c) supports a flip m(t) =
(i �→ b) if t′ < t and Cij(b, c) − Cij(b, c) > Cij(b, c) − Cij(b, c); if xt

j = c, then
the support is said to be strong.

It is useful to note that the inequality on Cij is symmetric in the sense that:

Cij(b, c) − Cij(b, c) > Cij(b, c) − Cij(b, c)

⇔ Cij(b, c) − Cij(b, c) > Cij(b, c) − Cij(b, c)

⇔ Cji(c, b) − Cji(c, b) > Cji(c, b) − Cji(c, b)

(15)

Definition 11. Given a binary Boolean VCSP-instance C implementing fitness
function f , the fitness contribution of the variable at position i in assignment
x, restricted to S ⊆ [n] is defined to be:

fS
i (b|x) =

{
Ci(b) if i ∈ S

0 otherwise

}

+
∑

j∈NC(i)∩S

Cij(b, xj) (16)

if S = [n] then we just write fi rather than f
[n]
i .

Note that for any path p in G, if m(t) = (i �→ b) then fi(b|xt) > fi(b|xt).
We now introduce an encouragement relation between a flip and its most

recent strong supporting flip, if there is one:

Definition 12. We say that a flip m(t) = (i �→ b) is encouraged by its most
recent strong supporting flip m(t′) = (j �→ c), and write (t′, j �→ c) ← (t, i �→ b).

If there are no strong supporting flips, then we say that a flip m(t) = (i �→ b)
is courageous, and write ⊥ ← (t, i �→ b).

Note that if (t′, j �→ c) ← (t, i �→ b), then t′ < t and i ∈ NC(j).
For illustration, consider the sequence of moves listed in Eq. 14 of Example 1.

It corresponds to the following encouragement graph:

⊥ ← (1, 1 �→ 1) ⊥ ← (2, 2 �→ 0) ← (3, 1 �→ 0)
⊥ ← (4, 3 �→ 1) ← (5, 2 �→ 1) ← (6, 1 �→ 1)
⊥ ← (7, 4 �→ 0) ← (8, 3 �→ 0) ← (9, 2 �→ 0) ← (10, 1 �→ 0)

Proposition 4. If (t1, j �→ c) ← (t2, i �→ b) (or if ⊥ ← (t2, i �→ b), set t1 = 0)
then for all t1 < t′ ≤ t2 we have fi(b|xt′

) − fi(b|xt′
) ≥ fi(b|xt2) − fi(b|xt2) > 0.

Proof. Define the set of temporary supports Sw as the set of positions of flips
after t1 that supported (t2, i �→ b) but weren’t strong (i.e., they were flipped
back by the time we got to t2: for supportive (t′′, k �→ a) with t′′ > t1 we have
k ∈ Sw ⇒ a �= xt2 [k]).

Consider any flip m(t′) = (k �→ a) for t′ ∈ [t1 + 1, t2 − 1]. Since it either
didn’t support (t2, i �→ b) (and so had Cij(b, a) − Cij(b, a) ≤ Cij(b, a) − Cij(b, a)
by Eq. 15) or was a temporary support, we have that:

f
[n]−Sw

i (b|xt′+1) − f
[n]−Sw

i (b|xt′+1) ≤ f
[n]−Sw

i (b|xt′
) − f

[n]−Sw

i (b|xt′
) (17)
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Thus δi(t′) = f
[n]−Sw

i (b|xt′
) − f

[n]−Sw

i (b|xt′
) is monotonically non-increasing in

t′ over the time interval [t1 + 1, t2]. So:

f
[n]−Sw

i (b|xt′
) − f

[n]−Sw

i (b|xt′
) ≥ f

[n]−Sw

i (b|xt2) − f
[n]−Sw

i (b|xt2) (18)

Since every position k ∈ Sw supported (t2, i �→ b) but is absent in xt2 ,
we must have fSw

i (b|xt2) − fSw
i (b|xt2) ≤ fSw

i (b|xt′
) − fSw

i (b|xt′
). Noting that

fi = f
[n]−Sw

i + fSw
i then lets us combine this with Eq. 18 (and the fact that

fi(b|xt2) > fi(b|xt2)) to complete the proposition. 	

By Definition 12, each flip can only be encouraged by at most one other flip,
so each node in the encouragement graph has out-degree at most one. Directed
graphs where each vertex has at most one parent are forests, so the encourage-
ment graph is a forest. This forest has a component for each courageous flip, and
we will now show that there are at most n of these:

Proposition 5. At each variable position i, only the first flip can be courageous.

Proof. Consider a courageous flip ⊥ ← (t, i �→ b), by Proposition 4, we know
that for all t′ < t: fi(b|xt′

) − fi(b|xt′
) ≥ fi(b|xt) − fi(b|xt) > 0 Thus, there is no

time t′ ≤ t such that i could have flipped to b: hence i was always at b for t′ ≤ t.
So the courageous flip had to be the first flip at that position. 	

We will now prove that an encouragement tree cannot double-back on itself in
position (Proposition 6), and that every branch is a branch in position (Propo-
sition 7). When the constraint graph is itself a tree, this will imply that each
tree in the encouragement forest is a sub-tree of the constraint graph.

Proposition 6. If (t1, i �→ a) ← (t2, j �→ b) ← (t3, k �→ c) then i �= k.

Proof. Since (t1, i �→ a) strongly supported (t2, j �→ b), we have xt2
i = a. If,

for the sake of contradiction, we assume that i = k then a = c (because if we
had c = a then the two encouragements would force a contradiction via clashing
Eq. 15) and by Proposition 4: fi(a|xt′

) − fi(a|xt′
) ≥ fi(a|xt3) − fi(a|xt3) ≥ 0

for all t2 < t′ ≤ t3. But this means that i cannot be flipped to a and thus
m(t3) = (i, a) is not a legal flip. This is a contradiction and so i �= k. 	

Proposition 7. For all i, j and t1 < t2 ≤ t3: if (t1, i �→ a) ← (t2, j �→ b) and
(t1, i �→ a) ← (t3, j �→ c), then t2 = t3.

Proof. From Proposition 4, we can see that for all t′ ∈ [t1 + 1, t3], fj(c|xt′
) −

fj(c|xt′
) > 0, so b = c and j couldn’t have flipped from c to c between t2 and t3.

Thus, for (t2, j �→ c) to be a legal flip, we must have t2 = t3. 	

Now, if we look along the arrows then each flip in p is the start of a path of
encouraged-by links that ends at one of the n courageous flips.

One final case to exclude is that there might be two encouragement paths
that go in the opposite direction over the same positions. This cannot happen:
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Proposition 8. Having both of the following encouragement paths is impossible:

⊥ ← (t1, i1 �→ b1) ← (t2, i2 �→ b2) ← · · · ← (tm, im �→ bm) (19)
⊥ ← (sm, im �→ cm) ← (sm−1, im−1 �→ cm−1) ← · · · ← (s1, i1 �→ c1) (20)

Proof. Without loss of generality (by relabeling), we can assume that t1 < s1.
We can extend this with the following claim:

Claim: If tk < sk then tk+1 < sk+1

Since (tk, ik �→ bk) ← (tk+1, ik+1 �→ bk+1), we have, for all t ∈ [tk +
1, tk+1], xt[ik] = bk. Thus we can’t have ik flipping in that interval, so sk > tk+1.

But now look at (sk+1, ik+1 �→ ck+1) ← (sk, ik �→ ck). This shows that we
also have, for all t′ ∈ [sk+1 + 1, sk], xt′

[ik+1] = ck+1. So for both flips at ik+1 to
happen, we need sk+1 > tk+1.

Applying the claim repeatedly gets us tm < sm. But this means that im
flipped before m(sm), so by Proposition 5 (sm, im �→ cm) could not have been
courageous. 	

Proof (of Theorem 6). Consider any path p in the fitness graph, and its cor-
responding flip function m. By the completeness of Definition 12, we know that
every flip must have been either courageous or encouraged.

Any encouraged flip is the end-point of a unique (non-zero length) encour-
agement path in the constraint graph starting from some courageous flip (where
Proposition 6 established that they’re encouragement paths, not walks; and
Proposition 7 established that the encouragement paths are uniquely determined
by the variable positions that they pass through.) From Proposition 8, we know
that there cannot be two encouragement paths that traverse the same positions
but in opposite directions. Thus, there can only be as many non-zero-length
encouragement paths as undirected paths in our constraint graph. Since our
constraint graph is a tree, an undirected non-zero length path is uniquely deter-
mined by its pair of endpoints. Thus, there are at most

(
n
2

)
of these paths.

From Proposition 5, there are at most n courageous flips (encouragement
paths of length 0). Thus, our path p must have length at most n +

(
n
2

)
. 	


6 Long Paths in Landscapes with Simple Constraint
Graphs

In this section we show that the conditions in Theorem 6 are essential. We exhibit
binary VCSP-instances with very simple constraint graphs where the associated
fitness graphs have exponentially-long directed paths.

Example 2 (Domain size 3). Consider a binary VCSP-instance C, with vari-
ables xn, xn−1, . . . , x2, x1, x0, and constraints {Cn,n−1, . . . , C32, C21, C10} over
the uniform domain D = {0, 1,�}, where each constraint Cij is represented by
the following matrix:

Cij = 3i−1

⎛

⎝
1 2 3
2 3 1
3 1 2

⎞

⎠
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Even though the constraint graph of C is just a path of length n, we now show the
corresponding fitness graph, GC , contains a directed path of exponential length.

Notice that given two natural numbers M,M ′ < 2n written in binary as xM ,
xM ′ ∈ {0, 1}n with the least significant digit as x0, we have that if M ′ > M then
f(M ′) > f(M). Thus, counting up in binary from 0n+1 to 01n is monotonically
increasing in fitness. However, xM+1 is often more than a single flip away from
xM (consider the transition from xM = 01n for an extreme example). We handle
these multi-flip cases with our third domain value, �, as follows: (1) given xM =
y01k where y ∈ {0, 1}n−k, we proceed to replace the 1s in the right-most block
of 1s by �, starting from xM

k−1 and moving to the right; (2) from y0�k we can
take a 1-flip to y1�k (regardless of y0 = 0 or 1); (3) from x′ = y1�k, we replace
the �s by 0s, starting from the rightmost � (i.e., x′

0) and moving to the left.
This lets our sequence of moves count in binary from 0n+1 to 01n, while using

extra steps with �s to make sure all transitions are improving 1-flips; thus, this
path in the fitness graph has a length greater than 2n.

Our final example is a binary Boolean VCSP where the constraint graph
has tree-width two and maximum degree three, but the associated fitness graph
contains an exponentially long directed path. This example is a simplified and
corrected version of a similar example for the Max-Cut problem, described by
Monien and Tscheuschner [15]. Note, however, that by allowing general valued
constraints, instead of just Max-Cut constraints, we are able to reduce the
required maximum degree from 4 to 3.

Example 3 (Tree-width 2). Consider a binary Boolean VCSP-instance C with
n = 4K + 1 variables. The constraint graph contains a sequence of disjoint
cycles of length four, linked together by a single additional edge joining each
consecutive pair of cycles. The final cycle is replaced by a single variable xn

with unary constraint
(

0
−wK

)

. Hence the constraint graph of C has maximum

degree three and treewidth two. The i-th cycle (for 0 ≤ i ≤ K − 1) has the
following constraints (where the wi values are defined recursively with w0 = 0):

· · ·x4i+1

x4i+2

x4i+4

x4i+3

· · ·

(2wi + 2)
(

0 0
0 1

)

(wi + 1)
(

1 0
0 1

)

wi

(
1 0
0 1

)

(2wi + 4)
(

1 0
0 1

)

(2wi + 3)
(

1 0
0 1

)

(3wi + 6
︸ ︷︷ ︸

wi+1

)
(

1 0
0 1

)

To begin the long path all variables are assigned 0, except xn = 1. The path will
proceed by always flipping variables in the smallest 4-cycle block possible.

Within each 4-cycle block, let us write the 4 variables by decreasing index as
x4i+4x4i+3x4i+2x4i+1. We will make the following transitions within each cycle: if
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x4(i+1)+1 = 1 then we’ll transition 0000 → 1000 → 1001 → 1101; if x4(i+1)+1 = 0
then we’ll transition 1101 → 0101 → 0100 → 0110 → 0010 → 0011 → 0001 →
0000. Every time that x4i+1 is flipped from 0 to 1 or vice versa, we’ll recurse to
the (i − 1)th cycle. Because x4i+1 ends up flipping from 1 to 0 twice as often as
x4(i+1)+1, this means that we double the number of flips in each cycle. Variable
xn will flip once, from 1 to 0, due to the unary constraint, which will cause
x4(K−1)+1 to flip twice from 1 to 0, which will cause x4(K−2)+1 to flip four times
from 1 to 0, and so on, until eventually this will cause x1 to flip 2K times from
1 to 0. Hence we have an improving path of length greater than 2K .

7 Conclusion

In this paper, we have considered the broad class of fitness landscapes that can
be modelled as arising from the combined effect of simple interactions of a few
variables, where each of these interactions is described by an arbitrary valued
constraint. Modelling fitness landscapes in this way allows us to classify them
in new ways: for example by identifying a minimal constraint graph, and then
characterising properties of this constraint graph.

We have shown that when a fitness landscape over Boolean variables has
a (minimal) constraint graph that is tree-structured, then finding a local opti-
mum by any local search algorithm takes only polynomial time. However, over a
slightly larger domain, or allowing even slightly more general constraint graphs,
we have shown examples where some local search algorithms can take exponen-
tial time to find even a local optimum.

Focusing on the maximum length of improving paths in a fitness graph, rather
than the run-time of a particular local search algorithm, lets us use our results
in settings where the details of the local search algorithm are unknown or highly
contingent.

The most notable example of this is in modeling biological evolution. In the
context of a model of biological evolution, each variable assignment represents
the values of the alleles at a sequence of genetic loci. The constraint graph can
then be interpreted as a gene-interaction network. The notion of sign-interaction
that is central to Sect. 4 is based on the biological idea of sign-epistasis that is
central to the analysis of evolutionary dynamics [6,11,17,18]. In such a model,
different local search algorithms correspond to the evolutionary dynamics of
populations with different sizes and structures [11]. Since the details of these
population structures, and thus the precise evolutionary dynamics, are often
unknown (or even potentially unknowable in historic cases), it is very helpful to
be able to reason over wide classes of local search algorithms, as we do here.

In settings where locally optimal assignments cannot be efficiently found by
any local search algorithm, the computational complexity and the combinatorial
structure of the fitness graph can be viewed as an ultimate constraint, that
prevents evolution from stabilizing at a local fitness peak [11]; such cases will
give rise to open-ended evolution. By identifying which families of constraint
graphs lead to intractable local search problems, we can therefore classify which
forms of gene-interaction network enable open-ended evolution.
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Beyond the context of biological evolution, we also believe that the tools
for classifying fitness landscapes that we have begun to develop here will allow
considerable further progress, and may eventually help to shed more light on the
question of why local search algorithms can be extremely effective in practice.
Another possible research direction is to use the analysis of constraint graphs
and encouragement graphs to design more effective local search algorithms.

Acknowledgments. David A. Cohen was supported by Leverhulme Trust Grant
RPG-2018-161.
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Abstract. This paper introduces a systematic approach for estimating
the number of solutions of cardinality constraints. A main difficulty of
solutions counting on a specific constraint lies in the fact that it is, in
general, at least as hard as developing the constraint and its propaga-
tors, as it has been shown on alldifferent and gcc constraints. This
paper introduces a probabilistic model to systematically estimate the
number of solutions on a large family of cardinality constraints includ-
ing alldifferent, nvalue, atmost, etc. Our approach is based on their
decomposition into range and roots, and exhibits a general pattern
to derive such estimates based on the edge density of the associated
variable-value graph. Our theoretical result is finally implemented within
the maxSD search heuristic, that aims at exploring first the area where
there are likely more solutions.

Keywords: Cardinality constraints · Counting · Random graphs

1 Introduction

Dealing with a combinatorial problem often leads to the natural question of
computing or estimating its number of solutions. Such a question arises, for
instance, in several works on probabilistic reasoning and machine learning [8,9],
or when exploring the structure of the solution space [17]. Counting solutions has
indeed been an active research topic in Constraint Programming, in particular on
global constraints [13]. Unfortunately, designing an efficient counting algorithm
for a specific constraint is as hard as the constraint development itself. Hence,
solution counting methods require customized counting algorithms for bounding,
or estimating, the number of solutions for each global constraint. We propose
here a systematic method to estimate the number of solutions of most of the
cardinality constraints.
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This article focuses on ten of them: alldifferent, nvalue, atmostNValues,
atleastNValues, occurrence, atmost, atleast, among, uses, disjoint. They
all constrain the number of occurrences of certain values or the number of dif-
ferent values in a solution. They can be mathematically modelled with bipartite
graphs. In [13], the problem of counting solutions for alldifferent and gcc
is transformed into counting matchings in these graphs. Solving such problems
is very hard: they often belong to the #P-complete complexity class. This is
why counting-based search, as presented in [13], are not based on exact counting
but on estimations or upper bounds. In this article, we introduce a probabilistic
approach to compute such an estimation.

In [2], the authors introduce two new global constraints range and roots,
that can be used to specify many cardinality constraints. In other words, for
almost every cardinality constraint, there is an equivalent model using only the
more primitive range and roots constraints (and some arithmetic constraints).
This equivalent model is called the decomposition of the initial cardinality con-
straint. We show how to use the range and roots decomposition for counting
solutions. More precisely, we develop a probabilistic approach to estimate the
number of solutions on a range and on a roots constraint and we derive from it a
systematic method to estimate the number of solutions on many cardinality con-
straints. Compared to [13], we obtain an estimation instead of an upper bound,
and we propose a method that can be generalized to a large set of cardinality
constraints without redesigning a dedicated model.

Outline: The paper is organized as follows. Section 2 gives an introduction to the
range and roots constraints and some materials to understand the associated
bipartite graph model. In Sect. 3, we detail how to count exactly the number
of solutions on range and roots and then we apply a probabilistic model to
develop an estimation of the true number of solutions. In Sect. 4, we give the
range and roots decomposition and an estimation of the number of solutions
for several cardinality constraints, and we synthesize our estimators under a
general formula. In Sect. 5, we experiment our probabilistic estimators within
the counting-based strategy maxSD.

2 Preliminaries : Introduction to range and roots

In all the article, we will use the following notations. Let X = {x1, . . . , xn}, the
set of variables. For each variable xi ∈ X, we note Di its domain, Y =

⋃n
i=1 Di =

{y1, . . . , ym} the union of the domains and D = D1 × . . . × Dn, the Cartesian
product of the domains. We note di = |Di|, the size of the domain of xi. Given
a constraint C on variables X, we write SC(X) the set of solutions of C for X
and we write #C(X) the number of tuples allowed by C for X.

Cardinality constraints restrict the number of occurrences of particular values
taken by set of variables, or the number of values or variables meeting some con-
ditions. Among them, we can list alldifferent, gcc, nvalue, atleast, atmost.
We will come back and define properly these constraints one by one in Sect. 4.
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Most of the time, these constraints can be modelled with a bipartite graph, in
which we are looking for some mathematical structures, such as matchings for
example.

x1

x2

x3

x4

x5

1

2

3

4

5

(a) Value Graph GX,Y

x2

x3

x4

3

5

(b) Sub-Value Graph GX′,Y ′

Fig. 1. Value graph and sub-value graph of Examples 1 and 2.

Definition 1 (Value Graph). Let GX,Y = G(X ∪ Y,E), the graph on nodes
X∪Y , with edges E = {(xi, yj) | yj ∈ Di}. GX,Y is a bipartite graph representing
the domain of each variable. There is an edge between xi and yj iff yj ∈ Di.

Example 1. Let X = {x1, x2, x3, x4, x5} with D1 = {1, 2, 4}, D2 = {2, 3}, D3 =
{1, 2, 3, 5}, D4 = {4, 5} and D5 = {2, 4, 5}. We obtain the value graph GX,Y

depicted on Fig. 1a.

We also define the sub-value graph induced by two subsets X ′ ⊆ X and
Y ′ ⊆ Y , as the value graph restricted to the considered subset of nodes.

Definition 2 (Sub-Value Graph induced by subsets of X and Y ). Let
GX′,Y ′ = G(X ′ ∪ Y ′, E), the value graph of X ′ with E = {(xi, yj) | yj ∈ D′

i =
Di ∩Y ′}. GX′,Y ′ is a bipartite graph representing the sub-domain induced by Y ′

of each variable. There is an edge between xi and yj iff yj ∈ D′
i.

We will also note di(Y ′) = |D′
i| the size of the domain of xi restricted to

the values of Y ′. Example 2 illustrates a sub-value graph of the value graph
presented in Example 1.

Example 2. Let X ′ = {x2, x3, x4} ⊆ X and Y ′ = {3, 5} ⊆ Y . the sub-value
graph induced by X ′ and Y ′ is represented in Fig. 1b.

The range and roots constraints [2] are two auxiliary constraints that can
help decomposing a lot of cardinality constraints. In this study, we will use these
decomposition to count solutions on cardinality constraints. As the authors wrote
in [2], “range captures the notion of image of a function and roots captures
the notion of domain”. In this paper, we use alternative definitions for these
constraints, equivalent to those of [2] and better suited to our needs.
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Definition 3 (range). Let X ′ ⊆ X and Y ′ ⊆ Y . The constraint range

(X,X ′, Y ′) holds if the values assigned to variables of X ′ covers exactly Y ′

and not more. Formally:

Srange(X,X′,Y ′) = {(v1, . . . , vn) ∈ D | {vi|xi ∈ X ′} = Y ′} (1)

Definition 4 (roots). Let X ′ ⊆ X and Y ′ ⊆ Y . The constraint roots

(X,X ′, Y ′) holds if the variables that are assigned to values of Y ′ covers exactly
X ′ and not more. Formally:

Sroots(X,X′,Y ′) = {(v1, . . . , vn) ∈ D | {xi|vi ∈ Y ′} = X ′} (2)

Example 3. Let’s take the value graph given in Example 1a.

– The tuple (2, 2, 3, 4, 5) is allowed by the constraint range(X, {x1, x2, x3},
{2, 3}).

– The tuple (2, 2, 3, 4, 5) is allowed by the constraint roots(X, {x1, x2, x3},
{2, 3}).

Note that range and roots are not exactly reciprocal because every variable
must be assigned to a value, but a value is not necessarily assigned to a variable.

3 Counting Solutions on the range and roots Constraints

As developed in [13], counting solutions on cardinality constraints requires ded-
icated counting algorithm for each constraint. In this section we are interested
by computing the number of solutions on the range and the roots constraints.
The idea is then to only use the decomposition of cardinality constraints into
these more primitive constraints and to reuse the counting method on range
and roots to count solutions on cardinality constraints.

3.1 Exact Solutions Counting on range and roots

In this subsection, we are interested by exactly computing the number of allowed
tuples for a range constraint and a roots constraint.

Proposition 1. Let X ′ ⊆ X and Y ′ ⊆ Y . We note X ′, the complement of X ′

in X, such that X ′ ∪ X ′ = X and X ′ ∩ X ′ = ∅. Then, the number of tuples
allowed by range(X,X ′, Y ′) is

#range(X,X ′, Y ′) = #range(X ′,X ′, Y ′) ·
∏

xi∈X′

di (3)

Proof. On one side, we must consider every possible assignment for the vari-
ables of X ′ that are not constrained:

∏

xi∈X′
di. And on the other side, we must

count every tuples allowed for variables of X ′, that are constrained, that is
simply #range(X ′,X ′, Y ′). The number of tuples is thus the product of these
quantities. ��
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Proposition 1 reduces the problem of counting allowed tuples for every vari-
able in X to only counting tuples for the constrained variables X ′. We thus have
reduced the problem to counting the number of allowed tuples in the case where
every variable and value is constrained.

Proposition 2.

#range(X,X, Y ) =
∏

xi∈X

di −
∑

Y ′�Y

#range(X,X, Y ′) (4)

Proof. Inside GX,Y , we must count every possible assignment of variables of X
such that every value of Y is covered. To do that, we first count the number of
every possible assignment of variables of X in GX,Y (without considering the
range constraint): ∏

xi∈X

di

And then, we withdraw, one by one, the assignment of X such that Y is not
fully covered, that is, for every subset Y ′ � Y , the solutions of range(X,X, Y ′):

∑

Y ′�Y ′
#range(X,X, Y ′)

Indeed, for two different subsets Y ′
1 	= Y ′

2 � Y , the sets of allowed tuples
Srange(X,X,Y ′

1 )
and Srange(X,X,Y ′

2 )
are necessarily disjoint: there is a value yj ∈ Y

such that yj ∈ Y ′
1 and yj /∈ Y ′

2 (or yj ∈ Y ′
2 and yj /∈ Y ′

1), so the value yj must be
assigned to one of the variable of X to satisfy range(X,X, Y ′

1) but none of the
variable of X must be assigned to yj to satisfy range(X,X, Y ′

2) (or vice-versa).
A solution of range(X,X, Y ′

1) cannot be a solution of range(X,X, Y ′
2) and vice-

versa. No solution are counted twice in
∑

Y ′�Y

#range(X,X, Y ′). We have:

#range(X,X, Y ) =
∏

xi∈X

di −
∑

Y ′�Y

#range(X,X, Y ′)

��
Remark 1. Proposition 2 can be used in Proposition 1 and we obtain:

#range(X,X ′, Y ′) =
∏

xi∈X′

di ·
⎛

⎝
∏

xi∈X′
di(Y ′) −

∑

Y ′′�Y ′
#range(X ′,X ′, Y ′′)

⎞

⎠

This formulae requires to recursively sum and evaluate terms over a
exponential-size set and is not tractable in practice (we believe that it is a
#P−complete problem). In next subsection, we will give an approximation which
is much faster to compute. We now deal with the roots constraint.
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Proposition 3. Let X ′ ⊆ X and Y ′ ⊆ Y . We note X ′, the complement of X ′

in X and Y ′ the complement of Y ′ in Y . Then, the number of tuples allowed by
roots(X,X ′, Y ′) is

#roots(X,X ′, Y ′) =
∏

xi∈X′
di(Y ′) ·

∏

xi∈X′

di(Y ′) (5)

Proof. In order to satisfy roots(X,X ′, Y ′), every variable from X ′ must take a
value in Y ′ and no value from Y ′ must be assigned to a variable from X ′, that
is every variable from X ′ must be assigned to values from Y ′:

–
∏

xi∈X′
di(Y ′) represents the number of ways of assigning every variable of X ′

–
∏

xi∈X′
di(Y ′) represents the number of ways of assigning every variable of X ′

��
The formula given by Proposition 3 is polynomial to compute. In practice,

the formula depends on the subsets X ′ and Y ′. Applying the Erdos-Renyi model
on roots allows the estimation of #roots(X,X ′, Y ′) using only the sizes of X ′

and Y ′, with a linear complexity.
In Sect. 4, we compose these constraints to count solutions on other cardi-

nality constraints.

3.2 Probabilistic Model Applied to range and roots

This subsection presents a probabilistic model for cardinality constraints based
on the work of Erdős and Renyi In [5]. The idea is to randomize the domain of
the variables. Then, we use this model to get a computable estimation of the
number of solutions on range and roots.

Erdős-Renyi Model Applied to CSP. In [5], Erdős and Renyi studied the
existence and the number of perfect matchings on random graphs. Expressed in
the vocabulary we introduced above, the idea is to randomize the domain of each
variable such that: for all xi ∈ X and for all yj ∈ Y , the event {yj ∈ Di} happens
with a predefined probability p ∈ [0, 1] and all such events are independent:

P ({yj ∈ Di}) = p ∈ [0, 1] (6)

Erdős-Renyi Model Applied to range Constraint. We will study the
expectancy of the number of solutions of a range constraint within these ran-
dom graphs. In the case where every variable of X and every value of Y are
constrained, the expectancy of #range(X,X, Y ) is a function of n,m and p (as
a reminder, |X| = n and |Y | = m). More precisely:

Proposition 4. In the case where every variable of X and every value of Y are
constrained, there exists a coefficient an,m such that:

E (#range(X,X, Y )) = an,m · pn (7)
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where E (#range(X,X, Y )) is the expectancy of #range(X,X, Y ) under the
hypothesis of the Erdős-Renyi Model.

Proof. To prove this result, we simply reason with a mathematical induction on
|Y | = m. Let |X| = n ∈ N.

Base Case: Let Y = {y} be a singleton. In this particular case, an instance
range(X,X, Y ) have one allowed tuple, if y is inside every domain Di, and have
zero allowed tuple otherwise. Then,

E (#range(X,X, {y})) = 0 ∗ P ({range(X,X, {y}) have no solution})
+ 1 ∗ P ({range(X,X, {y}) have one solution})

= P ({range(X,X, {y}) have one solution})
= P ({∀xi ∈ X, y ∈ Di})

=
n∏

i=1

P ({y ∈ Di}) ,by hypothesis of independence

= pn

We thus set an,1 = 1, which proves the result.

Inductive Step. We assume that the property is true for all |Y | = k ∈
{1, . . . ,m − 1}: ∀Y, such that 1 ≤ |Y | = k ≤ m − 1,∃an,k ∈ N,

E (#range(X,X, Y )) = an,k · pn.

We want to prove that, under this assumption, for a set Y with |Y | = m,
there exists an,m such that E (#range(X,X, Y )) = an,m · pn

According to Proposition 2, we have:

E (#range(X,X, Y ))

= E

(
∏

xi∈X

di

)

−
∑

Y ′⊂Y

E (#range(X,X, Y ′)) , by linearity of the operator E (.)

= E

(
∏

xi∈X

di

)

−
m−1∑

k=1

(
m

k

)

an,k · pn, by hypothesis of induction.

=
∏

xi∈X

E (di) −
m−1∑

k=1

(
m

k

)

an,k · pn, by hypothesis of independence

= (mp)n −
m−1∑

k=1

(
m

k

)

an,k · pn, because ∀xi ∈ X,E (di) = mp

=

(

mn −
m−1∑

k=1

(
m

k

)

an,k

)

· pn
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We have identified the coefficient an,m:

an,m = mn −
m−1∑

k=1

(
m

k

)

an,k (8)

��
Remarking that

(
m
m

)
= 1, we can rewrite 8 as follows:

mn =
m∑

k=1

(
m

k

)

an,k (9)

Also, ∀n ∈ N+, an,1 = 1. These coefficients are referenced as the “triangles
of numbers” in OEIS.1 The coefficients an,m corresponds to the number of pos-
sible surjections from a set of cardinal n into a set of cardinal m.2 There is
a non-recursive formula to compute these coefficients. The following results is
admitted here. An intuition of the proof is that this results is an application of
the inclusion-exclusion principle, see Sect. 1.9. The Twelvefold Way of [18].

Proposition 5. For 0 < m ≤ n,

an,m =
m∑

k=0

(−1)k
(
m

k

)

(m − k)n (10)

Proposition 6 is a property of triangle of numbers and will be used to make
some simplifications for future mathematical developments.

Proposition 6.
an,n = n! (11)

Proof. an,n is the number possible surjections from a set of cardinality n into a
set of cardinality n, which is actually the number of bijections in that specific
case. ��

We can now extend Proposition 4 to the case where the range constraint
only concerns subsets X ′ ⊆ X and Y ′ ⊆ Y :

Proposition 7. Let X ′ ⊆ X and Y ′ ⊆ Y . We note |X ′| = n′ and |Y ′| = m′.

E (#range(X,X ′, Y ′)) = an′,m′ · mn−n′ · pn (12)

1 https://oeis.org/A019538.
2 an,m is actually equal to m! · S2(n,m), where S2(n,m) is the stirling number of

second kind. More information about it can be found in Sect. 1.9 of [18].

https://oeis.org/A019538
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Proof. According to Propositions 1 and 4 and by hypothesis of independence:

E (#range(X,X ′, Y ′)) = E (#range(X ′,X ′, Y ′)) · E

⎛

⎝
∏

xi∈X′

di

⎞

⎠

= an′,m′ · pn′ ·
∏

xi∈X′

E (di)

= an′,m′ · pn′ · (mp)n−n′

= an′,m′ · mn−n′ · pn

��
Erdős-Renyi Model Applied to roots Constraint. We study now the
expectancy of the number of solutions of a roots constraint.

Proposition 8. Let X ′ ⊆ X and Y ′ ⊆ Y . We note |X ′| = n′ and |Y ′| = m′.

E (#roots(X,X ′, Y ′)) = m′n′ · (m − m′)n−n′ · pn (13)

Proof. According to Proposition 3 and by hypothesis of independence:

E (#roots(X,X ′, Y ′)) = E

(
∏

xi∈X′
di(Y ′)

)

· E

⎛

⎝
∏

xi∈X′

di(Y ′)

⎞

⎠

=
∏

xi∈X′
E (di(Y ′)) ·

∏

xi∈X′

E
(
di(Y ′)

)

= (m′p)n
′ · ((m − m′)p)n−n′

= m′n′ · (m − m′)n−n′ · pn

��
The parameter p corresponds to the density of edges in the value graph. To

use the estimators in practice, we need to estimate p: we will later set p to the
division of the sum of domains size by the total number of possible edges: n ·m.

4 Generalization to Cardinality Constraints

This section details, in a systematic way, how to count solutions for many cardi-
nality constraints thanks to their range and roots decompositions. Due to space
limitations, only four constraints are given in detail. For the other six constraints
to which our method applies, a synthesis then summarises all the formulae as
well as the general computation pattern. Each subsection first recalls the defi-
nitions of the considered constraint, then details its decomposition as extracted
from [2] and finally provides the formula for the expectancy of its number of
solution in our model.
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4.1 alldifferent [16]

Definition 5. A constraint alldifferent(X) is satisfied iff each variable xi ∈
X is instantiated to a value of its domain Di and each value yj ∈ Y is chosen
at most once. We define formally the set of allowed tuples:

Salldifferent(X) = {(v1, . . . , vn) ∈ D | ∀i, j ∈ {1, ..., n}, i 	= j ⇔ vi 	= vj} (14)

A decomposition of alldifferent with a range constraint is given by the
following:

alldifferent(X) ⇔ range(X,X, Y ′) ∧ |Y ′| = n

From this decomposition, we can deduce a formula for the expectancy of the num-
ber solutions on an alldifferent constraint, within the Erdős-Renyi Model.

Proposition 9.

E (#alldifferent(X)) =
m!

(m − n)!
· pn (15)

Proof. According to the decomposition of alldifferent.

#alldifferent(X) =
∑

Y ′⊆Y, |Y ′|=n|
#range(X,X, Y ′)

Then,

E (#alldifferent(X)) =
∑

Y ′⊆Y, |Y ′|=n|
E (#range(X,X, Y ′))

=
(
m

n

)

· an,n · pn =
m!

(m − n)!
· pn

��

4.2 nvalue [11]

Definition 6. The constraint nvalue(X,N) holds if exactly N values from Y
are assigned to the variables. Formally:

Snvalue(X,N) = {(v1, . . . , vn) ∈ D| N = |{yj ∈ Y |∃i ∈ {1, . . . , n}, vi = yj}|} (16)

A decomposition of nvalue with a range constraint is given by the following:

nvalue(X,N) ⇔ range(X,X, Y ′) & |Y ′| = N

From this decomposition, we can deduce a formula to estimate solutions on
a nvalue constraint, within the Erdős-Renyi Model.

Proposition 10. Let N ∈ N,

E (#nvalue(X,N)) =
(
m

N

)

· an,N · pn (17)

Proof. The proof is the same as Proposition 9. ��
We can generalize Proposition 9 to the case where N is a variable. The set

of solutions for two different values of N are disjoints, then we can simply sum
this estimates on the domain of N to compute an estimate in the general case.
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4.3 among [1]

Definition 7 (among). Let Y ′ ⊆ Y . The constraint among(X,Y ′, N) holds iff
exactly N variables are assigned to value from Y ′.

Samong(X,Y ′,N) = {(v1, . . . , vn)|N = |{xi|vi ∈ Y ′}|}
The decomposition of among is given by the following equivalence:

among(X,Y ′, N) ⇔ roots(X,X ′, Y ′) ∧ |X ′| = N

Proposition 11. Let m′ = |Y ′| and N ∈ N,

E (#among(X,Y ′, N)) =
(
n

N

)

m′N (m − m′)n−N · pn (18)

Proof. According to the decomposition of among, we can write:

#among(X,Y ′, N) =
∑

X′⊆X,|X′|=N

#roots(X,X ′, Y ′)

Indeed, for two different subsets X ′
1,X

′
2 ⊆ X, the sets of solutions of

roots(X,X ′
1, Y

′) and roots(X,X ′
2, Y

′) have an empty intersection, then no
solution is counted twice. And:

E (#among(X,Y ′, N)) =
∑

X′⊆X,|X′|=N

E (#roots(X,X ′, Y ′))

=
∑

X′⊆X,|X′|=N

m′m′
(m − m′)n−|X′| · pn,by Proposition 8

=
(
n

N

)

m′m′
(m − m′)n−N · pn

��
In the same way as for nvalue, we can generalize Proposition 11 to the case

where N is a variable.

4.4 occurrence [4]

Definition 8 (occurrence). Let y ∈ Y , the constraint occurrence(X, y,N)
holds iff exactly N variables are assigned to value y.

Soccurrence(X,y,N) = {(v1, . . . , vn)|N = |{xi|vi = y}|}
The decomposition of occurrence is given by the following equivalence:

occurrence(X, y,N) ⇔ roots(X,X ′, {y}) ∧ |X ′| = N
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Table 1. Counting formulae extracted from range and roots reformulation

Constraint Formula with |X| = n, |X1| = n1, |X2| = n2, |Y | = m and
|Y ′| = m′

alldifferent(X) m!
(m−n)!

· pn
among(X,Y ′, N)

(
n
N

)
m′N (m − m′)n−N · pn

nvalue(X,N)
(
m
N

) · an,N · pn
atmostNValues(X,N)

∑N
k=1

(
m
k

)
an,k · pn

atleastNValues(X,N)
∑n

k=N

(
m
k

)
an,k · pn

occurrence(X, y,N)
(
n
N

)
(m − 1)n−N · pn

atmost(X, y,N)
∑N

k=1

(
n
k

)
(m − 1)n−k · pn

atleast(X, y,N)
∑n

k=N

(
n
k

)
(m − 1)n−k · pn

uses(X,X1, X2) mn−n1−n2 · ∑m
k=1

(
m
k

)
an1,kk

n2 · pn
disjoint(X,X1, X2) mn−n1−n2 · ∑min(n1,m)

k=1

∑min(n2,m−k)
l=1

(
m
k

)(
m−k

l

)
an1,kan2,l ·

pn

Proposition 12. Let N ∈ N,

E (#occurrence(X, y,N)) =
(
n

N

)

(m − 1)n−N · pn (19)

Proof. The proof is the same as Proposition 11 in the case where Y ′ = {y} is a
singleton. ��

Proposition 12 can also be generalized to the case where N is a variable.

4.5 Synthesis

We report the estimators of the number of solutions in Table 1 for several car-
dinality constraints. We observe a pattern in all these formulae: the estimation
of the number of allowed tuples is always pn multiplied by the number of tuples
allowed by the constraint if every domain were equal to the set of values Y (if
the value graph were complete). This remark leads to the following Proposition.

Proposition 13. Let C be a constraint over X with |X| = n, Y be the union
of the domains and p the edge density in the value graph GX,Y , then:

E (#C) = #C∗ · pn (20)

with #C∗ the number of allowed tuples if GX,Y were complete.

Proof. Let SC∗ be the set of allowed tuples if GX,Y were complete. For each
s ∈ SC∗ , let Zs be the random variable such that, Zs = 1 if s is in the set of
allowed tuples SC of C, and Zs = 0 otherwise. A solution s is an instantiation
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Fig. 2. Performances of maxSD ER, maxSD PQZ, dom/wdeg, ibs and abs on 40 hard Latin
Square instances, in number of backtracks (left) and time (right).

of every variable, then, in the Erdős-Renyi Model, P ({Zs = 1}) = E (Zs) = pn.
Then,

E (#C) = E

⎛

⎝
∑

s∈SC∗

Zs

⎞

⎠ =
∑

s∈SC∗

E (Zs) = #C∗ · pn

��
In Sect. 3, we have shown how to count solutions on a range and a roots

constraints and in Sect. 4, how to use the range and roots/decomposition to
estimate the number of solutions on many cardinality constraints. Proposition 13
highlights a general pattern for such estimates. In Sect. 5, we experiment these
probabilistic estimators within counting-based heuristics on some problems using
cardinality constraints.

5 Experimental Analysis

In this section, we present two problems, on which we have run different heuris-
tics: maxSD [13], dom/wdeg [3], abs (activity-based search) [10] and ibs (impact-
based search) [15]. This benchmark has been chosen by taking the problems
in XSCP, CSPLib, MiniZinc which matched our testing needs: no COP, with
cardinality constraints at the core of the problem but no gcc. Also, the lack of
knowledge on how to use maxSD on problems with several constraints restricts a
lot the practical use of the heuristic. These conditions restricted our benchmark
to Latin Squares and Sports Tournament Scheduling.

maxSD consists in choosing a pair variable/value based on the estimation of
the number of remaining solutions. More precisely, for each constraint, and for
each pair variable/value in this constraint, we compute an estimation of the
number of remaining allowed tuples and we associated with each pair a solu-
tion density. maxSD chooses the pair variable/value that maximizes the solution
density among every constraint.



330 G. L. Bianco et al.

We actually do not run maxSD as presented in [13], but a slightly different
version. It consists in re-computing the ordering of the variables only when the
product of the domains size have decreased enough, as suggested in [6]. Here, we
set a threshold at 20%. Also, the coefficients an,m, the binomial coefficients and
the factorials are computed in advance. The computation of the approximations
is thus made in linear time in n.

We first introduce the problem and the cardinality constraints that are used
in the model and then compare their efficiency in terms of solving time and
number of required backtracks. The instances and the strategies are implemented
in Choco solver [14] and we run them on a 2.2 GHz Intel Core i7 with 2.048 GB.

5.1 Latin Square Problem

A Latin Square problem is defined by a n ∗ n grid whose squares each contain
an integer from 1 to n such that each integer appears exactly once per row and
column [12]. The model uses a matrix of integer variables and an alldifferent
constraint for each row and each column. We tested on the 40 hard instances
used in [13] with n = 30 and 42% of holes (corresponding to the phase transition),
generated following [7]. For these instances, we also compare our probabilistic
estimator (maxSD ER) with the estimator that is proposed in [13] (maxSD PQZ)
for alldifferent. We set a time limit to 10 min.

Figures 2 represent the percentage of solved instances in function of the
number of required backtracks, and of the solving time. The strategies maxSD
(for both estimators maxSD ER and maxSD PQZ) and abs performed better than
dom/wdeg and ibs. abs solved more instances than the two versions of maxSD,
but required more backtracks. maxSD seems to perform better on the easiest
instances (in term of number of backtracks). maxSD PQZ has slightly better per-
formances than maxSD ER on the medium instances and have very comparable
performances on the hardest ones.

5.2 Sports Tournament Scheduling Problem

This problem is taken from [19] and is presented as follows: the problem is to
schedule a tournament of n teams over n− 1 weeks, with each week divided into
n/2 periods, and each period divided into two slots. A tournament must satisfy
the following three constraints: every team plays once a week; every team plays
at most twice in the same period over the tournament; every team plays every
other team. The first and the third constraint are modeled with an alldifferent
constraint and the second one is modeled with an atmost constraints. We run
this problem with the different settings: n ∈ {6, 8, 10, 12, 14}.

In Table 2, we report the number of backtracks required (and the time
required) to solve the problem for different values of n with four different heuris-
tics. Here maxSD PQZ cannot be used as there is no estimator for atmost in the
previous work of [13]. Consequently, we only focused on our approach maxSD ER.
We fixed a time limit to 5 min. We observe that maxSD ER outperforms abs and
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dom/wdeg. For n ∈ {6, 8, 10}, maxSD ER and ibs have similar performances but
ibs could not find a solution in less than 5 min for n = 12 and n = 14.

Table 2. Number of backtracks (time in s) for different settings of n

n n = 6 n = 8 n = 10 n = 12 n = 14

maxSD ER 60 (0.239) 10 (0.707) 1056 (3.587) 74168 (92.396) 37883 (128.272)

ibs 3 (0.172) 214 (0.648) 1232 (1.865) TO TO

abs 101 (0.077) 3081 (0.692) 246767 (24.207) TO TO

dom/wdeg 89380 (3.829) TO TO TO TO

We have shown that our probabilistic estimator for alldifferent gives very
comparable result than the estimator given in [13] on the Latin Square instances.
Also our estimators within maxSD ER gives better results than ibs, abs and
dom/wdeg on the Sport Tournament Scheduling problem.

6 Conclusion

In this paper, we have presented a method to estimate the number of solutions of
the range and roots constraints with a probabilistic Erdős-Renyi Model. We can
estimate the number of solutions of ten cardinality constraints using their range
and roots decompositions. We detailed our method on alldifferent, nvalue,
among and occurrence and we report our estimators with atmostNValues,
atleastNValues, atmost, atleast, uses and disjoint. We highlighted a gen-
eral formula to compute such an estimation on cardinality constraints. We have
implemented the heuristic maxSD ER with these new probabilistic estimators and
compare their efficiency to dom/wdeg, abs, and ibs.

We think that the main asset of this approach is its systematic nature. We
have shown here an application of counting solutions for counting based search.
Such an approach could also be used, for example, for uniform random instances
generation, probabilistic reasoning or search space structure analysis.

We did not study the gcc constraint in this article, as its decomposition
involves several non-disjoint subsets of the variables. Further research includes
extending our approach to the case where several range and roots constraints
may apply to a common set of variables. This will lead us to estimators of
the number of solutions for conjunctions of cardinality constraints, or gcc con-
straints.

References

1. Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Math. Com-
put. Modell. 20(12), 97–123 (1994). https://doi.org/10.1016/0895-7177(94)90127-
9. http://www.sciencedirect.com/science/article/pii/0895717794901279

https://doi.org/10.1016/0895-7177(94)90127-9
https://doi.org/10.1016/0895-7177(94)90127-9
http://www.sciencedirect.com/science/article/pii/0895717794901279


332 G. L. Bianco et al.

2. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Range and roots: two
common patterns for specifying and propagating counting and occurrence con-
straints. Artif. Intell. 173(11), 1054–1078 (2009). https://doi.org/10.1016/j.artint.
2009.03.001

3. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search
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Abstract. We look at the empirical complexity of the maximum clique
problem, the graph colouring problem, and the maximum satisfiability
problem, in randomly generated instances. Although each is NP-hard,
we encounter exponential behaviour only with certain choices of instance
generation parameters. To explain this, we link the difficulty of optimi-
sation to the difficulty of a small number of decision problems, which
are already better-understood through phenomena like phase transitions
with associated complexity peaks. However, our results show that indi-
vidual decision problems can interact in very different ways, leading to
different behaviour for each optimisation problem. Finally, we uncover
a conflict between anytime and overall behaviour in algorithm design,
and discuss the implications for the design of experiments and of search
strategies such as variable- and value-ordering heuristics.

1 Introduction

The gap between the best theoretical understanding we have of what makes
problems hard and the behaviour witnessed in practice from modern solvers
remains vast. For many decision problems in random instances, we have a good
general understanding of what happens: as a key parameter is altered, there
is often sharp phase transition from satisfiable to unsatisfiable instances, and
associated with this is a complexity peak, where instances near the transition
are much harder to solve than those far from it on either side [6,16]. (However,
this behaviour is not universal—for example, problems involving more than one
kind of constraint can exhibit much more complicated behaviour [7,15]).

This paper looks at three optimisation problems: maximum clique, graph
colouring, and maximum satisfiability. One view of an optimisation problem is
as a sequence of decision problems—but is that all that is needed to understand
their behaviour? Previous small-scale experiments [12,17] have only been able
to provide an incomplete picture. In this paper we perform experiments on tens
of billions of problem instances, which is finally sufficient to comprehensively
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answer the question: yes, there is a link between individual decision and opti-
misation problems, but these decision problems can interact in many different
ways, leading to complex emergent behaviour. Along the way, we uncover inter-
esting implications for the design of search algorithms, and provide lessons for
future experimenters. Most interestingly, we identify a trade-off between anytime
behaviour and overall behaviour, which could ultimately encourage a rethink of
the entire branch and bound paradigm.

1.1 Experimental Setup

Our experiments are performed on the EPCC Cirrus HPC facility, on systems
with dual Intel Xeon E5-2695 v4 CPUs and 256 GB RAM, running Centos
7.3.1611, with GCC 7.2.0 as the compiler. These machines are optimised for
providing throughput rather than consistent timing measurements, so we avoid
measuring runtimes, and instead use whichever natural measure of work each
solver provides. Our results therefore do not allow for comparisons between dif-
ferent solvers.

In Sect. 2, we use the Glasgow Subgraph Solver implementation1 of Prosser’s
MCSa1 [17]. This is a bit-parallel branch and bound algorithm, which uses a
greedy colouring as its bound [20,22]; it can easily be modified to solve the
decision problem, rather than the optimisation problem. We measure instance
difficulty by counting the number of recursive calls carried out by the algorithm.
Later in the section, we also use the MoMC solver [11]2. MoMC is a more modern
branch and bound solver, which incorporates a number of search and inference
strategies which are chosen dynamically.

In Sect. 3 we use Trick’s implementation3 of the classic DSATUR branch and
bound algorithm [4], and Zhou et al.’s state of the art Color6 solver4 [24] (which
solves only the decision problem). For the Trick solver we measure the number
of recursive calls made, whilst for Color6 we measure the number of backtracks.
In Sect. 4 we use the Clasp solver5 version 3.3.4 [8], and we measure the number
of decisions made.

2 Maximum Clique

We begin by looking at the maximum clique problem. A clique in a graph is a
subset of vertices, each of which is adjacent to every other within the subset, and
a maximum clique is one with as many vertices as possible. For random graphs,
we use the Erdős-Rényi model: by G(n, p) we mean a graph with n vertices, and

1 https://github.com/ciaranm/glasgow-subgraph-solver.
2 https://home.mis.u-picardie.fr/∼cli/EnglishPage.html. Our experiments uncovered

bugs in the published version of this solver—thanks to its authors, our final results
use a fixed version of this solver that is not currently publicly available.

3 https://mat.gsia.cmu.edu/COLOR/color.html.
4 https://home.mis.u-picardie.fr/∼cli/EnglishPage.html.
5 https://potassco.org/clasp/.
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Fig. 1. On top, the difficulty of solving the maximum clique problem in random graphs
G(50, x), G(100, x), G(150, x), and G(200, x). Underneath, the mean size of an optimal
solution. Density is increased in steps of 0.001 with 100,000 samples per step for the
three smaller families, and 1,000 per step for the largest.

an edge between every distinct pair of vertices with probability p. Clique-finding
in Erdős-Rényi graphs is known to be exponentially difficult for current clique
algorithms [3].

2.1 Maximum Cliques in Random Graphs

In Fig. 1 we show the difficulty of solving the maximum clique problem as we
vary the edge probability in Erdős-Rényi graphs with a fixed number of vertices,
as well the mean size of an optimal solution. In extremely sparse and extremely
dense graphs, the algorithm finds all instances extremely easy, whilst at around
densities of 0.8 to 0.96, instances are particularly hard—and unsurprisingly, as
the number of vertices increases, all densities get exponentially harder.
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Fig. 2. Does G(150, x) contains a clique of 20 vertices? Mean search effort for satisfiable
and unsatisfiable instances are also shown separately. Density is increased in steps of
0.001, with 100,000 samples per step.

These rough trends match up with those presented by Prosser [17]. However,
we are using a much larger number of instances: we increase density in steps
of 0.001, and take 100,000 samples per density step. This scale of experiments
reveals a new interesting feature of the plots: the lines are, for lack of a better
term, wiggly. This is most readily apparent towards the left of the graph, where
several slight peaks and troughs are easily visible by eye, but in fact the wiggles
are present throughout the entire plot, with a decreasing “wavelength” as den-
sity increases. The remainder of this section shows that these wiggles are not
an experimental artifact or sampling error, but instead illustrate an important
aspect of the algorithm’s behaviour.

2.2 The Clique Decision Problem

To understand what is going on, we first revert to the clique decision problem.
In Fig. 2 we ask whether G(150, x) contains a clique of twenty vertices. For
very sparse graphs, the answer is obviously no, and the solver can establish this
with no search effort. For very dense graphs, the answer is obviously yes, and the
solver similarly finds all instances easy. For densities in between 0.691 and 0.782,
there is a mix of satisfiable and unsatisfiable instances, but these instances are
hard for the solver. For unsatisfiable instances, the higher the density the harder
the instance, and the hardest density is 0.780, where all but one of the 100,000
instances sampled are satisfiable. Unexpectedly, for satisfiable instances, we do
not get a hard—easy curve, but rather a medium—hard—easy peak, with the
hardest density being 0.756 where 62,587 instances were satisfiable. Instances in
the “medium” region are extremely rare, however.
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Fig. 3. A more detailed picture of difficulty of solving the clique optimisation problem
for G(150, x). Also plotted is the mean search effort to find the optimal solution but
not prove its optimality, and the mean search effort needed to prove optimality after
the optimal solution is found. Finally, each light line shows the mean search effort for
a single decision problem. For each line, density is increased in steps of 0.001, with
100,000 samples per step.
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Fig. 4. The mean difficulty of solving the clique optimisation problem for G(150, x),
also showing the search effort for each actual optimal size. On each of the individ-
ual value lines, darker colours represent exponentially larger sample sizes. Density is
increased in steps of 0.001, with 100,000 samples per step. (Color figure online)

2.3 Decision and Optimisation

In Fig. 3 we simultaneously plot the difficulty of every decision problem, and
show how this correlates with the total search effort seen in Fig. 1. The “total”
line is usually only slightly above whichever decision line is the hardest at a
particular density—even at the hardest density of 0.905, the mean gap between
the hardest decision problem and the overall cost of solving is only a factor of
2.2. This explains the wiggly lines: they are the result of the gaps between the
complexity peaks of different decision problems.

Figure 3 also breaks down the runtimes to show the mean time to find an
optimal solution but not prove its optimality, and the time to prove optimality
once an optimal solution has already been found. These two lines are perfectly
out of phase with each other: densities where finding a solution is relatively easy
are the hardest for proving optimality, and vice-versa.

2.4 Difficulty by Actual Solution Size

Another way of grouping results is presented in Fig. 4. Alongside a plot of mean
search effort, we also show mean search effort only considering instances where
the maximum clique has ω vertices, for each value of ω. The darkness of each
line indicates the relative sample size. The plot shows that at any given density,
there are several common solution sizes, and the difficulty varies considerably
depending upon what the optimal solution size actually is. It also shows that, for
any particular maximum clique size ω, there are unusually low densities where



Understanding the Empirical Hardness of Random Optimisation Problems 339

occasionally this is the optimum, and these instances are very easy. There are
also rare unusually high densities where this is the optimum, and these instances
are very hard. Finally, for densities in the middle, instances with solution size ω
are common, and are of moderate difficulty. Alternatively, for a given instance,
if the maximum clique size is unexpectedly large, the instance will be relatively
easy, whilst if it is unexpectedly small, it will be unusually hard.

Fig. 5. On the left, looking at only instances where the maximum clique has twenty
vertices in G(150, x), and showing the mean search effort, mean time to find but not
prove optimality, the frequency of such instances, and the mean number of times a
clique of that size occurs in any selected instance. On the right, the same, for a maxi-
mum clique of sixty vertices. Density is increased in steps of 0.001 (twenty) or 0.00001
(sixty), with 100,000 samples per step.

2.5 How Common Are Optimal Solutions?

Recall that typically, proving optimality is many times harder than finding an
optimal solution. If an instance has an unusually large optimal solution, this
should make the proof of optimality much easier. But what about finding this
unusually large optimum? We might expect that there will only be one optimal
solution, if the optimum is unusually large, whilst if the optimum is unusually
small, perhaps there are many witnesses to choose from?

In the left-hand plot of Fig. 5 we show that this is the case, looking only at
instances where twenty is the optimal solution. We plot the frequency of optimal
solutions (how common they are, by density), as well as the effort required to find
a first optimal solution but not prove its optimality, and the effort to both find
and prove optimality. Finally, we also solve the maximum clique enumeration
problem, and count how many such optimal solutions exist.

Towards the left of this plot, with densities up to 0.72, instances with a max-
imum clique size of twenty are rare. Furthermore, the total number of optimal
solutions (witnesses) in any given instance is very low, often being one or only a
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few—and nearly all of our search effort is spent finding the optimal, with opti-
mality proofs being easy. As the density rises, the typical number of optimal
solutions per instance also rises, and the time to find but not prove optimality
makes up smaller and smaller portions of the overall runtime.

Interestingly, there is not a straightforward inverse relationship between the
number of optimal solutions and the amount of time required to find an optimal
solution. Rather, finding the unique optimal solution in a lower density graph is
somewhat easier than finding any one of several optimal solutions in a medium
density graph, and it is not until much higher densities that finding becomes eas-
ier again. This is similar to the “medium–hard–easy” complexity peak seen in
Fig. 2. One could conjecture that this is because higher densities are harder over-
all than lower densities. However, the right-hand plot of Fig. 5 looks at instances
where sixty is the optimal solution, with densities between 0.94 and 0.975. At
this stage, higher densities are easier overall—but the same pattern occurs.

Fig. 6. The mean difficulty of solving the clique optimisation problem for G(150, x),
using both the standard search heuristic order for the algorithm, and the opposite
search order. For each line, density is increased in steps of 0.001, with 100,000 samples
per step.

2.6 Anytime Behaviour

To explain this behaviour, we now demonstrate that the algorithm is in fact not
optimised for anytime behaviour, but rather aims to make the proof of optimal-
ity as short as possible. McCreesh and Prosser [14] observe that the branching
strategy used by this algorithm approximates “smallest domain first” [10], and
that (contrary to the claims of the algorithm’s designers) it is not good at find-
ing a strong incumbent quickly. So what if we reverse the branching strategy
used by the algorithm? Fig. 6 compares the behaviour of the heuristic and the
anti-heuristic, showing that the anti-heuristic performs much worse except on
the easiest of instances. However, in Fig. 7, we plot the mean size of the first
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Fig. 7. The mean size of the first solution found expressed as a proportion of the
optimal, for G(100, x), using both the standard search heuristic order for the algorithm,
and the opposite search order. For each line, density is increased in steps of 0.001, with
100,000 samples per step.

Fig. 8. Comparing the solution quality over time for the two different search orders.
We look at instances of G(100, x) where the maximum clique has twenty vertices. Each
time a new incumbent is found, we record the search effort so far; each grid point shows
the relative frequency of new incumbents of that size during that time window, with
darker colours being exponentially more common. We also show termination time, in
the final column. Instances drawn from a run with density increased in steps of 0.001,
with 100,000 samples per step.

Fig. 9. The difficulty of solving the maximum clique problem in G(150, x) using two
different solvers. (This plot does not compare runtimes—the rate of recursive calls per
second is much lower in MoMC.)
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solution found by both heuristics, as a proportion of the optimal: despite being
much worse overall, the anti-heuristic finds a better first solution in nearly all
cases.

To understand this seemingly contradictory behaviour, we compare the size
of the incumbent as a function of time for the two algorithms. In Fig. 8 we select
all the instances of G(150, x) where the optimal solution had twenty vertices, and
for both heuristics, record a timepoint for each time the incumbent is improved.
We also record when the algorithm terminates, representing this as an incumbent
of twenty-one. We then convert this to a heatmap by bucketing, using darker
colours to represent exponentially larger buckets. The plot shows us that with
the good heuristic, the initial solution size is lower (most commonly fourteen or
fifteen) compared to the anti-heuristic (most commonly sixteen to eighteen), but
that the anti-heuristic then becomes slower to advance, and slower still to finally
prove optimality. This suggests that the anti-heuristic’s branching choices cause
it to become trapped in larger subproblems before it can advance to a better
region of the search space. In contrast, the good heuristic tries to eliminate
as many subproblems as possible, even at the expense of much less favourable
anytime behaviour.

This observation also explains Fig. 5: the algorithm does not spend nearly all
of its time attempting to find an unusually large optimal solution in a sparser
instance because this solution is rare, but rather because it is instead spending
all of its time eliminating the remaining portions of the search space. As density
increases, the remaining portion of the search space increases, explaining the
increase in difficulty despite the higher solution counts.

2.7 Solver Independence

What about other solvers? Is what we are seeing merely a quirk of the MCSa1
algorithm, or is it more widespread? In Fig. 9 we repeat parts of Fig. 1, showing
the difficulty of solving G(150, x) using the MoMC solver [11].6 Again, we see
wiggles in the curve rather than a smooth straight line, but we also see three
other odd features that are not present in the MCSa1 curve. Firstly, MoMC
will always require at least 150 recursive calls (and more generally, it requires at
least one recursive call per vertex in the input graph). Secondly, there is a sharp
change in behaviour around density 0.60—this is because MoMC switches search
strategy based upon the density of the input graph, and has this critical density
as a hard-coded parameter. And thirdly, MoMC struggles with extremely dense
graphs. (Further experiments could have uncovered a fourth oddity: MoMC also
switches search strategy when the input graph has more than a thousand ver-
tices). Despite this, the general dependency between optimisation and underlying
decision problems remains.
6 We stress that comparing the number of recursive calls between two different algo-

rithms is not a measure of which algorithm is faster—indeed, MoMC performs much
more work per recursive call, and on our hardware and on these random instances,
is the slower algorithm outwith densities 0.89 to 0.95, despite the lower number of
recursive calls.
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Fig. 10. Repeating Fig. 5 using two solvers. On the left, instances where the optimal
solution for G(150, x) has twenty vertices, and on the right, sixty vertices.

In Fig. 10 we repeat parts of Fig. 5, now showing the time to find and the
total time for both MCSa1 and MoMC. For solution size twenty instances, the
behaviours are remarkably close, despite MoMC using a very different set of
search heuristics—in particular, as the number of optimal solutions increases,
MoMC initially takes longer to find a witness. For solution size sixty instances,
the scaling factor is different, but still MoMC spends nearly all of its time during
search having not found an optimal solution, even when witnesses are extremely
common.

2.8 Algorithm Design Implications

These results show that clique algorithms have been optimised for proofs of
optimality, at the expense of worse anytime behaviour—and also that, if the
algorithms were better at finding strong solutions quickly, then their perfor-
mance would improve considerably on certain instances. It is therefore worth
considering whether it is possible to modify these algorithm for both good any-
time behaviour, and good overall performance. However, adapting search order
heuristics does not appear to help: although doing so can help an algorithm find
stronger solutions faster, it then quickly becomes stuck in a subproblem that is
hard to eliminate.

Other alternatives may be possible. For example, Maslov et al. [13] apply an
iterated local search (ILS) heuristic to generate an initial solution, rather than
starting from zero. This technique was also adopted by Tomita et al. [23], who
use a different form of local search to prime the incumbent. Both papers describe
this as assistance, rather than recognising that their exact algorithms are not
optimised for finding strong solutions quickly; both papers also have difficulties
selecting a principled amount of time to spend running local search before start-
ing the exact algorithm. Both papers also claim large successes (sometimes being
thousands or millions of times faster), particularly on certain families from the
standard DIMACS benchmark suite. However, a close inspection of the instances
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where this happens shows that all come from crafted families that are designed
to have unusually large hidden optimal solutions [5,18,19], rather than from
application instances.

3 Graph Colouring

Having looked in detail at the maximum clique problem, we now repeat some of
our experiments using solvers for the graph colouring problem: we must give a
colour to each vertex in a graph, giving adjacent vertices different colours, and
using as few colours as possible.

Fig. 11. On the left, the five-colouring phase transition in G(60, x), using the Color6
solver. On the right, the difficulty of each colouring decision problem in G(60, x), using
Color6, with outliers removed; the top line is the minimisation problem, using Trick’s
DSATUR. For each line, density is increased in steps of 0.001, with 100,000 samples
per step.

3.1 A Phase Transition, and Outliers

In the left of Fig. 11 we show the difficulty of five-colouring G(60, x), for varying
values of x, using the Color6 solver. For densities in between 0.16 and 0.23, we
encounter a mix of satisfiable and unsatisfiable instances, and the solver finds
the instances more difficult than those outside of this density range. However, at
much lower densities, comfortably inside the “satisfiable” region, the mean search
effort is extremely variable, and is sometimes far higher than at the complexity
peak. Looking more closely at the data shows that for densities between 0.11
and 0.15, between one in ten thousand and one in a hundred thousand instances
that we generate are tens of millions of times harder than typical (and this rar-
ity explains why Mann’s [12] experiments did not uncover them). Furthermore,
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Fig. 12. The difficulty of the minimum colouring problem in G(60, x), using the Trick
solver, also showing the means only for instances with each individual optimal solution.
Density is increased in steps of 0.001, with 100,000 samples per step.

rather than being entirely satisfiable, these instances are a mix of satisfiable and
unsatisfiable. Such instances also occur for other values of the decision problem,
although it appears to be even less common as the objective value increases. A
similar phenomenon occurs with other random satisfaction problems [1,21], and
it could potentially be alleviated by the use of restarts and randomisation [9].

3.2 Branch and Bound

In the right-hand plot of Fig. 11 we show the difficulty of each decision prob-
lem together, but exclude these outliers from calculating the means. As for the
clique problem, we observe wiggles, with the problem getting easier then harder
then easier then harder and so on as we pass successive complexity peaks. The
Color6 solver only supports the decision problem. Thus, we also plot the classic
DSATUR branch and bound algorithm (whose performance is somewhat worse
overall). As with the maximum clique algorithm, the mean complexity line goes
from easy to hard to easy over the full range of densities, but this peak has
wiggles that line up with the objective values changing.

We also break down the behaviour of the DSATUR solver by optimal solution
size: we show this in Fig. 12, in the same style as Fig. 4. Because we are dealing
with a minimisation problem, instances that are relatively sparse for their solu-
tion size are now found to be harder, rather than easier. And, as with Color6,
DSATUR also occasionally finds very sparse instances very hard.
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Fig. 13. The difficulty of the maximum 3-satisfiability problem in random instances
with 40 variables using Clasp in branch and bound mode (top) and in core-guided
mode (middle). The number of clauses is increased in steps of one, and there are
100,000 samples per step; the core-guided plot omits six instances with 290 or more
clauses that timed out after one day. Results only for each particular objective value
(i.e. the number of unsatisfiable clauses) are also shown as smaller lines in both plots.
On the bottom, we show how common each objective value is.
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4 Maximum Satisfiability

We finish with a brief look at random maximum satisfiability, or MaxSAT. To
generate random MaxSAT instances, we use 40 variables, and a varying num-
ber of clauses. Each clause contains three distinct variables chosen uniformly at
random, and the polarity of each variable in each clause is also set uniformly at
random; all clauses are soft with equal weight. We plot our results in Fig. 13,
showing both Clasp’s default branch and bound mode, and core-guided optimi-
sation [2], which performs better. Although harder to see, the mean search effort
lines for both configuration do exhibit wiggles. Interestingly, the relative diffi-
culty of different instances depends upon the search strategy used—we believe
this warrants further experimentation.

5 Discussion and Conclusion

By using very large sample sizes, we have demonstrated that the behaviour of
solvers on hard optimisation problems is indeed influenced by the behaviour
on individual decision problems—but that these decision problems can interact
in many different ways. We also uncovered several interesting phenomena that
happened only for one in every ten thousand instances (or even fewer). We
therefore encourage future experiments to use similarly large sample sizes if
possible, and to consider running many relatively easy experiments instead of a
small number of experiments on instances that are as large as possible.

A further advantage of this approach is in uncovering bugs. Indeed, during our
experiments, we found that the published version of the MoMC solver produced
incorrect results for approximately one in every hundred thousand instances. In
fact it was relying upon incorrect reasoning much more frequently than this, but
would usually produce the correct answer anyway—the bug only became evident
in instances with one or a very small number of witnesses for the optimal clique
size, and only if a large combination of events caused the subtree containing these
witnesses to be eliminated prematurely and without the witness being found by
other means.

Our experiments also uncovered a conflict between designing search order
heuristics for anytime behaviour or for overall performance in branch and bound
algorithms, which explains why recent exact clique algorithms are using priming
with local search algorithms, and which has implications for the design of future
solvers. This conflict should also be recognised by experimenters when comparing
algorithms in the future—in particular, we would be wary of tables of results that
present both “number of instances solved” and “average solution size found” for
a single arbitrary choice of timeout.
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20. Segundo, P.S., Mat́ıa, F., Rodŕıguez-Losada, D., Hernando, M.: An improved bit
parallel exact maximum clique algorithm. Optim. Lett. 7(3), 467–479 (2013).
https://doi.org/10.1007/s11590-011-0431-y

21. Smith, B.M., Grant, S.A.: Modelling exceptionally hard constraint satisfaction
problems. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 182–195. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0017439

22. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and
faster branch-and-bound algorithm for finding a maximum clique. In: Rahman,
M.S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 191–203. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11440-3 18

23. Tomita, E., Yoshida, K., Hatta, T., Nagao, A., Ito, H., Wakatsuki, M.: A much
faster branch-and-bound algorithm for finding a maximum clique. In: Zhu, D.,
Bereg, S. (eds.) FAW 2016. LNCS, vol. 9711, pp. 215–226. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-39817-4 21

24. Zhou, Z., Li, C.M., Huang, C., Xu, R.: An exact algorithm with learning for the
graph coloring problem. Comput. OR 51, 282–301 (2014). https://doi.org/10.1016/
j.cor.2014.05.017

https://doi.org/10.1613/jair.5768
https://doi.org/10.3390/a5040545
https://doi.org/10.1016/0166-218X(93)E0140-T
https://doi.org/10.1016/0166-218X(93)E0140-T
https://doi.org/10.1007/s11590-011-0431-y
https://doi.org/10.1007/BFb0017439
https://doi.org/10.1007/978-3-642-11440-3_18
https://doi.org/10.1007/978-3-319-39817-4_21
https://doi.org/10.1016/j.cor.2014.05.017
https://doi.org/10.1016/j.cor.2014.05.017


Guarded Constraint Models Define
Treewidth Preserving Reductions

David Mitchell(B)

Simon Fraser University, Vancouver, Canada
mitchell@cs.sfu.ca

https://www.cs.sfu.ca/~mitchell

Abstract. Combinatorial problem solving is often carried out by reduc-
ing problems to SAT or some other finite domain constraint language.
Explicitly defining reductions can be avoided by using so-called “model
and solve” systems. In this case the user writes a declarative problem
specification in a constraint modelling language, such as MiniZinc. The
specification implicitly defines a reduction, which is implemented by the
constraint solving system. Unfortunately, reductions can destroy useful
instance structure, such has having small treewidth. We show that reduc-
tions defined by certain guarded first order formulas preserve bounded
treewidth. We also show such reductions can be executed automatically
from problem specifications written in a guarded existential second order
logic (∃SO) by simple grounding or “flattening” algorithms. Many con-
straint modelling languages are essentially extensions of ∃SO, and this
result applies to natural, useful, fragments of these languages.

Keywords: Constraint modelling language · Reduction · Treewidth

1 Introduction

Application of solvers for finite-domain constraint languages, such as FlatZinc
and propositional CNF formulas, requires defining an “encoding”, which for-
mally is a reduction from the problem of interest to the target solver language.
The exact choice of reduction is important to performance in practice, and con-
siderable time is sometimes spent to find a “good” one. It is often observed that
some reductions destroy potentially useful instance structure. The formal study
of instance structure in constraint solving goes back at least to Freuder’s paper
[9] which showed that instances of constraint satisfaction problems (CSPs) hav-
ing bounded treewidth can be solved in polynomial time. More recently, Samer
and Szeider gave a detailed study [19], of conditions under which fixed parameter
tractability of CSPs follows from bounded treewidth.

Constraint modelling languages and the solving systems that support them
eliminate the need to define a reduction explicitly. Users of these “model and
solve” systems write a high level declarative description of their problem, and
send that together with a problem instance to the system. Almost all existing
c© Springer Nature Switzerland AG 2019
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systems mapping this pair to a single expression in a “flat” language, which has
no quantifiers and limited nesting of operators. For example, the MiniZinc system
[16] has several options for this flat language including FlatZinc and propositional
CNF formulas. For any problem specification S for a problem P , this map is a
reduction (often but not always polynomial time) from problem P to the flat
language. This reduction is defined by a combination of the specification and the
“flattening” or “grounding” algorithm of the system. The user has some control
over this reduction in that they can choose among many possible ways to write
S, an activity sometimes called “modelling”.

This leads to asking under which conditions the reductions implemented by
model-and-solve systems could preserve desirable instance structure. Here we
consider the case of treewidth, a widely studied structural measure of “tree-
likeness” which has produced many tractability results. In particular, we estab-
lish sufficient conditions on S under which an instance I of our problem P is
mapped to a CNF formula Γ , such that the treewidth of Γ is bounded by the
treewidth of P .

We denote the treewidth of instance I by TW(I). We say a reduction f
between problems is bounded treewidth preserving (or just treewidth preserving)
if there is a function g, depending only on TW(I), such that, for every problem
instance I, TW(f(I)) ≤ g(TW(I)). We allow the treewidth of the image of I
to be larger than that of I, but it must not depend on the size of I. We are
interested in when the reduction implemented by a model-and-solve system is
treewidth preserving.

To study this question formally, we require a formally defined and sufficiently
simple specification. We adopt ∃SO, the existential fragment of classical second
order logic, as an abstract constraint modelling language. Many actual constraint
modelling languages are essentially extensions of ∃SO with arithmetic and other
features which are convenient for modelling or specifying problems in practice.
By Fagin’s Theorem [7] ∃SO can define exactly the problems in the complexity
class NP, which seems like a reasonable basis for an initial formal study.

1.1 Contributions

1. We define a family of guarded reductions, reductions defined by formulas of
first order logic (FO) related to the Packed Fragment of FO, and show that
guarded reductions preserve bounded treewidth.

2. We show that, from a “specification” formula Ψ in ∃SO, we can obtain a FO
reduction from the NP problem defined by Ψ to SAT.

3. We define a family of guarded ∃SO formulas, also based on the Packed Frag-
ment of FO. We show that basic grounding or flattening algorithms imple-
ment a reduction to SAT that is treewidth preserving when the specification
is guarded. More precisely, the indicence treewidth of the CNF formula pro-
duced is bounded by a polynomial of the treewidth of the problem instance.

4. We show that from a guarded ∃SO specification formula Ψ , we can algorith-
mically obtain an explicit guarded FO reduction from Mod Ψ , the class of
models of Ψ , to SAT. Proofs are sketched due to space limitations.
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Guarded specifications are very natural, and occur frequently in practice.
The essential idea behind the guardedness property is that quantification should
be relativized to an input relation. For example, for a problem in which the input
is a graph G, a constraint of the form “for every edge e in G .....” is guarded.

The point here not to solve instances of bounded treewidth, but to obtain
reductions which apply to all instances and behave well on those with small
treewidth. This behaviour is also relevant to instances which are “almost” of
small treewidth. A treewidth preserving reduction to SAT does give (in theory)
an efficient algorithm for instances of small treewidth. An efficient algorithm for
small treewidth instances, in contrast, does not automatically give us a treewidth
preserving reduction.

1.2 Organization

Section 2 defines our basic notation regarding structures, associated graphs, and
formulas. Sections 3 and 4 are largely expository, giving required background in
FO transductions and reductions. Section 5 defines our guarded reductions and
gives the proof that guarded reductions preserve bounded treewidth. Section 6
shows how to obtain FO reductions from ∃SO specifications. Section 7 defines
guarded specifications and shows that they induce treewidth preserving reduc-
tions, and in particular guarded FO reductions. Section 8 concludes with a sum-
mary, discussion of related work, etc.

2 Formal Preliminaries

Problems Are Classes of Structures. A decision problem is taken as an
isomorphism-closed class of finite relational structures. This view is standard in
descriptive complexity theory, and arguably should be used more generally: it is
usually more natural to view a graph property as a set of graphs than as a set
of strings encoding graphs.

Logic and Notation. We assume the reader is familiar with the syntax and
standard model-theoretic semantics of classical logic. In this section we set out
our notation and terminology and also give some examples that will aid our
exposition later.

A relational vocabulary is a tuple of one or more relation symbols R̄. Each
symbol R has an arity ar(R). A structure A for vocabulary τ (or τ -structure), is
a tuple (A, R̄A) consisting of a nonempty universe or domain A and a relation
RA ⊆ Aar(R) for each relation symbol R ∈ R̄. The relation RA is called the
interpretation or denotation of R in A. Many authors allow constant symbols
in relational vocabularies. Our results would apply also in this case, but we do
not include them for simplicity. The size of a structure is the cardinality of its
universe. Our structures are all finite, and by default the domain of a size-n
structure A is A = [n] = {1, . . . , n}.
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Example 1. Let τPL be the vocabulary τPL = (Form,SubF,Atom,And,Or,Not)
where Form,SubF,Atom are monadic (unary) and And,Or,Not are binary. A
τPL-structure represents a set of formulas of propositional logic: SubF(x) means
x is a subformula; Form(x) means x is a formula but is not a proper subformula of
another (so FormA is the set of formulas in A); Atom(x) means x is an atomic
formula; And(x, y) means x is a conjunction, and y is one of its conjuncts;
Or(x, y) is dual to And; Not(x, y) means x is the negation of y.

Example 2. The set {(q ∧ ¬r), (p ∨ ¬t)} of propositional formulas may be rep-
resented by τPL-structure A where we number subformulas (e.g., by a pre-order
traversal of the formula parse trees). So A = [8] and FormA = {1, 5}, SubFA =
[8]; AtomA = {2, 4, 6, 8}; AndA = {(1, 2), (1, 3)}; OrA = {(5, 6), (5, 7)}; NotA =
{(3, 4), (7, 8)};

For first order (FO) formula φ, we denote by free(φ) the set of free FO
variables in φ, and write φ(x̄) to indicate that the free variables of φ are among
those in tuple x̄. For simplicity we assume all bound variables are distinct. If A
is a τ -structure, ā ∈ Ak and φ(x̄) a τ -formula with k free variables x̄, we write
A, ā |= φ(x̄) to say that if the variables x̄ in φ denote the elements of ā ∈ Ak

then φ is true in A. We write φ(x̄)A, or just φA, for the relation defined by φ in
A. That is, if φ has k free variables, φA = φ(x̄)A = {ā ∈ Ak | A, ā |= φ(x̄)}. We
write Mod φ for the class of all finite models of a formula φ.

Let τ = (R1, . . . Rm) be a vocabulary, A = (A,RA
1 , . . . RA

m) a τ -structure, and
(S1, . . . Sn) a tuple of relation symbols not in τ . If B = (A,RA

1 , . . . RA
m, SB

1 , . . . SB
n )

is a structure for τ ′ = (R1, . . . Rm, S1, . . . Sn), then we call A the τ -reduct of B
and B an expansion of A to τ ′.

Graphs and Treewidth of Structures.

Definition 1 (Gaifman graph). The Gaifman graph of a relational structure
A is the graph G(A) = (A,E) with vertex set A and (a, b) ∈ E if and only if
there is a tuple in some relation of A containing both a and b.

Example 3. The Gaifman graph of A from Example 2 is G(A) = (A,E) where
A = {1, . . . , 8}, and E = {(1, 2), (1, 3), (3, 4), (5, 6), (5, 7), (7, 8)}. (This is exactly
the parse forest for the set of formulas).

The treewidth of a graph or structure is a measure of how “tree-like” it is.
Trees have treewidth 1, while the complete graph Kn has treewidth n − 1.

Definition 2. (Tree Decomposition; Treewidth).

1. A tree decomposition of graph G = (V,E) is a labelled tree T = (U,A,L) with
(U,A) a tree and L a function from U to 2V such that
(a) For every edge (v, w) of G, there is some u ∈ U with v, w ∈ L(u);
(b) For each vertex v of G, the sub-graph of T induced by the set of tree

vertices u with v ∈ L(u) is connected.
2. The width of T is 1 less than the maximum cardinality of L(u) for any u ∈ U .
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3. The treewidth of a graph G, denoted here TW(G), is the minimum width of
any tree decomposition of G.

4. The treewidth of a relational structure A is the treewidth of the Gaifman
Graph of A: TW(A) = TW(G(A)).

Remark 1. Treewidth is often defined as requiring ∪u∈UL(u) = V . It is conve-
nient for us to omit this condition, which has no effect on treewidth because if
v is independent in G we may have a distinct tree node u with L(u) = v.

3 Translation Schemes and Transductions

We use reductions defined by (tuples of) FO formulas. Our terminology approxi-
mately follows [13]. In defining translation schemes we allow formulas to contain
a finite number of “special” constant symbols not in the vocabulary at hand,
which are interpreted as themselves, and are used only for convenience in defining
a domain.

Definition 3 (FO Translation Scheme). Let τ and σ = (R1, . . . , Rm) be
two relational vocabularies and C = {c1, . . .} a finite set of “special” constant
symbols not in τ or σ. Let Φ be a tuple Φ = (φ0, φ1, . . . , φm) of |σ| + 1 FO
formulas over τ ∪ C, where the special constants ci ∈ C occur only in atoms of
the form x = ci. Further, suppose that φ0 has exactly k distinct free variables,
and for each relation symbol Ri ∈ σ, the number of distinct free variables of
the corresponding formula φi in Φ is exactly k · ar(Ri). Then Φ is a k-ary τ -σ
translation scheme.

A τ -σ translation scheme Φ defines two functions. One is a (partial) map from
τ -structures to σ-structures. This map is often called a transduction, generalising
the use of the term in formal language theory. The second is a map from σ-
formulas to τ -formulas (in model theory called an interpretation of σ in τ) that
lets us answer a query about a τ -structure by translating into a query about a
σ-structure. A detailed example of a translation scheme will be given in Sect. 4.

Example 4. In the usual interpretation of the complex numbers in the reals we
model complex number c with real pair (rc, ic), and evaluate a formula over C

by translating it into a formula over R. The related transduction maps R to C.

Definition 4 (Transduction
−→
Φ ; Translation

←−
Φ ). Let σ = (R1, . . . Rm) and

Φ = (φ0, φ1, . . . φm) be a k-ary τ -σ translation scheme. Then:

1. The transduction
−→
Φ is the partial function from τ -structures to σ-structures

defined as follows. If A is a τ -structure and φA
0 is not empty, then B =

−→
Φ (A)

is the σ-structure with
(a) universe B = {ā ∈ (A ∪ {ci})k | A, ā |= φ0};
(b) for each i ∈ [1,m], RB

i = {ā1, . . . , āi | A, ā1, . . . , āi |= φi}
2. The translation

←−
Φ is a function from σ-formulas to τ -formulas. We obtain

τ -formula
←−
Φ (ψ) from σ-formula ψ by:
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(a) Replacing each atom Ri(x1, . . . , xm) with (∧jφ0(x̄j) ∧ φi(x̄1, . . . x̄m)),
where each x̄j = (xj,1, . . . xj,k) is a k-tuple of new variables;

(b) Replacing each existentially quantified subformula ∃yψ with ∃ȳ(φ0(ȳ)∧ψ),
where ȳ is a k-tuple of new variables. Universally quantified subformulas
are relativized in the dual manner.

If k > 1, the universe of B is a set of tuples of elements of A and {ci}, so a
τ -formula that defines an r-ary relation in B has kr free variables. As an aid to
reading, we often denote the k-tuples that make up elements of B with 〈〉.

A fundamental property of translation schemes (standard in expositions of
model theory) relates their dual role defining translations and transductions.

Theorem 1 (Fundamental Property of Translation Schemes). Let Φ be
a k-ary τ -σ translation scheme. If A is a τ -structure for which

−→
Φ (A) is defined,

and θ is a σ-formula with r free variables x̄, then

A |= ←−
Φ (θ)(ȳ1, . . . ȳr) ⇔ −→

Φ (A) |= θ(x1, . . . xr)

where ȳi is the k-tuple of variables corresponding to xi in the computation of
−→
Φ .

4 FO Reductions

FO reductions are poly-time many-one reductions defined by FO transductions.
Although they are weak, every problem in NP has a FO reduction to SAT.

Definition 5. A FO reduction from a class K of τ -structures to a class L of
σ-structures is a FO τ -σ transduction Φ such that A ∈ K ⇔ −→

Φ (A) ∈ L.

Theorem 2 ([12]). SAT is complete for NP under FO reductions.

To illustrate we give a translation scheme that defines a FO reduction from
Propositional Satisfiability to SAT. This translation scheme may help the reader
in understanding the more complex schemes described in Sects. 6 and 7.

The particular reduction is a simplified version of Tseitin’s transformation
from propositional formulas to CNF [20]. To transform a formula φ into a CNF
formula of size linear in the size of φ, we introduce a new atom for each subfor-
mula of φ. Then, we write clauses over these new atoms that require the assign-
ments made to these atoms to correspond to the values of their corresponding
subformulas when φ is evaluated over a satisfying assignment.

Example 5. Applying the Tseitin transformation to the set of formulas S =
{(q ∧ ¬r), (p ∨ ¬t)}, yields the set of clauses {(x1), (¬x1 ∨ x2), (¬x1 ∨ x3), (¬x3 ∨
¬x4), (x5), (¬x5 ∨ x6 ∨ x7), (¬x7 ∨ ¬x8)}, which is satisfiable if and only if S is.
(Here, the numbering of subformulas is the same as used in Example 2).
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Let τCNF = (At,Cl,Pos,Neg) be the vocabulary with At,Cl unary and
Pos,Neg binary. τCNF -structures represent propositional CNF formulas, with
At the set of atoms, Cl the set of clauses, and Pos(a, c) (resp. Neg(a, c)) mean-
ing that atom a occurs positively (resp., negatively) in clause c.

Let ΦT = (φ, φAt, φCl, φPos, φNeg), be the translation scheme defined by the
following formulas, with special constants {atom,topClause,orClause, andClause,
notClause}.

(i) φ(〈s, i〉) = [(SubF(i) ∧ (s = atom)) ∨ (∃jOr(j, i) ∧ (s = orClause)) ∨
(∃jAnd(j, i)∧(s=andClause))∨(Form(i)∧(s=topClause))∨(Form(i)∧(s=
notClause))]

(ii) φAt(s, i) = [SubF(i) ∧ (s=atom)]
(iii) φCl(s, i) = [(∃xOr(i, x)∧(s=orClause))∨(∃xAnd(x, i)∧(s=andClause))∨

(∃xNot(i, x) ∧ (s=notClause)) ∨ (Form(i) ∧ (s=topClause))]
(iv) φNeg(〈s, i〉, 〈c, j〉) = ((s = atom) ∧ [(∃xOr(i, x) ∧ (c = orClause) ∧ j = i) ∨

(And(i, j)∧(c=andClause))∨(Not(j, i)∧(c=notClause))∨(∃xNot(x, i)∧j =
i ∧ (c=notClause))])

(v) φPos(〈s, i〉, 〈c, j〉) = ((s=atom) ∧ [(∃xAnd(x, i) ∧ j = i ∧ (c=andClause)) ∨
(Or(i, j) ∧ (c=orClause)) ∨ (Form(i) ∧ i=j ∧ (c=topClause))])

Then ΦT defines a FO transduction that carries out Tseitin’s transforma-
tion of propositional formulas to CNF formulas. So,

−→
ΦT is a FO reduction from

Propositional Satisfiability to SAT.
Let A be the τPL-structure representing a propositional formula φ, let B

be the structure B = ΦT (A), and Γ be the CNF formula represented by the
τCNF -structure B. The domain B of B contains an element 〈atom, i〉 for each
subformula i of φ, and these correspond exactly to the atoms in formula Γ . B
also contains an element 〈x, i〉 for each clause in Γ . In each of these elements,
the x identifies the role of the clause, and the i identifies the subformula of φ
that it corresponds to. For example, the domain element 〈orClause, 3〉 would
be associated with subformula 3 being a disjunction. The roles of clauses are:
topClause, notClause, andClause, orClause. In the reduction, we have a single
clause for each disjunction, a single clause for each negation, and two clauses
for each conjunction in φ. The correspondence we use associates the clause for a
disjunction or negation with the corresponding subformula, but we associate the
two clauses for a conjunction with the two conjuncts. There is also an element
for the top clause 〈topClause, i〉 of each formula i.

Example 6. If A is the structure of Example 2 then the structure B =
−→
ΦT (A)

is, in part, as follows. Domain B = AtB ∪ ClB; AtB = {〈atom, 1〉, 〈atom, 2〉,
. . ., 〈atom, 8〉}; ClB = {〈topClause, 1〉, 〈topClause, 5〉, 〈andClause, 2〉, 〈andClause, 3〉,
〈orClause, 5〉, 〈notClause, 3〉, 〈notClause, 7〉}; PosB = {〈〈atom, 1〉, 〈topClause, 1〉〉,
〈〈atom, 5〉, 〈topClause, 5〉〉, . . .}; . . . This represents the CNF formula: {(〈atom, 1〉),
(〈atom, 5〉), (¬〈atom, 1〉, 〈atom, 2〉), (¬〈atom, 1〉, 〈atom, 3〉), . . . }. Under the map
〈atom, i〉 �→ xi, this is the formula obtained in Example 5.
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The well-known meta-theorem tells us that many problems are fixed-
parameter tractable for treewidth. MSO is the fragment of second order logic in
which second order variables must be monadic.

Theorem 3 (Courcelle [4]). Every MSO-definable class of structures can be
recognized by an algorithm that runs in time f(w)O(n), where n is the size of
the encoding of the structure and w the treewidth of the structure, and f is a
computable function.

Example 7. It is straightforward to write an MSO formula, in the vocabulary
τCNF, defining SAT: ∃S[∀x(S(x) → At(x))∧(∀y(Cl(y) → ∃z((Pos(z, y)∧S(z))∨
(Neg(z, y) ∧ ¬S(z)))))]. Here, the monadic second order variable S is the set of
atoms made true by a satisfying assignment.

Example 8. We can define formula satisfiability with an MSO formula over
vocabulary τPL. Such a formula can be obtained from the formula of Exam-
ple 7 and the translation scheme ΦT using Theorem 1.

5 Guarded Reductions

In this section, we define a family of guarded reductions and show that these
reductions are treewidth preserving.

Definition 6 (Treewidth Preserving Reduction). We say a reduction f
from L to K is bounded treewidth preserving (or just treewidth preserving) if there
is a computable function g such that, for every A ∈ L, TW(f(A)) ≤ g(TW(A)).

5.1 Treewidth of CNF Formulas

Treewidth of CNF formulas is usually defined in terms of on one of two graphs
associated CNF formula. The primal graph has a vertex for each atom, and an
edge (u, v) iff u and v occur together in a clause (regardless of polarity). The
incidence graph has a vertex for each atom and for each clause, and an edge (a, c)
if atom a occurs in clause c (with either polarity). These induce two notions of
treewidth for CNF formulas, the primal treewidth and incidence treewidth. Since
the indcidence treewidth is at most one more than the primal treewidth (and
sometimes much smaller), it is the more interesting measure.

For every propositional CNF formula Γ , the Gaifman graph of the τCNF -
structure for Γ is the incidence graph of Γ . Therefore, in this paper the treewidth
of a CNF formula means its incidence treewidth. (In some work the primal graph
is called the Gaifman graph. This results from a different association of structures
with CNF formulas).

An example of a treewidth preserving reduction to SAT is the usual reduction
from 3-Colouring. Each vertex is mapped to 3 atoms (one for each colour). For
each vertex there is a clause saying it must be coloured, and for each edge three
clauses say the ends have distinct colours. A graph of treewidth w is mapped to
a CNF formula of treewidth 3w.
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If P �= NP there are problems in NP which do not have treewidth preserving
reductions to SAT. SAT is FPT for treewidth, so any problem with a treewidth
preserving reduction to SAT must also be FPT for treewidth. However, there are
problems that are NP-complete on trees (e.g. Call Scheduling [6] and Common
Embedded Subtree [10]) or on bounded treewidth graphs (e.g. Edge Disjoint
Paths [17], and Weighted Colouring [15]), and thus not FPT for treewidth.

5.2 Guarded FO Reductions

The primitive positive formulas are the smallest set of FO formulas containing
all atoms, including those of the form x = y, and closed under conjunction and
existential quantification.

Definition 7. Let φ(x̄) be a FO formula. A FO formula γ is a packed guard
for φ if it is a primitive positive formula of the form γ1 ∧ . . . ∧ γm, where each
γi is either an atom or an existentially quantified atom, such that:

1. free(γ) = free(φ) = x̄;
2. Each pair y, z of distinct variables from x̄ appears among the free variables

of some γi in γ.

The name is taken from the Packed Fragment of FO, introduced in [14], in which
guards are of this form.

Definition 8 (Guarded Translation Scheme, Guarded Reduction). A
FO τ -σ translation scheme Φ is guarded if every formula in the scheme, except
possibly the domain-defining formula φ0, is a disjunction of formulas of the form
(γ(x̄)∧ψ(x̄)), where γ is a packed guard for ψ. A guarded reduction is a reduction
defined by a guarded translation scheme.

The guards relativize quantification to the contents of instance relations.
They ensure that, if Φ is a guarded translation scheme, every edge of the Gaifman
graph of B =

−→
Φ (A) has a corresponding edge in the Gaifman graph of A. To see

this, consider a tuple b̄ in a relation of B. If b̄ contributes an edge to the Gaifman
graph, it contains at least two elements. These elements are constructed from
tuples of elements from A. Any two of these elements had to co-occur in the
relation defined by one of the atoms of a guard formula, and therefore has a
corresponding edge in the Gaifman graph of A.

5.3 Guarded Reductions Preserve Bounded Treewidth

To show guarded reductions preserve bounded treewidth we construct a small-
width tree decomposition of

−→
Φ (A) from a small-width decomposition of A.

Theorem 4. Let Φ be a guarded k-ary τ -σ translation scheme. If A is a τ -
structure with TW(A) ≤ w and B =

−→
Φ (A) then TW(B) ≤ (w + 1)k.
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Proof. Let B =
−→
Φ (A), and let TA = (U,F, LA) be a width w tree decomposi-

tion of A. We will construct a tree decomposition TB = (U,F, LB) of B that is
isomorphic to TA, but with a different labelling function (a.k.a. “bag” contents).
Let B be the set of all tuples occurring in some relation of B. Construct a total
function f : B → U as follows. Let b̄ = (b1, . . . , br) be a tuple in a relation
of B. Then b̄ is of the form (〈a1,1, . . . a1,k〉, . . . 〈ar,1, . . . ar,k〉). By construction
of the guards of Φ, each pair (ai,j , ai′,j′) in b̄ has a corresponding edge in the
Gaifman graph of A. Therefore, there is a clique in G(A) containing all of the
elements ai,j in b̄. It follows that there must be a vertex u ∈ U of TA such that
{ a | a occurs in b̄} ⊂ LA(u). Let f(b̄) be such a u. Now define LB in terms of
f by LB(u) = ∪{ b̄ | b̄ ∈ B and f(b̄) = u}. The first condition for TB to be a
tree decomposition of B is now satisfied. We establish the second condition by
modifying TB as follows: If for some b ∈ B and for two distinct tree nodes u,v
we have that b ∈ LB(u) and b ∈ LB(v) but b �∈ LB(w), we add b to LB(w). It
remains to establish an upper bound on the size of bags (the sets LB(u)). Each
element of b ∈ B is a tuple b = 〈a1, . . . ak〉 of k elements from A. By construction
of TB, if b ∈ LB(u) then for each ai ∈ b, we have that ai ∈ LA(u). The bound
is established by the number of elements in LA(u) and the number of elements
b ∈ B that could be constructed from these. This number is at most (w + 1)k,
since an element of B is a k-tuple of elements from LA(u). ��

Preservation of bounded treewidth, follows immediately.

Theorem 5. Let Γ be a guarded reduction from K to L. Then there is a com-
putable function f such that, for every A ∈ K

TW(Γ (A)) ≤ f(TW(A))

6 Automatically Generating Reductions

We now consider how specifications induce reductions. We consider a problem
specification to be a formula Ψ of the form ∃R̄ψ, where R̄ is a tuple of second
order variables, and ψ is a FO sentence. If the problem defined is a class of
τ -structures, then Ψ is a τ -formula, and ψ is a formula with vocabulary (τ, R̄).
The decision problem is: given a τ -structure A, decide if A |= Ψ . The associated
search problem is to find a witness for the existential SO variables, or, equiva-
lently, to find a τ ∪ R̄-structure B = (A, R̄B) that is an expansion of A to the
vocabulary of ψ, and such that B |= ψ.

We may regard Ψ = ∃R̄ψ as implicitly defining a reduction to SAT, based
on the following four-step construction:

1. Given A, construct a quantifier-free formula from ψ by rewriting each quan-
tified subformula as a large conjunction or disjunction over elements of A;

2. Transform the resulting ground formula to CNF by Tseitin’s method;
3. Evaluate any atoms over the vocabulary τ of A, deleting any clauses that

evaluate to true;
4. Replace each distinct ground FO atom with a distinct propositional atom.
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For Step 1, we must introduce new constant symbols to denote elements of A
in the ground formula. For Step 2, we must introduce new atoms corresponding
to subformulas, to be used in the Tseitin construction. For the purpose of asso-
ciating tree decompositions of the final propositional CNF formula with tree
decompositions of A, we will construct these “Tseitin” atoms as ground FO
atoms using new relation symbols. Roughly speaking, the result is a ground for-
mula Γ such that models of Γ correspond to the expansions of A that witness
the SO existentials in Ψ .

We write Ã for the set of (new) constant symbols Ã = {ã|a ∈ A}. Then,
the first step of our construction is defined by the following recursive function
Γ (φ, ν,A). Here φ is a FO formula, ν is a partial map from variables to domain
elements, ν〈x�a〉 is the valuation just like ν except that it maps x to a, and A
is the domain.

Γ (φ, ν,A) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(ν(x̄)) if φ is an atom φ(x̄)
(Γ (ψ1, ν, A) ∨ Γ (ψ2, ν, A)) if φ is (ψ1 ∨ ψ2)
(Γ (ψ1, ν, A) ∧ Γ (ψ2, ν, A)) if φ is (ψ1 ∧ ψ2)
¬Γ (ψ, ν,A) if φ is ¬ψ

(
∧

a∈A Γ (ψ, ν〈x� ã〉, A)) if φ is ∀xψ

(
∨

a∈A Γ (ψ, ν〈x� ã〉, A)) if φ is ∃xψ

For step 2, associate with each non-atomic subformula η of ψ a new relation
symbol Pη, with arity |free(η)|. Associate with each non-atomic subformula β
of Γ (ψ,A) = Γ (ψ, ∅, A) a ground atom P ā, where P is a relation symbol asso-
ciated to the corresponding subformula of ψ, and ā = ν(free(ψ)) with ν the
substitution used in evaluating Γ (ψ, ν,A) in constructing Γ (ψ,A). Now, apply
Tseitin’s reduction to CNF to the formula Γ (ψ,A), using the atoms just defined
as the Tseitin atoms corresponding to the non-atomic subformulas. Denote the
resulting formula β = CNF(Γ (ψ,A)).

β is a ground FO formula in CNF form, over atoms with constant symbols
from Ã, with each relation symbol either a vocabulary symbol of Ψ , a second
order variable symbol of Ψ , or a Tseitin symbol as just introduced. Step 3 is to
eliminate atoms over τ by replacing them with their truth values determined by
A. More precisely, we delete each clause that contains a true atom and delete
all false atoms from remaining clauses.

Definition 9 (Grounding). Let Ψ be a ∃SO τ -formula ∃R̄ψ where ψ is a FO
sentence. Let A be a τ -structure. We call a formula Γ a grounding of Ψ over A
if it satisfies the following properties:

1. Γ is a ground formula for a vocabulary σ that includes τ, R̄, Ã;
2. If A |= Ψ then there is an expansion B of Ã to σ such that B |= Γ ;
3. If B is a σ-structure that is an expansion of (A, Ã) and B |= Γ and C is the

τ -reduct of B, then C |= Ψ .

So Γ = CNF(Γ (ψ,A)) is a grounding. Of particular interest are certain
proper subsets of CNF(Γ (ψ,A)) that also are groundings.
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Definition 10 (Direct Grounding). We call a formula Ψ a direct grounding
of ψ over A if it satisfies the following:

1. Ψ is a grounding of ψ over A
2. For every clause C of Ψ , there is a clause C ′ of CNF(Γ (ψ,A)) with C ⊆ C ′.

Any subformula of ψ that contains no symbols from R̄ can be directly eval-
uated over A. This can be used to reduce the number of clauses included in
a grounding of Ψ over A. In particular, consider subformula ψ(x̄) of ψ of the
form ψ1(x̄) ∧ ψ2(x̄), and suppose that ψ2 contains symbols from R̄ but ψ1 does
not. Then, for each substitution ν for which ψ1(ν(x̄)) evaluates to false, the
clauses corresponding to Γ (ψ2, ν, A) may be left out of Γ , and it will still be a
direct grounding. A dual property holds for disjunctive subformulas. We say that
a grounding that leaves out such clauses satisfies the lazy generation property.
Practical grounding software has this property. In a direct recursive implemen-
tation of Γ (φ, ν,A), lazy generation amounts to little more than lazy evaluation.

6.1 Direct CNF Grounding as a FO Transduction

We wish to show that, from a ∃SO problem specification Ψ = ∃R̄ψ, we can (algo-
rithmically) construct a FO reduction Δ from the class of models of Ψ to SAT.
The image of A under Δ is a structure for vocabulary τCNF = (At,Cl,Pos,Neg).
So, the formulas of Δ will have certain elements in common with those of our
transduction ΦT from Sect. 4.

As before, the domain B of B = Δ(A) has elements corresponding to atoms
and clauses of the resultant CNF formula. It needs an element identified with
each ground atom P ā, where P is an element of R̄ or a Tseitin relation symbol
corresponding to a subformula of Ψ , and ā is a tuple of elements of A. Let r be
the maximum number of free variables in a subformula of Ψ . Then our domain
elements will be k = r +2-tuples 〈P, ā, C〉, where P is a special constant symbol
denoting a relation symbol, C is a special constant symbol denoting an atom or
clause-type from {atom,topClause, orClause,andClause,notClause}, and ā is a
tuple from (A ∪ { })w. The special constant is a place-holder letting us model
a tuple ā of arity less than w with a w-tuple.

For each subformula of ψ that is a disjunction, our ground CNF formula has
one ternary clause for every instantiation of the free variables. For example, the
disjunction φ(x̄) = (φ1(x̄)∨φ2(x̄)) contributes a clause of the form (¬Pφā∨Pφ1 ā∨
Pφ2 ā) for each instantiation ā of its free variables. Such a clause contributes three
pairs to relations of B: one in NegB and two in PosB, as in the propositional
case. Supposing x̄ to be of size 2, the two in Pos, for all instantiations, can be
defined by a formula

α(〈p, x1, . . . , xk, c1〉, 〈p, x1, . . . , xk, c2〉) =
(p = Pφ ∧ (x1 = x1) ∧ (x2 = x2) ∧ (x3 = ) ∧ . . . ∧ (xk = )

∧ (c1 = atom) ∧ (c2 = orClause)) (1)
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Similarly, for each subformula of the form ∃xφ, we have |A| + 1 pairs in B, one
in NegB and the rest in PosB. We proceed similarly for all connectives and for
the atoms. The formula φP of Δ, that defines the relation PosB is defined by
the disjunction of all formulas defining particular subsets of PosB, and similarly
for NegB. From the complete construction, we obtain the following.

Theorem 6. For every ∃SO formula Ψ , there is a FO transduction Δ that is a
reduction from Mod Ψ to SAT. In particular, Δ(A) is a direct grounding of Ψ
over A.

7 Guarded Existential SO Specifications

As in other guarded logics, we assume FO quantifiers apply to blocks of variables,
and that every formula of the form ∃x∃yφ has been re-written as ∃xy φ, and
similarly for ∀.

Definition 11 (Guarded ∃SO). Call an ∃SO formula Ψ = ∃R̄ψ guarded if

1. In every subformula that is of the form ∃x̄φ and that contains a non-monadic
symbol from R̄, φ is of the form (γ(ȳ) ∧ φ′(ȳ)), where γ is a packed guard for
φ′, and ȳ ⊃ x̄.

2. In every subformula that is of the form ∀x̄φ and that contains a non-monadic
symbol from R̄, φ is of the form (γ(ȳ) → φ′(ȳ)), where γ is a packed guard
for φ′, and ȳ ⊃ x̄.

In practice, guarded specifications are very natural. For example, consider
the Vertex Cover problem, in which we are given a graph G = (V,E) and must
find a set S (normally with some size bound) containing at least one end point
of each edge. This property is naturally described with the guarded formula

∀u, v(Euv → (Su ∨ Sv)).

However, for the Domatic Partition problem, which calls for a partition of ver-
tices into sets P1, . . . , Pk, it does not seem that there is a guarded version (the
only possible guard being E) of the property:

∀v∃i(Pvi ∧ ∀j(Pvj → j = i)).

Theorem 7. Let Ψ be a guarded ∃SO formula with vocabulary τ , and Δ a reduc-
tion that implements a direct grounding of Ψ over A that satisfies the lazy eval-
uation property. Then for any τ -structure A, we have that

TW (Δ(A)) ≤ f(TW (A))

where f(x) = O((x + 1)r), with r determined by Ψ .

The proof is quite similar to that of Theorem 4.
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Proof (Sketch). Let T be TA = (U,F, LA) be a width w tree decomposition
of A, and Γ be the formula Γ = CNF (Γ (Ψ,A)). We will construct a tree
decomposition TB for Γ that is isomorphic to TA, but has different bags. Consider
any existentially quantified subformula ψ′(ȳ) of Ψ that has a symbol from R̄.
This formula is of the form ∃x(γ(ȳ, x) ∧ ψ(ȳ, x)), where γ is a packed guard
for ψ. By the lazy generation property, no clauses corresponding to γ(ν(ȳ, x))
are included in Γ , and for each tuple ā = ν(ȳ, x), clauses corresponding to
ψ(ν(ȳ, x)) are only included in Γ if Γ (ν(ȳ, x)) evaluates to true. Consider the
formula ψ(ν(ȳ, x)). If it is quantifier-free, then all atoms in corresponding clauses
of Γ are of the form P ā where P is either in R̄ or a Tseitin symbol corresponding
to a subformula of ψ. Since ā was “sanctioned” by the guard, we know that there
is a bag in TA containing all elements of ā. We put all the atoms from all the
clauses into the corresponding bag in TB. If ψ has quantified subformulas, then
we include as part of the current step the Tseitin atoms corresponding to those
subformulas, but not the clauses corresponding to them. Following this, we have
that the first of the tree decomposition properties is satisfied by TB. As in the
proof of Theorem 4, we add to each bag the minimum collection of atoms to
satisfy the second property. It then remains to bound the size of the bags. As
in the proof of Theorem 4, it is sufficient to bound the number of elements in a
bag of TB in terms of the number in a related bag of TA. From w + 1 elements
of A, in a bag LA(u) we can construct

(
w+1

r

)
tuples. The number of relation

symbols is bounded by |Ψ |, and there are 5 special constants (which were used
to distinguish the syntactic types of subformulas) for the last element, so the
number of elements in a LB(u) is at most

5|Ψ |
(

w + 1
r

)

= O((w + 1)r)

which is polynomial in w because the constant 5, |Ψ | and r are all fixed by Ψ . ��

7.1 Guarded FO Reductions from Guarded Specifications

To obtain a guarded FO reduction from a guarded ∃SO specification, we first
construct an FO reduction according to the process in Sect. 6.1. We then modify
it by conjoining a suitable guard to each disjunct of each formula defining the
reduction. The appropriate guard for the formula defining elements of NB or
PB corresponding to a subformula φ of the specification, is the guard for the
least subformula of the specification ψ that is quantified and that contains φ as
a subformula. Consider the formula 1 of Sect. 6.1. Suppose that the subformula
of Ψ it addresses, (φ1(x1, x2) ∨ φ2(x1, x2)), appears in a subformula of the form

∃x1((γ(x1, x2) ∧ (φ3(x1) ∧ ((φ1(x1, x2) ∨ φ2(x1, x2)))).

Then we add the guard γ(x1, x2), to obtain the guarded formula

α(〈p, x1, . . . , xk, c1〉, 〈p, x1, . . . , xk, c2〉) = [γ(x1, x2) ∧
(p = Pφ ∧ (x1 = x1) ∧ (x2 = x2) ∧ (x3 = ) ∧ . . . ∧ (xk = )

∧ (c1 = atom) ∧ (c2 = orClause))] (2)
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From the complete construction, we obtain the following.

Theorem 8. For every guarded ∃SO formula Ψ , there is a guarded FO reduction
Δ from Mod Ψ to SAT.

8 Discussion

When writing specifications in constraint modelling or knowledge representation
languages, it is common practice to write constraints in guarded form when this
is easy. Our results demonstrate one possible benefit of this, and also suggest
that making an effort to write guarded specifications might improve solving time.
The potential speedup does not depend on instances being of bounded treewidth,
since guarded reductions will preserve related sparseness properties for instance
families that are somehowe “close to” having small treewidth. More importantly,
our work takes a step toward understanding when reductions obtained from
declarative problem specifications may preserve interesting structural instance
properties.

We would like to also obtain necessary conditions for existence of treewidth
preserving reductions. We conjecture that the class of problems with treewidth
preserving reductions to SAT is strictly larger than the class of problems with
guarded FO reductions to SAT. We also conjecture that guarded reductions
preserve structural sparseness properties more general than bounded treewidth.

Related Work. Bliem et al. [2] demonstrated treewidth affecting ASP solver
run-time, and introduced connection guarded ASP programs. These preserve
bounded treewidth in grounding, but only if degree is also bounded. Bliem [1]
defined guarded ASP programs and showed that grounding for these preserves
bounded treewidth regardless of degree. The definition is quite restrictive, and we
conjecture there are problems with no guarded ASP formulas but with guarded
∃SO definitions and guarded reductions to SAT. However, it is possible that
with a carefully formulated use of defined predicates in guards this could be
remedied. The paper [3] illustrates extending the features of the IDP system by
using the system itself to compute transductions. Results in [8,18] indicate that
there should be very efficient algorithms for grounding guarded specifications.
The MSO transductions in [4] preserve treewidth but are restricted in a way
that makes them too weak for our application.

Acknowledgements. Phokion Kolaitis suggested studying “good” reductions by via
special classes such as FO reductions [11]. Marc Denecker suggested that guarded for-
mulas should produce groundings with bounded treewidth [5]. This work was supported
in part by an NSERC Discovery Grant.
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Abstract. Augmenting a base constraint model with additional con-
straints can strengthen the inferences made by a solver and therefore
reduce search effort. We focus on the automatic addition of streamliner
constraints, which trade completeness for potentially very significant
reduction in search. Recently an automated approach has been proposed,
which produces streamliners via a set of streamliner generation rules.
This existing automated approach to streamliner generation has two key
limitations. First, it outputs a single streamlined model. Second, the app-
roach is limited to satisfaction problems. We remove both limitations by
providing a method to produce automatically a portfolio of streamliners,
each representing a different balance between three criteria: how aggres-
sively the search space is reduced, the proportion of training instances
for which the streamliner admitted at least one solution, and the aver-
age reduction in quality of the objective value versus the unstreamlined
model. In support of our new method, we present an automated approach
to training and test instance generation, and provide several approaches
to the selection and application of the streamliners from the portfolio.
Empirical results demonstrate drastic improvements both to the time
required to find good solutions early and to prove optimality on three
problem classes.

Keywords: Constraint programming · Streamliners

1 Introduction

An initial constraint model can be augmented through additional constraints. If
well chosen, these constraints strengthen the inferences the solver can make and
therefore reduce search. Implied constraints are inferred directly from the initial
model and therefore do not alter the set of solutions to the model. Manual [15,16]
and automated [7,9,17] approaches to generating implied constraints have been
successful.

In contrast, streamliner constraints [20] (our focus herein) are not inferred
from the initial model and often radically alter the set of solutions to the model
in an attempt to focus effort on a highly restricted but promising portion of the
search space. Streamliners trade the completeness offered by implied constraints
c© Springer Nature Switzerland AG 2019
T. Schiex and S. de Givry (Eds.): CP 2019, LNCS 11802, pp. 366–383, 2019.
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for potentially much greater search reduction. They were originally derived man-
ually by examining solutions of small instances of a problem class for patterns,
which were used as the basis for streamliners [20,22–24]. For example Gomes and
Sellmann added a streamliner requiring a latin square structure when searching
for diagonally ordered magic squares [20].

More recently, an automated approach has been proposed, which produces
streamliners via a set of streamliner generation rules [32,35] operating on the
Essence [12–14] specification of a problem class. Using training instances drawn
from the problem class under consideration, streamliner candidates are evalu-
ated automatically and the most promising ones are used to solve more difficult
instances from the same problem class.

The existing automated approach to streamliner generation has two key lim-
itations. First, it outputs a single streamlined model. If on a test instance this
streamliner excludes all solutions the only remedy is to revert to the initial
model. Second, the approach is limited to satisfaction problems. We remove
both limitations by providing a method to produce automatically a portfolio of
streamliners, each representing a different balance between three criteria: how
aggressively the search space is reduced, the proportion of training instances for
which the streamliner admitted at least one solution, and the average reduction
in quality of the objective value versus an unstreamlined model.

In support of our new method, we present an automated approach to training
and test instance generation, and provide several approaches to the selection
and application of the streamliners from the portfolio. The result is the first
automatic method to produce streamliners for optimisation problems and to
offer alternatives if the most preferred streamliner is unsuccessful.

2 Candidate Streamliner Generation

As in [32], our approach proceeds from a specification of a problem class in the
abstract constraint specification language Essence [14], such as the SONET
example in Fig. 1. An Essence specification comprises the problem class param-
eters (given); the combinatorial objects to be found (find); the constraints the
objects must satisfy (such that); identifiers declared (letting); and an optional
objective function (min/maximising). The key feature of the language is support
for abstract decision variables, such as multiset, relation and function, as well as
nested types, such as the multiset of sets in Fig. 1.

The highly structured description of a problem an Essence specification
provides is better suited to streamliner generation than a lower level representa-
tion, such as a constraint modelling language like MiniZinc [27]. This is because
nested types like multiset of sets must be represented as a constrained collec-
tion of more primitive variables, obscuring the structure that is useful to drive
streamliner generation. We employ the same set of streamliner generation rules
as [32], summarised in Table 1. High-order rules take another rule as an argument
and lift its operation onto a decision variable with a nested domain such as the
complex multi-set structure present in SONET. This allows for the generation
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of a rule such as enforcing that approximately half (with softness parameter)
of the sets in the multiset only contain even numbers. Imposing extra structure
in this manner can reduce search very considerably. Table 2 presents candidate
streamliners automatically generated for the problem classes considered herein.
Although rich, the set of Essence type constructors is not exhaustive. Graph
types, for example, are a work in progress [10]. At present, therefore, we might
specify such a problem in terms of a set of pairs. The streamliner generator
constraints would produce candidate streamliners based on this representation.

Using training instances drawn from the problem class under consideration,
streamliner candidates are evaluated as follows. The Conjure [1,3] automated
modelling tool is used to refine the Essence specification (including streamliner)
into the solver-independent constraint modelling language Essence Prime,
which Savile Row [29] translates into input suitable for the constraint solver
Minion [19].

Fig. 1. Essence specifications for the three problem classes considered herein. Syn-
chronous Optical Networking (SONET) [28] is given in full. For brevity, only the param-
eters and decision variable declarations (from which streamliners are generated) are
shown for the Progressive Party Problem [33] and the Minimum Energy Broadcast
Problem [6]
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3 Searching for a Streamliner Portfolio

Candidate streamliners are often most effectively used in combination [20]. In
an attempt to find a single “best” streamlined model, Spracklen et al. described
a Monte Carlo Tree Search [5] (MCTS)-based algorithm to search the lattice
of models where the root is the original Essence specification and an edge
represents the addition of a streamliner to the combination associated with the
parent node.

This search had a single objective, average search effort reduction across
a set of training instances, which generates only one streamlined model per
problem class. This model tends to achieve a high search effort reduction, but
has difficulty generalising across the problem class. Furthermore, it is designed
only for satisfaction problems. The optimisation problems with which Spracklen
et al. experimented were converted into satisfaction problems by bounding the
objective and searching for a satisfying solution. This is a serious limitation since
a candidate streamlined model may find a solution quickly, but of poor quality,
and may exclude the set of optimal solutions entirely.

Table 1. The rules used to generate conjectures. Rows with a softness parameter
specify a family of rules each member of which is defined by an integer parameter.

Class Trigger domain Name Softness

First-order int odd{even} No

lower{upper}Half No

function int --> int monotonicIncreasing{Decreasing} No

largest{smallest}First{Last} No

function (X,X) --> X commutative No

associative No

non-commutative No

partition from X quasi-regular Yes

sequence montonicIncreasing{Decreasing} No

largest{smallest}First{Last} No

Higher-order matrix/set of X all No

most Yes

half No

approxHalf Yes

function X --> Y range No

defined No

pre{post}fix Yes

allBut Yes

function (X,X) --> Y diagonal No

partition from X parts No

sequence range No

defined No
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Table 2. Sample streamliners generated for the three problem classes we consider (see
Fig. 1 for their Essence specifications). References to odd/even are with respect to
the integer identifiers associated with entities such as nodes or boats. Streamliner Id is
a unique reference given to a streamliner when generated through Conjure; we shall
refer to these examples in Sect. 8.1

Problem Streamliner Id Description

Sonet 6 Exactly half the nodes installed on each ring are odd

13 Approx. half the nodes installed on each ring are odd

15 Approx. half the nodes on each ring are from the
lower half of the Nodes domain

67 The objective variable is constrained to the lower half
of its domain

MEB 18 Approx. half of the entries in the range of the parents
function must be even

41 The range of the depths function contains all odd
entries

PPP 7 For half of the hosts the boats must be in the lower
half of the Boats domain

14 For approx. half of the hosts the Boats must be odd

To address these problems we adopt a multi-objective optimisation approach,
where each point x in the search space X is associated with a d-dimensional (d is
the number of objectives) reward vector rx in Rd. Our three objectives allow us
explicitly to balance considerations of solution quality against how aggressively
the streamlined model reduces search:

1. Applicability. The proportion of training instances for which the stream-
lined model admits a solution.

2. Search Reduction. The mean reduction in time to prove optimality in com-
parison with an unstreamlined model.

3. Optimality Gap. The mean percentage difference between the optimal
value found by the streamlined model and the true optimal value under the
unstreamlined model.

All objectives are transformed such that they can be maximized. With these
three objectives for each streamliner combination we define a partial ordering on
Rd and so on X using the Pareto dominance test. Given x, x′ ∈ X with vectorial
rewards rx = (r1, . . . , rd) and rx′ = (r1′, . . . , rd′) rx dominates rx′ iff ri is greater
than or equal to ri′ for i = 1 . . . d.

To search the lattice structure for a portfolio of Pareto optimal streamlined
models we have adapted the dominance-based multi-objective MCTS (MOMCTS-
DOM) algorithm [34]. This has four phases, as summarised below and in Fig. 2:
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1. Selection: Starting at the root node, the Upper Confidence Bound applied
to Trees (UCT) [5] policy is applied to traverse the explored part of the lattice
until an unexpanded node is reached.

2. Expansion: Uniformly select and expand an admissible child
3. Simulation: The collection of streamliners associated with the expanded

node are evaluated. The vectorial reward (Applicablity, Search Reduction,
Optimality Gap) across the set of training instances is calculated and
returned.

4. BackPropagation: The current portfolio; which contains the set of non
dominated streamliner combinations found up to this point during search;
is used to compute the Pareto dominance. The reward values of the Pareto
dominance test are non stationary since they depend on the portfolio, which
evolves during search. Hence, we use the cumulative discounted dominance
(CDD) [34] reward mechanism during reward update. If the current vectorial
reward is not dominated by any streamliner combination in the portfolio then
the evaluated streamliner combination is added to the portfolio and a CDD
reward of 1 is given, otherwise 0. Dominated streamliner combinations are
removed from the portfolio. The result of the evaluation is propagated back
up through all paths in the lattice to update CDD reward values, as shown
in the figure.

4 Generating Diverse Training Instances

Our method relies on training instances from a given problem class to construct
a high quality portfolio of streamlined models. Ideally these should be diverse,

Fig. 2. MOMCTS-DOM operating on the streamliner lattice. A, B and C refer to
single candidate streamliners generated from the original Essence specification. As
MOMCTS-DOM descends down through the lattice the streamliners are combined
through the conjunction of the individual streamliners (AB, ABC). The nodes are
labelled with CDD reward value/times visited.
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otherwise the portfolio may be skewed towards instances of one type and so
not generalise across the problem class. To ensure diversity, we employ an auto-
mated approach combining a per-class parameter generator and an algorithm
configuration tool, described below.

For each problem class we wrote a simple instance generator that accepts a
parameter setting and a random seed, and outputs a problem instance. At the
moment the instance generator has to be manually created, and is the only part
of the whole system that is not automated. However, this issue has been tackled
in a recent work [2] within the same pipeline, which can be integrated into our
system in the future. To keep the computational cost manageable, we require
a set of relatively easy (but not trivial) instances for the training phase, which
we define as solvable by Minion [19] on an unstreamlined model within a time
limit of [10, 300] s.

To find instances satisfying our criteria, the automatic algorithm configura-
tion tool irace [25] is used. Parameters of each generator are tuned by irace with
a performance measure guiding it towards regions of satisfiable instances within
the required range of solving time. As the tuning procedure usually converges
at certain regions of the search, multiple tunings with two settings of irace (the
default and another that allows more exploration) are performed per problem
class to obtain more diverse sets of instances.

There is an inherent tradeoff with the number of training instances used dur-
ing search. If too few instances are used it diminishes the ability of the generated
portfolios to generalise across the problem class, whereas a larger set reduces the
iteration speed of MOMCTS to the point where it is ineffective in searching the
streamliner lattice. Taking these considerations into account, for the experiments
in this paper we have set the number of training instances to 50.

Table 3. Instance generation and clustering. 50 training instances are selected from
among the generated clusters.

Problem Total number of instances Number of clusters

SONET 517 3

MEB 989 8

PPP 1264 8

We first generate a large instance set using irace. Table 3 (column 2) presents
the results of doing so for the problem classes we consider in this paper. In order
to select our representative subset of 50 instances, instance-specific features are
used to judge instance similarity. We use the features proposed in [18] and gen-
erated by Minion. All features are normalised according to the z-score stan-
dardisation. GMeans clustering is used on the generated features to detect the
number of instance clusters (see column 3 of Table 3). To build the training set
instances are randomly selected from each cluster, with the number of instances
taken from each weighted according to the relative size of each cluster.
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The time limit for training instances, and the size of the training set are both
parameters to our method, which will be investigated in future work.

5 Pruning the Streamliner Portfolio

As the number of objectives increases so, typically, does the size of the Pareto
front, and hence the size of the generated streamliner portfolio. This is demon-
strated in Table 4, which, in column 2, records the size of the streamliner portfo-
lios generated through MOMCTS for our three problem classes. A large portfo-
lio is cumbersome when considering streamliner selection and scheduling. We
observed, however, that the streamlined models were not distributed evenly
across the Pareto front. Therefore, GMeans clustering is used to identify the
number of clusters present in the portfolio and a point from each cluster is then
selected to form a representative subset of the full portfolio (see column 3 of
Table 4).

Table 4. We prune an initially generated streamliner portfolio through GMeans clus-
tering and select a representative point from each cluster.

Problem Initial portfolio size Pruned portfolio size

SONET 57 6

MEB 56 3

PPP 64 9

6 Selecting from the Streamliner Portfolio

Having constructed a streamliner portfolio for a particular problem class using
MOMCTS and the set of training instances, for a given test instance the question
arises as to which streamlined models from the portfolio should be used, in what

Algorithm 1. Lexicographic Streamliner Selection
procedure Selection(Portfolio P, Ordering, Timetotal, Instance)

P ← sort(P, by = Ordering)
TimeTaken ← 0
while TimeTaken ≤ TimeTotal do

Streamliner ← P.next()
Stats ← Apply(Streamliner, Instance)
if Stats→sat() then

setBound(Instance, Stats.bound) � Set new bound on the instance
end if
TimeTaken + = Stats.time

end while
end procedure
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order, and according to what schedule. We consider both static lexicographic
selection methods, which establish a priority order over our three objectives of
Applicability, Search Reduction and Optimality Gap, and a dynamic method,
which adjusts the selection based on the performance on the instance thus far.

6.1 Lexicographic Selection Methods

It is possible to order the streamlined models in a portfolio lexicographically by,
for example, prioritising Applicability, then Search Reduction, and finally the
Optimality Gap. Given three objectives, there are six such orderings to consider.
Through preliminary testing it became apparent that only two of these orderings
are effective, where the Applicability objective is prioritised. The other orderings
trade Applicability for either Search Reduction or a better Optimality Gap. On
more difficult test instances, significant search effort can be required to prove
that an aggressive streamliner has rendered an instance unsatisfiable, which
can lead to poor overall performance. Thus two lexicographic selection meth-
ods are used herein: {Applicability First, Optimality Second, Reduction Third}
and {Applicability First, Reduction Second, Optimality Third}.

The selection process involves traversing the portfolio (using the defined
ordering) for a given time period and applying each streamliner in turn to the
given instance as shown in Algorithm 1. The schedule is static in that it only
moves to the next streamlined model when the search space of the current one is
exhausted. A key parameter is Timetotal, which specifies the total budget in sec-
onds for traversing the streamliner portfolio. In Sect. 8 for each selection method
four different settings for this parameter are experimented with to explore its
effect on overall performance.

6.2 UCB Streamliner Selection

During optimisation, typically a number of feasible solutions are discovered
before the optimal objective value is found. This intermediate information can
be used as an indicator of the performance of the streamlined model. For a given
instance we have no prior knowledge of the suitability of a particular stream-
lined model and as such it is important to balance the time taken exploring the
portfolio to identify the performance of each model while exploiting those that
have already found solutions. Representing this as a multi-armed bandit prob-
lem allows us to employ well known regret-minimising algorithms to deal with
the exploration/exploitation dilemma. The multi-armed bandit can be seen as
a set of real distributions, each distribution being associated with the rewards
delivered by one of the K levers. In our case this is the K streamlined models
that comprise the portfolio. On each iteration a streamliner is selected to search
the given instance and a reward is observed based upon the improvement to the
objective value. The aim is at each iteration to apply the optimal streamliner,
where optimality is defined as producing the largest increase/decrease in the
value of the objective. The regret ρ after T rounds is defined as the expected
difference between the reward sum associated with an optimal strategy and the
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Algorithm 2. UCBSelection
procedure Selection(Portfolio, Ordering, T imetotal, Instance)

T imetaken ← 0
UCBTimeLimit ← 1
NumberOfIterations ← 0
Map � Mapping from Streamliner to Process
while T imetaken ≤ T imetotal do

Streamliner ← UCTSelection(Portfolio)
if Map[Streamliner].restart then

Process ← remodel(instance, streamliner) � Remodel with the new bound
Map[Streamliner].process ← Process
Stats ← run(Process, UCBTimeLimit)

else
Process ← Map[Streamliner].process
Stats ← run(Process, UCBTimeLimit) � Continue running existing process

end if
Map[Streamliner].visits += 1
NumberOfIterations += 1
if Stats→sat() then

Map[Streamliner].reward += 1
setBound(Instance, Stats.bound) � Set new bound on the instance
for S ← Map do

if S != Streamliner then
Map[S].restart = True � New Bound was found; restart all other processes

end if
end for

end if
T imetaken + = Stats.time

end while
end procedure

sum of the collected rewards observed. The UCB1 [4] algorithm was chosen to
solve the multi-armed bandit problem as first and foremost its regret grows log-
arithmically in line with the number of actions taken.

For each streamliner k we record the average reward xk and the number
of times k has been tried in the selection (nj) out of a total of n iterations.
On each iteration a streamliner is chosen that maximizes xk +

√
2 log(n)/nj .

The reward distributions for an individual streamliner are not fixed, so this
is not a Stationary Multi-Armed Bandit problem. However, if a streamliner
performs well, we expect it will continue performing well during search even if
there is a slight variation in the mean reward. We have found that using UCB1
gives good results. Future work could investigate the use of Upper Confidence
Bound policies for non-stationary bandit problems, such as the family of Exp3
algorithms [21,26].

When traversing the portfolio UCB performs incremental evaluation, it runs
a streamliner for a set time, observes the results, and potentially moves on before
the corresponding search space has been exhausted. When the streamliner is pre-
empted it is necessary to pause the search in order to avoid repeating work if it is
rescheduled at a later point. The only exception to this is whenever a new bound
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on the objective is discovered all of the streamliners from the portfolio, aside from
the current streamliner, are restarted and remodeled with the new bound. There
are two main benefits to doing this. Firstly, by restarting the streamliner has
the newly constrained bound at the top of the search tree which allows it to
make more informed decisions higher up without descending into unsatisfactory
subtrees. Secondly, by remodeling it takes advantage of the toolchain (Conjure
and Savile Row) which may be able to reformulate the model based upon this
new information and produce reductions at the solver level. Algorithm 2 shows
the UCBSelection process in detail.

7 Experimental Setting

We evaluate our automated streamlining approach on the three problem classes
in Fig. 1. We selected these problems to give good coverage of the abstract
domains available in Essence, such as set, multi-set and function. Furthermore,
SONET and Progressive Party have nested domains: multi-set of set and set of
function respectively.

Our hypothesis is that a streamliner portfolio, generated automatically on
a set of automatically generated training instances from a given problem class,
can be employed to solve more difficult test instances to deliver substantial per-
formance improvements relative to an unstreamlined model. Training instances
were generated as per Sect. 2, with a time limit of [10, 300] s. Test instances
are generated using the same instance generator and the tuning tool irace but
with a time limit of (300, 3600] s. 50 instances are selected randomly to form the
test set.

Care must be taken when considering the proof of optimality of our test
instances. Although in solving a streamlined model the constraint solver may
exhaust the search space this is not a proof that the current objective value is
optimal. This is because streamliners are not necessarily sound, hence a stream-
lined model may exclude the set of optimal solutions. For this reason, after the
streamliner portfolio has been run for its allotted time, we use the remainder of
the time budget to run the unstreamlined model, starting from the best objec-
tive value found by the streamliner portfolio, to provide the optimality proof.
The benefit of streamlining in this context is in finding high quality solutions
much more quickly than the unstreamlined model.

All experiments were run on a cluster of 280 nodes, each with two 2.1 GHz,
18-core Intel Xeon E5-2695 processors. MOMCTS was run on a single core with
a budget of 4 CPU days for each problem class. Results on 50 test instances
under the unstreamlined and streamlined models are reported, where every test
instance was run with three random seeds.

Source code, instance generators, datasets and detailed results are available
at https://github.com/stacs-cp/CP2019-Streamlining.

https://github.com/stacs-cp/CP2019-Streamlining


Automatic Streamlining for Constrained Optimisation 377

8 Results

Table 5 summarises results on 50 test instances (3 runs/instance) for each of our
three problem classes. We evaluate four different approaches: an unstreamlined
model, and streamliner portfolios with UCB selection, lexicographic ordering
{Applicability First, Optimality Second, Reduction Third} (denoted opt-second),
and lexicographic ordering {Applicability First, Reduction Second, Optimality
Third} (denoted red-second). For each streamliner selection method, a parameter
is the amount of time allocated to the streamliner portfolio before handing over
to the unstreamlined model to prove optimality. Four different values for this
time budget were tested: 30, 60, 120 and 300 s.

Results in Table 5 are strongly positive. They show that all the streamliner
portfolio approaches can not only find an optimal solution and prove optimality
on more test instances than the unstreamlined model, but also vastly reduce
the amount of time required for both tasks. In general, the UCB-30s variant
has the best overall performance across the three problem classes, and provides
consistently robust improvement over the unstreamlined model.

Figure 3 presents more details of how the streamliner approaches improve on
the unstreamlined models on an instance basis. In these plots, we use the time-
reduction ratio, a “normalised” version of the speed-up values reported in Table 5
for presentation: as the speed-up values can be arbitrarily large, many data points
in the speed-up plots can appear in a very small range, making them difficult
to distinguish. The reduction ratio, which is calculated as 1 − 1/speed-up, is
limited to at most one and can be easily scaled. For brevity, we only show in
Fig. 3 results of the streamliner variants with the time limit of 30 s. Each data
point corresponds to a pair of instances and random seeds. The plots show that
the solving time of the test instances are well distributed across the x-axis, which
is a good indication for the diversity of the test instance set. There are several
cases where the unstreamlined model cannot find or prove optimality within the
time budget and the streamliner can, which are represented by the data points
on the rightmost side after the vertical red lines.

The MEB results demonstrate strong performance of all three streamliner
approaches on all test instances. On SONET, UCB-30s clearly has better perfor-
mance compared with the other two approaches, which aligns with the summary
results in Table 5. While still strongly positive, on PPP the reduction provided
by the streamliner approaches is not quite as strong as for the other two problem
classes. There are a minority of cases where even the best streamliner approach,
UCB-30s, cannot find or prove optimality within the time budget, as shown by
the data points in the bottom-right corners.

Table 5 and Fig. 3 demonstrate that the time to prove optimality is very
significantly reduced through the application of streamliners. This stems from
their ability to find high quality feasible solutions quickly. Hence, once the time
allocated to the streamlined models has elapsed, the unstreamlined model begins
from an optimal or very high quality objective value, requiring much less effort
to exhaust the search space.
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Table 5. Summary results on 50 test instances (3 runs/instance) on three optimisation
problem classes: MEB, PPP and SONET. The first column, mean #proved 1-h, repre-
sents the average number of instances solved within one hour. All streamliner portfolio
variants significantly outperform the unstreamlined model by this simple measure. The
remaining columns report results where each run is now given a maximum amount of
96 CPU-hours (as tuning and generation of test instances is performed on the basis
of one seed, on the two other seeds it is possible for the unstreamlined model to time
out at one CPU hour). They include the time to reach an optimal solution, the time
to both reach an optimal solution and prove its optimality; and the corresponding
speed-up ratios when compared to the unstreamlined model. For each measurement,
we report the 10th percentile (p10), the median (p50), and the 90th percentile (p90).
These values are reported as the mean can be skewed by outliers. In particular, if the
optimal solution is not proved this results in a large time value (96 h = 345600 s) for
that run. The percentiles avoid this situation and show a clearer overall trend.

mean Finding an optimal solution Finding and prove optimality
Strategy #proved time(s) speed-up ratio time(s) speed-up ratio

(1-hour) p10 p50 p90 p10 p50 p90 p10 p50 p90 p10 p50 p90

M
EB

unstreamlined 35 157.9 1185.2 13893.9 311.1 1976.2 16781.3
UCB-30s 50 6.1 8 11.0 14.2 158.2 1583 15.2 22.2 176.7 6.6 43.6 492.2
UCB-60s 50 4.4 7.2 12 15 150.3 1552.2 16.1 24.6 188.7 6.9 35.6 521.9
UCB-120s 50 4.5 7.8 12.1 14.9 158 1604 15.1 24.8 220.9 6.2 36.1 518.4
UCB-300s 50 4.5 7.1 12.1 15 157.5 1605.4 14.9 24.9 345.1 5.2 32.1 416.6
opt-second-30s 49.7 4.1 6.3 13.4 14.1 171.1 1701.5 11.6 22.9 221.3 7.3 44.6 605.9
opt-second-60s 49.7 4.1 6.6 14.9 15.7 174.3 1833.4 11.7 22.5 199.6 7 45.3 625.4
opt-second-120s 50 4.2 6.2 13.6 19.9 178.3 1776.7 11.7 21.8 181.6 7.3 46.5 594.9
opt-second-300s 50 4.1 6.1 12.8 19.9 170.9 1865.8 11.5 21.8 176.9 7.5 47.6 647.0
red-second-30s 49.7 4.1 6.7 13.6 14.1 156 1845.1 11.8 22.8 249.1 7.3 43 532.2
red-second-60s 49.7 4.2 6.1 12.8 15.3 187.0 1878.3 11.8 21.7 198.7 7.3 45 646.3
red-second-120s 50 4.1 6.2 12.6 16.9 177.4 1903.5 11.6 22.1 178.1 7.2 46.3 605.4
red-second-300s 50 4.1 6.1 13.5 16.8 167.5 1891 11.7 22.3 178.8 7.6 47.5 625.1

PP
P

unstreamlined 41.3 73.4 564.3 3123 313 1339.7 6908.1
UCB-30s 47.7 13 73.7 1007.9 1.2 4.1 52 49.2 350.8 1946.6 1.0 3.0 29.3
UCB-60s 48.3 19.2 105.9 1078.7 0.9 2.9 28.7 86.1 428.8 2141.5 0.9 2.5 24.4
UCB-120s 48.3 18.9 163.3 1129.7 0.7 2.5 31.8 135.5 449.6 1936.2 0.9 2.1 16.8
UCB-300s 48.3 19 344.6 1311.3 0.4 1.6 30.1 323.9 646.3 2273.2 0.6 1.4 10.5
opt-second-30s 46.7 8.3 105.1 1340.5 0.9 3.5 75.1 44.1 419.4 2592.5 0.9 2.4 26.2
opt-second-60s 47 8.1 105.8 1444.2 0.8 3.4 75.2 73.7 453.5 2640.3 0.8 2.3 18.9
opt-second-120s 47.3 8.9 142.9 1765.1 0.7 3.6 76.5 113.1 486 2716.7 0.8 1.9 17.6
opt-second-300s 47.7 8.9 211 1349.3 0.5 3.1 72.4 110.8 599.1 2703.2 0.7 1.8 15.5
red-second-30s 45 14.7 177.7 2344.7 0.7 2 18.9 73.3 626.2 3537.7 0.8 1.7 14.8
red-second-60s 45.3 21.2 195.2 2341.6 0.6 2.1 15.6 96.1 643.2 3174.7 0.7 1.8 13.8
red-second-120s 45.7 13.6 175.7 2384 0.6 2.1 17.5 136.5 591.5 3095 0.6 1.8 11.1
red-second-300s 45.3 13.6 228 2731.5 0.6 1.9 16.8 157 657.6 3339.1 0.6 1.4 8.4

SO
N
ET

unstreamlined 43 539.5 1263.2 3820.3 574.4 1417.8 3954
UCB-30s 50 5 21.8 121.9 10.3 49.7 341.5 34 42.3 174.0 6.6 23.4 60.5
UCB-60s 50 6.1 28 131.9 8.5 38.1 300.3 63.3 75.3 198.7 4.9 14.4 42.1
UCB-120s 46 6 31.1 246.8 3.4 31.5 321.9 121.2 132.2 581.2 2.3 7.6 32.1
UCB-300s 50 7 30.7 344.5 3.8 33.4 287.3 111.8 310.8 437.8 1.7 4.2 22.9
opt-second-30s 49.3 3.5 9 1023.8 1.4 112.7 553.9 27.7 72.7 1023.2 1.4 19.2 70.5
opt-second-60s 49.7 3.5 9 443.2 1.5 113.1 611.4 27.6 93.6 644 1.5 15.9 66.9
opt-second-120s 49.3 3.3 8.3 455.6 1.3 117.3 677.9 26.9 120.7 701 1.3 14.6 68.6
opt-second-300s 49.3 3.7 8.4 549 3.6 121.0 549.9 28 123.1 770.6 1.1 10.3 69.4
red-second-30s 47.7 3.0 115.4 1749.6 0.8 10.6 483.5 27.7 227.3 2167.4 0.8 5.2 61.7
red-second-60s 47.7 3.0 105.3 1760.9 0.8 14.2 530.9 28.1 185 2137.2 0.8 7.2 64.1
red-second-120s 47.3 3.0 96.7 1532.5 0.8 16 506.3 28.3 157.8 2295.6 0.8 7.6 62.6
red-second-300s 47.7 3.0 96 1451.4 0.9 18.2 533.8 27.1 221.4 1717.6 0.8 6.1 65.2
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8.1 UCB Streamliner Selection: Discussion

In this section, we discuss the UCB approach for streamliner selection in more
detail, as UCB-30s achieves the best overall performance across the three prob-
lem classes, both in terms of reduction to finding the optimal objective value
and reduction to proving optimality. In contrast to the lexicographic methods,
which only move on to the next streamlined model when the search space of
the current one is exhausted, UCB benefits from its ability to sample the entire
streamliner portfolio. After the initial exploration phase, where each streamliner
is given its initial application, UCB then selects streamliners based upon the
observed rewards. Its main advantage is the ability to balance the exploration
and exploitation of the streamlined models in the portfolio.

(a) MEB - time to optimal (b) MEB - time to proof

(c) PPP - time to optimal (d) PPP - time to proof

(e) SONET - time to optimal (f) SONET - time to proof

Fig. 3. Reduction ratio of streamliner methods with 30 s for scheduling of the stream-
liner portfolio. Two reduction ratio values are reported: reduction in time to reach
an optimal solution, and reduction in time to reach an optimal solution and prove its
optimality. The x-axis represents the time required by the unstreamlined model. The y-
axis shows the the reduction value. Each data point corresponds to a pair of (instance,
random seed). These plots focus on the region within a 1-h time limit: all data points
outside that ranges are shrunk into the same region. More specifically, runs where the
(unstreamlined model) streamliner methods do not reach an optimal solution or does
not prove optimality in one hour are separated by the red (vertical) horizontal lines.
The reduction values, however, are still the true values calculated based on the 4-day
CPU limit. As most data points lie within the range of y ∈ [0, 1], the plot is rescaled
so that this range is zoomed in for better visualisation.
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Fig. 4. Objective value progression from the unstreamlined model compared with its
progression under the UCB selection method for a representative SONET instance.

It is not always the case that the objective is found purely through the
application of one streamliner. For SONET, on average three streamliners are
used across the 50 test instances to arrive at the optimal objective value. Access
to the whole portfolio allows UCB to descend upon the optimal objective value
more quickly and is one reason for its success. The application of several different
streamliners at different time points can be used to reduce the bound of the
objective in an effective manner as per Fig. 4.

The UCB algorithm exploits the streamliners that have previously been
shown to produce an improvement in the objective value. This can be very
clearly shown from Fig. 4 where for an instance from SONET the streamliners
13, 13–67 and 6–671 (explained in Table 2) improve the objective multiple times
during the course of the selection process. This is due to the fact that UCB is
continuing to exploit those streamliners as previously they had success. However,
it is also crucial to continually explore the portfolio in an attempt to find stream-
liners that did not initially have success but may do after a certain number of
iterations. Streamliner 13–15 is an example of such a case.

8.2 Time Allocated to the Streamliner Portfolio: Discussion

From Table 5 it can be seen that the TimeTotal parameter as defined in Algo-
rithms 1 and 2 can have a large impact on the overall performance of the selection
method. There is a general trend (excluding MEB which will be discussed sep-
arately) that as the TimeTotal increases the time both to find and prove the
optimal objective value increases. This may seem puzzling initially: if using a
TimeTotal of 30 s reduces the time to find the optimal objective value to a cer-
tain extent, it might be expected that a TimeTotal of 300 s will do equally well.
However, there are two things to consider. First, streamliners from the portfolio
are not guaranteed to preserve the optimal value and so there is the potential for
an optimality gap between what the streamliners can find and the true optimal
of the instance. Therefore, the true optimal is only found after the switch to
the unstreamlined model occurs. Second, on average the streamliners converge

1 13–67, for example, indicates a streamlined model including both streamliner 13 and
67.
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upon their optimal value in a very short period of time, 17 s, 7 s and 12 s for
SONET, MEB and PPP respectively. By increasing the TimeTotal parameter it
delays the point at which the switch occurs to the unstreamlined model which in
turn delays the point at which the true optimal is found. However, for MEB the
TimeTotal does not have a large impact on performance and this is due to the
fact that the streamliners in the portfolio generally exhaust their search space
very quickly. Hence, the whole portfolio can be traversed before TimeTotal is
reached and so the time at which the switch to the unstreamlined model occurs
is generally the same across all parameter settings.

The increase in time to prove optimality occurs as if the Ttotal parameter
is set too large then when the optimal value is found at time Topt, the whole
duration from Topt → Ttotal is spent proving the optimality of that solution in the
streamlined subspaces. Since proving optimality with respect to the streamliners
does not prove optimality on the unstreamlined model and so the whole time
from Topt → Ttotal is wasted.

9 Conclusion and Future Work

We have presented the first automated approach to generating streamliners
automatically for optimisation problems, and for their selection and scheduling
when employed on unseen instances. On three quite different problem classes
the results are very encouraging, with vastly reduced effort both to find and to
prove optimal objective values.

An important question we plan to investigate further is the applicability
of our method to identify in which contexts our streamliner can and cannot
help. In the context of optimisation the benefit of streamlining lies in the early
identification of the optimal, or at least high quality, values for the objective.
Where an unstreamlined model is able to identify the optimal value quickly, the
benefit of streamlining will be limited. When considering satisfaction problems,
however, streamlining can be used throughout the search and we will compare
the portfolio approach developed herein with the single selection provided by
the method presented in Spracklen et al. [32].

Furthermore, there are several methods for devising good search strategies
for constrained optimisation problems. Recent research suggest using machine
learning to design a promising search ordering [8], using solution density as a
heuristic indicator [31] and a number of value ordering heuristics to find good
solutions early [11,30]. Streamlining constraints can potentially be used in com-
bination with the existing methods for devising good variable and value selection
heuristics to achieve even better results.
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Abstract. Conditionals are a core concept in all programming lan-
guages. They are also a natural and powerful mechanism for expressing
complex constraints in constraint modelling languages. The behaviour
of conditionals is complicated by undefinedness. In this paper we show
how to most effectively translate conditional constraints for underlying
solvers. We show that the simple translation into implications can be
improved, at least in terms of reasoning strength, for both constraint pro-
gramming and mixed integer programming solvers. Unit testing shows
that the new translations are more efficient, but the benefits are not so
clear on full models where the interaction with other features such as
learning is more complicated.

Keywords: Constraint modelling · Conditional constraints · MiniZinc

1 Introduction

Conditional expressions are a core part of virtually any programming and mod-
elling language. They provide a way to change behaviour of the program/model
depending on some test. MiniZinc 1.6 [10] and earlier versions provided the con-
ditional expression

restricted to the case that the expression cond could be evaluated at compile
time to true or false. This is simple to handle, since the MiniZinc compiler can
replace this expression by thenexp if cond = true and elseexp if cond = false.
From MiniZinc 2.0 onwards the expression cond is no longer restricted to be
known at compile time, it can be an expression involving decision variables whose
truth will be determined during the execution of the solver. This extension is
very useful, it makes the expression of many complex constraints much more
natural. For example, the absolute value function can be simply expressed as

The MiniZinc compiler must translate these conditional expressions into prim-
itive constraints that are implemented by the solver. For example, Constraint
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Programming (CP) solvers may use reification or dedicated constraints for log-
ical connectives [1,7,8] to link the truth of x >= 0 to the result of the function
being x or -x, whereas for Mixed Integer Programming (MIP) solvers we would
employ techniques such as big-M or indicator constraints (see e.g. [6,9]).

The effective translation of conditional expressions is the focus of this paper.
But before we determine how to translate conditional expressions we must under-
stand their exact meaning, including how they interact with undefinedness.

Undefinedness naturally arises in constraint models through the use of partial
functions like x div y or, much more commonly, out of bounds array lookups
a[i] where i takes a value outside the index set of a. In the remainder of the
paper we will argue for the correct semantics of conditionals with undefinedness
(Sect. 3), and then illustrate in Sect. 4 how to compile conditional constraints to
a form that can be executed by solvers while respecting the correct semantics.
We then show in Sect. 5 how we can improve this translation for constraint pro-
gramming (CP) and mixed integer programming (MIP), and how we can often
improve models created by non-experts, who use conditionals in a familiar proce-
dural programming style (Sect. 6). Section 7 shows how the different translations
compete in terms of solving efficiency, and Sect. 8 concludes the paper.

2 Model Translation

Modern modelling languages like MiniZinc [10], Essence [5], AMPL [3] and
OPL [12] provide highly expressive ways of defining a constraint problem. But
the underlying solvers only solve one form of problem, typically

minimize o subject to ∃V.

n∧

i=1

ci

where V is a set of variables and each ci is a primitive constraint understood by
the solver. In some solvers the primitive constraints are very limited, e.g. SAT
solvers only consider clauses, and MIP solvers only consider linear constraints.

The MiniZinc compiler translates high level models to models that only con-
tain primitive constraints suitable for a given target solver. Solver-level models
are represented in a language called FlatZinc, in a process called flattening.
FlatZinc is a much richer low level language than used by SAT and MIP, in
order to support all the primitive constraints natively supported by CP solvers.
For this paper we will assume the solver supports the following primitives.
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where x is an integer array, yn is an integer, a is a fixed integer array, a0 is
a fixed integer, bn is a Boolean, and S is a fixed integer set. Note that we will
often write these in slightly different syntactic form, e.g. b <-> y = 0 is a reified
linear equality, and b1 /\ not b2 -> b3 is a clause.1 Most CP solvers directly
support a wide array of global constraints which also appear in FlatZinc. We
shall introduce new global constraints as needed during the paper.

The reader may ask why we need reified versions of primitive constraints.
This arises because in a complex model not all constraints that appear in the
model must hold.

Example 1. Consider the model .
Neither y <= 0 nor x = a[y] must hold all the time (one of the two is sufficient).
A correct flattening making use of reified primitive constraints is

In a MiniZinc model each expression occurs in a context, which is the nearest
enclosing Boolean expression. The root context is all Boolean expressions that
can be syntactically determined to be true in any solution, that is the context of
a top-level constraint or a top level conjunction. A non-root context is any other
Boolean expression. When flattening a constraint, all total functional expressions
in the constraint can be moved to the root context, while relations or partial
functional expressions must be reified to maintain the meaning of the model.

3 Semantics of Conditionals

Any sufficiently complex modelling language has the ability to express unde-
fined values, which we will represent as ⊥, for example division by zero or array
index out of bounds. The treatment of undefinedness in modelling languages
is complicated. Whereas in a traditional programming language it would be
handled by runtime exception or abort, in a relational language this is not cor-
rect, since the solver will be making decisions that may result in undefinedness.
Frisch and Stuckey [4] considered three different semantics for the treatment of
undefinedness in modelling languages: a three-valued Kleene semantics (agree-
ing with a usual logical interpretation of undefinedness, but requiring three val-
ued logic), a two-valued strict semantics (essentially making any undefinedness
cause the model to have no solution), and the two-valued relational semantics
(that agrees with the relational interpretation discussed above). MiniZinc and
other modelling languages such as Essence Prime [11] implement the relational
semantics, since it most closely accords with a modeller’s intuition and does not
require introducing three truth values.

1 Note that we use a simplified FlatZinc syntax, including support for reified element
constraints, to improve readability.
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The core abstract modelling language introduced in [4] did not consider con-
ditional expressions. There are a few plausible interpretations of the desired
interaction between conditionals and undefinedness. We invite the reader to con-
sider the simple one-line constraint models given below (each sharing the same
declarations of x, y and a) and determine what they believe to be the correct
set of solutions for each:

The basic rule for the relational semantics is “an undefined value causes the
nearest containing Boolean expression to be false”. That means when we find an
expression with value ⊥ we must propagate this upward through all enclosing
expressions until we reach a Boolean context, where the ⊥ becomes false. For
instance, assume that the index set of a in Example 1 is 1..2, then a[y] is
undefined for y=-1. The nearest containing Boolean context is x = a[y], which
therefore becomes false. The overall disjunction would still be true, since its other
disjunct y<=0 is true. If we consider what this means for conditional expressions,
we can distinguish two cases.

– An undefined result occurs somewhere in the condition cond or it occurs in
the thenexp or elseexp and the type of thenexp and elseexp is Boolean.

– An undefined results occurs in the thenexp or elseexp and their type is not
Boolean.

In the first case, the undefinedness is captured by the subexpressions and the
conditional does not directly deal with undefinedness. In the second case there
are two possible solutions. The eager approach says that the entire conditional
expression takes the value ⊥ if either thenexp or elseexp takes the value ⊥.
The lazy approach says that the conditional expression takes the value ⊥ iff the
cond = true and thenexp =⊥ or cond = false and elseexp = ⊥. Clearly the
lazy approach reduces the effect of undefinedness. We would argue that it also
accords with traditional programming intuitions, since in languages such as C, (
b ? x = y / 0 : x = y;) does not raise an exception unless b is true. Hence in
this paper we propose to adopt the lazy interpretation of the relational semantics
for conditional expressions. Note that this accords with the lazy interpretation of
array lookup which is considered in the original paper on relational semantics [4].
Hence for the examples above we find:

(1) The undefined expression a[3] causes the thenexp to be false requiring the
condition y = 0 to be false, leaving solutions x = 0∧y = 1 and x = 2∧y = 2.

(2) The undefined expression a[3] causes the thenexp to be ⊥ requiring the
condition y = 0 to be false, or the whole expression evaluates to false leaving
solutions x = 0∧y = 1 and x = 2∧y = 2. Note how the lazy approach gives
the identical answers to the “equivalent” expression (1).
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(3) The thenexp a[y] is only of interest when y = 0 (and hence if a[y] is ⊥),
so the else case must hold, leaving solutions x = 0∧y = 1 and x = 0∧y = 2.

(4) The then case is ⊥ so the second disjunct evaluates to false when y = 0,
leaving solutions x = 0∧y = 1, x = 2∧y = 2 and x = 0∧y = 0, x = 1∧y = 0,
x = 2 ∧ y = 0.

MiniZinc supports an extended conditional expression of the form
if c1 then e1 elseif c2 then ... else ek endif

This is semantically equivalent to
if c1 then e1 else if c2 then ... else ek endif ... endif

To simplify presentation, we will assume an alternative syntax that uses two
arrays of size k: ite([c1,c2,...,true],[e1,e2,...,ek]) The c array are the
conditions, the e array are the results. Note how the last condition ck = true for
the else case. The (lazy) relational semantics applied to this expression requires
that the conditional takes the value of expression ei iff ci ∧ ∧i−1

j=1 ¬cj holds.
Hence if ei is ⊥ then either the ith condition cannot hold or the nearest enclosing
Boolean context will be false. This is the same semantics as if we treated the

as a nested sequence of expressions.

4 Translating Conditionals

In this section we examine how to translate the conditional expression
where c is an array of k Boolean expressions with the last one being true, and e
is an array of k expressions. We usually introduce a new variable x to hold the
value of this expression, .

Boolean Result. In its most basic form, a conditional is a Boolean expression,
i.e., x has type or . In this case the semantics can be defined
in terms of simple expressions:2

x = forall (i in 1..k) (c[i] /\ not exists (c[1..i-1]) -> e[i])

If x is true (e.g. if the conditional appears directly as a constraint) this can be
encoded using k simple clauses. Because Boolean values can never be ⊥ (they
simply become false) there is no difficulty with undefinedness here.

Non-Boolean Result. If the e[i] are not Boolean, a straightforward transla-
tion scheme would result in the Boolean expression:

forall (i in 1..k) (c[i] /\ not exists (c[1..i-1]) -> x = e[i])

If none of the expressions e[i] can be ⊥ this is correct. But if case i is the
selected case and e[i] is ⊥, then this translation causes the entire model to
have no solution. If the conditional expression occurs at the root context this is
correct, but if it occurs in a non-root context, the desired semantics is that it
enforces that the context is false.
2 We use array slicing notation c[l..u] equivalent to .
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Example 2. Consider the translation of example (3). Since the expression
appears in the root context we can use the simple translation:

The solutions, projecting onto x and y, are x = 0 ∧ y = 1 and x = 0 ∧ y = 2
as expected. Note the undefinedness of the expression a[y] is captured by the
reified constraint b2 <-> x = a[y]. ��

In order to deal with non-root contexts we introduce an explicit representa-
tion of undefinedness by associating with every term t appearing in a non-root
context the Boolean def(t) which records whether it is defined (true) or unde-
fined, i.e. def(t) = false iff t = ⊥. The translation will ensure that if def(t)
= true then t takes its appropriate defined value, and if def(t) = false then
t is free to take some value (which does not affect the satisfiability of other
constraints). We can now define the full semantics of a conditional :

Let us look at the two parts of this definition in turn. The first part (line 1)
states that if the overall expression is defined (def(x)), and alternative i is
selected, then the expression takes the value of branch i. Due to the relational
semantics of x=e[i], this also implies that e[i] is defined. The second part
(line 2) states that if the value of the selected branch is defined, then the value
of the overall conditional is defined. Note how if e[i] is ⊥ and the ith case is
chosen, then the first part will enforce def(x) to be false, and there will be
effectively no usage of the value of e[i].

Example 3. Let us consider the translation of example (4). Here the conditional
expression is not in a root context. The resulting translated form is

The solutions, projecting onto x and y, are x = 0 ∧ y = 1, x = 2 ∧ y = 2,
x = 0 ∧ y = 0, x = 1 ∧ y = 0, and x = 2 ∧ y = 0 as expected. ��
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5 Improving the Translation of Conditionals

The direct translation of conditionals explored in the previous section is correct,
but does not necessarily propagate very well. We can create better translations
if we know more about the underlying solver we will be using.

5.1 Element Translation

We first restrict ourselves to the case that none of the expressions e can be ⊥. In
this case we can translate as x = e[ arg_max(c) ]. Note that
the arg_max function returns a variable constrained to be the least index which
takes the maximum value. Since c[k] is always true this returns the first con-
dition which is true. Thus this expression first calculates the first case j whose
condition holds, and then uses an element constraint to equate x to the appropri-
ate expression in e. Flattening simply yields x = e[j] /\ maximum_arg(c, j)
where maximum_arg is the predicate version of the arg_max function. Note in
the case of the simple conditional we can
avoid the use of arg_max and simply use x = e [2 - b]. If b is true we obtain
x = e[1] and otherwise x = e[2].

The advantage of the element translation is that we can get stronger propa-
gation. A solver that has native support for the element constraint can apply a
form of constructive disjunction [13]: it can reason about all of the cases together,
and propagate any common information that all cases (disjuncts) share.

Example 4. Consider the translation of the expression
x = if c1 then a elseif c2 then b else c endif

where variables a, b, c ∈ {5, 8, 11}. The implication form compiles to

Initially no propagation is possible. But the element translation is

Immediately propagation determines that x can only take values {5, 8, 11}. If
some other constraints then cause the value 5 to be removed from the domains of
a, b and c, the element constraint will also remove it from x, while the implication
form will not be able to perform this kind of reasoning. ��

We can show that the element translation is domain consistent when using
domain consistent propagators for element and maximum arg. Hence it is a
strongest possible decomposition, and therefore must propagate at least as much
as the implication decomposition.
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Theorem 1. The element translation of is domain consistent assuming
domain propagation of the primitives.3 ��

In order to take into account definedness we can extend the translation by
using another element constraint to determine the definedness of the result:

Suppose e[i] is undefined, then since def(e[i]) is false the resulting variable
will be unconstrained, which will leave x unconstrained as well.

5.2 Domain Consistent Decomposition of maximum arg

Note that the element translation relies on domain consistent propagation for
the element and maximum_arg constraints to enforce domain consistency. Many
CP solvers support domain propagation for element, but not necessarily for
maximum_arg. We can enhance the standard decomposition of maximum arg so
that it enforces domain consistency.

The new decomposition is shown below. It tests for the special case that one
of the elements in the array is known to be at the upper bound of all elements at
compile time, i.e . The decomposition
introduces variables d such that d[i] is true iff x[k]=ubx for some k<=i.

Theorem 2. The decomposition of maximum_arg above maintains domain con-
sistency in the case where the maximum is known. ��

5.3 Domain Consistent Propagator for maximum arg

Given the key role that maximum arg plays for translating conditionals it may be
worth building a specialised propagator for the case where it applies: on an array
3 Proofs of theorems not included in this paper can be found in the extended version

at https://www.minizinc.org/pub/mzn conditionals.pdf.

https://www.minizinc.org/pub/mzn_conditionals.pdf
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of Booleans where the maximum is known to be true. The following pseudocode
implements a domain consistent propagator for this case. In a learning solver
each propagation must be explained. The correct explanations are given in the
parentheses following the because statements.

index of first true(x, y)
ol := lb(y)
for (j ∈ 1..ol − 1)

propagate ¬x[j] because (y ≥ ol → ¬x[j])
l := ub(y) + 1
u := lb(y)
for (j ∈ dom(y))

if (l > ub(y) ∧ ub(x[j]) = true) l := j
if (ub(x[j]) = false) propagate y 
= j because (¬x[j] → y 
= j)
if (lb(x[j]) = true) u := j ; break

propagate y ≥ l because (y ≥ ol ∧ ∧
k∈ol..l−1 y 
= k → y ≥ l)

propagate y ≤ u because (x[u] → y ≤ u)
if (lb(y) = ub(y)) propagate x[lb(y)] because (y = lb(y) → x[lb(y)])
for (j ∈ ol ..lb(y) − 1)

propagate ¬x[j] because (y ≥ lb(y) → ¬x[j])

The propagation algorithm above first ensures that all indexes lower than
the lower bound of y cannot be true. Propagation does nothing if this is already
the case. The propagator iterates through the remaining possible values of y. It
finds the first element indexed by y that might be true and records this as l. If it
finds index positions j where x[j] is false, it propagates that y cannot take these
values. If it finds an index position j where x[j] is true, it records the position as
u and breaks the loop. Once the loop is exited it sets the new lower bound as l
and the new upper bound as u. If the updated lower bound and upper bound of
y are equal we propagate that x at that position must be true. Finally we ensure
that all x positions less than the new lower bound of y are false. Note that if
l = ub(y) + 1 at the end of the loop this effectively propagates failure, similarly
if lb(y) = ub(y) and x[lb(y)] is false, or x[j], j < lb(y) is true.

Theorem 3. The index of first true(x, y) propagator enforces domain consis-
tency for maximum arg(x, y) when the max is known to be true. ��

5.4 Linear Translation

When the target solver to be used for conditional constraints is a MIP solver,
the conditional constraints have to be linearised. The implication form of a
conditional constraint is in fact not too difficult to linearise, however it may
result in a weak linear relaxation. We now discuss how to improve over the

Example 5. Consider the linearisation of the implication form of the expression:
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Assuming the initial bounds on x are 0..100, the result is (see [2] for details):

This has a weak linear relaxation, x can take any value in the range 0..100. ��
We can do better, at least in the case where all the expressions e are fixed,

by translating as follows:

The case selector variables b are the same as in the implication form, but we add
that exactly one of them is 1, and generate x as a linear combination of the cases.
If all elements of the array e are fixed integer expressions then the last constraint
is simply a linear equation. In the case of a conditional with just one condition
we again have a much simpler translation: x = b*e[1] + (1-b)*e[2];

Example 6. The result of translating the expression of Example 5 is

Bounds propagation can immediately determine from the last equation that x
takes values in the range 0..24. A linear solver can immediately determine (using
the last two constraints) that x takes values in the range 5..11. ��

The example above shows that the linear translation can sometimes be much
stronger than the linearisation of the implication translation. The following the-
orem establishes that it is indeed never weaker.

Theorem 4. Assuming all values in e are constant, the linear relaxation of
the linear translation of a conditional expression is no weaker than the linear
relaxation of the implication translation. ��

Since the linear translation is not worthwhile unless all the e expressions are
fixed we do not need to extend it to handle undefinedness.
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6 Improving “Procedural” Code

Many non-expert users of MiniZinc make heavy use of the conditional statement,
since they are familiar with it from procedural programming. This section shows
that reformulating the procedural style can lead to improved propagation when
the element translation is used.

Example 7. Consider the constraint

The resulting element translation is

Initially a CP solver will be able to propagate no information. But consider the
equivalent expression

discussed in Example 5. Using the element translation the solver will immediately
propagate that the domain of x is {5, 8, 11}.

The linear translation of the original form above is the same as shown in
Example 5. The linear relaxation of this system does not constrain x more than
its original bounds 0..100. The linear relaxation of the translation of the equiv-
alent expression discussed in Example 6 enforces that x is in the range 5..11. ��

We can define a transformation for arbitrary conditional expressions that
share at least some equational constraints for the same variable. This is a very
common modelling pattern for inexperienced modellers. Consider the constraint

In most cases the conditional (conjunctively) defines values for y and z. To
compile this efficiently we can in effect duplicate the conditional structure to
give separate partial definitions of y, z and any leftover constraints.

When translating the result using the element translation we can reuse the
maximum_arg computation for each part, arriving at
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We can show that lifting the equalities out of an if-then-else expression can
only improve propagation. The theorem assumes that each branch has an equal-
ity for variable x, if this is not the case we can add the equation x = x to give
the right syntactic form.

Theorem 5. Using the element translation for a conditional constraint of the
form ite(c, [x = ex1 ∧ r1, x = ex2 ∧ r2, . . . x = exm ∧ rm]) and the equivalent
constraint x = ite(c, [ex1, ex2, ..., exm]) ∧ ite(c, [r1, r2, . . . , rm], then the second
form propagates at least as much. ��

7 Experimental Evaluation

This section presents an evaluation of the different approaches to compiling
conditionals using an artificial unit test and a more natural model of a problem
that uses conditionals.

All experiments were run on an Intel Core i7 processor at 4 GHz with 16 GB of
RAM. The models were compiled with current development versions of MiniZinc
(revision e1d9d10), Gecode (revision b3fceb0) and Chuffed (revision b74a2d7),
CBC version 2.9.8/1.16.10 and CPLEX version 12.8.0. The solvers were run
in single-core mode with a time out of 120 s. All models use fixed search for
CP solvers so that the differences for traditional CP solvers only arise from
differences in propagation, in learning solvers differences also arise from different
learning. For the MIP solvers CBC and CPLEX, presolving was switched off to
improve consistency of results.

7.1 Unit Tests

Let π be a sorted sequence of 4n distinct integers in the range 0 . . . 100n, with
π(i) denoting the ith integer in the sequence. We build a (procedural) constraint
system consisting of two ite constraints (the ++ operator stands for array con-
catenation):

ite([x ≤ π(4i − 3)|i ∈ 1..n − 1]++[true], [y = π(4i − 2)|i ∈ 1..n])
ite([y ≤ π(4i − 1)|i ∈ 1..n − 1]++[true], [y = π(4i)|i ∈ 1..n − 1]++[0])

By definition the first constraint implies y > x unless x > π(4n − 7) then
y = π(4n − 2). The second constraint implies x > y unless y > π(4n − 5)
then x = 0. Together these are unsatisfiable. We also consider the equivalent
functional form

y = ite([x ≤ π(4i − 3)|i ∈ 1..n − 1]++[true], [π(4i − 2)|i ∈ 1..n])
x = ite([y ≤ π(4i − 1)|i ∈ 1..n − 1]++[true], [π(4i)|i ∈ 1..n − 1]++[0])
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Table 1. Unit testing for the Gecode and Chuffed CP solvers.

Table 2. Unit testing for the CBC and CPLEX MIP solvers.

Table 1 compares the Gecode and Chuffed CP solvers on five different ver-
sions: → is the implication translation (which is identical for both forms);
[] is the element translation of the procedural form with domain consistent
maximum arg decomposition; []P is the element translation of the procedural
form with domain consistent maximum arg propagator; x = [] is the element
translation of the functional form with domain consistent maximum arg decom-
position; and x = []P is the element translation of the functional form with
domain consistent maximum arg propagator; A—indicates 120 s timeout reached.
The results demonstrate the clear benefits of the mapping from procedural form
to functional form, and the benefit of the element translation, in particular with
a global propagator for maximum arg over the implication form.

Table 2 shows the results of the MIP solvers of the functional form of the
model with: → linearisation of the implication translation; x = [] linearisation
of the element translation with decomposed maximum arg; and

∑
the direct

linearisation defined in Sect. 5.4. Note here we cannot control the search, so that
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there may be more variance in results due to other factors. The linearisation
of the implication translation is generally better than the linearisation of the
element translation, since the maximum arg decomposition makes the whole thing
much more complex. The direct linear translation is substantially better and
much more scalable.

7.2 Fox-Geese-Corn

To study the effects of different translations on a more realistic model, we con-
sider a generalisation of the classic Fox-Geese-Corn puzzle, where a farmer needs
to transport goods from one side of a river to the other side in several trips. It
contains several rules such as “When the farmer leaves some foxes and geese
alone on one side of the river, and there are more foxes than geese, one fox dies
in argument over geese, and no geese die; if there are no more foxes than geese,
each fox eats a goose”. The overall goal is to maximise the farmer’s profit of
goods successfully transported across.4

The most natural way of modelling this problem follows the structure of the
specification, using conditionals to constrain state variables for each time point
and type of object. We manually analysed models written by students and sub-
mitted as part of an online assignment for the Coursera course Modeling Discrete
Optimization, which ran from 2015–2018. We have identified a number of differ-
ent modelling approaches based on conditional expressions. Almost all students
use the “procedural” syntax. In general, the constraints take the form such as

, where geese[i]
is the number of geese at step i, cond specifies the condition from the rules, and
c is a constant (e.g. 1 in the case that one goose dies) or a variable (e.g. fox[i]
in the case that each fox eats one goose). We manually performed the conversion
into expression form such as

and call this Model 1.
Several students described all cases explicitly in the conditions, not notic-

ing that the case distinction is in fact exhaustive. For example, they might
have written

, instead of the simpler
. The resulting

expression form, which we call Model 2, would contain the less compact

.
Table 3 shows the results for the two models on ten instances, with the impli-

cation (→) and element (x = []P ) encoding, and the additional linear encoding
(
∑

) for CPLEX. A number without superscript represents time in seconds for
finding the optimal solution and proving optimality. For cases where search timed
out, a number with superscript (e.g. 1.75120) represents the time when the best
solution was found (1.75 s) and the objective value of the best solution found
(120). The last line in each table summarises the results for each solver: for a

4 See https://github.com/minizinc/minizinc-benchmarks.

https://github.com/minizinc/minizinc-benchmarks
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given solver, an encoding wins for an instance if it proves optimality faster than
the other encoding(s), or if neither encoding proves optimality, if it finds a better
solution, or the same objective but faster. A—represents that no solution was
found within the 120 s timeout. Numbers in bold indicate the winning model
(highest objective found in least amount of time) for each solver.

In more complex models the relative performances of the different encodings
are less distinct. For Gecode the x = []P version continues to be superior, for
Chuffed the → version is more competitive because it can learn on intermediate
literals. Surprisingly for CPLEX the x = [] translation is usually better than
the implication translation and overall best for Model 1. For Model 2 the Σ
translation is strongest even though in this case the e arguments are not fixed.

Table 3. Fox-Geese-Corn
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8 Conclusion

Conditional expressions are one of the most expressive constructs that appear in
modelling languages, allowing natural expression of complex constraints. They
are also frequently used by beginner modellers used to thinking procedurally. In
this paper we show how to translate conditional expressions to a form that under-
lying solvers can handle efficiently. Unit tests clearly demonstrate the improve-
ments from new translations, though this is not so clear on more complex models,
where other factors interact with the translations. The concepts presented here
are available in MiniZinc 2.3.0, Gecode 6.2.1, and Chuffed 0.10.5.
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Abstract. Binarized Neural Networks (BNNs) are an important class
of neural network characterized by weights and activations restricted to
the set {−1, +1}. BNNs provide simple compact descriptions and as such
have a wide range of applications in low-power devices. In this paper, we
investigate a model-based approach to training BNNs using constraint
programming (CP), mixed-integer programming (MIP), and CP/MIP
hybrids. We formulate the training problem as finding a set of weights
that correctly classify the training set instances while optimizing objec-
tive functions that have been proposed in the literature as proxies for gen-
eralizability. Our experimental results on the MNIST digit recognition
dataset suggest that—when training data is limited—the BNNs found by
our hybrid approach generalize better than those obtained from a state-
of-the-art gradient descent method. More broadly, this work enables the
analysis of neural network performance based on the availability of opti-
mal solutions and optimality bounds.

Keywords: Binarized Neural Networks · Machine learning ·
Constraint programming · Mixed integer programming ·
Discrete optimization

1 Introduction

Deep learning is responsible for recent breakthroughs in image recogni-
tion, speech recognition, language translation, and artificial intelligence [7,18].
Roughly speaking, deep learning aims to find a set of weights for a neural net-
work (NN) that maps training inputs to target outputs (e.g., English sentences
to their Spanish translations), a process known as training. The most notable
feature of deep learning is that NNs generalize when trained over large datasets,
i.e., they can map unseen inputs to their target outputs with high accuracy.
c© Springer Nature Switzerland AG 2019
T. Schiex and S. de Givry (Eds.): CP 2019, LNCS 11802, pp. 401–417, 2019.
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Hubara et al. [9] recently showed that Binarized Neural Networks (BNNs)—
NNs with weights and activations in {−1,+1}—have comparable test perfor-
mance to standard NNs in two well-known image recognition datasets. This is
a remarkable result because BNNs can be implemented using Boolean oper-
ations with low memory and energy consumption, enabling, for example, the
application of deep learning in mobile devices. While training BNNs is a discrete
optimization problem, it has not been addressed by model-based techniques such
as mixed-integer programming (MIP) or constraint programming (CP). Instead,
BNNs are trained using gradient descent (GD) methods over continuous weights
which are binarized during the forward pass of the algorithm [17,20,26,33].

Model-based approaches have stronger convergence guarantees than GD and,
as such, can potentially find better solutions given enough time and resources.
There are two reasons, however, why a model-based approach—in particular
MIP—may be disadvantageous, as stated by Gambella et al. [6]. First, it may
not scale to large datasets since the size of the model depends on the size of the
training set. Second, solutions with provably-optimal training error are likely to
overfit the data, that is, they will classify the training examples effectively but
will not generalize.

The main contribution of this paper is a collection of model-based training
methods that explicitly address these issues. The key insights are (i) improving
scalability by taking advantage of CP’s ability to find BNNs that fit the training
data and (ii) avoiding overfitting by optimizing well-known proxies for general-
izability. Specifically, we propose MIP, CP, and CP/MIP hybrid approaches to
train BNNs while optimizing objective functions based on two machine learning
principles for generalization: simplicity and robustness.

We experimented over subsets of the widely-used MNIST dataset [19]. Our
experiments focused on limited training data, a setting known as few-shot learn-
ing [32]. This setting is important in Machine Learning because collecting labeled
data is expensive—or even impossible—in many important real-world applica-
tions, including healthcare [3,21]. Our results show that our hybrid methods
scale significantly better than MIP (i.e., they solve problems with larger net-
works and more training data) and produced BNNs that generalize better than
those trained with GD. In fact, our BNNs correctly classified up to 3 times more
unseen examples than BNNs learned by GD on a few-shot learning regime. How-
ever, model-based approaches are still far from scaling at the level of GD and,
hence, GD should be preferred when a large amount of data is available. Finally,
since model-based approaches find provably-optimal solutions—GD does not—
they allow for principled empirical comparisons between generalization proxies.
Our results suggest that optimizing for robustness leads to better test perfor-
mance than simplicity.

2 Problem Definition

BNNs are NNs with weights and activations restricted to the values −1 and
+1. A BNN architecture is defined by the number of layers L and the set of
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n0,1

n0,2

n1,1

...

n1,16

n2,1

...

n2,16

n3,1

Fig. 1. A BNN with 2 inputs, two hidden layers with 16 neurons each, and 1 output
neuron. We use the notation n�j to represent neuron j from layer �.

neurons N = 〈N0, . . . , NL〉, where N� corresponds to the set of neurons in layer
� ∈ {0, .., L}. For instance, Fig. 1 shows a BNN with two input neurons (n0,1 and
n0,2), two hidden layers with 16 neurons each (n1,1 to n1,16 and n2,1 to n2,16),
and one output neuron (n3,1), i.e., its architecture is N = 〈N0, N1, N2, N3〉 with
|N0| = 2, |N1| = |N2| = 16, and |N3| = 1. Every neuron j ∈ N� (� ≥ 1) is
connected to every neuron i ∈ N�−1 by a weight wi�j ∈ {−1, 0, 1}. Note that
setting wi�j = 0 is equivalent to removing the corresponding connection from the
BNN. Given a value x for the input neurons, the preactivation a�j(x) of neuron
j ∈ N� and its activation n�j(x) are, respectively,

a�j(x) =
∑

i∈N�−1

wi�j ·n(�−1)i(x) and n�j(x) =

⎧
⎪⎨

⎪⎩

xj if � = 0
+1 if � > 0, a�j(x) ≥ 0
−1 otherwise.

The activations of all the neurons in a BNN are −1 or +1 except for the input
neurons, which may take any real value. A weight assignment W to the network
defines a function fW:R|N0| → {−1, 1}|NL| that maps input vectors x ∈ R

|N0|

to output vectors y ∈ {−1, 1}|NL|, where y represents the neuron activations in
the last layer. Training a BNN consists of finding a weight assignment that fits a
training set T = 〈(x1,y1), . . . , (xτ ,yτ )〉, i.e., finding W such that fW(xk) = yk

for all pairs (xk,yk) ∈ T . The task of learning functions from input-output
examples is known as supervised learning.

The goal of supervised learning is generalization [4]. A trained BNN is useful
only if it can map unseen examples to their correct outputs (i.e., good test per-
formance). Hence, a central problem is how to distinguish BNNs that generalize
from those that overfit the training data. There are two main principles to avoid
overfitting in machine learning (ML): simplicity and robustness.

The simplicity principle, also known as Occam’s razor, suggests that we
should prefer the simplest BNNs that fit the training set. For NNs, a natural
measure of simplicity is the number of connections [23]. Our first optimization
problem, therefore, looks for a BNN that fits the training data and minimizes
the number of nonzero weights:

min
W

{ ∑
w∈W

|w| : fW(x) = y, ∀(x,y) ∈ T , w ∈ {−1, 0, 1}, ∀w ∈ W

}
. (min-weight)
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While the effectiveness of this principle has been challenged [4], it is the basis
for most forms of regularizers used in modern deep learning [27].

In contrast, the robustness principle looks for BNNs that classify the training
set correctly despite small perturbations to their weights. It is believed that
deep NNs avoid overfitting because GD implicitly drives the exploration toward
robust solutions [12,13,25]. One way of finding robust BNNs is by maximizing
the margins of their neurons. Given a training set T , the margin of neuron
n�j is equal to the minimum absolute value of its preactivation a�j(x) for any
(x,y) ∈ T . Intuitively, neurons with larger margins require bigger changes on
their inputs and weights to change their activation values. Recent work shows
that margins are good predictors for the generalization of deep convolutional NNs
[11]. Our second optimization problem searches for BNNs that fit the training
data and have the maximum sum of neuron margins:

max
W

∑
�∈{1..L}

∑
j∈N�

min{|a�j(x)| : (x,y) ∈ T } (max-margin)

s.t. fW(x) = y ∀(x,y) ∈ T
w ∈ {−1, 0, 1} ∀w ∈ W

We focus on these two criteria because they are well-supported by previous work.
However, there are likely to be other objective functions worth studying and our
models may be extended to do so. Additionally, our models assume that the
training set has no incorrectly labeled training examples. Extensions to handle
noise can be done by including slack variables as proposed in the Support Vector
Machine literature [29].

3 Related Work

Unfortunately, BNNs cannot be trained using standard backpropagation because
their weights are discrete. Hubara et al. [9] proposed using two sets of weights: W
and Wb, with W taking continuous values. When computing the activations, the
weights W and activations a are projected to −1 or +1 using Wb = sign(W)
and ab = sign(a). Then, the gradients are computed as usual except for the
activation function. To backpropagate over sign(a) they assume that its gradient
is equal to 1 if |a| ≤ 1 and is 0 otherwise. These gradients update W and then
the process repeats. While most work on training BNNs follows this approach
[20,26,31,33], there are a few gradient-based alternatives such as Apprentice [22]
and Self-Binarizing Networks [17].

Other work has explored the use of model-based approaches, in particular
MIP, in tasks related to NNs [6]. For example, MIP models have been proposed
for NN verification [1] and for finding adversarial examples for NNs [5,30] and
BNNs [15]. Given a pre-trained network and a target input, the problem of find-
ing an adversarial example consists of discovering the smallest perturbation of
the target input such that the output of the network changes. In particular,
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Khalil et al. proposed a MIP model that, similarly to our work, uses big-M con-
straints to model the neuron activations [15]. They recognize those big-M con-
straints as the main bottleneck in scaling their approach and propose a heuristic
method that finds adversarial examples by fixing different subsets of the acti-
vations over time. One of our hybrid CP/MIP models, HA, exploits a similar
idea but for training BNNs. SAT models have also been used in the context of
verifying properties over BNNs [2,24].

With regards to training BNNs, Khalil and Dilkina discussed the viability of
using MIP models in an extended abstract at CPAIOR 2018 [14]. They report
no specific results, but suggest that their MIP approach fails to scale. To the
best of our knowledge, there is no other work on training BNNs using MIP or
CP nor on any applications of CP to BNNs.

4 Monolithic Models for Training BNNs

We now introduce CP and MIP models to train BNNs. The models receive the
training set T = 〈(x1,y1), . . . , (xτ ,yτ )〉 and the network’s architecture N =
〈N0, . . . , NL〉 as input. Our models use T = {1, . . . , τ} as the set of training
indices and L = {1, . . . , L} as the set of layers.

4.1 Constraint Programming Models

Our CP models use the formalism and global constraints available in IBM ILOG
CP Optimizer [10]. Let wi�j ∈ {−1, 0, 1} be a decision variable indicating the
weight of the connection going from neuron i ∈ N�−1 to j ∈ N�. Let nk

�j be
a CP expression representing the activation of neuron j in layer � when the
training instance xk is fed to the BNN. Our model uses the vector notation
w�j = [w1�j , ..., w|N�−1|�j ]� and nk

� = [nk
�1, ..., n

k
�|N�|]

�. The constraints are:

nk
0j = xk

j ∀j ∈ N0, k ∈ T (1)

nk
�j = 2

(
scal prod(w�j ,n

k
�−1) ≥ 0

)
− 1 ∀� ∈ L \ {L}, j ∈ N�, k ∈ T (2)

nk
Lj = yk

j ∀j ∈ NL, k ∈ T (3)
wi�j ∈ {−1, 0, 1} ∀� ∈ L, i ∈ N�−1, j ∈ N� (4)

The first three constraints recursively define the neuron activations. Constraint
(1) instantiates N0 to be the same as the input vector for each training example.
Constraint (2) defines the activations for the remaining layers, which depend
on the variables wi�j . This constraint uses a reified scalar product constraint,
scal prod(v1,v2) = v�

1 · v2, to compute the neuron activation. Constraint (3)
matches the last neuron layer values to the output vector of each training exam-
ple. Constraint (4) defines the variable domains.

Our CP models have identical sets of constraints but different objectives.
Model CPw minimizes the total number of weights using the expression abs(a) =
|a| for absolute value, i.e.,
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min
∑

�∈L

∑

i∈N�−1

∑

j∈N�

abs(wi�j), s.t. (1) − (4), (CPw)

while model CPm maximizes the sum of neuron margins, i.e.,

max
∑
�∈L

∑
j∈N�

min
(
{abs(scal prod(w�j ,n

k
�−1))| k ∈ T}

)
, s.t. (1) − (4). (CPm)

Each CP model has O(W ) decision variables and O(|NL| · τ) constraints,
where W is the number of weights, |NL| is the number of output neurons, and
τ is the size of the training set.

4.2 Mixed Integer Programming Models

The MIP and CP models share the same main decision variables. Variable wi�j ∈
{−1, 0, 1} indicates the weight of the connection from neuron i ∈ N�−1 to neuron
j ∈ N�. Variable uk

�j ∈ {0, 1} models the activation of neuron j ∈ N� when the
training instance xk is fed to the BNN. Note that the actual neuron activation is
nk

�j = 2uk
�j −1 in this case. In addition, we use an auxiliary variable to model the

non-linearities inside the BNN. Variable ck
i�j ∈ R represents the multiplication

of neuron activation i ∈ N�−1 for a given k ∈ T and weight wi�j , i.e., ck
i�j =

(2uk
(�−1)i−1)·wi�j . Lastly, we use sets L2 = {2, . . . , L} and LL−1 = {1, . . . , L−1},

and a small constant ε > 0 to model strict inequalities.
Our minimum-weight MIPw model introduces a binary variable vi�j ∈ {0, 1}

to represent the absolute value of each weight wi�j . Constraints (5) and (6)
force the BNN output to be equal to target value yk

j in the training set.
Constraints (7) and (8) are implication constraints (which can be reformu-
lated as big-M constraints) that define the activations. Constraint (9) sets the
value of ck

i1j for the input layer, while constraints (10) to (13) ensure that
ck
i�j = (2uk

(�−1)i − 1) · wi�j . Constraint (14) defines the absolute values of each
weight. Lastly, constraints (15) to (18) specify the domains of the variables.

min
∑
�∈L

∑
i∈N�−1

∑
j∈N�

vi�j (MIPw)

s.t.
∑

i∈NL−1

ck
iLj ≥ 0 ∀j ∈ NL, k ∈ T : yk

j = 1 (5)

∑
i∈NL−1

ck
iLj ≤ −ε ∀j ∈ NL, k ∈ T : yt

j = −1 (6)

(uk
�j = 1) =⇒

⎛
⎝ ∑

i∈N�−1

ck
i�j ≥ 0

⎞
⎠ ∀� ∈ LL−1, j ∈ N�, k ∈ T (7)

(uk
�j = 0) =⇒

⎛
⎝ ∑

i∈N�−1

ck
i�j ≤ −ε

⎞
⎠ ∀� ∈ LL−1, j ∈ N�, k ∈ T (8)

ck
i1j = xk

i · wi1j ∀i ∈ N0, j ∈ N1, k ∈ T (9)

ck
i�j − wi�j + 2uk

(�−1)i ≤ 2 ∀� ∈ L2, i ∈ N�−1, j ∈ N�, k ∈ T (10)
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ck
i�j + wi�j − 2uk

(�−1)i ≤ 0 ∀� ∈ L2, i ∈ N�−1, j ∈ N�, k ∈ T (11)

ck
i�j − wi�j − 2uk

(�−1)i ≥ −2 ∀� ∈ L2, i ∈ N�−1, j ∈ N�, k ∈ T (12)

ck
i�j + wi�j + 2uk

(�−1)i ≥ 0 ∀� ∈ L2, i ∈ N�−1, j ∈ N�, k ∈ T (13)
− vi�j ≤ wi�j ≤ vi�j ∀� ∈ L, i ∈ N�−1, j ∈ N� (14)
wi�j ∈ {−1, 0, 1} ∀� ∈ L, i ∈ N�−1, j ∈ N� (15)

uk
�j ∈ {0, 1} ∀� ∈ LL−1, j ∈ N�, k ∈ T (16)

ck
i�j ∈ R ∀� ∈ L, i ∈ N�−1, j ∈ N�, k ∈ T (17)

vi�j ∈ {0, 1} ∀� ∈ L, i ∈ N�−1, j ∈ N� (18)

The maximum-margin MIPm model introduces a variable m�j ∈ R
+ to represent

the margin of each neuron j ∈ N�. The set of constraints is similar to the previous
model with the exception that it includes neuron margin variables in the neuron
activation constraints (19)–(22).

max
∑
�∈L

∑
j∈N�

m�j (MIPm)

s.t. (9)−(13), (15)−(17)∑
i∈NL−1

ck
iLj ≥ mLj ∀j ∈ NL, k ∈ T : yk

j = 1 (19)

∑
i∈NL−1

ck
iLj ≤ −ε − mLj ∀j ∈ NL, k ∈ T : yt

j = −1 (20)

(uk
�j = 1) =⇒

⎛
⎝ ∑

i∈N�−1

ck
i�j ≥ m�j

⎞
⎠ ∀� ∈ LL−1, j ∈ N�, k ∈ T (21)

(uk
�j = 0) =⇒

⎛
⎝ ∑

i∈N�−1

ck
i�j ≤ −ε − m�j

⎞
⎠ ∀� ∈ LL−1, j ∈ N�, k ∈ T (22)

mlj ≥ 0 ∀� ∈ L, j ∈ N� (23)

Note that each MIP model has O(W + N · τ) integer decision variables and
O((W + N)τ) constraints, where W is the number of weights, N is the total
number of neurons, and τ is the size of the training set.

5 CP/MIP Hybrid Approaches

Our experimental results (Sect. 7.1) suggest that CP is good at finding a fea-
sible set of weights, while MIP is good at optimizing them towards solutions
that generalize better. This motivates our hybrid methods that find a first fea-
sible solution using CP and then use a MIP model to optimize. We use a CP
model without objective function, CPf , since it finds feasible solutions on a larger
number of instances than CPw and CPm (Sect. 7.2).

We propose two alternatives to incorporate the CP solution into the MIP
models. Our first hybrid model, HW, uses the CP solution as a warm-start for
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either MIPw or MIPm. The second hybrid variant, HA, fixes the activations of all
the neurons in the MIP model and searches only over the weights. As a result,
all the big-M constraints and variables ck

i�j are removed, albeit at the cost of
potentially pruning optimal solutions.

Given a feasible set of weights ŵi�j returned by CPf , HA computes the neuron
activations for a training example k ∈ T as n̂k

0i = xk
i for the input layer and

n̂k
�i = 2

(∑
i∈N�−1

n̂k
(�−1)iŵi�j ≥ 0

)
− 1 for � ∈ L. Then, the fixed activation

models for min-weight HAw and max-margin HAm are as follows.

min
∑
�∈L

∑
i∈N�−1

∑
j∈N�

vi�j (HAw)

s.t. (14), (15), (18)∑
i∈N�−1

wi�j · n̂k
(�−1)i ≥ 0 ∀� ∈ L, j ∈ N�, k ∈ T : n̂k

�j = 1 (24)

∑
i∈N�−1

wi�j · n̂k
(�−1)i ≤ −ε ∀� ∈ L, j ∈ N�, k ∈ T : n̂k

�j = −1 (25)

max
∑
�∈L

∑
j∈N�

m�j (HAm)

s.t. (15), (23)∑
i∈N�−1

wi�j · n̂k
(�−1)i ≥ m�j ∀� ∈ L, j ∈ N�, k ∈ T : n̂k

�j = 1 (26)

∑
i∈N�−1

wi�j · n̂k
(�−1)i ≤ −ε − m�j ∀� ∈ L, j ∈ N�, k ∈ T : n̂k

�j = −1 (27)

Hybrid methods are not necessary when the BNN has no hidden layers; in such
scenarios, the implication constraints (7)–(8) and (21)–(22) are not needed and,
as a result, the HA models reduce to our MIP models.

6 Gradient Descent Baselines

Current methods to train BNNs follow Hubara et al.’s GD-based algorithm [9]
described in Sect. 3. This algorithm is a highly optimized local search method
that starts from a random weight assignment and locally changes the weights
towards minimizing a Square Hinge loss function. The Square Hinge loss function
quadratically penalizes the errors on the training set. The most relevant hyper-
parameter is the learning rate that defines how much each weight is updated in
every step.

Hubara et al.’s approach learns BNNs only with −1 and +1 weights, whereas
our models also allow for zero-value weights. To make a fair comparison, we also
extended Hubara et al.’s approach to work with zero-value weights. Instead
of learning one binary weight per connection we learn two, w1

b and w2
b . The

final weight for the connection is the average between those two values, i.e,
wb = (w1

b +w2
b )/2 ∈ {−1, 0, 1}. Our experiments report the performance of both

the original approach GDb and our extension GDt.
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Fig. 2. The first 10 examples from the MNIST dataset.

7 Experimental Evaluation for Few-Shot Learning

We tested our models over subsets of the MNIST dataset [19], which consists of
70, 000 labeled images of handwritten digits. Each image has 28 × 28 gray-scale
pixels with values between 0 to 255. Every example has a label representing the
digit that appears on the input image, i.e., its class. Figure 2 shows 10 examples
from the MNIST training set.

To emulate the conditions of a few-shot learning scenario, we limited the
training set size to a range varying from 1 to 10 examples per class. We sampled
10 problem instances for each class and trained BNNs with 28 × 28 = 784 input
neurons and 10 output neurons (one per class). If the image label is i, then the
ith output neuron should be active (yi = 1) and the rest inactive (yj = −1 for
all j �= i). Each BNN has 0, 1, or 2 hidden layers with 16 neurons each.

We compare our models using three metrics. The first two metrics corre-
spond to the number of instances solved (i.e., finding a weight assignment that
fits the training data) and the quality of those solutions w.r.t. the objective
functions. The third metric compares the test performance over the 10, 000 test
instances from MNIST. We use the all-good metric that evaluates the percentage
of instances where the value of the 10 output neurons is correct. As such, the
expected performance of a BNN with random weights is 0.098%.

Approaches. We use Gurobi 8.1 [8] to solve the MIP models and IBM ILOG CP
Optimizer 12.8 [10] for the CP models. For MIP, the implications are formulated
using Gurobi’s special construct. The GD baselines were solved using Tensorflow
1.9.0 and Adam optimizer [16]. We evaluated the following approaches:1

– CPw and CPm: min-weight and max-margin CP models, respectively.
– MIPw and MIPm: min-weight and max-margin MIP models, respectively.
– HWw and HWm: min-weight and max-margin warm-start hybrid models.
– HAw and HAm: min-weight and max-margin fixed-activation hybrid models.
– GDb and GDt: Hubara et al.’s approach [9] and our extension for zero-weights.

As the GD baselines find different solutions depending on their starting point
and learning rate, we tested four common learning rates (10−3, . . . , 10−6) starting
from 5 independently sampled BNNs for each problem instance. We defined the
performance of each learning rate to be the average performance across its five
starting points. Our experimental results report the performance of the best
learning rate for each problem. This is an upper bound on the GD performance
1 Our source code is publicly available at https://bitbucket.org/RToroIcarte/bnn.

https://bitbucket.org/RToroIcarte/bnn
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Fig. 3. Solution quality comparison between CP and MIP.

that assumes the existence of an oracle that can predict the best learning rate
for each sampled training instance and BNN architecture.

Each approach was run with a 2-h time limit using one thread on an Intel
Xeon E5-2680 2.70 GHz processor with 96 GB of RAM. This time limit is long
enough for GDb and GDt to converge in most of our experiments.

Data Preprocessing. An input neuron is considered dead if its value is the
same in the entire training set. As those neurons add no new information to
discriminate the correct output for a given input, they can be removed without
losing correctness. We exploit this structure in our models (and baselines) by
fixing the value of every weight connected to a dead input neuron to zero.

7.1 Solution Quality Comparison Between MIP and CP

We now compare the efficiency of our monolithic models for finding high-quality
BNNs that fit the training data. Figure 3 compares the quality of the solutions
found by the MIP and CP models for the min-weight and max-margin objec-
tives. A point (x, y) in the plots corresponds to a single instance where x and y
represent the objective value obtained using MIP and CP, respectively. Points
that appear along the vertical (resp. horizontal) axes correspond to instances
where MIP (resp. CP) timed out before finding any feasible solution. For the
min-weight objective, points above the diagonal represent instances where the
MIP model found better solutions. The inverse is true for the max-margin graph.

The results show that MIP struggled to find feasible solutions when using
one and two hidden layers. This is mainly explained by the large number of
big-M constraints and variables that both MIPw and MIPm have in those cases.
In contrast, CP found feasible solutions for most of the problem instances.
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Table 1. Number of instances where a feasible solution was found.

One hidden layer Two hidden layers

|T | 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 Total

GDb 9.4 0.2 0 0 0 0 0 0 0 0 5.6 0 0 0 0 0 0 0 0 0 15.2
GDt 9.6 5.6 0.4 0 0 0 0 0 0 0 9.2 8.4 5.2 6.2 4.2 2.2 0 0 0 0 51
MIPm 10 3 2 1 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 19
MIPw 10 7 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 26
CPm 10 6 6 3 3 3 0 0 0 0 10 10 10 10 10 9 6 5 2 0 103
CPw 10 10 10 10 10 10 10 10 10 8 10 10 10 8 4 7 2 0 0 0 149
CPf 10 10 9 8 8 7 3 3 1 0 10 10 10 10 10 10 10 10 8 6 153

When both methods found feasible solutions, the graphs suggest that MIP
was better at finding high-quality solutions. With both objectives, MIP con-
sistently found equal or better quality solutions than CP. In fact, MIP found
proven optimal solutions for 68 out of 300 instances when minimizing weights
and 15 out of 300 when maximizing margins, while CP never found and proved
optimal solutions.

7.2 Comparison Between Hybrid Methods

When hidden layers are used, our hybrid methods find a first feasible solution
using a CP model without an objective function, CPf , and give it to a MIP
model to optimize. To find feasible solutions, we could have instead used MIP,
GD, CPw, or CPm. However, CPf tends to finds more feasible solutions than the
other methods. This is well-supported by Table 1, which shows the number of
instances where a feasible solution was found (for each method) in under 2 h.

To compare the solution quality of our model-based approaches, we analyze
the optimality gaps across different network architectures and training examples.
The gap computation uses the best dual bound found by any approach. Figure 4
shows the average optimality gaps obtained for the min-weight and max-margin
criteria using the monolithic and hybrid methods. We omit the gap lines for HA
and HW for the experiments with no hidden layer since our hybrid methods are
not needed in this case (see Sect. 5).

These results suggest that the hybrid methods exhibit the best characteristics
of the CP and MIP models. HW and HA scaled to larger training sets and network
architectures in a manner similar to CP—significantly outperforming MIP in
this metric—while obtaining high quality solutions that are comparable to those
produced by MIP. In addition, HA consistently outperformed HW when maximizing
the margins and found similar quality solutions for the min-weight criteria.

7.3 Test Performance Comparison with GD

Figure 5 compares the test performance of our methods and the best performing
GD baseline. A data point represents the performance of a BNN for each train-
ing set and network architecture. Points below the diagonal represent instances
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Fig. 4. Optimality gap comparison with different number of hidden layers (HL) and
size of the training set (# Examples).

where our approaches outperformed GD. These results show that MIP outper-
formed GD methods when it found a solution, and that the hybrid methods
found many more solutions than MIP while maintaining a similar test perfor-
mance profile. In particular, HAm has a remarkable performance in comparison
with GD in these experiments. For instance, with 2 hidden layers and 100 train-
ing examples, HAm correctly classifies up to 5, 612 of 10, 000 unseen examples
while GD predicted the true class in at most 1, 563 cases. Note that a BNN with
random weights is expected to correctly predict less than 10 examples.

To better represent these results, Fig. 6 shows the number of instances where
model-based approaches have a strictly better test performance than the best
GD baseline. When limited data was used, the hybrid approaches consistently
outperformed GD. However, as the training sets get larger, some of our models
timed out before finding feasible solutions. In contrast, GD always returned a
solution. Such solution might not fit all the training data but it can still be
evaluated on the test set. Hence, GD is superior with large training sets.

It is equally important to consider by how much the solutions found by our
models outperform the solutions found by GD. Figure 7 displays the average test
performance across the instances solved by each approach. Under this metric,
the clear winner is HAm (which reduces to MIPm when no hidden layers are used)
as it largely outperformed GD and CP while scaling better than MIP.
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Fig. 5. Test performance comparison between the best GD and model-based methods
with different number of hidden layers (HL) and optimization criteria.

7.4 Discussion

Our experiments demonstrate the merits of model-based approaches—in partic-
ular, MIP and CP—to train BNNs. When data is scarce, these methods can
find solutions that generalize better than the solutions found by GD. This is
a notable result that opens many opportunities for future work. In particular,
there are three interesting questions that arise from our experimental evaluation.

What are the advantages and limitations of model-based approaches?
The main advantage of training BNNs using model-based approaches is in find-
ing solutions that generalize better using fewer examples. Consider the results
on Fig. 7(e) and (f). They show that our hybrid models need only 10 examples
to find solutions that generalize better than the ones found by GD using 100
examples. That being said, their main limitation is scalability. We expect that
more sophisticated model-based approaches, such as decompositions and spe-
cialized CP propagators, will push the boundary of problems that can be solved.
We also believe that model-based approaches will become a new tool for ML
researchers, as they allow for principled empirical comparisons of generalization
criteria based on provable bounds.
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Fig. 6. Number of instances where model-based approaches have better test perfor-
mance than max{GDb, GDt}.

Are min-weight and max-margin the best proxies for generalization?
Our results suggest that both min-weight and max-margin are good proxies for
generalization. In fact, given two BNNs that perfectly fit the training data, our
models can accurately predict which one generalizes better. Through a pairwise
comparison of all the perfect-fit BNNs generated for each instance in our exper-
iments, we saw that the BNN with bigger margin generalized better over 85% of
the time. The min-weight criteria is not as good at predicting generalization, but
still does a reasonable job: over 79% of the time, the BNN with fewer nonzero
weights generalized better. However, it would be very surprising if there are no
other criteria that could better predict generalization. Looking for such criteria
is a promising future work direction.

Why are deep BNNs not generalizing better than shallow ones?
A major insight from the deep learning literature is that adding hidden layers
improves generalization [28]. Surprisingly, this was not the case in our experi-
ments. A possible explanation is that our training sets are not big enough to
justify the use of hidden layers. This a reasonable hypothesis, especially consid-
ering that the test performance of GD methods also decreased when adding more
hidden layers (see Fig. 7). However, it does not explain why adding hidden layers
improves generalization when using 10 training examples for HWm and HAm.
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Fig. 7. Test performance comparison for all our methods in BNNs with different num-
ber of hidden layers (HL) using the two optimization criteria.

Another possible explanation is that we are not finding close-to-optimal solu-
tions when using hidden layers (see Fig. 4). Hence, while the test performance
reaches its full potential for the case with no hidden layers, there is room for
improvement for BNNs with hidden layers.

8 Concluding Remarks

Our work examines the use of MIP and CP to train BNNs. We formulate the
training problem as finding a BNN that perfectly fits the training set while
optimizing two proxies for generalizability. When solving this problem, we note
that CP is good at finding feasible solutions and MIP is good at optimizing
them. Hence, we propose two CP/MIP hybrids that exploit the strengths of CP
and MIP. With limited training data, our hybrid approaches found BNNs that
generalized better than the ones found by GD. In contrast, GD scaled better,
making it more appealing when large training sets are available.

This work opens many opportunities for future work at the intersection
between ML and OR. From an ML perspective, model-based approaches allow
for principled empirical comparisons between proxies for generalization and seem
effective for few-shot learning. From an OR perspective, training BNNs is a
challenging combinatorial optimization problem with interesting structure. We
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believe that exploiting such structure via decompositions or specialized CP prop-
agators presents a promising direction for future work.
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works. arXiv preprint arXiv:1902.00730 (2019)

18. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

19. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits
(1998). http://yann.lecun.com/exdb/mnist

20. Li, F., Zhang, B., Liu, B.: Ternary weight networks. arXiv preprint
arXiv:1605.04711 (2016)

21. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for health-
care: review, opportunities and challenges. Brief. Bioinform. 19(6), 1236–1246
(2017)

22. Mishra, A., Marr, D.: Apprentice: using knowledge distillation techniques to
improve low-precision network accuracy. In: Proceedings of the 6th International
Conference on Learning Representations (ICLR) (2018)

23. Moody, J.E.: The effective number of parameters: an analysis of generalization and
regularization in nonlinear learning systems. In: Proceedings of the 4th Conference
on Advances in Neural Information Processing Systems (NIPS), pp. 847–854 (1991)

24. Narodytska, N.: Formal analysis of deep binarized neural networks. In: Proceedings
of the 27th International Joint Conference on Artificial Intelligence (IJCAI), pp.
5692–5696 (2018)

25. Neyshabur, B., Bhojanapalli, S., McAllester, D., Srebro, N.: Exploring general-
ization in deep learning. In: Proceedings of the 30th Conference on Advances in
Neural Information Processing Systems (NIPS), pp. 5947–5956 (2017)

26. Rastegari, Mohammad, Ordonez, Vicente, Redmon, Joseph, Farhadi, Ali: XNOR-
Net: ImageNet Classification Using Binary Convolutional Neural Networks. In:
Leibe, Bastian, Matas, Jiri, Sebe, Nicu, Welling, Max (eds.) ECCV 2016. LNCS,
vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46493-0 32

27. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015)

28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Proceedings of the 3rd International Conference on Learning
Representations (ICLR) (2015)

29. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers.
Neural Process. Lett. 9(3), 293–300 (1999)

30. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: Proceedings of the 7th International Conference
on Learning Representations (ICLR) (2019)

31. Umuroglu, Y., et al.: FINN: a framework for fast, scalable binarized neural net-
work inference. In: Proceedings of the 25th International Symposium on Field-
Programmable Gate Arrays (FPGA), pp. 65–74 (2017)

32. Vanschoren, J.: Meta-learning: a survey. arXiv preprint arXiv:1810.03548 (2018)
33. Wan, D., et al.: TBN: convolutional neural network with ternary inputs and binary

weights. In: Proceedings of the 15th European Conference on Computer Vision
(ECCV), pp. 315–332 (2018)

http://arxiv.org/abs/1902.00730
http://yann.lecun.com/exdb/mnist
http://arxiv.org/abs/1605.\penalty -\@M 04711
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
http://arxiv.org/abs/1810.03548


Application Track



Models for Radiation Therapy Patient
Scheduling

Sara Frimodig1,2(B) and Christian Schulte1(B)

1 KTH Royal Institute of Technology, Stockholm, Sweden
{sarhal,cschulte}@kth.se

2 RaySearch Laboratories, Stockholm, Sweden

Abstract. In Europe, around half of all patients diagnosed with cancer
are treated with radiation therapy. To reduce waiting times, optimizing
the use of linear accelerators for treatment is crucial. This paper intro-
duces an Integer Programming (IP) and two Constraint Programming
(CP) models for the non-block radiotherapy patient scheduling prob-
lem. Patients are scheduled considering priority, pattern, duration, and
start day of their treatment. The models include expected future patient
arrivals. Treatment time of the day is included in the models as time win-
dows which enable more realistic objectives and constraints. The models
are thoroughly evaluated for multiple different scenarios, altering: plan-
ning day, machine availability, arrival rates, patient backlog, and the
number of time windows in a day. The results demonstrate that the CP
models find feasible solutions earlier, while the IP model reaches opti-
mality considerably faster.

1 Introduction

Radiation therapy (RT), chemotherapy, and surgery are the most commonly used
cancer therapies worldwide. In RT, machines called linear accelerators (LINACs)
deliver beams of radiation to the tumor in order to kill malignant tumor cells.

A long waiting time between when a patient is ready for RT and when the
treatment starts has a negative effect on its outcome due to for example tumor
growth, psychological distress of the patient, and progressed symptoms [8,12,
14,22,30]. Hence, many cancer institutes worldwide have adopted waiting time
targets that determine the maximum waiting time before treatment starts.

The intent of RT treatments is either curative or palliative, where the latter
mainly aims to provide pain relief. Furthermore, cancer patients are generally
divided into three urgency levels depending on the site of the cancer, treatment
intent, and the size and progress of the tumor. The waiting time targets depend
on the patient’s urgency level.

RT treatments are generally divided into a number of fractions that are deliv-
ered once a day and together sum up to the planned radiation dose. The duration
of the fractions vary between patients due to for example treatment technique
and tumor complexity [16]. There are also many uncertainties in the RT process,
including for example patient inflow and unexpected machine failures.
c© Springer Nature Switzerland AG 2019
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The scheduling of RT patients on LINACs can be divided into block or non-
block systems [10]. Block scheduling systems divide days into slots of equal
duration, whereas non-block systems allow for different treatment durations.
Block systems are more widely used, but have severe drawbacks since there is
no way to control the variability of treatment time, which can generate costs
related to machine underutilization, staff overtime, and patient waiting time.

Scheduling patients is mostly done manually and is a considerable challenge
for RT clinics. Designing more efficient appointment schedules would be of great
significance and could potentially save lives. In order to improve the scheduling
of radiotherapy patients, this paper makes the following contributions:

– Two CP models and one IP model of the non-block RT patient scheduling
problem are introduced that take expected future patients into account. To
the best of our knowledge, these are the very first CP models as well as the
first IP model to include expected future patient arrivals.

– The treatment time of the day is included in the models which for the first
time supports objectives and constraints on treatment time of the day.

– The models capture real-world constraints such as non-consecutive treatment
days, different treatment durations, allowed start days, and patient priorities.

– The models are evaluated and compared using a patient arrival model and
several experiments based on data from a European cancer clinic.

Plan of the Paper. Section 2 discusses related work. Section 3 presents the setup
of the problem. Section 4 describes the models, followed by a description of the
search heuristics used for the CP models in Sect. 5. The models are evaluated in
Sect. 6. Section 7 presents conclusions and potential extensions.

2 Related Work

Related work on optimal scheduling in health care has mainly focused on nurse
scheduling (see [5]), outpatient assignment (see [7]), and surgery scheduling (see
[21]). The RT patient scheduling problem shares some characteristics with these
problems, but has particular attributes that make it difficult to apply the models
and methods proposed in the literature.

Scheduling of RT patients is a relatively young field with limited literature. In
2016, a review on the literature using operations research for resource planning
in RT was published [31]. The authors found 12 papers addressing the problem
of scheduling patients on LINACs, where the first ones are published in 2006.

In [18], the authors show that RT patient scheduling can be seen as a special
case of a dynamic job-shop problem. They review different exact and metaheuris-
tic methods suitable for solving the problem. A heuristic that schedules patients
forward from the first feasible start date (ASAP) is developed in [25]. A local
search heuristic that outperforms the ASAP approach is developed in [26].

The first use of IP for optimization of RT appointments is presented in [9,10].
Another IP model for non-block scheduling is presented in [17]. A limitation
of these papers is that they do not consider all the constraints present in RT
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scheduling, such as for example treatments on non-consecutive days and LINAC
eligibility. In [6], the authors develop an IP model that includes more realistic
constraints, but still using a myopic scheduling policy, i.e., not taking future
patient arrivals into account.

Using a block scheduling strategy, [27] presents a method for advance RT
patient scheduling, where appointments are scheduled in advance of the service
date with future demand still unknown. A Markov decision process (MDP) and
approximate dynamic programming are used to solve the problem, and they
achieve very good results. In [13], the authors use the same problem setup but
also include patient cancellations using simulation-based solution methods. For
these approaches, time of the day for the treatments is impossible to include.

A hybrid combining stochastic and online optimization is presented in [19].
The authors use a block-scheduling strategy to schedule curative patients at
the same time every day and require that patients leave the center with their
appointment, which calls for short computation times. This is different from
earlier published methods that all schedule multiple patients in a batch.

CP has been used in RT treatment planning [2] and in chemotherapy patient
scheduling [15]. Scheduling is a field where CP has shown to be effective, see
for example [3]. A comprehensive review of operations research methods for
optimization in radiation oncology is presented in [11], where it is stated that
CP has not yet had a significant impact on medical physics.

3 Radiation Therapy Patient Scheduling

This section introduces the RT patient scheduling problem, the assumptions
made in this paper, and some fundamental modeling aspects.

Time. Radiation therapy clinics have different routines for scheduling patients on
LINACs. Some gather patients into a batch and schedule them once or several
times a day, while others immediately schedule a single patient. This paper
focuses on batch scheduling and assumes that the scheduling is done at the
end of each day taking patients from previous days into account. As previously
stated, RT clinics can be divided into two categories; those who use block and
non-block scheduling systems. In order to be able to control the variability of
treatment time, this paper uses a non-block scheduling strategy.

A day is divided into time windows. A time window is typically 1.5–4 h while
a treatment takes 10–45 min. Patients are assigned to windows instead of specific
start times as this leads to simpler and more efficient models while maintaining
an adequate level of detail from a clinical perspective.

Patients. A physician assigns a priority to each patient based on urgency and
treatment intent (palliative or curative). It is assumed that there are three pri-
ority groups, and therefore three waiting time targets: 2 days for priority A (the
highest), 14 days for priority B, and 28 days for priority C patients.

A patient is assigned to a treatment protocol, which states the fractionation
scheme (that is, how many days the patient is to be treated and with which
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frequency) and the duration of each treatment. Different protocols have different
allowed start days, which enforces that fewer patients are scheduled on weekends.
Some protocols also specify that treatment must start on a certain time of the
day. In this paper, the protocols used are from a large cancer center in Europe.

The scheduled times are communicated to the patient at most one week
before the start date or immediately for priority A patients. All fractions are
communicated and cannot be re-planned, as this is the collaboration clinic’s
approach. The schedule can change until being communicated: booking decisions
are postponed to the next day if patients are scheduled more than a week away.

When creating a patient schedule in practice, the booking administrator
needs to make sure that there is room in the schedule for more urgent future
patients. In most cases, this is done by leaving some empty time on each machine.
In the models, the expected future patient arrivals are included to predict the
expected utilization of resources. Only the expected future patients who have a
waiting time target shorter than the maximum waiting time target of current
patients are included. This is as patients with longer waiting time targets have
little or no effect on the current schedule.

An overall arrival rate can be extracted from historical data for each clinic,
as well as the proportion of arrivals for each priority group. This paper uses
the same proportions between the priorities as [19]: 31% are priority A, 19%
are priority B, and 50% are priority C. The proportions can easily be adjusted
to a particular clinic. In the models, a separate priority group D is created for
expected future patients of priority A, since the actual priority A patients should
have higher priority than expected future priority A patients. These patients are
also treated differently in the search heuristics for the CP models, see Sect. 5.
Each arriving patient is randomly assigned to a treatment protocol.

Machines. The radiation is delivered on LINACs. As a rule, larger centers have
multiple machine types used for different sorts of treatment and multiple identi-
cal machines to have a redundancy in case of machine failures. In small centers,
there may be a few identical machines that only serve some treatment types,
while more complex cases are sent to larger centers.

This paper assumes that there are multiple machines but only one machine
type. The machines are exchangeable in that a patient can be scheduled on any
machine each day. This scenario is a realistic way of decomposing the multiple
machine problem, since the clinics may consider separate scheduling tasks for
each machine type. Instead of M machines with W windows each, this is modeled
as having one machine with MW windows. Thus, if for example M = 3, W = 4,
then if a patient is scheduled in window 1–4, this corresponds to machine 1,
window 5–8 is machine 2, and window 9–12 is machine 3. An alternative would
be to model this as one machine with W windows and multiply each window
length by M , but this would be a relaxation of the actual problem.

Using multiple machines represents a real-world setting and also allows for
having a higher arrival rate. If there were only one machine available, the arrival
rate would be very low and dividing very few patients into three different priority
groups would not give good statistics for the expected future patient arrivals.
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Objective. In this paper, the main objective is to minimize a weighted sum of
the violations of the target dates, where the weights reflect that it is worse to
violate the target date for a patient with higher priority. The secondary objective
is to schedule patients at approximately the same time each day. Some patients
may still work or study during treatment and hence prefer mornings or late
afternoons. More importantly, the biological effects of the radiation is calculated
on having 24 h between each fraction, however, in most cases it is allowed to
deviate from this and it is thus an objective rather than a hard constraint. The
second objective is the reason why time windows are used in the models; schedul-
ing a patient in the same time window every day ensures that the treatment is
delivered at approximately the same time every day.

4 Models

Three models are developed to capture the RT patient scheduling problem; a
scheduling-based CP model, a packing-based CP model, and an IP model. These
are designed to capture the same real-world constraints and objectives. Using
the set B := {0, 1}, the inputs to these models are:

P = {1, . . . , P} set of all patients, P ∈ N

D = {1, . . . , D} set of days in the planning horizon, D ∈ N

W = {1, . . . ,W} set of time windows in a day, W ∈ N

wL = Ts/W the window length, where Ts ∈ N is the number of time
slots during a day with the chosen discretization

Tw = {t1, t2, . . . , tW } set of times when each window starts counting from the
beginning of day 1, where t1 = 1, . . . , ti = (i − 1)wL + 1

M = {1, . . . ,M} set of machines, M ∈ N

durp ∈ N duration of a fraction for patient p in time slots
Lp ∈ {13, . . . , 47} schedule length for patient p in days
F = {1, . . . ,max(Lp)} set of all treatment days
FSp ∈ B

Lp a vector holding the fractionation schedule for patient p,
where ones represent treatment and zeros pause days

S ∈ B
D × B

Ts a matrix holding the partially occupied schedule, where
Sd,ts = 1 iff time slot ts on day d is occupied

Ap ∈ {1, . . . , 7} the set of allowed start days for patient p
cp ∈ N penalty for missing the waiting time target for each priority
dL,p ∈ N day limit, i.e., the waiting time target for patient p

4.1 Scheduling-Based CP Model

Variables. The basic decision variables of the model are as follows:

startp,f ∈ Tw the start time for the window patient p ∈ P is scheduled in
during treatment day f ∈ F

windowp,f ∈ {0, . . . ,W} the window patient p ∈ P is scheduled in during treatment
day f ∈ F , where window 0 represents no treatment

fractionp,d ∈ {0, . . . , Lp} fraction that is delivered to patient p ∈ P on day d ∈ D,
where fraction 0 represents no treatment



426 S. Frimodig and C. Schulte

There following variables are derived from the basic variables:
dayp,f ∈ D day patient p ∈ P is treated with fraction f ∈ F
start dayp = dayp,1 start day for patient p ∈ P

Constraints. In the scheduling-based CP model, the cumulative constraint [1]
is used to ensure that no two treatments overlap:

cumulative([〈startp,f , wL, durp〉|p ∈ P, f ∈ F ], wL), (1)

where wL is the window length. The partially occupied input schedule is included
as patients with fixed window, start time, and duration to ensure that no new
patients are scheduled in a window that is already full. The constraint is used
“backwards”, setting the duration of each treatment equal to the window length
wL and the resource requirement as the duration of the treatment durp.

The variables dayp,f and fractionp,d are dual to each other:

fractionp,d = f, where d = dayp,f ∀p ∈ P, f ∈ F , d ∈ D, (2)

while fractionp,d = 0 if patient p is before the start or after the end of treatment:

(d < start dayp)∨(d ≥ start dayp+Lp) → fractionp,d = 0 ∀p ∈ P, d ∈ D. (3)

The day dayp,f for fraction f ∈ F for patient p ∈ P is given by the time
when the fraction starts, startp,f , divided by the number of time slots Ts. To
avoid division, this is expressed as: (dayp,f − 1)Ts + 1 ≤ startp,f ≤ dayp,fTs.

The days are connected to each other by the constraint:

dayp,f+1 = dayp,f + 1 ∀p ∈ P, f ∈ F ,

which means that if treatment day f is on day d, then f + 1 is on d + 1.
Next, connect windowp,f to startp,f . The vector FSp is the fractionation

schedule for patient p and is input to the problem given by a protocol. FSp,f = 1
corresponds to treatment day f being active for patient p, i.e., treatment is
delivered that day. Thus, if the input FSp,f is indeed one, this gives

startp,f = (dayp,f − 1)Ts + (windowp,f − 1)wL + 1, (4)

and for all other p ∈ P, f ∈ F , set windowp,f = 0. This constraint states that
the start time for the window patient p is scheduled during fraction f is equal
to the start time of that day, plus the start time of the window on that day.

Bounds are also given for when each fraction can start earliest and latest. For
example, the patient’s second fraction cannot be on the first day, and similarly,
the patient’s first fraction cannot be on the last day:

f ≤ dayp,f ≤ D − (Lp − f) ∀f ∈ F . (5)

Similar constraints limit the start day for each patient to be at latest Lp days
from the end of the planning horizon. Patients have to start treatment on an
allowed start day: start dayp ∈ Ap ∀p ∈ P.

To break some dominance, patients of the same priority and treatment proto-
col are sorted by their waiting time target. A constraint enforces that an earlier
target patient always starts their treatment before a later target patient.
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Objective Function. The first objective is to start each treatment within the
waiting time targets. The target violation is measured as the number of days
that the patient misses their treatment target date with

target violationp = max(0, start dayp − dL,p) ∀p ∈ P, (6)

where dL,p is the day limit for when treatment should start.
The second objective is to schedule patients in the same window each day.

Therefore, a penalty is added each time the window is switched. Since, for exam-
ple, 3 machines with 4 windows is modeled as 1 machine with 12 windows, there
is no penalty for moving from window 1 to 5 or 9, as they are the same but on dif-
ferent machines. An array m w maps model windows to real machine windows.
Only the active treatment days Fa, when windowp,f 
= 0, are considered:

window diffp =
∑

f∈Fa

(m w[windowp,f ] 
= m w[windowp,f+1]) ∀p ∈ P

where m w = [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]
(7)

The two parts of the objective function given by (6) and (7) are combined into a
weighted sum. Each entry of window diffp is multiplied by 2 to make it equal
to the IP formulation, see Sect. 4.3. The total objective function is then:

∑

p∈P
(100cptarget violationp + 2window diffp), (8)

where cp are weights for each priority group used to capture that it is worse to
violate the target for higher prioritized patients. The weight 100 reflects that
waiting time targets are more important than minimizing window switches.

4.2 Packing-Based CP Model

In the packing-based CP model, fractionp,d = 0 if patient p has not started or has
finished treatment on day d is expressed by the regular constraint [23], replac-
ing (3). For example, if the treatment length is 10 days, the regular expression
is r = 0∗ · 1 · 2 · . . . · 8 · 9 · 10 · 0∗ (where · is concatenation) in:

regular([fractionp,d|d ∈ D], r) ∀p ∈ P. (9)

The variables startp,d are removed as the constraints (1) and (4) are removed.
Instead, regular expressions on the time windows define the treatment patterns,
where window 0 corresponds to no treatment. The example regular expression
r = 0 · ([1, 2, 3, 4]5 ·02)6 states that f = 0 gives windowp,0 = 0, then windowp,f ∈
{1, . . . , 4} for five days, followed by two pause days where windowp,f = 0, and
then repeating this pattern six times, leading to:

regular([windowp,f |f ∈ {0, . . . , Lp}], r) ∀p ∈ P. (10)
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The bin packing constraint [29] ensures that the patients fit in each window:

bin packing([∞, wL, wL, wL, wL], [windowp,f |p ∈ P], [durp|p ∈ P]) ∀d ∈ D,
(11)

where constraint (2) connects d to f . The capacity of window 0 is infinite and the
other windows have the window length wL as capacity. The partially occupied
input schedule is also included as patients with fixed windows.

4.3 IP Model

Variables. The basic variables of the IP model are (again using B = {0, 1}):

sp,d ∈ B sp,d = 1 iff patient p ∈ P starts treatment on day d ∈ D
qp,d,f ∈ B qp,d,f = 1 iff patient p ∈ P has their f -th treatment day on d ∈ D, f ∈ F
xp,d,w ∈ B xp,d,w = 1 iff patient p ∈ P is scheduled in window w ∈ W on day d ∈ D

There are also variables that are derived from the basic variables:

up,d ∈ B up,d = 1 iff patient p ∈ P has an active treatment day on d ∈ D
yp,d,w ∈ B help variable for the objective function where yp,d,w = 1 if patient p ∈ P

is scheduled in window w ∈ W on day d ∈ D, and if patient p is not
scheduled in window w on day d, yp,d,w ∈ B

Constraints. Patient p ∈ P will be treated for Lp days. Thus, the last day to
start treatment is daylimitp = D − Lp + 1. The treatment should start exactly
one time on an allowed start day given by Ap:

daylimitp∑

d⊆Ap

sp,d = 1, ∀p ∈ P.

For the CP models, constraint (5) states which fractions that can be delivered
on which days. In the IP model, this is enforced by setting qp,d,f = 0 for all
p ∈ P, d ∈ D, f /∈ Fp,d where Fp,d := {max(0, d − (D − Lp)), . . . ,min(d, Lp)}.
Using F̂p,d to denote Fp,d with the last element excluded, the constraint:

qp,d,f = qp,d+1,f+1 ∀p ∈ P, d ∈ {1, . . . , D − 1}, f ∈ F̂p,d

enforces that all treatment days are scheduled after each other.
The following constraints state that the f -th treatment day can only happen

once and that patient p is scheduled at most once every day d:
∑

d∈D
qp,d,f ≤ 1 ∀p ∈ P, f ∈ Fp,d

∑

f∈Fp,d

qp,d,f ≤ 1 ∀p ∈ P, d ∈ D.

In the CP models, this is enforced by constraints (4) or (9).
The first treatment day f = 1 is given on the start day for each patient:

qp,d,1 = sp,d ∀p ∈ P, d ∈ D.



Radiation Therapy Patient Scheduling 429

In the fractionation schedule for patient p, an active treatment day f gives
FSp,f = 1. A variable up,d is introduced so that up,d = 1 iff patient p is during
treatment on day d (qp,d,f = 1) and has an active treatment day (FSp,f = 1)
and zero otherwise, thus, it controls if d is an active day or not for patient p:

up,d =
∑

f∈Fp,d

(qp,d,fFSp,f ) ∀p ∈ P, d ∈ D.

Each patient is scheduled in exactly one time window on active treatment
days, and not in any window on off-days:

∑

w∈W
xp,d,w = up,d ∀p ∈ P, d ∈ D.

In the CP models, this constraint is expressed by constraints (4) or (10).
In order to make sure that all treatments fit within each time window, up,d

is used to keep track of if the patient has an active day or not, together with
xp,d,w, which is one iff patient p is scheduled in window w on day d:

∑

p∈P
xp,d,wup,ddurp +

∑

ts⊆w

Sd,ts ≤ wL ∀d ∈ D, w ∈ W.

S is the input schedule, where an element is one iff time slot ts on day d is
occupied. Thus, the sum of the duration of all patients in window w plus the
previously occupied slots in that window must be less than or equal the window
length wL. In the CP models, this is enforced by constraints (1) or (11). A
major difference is that the number of constraints in the IP model grows with
the number of time windows, which is not the case in the CP models.

Objective Function. The objective is the same as in the CP model. A penalty is
added for the time by which the target is missed:

f1,p =
D∑

d=dL,p

sp,d(d − dL,p) ∀p ∈ P,

where dL,p corresponds to the waiting target in days for patient p and sp,d = 1
on the start day. This constraint corresponds to the CP objective function (6).

The other objective is to schedule the patient in the same time window each
day. To do this, a help variable yp,d,w ∈ B is introduced so that yp,d,w is one
when xp,d,w is one, and the sum of yp,d,w’s is one on all days:

yp,d,w ≥ xp,d,w ∀p ∈ P, d ∈ D, w ∈ W
∑

w∈W
yp,d,w = 1 ∀p ∈ P, d ∈ D.

As for the CP models, the problem with 3 machines with 4 windows each is
modeled as having 1 machine with 12 windows, and hence there should be no
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penalty for switching from window 1 to 5 or 9. Introduce Wm = {1, . . . ,Wm}
where Wm is the number of windows on each machine. Each window switch is
penalized in the second objective function, where we here assume 3 machines:

f2,p =
∑

d∈D̂

∑

w∈Wm

∣∣∣
∑

i={w,w+Wm,w+2Wm}
(yp,d,i − yp,d+1,i)

∣∣∣ ∀p ∈ P. (12)

Since f2,p sums both 0 − 1 and 1 − 0 for each switch, there is a penalty of 2
for every switch. To make the CP objective function equivalent, the factor 2
difference is adjusted for in (8).

New variables avoid absolute values, as they would render the model non-
linear: zp,d,w =

∑
i={w,w+Wm,w+2Wm}(yp,d,i − yp,d+1,i) for w ∈ Wm. zp,d,w is

divided into a positive and negative part; zp,d,w = z+p,d,w − z−
p,d,w:

f2,p =
∑

d∈D̂

∑

w∈Wm

z+p,d,w + z−
p,d,w ∀p ∈ P

z+p,d,w ≥ 0, z−
p,d,w ≥ 0 ∀p ∈ P, d ∈ D, w ∈ Wm.

(13)

The two formulations (12) and (13) are equivalent in a minimization setting.
In total, the objective function is equivalent to the CP objective function (8):

∑

p∈P
(100cpf1,p + f2,p).

5 CP Search

When solving the CP models, the search is conducted in the following order:

1. Assign priority A patients randomly to a start day as early as possible.
2. Assign priority C and D patients to a start day randomly by choosing the

start dayp variable with smallest domain size over weighted degree [4].
3. Assign priority B patients to their earliest possible start day.
4. Assign the number of window switches window diffp as small as possible for

all patients sorted by their duration, with longest duration assigned first.

For easy instances, with few patients to schedule, it is possible to construct
deterministic search heuristics for the CP models that perform much better
than the random search strategies described above. However, for more difficult
instances these heuristics fail to even find a solution within reasonable time. This
is the reason for including randomization.

When solving a minimization problem in CP, branch-and-bound tree search
is used, which follows the same branch until it has failed. However, using a
restart strategy causes search to restart from the top node whenever search
finds a solution or after a specific number of failures defined by the restart
strategy. In this case, using a restart strategy yields better results because the
problem is somewhat under-constrained; it is easy to find feasible solutions and
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relatively few failures occur. Therefore, the Luby restart strategy [20] multiplied
by a factor of 100 is used. The interval is a result of testing many different
intervals on different problem setups. Doing restarts this often can be compared
to approximating a Large Neighborhood Search (LNS) [28] (see also Sect. 7).

6 Experiments and Results

Multiple experiments are run to evaluate and compare the three models. The
experiments are run on a Windows 10 machine with an Intel R© CoreTM i9-7940X
X-series processor and 64 GB of RAM. The IP model is solved using the MIP
solver of CPLEX 12.8 in the Python API with default parameters. The CP
models use MiniZinc 2.2.2 and are solved with Gecode 6.1.0. Other solvers have
been tested, such as the lazy clause solver Chuffed, but Gecode gave the best
overall results on the tested problem instances.

A simulation engine is built with Python 3.6. In this engine, the first day
starts from an empty schedule and patients to be scheduled are assumed to
arrive according to a Poisson process. For each simulated day, a patient schedule
is created using the previously described models, and the patients are fixed to the
schedule if they have a start day within a week (since this is the limit assumed to
communicate the schedules to the patients). The schedule from the previous day
is used as input for the next day in the simulation, together with the backlog of
yet unscheduled patients. For these patients, the waiting time target is adjusted
by one day since it is counted from the day the patient is ready for treatment.

The simulation engine is used to generate problem benchmarks, that each
have a partially occupied schedule, a patient backlog, and the number of expected
patients arriving per day (as discussed in Sect. 3). Occupation in a schedule is
measured as the average occupation of the first two weeks in that schedule. This
is not a perfect measure; if the first week is completely booked and the second is
completely free, some urgent patients will not be able to meet their target dates,
although occupancy is 50% in total for these weeks.

Scheduling patients on three different machines, 16 different benchmarks that
are grouped into three categories are summarized in Table 1. The categories
capture the following aspects:

(a) The average number of patients arriving each day.
(w) Which weekday the schedule is created. Note that a benchmark w-7 with

Sunday as planning day is omitted as it is identical to benchmark l-1.
(l) The load in the input, i.e., the amount of partial occupation in the input

schedule and the size of the backlog. These are closely related, since an
almost empty schedule does not come with a large backlog, and vice versa.
Benchmarks l-3 and l-4 examine scalability and do not represent realistic
scenarios, as patients would be transferred to other clinics.

The weights in the objective function are chosen as c1 = 10, c2 = 3, c3 = 1,
corresponding to priority group A to C, and are the same as in [24]. Priority D
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Table 1. Setup of the benchmarks, 3 machines

Benchmark Occupation (%)

(4/6 windows)

Expected number

of arriving

patients

Number of

patients in

backlog (4/6

windows)

Number of

patients including

future arrivals

(4/6 windows)

Planning

day

1 a-1 18.5/10.2 4 5/8 49/52 Sunday

2 a-2 18.5/10.2 6 5/8 77/80 Sunday

3 a-3 18.5/10.2 8 5/8 93/96 Sunday

4 a-4 53.9/55.0 4 8/8 52/52 Tuesday

5 a-5 53.9/55.0 6 8/8 80/80 Tuesday

6 a-6 53.9/55.0 8 8/8 96/96 Tuesday

7 w-1 53.9/55.0 5 8/8 79/79 Monday

8 w-2 53.9/55.0 5 8/8 79/79 Tuesday

9 w-3 53.9/55.0 5 8/8 79/79 Wednesday

10 w-4 53.9/55.0 5 8/8 79/79 Thursday

11 w-5 53.9/55.0 5 8/8 79/79 Friday

12 w-6 53.9/55.0 5 8/8 79/79 Saturday

13 l-1 53.9/55.0 5 8/8 79/79 Sunday

14 l-2 60.9/61.8 5 16/14 87/85 Sunday

15 l-3 69.8/64.8 5 24/34 90/100 Friday

16 l-4 73.3/69.5 5 45/48 111/114 Thursday

is for expected future patients of priority A and has weight c4 = 5. The day is
divided into 4 or 6 time windows. The timeout is set to 6 h.

The performance of the models is measured as the objective function value
as a function of runtime for the benchmarks, for both 4 and 6 windows.

Average Patient Arrival. The results for benchmarks a-1 to a-6 are shown in
Fig. 1. They show that except for the 6 window case in benchmark a-4, the IP
model reaches optimality considerably faster, and the packing-based CP model
outperforms the scheduling-based CP model on all instances. When the arrival
rate is low, as in benchmarks a-1 and a-4, the IP and CP models have similar
performance. The CP models are however more sensitive to an increase in the
average number of patients arriving each day, while the time to reach optimality
in the 4 window IP model does not change significantly. Increasing the number
of time windows from 4 to 6 makes the IP model slower in all cases. When
the partial occupation is low (benchmarks a-1 to a-3), the packing-based CP
model is not slower with more windows, which is not the case when the partial
occupation is higher (benchmarks a-4 to a-6).

Weekday. The results when varying the weekday the schedule is created are
presented in Fig. 2. Some treatment protocols state that treatment can be initi-
ated only on certain days, but this does not have a large effect on runtime. An
observation is that for the 6-window case, although the IP model reaches opti-
mality faster, the packing-based CP model has a better objective value initially.
Benchmarks w-1 to w-6 show that if the time limit is short, the packing-based
CP model performs better than the IP model.
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Fig. 1. Results with varying arrival rate, 4 windows and 6 windows

Fig. 2. Results with varying planning day, 4 windows and 6 windows



434 S. Frimodig and C. Schulte

Fig. 3. Results when varying the load, 4 windows and 6 windows

Patient Load. Altering the load, the results can be seen in Fig. 3. Again, the IP
model outperforms the CP models in finding optimality. In benchmarks l-3 and
l-4, in 6 h of runtime the scheduling-based CP model does not find any solutions,
the packing-based CP model does not find a solution in the 6-window case, and
the IP model does not reach optimality in the 6-window case. However, these
cases represent too heavy a load to be realistic scenarios.

Fig. 4. Time to find the first feasible solution for each of the benchmarks

Time to Feasible Solution. Figures 1, 2 and 3 show that the IP model outperforms
the CP models in finding an optimal solution. However, the packing-based CP
model is in almost all cases faster to find a feasible solution, see Fig. 4.

7 Conclusions and Future Work

Radiation therapy is one of the most commonly used cancer therapies worldwide.
The waiting times can be reduced optimizing the use of LINACs for treatment.
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This paper introduces three different models that capture the non-block
radiotherapy patient scheduling problem; one IP model, a scheduling-based CP
model, and a packing-based CP model. The patients have different priority lev-
els, treatment patterns, treatment durations, and start days for treatment. The
expected future patient arrivals are included in the models to predict future
resource utilization.

The models are evaluated for multiple different scenarios. The results show
that the packing-based CP model outperforms the scheduling-based CP model
on all problem instances. In general, the CP models find feasible solutions faster
than the IP model, however, the IP model reaches optimality considerably faster.
All models are sensitive to an increase in the number of time windows per day.

Future Work. To make the models more realistic, overtime on the machines
and cancellation of treatments should be included in the models. Cancellation
of treatments is common in RT, and allowing for overtime on the machines is
important since it is often used in practice to reduce waiting times. Both aspects
are bound to increase the complexity of the models, and overtime is likely to
make the IP model nonlinear. Another future direction is to extend the models
to include multiple machine types, which also increases the models’ complexity.

For the models to be able to handle these complexities, a potential future
extension is to take advantage of the strengths of each model in an IP/CP hybrid.
Another option would be to use some decomposition method on the IP model, for
example Benders decomposition. To better explore the search space, an option
is to use Large Neighborhood Search (LNS) when solving the CP models.

A potential improvement of the stochastic aspect of the models is to use
scenario-based probabilities instead of expected values when accounting for
patients arriving in the future.

The models have so far been compared with each other. The next step would
be to see how the models perform over time, using the simulation engine and com-
paring to both a myopic scheduling strategy (not taking future patient arrivals
into account) and to historical data from a clinic.
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Abstract. HPC systems are increasingly being used for big data ana-
lytics and predictive model building that employ many short jobs. In
these application scenarios, HPC job dispatchers need to process large
numbers of short jobs quickly and make decisions on-line while ensuring
high Quality-of-Service (QoS) levels and meet demanding timing require-
ments. Constraint Programming (CP) is an effective approach for tack-
ling job dispatching problems. Yet, the state-of-the-art CP-based job
dispatchers are unable to satisfy the challenges of on-line dispatching
and take advantage of job duration predictions. These limitations jeopar-
dize achieving high QoS levels, and consequently impede the adoption of
CP-based dispatchers in HPC systems. We propose a class of CP-based
dispatchers that are more suitable for HPC systems running modern
applications. The new dispatchers are able to reduce the time required
for generating on-line dispatching decisions significantly, and are able to
make effective use of job duration predictions to decrease waiting times
and job slowdowns, especially for workloads dominated by short jobs.

1 Introduction

Easy access to massive data sets, data analytics tools and High-Performance Com-
puting (HPC) have been fueling the trend towards data-driven computational sci-
entific discovery [3], with big-data processing frameworks such as Hadoop and
Spark increasingly integrated with HPC systems [2,17,31,34]. Workloads of HPC
systems engaged in data-driven analytics tend to be a mix of many short jobs
(<1 h) with fewer longer jobs [32]. Hence, HPC job dispatchers need to rapidly
process a large number of short jobs in making on-line decisions so as to mini-
mize both waiting times and slowdown (the ratio between the total job duration
including waiting time and the actual job duration during runtime). These mea-
sures of Quality-of-Service (QoS) are particularly important when HPC systems
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are used to provide real-time services, such as big-data visualization [29,33,39],
where response times are critical for acceptable user experience.

While the on-line job dispatching problem in HPC systems is NP-hard [6],
it can be formulated as a job scheduling and resource allocation problem for
which Constraint Programming (CP) has produced good results [4]. The first
CP-based HPC dispatcher with job waiting times as a measure of QoS was
introduced in [5] and shown to obtain better solutions compared to a Priority
Rule-Based (PRB) dispatcher [10,21], which is widely adopted in commercial
HPC workload management systems such as Altair PBS Professional [1] and
SLURM Workload Manager [35]. The dispatcher was later embedded as a plug-
in within the software framework of PBS professional [9]. Subsequently, another
CP-based dispatcher with a similar measure of QoS with the additional feature
of limiting system power consumption was presented in [7,8] and proved to
outperform a PRB dispatcher on the instances with tight power capping values.

Despite the potential of these CP-based job dispatchers, certain limitations
hinder their adoption for modern HPC systems. As reported in [9], the first dis-
patcher is not resilient to heavy workloads—workloads where resource requests
greatly exceed available resources. The time spent by this dispatcher in gener-
ating a dispatching decision increases dramatically as more jobs requiring high
system utilization arrive to the system. The second CP-based HPC dispatcher
was initially employed in off-line mode [8], and later also in on-line mode [7] but
on workloads of maximum 1000 jobs submitted in a time window of half an hour.
A more realistic scenario where jobs arrive continuously and many of them end up
waiting in a queue due to unavailable computational resources increases greatly
the difficulty of generating dispatching decisions. Our experimental results con-
firm that both dispatchers are not resilient to heavy workloads that are present
in real datasets, which is undesirable in the quest for fast response times.

Another limitation is related to the actual runtime duration of a job on a
specific HPC system which is not known before it is executed and yet is crucial
for generating dispatching decisions to guarantee high QoS levels. Dispatchers
often use the expected job duration, which is the maximum time a job is allowed
to execute on the system. In the above mentioned dispatchers, the expected
duration is the default value assigned by the system, which is typically the default
wall-time of the queue where the job is submitted, unless the job owner supplied
her own expected duration. Even in the latter case, however, users tend to use the
maximum wall-time and user estimations are acknowledged to be overestimated
in general [13,16,27]. A dispatcher that relies on overestimated durations is likely
to schedule fewer jobs than possible at dispatching time, and consequently, is
likely to cause unnecessary delays. Prediction of actual runtime durations using
simple heuristics or more sophisticated machine learning techniques is an active
area of research [15,19,20,38]. Recent studies show that the use of job duration
predictions when generating dispatching decisions can substantially improve QoS
levels in backfilling-based dispatchers [15,19,20,37].

Our contribution is a class of novel CP-based dispatchers that are more
suitable for HPC systems running modern applications. We build on [5,8] and
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redesign their main components. First, we revisit their model and search control
mechanism so as to make them resilient to heavy workloads and applicable to
on-line dispatching. Second, we study the use of job duration prediction, instead
of the expected duration, when generating dispatching decisions. We discuss why
naively replacing the expected duration with a predicted duration may be inef-
fective, if not detrimental for QoS. Consequently, we adapt the model and search
algorithm of our dispatchers to the use of job duration predictions to obtain high
QoS levels in terms of job waiting times and slowdown. We conduct a simula-
tion study on a workload trace collected from an HPC system containing large
numbers of short jobs. We use predictions with different accuracy, underestima-
tion and overestimation rates on the dataset. Our results demonstrate that with
our approach, the CP-based dispatchers can: (i) significantly reduce the time
required to generate dispatching decisions; and (ii) benefit from good job dura-
tion predictions and considerably decrease the waiting times and the slowdown
of the jobs, especially for workloads dominated by short to medium jobs.

The rest of the paper is organized as follows. In Sect. 2, we introduce the
on-line job dispatching problem in HPC systems and give an overview of the
CP-based dispatchers introduced in [5,8]. In Sects. 3 and 4, we describe our
approach. In Sects. 5 and 6, we detail our experimental study and present our
results. We discuss the related work in Sect. 7 and conclude in Sect. 8.

2 Formal Background

2.1 On-line Job Dispatching Problem in HPC Systems

A user request in an HPC system consists of the execution of a computational
application over the system resources. Such a request is referred to as job and
the set of all jobs is known as workload. Each job in the workload is associated
to a name, required resources (cores, memory, etc.) to run the corresponding
application, and its expected duration which is the maximum time it is allowed
to execute on the system. An HPC system typically receives multiple jobs simul-
taneously from different users, placing them in a queue together with the other
waiting jobs (if there are any). The time interval during which a job remains
in the queue until its execution time is known as waiting time. At a given dis-
patching time, a job dispatcher decides when the jobs waiting in the queue can
start executing and on which resources they can execute. The goal is to dispatch
in the best possible way according a measure of QoS, such as by reducing the
waiting times or the slowdown of the jobs, which is directly perceived by the
HPC users. During execution, a job exceeding its expected duration is killed.

Formally, on-line dispatching in an HPC system takes place at a specific
time t for (a subset of) the queued jobs Q. A typical HPC system is composed
of N nodes, with each node n ∈ N having a capacity capn,r for each of its
resource type r ∈ R, giving the total amount of available resource. Each job
i ∈ Q has the arrival time qi ≤ t to the queue, which is unknown before the
arrival, and a demand reqi,r giving the amount of resources required from r.
The on-line dispatching problem at time t consists in scheduling each job i by
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assigning it a start time si ≥ t, and allocating i to the requested resources during
its expected duration di, such that the capacity constraints are satisfied: at any
time in the schedule, the capacity capn,r of a resource r is not exceeded by the
total demand reqi,r of the jobs i allocated on it, taking into account the presence
of jobs already in execution. A typical objective is to minimize the sum of the
waiting times si − qi. Once the problem is solved, only the jobs with si = t are
dispatched. The remaining jobs with si > t are queued again with their original
qi. It is the workload management system software that decides the dispatching
time t and the subsequent dispatching times.

A solution to the problem (i.e., a dispatching decision) is obtained according
to a policy using the current system status, such as the queued jobs, the running
jobs and the availability of the resources. A sub-optimal solution could cause
exceptional delays in the queue, hurting the QoS. While a (near-)optimal solution
is a critical requirement in HPC systems, the on-line job dispatching problem
is an NP-hard problem [6] and thus needs to be addressed with a dedicated
approach. In [5,8], the first CP-based dispatchers for HPC systems are developed
and tested on a workload trace collected from the Eurora system [11].

2.2 CP-Based Dispatchers for HPC Systems

In the first dispatcher [5], the entire dispatching problem is modelled and solved
using a CP solver. The second dispatcher [8] instead relies on a hybrid method.
While the scheduling problem is modelled and solved in a CP solver, the allo-
cation problem is solved separately using a heuristic search algorithm. We will
refer to them as PCP and HCP, respectively, to mean the use of a Pure CP and a
Hybrid CP method in their dispatching algorithms.

Scheduling. In both PCP and HCP, the scheduling problem is modeled with Con-
ditional Interval Variables (CIVs) [25]. A CIV τi ∈ τ represents a job i and
defines the time interval during which i runs. At a certain dispatching time t,
there may already be jobs in execution which were previously scheduled and
allocated. We refer to such jobs as running jobs. The scheduling model considers
in the τ variables both the running jobs and the queued jobs in Q. The proper-
ties s(τi) and d(τi) correspond respectively to the start time and the duration
of the job i. Since the actual runtime duration dr

i of a running or queued job i
is unknown at the modeling time, PCP and HCP rely on an estimation and use
the expected duration di for d(τi). Thus we have d(τi) = di for the queued jobs
and d(τi) = s(τi) + di − t for the running jobs. While the start time of the run-
ning jobs have already been decided, the queued jobs have s(τi) ∈ [t, eoh], where
eoh is the end of the worst-case makespan calculated as t +

∑
τi

d(τi). Expected
durations di are supplied by the users. In the absence of this information, the
dispatchers use the default wall-time of the queue. It is important to note that
even user-supplied values tend to be equal to the wall-time of the queue, which
is indeed the maximum allowed value for di. We will refer to the use of such di

to define d(τi) as the wall-time approach.
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Unlike PCP, HCP searches for a start time for the first m jobs in Q (referred to
as Q̄). The remaining jobs in Q\Q̄ are still in the model, but they are postponed
to the end of the makespan by fixing their start time as s(τi) = eoh− d(τi). The
capacity constraints in PCP are enforced via a cumulative constraint for all
n ∈ N and for all r ∈ R, ensuring that at any given time in the makespan
the total reqi,r of the jobs i using r does not exceed capn,r. In HCP, resources
of the same type across all nodes are considered as a pool of resources, hence
the cumulative constraints are posted for each r ∈ R with the total capacity
CapT

r =
∑

n∈N capn,r. Any infeasibility that may be introduced due to this
modelling choice is fixed during the allocation phase. HCP considers also power
as a resource type, allowing to restrict the total power consumption of the jobs.
We here omit this feature as it is not relevant to our study.

We consider the objective function which minimizes the sum of the waiting
times of the jobs. In PCP it is formalized as

∑
τi

max(0, s(τi)−qi−ewti
ewti

). It is a
weighted sum so as to give priority to the jobs that stay in the queue longer
than their ewti. The ewti value is the average waiting time of the queue where
i is submitted, and is obtained by analyzing the Eurora workload data which
was collected by the PBS dispatcher [22]. In the objective function of HCP, the
weights are slightly different, giving priority to the jobs of the queues with lower
expected waiting times:

∑
τi

max(ewti)
ewti

∗ (s(τi) − qi). We will explain later how
the corresponding scheduling models are solved by PCP and HCP.

Allocation. In PCP, the allocation problem is modelled via an alternative con-
straint [25] for all τi ∈ τ , which ensures that the requested resources reqi,r are
satisfied by selecting a subset of the alternative possibilities for allocating i. An
alternative possibility is an optional CIV, which may or may not be present in the
allocation decision, and represents an individual allocation to the resources of a
given node n. Instead in HCP, it is solved by a PRB algorithm for the jobs which
have s(τi) = t after the scheduling model is solved. This heuristic algorithm iter-
atively tries to allocate each scheduled job using the best-fit allocation strategy.
The jobs are chosen based on their priority. The jobs that have been waiting the
longest at time t have the highest priority. Such a priority is calculated in line
with the priority of the jobs in the objective function: max(ewti)

ewti
∗ (t − qi). As a

tie breaker, job demand is used, which is the job’s resource requirements multi-
plied by job duration d(τi). Hence, among the high priority jobs, those that have
requested fewer resources and have shorter durations have further priority. Since
the scheduling decision may contain some inconsistencies due to considering the
resources of the same type as a pool, a job may not be allocated, in which case
it is postponed to the next dispatching time.

Search. To solve the scheduling and the allocation model altogether, PCP uses
the self-adapting large neighborhood search algorithm [24] which is the default
search available in the solver where PCP is implemented [26]. HCP instead uses a
custom search algorithm derived from the schedule-or-postpone algorithm [30]
to solve the scheduling model. The criteria used to select a job among all the
available ones at each decision node follows the priority rule used in the PRB
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allocation algorithm, thus preferring the jobs that can start first and whose
priority are highest. Note that the priorities are calculated once statically at the
dispatching time t before search starts. Due to problem complexity, search in
both PCP and HCP is bounded by a time limit δ. Thus, the best solution found
within the limit is the dispatching/scheduling decision. If, however, no solution
is found within the limit, the search is restarted with an increased time limit
2 ∗ δ. This procedure continues while no solution is found and δ ≥ δmax, where
δmax is the maximum time available to generate a decision.

3 Resiliency to Heavy Workloads

In this section, we reduce the model size and improve the search control of the
dispatchers in an effort to make the dispatchers resilient to heavy workloads and
applicable to on-line dispatching.

At a dispatching time t, PCP searches for a solution for all the jobs in Q which
can be very time consuming when many jobs are waiting. While this problem is
tackled in HCP by searching for a solution for the jobs in Q̄ and postponing the
remaining jobs in Q \ Q̄ to the end of the makespan, there raises another issue:
when many jobs are postponed in the same way, they are likely to overlap and
create excess demand for the system resources at a given time in the schedule.
It may therefore be not be possible to find a feasible solution that satisfies the
resource constraints, consequently the entire Q may be postponed to the next
dispatching time t + 1. To address this problem, we remove the remaining jobs
in Q \ Q̄ from the model and place them in the queue with their original qi.

During the typical operation of an HPC system, job submission by users
has a stochastic nature and actual runtime durations are known only when jobs
terminate. Additionally, at a dispatching time t, only the jobs with s(τi) = t
are dispatched. Thus, it is not fruitful to generate a dispatching decision for the
entire schedule makespan [t, eoh]. We therefore remove from the model all the
jobs requiring more amount of resources than available at time t and queue them
again with their original qi. In addition to reducing the model size in terms of
decision variables, we also eliminate the unnecessary variables and constraints
in the model of a given problem instance. Specifically, for a given resource type
r (in a node n), if none of the jobs in the model require it, we remove the
corresponding cumulative constraint from the model. Moreover, in PCP, if there
is no availability to allocate i in the system resources, we remove i and its
corresponding alternative constraint from the model, and queue it again with
its original qi. Note that removing jobs from the model and putting them back
in the queue does not cause any starvation problem. As we will argue in Sect. 4
and confirm experimentally in Sect. 6, their priority grow with their slowdown
and eventually they are all dispatched.

During search for a solution, both solvers of PCP and HCP use a time limit
δ to interrupt the search and return the best solution found. If, no solution is
found within the limit, the search is restarted with an increased time limit 2 ∗ δ.
In the latter case, the dispatchers cannot distinguish an unsatisfiable problem
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instance from a difficult instance that is not solved yet. This has the consequence
of searching for a solution again and again for an instance known to be unsat-
isfiable. To address this problem, we add the solver state to the search control.
Consequently, if the solver proved unsatisfiability, this will be known when the
search is interrupted by the time limit, and the subsequent restart will be avoided
by placing the jobs in the queue for the next dispatching time. Finally, we avoid
a restart if the solution quality did not change after k consecutive restarts.

In the following, we refer to the versions of PCP and HCP whose model and
search control are built as described here as PCP1 and HCP1.

4 Incorporation of Job Duration Prediction

A straightforward way to incorporate the duration prediction dd
i of a job i into

our dispatchers is to use it for defining the duration d(τi) as d(τi) = dd
i for the

queued jobs and d(τi) = s(τi) + dd
i − t for the running jobs, without any other

changes to the dispatchers. In this section, we argue that this naive use may be
ineffective, if not worsen the QoS, thus we adapt the model and search algorithm
of both dispatchers to the use of job duration predictions in order to obtain high
QoS levels in terms of job waiting times and slowdown.

A duration prediction dd
i of a job i may be perfectly accurate (dd

i = dr
i ),

underestimated (dd
i < dr

i ), or overestimated (dd
i > dr

i ). If a running job i is
underestimated, at a certain dispatching time t, we will have s(τi) + dd

i < t
and thus d(τi) = s(τi) + dd

i − t < 0. That is, the duration of a running job
will have a negative value even if the job is still running. A negative d(τi) for
a running job directly affects the calculation of the makespan

∑
τi

d(τi) of the
queued jobs. With a reduced makespan, it may not be possible to find a schedule
and/or allocation for the queued jobs, consequently they may all be postponed
to the next dispatching time t + 1, worsening the QoS. If instead, a running job
is overestimated at t, we will surely have s(τi) + dd

i > t and d(τi) > 0, thus the
makespan will not be shorter than necessary.

To address the problem of duration prediction underestimation, we extend
the duration d(τi) of a running job i which has d(τi) < 0 at time t. Specifically,
we redefine it as d(τi) = 1, assuming that the job i needs at least one more
unit of time as of t. This value is necessary and sufficient. It is the minimum
value necessary to prevent a feasible problem instance from turning into an
unfeasible one, as the makespan will be large enough to fit all the queued jobs
in a schedule. To show that it is sufficient, we remind that at t, only the jobs for
which the dispatcher decides that s(τi) = t are dispatched (the remaining are
queued again). The allocation decision made for such jobs is valid until the next
dispatching time t+1 and is not affected by the actual runtime durations of the
running jobs even if they are underestimated. By using the minimum possible
value for the duration of the underestimated running jobs, we keep the search
space size compact. Our initial experiments confirm that higher values of d(τi)
make the problem more difficult. In the following, we refer to this version of PCP1
and HCP1 as PCP2 and HCP2.
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Table 1. Dispatcher versions.

Enhancement PCP1 HCP1 PCP2 HCP2 PCP3 HCP3

Reduced model size, improved search control � � � � � �
Addressing duration prediction underestimation � � � �
Job durations in the obj. function and search � �

Even if the job duration prediction is accurate, resulting in dd
i ∼ dr

i for all
jobs, the dispatchers may still not be able to exploit them fruitfully for targeting
low job waiting time s(τi) − qi and slowdown (s(τi) − qi + dr

i )/dr
i . As we saw

in Sect. 2.2, both dispatchers assign a priority to the jobs that should not wait
long. Then the jobs with higher priority are forced to be scheduled first via the
objective function, as well as in the custom search of the scheduling problem and
in the heuristic search of the allocation problem of the HCP dispatcher. However,
job duration d(τi) is ignored in the priority. It is used only as a tie breaker among
the jobs having the same priority during the search of the scheduling and the
allocation problems of HCP. The priority instead focuses on a relation between
the current waiting time t − qi of the job i and its expected waiting time ewti.
The problem is that ewti is not a job specific feature that can be decided on-line
at the time of dispatching. It is a feature of the queue where the job is submitted
and is calculated offline. Such a value may not be informative on the current job
submission status so as to generate a dispatching decision of high quality.

We tackle this limitation by involving job durations in the objective function
and in the search of the scheduling and allocation, via the use of job slowdown
as job priority. Thus, the new objective function and the priority of a job i

at a dispatching time t become
∑

τi

s(τi)−qi+d(τi)
d(τi)

and (t − qi + d(τi))/d(τi),
respectively. This is the normalization of the job waiting time, which has a higher
value for jobs waiting more than their duration than for jobs waiting less than
their duration. We foresee the following benefits. First, since it gives priority
to short jobs, the dispatcher will aim at lowering both the total job waiting
times and the total job slowdown, as required by modern HPC applications.
Our experimental results in Sect. 6 show that by giving priority to short jobs, we
never penalize the medium and long jobs. Second, it prioritizes the jobs based
on a job specific feature d(τi) which can be calculated on-line and which can
reflect better the current job submission status. Finally, integrating d(τi) in the
objective function and search of the dispatchers paves the way to exploit job
duration predictions.

In the following, we refer to the versions of PCP2 and HCP2 whose model
and search algorithms are adapted as described here as PCP3 and HCP3. Table 1
summarizes all the dispatcher versions. We note that, similar to HCP, the
HCP3 dispatcher uses the job priorities in the custom search of the schedul-
ing problem and in the heuristic search of the allocation problem, and calcu-
lates the priorities once statically at the dispatching time t before search starts.
Our initial experiments revealed that updating them dynamically during search
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is not beneficial. As we described in Sect. 2.2, the search of PCP relies on the
default search of the underlying solver and does not exploit priorities. We
observed in our initial experiments that the custom search of the scheduling
model in HCP is valuable also for PCP to solve the entire scheduling and allo-
cation problem, hence we adopt that kind of search and exploit priorities also
in PCP3.

5 Experimental Study

To evaluate the significance of our approach, we conducted an experimental
study, by simulating on-line job submission to an HPC system.

HPC System and its Workload Dataset. Our study is based on a workload trace
collected from the Eurora system [11], with (the portions of) which the original
CP-based dispatchers were tested. [5,7–9]. We repeated the same study using
another workload trace collected from the Gaia system [14] and obtained similar
results which we omit in the paper due to space restrictions. The Eurora system
was hosted by CINECA [12], the largest Italian datacenter. Eurora occupied the
first place in the Green500 list of June 2013, and was in production until August
2015. It consisted of 64 nodes, each equipped with 2 8-core GPUs, 16 GB of
RAM memory, and 2 accelerators: GPUs and MICs. The workload, collected by
the PBS dispatcher between March 2014 and August 2015, consists of logs for
over 400,000 jobs submitted to one of its four queues, including job duration
and detailed resource usage. The workload is dominated by short jobs (under
1 h), making up 93.14% of all jobs, while the remaining 6.10% are medium jobs
(between 1 and 5 h) and 0.75% are long jobs (over 5 h).

Job Duration Prediction. To derive job durations, we used three prediction meth-
ods with varying accuracy levels, and underestimation and overestimation rates:
(i) the wall-time approach, (ii) a data-driven prediction heuristic [19] which is
simple to implement and has a low overhead, and as a baseline (iii) the actual
runtime (real) durations. In [19], the authors have applied the heuristic pre-
diction to the Eurora dataset. The mean absolute error (MAE) of the heuris-
tic and the wall-time approach with respect to the real duration were shown
to be 40 mins and 225 mins, respectively. The heuristic prediction shows thus
an improvement of 82% over the wall-time approach. In Fig. 1, we show the
empirical cumulative distribution function (ECDF) of the prediction accuracy
A = dr

i /d(τi), the ratio between the real and the predicted duration of a job, of
all the three methods. The empirical ECDF shows the proportion of scores that
are less than or equal to each score of A on Eurora. When A = 1, the duration
d(τi) matches the real duration dr

i . We have underestimation when A > 1, over-
estimation when A < 1. In theory, we should not have underestimation with the
wall-time approach because in a real system a job is killed if it takes longer than
its di. However, a system requires extra time after a job is killed or completed to
bring the resources on-line again and this extra time is reflected to the dataset.
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Fig. 1. The distribution of the accuracy of the three prediction methods.

Therefore, in some cases we have A > 1 in Fig. 1. We have 0.75 ≤ A ≤ 1.25 for
about 50% of the workload with the heuristic, and for less than 10% with the
wall-time approach. On the other hand, the heuristic introduces considerable
underestimation. The exact under and overestimation rates are 3.6% and 96.3%
for the wall-time and 25.8% and 53.7% for the heuristic, respectively.

Experimental Setup. We used the open-source discrete event simulator
AccaSim [18] to simulate the Eurora system with its workload dataset. Each
job submission is simulated by using its available data, for instance, the owner,
the requested resources, and the real duration, the execution command or the
name of the application executed. AccaSim uses the real duration to simulate the
job execution during its entire duration. Therefore job duration prediction errors
do not affect the running time of the jobs with respect to the real workload data.
The dispatchers under study are implemented using the AccaSim directives to
allow them to generate the dispatching decisions during the system simulation.

With the heuristic prediction, as opposed to calculating the predictions off-
line as in [19], we calculate them on-line during the simulation and update
the knowledge base upon job terminations. The accuracy of the heuristic thus
depends on the generated dispatching decisions. As a CP modelling and solving
toolkit, we used Google OR-Tools1 version 6.7 and ported it to Python 3.6 to
implement the dispatchers in AccaSim. The PCP, PCP1, and PCP2 dispatchers use
the default search algorithm of OR-Tools for CIVs, which is the schedule-or-
postpone algorithm. As explained in Sects. 2.2 and 4, all the other dispatchers
use the custom search derived from schedule-or-postpone. In terms of the dis-
patcher parameters, we set δ = 1s, k = 2, and δmax = 16s to small values to keep
the dispatcher overhead low. We keep m = 100 as in HCP. Both dispatchers need
in some of their versions the estimated waiting time ewtQ = 1

|Q|
∑

i∈Q si − qi of
each queue Q in the system. These values were calculated for the Eurora work-
load in [5,8] and reused here. All experiments were performed on a dedicated
server with a 16-core Intel Xeon CPU and 8 GB of RAM, running Linux Ubuntu
16.04. The source code of the CP-based dispatchers is available at https://git.
io/fjia1.

1 https://developers.google.com/optimization/.

https://git.io/fjia1
https://git.io/fjia1
https://developers.google.com/optimization/
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6 Experimental Results

In this section, we report our experimental results. While the best and the final
versions of the dispatchers are PCP3 and HCP3, all the previous versions (PCP,
PCP1, PCP2, HCP, HCP1, HCP2) appear in the experiments in order to evaluate
each of our contributions. To refer to a dispatcher using a certain job duration
prediction method, we append -W, -D or -R to the name of the dispatcher for
the Wall-time approach, the Data-driven heuristic and the Real duration, resp.

Table 2. Times and problem sizes.

Dispatcher PCP PCP1-W PCP3-R PCP3-D HCP HCP1-W HCP3-R HCP3-D

Avg. disp. time [ms] ∞ 743 692 701 1,014 703 523 575

Total pred. time [s] - - - 289 - - - 308

Total sim. time [s] ∞ 262,436 261,985 262,764 374,788 245,663 201,223 215,814

Avg. # of intervals - 145 94 115 379 100 51 63

Avg. # of req. res - 853 142 584 6,267 1,292 258 571

Avg. # of avl. res - 1,476 1,471 1,473 1,487 1,477 1,473 1,474

6.1 Dispatcher Performance and Problem Size

We first assess the impact of reducing the model size and improving the search
control of the dispatchers for resiliency to heavy workloads. Following the origi-
nal dispatchers PCP and HCP, we use the wall-time approach in PCP1 and HCP1 for
job duration prediction, and compare the performance of and the problem size in
PCP and PCP1-W, as well as HCP and HCP1-W. We report in Table 2 the mean CPU
time spent in generating a dispatching decision over all dispatcher invocations,
including the time for modeling the dispatching problem instance and searching
for a solution. We also report the total simulation time from the first job sub-
mission until the last job completion, and the average problem size: number of
intervals, number of requested resources, number of available resources.

PCP crashes before the completion of the entire workload, demonstrating that
it is not resilient to heavy workloads. We therefore underline the improvement
reached by the PCP1-W dispatcher which is now able to process the workload.
Compared to HCP, the HCP1-W dispatcher reduces the total time by around 34%
and reduces the problem size and time required for dispatching significantly.
These results demonstrate that our approach has significantly better perfor-
mance, making the dispatchers applicable to heavy workloads and paving the
way to the use of CP-based dispatchers for HPC on-line dispatching.

6.2 Quality of the Dispatching Decisions

Next, we evaluate the value of adapting the model and search algorithm of the
dispatchers to the use of job duration predictions by comparing the quality of
the decisions made by PCP, PCP1, PCP2, PCP3, as well as by HCP, HCP1, HCP2, HCP3.
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Since we are aiming at reducing both the slowdown and waiting time of jobs,
we consider both of these metrics. We first study the effectiveness of PCP, PCP1,
PCP2, and PCP3 with each job duration prediction method. Then, we analyze HCP,
HCP1, HCP2, and HCP3. We show the results of PCP2 and HCP2 only in conjunction
with the data-driven heuristic. This is because on our workload the heuristic has
a considerable underestimation rate while the other prediction methods have
negligible or no underestimation, so the behaviour was very similar to PCP1 and
HCP1. We also compare the various dispatchers with the performance of PBS
in the original system, by calculating the slowdown and waiting time from the
workload data.

Fig. 2. Average and error bars showing one standard deviation of slowdown and waiting
times [s] using the PCP dispatchers.

PCP Results. Fig. 2 shows the slowdown and waiting times obtained by various
versions of the dispatchers, compared to PBS. PCP is missing from the plot due
to the fact that it is not able to process the workload, hence we consider PCP1-W
as a baseline, which is the enhancement most similar to the original algorithm.
Additionally, we do not report the results of PCP1-D because the simulation was
too heavy and did not terminate in more than two weeks, so we interrupted it.
We believe the long simulation time is due to the fact that PCP1-D does not
deal with underestimation, so it tends to use the maximum time limit for the
instances in which jobs are underestimated, generating long queues.

A first observation is that, our best dispatcher coupled with the best duration
predictor (PCP3-R) and the heuristic predictor (PCP3-D) always outperform PBS.
PCP3-W has lower performance compared to PCP1-W. This is probably because the
wall-time approach has a high overestimation rate, which is not beneficial when
the dispatcher involves job durations in dispatching decisions. However, if we
look at the dispatchers using real durations, we observe a significant increase in
performance compared to PCP1-W but also when moving from PCP1-R to PCP3-R.
The reduction in the slowdown and waiting time from PCP1-R to PCP3-R reach
up to 58% and 13%. This is due to the accuracy of the prediction method which
does not present any underestimation nor overestimation. This proves that our
approach is essential when a good quality prediction is available.

On a more realistic prediction, the results confirm that great care needs
to be taken when integrating predictions. A straightforward integration of the
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predictions in previous algorithms is not helpful at all: PCP1-D takes too long.
By handling underestimation as in PCP2-D, we are able to improve the results
compared to PCP1-W. Further improvement is observed when moving to PCP3-D,
demonstrating again the benefits of including predictions, albeit imperfect, into
the model and search algorithm. Specifically, we observe 37% and 29% reduction
in the average slowdown and the average waiting time.

HCP Results. Figure 3 shows the performance of HCP, HCP1, HCP2 and HCP3 com-
pared to PBS. Unlike the PCP case, here the original dispatcher HCP is able to
process the entire workload so we can compare our results directly with the
state-of-the-art method, besides PBS. We observe that in general, if we include
predictions with good accuracy and take into account also the underestimation
problem, our algorithms can improve the quality of the dispatching decisions
significantly (see HCP3-D and HCP3-R compared to HCP and PBS).

Fig. 3. Average and error bars showing one standard deviation of slowdown and waiting
times [s] using the HCP dispatchers.

In more detail, we observe that simply moving from HCP to HCP1-W, with
an approach aimed at reducing the CPU time for dispatching, we also improve
the quality of the solutions. HCP3-W does not improve HCP1-W, since the accu-
racy of predictions using wall-time is rather low. We observe the most significant
improvements over HCP with HCP3-R, proving again the importance of our app-
roach when a good quality prediction is available. The decreased performance of
HCP1-D compared to all other algorithms confirms again that naively including
predictions can be detrimental. The gains obtained by HCP2-D with respect to
HCP1-D support again the need of dealing with underestimated jobs. We note
that, while HCP1-D performs worse than the original HCP, HCP2-D becomes better
than HCP and HCP3-D further improves HCP2-D, demonstrating again the benefits
of including predictions, albeit imperfect, into the model and search algorithm.

Discussion. We conclude that suitable incorporation of job duration predictions
in PCP and HCP, such as PCP3 and HCP3, can lead to significantly higher levels
of QoS especially for workloads dominated by short jobs. To benefit from this
potential, durations should rely on predictions with acceptable levels of accuracy,
going beyond the standard wall-time approach. The quality of the decisions
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generated by PCP1-W and HCP1-W is much worse than PCP3-R and HCP3-R. On
the other hand, PCP3-D and HCP3-D offer valid alternatives to PCP1-W and HCP1-W
with further reductions in problem size (as reported in Table 2) and with QoS
measures closer to those of PCP3-R and HCP3-R. Table 2 shows also the time cost
of this gain. While PCP3-D and HCP3-D come each with a cost of prediction, the
total simulation times of PCP3-D and PCP1-W are similar, and HCP3-D reduces
notably the time with respect to HCP1-W. The fact that the new dispatchers give
priority to short jobs does not penalize the medium and long jobs, as can be
witnessed in Fig. 4. Finally, our approach does not affect the system utilization.
We did not observe any major differences between the various dispatchers (results
not shown due to space limitations). This is probably because all the dispatchers
are using the best-fit allocation strategy.

Fig. 4. Average and error bars showing one standard deviation of slowdown and waiting
times [s] on medium and long jobs using all the dispatchers.

7 Related Work

Job duration prediction has been used to optimize job dispatchers. In [20], a
simple linear model can improve the slowdown of backfilling techniques by 28%.
On an IBM Blue Gene/P machine, adjusted user estimates were able to improve
up to 20% the performance of the dispatchers favoring short jobs [37], while
a predictive heuristic was shown to double the performance of a backfilling-
based dispatcher [38]. The heuristic prediction that we employ here is similar
to [38], however it considers more complex job profiles. When the prediction
underestimates the job duration, [38] apply a correction step, to keep the job
alive, similar to the adjustment that we make. However, they adjust the duration
to define a new backfilling window whereas in our approach it is intended for
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defining valid CP models. Recently, machine learning methods were applied to
predict job duration [23,36], including metadata such as job names as features.
In fact, the heuristic method we employ also relies on job metadata, however it
is much simpler, being an heuristic that does not require model training. Neither
of the methods is integrated within a dispatcher for testing. An adaptive on-line
machine learning method based on state space models is used in [28] to predict
job duration. The authors show that their predictions allow for reducing waiting
times by 25% in backfilling-based dispatchers.

Underestimation of job duration is a problem that appears often in the liter-
ature, since it negatively affects dispatcher performance, more than overestima-
tion. Recently, [15] proposed a predictive method based on a censored regression
model, which could minimize underestimation. Although promising, it requires
heavier computations compared to the heuristic prediction we adopted here.

None of these works combine job duration prediction with a CP-based job
dispatcher. Recently, [19] attempted to do that with HCP. However, it was done
naively by replacing the expected durations with predicted durations, without
adapting the model and search to deal with duration underestimation and to
the use of predictions, as we did here. Moreover, the predictions were calcu-
lated off-line, as opposed to on-line, as we did here. Indeed, the results were not
satisfactory, leading to worse performance compared to the wall-time approach.

8 Conclusions

We have argued that, while Constraint Programming (CP) is an effective app-
roach in tackling the job dispatching problem, the-state-of-the-art CP-based dis-
patchers [5,8] are unable to satisfy the challenges of on-line dispatching and they
are unable to take advantage of job duration predictions, which impede their
adoption in HPC systems. We have introduced a class of novel CP-based dis-
patchers by building on [5,8] and redesigning their main components. We made
them resilient to heavy workloads and applicable to on-line dispatching, as well
as adapted them to the use of job duration predictions to obtain high QoS levels
in terms of job waiting times and slowdown. We evaluated the significance of
our approach on a workload trace collected from an HPC system, using predic-
tions with different accuracy and underestimation and overestimation rates on
the dataset. The experimental results are excellent. Compared to the original
dispatchers, the time spent by the new dispatchers in generating decisions on a
heavy workload is significantly reduced. Moreover, the new dispatchers can ben-
efit from job duration predictions and generate decisions of higher QoS levels on
a workload dominated by short jobs. The new dispatchers are thus more suitable
for HPC systems running modern applications that employ short jobs. To bene-
fit from this potential, the durations should rely on predictions with acceptable
levels of accuracy, going beyond the standard wall-time approach. While the
heuristic prediction considered in the paper is not the best, we have shown that
it is a valid alternative to the wall-time approach, despite its simplicity.

In future work, we will include the allocation problem in the search of the
new PCP dispatcher, which currently focuses only on the scheduling problem.
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We also plan to test the dispatchers with other, more sophisticated, duration
prediction methods, as well as to integrate dedicated allocation strategies in the
dispatchers so as to enhance system utilization.
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Abstract. Mobile robots in flexible manufacturing systems can trans-
port components for jobs between machines as well as process jobs
on selected machines. While the job shop problem with transportation
resources allows encapsulating of transportation, this work concentrates
on the extended version of the problem, including the processing by
mobile robots. We propose a novel constraint programming model for
this problem where the crucial part of the model lies in a proper inclu-
sion of the transportation. We have implemented it in the Optimization
Programming Language using the CP Optimizer, and compare it with
the existing mixed integer programming solver. While both approaches
are capable of solving the problem optimally, a new constraint program-
ming approach works more efficiently, and it can compute solutions in
more than an order of magnitude faster. Given that, the results of more
realistic data instances are delivered in real-time, which is very important
in a smart factory.

Keywords: Scheduling · Constraint programming · Mobile robot ·
Flexible manufacturing system · Transportation ·
IBM ILOG CPLEX Optimization Studio

1 Introduction

The concept of the smart factory was defined by the Industry 4.0 [18] project
recently. There is an emphasis on automation, data exchange, and flexible man-
ufacturing technologies. A flexible manufacturing system consists of the work
machines such as automated CNC machines connected by a material handling
system and the central control computer. The material handling system can be
realized by conveyors or automatic guided vehicles (AGV). AGVs are used to
transport materials between machines [8].

Traditional job shop scheduling problems have been extended to work with
the AGVs for transportation of material whenever the job changes from one
machine to another. This class of problems is called the job shop scheduling
with transportation (JSPT) as discussed by Nouri et al. [21] who reviewed vari-
ous approaches applied to this problem. The classical work of Bilge and Ulusoy [8]
formulated a nonlinear mixed integer programming model which was intractable
c© Springer Nature Switzerland AG 2019
T. Schiex and S. de Givry (Eds.): CP 2019, LNCS 11802, pp. 456–471, 2019.
https://doi.org/10.1007/978-3-030-30048-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30048-7_27&domain=pdf
https://doi.org/10.1007/978-3-030-30048-7_27


Scheduling of Mobile Robots Using CP 457

due to the size and nonlinearity. To handle that, they applied an iterative heuris-
tic approach to solve the problem. Later on, many metaheuristic and heuristic
approaches have been studied to solve this problem [21].

Recent approach [11] extended the JSPT to allow for the inclusion of mobile
robots who can perform various value-added tasks on machines as well as trans-
portation of material between machines. They proposed an exact approach using
linear mixed integer programming and solved the corresponding extension of
benchmark problems from [8] optimally. These problems have varying difficulty,
some of them can be solved by the mixed integer programming (MIP) approach
within few seconds while computations of others took more than ten hours. To
deliver solutions in a short time (within several seconds), the hybrid heuristic
based on genetic algorithms was also proposed and implemented in [11]. Very
latest work studied solution to this problem using adaptive large neighborhood
search [12], and it is aimed to obtain solutions in real-time. Our paper also con-
centrates on this problem while proposing a different exact approach represented
by constraint programming (CP).

In our approach, we use IBM ILOG CP Optimizer and its Optimization
Programming Language [2,17]. Our problem is a combination of scheduling [6,24]
and vehicle routing [16,25]. To solve the problem, we need to assign mobile robots
to each transportation and processing where the robot is needed, as well as assign
starting time to each transportation and processing. The transportation includes
pickup of the job components and its delivery to the consequent machine where
the job is processed.

Since we are not aware of any CP approach to our problem, we explored sim-
ilarities with other close problems. There are relations to pickup and delivery
problems [22,23], as well as dial-a-ride problems [10] where their vehicles corre-
spond to mobile robots and pickup and delivery requests between origins and
destinations can be seen as our transportations between the origin and destina-
tion machine. Berbeglia et al. proposed the first exact algorithm to check the fea-
sibility of dial-a-ride problems using CP [7]. Liu et al. [19] approached the senior
transportation problem using CP, MIP, logic-based Benders decompositions as
well as constructive heuristic and found CP being the best approach. A similar
problem of the patient transportation [9] was recently solved by CP efficiently.
All these CP approaches [7,9,19] consider activities for pickup and delivery sepa-
rately, corresponding to the fact that they may be interleaved among each other.
However, this is in contrast to our approach, where each pickup is followed by
the corresponding delivery. We show that the model with separate variables for
pickup and delivery is not effective enough, and it must be replaced by a model
where pickup and delivery activities are replaced by one transportation activity.

Other related problems are represented by scheduling with setup times or
costs [4] where sequence-dependent setup times may correspond to our trans-
portations between machines processed for consequent operations. Taking into
account CP, various approaches solved the job shop scheduling problem with
sequence-dependent setup times integrating setups with the objective function
and search [5,14,15]. Recently, the propagation procedure, including transition
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times into the classic filtering algorithm for unary resources [13] was proposed
to solve this problem. This is also the approach taken by CP Optimizer, where
non-overlapping constraint with transition times is available [17]. While this is
an interesting concept, it cannot be directly applied in our case since our trans-
portation activities must be related to two different locations. To handle that,
we propose a more complex modeling approach with both non-overlapping con-
straints as well as transportation activities.

Let us summarize the contributions of our work.

1. We introduce the first CP model for scheduling with mobile robots.
2. A novel approach to handle complex transportations using non-overlapping

constraints is proposed.
3. A new CP approach is in more than an order of magnitude faster in computing

of optimal solution than the earlier MIP approach [11].
4. For smart factories, it is important that real-time computation (within a sec-

ond) is achieved for more realistic data instances.

The next section describes our scheduling problem with mobile robots.
Section 3 presents the detail CP model with transportation activities and
the alternative approach with the pickup and delivery activities. The section
concludes by the discussion of the search options. Section 4 introduces data
instances, explores different versions of our model and search, and compares
our approach with the MIP solver taken from [11]. The final section summarizes
the results and presents some ideas for future work.

2 Problem Description

We have m machines where n jobs are processed. Each job is composed of the
set of operations each processed on a different machine. Typically, jobs are not
processed on all machines, so the number of operations per job differs. For each
job, there is a specific order of the operations, i.e., we know in advance the
order of processing of operations on machines for each job. Operations of one
job cannot overlap, and only one operation (and job) can be processed on one
machine at any time.

Our problem is related to the combination of the job shop scheduling problem
and vehicle routing, which is called the job shop scheduling with transportation
resources [21]. It means that there are vehicles, e.g., automated guided vehicles
(AGV), which are used for transportation of the components between every two
consequent operations of one job [8]. The AGVs are identical, and the travel times
between machines are specified (they include loading and unloading times) by
the distance matrix. There are sufficient input and output buffer space at each
machine where components of the job or robots can wait. There is also a special
loading/unloading “dummy” machine (L/U station) where all AGVs start, and
all materials for jobs are available. So, the first transportation for each job starts
at the L/U station and the last one ends there.
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In this paper, we study a recently proposed problem where some operations
need processing by mobile robots [11]. Mobile robots are identical and perform
both transportations as well as the processing of selected operations. Each robot
can perform at most one activity (processing or transportation) at a time.

Example 1. A sample problem with the schedule is shown in Fig. 1. There are
two robots, three jobs, three machines and the L/U station where the processing
of all jobs starts. Routes for both robots are also depicted with the numbered
transportations and processings.

Fig. 1. Layout of FMS with mobile robots, and the schedule (based on [11]).

For instance, we can see that the third job is started by transportation (1)
using the blue robot. Consequently, operation 31 is processed on the machine 2.
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After some delay, the red robot transports components of the third job to the
machine 1 by (6) which is followed by the processing of the operation 32 using
the same red robot (7). Finally, job components are transported by the blue
robot (7) to the L/U station, again after some delay.

In the robot routes, we can see the processing by robots (colored boxes) and
the transportation of the components (so-called loaded trips; solid lines). There
are also dashed lines showing transportations of robots without any materials
(so-called empty trips) which are necessary to move the robot to the machine
where it is needed, e.g., the transportation (4) between the machines 3 and 1.

3 Model and Search

We will describe particular components of the model, starting from the base vari-
ables and constraints followed by more sophisticated concepts. Also, we would
like to relate similar ideas together to make an understanding of the model eas-
ier. The final part of this section will discuss explored possibilities of the search
method.

3.1 Interval Variables for Processing and Transportation

Interval variables are used to encapsulate both processing of operations as well as
transportation of job components between machines. These variables represent
processing and transportation activities.

A pair <j,o> identifies an operation processed as an o-th operation of the
job j based on predefined ordering. We have a Set of such tuples to represent
all operations. Note that operations of each job are organized in Set such that
ordering of operations represents the processing order of operations on machines.

tuple pair {int j; int o;}

{pair} Set;

Using the set of tuples allows to handle variable number of operations per job
easily.

For each operation jo=<j,o>, the interval variable processing[jo] is avail-
able for its processing. The interval variable transport[jo] represents trans-
portation of the job components from the machine where the previous opera-
tion is processed to the machine where the operation jo is processed (we will
write: transportation from previous operation to the current operation jo). The
transportation to the first operation starts at the L/U station (which is further
index by 0).

dvar interval processing[jo in Set] size processingSize[jo];

dvar interval transport[jo in Set] size transportSize[jo];

The size of the activity corresponds either to the processing time of the opera-
tion jo given by processingSize[jo] or to the travel time transportSize[jo]
between the machines where the operation jo and its previous operation are
processed.
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Example 2. The operation 21 in Fig. 1 is represented by the processing activity
processing[<2,1>]. The transportation (5) from the operation 21 to the oper-
ation 22 is represented by the transportation activity transportation[<2,2>].

3.2 Temporal Constraints

The activities for processing and transportation of one job are related by the
precedence constraints. The transportation activity transport[jo] from the
previous operation to the operation jo must precede the processing activity
processing[jo].

forall (jo in Set)

endBeforeStart(transport[jo], processing[jo]);

At the same time, the transportation activity transport[jo] must be pre-
ceeded by the processing activity from the previous operation. The previous
operation of jo in the Set can be obtained using prev(Set,jo) function.

forall (jo in Set: jo.o != 1)

endBeforeStart(processing[prev(Set,jo)], transport[jo]);

Note that the first transportation from L/U station to the next machine (jo.o=1)
is not proceeded by any processing.

3.3 Non-overlapping of Operations on Machines

The operations processed in the same machine cannot overlap. This can be
achieved by the inclusion of the sequence variable

dvar sequence machinePlan[i in 1..m] in

all (jo in Set: operation[jo].machine == i) processing[jo];

for each of the m machines. The structure operation[jo].machine stores the
machine for each operation jo. Consequently, the noOverlap constraint is posted
for all machines.

forall(i in 1..m) noOverlap(machinePlan[i]);

3.4 Alternative Interval Variables

There are interval variables rbtTransport[r][jo] and rbtProcessing[r][jo]
which ensure selection of one proper robot r for all transportation activities and
for the processing activities which requires a robot for processing.

dvar interval rbtTransport [r in 1..rb][jo in Set] optional

size transportSize[jo];

dvar interval rbtProcessing [r in 1..rb][jo in Set] optional

size processingSize[jo];
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The keyword optional corresponds to the fact that (at most) one robot activity
will be selected by the alternative constraints to choose among the rb robots.

The following alternative constraint means that one robot transportation
activity rbtTransport[r][jo] is selected (is present) for each transportation
activity transport[jo].

forall (jo in Set)

alternative(transport[jo], all (r in 1..rb) rbtTransport[r][jo]);

The other alternative constraint is posted for all processing activities where
the robot is working on the operation together with the machine (the data struc-
ture operation[jo].robotRequired stores information about needed robots).
Again one robot processing activity rbtProcessing[r][jo] will be present for
each processing activity processing[jo] requiring a robot.

forall (jo in Set: operation[jo].robotRequired == 1)

alternative(processing[jo], all (r in 1..rb) rbtProcessing[r][jo]);

In addition, all robot processing activities rbtProcessing[r][jo] are set
not be present by the presenceOf constraint when the robot is not needed.

3.5 Non-overlapping of Activities for Robots

Finally, we have all important elements of the model to propose how to han-
dle non-overlapping of activities for each robot. Firstly, we define the sequence
variable rbtRoute[r] for each robot r which includes all activities for the
robot r. There are robot processing activities rbtProcessing[r][jo] for all
operations jo where a robot is required. In addition, there are the robot trans-
portation activities rbtTransport[r][jo]. Of course, the present activities are
involved in the final sequence only.

dvar sequence rbtRoute[r in 1..rb]

in append(all (jo in Set) rbtProcessing[r][jo],

all (jo in Set) rbtTransport[r][jo])

types append(all (jo in Set) processingType[jo],

all (jo in Set) transportType[jo]);

As you can see, the sequence variables have defined their type which allows
to handle the empty transportations of the robots between machines when their
next processing or the origin of the next transportation is scheduled on a different
machine than the robot is placed.

Example 3. The red robot in Fig. 1 performs the transportation from the L/U
station to the operation 11 (to the machine 3) by the robot transportation activ-
ity rbtTransport[red][<1,1>] denoted by (3). Consequently, the red robot
needs to go the machine 1 by the transportation (4). At the machine 1, the red
robot needs to pick up the job components for the job 2 and transport them to
the machine 2 by (5) and rbtTransport[red][<2,2>]. The transportation (4)
represents the empty trip (and it is not represented by any activity).
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For each empty trip, e.g. (8), we need to make sure that there
is enough time to perform transportation from the origin activity
(rbtProcessing[red][<3,2>] at machine 1) to the destination activity
(rbtProcessing[red][<1,2>] at machine 2). This is completed by the
noOverlap constraint with the distanceMatrix.

forall(r in 1..rb) noOverlap(rbtRoute[r], distanceMatrix);

This constraint ensures non-overlapping of all activities for each robot r as well
as handling of travel times for their empty trips. The distance matrix is a set of
tuples encoding the distances (travel times) between every two types.

tuple Triplet { int type1; int type2; int distance; }

{Triplet} distanceMatrix;

In vehicle routing problems [16,17], each activity represents processing at some
location. Locations have defined their distances by the distance matrix. When we
assign the corresponding location as a type to each activity, the noOverlap con-
straint enforces the minimal travel time between every two consequent activities
from the different locations.

As mentioned in Sect. 1, the concept in vehicle routing problems cannot
be directly implemented in our case, because our transportation activities are
related to two different machines/locations. The transportation activity starting
at the machine i1 and ending at the machine i2 cannot simply be related to
one of the machines. Instead, we propose to have types associated with the two
machines i1,i2. Next, the distance matrix needs to define distances for each
quadruple i1,i2 and i3,i4 corresponding to the travel time between i2 and
i3. Note that the distance between the type i1,i2 and i2,i3 is zero. Of course,
the processing activities still resides on one machine which results in the type i,i
for the machine i. It means that the space complexity for the distance matrix
corresponds to O(m4).

Example 4. The robot transportation activity rbtTransport[red][<1,1>] (3)
has the type 03 because it corresponds to the transportation from the L/U
station to the machine 3. The activity rbtTransport[red][<2,2>] (5) has the
type 12 corresponding to the transportation from the machine 1 to the machine
2. The empty trip (4) has secured the minimal travel time given by the distance
between the types 03 and 12 which is given by the travel time between the
machines 3 and 1.

The robot processing activity rbtProcessing[red][<3,2>] for the opera-
tion 32 by (7) has the type 11 as it is processed on the machine 1.

3.6 Different Approach with Pickup and Delivery Activities

The initial solution approach for our problem was based on interval variables for
both pickup and delivery, i.e., there are interval variables pickup and delivery
as well as rbtPickup and rbtDelivery. Both pickup and delivery variables are
time points, i.e., their size equals to zero.
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Example 5. The transportation (5) in Fig. 1 from the operation 21 to the oper-
ation 22 is represented by the pickup activity pickup[<2,2>] and the delivery
activity delivery[<2,2>].

There are new constraints related to the fact that the same robot must com-
plete pickup and delivery for one transportation. It means that their presence
variables must have the same value. Also, the pickup robot activity directly pre-
cedes the delivery robot activity for the corresponding transportation. This is
achieved by the prev constraint.

forall (r in 1..rb, jo in Set) {

presenceOf(rbtPickup[r][jo]) == presenceOf(rbtDelivery[r][jo]);

prev(rbtRoute[r],rbtPickup[r][jo],rbtDelivery[r][jo]); }

For one transportation, the ending time of the pickup activity must
be separated from the starting time of the delivery activity just by the
travel time between machines. Travel times are stored in the structure
travelTimes[i1][i2] for each two machines i1, i2 including the L/U station.
Note that this data structure is also used to construct the distance matrix.

forall (jo in Set: jo.o != 1)

endAtStart(pickup[jo], delivery[jo],

travelTimes[operation[prev(Set,jo)].machine][operation[jo].machine]);

Since we need to include traveling from the L/U station to the first machine for
each job, we also have the following constraints.

forall (jo in Set: jo.o == 1)

endAtStart(pickup[jo], delivery[jo],

travelTimes[0][operation[jo].machine]);

Finally, there is a slightly different implementation of the precedence con-
straints from Sect. 3.2. In the first constraint, we consider precedence between
delivery (instead of transportation) and processing activities. The second con-
straint implements precedence between processing and pickup (again replacing
transportation) activities.

3.7 Objective Function

The objective of the problem is to minimize the completion time of all activities,
i.e., the makespan. In our case, we minimize the maximal completion time of
the last processing activity of each job (the data structure nbOperations stores
the number of operations per each job). It means that we do not consider the
last transportation to the L/U station which is in correspondence with earlier
works [8,11].

minimize max(jo in Set: jo.o == nbOperations[jo.j])

endOf(processing[jo]);
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3.8 Search

CP Optimizer [17] employs a combination of Large Neighbourhood Search and
Failure-directed Search [26] by default. Other options are introduced by multi-
point search and depth-first search [1,17]. In the experimental part, we will
explore the differences among these search algorithms. Based on our analysis,
the default search is significantly better than other options (see Sect. 4.2).

In all cases, the search process is performed to find an optimal solution as well
as prove the optimality of the found solution. Certainly, proving the optimality
takes much longer time than the computation of the first optimal solution.

Another possibility of how to tune the search in CP Optimizer can be intro-
duced by consideration of search phases together with grouping variables and
their specific ordering. However, this does not make much sense for our problem.
We have also explored various built-in variable and value ordering, but none of
them appeared to have a positive effect.

To conclude, we use the default search setting of CP Optimizer.

4 Experiments

In this section, we describe the experimental evaluation. Our approach is imple-
mented using the academic distribution of IBM ILOG CPLEX Optimization
Studio 12.8 in OPL1. We compare it with the MIP implementation in OPL [11]
using the same version and setting. We use random seeds to diversify the solu-
tion approach, which plays a significant role in statistical comparison in both
CP and CPLEX engines [3,17]. To allow for that, 30 runs are completed for each
experiment. The experiments are run on a computer with Intel Xeon Gold 6130,
16 GB RAM using a single thread.

4.1 Data Instances

We use data instances from [11] available from the website2. These data instances
extend JSPT data from [8] by introducing the processing by robots on some
operations.

There are 82 data instances with 4 machine layouts and different t/p ratios
(travel time/processing time). There are 4 machines (plus the L/U station) in
each layout, 5–8 jobs, 13–21 operations, and 2 robots. The first group of 40 data
instances has relatively high t/p ratio (t/p > 0.25), while the other 42 data
instances have it relatively low (t/p < 0.25). The names given to the instances
start with prefix “EX” followed by the number of the job set and the layout.
The names of the instances in the second group include the additional 0, 1 digit
implying that the processing time is doubled or tripled, respectively. In the
second group, travel times are halves (e.g., “EX541” corresponds to the job

1 The source code, including data instances, is available from https://github.com/
StanislavMurin/Scheduling-of-Mobile-Robots-using-Constraint-Programming.

2 https://sites.google.com/site/schedulingmobilerobots/.

https://github.com/StanislavMurin/Scheduling-of-Mobile-Robots-using-Constraint-Programming
https://github.com/StanislavMurin/Scheduling-of-Mobile-Robots-using-Constraint-Programming
https://sites.google.com/site/schedulingmobilerobots/
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Table 1. Performance of various setting in the CP approach (in seconds).

EX110 EX210 EX11 EX22 EX63

Time S.D. Time S.D. Time S.D. Time S.D. Time S.D.

Default 0.010 0.003 0.028 0.015 0.745 0.142 0.447 0.133 0.564 0.077

DFS 0.006 0.005 2.443 0.939 0.473 0.018 2.567 1.235 16.763 0.844

MultiPoint 0.018 0.007 0.136 0.083 – – – – – –

set 5 with tripled processing time and the layout 4 with half travel time). For
the second group, it results in a more realistic data set, since the robot takes a
long time for processing in comparison with its travel time [20].

4.2 Setting

In this section, we compare different versions of our model as well as built-in
search methods.

Model Setting. In Table 1, the experiments exploring efficiency of our model
using the default CP Optimizer setting are presented in the first line denoted
Default. We have also tried different levels of propagation as available within CP
Optimizer, but none of them has a positive effect.

The alternative model replaces transportation activities by the pickup and
delivery activities as described in Sect. 3.6. Performance of this model was very
weak, resulting in 96.794± 5.086 s even for the easiest EX110 problem. This
confirmed our expectation after some trial experiments that this model cannot
be used at all.

Search Setting. In Table 1, the results for the default search (Default), the
depth-first search (DFS ), and the multi-point search (Multi-point) are given.

While the best performance of the default search is not clear based on the
instance EX110 and EX11 where the DFS is almost two times faster, it becomes
decided on other instances. The depth-first search was significantly worse for
other problems. The speed-up of the default search was 84.25, 5.74, and 29.72 for
EX210, EX22, and EX63, respectively. It confirmed our preliminary experiments
where the depth-first search was very slow on many problems. The multi-point
search was not even able to find a solution within 12 h for three problems, even
though there are still rather easy data instances.

Given the initial experiments, we can conclude that the default setting of CP
Optimizer is the best, and it is further used to perform experiments on all data
instances.
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4.3 Results and Comparison with MIP

We compare the results of our CP solver with the results of the MIP solver
from [11]. Table 2 includes the computational times (Time) with the standard
deviations (S.D.) for both approaches together with the speed-up (Speed.) of
the CP approach. The left columns show results for 40 data instances with
t/p > 0.25, and the right columns for 42 instances with t/p < 0.25. Different
levels of the blue color are used to emphasize differences in computational times.
Darker colors show shorter computational times while lighter colors demonstrate
higher times. Similarly, red colors show differences in speed-up. Here darker
colors demonstrate better results of our CP solver.

The results for the first set of 40 data instances were mostly computed within
10 s (15 instances within a second, other 17 instances in less than 10 s). The
three most demanding instances EX71, EX74, and EX104 needed 23.5, 14.3,
and 4.8 min, respectively. The remaining 5 instances required the computational
time between 10−100 s (23.85 s on average). For the MIP solver, the instances
EX71, EX74, and EX104 are very hard, and the results were computed within
12 h in 3 out of 90 cases (values in the column for speed-up specify the number
of solved instances). Other instances were also much harder for MIP than for
CP. Only 5 instances suffice with the computational time less than ten seconds.
For 12 other instances, solutions were computed within a hundred seconds, and
11 more instances needed 100−1,000 s. The last 9 instances required more than
a thousand seconds. We cannot compare speed-up for EX71, EX74, and EX104
instances which were hard for both solvers, because the MIP solver has not
mostly computed solutions. The CP solver was 1,000, 100−1,000, and less than
100 faster for 3, 18, and 16 problems, respectively. The smallest speed-up was
8.8, and it was 38.1 on average for 16 problems with the speed-up smaller than
a hundred.

We can observe the correlation between the computational time and the job
set or the layout complexity. The layouts 1 and 4 appear to be generally more
difficult for both solvers, having average computational times of 6.5 and 1,975.8 s
for the layout 1, and 8.1 and 963.0 s for the layout 4 for CP and MIP, respectively.
Layout 2 and 3 are generally easier with the average computational times of 1.0
and 217.6 s for the layout 2, and 1.4 and 261.2 s for the layout 3 for CP and MIP,
respectively. Please note, that job sets 7 and 10 were excluded from average
computation over layouts, because of unfinished MIP tests in layout 1 and 4.

The results for the second set of instances is in the right part of Table 2. We
can see that computational times of the CP approach are always smaller than one
second, which is very important because these problems represent more realistic
data sets as discussed before. Computational times rather rely on the given job
set which is given by smaller importance of travel times in this set of problems,
since the travel times were halved and processing times were doubled or tripled.
The problems from the job sets 9, and 10 need the highest computational time,
mostly higher than 0.5 s. The job sets 4 and 6 with the exclusion of EX420 require
between 0.1 and 0.6 s. 27 remaining instances suffice with solution time smaller
than 0.05 s on average. The MIP solver needs more than 9 s for the job sets 8–10
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Table 2. Performance of CP and MIP approach (computational times in seconds).

t/p > 0.25 t/p < 0.25

No. CP MIP No. CP MIP

Time S.D. Time S.D. Speed. Time S.D. Time S.D. Speed.

EX11 0.74 0.14 21.09 14.00 28.3 EX110 0.010 0.003 0.418 0.097 40.4

EX21 6.40 0.98 813.09 307.91 127.0 EX210 0.028 0.015 5.052 1.084 178.3

EX31 1.45 0.35 151.71 54.37 104.8 EX310 0.011 0.004 2.401 1.293 218.3

EX41 29.64 6.11 11,062.71 4,671.52 373.3 EX410 0.381 0.093 10.043 2.625 26.4

EX51 2.09 0.35 103.41 28.65 49.4 EX510 0.009 0.003 0.451 0.113 52.0

EX61 7.81 1.92 2,144.12 819.86 274.5 EX610 0.295 0.092 9.954 12.807 33.7

EX71 1,410.05 1,098.22 – – 0/30 EX710 0.014 0.005 2.318 1.471 161.7

EX81 0.03 0.05 39.11 28.99 1,448.5 EX810 0.011 0.003 43.181 30.684 3,810.1

EX91 4.51 0.70 1,471.48 1,134.73 326.0 EX910 0.496 0.131 10.945 2.517 22.1

EX101 40.30 4.86 11,034.87 3,868.56 273.8 EX1010 0.484 0.072 52.802 69.282 109.1

EX12 0.20 0.07 2.15 0.76 10.5 EX120 0.008 0.005 0.333 0.071 41.6

EX22 0.45 0.13 12.47 5.74 27.9 EX220 0.045 0.026 3.975 0.905 87.7

EX32 0.35 0.04 5.52 0.97 15.6 EX320 0.009 0.005 1.217 0.592 130.4

EX42 4.93 0.64 1,439.60 614.47 291.8 EX420 0.023 0.004 7.103 1.787 313.4

EX52 0.38 0.09 3.57 1.11 9.4 EX520 0.010 0.005 0.449 0.147 44.9

EX62 0.39 0.06 38.15 28.02 98.7 EX620 0.213 0.112 7.555 2.816 35.5

EX72 1.65 0.43 269.45 145.27 162.9 EX720 0.012 0.005 4.875 1.840 417.9

EX82 0.01 0.01 72.78 63.20 7,529.4 EX820 0.012 0.006 27.567 21.253 2,362.9

EX92 0.95 0.22 166.36 79.32 174.7 EX920 0.575 0.157 9.306 3.044 16.2

EX102 2.11 0.87 555.15 184.64 262.9 EX1020 0.443 0.261 42.312 29.385 95.5

EX13 0.45 0.14 3.98 1.11 8.8 EX130 0.008 0.004 0.361 0.058 43.3

EX23 1.17 0.50 65.59 37.82 56.0 EX230 0.013 0.006 4.091 0.805 322.9

EX33 0.34 0.08 5.17 1.11 15.3 EX330 0.010 0.003 1.171 0.475 113.4

EX43 6.32 0.85 1,481.41 673.00 234.5 EX430 0.157 0.075 4.488 1.168 28.5

EX53 0.63 0.11 14.61 7.14 23.3 EX530 0.009 0.006 0.367 0.098 42.4

EX63 0.56 0.08 86.11 52.28 152.6 EX630 0.338 0.171 6.646 1.705 19.7

EX73 5.18 1.25 661.64 341.92 127.8 EX730 0.009 0.005 4.340 1.602 500.8

EX83 0.01 0.00 76.68 83.95 8,216.0 EX830 0.012 0.005 26.695 18.926 2,288.1

EX93 1.69 0.29 356.05 144.02 210.2 EX930 0.482 0.145 9.748 3.511 20.2

EX103 3.53 0.45 948.83 366.85 269.1 EX1030 0.389 0.130 41.732 22.047 107.4

EX14 1.23 0.19 22.03 15.27 17.9 EX140 0.013 0.005 0.440 0.146 33.0

EX24 8.86 1.54 610.69 241.69 68.9 EX241 0.013 0.005 3.407 0.974 269.0

EX34 3.80 0.64 205.19 87.97 54.0 EX340 0.012 0.004 2.282 1.213 185.0

EX341 0.015 0.005 1.637 0.637 109.1

EX44 18.11 3.03 2,316.20 994.28 127.9 EX441 0.274 0.045 7.826 1.841 28.6

EX54 1.77 0.29 84.69 29.51 47.9 EX541 0.008 0.004 0.464 0.100 55.6

EX64 21.06 3.46 1,651.60 772.60 78.4 EX640 0.508 0.502 8.311 2.380 16.4

EX74 858.75 1,761.51 – – 1/30 EX740 0.011 0.005 4.541 1.930 412.8

EX741 0.011 0.004 4.690 1.645 413.8

EX84 0.11 0.06 67.76 55.66 637.3 EX840 0.009 0.005 25.581 20.276 2,951.7

EX94 10.17 1.50 2,745.50 1,645.57 269.9 EX940 0.547 0.211 13.448 3.775 24.6

EX104 286.20 43.52 – – 2/30 EX1040 0.509 0.048 57.863 45.987 113.8
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(together with EX410 and EX610). Less than 1 s is needed for the job sets 1
and 5. The remaining 20 instances require 1–9 s. This results in a tremendous
speed-up for the job set 8 being more than 1,000. The speed-up in two orders
of magnitude was achieved for the job set 7, 10 and some problems from 2–4
job sets. Finally, 21 other instances were running 35.6 faster on average, and
the smallest speed-up was 16.2. It is good to see very good results across all the
instances for the CP solver because such running times allow applying the solver
even with the real-time demands.

As we can see, the performance of the CP engine is much better in comparison
to the CPLEX engine using their standard setting. It has been shown that the CP
approach is better than the MIP approach in more than an order of magnitude,
being even in three orders of magnitude faster for some of the problems.

5 Conclusion

We have proposed a novel CP approach for scheduling with mobile robots. It
is an important recent problem which needs to be handled in smart factories
nowadays. The approach is very effective given our new proposal with non-
overlapping constraints, including transportation activities. For more realistic
data instances (42 problems), all solutions can be computed within one second,
which allows real-time computation needed by a smart factory. In this case, our
exact solver can replace even a hybrid heuristic solver proposed in [11] to compute
solutions fast. Data instances from the second harder data set (40 problems) can
be mostly solved within ten seconds, less than a quarter of them has higher
computational demands. When we compare these results with the earlier MIP
approach, there is a significant speed-up in one, sometimes two, or even three
orders of magnitude. To conclude, this makes up a nice example of the constraint
programming application.

In the future, we would like to extend further our problems based on real
life. Interesting characteristics can be studied by consideration of an uncertain
and dynamic environment where changes are happening due to the uncertain
behavior of mobile robots or the existence of new jobs. Certainly, our interests
lie in further improvements to the current model and search. Last but not least,
we would like to study other combinations of scheduling and vehicle routing
problems where non-overlapping constraints with transportation activities can
be helpful.
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17. Laborie, P., Rogerie, J., Shaw, P., Viĺım, P.: IBM ILOG CP optimizer for schedul-
ing. Constraints 23(2), 210–250 (2018)

https://doi.org/10.1007/978-3-540-24664-0_3
https://doi.org/10.1007/978-3-319-98334-9_32
https://doi.org/10.1007/978-3-319-98334-9_32
https://doi.org/10.1007/978-3-319-23219-5_7
https://doi.org/10.1007/978-3-642-13520-0_19


Scheduling of Mobile Robots Using CP 471

18. Lasi, H., Fettke, P., Kemper, H.G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf.
Syst. Eng. 6(4), 239–242 (2014)

19. Liu, C., Aleman, D.M., Beck, J.C.: Modelling and solving the senior transportation
problem. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 412–428.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2 30

20. Madsen, O., et al.: Integration of mobile manipulators in an industrial production.
Ind. Robot Int. J. Robot. Res. Appl. 42(1), 11–18 (2015)
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Abstract. In this paper, we consider a multi-robot deployment prob-
lem involving a set of robots which must realize observation tasks at
different locations and navigate through a shared network of waypoints.
To solve this problem, we develop a two-level approach which alternates
between (a) quickly obtaining high-level schedules based on a coarse grain
CP model which approximates navigation tasks as setup times between
observations, and (b) generating more accurate schedules based on a fine
grain CP model which takes into account all resource usage conflicts dur-
ing traversals of the shared network. The low-level layer also contains an
explanation module able to generate constraints holding on high-level
decision variables. These constraints (or cuts) account for interferences
found in the low-level solutions and which the high-level scheduler should
take into account to minimize the makespan. The proposed variants of
the cut generation strategy are incomplete, the aim being to obtain good
quality solutions in a short time, and they differ in the way they allow
to diversify search. Experiments show the efficiency of this approach and
the complementarity of the cut generation schemes proposed.

Keywords: Multi-Robot Missions · Constraint-based scheduling ·
Problem decomposition

1 Problem Description

We consider a Multi-Robot Deployment (MRD) problem where a fleet of robots
must perform, as quickly as possible, a set of observations on specific areas of
a field. Each candidate observation must be allocated to a robot, and for each
robot the sequence of its observation tasks must be scheduled. Between two suc-
cessive observations, a robot must also navigate through a network composed
of waypoints and links, as illustrated in Fig. 1. Several candidate paths can be
considered to navigate between pairs of observation areas, and each alternative
path can be broken down into successive movements through links and way-
points. One specificity is that the network is shared between all robots. To avoid
collisions during traversals of the network, or at least to reduce the need to deal
with collision situations online, we consider that each link and each waypoint
c© Springer Nature Switzerland AG 2019
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can be occupied by at most one robot at a time (disjunctive resources). A finer
version could be used by considering a non-unit capacity, but this would require
handling cumulative resources which are left for future work. The only locations
which are considered as sharable are those associated with observation areas
(see Fig. 1 again). The rationale for this assumption is that the robots have a
smaller (or even null) speed when performing observations at these locations,
so the online management of collisions is easier and less hazardous in this case.
According to the time frame during which each move monopolizes the shared
link and waypoint resources, two different approaches can be distinguished:

– Minimum Handover. In this first approach, a robot r successively consumes
the network resources involved in a path, as illustrated in Fig. 2 for a transition
between observations o and o′ successively using link l1, waypoint wp, and link
l2. One specificity though is that there exists a positive time lapse, called the
handover duration, during which a robot switches between network resources
(move between a link and a waypoint for example). During each handover
period, the robot moves to the next resource on its path, but must also remain
“connected” to the previous one, to prevent robots from “jumping” between
resources. The goal is to forbid inconsistent solutions where two robots would
instantaneously cross each other over the network (e.g. solutions where at a
given time t, one robot instantaneously moves for link l to waypoint w while
another one instantaneously moves from w to l).

– Path Isolation. In this second approach, for a transition of robot r between
two observations o and o′, all path resources used during the transition are
reserved for the whole move duration, as illustrated in Fig. 3. The path monop-
olization starts just before the robot leaves observation o and ends just after
the robot arrives to observation o′.
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l1

wp

l2

o o′

mv1
rij

mv2
rij

mv3
rij

Fig. 2. Minimum handover

l1

wp

l2

o o′

mv1
rij

mv2
rij

mv3
rij

Fig. 3. Path isolation

The two approaches differ in terms of robustness and in terms of required syn-
chronization between the robots at execution time, where duration of robot
moves can be shorter or longer that expected. With the minimum handover
strategy, the usage of resources is more finely optimized but there is a need
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to synchronize the robots at each basic move. On the contrary, the path isola-
tion strategy takes more margins to get a collision-free deployment, but it only
requires synchronizing the robots at the start and at the end of the global moves
between observation tasks, that is when the speed of robots is low. The path iso-
lation approach is inspired by works dealing with inter-core interferences due to
shared hardware resources in multi-core processors [4,16], to temporally isolate
hard real-time applications [12].

In the mission specifications, robots cannot perform more than one obser-
vation at a time, and they must transfer observation data in real time to a
mission center, using a specific emission frequency. To avoid communication
interferences, two robots that use the same frequency cannot transfer observa-
tion data simultaneously. Redundancy is also useful in this kind of application
to be robust to robot failures at execution time, therefore each observation area
must be observed by several different robots at times spaced by a defined lapse.
Last, each robot is initially located at a given location and must come back at
the end of the mission to a predefined goal location.

The rest of the paper is organized as follows. Section 2 describes a first pos-
sible approach for dealing with the MRD problem based on a global CP model.
Section 3 describes a two-layer approach which decomposes the global problem
into a coarse-grain scheduling layer L1 used to compute sequences of observa-
tions, and a fine-grain scheduling layer L2 responsible for detailing navigation
paths through the shared network of waypoints. Section 4 then introduces an
iterative process of interaction between layers L1 and L2, based on four different
cut generation strategies that allow L2 to provide L1 with new relevant con-
straints. This strategy can be seen as a kind of Logic-Based Benders Decompo-
sition [5] (more details later on the relationship with LBDD). Section 5 presents
the results of the decomposed approach and shows the complementarity of the
cut generation techniques introduced. Finally, Sect. 6 concludes and gives some
perspectives.

Note that the MRD application has been widely addressed to tackle real-
world problems related to situation awareness issues, such as cooperative sens-
ing using air-ground teams [3], disaster response [13], and exploration-rescue
systems in hostile environments [14]. The aim of this paper is to propose more
generic solutions that can be applied to such industrial and academic appli-
cations. Also, one of our goals is to exploit existing CP solvers to the best of
their potential, and not to compare them with other resolution techniques such
as MILP [7], PDDL [15] or Greedy algorithms. Finally, the proposed approach
seeks to decrease the computational complexity of the MRD application, by
considering the navigation interferences of a detailed solution plan. In most of
the existing references, these interferences are not taken into consideration at a
planning stage, and the use of anti-collision mechanisms is supposed at execution
time.
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2 A First Global Constraint-Based Scheduling Approach

Input Data. A first possible approach to solve the MRD problem is to develop
a global CP model covering all specifications of the mission. To define such a
model, we consider the following input data:

– a set of frequencies F available for communicating observation data in real
time to the mission center;

– a set of robots R; for each robot r ∈ R, freqr ∈ F is the (unique) frequency
used by r to emit data during observations;

– a set of observation areas A, corresponding to areas of the field that must be
observed; for each area a ∈ A, duObsa ∈ N denotes the duration required to
observe a.

– a number NobsPerArea of observations required over each observation area;
all observations of a given area must be performed by distinct robots for
redundancy issues;

– a set of observations O to be performed, which contains as many elements
as the number of (a, k) pairs in A × [1..NobsPerArea]; for each observation
o ∈ O, aro ∈ A denotes the area associated with o;

– for each robot r ∈ R, two specific observations denoted by α and β which
represent virtual observations that must be performed at the beginning and
at the end of the plan of r respectively; fictitious observations α and β allow
us to model the initial and goal locations of r;

– a set of connected shared waypoints W; for each robot r ∈ R and each
waypoint w ∈ W, duMvr,w ∈ N is the minimum duration spent in w during a
navigation of r through w; the observation areas are not considered as shared
waypoints;

– a set of links L, which correspond to direct connections between adjacent
waypoints or between an observation area and a waypoint; for each robot
r ∈ R and each link l ∈ L, duMvr,l ∈ N is the minimum duration required by
r to traverse link l;

– a minimum temporal distance d between two observations of the same area;
– a temporal horizon H ∈ N available for the whole mission.

Constraint-Based Scheduling Model. From the previous input data, we can define
a constrained-based scheduling model. For space limitation reasons, and because
this global approach does not scale well compared to the decomposed approach
detailed later, we only give the main lines of the model.

Basically, the global CP model is built upon so-called interval variables
used in CP Optimizer. If [Ts, Te] denotes the time frame available for realiz-
ing the associated task, each interval variable itv is characterized by a start
value start(itv) ∈ [Ts, Te], an end value end(itv) ∈ [Ts, Te], and a presence
pres(itv) ∈ {0, 1} expressing whether the task is present in the solution sched-
ule. The global CP model involves intervals representing observation activities
and navigation activities through the shared network. In particular, it contains a
huge number of optional intervals mvr,o,o′,p,q to model the move of robot r on the
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qth network resource (link or waypoint) of the pth path available to travel from
observation o to observation o′. To boost constraint propagation, the model also
contains a coarse-grain no overlap constraint taking into account the minimum
temporal distance between observation tasks. Also, a so-called sequence variable
seqr is associated with each robot r ∈ R. The value of this variable corresponds
to a total ordering of all observation tasks realized by r. The CP model contains
constraints over such sequences to ensure that the start and end locations of a
path chosen between two observations o, o′ is consistent with the locations of o
and o′. Finally, a solution is optimal if it minimizes the makespan Cmax , which
corresponds to the maximum end time of the fictitious last observation tasks
realized by the robots to reach their goal locations.

3 Decomposition into a Two-Layer Scheduling Problem

To decrease the computational complexity, the MRD problem can be split into
two parts: (1) one part which decides on the successive observations realized by
each robot based on a coarse grain model of navigation operations (so-called
layer L1), and (2) one part responsible for detailing the navigations of robots
within the network of shared waypoints (so-called layer L2).

3.1 Coarse-Grain Scheduling Model: Layer L1

In the high-level scheduling model of layer L1, the navigation between two given
observations o and o′ is abstracted in a very coarse way as a simple integer
setup time required between the end of the realization of o and the start of the
realization of o′. In other words, it considers the robots as disjunctive resources
with setup times, as in Sequence Dependent Setup Time Job Shop Scheduling
Problems [8].

Inputs. In addition to some inputs already mentioned in Sect. 2 (the set of
frequencies, the set of robots, the set of observation areas, the set of observations
to be performed, and the temporal horizon), an additional input of the high-level
MRD scheduling problem considers:

– a constant setup time setupr,o,o′ ∈ N for each robot r ∈ R and each pair of
observations (o, o′) successively realized by r; this setup time represents the
minimum duration required for r between the end of o and the start of o′;
it is obtained from the length of the shortest path available to go from the
location of o to the location of o′; this length is computed in polynomial time
in preprocessing, and it corresponds to an optimistic evaluation assuming
that r is alone over the network during its navigation from o to o′.

We also define setupr,α,o as the shortest duration required to move from the
initial location of r to observation o, and setupr,o,β as the shortest duration
required to move from observation o to the goal location of r. For each robot
r ∈ R, the associated function to obtain the setup time between each pair of
observations, is denoted setupr.
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Scheduling Problem. To define a CP model for layer L1, we use several
scheduling constructs available in the CP Optimizer tool. More precisely, we
introduce the following decision variables:

– for each observation o ∈ O, one interval variable obso which must be placed
during time frame [0,H ] and whose duration is duObsaro

, that is the obser-
vation duration of the area associated with o;

– for each observation o ∈ O and each robot r ∈ R, one optional interval
variable obso,r used to represent the realization of observation o by robot r;

– for each robot r ∈ R, two (non-optional) interval variables obsα,r and obsβ,r

representing fictitious observations that r must realize at the beginning and
end of its plan respectively; we recall that these fictitious observations allow
us to model the initial and goal locations of the robots; interval obsα,r has
a null duration and must be placed at time 0, and interval obsβ,r has a null
duration and must be placed during time frame [0,H ];

– for each robot r ∈ R, one sequence variable seqr which represents an ordering
over all present intervals associated with r, i.e. over all present intervals in
set {obso,r | o ∈ O ∪ {α, β}}.

The set of decision variables of the high-level model is therefore

V 1 = (∪o∈O{obso}) ∪ (∪o∈O∪{α,β},r∈R{obso,r}) ∪ (∪r∈R{seqr}) (1)

Constraints 2 to 7 are imposed over these variables. Constraint (2) imposes that
the first and last observations in a robot sequence must correspond to the initial
and final fictitious observations. Constraints (3) uses the alternative constraint of
CP Optimizer and expresses that each observation is realized by a unique robot.
Constraint (4) imposes that each robot can realize at most one observation for a
given area (redundancy requirement). Constraint (5) expresses that observation
tasks using the same frequency cannot overlap. Constraint (6) expresses that
observations of a given area cannot overlap, taking into account the minimum
delay d defined in the input data. Constraint (7) enforces that observation tasks
using the same robot must not overlap, taking into account the approximated
setup durations required to move from one observation to the next for each
robot. Symmetry breaking constraints could also be added.

∀r ∈ R, first(seqr, obsα,r) ∧ last(seqr, obsβ,r) (2)
∀o ∈ O, alternative(obso, {obso,r | r ∈ R}) (3)

∀a ∈ A, ∀r ∈ R,
∑

o∈O | aro=a pres(obso,r) ≤ 1 (4)

∀f ∈ F , noOverlap({obso,r | o ∈ O, r ∈ R, freqr = f}) (5)
∀a ∈ A, noOverlap({obso,r | o ∈ O, r ∈ R, aro = a}, d) (6)

∀r ∈ R, noOverlap({obso,r | o ∈ O ∪ {α, β}}, setupr) (7)

The objective is to minimize the makespan, defined as the time at which each
robot reaches its goal position:

minimize max
r∈R

end(obsβ,r) (8)
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Output. A high-level solution schedule σ1 for layer L1 is an assignment of the
values of all the decision variables in V 1 that satisfies all the problem constraints.
A solution schedule σ1 is said to be optimal if it minimizes the makespan.

3.2 Fine-Grain Scheduling Model: Layer L2

The low-level scheduling model of layer L2 takes into consideration all the nav-
igation paths available in the waypoint graph representing the observation field
(see Fig. 1), to detail the routing of robots in the shared network and manage
navigation conflicts. This decision layer only considers the navigations between
the observation tasks which are present in the coarse-grain solution σ1 produced
by L1 (much less navigation options compared to the global CP model).

Inputs. In addition to the inputs mentioned in Sect. 2 for the MRD problem,
the additional inputs of the low-level multi-robot scheduling problem are:

– the high-level solution schedule σ1 produced by layer L1; in this solution, we
keep for each robot r the value of sequence seqr, which defines the successive
observations planned for r; to have flexibility in L2, we do not keep the exact
dates found by layer L1 for present intervals in σ1; in the following, to make
some notations easier, we denote by Tr the set of all triples (r, o, o′) such that
in solution σ1, observation o′ is realized just after observation o for r;

– for each robot r and each pair of successive observations (o, o′) realized by
r (i.e. (r, o, o′) ∈ Tr), a set of candidate paths Pr,o,o′ which can be used by
r to go from o to o′; this set contains all paths whose length is not longer
than the duration between the end of obsL1

o,r and the start of obsL1
o′,r in the

plan generated by layer L1; each path p in Pr,o,o′ is specified by the sequence
[p1, . . . , pQ] of successive network resources (waypoints or links) traversed by
the path (pq ∈ W ∪ L for every q ∈ [1..Q]); for instance, in Fig. 1, several
paths are available to move from observation area 3 to observation area 1;
according to the solution obtained in σ1, Fig. 4 details the setup operations
between observation tasks O3,2 and O1,2 performed by robot 2, which can use
either path [l8, wp1, l1, wp2, l2, wp3, l3] or path [l8, wp1, l10, wp3, l3].

Scheduling Problem. In the scheduling problem built for layer L2, the detailed
routing between observation tasks must be defined. For space limitation reasons,
we give the model only for the minimum handover case (Fig. 2). The model for
the path isolation case (Fig. 3) is a bit simpler. For each robot r ∈ R and each
observation o realized by r, the CP model contains one interval variable obso,r

as in L1. For each robot r ∈ R and each pair of observations o, o′ successively
realized by r in the solution found by L1, we also consider the following variables:

– one (mandatory) interval variable mvr,o,o′ representing the global move of r
from o to o′;

– for each candidate path p ∈ Pr,o,o′ , one optional interval variable mvr,o,o′,p
representing a move along path p;
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– for each candidate path p = [p1, . . . , pQ] ∈ Pr,o,o′ and each index q ∈ [1..Q],
one optional interval variable mvr,o,o′,p,q representing the usage of the qth
network resource of path p.

M1,0,2 O2,1
f1

M1,2,4 O4,1 M1,4,0
f1

M2,0,3 O3,2
f1

M2,3,1 O1,2
f1

M2,1,5 O5,2 M2,5,0
f1

mv2,3,1,1,1 mv2,3,1,1,2 mv2,3,1,1,3 mv2,3,1,1,4 mv2,3,1,1,5 mv2,3,1,1,6 mv2,3,1,1,7

l8 wp1 l1 wp2 l2 wp3 l3

mv2,3,1,2,1 mv2,3,1,2,2 mv2,3,1,2,3 mv2,3,1,2,4 mv2,3,1,2,5

l8 wp1 l10 wp3 l3

Fig. 4. Possible global move decompositions for layer L2

Together, these interval variables make up the set of decision variables V 2 of
layer L2. Fine-grain constraints associated with the minimum handover case are
given below. Constraint (9) forbids the temporal overlapping of tasks that use
the same link or waypoint. Constraint (10) ensures that exactly one path is used
between each pair of successive observations. Constraint (11) expresses that this
path spans all its elementary moves. Constraint (12) states that the presences of
elementary moves must be consistent with the presences of the selected paths.
Constraints (13) and (14) define the start and end times of the moves from and
to the first and last fictitious observations respectively. Constraints (15) to (17)
enforce a handover period between the successive intervals involved in a chosen
navigation path. Constraint (18) defines the minimum duration of each elemen-
tary move interval, taking into account the handover period. We consider an
inequality here since in the minimum handover configuration, a robot is allowed
to wait on a link or a waypoint. Constraint (19) forbids the temporal overlapping
of tasks that use the same frequency (the ordering of observations over frequency
resources is not transferred from L1 to L2 to keep more flexibility in L2). Finally,
the goal is still to minimize the makespan (same expression as in Eq. (8)).

∀γ ∈ W ∪ L, noOverlap({mvr,o,o′,p,q | (9)
((r, o, o′) ∈ Tr) ∧ (p ∈ Pr,o,o′) ∧ (q ∈ [1..|p|]) ∧ (pq = γ)})

∀(r, o, o′) ∈ Tr , alternative(mvr,o,o′ , {mvr,o,o′,p | p ∈ Pr,o,o′}) (10)
∀(r, o, o′) ∈ Tr , ∀p ∈ Pr,o,o′ , span(mvr,o,o′,p, {mvr,o,o′,p,q | q ∈ [1..|p|]}) (11)

∀(r, o, o′) ∈ Tr , ∀p ∈ Pr,o,o′ , ∀q ∈ [1..|p|], (12)
pres(mvr,o,o′,p) = pres(mvr,o,o′,p,q)

∀(r, α, o′) ∈ Tr , endAtStart(obsα,r,mvr,α,o′) (13)
∀(r, o, β) ∈ Tr , endAtStart(mvr,o,β , obsβ,r) (14)
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∀(r, o, o′) ∈ Tr , ∀p ∈ Pr,o,o′ , ∀q ∈ [2..|p|], (15)
pres(mvr,o,o′,p) → (start(mvr,o,o′,p,q) = end(mvr,o,o′,p,q−1) − 1)

∀(r, o, o′) ∈ Tr , ∀p ∈ Pr,o,o′ , (16)
pres(mvr,o,o′,p) → (start(mvr,o,o′,p,1) = end(obso,r) − 1)

∀(r, o, o′) ∈ Tr , ∀p ∈ Pr,o,o′ , (17)
pres(mvr,o,o′,p) → (end(mvr,o,o′,p,|p|) = start(obso′,r) + 1)

∀(r, o, o′) ∈ Tr , ∀p ∈ Pr,o,o′ , ∀q ∈ [1..|p|], (18)
pres(mvr,o,o′,p,q) → (end(mvr,o,o′,p,q) − start(mvr,o,o′,p,q) ≥ duMvr,pq + 2)

∀f ∈ F , noOverlap({obso,r | o ∈ O, r ∈ R, freqr = f}) (19)

Output. A low-level solution schedule σ2 for layer L2, is an assignment of
all variables in V 2 that satisfies all the problem constraints. It corresponds to a
solution of the global MRD problem. A solution schedule σ2 is said to be optimal
if it minimizes the makespan (end time of the fictitious last observation tasks
performed by the robots).

4 Iteration Resolution and Cut Generation Strategies

4.1 Iterative Resolution Approach

When using a top-down approach such as the one described in the previous
section, the highest quality solutions may be missed since high-level decisions
are computed from a coarse-grain model. This is why we use an iterative reso-
lution strategy related to Logic-Based Benders Decompositions (LBBD), where
a master solver iteratively proposes solutions to a slave solver which generates
new constraints called cuts. Iterations between the master and the slave solvers
are realized until convergence or until a maximum CPU time is reached. In our
case, layer L1 first transfers to layer L2 the sequence of tasks realized by each
robot. Then, layer L2 obtains a consistent solution schedule σ2 for the low-level
scheduling problem. In L2, we introduce an explanation module which detects
interferences between tasks consuming the shared network resources. As shown
in Fig. 5, this explanation module synthesizes cuts which are sent as a feedback
to L1.

Compared to standard LBDD, one specificity of the technique proposed is
that, as shown later, the explanation module generates cuts that are not neces-
sarily valid in the sense that they might prune optimal solutions. The purpose
of these cuts, which could be called heuristic cuts, is not to converge towards
an optimal solution, but to speed the search for good solutions by forbidding
in a coarse way some observation sequence patterns which might lead to inter-
ferences on detailed navigation activities. These patterns can be more or less
precise and the generated cuts range from cuts usable to intensify search around
the best known solution to cuts usable for exploring completely different regions
of the search space. We emphasize again that the purpose of this process is not
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to obtain an optimal solution for the global problem but to get good quality
solutions within a short computation time, which is more crucial than finding
optimality in most MRD problems. Last, to perform several iterations between
L1 and L2, we do not solve each problem in L1 or L2 to optimality. Instead,
each run of L1 and L2 has a maximum allocated CPU time, which depends on
the problem instance considered.

The approach proposed also differs from a strategy introduced in a previ-
ous work [10]. First, from an application point of view, [10] considers a simpler
problem where the only disjunctive network resources are the links, and where
the robots can freely cross each other at waypoints, in contrast to the approach
followed in our “continuous” minimum handover strategy. The latter makes the
model of layer L2 more complex but has the advantage of being more collision-
safe. Also, [10] does not consider the path isolation configuration, which makes
the moves of robots more constrained but which can be useful for robustness
reasons. From a technical point of view, [10] also considers a two-layer approach
but without any generation of cuts. Instead, the feedback from L2 to L1 cor-
responds to a simple update of the abstract setup durations of L1 by formula
setupr,o,o′ ← (1 − μ) · setupr,o,o′ + μ · du, where μ corresponds to a learning rate
and du corresponds to the duration of transition o → o′ obtained for robot r
in layer L2. Doing so, layer L1 learns a setup duration model from L2 and is
close to work on surrogate models for optimization [6]. On the opposite, our app-
roach exploits more detailed information (see Sect. 4.2) and is closer to LBDD.
Other works already addressed similar real-world applications using two-stage
decompositions involving CP models (Decomposed-CP), such as the deployment
of multiple robots to assist the residents in a retirement home environment [15].
This last work also involves robots moving through the environment and a num-
ber of tasks that potentially increases with the number of robots and locations,
and it also sets the value of certain decision variables for the sub-problem (layer
L2), using the solution of the master problem (layer L1). Their Decomposed-CP
approach may not find the optimal solution, but one distinctive feature is that no
feedback loop from L2 to L1 is used. On this point, the authors of [15] state that
it’s not straightforward to determine whether their problem structure allows for
a decomposition such as LBBD to be implemented.

Layer 1
abstraction of robot moves
by constant setup times

Layer 2
detailed navigation paths

through waypoints and links

high level solutions
(robot obs. sequences)

heuristic cuts

full
solutions

Fig. 5. Interactions between the decision layers

4.2 Cut Generation in the Explanation Module of Layer L2

The explanation module of L2 returns information about interferences found
in the low-level solution and that have a negative impact on makespan mini-
mization. These interferences are detected by examining conflicts related to the
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usage of network resources during path traversals. More precisely, for a given
robot r1, if the duration required to traverse a path between two successive
observations o1, o

′
1 is strictly greater than the duration obtained in the solution

of L1, this means that there is a resource precedence constraint which creates an
interference at some point during the transition from o1 to o′

1. The goal of the
explanation module of L2 is to detect interferences related to network resource
usages in the obtained sequence from σ2. For instance, Fig. 6 illustrates a sce-
nario where two robots are in conflict for using waypointq wp1 and wp2, and link
l2 to traverse the paths needed to perform the sequences of observations shown
in Figs. 7 and 8 (handover duration not represented). In this case, the duration of
the transition is longer for robot r1 since it must wait for some network resources
to be released by r2. The explanations of these longer transition durations are
depicted in red in Figs. 7 and 8. In the general case, the explanation module of
L2 detects through critical path analysis all triples (r2, o2, o′

2) such that there
is a transition from observation o2 to observation o′

2 for robot r2 and such that
at some point between o1 and o′

1, robot r1 waits for a network resource to be
released by r2 during its transition from o2 to o′

2. In terms of scheduling, we
identify the critical resource precedence constraints associated with the network
resources. In the end, each interference produced by the explanation module is
defined by a 6-tuple (r1, o1, o′

1, r2, o2, o
′
2). In the following, the set of all interfer-

ences synthesized from low-level solution σ2 is denoted by Itf(σ2).
Four categories of cuts that can be generated through the explanation mod-

ule are introduced below, by increasing order of refinement. In the following, we
respectively denote by xL1 and xL2 the variables manipulated by layers L1 and
L2. For instance, obsL1

o,r denotes the observation interval of o by robot r manip-
ulated by L1, while obsL2

o,r denotes the observation interval obso,r manipulated
by L2 for representing the same task. Moreover, to get more concise expressions,
we denote by nextL1

r,o,o′ ∈ {0, 1} the variable taking value 1 if interval obsL1
o,r is

the predecessor of interval obsL1
o′,r in the sequence of intervals seqL1

r associated
with robot r in layer L1. Also, σ2(start(obsL2

o,r)) and σ2(end(obsL2
o,r)), denote

respectively the start and the end date of obsL2
o,r in the low-level solution σ2.
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1 2
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Broad Cuts: Setup Times (Cuts C1). From the set of interferences Itf(σ2),
temporal constraints holding on high-level decision variables can be added to
the scheduling problem of layer L1. A first possible approach is to return the
following cuts:

∀(r1, o1, o′
1, r2, o2, o

′
2) ∈ Itf(σ2), (20)

start(obsL1
o′
1,r1

) − end(obsL1
o1,r1

) ≥ σ2(start(obsL2
o′
1,r1

)) − σ2(end(obsL2
o1,r1

))

Such cuts are not valid since the initial abstract setup duration between o1 and
o′
1 for r1 (the setup duration considered by L1) could be met by updating the

sequences of observations realized by other robots. However, these cuts can allow
to quickly diversify search by penalizing, at the level of L1, a transition o1 → o′

1

which might lead to an interference at the level of network resources.
Note that cuts C1 are equivalent to use the solution σ2 from layer L2 to

update the inputs of layer L1 (the coarse-grain duration of the setup operations
between locations for each robot). Remember that setupr,o,o′ ∈ N corresponds
to the high-level approximation of the duration required by r to move from the
location of observation o to the location of observation o′ over all possible paths
of the waypoint network. The previous cuts amount to update setupr,o,o′ by:

∀(r1, o1, o
′
1, r2, o2, o

′
2) ∈ Itf(σ2), (21)

setupr1,o1,o′
1

← max(setupr1,o1,o′
1
, σ2(start(obsL2

o′
1,r1

)) − σ2(end(obsL2
o1,r1)))

Moderate Cuts: Setup Times and Sequencing (Cuts C2). In contrast to
the previous cut generation strategy, we can consider another category of cuts
which take into consideration the precise transitions creating the interference in
σ2. Such cuts are defined by:

∀(r1, o1, o
′
1, r2, o2, o

′
2) ∈ Itf(σ2), (22)

(nextL1
r1,o1,o′

1
∧ nextL1

r2,o2,o′
2
) →

(start(obsL1
o′
1,r1

) − end(obsL1
o1,r1) ≥ σ2(start(obsL2

o′
1,r1

)) − σ2(end(obsL2
o1,r1)))

and can be added to the scheduling problem of layer L1. These cuts impose longer
setup times in the high-level approximation whenever the successive observations
involved in the interferences are successive again in a new sequence considered
by L1. Cuts of type C2 are weaker than cuts of type C1, meaning that C2 prunes
less solutions than C1.

Refined Cuts: Setup Times, Sequencing, and Temporal Positioning
(Cuts C3). More refined cuts coming from the solution analysis of layer L2 can
be sent to layer L1. Unlike the previous cut generation strategies, these new cuts
consider the time frame during which the setup tasks between observations are
performed. Basically, they add high-level constraints which impose longer coarse-
grain setup times only in case of temporal overlapping between the transitions
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involved in the interference. More precisely, let overlapL1(r1, o1, o′
1, r2, o2, o

′
2)

denote an expression taking value true when transitions o1 → o′
1 and o2 → o′

2

overlap in time, that is:

overlapL1
r1,o1,o′

1,r2,o2,o′
2

= (23)

(end(obsL1
o1,r1

) > start(obsL1
o′
2,r2

)) ∧ (end(obsL1
o2,r2

) > start(obsL1
o′
1,r1

)))

The detailed cuts are then given by:

∀(r1, o1, o
′
1, r2, o2, o

′
2) ∈ Itf(σ2), (24)

(nextL1
r1,o1,o′

1
∧ nextL1

r2,o2,o′
2

∧ overlapL1
r1,o1,o′

1,r2,o2,o′
2
) →

(start(obsL1
o′
1,r1

) − end(obsL1
o1,r1) ≥ σ2(start(obsL2

o′
1,r1

)) − σ2(end(obsL2
o1,r1)))

which means that if transitions o1 → o′
1 and o2 → o′

2 appear again in a solution
for L1 and if these transitions overlap in time, then a higher setup time must
be used at the level of L1. Cuts of type C3 are weaker than cuts of type C2,
meaning that C3 prunes less solutions than C2.

Valid Global Cut (Cut C4). A quite simple valid cut consists in forbidding
the entire sequence obtained for L1 at the previous step. This cut is defined by:

¬ [
∧

(r,o,o′)∈Tr

nextL1
r,o,o′ ] (25)

It can be added to the scheduling problem of L1 as a global scheduling constraint.
This cut will only force to seek for a different high-level solution, bypassing the
synthesized information about the interferences found.

5 Experiments

Benchmarks. The two-layer approach and the four cut generation strategies
proposed were evaluated over several MRD problem instances containing from
1 to 15 observation areas, connected through a network of shared links and
waypoints. Several randomly generated observation scenarios were tested, con-
sidering from 1 to 3 frequencies available to transfer observation data, and from
2 or 3 homogeneous robots available to carry out the observations. The fields
generated are regular grids of size N × M containing waypoints which are con-
nected to their 4 adjacent neighbors. Random fields such as the one in Fig. 1,
and other grid configurations were also tested, leading to the same experimental
conclusion. Observation areas are randomly positioned so as to be connected to
one waypoint of the grid, and for most observation pairs o, o′ there are several
navigation paths of minimum length from o to o′. Each area requires observa-
tions from 1 to 3 robots (redundancy). The generated instances were all tested on
IBM ILOG CP Optimizer 12.5 on an Intel Xeon CPU E5-1603, 2.80 GHz 8 GB
RAM, setting an adequate number of iterations depending on the problem size
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and on cpuMax. Experiments were performed for both the minimum handover
and path isolation configurations, to test the algorithms on instances which are
more or less constrained in terms of usage of the shared network.

Representative results of the tested configurations are given in Figs. 9 and
10, where two different robots must observe each observation area. For nearly
all problem instances, the four proposed strategies for the two-layer approach
achieve better makespan results than the global CP approach, in a significantly
shorter computation time. They provide good quality solutions in just a few
seconds, even for the largest instances for which the global CP approach is not
able to reach any solution with a CPU time of 30 min. For the smallest instances,
most of the strategies of the two-layer approach manage to find the optimal
solution, but without proving its optimality. As shown in Table 1, the results
also demonstrate that over the set of benchmarks tested, there is not a single
winner among the four cut generation strategies for the two-layer approach. One
explanation is that for some instances, it may be more advantageous to diversify
the exploration of the search space by generating moderate cuts (strategy C2) or
coarse-grain cuts updating the entire set of setup times (strategy C1), while for
other instances it may be more convenient to explore a search space not so far
from the current problem by generating fine-grain cuts (strategies C3 and C4).
In other words, there is a kind of exploration/exploitation trade-off depending
on the instance, leading to a disparity in the number of added cuts and in the
elapsed time until the best solution is found, averaging between 1 and 2 min
for the different strategies. To take advantage of all cuts, the next step would
be to define a portfolio solver exploiting the different kinds of cuts, the goal
being to outperform each individual cut generation strategy. Portfolio approaches
combine different solvers to get a globally better one, and their efficiency was
already shown in the CP field [1,2,9].
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Table 1. Makespan found along with the number of cuts added until the best solution
is found (in brackets) for different sizes of the set of observation areas A and for
both configurations (Minimum Handover and Path Isolation); results are given for cut
generation strategies C1 to C4, with 5-min time limit (cpuMax), and for the global CP
model, with 5 and 30-min time limits

Minimum Handover Path Isolation

Cut Strategies Global Cut Strategies Global

|A| C1 C2 C3 C4 5m 30m C1 C2 C3 C4 5m 30m.

1 42 [0] 42 [0] 42 [0] 42 [0] 42 42 58 [0] 58 [0] 58 [0] 58 [0] 58 58

2 52 [0] 52 [0] 52 [0] 52 [0] 52 52 96 [0] 85 [2] 96 [0] 96 [0] 85 85

3 76 [2] 77 [0] 76 [2] 76 [1] 76 76 97 [0] 97 [0] 97 [0] 97 [0] 97 97

4 93 [0] 93 [0] 93 [0] 93 [0] 96 93 111 [4] 111 [8] 178 [0] 178 [0] 111 111

5 115 [3] 115 [3] 115 [3] 115 [1] 121 118 130 [4] 130 [11] 129 [6] 130 [7] 134 134

6 133 [13] 133 [5] 133 [8] 133 [0] 154 154 150 [11] 153 [10] 153 [10] 150 [13] 168 156

7 156 [37] 162 [8] 156 [31] 159 [11] 195 195 174 [11] 174 [4] 177 [19] 187 [17] 269 211

8 185 [17] 173 [42] 185 [34] 182 [1] 240 240 212 [6] 212 [21] 198 [18] 208 [15] 316 304

9 205 [38] 204 [13] 211 [9] 205 [8] - - 240 [16] 237 [24] 234 [10] 238 [15] - -

10 235 [41] 235 [6] 235 [9] 235 [10] - - 288 [5] 270 [13] 268 [24] 252 [9] - -

11 256 [40] 260 [55] 255 [25] 257 [7] - - 306 [14] 290 [20] 317 [12] 309 [7] - -

12 296 [0] 286 [51] 296 [0] 291 [3] - - 326 [13] 325 [26] 335 [10] 343 [5] - -

13 312 [33] 306 [12] 320 [13] 312 [7] - - 354 [4] 374 [16] 380 [7] 364 [5] - -

14 326 [5] 333 [3] 332 [3] 313 [4] - - 389 [0] 376 [11] 389 [0] 389 [0] - -

15 373 [11] 362 [11] 362 [7] 377 [4] - - 430 [4] 430 [16] 432 [9] 430 [4] - -

6 Conclusion

We proposed four strategies to generate cuts in a two-layer approach for solving
Multi-Robot Deployment Problems. The generated cuts account for the inter-
ferences found in the low-level solutions, related to conflicts in resources of a
shared network that have a negative impact on makespan minimization. The
results obtained demonstrate the efficiency and complementary of these cuts.
Even for large size problems, in which the global CP approach we developed
has difficulties to produce a first solution, the cut generation strategies show a
superior performance. The complementary of the cuts leads to the idea of merg-
ing them in a portfolio of cuts. This idea will be further refined in upcoming
works, for which we could consider restart strategies when solutions found by
the two layers cannot be improved. Last, the proposed approach can be extended
to other scheduling problems involving complex setup operations between the
main tasks. An example of such problems is the placement of embedded func-
tions on a many-core processor [11], where the functions placed on the different
cores interact through data exchanges over a shared network. Similarly, logis-
tic in warehouses involves object transfers between locations and requires the
utilization of shared resources whose activities must also be scheduled.
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Abstract. In this paper, we present and evaluate a new parallel proposi-
tional model counter, called gpusat2, which is based on dynamic program-
ming (DP) on tree decompositions using log-counters. gpusat2 extends its
predecessor by a novel architecture for DP that includes using customized
tree decompositions, storing solutions to parts of the input instance dur-
ing the computation variably in arrays or binary search trees, and com-
pressing solution parts. In addition, we avoid data transfer between the
RAM and the VRAM whenever possible and employ extended prepro-
cessing by means of state-of-the-art preprocessors for propositional model
counting. Our novel architecture allows gpusat2 to be competitive with
modern model counters when we also take preprocessing into considera-
tion. As a side result, we observe that state-of-the-art preprocessors allow
to produce tree decompositions of significantly smaller width.

Keywords: Propositional model counting · Dynamic programming ·
Parameterized algorithmics · Bounded treewidth

1 Introduction

The model counting problem (#Sat) asks to compute the number of solutions
of a propositional formula. A natural generalization of #Sat is weighted model
counting (WMC), where formulas are extended by weights. Both #Sat and
WMC are special cases of the weighted constraint satisfaction problem [30,39].
Nonetheless, they can already be used to solve a variety of applications to real-
world questions in modern society, reasoning, and combinatorics [8,12,13,38,42].
Both #Sat and WMC are known to be complete for the class #P [4,35].
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In this paper, we consider both problems from the practical perspective. We
present and evaluate a new version of a parallel model counter, called gpusat2,
which is based on dynamic programming (DP) on tree decompositions (TDs) [36].
The idea of solving #Sat decomposing graph representations of the formula and
applying DP on them is in fact quite well-known [36] and has earlier already been
introduced for the constraint satisfaction problem (Csp) by Kask et al. [24]. Its
underlying ideas are as follows. A TD of a propositional formula F is defined
on a graph representation of F and formalizes a certain static relationship of
the variables of F among each other. The decomposition then gives rise to an
evaluation order and to sets of variables, which define which variables have to
be evaluated together when solving the given formula. Intuitively, the width of
a TD indicates how many variables have to be considered exhaustively together
during the computation. Our previous solver gpusat1 already implements DP-
based weighted model counting and model counting using uniform weights on a
GPU [21]. Prior to this, Fioretto et al. [22] presented an approach and implemen-
tation to compute one solution in weighted Csp, which could also be extended to
solve the sum-of-products problem1. Here, we focus on an efficient computation
and implementation of #Sat solving by introducing a novel architecture in our
solver gpusat2. We focus on the so-called primal graph as graph representation,
even though the incidence graph [36] theoretically allows for smaller width (off
by one), mainly because simplicity of algorithms on the primal graph often out-
weighs the benefits of potential smaller width [15,21]. Our solver implements
the principle of parallel programming of single instructions on multiple threads
(SIMT) on a GPU. Therefore, we parallelize by executing the computation of
variables that have to be considered exhaustively together on multiple threads,
since the computation of an assignment to these variables is independent of
other assignments during DP.

Contribution. For our new solver gpusat2, we implement a variety of techniques
and introduce an innovative architecture for DP. (i) We employ extended prepro-
cessing [26,27]. (ii) We use customized TDs [2]. (iii) We split the DP computation
if we cannot ensure that all resulting data (as well as previously computed data)
fit into the VRAM. (iv) We implement width dependent data structures and
compression for storing counts during the computation, i.e., arrays or binary
search trees. (v) We store the model count during the computation by float-
ing log-counters, which increases the accuracy and applicability of our solver to
instances with very high solution count. Storing values by the log of the value
is a common technique in the domain of probabilistic inference. In addition,
we avoid data transfer between the RAM and the VRAM whenever possible.
Finally, we present experimental work, where we compare the runtime of our
system with state-of-the-art model counters and observe a competitive behav-
ior. In fact, gpusat2 solves about 200 #SAT instances more than its predecessor
if we also take preprocessing for both solvers into account. As a side result,
we observe that state-of-the-art preprocessors allow to produce TDs of signifi-
cantly smaller width.
1 The sum-of-product problem is often also referred to as weighted counting, partition

function, or probability of evidence.
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2 Preliminaries

Propositional Satisfiability. A literal is a propositional variable x or its nega-
tion ¬x. A clause is a finite set of literals, interpreted as the disjunction of these
literals. A (CNF) formula is a finite set of clauses, interpreted as a conjunction
of the clauses. Let F be a formula. A sub-formula S of F consists of subsets of
clauses of F . For a clause c ∈ F , var(c) consists of all variables that occur in c and
var(F ) :=

⋃
c∈F var(c). A (partial) assignment is a mapping σ : var(F ) → {0, 1}.

The formula F (σ) under assignment σ is obtained by removing all clauses c from
F that contain a literal set to 1 by σ and removing from the remaining clauses
all literals set to 0 by σ. An assignment σ is satisfying if F (σ) = ∅. The problem
#Sat asks to output the number of satisfying assignments of a formula. This
problem can be generalized with weights of literals by assigning weights between
0 and 1 to each literal and taking the sum of weights for satisfying assignments.

Listing 1: Algorithm K(t, χt, Ft, 〈ρ1, . . . , ρ�〉, R) for Step 3 (DP) and nice TDs.

In: Node t, bag χt, clauses Ft, 〈ρ1, . . . ρ�〉 is the sequence of tables for child
nodes 〈t1, . . . , t�〉 of t, set R ⊆ 2χt→{0,1} of assignments. Out: Local Storage

1 if type(t) = leaf then ρt := {〈∅, 1〉 | ∅ ∈ R}
2 else if type(t) = intr, and a ∈ χt is introduced then
3 ρt := {〈β, c〉 | 〈α, c〉 ∈ ρ1, β ∈ {α+

a �→0, α
+
a�→1}, Ft(β) = ∅, β ∈ R}

4 else if type(t) = rem, and a �∈ χt is removed then
5 ρt := {〈α−

a , Σ〈β,c〉∈ρ1:α
−
a =β−

a
c〉 | 〈α, ·〉 ∈ ρ1, α

−
a ∈ R}

6 else if type(t) = join then
7 ρt := {〈α, c1 · c2〉 | 〈α, c1〉 ∈ ρ1, 〈α, c2〉 ∈ ρ2, α ∈ R}
8 return ρt

α−
e :=α \ {e �→ 0, e �→ 1}, α+

e�→b
:=α ∪ {e �→ b}.

Tree Decomposition and Treewidth. A tree decomposition (TD) of a given graph G
is a pair T = (T, χ) where T is a rooted tree and χ is a mapping which assigns
to each node t ∈ V (T ) a set χ(t) ⊆ V (G), called bag, such that: (i) V (G) =⋃

t∈V (T ) χ(t) and E(G) ⊆ {{u, v} | t ∈ V (T ), {u, v} ⊆ χ(t) }; and (ii) for each
r, s, t ∈ V (T ), such that s lies on the path from r to t, we have χ(r) ∩ χ(t) ⊆
χ(s). We let width(T ) := maxt∈V (T ) |χ(t)| − 1. For a node t ∈ V (T ), we say
that type(t) is leaf if t has no children and χ(t) = ∅; join if t has children t′

and t′′ with t′ �= t′′ and χ(t) = χ(t′) = χ(t′′); intr (“introduce”) if t has a
single child t′, χ(t′) ⊆ χ(t) and |χ(t)| = |χ(t′)| + 1; rem (“removal”) if t has a
single child t′, χ(t′) ⊇ χ(t) and |χ(t′)| = |χ(t)| + 1. If for every node t ∈ N ,
type(t) ∈ {leaf, join, intr, rem}, then the TD is called nice. The treewidth tw(G)
of G is the minimum width(T ) over all TDs T of G. The primal graph PF [36]
of a formula F has as vertices its variables and two variables are joined by an
edge if they occur together in a clause of F . For brevity, we refer by treewidth
of a formula to the treewidth of its primal graph. For a given node t ∈ T of
the primal graph PF , we let Ft := { c | c ∈ F, var(c) ⊆ χ(t) } be the clauses
entirely covered by χ(t). The formula F≤s denotes the union over all Ft for all
descendant nodes t ∈ V (T ) of s. In other words, F≤s is the sub-formula of F
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that contains all clauses that have been entirely covered by a bag χ(s) for t and
any of its descendant nodes.

Dynamic Programming on TDs. A solver based on dynamic programming (DP)
for formulas evaluates the input formula F in parts along a given TD of the
primal graph PF . For each node t of the TD, results are usually stored in a local
storage ρt. The approach works in four steps as follows:

1. Construct the primal graph PF of the input formula F .
2. Heuristically compute a tree decomposition T = (T, χ) of the primal

graph PF .
3. DP: Traverse the nodes in V (T ) in post-order O.

At every node t ∈ O, run an algorithm K that takes as input t, χ(t), the
sub-formula Ft and previously computed results of its children and stores the
results in ρt, which in turn is used by the algorithm at the parent (if exists).

4. Print the (weighted) model count by interpreting the result ρn, which has
been computed for the root n of T .

Algorithm K in Step 3 for nice TDs is depicted in Listing 1, cf., [21,36]. Let there-
fore parameter R (“range”) of K be a set of assignments, i.e., R ⊆ 2χ(t)→{0,1}.
We assume R = 2χ(t)→{0,1} for sequential DP. Then, algorithm K stores in ρt

pairs of the form 〈α, c〉 consisting of an assignment α : χ(t) → {0, 1} together
with a counter c. Each pair 〈α, c〉 indicates that there are c many satisfying
assignments restricted to χ(t) of F≤t. These pairs are carefully maintained for
all the different types of nodes of nice TDs in Listing 1. For details, we refer to
the literature [21,36].

While in theory we often prefer nice TDs, due to simpler cases distinctions,
in an actual implementation of K one handles also interleaved cases. Note that
a very compact way to represent ρt is simply by taking a sequence of model
counts c for the sub-formula F≤t without explicitly storing α for a fixed ordering
of the considered assignments. Each counter in the sequence is entirely indepen-
dent of another counter in the sequence as each counter in ρt depends only on
results previously computed at the children. This allows directly to parallelize
the computation of the counts in ρt. Since we have 2|χ(t)| many assignments
at each node t, for which we can compute the (potentially zero) counters by
the very same operations, we can immediately parallelize the operations on the
GPU [21] by employing a single instruction on multiple threads (SIMT) com-
putation model. More detailed, K in Step 3 refers to a program that can be
executed by a GPU thread, taking a small set of instructions but multiple input
data, e.g., different ranges R. Then, for each node t one can compute ρt for |2χ(t)|
many (singular) ranges in parallel. Such a procedure is also called (GPU-)kernel
for this hardware architecture. The simplest possible data structure for ρt is an
array that just contains the counts, where an assignment is addressed by the
memory address (index) of an entry in the array. However, this data structure
has to be allocated on the video RAM (VRAM) prior to running the kernel on
the GPU. There, one has to take care of out-of-memory issues caused by huge
space requirements.
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3 An Improved GPU-Based DP Architecture

In this section, we build upon the idea above and present an innovative architec-
ture for parallel dynamic programming on the GPU, which is outlined in Fig. 1.
Novel parts of the architecture are the preprocessors, tree decomposition selec-
tion heuristics (customized TDs), generalization to allow for adaptable, more
advanced data structures, caching intermediate results on the GPU, and the
idea of compressing counters for assignments. Note that the architecture is inde-
pendent from the underlying data structures, i.e., in Step 2 we refer by ρt to a
storage for data in the RAM, which can be an array or another data structure.
Analogously, ιt also denotes a storage, that caches results in the VRAM for GPU
computations. In the following, we discuss the novel steps of the architecture,
whereas details on data structures are presented in Sect. 4.

0. Preprocess F

1. Build graph GF

Cache results
in ιt (VRAM)

Run K(t, χ(t), Ft,
C, {s}) for s ∈ Si

2a. Choose TD T
nodes done?

no

yes

Visit next node t
of T in post-order

spaces done?

yes

no Get next sub-
set Si of 2χ(t) Si done?

Transfer ιt into ρt

and compress ρt

Get next child
result chunk C

yes

no

4. Output count

2b. Preprocess
T = (T, χ)

3. Dynamic Programming (DP)

3.I.Search Space Partitioner

3.II.Chunk Handler

Fig. 1. Architecture of our DP-based solver for parallel execution. Yellow colored boxes
indicate tasks that are required as initial step for the DP-run or to finally read the model
count from the computed results. The parts framed by a dashed box illustrate the DP-
part. Boxes colored in red indicate computations that run on the CPU. Boxes colored
in blue indicate computations that are executed on the GPU (with waiting CPU).

Step 0: Instance Preprocessing. Before we decompose our instance, we simplify
the formula F by a preprocessor for formulas [26,27]. There, we preserve the
number of satisfying assignments and potentially decrease the treewidth of F . For
weighted model counting, vivification and literal elimination can be applied [27].

Step 2: Tree Decomposition Computation. In Step 2.I, we heuristically compute a
tree decomposition for the dynamic programming. Various recent literature sug-
gests [3,7,23] that tree decompositions for practical solving require in addition
to “small” width other criteria to speed up the performance of a solver. Such tree
decompositions are frequently called customized tree decompositions. We com-
pute m different tree decompositions via heuristics [2] and then select among
the m decompositions one decomposition according to a selection criterion. In the
implementation, we use the library htd version 1.2 with default settings [2] where
m = 30. The selection criterion is as follows. We first try to minimize the width.
Then, if several decompositions of the same width are found, we select the decom-
position with the smallest maximal cardinality v(T ) of the intersection of bags
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of any node with its children, i.e., v(T ) = max{ |χt ∩ (χt1 ∪ χt2 ∪ . . . ∪ χt�
)| | t ∈

V (T ), t1, t2, . . . , t� are children of t in T } where T = (T, χ). The idea of the
selection is to balance the trade-off between runtime and space requirements in
the worst-case as outlined in earlier work [23]. In that way, we first improve on
the worst-case runtime (and VRAM consumption) and then on the number of IO
operations required to copy data between RAM and VRAM. After the selection
of tree decomposition T , we preprocess T (Step 2.II). There, we combine nodes
to obtain bags of size s, which is the largest number such that on the chosen
hardware 2s GPU threads can still run in parallel. This reduces the overhead of
copying onto VRAM, and GPU thread allocation.

Step 3: Dynamic Programming

The more involved architecture of Step 3 consists of multiple parts as follows.

Step 3.I: Search Space Partitioning. As described in the preliminaries, the DP
proceeds by traversing a tree decomposition in post-order. At each node, we
consider assignments restricted to the variables in χ(t) and its corresponding
counters. Overall we can have at most 2|χ(t)| assignments (“local search space”
at a node). Thus, the number of assignments can simply be too large to even store
just one counter per assignment in the VRAM. In practice, we would expect that
plenty of these assignments result in a counter that is zero and hence we could
actually avoid the out-of-memory issue as data can be compressed. However, on
the VRAM we have to allocate memory prior to the computation and hence it
would require to detect the point where we run out-of-memory then to copy the
data back to the RAM resulting in turn in an unutilized GPU. To avoid this
situation, we simply split in Step 3.I all possible assignments that are considered
together at once on the GPU into several disjoint subsets S1, S2, . . . , Sk of 2|χ(t)|,
which we call search space partitioning. On these grounds, we do the solution
space splitting before the GPU kernels are even executed to ensure that no
out-of-memory issue occurs. Splitting is independent of the actually used data
structure and can, e.g., be used if we store counters in an array similar to gpusat1.

Step 3.II: Splitting Input Result from Children and Compression. In the next
step, we systematically process each set Si for 1 ≤ i ≤ k. Therefore, we consider
the assignments in Si and the corresponding counters for the children, i.e., the
counters and corresponding assignments at the children which we need to com-
pute the counter for an assignment at the currently considered node t. Since we
have both to copy these relevant assignments of the children onto the VRAM
and still allocate enough VRAM for Si, we might run into the situation that
both would not fit into the VRAM. Hence, we need to split for the counts and
its corresponding assignments in Si the relevant results in ρt1 , . . . , ρt�

computed
at the child nodes t1, . . . , t� of t into subsets C1 ⊆ ρt1 , . . ., C� ⊆ ρt�

. We call a
tuple C = 〈C1, . . ., C�〉 of these subsets chunk. Then, the chunk handler sys-
tematically takes each tuple C relevant for Si and executes a kernel in a GPU
thread for each element in Si using C. Subsequently, the resulting counts are
summed up accordingly and kept inside cache storage ιt on the VRAM. This
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allows to reduce the number of IO operations between RAM and VRAM for
tree decompositions of larger width. Finally, if all chunks are processed for Si,
the memory region ιt is merged into the RAM ρt for node t. There, depend-
ing on the data structure, it can be beneficial to merge and compress resulting
solutions obtained for two different solution spaces Si and Sj . For this task,
we use a (support) kernel on the GPU, where one can merge two regions, say
ι
(i)
t and ι

(j)
t , into memory ρt, with the same idea for parallelization as in K, in

parallel. In turn, this might decrease the number of child chunks needed at the
parent of t. In other words, for the parent node of t, one might prevent splitting
results from children.

4 Data Representation

We implemented our solver gpusat2 based on the architecture presented in the
previous section. In this section, we describe advancements in the implementa-
tion of the solver such as data structures optimized for GPUs, and improved
accuracy in form of log-counters.

4.1 Binary Search Tree on the GPU

A naive approach to store counters on the VRAM ιt is simply to exhaustively
consider all possible assignments in 2χ(t) and store for each assignment a counter,
even if zero, in an array. In order to compactly store assignments at a node t
in the VRAM, we propose a new data structure, which is in a broader sense a
binary search tree (BST) for assignments on a very low level architecture. The
binary search tree contains only assignments to Ft whose corresponding counter
is non-zero, i.e., only counters for assignments that can be extended2 to satisfying
assignments of F≤t. The BST data structure allows us to allocate memory on
the VRAM in advance, which is required by OpenCL 1.2, as kernels itself are
not allowed to allocate memory on the VRAM during the execution. Further, it
allows us to avoid of synchronization between threads.

Internally, a BST consists of a continuous sequence of cells that are imple-
mented as 64-bit unsigned integers. We have three types of cells, namely empty
cells, value cells, and index cells. An empty cell contains a zero whereas a value
cell contains an integer greater than zero. For value cells the 64-bit integer cor-
responds to a counter that is internally actually interpreted as a double floating
point type. We discuss details in the next paragraph. Index cells have either one
or two successors in the tree and refer to a value or index cell. For an index cell,
the lower 32 bits of the integer represent the index to the next cell, where a
corresponding variable is set to false. Symmetrically, the upper 32 bits form an
index to the cell if the variable is set to true. Note that either the lower or upper
bits can be zero indicating that the respective index is empty. In Example 1 we
illustrate BST memory allocation including the three types of cells by a simple
example where an assignment is inserted into a non-empty previously BST.
2 Extending an assignment can be done by recursively considering previously com-

puted assignments at the children that correspond to an assignment at the node.
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(index) (var)
cell

low high

0 x ε 1
1 y 3 2
2 - 23
3 - 42
4 ε

. . . . . . . . .

(index) (var)
cell

low high

0 x 4 1
1 y 3 2
2 - 23
3 - 42
4 y ε 5
5 - 1
6 ε

. . . . . . . . .

Fig. 2. Initial BST B (left) and BST B′ (right), which was obtained after inserting
assignment {x �→ 0, y �→ 1}. Value cells are depicted in bold. Both empty cells and
empty indices are indicated by the symbol ε. Note: We store only cells (“low”, “high”).

Example 1. Figure 2 (left) illustrates a binary search tree B, where value cells
are depicted in bold face. Both empty cells and empty indices are represented
by the symbol “ε”.In the BST B we assume x < y. In Fig. 2 (right), we can
see the BST B′ obtained by inserting the assignment α := {x → 0, y → 1}
into B. In order to insert α, we recursively search for α in B by traversing B
according to the variable order, beginning at start index 0. Then, depending on
the assignment of the variable at index 0 in α, we continue searching using the
next variable at the respective index. As soon as an empty index is found, new
index cells for the remaining variables are subsequently inserted, followed by an
inserted value cell of value 1. As a result, the search for α in B stops at the lower
32 bits of the index cell at index 0. In turn, these bits refer to a new index cell
for y at index 4, whose upper 32 bits point to a new value cell at index 5. �

Note that we need some fixed order on the variables in χ(t), to distinguish
index and value cells in order to search, insert, update, and delete counters
for a given assignment over the variables. The binary search tree enables us to
address 232 − 1 many 64-bit integers, which can be changed to relative indices
(offsets) if more address space is required. Further, for a given number b of
variables, the tree requires in the worst-case at most 2b+1 − 1 many 64-bit inte-
gers, since there are at most 2b many value cells (all assignments have non-zero
counters) and 2b − 1 index cells (perfectly balanced BST) needed.

Obviously, our data structure has to be manipulated by several GPU threads
in parallel. In contrast to the array data structure, where each GPU thread has
unique access to one entry, the BST has to prevent race conditions between
threads. Our strategy is to allow atomic write access only to non-empty cells. To
this end, we keep track of the number of non-empty cells of the tree, and assign
indices of non-empty cells in ascending order. Then, we need (i) to atomically
reserve free (empty) indices and (ii) to run only synchronized updates on exist-
ing value cells. In the actual implementation this is efficiently done by atomic
operations for 32-bit and 64-bit data types provided by the OpenCL frame-
work [32]. In Case (i) we rely on atomic cmpxchg for inserting into the index,
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but only if it is empty (atomic operation). In Case (ii) we use atomic add for
concurrently updating counters.

Balancing Between BST and Arrays. It is easy to see that the BST data structure
introduces an overhead in the computation. For instances of small width where
all possible partial truth assignments (and the counts even if 0) easily fit into the
VRAM using an array, the BST might not pay off. Hence, one can also design
an implementation that uses the array up to a threshold and then switches to
BST as a data structure. We implemented this option into our solver and call
the resulting variant gpusat2(A+B). Further, whenever gpusat2 has to combine
BSTs for a node with more than one child node, we use a support kernel for
transforming BSTs into arrays. Kernel K then combines the arrays into a BST.

4.2 Accuracy of Large-Scale Counters

In order to be able to apply our solver to instances with very high solution
count while still preserving a high accuracy, we store the model count during
the dynamic programming by the log of the value. This technique is common in
the domain of probabilistic inference and also known as log-counter.

In more detail, we described in the previous paragraph that one could take
64-bit floating point numbers to store the values of a counters. While IEEE 64-bit
floating point numbers allow to represent only values below 10308 [1], counters
can have a significantly higher value. Therefore, we need an extended data type
for each counter c. We store the value of c in relation to 2e for a 64-bit integer e.
We start with significant digit 1 before the decimal point where c = 1.x · 2e and
chosen e accordingly. Then, we store 1.x and e to reconstruct the value of c. In
the implementation, we start with e = 0 and increase it dynamically during the
computation at a node t whenever necessary. We normalize the largest counter c
at a node t as described above and all other counters computed at node t are
represented with the same exponent e, i.e., we need only one exponent per node.
We call the resulting e the largest exponent for t. In that way, we remain highest
accuracy while still being able to represent high values. The largest exponent
is carefully maintained on the GPU during computation of ρt in kernel K and
passed along to parent nodes. For the largest exponents at a node, which has
more than one child (join node), we may have to combine counters with respect
to different largest exponents for child nodes of t. In more details, algorithm K
additionally takes the sum e of the largest exponents e1, e2, . . . of its children
as parameter, which represent the counters. Exponent e is then also used to
represent counters at t, however, it might increase during the computation and
therefore K returns an updated exponent after the computation.

5 Experiments

We conducted a series of experiments using several benchmark sets for model
counting and weighted model counting. Benchmark sets [17] and our results [18]
are publicly available and also on github at daajoe/gpusatspsexperiments.

https://github.com/daajoe/gpusatspsexperiments/tree/cp2019
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Fig. 3. Width distribution of #Sat instances (left) before and after preprocessing
(using both B+E and pmc). Width distribution of WMC instances (right) before
and after preprocessing using pmc*. Results are based on the primal treewidth and
presented in intervals. X-axis labels the intervals, y-axis labels the number of instances.

Measure, Setup, and Resource Enforcements. As we use different types of hard-
ware in our experiments and other natural measures such as power consumption
cannot be recorded with current hardware, we compare wall clock time and
number of timeouts. In the time we include, if applicable, preprocessing time
as well as decomposition time for computing 30 decompositions with a random
seed and decomposition selection time. However, we avoid IO access on the CPU
solvers whenever possible, i.e., we load instances into the RAM before we start
solving. For parallel CPU solvers we allow access to 12 or 24 physical cores on
machines where hyperthreading was disabled. We set a timeout of 900 s and
limited available RAM to 14 GB per instance and solver.

Benchmark Instances. We considered a selection of overall 1494 instances from
various publicly available benchmark sets for model counting consisting of
fre/meel benchmarks3 (1480 instances), and c2d benchmarks4 (14 instances).
For WMC, we used the overall 1091 instances from the Cachet benchmark set5.

Benchmarked Solvers. In our experimental work, we present results for the
most recent versions of publicly available #Sat solvers, namely, c2d 2.20 [10],
d4 1.0 [28], DSHARP 1.0 [31], miniC2D 1.0.0 [33], cnf2eadt 1.0 [25], bdd
minisat all 1.0.2 [41], and sdd 2.0 [11] (based on knowledge compilation tech-
niques). We also considered rather recent approximate solvers ApproxMC2,
ApproxMC3 [6] and sts 1.0 [14], as well as CDCL-based solvers Cachet 1.21 [37],
sharpCDCL6, and sharpSAT 13.02 [40]. Finally, we also included multi-core
solvers gpusat 1.0 [21], as well as countAntom [5] on 12 physical CPU cores,
which performed better than on 24 cores. Note that we benchmarked addi-
tional solvers, which we omitted from the presentation here and where we

3 See: tinyurl.com/countingbenchmarks.
4 See: reasoning.cs.ucla.edu/c2d.
5 See: cs.rochester.edu/u/kautz/Cachet.
6 See: tools.computational-logic.org.

http://reasoning.cs.ucla.edu/c2d/download.php
http://www.cril.univ-artois.fr/KC/d4.html
https://bitbucket.org/haz/dsharp
http://reasoning.cs.ucla.edu/minic2d/
http://www.cril.univ-artois.fr/KC/eadt.html
http://www.sd.is.uec.ac.jp/toda/code/cnf2obdd.html
http://www.sd.is.uec.ac.jp/toda/code/cnf2obdd.html
http://reasoning.cs.ucla.edu/sdd/
https://bitbucket.org/kuldeepmeel/approxmc
https://bitbucket.org/kuldeepmeel/approxmc
http://cs.stanford.edu/~ermon/code/STS.zip
https://www.cs.rochester.edu/u/kautz/Cachet/cachet-wmc-1-21.zip
http://tools.computational-logic.org/content/sharpCDCL.php
https://sites.google.com/site/marcthurley/sharpsat
https://github.com/daajoe/GPUSAT/releases/tag/v0.815-pre
http://tinyurl.com/countingbenchmarks
http://reasoning.cs.ucla.edu/c2d/results.html
https://www.cs.rochester.edu/u/kautz/Cachet/Model_Counting_Benchmarks/index.html
http://tools.computational-logic.org/content/sharpCDCL.php
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Table 1. Overview on upper bounds of the primal treewidth for considered #Sat
and WMC benchmarks before and after preprocessing. vMdn median of variables,
cMdn median of clauses, t[s] Mdn of the decomposition runtime in seconds, maximum
runtime t[s] Max, median Mdn and percentiles of upper bounds on treewidth, and
min/max/mdn of the width improvement after preprocessing. Negative values indicate
worse results.

prob pre vMdn cMdn t[s] Mdn to t[s] Mdn pre to Mdn 50% 80% 90% 95% Min Max Mdn

#Sat w/o pre 637 810 0.07 6 n/a n/a 31 31 166 378 922 n/a n/a n/a

pmc, B+E 231 350 0.02 6 0.06 192 3 3 17 201 823 −72 755 22

pmc 231 189 0.03 6 0.03 103 3 4 19 228 823 −1839 547 23

B+E 231 185 0.02 6 0.04 189 3 3 18 192 823 −2 633 23

WMC w/o pre 200 519 0.04 0 n/a n/a 28 28 40 43 54 n/a n/a n/a

pmc* 200 300 0.03 0 0.03 0 11 11 20 25 30 0 330 16

placed results online in our result data repository. For WMC, we consid-
ered the following solvers:sts, gpusat1, gpusat2, miniC2D, Cachet, d4, and
d-DNNF reasoner 0.4.180625 (on top of d4 as underlying knowledge compiler).
All experiments were conducted with default solver options. For solver gpusat2,
we also benchmarked variant gpusat2(A+B) where we used 30 as threshold above
which we apply the BST.

Benchmark Machines. The non-GPU solvers were executed on a cluster of 9
nodes. Each node is equipped with two Intel Xeon E5-2650 CPUs consisting of
12 physical cores each at 2.2 GHz clock speed and 256 GB RAM. The results
were gathered on Ubuntu 16.04.1 LTS machines with disabled hyperthreading
on kernel 4.4.0-139, which is already a post-Spectre and post-Meltdown kernel7.
For gpusat1 and gpusat2 we used a machine equipped with a consumer GPU:
Intel Core i3-3245 CPU operating at 3.4 GHz, 16 GB RAM, and one Sapphire
Pulse ITX Radeon RX 570 GPU running at 1.24 GHz with 32 compute units,
2048 shader units, and 4GB VRAM using driver amdgpu-pro-18.30-641594 and
OpenCL 1.2. The system operated on Ubuntu 18.04.1 LTS with kernel 4.15.0–34.

5.1 Results

First, we present how existing preprocessors for #Sat and equivalence-
preserving preprocessors for WMC influence the treewidth on the considered
instances.

Treewidth Analysis. We computed upper bounds on the primal treewidth for
our benchmarks before and after preprocessing and state them in intervals. For
model-count preserving preprocessing we explored both B+E Apr2016 [26] and
pmc 1.1 [27]. For WMC, we used pmc with documented options −vivification
−eliminateLit −litImplied −iterate = 10 to preserve all the models, which we refer
to by pmc*. In this experiment, we used different timeouts. We set the time-
out of the preprocessors to 900 s and allowed further 1800 s for the decomposer

7 Details on spectre and meltdown: spectreattack.com.

http://www.cril.univ-artois.fr/kc/ressources/query-dnnf-0.4.180625.zip
http://www.cril.univ-artois.fr/kc/bpe2.html
http://www.cril.univ-artois.fr/kc/pmc.html
https://spectreattack.com/
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Fig. 4. Runtime for the top 5 sequential and all parallel solvers over all the #Sat
instances with pmc preprocessor. The x-axis refers to the number of instances and the
y-axis depicts the runtime sorted in ascending order for each solver individually.

to get a detailed picture of treewidth upper bounds. Figure 3 (left) presents
the width distribution of number of instances (y-axis) and their corresponding
upper bounds (x-axis) for primal treewidth, both before and after preprocess-
ing using B+E, pmc, and both preprocessors in combination (first pmc, then
B+E) for #Sat. Table 1 (top) provides statistics on the benchmarks combined,
including runtime of the preprocessor, runtime of the decomposer to obtain a
decomposition, upper bounds on primal treewidth, and its improvements before
and after preprocessing. Further, the table also lists the median of the widths of
the obtained decompositions and their percentiles, which is the treewidth upper
bound a given percentage of the instances have. Interestingly, overall we have
that a majority of the instances after preprocessing has width below 20. In more
details, more than 80% of the #Sat instances have primal treewidth below 19
after preprocessing, whereas 90% of the instances have treewidth below 192 for
B+E. With pmc we observed a corner case where the primal treewidth upper
bound increased by 1839, however, on average we observed a mean improvement
on the upper bound of slightly above 23. The best improvement among the
widths of all our instances was achieved with the combination of pmc and B+E
where we improved the width by 755. Overall, both B+E and pmc managed to
drastically reduce the widths, the decomposer ran below 0.1 s in median. Inter-
estingly, even the upper bounds on the treewidth of the WMC instances reduced
with pmc* as depicted in Fig. 3 (right). In more detail, after preprocessing 95%
of the instances have primal treewidth below 30, c.f., Table 1 (bottom).

Solving Performance Analysis. Figure 4 illustrates the top five sequential solvers,
and all parallel counting solvers with preprocessor pmc in a cactus-like plot.
Table 2 presents detailed runtime results for #Sat with preprocessors pmc,
B+E, and without preprocessing, respectively. Since the solver sts produced
results that varied from the correct result on average more than the value of the
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correct result, we excluded it from the presented results. If we disallow prepro-
cessing, gpusat2 and gpusat1 perform only slightly better in the overall standing of
the solvers. But gpusat2 solves 42 instances more and requires about 10 h less of
wallclock time. Further, we can observe, that the variant gpusat2(A+B) performs
particular well, mainly since for instances below width 30, the BST compression
seems relatively expensive compared to the array data structure. Interestingly,
when considering the results on preprocessing in Table 2 (top, mid) and Fig. 4 we
observe that the architectural improvements pay off quite well. gpusat2 can solve
the vast majority of the instances and ranks second place. If one uses the B+E
preprocessor shown in Table 2 (mid), gpusat2 solves even more instances as well
as the other solvers. Still, it ranks fifth solving only 26 instances less than the
best solver and 10 less than the third best solver and solves the most instances
having width below 30.

While we focus on #Sat with our implementation, we also conducted the
experiments with WMC in order to compare our solver with gpusat1 in the set-
ting for which it was designed. Table 3 (top) lists results of the top five best
solvers capable of solving WMC on our instances. Compared to gpusat1, our
solver gpusat2 shows an improvement when the width of the instance is between
21 and 40, in more detail gpusat2 solves 44 instances more. After preprocess-
ing with pmc*, one can observe that the majority of the instances has width
below 20, c.f., Table 3 (bottom). As a result, gpusat2 does not provide significant
improvement over gpusat1 there apart from small runtime improvements.

Currently, we are unable to measure the speed-up of the implementations in
terms of the used cores, mainly due to the fact that we aimed for an implemen-
tation that is close to gpusat1 so that the improvements are actually from the
architectural changes and not just from the different framework or drivers. Note
that OpenCL does not support disabling certain cores on the GPU. We also
benchmarked gpusat2 on an Nvidia GPU, whose runtimes are quite similar. We
also provide preliminary data online with the experiments; which are however
not conclusive yet. However, we ran into bugs, which seems to be attributed
to the OpenCL1.2 Nvidia driver. Therefore, we aim as future work for a new
implementation in CUDA [9].

6 Related Work and Conclusion

Related Work. Fioretto et al. [22] introduced a solver for outputting a solution
to the weighted CSP problem using a GPU. Their technique is effectively a
version of dynamic programming on tree decompositions also known as bucket-
elimination, which they limited to an incomplete elimination by introducing
shortcuts and discarding non-optimal solutions in order to speed up the com-
putation for the problem of outputting just one solution. While the underlying
idea of a dynamic programming based solver still exists in our solver, gpusat2

is very different when just taking a slightly more detailed look. We approach
the counting question – not just outputting one solution, which disallows certain
simplifications. We can neither apply an incomplete bucket-elimination tech-
nique (mini-bucket elimination) nor discard non-optimal solutions. But then,
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Table 2. Number of #Sat instances (grouped by treewidth upper bound intervals)
solved by sum of the top five sequential and all parallel counting solvers with pre-
processor pmc (top), B+E (mid), and without preprocessing (bottom). time [h] is the
cumulated wall clock time in hours, where unsolved instances are counted as 900 s.

Solver 0–20 21–30 31–40 41–50 51–60 >60 best unique
∑

time [h]

p
m
c
p
re
p
ro
ce
ss
in
g

miniC2D 1193 29 10 2 1 7 13 0 1242 68.77

gpusat2 1196 32 1 0 0 0 250 8 1229 71.27

d4 1163 20 10 2 4 28 52 1 1227 76.86

gpusat2(A+B) 1187 18 1 0 0 0 120 7 1206 74.56

countAntom 12 1141 18 10 5 4 13 101 0 1191 84.39

c2d 1124 31 10 3 3 10 20 0 1181 84.41

sharpSAT 1029 16 10 2 4 30 253 1 1091 106.88

gpusat1 1020 16 0 0 0 0 106 7 1036 114.86

sdd 1014 4 7 1 0 2 0 0 1028 124.23

Solver 0–20 21–30 31–40 41–50 51–60 >60 best unique
∑

time [h]

B
+
E

p
re
p
ro
ce
ss
in
g

c2d 1199 24 9 0 2 23 14 0 1257 63.46

miniC2D 1203 27 8 0 2 12 8 0 1252 64.92

d4 1182 15 9 1 3 31 79 1 1241 69.32

countAntom 12 1177 14 8 0 2 34 100 0 1235 69.79

gpusat2 1204 26 1 0 0 0 150 3 1231 68.15

gpusat2(A+B) 1201 21 1 0 0 0 67 3 1223 70.39

sdd 1106 11 4 1 1 4 0 0 1127 100.48

gpusat1 1037 16 0 0 0 0 87 3 1053 110.87

bdd minisat all 926 6 3 1 1 0 101 0 937 140.59

Solver 0–20 21–30 31–40 41–50 51–60 >60 best unique
∑

time [h]

W
it
h
o
u
t
p
re
p
ro
ce
ss
in
g

countAntom 12 118 511 139 175 21 181 318 15 1145 96.64

d4 124 514 148 162 21 168 69 15 1137 104.94

c2d 119 525 165 161 18 120 48 15 1108 110.53

miniC2D 122 514 128 149 9 62 0 0 984 141.22

sharpSAT 100 467 124 156 12 123 390 4 982 135.41

gpusat2(A+B) 125 539 96 138 0 0 94 19 898 151.16

gpusat2 125 523 96 138 0 0 78 17 882 155.43

gpusat1 125 524 67 140 0 0 82 9 856 162.03

cachet 99 430 71 152 8 57 3 0 817 176.26

Solver 0–20 21–30 31–40 41–50 51–60 >60 best unique
∑

time [h]

we consider the binary case, which allows us to introduce various simplifica-
tions including the way we store the data enabling us to save memory and to
avoid copying data. Also, we would like to point out that bucket-elimination
is used in the decomposer htd to compute just the tree decomposition. In that
way, our architecture is quite general as it completely separates the decom-
position and the actual computation part resulting in a framework that can
also be used for other problems. Moreover, we use more sophisticated data
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Table 3. Number of WMC instances solved (with)out preprocessing. time [h] is the
cumulated wall clock time in hours, where unsolved instances count as 900 s.

Solver 0–20 21–30 31–40 41–50 51–60 >60 best unique
∑

time [h]

W
it
h
p
m
c*

miniC2D 858 164 6 0 0 3 13 8 1031 21.29

gpusat1 866 158 0 0 0 0 348 4 1024 18.03

gpusat2(A+B) 866 156 0 0 0 0 343 4 1022 17.86

gpusat2 866 138 0 0 0 0 299 4 1004 22.43

d4 810 106 0 0 0 0 46 0 916 55.36

cachet 617 128 1 0 0 3 106 1 749 93.65

W
it
h
o
u
t
p
re

d4 82 501 142 156 10 19 111 24 910 53.97

miniC2D 84 517 134 152 3 4 19 7 894 59.69

gpusat2(A+B) 86 527 98 138 0 0 167 19 849 64.40

gpusat2 86 511 98 138 0 0 131 7 833 68.61

gpusat1 86 513 68 140 0 0 182 10 807 73.78

cachet 60 447 100 145 2 9 118 1 763 89.80

structures and split data whenever the data does not fit into the VRAM of the
GPU. Finally, we balance between small width during the computation and not
too small width as we want to employ the full computational power of the par-
allelization with the GPU. In the past, a variety of model counters and weighted
model counters have been implemented based on several different techniques. We
listed them in details in Sect. 5. However, here we want to highlight a few dif-
ferences between our technique and knowledge compilation-based techniques as
well as distributed computing. The solver d4 [28], which implements a knowledge
compilation-based approach, employs heuristics to compute decompositions of
an underlying hypergraph, namely the dual hypergraph, and uses this during the
computation. Note that the following relationships are known for treewidth (i.e.,
the width of a tree decomposition of smallest width) of an arbitrary formula F ,
inctw(F ) ≤ dualtw(F )+1 and inctw(F ) ≤ primtw(F )+1, where inctw refers to
the treewidth of the incidence graph, dualtw of the dual graph, and primtw of
the primal graph. However, there is no such relationship between the treewidth
of the primal and dual graph. We are currently unaware of how these theoreti-
cal results generalize to hypergraphs. Experimentally, it is easy to verify that a
decomposition of the dual graph is often not useful in our context as it provides
only decompositions of large width. When we consider parallel solving, a few
words on distributed counting are in order. In fact, the model counter DMC [29]
is intended for parallel computation on a cluster of computers using the message
passing model (MPI). However, this distributed computation requires a separate
setup of the cluster and exclusive access to multiple nodes. We focus on parallel
counting with a shared memory model. For details, we refer to the difference
between parallel and distributed computation [34].

Conclusion. We presented an improved OpenCL-based solver gpusat2 for solv-
ing #Sat and WMC. Compared to the weighted model counter gpusat1 that uses
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the GPU, our solver gpusat2 implements adapted memory management, special-
ized data structures on the GPU, improved data type precision handling, and an
initial approach to use customized TDs. We carried out rigorous experimental
work, including establishing upper bounds for treewidth after preprocessing of
commonly used benchmarks and comparing to most recent solvers.

Future Work. Our results give rise to several research questions. Since estab-
lished preprocessors are mainly suited for #Sat, we are interested in additional
preprocessing methods for weighted model counting (WMC) that reduce the
treewidth or at least allow us to compute TDs of smaller width. It would also
be interesting whether GPU-based techniques can successfully be used within
knowledge compilation-based model counters. An interesting research direction
is to study whether efficient data representation techniques can be combined
with dynamic programming in order to lift our solver to counting in WCSP [22].
Further, we are also interested in extending this work to projected model count-
ing [16,19,20].
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Abstract. Most distributed constraint optimization problems assume
the overall objective function to be the “utilitarian social welfare”, i.e.,
a sum of several utility functions, belonging to different agents. This
also holds for the most popular soft constraint formalisms, cost func-
tion networks and weighted constraints. While, in theory, this model is
sound, it is susceptible to manipulation and resulting bias in practice.
Even without malevolent intentions, bias can result from the way order-
ings over solutions are transformed into numerical values or normalized.
Alternatively, preferences can be aggregated directly using the tools of
social choice theory to discourage manipulations and practically reduce
unwanted bias. Several common voting functions can be implemented
on top of constraint modeling languages through incremental search and
suitable improvement predicates. We demonstrate that our approach, in
particular Condorcet voting, can undo bias which is shown on two real-
life-inspired case studies using the soft constraint extension MiniBrass
on top of MiniZinc.

Keywords: Soft constraints · Distributed constraint optimization ·
Social choice · Modeling languages · MiniZinc

1 Motivation

Many real-life problems such as coordinating a fleet of mobile sensors [31] or
scheduling devices in smart grids and homes [13] have recently been reduced
to distributed constraint optimization problems (DCOP) that involve multiple
agents. Similarly, more mundane tasks such as assigning seminar topics or agree-
ing on a shared meal plan are problems that (logically) involve several agents,
even if solved centrally. By far the most popular way of aggregating agents’
preferences (including the cited examples) is to assume them to be specified as
(numerical) cost/utility functions that are summed up [12]. This is equivalent to
weighted constraint satisfaction problems (WCSP), the most common class of
soft constraint problems [18]. While this may be tolerable if other measures con-
strain the utilities, this commonly accepted notion of “social welfare” is prone
to unfairness and bias in practice, especially if the utilities are unconstrained
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X = {f, s}, Df = Ds = {curry, chili, stew}
sols(CSP) = {(f �→ stew, s �→ stew), (f �→ stew, s �→ curry), (f �→ curry, s �→ chili)}

Voter Alice

f �→ stew, s �→ stew 20

f �→ stew, s �→ curry 10

f �→ curry, s �→ chili 5

Voter Bob

f �→ curry, s �→ chili 3

f �→ stew, s �→ curry 2

f �→ stew, s �→ stew 1

Voter Carol

f �→ stew, s �→ curry 3

f �→ curry, s �→ chili 2

f �→ stew, s �→ stew 1

f �→ stew, s �→ stew 22

f �→ stew, s �→ curry 15

f �→ curry, s �→ chili 10

f �→ stew, s �→ curry

f �→ curry, s �→ chili

f �→ stew, s �→ stew

vote([alice ,bob ,carol], sumMax) vote([alice ,bob ,carol], condorcet)

Fig. 1. Social welfare functions can reduce weight-induced bias. Agents pick meals for
Friday f and Saturday s, with three solutions in sols(CSP) due to hard constraints.
Alice submits manipulated weights which puts (f �→ stew, s �→ stew) to the top
whereas the other agents like it least. Condorcet voting mitigates that by ranking
(f �→ stew, s �→ curry) first since it wins both pairwise majority contests against the
other solutions.

and only known at runtime (agents can just outbid each other). The left part
(sumMax) of Fig. 1 illustrates this rather näıvely by allowing an agent Alice to
vote with higher weights and manipulate the group decision in her favor.

There are, broadly speaking, three approaches to the problem:

(i) We normalize a single objective function to be less biased.
(ii) We address the problem as a multi-objective optimization problem looking

for the Pareto front.
(iii) We devise ordinal operators that operate on the preference relations.

Regarding (i), of course, we would try to take care of such blunt manipu-
lations as those in Fig. 1 in real-life problems. There are still more subtle ways
how biased weights can emerge in preference specifications: Assume, e.g., that
students rank seminar topics. Unless we make every student rank every topic, we
are forced to introduce bias: consider student A stating six preferences whereas
student B only specifies three. How should we relate a violation of A’s top choice
to one of B’s top preference? The only fact we can safely deduce is which out-
comes A and B prefer in isolation. Näıvely modeled as WCSPs, A’s top choice
is weighted six whereas B’s top choice gets a weight of three. Summing them
up clearly favors solutions that please A. Alternatively, we could allocate a fixed
budget of q to every agent that proportionally distributes q. For instance, A
could split 21 points as 〈6, 5, 4, 3, 2, 1〉 whereas B could split the same 21 points
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as 〈8, 7, 6〉.1 A solver then caters to B since A has more options sharing the fixed
budget. Either way, the model is biased, independent of the subsequent solvers.

Conversely, following (ii), for multi-objective optimization, we consider each
voters’ weights as individual objective functions and calculate the Pareto front
which contains all solutions that are not Pareto-dominated, i.e., not dominated
by another solution in all dimensions [11]. Unfortunately, this concept alone is
too weak (i.e., indecisive) for multi-agent problems. As the number of voters
increases, any solution is more likely to be in the Pareto front, as a crude esti-
mation of the ratio of Pareto-optimal solutions illustrates: Assume that n voters
pick their top-preference out of m options at random. It suffices for a solution
to be Pareto-optimal if at least one of the agents prefers it most. For a single
agent, a solution θ stands a m−1

m chance of not being top. The probability that
all voters do not rank θ as top is thus (m−1

m )n which immediately leads to the
probability of θ being top for at least one voter: 1 − (m−1

m )n. If a problem had
m = 100 possible solutions and n = 5 voters, each solution would have a 4.9%
chance of being Pareto-optimal. Raising the number of voters to 20 increases this
chance to 18.2%, and with 40 voters, every solution already has a 33.1% chance
of ending up Pareto-optimal. When facing such a large number of Pareto-optimal
solutions, our problem is to be more selective within the Pareto-front – we would
still insist on at least choosing a solution within the Pareto front since otherwise
all agents agree that another one is better for them.

In terms of purely ordinal operators (alternative iii), Pareto and lexicographic
combinations are the canonical combinations of preference relations [1] that do
not need numeric utilities. Yet, we already discussed shortcomings of Pareto
orderings and the lexicographic combination is a too strict form of preference
aggregation. This is where social choice theory [3] comes into play. Rooted in
electoral systems2, it discusses how to amalgamate a group’s preference relations.
On the right side of Fig. 1, we see that voting based on only ordinal information
(here, Condorcet’s method that prefers an option to another if a majority favors
it) can lead to fairer decisions. Voting over solutions to a constraint satisfaction
problem corresponds to traversing the search space effectively (e.g., by constraint
propagation and search heuristics). Therefore, we implement our approach with
modeling languages that compile to a variety of algorithmically efficient solvers.

Our contribution in this paper is thus to make voting methods such as
Condorcet’s amenable to soft constraint optimization on the modeling
language level. We extend the open source soft constraint modeling language
MiniBrass [24] built on top of MiniZinc [20]. In contrast to other approaches (see
Sect. 2.3) this allows agents to vote on the solution level instead of the individual
variable level. Our key insight is that some voting methods can be conveniently
mapped to branch-and-bound search.

1 The same logic obviously applies to the normalized case of q = 1 where, e.g., B
would get [1/2, 1/3, 1/6] and A’s top choice only gets a weight of 0.28.

2 For instance, the Schulze method [27] is a Condorcet-based method used for elections
in open source organizations such as Ubuntu, Debian, or the Wikimedia Foundation.
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2 Preliminaries

Our approach combines (soft) constraint programming and social choice theory.
In essence, soft constraint programming orders solutions using an overall valu-
ation (not necessarily numerical) in a (partially) ordered set that results from
individual valuations using a combination operation in an algebraic structure.
Social choice theory deals with aggregating preference relations over outcomes
to a single relation. Hence, these two ideas naturally complement each other.

2.1 Constraint Optimization and Soft Constraints

As usual, a constraint (satisfaction) problem CSP = (X,D,C) is described by a
set of (decision) variables X, their associated family of domains D = (Dx)x∈X of
possible values, and a set of (hard) constraints C that restrict valid assignments.
For a CSP, an assignment θ over scope X is a function from X to D such that
each variable x maps to a value in Dx. The set of all assignments is written as
[X → D]. A (hard) constraint c ∈ C is a function c : [X → D] → B where
θ |= c expresses that θ satisfies c. For solving by inference, i.e., reducing valid
domain items by logical implications (so-called constraint propagation), global
constraints offer dedicated filtering algorithms [4]. Consequently, an assignment
θ is a solution if θ |= c holds for all c ∈ C. We write θ ∈ sols(CSP).

We move from satisfaction to constraint optimization problems (COP) by
adding an objective function f : [X → D] → P where (P,≤P ) is a partial order,
i.e., ≤P is a reflexive, antisymmetric, and transitive relation over P . Elements of
P are called satisfaction degrees. Without loss of generality, we interpret m <P n
as satisfaction degree m being strictly worse than n and restrict our attention
to maximization problems regarding P . Consequently, θ1 is worse than θ2 if
f(θ1) <P f(θ2) which results in a partial quasi-ordering over solutions since
multiple solutions may map to the same satisfaction degree and anti-symmetry
does not hold. A solution θ is optimal with respect to a COP if for all solutions
θ′ it holds either that f(θ′) ≤P f(θ) or f(θ′) ‖P f(θ), expressing incomparability
with respect to ≤P .

Soft constraint problems are specialized COPs where each soft constraint
si maps [X → D] to an algebraic structure (M, ·M , εM ,≤M ), i.e., a partially-
ordered, commutative monoid called a partial valuation structure (PVS) [15]
which subsumes several specific soft constraint formalisms such as WCSP, cost
function networks, or fuzzy constraints [18]. The combination operator ·M aggre-
gates all soft constraints’ satisfaction degrees, εM denotes maximal satisfaction
and is neutral with respect to the ·M operator. In terms of COPs, the overall
objective f : [X → D] → (M,≤M ) is defined by f(θ) = ΠM{si(θ) | si ∈ S} for
a set of soft constraints S, also written as S(θ). We use PVS for soft constraint
problems since they are more general than c-semirings [5] or total valuation
structures [25]. Therefore, they are used as basic building block in MiniBrass [24].
Since in this paper we only care about aggregating several agents’ overall satis-
faction degrees, we do not rely on the precise properties of the algebraic structure
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that are described in [15,24]. Given two PVS M and N , the most natural com-
bination is the Cartesian product M × N that orders elements according to a
Pareto ordering:

(m,n) ≤M×N (m′, n′) ⇔ m ≤M m′ ∧ n ≤N n′

The Pareto-ordering leads to a “fair” but not decisive aggregation of several
PVS, as we discussed in the introductory section.
By contrast, the ordering of the lexicographic combination is defined as

(m,n) ≤M�N (m′, n′) ⇔ (m <M m′) ∨ (m = m′ ∧ n ≤N n′)

It allows us to express strictly hierarchical relationships between PVS to distin-
guish, e.g., organizational from individual goals.

In terms of software implementations, most existing constraint solvers offer
an API to model constraint problems in imperative code. For higher layers of
abstraction, there have been several proposals for domain-specific languages,
including MiniZinc [20] or Essence [14]. Due to its popularity (see, e.g., the
annual MiniZinc challenge [29]) and language features, we favor the former in
this paper. MiniZinc is a high-level constraint modeling language understood by
many constraint, MIP, or SAT solvers:

array [1..3] of var 1..3: x; % decision variables

constraint forall (i in 1..2) (x[i] <= x[i+1]); % constraints

solve satisfy; % minimize sum(x) / maximize sum(x) % objectives

In its default version, MiniZinc allows for a rich variety of global constraints but
only limited capacity for optimization objectives. Only totally ordered numeric
objectives are supported. To increase generality, incremental search is needed
that facilitates adding and retracting new constraints during traversal of the
search tree. MiniSearch [22] enables such customizable search on the solution
level and MiniZinc itself has extensions for large neighborhood search where some
variables are fixed to stay unchanged (using added constraints), thereby defining
a large neighborhood [10]. MiniBrass [24] “softens” MiniZinc to incorporate PVS-
based soft constraints. Agents specify their preferences as PVS and aggregate
them using lexicographic or Pareto combinations, as Fig. 2 shows.

2.2 Social Choice Theory

Formally, the field of social choice theory is concerned with aggregating pref-
erence relations [3]. For a (usually finite and small) set of outcomes (or candi-
dates) O, we call QO, PO, and TO the sets of quasi, partial, and total orders
over O, respectively. Most often in social choice, quasi-orders (total, transitive
but allowing for ties at the cost of anti-symmetry) are used whereas SCSPs lead
to partial quasi-orders over solutions. We denote a set of agents (or voters) as
N = {1, . . . , n}. Then, a preference profile [�] = (�i)i∈N ∈ Pn

O (or T n
O , etc.) is

a tuple containing a preference relation �i for every agent i ∈ N where, again,
o �i o′ indicates that outcome o is worse than o′. Voting methods then map
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PVS: alice = new

WeightedCsp("alice") {

scons c1:’f = stew /\ s = stew’ :: w(’20’);

scons c2:’f = stew /\ s = curry’:: w(’10’);

scons c3:’f = curry /\ s = chili’:: w(’5’);

};

% PVS: carol = new FuzzyCsp ("carol") {

PVS: bob = new

ConstraintPreferences("bob") {

scons c1: ’f = curry /\ s = chili ’;

scons c2: ’f = stew /\ s = curry’;

scons c3: ’f = stew /\ s = stew’;

crEdges : ’[| mbr.c3, mbr.c2 |

mbr.c2 , mbr.c1 |]’;

};

solve alice lex (bob pareto carol );

Fig. 2. Example problem in MiniBrass, slightly adapted from Fig. 1. Constraint prefer-
ences require ordinal information only (mbr.c3, mbr.c2 denotes that c3 is less impor-
tant than c2. Other PVS types (fuzzy) could be used as well.

a preference profile either to a single winning outcome or to a full preference
relation over O. Both tasks strive to represent the agents’ joint wishes. A social
welfare function W maps a preference profile [�] of n agents to a preference
relation, formally written as W : Pn

O → PO. By contrast, a social choice func-
tion C : Pn

O → O only returns a winner [28]. The problems are strongly related
since we convert a social welfare function to a social choice function by picking
a top option, or conversely, repeatedly call a social choice function to obtain a
full ordering as a social welfare function.

To list a few examples, the majority voting rule builds a welfare ordering by
ranking all outcomes according to the number of top occurrences they achieve.
Borda voting asks every agent to assign a score from 0 (least desirable) to |O|−1
(most desirable) and adds up the scores of all agents. Condorcet voting fixes an
ordering over O, say [o1, . . . , om], and performs pairwise competitions to deter-
mine the welfare ordering. That is, agents vote for o1 or o2 and the winner
(according to a majority) challenges o3, and so on. A Condorcet winner is an out-
come that wins all pairwise competitions. There can however be cycles such that
no proper ordering emerges (e.g., transitivity is violated) [3]. Approval voting,
on the other hand, lets agents only partition the set of outcomes into “approved”
and “disapproved” and ranks outcomes by their number of approvals.

Besides these examples of voting methods, social choice theory offers sev-
eral general impossibility results based on axiomatic characterizations of wel-
fare functions, most notably Arrow’s famous theorem [2]: It states that for at
least three outcomes and two voters, no welfare function can simultaneously be
Pareto-efficient (PE, all agents preferring o over o′ must imply o �W o′), inde-
pendent of irrelevant alternatives (IIA, the relative ordering of o and o′ does not
change when agents change their preferences with respect to other outcomes),
and non-dictatorial (ND, no single agent gets to determine the welfare ordering).

2.3 Related Work

There have already been efforts to combine soft constraints and voting. Most
notably, the first algorithm to solve a problem specified with n c-semirings (pre-
cisely, fuzzy constraints) is sequential voting [7–9]: Agents vote sequentially over
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each variable’s assigned domain value using social choice functions, according
to a pre-defined ordering. The authors investigate voting-theoretical properties
of their method. Specifically, the relationship between voting axioms assumed
for local voting rules (i.e., voting over a single variable’s assignment) to the
global solution level was investigated. For instance, it is a necessary but not
sufficient condition that all local rules be IIA in order for the global rule to be
IIA as well. Also, if a single local rule is non-dictatorial, the global rule is non-
dictatorial. Although their approach is mathematically appealing, in practice it
suffers from the fine granularity that agents have to vote on: domain items for a
single variable. This leads to myopic and overly optimistic estimations: Assum-
ing, for example, that the combinations “(fish, white wine)” and “(meat, red
wine)” are acceptable for an agent A with a slight preference for fish. Then A
would place his or her bet on “white wine” although A might end up with the
least desirable option “(meat, white wine)” since decisions cannot be retracted.
Moreover, sequential voting may choose Pareto inefficient solutions determin-
istically even if the local rules are Pareto efficient (an example is provided in
[23, Chap. 9]). Therefore, we propose to vote over solutions instead of individual
variables’ values.

Conversely, DCOP research is most prominently concerned with distributed
settings and algorithms that operate across computational nodes, such as, e.g.,
the ADOPT algorithm [30]. Netzer and Meisels extended the classical sum-of-
costs DCOP model (that, again, is equivalent to WCSP in soft constraints) to
“distributed social constraint optimization problems” where social welfare func-
tions replace summation [21]. Still, their approach calculates a single score for
each assignment based on the agents’ individual (numeric) valuations instead
of a preference relation and can thus suffer from the bias problems shown in
our introduction. Moreover, they assume some form of commensurability of util-
ities in the sense that an operator such as “maximize the unhappiest agent’s
value” is meaningful – if agents operate on distinct (esp. non-numerical) order-
ing relations, this is not obvious. In this paper, we abstract from the underlying
distribution of the computational nodes or the specific distributed optimization
algorithms and focus on adequate, unbiased models of “how to aggregate mul-
tiple agents’ preferences” – as the first step towards more distributed solutions.
Our experimental evaluations are thus conducted in a centralized setting.

Outcomes resulting from strategic interactions among several self-interested
agents is central to game theory. Morgenstern and von Neumann introduced the
foundations of numeric utility functions for ordinal preference relations in [19].
However, it is hard to consider bias resulting from such utility functions when
multiple independent agents are involved. Mechanism design adds the strategic
component of truth-telling to social choice situations [28]. We do not yet address
such questions other than disincentivizing manipulation with weights.

The problem of bias reduction, in particular, has not yet been addressed
with voting methods. Moreover, the existing proposals come with specialized
implementations and are not readily available to end-users. Since our approach
employs state-of-the-art constraint modeling languages, we expect it to inherit
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their benefits in terms of efficient solvers, user-friendliness, and flexibility. It is
the first proposal in terms of applicable software and systems to offer access to
social choice functions and discrete optimization.

3 Implementation

Our goal is to combine soft constraints and voting on the solution level. Formally,
assume a CSP = (X,D,C) and a set of agents N = {1, . . . , n} along with sets of
soft constraints (Sj)j∈N mapping to PVS (Mj)j∈N . Then the set of outcomes O
corresponds to sols([X → D]) and the preference profile [�] = (�j)j∈N results
from applying soft constraints: θ1 �j θ2 ⇔ Sj(θ1) ≤Mj

Sj(θ2). Ideally, we can
obtain a full social welfare ordering W ([�]), but we also settle for choice functions
that return a single solution C([�]) ∈ [X → D] as the group’s favorite.

To implement this form of optimization for modeling languages, we first
revisit how incremental search proceeds in a branch-and-bound fashion that
systematically explores the full search space (we discuss extensions to local search
later). For instance, in MiniSearch [22], we could write this as follows:

function ann: maximize_bab(var int: obj) =

repeat(

if next () then commit () /\

post(obj > sol(obj))

else break endif );

Any time the solver returns a solution, we can formulate new constraints to
be propagated based on the current solution’s values, e.g., to bound the objec-
tive. For instance, upon finding a solution with objective value obj = 17, we
add a constraint obj > 17 to the constraint problem to find the next solution. If
the resulting problem becomes unsatisfiable, we have found an optimal solution.
More generally, that logic extends to arbitrary constraints for improvement which
we refer to as getBetter predicates. MiniBrass [24] already generates these (hid-
den from the end-user) for atomic or complex objectives, including lexicographic
and Pareto combinations. For instance, assuming two PVS M and N , solving
for their Pareto combination leads to the following predicate:

predicate getBetterPareto(var M : overall_M , var N : overall_N) =

post( % both agents ’ PVS find the current solution worse or equal

is_worse_or_equal_M(sol(overall_M), overall_M ) ) /\

is_worse_or_equal_N(sol(overall_N), overall_N ) ) /\

sol(overall_M) != overall_M \/ sol(overall_N) != overall_N) );

Our goal is to align voting methods with this optimization principle by gen-
erating getBetter constraints for them. Indeed, some voting methods are better
suited for this task than others. For example, Borda voting would need to enu-
merate all, say, k solutions, rank the best solution with k −1, the next best with
k − 2 and so forth, for every agent. A priori, it is hard to guess the relative posi-
tion any solution in the search space has as well as the size of k = |sols(CSP)|. By
contrast, a variation of Condorcet’s method is more “local” in the search space
as it only requires pairwise comparisons, which we can exploit for optimization.
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3.1 Condorcet Voting

Recall from Sect. 2.2 that canonical Condorcet voting proceeds by fixing an
ordering of the outcomes O, comparing two adjacent options with respect to
the pairwise majority, and keeping the winner. With the set of outcomes being
the search space, ordering them in advance is, of course, infeasible. Nevertheless,
we can tweak the method slightly for constraint-based optimization in MiniBrass:

1. Find the next solution (call it θ).
2. Impose a constraint that enforces that the next solution θ′ must be preferred

by a majority of voters and search for the next solution.
3. Repeat until no such solution can be found (or a cycle is detected).

In MiniZinc-style pseudocode, this predicate is generated as follows (Mi refers
to the specific PVS element type of PVS i):

predicate getBetterCondorcet(array [1..N] of var Mi : overall) =

% M_i represents the PVS of agent i

post(

% # agents that find the current solution worse than the next

sum(i in 1..N) (bool2int(is_worse_i(sol(overall[i]), overall[i] ) )

>

% # agents that find the next solution worse than the current one

sum(i in 1..N) (bool2int(is_worse_i(overall[i], sol(overall[i]) ) ) );

In fact, this is weakening the Pareto condition that all agents have to accept or
prefer a new solution. If a solution is indeed a Condorcet-winner, this method
will find it. If there is a Condorcet-cycle, there is no guarantee with respect to
the outcome since the moment of termination depends on the ordering of the
solutions as returned from the solver. However, such a cycle is easily detected by
inspecting the trace of solutions. The only guarantee we can give upon termina-
tion is that there is no unseen solution that a majority of agents would prefer
to the current one – which arguably still makes for a reasonable social choice
function. The complexity of generating the above predicate is, analogously to
Pareto and lexicographic combinations, hidden from MiniBrass end-users. For
example, they would rewrite the solve expression in Fig. 2 as follows:

solve vote ([alice , bob , carol], condorcet );

On a technical side-note, this approach requires the getBetter predicates to be
reifiable, i.e., allow additional boolean variables to take their truth values.

3.2 Approval and Majority-Tops Voting

Arrow’s theorem provides a hint for another suitable voting method to consider.
Instead of allowing agents to order solutions arbitrarily, we can have them parti-
tion the search space into “acceptable” and “unacceptable” solutions, and search
for a solution that is approved by the highest number of agents. Hence, we imple-
ment “approval voting” which turns out to have beneficial voting-theoretical
properties: Approval voting is a non-dictatorial social welfare function that sat-
isfies PE and IIA – due to the restriction to only two options, approved or
disapproved;
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Lemma 1. With only approval or disapproval at hand, approval voting satisfies
PE, IIA, and is non-dictatorial [28, p. 267].

Arrow’s theorem applies for votings with |O| ≥ 3 and does therefore not apply
in this restricted setting. Despite the restricted generality of having only two
levels of satisfaction, a variety of use cases fall into that category (e.g., students
proposing a personalized set of acceptable exam dates). Moreover, generating an
optimization predicate (or even a numeric objective in this case) is straightfor-
ward. For a given assignment θ, we count the number of approving agents. Once
we see a solution, we must impose a constraint that more agents approve of the
next one. Since for approval voting, we know that the type of every agent’s PVS
type must be boolean, the getBetter predicate is simplified:

predicate getBetterApproval(array [1..N] of var bool: overallAgents) =

post(

sum(i in 1..N) (bool2int(overallAgents[i])) >

sum(i in 1..N) (bool2int(sol(overallAgents[i]))) );

This results in a social welfare ordering over solutions. MiniBrass end-users would
again only write

solve vote([alice , bob , carol], approval );

where MiniBrass would ensure that each submitted PVS for approval voting is
indeed boolean-valued.

For more general orderings, approval voting is insufficient except if valua-
tions are, e.g., thresholded. The most canonical threshold value imaginable is to
approve a solution only if it evaluates to the top value εM in the corresponding
PVS (e.g., 0 in WCSP, 1.0 for fuzzy CSP, or ∅ for a violation-set-based formal-
ism). Solutions are then ranked according to the number of top-values. Since this
is an adaption of the majority rule that asks for an outcome to count the number
of agents that place it on top of their ranking, we call this variant majority-tops.
We would then just count the number of agents that get all their wishes satisfied.
In MiniBrass, we write, e.g.:

solve vote([alice , bob , carol], majorityTops );

To sum up, our proposed voting methods in MiniBrass encompass condorcet,
majorityTops, approval, and (for numeric objectives) also sumMin and sumMax.
The latter two sum up the overall valuations analogously to conventional WCSP
or DCOP formulations.

3.3 Voting with Local Search

We want to conclude our proposed implementation with a word of caution.
Larger problem instances can be prohibitive for systematic and complete search
space traversal and require heuristic local search approaches such as large-
neighborhood search. Arrow’s theorem then proves practically relevant. More
specifically, a social welfare function W violating IIA can lead to unexpected
results: If n voters choose over a subset of the available solutions Θ ⊆ [X → D],
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e.g., a neighborhood N (θ) ⊆ [X → D] of a solution θ, the local ordering
obtained by applying W to the profile over Θ can be different from the order-
ing over Θ when the whole search space [X → D] is present. In practice, this
means that even though the agents agree to switch from θ1 to θ2 ∈ N (θ1) when
voting over the neighborhood’s options, they would rank θ1 better than θ2 if all
solutions were up for election. Hence, an IIA welfare function such as approval
voting is a more sensible choice for local search than Condorcet voting.

4 Experimental Evaluation

For our evaluation, we investigate two problems that are inspired by real-life
decision situations faced at a typical university research group.

The first one, lunch selection, serves as our initial proof of concept and
consists of deciding a shared meal plan during a research retreat. We assume a
given set of prospective dishes and that a fixed-cardinality subset of those has
to be selected for a week. Each voter has preferences concerning the presence or
absence of certain dishes in the final selection.

The second one, mentor matching, is more complex than lunch selection
and involves assigning students to industry mentoring partners where, for sim-
plicity, we only consider students’ preferences regarding companies. There are
cardinality constraints on how many students each company can supervise.

In the real-life counterparts to the experimental setting proposed in this
paper, agents were only asked to provide a partial order in MiniBrass and can
leave out options. Here, we force them to submit a total order in both cases for
better comparability. Some of the agents are allowed to cheat, i.e., to amplify
their weights to gain an unfair advantage in DCOP/WCSP-style (summation-
based) optimization. This emulates other less-obvious ways that introduce weight
bias. Our goal is to test if Condorcet voting can undo this artificial amplification.
Still, for the example problems, we could easily apply numerical normalization to
undo the amplification effects. In more general settings involving non-numerical
orderings, this would no longer be an option.

As a result of this forced total ordering over desirable outcomes, both
instances give rise to an interpretable unit of satisfaction over all agents. This
allows for measuring how well the proposed voting methods mitigate unfair pref-
erence specifications that we expect to influence the WCSP approach heavily. To
quantify this in a controlled fashion, we also calculate a ground-truth baseline
distribution of satisfaction values emerging from truthful, non-amplified weights
from amplifying agents. We investigate several preference aggregation strategies
(ignoring approval voting and majority-tops due to the ranked setting):

– WCSP Unbiased: Classical weight-based summed optimization with ampli-
fication deactivated

– WCSP Biased: Classical weight-based summed optimization with amplifi-
cation activated

– Condorcet: asking for pairwise majority improvements
– Pareto: searching for Pareto-improvements
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We hypothesize that the satisfaction distribution resulting from unbiased WCSP
is similar to that of Condorcet voting whereas biased WCSP would strongly pre-
fer the amplifier group. For both problems, we create 200 random instances (i.e.,
synthesized preferences). Since we observed qualitatively the same behavior for
various parameter settings (e.g., the size of the restricted set of dishes or the
number of students and companies) in both problems, we present the results for
a fixed setting. For every instance, we pick a random subset of voters to become
amplifiers, according to varying ratios. The allowed amplification factor is pro-
portional to the number of agents, analogously to Fig. 1. All four aggregation
methods are applied to the same 200 instances, to ensure comparability.

We solve lunch selection using Google OR-Tools 7.0 (CP solver) [16] and
mentor matching using Chuffed [6], since we found these to be performing best
for the respective problems. Each presented experiment runs on a machine having
4 Intel Xeon CPU 3.20 GHz cores and 14.7 GB RAM on 64 bit Ubuntu 16.04.3

4.1 Lunch Selection

First, we consider the results obtained from the lunch selection experiment.
Given the set of available dishes F , upon deciding the lunches in L ⊆ F , we can
determine the satisfaction values per agents as follows: We assign one unit of
satisfaction for every meal that agent i likes that is in L and, equivalently, one
unit for every disliked meal which is not in L.4 Agents specify their wishes as a
ranking over F (not only approval sets), with the last positions corresponding
to disliked dishes.

Figure 3 presents the average satisfaction degrees per group (amplifiers/non-
amplifiers) obtained for this problem, once with 50% and once with 25% ampli-
fiers. Figure 3(a) shows the results of equally splitting the agents into the groups
of amplifiers and non-amplifiers. We can see that (as expected) the unbiased
WCSP leads to an equal distribution of satisfaction degrees in both groups,
whereas amplification clearly and unfairly treats amplifiers significantly better
(plotted in Fig. 3(c), and also revealed by a student t-test at α = 10−3). However,
that effect can almost entirely be reversed by using Condorcet voting instead that
ends up having insignificantly varying satisfaction distributions (cf. Fig. 3(d)).
This confirms the intuition presented in Fig. 1.

Besides, searching for Pareto improvements leads to significantly worse sat-
isfaction degrees than Condorcet for both groups. This confirms our intuition
that Pareto combinations alone are too indecisive, i.e., the society cannot make
many improvement steps in the search tree since all agents need to agree on a
better solution as opposed to Condorcet’s method that only requires a majority

3 The raw result data and experimental code can be found online at https://
github.com/isse-augsburg/minibrass/tree/master/evaluation/minibrass-voting-
experiment.

4 In the experiments, n = 12 agents vote over a set L with |L| = 4 chosen from |F | = 7
available objects. This leaves us with only

(
7
4

)
= 35 solutions. Nevertheless, the bias

reduction effects are already apparent in this small example.

https://github.com/isse-augsburg/minibrass/tree/master/evaluation/minibrass-voting-experiment
https://github.com/isse-augsburg/minibrass/tree/master/evaluation/minibrass-voting-experiment
https://github.com/isse-augsburg/minibrass/tree/master/evaluation/minibrass-voting-experiment
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Fig. 3. Lunch selection: Average satisfaction values per group over 200 instances. In
the unbiased case, the amplification factor was deactivated.

of them to do so. For a smaller set of amplifiers (25% instead of 50%), Fig. 3(b)
presents qualitatively similar results. The amplifiers gain even more benefit in
biased WCSP since there are fewer other amplifiers to split satisfaction degrees.

4.2 Mentor Matching

In mentor matching, we assign students to their mentoring companies. This gives
us a natural measure of satisfaction, i.e., the rank of the assigned company, with
ri = j denoting that agent i gets their jth preference and ri = 1 meaning top
satisfaction. The minimal and maximal number of students a company can super-
vise are constrained which makes supervision a scarce resource.5 The students’
preferences are not arbitrary, but some companies had a higher probability of
appearing higher than others – which corresponds to our real-life experiences.

Figure 4 shows overall results similar to the lunch selection case (we converted
the students’ achieved ranks to satisfaction degrees to have axes consistent with
the previous example by subtracting ranks from a constant value). Condorcet
voting mitigates the bias introduced by amplified weights, although the result-
ing average values are slightly lower than in the unbiased case. Interestingly,

5 Here, n = 18 agents vote over assignments to six companies, with each company
supervising at least two and at most three students. There are at most 618 ≈ 1.01514

solutions to explore, not accounting for the cardinality constraints.
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Fig. 4. Mentor matching: Average satisfaction values per group over 200 instances. In
the unbiased case, the amplification factor was deactivated.

Table 1. An illustrative example for skewed satisfaction resulting from Condorcet
voting. Average value and sample standard deviation are denoted by r̄ and σr.

Voting

method

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r̄ σr

WCSP

(Unbiased)

2 2 1 1 1 1 1 1 2 2 1 3 1 1 1 2 1 1 1.39 0.59

Condorcet 1 2 1 1 1 4 1 1 1 2 1 1 1 5 1 2 1 1 1.56 1.12

the average disadvantage of non-amplifiers is stronger in the 50% case depicted
in Fig. 4(a) than in the 25% case shown in Fig. 4(b) whereas the average satis-
faction of the amplifiers remains close to optimal. Pareto voting (unexpectedly)
discriminates against amplifiers. This interesting result is due to the solver’s
default search strategy that favors smaller domains (i.e., the non-amplifiers’ cost
variables). Since Pareto search does not dive deeply into the search tree, we end
up close to these biased solutions.6

We also note that, compared to lunch selection, the standard deviations of
Condorcet voting are higher. Closer investigation of that issue reveals a weakness
apparent in Condorcet voting that we exemplified with a case (ID 26 in the online
results) in Table 1: While unbiased WCSP results in a rather fair allocation
that never pairs an agent with a company worse than their third preference,
Condorcet’s method offers a solution that results in the fourth or even fifth
preference for two students. Both assignments have similar average satisfaction
degrees over all students, but we might consider Condorcet’s result less fair. It
is, however, a logical consequence of the focus on majority improvements: If all
but two agents agree that (here) a mentoring assignment is better, it gets picked
– even if this means substantial deterioration in satisfaction for the two agents.
It does not make a difference how strong the dissatisfaction is.

To confirm this suspicion, in Table 2, we also show the distribution of sample
standard deviations of satisfaction degrees per assignment as a rough measure of

6 We confirmed that a different solver (Gecode [26]) is more balanced but still keep
these unexpected results in the paper to highlight issues with Pareto optimization.
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Table 2. Comparison of weighted CSP optimization (unbiased) and Condorcet voting.
Sample standard deviations (S-STD) are metrics to measure each instance’s “unfair-
ness” and aggregated over all 200 instances. Analogously, SAT corresponds to satisfac-
tion degrees as presented in Figs. 3 and 4.

Problem WCSP SAT WCSP S-STD Condorcet SAT Condorcet S-STD

Lunch Selection 3.72 (0.22) 1.19 (0.24) 3.64 (0.28) 1.19 (0.23)

Mentor Matching 1.62 (0.12) 0.6 (0.14) 1.45 (0.18) 1.02 (0.28)

unfairness (σr in Table 1). While this effect does not show up in lunch selection
(due to the smaller search space), we can observe for mentor matching, regard-
less of how many amplifiers were present (therefore we only present the 50%
amplifiers results). The average sample standard deviation of 0.6 for unbiased
WCSP optimization is significantly lower than the value of 1.02 that Condorcet
reaches. A student t-test at α = 10−3 confirms this for both amplifier ratios.7

5 Conclusion and Future Work

We presented an extension to conventional soft constraint optimization prob-
lems that allows to aggregate preferences using voting methods instead of either
the usual numeric operations such as summation or Pareto/lexicographic com-
binations. This extension was able to “correct” the bias introduced by amplified
weight specifications on two real-life-inspired problems to almost the level of
unbiased specifications using Condorcet voting. Our evaluation revealed, how-
ever, that pure Condorcet voting is susceptible to producing unbalanced assign-
ments at the expense of few agents due to its focus on the majority.

Using only ordinal information gives us no “metric” sense of different levels
of dissatisfaction among a group of agents – we cannot relate discomfort a from
agent A to discomfort b of another agent B. Therefore, a potential direction for
research is to focus on methods that can produce more balanced assignments.
It might still be necessary, for that matter, to introduce a numeric scale and
allowing some form of transferable utility/budget or conversion rates. We hope
to provide more variety in this type-constrained setting.

Additionally, we expect better fairness guarantees in repeated optimization
settings (e.g., rostering problems over many weeks) as well as an “iterative deep-
ening” approach that first votes over coarser classes of problems (using diverse
solution search [17]) and subsequently refines those choices. Finally, we intend
to implement our model formulation also in actual DCOP solvers that mostly
need to be able to understand MiniZinc models. On a somewhat similar note, the
scalability of the voting approach remains to be tested for larger models, perhaps

7 Using the student t-test for significance is justified by observing that the sample
standard deviations of satisfaction degrees follow a normal distribution according to
a Shapiro-Wilk test at α = 10−3.
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involving large neighborhood search. We expect many real-life problems close to
end-users to benefit strongly from fairer voting methods than simple summation.
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Abstract. Quantified Boolean Formulas (QBFs) are powerful expres-
sions to naturally and concisely encode many decision problems in com-
puter science, such as robotic planning, hardware/software synthesis
and verification, among others. Their effective solving and certificate (in
terms of model and countermodel) generation play crucial roles to enable
practical applications. In this work, we give a new view on QBF solv-
ing and certificate generation by the cube distribution interpretation. It
provides a largely increased flexibility for QBF reasoning and allows com-
pact certificate derivation with don’t cares. Through this interpretation,
we develop a QBF solver based on the prior clause selection framework.
Experimental results demonstrate the superiority of our solver in both
solving performance and certificate size compared to other state-of-the-
art solvers with certificate generation ability.

Keywords: Quantified Boolean formula · Certificate ·
Cube distribution

1 Introduction

Quantified Boolean formulas (QBFs) are powerful logic expressions to compactly
encode various decision problems in, e.g., robotic planning [20], ontology rea-
soning [13], formal verification [6], design debugging [23], circuit synthesis [12],
program synthesis [22], engineering change order [5], and so on. The universal
and existential quantifiers of QBF provide succinct descriptive power, but raise
the reasoning complexity to PSPACE complete. The broad application and com-
putation challenge of QBF attract much research attention in recent years.

QBF solving involves two important tasks. One is to determine the truth or
falsity of a QBF; the other is to compute the corresponding model or counter-
model certificate. However, the importance of the latter task is often overlooked.
In fact, the model and countermodel certificates are key to many applications.
For example, they may correspond to a solution plan to a planning task, a cir-
cuit or program fragment under synthesis, a rectification solution to an erroneous
c© Springer Nature Switzerland AG 2019
T. Schiex and S. de Givry (Eds.): CP 2019, LNCS 11802, pp. 529–546, 2019.
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design, etc. Not only the derivation, but also the quality of certificate is of sig-
nificant practical relevance. In this work, we focus on QBF solving with compact
certificate derivation.

Among the vast efforts on QBF research, there are a few state-of-the-art
solvers capable of generating certificates, especially in the form of Skolem and
Herbrand functions. The representatives include: DepQBF [14], a solver based
on search with clause learning, whose Q-resolution proofs can be converted
to Skolem/Herbrand certificates [1]; CAQE [18,24], a solver based on clausal
abstraction; CADET [17,19], a solver based on incremental determinization,
which however is restricted to QBFs with two quantification levels; QuAbS [9],
a non-CNF solver based on counterexample guided abstraction and refinement.
Apart form their certificate generation abilities, the issue of deriving compact
certificates remains a challenge, especially for QBFs with more than two quan-
tification levels.

We note that while preprocessing is an important technique for effective QBF
solving, there are QBF preprocessors supporting partial certificate generation
[10,25]. Although the partial certificates may be combined with the certificates
generated by certifying QBF solvers on preprocessed formulas to provide full
certificates, they are currently limited to Skolem certificates for true QBFs only.

In this work, we present a cube distribution interpretation of QBF solving.
Essentially this new view provides flexibility for both QBF reasoning and certifi-
cate construction. Based on the cube distribution principle, we develop a solver
for general QBFs with multiple quantification levels under the clause selection
framework [11]. Experiments show the superiority of our method in both solving
performance and certificate size compared to other state-of-the-art certificate
generating solvers dealing with general QBFs.

2 Preliminaries

For the brevity of a Boolean expression, the Boolean connective of conjunction ∧
is sometimes omitted; the disjunction ∨ is also denoted by the symbol “+”; the
negation ¬ is also denoted by an overline. The appearance of a Boolean variable
x in a Boolean expression can be in the form of a positive literal x or a negative
literal ¬x. We denote the variable corresponding to a literal l by var(l). A clause
is a disjunction of a set of literals; a cube is a conjunction of a set of literals. We
alternatively specify a clause or cube by a set of literals. A Boolean formula is
in the conjunctive normal form (CNF) if it is expressed as a conjunction of a
set of clauses. We alternatively specify a CNF formula by a set of clauses.

A Boolean function f over variables X, with |X| = n, corresponds to a
mapping f : Bn → B ∪ {⊥}, where “⊥” denotes the don’t care value. Let [[X]]
denote the set of valuations/assignments on variables X. The onset, denoted
f+, of function f is the set of input assignments ⊆ [[X]] that make f valuate to
True; its offset, denoted f−, is the set of input assignments that make f valuate
to False; the don’t care set, denoted f⊥, is the set of input assignments that
make f valuate to ⊥. If f⊥ is empty, f is completely specified ; otherwise, f is
incompletely specified.
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A quantified Boolean formula (QBF) Φ over variables X = X1∪X2∪. . .∪Xn,
where Xi �= ∅ and Xi ∩ Xj = ∅ for i �= j in the prenex conjunctive normal form
(PCNF) can be expressed as

Q1X1, . . . , QnXn.ϕ, (1)

where Q1X1 · · · QnXn, called the prefix and denoted Φpfx, satisfies Qi ∈ {∃,∀}
and Qi �= Qi+1, and ϕ, called the matrix and denoted Φmtx, is a quantifier-
free CNF formula in terms of variables X. A variable x ∈ Xi is said to be
at quantification level i. The set X of variables of Φ can be partitioned into
existential variables X∃ = {x ∈ Xi | Qi = ∃} and universal variables X∀ = {x ∈
Xi | Qi = ∀}. A literal l is called an existential literal and a universal literal if
var(l) is in X∃ and X∀, respectively.

Note that for QBF Φ in the PCNF form, if Qn = ∀, then Φ can be equivalently
simplified with all the appearances of variables Xn in Φ being removed. Also,
in PCNF form, the forall-reduction rule, which removes universal literals from
a clause Ci ∈ ϕ if their quantification level is the largest in Ci, can be applied
to simplify Φ. To simplify our discussion, we assume Xn = ∃ and ϕ has been
simplified by the forall-reduction rule.

The QBF Φ is True if and only if there exists a set of Skolem functions
[21], one fx for each existential variable x ∈ Xi referring only to the universal
variables y ∈ Xj with j < i, such that substituting x with fx in Φmtx makes
Φmtx a tautology. By duality [1], the QBF Φ is False if and only if there exists
a set of Herbrand functions, one fx for each universal variable x ∈ Xi referring
only to the existential variables y ∈ Xj with j < i, such that substituting x
with fx in Φmtx makes Φmtx unsatisfiable. That is, the Skolem functions and
Herbrand functions serve as the model and countermodel of Φ, respectively. In
this work, we are concerned with Skolem and Herbrand function derivation as
the certificate of the truth or falsity of a QBF.

2.1 Clause Selection

Clause selection [11], or clausal abstraction [18], is a QBF solving technique
to track the clause satisfaction status and to facilitate learning with abstract
variables. Given a QBF Φ of Eq. (1), the subclause of a clause Ci ∈ ϕ consisting
of literals l ∈ Ci with var(l) ∈ Xj with j �� k for some k is denoted as C��k

i for
�� ∈ {=, <,≤, >,≥}. In particular, we abbreviate C=k

i as Ck
i in the sequel for

simplicity. For clause Ci ∈ ϕ, we can decompose it into n subclauses C1
i , C2

i ,
. . . , Cn

i , and write Ci = C1
i + C2

i + · · · + Cn
i .

Let cj
i,k denote the kth literal of clause Cj

i . If the literal cj
i,k of clause Cj

i

is True under some assignment, we say Ci is satisfied or deselected by cj
i,k.

Since Ci = C1
i + · · · + Cn

i , any cj
i,k in Cj

i valuated to True under some variable
assignment makes Ci be deselected. As the variables of a QBF are assigned in
the order of quantification level, under some assignment once Ci is deselected at
quantification level j, then Ci remains deselected at quantification levels greater
than j regardless of the valuations of literals in C>j

i . By introducing a fresh
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variable, called selector, sj
i and letting sj

i ≡ ¬C≤j
i , the selector tracks whether

Ci has been deselected before or at level j.

3 Motivation and Intuition

To motivate our approach to QBF solving, consider the formula

Γ1 = ∀x1, x2∃y1, y2, y3.

(x1 + y1)(y1 + y2)(x2 + y2 + y3)(x1 + x2 + y3)(x2 + y1 + y3)(x2 + y1 + y3).

Let Γk be the formula of duplicating Γ1 for k copies with the variables being
renamed such that there are no common variables between different copies. It
can be verified that Γk is satisfiable.

However, even with preprocessing1, some of the state-of-the-art solvers, such
as Qesto, CAQE, and DepQBF, may have difficulty solving Γk. Moreover, the
generated certificate circuits of Skolem functions can be rather large.

In contrast, our method, as to be presented, requires one single query to a
satisfiability (SAT) solver to solve Γk and generates simple certificate circuits.
The way our method works in solving Γk can be explained by considering only
Γ1 as illustrated by Fig. 1, where each circle node represents the cube Bi = ¬C1

i ,
which is the condition of falsifying the universal literals in clause Ci, each square
node represents either a positive or negative literal of an existential variable, and
distributor di,j , which connects nodes Bi and ci,j (the jth existential literal of
clause Ci), signifies existential literal ci,j is in clause Ci.

Fig. 1. QBF solving as cube distribution.

Essentially, the QBF solving of Γ1 can be interpreted as a process of cube
distribution. That is, for each cube Bi, at least one, di,j say, of its distributors

1 In fact, bloqqer [3] cannot directly solve the formula with all options being enabled,
except for three options: covered clause elimination, variable elimination, and uni-
versal expansion. Disabling these three options is reasonable in that (1) covered
clause elimination often considerably increases the size of the Skolem functions as
discussed in [8], (2) variable elimination in principle can solve all QBFs, and (3)
universal expansion in principle reduces all QBFs to SAT.
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must be chosen such that the cube Bi is assigned/distributed to the onset (resp.
offset) of the Skolem function of existential variable ym = var(ci,j) for literal
ym ∈ Ci (resp. literal ¬ym ∈ Ci). Moreover, in general, for two cubes Bi and Bi′

with Bi ∧ Bi′ �= False, then the distribution of them must be constrained such
that di,j and di′,j′ cannot be chosen simultaneously if the two edges connect to
complementary literals, i.e., one to ym and the other to ¬ym. In the case of Γ1,
if we choose d1,1, d2,2, d3,2, d4,1, d5,1, and d6,1 (as indicated by the thick edges
in Fig. 1), all the six cubes B1 = ¬x1, B2 = True, B3 = ¬x2, B4 = x1x2, B5 =
¬x2, and B6 = x2 can be successfully distributed. Therefore Γ1 is satisfiable.

The above cube distribution encoding can be translated into a CNF formula
for SAT solving. The formula is merely in terms of the distribution variables
di,j such that di,j = True if and only if Bi is distributed to the onset/offset
(depending on the appearance of positive/negative literal of variable ym in Ci)
of Skolem function of ym. For di,j = True, we refer to it by saying “cube
Bi is distributed to variable ym” for simplicity in the sequel. Note that if all
the cubes can be distributed, then the QBF is True. However the converse
does not hold because only non-disjoint cubes need to be distributed simultane-
ously. Essentially a satisfying assignment to the CNF formula provides sufficient
information for Skolem function construction as we can accordingly distribute
cubes to the onset f+

y and offset f−
y of the Skolem function fy of each exis-

tential variable y. If f+
y ∨ f−

y is not a tautology, then the don’t care set f⊥
y

of the Skolem function fy is non-empty and can be used to minimize the cir-
cuit of fy. In the case of solving Γ1, we have f+

y1
= ¬x1 + ¬x2 + x2 = True,

f−
y1

= False, f⊥
y1

= False, f+
y2

= False, f−
y2

= True, f⊥
y2

= False, f+
y3

= ¬x2,
f−

y3
= x1x2, and f⊥

y3
= ¬x1x2, where the sets are represented with characteris-

tic functions, e.g., the characteristic function ¬x1 represents the set of assign-
ments (x1, x2) = {(False,False), (False,True)}. Exploiting the don’t cares
for certificate minimization, we get Skolem functions fy1 = True, fy2 = False,
fy3 = ¬x2.

We remark that cube distribution break (to some extend) the conventional
2QBF solving loop that first assigns universal variables and then checks for
matching assignments to the existential variables. It exhibits distinct capability
of simultaneously matching multiple (possibly conflicting) universal assignments
to existential variables.

Extending clause selection to a new principle, we formally define cube distri-
bution as follows.

Definition 1 (Cube Distribution). Given a QBF Φ = Q1X1, . . . , QnXn.ϕ
and an assignment A to variables

⋃
i Xi, the cube Bj = ¬C<j of a clause C ∈ ϕ

at level j is said distributed to literal l (or variable var(l)) under A if both Bj

and l are satisfied under A.

4 Cube Distribution Interpretation

Consider the QBF Φ = ∀X1,∃Y1, . . . ,∀Xk,∃Yk.ϕ. Assume, except for X1, the
variable sets are non-empty. Let Cj

i be the subclause of Ci ∈ ϕ with literals
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{l ∈ Ci | var(l) ∈ Xj ∪ Yj}; C≥j
i be {l ∈ Ci | var(l) ∈ ⋃k

m=j(Xm ∪ Ym)};
Cj∀

i be {l ∈ Ci | var(l) ∈ Xj}; Cj∃
i be {l ∈ Ci | var(l) ∈ Yj}. Let cube Bj

i

be ¬Cj∀
i . Note that if X1 = ∅, then B1

i = True. Observe that if cube B1
i is

distributed into the onset (if literal y ∈ C1∃
i ) or offset (if literal ¬y ∈ C1∃

i ) of the
Skolem function fy of variable y ∈ Y1, then when variable y being substituted
with Skolem function fy, the clause C1

i will always be satisfied, i.e., a tautology,
regardless of the valuations of variables X1. Given a distribution DA on a set
of cubes {B1

i | Ci ∈ A} with respect to a set of clauses A ⊆ ϕ, we define the
induced QBF by distribution DA on Φ as ∀X2,∃Y2, . . . ,∀Xk,∃Yk.ϕ|DA

, with
ϕ|DA

=
∧

Ci∈ϕ Ci|DA
, where Ci|DA

= True if Ci ∈ A and Ci|DA
= C≥2

i if
Ci �∈ A.

With the above observation and definition, the cube distribution interpreta-
tion of QBF solving can be formally stated in the following theorem.

Theorem 1. The QBF Φ = ∀X1,∃Y1, . . . ,∀Xk,∃Yk.ϕ is True if, and only
if, for every maximal set of clauses ϕ′ ⊆ ϕ with non-disjoint cubes, i.e.,
(
∧

Ci∈ϕ′ B1
i ) �= False, there exists a set of clauses A ⊆ ϕ′ and a dis-

tribution DA on cubes {B1
i | Ci ∈ A} such that the induced QBF Φ′ =

∀X2,∃Y2, . . . ,∀Xk,∃Yk.ϕ′|DA
is True.

Proof. (⇐) If a maximal set B = {B1
i | Ci ∈ ϕ′} of cubes with a common

minterm m can be distributed at the outermost quantification level, the cube
distribution defines legitimate Skolem functions of existential variables Y1 over
the minterms common to all cubes in B. Note that for a minterm, the maximal
cube set covering it is unique. In this case, A = ϕ′ and Φ′ must be True.
Hence Φ is True under the assignment m over X1 with the constructed Skolem
functions.

On the other hand, assume some of the cubes of B cannot be distributed,
i.e., A ⊂ ϕ′, and the induced QBF Φ′ is True. The existence of a model of
Skolem functions for Φ′ guarantees that for each Ci ∈ ϕ′\A the cube Bj

i can
be distributed at some level j ≥ 2. Moreover, we let the distribution of cubes
{B1

i | Ci ∈ A} define Skolem functions of existential variables Y1 over the
minterms m common to all cubes in B. Combining the defined Skolem func-
tions, because every cubes in B is either distributed at level 1 or another larger
level, Φ is True under the assignment m over X1 with the constructed Skolem
functions. Because QBF Φ is True under every minterm assignment of X1, QBF
Φ is True.

(⇒) For QBF Φ to be True, there exists a legitimate set of Skolem functions.
By the valuations of the Skolem functions under each minterm m of the universal
variables X1, we let the maximal set of clauses ϕ′ for cube distribution be the set
of clauses selected under m. Then A corresponds to the clauses in ϕ′ deselected
by the Y1 assignment determined by the Skolem function valuation under m. In
addition, the Skolem functions of Φ under the assignment m on X1 form a model
to the induced QBF Φ′. Hence Φ′ is True. Therefore the theorem holds.

Note that, by recursion, Theorem1 provides a cube distribution procedure
for solving QBFs of arbitrary number of quantification levels.
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5 QBF Solving with Cube Distribution

Instead of resorting to recursive reasoning as suggested by Theorem 1, we seek for
a non-recursive procedure. Based on the cube distribution principle, we develop
a QBF solver on top of the clause selection framework of Qesto [11], whose main
procedure is sketched in Fig. 2. In the following, we will emphasize the differences
while referring the reader to [11] for background details. In the pseudo code of
Figs. 2, 3, 4 and 5, the highlighted lines are those that differ from Qesto.

In the main procedure QbfSolve of Fig. 2, we assume the QBF Φ, the model
(satisfying assignment) M j returned by the SAT solver, the winning condition
W j , Skolem/Herbrand functions f+

x and f−
x are global in scope, and can be

accessed by other function calls. In line 01, the winning condition W j , j =
1, . . . , n, and the onset f+

x and offset f−
x of Skolem/Herbrand functions of x ∈ X

are initialized to False. In line 02, the selector constraint formula αj , which
maintains the clause selection status of quantification level j, is initialized by
InitConstraint. In line 03, the backtrack level index btlev and model M0 are
initialized. The subsequent while-loop iterates until the truth or falsity of Φ is
determined.

If the iteration is at level j = n+1, the learned clause CR in line 12 indicates
a loss condition of the universal player. If the iteration is at level j �= n + 1,
line 06 collects the set A of selector literals of the previous level SAT model.
In line 07, αj is solved with A being imposed as the unit assumption to the
SAT solver. If αj is satisfiable under A, the procedure proceeds to the next
quantification level. Otherwise, the final conflict clause CR returned by the SAT
solver is analyzed in Analyze∃ in line 14 if Qj = ∃ or in Analyze∀ in line 19 if
Qj = ∀ to obtain the corresponding backtrack level and blocking clause. If btlev
= −1, the falsity and Herbrand functions are returned in line 17, or the truth
and Skolem functions are returned in line 22. Otherwise, the selector constraint
is strengthened in line 23 and new quantification level is updated in line 24.

Besides the certificate initialization step in line 01, and warp-up steps in
lines 16 and 21, QbfSolve differs from Qesto mainly in the procedures InitCon-
straint, Analyze∃ and Analyze∀ as we detail below.

Procedure InitConstraint of Fig. 3 differs from Qesto in the construction of
αj for Qj = ∃ in lines 04 and 05. In the formula of αj , the distributor variable dj

i,k

is a fresh new variable introduced for every existential literal cj
i,k in ϕ. Variable

dj
i,k valuates to True if and only if the cube ¬C<j

i is to be distributed to (the
Skolem function of) variable var(cj

i,k). Note that in our notation, two literals cj
i,k

and cj
i′,k′ may refer to the same literal. However, their corresponding distributor

variables dj
i,k and dj

i′,k′ are distinct. This distinctness makes QBF reasoning more
flexible and provides freedom for certificate construction.

In Qesto, αj for Qj = ∃ is constructed as
∧

Ci∈ϕ

(¬sj
i ≡ (¬sj−1

i ∨ Cj
i )) (2)
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Fig. 2. Procedure: Solve QBF.

in line 04 of Fig. 3, and without the line 05 step. Essentially, it is the two
lines 04 and 05 of code in Fig. 3 that fulfill the cube distribution principle in
a non-recursive way. To see the connection and difference between Qesto and
our method, Eq. (2) can be rewritten as

∧

Ci∈ϕ

(¬sj
i ≡ (¬sj−1

i ∨
∨

cji,k∈Cj
i

(cj
i,k ∧ sj−1

i ))). (3)

By the definition of the selector variables, it is logically equivalent to
∧

Ci∈ϕ

(¬sj
i ≡ (¬sj−1

i ∨
∨

cji,k∈Cj
i

(cj
i,k ∧ ¬C<j

i ))). (4)

By comparing Eq. (4) to the right-hand side formula of line 04 of Fig. 3 and
the definition of cube distribution, the correctness of our construction can be
established.
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Procedure Analyze∃ of Fig. 4 differs from Qesto in lines 02, 04 and 05. In
line 02, unlike Qesto, the distributor literals are collected instead of existential
literals. In line 05, on-the-fly certificate construction is invoked while there is no
certificate construction in Qesto.

Procedure Analyze∀ of Fig. 5 is similar to Qesto. The difference is that
because distributor literals are used to replace the original existential literals,
clause deselection at existential levels is controlled by distributor variables. In
lines 01 and 04, Υj,k

i is a predicate denoting whether there is a distributor dh
i,t,

for some t, and j ≤ h ≤ k, deselecting Ci. In line 05, there is an additional
certificate construction step.

6 Certificate Generation

Our on-the-fly certificate construction procedures AnalyzeCert∃ and Analyze-
Cert∀ are invoked in QbfSolve, and are shown in Figs. 6 and 7, respectively.

Fig. 3. Procedure: Initialize selector constraint.

For Herbrand function construction, AnalyzeCert∃ of Fig. 6 is invoked when
a conflict occurs in an existential level in QbfSolve. Given a set of conflicting
clauses R, backtrack level btlev, and level qlev where the conflict occurs, we
known that if all the clauses in R are selected at btlev (the winning condition
for the universal player characterized by λ in line 01), the existential player
has no way to make the matrix true at level qlev under the current universal
assignment (the winning move collected by L in line 02). In lines 08 and 10, the
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newly explored winning condition, characterized by ¬W j ∧ λ, is added to the
either the onset and offset of the Herbrand function of a variable x according
to the winning strategy collected in L. In line 11, the so-far explored winning
condition W j is updated.

For Skolem function construction, procedure AnalyzeCert∀ of Fig. 7 is similar
to procedure AnalyzeCert∃ with some minor differences. First, the distribution
information is collected in lines 02 and 03. Second, the Skolem functions are
updated in lines 09 and 11 by adding ¬W j ∧ λ ∧ ¬C<j

i , instead of ¬W j ∧ λ.
The additional conjunction of ¬C<j

i makes the onset and offset smaller, and
increases the don’t case set. The increased flexibility can be exploited for certifi-
cate minimization.

Note that in QbfSolve, procedure InitCert initializes the characteristic func-
tions f+

x , f−
x , and W j to False for all x ∈ X and j = 1, . . . , n; procedure

EndCert collects Skolem functions for the existential variables for a True QBF
or Herbrand functions for the universal variables for a False QBF.

7 Experimental Results

The proposed cube distribution algorithm, named Cued, was implemented in the
C++ language under the framework of Qesto [11] and used MiniSat 2.2 [7] as
the SAT engine. The experiments were conducted on a Linux machine with Intel
Xeon E5-2620 v4 2.10 GHz CPU and 125 GB RAM. The benchmarks were taken
from QBFEVAL’162 (Note that because no Herbrand functions currently can be
obtained from preprocessing [8], we thus focus on non-preprocessed formulas.
The results on preprocessed formulas are omitted due to space limitation).

Fig. 4. Procedure: Analyze ∃-Loss.

2 As QBFEVAL’16 contains more benchmark instances than QBFEVAL’17 and
QBFEVAL’18, we took QBFEVAL’16 benchmarks for our experimental study.
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Fig. 5. Procedure: Analyze ∀-Loss.

We compared our solver Cued with Qesto and two other state-of-the-art certi-
fying solvers for general QBFs in PCNF, including CAQE [18,24] (with PicoSAT
965 [2] as the underlying SAT solver) and DepQBF [15,16]. As the newest ver-
sions of CAQE and DepQBF have been enhanced by several techniques that dis-
allow the generation of certificates. We therefore disabled the options in CAQE
and DepQBF that prevent certificate generation. Specifically, for CAQE, we dis-
abled strong UNSAT refinement and miniscoping in CAQE v2; for DepQBF, we
applied traditional QCDCL option, simple dependency manager, and no general-
ized axioms in DepQBF v6.03. We denote the so-configured CAQE and DepQBF
as CAQE-c and DepQBF-c, respectively. Note that although the performance
of CAQE-c and DepQBF-c may not be as good as their counterparts under
default settings, turning off the modern options could make it more transparent
to compare the baselines.

To evaluate the solver performance, a time limit of 600 s was imposed for solv-
ing each instance. Figure 8 compares Cued, Qesto, CAQE-c, DepQBF-c in terms
of their performance of solving the 825 PCNF track formulas. In the plot, the
x-axis shows the number of solved instances, and the y-axis shows the runtime in
seconds with the instances sorted in an ascending order according to their solv-
ing time. In measuring the solving time, certificate generation computation was
turned off for all the solvers. In total, Cued, Qesto, CAQE-c, DepQBF-c solved
432, 354, 316, and 368 instances, respectively. Evidently, Cued outperformed
Qesto, CAQE-c, and DepQBF-c.

To evaluate the certificate quality, we compared the Skolem/Herbrand func-
tion circuits computed from Cued, CAQE-c, and DepQBF-c. Note that because
Qesto has no certificate generation option, it is not in our main compari-
son. (Nevertheless, we implemented a certificate generation version of Qesto.
The results can be found in Supplements, where the superiority of Cued to
Qesto can be seen.) A time limit of 300 s was imposed for solving (with cer-
tificate computation being turned on). The certificates obtained by the three
solvers were converted to and-inverter graphs (AIGs) and further minimized by
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Fig. 6. Procedure: Construct Herbrand Function.

Fig. 7. Procedure: Construct Skolem Function.
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Fig. 8. Solver performance evaluation.

Berkeley ABC logic synthesis tool [4] using commands dc2 and dfraig. A time
limit of 300 s was imposed for synthesis. The certificate quality is measured by
AIG size, i.e., the number of AND gates.

For the PCNF track formulas, Cued, CAQE-c, and DepQBF-c solved 380,
262, 354 cases, respectively, with certificates being generated. Among the gener-
ated certificates, only 339 cases of Cued, 255 of CAQE-c, and 303 of DepQBF-c
were successfully synthesized by ABC. The remaining 41 cases of Cued, 7 of
CAQE-c, and 51 of DepQBF-c are too large for ABC to handle within the time
limit or out of the memory limit of 5 GB; their sizes were counted in terms
of the original non-synthesized AIG nodes. On the other hand, for an unsolved
instance of a solver, its certificate size is counted as infinity.

Figure 9 shows the results, where CAQE-c and Cued are compared in (a), and
DepQBF-c and Cued are compared in (b). For true and false QBF instances,
they can be distinguished with the Skolem and Herbrand spots, respectively.
Because the x- and y-axes are in a logarithmic scale, size 0 is shifted to 1 for
better visualization. Moreover, for the unsolved or memory-exploded instances,
their AIG sizes are counted as 100,000,000 (much larger than other actual AIG
sizes) in the plot.

When CAQE-c and Cued are compared, it can be observed that Cued tends
to produce smaller certificates, especially there are more spots outside of the
upper 10x line than the lower 10x line. Among the 251 (113 true/138 false)
instances solved by both solvers, there are 101 (50/51) instances that Cued
achieved smaller sizes, and there are 65 (27/38) instances that CAQE-c achieved
smaller sizes. Moreover, there are 117 (54/63) instances solved by Cued but not
CAQE-c, and there are 11 (3/8) instances solved by CAQE-c but not Cued.

When DepQBF-c and Cued are compared, the spots are more scattered.
Among the 273 (131/142) instances solved by both solvers, there are 111 (57/54)
instances that Cued achieved smaller sizes, and there are 84 (38/46) instances
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(a) CAQE-c vs. Cued.

(b) DepQBF-c vs. Cued.

Fig. 9. Certificate size comparison on PCNF track instances.

that DepQBF-c achieved smaller sizes. Moreover, there are 95 (36/59) instances
solved by Cued but not DepQBF-c, and there are 55 (11/44) instances solved
by DepQBF-c but not Cued.

For the 2QBF track formulas, Cued, CAQE-c, and DepQBF-c solved 80, 45,
42 cases, respectively, with certificates being generated. Among the generated
certificates, only 65 cases of Cued, 37 of CAQE-c, and 31 of DepQBF-c were
successfully synthesized by ABC. The remaining 15 cases of Cued, 8 of CAQE-c,
and 11 of DepQBF-c are too large for ABC to handle within the time or memory
limit; their sizes were counted in terms of the original non-synthesized AIG
nodes. On the other hand, for an unsolved instance of a solver, its certificate size
is counted as 100,000,000.
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(a) CAQE-c vs. Cued.

(b) DepQBF-c vs. Cued.

Fig. 10. Certificate size comparison on 2QBF track instances.

Figure 10 shows the results. Evidently, Cued dominates both CAQE-c and
DepQBF-c. Note that for the 2QBF case, because the universal variables are in
the first quantification level, the Herbrand functions are either constant True
or False and thus the size of a Herbrand circuit, if generated successfully, is
always 0.

When CAQE-c and Cued are compared, among the 44 (25/19) instances
solved by both solvers, there are 18 (18/0) instances that Cued achieved smaller
sizes, and there is 1 (1/0) instance that CAQE-c achieved the smaller size. More-
over, there are 32 (23/9) instances solved by Cued but not CAQE-c, and there
is 1 (0/1) instance solved by CAQE-c but not Cued.

When DepQBF-c and Cued are compared, among the 34 (20/14) instances
solved by both solvers, there are 19 (19/0) instances that Cued achieved smaller
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sizes, and there is 0 (0/0) instance that DepQBF-c achieved the smaller size.
Moreover, there are 42 (28/14) instances solved by Cued but not DepQBF-c,
and there is 0 (0/0) instance solved by DepQBF-c but not Cued.

When CADET and Cued are compared on the 2QBF instances, among the
33 (31/2) instances solved by both solvers, there are 7 (7/0) instances that
Cued achieved smaller sizes, while there are 8 (8/0) instances that CADET
achieved smaller sizes. Moreover, there are 43 (17/26) instances solved by Cued
but not CADET, while there are 141 (93/48) instance solved by CADET but not
Cued. As a matter of fact, the 149 instances that CADET did better than Cued
come from the irqlkeapclte, terminator, RankinfFunctions and wmiforward
families. On the other hand, the 50 instances that Cued did better than CADET
come from the MutexP, Qshifter, Reduction-finding, and Sorting networks
families. This fact suggests that CADET and Cued exhibit distinct capability in
solving some of the benchmark families.

8 Conclusions

This work has tackled QBF solving and certificate generation in the new view of
cube distribution. Based on the Qesto framework, a certifying solver Cued has
been developed and evaluated. Experimental results suggest the superiority of
Cued in both solving performance and certification quality compared to other
state-of-the-art certifying solvers, including CAQE and DepQBF. As Skolem
and Herbrand functions play an essential role in many QBF applications, our
results may strengthen the applicability of QBF in various domains. For future
work, in the experiments we have not fully exploited don’t cares in synthesis,
there remains plenty room for further investigation how to use don’t cares for
certificate minimization. Moreover Cued may be improved through integration
with other reasoning methods or solving techniques.
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Abstract. Functional synthesis (FS) aims at generating an implemen-
tation from a declarative specification over sets of designated input and
output variables. Traditionally, FS tasks are formulated as ∀∃-formulas,
where input variables are universally quantified and output variables
are existentially quantified. State-of-the-art approaches to FS proceed
by eliminating existential quantifiers and extracting Skolem functions,
which are then turned into implementations. Related applications benefit
from having concise (i.e., compact and comprehensive) Skolem functions.
In this paper, we present an approach for extracting concise Skolem func-
tions for FS tasks specified as examples, i.e., tuples of concrete values of
integer variables. Our approach builds a decision tree from relationships
between inputs and outputs and preconditions that classify all exam-
ples into subsets that share the same input-output relationship. We also
present an extension that is applied to hybrid FS tasks, which are for-
mulated in part by examples and in part by arbitrary declarative spec-
ifications. Our approach is implemented on top of a functional synthe-
sizer AE-VAL and evaluated on a set of reactive synthesis benchmarks
enhanced with examples. Solutions produced by our tool are an order of
magnitude smaller than ones produced by the baseline AE-VAL.

1 Introduction

One way to ensure the absence of bugs in programs is to replace a human devel-
oper with a machine that leverages automated decision procedures and theo-
rem provers to develop programs that are correct-by-construction. But the task
of automatically synthesizing programs from given specifications is notoriously
hard and often depends crucially on the way specifications are formulated. Fur-
thermore, it is often tedious to formulate a specification precisely and completely,
such that it adequately represents the targeted intent. For humans, it is usually
easier to provide a set of examples, such as tuples of concrete values for input
and output variables. The task of the automated synthesizer is to generate an
implementation, which produces given outputs for given inputs. In addition, the
synthesizers should envision as much as possible which input-output tuples could
appear in the actual programs, and implementations should be general enough
to cover such cases. Finally, a specification may also include arbitrary additional
requirements, and the resulting implementation should be consistent with both
input-output examples and constraints at the same time.
c© Springer Nature Switzerland AG 2019
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Many different techniques have been studied under the general umbrella of
program synthesis, with a wide range in kinds of specifications and search tech-
niques [1–3,26–29,31]. Typically, Functional Synthesis (FS) requires a declar-
ative relational specification which connects input and output variables. Pro-
gramming by Examples (PBE) requires a set of input-output tuples consisting
of concrete values of variables. Although both FS and PBE have been developed
successfully in many domains, there is a relative lack of unifying efforts that take
advantages of them together to provide a general solution.

A classic formulation of an FS task is via checking the validity of a ∀∃-
formula, in which inputs are universally quantified, and outputs are existentially
quantified. The validity of this formula guarantees realizability of the synthesis
task, and a witnessing Skolem function can be turned into an implementation.
In [11], Skolem functions are generated while lazily eliminating quantifiers in
(and proving the validity of) ∀∃-formulas in linear integer arithmetic (LIA). The
generated solutions are represented in the form of decision trees, where decision
nodes denote formulas over inputs called preconditions, and leaves denote equal-
ities of outputs with terms over inputs called local Skolem terms. This method
can be applied in a straightforward manner to a PBE task too: in the corre-
sponding decision tree, the preconditions would be represented by (conjunctions
of) equalities over inputs and their values, and the local Skolem terms would
simply be the corresponding values of the output variables.

To obtain concise Skolem terms, decision trees can be compacted by poten-
tially merging decision nodes that could share the same leaves. In the context
of PBE, this idea is in general inapplicable because the terms in the leaves are
always constants. To apply any compaction, there should be a way to replace
these constants by terms over inputs. For LIA, this can be done by discovering
linear equations over input and output variables.

The challenge is that not all given examples would be classified by a single
linear equation. Thus, in our approach, we first partition the set of examples into
subsets, such that all examples within each subset share the same linear relation-
ship. Clearly, such a partitioning is not unique, and we target deriving a small
number of subsets. Another criterion we consider is that all examples within
each subset should be classified concisely by some precondition over inputs. In
particular, a precondition that simply disjoins all equalities between inputs and
concrete values would be too bulky (growing linearly with the size of the subset).
Instead, we seek an opportunity to replace it by some inequality or conjunction
of inequalities. These criteria lead to compact decision trees.

One key novelty in our approach is a completely automated procedure to dis-
cover compact preconditions and local Skolemterms forPBEtasks inLIA.Existing
synthesis approaches, e.g., those based on enumerative search [26,27,31], require
the user to additionally supply formal grammars (or templates) that specify a pool
of candidate formulas and terms. They search for suitable candidates from the
grammars and iteratively test them on given examples. While this general capabil-
ity is useful for rich grammars and specifications, for LIA it is possible to completely
automate these steps. In particular, our approach does not require any extra input
from the user and automatically infers candidates for local Skolem terms directly
from data using canonical equations in linear arithmetic.
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The candidate preconditions are also inferred automatically from data – they
specify ranges of input values. To find suitable candidates, we pose queries over
certain ranges in the ∀∃-form which intuitively say “for all inputs within the
candidate range, there exists an output value which is consistent with the can-
didate assignment and all given examples”. By counting how many examples
are covered by each candidate that passes the ∀∃-test, we create a ranking of
candidates and pick those with the highest rank.

We also extended the approach to hybrid PBE and FS tasks, formulated in
part by using input-output examples and in part by using arbitrary input-output
relational constraints. To solve such problems, the formula describing an FS-part
of the task is simply added to our ∀∃-test and is taken into account when filtering
suitable candidate ranges and the corresponding local Skolem terms.

Our implementation on top of the AE-VAL [11] tool has been evaluated on a
range of reactive synthesis benchmarks enhanced with examples. The discovered
solutions are an order of magnitude smaller than straightforward Skolem terms
and less sensitive to the number of examples.

2 Running Example

Table 1. Input output tuples.

x1 x2 x3 y

1 · 1 1

0 · 2 0

· 1 3 2

· 2 4 4

2 4 5 6

2 0 6 2

Table 1 gives a set of examples by means of inte-
ger values of input variables x1, x2, and x3,
and an output variable y. Each row represents a
transition from concrete inputs to the concrete
output. Some examples are incomplete, i.e., a
subset of input values is not given (denoted “·”).
For instance, the first row specifies input values
for only x1 and x3; and it should be interpreted
as “if both x1 and x3 are equal to one, then y
should be equal to one as well”.

Our goal is to find (1) symbolic linear rela-
tionships among given values in each input-
output tuple, and (2) preconditions that uniquely determine equivalence classes
of these relationships. For instance, for the first two rows, it is true that y = x1.
Precondition 1 ≤ x3 ≤ 2 uniquely determines the first two rows, in a sense that
for the remaining four rows, it does not hold. Similarly, for the next two rows,
y = 2 · x2 under precondition 3 ≤ x3 ≤ 4; and for the last two rows, y = x1 + x2

under precondition 5 ≤ x3 ≤ 6. Combining preconditions and relationships, we
can formally describe how y can be computed from x1, x2, and x3:

y = ite(1 ≤ x3 ≤ 2, x1, ite(3 ≤ x3 ≤ 4, 2 · x2, x1 + x2))

In fact, such a decision tree is not unique for values in the table. A more
compact one can be found by our algorithm:

y = ite(2 ≤ x3 ≤ 5, 2 · x3 − 4, x1)

In the rest of the paper, we show how such a solution can be discovered
automatically.
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3 Background and Notation

A many-sorted first-order theory consists of disjoint sets of sorts S, function
symbols F and predicate symbols P. A set of terms is defined recursively as
follows:

term ::= f(term, . . . , term) | const | var

where f ∈ F , const is an application of some v ∈ F of zero arity, and var is a
variable uniquely associated with a sort in S. A set of quantifier-free formulas
is built recursively using the usual grammar:

formula ::= true | false | p(term, . . . , term) | Bvar |
¬formula | formula ∧ formula | formula ∨ formula

where true and false are Boolean constants, p ∈ P, and Bvar is a variable
associated with sort Bool.

In this paper, we consider the theory Linear Integer Arithmetic (LIA). In
LIA, C def= {Z, Bool}, F def= {+, ·, div}, and P def= {=, >,<,≥,≤, 	=}. We define ite
as a shortcut for if-then-else, i.e., ite(x, y, z) def= (x ∧ y) ∨ (¬x ∧ z).

Formula ϕ is called satisfiable if there exists an interpretation m, called a
model, of each element (i.e., a variable, a function or a predicate symbol), under
which ϕ evaluates to true; otherwise ϕ is called unsatisfiable. If every model of
ϕ is also a model of ψ, then we write ϕ =⇒ ψ. A formula ϕ is called valid if
true =⇒ ϕ.

For existentially-quantified formulas of the form ∃y . ψ(�x, y), the validity
requires that each interpretation for variables in �x and each function and pred-
icate symbol in ψ can be extended to a model of ψ(�x, y). For a valid formula
∃y . ψ(�x, y), a term sky(�x) is called a Skolem term, if ψ(�x, sky(�x)) is valid.

In the paper, we assume that all free variables �x are implicitly universally
quantified. For simplicity, we omit the arguments and simply write ϕ when the
arguments are clear from the context.

Extracting Skolem Terms. Our work is built on top of a lazy quantifier-
elimination method for checking validity and performing synthesis called AE-
VAL [11,12]. It generates a structured synthesis solution in the form of a decision
tree. Its main procedure is based on deriving a sequence of Model-Based Pro-
jections (MBPs) [19] to lazily decompose the overall problem, where each model
is used to derive a precondition that captures an arbitrary subspace on the �x
variables and a Skolem term for the �y variables. Unlike other prior work [21],
AE-VAL does not require converting the formula into Disjunctive Normal Form
(DNF), which often leads to larger and redundant solutions. AE-VAL also uses
minimization and compaction procedures for on-the-fly compaction of the gener-
ated synthesis solution. In particular, it derives Skolem terms that can be re-used
across multiple preconditions for a single output and shares the preconditions in
a common decision tree across multiple outputs in a program. This is done by
identifying theory terms that can be shared both within and across outputs.
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However, AE-VAL handles relational specifications (FS tasks) only, and it
is not designed to handle input-output examples (PBE tasks) properly. When
given concrete input-output examples, it would generate an implementation in
the form of a decision tree with the depth equal to the number of examples (as
described in more detail in the next section).

4 Synthesis by Examples

We formalize the case when all examples are complete and defer the case of
partially defined examples till the next section.

Definition 1. Let �x = 〈x1, . . . , xn〉 be a vector of input variables and E be
a set of m examples, where each �e ∈ E is a vector of integers and �e has n + 1
components. For an output variable y, vectors �x and �e ∈ E are connected through
an example-formula ζ:

ζ(e, �x, y) def=
∧

1≤i≤n

(�x[i] = �e[i]) =⇒ y = �e[n + 1]

We assume consistency among all examples in E, i.e., that the following
formula is valid:

∀�x .∃y .
∧

�e∈E

ζ(�e, �x, y) (1)

Note that the formula could only be invalid if there are two vectors �e1, �e2 ∈ E,
such that:

�e1[n + 1] 	= �e2[n + 1] ∧ ∀i . 0 ≤ i ≤ n =⇒ �e1[i] = �e2[i]

A Skolem term for y in (1) can be derived in the form of a nested ite-block
of depth m as shown below:

ite
( ∧

1≤i≤n

(�x[i] = �e1[i]), �e1[n + 1], ite
( ∧

1≤i≤n

(�x[i] = �e2[i]), �e2[n + 1], . . . , 0
))

(2)

where each �ei ∈ E identifies the i-th level of the decision tree, and the last else-
branch represents the case when none of examples match current values of �x,
thus an arbitrary value (e.g., 0 as in (2)) can be assigned to y.

We wish to generate a Skolem term for y as a decision tree with a smaller
depth. That is, among the space of terms of form (3), we wish to identify the
one with a (preferably) minimal number of ite-blocks.

Definition 2. A Skolem term for an example-formula (1) is called generalized
if it has the following form:

ite
(
pre[1](�x), sk [1](�x), ite

(
pre[2](�x), sk [2](�x), . . . , 0

))
(3)
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where the vector pre collects formulas over �x (called preconditions), and the
vector sk collects terms over �x (called local Skolems). Each pair 〈preF , skF 〉
corresponds to a subset of examples F ⊆ E, such that (4) and (5) hold:

∀�e ∈ F .
∧

1≤i≤n

(�x[i] = �e[i]) =⇒ preF (�x) (4)

∀�e ∈ F .
∧

1≤i≤n

(�x[i] = �e[i]) ∧ y = skF (�x) =⇒ y = �e[n + 1] (5)

We present an algorithm that partitions the given set E into disjoint subsets,
which give rise to vectors pre and sk . An overview of the proposed algorithm
is shown in Algorithm 1. The key insight is to identify each subset F ⊆ E
by inferring a precondition preF and a local Skolem term skF from pairs of
examples 〈�e1, �e2〉 ∈ E ×E. Once a subset F , such that (5) holds, is discovered, it
is straightforward to generate preF : The algorithm relies on helper procedures to
discover a candidate precondition (line 4) and a candidate term for each pair (line
5). These procedures, applied to all pairs of examples, produce a set of candidate
preconditions and a set of candidate terms. However, there is no guarantee that
a precondition and a term, which suit all given examples, could be discovered.
But we can often find some precondition and some term that will suit many
examples, which will constitute the desired subset F . In order to identify it,
our algorithm filters bad preconditions and terms and ranks successful ones. In
the rest of this section, we outline a particular instantiation of subroutines of
Algorithm 1 for LIA1.

Method getRange. To define a range of values of variables �x between �e1
and �e2 we introduce a function M :

M(�e1, �e2, i)
def=

{
�e1[i] ≤ �x[i] ∧ �x[i] ≤ �e2[i], if�e1[i] ≤ �e2[i]
�e2[i] ≤ �x[i] ∧ �x[i] ≤ �e1[i], otherwise

Then, formula γ representing a range between �e1 and �e2 is simply computed as:

γ
def=

∧

1≤i≤n

M(�e1, �e2, i) (6)

Method connect. Relationships between variables �x and y are determined
by a canonical equation of a line and two vectors of their values, �e1 and �e2:

�x[1] − �e1[1]
�e2[2] − �e1[1]

= . . . =
�x[n] − �e1[n]
�e2[n] − �e1[n]

=
y − �e1[n + 1]

�e2[n + 1] − �e1[n + 1]
(7)

1 With the required support for quantifier elimination, it can be immediately adapted
to rational arithmetic, nonlinear arithmetic, and bitvectors. But to achieve more
compact solutions, these algorithms could benefit from additional adjustments in
method connect which are left for future work.
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Algorithm 1: getBestClass(�x, y, E)
Input: �x, y, E
Output: F, preF , skF , s.t. (4) and (5) hold

1 Cands ← ∅;
2 R ← λξ . ∅;
3 for 〈�e1, �e2〉 ∈ E × E do
4 γ ← getRange(�e1, �e2);
5 X ← connect(�e1, �e2);
6 for ξ ∈ X do
7 if sanityTest(γ, ξ) then
8 ξ ← localSkolem(γ, ξ);
9 Cands ← Cands ∪ {ξ};

10 R(ξ) ← R(ξ) ∪ {γ};

11 for ξ ∈ Cands do
12 R(ξ) ← R(ξ) ∪ generalize(R(ξ));
13 for γ ∈ R(ξ) do rank(γ, ξ, E);

14 return largest(E, γ, ξ);

Algorithm 2: PBE(�x, y, E)
Input: �x, y, E
Output: Skolem term sk for y in (1)

1 if E = ∅ then return pickAny(Z);

2 F, preF , skF ← getBestClass(�x, y, E);
3 if F = ∅ then
4 �e ← pickAny(E);
5 F ← {�e};
6 preF ← ∧

1≤i≤n

(�x[i] = �e[i]);

7 skF ← (y = �e[n + 1]);

8 return ite(preF , skF ,PBE(�x, y, E \ F ));

It gives rise to various possible equalities connecting components of �x and y.
In particular, any two equalities of form (�x[i] − �e1[i]) · (�e2[n + 1] − �e1[n + 1]) =
(�e2[i] − �e1[i]) · (y − �e1[n + 1]), where 1 ≤ i ≤ n, can be summed (or subtracted)
side-by-side.

Example 1. Recall our set of input-output tuples from Sect. 2. Suppose, in the
first loop of Algorithm 1, we are considering the first two tuples (i.e., rows in
Table 1): ζ1

def= (x1 = 1 ∧ x3 = 1) =⇒ (y = 1) and ζ2
def= (x1 = 0 ∧ x3 = 2) =⇒

(y = 0). The getRange method produces γ1,2
def= 0 ≤ x1 ≤ 1 ∧ 1 ≤ x3 ≤ 2.

The connect method produces equalities X1,2 = {y = x1, y = 2 − x3, and
2 · y = x1 − x3 + 2} (the last one is produced by summing left and right sides of
the first two equalities).
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Methods sanityTest and localSkolem. Let γ be a range-formula over �x, and
ξ be a formula over �x and y. We filter a set of pairs 〈γ, ξ〉 based on the following
criterion:

∀�x . γ(�x) =⇒ ∃y . ξ(�x, y) (8)

If formula (8) is valid, a Skolem term for y exists and can be extracted, e.g.,
using the AE-VAL algorithm.

Example 2. Recall ζ1 and ζ2 produced from our input-output tuples (see Sect. 2)
in Example 1. For each ξ ∈ X1,2 and γ1,2, we pose a query of form (8):

∀x1, x2, x3 . 0 ≤ x1 ≤ 1 ∧ 1 ≤ x3 ≤ 2 =⇒ ∃y . y = x1 valid
∀x1, x2, x3 . 0 ≤ x1 ≤ 1 ∧ 1 ≤ x3 ≤ 2 =⇒ ∃y . y = 2 − x3 valid
∀x1, x2, x3 . 0 ≤ x1 ≤ 1 ∧ 1 ≤ x3 ≤ 2 =⇒ ∃y . 2 · y = x1 − x3 + 2 invalid

The results for these queries are shown on the right. Since the last query is
invalid, we thus proceed with the other candidates y = x1 and y = 2 − x3 only.

Note that if for some ξ ∈ X, the coefficient for y is 1, then any query of
form (8) is valid (and a Skolem function for y is ξ itself).

Method generalize. Given a set of factored preconditions of ξ (recall (6)), we
fix a variable x ∈ �x and identify factors over x across all preconditions. Then,
we iteratively prune this set of formulas by applying the following rule:

α1 ≤ x ∧ x ≤ α2 α3 ≤ x ∧ x ≤ α4

min(α1, α3) ≤ x ≤ max (α2, α4)
if α3 ≤ α2 ∧ α1 ≤ α4

Repeating this operation yields a new formula over x. Repeating this for all
x ∈ �x and conjoining the resulting formulas gives us a new range-formula for ξ.

Note that this new formula is an over-approximation of the disjunction of
the original preconditions for ξ. By using these preconditions for all candidate
Skolem terms, we face a trade-off between the depth of the resulting decision tree
and the syntactic size of preconditions. That is, some of the over-approximated
preconditions could be too coarse, and thus filtered away (see method rank of
the algorithm). But if an over-approximated precondition has not been filtered,
it is likely to be more compact and general.
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Example 3. Let γ1,6
def= 1 ≤ x1 ≤ 2∧1 ≤ x3 ≤ 6 and X1,6 = {y = x1}.2 Following

Examples 1 and 2, y = x1 is also associated with γ1,2 = 0 ≤ x1 ≤ 1∧1 ≤ x3 ≤ 2.
Thus, our generalization produces γ1,2,6

def= 0 ≤ x1 ≤ 2 ∧ 1 ≤ x3 ≤ 6.

Methods rank and largest. These two methods identify the best formula (or
a combination of formulas) among the candidates. We evaluate a precondition γ
and a suitable candidate local Skolem term ξ on all examples �e ∈ E. In particular,
we identify a subset of examples, for which implication (9) holds (denoted F (γ))
and a subset of examples, for which implication (10) does not hold (denoted
G(ξ)).

∧

1≤i≤n

(�x[i] = �e[i]) =⇒ γ(�x) (9)

ξ(�x) ∧
∧

1≤i≤n

(�x[i] = �e[i]) =⇒ y = �e[n + 1] (10)

Cardinalities of F (γ) and G(ξ) give a ranking to each 〈γ, ξ〉. If G(ξ) is non-
empty, then the ranking is zero. Otherwise, the ranking is |F (γ)|.
Example 4. To rank precondition γ1,2,6 for a candidate y = x1 generated in
Example 3, we enumerate all input-output tuples from Table 1 and test implica-
tions (9) and (10). It appears that set G(y = x1) is nonempty since for the fifth
tuple (10) is invalid:

y = x1 ∧ x1 = 2 ∧ x2 = 4 ∧ x3 = 5 	=⇒ y = 6

Another precondition γ2,3,4,5
def= 2 ≤ x3 ≤ 5 for candidate y = 2·x3−4 (computed

similarly) gets ranking 4 since set G(y = 2 · x3 − 4) is empty, and F (γ2,3,4,5)
consists of four examples.

Since ranking explicitly checks partially generated functions w.r.t. specifica-
tions, our solutions are correct by construction. More formally, it is represented
by the following lemma.

Lemma 1. Any pair of formulas 〈γ, ξ〉 with a non-zero ranking can be used to
extract the outer ite-block of the Skolem term.

For getting a candidate formula with the best coverage, we select the formula
with a higher (and non-zero) ranking. It intuitively corresponds to the largest
subset of examples that can be described by a single precondition and a single
local Skolem term.

2 We refer the reader to Sect. 5 that describes a process of learning from partial
examples.
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Algorithm 2 describes an algorithm to construct a decision tree recursively.
It starts with the full set of given examples E, and uses Algorithm 1 to identify
the largest subset F ⊆ E, elements of which share the same precondition and
local Skolem term (to be used at one level of the decision tree). In the case when
F is empty, it is enough to pick any element of E and create a precondition
and a local Skolem term in a straightforward way. Then, all elements of F are
excluded from E, and the algorithm recurses. It converges when E is empty, and
for this (the deepest) level of the decision tree, we can pick any local Skolem
term (e.g., an integer constant) with no precondition.

5 Synthesis by Partial Examples

In this section, we present a generalization of the synthesis by examples algorithm
(described in Sect. 4) that relies on subvectors of examples.

Definition 3. Let �x be a vector containing n components and s be an injective
function to {1, . . . , n}. A subvector of �x (denoted �x|s) is a vector, such that for
all i, �x|s[i] = �x[s(i)].

Intuitively, �x|s is produced by removing components from �x and preserving
the order of the remaining components. We naturally extend this definition to
sets of vectors, i.e., E|s

def= {�e|s | �e ∈ E}.
The algorithms from Sect. 4 can be used for subvectors of input variables

and sets of subvectors of examples. In particular, let s be an injective function
to {1, . . . , n}, we can apply Algorithm 1 to �x|s and E|s, if the following formula
is valid:

∀�x|s .∃y .
∧

�e∈E

ζ(�e|s, �x|s, y) (11)

There are two main advantages for doing this. First, it may give us more con-
cise and general solutions (which are expressible using fewer variables). Second,
while extracting subvectors, we shrink the set of examples, which lowers the cost
of the synthesis procedure.

Thus, the whole procedure can be supplied with a preprocessing, during
which various mappings s are considered and formulas of form (11) are checked
for validity. The mapping s with the smallest domain size can be then used for
synthesis by examples. The speed of the entire procedure could then be improved,
but the effectiveness of the resulting solution could worsen.
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Example 5. Recall Example 1, let s be a function with dom(s) = {1} and
img(s) = {3}. Then E|s is constructed from E by keeping the values of x3.
Formula (11) is compiled as follows:

∀x3,∃y . (x3 = 1 =⇒ y = 1) ∧ (x3 = 2 =⇒ y = 0) ∧ (x3 = 3 =⇒ y = 2)
(x3 = 4 =⇒ y = 4) ∧ (x3 = 5 =⇒ y = 6) ∧ (x3 = 6 =⇒ y = 2)

The formula above is valid, and Algorithm 2 can be applied to extract the
following Skolem term:

y = ite(2 ≤ x3 ≤ 5, 2 · x3 − 4, ite(x3 = 1, 1, 2))

Note that this Skolem term is not optimal (the one provided in Sect. 2 has a fewer
nested ite-blocks). A heuristic in the rest of the section aims at discovering a
more effective solution.

Some of examples could be defined only partially, i.e., using a sequence
of injective functions s1, . . . , sm to {1, . . . , n} that gives rise to sequences
�x|s1 , . . . , �x|sm

and E1, . . . , Em. For each si, examples from Ei use values of �x|si

and y.
The task is to extract a Skolem term for the given valid formula:

∀�x .∃y .
∧

1≤i≤m

∧

�e∈Ei

ζ(�e, �x|si
, y) (12)

Algorithm 3 shows an adaptation of Algorithm 2 applicable to the union
of sets of all examples E

def= E1 ∪ . . . ∪ Em. It iteratively produces subvectors
of all examples and finds such a subset of them, which gives the valid example-
formula (line 3). Then, it applies Algorithm 1 to detect a level of the decision tree
(line 4) and shrinks the set of examples accordingly (lines 10–13). Similarly to
Algorithm 2, the algorithm recurses until the entire decision tree is constructed
(line 3).

Theorem 1. If
⋂

1≤i≤m

img(si) 	= ∅, then Algorithm 3 returns a Skolem term

for (12).

Example 6. In the first iteration, Algorithm 3 considers function s from Exam-
ple 5. As a result, it extracts four input-output tuples (recall Example 4). In
the second iteration, Algorithm 3 takes as input just two remaining tuples and
considers function s′, such that dom(s′) = {1} and img(s′) = {1}. It appears
that γ1,6 and the y = x1 are considered again (recall Example 1). But in this
case (as opposed to Example 4), their ranking is computed with respect to only
two input-output tuples, thus resulting in F (γ1,6) = ∅ and |G(y = x1)| = 2.
This concludes the search, and the final Skolem term gets composed from two
nested ite-blocks (i.e., exactly as provided in Sect. 2).
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Algorithm 3: partialExsPBE(�x, y, {〈si, Ei〉}1≤i≤n)
Input: �x, y: variables, {〈si, Ei〉}1≤i≤n: set of pairs of functions and sets of

partial examples, E =
⋃

1≤i≤n

Ei

Output: Skolem term sk for y in (12)

1 if E = ∅ then return pickAny(Z);

2 let s be such that ∀sj , img(s) ⊆ img(sj);
3 E′ ← getValidSubset(E|s);
4 F, preF , skF ← getBestClass(�x|s, y, E′);
5 if F = ∅ then
6 �e ← pickAny(E′);
7 F ← {�e};
8 preF ← ∧

i∈img(s)

(�x[i] = �e[i]);

9 skF ← (y = �e[n + 1]);

10 Rem ← ∅;
11 for 1 ≤ i ≤ n do
12 Ei ← {e ∈ Ei | �e|s /∈ E′};
13 if Ei �= ∅ then Rem ← Rem ∪ 〈si, Ei〉;
14 return ite(preF , skF , partialExsPBE(�x, y,Rem));

6 Hybrid Synthesis: PBE + FS

Suppose we are given an additional requirement ψ(�x, y) for the input and output
variables. Note that ψ may be a partial specification, i.e., it may impose necessary
but not sufficient conditions for correctness. The goal is to discover a Skolem term
for (13):

∀�x .∃y .
∧

�e∈E

ζ(�e, �x, y) ∧ ψ(�x, y) (13)

If ψ is consistent with the set of examples, then a Skolem term for (13) can
be discovered by the procedure from Sect. 4 with the following differences:

– Default local Skolem term in Algorithm 2 (line 1).
The random choice is replaced with a Skolem term for y in formula
∀�x .∃y . ψ(�x, y) (i.e., solve a standard functional synthesis task without exam-
ples). In our implementation, we use AE-VAL.

– Criteria (8) and (10) for methods sanityTest and rank, respectively. We
check the validity of formulas, respectively (14) and (15), enhanced with ψ.

∀�x . γ(�x) =⇒ ∃y . ξ(�x, y) ∧ ψ(�x, y) (14)

ξ(�x) ∧
∧

1≤i≤n

(�x[i] = �e[i]) =⇒ y = �e[n + 1] ∧ ψ(�x, y) (15)

– Extra criterion for method generalize. We perform an extra sanity
check (14) for each over-approximated precondition.
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Theorem 2. With these adjustments, the output of Algorithm 2 is a Skolem
term for (13).

Example 7. Consider a synthesis task consisting of (1) values specified in Table 1,
and (2) an additional requirement y ≥ x1 ∨ y ≥ x2. Thus, the entire formula is
as follows:

∀x1, x2, x3 .∃y . y ≥ x1 ∨ y ≥ x2 ∧
(x1 = 1 ∧ x3 = 1 =⇒ y = 1) ∧ (x1 = 0 ∧ x3 = 2 =⇒ y = 0)∧
(x2 = 1 ∧ x3 = 3 =⇒ y = 2) ∧ (x2 = 2 ∧ x3 = 4 =⇒ y = 4)∧

(x1 = 2 ∧ x2 = 4 ∧ x3 = 5 =⇒ y = 6) ∧ (x1 = 2 ∧ x2 = 0 ∧ x3 = 6 =⇒ y = 2)

This is a suitable task for AE-VAL, but it would return a Skolem term as a
decision tree with six levels. In contrast, our algorithm produces a Skolem term
for y with just three levels:

ite
(
4 ≤ x3 ≤ 6 ∧ 0 ≤ x2 ≤ 4, x2 + 2,

ite
(
1 ≤ x3 ≤ 2 ∧ 0 ≤ x1 ≤ 1, x1, ite(x2 = 1 ∧ x3 = 3, 2, x1)

))

The deepest decision, x1, is a Skolem term for y in formula ∀x1, x2, x3 .∃y . y ≥
x1 ∨ y ≥ x2. The preconditions and relationships identified in Example 6 are not
suitable.

7 Evaluation

We implemented our synthesis algorithm on top of the AE-VAL [11] tool 3 which
uses the Z3 SMT solver [7]. To compare our implementation with state-of-the-
art tools, we considered the “plain” AE-VAL, CVC4 [23], EUsolver [3] and
DryadSynth [15]. None of them supports discovery of relationships among data
tuples: AE-VAL, CVC4, and DryadSynth return a straightforward Skolem,
i.e., a formula of form (2) with nested ite-blocks of the highest depth m; and
EUsolver has frontend issues. The timings for discovery of a straightforward
Skolem are usually small even for a large number of examples. Since we do not
consider a straightforward Skolem an acceptable solution for our class of tasks,
we do not present a detailed evaluation report for the competing tools. Instead,
we focus on details of our AE-VAL-PBE and AE-VAL.

We considered 59 benchmarks from various Assume-Guarantee contracts
written in the Lustre programming language [17]. These are the relational spec-
ifications derived mainly from industrial projects, such as a Quad-Redundant
Flight Control System, a Microwave model, a Generic Patient Controlled Anal-
gesia infusion pump, a Cinderella-Stepmother game, and several tricky hand-
written examples. The depths of solutions for these original benchmarks, gener-
ated by AE-VAL, range from 1 to 8 (median is 3, geometric mean is 2.3).
3 The source code and benchmarks are available at https://github.com/grigoryfedyuko

vich/aeval.

https://github.com/grigoryfedyukovich/aeval
https://github.com/grigoryfedyukovich/aeval
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Fig. 1. Stability of our solutions.

The specifications of the system
were enhanced by the designer with
sets of examples that describe some
additional features of the desired
implementations (thus, the Skolem
terms generated for the original spec-
ification might no longer be valid
for the corresponding enhanced spec-
ifications). We considered 32 unique
examples to enhance each benchmark.
The depths of straightforward solu-
tions, generated by AE-VAL for these
benchmarks, range from 1 to 106
(median is 37, geometric mean is 32).
In contrast, the depths of the solu-
tions by our AE-VAL-PBE for these
benchmarks are an order of magni-
tude smaller, i.e., they range from 1
to 17 (median is 5, geometric mean
is 5.5). Thus, the AE-VAL-PBE was
shown to be more effective when com-
puting compact solutions: the ratio
between depths ranges from 1 to 24,
median is 6.8, geometric mean is 5.8.
The synthesis time for producing the
default local Skolem terms, as well as
the straightforward decision trees was
negligible.

Effect of number of examples. A
common characteristic exhibited by
the “plain” AE-VAL when enhancing
relational specifications with examples
is the growth of the resulting decision
trees. Intuitively, the more examples
are given, the larger solutions are gen-
erated. In this subsection we show that
such a scenario is uncommon for our
approach.

We performed three additional experiments, in which we kept respectively
16, 8, and 4 given examples out of the original 32 and repeated our synthesis
procedure. Although the computation of a decision tree for fewer examples is
less resource-demanding, the precision of solutions remained roughly the same.
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For 16 examples, the median depth of the decision tree is 4.9 (geometric mean
is 5). For 8 examples, the median depth is 4.4 (geometric mean is 4), and for 4
examples, the median depth is 3.9 (geometric mean is 4).

We refer to this feature of our algorithm as stability. More statistics are
shown in Fig. 1 on these three experiments. For every i ∈ {8, 16, 32} and for
each benchmark, we computed a ratio of the decision-tree depth for i examples
to the depth of the decision tree for 4 examples (shown grey). Then, we compared
the two for the runtime (shown black). Intuitively, the two graphs in each plot
show the growths of the solution size and the synthesis time, respectively, when
increasing the number of examples.

Clearly, for most of our benchmarks, the resulting solutions have the same
depths, and thus do not significantly differ from each other. For a few bench-
marks, however, we witnessed certain anomalies with the solving time, which we
believe can be explained by the greediness of the algorithm and a large number
of computed candidate relationships. In the future, we would like our procedure
to invest effort in optimizing this better.

8 Related Work

Our work is broadly related to automated synthesis as well as verification tech-
niques that utilize decision procedures.

Synthesis Techniques. Many successful instances of the general synthesis frame-
work are based on enumerative search, where a user-provided grammar is used to
constrain the space of candidate programs, along with checking correctness with
respect to a specification. These include techniques that collect input-output
examples lazily, by querying the specification [2,3]. In contrast, our approach
deals with input-output examples only if they are explicitly given. More impor-
tantly, our technique does not require any additional templates or grammar. In
this respect, our technique is closer to functional synthesis approaches [11,21,23]
that directly formulate the synthesis tasks as quantified formulas to be solved
by decision procedures. However, deriving compact implementations continues
to be a challenge and provides the motivation for the new ideas developed in this
paper. A compaction algorithm, employed by [3], proceeds by repairing the deci-
sion trees guided by new examples. In contrast, our approach performs a global
search: a compact decision tree is constructed at once, by taking into account all
available examples. In other words, our algorithm never revisits the upper levels
of already constructed decision trees and never asks for more examples.

Another class of techniques has been successfully used for synthesis of pro-
grams only by examples, e.g., string and other transformations in spread-
sheets [14,26,27,31]. These often require a domain-specific grammar or some
type specifications to constrain the search for programs. Since a set of examples
is often incomplete in practice, some generalization in dealing with examples is
useful, e.g., via interaction with the user [9] or by using machine learning tech-
niques [5,8,25]. We are inspired by the success of these techniques and the rela-
tive ease with which users can provide examples. However, our focus is strictly on
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numerical domains only, and we have experimented with applications in the area
of reactive synthesis [17]. As mentioned earlier, a straightforward application of
existing functional synthesis techniques on such input-output examples results
in large implementations. Our motivation is to find smaller implementations. We
expect that our completely automated technique could be potentially used as a
submodule within a broader synthesis framework targeting a richer domain.

Table constraints, which express the combinations of values of variables that
are allowed or forbidden, are widely used in Constraint Programming. Several
heuristics to compress tables have been proposed [6,16,18,30,32]. While the
table compression task can be seen as a generalization of our PBE task, none
of these approaches proceeds further and generates an implementation from the
compressed tables.

Verification Techniques. Our technique for finding symbolic linear relationships
among examples is similar to techniques [10,13,20,22,24] for synthesis of invari-
ants in program verification. In particular, these techniques can generate formu-
las from concrete values of program variables while discovering inductive invari-
ants of loops. In this line of work, various feasible paths are obtained using
execution or symbolic execution to generate data with values of all variables. An
invariant requires generating a relation over all program variables that transit
through the loop. Functional synthesis tasks, such as the one we are solving, aim
at embedding a function into this relation, thus requiring more work.

9 Conclusions

We have presented a novel approach to synthesis that leverages PBE specifica-
tions and uses an FS framework for LIA. Our approach discovers preconditions
and local Skolem terms by iterative partitioning of the set of examples into
subsets. Each subset is described using detected relationships over inputs and
outputs, which are directly used in the resulting implementations. The approach
is easily extendable to deal with hybrid tasks, which are formulated in part
by examples and in part by FS specifications. Our implementation on top of
AE-VAL exhibits a promising performance on a set of reactive synthesis bench-
marks enhanced with examples. Decision trees produced by our tool are an order
of magnitude smaller than ones produced by the “plain” AE-VAL. In the future,
we would like to extend this approach to other theories, such as arrays, strings,
and algebraic data types, as well as to adopt more advanced ordering criteria
and strategies for solution counting [4].
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2. Alur, R., Černý, P., Radhakrishna, A.: Synthesis through unification. In: Kroening,
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Abstract. This paper introduces SolverCheck, a property-based test-
ing (PBT) library specifically designed to test CP solvers. In particu-
lar, SolverCheck provides a declarative language to express a propaga-
tor’s expected behavior and test it automatically. That language is easily
extended with new constraints and flexible enough to precisely describe
a propagator’s consistency. Experiments carried out using Choco [41],
JaCoP [27] and MiniCP [35] revealed the presence of numerous non-
trivial bugs, no matter how carefully the test suites of these solvers have
been engineered. Beyond the remarkable effectiveness of our technique
to assess the correctness and robustness of a solver, our experiments
also demonstrated the practical usability of SolverCheck to test actual
CP-solvers.

Introduction

Constraint Programming (CP) owes much of its success to the declarative aspect
of its models and the expressiveness of its constraints. Obviously, CP wouldn’t
have been the achievement we all know if it weren’t for the efficiency of the
propagators that have been devised over the years to enforce some degree of
consistency for the constraints enlisted in the catalog [5]. E.g. alldiff [42], reg-
ular [40], element [24]. Nevertheless, the success of the tools developed in our
community remains fragile as results of a solver might all be invalidated by
a bogus implementation of one single propagator. As it turns out, the algo-
rithms and data structures involved in those propagators are quite advanced
and sometimes rely on state-restoration mechanisms. This is why, ensuring the
correctness and robustness of their implementation is crucial to the success of
CP as a whole. However, checking the correctness of a propagator by focusing
solely on the absence of solution removal is far from enough. Indeed, in order
to be able to tackle real world problems, it is essential that a solver be both
correct and efficient. In practice, the efficiency of a propagator results from a
balance between the strength of the enforced consistency and the complexity of
the algorithm used to implement it. Hence, being able to test the consistency
level imposed by a propagator becomes a necessity. Else, should the consistency
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be weaker than announced, some problem instances might become intractable
and that intractability could hardly be analyzed or reasoned about.

In that context, we propose SolverCheck: an open-source property-based test-
ing (PBT) library inspired by QuickCheck [13] for Haskell. It has been specifi-
cally designed and engineered to improve the quality of the tests used to validate
CP solvers. In practice, SolverCheck makes it easy to both test the correctness
of the propagators and to test the level of consistency enforced by the latter.
Moreover, SolverCheck aims at being an extensible framework. Therefore, it
comes with simple interfaces through which a user can easily describe the rela-
tion imposed by a new constraint. Concretely, this relation is described using a
Checker, a predicate deciding whether or not a tuple belongs to the constraint
relation. Similarly, the consistency level that can be tested need not necessarily
be one of the classical consistency level (DC, BC(D), BC(Z), RC, FC) [6] as
SolverCheck permits the definition of custom mixed consistencies matching the
exact expected behavior of some given propagator. Additionally, SolverCheck is
able to perform dynamic checking and hence to explicitly test the correctness of
the state-restoration mechanisms involved in the targeted propagators.

Our contribution with this paper is the following: we propose SolverCheck as
a DSL and tool to help improve the quality and robustness of JVM-based CP
solvers. Given the very implementation-minded nature of the CP community, we
hope that it can benefit the whole community and foster further innovation in
the same way as Minizinc [36], XCSP3 [7], CPViz [44], Essence [23], etc. have in
the past.

Outline. The rest of our paper is organized as follows: Sects. 1 and 2 present
the background material necessary to understand the purpose and methodol-
ogy applied in SolverCheck. Then, Sect. 3 briefly presents other related lines of
research and how these relate to our work. After that, Sect. 4 introduces the
various capabilities of SolverCheck through a simple yet illustrative example.
Section 5 gives some more details relative to the implementation of our tool.
Finally, Sect. 6 reports on the experiments that were made to validate the effec-
tiveness and practical usability of SolverCheck before conclusions are drawn in
Sect. 7.

1 Property-Based Testing

SolverCheck adopts the so-called property-based testing paradigm which tack-
les the weaknesses of the classical example-based testing methodology. All the
open-source solvers that we are aware of, in particular Gecode [46], Choco [41],
JaCop [27], Or-tools [38], OscaR [39], and MiniCP [35], maintain a test suite to
test the solver at the granularity of the constraints. The test suites of most of
the solvers1 follow the classical example-based approach.
1 Gecode, and likewise Choco for some of its propagators, are a notable exception

which is covered in the related work section.
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As the name suggests, example-based testing relies on a tester to describe
concrete situations (example, with actual variables and domain instantiation)
supposedly representative of a class of errors. By combining many such exam-
ples, the tester creates a broad test suite covering a large number of poten-
tial problems. However, we point out two weaknesses of this approach. First,
example-based unit tests are expensive to write and to maintain. Manually find-
ing interesting instances to test is no easy task. It requires some expertise and
intuition. Also, test code is often treated as a second class citizen: the quality
standards applied to that fraction of the code are less stringent than for the rest
of the code base. Therefore, it results that the code composing the test suites is
often crippled with duplicate fragments. Moreover, the hard-coded instances fail
to clearly communicate the intent regarding what important property is being
tested with a given example. For instance, the objective of testing a global con-
straint’s consistency level does not shine from any given test example. Add to
that picture the fact that example-based tests often opt for an all imperative
coding style, and the original goal of the test becomes difficult to grasp. Mean-
while, example-based testing does not offer any means to improve on that floor
or to test that kind of property in a generic way.

Property-based testing (PBT) addresses those weaknesses by a combination
of fuzzing [45] and formal specification. Doing so, PBT changes the role of the
test engineer. With PBT he must express the general properties that must hold
for all executions of a given software rather than manually crafting lots of test
cases (example-based testing). These properties are expressed in a high-level
declarative language which abstracts away the details of actual test cases. As
the name suggests, this method is test-based. Hence, it is inherently incomplete.
Nevertheless, moving the burden of actual test case generation from the human
tester to an automated tool makes PBT a remarkably effective approach to
identifying bugs in practice.

2 Mixed Consistency

In order to solve a CSP, filters are used to reduce the search space. A filter applied
on a constraint aims at establishing some consistency property of this constraint
by removing some values in the domain of its variables, without removing any
solutions. We thus hereby only consider filters for domain-based consistencies.
That is filters reducing the domain of variables.

In particular, we would like to set the focus on filters where different consis-
tencies are mixed in a constraint. The idea of mixed consistency is to maintain
different levels of consistency on the different variables of a constraint. The con-
cept of mixed consistency has been introduced in [17] to handle graph and set
variables. It is also used in [29,31].

A constraint c over the variables (x1, . . . , xn) (its scope) is a relation over the
values of the variables. Like any relation, a constraint c can either be defined in
extension as the set of all the n-tuples belonging to c. Or it can be defined in
comprehension using a checker c(v1, . . . , vn) stating if 〈v1, . . . , vn〉 belongs to c.
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The domain of a variable x is a finite set of discrete values D(x) Ă Z. It
inherits the usual properties of proper finite subsets of Z. In particular, it is either
empty or it has a minimum (noted lb(D(x))) and a maximum (noted ub(D(x))).
We denote D the set of tuples D(x1) ˆ . . . ˆ D(xn). A tuple τ “ 〈v1, . . . , vn〉 is
said to be valid if τ P D. The element vi of the tuple is denoted τi.

A partial assignment is a mapping associating a domain to each variable.
The idea of support is central in the notion of consistency. Intuitively, a

support of a value of a variable is a valid tuple, involving this value and satisfying
the constraint. The definition of support can also be extended by considering sets
larger than the actual variables domains. For instance, one can consider all the
integer values between the bounds of the domain. We define DZ(x) “ {v P Z |
lb(D(x)) ď v ď ub(D(x)}.

Definition 1. A support on c of (xi, v) in D is a tuple τ P D such that τ P c
and τi “ v. A bound(Z) support on c of (xi, v) in D is a tuple τ P DZ such that
τ P c and τi “ v.

Different classical levels of consistency can now be defined. Each consistency,
however, focuses on a single variable of the constraint. This will allow to later
combine them in a mixed consistency.

Definition 2. (DC) A constraint c is domain consistent on xi with respect to
D iff @v P D(xi), there exists a support on c of (xi, v) in D.

Definition 3. (RC) A constraint c is range consistent on xi with respect to D
iff @v P D(xi), there exists a bound(Z) support on c of (xi, v) in D.

Definition 4. (BC(D)) A constraint c is bound(D) consistent on xi with respect
to D iff (xi, lb(D(xi))) and (xi, ub(D(xi)) have a support on c in D.

Definition 5. (BC(Z)) A constraint c is bound(Z) consistent on xi with respect
to D iff (xi, lb(D(xi))) and (xi, ub(D(xi)) have a bound(Z) support on c in D.

Definition 6. (FC) A constraint c is forward checking consistent on xi with
respect to D iff when forall j ‰ i D(xj) is a singleton, then c is domain consistent
on xi with respect to D.

Mixed consistency can now be defined with a consistency level associated to
each variable of the constraint.

Definition 7. Let Φ “ 〈φ1, . . . , φn〉 with φi P {DC, RC, BC(D), BC(Z), FC}.
The constraint c is Φ mixed consistent with respect to D iff c is φi consistent on
xi with respect to D.

When Φ is a constant tuple, the above definition reduces to the standard
definition of domain consistency or to the other standard levels of consistencies.

Given a consistency φ and a constraint c, we associate a filter φc(x,D) yield-
ing a domain D′ such that D′ ⊆ D, c X D “ c X D′ (same solutions) and c is φi

consistent on x with respect to D′. A filter Φc(D) is also associated to a tuple
of consistency Φ. It yields a domain D′ such that D′ ⊆ D, c X D “ c X D′ (same
solutions) and c is Φ mixed consistent with respect to D′.
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Example 1. Given an array A of integer values, and two variables x, y, the ele-
ment(A,x,y) constraint [24] is satisfied whenever Arxs “ y. It is not uncom-
mon for CP-solvers to implement a filter achieving the mixed consistency
(RC,BC(D)) on the two variables (x, y). This kind of filter ensures that all
values in the domain of x have a bound(Z) support, and that lb(y) and ub(y)
have a support.

Algorithm 1 is a basic implementation of a filter, parameterized with a tuple
of filters, achieving mixed consistency. This algorithm repeatedly reduces the
domain of each individual variable xi using its associated filter until a fixed point
is reached. Assuming all the filters on the variables are correct, this algorithm
yields a domain D′ such that D′ ⊆ D, c X D “ c X D′ (same solutions) and c is
Φ mixed consistent with respect to D′.

Algorithm 1: Filter achieving mixed consistency
1 Filter Φc(〈φ1, . . . , φn〉 , D)
2 fixedpoint Ð False ;
3 while !fixedpoint do
4 fixedpoint Ð True;
5 foreach xi P scope(c) do
6 D′

xi
Ð φi(xi, D) ;

7 if D′
xi
.isEmpty() then return Fail ;

8 fixedpoint Ð fixedpoint ^ D(xi) “ D′
xi

;
9 D(xi) Ð D′

xi
;

10 return D ;

Generally speaking, a filter of a constraint modifies domains. A filter fc should
be contracting (fc(D) ⊆ D) and idempotent, that is a repeated application of
the filter does not further reduce the domain (fc(fc(D)) “ fc(D)). In [43],
Schulte and Tack have shown that weak monotony is the minimal necessary
condition that any filter must fulfill in order to guarantee the soundness and
the completeness of constraint propagation. A filter fc is weakly monotonic iff
@D, @v P D : fc({v}) ⊆ fc(D). A correct filter for some constraint c is thus
necessarily weakly monotonic and contracting. The corollary of this property is
that a correct filter behaves as the checker applied to a singleton domain (i.e.
an assignment).

Two filters f1, f2 of a given constraint can be compared thanks to their
relative strength. A filter f1 is said to be stronger than f2 (noted f1 Ď f2) iff
@D : f1(D) ⊆ f2(D). Similarly, f1 is said to be weaker than f2 (f1 Ě f2) iff f2
is stronger than f1. Finally, f1 and f2 are equivalent whenever both f1 Ď f2 and
f1 Ě f2 hold.

This paper aims at comparing filters. Therefore, we will say that a filter
realizes a given consistency φ if it does not remove any further values than the
ones required per the consistency definition. That is, we say that a filter realizes
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the consistency φ iff it is the weakest filter (removing as few values as possibly
can) complying with the definition of φ. Any other filter also realizing φ that
removes additional (non-solution) values is therefore stronger than φ.

Example 2. It is clear from Definitions 2 and 4 that whenever a filter f realizes
DC, it also realizes BC(D). However, f possibly removes more values than a
hypothetical filter g that enforces BC(D) but not DC. Hence, we have f Ď
g. Thus, f is not the weakest filter realizing BC(D). Therefore, in this paper,
we would not say that f is equivalent to BC(D) – although it realizes that
consistency. Instead, we would say that f is stronger than BC(D).

3 Related Work

The purpose of our research differs from the line of work started in the late
‘80s [14,15,20,28,34]. Indeed, that rich body of investigations aimed at verifying
whether the CP program (today, one would rather talk about CP model instead)
was correct. SolverCheck, on the other hand, aims at testing the implementation
of a CP solver, which is a different concern by large. It also differs from the
research embodied in FocalTest [11] which uses CP to define smart generators
for PBT. Instead, SolverCheck provides a PBT library to assess the correctness
and robustness of CP solvers.

Even though the properties to be tested are formally specified, SolverCheck is
a testing library, not a formal verification tool. That distinction typically makes it
simpler to use. Indeed, despite the many advances in the domain, proof-checkers
for general purpose languages either require some human guidance, do not sup-
port all language constructs [1,4], or are currently unable to deal with programs
as large and complex as modern CP-solvers [21,22,26]. Similarly, as of today,
formally certified CP solvers [12,19] are nowhere close to the state of refinement
and efficiency of state-of-the-art solvers. For instance, these rely on (efficient
but suboptimal) OCaml code extracted from Coq [47] and only support con-
straints of arity greater than 3 through a decomposition into equivalent binary
constraints (using the hidden variable encoding) [18].

Recently, the SAT/SMT/ASP/QBF communities have undertaken a line of
work that closely relates to ours [3,8,9,37]. Just like SolverCheck, these tech-
niques also apply fuzzing in order to ensure the quality of the tools they develop.
However, that body of work ignores the specifics of a CP solver. In particular,
they disregard consistency related issues (mixed or not). Meanwhile, as explained
earlier, this is one of the essential aspects of the reasoning and development of
a CP solver.

As it has already been mentioned, Gecode [46] and Choco [41] adopt an
original test strategy which allows them to test the consistency (DC, BC(D))
imposed by some of their propagators2. Their approach, albeit elegant and effi-
cient, is unable to deal with mixed consistencies (eg. that of the element [24]
constraint).
2 Actually, both solvers adopt a slightly different approach, but this is not relevant

for our matter as they are based on the same idea. For the full details, see http://
bit.ly/cst-gecode and http://bit.ly/cst-choco.

http://bit.ly/cst-gecode
http://bit.ly/cst-gecode
http://bit.ly/cst-choco
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Last year, Akgün et al. proposed at the CP conference an interesting
approach based on metamorphic testing [2] to test the implementation of a
solver. Their goal, as well as their initial intuition is the same as those behind
SolverCheck. Both target the testing of propagators implemented in actual CP
solvers, and both rely on having two distinct implementation of each filter. How-
ever, their approach relies on the table propagator from the target solver and
requires the test-engineer to provide a table with all the solutions of the tested
constraint (the authors of [2] provide a python function to help alleviate that
burden). SolverCheck uses a different approach: it automatically derives a naive
alternate implementation of the propagator which is completely independent
from the target solver. Moreover, SolverCheck sets the focus on mixed consisten-
cies, which is not the case of [2]. Additionally, the approach used in SolverCheck
makes it easy to test properties that do not depend on a specific consistency
level such as “stronger filtering”. This kind of comparison is particularly well
suited to compare the filtering for NP-hard constraints such as bin-packing [16].

4 What SolverCheck Has to Offer

We will use the example reproduced in Listing 1.1 as a starting point. The latter
is actually the verbatim copy of a property we specified when writing a test suite
for JaCoP.

Listing 1.1: Example: JaCoP LexOrder(ď) must enforce GAC.

1 @Test
2 public void statelessLexLE () {
3 assertThat(
4 forAll(listOf("x", jDom())).assertThat(x ->
5 forAll(listOf("y", jDom())).assertThat(y ->
6 a(statelessJacopLexOrder(false))
7 .isEquivalentTo(arcConsistent(lexLE(x.size(), y.size())))
8 .forThePartialAssignment(x, y)
9 )));

10 }
11

12 // Generate a domain respecting JaCoP’s documented limits
13 public GenDomainBuilder jDom() {
14 return domain().withValuesBetween(
15 IntDomain.MinInt ,
16 IntDomain.MaxInt);
17 }
18 // Discriminate solutions from non -solutions
19 public Checker lexLE(int x_sz , int y_sz) {
20 return assignment -> {
21 var xs = assignment.subList(0, x_sz);
22 var ys = assignment.subList(x_sz , x_sz+y_sz);
23 for (int i=0; i < min(x_sz , y_sz); i++) {
24 if (xs.get(i) < ys.get(i)) return true;
25 if (xs.get(i) > ys.get(i)) return false;
26 }
27 return x_sz <= y_sz;
28 };
29 }
30 // Adapter to expose the actual constraint as a SolverCheck Filter
31 private Filter statelessJacopLexOrder(final boolean lt) {
32 return partialAssignment -> {
33 Store store = new Store();
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34 IntVar [][] vars = componentsToVars(store , partialAssignment);
35 store.impose(new LexOrder(vars[0], vars[1], lt));
36 if (!store.consistency ()) {
37 return PartialAssignment.error(partialAssignment.size());
38 } else {
39 return vars2Partial(vars);
40 }
41 };
42 }

4.1 Declarative Testing

The declarative aspect of the test code reproduced in Listing 1.1 is obvious. No
mention is ever made in the code about any concrete test case. Instead, that code
snippet uses a declarative style close to that of a domain-specific-language to
express a property, a specification of what the code should do. The details of the
actual tests that are used to validate the implementation are left to the system.
Assuming a basic knowledge of Java, it is clear from Listing 1.1 that any reader –
familiar with SolverCheck or not – will grasp the expressed property (lines 3–9).
In our example, it states that for any two given lists x and y of variables, the
filtering of the domains imposed by the actual LexOrder constraint from JaCoP
should strictly enforce domain consistency.

All the other functions declared in the example are actually utility methods:
jDom() (lines 13–17) provides a means to generate pseudo-random domains 3

having their values in the range of values accepted by JaCoP. The lexLE()
method (lines 19–29) returns a Checker for the Lex constraint. That is, it returns
a predicate deciding whether or not an assignment belongs to the constraint
relation. The Checker API is SolverCheck’s mechanism to test constraints that
are not built in the framework. The statelessJacopLexOrder() method (lines
31–42) adapts the actual constraint from JaCoP (LexOrder) and exposes it as
a Filter that SolverCheck can interact with.

4.2 Consistency

Despite its apparent simplicity, the example from Listing 1.1 is a good illustration
of the flexibility provided by SolverCheck. It shows how to parameterize the con-
sistency level used to test a given propagator. It would only take a change of line 8
in the example to modify the property expressed in Listing 1.1 and let it state
that the propagator should enforce BC(Z) rather than DC. For that purpose,
the only change required would be to replace arcConsistent(lexLE(x.size(),
y.size()))) by boundZConsistent(lexLE(x.size(), y.size()))).

Because solvers developers tend to be pragmatic people who favor general
case efficiency over the compliance to pure mathematical consistency definitions,
it is often the case that discrepancies exist between the implemented artifacts
and the theoretical framework. To cope with that reality, SolverCheck offers facil-
ities to express that a filtering should be stronger than (isStrongerThan(·)),
3 sets of pseudo-random int.
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weaker than (isWeakerThan(·)) or equivalent to (isEquivalentTo(·)) a given
consistency level. This is illustrated by line 7 in our illustrating example. How-
ever, a relative positioning wrt a “standard” consistency level might be deemed
too weak. This is why SolverCheck also supports the definition of custom mixed
consistencies. The example of Listing 1.2 illustrates how the exact mixed con-
sistency of a propagator is specified with SolverCheck (line 8). That example
shows that for any array A of integer and pair of variables x and y, MiniCP’s
element(A, x, y) ” Arxs “ y constraint does not comply with any of the stan-
dard consistencies. Instead, the property states that each value in the domain of
x should have a support in y whereas only the upper and lower bounds of D(y)
should have a support in x. Additionally, this example illustrates (line 3) how a
time limit can be set to check a property.

Listing 1.2: A[x] = y has a mixed consistency

1 @Test
2 public void elementIsHybridConsistent () {
3 given(TIMELIMIT , TimeUnit.SECONDS).assertThat(
4 forAll(listOf("A", integer ())).assertThat(A ->
5 forAll(domain("x")).assertThat(x ->
6 forAll(domain("y")).assertThat(y ->
7 a(minicpElement1D(A))
8 .isEquivalentTo(hybrid(element(A), rangeDomain (), bcDDomain ()))
9 .forThePartialAssignment(x, y)

10 ))));
11 }

4.3 Extensibility

The example from Listing 1.1 also illustrates how SolverCheck’s capabilities can
be extended to support constraints that were not initially foreseen4. To that
end, it suffices to implement a new Checker for the desired constraint. That is a
predicate on assignment which is true iff the assignment belongs to the constraint
relation.

On top of the assertions meant to test the strength of a propagator,
SolverCheck provides several extension points making it possible to check
virtually any property of the tested filter. For instance, in the snippet
a(tested).is(property), the method is(·) will accept any predicate on
partial assignments for its property argument. In particular, this is how the
checks isContracting(), isIdempotent() and isWeaklyMonotonic() have
been implemented in the library.

4.4 Dynamic Checking

Because there are many cases where existing solvers implement the filtering of
their constraints as incremental propagators, they do not exactly fit the ideal
of pure filtering functions having no side effects. Indeed, propagators hold and
4 SolverCheck comes with built-in checkers for the usual constraints alldiff, element,
gcc, etc.
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manipulate some internal state in order to deliver an efficient filtering in practice.
But the efficiency gains often come at the expense of an increased risk of error.
In order to detect the bugs caused by this internal state handling, SolverCheck
proposes two operating modes.

Static Checking. Pseudo random test cases are fed to the filter. Then, the library
tests if the outcome of one application of the filter delivers the expected result.
This corresponds to the way of using SolverCheck which has been presented until
now.

Dynamic Checking. The tested solver searches through the state-space, making
branch decisions and backtracking, in conditions similar to those of an actual
CSP solving.

Algorithm 2 describes how dynamic checks operate. This algorithm accepts
five parameters: two stateful filters trusted and tested matching the interface of
Listing 1.3, a property prop that must hold of all executions, a natural number
N and a pseudo-randomly generated partial assignment pa. As opposed to static
checking, dynamic checking considers the partial assignment pa as the root of a
search tree and explores a fraction of that search tree with a series of N dives.
That is, it dives N times in the search tree until a leaf (assignment or error) is
reached (lines 7–12). At that moment, the library rolls back a few decisions it
made when diving (lines 13–15). Then it starts the exploration of a new branch.
At each visited node of the search tree, the current states of tested and trusted
are compared to check whether the property is verified (line 12).

Algorithm 2: Dynamic checking, the dive algorithm
1 Dive (trusted, tested, prop, N, pa)
2 trusted.initialize(pa); tested.initialize(pa);
3 if not prop.holds(trusted, tested) then fail;
4 for N times do
5 CheckBranch(trusted, tested, prop, pa);
6 BackJump(trusted, tested);

7 CheckBranch (trusted, tested, prop, pa)
8 while neither trusted nor tested reached a leaf do
9 trusted.saveState(); tested.saveState();

10 decision Ð RandomDecision(pa);
11 trusted.branchOn(decision); tested.branchOn(decision);
12 if not prop.holds(trusted, tested) then fail;

13 BackJump (trusted, tested)
14 while not trusted.isAtRootLevel() and RandomBool() do
15 trusted.restoreState(); tested.restoreState();
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Writing Dynamic Checks, in Practice. As is made clear by the previous
paragraphs, using the dynamic checking mode requires slightly more work from
the human tester. Indeed, rather than writing a stateless Filter adapter similar
to the one shown in Listing 1.1 (lines 31–42), the tester must write an adapter
matching the StatefulFilter interface (Listing 1.3).

The branchOn() method stands for the addition of usual branching condi-
tions such as ‰, ă, ą. The pushState() and popState() methods adopt the
terminology used in trail-based solvers where these methods are at the heart of
the backtracking mechanism (see [35] for further information on that matter).

For the rest, thanks to the declarative nature of SolverCheck, the code
remains almost identical to what is required in the static case.

Listing 1.3: Interface of a Stateful Filter in SolverCheck

1 public interface StatefulFilter {
2 void setup(PartialAssignment initialDomains);
3 void pushState ();
4 void popState ();
5 void branchOn(int variable , Operator op, int value);
6 PartialAssignment currentState ();
7 }

5 Implementing SolverCheck

SolverCheck posits that the implementation of current CP solvers have become
incredibly efficient at the expense of an increased code complexity. Therefore,
they no longer fit in Hoare’s “obviously no deficiencies” category [25]. The idea
behind SolverCheck is then fairly simple: the library tests the behavior of an
actual (complicated) CP filter by simply comparing it with that of a (generated)
implementation that is so outright simple that it is straightforward for anyone
to trust that second implementation to be correct. In SolverCheck parlance, the
filters obtained from a generated implementation are called trusted filters.

5.1 Deriving Trusted Filters

As explained in Sect. 4.3, SolverCheck trusted filters rely on a Checker to decide
whether or not an assignment belongs to the tested constraint. On that basis,
a naive but easily trusted filter implementation immediately follows from the
definitions of Section 2. For that matter, one needs to distinguish uniform con-
sistencies (DC, BC(D), BC(Z), RC, FC) from mixed consistencies.

Uniform Consistencies. Given a checker c, a consistency γ and the partial
assignment pa “ (D(x1), . . . , D(xn)) the trusted filter φc,γ proceeds as follows.
It starts by computing the set Dsol “ {τ P D∗ | c(τ)} of solutions, where D∗

stands for either D (when γ P {DC,BC(D)}) or DZ (when γ P {RC,BC(Z)}).
Then it computes a partial assignment pa′ associating the domain D′(xi) “
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⋃
τ P Dsol

τi to each variable xi. Finally, it uses pa′ to filter the original domains
in pa according to the rules of γ. This is the final output of φc,γ .

Deriving a trusted filter implementation for the uniform FC consistency is
trivial: when the domains of all but one variable are singletons, the filter behaves
as in the DC case. Otherwise, the original partial assignment is returned.

Mixed Consistencies. The trusted filters derived for mixed consistencies are
a direct implementation of Algorithm 1. There the filters φi used to filter the
domain of each variable xi simply consist in the application of a uniform trusted
filter which is then projected over xi.

5.2 Generation of Pseudo-random Test Cases

In order to check that a property holds, SolverCheck generates pseudo-random
test cases which are fed to both the trusted and tested filters. Because it is
widely accepted among software engineers that extreme values often exhibit
extreme behaviors, it was decided that SolverCheck would not use a uniform
random distribution to generate its test inputs. Instead, it draws its values from
a multi-modal distribution – the modes being the usually problematic values
(zero, min and max). Doing so, it introduces a bias on the values occurring in
the generated test cases.

6 Experimental Results

We conducted a series of experiments, all of which are based on three solvers5:
Choco [41], JaCoP [27] and MiniCP [35]. These solvers have been chosen because,
on the one hand, they run on the JVM which is our target platform; and on
the other hand, because they have been carefully developed by domain experts.
Among the large panel of possible constraints, we picked seven that were deemed
representative of the kind of constraint typically available in a CP solver.

For each of the selected constraint, we present two distinct experiments. The
first one aimed at evaluating the effectiveness of our library when it comes to
detecting bugs in an actual solver. In practice, this experiment consisted in a
phase of exploratory testing during which we went through the documentation
of solvers/constraints and wrote specifications matching the documented behav-
ior for each of the tested artifacts. The goal of our second experiment was to
assess the usability of our library in practice. That is, we wanted to make sure
SolverCheck could actually be used and be useful in a continuous integration
setup. To that end, we measured the time it took for our exploratory tests to
complete as well as the code coverage they achieved.

5 Experiments were also realized using AbsCon [30]. However, even though we high-
lighted some defects in this solver, we chose not to report on the outcome of these
experiments because we are still discussing some of our findings with the maintainer
of that solver.
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6.1 Exploratory Testing

We observed five different kind of outcomes during this experiment and summa-
rize our findings in Table 1. The first possibility occurs when SolverCheck wasn’t
able to detect any mismatch between the tested propagators and their docu-
mented behavior (� in Table 1). An other possible result is observed when a
propagator prunes more values than announced but never removes any solution
(�). The defective cases are split in three categories: the cases where a propa-
gator was weaker than announced (�), the cases where it provided an incorrect
answer (�) and those when an undesired behavior happened at runtime (�).
Among others, this covers program crashes (cast errors, memory exhaustion,
. . . ) and infinite loops. All of our findings have been reported to, and accepted
by the solvers maintainers. As of today, the vast majority of the findings we
reported have been fixed.

As shown per Table 1, SolverCheck was remarkably efficient at identifying
discrepancies between the actual and documented behavior of implemented prop-
agators. And that, even though all these propagators had already been carefully
tested by their authors. The biased pseudo-random input generation used to
produce “extreme” values naturally led to the identification of several over- and
under-flows issues that are often counterintuitive for a human being. Table 1
shows however that it was far from the only type of error identified by our tool.

Table 1: Findings of the exploratory testing phase
Solver Alldiff Element Table Sum GCC Lex Regular

Choco �� � �� �� � � �

JaCoP � � � � � � �

MiniCP � � �� �� N/A N/A N/A

Errors in the State Management. The exploratory testing outdid our expec-
tations wrt stateless issues detection. As a consequence, the stateful issues detec-
tion potential of our library remained unknown. Therefore, we conducted a vari-
ation of our exploratory testing experiment and designed it so as to specifically
assess that potential. In practice, we manually introduced bugs in the state man-
agement of the stateful constraints. To that end, we replaced some reversible
integer with its primitive counterpart in the source code. Then we used dynamic
checking to test the properties of the targeted constraints. For all the seeded
bugs, SolverCheck correctly reported a trace where the bug expressed itself.

Similarly, we also checked whether SolverCheck would identify bugs after
we altered the implementation of the reversible structure to let it discard some
modification from the trail. Again, SolverCheck reported a violation trace for all
the cases that have been tested.
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6.2 Effectiveness in Practice

The plots from Fig. 1 provide a good illustration of the behavior we observed
when SolverCheck is used to test properties with a varying number of variables6.
In particular, Fig. 1a plots the time it takes to test that the DC consistent
propagator of each solver actually enforces DC with an increasing number of
variables. While the exact duration of these tests is of little interest, the trend
it indicates is informative. On the one hand, it clearly indicates an exponential
duration blowup becoming significant beyond 12 variables. On the other hand, it
also shows that dynamic checking consistently requires a longer amount of time
to complete than a corresponding static check. The extreme similarity between
the two groups of static and dynamic curves (the same graph with logarithmic y-
axis does not show any major difference either) indicates that the test-completion
time is dominated by SolverCheck rather than by the tested solver.

These observations had to be expected and directly stem from the algorithms
implemented in our library. The need for our trusted filter to explicitly compute
the set Dsol based on a filtering of D∗ is sufficient to explain the exponential
blowup in its own right. Similarly, the repeated application of filter operations (as
per Algorithm 2) during dynamic checking explains why dynamic tests require
longer to complete. Despite being expected and logically understood, both obser-
vations clearly highlight a limitation in the capabilities of our library: it does
not scale and is not efficient when there are lots of variables to be considered (or
when they have large domains).

That conclusion should nevertheless be contrasted by the information shown
on Fig. 1b. It plots the line coverage of the tested propagators as measured during
the tests whose runtime are plotted in Fig. 1a. From there, we first observe that
the coverage stabilizes very quickly. As soon as three variables are considered,
the coverage reaches a state where it marginally increases, if at all. We also

Fig. 1: Measuring the efficiency of SolverCheck for testing AllDiff (DC)

6 The plots and observations to be made when it is the domain size that varies for
a fixed number of variables are substantially the same as the case presented here
(varying number of variables, fixed domain size). These are therefore omitted.
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observe that in most cases, the tests cover about 95% of the lines. This is quite a
high score, and is way above the usual 70–80% target from the industry. Finally,
we observe that dynamic checking either improves or equates the static checking
line coverage for all tests. The gap observed between the static and dynamic
line coverage of JaCoP illustrates one of the benefits of dynamic checking. That
strategy is able to exercise all parts of the propagators, including the ones related
to state restoration of incremental propagators.

7 Conclusions and Future Work

In this paper we introduced SolverCheck, an open-source property-based testing
library to effectively check the correctness of the propagators of any JVM-based
solver. We showed how the library can be used to declaratively specify the prop-
erties which must hold for a constraint, and presented the two modes in which
the tests can be operated.

Furthermore, we demonstrated the practical effectiveness of SolverCheck
through an experimental study based on Choco, JaCoP and MiniCP. These
results are promising as they show that our library has been able to identify
bugs in the aforementioned solvers and provide counterexamples for each of the
witnessed property violations. Besides that, we showed that SolverCheck is suc-
cessful at its intended purpose. It can easily be integrated in the test suite of any
JVM-based solver to produce a high quality set of tests (good coverage) that is
easy to maintain. Moreover, given that SolverCheck allows a tester to control
every aspect of how tests are generated, we are also confident that SolverCheck
can be an integral part of the quality assurance process of any solver. In partic-
ular, checking properties with our library can seamlessly be integrated with the
continuous integration of any JVM-based solver.

We envision several extensions of this work in the future. In particular, we
believe that our library can be adapted and extended to cope with the specifics
of scheduling constraints. For instance, it could be extended to generate trusted
filters matching the filtering of an edge-finding propagator [10,32,48]. Also, it
could be extended to target different classes of bugs. So far, SolverCheck is very
good at finding value-related bugs like over/under-flows and logical errors in the
propagation. We think that it would be interesting to leverage the features of
SolverCheck to target aliasing issues which are also a common source of bugs in
solvers supporting views. Beyond that, our library could benefit from the use of
checkers that operate directly on partial assignments. With these, a trusted filter
would not necessarily need to always test all assignments. Other possible exten-
sions include microbenchmarking and the ability to test solvers outside of the
JVM world through language-agnostic tests using MiniZinc [36] or XCSP3 [7].
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oadymppac 2.2. 2.1 (2001). http://pauillac.inria.fr/∼contraintes/OADymPPaC/
Public/d2.2.2.1.pdf
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Abstract. Program synthesis is the problem of finding a program that
satisfies a given specification. Most program synthesizers are based on
enumerating program candidates that satisfy the specification. Recently,
several new tools for program synthesis have been proposed where Sat-
isfiability Modulo Theories (SMT) solvers are used to prune the search
space by discarding programs that do not satisfy the specification.

The size of current tree-based SMT encodings for program synthesis
grows exponentially with the size of the program. In this paper, a new
compact line-based encoding is proposed that allows a faster enumera-
tion of the program space. Experimental results on a large set of query
synthesis problem instances show that using the new encoding results in
a more effective tool that is able to synthesize larger programs.

Keywords: Program synthesis · Satisfiability Modulo Theories ·
Enumerative search · SQL

1 Introduction

The goal of program synthesis is to automatically generate programs that satisfy
a given high-level specification. Once considered a utopian dream, the recent
advances in program synthesis are making this approach more practical and
have shown that it can be useful to both end-users and programmers. A common
approach is to use input-output examples as specifications. Even though these
specifications are incomplete, i.e. a program may satisfy the specification but
may not be the program that the user desires, these are easy to create and
can be used to solve many real-world applications. This approach is known as
programming-by-example (PBE) and has been used to automate tedious tasks
in a plethora of applications, such as string manipulations in spreadsheets [10,
15], list transformations [2,9], table reshaping [7], code completion [14], helping
programmers to use libraries [8], and SQL queries [18–20]. Program synthesis is
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Enumerator Decider

Candidate Program

Reason of Failure

Specs + DSL Desired Program

Fig. 1. Enumeration-based program synthesis

not merely an academic research topic since it is also transitioning into industry.
Microsoft’s FlashFill [10] is the most successful application of program synthesis
by Microsoft for string manipulation and it is integrated into Microsoft Excel.
Other companies are also starting to look for applications of program synthesis
to their products, namely OutSystems [1] and query synthesis.

Even though there are many approaches to program synthesis, the most com-
mon one is to perform an enumerative search over the space of programs that sat-
isfy the specifications. Figure 1 shows the high-level architecture of enumeration-
based program synthesizers. They take as input the specification that describes
the intention of the user (e.g., input-output examples) and a domain-specific
language (DSL) that defines the search space. Program synthesizers typically
enumerate programs in increasing order of the number of DSL components. For
each candidate program P, they check if P satisfies the specifications. If this is
the case, then the desired program was found. Otherwise, the program synthe-
sizer learns a reason for failure and enumerates the next candidate program.

Recent approaches combine enumerative search with deduction with the goal
of performing early pruning of infeasible programs [7], or to learn from past failed
candidate programs in order to prune all equivalent infeasible programs [6].

Suppose that a user wants to synthesize an SQL query using examples. In
particular, given tables supplier and parts with the schema “supplier(id: integer,
sname: string, address: string)” and “parts(id: integer, pname: string, color:
string)”, the user wants to find the names of parts, pnames, for which there
is some supplier. 1 This could be accomplished with the following SQL query:

SELECT pname
FROM parts, supplier
WHERE parts.id = supplier.id

To enumerate the space of programs that satisfy the specifications, program
synthesizers must first construct an underlying representation of the feasible
space. Figure 2 shows the typical tree representation used by program synthe-
sizers (e.g., [3,6,7]), for the above query example. Each node can be a library
component or a terminal symbol. Program synthesizers can then traverse the
space of possible candidates by enumerating all possible trees of a given depth.
However, for approaches that rely on logical deduction, the space of feasible pro-
grams must be encoded a priori by using either a Boolean Satisfiability (SAT)

1 This corresponds to exercise 5.2.1 from a classic textbook on databases [13].



Encodings for Enumeration-Based Program Synthesis 585

SELECT

FROM

WHERE

= parts.id supplier.id

parts

ε ε ε

supplier

ε ε ε

pname

ε ε

. . .

ε

ε

ε ε

. . .

ε

Fig. 2. Tree-based representation of the search space

L3 : SELECT

L2 pname ε

L2 : FROM

L1 parts supplier

L1 : WHERE

= parts.id supplier.id

Fig. 3. Line-based representation of the search space

or Satisfiability Modulo Theory (SMT) encoding [6,7]. A common approach to
encode all feasible programs is to represent them using a k-tree, where each node
has exactly k children and k is the largest number of parameters of the functions
in our library of components. Figure 2 shows an example of a 3-tree where each
node has 3 children. A complete program corresponds to assigning a label to
each node. Components that may have less than 3 parameters (e.g., SELECT),
will have the empty label empty ε assigned to their unused children.

A large downside of a k-tree representation is the exponential growth of the
size of the tree with respect to its depth. Since the encoding’s complexity depends
on the number of nodes, this makes it intractable to enumerate the search space
of candidate programs using an SMT encoding.

In this paper, we propose a new line representation illustrated in Fig. 3, where
we represent each line with its own subtree and add additional constraints to
connect the multiple subtrees. For the above SQL query, we would only need 12
nodes using a line-based representation instead of the 3-tree representation’s 40
nodes. When considering programs with 10 lines of code and k = 4, the line-
based representation only needs 50 nodes instead of the 1,398,101 nodes required
by the tree-based representation.

To summarize, this paper makes the following contributions:

– We formalize how to encode the traditional tree-based representation of a
program into SMT which has an exponential growth with respect to the
number of lines of a program.

– We propose a new compact SMT encoding based on a line representation of
programs that grows linearly with the number of lines of a program.

– We integrate the line-based encoding into a program synthesizer and empir-
ically evaluate our approach using SQL benchmarks. Experimental results
show that the line-based encoding significantly outperforms the tree-based
encoding and allows program synthesizers to more effectively enumerate the
search space and synthesize larger programs.
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table → select from(cols, table) | join(table, table) | parts | supplier
cols → column(col) | columns(col, cols)
col → pname | sname | id | color | address | ∗
empty → empty

Fig. 4. The grammar of a simple DSL for query synthesis; in this grammar, table is the
start symbol. All joins are natural joins between columns with the same name. Given
as input the tables supplier and parts, with the schema “supplier(id: integer, sname:
string, address: string)” and “parts(id: integer, pname: string, color: string)”.

2 Preliminaries

The Satisfiability Modulo Theories (SMT) problem is a generalization of the well-
known Propositional Satisfiability (SAT) problem. Given a decidable first-order
theory T , a T -atom is a ground atomic formula in T . A T -literal is either a T -
atom t or its complement ¬t. A T -formula is similar to a propositional formula,
but a T -formula is composed of T -literals instead of propositional literals. Given
a T -formula φ, the SMT problem consists of deciding if there exists a total
assignment over the variables of φ such that φ is satisfied. Depending on the
theory T , the variables can be of type integer, real, Boolean, among others.

Program synthesizers search the space of programs described by a given
domain-specific language (DSL). The syntax of the DSL is described by a
context-free grammar G. In particular, G is a tuple (Σ,R, S), where Σ rep-
resents the set of symbols, productions, and start symbol, respectively. Each
symbol σ ∈ Σ corresponds to built-in DSL constructs (e.g., select from, join),
constants, variables or inputs of the system. Each production rule p ∈ R has
the form p = (A → σ(A1, . . . , Am)), where σ ∈ Σ is a DSL construct and
A1, . . . , Am ∈ Σ are symbols for the arguments of σ.

Example 1. Consider a DSL D in Fig. 4, and suppose that a user wants to solve
the query presented in Sect. 1, i.e. she wants to find all the names of parts
for which there is some supplier. The desired query from D is the following
select from(column(pname), join(parts, supplier)). This query uses three pro-
duction rules p1 = select from, p2 = column, and p3 = join; the column pname;
and input tables parts and supplier.

3 Tree-Based Encoding

This section describes the tree-based encoding used on several state-of-the-art
synthesizers to perform program enumeration. Given a DSL, program synthesis
frameworks search for a program that is consistent with the input-output exam-
ples provided by the user. For the search process to be complete, these frameworks
use a structure capable of representing every possible program up to some given
depth of n. Let k be the greatest arity among DSL constructs. For programs with
n − 1 production rules, synthesizers adopt a tree structure of depth n, referred to
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v1 select from

v2 column

v4 pname v5 ε

v3 join

v6 parts v7 supplier

Fig. 5. k-tree representation of the query presented in Example 1

as k-tree, where each node has exactly k children. Figure 5 illustrates a 2-tree that
can be used to represent the query presented in Example 1.

In order to perform program enumeration using the tree representation, pro-
gram synthesizers encode the tree as an SMT formula such that a solution of the
SMT formula encodes a complete program by assigning a symbol to each node.

A detailed description of the SMT model follows. First, the encoding variables
are introduced. Next, the constraints of the SMT model are presented.

3.1 Encoding Variables

Let s be the length of the DSL’s set of symbols, s = |Σ|. Let id : Σ → N0 be a
function that maps each symbol to a unique non-negative integer in a one-to-one
mapping. As a result, this function provides a unique identifier (integer value
between 0 and s) to each symbol in Σ. In our encoding, we assume that the
empty production symbol (ε) is mapped to 0 (i.e. id(ε) = 0).

Consider the encoding for a program with a k-tree of depth n. Assume each
node in the k-tree is assigned a unique index. Let N be the set of all k-tree nodes
indexes such that N = I∪L where I denotes the set of internal node indexes and
L denotes the set of leaf node indexes. Let C(i) denote the set of child indexes
of node i ∈ N . Clearly, if i is a leaf node (i ∈ L), then C(i) = ∅.

In our encoding we define the following variables:

– V = {vi : 1 ≤ i ≤ |N |}: each variable vi denotes the symbol identifier in node
i of the k-tree;

– B = {bi : 1 ≤ i ≤ |N |}: each variable bi is a Boolean variable that denotes
if node i is associated to a production symbol (true) or a terminal symbol
(false).

3.2 Constraints

Let D be a DSL, Prod(D) denotes the set of production rules in D and Term(D)
the set of terminal symbols in D. Furthermore, let Types(D) denotes the set of
types used in D and Type(s) the type of symbol s ∈ Prod(D) ∪ Term(D). If
s ∈ Prod(D), then Type(s) denotes the return type of production rule s.

To ensure that every program enumerated is well-typed the following con-
straints must be satisfied.
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Leaf Nodes. The leaf nodes can only be assigned to terminal symbols because
they have no children. Therefore, we define the following constraint:

∀i ∈ L :
∨

p∈Term(D)

vi = id(p) (1)

Example 2. Given the DSL D from Fig. 4, the set of terminal symbols is
Term(D) = {parts, supplier, pname, sname, id, color, address, ∗, ε} and the set
of leaves is L = {4, 5, 6, 7}. Each leaf node in L must be assigned to a sym-
bol in Term(D). Hence, each leaf i ∈ L must satisfy: vi = id(parts) ∨ vi =
id(supplier) ∨ vi = id(pname) ∨ vi = id(sname) ∨ vi = id(id) ∨ vi =
id(color) ∨ vi = id(address) ∨ vi = id(∗) ∨ vi = id(ε).

Internal Nodes. If a production rule p is assigned to an internal node, then
the type of its children nodes must match the types of parameters of p. Let
Type(p, j) denote the type of parameter j of production rule p ∈ Prod(D). If
j > arity(p), then Type(p, j) = empty. If p is a terminal symbol, p ∈ Term(D),
then for every j, Type(p, j) = empty.

Let Σ(Type(p, j)) represent the subset of symbols in Σ of type Type(p, j).

∀i ∈ I, j ∈ C(i), p ∈ Σ :

vi = id(p) ⇒
∨

t∈Σ(Type(p,j))

vj = id(t) (2)

With constraint (2), all the programs generated will be well-typed since each
node is only assigned to a production rule if its children have the correct type.

Example 3. Consider again the query in Example 1. If the production select from
is assigned to the program’s root, v1, then Σ(Type(select from, 1)) = {column,
columns} and Σ(Type(select from, 2)) = {select from, join, parts, supplier}.
The following constraint must be satisfied: v1 = id(select from) ⇒

(
v2 =

id(column) ∨ v2 = id(columns)
)

and v1 = id(select from) ⇒
(
v3 =

id(select from) ∨ v3 = id(join) ∨ v3 = id(parts) ∨ v3 = id(supplier)
)
.

Output. Let t be the output type. Furthermore, consider that the program root
identifier is 1. Then, v1 must be assigned to a symbol that is consistent with the
output type t. Hence, the following constraint must be satisfied.

∨

s∈Σ(t)

v1 = id(s) (3)

Input. Let IN be the set of symbols provided by the user as input. In order to
guarantee that all generated programs use all the inputs provided by the user,
the following constraint is added:

∀p ∈ IN :
∨

i∈N

vi = id(p) (4)
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L1 : ret1 ← column(pname)
L2 : ret2 ← join(parts, supplier)
L3 : ret3 ← select from(ret1, ret2)

Fig. 6. Line-representation of the query from Example 1

Note that this is not required for the encoding’s correction. Nevertheless, we are
only interested in enumerating programs that use all inputs given by the user.

Exactly n − 1 Production Rules. Finally, we are interested in enumerating
programs using Exactly n − 1 production rules by adding the following con-
straints:

∀i ∈ N : bi = 1 ⇐⇒
∨

p∈Prod(D)

vi = id(p) (5)

( ∑

i∈N

bi

)
= n − 1 (6)

With constraints (5) and (6), we guarantee that given a k-tree of depth n,
each enumerated program will have exactly n − 1 production rules. State-of-
the-art program synthesizers iteratively search for programs in increasing depth.
Thus, constraint (6) allows pruning the search space, in order to avoid enumer-
ating repeated programs in future iterations of depth greater than n.

Encoding Complexity. Let k be the greatest arity between DSL constructs
and let n denote the number of productions (lines of code) in a program. In
terms of nodes complexity, the number of nodes increases exponentially with
the number of productions, as follows: kn+1−1

k−1 .

4 Line-Based Encoding

In this section, we propose a new encoding to represent programs. Our goal
is to represent a program as a sequence of lines where each line represents an
operation in the DSL. Instead of using a single k-tree to represent a program,
each line is represented as a tree with a depth of 1.

Consider the program in Fig. 6. One can represent this program as three trees
of depth 1 as shown in Fig. 7. Note that the result of the program is the value
returned by the third tree. Observe that reti is a new symbol that represents
the return value of line i.

4.1 Encoding Variables

Recall that D denotes a DSL, Prod(D) the set of production rules in D and
Term(D) the set of terminal symbols in D. Furthermore, Types(D) denotes the
set of types used in D and Type(s) the type of symbol s ∈ Prod(D)∪Term(D).
If s ∈ Prod(D), then Type(s) denotes the return type of production rule s.
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op1 column

a1,1 pname a1,2 ε

op2 join

a2,1 parts a2,2 supplier

op3 select from

a3,1 ret1 a3,2 ret2

Fig. 7. Each tree represents a production rule. The first tree represents line 1, the
second tree represents line 2 and the third tree represents line 3. ret1 (resp. ret2)
denotes the value returned in line 1 (resp. line 2).

Consider the encoding for a program with n lines where the maximum arity
of the operators is k, then we have the following variables:

– O = {opi : 1 ≤ i ≤ n} : each variable opi denotes the production rule used in
line i;

– T = {ti : 1 ≤ i ≤ n} : each variable ti denotes the return type of line i;
– A = {aij : 1 ≤ i ≤ n, 1 ≤ j ≤ k} : each variable aij denotes the symbol

corresponding to argument j in line i.

4.2 Constraints

Besides the production rules Prod(D) and terminal symbols Term(D), we define
one return symbol for each line in the program. Let Ret = {reti : 1 ≤ i ≤ n}
denote the set of return symbols in the program.

In our encoding, we define a different non-negative identifier for each symbol.
Here, we extend the id function to also consider the symbols that represent the
return value of each line. Let Symbols = Prod(D) ∪ Term(D) ∪ Ret define
the set of all symbols used in the program. Finally, let id : Symbols → N0 and
tid : Types(D) → N0 be one-to-one mappings of symbols and types, respectively,
to non-negative integer values.

Operations. First, the operations in each line must be production rules. Hence,
we have the following set of constraints:

∀1 ≤ i ≤ n :
∨

p∈Prod(D)

(opi = id(p)) (7)

The operation symbol used in each line implies the line’s return type.

∀1 ≤ i ≤ n, p ∈ Prod(D) : (opi = id(p)) ⇒ (ti = tid(Type(p))) (8)

Given a sequence of operations, the arguments of operation i must either be
terminal symbols or return symbols from previous operations. Hence, we have:

∀1 ≤ i ≤ n, 1 ≤ j ≤ k :
∨

s∈Term(D)∪{retr:r<i}
(aij = id(s)) (9)

Arguments. The arguments for a given operation i must have the same types
as the parameters of the production rule used in the operation. Let Type(p, j)
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denote the type of parameter j of production rule p ∈ Prod(D). If j > arity(p),
then Type(p, j) = empty. Hence, we have the following constraints when a return
symbol is used as an argument of an operation:

∀1 ≤ i ≤ n, p ∈ Prod(D), 1 ≤ j ≤ arity(p), 1 ≤ r < i :
((opi = id(p)) ∧ (aij = id(retr))) ⇒ (tr = tid(Type(p, j)))

(10)

A given terminal symbol t ∈ Term(D) cannot be used as argument j of an
operation i if it does not have the correct type:

∀1 ≤ i ≤ n, p ∈ Prod(D), 1 ≤ j ≤ arity(p),
s ∈ {t ∈ Term(D) : Type(t) = Type(p, j)} :

(opi = id(p)) ⇒ (aij = id(s))
(11)

Since the arity of a given operation i can be smaller than k, we must also
have that the arguments above the production’s arity must be assigned to the
empty symbol ε:

∀1 ≤ i ≤ n, p ∈ Prod(D), arity(p) < j ≤ k :
(opi = id(p)) ⇒ (aij = id(ε))

(12)

Output. Let Type(output) denote the type of the program’s output and let
PO ⊆ Prod(D) be the subset of production rules with return type equal to
Type(output), i.e., PO = {p ∈ Prod(D) : Type(p) = Type(output)}. The follow-
ing constraint ensures that the program’s output (last line, nth) has the desired
type.

∨

p∈PO

(opn = id(p)) (13)

Input. Let IN be the set of symbols provided by the user as input. In order to
guarantee that all generated programs use all the inputs, the following constraint
is used:

∀s ∈ IN :
∨

1≤i≤n

∨

1≤j≤k

(aij = id(s)) (14)

Lines Used Exactly Once. A feature of this new encoding is that the result
of a given operation can be used more than once. Notice that in the tree-based
encoding, one would have to reproduce the same operations in a different branch
of the tree. In order to compare the two types of enumeration, tree-based and
line-based, we can add a set of constraints restricting the usage of each opera-
tion’s result to only one usage. Clearly, the following constraints are not necessary
to the encoding’s correction.

∀retr ∈ Ret(D) :

⎛

⎝
∑

r<i≤n,1≤j≤k

(aij = id(retr))

⎞

⎠ = 1 (15)
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L1 : ret1 ← column(pname)
L2 : ret2 ← join(parts, supplier)
L3 : ret3 ← select from(ret1, ret2)

L1 : ret1 ← join(parts, supplier)
L2 : ret2 ← column(pname)
L3 : ret3 ← select from(ret2, ret1)

Fig. 8. Two line representations of the program from Example 1

Encoding Complexity. Let k be the greatest arity between DSL constructs
and let n denote the number of productions (lines of code) in a program. In
terms of nodes complexity, we can observe a drastic difference between both
types of enumeration, tree-based and line-based. In tree-based enumeration, the
number of nodes increases exponentially with the number of productions. On
the other hand, the number of nodes used by line-based enumeration increases
linearly, (k +1)×n, because the enumerator uses n trees, with k +1 nodes each,
to represent a program with n production rules.

4.3 Symmetric Programs

In line-based encoding, the number of solutions of the SMT formula is larger
than the number of solutions in the corresponding tree-based encoding. There
are two main reasons for this difference: (1) the line-based encoding can use the
return value of the same line of code more than once, and (2) the same program
can have more than one representation, i.e. symmetric programs.

Regarding reason (1), with constraint (15), we guarantee that the return
value of each line is used exactly once. Concerning reason (2), in the line-based
encoding, some programs can be represented with different sequences of lines.
However, in the tree-based encoding, as a result of the single tree representation,
the arguments of each production rule will always come from the same branch.

Example 4. Consider the DSL in Fig. 4 and the program select from(column
(pname), join(parts, supplier)) from Example 1. In tree-based encoding this pro-
gram has a single representation shown in Fig. 5. However, for the same program,
line-based encoding has two possible representations shown in Fig. 8.

In order for the line-based process to enumerate the same number of solutions
than the tree-based enumeration, it is necessary to find the symmetries in the
line-based encoding and block them. Otherwise, symmetric programs as the one
in Fig. 8 will be enumerated and the synthesizer will have to check both programs.
Therefore, if we have a solution α of line-based SMT formula and the synthesizer
verifies that the corresponding program is not consistent with the input-output
examples, then all solutions that encode symmetric programs in relation to α
can be blocked.

A simple way to find these symmetries is through a directed acyclic graph
of dependencies, where a vertex is defined for each program line, and edges
correspond to the line dependencies in the program. Let vi and vj denote the
vertexes in the graph corresponding to lines i and j with i < j. If the return
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value of line i is used as argument in line j, then a directed edge (vi, vj) must
be added to the graph. After building the graph, one can enumerate all possible
topological orders of vertexes in the dependency graph. Next, each program
associated with a topological order is blocked in the SMT formula.

Example 5. Consider the program from Example 1. Line 3 (L3) depends on line
1 (L1) and line 2 (L2). Therefore, lines 1 and 2 must occur before line 3. However,
the order of lines 1 and 2 can be changed. Hence, two solutions would be blocked
corresponding to permutations L1 − L2 − L3 and L2 − L1 − L3 of the program.

5 Experimental Results

In order to evaluate the new line-based encoding, we integrated our proposal in
the Trinity [4] synthesis framework. By default, Trinity uses tree-based enumer-
ation to search for programs and uses the Z3 SMT solver [5] with the theory
of Linear Integer Arithmetic in the enumeration process. Trinity, like most PBE
state-of-the-art synthesizers, takes as input a DSL, a set of examples, and any
constants or aggregate functions (e.g., mean) that the query may need. Trinity
starts by searching for programs with 1 production rule and iteratively increases
this bound until a program that satisfies all input-output examples is found.

All of the experiments presented in this section were conducted on an Intel(R)
Xeon(R) with E5-2630 v2 2.60 GHz CPUs, using a memory limit of 64 GB and
a time limit of 3,600 s. The goal of our evaluation was to answer the following
questions:
Q1. How does line-based enumeration compare against tree-based enumeration
in terms of encoding complexity? (Sect. 5.2)
Q2. How does line-based enumeration compare against tree-based enumeration
in general? (Sect. 5.2)
Q3. How does line-based enumeration compare against tree-based enumeration
for programs with more than three lines of code? (Sect. 5.2)
Q4. What is the performance impact of breaking symmetries in line-based enu-
meration? (Sect. 5.3)

5.1 SQL Benchmarks

We designed a DSL for SQL that can solve classic SQL queries from a database
textbook [13]. These benchmarks were previously used by well-known SQL syn-
thesizers [7,18,20]. We started with an initial set of 23 SQL benchmarks (cor-
responding to Sects. 5.1.1 and 5.1.2 of the database textbook [13]) and created
variants of these benchmarks until a total of 55 benchmarks.

Since we want to study the performance of each encoding with respect to the
size of the synthesized query, for each of these benchmarks, we generate six dif-
ferent SMT formulas to search for programs that use exactly n production rules
from our DSL, for a total of 330 benchmarks (55 × 6). The SMT formulas differ
in the number of productions that their programs must have, and it simulates
the search performed by a program synthesizer until a solution is found.
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Table 1. Number of tree nodes, variables and mean number of constraints used by
each approach for a given program’s size.

Encoding

Tree-based Line-based

Lines of code Nodes Variables Constraints Nodes Variables Constraints

1 5 10 379 5 6 44

2 21 42 1,703 10 16 118

3 85 170 6,999 15 30 224

4 341 682 28,183 20 48 362

5 1,365 2,730 112,919 25 70 532

6 5,461 10,922 451,863 30 96 734

Table 2. Number of solved benchmarks by each approach.

Lines of code 1 2 3 4 5 6 Total % Solved % Solved (LOC >= 4)

# Tests 55 55 55 55 55 55 330

Tree-based 55 55 54 34 18 2 218 66.06% 32.73%

Line-based 55 55 54 49 48 39 300 90.91% 82.42%

5.2 Comparison Between Line-Based and Tree-Based Encodings

Encoding Complexity. As presented in Sects. 3 and 4, the number of nodes
used by line-based enumeration increases linearly. On the other hand, in tree-
based enumeration the number of nodes increases exponentially with the number
of productions. The number of variables and constraints used by each type of
enumeration varies with the number of nodes. Table 1 shows the number of nodes,
variables and the mean number of constraints used by each type of enumeration
on the 330 SQL benchmarks. The number of nodes and variables are always the
same for a given program’s size. The number of constraints varies with the DSL
since each benchmark may use different constants and aggregate functions.

Performance. Table 2 shows the number of solved benchmarks by each encod-
ing for a given number of lines in our DSL. The performance for both encodings
is similar for programs with three or fewer lines of code. However, when the pro-
gram size increases, the difference between these approaches becomes clear. The
last line of Table 2, shows the percentage of solved benchmarks by each approach
with more than three lines of code. The tree-based encoding only solves 33% of
the benchmarks while line-based encoding solves 82%.

In terms of time spent in each benchmark, Fig. 9 shows two plots, a cactus
plot in Fig. 9a and a scatter plot in Fig. 9b. The cactus plot shows the cumula-
tive synthesis time (y-axis) against the number of benchmarks solved (x-axis).
Each point in the scatter plot represents a benchmark where the x-value (resp.
y-value) is the time spent by the line-based (resp. tree-based) enumerator on
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(a) Running times. (b) Comparison between encodings.

Fig. 9. Tree-based vs Line-based Enumerators.

(a) Number of blocked symmetric solu-
tions per benchmark.

(b) Runtime comparison without consid-
ering the overhead to find symmetries.

Fig. 10. Impact of breaking symmetries.

a given benchmark. Both plots, in Fig. 9, support the results shown in Table 2.
Additionally, the plots show that tree-based enumeration is, in general, signifi-
cantly slower than line-based enumeration.

These differences in time and number of benchmarks solved, in particular for
the instances with more than 3 lines, can be justified by the exponential number
of variables and constraints required by tree-based enumeration.
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5.3 Impact of Symmetry Breaking

We evaluate the impact of symmetry breaking on the performance of line-based
enumeration. For every solution α, we find all solutions symmetric to α and add
constraints to block them. Our experiments show that symmetry breaking does
not improve the performance of line-based enumeration. Possible explanations
for this behavior can be: (1) the number of symmetries is only significant for
programs with more than three lines, and (2) the overhead to find and block all
symmetric solutions is too large when compared to the time of each SMT call.

Figure 10a shows the total number of symmetric solutions blocked in each
benchmark using a logarithmic scale. Programs with one or two lines of code do
not have symmetries because they have only one representation. Programs with
three lines of code have at most one symmetry. Therefore, only programs with
more than three lines of code, have a significant number of blocked solutions,
i.e., blocked more than a thousand symmetric solutions (117 benchmarks). If we
only look at these 117 benchmarks, we observe that not breaking symmetries
solves 87 benchmarks, while breaking symmetries only solves 68 benchmarks.

Since breaking symmetries is ineffective even when a large number of sym-
metries is present, we analyzed the current overhead of finding and blocking
symmetric solutions. For each solution, we spend on average 0.091 s to find and
block all symmetric solutions. Figure 10b shows, per benchmark, the time spent
by the line-based enumerator with and without symmetry breaking, ignoring
the time spent searching for and blocking symmetric solutions. This plot shows
that, even if symmetry breaking was free, it does not improve the performance of
the line-based enumerator. We observed that, without symmetry breaking, each
SMT call takes on average 0.015 s. If we add symmetry breaking predicates, each
SMT call doubles its time to 0.030 s, on average. Since our enumeration relies
on solving many easy SMT calls, we concluded that the search space reduction
enabled by symmetry breaking does not compensate for the extra effort required
to break symmetries.

6 Related Work

Program synthesis has been widely used to synthesize queries using input-output
examples [4,7,17,18,20] or natural language [19]. Approaches for query synthesis
vary from using decision trees with fixed templates [17,20], to abstract repre-
sentations of queries that can potentially satisfy the input-output examples [18],
and to use SMT-based over-approximations to prune the search space [7].

Tree representations of program search spaces are commonly used in modern
program synthesis applications. For example, Bonsai [3] is a validation frame-
work for type systems that uses such representations to synthesize syntactically
incorrect programs wrongly accepted by the type checker. State-of-the-art pro-
gram synthesizers based on enumeration [4,6,7] also make use of tree-based
SMT encodings in order to prune the search space by checking if it is possible
to extend a given partial program to a complete program which satisfies the
input-output examples. The encodings studied in this paper can improve the
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enumeration of program synthesizers based on SMT encodings [4,6,7]. These
encodings are domain agnostic and can be used in other domains besides SQL
(e.g., lists, strings, tables, etc.) with expected improvements of the same order
of magnitude.

Alternatively, the synthesis problem can be directly encoded into SMT using
quantified formulas [11,12,16]. Brahma [11,12] is an oracle-guided synthesizer
that considers an SMT encoding with some similarities to the line-based encod-
ing proposed in Sect. 4. However, there are some fundamental differences: (1)
The program specification is generic and must be satisfied for all possible pro-
gram inputs. Therefore, Brahma essentially solves a single universally quantified
SMT formula in order to synthesize a program. (2) SMT specifications must
capture the complete semantics of the respective components, while state-of-
the-art enumeration-based synthesizers typically deal with specifications that
over-approximate the components’ behavior. (3) The authors focus on bit-vector
manipulation and do not consider arguments of different types. Synudic [16]
extends Brahma with additional restrictions on the structure of the program to
be synthesized. This allows users to either search for all programs that satisfy the
functional requirements or to narrow the search space to programs that satisfy
a given template. Even though there are some similarities between our encoding
and a purely SMT-based approach [11,12,16], we only need to encode a for-
mula where each solution represents a well-typed program. The SMT encoding
abstracts the semantics of the operators and is simpler than previous approaches
that encode the entire synthesis problem as an SMT problem. Moreover, an
enumeration-based approach makes thousands of SMT calls (each in the order
of milliseconds), while the SMT encodings from previous approaches [11,12,16]
typically solve one large quantified formula that can take a very long time.

7 Conclusions

In recent years, new platforms for software development have been made avail-
able where users with little programming skills are able to create and modify
software applications. These tools are able to hide many aspects of programming,
but some coding experience is still needed for some operations. Programming-
by-example is making programming more accessible by allowing users to create
incomplete specifications through input-output examples of these operations and
automatically synthesize the desired program.

Currently, the most common approach to program synthesis is to perform
an enumerative search on the space of programs and find one that satisfies the
specifications. In this paper, we propose a new compact SMT encoding for pro-
gram enumeration where each program is represented as a sequence of lines.
Experimental results on synthesis of SQL queries show that the proposed line-
based encoding allows a faster enumeration of programs when compared to the
usual tree-based encoding. Moreover, while the tree-based encoding does not
scale beyond a small number of operations, the new line-based encoding allows
to find programs with a larger sequence of operations.
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Abstract. In this paper we introduce a new approach for proving quan-
tified theorems over inductively defined data-types. We present an auto-
mated prover that searches for a sequence of simplifications and trans-
formations to prove the validity of a given theorem, and in the absence
of required lemmas, attempts to synthesize supporting lemmas based on
terms and expressions witnessed during the search for a proof. The search
for lemma candidates is guided by a user-specified template, along with
many automated filtering mechanisms. Validity of generated lemmas is
checked recursively by our prover, supported by an off-the-shelf SMT
solver. We have implemented our prover called AdtInd and show that
it is able to solve many problems on which a state-of-the-art prover fails.

1 Introduction

Program verification tasks are often encoded as queries to solvers for Satisfiability
Modulo Theories (SMT). Modern solvers, such as Z3 [26] and CVC4 [3], are
efficient and scalable mainly on quantifier-free queries. Formulas with universally
quantified formulas, which could be obtained from programs with algebraic data
types (ADT), are still challenging. While quantifier-instantiation strategies [14,
18,25] and superposition-based theorem proving [10,23] are effective in some
cases, a native support for inductive reasoning is needed to handle the full range
of problems. Inductive reasoning over universally quantified formulas has been
partially implemented in CVC4, in particular, using a conjecture-generation
feature [30]. However, CVC4 often generates too many unrelated conjectures
and does not utilize a problem-specific information.

Automating induction over ADTs has also been the target for many theorem
provers. Tools such as IsaPlanner [11], ACL2 [6], Zeno [31], and HipSpec [8] can
make use of induction when proving goals, with varying capabilities of automatic
lemma discovery based on rippling [5] and generalization. However, the heuristics
for lemma discovery are baked into the prover as fixed rules that target a limited
space. These rule-based approaches are often ineffective when the form of the
required lemmas is significantly different from expressions encountered during
the proof attempt. There is no automated support for exploring a larger search
space for candidates, and the user has to manually guide the overall search.
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Fig. 1. AdtInd workflow.

A major challenge with both SMT-based tools and induction provers is that
they often fail to produce crucial lemmas from which actual proofs follow. Tech-
nically this is due to the failure of cut-elimination in inductive theories [20],
making the problem of finding proofs for many instances undecidable.

Our approach to automatic lemma discovery is inspired by the framework
of syntax-guided synthesis (SyGuS) [1], applicable to program synthesis. To dis-
cover a program that meets a specification, SyGuS-based approaches take as
additional input a formal grammar that defines the search space for the pro-
gram. This framework has been successfully used in many applications and there
exist dedicated SyGuS solvers that target various domains [2]. For example,
SyGuS-based techniques have been used for program verification via genera-
tion of invariants [12,16,17] and termination arguments [13]. Although SyGuS
has also inspired various SMT solver efforts [27–29] (described later in related
work), to the best of our knowledge, none of these tackle automatic generation
of lemmas for proofs by induction over ADTs.

An overview of our proposed framework is shown in Fig. 1. It is built on
top of an automated theorem prover based on inductive reasoning. The prover
decomposes given theorems into the base-case and inductive-case subgoals and
uses a backtracking rewriter that sequentially simplifies each of the subgoals
toward true. When the prover is unable to succeed, our approach first generalizes
the partially-rewritten formula (as done in prior efforts) by replacing certain
concrete subterms in a formula with fresh variables and attempts to prove its
validity from scratch. If successfully proved, such a lemma can then be used to
help prove the original subgoal.

However, generalization can discover only a limited number of lemmas.
Therefore, we also perform a SyGuS-based lemma enumeration driven by tem-
plates, i.e., formulas with unknowns potentially provided by the user. Our key
contribution is an algorithm that instantiates these unknowns with terms gener-
ated from syntactic elements obtained automatically from the formulas encoun-
tered during the proof search. Thus, the formal grammars, provided as input
to SyGuS in our case are automatically generated, goal-directed, and in many
cases small. Furthermore, we contribute a set of built-in grammar templates and
techniques to effectively filter out invalid formulas produced by the enumeration.
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We have implemented our approach in an open-source tool called AdtInd,
including the inductive reasoning module and the rewriter. We have evalu-
ated the tool on challenging problems with ADTs and have demonstrated that
AdtInd can successfully solve many of these problems on which CVC4 [30]
failed, by discovering supporting lemmas through SyGuS-based lemma enumer-
ation. As a sanity check for our tool, we have verified the validity of lemmas
synthesized by AdtInd by using CVC4. We also provided our synthesized lem-
mas as axioms to CVC4, which can then succeed often in proving the original
goal. This demonstrates the effectiveness of our lemma synthesis techniques in
generating lemmas that can be used in other solvers and different environments,
not just in combination with a rewriter that we have used here to implement
our ideas.

In summary, this paper makes the following contributions:

– an algorithm for automating proofs by induction over ADTs, where lemmas
are synthesized by term enumeration guided by user-specified templates.

– an optimized enumeration process to propose lemma candidates, taking into
account the formulas encountered during the proof search. This process
includes filtering to reduce overhead of considering candidates that are invalid,
or lemmas that may be valid but are less likely to be useful in a proof. These
lemma synthesis techniques could be potentially integrated with other solvers.

– an implementation of our lemma synthesis procedures along with an induc-
tive reasoning module and a rewriter that work together as a theorem prover
AdtInd. We demonstrate its effectiveness in handling many challenging prob-
lems that cannot be solved by a state-of-the-art automated solver.

2 Preliminaries

A many-sorted first-order theory is defined as a tuple 〈S,F ,P〉, where S is a
set of sorts, F is a set of function symbols, and P is a set of predicate symbols,
including equality. A formula ϕ is called satisfiable if there exists a model where
ϕ evaluates to true. If every model of ϕ is also a model of ψ, then we write
ϕ =⇒ ψ. A formula ϕ is called valid if true =⇒ ϕ.

An algebraic data type (ADT) is a tuple 〈s, C〉, where s ∈ S is a sort and C is
a set of uninterpreted functions (called constructors), such that each c ∈ C has
some type A → s. If for some s, A is s-free, we say that c is a base constructor
(otherwise, an inductive constructor).

In this paper, we consider universally-quantified formulas over ADTs and
uninterpreted functions. For proving validity of a formula ∀x.ϕ(x), where variable
x has sort s, we follow the well-known principle of structural induction:

Lemma 1. Given an ADT 〈s, {bcs : s, ics : s × . . . × s
︸ ︷︷ ︸

n

→ s}〉 and a formula ϕ,

if the following two formulas (base case and inductive case) are valid:

ϕ(bcs) and ∀x1, . . . , xn.
( ∧

1≤i≤n

ϕ(xi)
)

=⇒ ϕ(ics(x1, . . . , xn))

then ∀x.ϕ(x) is valid.



Lemma Synthesis for Automating Induction 603

Lemma 1 is easily generalizable for ADTs with other constructor types. For
instance, an inductive constructor cons of a single-linked list has an arity two
(i.e., it takes an additional integer i as argument). Thus, to prove the inductive
step, the validity of the following formula should be determined:

∀x.ϕ(x) =⇒ ∀i.ϕ(cons(i, x))

We are interested in determining the validity of a universally-quantified for-
mula ∀x.ϕ(x), where ϕ may itself consist of universally quantified formulas:

∀x.
(

∀y.ψ(y)
)

∧ . . . ∧
(

∀z.γ(z)
)

=⇒ θ(x) (2.1)

We call the innermost universally-quantified formulas on the left side of the
implication (2.1) assumptions. An assumption is called an axiom if it is not
implied by any combination of other assumptions, and a lemma otherwise. We
also assume that neither axioms nor lemmas have appearances of the variable x.
The formula on the right side of the implication, which is the only formula over
x, is called a goal.

A proof of a valid formula of the form (2.1) is derived by structural induction.
In both the base and inductive cases, quantifier-free instances Q(x) of axioms
and lemmas are produced and used to (sequentially) rewrite the goal until it is
simplified to true. In particular, we consider the following two simple proof rules
(other rules on inequalities and user-proved predicates could also be added):

Q(x) =⇒ goal(x)
true

[apply]
Q(x) ≡ (P (x) = R(x))

goal[P 
→ R](x)
[rewrite]

If a (possibly transformed) goal cannot be further rewritten or simplified
by the given axioms or lemmas, it is called a failure formula (if clear from
the context, we drop “formula” and simply call it a failure). Clearly, when a
goal is supplied by a larger number of assumptions, there is a wider room for
possible simplifications, and thus a prover has more chances to succeed. We thus
contribute a method that discovers new assumptions and enlarges the search
space. An important condition for soundness of this method is that such newly
introduced lemmas should themselves be derivable from given assumptions.

3 Motivating Example

Consider an ADT Queue defined as a tuple of two lists (the first one being the
front, and the second one being the back but in reverse): queue : list × list →
Queue. And some useful functions include: concat which concatenates two lists
together, len which computes the length of a list, qlen which computes the length
of a queue, qpush which appends one element to a queue, and finally amrt that
balances the queue by concatenating the two lists together when the second list
becomes longer than the first one. The given axioms and goal are shown below.
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Axioms: definition of concat, len, qlen, qpush, amrt

∀l. concat(nil, l) = l

∀l1, l2, n. concat(cons(n, l1), l2) = cons(n, concat(l1, l2))
(3.1)

∀l. len(nil) = 0
∀l, n. len(cons(n, l)) = 1 + len(l)

(3.2)

∀l1, l2. qlen(queue(l1, l2)) = len(l1) + len(l2) (3.3)

∀l1, l2, n. qpush(queue(l1, l2), n) = amrt(l1, cons(n, l2)) (3.4)

∀l1, l2.amrt(l1, l2) =

{

queue(l1, l2) if len(l1) ≥ len(l2)
queue(concat(l1, rev(l2)), nil) Otherwise

(3.5)

Goal: prove that length of queue increases by 1 after qpush

∀l1, l2. qlen(qpush(queue(l1, l2), n)) = 1 + qlen(queue(l1, l2)) (3.6)

Our approach performs several rewriting steps of applying function defi-
nitions, then the base case of induction on variable l1 leads to the following
formula:

∀l2, n. 1 + len(l2) = len(concat(rev(l2), cons(n, nil))) (3.7)

The formula (3.7) cannot be further simplified with existing axioms, and this
constitutes a failure. Before moving on to the inductive case for l1, we first try
to apply generalization as follows:

– We could replace nil with new list variable l3 on the right hand side (RHS),
but there is no place to introduce l3 on the left hand side (LHS).

– We could also replace cons(n, nil) with new list variable l3, again there is no
corresponding replacement on the LHS.

– Function applications are possible candidates as well, e.g., replacing rev(l2)
with new list variable l3, yet again it cannot be applied on the LHS.

As seen above, generalization does not give us any suitable candidates. How-
ever, useful lemmas could still be generated from ingredients occurring in the
failure. In this case, we apply the last two generalization rules (shown above) to
the RHS of (3.7), and then automatically construct a formal grammar using one
of the user-provided templates (to be explained in detail in Sect. 4.2). In partic-
ular, the last line in (3.8) below is regarded as a template, where the undefined
symbols (shown as 〈???〉) have to be filled automatically with suitable terms.
This is done by enumeration of integer-typed terms with the function symbols
len, concat (as well as constructors nil and cons), the variables l3, l4, and integer
constants such as 0, 1, etc.
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∀l2, n. 1 + len(l2) = len(concat(rev(l2), cons(n, nil)))
↓ replace rev and conswith new variables

∀l2, n. 1 + len(l2) = len(concat(l3, l4))
↓ create template for term enumeration

∀l3, l4. 〈???〉 + 〈???〉 = len(concat(l3, l4))

(3.8)

For instance, our approach (explained in detail in Sect. 4) is able to discover
the following lemma:

∀l3, l4. len(concat(l3, l4)) = len(l3) + len(l4) (3.9)

The lemma is proven valid by induction (i.e., a recursive invocation of our
method), and then it can be used to prove the original goal.

4 Lemma Synthesis

In this section, we describe our key contributions on automated lemma synthesis.
Algorithm 1 shows the top level procedure SolveWithInduction which applies
structural induction to create the base-case and inductive-step subgoals for the
rewriter to prove. If any subgoal cannot be proved with existing assumptions,
the algorithm invokes Generalize and EnumerateLemmas to produce lemma
candidates based on failures found in Rewrite. These procedures are further
described in the following sections.

– Rewrite: a backtracking engine that attempts to rewrite a given goal
towards true, using the provided assumptions (including discovered lemmas,
as described in Sect. 2). For practical reasons, our implementation uses max-
imum limits on the depth of the recursive proof search and on the num-
ber of rewriting attempts using the same transformation. When a subgoal is
not proved, the main output of this engine is a set of failures, i.e., formulas
obtained during the search, to which no further rewriting rule can be applied
(within the given limits). Our algorithm can utilize an external library of
proven theorems while a set of heuristics must be developed to efficiently
traverse a large search space, which is outside the scope of this work.

– Generalize: an engine, further described in Sect. 4.1, which takes the fail-
ures discovered by Rewrite and applies transformations to replace concrete
values by universally quantified variables in order to produce lemma candi-
dates that may support proving the original goal.

– EnumerateLemmas: a SyGuS-based lemma synthesis engine, further
described in Sect. 4.2, which proposes a larger variety of lemma candidates
than generalization. This incorporates more aggressive mutation of failures
than generalization, to make the lemmas goal-oriented. This method is con-
figurable by the choice of grammars, which can be guided by the user. In our
implementation, we include grammars tailored to the most common applica-
tions appearing in practice in our benchmark examples.
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For simplicity of the presentation, our pseudo-code in Algorithm 1 assumes
only one quantified ADT variable, which is used to generate the base-case and
inductive-step subgoals. However, our implementation also supports multiple
quantifiers and nested induction. For both the subgoals, the proving strategy is to
find a sequence of rewriting attempts using the set of assumptions. For the induc-
tive case, the inductive hypotheses are also included in the set of assumptions.
In the case of nested induction (omitted from the pseudo-code), all assumptions
from the outer-induction are inherited by the inner-induction.

If the algorithm falls short in rewriting any of the subgoals using the existing
assumptions, it attempts to synthesize new lemmas by (1) applying Generalize
to failures, and (2) identifying suitable terms from failures for applying SyGuS
(inside EnumerateLemmas). Generated this way, a lemma candidate needs to
be checked for validity which is performed by calling Algorithm 1 recursively.

Algorithm 1: SolveWithInduction(Goal, Assumptions)
Input: Goal: quantified formula to be proved, Assumptions: set of

formulas
Output: result ∈ {QED,Unknown}

1 for subgoal ∈ {baseCase(goal), indStep(goal)} do
2 if indStep then Assumptions ← Assumptions ∪ {indHypo}
3 result, failures ← rewrite(subgoal, Assumptions)
4 if result then continue
5 candidates ←

map(Generalize, failures) ∪ EnumerateLemmas(failures)
6 for each ψ ∈ candidates do
7 if SolveWithInduction(ψ,Assumptions) = QED then
8 result ← SolveWithInduction(subgoal, Assumptions∪{ψ})
9 if result = QED then break

10 if baseCase and result = Unknown then return Unknown

11 return result

4.1 Lemma Synthesis by Generalization

The approach of generalizing a failure is widely applied among induction solvers
such as IsaPlanner [11], ACL2 [6], and Zeno [31], based on the observation that
proving a formula that applies to some specific value is often more difficult than
proving a more general version. In our setting, we replace suitable subterms of
the formula with fresh quantified variables, effectively weakening the formula.

Algorithm 2 shows the pseudocode of our generalization procedure that, given
a formula ϕ, outputs a lemma candidate ψ. It starts by gathering common sub-
terms in ϕ (e.g., when ϕ is an equality, it is possible that the same terms occur
on both its sides). Then, it replaces occurrences of subterms by fresh variables
and universally quantifies them. In our implementation, we prefer to generalize
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applications of inductive constructors first. If no lemma was discovered, we pro-
ceed to generalizing uninterpreted functions, and our last choice is to generalize
base constructors.

Algorithm 2: Generalize(ϕ)
Input: ϕ: formula to be generalized
Output: ψ: generalized formula

1 while ∃t ∈ terms(ϕ), which occurs in ϕ twice do
2 let v be such that v /∈ vars(ϕ)
3 ψ ← ∀v.ϕ[t 
→ v]

4 return ψ

Algorithm 3: EnumerateLemmas(Failures)
Input: Failures in the proof search
Output: Candidates formulas

1 Φ ← terms(Failures)
2 while |Candidates| < THRESHOLD do
3 ϕ ← largest(Φ)
4 G ← createGrammar(functions(ϕ), predicates(ϕ), vars(ϕ))
5 for each ψ ∈ G do
6 ψ ← ∀vars(ϕ) . ψ
7 if ¬refuted(ψ) then Candidates ← Candidates ∪ {ψ}
8 Φ ← Φ \ {ϕ}
9 return Candidates

4.2 SyGuS-Based Lemma Synthesis

Applying generalization alone may not yield the desired supporting lemma at
times. Algorithm 3 shows our SyGuS-style approach for synthesis of lemma can-
didates from formal grammars. These formal grammars are themselves generated
on-the-fly by our procedure. Specifically, in each iteration of the outer loop, the
algorithm picks a term which occurs in some failure, and then uses its parse
tree to extract function and predicate symbols to construct a formal grammar.
This grammar is then used to generate the desired candidate lemmas automat-
ically. Our key contribution is the grammar construction algorithm (outlined in
Sect. 4.3) that uses these function and predicate symbols in combination with
user-provided templates. We also provide a set of built-in templates that have
worked well on our practical benchmarks.

Finally, in Sect. 4.4, we describe how to enumerate lemma candidates (up to
a certain size) from the grammar, and how to filter likely successful candidates
for the original proof goal in Algorithm 1. These candidates must be proven
correct first, as shown in Sect. 4.5.
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4.3 Automatic Construction of Grammars

Although our algorithm does not depend on any particular grammar for lemma
generation, it is practically important to consider grammars that are relevant for
the failures (one or many), so that the generated lemmas have a higher likelihood
of success in proving the original goal. Therefore, we focus on various elements
(e.g., uninterpreted functions and predicates) that can be extracted from the
parse trees of failures, to automate the process of grammar creation. Elements
that do not appear in the failure are not considered to save efforts.

At the same time, a user might specify some higher-level templates that pro-
vide additional guidance for this process. Essentially, a higher-level template
provided by a user can be viewed as a partially defined grammar that involves a
set of undefined nonterminals (i.e., where the corresponding rules are still unde-
fined). Our algorithm automatically constructs missing rules for these nonter-
minals by using the syntactic patterns obtained from failures, thus constructing
fully-defined grammars. These fully-defined grammars are then used for auto-
matically generating candidate lemmas.

To additionally optimize this process, our grammar construction algorithm
focuses on individual subterms occurring in failures. Our particular strategy is
to pick the largest subterm (referred to as ϕ in the pseudo-code and later in the
text), but other heuristics could be used here as well.

Furthermore, we identified three useful higher-level templates that have been
applied to solve our benchmarks1. These templates are in the form of an equality,
they use undefined nonterminals (shown as 〈???〉), and interestingly, two of them
have occurrences of ϕ on the left side of the equality:

ϕ = 〈???〉 + 〈???〉 (4.1)
ϕ = 〈???〉 (4.2)

〈???〉 = 〈???〉 (4.3)

The first template is chosen when ϕ has an integer type, and the second one
is chosen for all algebraic data types. Lemma candidates generated from the first
two templates inherit information from the failure, having the subterm ϕ on one
side. The third template is chosen as a last resort, when no valid lemmas are
discovered after using the first two (as explained in Sects. 4.4 and 4.5).

After choosing one of these templates, our algorithm defines the rules for non-
terminals 〈???〉, based on the variables, uninterpreted functions, and predicates
occurring in ϕ.

Additionally, we identified two higher-level templates, applicable when the
same function occurs in a failure multiple times. Intuitively, they correspond to
the commutativity and the associativity of certain uninterpreted functions. After
such functions are determined by a syntactic analysis of a failure, they immedi-
ately give instantiations of nonterminals 〈???〉 in templates (4.4) and (4.5).
1 These templates are referred to as built-in templates, which need not be specified by

the user. Furthermore, our current implementation automatically chooses a built-in
template based on ϕ.
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〈???〉(a, b) = 〈???〉(b, a) (4.4)
〈???〉(a, 〈???〉(b, c)) = 〈???〉(〈???〉(a, b), c) (4.5)

Returning back to our motivating example, for failure (3.7), both sides of the
equality have integer type. Thus, our algorithm chooses template (4.1), and we
use the right side of (3.7) as ϕ, since it is the larger (more complex) expression.
This allows more information from the failure to be retained, thereby enabling
the enumerated lemma candidates to be goal-directed. The following grammar
is then automatically extracted from ϕ:

〈int − term〉 ::= n | len(〈list − term〉)
〈list − term〉 ::= nil | l2 | cons(〈int − term〉, 〈list − term〉) | (4.6)

concat(〈list − term〉, 〈list − term〉) | rev(〈list − term〉)

Note that this grammar is recursive and relatively large in scope. For per-
formance reasons, we try to reduce the grammar. We do this by heuristically
generalizing ϕ first, where we replace function applications by fresh variables
(i.e., similar to the strategy in Sect. 4.1), as shown in (3.8). The generalized ϕ
gives rise to the following grammar:

〈int − term〉 ::= len(〈list − term〉) (4.7)
〈list − term〉 ::= l3 | l4 | concat(〈list − term〉, 〈list − term〉)

Finally, the resulting production rules are embedded into the chosen template
to generate a complete grammar, where 〈???〉 is instantiated by 〈int − term〉.

4.4 Producing Terms from Grammar

Given a grammar, constructed as shown in the previous subsection, our algo-
rithm enumerates various candidate lemmas and checks their validity. Since
larger candidate lemmas are typically more expensive to deal with, our algorithm
starts by enumerating small formulas with terms upto some size. We define the
size of an expression as the height of its parse tree. For example, variables and
base constructors of data types, such as x, y, nil have size 1, while cons(1, nil)
and rev(x) have size 2. By Ψk, we denote the set of expressions of size k, and by
Ψk[ty], we denote the set of expressions of size k that has type ty.

Given Ψk, it is straight-forward to enumerate expressions of size k +
1: for each function (including inductive constructors) f with m parame-
ters typed ty1, . . . , tym, we first enumerate expressions τ1, . . . , τm from sets
Ψk[ty1], . . . Ψk[tym], respectively, and second, we create a new expression
f(τ1, . . . , τm) which is inserted into Ψk+1. This process is repeated iteratively
until we reach the desired size limit.

Our algorithm enforces the following two constraints on the generated can-
didate formulas. First, it checks the generated formula for non-triviality : there
should be no application of a function on only base constructors of an ADT, e.g.,
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concat(nil, nil). Such candidates are usually invalid for any non-trivial instanti-
ation of a universally quantified variable. Second, a generated lemma candidate
should cover as many variables occurring in the subterm ϕ from which we derived
the templates (4.1) – (4.3) as possible. In our experience, prioritizing candidates
with full coverage leads to significant performance gains.

To further reduce the number of candidates, we leverage symmetry of oper-
ators in a template (e.g., commutativity of integer addition) whenever possible.

4.5 Filtering by Refutation

We apply an additional filtering step on lemma candidates where we search for
inexpensive counterexamples to validity. Given a candidate lemma, our algo-
rithm instantiates quantified variables with concrete values, creates quantifier-
free expressions, and repeatedly simplifies them by applying assumptions. In
addition to the rules mentioned in Sect. 2, we also apply the following refuta-
tion rule:

goal(x) =⇒ false

false
[applyr]

In our implementation, we limit the number of refutation attempts for each
candidate and the complexity of the concrete instantiations. The concrete values
of variables are produced by applying constructors of ADTs repeatedly.

For example, formula (4.8) is one of the possible candidates based on the
template in (3.8). This lemma is shown invalid by instantiating l3 and l4 with
concrete lists cons(1, cons(2, nil)) and cons(3, nil), and then applying the given
axioms to the resulting quantifier-free expression, as shown below.

∀l3, l4. len(cons(len(l3), nil)) + len(l4) = len(concat(l3, l4))
↓ instantiate quantified variables

len(cons(len(cons(1, cons(2, nil))), nil)) + len(cons(3, nil))
= len(concat(cons(1, cons(2, nil)), cons(3, nil)))

↓ apply axiom (3.2)
1 + 1 = len(concat(cons(1, cons(2, nil)), cons(3, nil)))

↓ apply axiom (3.1)
1 + 1 = len(cons(1, cons(2, cons(3, nil))))

↓ apply axiom (3.2)
1 + 1 = 1 + 1 + 1 (False)

(4.8)

If a lemma candidate passes (some number of) refutation tests, then a new
instance of SolveWithInduction is created in an attempt to prove its validity.
This recursive nature of our procedure allows proving lemma candidates that
may further require discovering new supporting lemmas. However, creating a
subgoal to prove a lemma candidate is a fairly expensive procedure. Therefore,
we would like the filtering to be aggressive, to minimize the number of lemmas
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to be proved. Although the refutation tests are relatively cheap to perform, too
many tests may result in wasted effort and delay lemma application in proving
the original goal. Thus, we must strike a balance between testing for refutations
and proof attempts. In our implementation, we perform three refutation tests
by default (and the user can optionally set the number of such tests).

5 Implementation and Evaluation

We have implemented our algorithm in a prototype tool named AdtInd on top of
Z3 [26]. Our backtracking rewrite procedure uses the “apply” and “rewrite”
proof rules repeatedly to simplify the goals and invokes Z3 to determine the
validity of quantifier-free expressions encountered during such rewriting. Our
implementation allows the user to specify the maximal depth of the backtracking
search (15 steps by default); it also avoids divergence by limiting the consecutive
applications of the same rewrite rules.

Our lemma synthesis procedures are also configurable. In generalize, the
user can adjust the aggressiveness of generalization, opting to replace smaller or
larger terms in failures (recall Sect. 4.1). In EnumerateLemmas, the user sets
a larger limit on sizes of enumerated terms to explore a larger space of lemma
candidates. The number of refutation attempts is also configurable (3 times by
default).
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Fig. 2. Evaluation comparison (sec × sec): points above the diagonal represent run-
times for benchmarks on which AdtInd outperformed CVC4; points on the boundaries
represent timeouts. The diameter of a circle represents the number of overlapping
circles.

AdtInd has been evaluated on benchmarks from the CLAM [20] suite2 con-
sisting of 86 quantified theorems over common operations of natural numbers,

2 The source code of AdtInd and benchmarks are available at: github.com/wky/
aeval/tree/adt-ind.

http://github.com/wky/aeval/tree/adt-ind
http://github.com/wky/aeval/tree/adt-ind
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lists and other data types. We have compared AdtInd against the CVC4 SMT
solver (v1.7, which supports induction and subgoal generation). We used a time-
out of 300 seconds. The scatter plot in Fig. 2 summarizes the results. In total,
AdtInd proved 62, and CVC4 proved 47 benchmarks. These numbers include
respectively 22 and 7 theorems proven only by the corresponding tool and not
by the other (shown in Fig. 2 as crosses on the top horizontal line and as crosses
clustered around the bottom right corner, respectively). Interestingly, there are
not many cases when CVC4 takes a significant amount of time before deliver-
ing a successful result, i.e., it either terminates in less than a second or diverges.
This is possibly due to an inability to discover a meaningful lemma candidate for
these benchmarks. In contrast, AdtInd is often able to enumerate useful lem-
mas, but sometimes it requires a number of iterations (see, e.g., crosses on the
bottom horizontal line). We hope to improve runtime performance of AdtInd
in the future by adopting certain successful optimizations and heuristics from
CVC4.

Of the 62 theorems proven by AdtInd, 29 did not require extra lemmas, 12
were proven with lemmas discovered through generalization, and 21 were proven
with lemmas discovered through SyGuS. For the SyGuS-generated 21 theorems,
AdtInd created on average 171 lemma candidates. In our experiments, 93%
of processed candidates were refuted by tests, leaving only a small number of
lemmas to be validated by the more expensive SolveWithInduction.

Experiment over ADTs and LIA. To fully demonstrate the power of SMT solvers,
we considered several additional benchmarks involving linear integer arithmetic
(LIA). With this capability, the benchmarks do not require specifying assump-
tions over natural numbers (like in CLAM). These benchmarks also motivate the
usefulness of having a specialized lemma template for integers shown in Sect. 4.3.
The results are listed in Table 1. The list rev2 benchmark took more solving
time than others due to the large search space (about 500 lemma candidates were
rejected before a sufficient lemma was found). For comparison, CVC4 failed to
prove list rev and exceeded a timeout of 300 s on the other 8 problems. The
interactive prover ACL2 was only able to prove only 2 out of 9 problems in
Table 1, namely list rev concat and list rev len.

Table 1. AdtInd on ADT+LIA problems.

Goal AdtInd result Goal AdtInd result

list rev Proved, 10.6 s list rev2 len Proved, 0.95 s

list rev concat Proved, 2.52 s queue push Proved, 33.9 s

list rev2 concat Proved, 1.95 s queue len Proved, 7.6 s

list rev2 Proved, 1 m 59 s tree insert all Proved, 1.9 s

list rev len Proved, 2.30 s
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Future Work. There are other categories of theorems, mainly in the Leon [4] and
TIP [7] suites, that require more advanced techniques for automated proving.
Many theorems require non-trivial case-splitting transformations (some imple-
mented in Why3 [15]) for if-then-else blocks in given axioms, which is not fully
supported in our prototype yet. However, our lemma synthesis algorithms can
be used in combination with a different solver or environment that handles case-
splitting and other forms of goal decomposition. Thus, our tool can focus on
producing lemma candidates without being dependent on current capabilities of
our prototype rewriting engine.

Of the theorems that we cannot prove in the TIP set, many are mathemat-
ically challenging (e.g., Fermat’s Last Theorem), involve high-order functions,
contain sortedness properties, or require some form of pumping lemma to solve
(e.g., proving equivalence of regular languages). These instances are currently
outside the scope of our work.

6 Related Work

There is a wide range of approaches for proving quantified theorems defined on
algebraic data types. These include SMT-based inductive reasoning in tools such
as Dafny [24] and CVC4 [30]; Horn Clause solvers [33]; generic theorem provers
such as ACL2 [6], and induction provers such as CLAM [20], IsaPlanner [22]
and HipSpec [8]. The main issue with these tools is that even with the help of
built-in heuristics such as rippling [5] and generalization of failures, they still
require human interaction to discover necessary lemmas to complete a proof
end-to-end. Our proposal to use term enumeration for lemma discovery (after
failure of generalization) as a SyGuS-style synthesis task leverages information
available at proof failures and explores a much larger space of possible lemma
candidates. As shown in our evaluation in Sect. 5, this was enough to eliminate
the need for human input in many practical cases.

On lemma discovery within induction provers, machine learning tech-
niques have also been attempted in works such as ACL2(ml) [19] and Multi-
Waterfall [21]. ACL2(ml) uses statistical machine learning algorithms to extract
features present in the proof goal, and uses that to find similar patterns in a
library of proven theorems to in order to suggest new lemmas. Multi-Waterfall
runs multiple strategies in parallel, while a machine learning module trained
by previous proofs in a library is used to select lemmas candidates based on
their likelihood of advancing the current proof. The machine learning compo-
nents in these tools typically require a sufficiently large set of proven theorems
to learn from, whereas our tool uses term enumeration that does not depend on
an external library.

Specifically, CVC4 [30] supports induction natively to solve quantified SMT
queries with custom data types. The tool implements Skolemization with induc-
tive strengthening to prove conjectures, and uses enumeration to find adequate
subgoals (inspired by QuickSpec [9]). CVC4 employs filtering of candidates
based on activation of function symbols, canonicity of terms and counterex-
amples, which is roughly analogous to our filtering techniques. However, our
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lemma candidates arise from grammars that combine user-provided (or built-in)
templates with elements from failures in rewriting proof attempts and seem to
have a better chance of proving the original goal.

ACL2 (a Boyer-Moore prover) is based on rewriting of terms and a number of
induction heuristics. The tool identifies “key checkpoints” as subgoals to prove
on its way to prove the outer theorem, and has rules to perform generalization
similar to our approach described in Sect. 4.1. However, ACL2 does not have the
ability to enumerate lemma candidates, although users can provide their own
proof tactics or plug-ins to this theorem prover.

On the lemma synthesis front, the SLS framework [32] employs different tech-
niques to automatically generate and validate lemmas, but within an interactive
theorem prover environment. For symbolic heap verification using separation
logic, the tool generates lemma templates with the heap structures from the goal
entailment, and proposes unknown relations as constraints over the templates’
variables, which are later solved to discover the desired lemmas. We were unable
to experimentally compare with SLS because it works in an interactive theorem
prover environment, targets a distinct type of problems (proof entailments in
separation logic) and requires a different input format which is prohibitive for
us to translate to.

Among SyGuS applications for solving quantified formulas, in another recent
effort with CVC4 [28], a user can provide a grammar and a correctness specifi-
cation to a synthesis task, whose goal is to find rewrite rules that transform and
simplify SMT queries. The similarity here is that our tool also uses a SyGuS-
style user-provided template to search for supporting lemmas, which will be
used just like rewrite rules. However, the purpose of their technique is primarily
goal-agnostic simplification, and it does not track information such as failures in
proof search. More importantly, their grammars are not generated automatically
from problem instances, but are fixed by the user. Another recent effort [27]
uses SyGuS to synthesize invertibility conditions under which quantified bit-
vector problems can be converted to quantifier-free problems, to be solved by
an SMT solver. However, the purpose and specific techniques are different from
our approach.

Finally, SyGuS was recently applied to verification of program safety and ter-
mination in the FreqHorn framework [12,13]. These works exploit the syntax
of given programs to automatically generate grammar, from which the candi-
dates for inductive invariants and ranking functions are produced. While their
main insight is similar to ours, their approach does not support ADTs and hardly
exploits any failures. In the future, we believe that our tool could be integrated
to FreqHorn and help verify programs which are currently out of its scope.

7 Conclusions and Future Work

We have presented a new approach for automating induction over algebraic
data-types that uses lemma synthesis based on automatic grammar generation
and term enumeration guided by user-specified templates. Our prover AdtInd
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incorporates these ideas in a rewriting engine built on top of Z3. We demon-
strated that it successfully solves many challenging problem instances that a
state-of-the-art prover failed to solve.

So far, the proof goals in the examples that we considered (i.e., List, Queue,
Tree) are mostly in the form of equalities. We intend to apply our ideas to sup-
port inequalities and other relations that demand non-trivial inductive reasoning
and lemma discovery. Incorporating our lemma synthesis procedures into other
theorem proving frameworks (such as CVC4) would allow us to leverage existing
heuristics and proof tactics to deliver results on more complex problems. Also
we will consider additional criteria for usefulness of lemma candidates to better
filter the large number of candidates in certain benchmarks.

Acknowledgments. This work is supported in part by NSF Grant 1525936.
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In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 571–591.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 30

https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-642-28756-5_28
https://doi.org/10.1007/978-3-642-28756-5_28
https://doi.org/10.1007/978-3-319-63390-9_30


CP and Data Science Track



Modeling Pattern Set Mining Using
Boolean Circuits

John O.R. Aoga(B) , Siegfried Nijssen , and Pierre Schaus

ICTEAM/INGI, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
{john.aoga,siegfried.nijssen,pierre.schaus}@uclouvain.be

Abstract. Researchers in machine learning and data mining are increas-
ingly getting used to modeling machine learning and data mining prob-
lems as parameter learning problems over network structures. However,
this is not yet the case for several pattern set mining problems, such as
concept learning, rule list learning, conceptual clustering, and Boolean
matrix factorization. In this paper, we propose a new modeling language
that allows modeling these problems. The key idea in this modeling lan-
guage is that pattern set mining problems are modeled as discrete param-
eter learning problems over Boolean circuits. To solve the resulting opti-
misation problems, we show that standard optimization techniques from
the constraint programming literature can be used, including mixed inte-
ger programming solvers and a local search algorithm. Our experiments
on various standard machine learning datasets demonstrate that this
approach, despite its genericity, permits learning high quality models.

1 Introduction

A revolution is taking place in artificial intelligence, driven to a significant degree
by deep learning toolkits for learning neural networks [26]. As a result, researchers
and practitioners in machine learning and data mining are increasingly getting
used to modeling and solving problems using the modeling languages offered in
these toolkits. The key idea underlying these languages is that machine learn-
ing amounts to learning the parameters of a network structure that transforms
inputs into predicted outputs.

However powerful these toolkits may be, they rely on a key underlying
assumption: the functions applied to the inputs are continuous and differen-
tiable in the parameters. This enables the use of gradient descent to identify
values for the parameters.

Some problems in data mining and machine learning are however not con-
tinuous in nature. Good examples of such problems can be found in pattern set
mining. Examples of pattern set mining problems include learning rule-based
classifiers, conceptual clustering, and Boolean matrix factorization. In each of
these problems, the task is not to find values for a set of continuous parameters,
but to identify some discrete patterns.
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This raises the question as to whether a generic framework exists that allows
formalizing and solving these types of problems using a modeling language sim-
ilar to the language that deep learning researchers are familiar with. This is the
challenge that we address in this paper.

Generic modeling languages for pattern mining already exist in the literature.
Well-studied is the constraint programming for pattern mining (CP4PM) frame-
work [13,25]. However, this framework has two weaknesses. First, the modeling
language is different from the network-based modeling language used in deep
learning toolkits: pattern mining problems are formalized by modeling these
problems using Boolean variables and constraints on these variables. Second,
most of the studies on CP4PM focus on pattern mining instead of pattern set
mining [14]. There is an important difference between pattern mining and pattern
set mining. In pattern mining, one is interested in finding all patterns occurring
in a dataset that satisfy a given set of constraints. The most well-known example
of such a constraint is the requirement that a pattern is frequent. In pattern set
mining, however, we are not interested in finding all patterns, but we are inter-
ested in finding a small set of patterns that together solve a well-defined data
mining problem well, such as a classification task. Given the large number of
frequent patterns that can typically be found in many datasets, in recent years,
it has been argued that pattern set mining is the more relevant problem.

Only a limited number of studies have explored the extension of CP4PM
to pattern set mining problems [12,14]. In these studies, a modeling language
was proposed in which pattern set mining problems are formalized as constraint
optimization problems. A solution strategy was proposed based on the use of a
constraint programming solver. Unfortunately, this approach could, in practice,
only be applied to relatively small datasets. Moreover, the modeling language
proposed was rather different than the one currently used in machine learning
toolkits.

We aim to address these weaknesses in this work. In this paper, we propose
a new framework for modeling pattern set mining problems. Compared to
existing frameworks, this framework has the following advantages:

– the modeling language that we propose is inspired by that of frameworks for
deep learning: in our language, we represent learning problems as parame-
ter learning problems on networks; however, instead of continuous functions,
in the internal nodes of our networks we use Boolean operators, effectively
turning the networks into Boolean circuits;

– the framework supports the generic use of a number of different solvers. In
particular, in this work we will show how Mixed Integer Programming (MIP)
and local search algorithms can be used to solve pattern set mining problems
in a generic manner;

– as a consequence of the support of different solvers, the framework allows for
finding larger pattern sets on larger datasets.

We introduce a domain specific language to ease the description of the network,
its parameters, and the loss function to be computed on the data. Our experi-
ments demonstrate the practicability and flexibility on standard benchmarks.
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2 Related Work

A number of different modeling languages for pattern mining problems have
already been proposed in the literature.

An important class of methods is based on the use of constraints to model
pattern mining problems. The key idea in these approaches is to model a data
mining problem as a Constraint satisfaction problem (CSP) and use a SAT-, CP-
or MIP-solver for solving it. Several data mining tasks were studied, but most
results were obtained for itemset mining [6,13,18,25] and sequence mining [3,
16,21]. However, these approaches are solver- and task-dependent, and do not
solve pattern set mining problems.

Most related to this work is the work of De Raedt [8] and Guns et al. [14] on
modeling pattern set mining problems as constraint satisfaction or optimization
problems. Contrary to these earlier works the framework that we propose is
solver independent and uses a modeling language familiar to machine learning
researchers.

A modeling language for pattern mining that is solver independent is the Min-
ingZinc [11] language. However, it does not address pattern set mining problems
either.

The first modeling languages that were proposed in the data mining literature
are those that use an SQL-like notation [19]. Also, these languages did not study
pattern set mining problems and do not use a notation based on networks.

3 Pattern Set Mining Problems

In this section we will introduce the pattern set mining problems that are the
focus of this work. We limit our attention to Boolean data that may or may not be
supervised in nature. Let I = {1, . . . , m} be the sets of items (features) and T =
{1, . . . , n} be the set of transaction (observation) identifiers. An unsupervised
database can equivalently be seen as a set D = {(t, Tt) | t ∈ T , Tt ⊆ I} or as a
matrix such that Dti ∈ {0, 1} where t ∈ T and i ∈ I. In a supervised database,
we associate with every transaction a Boolean label, i.e. D = {(t, Tt, at) | t ∈
T , Tt ⊆ I, at ∈ {0, 1}}.

Example 1. As an example consider the database in Fig. 1a. Ignor-
ing the class label, this database can be represented as a set D =
{(1, {1, 2, 3, 5}), (2, {1, 2, 4, 5}), (3, {1, 3, 4, 5}), (4, {1, 3, 4})}.

Several pattern set mining problems have been proposed on such Boolean
data. We will first consider supervised settings. In Concept Learning [1] the
aim is to discover a set of itemsets that characterizes the positive examples in a
supervised dataset as well as possible.

Definition 1 (Concept Learning). Given a Boolean supervised dataset D,
find a set of itemsets C ⊆ 2I , also referred to as concepts, such that |C| = k
and error(∪I∈Ccover(I)) is minimal.
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Here, we define the cover and the error as follows:

– cover(I) = {t | (t, Tt) ∈ D ∧ I ⊆ Tt}, the set of transactions that contain a
given itemset;

– error(T ) = |{t ∈ T | (at = 1 ∧ t �∈ T ) ∨ (at = 0 ∧ t ∈ T )}|, the number of
examples not characterized correctly.

Example 2. Consider the concepts C =
{
{1, 2, 3}, {3, 4}, {4, 5}

}
; these are high-

lighted in Fig. 1a. Observation 2 is misclassified, so the error is 1.

i1 i2 i3 i4 i5

1 1 1 1 0 1 +

2 1 1 0 1 1 −
3 1 0 1 1 1 +

4 1 0 1 1 0 +

(a) D1

i1 i2 i3 i4

1 0 0 0 1

2 1 1 1 0

3 1 1 1 1

4 0 0 1 0

(b) D2

{
i1, i2

}

{
i3

}

+

T

−

F

T

{
i4

}

−

T

+

F

F

(c) Tree

Fig. 1. Itemset databases showing (a) Itemsets and its covers and (b) Tiles. (c) An
example of itemset-based tree.

In Rule Learning [5,20], we treat the patterns as rules that can also predict
a negative class label. Restricting ourselves to the Boolean context, we can define
the problem of learning Rule Lists as follows.

Definition 2 (Rule List Learning). Given a Boolean supervised dataset D,
find a list of k rules R =

〈
I(r) → l(r)

〉k
r=1

, where I(r) is an itemset and l(r) ∈
{0, 1} is a class label, such that error(cover(R)) is minimal, and I(k) = ∅, i.e.,
the kth rule serves as a default rule.

Here, we define the cover of a rule list as the set of transactions for which the
rule list predicts the positive class label, cover(R) =

{
t ∈ T | ∃(I(r) → 1) ∈ R :

I(r) ⊆ Tt ∧ ¬(∃r′ < r : (I(r
′) → l(r

′)) ∈ R ∧ I(r
′) ⊆ Tt)

}
.

Example 3. For the database of our running example (eg. 1), the rule list〈
({1, 2, 3} → 1), ({4, 5} → 0), ({3, 4} → 1), (∅ → 1)

〉
would have an error of

1: example 3 would be misclassified, as the first rule that applies to this example
is the rule {4, 5} → 0).

Itemset-Based Decision Trees [10] are a generalization of rule lists. Essen-
tially, they are decision trees in which each node tests for the presence of an
itemset. A transaction (observation) will be put in the left-hand branch of an
internal node v if the itemset I(v) is present, and in the right-hand branch if the
itemset is absent. A complete decision tree is a tree that is filled completely till
the lowest level.
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Definition 3 (Learning Pattern-Based Decision Trees). Given a Boolean
supervised dataset D, find a set of k itemsets {I(r)}, corresponding to internal
nodes of a complete decision tree, and labels in {0, 1} for each leaf of the tree,
such that the error of the predictions at the leaves of the tree is minimal.

Example 4. Fig. 1c is an example of a pattern-based tree obtained from D1 with
2 as error because examples 3 & 4 are misclassified.

We will consider a number of pattern set mining settings on unsupervised data
next. Conceptual Clustering [9] aims to cluster examples while also finding
descriptions for these clusters. One possible definition of this problem is the
following.

Definition 4 (Conceptual Clustering). Given a Boolean unsupervised
dataset D, find k itemsets C, such that

∣
∣{t ∈ T : |{I ∈ C : I ⊆ Tt}| �= 1

}∣
∣ is

minimal; hence, the number of transactions of the given dataset not covered by
exactly one itemset is minimal.

Example 5. In our running example (eg. 1) each itemset now describes a cluster
(the target attribute of D1 is not taken into account). These clusters cover respec-
tively transactions {1}, {3, 4} and {2, 3}; the {3} is an overlapping transaction.

Boolean Matrix Factorization [17] aims to describe the 1s in a database
using two Boolean matrices, which can be seen as matrices describing itemsets
and their occurrences.

Definition 5 (Boolean Matrix Factorization). Given a Boolean database
D, find a Boolean matrix A of size n×k and a Boolean matrix B of size k ×m,
such that error(A ◦ B,D) is minimal.

Here ◦ is the Boolean matrix product, in which the matrix product is redefined
such that 1 + 1 = 1, and error is a function that calculates the number of cells
in the two given matrices that mismatch.

Example 6. Fig.1b shows an example of two rectangles of which the rows and
columns are identified using Boolean matrices A and B. The error is 2: cells
(1, 4) and (4, 4) are not described correctly in this matrix decomposition.

In the next section, we show how these problems can be reformulated as param-
eter learning problems over Boolean circuits.

4 Reformulating Pattern Set Mining as Parameter
Learning in Logical Circuits

In this section we will define the problem of parameter learning in Boolean cir-
cuits; subsequently, we will show that the learning problems identified in the
previous section can all be cast as such parameter learning problems. We first
define Boolean circuits.
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Definition 6. A Boolean circuit C is a directed acyclic graph G(V,E) in which
each node v ∈ V of in-degree zero represents an input variable, only one node
has an out-degree of zero, and each internal node represents a logical gate and
is labeled with an operator from the set {∧,∨,¬}.

Logical circuits can be seen as the graphical representation of a Boolean formula.
Each internal node v with label ∧ corresponds to an expression v = v1 ∧· · ·∧vn,
where v1, . . . , vn are v’s children. For any assignment to the input variables, the
Boolean circuit calculates a Boolean value for the output variable. Hence, we
can see the Boolean circuit as a function from the Boolean input variables to
{0, 1}.

We can define the parameter learning problem for a given Boolean circuit as
follows.

Definition 7. Given (1) a Boolean circuit C, (2) a partition of the input vari-
ables into two sets X and W , where W represents the parameters of the circuit,
and (3) a Boolean supervised dataset D over |X| items, the parameter learning
problem is the problem of finding an assignment to the variables W such that

∑

(t,Tt,at)∈D
|C(W,Tt) − at| (1)

is minimized, i.e., C fits at well. Here we assume that in passing Tt as a param-
eter to C, we set all variables in X to True that are included in Tt.

Below, we will show that the pattern set mining problems presented earlier can
be represented as parameter learning problems for Boolean circuits, for well
chosen architectures for C and, in some cases, representations of the input data.

However, before doing so, we will introduce some additional notation. We
found that modeling the pattern set mining problems at the level of basic Boolean
circuits is cumbersome. To simplify our modeling task, we will use an approach
that is common in Boolean circuit design: we will add additional gates to our
notation that can be seen as a shorthand notation for underlying, larger circuits.

Our first additional gate is �, which operates on two lists of inputs w =
w1, . . . , wn (each wi corresponding to a variable in W ) and v = v1, . . . , vn (each
vi corresponding to a variable in V ), and which can be understood as a shorthand
notation for

�(w,v) ≡ (w1 ∧ v1) ∨ (w2 ∧ v2) ∨ · · · ∨ (wn ∧ vn).

The idea is that the parameters w1, . . . , wn indicate which of the inputs of the
∨ should be taken into account.

Similarly, we define � as a shorthand notation for

�(w,v) ≡ (¬w1 ∨ v1) ∧ (¬w2 ∨ v2) ∧ · · · ∧ (¬wn ∨ vn),

where the parameters w1, . . . , wn indicate which of the inputs of the ∧ should
be taken into account.
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In this paper, we will use a graphical notation for Boolean circuits. We will
illustrate this notation first on the problem of learning rule lists.

Fig. 2 (left) shows the Boolean circuit for learning rule lists using the short-
hand notation, for a dataset with 3 items and a rule list of at most two rules, plus
the default rule. In the shorthand notation, we use an ∧ symbol (respectively, ∨
symbol) with dotted incoming edges to represent the � (respectively, �) gate.
The dotted edges indicate that we have a parameter for each such edge, indicat-
ing whether or not to take into account that edge. Hence, in this diagram the
input variables of the circuit representing parameters are not explicitly included.
We can distinguish three types of layers in this circuit:

Layer 1 represents the problem of selecting which items are included in each
rule; the output nodes of this layer can be seen as indicators for the absence
or presence of a rule in a data instance;

Layer 3 represents the problem of selecting the class label for the two rules, as
well as the class label for the default rule;
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Fig. 2. Architecture of Boolean circuit for rule learning with m = 3 items and k = 3
rule list size: (a) general representation (b) full representation with decision variables
(dotted arrows represent optional decisions and solid arrows mandatory decisions).
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Fig. 3. Architectures of Boolean circuits for the other studied problems (dotted arrows
represent optional decisions and solid arrows mandatory decisions).

Layer 2 expresses the order dependencies between the rules; it ensures that the
second rule in the rule list will only be used for prediction if the first rule
does not match, and the default rule will only be used if the previous two
rules did not match.

Fig. 2 (right) show the full circuit representation with explicit binary decision
variables encoding the rules to be discovered that can be retrieved as follows:
rule 1 is {i | i ∈ {1, . . . , 3}∧ I

(1)
i = 1} → L(1), rule 2 is {i | i ∈ {1, . . . , 3}∧ I

(2)
i =

1} → L(2) and the last (default rule) is ∅ → L(3). The inputs of the circuit are
X = {i1, i2, i3}. The variables I

(1)
1 . . . I

(2)
3 , L(1) . . . L(3) are shared among all the

transactions to impose that all transactions are classified with a unique rule list.
Similarly, for the other problems introduced in Sect. 3, we can introduce

Boolean circuits to formalize these mining and learning problems. The architec-
ture of these circuits is illustrated in Fig. 3, for small examples.
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For concept learning and itemset-based decision trees the data used
for training is identical to that used for rule list learning. The difference between
concept learning and rule list learning is that in concept learning the head of the
rules is fixed and there is no order between the rules. The decision tree learning
problem illustrated is for decision trees composed of 3 itemsets: one for the root
and one for each of the children of the root. In the Boolean circuit every child
of the root corresponds to one of the leaves of the decision tree. The extension
towards perfect trees of larger depth is relatively straightforward.

Conceptual clustering in an unsupervised problem setting; however, in
our parameter learning setting we need to provide a label for every training
instance. We address this by giving every instance in the training data the label
1. The idea in this circuit is that we predict 1 for an example if there is exactly
one itemset that matches it; if no itemset, or two or more itemsets match it, we
predict 0. As a result, the error score for this circuit corresponds to counting the
number of examples not exactly in one cluster.

Boolean matrix factorization is an unsupervised setting as well. The
input data that we give to the Boolean circuit is different here. Given the original
data Dti, we create a new dataset as follows:

{(
(t, i), {t, i},Dti

)
| t ∈ T , i ∈ I

}
,

that is, we create a dataset in which each entry of the original matrix is an
example; every new example consists of two items: one representing the original
item, the other the original transaction identifier. In the lowest layer of the
Boolean circuit, both transaction sets and itemsets are identified; the layer on
top represents the Boolean matrix product. It can be shown that this model is
equivalent to the original learning problem a well.

5 Generic Solving Framework

The question arises now how to solve these parameter learning problems. The
benefit of our approach is that it allows for the use of alternative solvers. In this
paper, we will consider two such approaches: one is the use of a greedy algorithm;
the other is the use of Mixed Integer Programming (MIP) solvers.

5.1 Solving Using Greedy Algorithm

Greedy algorithms are among the most scalable algorithms for the pattern set
mining algorithms studied in this work. Indeed, for rule learning tasks these are
the most common type of algorithm, as in practice, the solution found by such
algorithms is already of decent quality. The parameters of the Boolean circuit
that minimize the error (1) can also be found greedily.

Algorithm 1 shows a greedy algorithm. This algorithm receives the Boolean
circuit (together with its partition of inputs into two sets W and X) and the
database D. We will represent the values of the parameters by listing the subset
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Algorithm 1: Greedy(C,D)
1 Method error (W : Assignment to the parameters, C: Logical Circuit,

D: list of Transactions)
2 return

∑
(t,Tt,at)∈D |C(W, Tt) − at|

3 W ← ∅ minErr ← error(W, D)
4 do
5 w∗ ← argmin

i∈P\W
error(W ∪ {i}, C, D)

6 if error(W ∪ {w∗}, C, D) < minErr then W ← W ∪ {w∗} � Add w∗ to W ;
7 else break;

8 while P \ W �= ∅ ∧ minErr > 0; � Stop if no more decision or minErr = 0
9 return W

of parameters P = {1, 2, . . . , |W |} that take the value 1. By abuse of notation,
we hence treat a vector of assignments to the variables in W as a subset of
parameters P. The algorithm starts with an empty set of parameters W and
then iteratively identifies the parameter for which a flip from the value 0 to the
value 1 minimizes the error (Line 5). Once a local optimal parameter is found, W
is updated accordingly in line 6. The process repeated until either (i) a solution
better than W cannot be found (line 7) or (ii) all variables have been fixed to
the value 1, or (iii) the minimum error is 0.

The set P represents all the dotted edges in our graphical representation
of the learning problems. An empty list W indicates that no edge is selected.
Taking a decision (include or not) corresponds to flipping the parameter value.

While we could apply this greedy algorithm on all parameters of the circuit,
we perform an optimization when the root node of the circuit consists of a �

node, such as in rule learning and itemset-based decision trees, and for
every transaction only one of the children takes the value True. For such circuits
it can be shown that the optimal choice for the children of the root can easily
be calculated from the choices below those children. Hence, we do not perform
a greedy search over this set of children.

For some problems, such as conceptual clustering and Boolean matrix
factorization, we found that it can be beneficial to start from an assignment
that puts all variables in W at the value 1. This can be emulated by putting a
¬ node between every parameter and the nodes that it is connected to.

5.2 Solving Using MIP

The key idea in this approach is to map the parameter learning problem to
an optimization problem defined on integer variables and linear constraints. An
additional integer variable is introduced for each node in the circuit and each
gate is modeled using a set of linear constraints as follows:
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– if a node y is an ∧-gate of xi nodes:

y = x1 ∧ x2 ∧ · · · ∧ xm ≡

⎧
⎨

⎩

y ≤ xi ∀i ∈ [1,m]
y ≥ Σixi − (m − 1)
y ≥ 0

– if a node y is an ∨-gate of xi nodes:

y = x1 ∨ x2 ∨ · · · ∨ xm ≡

⎧
⎨

⎩

y ≥ xi ∀i ∈ [1,m]
y ≤ Σixi

y ≤ 1

– finally, if a node y is a ¬-gate of x node:

y = ¬x ≡ y = 1 − x

We make a copy of the circuit for every example in the training data, fixing the
corresponding inputs of the circuit to the values in the training example; the
parameters are variables that the MIP solver will search over. For every training
example, we will include the output v of the circuit in the optimization criterion,
using v if the expected output is 0 and (1 − v) if the expected output is 1. We
minimize this error.

Algorithm 2: DSL to solve a rule learning problem with the architecture
of Fig.2a and D in MIP and Greedy algorithm
1 � Building the network
2 L1 ← InputLayer(m = 3)
3 L2 ← AndSelectionLayer(L1, k = 3)
4 L3 ← NotLayer(L2)
5 L4 ← Layer(L2[1], And(L3[1], L2[2]), And(L3[1], L3[2]))
6 L5 ← OrSelectionLayer(L4)
7 N ← L5.network()
8 � Load inputs and parameters
9 X ← getDB(D) y ← getAttr(D) ŷ ← L5[0]

10 obj ← 1 − y.ŷ − (1 − y)(1 − ŷ) � Objective function
11 � Defining the procedures
12 greedy ← X into N using Greedy.solver minimizing obj
13 stats ← greedy.run()
14 mip ← X into N using MIP.solver minimizing obj
15 stats ← mip.run()

Note that this gives a generic approach for solving the mining and learn-
ing problems discussed earlier using MIP solvers. There is already a literature
on modeling some of these individual problems in MIP (see [4,22–24,27]); our
approach provides a more general approach to modeling such problems.
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6 Unified Modeling and Solving Language

In our vision, creating parameter learning problems for Boolean circuits can
be seen as a programming task. The main benefit of our framework is that its
modeling language is very similar to that of Deep Learning toolkits, and hence
familiar to machine learning researchers.

Algorithm 2 is an example of an implementation of the rule list learning
problem based on the architecture of Fig. 2a. From line 2 to 7 the Boolean
circuit is defined by using macro-functions such as AndSelectionLayer which
represents all the operations of Layer 1 in Fig. 2b. At line 10, we define the
error function and at lines 12 and 14 the different solvers, which are launched in
lines 13 and 15.

7 Learning Classifiers Based on Soft Rules

While we focused our modeling framework on Boolean parameters only, of inter-
est can also be combinations of Boolean parameters with other types of parame-
ters. We will study one first possible such combination here and will leave other
combinations as future work.

In traditional learning, the interpretation of the conditions in a rule is typi-
cally conjunctive: all conditions in a rule need to be met. However, this conjunc-
tive interpretation of rules can also be considered a limitation. More freedom
would be allowed in rule-based classifiers in which we require to match a certain
number of conditions, but not necessarily all.

We can model such problems by adding a parameterized soft gate to our
network. The new parameterized soft gate requires that at least α inputs should

i1 i2 i3

> >

¬ ¬

∧ ∧

∨

Pt

Fig. 4. Learning soft rule lists
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be true, where α is also a parameter that needs to be learned. More formally,
this gate operates on three inputs, and has the following semantics: �(v,w, α) ≡∑

i viwi ≥ α, where v1, . . . , vn indicate Boolean input nodes, and w1, . . . , wn are
Boolean indicators representing whether or not to take into account the ith input.
Note that �(v,w, 1) = �(v,w): the gate generalizes the �-gate. Furthermore,
�(v,w, n) ≡ v1 ∧ · · · ∧ vn.

We can use this gate to define a rule learning problem in which each rule
does specify not only conditions, but also the minimum number of conditions
that need to be satisfied in order for the rule to apply. This is illustrated in
Fig. 4. This model has a higher level of expressivity than traditional rule learning
models: by fixing the parameters α to a sufficiently high level, we can still enforce
that all conditions need to be satisfied for a rule to apply.

We can learn the parameters of such gates both using MIP and using greedy
algorithms. In MIP, we exploit the fact that viwi ≡ vi ∧ wi. Let ui ≡ vi ∧ wi;
then we implement the gate by first calculating the uis using the representation
for ∧ discussed earlier and then using these uis as follows:

y = �(v,w, α) =
{∑n

i=1 ui − α + (1 − y)n ≥ 0∑n
i=1 ui − α − yn + 1 ≤ 0.

Note that also here we copy the circuit for each example in the data; the uis are
calculated for each example separately. However, the parameters α and wi are
shared among all examples.

8 Experiments

In this section, we evaluate our framework from three perspectives: (i) the pre-
dictive power of the classifiers learned compared to other classifiers, (ii) the sen-
sitivity of the pattern sets identified w.r.t. the variation of parameters (like k),
(iii) the efficiency of the framework (using CPU time). All experiments were run
in the JVM with maximum memory set to 8 GB on PCs with Intel Core i5 64bit
processor (2.7 GHz) and 16 GB of RAM running MAC OS 10.13.3. Execution
time is limited to one hour.

Datasets and Existing Classifiers. We use data from the CP4IM1 repository.
Statistics of these datasets are reported in Table 1a. We compare with the fol-
lowing methods: (i) Popular tree-based and neural network-based classifiers such
as Random Forests (RF), decision trees (C4.5) and neural networks (NN) from
the scikit-learn library (using default settings); (ii) a rule-based learner: Prob-
abilistic Rule List (PRL) [2] and a k-pattern set miner [12,14] (KPATT) for
the concept learning task, in which the concept learning problem is solved as a
global optimization problem in a CP solver.

1 https://dtai.cs.kuleuven.be/CP4IM/datasets/.

https://dtai.cs.kuleuven.be/CP4IM/datasets/
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We denote our approaches by X4Y z, where X ∈ {MIP, G} is the solving
strategy and can be either MIP or G(greedy), Y ∈ {CL, RL, PDT, BMF, CC}
represents the pattern set mining problem solved and can be CL (concept learn-
ing), RL (rule learning), PDT (Pattern-based Decision Trees), BMF (Boolean
Matrix factorization) or CC (conceptual clustering). We use z ∈ {+α,−α} to
indicate whether or not the soft gates are used (see Sect. 7).

Comparison of Model Quality. Table 1e shows the average accuracy evaluated
using stratified 10-fold cross-validation on test data. Note that in some cases,
within the time allocated the MIP solver could not prove optimality. We use the
best pattern set found within the allocated amount of time. In these experiments,
the number of patterns is fixed arbitrarily to k = 5.

RF and Neural Networks perform better than the rule-based methods, but
our introduction of soft rules (Sect. 7) seems to improve the accuracy of rule-
based methods in most cases over both the training and the test tests. The per-
formance on test data of the greedy algorithm is sometimes worse and sometimes
better than that of the MIP-based algorithm, although on concept learning the
performance of the greedy algorithm is not satisfactory. For many cases where
optimality could not be proven within the allocated time, the optimality gap is
less than 10%.

Running Time Comparison. The greedy approach is generally very efficient and
outputs results in a few seconds, so we only report the execution time of the MIP
approach in Table 1. As one can see, in many cases, the timeout is reached with
a gap from the optimum smaller than 10%, with a few exceptions (41%, 29%).
Our approaches outperform KPATT on small databases and on (relatively) large
databases KPATT fails to find a solution within the allocated amount of time.

MIP approaches are highly dependent on the number of variables and the
number of constraints, which are O(k × |T | × |I|) and O

(
k × |T | × (|I| + k)

)

respectively. However, the MIP pre-solving is able to drastically reduce the num-
ber of variables and constraints in some cases. For example, the initial numbers of
variables (424, 945) and constraints (710, 632) in the Audi dataset were reduced
by more than 97%.

Sensitivity to the Parameter k. Figure 5 shows the accuracy on training and
test sets, the gap, and the execution time by varying k for the Hepa database;
results on other datasets are similar. As can be seen, increasing k improves the
accuracy on the training set. On the test set the outcome depends strongly either
on whether optimality has been proven or not (as evidenced by the gap-plot) or
overfitting on the training set.



Modeling Pattern Set Mining Using Boolean Circuits 635

Table 1. Experiments for pattern set mining problems over several datasets with
k = 5 (“-” means the process stopped before a solution was found, either due to a out
of memory/timeout exception in the pre-solving step of the MIP solver, or before the
CP solver used in KPATT found a solution).

methods Audi. Aust. HeCl. Hepa. KrKp. Lymp. Mush. PrTu. Soyb. Spli. TTT. Vote Zoo

a) Dataset Features

|T | 216 653 296 137 3196 148 8124 336 630 3190 958 435 101
|{t∈T |at=1}|

T 0.26 0.55 0.54 0.81 0.52 0.55 0.52 0.24 0.15 0.52 0.65 0.61 0.41
|I| 148 125 95 68 74 68 119 31 50 287 27 48 36

b) Accuracies over training sets

MIP4CL-α 1.0 0.92 0.89 0.98 0.87 0.97 0.55 0.89 0.97 - 0.90 0.98 1.0
MIP4CL+α 1.0 0.91 1.0 1.0 0.93 1.0 1.0 0.91 1.0 0.85 0.77 1.0 1.0
G4CL 0.73 0.45 0.46 0.19 0.47 0.46 0.49 0.76 0.86 0.48 0.35 0.37 0.59
KPATT 1.0 - - - - - - 0.89 0.97 - 0.82 - 1.0

MIP4RL-α 1.0 - - 1.0 - 0.95 - 0.89 0.96 - 0.81 0.98 1.0
MIP4RL+α 1.0 - 0.97 1.0 - 1.0 1.0 0.87 0.98 - 0.83 1.0 1.0
G4RL 0.98 0.86 0.83 0.89 0.94 0.86 0.98 0.84 0.86 0.84 0.70 0.96 1.0

MIP4PDT-α 1.0 - 0.89 1.0 - 0.96 - 0.89 0.94 - - 0.97 1.0
MIP4PDT+α 1.0 - 1.0 1.0 - 1.0 1.0 - 0.99 - - 1.0 1.0
G4PDT 0.99 0.86 0.82 0.89 0.94 0.88 1.0 0.84 0.86 0.84 0.76 0.96 1.0

c) Gap (%) for MIP over training sets

MIP4CL-α * 0.08 0.12 0.02 0.12 0.03 0.41 0.07 0.03 - 0.11 0.02 *
MIP4CL+α * 0.10 * * 0.07 * * 0.05 * 0.16 0.29 * *

MIP4RL-α * - - * - 0.05 - 0.08 0.05 - 0.24 0.02 *
MIP4RL+α * - 0.03 * - * * 0.10 0.02 - 0.20 * *

MIP4PDT-α * - 0.12 * - 0.04 - 0.08 0.06 - - 0.03 *
MIP4PDT+α * - * * - * * - 0.01 - - * *

d) Running time (in second) - TO≡ Timeout

MIP4CL-α 26.09 TO TO TO TO TO TO TO TO - TO TO 1.65
MIP4CL+α 5.81 TO 2682.90 1.99 TO 2.50 251 TO 915.09 TO TO 17.32 0.66
KPATT 20 - - - - - - TO 1730.30 - TO - 3.29

MIP4RL-α 45.45 - - 31.65 - TO - TO TO - TO TO 1.70
MIP4RL+α 7.73 - TO 9.00 - 5.72 1103.95 TO TO - TO 146.90 0.69

MIP4PDT-α 51.61 - TO 3038.61 - TO - TO TO - - TO 2.26
MIP4PDT+α 12.25 - 757.20 9.27 - 9.90 TO - TO - - 1265.56 1.05

MIP4CC-α 42.04 244.73 46.53 7.58 1072.34 1.91 - 16.77 123.81 - 153.56 5.71 2.57
MIP4CC+α 11.63 3.34 9.86 2.27 504.26 2.32 1118.64 7.26 1.62 443.68 22.56 7.38 0.60

MIP4BMF-α - - - 556.20 - 697.97 - 1454.71 - - - - 127.15
MIP4BMF+α - - - 542.93 - 65.20 - 1446.05 - - - - 123.20

e) Accuracies over test sets

MIP4CL-α 0.87 0.85 0.77 0.79 0.86 0.69 0.55 0.83 0.98 - 0.94 0.98 1.0
MIP4CL+α 0.91 0.76 0.70 0.79 0.89 0.75 1.0 0.8 0.89 0.82 0.75 0.93 1.0
G4CL 0.77 0.48 0.42 0.21 0.51 0.38 0.45 0.71 0.84 0.47 0.34 0.49 0.64

MIP4RL-α 0.87 - - 0.79 - 0.62 - 0.89 0.95 - 0.86 1.0 1.0
MIP4RL+α 0.87 - 0.8 0.93 - 0.62 1.0 0.8 0.89 - 0.81 0.98 1.0
G4RL 1.0 0.94 0.65 0.79 0.95 0.81 0.99 0.76 0.84 0.85 0.72 0.96 1.0

MIP4PDT-α 0.83 - 0.8 0.86 - 0.75 - 0.77 0.92 - - 0.95 1.0
MIP4PDT+α 0.91 - 0.83 0.86 - 0.69 1.0 - 0.95 - - 0.93 1.0
G4PDT 1.0 0.94 0.65 0.79 0.95 0.81 1.0 0.76 0.84 0.85 0.77 0.96 1.0

PRL 0.87 - - 0.71 - 0.62 - 0.26 0.83 - - 0.64 1.0
C4.5 0.94 0.81 0.75 0.72 0.98 0.84 0.97 0.75 0.91 0.93 0.82 0.95 0.97
RF 0.95 0.83 0.76 0.82 0.96 0.85 0.97 0.79 0.95 0.94 0.87 0.96 1.0
NN 1.0 0.91 0.87 0.79 0.96 1.0 0.99 0.71 0.84 0.95 0.79 0.98 1.0
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Training set accuracy Gap (%) Running time Test set accuracy
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Fig. 5. Sensitivity to the parameter k of our approaches over Hepa dataset (time
limit = 600 s).

9 Conclusion

Motivated and inspired by the high level modeling language offered by deep
learning frameworks, this work proposed a unified modeling framework for vari-
ous k-pattern set mining problems (concept learning, rule list learning, pattern-
based decision trees, conceptual clustering and Boolean matrix factorization).
The modeling language is independent from the optimization technology. We
have shown that possible extensions of the language are possible and yield
promising results, such as the soft gates. We have shown experimentally that
despite the genericity of our framework, the performance of the approach is
competitive to that of existing traditional learning approaches, and outperforms
an earlier CP-based approach for pattern set mining.

Many future studies are possible. First, alternative optimization approaches
are of interest, such as based on meta-heuristics (such as large neighborhood
search) and gradient-based approaches, in particular those for learning binarized
neural networks [15]. Furthermore, other links to deep learning can be explored
further, for instance, in mixed networks that combine discrete and continuous
components. In this work we did not restrict the form of Boolean circuit used; by
adding restrictions on the form of the Boolean circuit, such as that the Boolean
circuit is in decomposable negation normal form [7], it may be possible to build
more optimized algorithms.
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a data stream. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML
PKDD 2014. LNCS (LNAI), vol. 8725, pp. 82–97. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44851-9 6

18. Lazaar, N., et al.: A global constraint for closed frequent pattern mining. In: Rue-
her, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 333–349. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44953-1 22

https://doi.org/10.1007/978-3-030-01771-2_5
https://doi.org/10.1007/978-3-642-20847-8_32
http://papers.nips.cc/paper/6573-binarized-neural-networks.pdf
https://doi.org/10.1007/978-3-662-44851-9_6
https://doi.org/10.1007/978-3-319-44953-1_22


638 J. O. R. Aoga et al.

19. Meo, R., Psaila, G., Ceri, S.: A new SQL-like operator for mining association rules.
In: Vijayaraman, T.M., Buchmann, A.P., Mohan, C., Sarda, N.L. (eds.) VLDB
1996, Proceedings of 22th International Conference on Very Large Data Bases,
Mumbai (Bombay), India, 3–6 September 1996, pp. 122–133. Morgan Kaufmann
(1996)

20. Michalski, R.S.: On the quasi-minimal solution of the general covering problem
(1969)

21. Negrevergne, B., Guns, T.: Constraint-based sequence mining using constraint
programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 288–305.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3 20

22. Ouali, A., Loudni, S., Lebbah, Y., Boizumault, P., Zimmermann, A., Loukil, L.:
Efficiently finding conceptual clustering models with integer linear programming.
In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July
2016, pp. 647–654. IJCAI/AAAI Press (2016)

23. Ouali, A., et al.: Integer linear programming for pattern set mining; with an appli-
cation to tiling. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-
S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10235, pp. 286–299. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57529-2 23
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Abstract. This paper is motivated by applications of a Census Bureau
interested in releasing aggregate socio-economic data about a large popu-
lation without revealing sensitive information. The released information
can be the number of individuals living alone, the number of cars they
own, or their salary brackets. Recent events have identified some of the
privacy challenges faced by these organizations. To address them, this
paper presents a novel differential-privacy mechanism for releasing hier-
archical counts of individuals satisfying a given property. The counts are
reported at multiple granularities (e.g., the national, state, and county
levels) and must be consistent across levels. The core of the mechanism is
an optimization model that redistributes the noise introduced to attain
privacy in order to meet the consistency constraints between the hier-
archical levels. The key technical contribution of the paper shows that
this optimization problem can be solved in polynomial time by exploiting
the structure of its cost functions. Experimental results on very large,
real datasets show that the proposed mechanism provides improvements
up to two orders of magnitude in terms of computational efficiency and
accuracy with respect to other state-of-the-art techniques.

1 Introduction

The release of datasets containing sensitive information about a large number
of individuals is central to a number of statistical analysis and machine learning
tasks. For instance, the US Census Bureau publishes socio-economic information
about individuals, which is then used as input to train classifiers/predictors and
release important statistics about the US population.

One of the fundamental roles of a Census Bureau is to report group size
queries, which are especially useful to study the skewness of a distribution. For
instance, in 2010, the US Census Bureau released 33 datasets of such queries
[24]. Group size queries partition a dataset in groups and evaluate the size of
each group. For instance, a group may be the households that are families of
four members, or the households owning three cars.

The challenge is to release these datasets without disclosing sensitive infor-
mation about any individual in the dataset. Various techniques for limiting a-
priori the disclosed information have been investigated in the past, including
anonymization [22] and aggregations [25]. However, these techniques have been
c© Springer Nature Switzerland AG 2019
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consistently shown ineffective in protecting sensitive data [14,22], For instance,
the US Census Bureau confirmed [2] that the disclosure limitations used for
the 2000 and 2010 censuses had serious vulnerabilities which were exposed by
the Dinur and Nissim’s reconstruction attack [6]. Additionally, the 2010 Census
group sizes were truncated due to the lack of privacy methods for protecting
these particular groups [4].

This paper addresses these limitations through the framework of Differential
Privacy [7], that offers a formal approach to guarantee data privacy by bound-
ing the disclosure risk of any individual participating in a dataset. Differential
privacy is considered the de-facto standard for privacy protection and has been
adopted by various corporations [9,23] and governmental agencies [1]. It works
by injecting carefully calibrated noise to the data before release. However, while
this process guarantees privacy, it also affects the fidelity of the released data.
In particular, the injected noise often produces datasets that violate consistency
constraints of the application domain. In particular, group size queries must be
consistent in a geographical hierarchy, e.g., the national, state, and county levels.
Unfortunately, the traditional injection of independent noise to the group sizes
cannot ensure the consistency of hierarchical constraints.

To overcome this limitation, this paper casts the problem of privately releas-
ing group size data as a constraint optimization problem that ensures consistency
of the hierarchical dependencies. However, the optimization problem that redis-
tributes noise optimally is intractable for real datasets involving hundreds of
millions of individuals. In fact, even its convex relaxation, which does not guar-
antee consistency, is challenging computationally. This paper addresses these
challenges by proposing mechanisms based on a dynamic programming scheme
that leverages both the hierarchical nature of the problem and the structure of
the objective function. The contributions of the paper are summarized as follows:

1. The paper introduces the Privacy-preserving Group Size Release (PGSR)
problem, for releasing differentially private group sizes that preserves hierar-
chical consistency.

2. It proposes a differentially private mechanism that uses an optimization app-
roach to release both accurate and consistent group sizes.

3. It shows that the differentially private mechanism can be implemented in
polynomial time, using a dynamic program that exploits both the hierarchical
nature of group size queries and the structure of the objective function.

4. Finally, it evaluates the mechanisms on very large datasets containing over
300,000,000 individuals. The results demonstrate the effectiveness and scal-
ability of the proposed mechanisms that bring several orders of magnitude
improvements over the state of the art.

2 Problem Specification

This paper is motivated by applications from the US Census Bureau, whose goal
is to release socio-demographic features of the population grouped by census
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Fig. 1. A dataset D associating users to units and regions (a) and its associated groups
and sum of units (b), region hierarchy (c), and the final hierarchical group-sizes (d).

blocks, counties, and states. For instance, the bureau is interested in releasing
information such as the number of people in a household and how many cars
they own. This section provides a generic formalization of this release problem.

Consider a dataset D = {(pi, ui, ri, zi)}n
i=1 containing n tuples (pi, ui, ri, zi) ∈

P ×U ×R×Z denoting, respectively, a (randomly generated) identifier for user
i ∈ [n], its unit identifier (e.g., the home address where she lives), the region in
which she lives, (e.g., a census block), and a unit quantity describing a socio-
demographic feature, e.g., the number of cars she owns, or her salary bracket.
The set of users sharing the same unit forms a group and Gu = {pi ∈ P |ui = u}
denotes the group of unit u. The socio-demographic feature of interest is the
sum of the unit quantities of a group Gu, i.e., σu =

∑
pi∈Gu

zi. The set of
all unit sizes, i.e., S ⊇ {σu | u ∈ U}, also plays an important role. Indeed,
the bureau is interested in releasing, for every unit size σ ∈ S, the quantity
nσ = |{Gu | u ∈ U , σu = σ}|, i.e., the number of groups of size σ.

These concepts are illustrated in Fig. 1(a), which shows a dataset containing
n = 11 users with their home addresses (units), their states (regions), and a 0/1
quantity denoting a feature of interest. In the running example, the feature is
always 1, since the application is interested is the composition of the household,
i.e., how many people live at the same address. Hence the groups identify house-
holds and the sums of unit quantities represent household sizes. For instance,
GA is the group of 3 users living in unit A and σA = 3 as shown in Fig. 1(b).
The example also uses S = {1, . . . , 5}.

In addition to the dataset, the census bureau works with a region hierarchy
that is formalized by a tree TL of L levels. Each level � ∈ [L] is associated with
a set of regions R� ⊆ R, forming a partition on D. Region r′ is a subregion of



642 F. Fioretto and P. Van Hentenryck

region r, which is denoted by r′ ≺ r, if r′ is contained in r and lev(r′) = lev(r)+1,
where lev(r) denotes the level of r. The root level contains a single region r�. The
children of r, i.e., ch(r) = {r′ ∈ R|r′ ≺ r} is the set of regions that partition
r in the next level of the hierarchy and pa(r) denotes the parent of region r
(r �= r�). Figure 1(c) provides an illustration of a hierarchy of 2 levels. Each
node represents a region. The regions GA and MI form a partition of region US.

The number of groups with size σ ∈ S and region r ∈ R is denoted by
nr

σ = |{u ∈ U | σu = σ ∧ u ∈ r}| and nr = (nr
1, . . . , n

r
N ) denotes the vector of

group sizes for region r, where N = |S|. Figure 1(d) illustrates the group sizes
for each group size s ∈ [N = 5] with: nGA = (2, 0, 1, 0, 0), nMI = (1, 1, 1, 0, 0),
and nUS = (3, 1, 2, 0, 0).

It is now possible to define the problem of interest to the bureau: The goal is to
release, for every group size s ∈ [N ] and region r ∈ R, the numbers nr

s of groups
of size s in region r, while preserving individual privacy. The region hierarchy and
the group sizes S are considered public non-sensitive information. The entries
associating users with groups (see Fig. 1(a)) are sensitive information. Therefore,
the paper focuses on protecting the privacy of such information. For simplicity,
this paper assumes that the region hierarchy has exactly L levels and uses T
as a shorthand for TL. The paper also focuses on the vastly common case when
zi ∈ {0, 1}, (i ∈ [n]), but the results generalize to arbitrary zi values.

3 Differential Privacy

This paper adopts the framework of differential privacy [7,8], which is the de-
facto standard for privacy protection.

Definition 1 (Differential Privacy [7]). A randomized algorithm M : D →
R with domain D and range R is ε-differentially private if

Pr[M(D1) ∈ O] ≤ exp(ε) Pr[M(D2) ∈ O], (1)

for any output response O ∈ R and any two datasets D1,D2 ∈ D differing in at
most one individual (called neighbors and written D1 ∼ D2).

Parameter ε > 0 is the privacy budget of the algorithm, with values close to
0 denoting strong privacy. Intuitively, the definition states that the probability
of any event does not change much when a single individual data is added or
removed to the dataset, limiting the amount of information that the output
reveals about any individual.

This paper relies on the global sensitivity method [7]. The global sensitivity
Δq of a function q : D → R

k (also called query) is defined as the maximum
amount by which q changes when a single individual is added to, or removed
from, a dataset:

Δq = max
D1∼D2

‖q(D1) − q(D2)‖1. (2)

Queries in this paper concern the group size vectors nr and neighboring datasets
differ by the presence or absence of at most one record (see Fig. 1(a)).
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The global sensitivity is used to calibrate the amount of noise to add to the
query output to achieve differential privacy. There are several sensitivity-based
mechanisms [7,20] and this paper uses the Geometric mechanism [13] for integral
queries. It relies on a double-geometric distribution and has slightly less variance
than the ubiquitous Laplace mechanism [7].

Definition 2 (Geometric Mechanism [13]). Given a dataset D, a query q ∈
R

k, and ε > 0, the geometric mechanism adds independent noise to each dimen-
sion of the query output q(D) using the distribution: P (X =v)= 1−e−ε

1+e−ε e(−ε|v|/Δq).

This distribution is also referred to as double-geometric with scale Δq/ε. In
the following, Geom(λ)k denotes the i.i.d. double-geometric distribution over k
dimensions with parameter λ. The Geometric Mechanism satisfies ε-differential
privacy [13]. Differential privacy also satisfies several important properties [8].

Lemma 1 (Sequential Composition). The composition of two ε-differentially
private mechanisms (M1, M2) satisfies 2ε-differential privacy.

Lemma 2 (Parallel Composition). Let D1 and D2 be disjoint subsets of D
and M be an ε-differential private algorithm. Computing M(D∩D1) and M(D∩
D2) satisfies ε-differential privacy.

Lemma 3 (Post-Processing Immunity). Let M be an ε-differential private
algorithm and g be an arbitrary mapping from the set of possible output sequences
O to an arbitrary set. Then, g ◦ M is ε-differential private.

4 The Privacy-Preserving Group Size Release Problem

This section formalizes the Privacy-preserving Group Size Release (PGSR) prob-
lem. Consider a dataset D, a region hierarchy T for D, where each node ar in T
is associated with a vector nr ∈ Z

N
+ describing the group sizes for region r ∈ R,

and let G =
∑

s∈[N ] n
�
s be the total number of individual groups in D, which is

public information (see Fig. 2(a) for an example). The PGSR problem consists in
releasing a hierarchy of group sizes T̃ = 〈ñr | r ∈ R〉1 that satisfies the following
conditions:

1. Privacy : T̃ is ε-differentially private.
2. Consistency : For each region r ∈ R and group size s ∈ S, the group sizes in

the subregions r′ of r add up to those in region r: ñr
s =

∑
r′∈ch(r) ñr′

s .
3. Validity : The values ñr

s are non-negative integers.
4. Faithfulness: The group sizes at each level � of the hierarchy add up to the

value G:
∑

r∈R�

∑
s∈[N ] ñ

r
s = G.

These constraints ensure that the hierarchical group size estimates satisfy all
publicly known properties of the original data.

1 We abuse notation and use the angular parenthesis to denote a hierarchy.
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Fig. 2. Region hierarchies associated with the dataset of Fig. 1(a): group size hierarchy
T2 (a), and cumulative group size hierarchy T c

2 (b).

5 The Direct Optimization-Based PGSR Mechanism

This section presents a two-step mechanism for the PGSR problem. The first
step produces a noisy version of the group sizes, while the second step restores
the feasibility of the PGSR constraints while staying as close as possible to the
noisy counts. The first step produces a noisy hierarchy T̃ = {ñr | r ∈ R} using
the geometric mechanism with parameter λ = 2L

ε on the vectors nr:

ñr = nr + Geom
(2L

ε

)N

. (3)

This step satisfies ε-differential privacy due to the following lemma.

Lemma 4. The sensitivity Δn of the group estimate query is 2.

Fig. 3. The Mdp
H bottom-up step.

The output of the first step
satisfies Condition 1 of the
PGSR problem but it will vio-
late (with high probability) the
other conditions. To restore
feasibility, this paper uses a
post-processing strategy simi-
lar to the one proposed in [10]
for mobility applications. After
generating T̃ using Eq. (3), the
mechanism post-processes the
values ñr of T̃ through the Quadratic Integer Program (QIP) depicted in Fig. 3.
Its goal is to find a new region hierarchy T̂ , optimizing over the variables
n̂r = (n̂r

1 . . . n̂r
N ) for each r ∈ R, so that their values stay close to the noisy

counts of the first step, while satisfying faithfulness (Constraint (H2)), consis-
tency (Constraint (H3)), and validity (Constraint (H4)). In the optimization
model, Dr

s represents the domain (of integer, non-negative values) of n̂r
s. The

resulting mechanism is called the Hierarchical PGSR and denoted by MH . It
satisfies ε-differential privacy because of post-processing immunity of differen-
tial privacy (Lemma 3), since the post-processing step of MH uses exclusively
differentially private information (T̃ ).
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Fig. 4. (a): Region hierarchy T dp associated with the dataset of Fig. 1(a). (b): Example
of cost table computation for subtree associated to the group 1 estimates.

Solving this QIP is intractable for the datasets of interest to the census
bureau. Therefore, the experimental results consider a version of MH that
relaxes the integrability constraint (H4) and rounds the solutions. The result-
ing optimization problem becomes convex but presents two limitations: (i) its
final solution T̂ may violate the PGSR consistency (2) and faithfulness (4) con-
ditions, and (ii) the mechanism is still too slow for very large problems.

6 The Dynamic Programming PGSR Mechanism

This section proposes a dynamic-programming approach for the post-processing
step to remedy the limitation of MH and its convex relaxation. The resulting
mechanism is called the Dynamic Programming PGSR mechanism and denoted
by Mdp

H . The dynamic program relies on a new hierarchy T dp that modifies the
original region hierarchy T as follows. It creates as many subtrees as the number
N of groups in S. The nodes of subtree s represent the groups of size s for the
regions in R. In other words, the root node ar

s of subtree s–where r is level 1 in
the region hierarchy (see Fig. 1(b))–is associated with the number nr

s of groups
of size s in region r. Its children {ac

s}c∈ch(r) are associated with the numbers nc
s,

and so on. Finally, the new hierarchy has a root note a� that represents the total
number G of groups: It is associated with a dummy region � whose children are
the N subtrees introduced above. The resulting region hierarchy is denoted T dp.

Example 1. The region hierarchy T dp associated with the running example is
shown in Fig. 4(a). The root node a� is associated with the total number of
groups in D, i.e., G = 6. Its children aUS

1 , . . . , aUS
5 represent the group sizes for

the root of the region hierarchy for each group size s ∈ [N = 5]. Subtree 1, rooted
at aUS

1 , has two children: aGA
1 and aMI

1 , representing the number of groups of size
1: nGA

1 and nMI
1 . The figure illustrates the association of every node ar

s with its
real group size nr

s (in red) and its noisy group size generated by the geometrical
mechanism (in blue and parenthesis).

Note that (i) the value of a node equals to the sum of the values of its children,
(ii) the sum of the group sizes at a given level add up to G, and (iii) the PGSR
consistency conditions of the nodes in a subtree are independent of those of
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other subtrees. These observations allow us to develop a dynamic program that
guarantees the PGSR conditions and exploits the independence of each subtree
associated with groups of size s to solve the post-processing problem efficiently.

For notational simplicity, the presentation omits the subscripts denoting the
group size s and focuses on the computation of a single subtree representing a
group of size s. The dynamic program associates a cost table τ r with each node
ar of T dp. The cost table represents a function τ r : Dr → R+ that maps values
(i.e., group sizes) to costs, where Dr is the domain (a set of natural numbers)
of region r. Intuitively, τ r(v) is the optimal cost for the post-processed group
sizes in the subtree rooted at ar when its post-processed group size is equal to
v, i.e., n̂r = v. The key insight of the dynamic program is the observation that
the optimal cost for τ r(v) can be computed from the cost tables τ c of each of
its children c ∈ ch(r)using the formula given in Figure 5. In the formula, (d1)
describes the cost for v of deviating from the noisy group size ñr. The function
φr(v), defined in (d2), (d3), and (d4), uses the cost table of the children of r
to find the combination of post-processed group sizes {xc ∈ Dc}c∈ch(r) of r’s
children that is consistent (d3) and minimizes the sum of their costs (d2).

Fig. 5. The Mdp
H bottom-up step.

The dynamic program exploits
these concepts in two phases. The first
phase is bottom-up and computes the
cost tables for each node, starting from
the leaves only, which are defined by
(d1), and moving up, level by level, to
the root. The cost table at the root
is then used to retrieve the optimal
cost of the problem. The second phase
is top-down: Starting from the root,
each node ar receives its post-processed
group size n̂r and solves φr(n̂r) to
retrieve the optimal post-processed group sizes n̂c = xc for each child c ∈ ch(r).

An illustration of the process for the running example is illustrated in
Fig. 4(b). It depicts the cost tables τGA

1 , τMI
1 , and τUS

1 related to the subtree
rooted at aUS

1 (groups of size 1) computed during the bottom-up phase. The
values selected during the top-down phase are highlighted red.

In the implementation, the values φr(v) are computed using a constraint
program where (d1) is implemented using a table constraint. The number of
optimization problems in the dynamic program is given by the following theorem.

Theorem 1. Constructing T̂ dp requires solving O(|R|ND̄) optimization prob-
lems given in Fig. 5, where D̄ = maxs,r |Dr

s | for r ∈ R, s ∈ [N ].

7 A Polynomial-Time PGSR Mechanism

The dynamic program relies on solving an optimization problem for each region.
This section shows that this optimization problem can be solved in polynomial
time by exploiting the structure of the cost tables.
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Fig. 6. Cost tables, extending Fig. 4(b), computed by the mechanism.

A cost table is a finite set of pairs (s, c) where s is a group size and c is a
cost. When the pairs are ordered by increasing values of s and line segments
are used to connect them as in Fig. 6, the resulting function is Piecewise Linear
(PWL). For simplicity, we say that a cost table is PLW if its underlying function
is PWL. Observe also that, at a leaf, the cost table is Convex PWL (CPWL),
since the L2-Norm is convex (see Eq. (d1)).

The key insight behind the polynomial-time mechanism is the recognition that
the function φris CPWL whenever the cost tables of its children are CPWL. As
a result, by induction, the cost table of every node ar is CPWL.

Lemma 5. The cost table τ r
s of each node ar

s of T dp is CPWL.

Lemma 5 makes it possible to design a polynomial-time algorithm to compute
τ r (subscripts omitted for succinctness) that replaces the constraint program
used in the dynamic program. We give the intuition underlying the algorithm.

Given a node ar, the first step of the algorithm is to select, for each node
c ∈ ch(r), the value v0

c with minimum cost, i.e., v0
c = argminv τ c(v). As a

result, the value V 0 =
∑

c v0
c has minimal cost φr(V 0) =

∑
c τ c(v0

c ). Having
constructed the minimum value in cost table φr, it remains to compute the costs
of all values V 0 + k for all integer k ∈ [1,max Dr − V 0] and all values V 0 − k for
all integer k ∈ [1, V 0 − min Dr]. The presentation focuses on the values V 0 + k
since the two cases are similar. Let v0 = {v0

c}c∈ch(r). The algorithm builds a
sequence of vectors v1,v2, . . . ,vk, . . . that provides the optimal combinations of
values for φr(V 0+1),φr(V 0+2), . . . ,φr(V 0+k), . . .. Vector vk is obtained from
vk−1 by changing the value of a single child whose cost table has the smallest
slope, i.e.,

vk
c =

{
vk−1

c + 1 if c = argminc τ c(vk−1
c + 1) − τ c(vk−1

c )
vk−1

c otherwise. (4)

Once φr has been computed, cost table τ r can be computed easily since both
(v − ñr)2 and φr are CPWL and the sum of two CPWL functions is CPWL.

Example 2. These concepts are illustrated in Fig. 6, where the values of φr are
highlighted in blue, and in parenthesis, in the right table. The first step identifies
that v0

MI = 0, v0
GA = 3, thus V 0 = 3 and φr(3) = τMI(0) + τGA(3) = 0 + 0 = 0.

In the example, v0 = (v0
MI, v

0
GA) = (0, 3) and v1 = (v1

MI, v
1
GA) = (1, 3), since

MI = argmin{τMI(0+1)−τMI(0), τGA(3+1)−τGA(3)} = argmin{1−0, 1−0}.
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Its associated cost, φUS(v1) = 1+0 = 1. v2 = (1, 4) since GA = argmin{(τMI(1+
1)−τMI(1)), (τGA(3+1)−τGA(3))} = argmin{(4−1), (1−0)}, and its associated
cost φUS(v2) = 1 + 1 = 2.

Theorem 2. The cost table τ r
s of each node ar

s of T dp is CPWL.

Theorem 3. The cost table τ r
s for each region r and size s can be computed in

time O
(
D̄ log D̄

)
.

8 Cumulative PGSR Mechanisms

In the mechanisms presented so far, each query has sensitivity Δn = 2. This
section exploits the structure of the group query to reduce the query sensitivity
and thus the noise introduced by the geometric mechanism.

Define the operator ⊕ : ZN
+ → Z

N
+ that, given a vector n = (n1, . . . , nN ) of

group sizes, returns its cumulative version c = (c1, . . . , cN ) where cs =
∑s

k=1 nk

is the cumulative sum of the first s elements of n. This operator can be used to
produce a hierarchy T c = {cr|r ∈ R} of cumulative group sizes. An example of
such a hierarchy T c is provided in Fig. 2(b).

Lemma 6. The sensitivity Δc of the cumulative group estimate query is 1.

The result follows from the fact that removing an element from a group in c only
affects the group preceding it. This idea is from [15], where cumulative sizes are
referred to as unattributed histograms.

To generate a privacy-preserving version T̃ c of T c, it suffices to apply the
geometrical mechanism with parameter λ = (L/ε)N on the vectors cr associated
with every node τ r of the region hierarchy. Once the noisy sizes are computed,
the noisy group sizes can be easily retrieved via an inverse mapping � : ZN

+ → Z
N
+

from the cumulative sums.

Fig. 7. The Mc post-processing step.

Note however that the result-
ing private versions c̃r of cr

may no longer be non-decreasing
(or even non-negative) due to
the added noise. Therefore, as
in Sect. 5, a post-processing step
is applied to restore consistency
and to guarantee the PGSR
conditions 2 to 4. The post-
processing is illustrated in Fig. 7.
It takes as input the noisy hierar-
chy of cumulative sizes T̃ c com-
puted with the geometrical mechanism and optimizes over variables ĉr =
(ĉr

1, . . . , ĉ
r
N ) for r ∈ R, minimizing the L2-norm wrt their noisy counterparts

(Eq. ((C1)). Constraints (C2) guarantees that the sum of the sizes equals the
public value G (PGSR condition 4), where � denotes the root region of the region
hierarchy. Constraints (C3) guarantee consistency of the cumulative counts.
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Finally, Constraints (C4) and (C5), respectively, guarantee the PGSR consis-
tency (2) and validity (3) conditions.

Once the post-processed hierarchy T̂ c is obtained, operator � is applied to
obtain a post-processed version of the group size hierarchy T̂ . It is easy to see
that the above mechanism satisfies ε-differential privacy, due to post-processing
immunity. This mechanism is called the cumulative PGSR and denoted by Mc.

Algorithm 1: Mdp
c .post-process

input : T̃ c = {c̃r | r ∈ R}
1 foreach r ∈ R do
2 ĉr ← argminĉ ‖ĉ − c̃r‖2

s.t. ĉi ≤ ĉi+1 ∀i∈ [N−1]
0 ≤ ĉi ≤ G ∀i∈ [N ]

3 n̄ ← �(round(ĉr))
4 T̂ ← T̄ ∪ {n̄}
5 T̂ ← Mdp.post-process(T̂ )

Like for MH , the structure of the
PGSR problem can be exploited to cre-
ate an efficient mechanism that satis-
fies the conditions of the PGSR prob-
lem using the cumulative group sizes.
The resulting mechanism is called Mdp

c

and operates in three steps:

1. Mdp
c creates a noisy hierarchy T̃ c.

2. Mdp
c executes the post-processing

step described in Algorithm 1.
3. Mdp

c runs the post-processing step
of the polynomial-time PGSR mech-
anism (see Sect. 7).

The novelty is in step 2 which takes T̃ c as input and, for each node c̃r, solves
the convex program described in line 2 to create a new noisy hierarchy ĉr that
is non-decreasing and non-negative. The resulting cumulative vector ĉr is then
rounded and transformed to its corresponding group size vector through oper-
ator �(·) (line 3). The resulting vector n̄r is added to the region hierarchy T̂
(line 4). Observe that this post-processing step pays a polynomial-time penalty
w.r.t. the runtime of the Mdp

H post-processing. The convex program of line (2)
is executed in O(poly(N)) and the resulting post-processing step runtime is in
O

(
|R|poly(N) + |R|ND̄ log D̄

)
.

It is important to note that Mdp
c does not solve the same post-processing pro-

gram as the cumulative PGSR mechanism specified by Eqs. (C1) to (C2), since
it restores consistency of the cumulative counts locally. However, the experimen-
tal results show that it consistently reduces the final error: See Sect. 9 for detailed
results.

9 Experimental Evaluation

This section evaluates the privacy-preserving mechanisms for the PGSR problem.
The evaluation focuses on comparing runtime and accuracy. Consistent with the
privacy literature, accuracy is measured in term of the L1 difference between
the privacy-preserving group sizes and the original ones, i.e., given the original
group sizes T = {nr | r ∈ R}, and their private counterparts T̂ , the L1-error is
defined as

∑
r ‖nr −n̂r‖1. Since the mechanisms are nondeterministic due to the

noise added by the geometric mechanism, 30 instances are generated for each
benchmark and the results report average values and standard deviations. Each
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mechanism is run on a single-core 2.1 GHz terminal with 24 GB of RAM and
is implemented in Python 3 with Gurobi 8.0 for solving the convex quadratic
optimization problems.

Mechanisms. The evaluation compares the PGSR mechanisms MH , its cumu-
lative version Mc, and their polynomial-time dynamic-programming (DP) coun-
terparts Mdp

H , and Mdp
c . The former are referred to as OP-based methods and

the latter as DP-based methods. In addition to MH and Mc, that solve the
associated post-processing QIPs, the experiments evaluate the associated relax-
ations, Mr

H and Mr
c , respectively, that relax the integrality constraints (H4)

and (C5) and rounds the solutions. For completeness, the experiments also eval-
uate the performance of the optimization-based mechanism MOP

dp that does not
exploit the structure of the cost function to compute the cost tables.

Datasets. The mechanisms are evaluated on three datasets.

• Census Dataset: The first dataset has 117,630,445 groups, 7592 leaves,
305,276,358 individuals, 3 levels, and N= 1,000. Individuals live in facilities,
i.e., households or dormitories, assisted living facilities, and correctional insti-
tutions. Due to privacy concerns and lack of available methods to protect
group sizes during the 2010 Decennial Census release, group sizes were aggre-
gated for any facility of size 8 or more (see Summary File 1 [24]). Therefore,
following [17] and starting from the truncated group sizes Census dataset,
the experiments augment the dataset with group sizes up to N = 1, 000 that
mimic the published statistics, but add a heavy tail to model group quarters
(dormitories, correctional facilities, etc.). This was obtained by computing the
ratio r = n7/n6 of household groups of sizes 7 and 6, subtracting from the
aggregated groups n8+ M people according to the ratio r, and redistributed
these M people in groups k > 8 so that the ratio between any two consec-
utive groups holds (in expectation). Finally, 50 outliers were added, chosen
uniformly in the interval between 10 and 1, 000. The region hierarchy is com-
posed by the National level, the State levels (50 states + Puerto Rico and
District of Columbia), and the Counties levels (3143 in total).

• NY Taxi Dataset: The second dataset has 13,282 groups, 3,973 leaves,
24,489,743 individuals, 3 levels, and N= 13,282. The 2014 NY city Taxi
dataset [3] describes trips (pickups and dropoffs) from geographical locations
in NY city. The dataset views each taxi as a group and the size of the group
is the number of pickups of the taxi. The region hierarchy has 3 levels: the
entire NY city at level 1, the boroughs: Bronx, Brooklyn, EWR, Manhattan,
Queens, and Staten Island at level 2, and a total of 263 zones at level 3.

• Synthetic Dataset: Finally, to test the runtime scalability, the experiments
considered synthetic data from the NY Taxi dataset by limiting the number
of group sizes N arbitrarily, i.e., removing group sizes greater than a certain
threshold.
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9.1 Scalability

Fig. 8. The Runtime for the mechanisms:
Census data (left) and Taxi data (right).

The first results concern the scala-
bility of the mechanisms, which are
evaluated on the synthetic datasets
for various numbers of group sizes.
Figure 8 illustrates the runtimes of
the algorithms at varying of the num-
ber of group sizes N from 5 to 50
for the synthetic dataset. The exper-
iments have a timeout of 30 min
and the runtime is reported in log-
10 scale. The figure shows that the
exact OP-based approaches and MOP

dp are not competitive, even for small groups
sizes. Therefore, these results rule out the following mechanisms: MOP

dp , MH ,
and Mc and the remaining results focus on comparing the relaxed versions of
the OP-based mechanisms versus their proposed DP-counterparts.

Fig. 9. Runtime (in seconds) at varying of the number of group size N .

9.2 Runtimes

Fig. 9 reports the runtime, in seconds, for the hierarchical mechanism Mr
H and

its DP-counterpart Mdp
H , and the hierarchical cumulative mechanism Mr

c and
its dp-counterpart Mdp

c . The left side of the figure illustrates the results for the
Census data and the right side those for the NY Taxi data. The main observations
can be summarized as follows:

1. Although the OP-based algorithms consider only a relaxation of the problem,
the exact DP-versions are consistently faster. In particular, Mdp

H is up to one
order of magnitude faster than its counterpart Mr, and Mdp

c is up to two
orders of magnitude faster than its counterpart Mr

c .
2. Mr

c is consistently slower then Mr
H . This is because, despite the fact that

the two post-processing steps have the same number of variables, the Mc

post-processing step has many additional constraints of type (C3).
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3. The runtime of the DP-based mechanisms decreases as the privacy budget
increases, due to the sizes of the cost tables that depend on the noise variance.2

4. The cumulative version Mdp
c outperforms its Mdp

H counterpart. Once again,
the reason is due to the domain sizes. In fact, due to reduced sensitivity, Mdp

c

applies a smaller amount of noise than that required by Mdp
H to guarantee

the same level of privacy and resulting in smaller domain sizes.

Fig. 10. The L1 errors for the algorithms: Census data (left) and Taxi data (right).

9.3 Accuracy

Figure 10 reports the error induced by the mechanisms, i.e., the L1-distance
between the privacy-preserving and original datasets. The main observations
can be summarized as follows:

1. The DP-based mechanisms produce more accurate results than their coun-
terparts and Mc

dp dominates all other mechanisms.
2. As expected, the error of all mechanisms decreases as the privacy budget

increases, since the noise decreases as privacy budget increases. The errors
are larger in the NY Taxi dataset, which has a larger number of group sizes
than the Census dataset.

3. Finally, the results show that the cumulative mechanisms tend to concentrate
the errors on small group sizes. Unfortunately, these are also the most pop-
ulated groups, and this is true for each subregion of the hierarchy. On the
other hand, the DP-based version, that retains the integrality constraints,
better redistributes the noise introduced by the geometrical mechanism and
produce substantially more accurate results.

To shed further light on accuracy, Table 1 reports a breakdown of the average
errors of each mechanism at each level of the hierarchies. Mechanism Mc

dp is
clearly the most accurate. Note that the table reports the average number of
constraint violations in the output datasets. A constraint violation is counted
whenever a subtree of the hierarchy violates the PGRP consistency condition
(2). Being exact, the DP-based methods report no violations. In contrast, both
Mr

H and Mr
c report a substantial amount of constraint violations.

2 The implementation uses Dr
s ={ñr

s−δ . . . ñr
s+δ}∩Z+, where δ = 3×�2λ2�, i.e., 3 times

the variance associated with the double-geometrical distribution with parameter λ.
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10 Related Work

The release of privacy-preserving datasets using differential privacy has been
subject of extensive research [12,16,19]. However, these methods focus on creat-
ing unattributed histograms that count the number of individuals associated with
each possible property in the dataset universe. Extensions to hierarchical prob-
lems were also explored. For instance, [15,21] study methods to answer count
queries using a hierarchical structure to impose consistency of counts. Extensions
for optimizing various count queries have also been proposed [5,18,21].

Table 1. L1-errors and constraint violations (CV) for each level of the hierarchies.

Taxi Data Census Data

L1 Errors (×104) #CV L1 Errors (×103) #CV

ε Alg Lev 1 Lev 2 Lev 3 Lev 1 Lev 2 Lev 3

0.1 Mr
H 25.4 158.7 904.4 18206 40.3 54.3 802.1 1966

Mdp
H 26.6 121.9 915.7 0 10.3 38.4 825.4 0

Mr
c 47.9 153.2 551.6 19460 23.1 64.5 632.2 1715

Mdp
c 19.9 65.6 644.3 0 0.9 23.2 550.6 0

0.5 Mr
H 8.6 81.2 364.2 18591 39.4 37.9 216.3 1990

Mdp
H 5.5 31.0 408.9 0 2.4 9.4 230.8 0

Mr
c 46.7 153.5 450.7 19531 23.1 61.0 494.2 1718

Mdp
c 4.0 16.4 352.9 0 0.2 5.8 159.1 0

1.0 Mr
H 7.7 77.2 279.0 18085 40.7 39.2 130.0 1989

Mdp
H 3.1 19.8 328.5 0 1.2 5.1 128.8 0

Mr
c 47.1 154.2 447.1 19706 24.1 63.0 494.5 1728

Mdp
c 2.0 8.7 307.8 0 0.1 3.2 91.0 0

These methods differ in two ways from the mechanisms proposed here: (1)
They focus on histograms queries, rather than group queries; the latter gener-
ally have higher L1-sensitivity and thus require more noise and (2) they ensure
neither the consistency for integral counts nor the non-negativity of the release
counts. They thus violate the requirements of group sizes (see Sect. 4).

Finally, [10] proposed a hierarchical-based solution based on minimizing the
L2-distance between the noisy counts and their private counterparts. While this
solution guarantees non-negativity of the counts, their mechanism, if formulated
as a MIP/QIP, cannot cope with the scale of the census problems discussed here
which compute privacy-preserving country-wise group sizes. If their solution is
used as is, in its relaxed form, then it cannot guarantee the integrality of the
counts. These mechanisms reduce to Mr

H , which has been shown, in the previous
section, to be strongly dominated by the DP-based mechanisms.
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11 Conclusions

The release of datasets containing sensitive information concerning a large num-
ber of individuals is central to a number of statistical analysis and machine
learning tasks. Of particular interest are hierarchical datasets, in which counts
of individuals satisfying a given property need to be released at different granu-
larities (e.g., the location of a household at a national, state, and county levels).
The paper defined the Privacy-perserving Group Release (PGRP) problem and
proposed an exact and efficient constrained-based approach to privately gener-
ate consistent counts across all levels of the hierarchy. This novel approach was
evaluated on large, real datasets and results in speedups of up to two orders
of magnitude, as well as significant improvements in terms of accuracy with
respect to state-of-the-art techniques. Interesting avenues of future directions
include exploiting different forms of parallelism to speed up the computations of
the dynamic programming-based mechanisms even further, using, for instance,
Graphical Processing Units as proposed in [11].
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Abstract. Block modeling has been used extensively in many domains
including social science, spatial temporal data analysis and even medi-
cal imaging. Original formulations of the problem modeled the problem
as a mixed integer programming problem, but were not scalable. Subse-
quent work relaxed the discrete optimization requirement, and showed
that adding constraints is not straightforward in existing approaches. In
this work, we present a new approach based on constraint programming,
allowing discrete optimization of block modeling in a manner that is not
only scalable, but also allows the easy incorporation of constraints. We
introduce a new constraint filtering algorithm that outperforms earlier
approaches, in both constrained and unconstrained settings. We show its
use in the analysis of real datasets.

1 Introduction

Block modeling has a long history in the analysis of social networks [31]. The
core problem is to take a graph and divide it into k clusters and interactions
between those clusters described by a k × k image matrix. The purpose is to
summarize a complex graph to be better understood by humans.

More formally, in its simplest formulation, the core problem is: given a graph
G(V,E) whose n × n adjacency matrix is X, simplify X into a symmetric
trifactorization FMFT . Here F is an n × k block allocation matrix with the
blocks/clusters stacked column wise, and Fi,j ∈ {0, 1}. M is a k × k interaction
(image) matrix showing the interaction between blocks. The objective function
is to minimize the reconstruction error ||X − FMFT ||.

This block modeling formulation has the advantage of identifying structural
equivalence: if the reconstruction error is 0, any instance in cluster i must have
the exact same neighbors in the graph. The reconstruction error (||X−FMFT ||)
counts the number of edges that violate this property.

The original MIP formulations of block modeling were lacking in two direc-
tions. Firstly, they were not scalable; secondly, they often found results that were
inconsistent with the expectations of domain experts. To solve both problems,
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the use of constraints has been studied in the literature. For example: (i) Entry
level constraints such as non-negativity [30], (ii) Incorporating simple composi-
tion constraints on the blocks such as spatial continuity or together/apart con-
straints [3,16], (iii) Constraints on the interaction/image matrix [15] and even
(iv) simultaneous constraints on blocks and interaction/image matrices [2].

However, each of these studies yielded a different type of solver that is only
scalable for one specific problem setting. For example, in [3] an update rule for
the LM method is used, and in [2] a multiplicative update rule. Hence, it is
impossible to use all of these constraints at the same time; the approaches are
either not usable or not scalable without the predefined constraints.

In this paper we propose a novel approach to block modeling based on Con-
straint Programming. The advantage of CP is that it offers a generic and modular
approach to solving constraint satisfaction and optimization problems by means
of global constraints. Global constraints can be combined to solve problems
involving multiple constraints. In this work, we introduce a global constraint for
block modeling. This allows solving block modeling problems under additional
constraints such as: (a) upper and lower bounds on the cluster size; (b) complex
requirements in conjunctive normal form, such as that if vertex i is in the same
cluster as j, then k and l must not be; (c) constraints on the structure of the
image graph M , forcing it to be a tree, a ring graph, a star graph, . . . ; (d) con-
nectivity constraints: we can require that the subgraph induced by the nodes in
each cluster is connected; (e) bin packing constraints: given a weight for each
vertex, limit the total weight of each cluster; and more.

Such constraints now allow combining strong semantic knowledge (the con-
straints) along with empirical evidence (the graph).

The focus of this work is primarily on how to build a filtering algorithm
for block modeling that works well in practice. We will demonstrate this on a
number of experiments on both datasets used in earlier studies and new problems
that we propose in this work. We will show that our propagator is correct for
the constraint that it implements and outperforms other methods by orders of
magnitude.

2 Related Work

Block modeling in practice has two core computational challenges: (i) the prob-
lem needs to be solved as a discrete optimization problem to be truly inter-
pretable. (ii) constraints are required to make results realistic in that they are
consistent with human expectations.

Take for example the application of block modeling on Twitter data from
the US elections. Each person/account should be allocated to a cluster, and we
wish to efficiently find clusters consistent with our expectations (i.e. that Donald
Trump will not be in the same cluster as Hillary Clinton).

There have been two lines of work to address both challenges, but no work
attempts to address both. There are some MIP formulations of block modeling
[9], but as we show in this paper (Table 3) their run time is extremely slow.
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Instead, most work has focused on relaxing the problem to a continuous problem
and adding constraints. There are a plethora of such constraints, some of which
we outline in Table 1. Unfortunately, these methods cannot be combined to create
a block modeling solver that uses all constraints as they use different underlying
solving methods. Furthermore, these solvers do not yield exact solutions for the
discrete allocation problem. All of these constraints and others mentioned in the
introduction (i.e. cardinality constraints) can however easily be encoded in our
exact CP model.

Table 1. A list of some complex constraints used to solve continuous optimization
versions of block modeling. These methods cannot be combined as they use different
underlying solvers, whereas our method can address all of these constraints.

Constraint Description Solver used

Spatial continuity [3] A soft constraint based
on a kernel

Additive update rule

Path [2] All nodes in a block
have a path to each
other

Multiplicative update
rule

Composition [16] Must-link/cannot-link
constraints

Gradient descent

Image structure [15] Constraints on image
matrix

Gradient descent

3 Problem Statement: Block Modeling for Structural
Equivalence

The assumption underlying block modeling is that every vertex plays a role in
the network, and the ties that this vertex will have with other vertices depend on
their respective role. Vertices playing an equivalent role are grouped in clusters,
and the structure of the graph is summarized with the graph of connections
between the different clusters (the image graph).

Different definitions of equivalence between vertices have been proposed in
the block modeling literature. The one most commonly used, called “structural
equivalence”, dictates that two vertices are equivalent if they are connected to
exactly the same other vertices in the network [22]. Formally, given a graph
G = (V,E), vertices u, v ∈ V are structurally equivalent u ≡ v if and only if
∀x ∈ V : (u, x) ∈ E ⇐⇒ (v, x) ∈ E ∧ (x, u) ∈ E ⇐⇒ (x, v) ∈ E.

For example, consider the digraph, along with its adjacency matrix, in Fig. 1.
Vertices 1 and 2 are structurally equivalent, since they are both connected to
vertices 3 and 4 and nothing else. The equivalence classes according to ≡ define a
partition of the vertices into to three clusters, V1 = {1, 2}, V2 = {3, 4} and V3 =
{5}. Observe that in the adjacency matrix, the rows and columns of equivalent
vertices are identical. This gives rise to blocks in the matrix, delimited by lines in
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Fig. 1. In this example, the vertices of the same block are numbered sequentially,
but in practice the rows and columns have to be reordered to show the blocks
in the matrix. Structural equivalence dictates that blocks be either Null blocks
(containing only 0) or Complete Blocks (containing only 1) [4].

1

2

3

4

5
X =

⎛
⎜⎜⎜⎜⎝

· · 1 1 ·
· · 1 1 ·
· · 1 1 1
· · 1 1 1
· · · · ·

⎞
⎟⎟⎟⎟⎠

Fig. 1. Small digraph along with its adjacency matrix X. According to structural
equivalence, 1 ≡ 2 and 3 ≡ 4.

{1, 2} {3, 4} {5}
M =

⎛
⎝

· 1 ·
· 1 1
· · ·

⎞
⎠

Fig. 2. Image graph of Fig. 1 along with its image matrix M .

The image graph is shown in Fig. 2. It has one vertex for each cluster, and the
edges are given by the blocks in X. We can reconstruct the adjacency matrix X
from the image matrix M in the following way. Let F be a 5×3 matrix such that
Fik = 1 if vertex i is in cluster k, otherwise Fik = 0. Then we have X = FMFT ,
where FT is F transposed.

Structural equivalence is a very strong requirement. In order to deal with the
noise in real-world data, we will look for an F and M which approximate the base
graph X with the least error, for a fixed model size k. We define the error (the
cost of the solution) as the number of edges which must be added or deleted from
our graph in order to fit the model perfectly: ||X−FMFT || =

∑n
i=1

∑n
j=1 |Xij −

(FMFT )ij |. Formally, the minimization problem Blockmodel(X, k) that we
are solving in the absence of other constraints is as follows: given X ∈ B

n×n a
binary adjacency matrix and number of clusters k, find F and M such that

min
F,M

||X − FMFT || (1)

s.t.
∑k

c=1 Fic = 1 ∀i ∈ {1..n} (2)
∑n

i=1 Fic ≥ 1 ∀c ∈ {1..k}. (3)

F ∈ B
n×k is the indicator matrix and M ∈ B

k×k is the image matrix of our
model. Equation (2) ensures that vertices are assigned to one cluster only, while
Eq. (3) ensures that there are no empty clusters. To this model, additional con-
straints can be added.
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4 CP Model for Block Modeling with a Global Constraint

The main contributions of this paper are (1) a CP model for the block modeling
problem, (2) a global constraint used in this model, that we call blockModelCost,
and (3) a tailored filtering algorithm for this constraint. We first describe the CP
model, with its variables and constraints. Afterwards, we present the global con-
straint and its filtering algorithm. Finally, we present a heuristic and symmetry
breaking scheme for the CP solver based on the global constraint.

There are four groups of variables in our model: the cluster variables C, the
image matrix variables M, the block cost variables cost and the total cost of our
solution totalCost. They are presented in this table:

Variable Domain Interpretation

Ci {1..k} Ci = c if vertex i is in cluster c

Mcd {0, 1} Mcd = 0 if the submatrix of rows in cluster c and columns in
cluster d is a Null block, and Mcd = 1 if it is a Complete Block

costcd {0..n2} Number of entries in the submatrix c, d which do not match Mcd

totalCost {0..n2} The cost of the solution ||X − FMFT ||

The variables are subject to the following constraints:
– sum(cost, totalCost), which ensures that the total cost of the solution and

the individual cost of every block stays consistent:
∑k

c=1

∑k
d=1 costcd =

totalCost. This constraint is already implemented in most CP systems.
– atLeast(1,C, c),∀c ∈ {1..k}, which ensures that every value between 1

and k appears at least once in C—i.e. there are no empty clusters, as per
Eq. 3.

– blockModelCost(X,M,C, cost, totalCost). This is the global constraint
that we add to the solver, which filters the values of the different vari-
ables along the search. It ensures

∑n
i=1

∑n
j=1 |Xij − MCiCj

| ≤ totalCost

and
∑n

i=1

∑n
j=1(Ci = c) · (Cj = d) · |Xij − Mcd| ≤ costcd ∀c, d.

Note that the constraint of Eq. (2) (vertices can only be in one cluster) is
implicitly modeled by the variable C. Since in the final solution, all variables
must be bound to a single value, no vertex is bound to more than one cluster.

The model can be extended with any set of existing additional constraints
present in CP systems, on any of the variables, such as cardinality constraints
or connectivity constraints.

5 A Global Constraint for Block Modeling

A global constraint [20] is a constraint that captures a relationship between
a number of variables. Typically, a global constraint, as this one, can also be
decomposed into several simpler constraints but considering it globally permits
filtering more impossible values and is often also faster [7]. Global constraints
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Table 2. Adjacency matrix with its columns and rows reordered to show the partial
assignment of vertices into clusters.

Cluster 1 2 3 Unbound

Vertex 1 2 7 9 5 3 4 6 8

1 · · · 1 · 1 1 1 ·
2 · · · · 1 1 1 1 ·
7 · 1 · · · 1 · · ·
9 · · · · · · 1 1 ·
5 · · · · 1 1 1 1 1

3 1 1 · · · · · · ·
4 · 1 1 1 · · 1 · ·
6 1 1 · 1 · 1 · · ·
8 · · · · 1 1 1 1 ·

are thus key to prune the search tree and solve complex problems efficiently
with CP. The filtering algorithm of the global constraint is called every time
the domain of one variable in its scope changes. This filtering does not need to
be complete, although it needs to be able to check the feasibility when all the
variables are bound and it must also guarantee that no valid values are removed.

In this subsection, we present blockModelCost, a global constraint for block
modeling. We first give a concrete example to illustrate the filtering strategies.
Then, we describe the pseudo code for the propagation method.

5.1 Illustration of the Different Filtering Strategies

To illustrate the filtering algorithm, let’s consider the following partial assign-
ment: C = ({1}, {1}, {3}, {3}, {2}, {1, 2, 3}, {1}, {1, 2, 3}, {1}), ∀c, d : Mcd ∈
{0, 1}, costcd ∈ {0..13} and totalCost = {0..13}. In Table 2, we show the adja-
cency matrix X for this example with its rows and columns reordered to show
the current partial assignment.

Filtering costcd. If we look at the submatrix defined by what is already assigned
to the block (1,1)—i.e. the northwestern block in Table 2—we see that it contains
fourteen 0s and two 1s. If M1,1 = 0, the block should be filled with 0s so the its
cost will be at least 2, because of the two 1s. It could be more than 2 if other
vertices are bound to cluster 1, but it can never be less than 2. If M1,1 = 1, the
cost will be at least 14, because of the fourteen 0s. Thus, we can increase the
lower bound of the domain of cost1,1 to 2. Doing this for all blocks, we get

cost =

⎛

⎝
{2..13} {1..13} {2..13}
{0..13} {0..13} {0..13}
{3..13} {0..13} {1..13}

⎞

⎠
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After propagating the sum constraint, we get totalCost ∈ {9..13} and

cost =

⎛

⎝
{2..6} {1..5} {2..6}
{0..4} {0..4} {0..4}
{3..7} {0..4} {1..5}

⎞

⎠

Filtering Mcd. As observed previously, setting M1,1 to 1 would bring the min-
imum cost of the block to 14. However, the value 14 is not in the domain of
cost1,1, so we can filter the value 1 from M1,1, in effect binding it to M1,1 = 0.

Filtering Ci. If we were to assign vertex 6 to cluster 1, it would add six 1s to
the (1,1) block—three from the partial column representing edges from vertices
in cluster 1 to vertex 6, and three more from the partial row representing edges
from vertex 6 to vertices in cluster 1. Remember that M1,1 = 0, so each one
would increase the cost of the block. The resulting cost (8) would exceed the
maximum allowed value for cost1,1, so we can remove 1 from the domain of C6.

Tightening the Lower Bound on totalCost. In what has been described so far, the
lower bound of totalCost is only the sum of the lower bounds of the individual
cost variables. These take into account only the submatrix defined by the vertices
already assigned to a specific cluster. We can improve the bound by also taking
into account the unbound vertices (vertices 6 and 8 in our example). In Table 2,
consider the horizontal rectangle in bold at row 6. It corresponds to the edges
going from vertex 6 to vertices in cluster 1. Since C6 ∈ {2, 3}, we do not know
yet in which block it will be, but those 4 values will stay together in the final
assignment. If the 4 values end up in a Null block, their cost will be 3, and
if they end up in a Complete block, their cost will be one, so we can at least
increase the lower bound on totalCost by one. The same can be done for all other
rectangles in the “unbound” part of Table 2 except for the southeastern corner
(edges between unbound vertices). If we add all of these contributions, we get
totalCost ∈ {12..13}.

5.2 Filtering Algorithm

The pseudocode for our propagation method is shown in Algorithm 1. In order to
filter the domains of our CP variables efficiently, the number of zeroes and ones
in the different “blocks” of our reordered matrix are computed. For efficiency
reasons, those counters are stored on a trail [27], or more exactly inside reversible
integers that are restored on backtracking. This permits an incremental update
based on the changes since the last call to the filtering algorithm without having
to worry about the restoration at backtracking. Specifically, these values are
stored as reversible integers:

– nb0Block, a k × k array reflecting the number of zeroes already assigned
to each block: nb0Blockcd = #{Xij | Ci = c,Cj = d,Xij = 0},

– nb0Row, a n × b array where for all unbound vertices i:
nb0Rowic = #{Xij | Cj = c,Xij = 0},
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– nb0Col, a b × n array where for all unbound vertices i:
nb0Colci = #{Xji | Cj = c,Xji = 0},

as well as their equivalent variables for the number of ones: nb1Block, nb1Row
and nb1Row. The set of unbound vertices unboundVertices = {i ∈ {1..n} | 1 <
|dom(Ci)|} is maintained in a reversible sparse set [26].

A lower bound on the cost of the block c, d is:

cost(c, d) =

⎧
⎪⎨

⎪⎩

nb0Blockcd if Mcd = {1}
nb1Blockcd if Mcd = {0}
min(nb0Blockcd, nb1Blockcd) otherwise.

We obtain a better bound by also maintaining rowcost, using the method
described in the earlier paragraph “Tightening the lower bound on totalCost”,
as follows:

rowcost(c, i) =

⎧
⎪⎨

⎪⎩

nb0Rowic if ∀d : Mdc = {1}
nb1Rowic if ∀d : Mdc = {0}
min(nb0Rowic, nb1Rowic) otherwise.

Similarly we maintain colcost(c, i), defined equivalently from nb0Col and
nb1Col. They put a lower bound on the cost incurred by rows and columns
of vertices which have not been bound yet.

Finally, we can also calculate a lower bound on the added cost for block
(c, d) if we put vertex i in cluster x, δi�→x(c, d) = costi�→x(c, d) − cost(c, d) where
costi�→x(c, d) is the value of cost(c, d) if vertex i is assigned to cluster x.

The first step in our algorithm is to process all the vertices that have been
bound to a cluster since the propagation method was last called, and update
the constraint’s variables. Then, we filter the CP variables costcd with the new
lower bounds cost(c, d), and filter totalCost further with rowcost and colcost.
Then we filter the values of Mcd by removing the values which lead to a cost
higher than max(costcd). Finally, we filter the values of Ci with the lower bounds
of δi�→x(c, d). This order of steps was chosen as we found it to perform well in
practice.

5.3 Theoretical Properties of the Algorithm

The algorithm was designed with practical performance for block modeling in
mind. For example, we only implemented filtering on the lower bound of the cost
variables, since we are trying to minimize them. Of course, filtering their upper
bound would also be possible, but was not implemented since it does not help
solve the block modeling problem. Similarly, our algorithm does not have some of
the theoretical guarantees ensured by well-known other global constraints, such
as bound or arc consistency and idempotency. These would be very complex to
implement for this problem, and would not improve the performance. We will
nonetheless discuss them in this section.
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Soundness, Completeness and Idempotency: The filtering is sound (any pruned
value is inconsistent with respect to the objective) but it does not achieve
any classical notion of consistency. Our focus was on practical performance
rather than theoretical guarantees. We added fine-grained filtering only when
it improved efficiency. Consequently, propagation is also not idempotent. For
example, at the last step of Algorithm 1 (filter C) if a variable Ci is bound, we
do not update the local counters and miss all further filtering arising from that
if the propagation is not called again. A while loop in the propagator would

Algorithm 1. Propagation of our global constraint.
ΔC is a list of all the variables Ci which have been bound since the last propagation
of this constraint.

1: /* update local counters */
2: for all Ci = {c} ∈ ΔC do
3: unboundVertices ← unboundVertices \ {i}
4: for all j in unboundVertices do
5: nb1Colcj += Xij ; nb0Colcj += (1 − Xij)
6: nb1Rowjc += Xji; nb0Rowjc += (1 − Xji)
7: end for
8: for all d = 1 to k do
9: nb0Blockcd += nb0Rowid; nb1Blockcd += nb1Rowid

10: nb0Blockdc += nb0Coldi; nb1Blockdc += nb1Coldi
11: end for
12: nb0Blockcc += (1 − Xii); nb1Blockcc += Xii

13: end for
14: /* filter cost and totalCost */
15: minCost ← 0
16: for all c, d ∈ {1..k} × {1..k} do
17: update min of costcd to cost(c, d).
18: minCost += cost(c, d).
19: end for
20: for all unbound vertex i, c = 0 to k do
21: minCost += colcost(c, i) + rowcost(c, i)
22: end for
23: update min of totalCost to minCost
24: /* filter M */
25: for all c, d ∈ {1..k} × {1..k} if Mcd = {0, 1} do
26: if nb0Blockcd > max(costcd) then Mcd ← Mcd \ {0} end if
27: if nb1Blockcd > max(costcd) then Mcd ← Mcd \ {1} end if
28: end for
29: /* filter C */
30: for all i ∈ unboundVertices, c ∈ Ci, d = 1 to k do
31: if cost(c, d) + δi�→c(c, d) > max(costcd) or cost(d, c) + δi�→c(d, c) > max(costdc)

then
32: Ci ← Ci \ {c}
33: end if
34: end for
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solve this, but we found that such a loop reduces performance: intermediate
propagation by other, lighter constraints helps in practice.

Time Complexity for One Execution: For practical block modeling applications,
the complexity of one execution of Algorithm 1 is linear in terms of the number
of unbound vertices. Let us define three variables: δC , the number of variables in
C bound since the last call, uC , the number of unbound variables in C, and k the
number of clusters. The different steps of the algorithm have these complexities:

Step 1: updating local counters: O(δC(uC + k))
Step 2: filtering cost and totalCost: O(k2 + uCk)
Step 3: filtering M: O(k2)
Step 4: filtering C: O(uCk2)

In total for one execution of the filtering algorithm this yields O(δC(uC + k) +
k2 + uCk + k2 + uCk2) = O(δCuC + δCk + uCk2). The value δC is assumed to
be small between consecutive calls of the filtering algorithm, and the number of
clusters k is typically small (10 at most) in block modeling applications, so we
consider the complexity to be O(uC).

Time Complexity Along a Branch: We will now consider the time complexity to
reach the first solution from the root of the search tree. We consider the worst
case, i.e. there is no additional constraint on the variables, and no constraint
on the cost of the solution. We start from the root—all C and M variables
unbound—and assign a value to the variables one by one.

Let’s assign first the n variables in C, then the k2 variables of M. For the
first n variables, δC = 1 and uC decreases from n − 1 to 0, giving a complexity
at each search node of O(nk2). For the last k2 nodes of the search tree, δC =
0 = uC , so the complexity is O(k2). This gives a complexity along the branch of
O(n2k2 + k4).

6 Search Procedure for Block Modeling

In constraint programming, the formulation of the problem is kept separate
from the search procedure. The search procedure is a branch and bound depth-
first-search. Two important components of a search procedure are the variable
and value ordering heuristics. These should permit discovering rapidly good
incumbent solutions in order to prune the search tree. Since the problem also
exhibits value symmetries, we use a dynamic symmetry breaking scheme during
the search. When the search space becomes too large, and there is no hope to
explore completely the search tree, LNS (Large Neighborhood Search) [28] can
be used on top of CP to diversify the search and discover good solutions rapidly.

Value and Variable Ordering Heuristic. When arriving at a branching point in
the search, the CP solver must decide which variable to branch on and what
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value to try first. These decisions are called variable ordering and value order-
ing. Selecting the right ordering for the problem can significantly improve the
efficiency of the solver.

For the CP model presented here, there are two sets of variables we can
branch on (C and M). Since the blockModelCost constraint filters mostly based
on the vertices which have been bound, it is better to branch on those before
branching on M variables. The ordering of the C variables can further be refined
with modern first-fail learning heuristics [17,19,23]. A good value heuristic for
the clusters can also be constructed from our global constraint. We calculate
δi�→x(c, d), a lower bound on the added cost of assigning vertex i to cluster x, so
a good heuristic is to branch first on Ci = arg minx

∑
c,d δi�→x(c, d), i.e., branch

first on the value for which we expect the least increase in cost. Similarly for M,
we branch first on Mcd = 0 if nb1Blockcd < nb0Blockcd, and Mcd = 1 otherwise.

Symmetry Breaking for the Block Modeling Problem. Symmetry breaking per-
mits to drastically reduce the search. Symmetries can generally be avoided by
adding constraints to the model. Unfortunately, this approach suffers from a
bad interaction with the search as good solutions that were discovered early may
become unfeasible because of the symmetry breaking constraints [29]. Therefore,
a dynamic symmetry breaking during search strategy is generally more efficient.
At every stage of the search, all-but one child nodes leading to symmetrical
states are discarded.

The search space for this CP formulation of the block modeling problem has
a number of symmetries. Firstly, it is clear that as long as the clusters stay the
same, their labels can be changed—i.e. for any permutation σ : {0..k} → {0..k}
and any state S = (C,M), the permutated state σ(S) = (σ(C∗),Mσ(∗)σ(∗))
is symmetrical to S. If σ′ is an automorphism of the graph X, then S′ =
(Cσ′(∗),M∗∗) is symmetrical to S. Finally, if σ′′ is an automorphism of the graph
M, then S′′ = (C∗,Mσ′′(∗)σ′′(∗)) has the same error as S.

In our CP model, we are only concerned with the first kind of symmetries
(permutations of the cluster labels); those are easier to break. The dynamic
symmetry-breaking scheme is: when branching on a Ci variable, the solver
explores branches Ci = 1,Ci = 2, . . . ,Ci = m + 1 where m is the largest value
bound to a C variable m = max{v | ∃i : Ci = {v}}.

Breaking the symmetries on the graph automorphisms of X and M is much
more complicated and has not been considered for this paper. It is nonetheless
an interesting direction for further work on this problem. For a related treatment
of symmetry breaking of graph automorphisms, see [32].

7 Experiments

7.1 Comparison with MIP Model

The block modeling problem is often approximated using heuristic search. How-
ever, an approach to find the optimal solution is proposed in [9]. It builds on
the work of [8], which defines a MIP model to find the optimal partition given a



Generic Constraint-Based Block Modeling Using Constraint Programming 667

fixed image matrix M . We expand this approach to find the optimal solution by
generating a minimal, representative set of image matrices of size k and running
the MIP solver for each matrix in this set.

In this section, we compare the performance of the CP approach with this
MIP approach. As both give exact solutions, the quality of the solutions are
identical, and we only need to compare the running time. In order to evaluate
the performance of our global constraint, we wrote three CP models. The first is
used as a baseline. It follows the mathematical formulation of the problem, and
uses our symmetry-breaking scheme. The second uses our global constraint for
filtering with the same search procedure. The third uses our global constraint
with the value ordering heuristic. The MIP model and the 3 CP approaches are
compared on four small well-studied social networks, published and analyzed
in depth in [12, Chapters 2, 6], namely: (a) the Transatlantic Industries little
league baseball team network, [14], (b) the Sharpstone little league baseball team
network, [14], (c) the political actor network (PA), and [11] (d) the Kansas search
and air rescue (SAR) network [13].

The CP models were written and solved in OscaR [24]. The MIP model
was written and solved in Java using Gurobi [18]. All experiments were run on
a computer with Xeon Platinum 8160 24c/48t HyperThread processors. The
results are shown in Table 3.

We clearly observe that the MIP approach does not scale and is inapplicable
for non-trivial sizes. The effect of our global constraint and our value heuristic
are also evident, making the search orders of magnitude faster.

7.2 Comparison with Local Search

The global constraint can also be used in local search by doing Large Neigh-
borhood Search [28]. In this subsection, we compare the performance of the
LNS approach with a local search algorithm for block modeling bundled in the
popular graph processing software Pajek1.

We generated synthetic graphs with 50, 100, 150 and 200 vertices—the clas-
sical block modeling algorithm included in Pajek [5] only supports graphs of less
than 256 vertices—with a fixed block model structure of 5 clusters. We added
40% of noise to the data, then compared the evolution of the quality of the
solution with time for both methods. The results are shown in Fig. 3. For all
instances over 50 vertices, the LNS method outperformed Pajek’s local search.

7.3 Scalability

We now show the scalability of the complete search and LNS method on larger
instances. We once again generated synthetic graphs of different sizes n with a
known block model structure and 20% of noise. In the first plot of Fig. 4, we
report the runtime until proving optimality for different sizes n and number of

1 http://mrvar.fdv.uni-lj.si/pajek/.

http://mrvar.fdv.uni-lj.si/pajek/
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Table 3. Run time of the MIP approach compared to a baseline CP approach
(CP(bsl)), a CP approach with our global constraint (CP(our)), and our constraint
+ our value heuristic (+heuris.) for different number of clusters k. “−” indicates a
timeout after 2 h.

CPU time (s)

Dataset n k MIP CP(bsl) CP(our) +heuris

Transatlantic 13 2 1.73 0.80 0.45 0.28

3 142.25 21.15 0.88 0.79

4 − 386.20 2.94 2.07

Sharpstone 13 2 1.24 0.50 0.44 0.19

3 62.46 13.57 1.17 0.85

4 2952.13 221.41 2.78 1.82

5 − 1102.68 2.31 1.30

Political actor 14 2 2.14 1.13 0.62 0.31

3 155.90 60.15 1.32 0.89

4 2178.42 1936.43 2.68 2.20

5 − − 2.93 2.25

Search and rescue 20 2 13.31 22.04 0.85 0.48

3 − − 6.01 5.18
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Fig. 3. Comparison of LNS search with the local search bundled in Pajek for synthetic
dataset with 40% of noise. Each graph shows a different instance of the problem, for
n = 50 to n = 200 by increments of 50.
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clusters k. In the second plot of Fig. 4, we plot the convergence of Large Neigh-
borhood Search over 10 min, with restarts every 1000 failed states and relaxation
of 5% of the variables. We see that, while proving optimality is still prohibitively
hard for large graphs, the LNS search converges quickly on a solution of optimal
cost, even with thousands of vertices. Note that all of these graphs are too large
for Pajek’s method, but were solved by our LNS search in a handful of minutes.

7.4 Beyond Traditional Block Modeling

A real strength of a constraint programming formulation is the ability to add
complex constraints on the clusters or the image graph, to combine multiple
instances of the same constraint, and to optimize any of the variables. As an
illustration, we explore the use of block modeling on migration data in Europe.
In the first illustration, Fig. 5, we add the constraint that the clusters must
be connected on the map—i.e. one can travel between any two countries of a
cluster without leaving the cluster. This connectivity constraint is very complex
to model in MIP but is an existing building block in CP [6,10,25]. In the second
illustration, Fig. 6, we study a problem that involves multiple instances of our
global constraint: we take the migration matrix at 5 different points in time. We
build a blockmodel for each year, with the constraint that the clusters are the
same in all models. We have five block models, so we minimize the sum of their
costs. This is similar to the non-negative RESCAL setting [21].

Fig. 4. Scalability on graphs with known block model and 20% of noise. The first graph
shows runtime until the solution is proven optimal. The second shows the convergence
of the solution with LNS.

The migration graphs were built from an open dataset provided by the World
Bank [1]. An edge Xab = 1 indicates that the number of migrants born in a
living in b is more than 0.01% of the population of a. The dataset was limited
to countries in continental Europe, excluding islands for the first illustration
because of the connectivity constraint. The models were found after a Large
Neighborhood Search of 10 min, with restarts after 1000 failed states relaxing
5% of the variables.

In Fig. 5, we clearly see the ex-Soviet block appear in cluster 4, with mostly
internal migration and not much migration to Western Europe. Germany and
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Fig. 5. A block model of migrant stocks in continental Europe in 2015, with geograph-
ically connected clusters.
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Fig. 6. RESCAL model for the evolution of migrant stocks in Europe. The edges which
appeared in a decade are rendered in thick stroke, and those which disappeared are in
dotted red stroke.

Switzerland appear as a core destination for migrants from most European coun-
tries. Denmark is the only member of its cluster, but it would have been in the
same cluster as Fennoscandia if it did not violate the connectivity constraint. In
Fig. 6, we observe for example the migration of people from Russia to Germany
in the nineties (thick arrow between 9 and 6), which we can probably link to the
fall of the Iron Curtain.

8 Conclusion and Further Work

We have introduced a CP approach to the block modeling problem, using a
dedicated global constraint. It has the advantage of being able to easily incorpo-



Generic Constraint-Based Block Modeling Using Constraint Programming 671

rate any combination of additional constraints, contrary to previous works. Our
experiments show that our approach is orders of magnitude faster than compet-
ing solutions to find optimal block models. Our CP formulation can also be used
for heuristic search with Large Neighborhood Search.

This work could be further expanded with an equivalent global constraint
for regular equivalence or generalized blockmodeling [12]. The search could be
accelerated by breaking symmetries on the automorphisms of X and M and
considering more advanced variable ordering schemes.
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Abstract. Optimal planning with respect to learned neural network
(NN) models in continuous action and state spaces using mixed-integer
linear programming (MILP) is a challenging task for branch-and-bound
solvers due to the poor linear relaxation of the underlying MILP model.
For a given set of features, potential heuristics provide an efficient frame-
work for computing bounds on cost (reward) functions. In this paper, we
model the problem of finding optimal potential bounds for learned NN
models as a bilevel program, and solve it using a novel finite-time con-
straint generation algorithm. We then strengthen the linear relaxation
of the underlying MILP model by introducing constraints to bound the
reward function based on the precomputed reward potentials. Experi-
mentally, we show that our algorithm efficiently computes reward poten-
tials for learned NN models, and that the overhead of computing reward
potentials is justified by the overall strengthening of the underlying MILP
model for the task of planning over long horizons.

Keywords: Neural networks · Potential heuristics · Planning ·
Constraint generation

1 Introduction

Neural networks (NNs) have significantly improved the ability of autonomous sys-
tems to learn and make decisions for complex tasks such as image recognition [11],
speech recognition [5], and natural language processing [4]. As a result of this suc-
cess, formal methods based on representing the decision making problem with NNs
as a mathematical programming model, such as verification of NNs [9,14] and opti-
mal planning with respect to the learned NNs [18] have been studied.

In the area of learning and planning, Hybrid Deep MILP Planning [18] (HD-
MILP-Plan) has introduced a two-stage data-driven framework that (i) learns
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transitions models with continuous action and state spaces using NNs, and (ii)
plans optimally with respect to the learned NNs using a mixed-integer linear
programming (MILP) model. It has been experimentally shown that optimal
planning with respect to the learned NNs [18] presents a challenging task for
branch-and-bound (B&B) solvers [8] due to the poor linear relaxation of the
underlying MILP model that has a large number of big-M constraints.

In this paper, we focus on the important problem of improving the efficiency
of MILP models for decision making with learned NNs. In order to tackle this
challenging problem, we build on potential heuristics [15,19], which provide an
efficient framework for computing a lower bound on the cost of a given state as a
function of its features. In this work, we describe the problem of finding optimal
potential bounds for learned NN models with continuous inputs and outputs
(i.e., continuous action and state spaces) as a bilevel program, and solve it using
a novel finite-time constraint generation algorithm. Features of our linear poten-
tial heuristic are defined over the hidden units of the learned NN model, thus
providing a rich and expressive candidate feature space. We use our constraint
generation algorithm to compute the potential contribution (i.e., reward poten-
tial) of each hidden unit to the reward function of the HD-MILP-Plan problem.
The precomputed reward potentials are then used to construct linear constraints
that bound the reward function of HD-MILP-Plan, and provide a tighter linear
relaxation for B&B optimization by exploring smaller number of nodes in the
search tree. Experimentally, we show that our constraint generation algorithm
efficiently computes reward potentials for learned NNs, and that the overhead
computation is justified by the overall strengthening of the underlying MILP
model for the task of planning over long horizons.

Overall this work bridges the gap between two seemingly distant literatures –
research on planning heuristics for discrete spaces and decision making with
learned NN models in continuous action and state spaces. Specifically, we show
that data-driven NN models for planning can benefit from advances in heuristics
and from their impact on the efficiency of search in B&B optimization.

2 Preliminaries

We review the HD-MILP-Plan framework for optimal planning [18] with learned
NN models, potential heuristics [15] as well as bilevel programming [1].

2.1 Deterministic Factored Planning Problem Definition

A deterministic factored planning problem is a tuple Π = 〈S,A,C, T, I,G,R〉
where S = {s1, . . . , sn} and A = {a1, . . . , am} are sets of state and action
variables with continuous domains, C : R

|S| × R
|A| → {true, false} is a func-

tion that returns true if action and state variables satisfy global constraints,
T : R

|S| × R
|A| → R

|S| denotes the stationary transition function, and R :
R

|S| × R
|A| → R is the reward function. Finally, I : R|S| → {true, false} rep-

resents the initial state constraints, and G : R|S| → {true, false} represents the
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goal constraints. For horizon H, a solution π = 〈Ā1, . . . , ĀH〉 to problem Π (i.e.
a plan for Π) is a value assignment to the action variables with values Āt =
〈āt

1, . . . , ā
t
|A|〉 ∈ R

|A| for all time steps t ∈ {1, . . . , H} (and state variables with
values S̄t = 〈s̄t

1, . . . , s̄
t
|S|〉 ∈ R

|S| for all time steps t ∈ {1, . . . , H + 1}) such that
T (〈s̄t

1, . . . , s̄
t
|S|, ā

t
1, . . . , ā

t
|A|〉) = S̄t+1 and C(〈s̄t

1, . . . , s̄
t
|S|, ā

t
1, . . . , ā

t
|A|〉) = true for

all time steps t ∈ {1, . . . , H}, and the initial and goal state constraints are sat-
isfied, i.e. I(S̄1) = true and G(S̄H+1) = true, where x̄t denotes the value of
variable x ∈ A ∪ S at time step t. Similarly, an optimal solution to Π is a plan
such that the total reward

∑H
t=1 R(〈s̄t+1

1 , . . . , s̄t+1
|S| , āt

1, . . . , ā
t
|A|〉) is maximized.

For notational simplicity, we denote the tuple of variables 〈xd1 , . . . , xd|D|〉 as
〈xd|d ∈ D〉 given set D, and use the symbol � for the concatenation of two
tuples. Given the notations and the description of the planning problem, we
next describe a data-driven planning framework using learned NNs.

2.2 Planning with Neural Network Learned Transition Models

Hybrid Deep MILP Planning [18] (HD-MILP-Plan) is a two-stage data-driven
framework for learning and solving planning problems. Given samples of state
transition data, the first stage of the HD-MILP-Plan process learns the transi-
tion function T̃ using a NN with Rectified Linear Units (ReLUs) [13] and linear
activation units. In the second stage, the learned transition function T̃ is used to
construct the learned planning problem Π̃ = 〈S,A,C, T̃ , I,G,R〉. As shown in
Fig. 1, the learned transition function T̃ is sequentially chained over the horizon
t ∈ {1, . . . , H}, and compiled into a MILP. Next, we review the MILP compila-
tion of HD-MILP-Plan.

Fig. 1. Visualization of the learning and planning framework [18], where blue circles
represent state variables S, red circles represent action variables A, gray circles rep-
resent ReLUs U and w represent the weights of a NN. During the learning stage, the
weights w are learned from data. In the planning stage, the weights are fixed and the
planner optimizes a given total (cumulative) reward function with respect to the set of
free action variables A and state variables S. (Color figure online)

2.3 Mixed-Integer Linear Programming Compilation of
HD-MILP-Plan

We begin with all notation necessary for HD-MILP-Plan.
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Parameters

– U is the set of ReLUs in the neural network.
– O is the set of output units in the neural network.
– wi,j denotes the learned weight of the neural network between units i and j.
– A(u) is the set of action variables connected as inputs to unit u ∈ U ∪ O.
– S(u) is the set of state variables connected as inputs to unit u ∈ U ∪ O.
– U(u) is the set of ReLUs connected as inputs to unit u ∈ U ∪ O.
– O(s) specifies the output unit that predicts the value of state variable s ∈ S.
– B(u) is a constant representing the bias of unit u ∈ U ∪ O.
– M is a large constant used in the big-M constraints.

Decision Variables

– Xa,t is a decision variable with continuous domain denoting the value of action
variable a ∈ A at time step t.

– Ys,t is a decision variable with continuous domain denoting the value of state
variable s ∈ S at time step t.

– Pu,t is a decision variable with continuous domain denoting the output of
ReLU u ∈ U at time step t.

– P b
u,t = 1 if ReLU u ∈ U is activated at time step t, 0 otherwise (i.e., P b

u,t is a
Boolean decision variable).

MILP Compilation

maximize
H∑

t=1

R(〈Ys,t+1|s ∈ S〉�〈Xa,t|a ∈ A〉) (1)

subject to
I(〈Ys,1|s ∈ S〉) (2)
C(〈Ys,t|s ∈ S〉�〈Xa,t|a ∈ A〉) (3)
G(〈Ys,H+1|s ∈ S〉) (4)

Pu,t ≤ MP b
u,t ∀u ∈ U (5)

Pu,t ≤ M(1 − P b
u,t) + In(u, t) ∀u ∈ U (6)

Pu,t ≥ In(u, t) ∀u ∈ U (7)
Ys,t+1 = In(u, t) ∀u ∈ O(s), s ∈ S (8)

for all time steps t = 1, . . . , H except for constraints (2)–(4). Expression In(u, t)
denotes the total weighted input of unit u ∈ U∪O at time step t, and is equivalent
to B(u) +

∑
u′∈U(u) wu′,uPu′,t +

∑
s∈S(u) ws,uYs,t +

∑
a∈A(u) wa,uXa,t.

In the above MILP, the objective function (1) maximizes the sum of rewards
over a given horizon H. Constraints (2–4) ensure the initial state, global and
goal state constraints are satisfied. Constraints (5–8) model the learned transi-
tion function T̃ . Note that while constraints (5–7) are sufficient to encode the
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piecewise linear activation behaviour of ReLUs, the use of big-M constraints
(5–6) can hinder the overall performance of the underlying B&B solvers that
rely on the linear relaxation of the MILP. Therefore next, we turn to potential
heuristics that will be used to strengthen the MILP compilation of HD-MILP-
Plan.

2.4 Potential Heuristics

Potential heuristics [15,19] are a family of heuristics that map a set of features to
their numerical potentials. In the context of cost-optimal classical planning, the
heuristic value of a state is defined as the sum of potentials for all the features
that are true in that state. Potential heuristics provide an efficient method for
computing a lower bound on the cost of a given state.

In this paper, we introduce an alternative use of potential functions to tighten
the linear relaxation of ReLU units in our HD-MILP-Plan compilation and
improve the search efficiency of the underlying B&B solver. We define the fea-
tures of the learned NN over its set of hidden units U (i.e., gray circles in Fig. 1),
and compute the potential contribution (i.e., reward potential) of each hidden
unit u ∈ U to the reward function R for any time step t. These reward potentials
are then used to introduce additional constraints on ReLU activations that help
guide B&B search in HD-MILP-Plan. Specifically, we are interested in finding
a set of reward potentials, denoted as von

u and voff
u representing the activation

(i.e., P b
u,t = 1) and the deactivation (i.e., P b

u,t = 0) of ReLUs u ∈ U , such that
the relation

∑
u∈U von

u P b
u,t + voff

u (1 − P b
u,t) ≥ R(〈Ys,t+1|s ∈ S〉�〈Xa,t|a ∈ A〉)

holds for all feasible values of P b
u,t, Ys,t+1 and Xa,t at any time step t. Once

values v̄on
u and v̄off

u are computed, we will add
∑

u∈U v̄on
u P b

u,t + v̄off
u (1−P b

u,t) ≥
R(〈Ys,t+1|s ∈ S〉�〈Xa,t|a ∈ A〉) as a linear constraint to strengthen HD-MILP-
Plan. Next we describe bilevel programming that we use to model the problem
of finding optimal reward potentials.

2.5 Bilevel Programming

Bilevel programming [1] is an optimization framework for modeling two-level
asymmetrical decision making problems with a leader and a follower problem
where the leader has complete knowledge of the follower, and the follower only
observes the decisions of the leader to make an optimal decision. Therefore,
the leader must incorporate the optimal decision of the follower to optimize its
objective.

In this work, we use bilevel programming to compactly model the problem of
finding the optimal reward potentials that has exponential number of constraints.
In the bilevel programming description of the optimal reward potentials problem,
the leader selects the optimal values v̄on

u and v̄off
u of reward potentials, and

the follower selects the values of P b
u,t, Ys,t+1 and Xa,t such that the expression

R(〈Ys,t+1|s ∈ S〉�〈Xa,t|a ∈ A〉) − ∑
u∈U von

u P b
u,t + voff

u (1 − P b
u,t) is maximized.

That is, the follower tries to find values of P b
u,t, Ys,t+1 and Xa,t that violate
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the relation
∑

u∈U von
u P b

u,t + voff
u (1 − P b

u,t) ≥ R(〈Ys,t+1|s ∈ S〉�〈Xa,t|a ∈ A〉)
as much as possible. Therefore the leader must select the values v̄on

u and v̄off
u

of reward potentials by incorporating the optimal decision making model of the
follower. Next, we describe the reward potentials for learned NNs.

3 Reward Potentials for Learned Neural Networks

In this section, we present the optimal reward potentials problem and an efficient
constraint generation framework for finding reward potentials for learned NNs.

3.1 Optimal Reward Potentials Problem

The problem of finding the optimal reward potentials over a set of ReLUs U for
any time step t can be defined as the following bilevel optimization problem.

Leader Problem

min
von
u ,voff

u ,Ys,t,Ys,t+1,Xa,t,P b
u,t

∑

u∈U

von
u + voff

u (9)

subject to
∑

u∈U

von
u P b

u,t + voff
u (1 − P b

u,t) ≥ R(〈Ys,t+1|s ∈ S〉�〈Xa,t|a ∈ A〉) (10)

Ys,t, Ys,t+1,Xa,t, P
b
u,t ∈ arg Follower Problem

Follower Problem

max
Ys,t,Ys,t+1,Xa,t,P b

u,t

R(〈Ys,t+1|s ∈ S〉�〈Xa,t|a ∈ A〉) −
∑

u∈U

von
u P b

u,t + voff
u (1 − P b

u,t)

(11)
subject to
Constraints (3) and (5–8)

In the above bilevel problem, the leader problem selects the values v̄on
u and

v̄off
u of the reward potentials such that their total sum is minimized (i.e., objec-

tive function (9)1), and their total weighted sum for all ReLU activations is an
upper bound to all values of the reward function R (i.e., constraint (10) and the
follower problem). Given the values v̄on

u and v̄off
u of the reward potentials, the

follower selects the values of decision variables Ys,t, Ys,t+1, Xa,t and P b
u,t such

that the difference between the value of the reward function R and the sum of
reward potentials is maximized subject to constraints (3) and (5–8). Next, we
show the correctness of the optimal reward potentials problem as the bilevel pro-
gram described by the leader (i.e., objective function (9) and constraint (10))
and the follower (i.e., objective function (11) and constraints (3) and (5–8))
problems.
1 The objective function (9) is similar to the objective function of “All Syntactic

States” for potential heuristics used in classical planning [19].
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Theorem 1 (Correctness of The Optimal Reward Potentials
Problem). Given constraints (3) and (5–8) are feasible, the optimal reward
potentials problem finds the values v̄on

u and v̄off
u of reward potentials such that

the relation
∑

u∈U v̄on
u P b

u,t + v̄off
u (1 − P b

u,t) ≥ R(〈Ys,t+1|s ∈ S〉�〈Xa,t|a ∈ A〉)
holds for all values of P b

u,t, Ys,t+1 and Xa,t at any time step t.

Proof (by Contradiction). Let v̄on
u and v̄off

u denote the values of reward poten-
tials selected by the leader problem that violate the relation

∑
u∈U v̄on

u P b
u,t +

v̄off
u (1−P b

u,t) ≥ R(〈Ys,t+1|s ∈ S〉�〈Xa,t|a ∈ A〉) for some values Ȳs,t+1, X̄a,t and
P̄ b

u,t, implying R(〈Ȳs,t+1|s ∈ S〉�〈X̄a,t|a ∈ A〉)−∑
u∈U v̄on

u P̄ b
u,t+v̄off

u (1−P̄ b
u,t) >

0. However, the feasibility of constraint (10) implies that the value of the objec-
tive function (11) must be non-positive (i.e., the follower problem is not solved
to optimality), which yields the desired contradiction.

Note that we omit the case when constraints (3) and (5–8) are infeasible
because it implies the infeasibility of the learned planning problem Π̃. Next,
we describe a finite-time constraint generation algorithm for computing reward
potentials.

3.2 Constraint Generation for Computing Reward Potentials

The optimal reward potentials problem can be solved efficiently through the
following constraint generation framework that decomposes the problem into a
master problem and a subproblem.2 The master problem finds the values v̄on

u

and v̄off
u of ReLU potential variables. The subproblem finds the values P̄ b

u,t of
ReLU variables that violate constraint (10) the most for given values v̄on

u and
v̄off

u , and also finds the maximum value of reward function R for given P̄ b
u,t

which is denoted as R∗(〈P̄ b
u,t|u ∈ U〉). Intuitively, the master problem selects

the values v̄on
u and v̄off

u of ReLU potentials that are checked by the subproblem
for the validity of the relation

∑
u∈U v̄on

u P b
u,t + v̄off

u (1 − P b
u,t) ≥ R(〈Ys,t+1|s ∈

S〉�〈Xa,t|a ∈ A〉) for all feasible values of P b
u,t, Ys,t+1 and Xa,t at any time

step t. If a violation is found, a linear constraint corresponding to a given P̄ b
u,t

and R∗(〈P̄ b
u,t|u ∈ U〉) is added back to the master problem and the procedure is

repeated until no violation is found by the subproblem.

Subproblem S: For a complete value assignment v̄on
u and v̄off

u to ReLU poten-
tial variables, the subproblem optimizes the violation (i.e., objective function
(11)) with respect to constraints (3) and (5–8) as follows.
2 As noted by our reviewers, our constraint generation framework is related to

Counterexample-guided Abstraction Refinement (CEGAR) [3]. The clear differences
between the typical use of CEGAR and our work are: (i) problem formalizations (i.e.,
bilevel programming versus iterative model-checking) and (ii) purposes (i.e., obtain-
ing valid bounds on planning reward function R versus verification of an abstract
model). Naturally, what constitutes a violation is also different (i.e., error on reward
estimation versus a spurious counterexample).
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max
Ys,t,Ys,t+1,Xa,t,P b

u,t

R(〈Ys,t+1|s ∈ S〉�〈Xa,t|a ∈ A〉) −
∑

u∈U

v̄on
u P b

u,t + v̄off
u (1 − P b

u,t)

(12)
subject to
Constraints (3) and (5–8)

We denote the optimal values of ReLU variables P b
u,t, found by solving the

subproblem as P̄ b
u,t, and the value of the reward function R found by solving the

subproblem as R∗(〈P̄ b
u,t|u ∈ U〉). Further, we refer to subproblem as S.

Master Problem M: Given the set of complete value assignments K to ReLU
variables with values P̄ b,k

u,t and optimal objective values R∗(〈P̄ b,k
u,t |u ∈ U〉) for all

k ∈ K, the master problem optimizes the regularized3 sum of reward potentials
(i.e., regularized objective function (9)) with respect to the modified version of
constraint (10) as follows.

min
von
u ,voff

u

∑

u∈U

von
u + voff

u + λ
∑

u∈U

(von
u )2 + (voff

u )2 (13)

subject to
∑

u∈U

von
u P̄ b,k

u,t + voff
u (1 − P̄ b,k

u,t ) ≥ R∗(〈P̄ b,k
u,t |u ∈ U〉) ∀k ∈ K (14)

We denote the optimal values of ReLU potential variables von
u and voff

u ,
found by solving the master problem as v̄on

u and v̄off
u , respectively. Further, we

refer to master problem as M.

Reward Potentials Algorithm. Given the definitions of the master problem
M and the subproblem S, the constraint generation algorithm for computing an
optimal reward potential is outlined as follows.

Algorithm 1. Reward Potentials Algorithm
1: k ← 1, violation ← ∞, M ← objective function (13)
2: while violation > 0 do
3: v̄on

u , v̄off
u ← M

4: P̄ b,k
u,t , Ȳs,t+1, X̄a,t, R

∗(〈P̄ b,k
u,t |u ∈ U〉) ← S(v̄on

u , v̄off
u )

5: violation = R(〈Ȳs,t+1|s ∈ S〉�〈X̄a,t|a ∈ A〉) − ∑
u∈U v̄on

u P̄ b,k
u,t + v̄off

u (1 − P̄ b,k
u,t )

6: M ← M ∪ ∑
u∈U von

u P̄ b,k
u,t + voff

u (1 − P̄ b,k
u,t ) ≥ R∗(〈P̄ b,k

u,t |u ∈ U〉) (i.e., update
constraint (14))

7: k ← k + 1

3 The squared terms penalize arbitrarily large values of potentials to avoid numerical
issues. A similar numerical issue has been found in the computation of potential
heuristics for cost-optimal classical planning problems with dead-ends [19].
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Given constraints (3) and (5–8) are feasible, Algorithm 1 iteratively computes
reward potentials von

u and voff
u (i.e., line 3), and first checks if there exists an

activation pattern, that is a complete value assignment P̄ b,k
u,t to ReLU variables,

that violates constraint (10) (i.e., lines 4 and 5), and then returns the optimal
reward value R∗(〈P̄ b,k

u,t |u ∈ U〉) for the violating activation pattern. Given the
optimal reward value R∗(〈P̄ b,k

u,t |u ∈ U〉) for the violating activation pattern, con-
straint (14) is updated (i.e., lines 6–7). Since there are finite number of activation
patterns and solving S gives the maximum value of R∗(〈P̄ b,k

u,t |u ∈ U〉) for each
pattern k ∈ {1, . . . , 2|U |}, the Reward Potentials Algorithm 1 terminates in at
most k ≤ 2|U | iterations with an optimal reward potential for the learned NN.

Increasing the Granularity of the Reward Potentials Algorithm. The
feature space of Algorithm 1 can be enhanced to include information on each
ReLUs input and/or output. Instead of computing reward potentials for only
the activation v̄on

u and deactivation v̄off
u of ReLU u ∈ U , we (i) introduce an

interval parameter N to split the output range of each ReLU u into N equal size
intervals, (ii) introduce auxiliary Boolean decision variables P ′b

i,u,t to represent
the activation interval of ReLU u such that P ′b

i,u,t = 1 if and only if the output
of ReLU u is within interval i ∈ {1, . . . , N}, and P ′b

i,u,t = 0 otherwise, and
(iii) compute reward potentials for each activation interval v̄on

u,1, . . . , v̄
on
u,N and

deactivation v̄off
u of ReLU u ∈ U .

3.3 Strengthening HD-MILP-Plan

Given optimal reward potentials v̄on
u,1, . . . , v̄

on
u,N and v̄off

u , the MILP compilation
of HD-MILP-Plan is strengthened through the addition of following constraints:

∑

u∈U

N∑

i=1

v̄on
u,iP

′b
i,u,t + v̄off

u (1 − xt
u) ≥ R(〈Ys,t+1|s ∈ S〉�〈Xa,t|a ∈ A〉) (15)

N∑

i=1

P ′b
i,u,t = P b

u,t (16)

Nu
(i − 1)

N
P ′b

i,u,t ≤ Pu,t ≤ Nu − (Nu − Nu
i

N
)P ′b

i,u,t ∀i ∈ {1, . . . , N}, u ∈ U

(17)

for all time steps t ∈ {1, . . . , H} where Nu denotes the upperbound obtained from
performing forward reachability on the output of each ReLU u ∈ U in the learned
NN. Briefly, constraint (15) provides the upperbound on the reward function R
as a function of ReLU activation intervals and deactivations. Constraint (16)
ensures that (i) at most one auxiliary variable P ′b

i,u,t is selected, and (ii) at
least one auxiliary variable P ′b

i,u,t is selected if and only if ReLU u is activated.
Constraint (17) ensures that the output of each ReLU is within its selected
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activation interval. Next, we present our experimental results to demonstrate
the efficiency and the utility of computing reward potential and strengthening
HD-MILP-Plan.

4 Experimental Results

In this section, we present computational results on (i) the convergence of Algo-
rithm 1, and (ii) the overall strengthening of HD-MILP-Plan with the addition
of constraints (15–17) for the task of planning over long horizons. First, we
present results on the overall efficiency of Algorithm 1 and the strengthening
of HD-MILP-Plan over multiple learned planning instances. Then, we focus on
the most computationally expensive domain identified by our experiments to
further investigate the convergence behaviour of Algorithm 1 and the overall
strengthening of HD-MILP-Plan as a function of time.

4.1 Experimental Setup

The experiments were run on a MacBookPro with 2.8 GHz Intel Core i7 16 GB
memory. All instances and the respective learned neural networks from the HD-
MILP-Plan paper [18], namely Navigation, Reservoir Control and HVAC [18],
were selected.4 Both domain instance sizes and their respective learned NN sizes
are detailed in Table 1 where columns from left to right denote the name of
problem instances, the structures of the learned NNs where each number denotes
the width of a layer and the values of the planning horizon H, respectively. The
range bounds on action variables for Navigation domains were constrained to
[−0.1, 0.1]. CPLEX 12.9.0 [8] solver was used to optimize both Algorithm 1,
and HD-MILP-PLan, with 6000 s of total time limit per domain instance. In
our experiments, we show results for the base model (i.e., objective (1) and
constraints (2–8)) and the strengthened model with the addition of constraints
(15–17) for the values of interval parameter N = 2, 3.5 Finally in the master
problem, we have chosen the regularizer constant λ in the objective function
(9) to be 1√

M
where M is the large constant used in the big-M constraints of

HD-MILP-Plan (i.e., constraints (5–6)).

4.2 Overall Results

In this section, we present the experimental results on (i) the computation of the
optimal reward potentials using Algorithm 1, (ii) and the performance of HD-
MILP-Plan with the addition of constraints (15–17) over multiple learned plan-
ning instances over long horizons. Table 2 summarizes the computational results
and highlights the best performing HD-MILP-Plan settings for each learned
planning instance.
4 https://github.com/saybuser/HD-MILP-Plan.
5 The preliminary experimental results for interval parameter N = 1 have not shown

significant improvements over the base encoding of HD-MILP-Plan.

https://github.com/saybuser/HD-MILP-Plan
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Table 1. Domain and learned NN descriptions where columns from left to right denote
the name of problem instances, the structures of NNs used to learn each transition
model T̃ where each number denotes the width of a layer, and the values of the planning
horizon H, respectively.

Domain instance Network structure Horizon

Navigation (8-by-8 maze) 4:32:32:2 100

Navigation (10-by-10 maze) 4:32:32:2 100

Reservoir control (3 reservoirs) 6:32:3 500

Reservoir control (4 reservoirs) 8:32:4 500

HVAC (3 rooms) 6:32:3 100

HVAC (6 rooms) 12:32:6 100

Table 2. Summary of experimental results on the computationally efficiency of Algo-
rithm 1 and HD-MILP-Plan with the addition of constraint (15–17) over multiple
learned planning instances with long horizons.

Domain setting Algorithm1 Cumul. Primal Dual Open Closed

Nav,8,100,Base - 6000 - −261.4408 16536 27622

Nav,8,100,N=2 345 6000 - −267.1878 6268 15214

Nav,8,100,N=3 1150 6000 - −267.056 6189 12225

Nav,10,100,Base - 6000 - −340.5974 17968 35176

Nav,10,100,N=2 800 6000 - −340.6856 14435 27651

Nav,10,100,N=3 1700 6000 - −339.8124 2593 7406

HVAC,3,100,Base - 260.21 Opt. found Opt. proved 0 289529

HVAC,3,100,N=2 7 88.21 Opt. found Opt. proved 0 2501

HVAC,3,100,N=3 9 194.44 Opt. found Opt. proved 0 10891

HVAC,6,100,Base - 6000 −1214369.086 −1213152.304 618687 648207

HVAC,6,100,N=2 8 6000 −1214365.427 −1213199.787 554158 567412

HVAC,6,100,N=3 10 6000 −1214364.704 −1213025.189 1011348 1021637

Res,3,500,Base - 33.01 Opt. found Opt. proved 0 1

Res,3,500,N=2 1 99.81 Opt. found Opt. proved 0 714

Res,3,500,N=3 2 90.27 Opt. found Opt. proved 0 674

Res,4,500,Base - 300.71 Opt. found Opt. proved 0 1236

Res,4,500,N=2 7 109.66 Opt. found Opt. proved 0 1924

Res,4,500,N=3 6 232.19 Opt. found Opt. proved 0 1294

The first column of Table 2 identifies the domain setting of each row. The Z
column denotes the runtime of Algorithm 1 in seconds. The third column (i.e.,
Cumul.) denotes the cumulative runtime of Algorithm1 and HD-MILP-Plan
in seconds. The remaining columns provide information on the performance of
HD-MILP-Plan. Specifically, the fourth column (i.e., Primal) denotes the value
of the incumbent plan found by HD-MILP-Plan, the fifth column (i.e., Dual)
denotes the value of the duality bound found by HD-MILP-Plan, and the sixth
and seventh columns (i.e., Open and Closed) denote the number of open and
closed nodes in the B&B tree respectively. The bolded values indicate the best
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performing HD-MILP-Plan settings for each learned planning instance where the
performance of each setting is evaluated first based on the runtime performance
(i.e., Cumul. column), followed by the quality of incumbent plan (i.e., Primal
column) and duality bound (i.e., Dual column) obtained by HD-MILP-Plan.

In total of five out of six instances, we observe that strengthened HD-MILP-
Plan with interval parameter N = 2 performed the best. The pairwise compari-
son of the base HD-MILP-Plan and strengthened HD-MILP-Plan with interval
parameter N = 3 shows that in almost all instances, the strengthened model
performed better in comparison to the base model. The only instance in which
the base model significantly outperformed the other two was the Reservoir Con-
trol domain with three reservoirs where the B&B solver was able to find an
optimal plan in the root node. Overall, we found that especially in the instances
where the optimality was hard to prove within the runtime limit of 6000 s (i.e.,
all Navigation instances and HVAC domain with 6 rooms), strengthened HD-
MILP-Plan explored significantly less number of nodes in general while obtain-
ing either higher quality incumbent plans or lower dual bounds. We observe
that Algorithm 1 terminated with optimal reward potentials in less than 10 s
in both Reservoir Control and HVAC domains, and took as much as 1700 s in
Navigation domain – highlighting the effect of NN size and complexity (i.e.,
detailed in Table 1) on the runtime of Algorithm 1. As a result, next we focus
on the most computationally expensive domain identified by our experiments,
namely Navigation, to get a better understanding on the convergence behaviour
of Algorithm 1 and the overall efficiency of HD-MILP-Plan as a function of time.

4.3 Detailed Convergence Results on Navigation Domain

In this section, we inspect the convergence of Algorithm 1 in the Navigation
domain for computing an optimal reward potential for the learned NNs.

Figure 2 visualizes the violation of constraint (10) as a function of time over
the computation of optimal reward potentials using the Reward Potentials Algo-
rithm 1 for the learned NNs of both Navigation 8-by-8 (i.e., top) and Navigation
10-by-10 (i.e., bottom) planning instances. In both, we observe that the viola-
tion of constraint (10) decreases exponentially as a function of time, showcasing
a long-tail runtime behaviour and terminates with optimal reward potentials.

4.4 Detailed Strengthening Results on Navigation Domain

Next, we inspect the overall strengthening of HD-MILP-Plan with respect to
its underlying linear relaxation and search efficiency as a result of constraints
(15–17), for the task of planning over long horizons in the Navigation domain.

Figures 3 and 4 visualize the overall effect of incorporating constraints (15–
17) into HD-MILP-Plan as a function of time for the Navigation domain with
(a) 8-by-8 and (b) 10-by-10 maze sizes. In both Figs. 3 and 4, linear relax-
ation (i.e. top), number of closed nodes (i.e., middle), and number open nodes
(i.e., bottom), are displayed as a function of time. The inspection of both Figs. 3
and 4 show that once the reward potentials are computed, the addition of con-
straints (15–17) allows HD-MILP-Plan to obtain a tighter bound by exploring
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Fig. 2. Convergence of Algorithm 1 as a function of time for the learned NNs of both
Navigation 8-by-8 (i.e., top) and Navigation 10-by-10 (i.e., bottom) planning instances.
The violation of constraint (10) decreases exponentially as a function of time, show-
casing a long-tail runtime behaviour and terminates with optimal reward potentials.

Fig. 3. Linear relaxation and search efficiency comparisons in Navigation domain with
an 8-by-8 maze between the base and the strengthened HD-MILP-Plan using Algo-
rithm 1 with interval parameter N = 2, 3. Overall, we observe that HD-MILP-Plan
with constraints (15–17) outperforms the base HD-MILP-Plan by 1700 and 3300 s
with interval parameter N = 2, 3, respectively.
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significantly less number of nodes. In the 8-by-8 maze instance, we observe that
HD-MILP-Plan with constraints (15–17) outperforms the base HD-MILP-Plan
by 1700 and 3300 s with interval parameter N = 2, 3, respectively. In the 10-
by-10 maze instance, we observe that HD-MILP-Plan with constraints (15–17)
obtains a tighter bound compared to the base HD-MILP-Plan by 3750 s and
almost reaches the same bound by the time limit (i.e., 6000 s) with interval
parameter N = 2, 3, respectively.

The inspection of the top subfigures in Figs. 3 and 4 shows that increas-
ing the value of the interval parameter N increases the computation time of
Algorithm 1, but can also increase the search efficiency of the underlying B&B
solver through increasing its exploration and pruning capabilities, as demon-
strated by the middle and bottom subfigures in Figs. 3 and 4. Overall from both
instances, we conclude that HD-MILP-Plan with constraints (15–17) obtains a
linear relaxation that is at least as good as the base HD-MILP-Plan by exploring
significantly less number of nodes in the B&B search tree.

5 Related Work

In this paper, we have focused on the important problem of improving the effi-
ciency of B&B solvers for optimal planning with learned NN transition models
in continuous action and state spaces. Parallel to this work, planning and deci-
sion making in discrete action and state spaces [12,16,17], verification of learned

Fig. 4. Linear relaxation and search efficiency comparisons in Navigation domain with
an 10-by-10 maze between the base and the strengthened HD-MILP-Plan using Algo-
rithm 1 with interval parameter N = 2, 3. Overall, we observe that HD-MILP-Plan
with constraints (15–17) obtains a tighter bound compared to the base HD-MILP-
Plan by 3750 s and reaches almost the same bound by the time limit (i.e., 6000 s) with
interval parameter N = 2, 3, respectively.
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NNs [6,7,9,14], robustness evaluation of learned NNs [20] and defenses to adver-
sarial attacks for learned NNs [10] have been studied with the focus of solving
very similar decision making problems. For example, the verification problem
solved by Reluplex [9]6 is very similar to the planning problem solved by HD-
MILP-Plan [18] without the objective function and horizon H = 1. Interestingly,
the verification problem can also be modeled as an optimization problem [2] and
potentially benefit from the findings presented in this paper. For future work, we
plan to explore how our findings in this work translate to solving other important
tasks for learned neural networks.

6 Conclusion

In this paper, we have focused on the problem of improving the linear relaxation
and the search efficiency of MILP models for decision making with learned NNs.
In order to tackle this problem, we used bilevel programming to correctly model
the optimal reward potentials problem. We then introduced a novel finite-time
constraint generation algorithm for computing the potential contribution of each
hidden unit to the reward function of the planning problem. Given the precom-
puted values of the reward potentials, we have introduced constraints to tighten
the bound on the reward function of the planning problem. Experimentally, we
have shown that our constraint generation algorithm efficiently computes reward
potentials for learned NNs, and the overhead computation is justified by the over-
all strengthening of the underlying MILP model as demonstrated on the task
of planning over long horizons. With this paper, we have shown the potential
of bridging the gap between two seemingly distant literatures; the research on
planning heuristics and decision making with learned NN models in continuous
action and state spaces.
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Abstract. We propose a new framework for decision making under
uncertainty to overcome the main drawbacks of current technology: mod-
eling complexity, scenario generation, and scaling limitations. We con-
sider three NP-hard optimization problems: the Stochastic Knapsack
Problem (SKP), the Stochastic Shortest Path Problem (SSPP), and the
Resource Constrained Project Scheduling Problem (RCPSP) with uncer-
tain job durations, all with recourse. We illustrate how an integration of
constraint optimization and machine learning technology can overcome
the main practical shortcomings of the current state of the art.

1 Introduction

Optimization relies on data. To solve a knapsack problem we need to know the
profits and weights of the items, as well as the knapsack’s capacity. To solve a
shortest path or travelling salesperson problem, we need to know the lengths of
the links in the network. To solve a revenue optimization problem, we need to
know demand and how prices affect demand. In practice, we often lack perfect
knowledge of the situation we ultimately needed to plan for. Profits, transition
times, price sensitivity, and demands frequently have to be estimated.

One simple and still widely used approach is to optimize for point estimates
of the data: We estimate demand, profits, transition times, etc, and optimize
for the resulting optimization problem. The problem with using only one set of
estimates, even if they represented the maximum likelihood scenario, is that the
probability of exactly this scenario taking place is close to zero, and performance
of the solution that is optimal for this one scenario may decline steeply across
a range of scenarios that, together, would have a reasonable probability mass.
In other words, a solution that is sub-optimal for all scenarios but works with
good performance for a large number of potential futures will lead to much
better expected performance than the solution that is provably optimal for the
maximum likelihood scenario yet abysmal otherwise.
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1.1 Stochastic Optimization

The brittleness of solutions obtained by optimizing for one, point-estimated sce-
nario only is well-studied in the field of stochastic optimization (SO). The objec-
tive of SO is to provide a solution that optimizes the expected returns over all
possible futures.

This led to the idea of two-stage stochastic optimization: In the first stage,
we need to take certain decisions based on uncertain data. After taking these
decisions, the uncertainties are revealed and we can take the remaining decisions
based on certain data. This allows us first to make up for certain inconsistencies
our initial decisions might have created (note that the constraints are also based
on estimates) and thus exercise certain recourse actions to regain feasibility, and
second to optimize the second-stage decisions that can wait to be taken until we
know the real data. An overview of two-stage stochastic integer programming
problems can be found in [4], and [21] present a method to solve two-stage
problems using the special form of these problems.

One crucial step in stochastic optimization is the generation of a representa-
tive set of potential futures (scenarios). Many methods exist to generate scenar-
ios, and [13] points out that quality scenario generation is critical to the success
using SO. [12] recommend that a number of different data sources should be
used for scenario generation.

Obviously, solving SO problems to optimality gets harder the more scenarios
are considered. Sample average approximation [14] has been developed to gen-
erate a small random sample of scenarios and approximate the expected value
function. This technique has been be applied to a variety of problems (see, e.g.,
[16,20,22]) and can help the method scale a bit better. However, the fundamen-
tal problem remains that SO relies on a representative set of scenarios to be
considered, and that it must make optimal first and second stage decisions for
every scenario under consideration.

1.2 Multi-stage Stochastic Optimization

One practical aspect that we also need to take into account is that the execution
of a planned solution is frequently disrupted by outside events: equipment or crew
assumed to be available may suddenly go out of service, requiring adjustment
of a plan during operations. Consequently, the plan may need to be adjusted
multiple times.

This leads to the idea of multi-stage stochastic optimization. In multi-stage
SO, uncertainty is revealed in multiple consecutive steps, and more decisions need
to be taken at each stage. In these problems, random variables in later stages
depend on the decisions taken in the earlier stages. Models and solutions to these
problems are therefore structured in the form of a tree [7], with independent
decisions at the root node, and dependencies between decisions modeled with
parent-child relationships in the tree.

Due to their richer modeling power, these types of SO models are especially
relevant for real-world decision making, but unfortunately explode in complexity
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very quickly, even when employing advanced decomposition techniques like pre-
sented by [3] who extend the work of [21]. Furthermore, the problem of scenario
generation is even more daunting in this more realistic setting, as conditional
scenarios need to be generated, and often the data needed for this purpose may
not be available. An overview of scenario generation methods for multi-stage
stochastic programs is provided in [7].

1.3 Simulation-Based Optimization

Modeling dynamic recourse and managing a meaningful number of scenarios in
stochastic optimization is often cumbersome. An alternative is to employ a sim-
ulator that can evaluate a given plan on a number of scenarios, whereby the
algorithm to generate recourse actions is built into the simulation. The recourse
policy employed by a real-world organization may involve solving nested opti-
mization problems on the go, as SO assumes, but oftentimes the real-world
operational constraints may not allow for a full-fledged optimization, for exam-
ple because the data needed is not readily available, or because re-optimization
would be too time-consuming. A simulator can easily reflect the real recourse
actions that would be taken, which are usually locally optimal only, or maybe
just best-effort heuristics.

Simulation-based optimization is thus an alternative to stochastic optimiza-
tion [1,9]. In this setting, a simulation is constructed to provide a stochastic
evaluation of a provided solution. The search for good solutions can then be
conducted by employing a meta-heuristic procedure. For example, [10] employs
tabu search for this purpose.

An alternative to using a general local search heuristic is to apply bandit
theory and to conduct a search based on Bayesian optimization [19]. In this
method, the search space is traversed in a statistically principled way which
balances exploitation and exploration by considering new solutions for simulation
next which combine high expected performance with high uncertainty of this
performance.

No matter which search method is employed, to compute an objective func-
tion value for an instance, we need to expose it to certain futures. In SO these
were called scenarios, in simulation-based optimization the “scenario genera-
tion” is hidden in the simulator. However, both methods rely on an adequate
representation of potential futures of the world as it currently presents itself.

2 Technology Gaps

In practice, many organizations do not take the uncertainty in their forecasts
into account when devising their operational plans. In fact, this observation
even holds for those organizations that would stand to benefit the most, because
events disrupting their plans frequently ruin all operational success. Airlines
are one prototypical example. Over decades, the airline industry has spent bil-
lions of dollars on optimization technology to improve their operational planning
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(e.g., in crew planning [17]). There is certainly no lack of affinity to optimization
technology, nor a lack of understanding that their current optimized plans are
very brittle. The question is, why then is decision-making under uncertainty not
employed?

We believe there are three main factors that prevent current decision making
under uncertainty technology from being applied in practice:

– Complexity of modeling the base problem
– Inability to generate meaningful future scenarios for the current situation
– Computational limitations preventing the scale-up to real-world numbers of

primary and recourse decisions

Take the example of an airline again. Flights may be delayed due to weather
or traffic. Gates may be occupied and have to be changed. Crew may be out of
service because of sickness or because they are delayed and past their maximum
allowed service time. Equipment may not be available because of technical issues
or because other issues in the network prevented the plane from being at the
airport where it was planned to be.

Modeling the operation of an airline is extremely complex to begin with,
which is why airlines break down the original problem into network design,
revenue management, fleet assignment, crew pairing, tail assignment, and crew
scheduling problems. There are literally millions of decision variables to consider.
Secondly, there are frequently no models available for assessing the probabili-
ties of disruptions with any meaningful accuracy. This is especially true for the
joint distributions of disruptions which are frequently correlated. And finally,
the number of recourse decisions taken during operation is staggering: Airlines
literally run their recovery solvers every minute to adjust their plans to ever
new, thankfully usually minor, disruptions.

Stochastic optimization is not applicable, because computation times are
prohibitively long, and the number of recourse decisions far exceeds efficient
modeling capabilities. However, simulation-based optimization cannot handle
the millions of decision variables or the complex constraints that govern whether
solutions are even feasible.

This analysis is the starting point for our research. In the following, we pro-
pose a framework for decision making under uncertainty that overcomes the
limitations of existing technology. In a nutshell, we propose a paradigm shift
away from trying to anticipate the future and towards discovering structures
in the solutions that correlate with historically good performance. In doing so,
we trade dual bounds (i.e., a guarantee of the relative quality of the solution
provided by SO) for scalability and easier modeling.

3 Learning from Counterfactuals

A key limitation of stochastic optimization is the need to model every decision.
Not only does this put an enormous burden on the modeler and the optimization,
it often also falsely assumes that we were able to optimize recourse decisions
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during operation. Another problem that both simulation-based optimization and
stochastic optimization share is that they need to generate meaningful scenarios
how the execution of a solution may unfold in the future. Finally, both methods
scale to a hundreds, maybe a few thousand decision variables, before computation
times become impractically long.

Our proposal is to combine both what disruptions are likely, as well as how
well the initial solution is adjusted during execution, into one data-driven
forecast.

Consider a model that, given two solutions to an optimization problem can
provide a classification as to which of the two solutions will fare better when they
are executed. Consider solving this problem in two stages. In the first stage, we
solve the problem as if there were no uncertainty using the expected costs in the
objective function, and generate multiple near-optimal solutions. The goal of the
second stage is to determine which of the near-optimal solutions will likely lead
to better results when executed. We train a model that compares these solutions
on a pairwise basis and choose the solution that wins the most times against the
other solutions. This general method alleviates many of the problems existing
approaches encounter:

– The first-stage problem is as easy to model as the optimization problem with-
out uncertainties.

– There is no need to generate future scenarios for the current data at hand.
– There is no complexity blow-up, no matter how many recourse actions are

needed.

All of the complexity is off-loaded into the second stage model. The crucial
question is, of course: How can we obtain a model that, given two solutions, can
predict which one will fare better in operations?

Thesis: We can learn such a model from historical data.

We argue that all that is needed to learn such a model is to keep track
of our estimates over time, and what eventually happened. Consider, e.g., the
Stochastic Shortest Path Problem (SSPP), a problem that [5] argue is particu-
larly difficult when there are no assumptions about the uncertain travel times.
We can track how the arc transit time estimates for the entire network have
evolved over time, and what they ended up being. Or, for the Stochastic Knap-
sack Problem (SKP), we can examine what our weight and profit estimates were
before each decision for historical solutions and what they turned out to be in
reality. That is to say: Historical data often enables us to compare multiple his-
torical solutions, even though only one of them was actually executed in reality,
whereas all others are essentially counterfactuals.

Please note a subtle but very important difference; the historical data is
enough to compare two potential solutions for the optimization problem as it
presented itself in the past. It would, however, not enable us to simulate two
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solutions for a new instance of our underlying optimization problem. Take the
SSPP as an example. We may have a historic example where we needed to go
from some node s to node t. We know how our estimated arc transition times
evolved over time and the resulting values on all arcs in the network. With this,
we can compare two paths P1 and P2 that connect s and t.

Now imagine we currently need a solution to go from node s to node t again.
Our initial estimates are of course completely different from those in the historic
example. Consequently, we cannot just simulate two paths Q1 and Q2 in the
old scenario and assume that their relative performance would remain the same
under the current conditions. In fact, if this were the case, we should forget our
estimates altogether and just always go from s to t using the exact same route
all the time.

However, if we could capture estimate-dependent characteristics, or features,
of pairs of paths P1 and P2, and associate these characteristics with the relative
performance of these paths, then, by repeating this exercise many times, we just
might be able to learn to tell which of any given pairs of paths will probably
execute better – albeit with no guarantees.

Through this framework, we have now decomposed the problem of making
primary decisions based on uncertain forecasts and assumptions regarding esti-
mate distributions and recourse policies into two tasks: We first need to model
the primary optimization problem. Second, we need to use historical data to
build a supervised set of examples of pairs of solutions, recording which one
fared, or would have fared, better. Crucially, we need to devise a set of features
to characterize the solutions in the context of the problem instance they were
generated for.

We formalize our framework as follows. We are given a deterministic opti-
mization problem P with decision variables x. Let f(x) be the objective function
of the deterministic problem, and f ′(x, ω) be the objective function when the
decisions are evaluated under scenario ω.

1. Training set generation: We first generate n solutions xi1, . . . ,xin to the
problem instance i in a set of training instances I, where all uncertain parameters
take their expected value. The choice of such solutions is up to the user of this
framework, but we recommend high quality solutions with some diversity. We
associate a label yij =

∑
ω∈Ωi

f ′(xij , ω)/|Ωi| with each solution of each instance
for a set of counterfactual scenarios Ωi that are derived from the true scenario
that unfolded for the historic problem instance i. Finally, we compute problem
dependent feature vectors uij ∈ R

f describing each solution j of instance i.
2. Learning a classifier: Next, we train a binary classifier M that, given

two solutions j, k to a problem instance i, forecasts which of the two solutions will
likely perform better when executed. The training input for this cost-sensitive
learning task are triples (u′

ijk, yij , yik), where u′
ijk ∈ R

3f consists of a concate-
nation of feature vectors uij , uik, and uij − uik. We use the technique from [18]
for this purpose.

3. Deployment: Given a problem instance i, we generate n solutions
using the deterministic optimization model with expected values for uncertain
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parameters. We then compute the features u′
ijk for each pair of solutions j, k.

Then, we query the model M for all such pairs and choose the solution that
“wins” the most times.

In the following, we will exercise the above steps for three optimization prob-
lems: the SKP, the SSPP, and the Resource Constrained Project Scheduling
Problem (RCPSP), each with recourse. The objective of this study is to investi-
gate whether we can effectively learn which solution for a problem instance will
perform better.

4 Stochastic Knapsack

The SKP is the stochastic variant of the well-known optimization problem:
Given n ∈ N items {1, . . . , n} with profits p1, . . . , pn ∈ N, expected weights
w1, . . . , wn ∈ N, and a capacity C ∈ N, the objective is to find a subset of
items I ⊆ {1, . . . , n} such that

∑
i∈I′ w′

i ≤ C and P =
∑

i∈I′ pi is maximized,
where w′

1, . . . , w
′
n are the actual weights incurred, and I ′ is the set of items we

ultimately include in our knapsack.

4.1 Stochastic Environment

To complete the setup of our problem, we need to determine how the weights w′
i

are derived from the expected weights wi, and how I ′ derives from I during oper-
ations. This is precisely the task of determining the distributions of stochastic
data, and the incorporation of recourse policies that we aim to avoid estimating
and modeling when solving the stochastic variant of the underlying optimization
problem. However, for the sake of experimentation, we obviously need to fix the
stochastic environment.

We will assume that items have to be decided for inclusion or exclusion in
sequence 1 to n.1 That is, we first decide if we want to insert item 1 in the
knapsack. If not, we can directly move on to the next item. If yes, then we
add the actual weight w′

1 to our knapsack, the remaining capacity is reduced
accordingly, and the profit p1 is achieved. We consider all items in sequence.
At stage i, we sample w′

i from a Pareto distribution with mean wi (note: the
nature of this distribution is not known to the optimization approach). In our
variant of the problem, should the new item overload the knapsack, the item is
automatically not inserted and we proceed as if we had never decided to include
the item. However, if the item fits into the remaining capacity, we have to take
it, even if the actual weight of the item is much larger than we had anticipated.

In terms of recourse, whenever during the sequential consideration of items
our remaining capacity deviates from the anticipated capacity at that point in
the sequence by more than a given percentage threshold p, we are allowed to
reconsider our original plan and change the tail of our plan. However, if we
1 This is in contrast to some theoretical results on the SKP that assume we can decide
in what order we wish to consider the items [6]. We consider having this freedom
less realistic.
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include an item that was originally not planned to be included, we incur a profit
penalty b (late buy penalty). Similarly, we incur a penalty s for items we do not
include in our knapsack that we had originally committed to include (restocking
fee). Finally, we cannot change the original plan for the next r items (minimum
reaction time).

The recourse policy is to re-optimize the rest of the knapsack based on the
profits adjusted for penalties, the originally estimated weights, and the remaining
items and capacity. The selection of the next r items is fixed.

To support our introductory claim that existing technology is not feasible
even for such a simple practical setting, we invite the reader to try to model this
problem as an n-stage stochastic optimization problem or as a simulation-based
optimization problem with n variables and an uncertain side constraint.

4.2 Winner Forecasting

In stage 1 of our approach, we consider the original knapsack problem with the
given capacity, profits, and estimated weights. We solve the problem to optimal-
ity using dynamic programming and generate a desired number of solutions that
are either optimal or as close to optimal as possible.

In stage 2, we need to characterize each solution with respect to the given
problem instance. Before we list the features we introduce for this purpose, we
define a number of quantities we can compute for any sequences of numbers.

For monotonically increasing (or decreasing) sequences, we define the follow-
ing quantities (leading to 3q + 2 quantities for q quantiles considered):

– The mean, and the mean of the second moment.
– The median and the median of the second moment.
– For a desired number q of quantiles over the range of the sequence, the per-

centage of numbers in the sequence before each quantile is first reached,
depending on whether the sequence is increasing or decreasing (including
the last quantile).

– For a desired number q of quantiles, the value of the sequence at each quantile
of items in the sequence, and the corresponding values in the second moment
(excluding the last quantile).

For general sequences, we define the following 8 quantities:

– The mean and the mean of the second moment.
– The median and the median of the second moment.
– The minimum and maximum, and the corresponding values of the second

moment.

Now, to characterize a given solution to a knapsack instance, we consider the
following five monotone sequences, and the six general sequences thereafter:

M 1: For each item i in the sequence, the total profits achieved so far, as a
percentage of the maximum achievable profit (here and in the following
per the given solution).
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M 2: For each item i in the sequence, the remaining capacity as a percent of
the total capacity.

M 3: For each item i in the sequence, the linear programming upper bound
for the remaining items and the remaining capacity, as percentage of the
optimum profit.

M 4: For each item i in the sequence, the linear programming upper bound
for the remaining items and the total original capacity C, as percentage
of the optimum profit achievable.

M 5: For each item i in the sequence, we compute the number di of items
since the last item that was included in the solution. We aggregate and
normalize these numbers by setting Di =

∑
k≤i di/n and considering the

monotone sequence (Di)i.
G 1–3: For each item selected in the given solution, its profit (as percentage of

maximum profit), weight (as percentage of total capacity), and efficiency
(the ratio of profit over weight).

G 4–6: The same three values as above, but over the items not selected in the
solution.

We consider 5 quantiles, therefore the above yields 5(3 ∗ 5 + 2) + 6 ∗ 8 = 133
features. We add two more by also computing the total efficiency of the solution,
defined by the ratio of total profit divided by total capacity, and finally the
LP/IP gap as percentage of maximum achievable profit. In total, for each solution
we thus obtain 135 features. For a given pair of solutions, we concatenate the
features of each solution, as well as the difference of the features of the two
solutions. Our machine learning approach thus has access to 3 ∗ 135 = 405
features to decide which of the two solutions given is likely to perform better
than the other.

To complete the data-driven part of our approach, we choose binary cost-
sensitive classification to rank the solutions, in particular, the cost-sensitive hier-
archical clustering approach from [18]. We use this technique in all following test
cases.

4.3 Numerical Results

We generate knapsack instances with 1,000 items and (expected) weights drawn
between 1 and 100 uniformly at random. The capacity is set to 10% of the
total expected weights of all 1,000 items. Weakly correlated knapsack instances
are generated by choosing the profit of item i with weight wi in the interval
[wi −3, wi +3]. Strongly correlated instances are generated by setting the profits
to wi + 5. Furthermore, almost strongly correlated instances are generated by
choosing the profits in [wi + 4, wi + 6] uniformly at random.

We build a simulation environment where the weight of an item i is drawn
from a random variable following a Pareto distribution with mean wi and mini-
mum value 0.95wi. Note that the Pareto distribution is heavy-tailed: With the
given parameters, there is only about a 20% chance of seeing a value larger than
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the mean, but a 1.5% chance to see a value of at least 1.5 times the mean, and
about a 0.3% chance of encountering values of twice the mean or more.

We set the recourse threshold p = 5%, the restocking fee and late buying fee
s = b = 10, and the minimum reaction time r = 5. Whenever the remaining
capacity in the knapsack deviates by more than p = 5%, we solve a new knap-
sack problem (with adjusted profits to reflect the respective restocking and late
buying fees) to determine our recourse action for the remaining items beyond
the minimum reaction threshold.

Using this environment, we generate 100 instances of each knapsack type
(weakly, strongly, and almost strongly correlated). To build our test benchmarks,
we solve each knapsack to optimality using dynamic programming and choose
ten near-optimal solutions. We then run each of these solutions through our
simulation environment twenty times, so that each solution is exposed to the
exact same twenty simulations. We then record the average performance for each
near-optimal solution over the twenty simulations to grade them. In practice,
there would only be one reality the selected solution would be exposed to, of
course. We run each test solution through twenty potential futures to lower the
possibility that we are just lucky with the scenario we encountered.

The task for our data-driven solution selector is to pick a solution from the
set of ten that exhibits very good performance in the simulated environment. To
train this assessor, we generate training data as follows: For each knapsack type,
we generate 500 instances. For each instance, we generate twenty near-optimal
solutions. Moreover, for each of these instances, we generate one, and only one,
vector of weights for each item. Note that, in practice, we would equally have
access to our originally expected weights wi, and the actual weights w′

i.
Next, we need to counter-factually assess the performance of each solution.

To lower the variance in these labels, we proceed as follows: First, we build
twenty derived scenarios from each real scenario, by choosing weights w′′

i ∈
[w′

i − α,w′
i + α], where α = |wi−w′

i|
2 , uniformly at random. That is, we derive

scenarios from the historical examples without any assumptions regarding, or
knowledge of, any distributions. We merely consider the actually encountered
deviations from our original estimates and derive scenarios by varying these
deviations a little. Please note that these changes do not affect the direction of
the deviations: A weight that was under-estimated, remains under-estimated in
each derived scenario, and each weight that was over-estimated remains over-
estimated.
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Table 1. SKP results

Type Max Mean Min ML GC

Weakly correlated

500-100 10-10 10%-10% 15.29 10.67 5.79 9.10 32

500-100 5-5 10%-10% 14.30 9.93 5.47 8.95 22

500-100 10-10 20%-20% 9.75 6.69 3.82 5.77 32

100-100 10-10 10%-10% 15.29 10.67 5.79 9.39 26

500-100 5-10 10%-10% 15.29 10.67 5.79 9.38 26

Strongly correlated

500-100 10-10 10%-10% 15.56 10.84 6.03 8.88 41

500-100 5-5 10%-10% 14.46 10.03 5.54 8.81 27

500-100 10-10 20%-20% 11.73 8.18 4.58 6.50 47

100-100 10-10 10%-10% 15.56 10.84 6.03 9.31 32

500-100 5-10 10%-10% 15.56 10.84 6.03 8.83 42

Almost strongly correlated

500-100 10-10 10%-10% 15.63 11.12 5.86 9.42 32

500-100 5-5 10%-10% 14.21 10.03 5.44 8.93 24

500-100 10-10 20%-20% 11.82 8.31 4.43 7.31 26

100-100 10-10 10%-10% 15.63 11.12 5.86 9.68 27

500-100 5-10 10%-10% 15.63 11.12 5.86 9.59 29

Heterogeneous mix

500-100 10-10 10%-10% 17.28 11.34 5.31 9.32 34

500-100 5-5 10%-10% 15.73 10.35 4.83 8.83 27

500-100 10-10 20%-20% 11.97 7.86 3.85 6.53 33

100-100 10-10 10%-10% 17.28 11.34 5.31 10.0 22

500-100 5-10 10%-10% 17.28 11.34 5.31 9.51 30

Finally, we execute each of
our twenty near-optimal solu-
tions under each derived sce-
nario (including the recourse
actions we would have taken)
and label each with the average
performance observed. Note
that all that is needed to con-
duct this counterfactual assess-
ment of additional solutions is
the knowledge about our origi-
nal estimates and the real item
weights that were encountered.

Test results on all three
classes of knapsacks are shown
in Table 1. In the first column
we denote the parameters of
the experiment: The number of
training scenarios vs number
of test scenarios (usually 500-
100), late-buying and restock-
ing fees on train vs test (usually
10-10 or 5-5), and the knapsack
capacity on train vs test (usu-
ally 10% or 20% of the weight
of all items for both).

Next, we show the average of the worst of the ten solutions we generated for
each test instance, the expected performance, and the performance if we chose
the best of the ten solutions generated. Note that the latter is the maximum
gain we can hope to achieve by selecting among the ten solutions generated.
The numbers represent percentages above an imaginary best solution (since the
ten we generated may obviously not include the optimum under uncertainty),
which we set at three standard deviations below the average of the ten solutions,
and whose performance itself we measure as percent above the best omniscient
solution. In absolute terms, the numbers presented are thus percentages over
percentages over the true profits.

Finally, we show the performance of counterfactual selection (ML), as well
as the percent gap closed (GC) between the average performance and the best
performance that is achievable by selecting among those select ten solutions for
each instance.

Overall, we close between 22% and 47% of the gap between the average per-
formance and the best solution available to us. That means that our forecasting
models are certainly not optimal, but nevertheless effective at choosing solutions
which are expected to perform better than the average near-optimal solution.
This holds for varying knapsack types as well as different capacities and recourse
penalties.



Exploiting Counterfactuals for Scalable Stochastic Optimization 701

To assess how critical the amount of historical scenarios is, we lowered the
training set to only 100 scenarios. On all knapsack types, this leads to a reduction
in effectiveness, but the approach still works: We close 26%, 32% and 27% for
the three knapsack types using only 20% of scenarios.

Encouragingly, we see that counterfactual forecasting can also be reason-
ably effective when the historical scenarios used were gathered under a different
regime. For example, assume that, historically, the late-buy and restocking fees
were 5, but now they are 10. Please note that what should be done when oper-
ational parameters change is to re-run the historical scenarios under the new
penalties and to generate a new counterfactual training set this way. For exper-
imental purposes only, we did not do that here so we can assess how robust our
forecasting models are under varying parameters. Under [500-100 5–10 10%-10%]
we see that we achieve 26%, 42% and 29% gap closed for weakly, strongly, and
almost strongly correlated knapsacks, respectively.

Finally, we generated a benchmark which consists, in equal parts, of weakly,
strongly, and almost strongly correlated knapsack instances, both for training
and for testing. As the table shows, the counterfactuals-based predictive models
work for heterogeneous mixes of different knapsack types as well.

Overall, we conclude that, for the SKP, we can learn an effective, though sub-
optimal, data-driven model to predict which near-optimal solution has greater
chances of performing well in an uncertain future.

5 RCPSP with Uncertain Job Durations

The RCPSP with uncertain job durations involves the scheduling of a set of jobs
J given a set of resources R and a set of time periods T . Each job j consumes ujr

units of resource r in each time period the job is running. Each resource has a
maximum capacity kr that may be consumed in each time period. A precedence
graph P = J ×J specifies an order in which jobs are executed, i.e., for (i, j) ∈ P
job i must be completed before j can start. In the deterministic case, each job
j has a fixed duration dj . We consider a version of the problem where the job
duration is uncertain, and assume that, if a job takes longer than planned, it
continues to consume ujr resources in each additional time period. This version
of the problem corresponds closely with real-world RCPSPs, such as construction
or software projects in which delays are common, and resource consumption of
jobs continues even if they take longer than expected.

The (deterministic) RCPSP can be modeled with the following constraint
program [2], in which the start time of each job is given by Sj :

min max
j∈J

Sj + dj (1)

subject to Si + di ≤ Sj ∀(i, j) ∈ P (2)
cumulative(S,d,u.r, kr) ∀r ∈ R (3)
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5.1 Stochastic Environment

We sample the job durations d′
j from a Pareto distribution with the expected

value dj . The simulation starts at time period 0 and iterates through each time
period until the maximum time is reached or all jobs have been executed. For
some time period t′, all jobs ending in that period (t′ = Sj + d′

j) are ended and
the resources they are consuming freed. We then start jobs that have a start time
of the current time period, if their precedence constraints are satisfied and their
resource consumption requirements can be met. If job j with Sj = t′ cannot
start in t′, Sj ← Sj + 1, i.e., we delay its start by one time period.

If significant delays occur, it may be appropriate to do recourse planning and
find new start times for the remaining jobs based on the current forecast. The
recourse planning involves simply fixing the start times of jobs that are finished,
or running and updating the job durations with either the real duration for fin-
ished/running jobs or the current forecast for scheduled jobs. This deterministic
problem can then be solved by any RCPSP algorithm, based on the CP model
above.

We forecast job durations by assuming that, when a job i that must precede
j is finished (i.e., (i, j) ∈ P ), we know more about the duration of j than we did
before i finished. We construct a graph with the same nodes and arcs as in the
precedence graph, and assign the true duration d′

i to every arc (i, j). Let aij be
the shortest path between all pairs of jobs on the newly constructed graph with
Dijkstra’s algorithm. We then compute the forecast as fij := round(dj + (1 −
aij/maxk∈J{aik})(d′

j − dj)), such that fij is the forecast for job j when job i
is finished, assuming j is reachable from i in P . While simulating, when job i
finishes we check fij , and if it is closer to the true duration of j, we update our
expected duration.

5.2 Winner Forecasting

We propose the following groups of features to describe solutions to the RCPSP
with uncertain job durations.

1. The expected makespan of the solution divided by the maximum time.
2. Let Bij := Sj − Si for all (i, j) ∈ P be the buffer between jobs with prece-

dence relations. We compute the mean, median, standard deviation, skew,
25% quantile, and 75% quantile of the values in B.

3. Let BT
ij := Bij(Sj/|T |). We compute the mean and skew of BT .

4. We execute the solution with the expected durations and compute the per-
centage residual resource usage k̂tr for each resource at each time period,
and aggregate this into k̂t :=

∑
r∈R k̂tr/|R|. We compute the mean, standard

deviation, 25% quantile and 75% quantile over all values of k̂t.
5. Let m1 and m2 be the number of jobs directly affected (we do not examine

network effects here) due to insufficient available resources if a job j starts 1
or 2 time periods later than planned, respectively.
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Table 2. RCPSP results

Class Max Dur. Train Test Max Mean Min ML GC

j30 10 317 157 4.48 3.27 2.67 3.44 −28

50 275 138 3.84 3.08 2.59 3.01 15

100 260 135 3.70 3.05 2.63 3.02 7

j60 10 239 122 4.06 3.29 2.53 3.18 15

50 225 109 3.48 2.88 2.27 2.70 30

100 226 113 3.38 2.82 2.28 2.70 23

6. Let a delay chain be a path in the precedence graph which forms a sequence
of jobs that are separated with buffer less than the 25% quantile of B. We
compute the maximum length delay chain and divide it by the total number
of jobs.

5.3 Numerical Results

We test our approach on the well-known instances from the PSPLIB [15]. We
use the j30 and j60 categories, which have 30 and 60 jobs, respectively, and
split each into 320 training instances and 160 testing instances. The maximum
job duration in these categories is 10 time units, so we add two more instance
categories containing randomly generated job durations with a maximum of 50
and 100 time units, respectively.

We solve the constraint programming model in (1) through (3) with Google
OR Tools CP-SAT solver version 7.0 [11]. We first generate the optimal expected
values solution. We note that, in the RCPSP, shifting the buffer of a few jobs
results in a “new” solution, but this is not desirable for our approach, as the
realized performance will be nearly the same. Therefore, to generate k − 1 solu-
tions in addition to the optimal solution, we begin an iterative process. After a
solution S′ is found, we append the following constraints to require that a given
percentage of the jobs have a different order than the previously found solution:

oij = 1 ⇔ Si ◦ Sj ∀S′
i � S′

j , (◦, �) ∈ {(>,<), (<,>), (
=,=)} (4)
∑

i,j∈J,i<j

oij ≥ h (5)

where the decision variable oij ∈ {0, 1} for i, j ∈ J, i < j is 1 iff jobs i and j
have a different order than in the previous solution. We require the number of
job order changes in (5) to be greater than a threshold h, which we set to 5% of
the unique job pairs (|J ||J − 1|).

As for the SKP and SSPP, we test our approach on 20 simulations per
instance, simulating training and testing instances the same way as the pre-
vious two problems, with training simulations being derived from only one real
simulation without knowledge of the actual distributions of job delays, and test
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simulations running 20 real scenarios for proper evaluation. Table 2 shows the
results in the same format as the SKP and SSPP, with the addition of columns
indicating the number of training and testing instances.

We are able to achieve modest gains over using the expected value solution,
except in the case of j30 with a maximum expected duration of 10. On this
instance set, the learning algorithm failed to find a good way of identifying
superior solutions. This may be due to our features, which focus closely on
buffer, and this may not be sufficient when the durations are low.

On the j60 instances, we are able to close between 15% and 30% of the gap
to the best available solution. Even though the absolute gain may seem small, as
with many optimization under uncertainty problems, real-world RCPSP prob-
lems can involve expensive resources (specialized digging equipment, etc.), and
even small absolute improvements often translate into significant cost savings,
as well as time savings for the overall plan. Therefore, even though our method
is heuristic in nature, it can be of high value in practice.

6 Stochastic Shortest Path Problem

In the SSPP, we are given a graph G = (V,A) of nodes V and arcs A. Every
arc (i, j) ∈ A has an uncertain cost with an expected value of cij . The objective
is to find a minimal cost path through the graph between a source node s and
destination node t. The SSPP can model problems such as the routing of ships
under the influence of weather, or routing a vehicle through a road network
considering traffic delays.

6.1 Stochastic Environment

We base the stochastic environment for the SSPP on the one described for the
SKP with a few problem-specific modifications. Given a solution to an SSPP
instance, we first sample the realized costs c′

ij for each arc from a Pareto distri-
bution with mean cij and the minimum at 90% of cij . We then begin executing
the path given to us as one of the ten solutions, using c′

ij for each realized arc.
If the accumulated delay exceeds 10% of the expected costs, we allow recourse
planning every 5 nodes.

In the recourse planning, we adjust our forecast based on the current node.
The assumption is that arcs close to this node have a more accurate forecast
than those far away, since we would traverse these arcs in the nearer future.
To assemble our forecast, let aij be the number of arcs between nodes i and j.
Then, let the forecast cost for (i, j) be fij := round(cij +(1−aij/Δ})(c′

ij − cij))
if aij < 5, and cij otherwise. We set Δ to 7 to keep the forecasts from becoming
too accurate when we get close, but keep them inaccurate when we are far away.

6.2 Winner Forecasting

We introduce the following features to characterize an SSPP solution. For each
feature set, we compute the minimum, maximum, mean, standard deviation,
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Table 3. SSPP results

Graph Type Nodes Max Mean Min ML GC

Gnm 50k 207.38 91.68 43.00 68.63 47

Bottleneck 50k 165.55 97.06 54.27 71.80 59

Watts-Strogatz 25k 175.88 76.95 33.91 50.79 61

Mixed 50k/25k 182.81 92.98 43.50 61.17 64

skew and kurtosis of the array of values. For features using arc costs, we divide
the costs by the average arc cost of the graph, and for features using node
degrees, we use the average node degree of the entire graph.

1. Array of arc costs on the path
2. Array of arc costs over the set of arcs leaving nodes of the path going to nodes

not on the path
3. Array of arc costs over the set of arcs leaving nodes that are connected to the

path by a single node (excluding any arcs to nodes directly connected to the
path or nodes on the path)

4. Array of node degrees in the path
5. Array of node degrees of nodes that are connected to nodes on the path
6. Array of node degrees over the set of nodes that are connected to the path

by a single node (excluding any nodes directly connected to the path)

As in the case of the SKP, we concatenate the features for two given solutions
with the difference between the features of both solutions, which are then used
by the machine learning approach to determine the most promising solution.

6.3 Numerical Results

We build a dataset of SSPP instances consisting of graphs based on one of three
graph types: Gnm [8], “bottleneck”, and Watts-Strogatz small-world graphs.
The bottleneck instances consist of five Gnm graphs of equal size connected
sequentially with 5 links between each graph. We create 300 instances of each
graph type and size and select random source and sink nodes for the path,
splitting the instances into 200 train and 100 test. The expected arc costs cij are
drawn uniformly random between 1 and 100. We further ensure that all graphs
have no isolated components by adding arcs between such components and the
rest of the graph.

For each SSPP graph, we generate the ten shortest paths for a given graph
between s and t using Yen’s algorithm [23]. We simulate using the same scenario
structure as in the SKP. The “true” arc costs c′

ij are drawn from a Pareto
distribution with an expected value cij , shifted so that the minimum is at 0.9cij .
Training instances are evaluated on 20 scenarios that are all variations of a
single scenario (using the exact same scenario variation as in the SKP), and
test instances are evaluated on 20 scenarios generated independently of each
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other. Every 5 nodes we check if the accumulated delay is more than 10% of the
expected cost, and if it is, we run a recourse algorithm that tries to replan the
shortest path to t from the current node.

Table 3 shows the results of our computational experiments. We compute
the gap to the optimal shortest path considering c′

ij and average it over 20
scenarios as described above. Note that, for many graph instances, paths that
were near optimal for the point-estimated scenario may perform much worse than
the shortest path had we known the true arc distances beforehand. This leads to
relatively high values in our table, but is really more a reflection of the inherent
cost of uncertainty in this particular problem than the absolute performance of
the particular algorithm used to optimize under the uncertainty. Looking closer
at our data, we find that the expected path lengths of the solutions is usually
about the same, with the bottleneck graphs exhibiting slightly higher variance
than for the other graph types.

Despite the simplicity of our features (we just measure arc costs and node
degrees), we are able to close the gap by around 50% in all graph types and
64% for the mixed setting. This provides further support that we can learn from
historical data which solution features are favorable for later execution under
stochastic disruption.

7 Conclusion

We have introduced a new methodology for modeling and heuristically solving
stochastic optimization problems. The key idea is to move away from trying to
accurately forecast the uncertainty in the problem instance at hand. Instead,
we propose to use logs of historical estimates and the realities that followed
for comparing various counterfactual solutions. Our thesis is that we can devise
features that capture instance-dependent characteristics of the solutions that
allow us to predict which solution from a solution pool will likely perform well
for a new problem instance at hand.

The objective of this paper was to provide a proof of concept. We considered
three stochastic optimization problems that would each be extremely hard to
model and solve with existing approaches, even heuristically. For all three prob-
lems, we were able to quickly devise sets of features that were effective enough
to choose solutions that were superior to picking an average solution from our
pool of optimal (with respect to the underlying point-estimated optimization
problem) or near-optimal solutions.

Note that we did not spend any time to optimize hyper-parameters of our
learning approaches, or to engineer more effective features. Providing a general
set of features and pairing it with off-the-shelf machine learning methods was
enough to tackle each of the three optimization problems. We believe that the
experimental results provided strongly support our thesis that we can learn from
data which solutions will exhibit superior performance in an uncertain future.
However, this is of course not to say that, in practice, one should not conduct
feature engineering and hyper-parameter optimization to achieve even better
results.
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The ability to tackle complex stochastic optimization problems with thou-
sands of recourse stages comes at a cost, though. The framework presented
gives no guarantees regarding the quality of the solutions achieved, and dual
bounds are not provided. Therefore, whenever traditional stochastic optimiza-
tion is applicable and full online-reoptimization is feasible during real-world oper-
ations, we would recommend this approach. The framework introduced here is
meant for situations when the traditional methods break down.

In the future, we intend to investigate if the models trained on historic coun-
terfactuals can be mined to infer constraints to guide the search for less brittle
solutions directly: solutions that are not only near-optimal for the “fair weather”
data, but also have high probability of performing well under stochastic disrup-
tion. In this sense, the new framework opens the door for a comprehensive new
research agenda for stochastic constraint optimization.
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Abstract. MQuAcq is an algorithm for active constraint acquisition
that has been shown to outperform previous algorithms such as QuAcq
and MultiAcq. In this paper, we exhibit two important drawbacks of
MQuAcq. First, for each negative example, the number of recursive calls
to the main procedure of MQuAcq can be non-linear, making it imprac-
tical for large problems. Second, MQuAcq, as well as QuAcq and Multi-
Acq, does not take into account the structure of the learned problem. We
propose MQuAcq-2, a new algorithm based on MQuAcq that integrates
solutions to both these problems. MQuAcq-2 exploits the structure of the
learned problem by focusing the queries it generates to quasi-cliques of
constraints. When dealing with a negative query, it only requires a lin-
ear number of iterations. MQuAcq-2 outperforms MQuAcq, especially
on large problems.

1 Introduction

Constraint acquisition learns the model of a constraint problem using a set of
examples that are posted as queries to a human user or to a software system
[1,2]. Constraint acquisition is an area where constraint programming meets
machine learning, as the problem can be formulated as a concept learning task.
In passive acquisition, examples of solutions and non-solutions are provided by
the user. Based on these examples, the system learns a set of constraints that
correctly classifies all the given examples [1,3–6]. A major limitation of passive
acquisition is the requirement, from the user’s part, to provide diverse examples
of solutions and non-solution to the system. In contrast, active or interactive
acquisition systems interact with the user while acquiring the constraint net-
work. This is a special case of query-directed learning, also known as “exact
learning” [7,8]. In such systems, the basic query is to ask the user to classify
an example as solution or not solution. This “yes/no” type of question is called
membership query [9], and this is the type of query that has received the most
attention in active constraint acquisition [1,10,11]. The system can also ask the
user to classify partial examples [12] or to provide a violated constraint when
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a proposed example is considered as incorrect [13]. Other types of queries, e.g.
recommendation and generalization ones, have also been considered [14,15].

Quacq is a state-of-the-art interactive constraint acquisition algorithm that
uses partial queries [12]. Given a negative example, QuAcq finds a constraint that
is violated by repeatedly posting partial examples to the user. QuAcq needs a
number of queries logarithmic in the size of the example to locate the scope of
a violated constraint. Another relevant algorithm is MultiAcq [16]. This algo-
rithm learns all the constraints that are violated by a negative example, but it
needs a linear number of queries to learn each one. Recently, an algorithm called
MQuAcq, that combines the strengths of QuAcq and MultiAcq and outper-
forms both of them, was proposed [17]. MQuAcq requires a logarithmic number
of queries to locate the scope of each violated constraint, and discovers all the
violated constraints from a negative example.

In this paper, we further enhance the efficiency of active constraint acquisi-
tion by identifying and addressing two important deficiencies of MQuAcq. We
first show that there exist negative examples where the process of learning all
the violated constraints can make Ω(|Y |2) recursive calls, where |Y | is the num-
ber of variables of the given example. This has important practical implications
as MQuAcq becomes unacceptably slow when the size of the problems grows,
and as a result it can be outperformed by its generally less efficient predecessor
QuAcq. Another deficiency of MQuAcq (and also QuAcq and MultiAcq) is that
although non-random problems usually display some structure/patterns in the
way their constraints are interleaved, this is ignored by the acquisition process.
By identifying and exploiting these patterns we could possibly speed up the pro-
cess. Such patterns have for instance been exploited to detect types of variables
suitable for generalization [18].

Aiming at addressing the above problems, we propose an algorithm called
MQuAcq-2 that learns multiple constraints from a negative generated query, but
not necessarily all of them as opposed to MQuAcq, and also exploits structure
that may be present in the problem to better focus its queries. MQuAcq-2 blends
together the following two ideas. First, MQuAcq-2 exploits the structure of the
learned network to focus on some of the violated constraints instead of exhaus-
tively searching in the generated example. In our implementation, we used the
detection of quasi-cliques in the learned network and then focus on the missing
constraints (i.e., the ones required to complete the cliques). Second, when try-
ing to learn constraints from a negative example, the entire scope of a learned
constraint is removed from the example as soon as the constraint is acquired.
This means that the algorithm no longer guarantees to find all the violated con-
straints from a negative example, but nevertheless it may find several of them,
and crucially, it only requires a linear number of iterations to achieve this. With
the integration of these ideas we achieve the benefits of learning several con-
straints from each generated query and we also avoid the extensive search for
scopes of MQuAcq. Experimental results with benchmark problems demonstrate
that MQuAcq-2 offers significant improvements compared to MQuAcq, both in
terms of time and number of queries, especially on large problems. Importantly,
the new algorithm outperforms MQuAcq even in the absence of structure.
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The rest of this paper is organized as follows. In Sect. 2 the necessary back-
ground on interactive constraint acquisition is presented. Section 3 reviews the
basics of multiple constraint acquisition with MQuAcq. Section 4 presents the
proposed methods. An experimental evaluation is presented in Sect. 5. Section 6
concludes the paper.

2 Background

The vocabulary (X,D) is a finite set of n variables X = {x1, ..., xn} and a
domain D = {D(x1), ...,D(xn)}, where D(xi) ⊂ Z is the finite set of values
for xi. The vocabulary is the common knowledge shared by the user and the
constraint acquisition system. A constraint c is a pair (rel(c), var(c)), where
var(c) ⊆ X is the scope of the constraint and rel(c) is a relation between the
variables in var(c) that specifies which of their assignments are allowed. |var(c)|
is called the arity of the constraint. Two constraints c1, c2 are overlapping when
var(c1) ∩ var(c2) �= ∅. A constraint network is a set C of constraints on the
vocabulary (X,D). A constraint network that contains at most one constraint
for each subset of variables (i.e., for each scope) is called a normalized constraint
network. Following the literature, we will assume that the constraint network is
normalized. Besides the vocabulary, the learner has a language Γ consisting of
bounded arity constraints.

An example eY is an assignment on a set of variables Y ⊆ X. eY is rejected
by a constraint c iff var(c) ⊆ Y and the projection evar(c) of eY on the variables in
the scope var(c) of the constraint is not in rel(c). A complete assignment that is
accepted by all the constraints in C is a solution to the problem. sol(C) denotes
the set of solutions of C. An assignment eY is called a partial solution iff it is
accepted by all the constraints in C with a scope S ⊆ Y . Observe that partial
solution is not necessarily part of a complete solution. An implied constraint c
in C is a constraint such that, if removed from the constraint network, the set
of solutions remains the same.

Using terminology from machine learning, concept learning can be defined
as learning a Boolean function from examples. A concept is a Boolean function
over DX that assigns to each example e ∈ DX a value in {0, 1}, or in other
words, classifies it as negative or positive. The target concept fT is a concept
that assigns 1 to e if e is a solution to the problem and 0 otherwise. In con-
straint acquisition, the target concept, also called target constraint network, is
any constraint network CT such that sol(CT ) = {e ∈ DX | fT (e) = 1}. The
constraint bias B is a set of constraints on the vocabulary (X,D), built using
the constraint language Γ . The bias is the set of all possible constraints from
which the system can learn the target constraint network. κB(eY ) represents the
set of constraints in B that reject eY .

In exact learning, the classification question asking the user to determine if
an example eX is a solution to the problem that the user has in mind is called
a membership query ASK(e). The answer to a membership query is positive if
fT (e) = 1 and negative otherwise. A partial query ASK(eY ), with Y ⊆ X, asks
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Algorithm 1. The MQuAcq Algorithm
Input: B, X, D (B: the bias, X: the set of variables, D: the set of domains)
Output: CL : a constraint network
1: CL ← ∅;
2: while true do
3: Scopes.clear();
4: if sol(CL) = ∅ then return “collapse”;

5: Generate e in DX accepted by CL and rejected by B;
6: if e = nil then return “CL converged”;

7: if ¬findAllCons(e, X, 0) then return “collapse”;

the user to determine if eY , which is an assignment in DY , is a partial solution or
not. Following the literature, we assume that all queries are answered correctly
by the user.

The acquisition process has converged on the learned network CL ⊆ B iff CL

agrees with E and for every other network C ⊆ B that agrees with E, we have
sol(C) = sol(CL). If there does not exist a constraint network C ⊆ B such that
C agrees with E then the acquisition collapses. This happens when the target
constraint network is not included in the bias, i.e. CT � B.

3 Multiple Constraint Acquisition

We briefly describe the MQuAcq algorithm for multiple constraint acquisition
[17], and we identify an important deficiency of this algorithm. MQuAcq (Algo-
rithm 1) takes as input a bias B on a vocabulary (X, D), and returns a constraint
network CL equivalent to the target network CT . It uses functions FindScope-2
[17] and FindC [12].

MQuAcq starts by initializing the network CL to the empty set (line 1) and
then it enters the main loop (line 2). The array Scopes, which is initialized to
be empty in line 3, is used within function FindAllCons as explained below. If
CL is unsatisfiable, the algorithm collapses (line 4). Otherwise, an assignment e
is generated (line 5), satisfying CL and violating at least one constraint in B. If
such an example does not exist then the acquisition process has converged (line
6). Otherwise, it calls the function FindAllCons to find all the constraints that
are violated by the example e and remove from B those that are surely not in
CT . If findAllCons return false then we have collapsed (line 7).

The recursive function FindAllCons (Algorithm 2) is used to find all the
constraints from CT that are violated by the generated negative example. It
takes as parameters an example e, a set of variables Y , which defines the set
of variables to search for the constraints, and an integer variable s, which is
an identifier for the scopes. It returns false if collapse has occurred and true
otherwise. FindAllCons adds to CL all the constraints from CT that are violated
by the example e in Y . It uses the array Scopes to store all the scopes of the
constraints that have been found from the current generated query.
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Algorithm 2. findAllCons
Input: e, Y, s (e: the example, Y : set of variables, s: scopes identifier)
Output: not collapsed : returns false if collapsed, true otherwise
1: function FindAllCons(e, Y , s)
2: if κB\CL

(eY ) = ∅ then return true;

3: if s < |Scopes| then
4: for xi ∈ Scopes[s] do
5: if ¬findAllCons(e, Y \ {xi}, s + 1) then return false;

6: else
7: if ASK(eY ) = “yes” then B ← B \ κB(eY );
8: else
9: scope ← FindScope-2(e, ∅, Y, false);

10: c ← FindC(e, scope);
11: if c = nil then return false;
12: else CL ← CL ∪ {c}; B ← B \ {c};

13: Scopes.push(scope);
14: if ¬findAllCons(e, Y, s) then return false;

15: return true;

In any recursive call, FindAllCons starts by checking if there exists any vio-
lated constraint in B, not already in the learned network CL. If not, it is implied
that ASK(eY ) = “yes” and the function returns true (line 2). After that, at line
3, FindAllCons checks if s is smaller than the size of Scopes (s acts an identifier
of the scopes in which it has already branched). If s < |Scopes|, it means that
the scope of a found violated constraint still exists in eY . Thus, FindAllCons is
called recursively on each subset of Y created by removing one of the variables
of the scope at position s of Scopes (lines 4–5), and increasing s by 1 to continue
with the next scope in each recursive call.

If s = |Scopes|, branching has finished. The system asks the user to classify
the partial example (line 7). If the answer is positive then the constraints in B
that reject e are removed. Otherwise, function FindScope-2 is called to find the
scope of a violated constraint (line 9). FindC will then find a constraint from
B with the discovered scope that is violated by e (lines 10–12). In lines 13–14,
FindAllCons is called recursively to continue searching.

Functions FindScope-2 and FindC are described in [17] and [12] respectively
and are not included here due to space limitations.

MQuAcq models the query generation problem in line 5 of Algorithm 1 as an
optimization problem that looks for a (partial) solution of CL that maximizes
the number of violated constraints in B. This heuristic is called maxB [17]. We
will see in Sect. 5 that there are some cutoffs imposed.

Although MQuAcq offers improvements over its predecessors QuAcq and
MultiAcq, both in terms of queries and cpu time, it still suffers from two weak-
nesses. We prove in Proposition 1 that the number of recursive calls to function
FindAllCons to learn all the violated constraints from a negative example can
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be non-linear in the number of variables of the example given. This non-linear
number of calls can significantly hinder the cpu time performance of MQuAcq.

Proposition 1. Given a negative example eY , MQuAcq may require a number
of recursive calls to function FindAllCons in Ω(|Y |2) to learn all the constraints
of CT that are violated by eY .

Proof. Consider a constraint network and a negative example eY with |Y | = 2·p.
Assume that κCT

(eY ) = {c1,2, c2,3, . . . , cp−1,p}, where ci,j denotes a constraint
with scope var(c) = {i, j}. Assume that κB\CT

(eY ) = {c1,p+1, c2,p+2, . . . , cp,2p}.
With this pattern, we have |κCT

(eY )| = p − 1 and |κB\CT
(eY )| = p.

We know that the branching takes place for each one of the variables in the
scope of each learned constraint, meaning that two recursive calls are made to
function FindAllCons at each branching point. In addition, we know that the
depth of the tree of the recursive calls to FindAllCons can be up to |κCT

(eY )| +
1 = p, as it branches once for each scope included in Scopes at line 5, whose size
in the end will be equal to |κCT

(eY )|. The maximum depth is reached as all the
constraints of κCT

(eY ) are learned in the first branch.
Due to the structure of κCT

(eY ) and κB\CT
(eY ), in each level we will have one

more branching point than the previous. This happens because every constraint
in κCT

(eY ) has in common the first variable of its scope with one constraint in
κB\CT

(eY ). Thus, after the first variable removal in each level, one constraint
from κB\CT

(eY ) will not be violated by e′
Y and the algorithm will have to follow

the right branch to remove it, adding a new branch to each level. Also, we
know that the constraints from κB\CT

(eY ) will not be removed by the function
FindScope-2, as a constraint from κCT

(eY ) will be found first and returned.
Now, let us prove that this results in a total number of nodes N = 1 +

(Y2 − 1) · Y
2 . As in each level l we have one more branching point than the

previous, we know that each level l of the tree will have 2 more nodes than the
level l − 1, without counting the first level with the root node. This results in
N = 1+2+4+ ...+2 · (p−1) = 1+2 ·∑p−1

k=1 k = 1+2 · (p−1)·p
2 = 1+(Y2 −1) · Y

2 .
Therefore, MQuAcq requires a number of recursive calls to function FindAllCons
in Ω(|Y |2) to learn all the constraints of CT that are violated by eY . �	

Another weakness of MQuAcq is that the extensive branching it makes to
find all the constraints violated by a negative example yields a lot of (small)
partial positive queries. It is better when positive queries violate a large number
of constraints from B because we want to prune the bias as much as possible.
It would thus be better to focus on asking small partial queries on specific
constraints that have greater probability to be included in CT instead of focusing
on all the violated constraints.

4 MQuAcq-2

In this section we propose MQuAcq-2, a new algorithm that acquires multiple
constraints from each negative generated example, but not necessarily all of them
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Algorithm 3. MQuAcq-2: Quick Acquisition learning multiple scopes
Input: B, X, D (B: the bias, X: the set of variables, D: the set of domains)
Output: CL : a constraint network
1: CL ← ∅;
2: while true do
3: if sol(CL) = ∅ then return “collapse”;

4: Generate e in DY accepted by CL and rejected by B;
5: if e = nil then return “CL converged”;

6: Y ′ ← Y ;
7: do
8: if ASK(eY ′) = “yes” then B ← B \ κB(eY ′);
9: else

10: Scope ← FindScope-2(eY ′ , ∅, Y ′, false);
11: c ← FindC(eY ′ , Scope);
12: if c = nil then return “collapse”;
13: else CL ← CL ∪ {c}; B ← B \ {c};

14: NScopes ← Scope;
15: NScopes ← NScopes ∪ analyze&Learn(eY );
16: for Scope ∈ NScopes do
17: Y ′ ← Y ′ \ Scope;

18: while κB(eY ′) �= ∅

as opposed to MQuAcq. The intuition is to focus on constraints that are more
likely to be included in CT instead of exhaustively searching in the generated
example, and thus to decrease the run time as well as the number of queries
needed to learn the target network.

4.1 Algorithm Description

MQuAcq-2 (Algorithm 3) starts with an empty CL and a bias B containing
constraints that can be built using the constraint language Γ on the vocabulary
X,D. MQuAcq-2 returns the learned constraint network CL, equivalent to the
target network CT . MQuAcq-2 iteratively generates examples and posts them
as queries to the user. If the answer from the user is negative (i.e., at least one
constraint from CT is violated from the query posted), it tries to learn multiple
constraints. MQuAcq-2 achieves that with the two following steps:

– It exploits the structure of the learned network to focus on specific violated
constraints from B,

– In case no more constraints can be learned by exploiting the structure of
CL, it tries to find some non-overlapping constraints of CT . As we explain
below, this allows us to alleviate the high run time that MQuAcq incurs when
searching for all the violated constraints from each negative example.

MQuAcq-2 generates a (partial) example e satisfying CL and rejecting at
least one constraint from B (line 4). If it has not converged or collapsed, it tries
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to acquire multiple constraints of CT violating e. At first it posts the example as
a query to the user (line 8). In the case the answer of the user is positive then it
removes from the bias the set κB(eY ′) of all the constraints from B that reject
eY ′ . If the answer is negative it tries to find a constraint by using the functions
FindScope-2 and FindC like in MQuAcq (lines 10–13).

The first novelty is that after a constraint is added to CL, the system calls
the function analyze&Learn (line 15) to analyze the structure of CL and to ask
partial queries on scopes of constraints violated by the initial example that seem
to fit in that structure. The above steps are done repeatedly, removing from Y ′

the variables of the scope of each violated constraint it has already learned (lines
16–17) that are stored in the set NScopes. When no more constraint from B can
be acquired by analyzing the structure of CL, MQuAcq-2 tries to learn multiple
non-overlapping constraints (lines 10–13). The iterative process ends when the
example eY ′ does not contain any violated constraint from the bias (line 18).

The second novelty is that MQuAcq-2 removes the entire scope of the
acquired constraints at lines 16–17 to avoid the exhaustive branching that
MQuAcq does by removing one variable in each call to findAllCons. We lose
the guarantee to learn all the constraints violated by a generated example, as in
MQuAcq, but on the other hand we achieve better performance in practice. The
fact that MQuAcq-2 does not learn all the violated constraints from a generated
example does not mean that it will not learn the entire network. The “missed”
constraints will be learned at another example.

4.2 Using the Structure of the Problem to Learn Constraints

Function analyze&Learn (Algorithm 4) is used to analyze the structure of the
learned network and then to focus on some of the violated constraints of the
bias that fit in the structure, and thus are likely to be part of CT . The type of
structure that we have investigated so far is that of tightly connected groups
of variables that form quasi-cliques that are hopefully extendable to complete
cliques. Quasi-cliques are subgraphs with an edge density exceeding a threshold
parameter [19,20]. More formally, given a threshold γ ∈ [0, 1], a (sub)graph
G = (V,E), with V the set of vertices and E the set of edges, is γ-dense if
|E(G)| ≥ γ · |V |∗|V |−1

2 . If in addition G is connected, it is a quasi-clique. We used
quasi-clique detection to focus subsequent queries on the constraints that are still
in B and could be included in CL to possibly complete a detected quasi-clique
to form a clique.

The algorithm we use for finding quasi-cliques is similar to the one used
in [18]. It is based on the well-known Bron-Kerbosch’s [21] algorithm for finding
maximal cliques in a graph. It is a recursive backtracking function that searches
for maximal quasi-cliques in the graph of constraints of CL. We consider any
type of constraint as an edge, as opposed to the algorithm used in [18], which
considers only constraints with same relation.

Function analyze&Learn takes only the generated negative example eY as a
parameter. It returns the set NScopes, which contains the scopes of the con-
straints learned. Function analyze&Learn starts by initializing the set NScopes
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Algorithm 4. analyze&Learn

Input: eY : the example
Output: NScopes : the set of scopes of the constraints that have been learned
1: function analyze&Learn(eY )
2: NScopes ← ∅;
3: QCliques ← FindQCliques(X, ∅, ∅);
4: CQ ← {c | c ∈ κB(eY ) \ CL ∧ ∃q ∈ QCliques | var(c) ⊆ q};
5: PScopes ← {Y ′ | c ∈ CQ ∧ var(c) = Y ′};
6: for Y ′ ∈ PScopes do
7: if ASK(eY ′) = “yes” then B ← B \ κB(eY ′);
8: else
9: Scope ← FindScope-2(eY ′ , ∅, Y ′, false);

10: c ← FindC(eY ′ , Scope);
11: if c = nil then return “collapse”;
12: else CL ← CL ∪ {c}; B ← B \ {c};

13: NScopes ← NScopes ∪ Scope;

14: if NScopes �= ∅ then
15: NScopes ← NScopes ∪ analyze&Learn(eY );

16: return NScopes;

to the empty set (line 2). At line 3 it finds quasi-cliques in CL via the func-
tion FindQCliques. A cutoff is imposed to this function, returning all the quasi-
cliques found within this time limit. This is done to avoid the exponential time-
complexity of finding all the quasi-cliques. QCliques contains sets of variables
where each set forms a quasi-clique in the graph of the already learned network.
Using the quasi-cliques found, we fill the set CQ with the predicted constraints,
that is, the constraints of B that have not been already learned (i.e., not in CL),
have a scope that is included in a quasi-clique (∃q ∈ QCliques | var(c) ⊆ q),
and are violated by eY (are included in κB(eY )) (line 4). We only consider con-
straints violated by the current example to avoid the overhead of generating new
examples to learn them. Next, we fill the set PScopes with the scopes of these
constraints (line 5). For each scope in PScopes (line 6), the system posts a partial
query to the user, focusing on the variables of the scope (line 7). If the answer is
positive then the constraints that reject the example are removed from B. Oth-
erwise, function FindScope-2 is called to find the scope of the violated constraint
(line 9). This is done to ensure that the violated constraint the user has in mind
is not in a subscope. (As we use only binary problems in the experiments, that
means it looks for unary constraints.) Next, FindC will select a constraint from
B with the discovered scope that is violated by eY ′ (line 10). If no constraint is
found then the algorithm collapses (line 11). Otherwise, the constraint returned
by FindC is added to CL (line 12) and its scope is added to the set of found
scopes (line 13). Finally, if any constraint is found (line 14), analyze&Learn(eY )
is recursively called to check if new quasi-cliques have been formed (line 15). The
scopes of the constraints learned by this call to analyze&Learn are added to
NScopes, and NScopes is returned (line 16).
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Table 1. Execution of MQuAcq-2 at Example 1

Repetition Y eY ASK Constraint acquired

1 x1 − x8 {1, 2, 2, 2, 3, 3, 4, 4} “no” �=23

1.1 x2, x4 {−, 2, −, 2, −, −, −, −} “no” �=24

1.2 x3, x4 {−, −, 2, 2, −, −, −, −} “no” �=34

3 x1, x5 − x8 {1, −, −, −, 3, 3, 4, 4} “no” �=56

3 x1, x7, x8 {1, −, −, −, −, −, 4, 4} “no” �=78

3 x1 {1, −, −, −, −, −, −, −} - -

We chose quasi-clique detection for the analysis of the structure of the net-
work because cliques are a common structure in constraint networks. Function
analyze&Learn could also look for other types of structures by simply replacing
the search for quasi-cliques by any other type of structure (such as [22–25]). The
problem of predicting which constraints of B are more likely to be included in
CT can also be seen as a link prediction problem. Any method which deals with
this problem can be exploited (e.g., [14,26–28]).

4.3 Example and Analysis of MQuAcq-2

Let us now illustrate the behavior of MQuAcq-2 on a simple example.

Example 1. The vocabulary is X = {x1, ..., x8} and D = {D(x1), ...,D(x8)}
with D(xi) = {1, ..., 8}, the target network CT is {�=12, �=13, �=14, �=23, �=24,
�=34, �=56, �=78} and B = {�=ij | 1 <= i < 8 ∧ i < j <= 8}. Assume that the
learned network so far is CL = {�=12, �=13, �=14} and γ = 0.6 in MQuAcq-2. Also,
assume that the current example processed (generated at line 4 of MQuAcq-2)
is e = {1, 2, 2, 2, 3, 3, 4, 4}.

The execution of MQuAcq-2 is presented in Table 1. The first column shows
the iteration of the algorithm. In the second column the variables that are con-
sidered in Y are given, while in the third column the example eY is displayed.
Column ASK shows the answer of the user to the query posted, if one is posted,
− otherwise. Finally, the constraint learned is presented.

MQuAcq-2 will post the example to the user, and after receiving a negative
answer it will find the constraint �=23 using functions FindScope and FindC. After
learning this constraint, it detects a possible clique among variables x1, x2, x3, x4

as shown in Fig. 1. So the algorithm will now focus on constraints �=24, �=34 that
are violated by e, and will learn them via the function analyze&Learn (iterations
1.1,1.2). As no other quasi-clique (with γ = 0.6) has been detected, the algorithm
continues by removing the entire scope of the constraints learned from Y . In the
next iteration, after the negative classification by the user, constraint �=56 will
be learned and variables x5, x6 will be removed. In the same way, the constraint
�=78 will be acquired next. As no other constraint from B rejects the example
eY after removing the variables from the last constraint learned, MQuAcq-2 will
return to the query generation step.
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Fig. 1. (a) The target network of the problem. (b) The learned network so far and the
predicted constraints

We now study the complexity of MQuAcq-2 in terms of the number of queries
it needs to converge to the target network and in terms of the repetitions required
to learn multiple violated constraints from a negative example.

Proposition 2. Given a bias B built from a language Γ , with bounded arity
constraints, and a target network CT , MQuAcq-2 uses O(|CT | · (log |X| + |Γ |))
queries to find the target network or to collapse and O(|B|) queries to prove
convergence.

Proof. MQuAcq-2 learns each constraint from a negative example via the func-
tions FindScope and FindC at lines 10–13 or via the function analyze&Learn
using the same functions. We know that FindScope needs at most |S| · log |Y |
queries to locate a scope of a constraint from CT , with |S| being the arity of the
scope and |Y | the size of the example given to the function [12]. Since Y ⊆ X,
FindScope needs in the worst case |S| · log |X| queries to find a scope. In addi-
tion, we know that FindC needs at most |Γ | queries to find a constraint from
CT in the scope it takes as parameter, if one exists [12]. In the case that none
exists, the system collapses with the same bound. As a result, the number of
queries necessary to find a constraint using the functions FindScope and FindC
is O(|S| · log |X| + |Γ |). Thus, the number of queries required for finding all
the constraints in CT or collapsing is at most CT · (|S| · log |X| + |Γ |) which
is O(CT · (log |X| + |Γ |)) because |S| is bounded. Concerning the convergence
problem, it is proved when B is empty or contains only implied constraints. Con-
straints are removed from B when the answer from the user is “yes” in a query in
the above cases. In the worst case, in which each positive query rejects only one
constraint from B, it leads to at least one constraint removal in each query. This
is because the example generated at line 4 of MQuAcq-2 violates at least one
constraint from B and analyze&Learn does not ask a query eY ′ when κB(eY ′)
is empty (lines 4–5 in analyze&Learn). This gives a total of O(|B|) queries to
converge. �	

Therefore, MQuAcq-2 has a logarithmic complexity in terms of the number
of queries needed to find the scope of a violated constraint, the same as QuAcq
and MQuAcq. Now we turn out attention to the process of learning multiple
constraints from a negative example eY .
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Proposition 3. The number of iterations needed by MQuAcq-2 to acquire mul-
tiple constraints from a given negative example eY is bounded above by O(|Y |).
Proof. Given a negative example eY , MQuAcq-2 enters into a do-while loop
at line 7 to acquire multiple constraints of CT . After the acquisition of each
constraint, the entire scope (i.e., all the variables of the scope) of the constraint(s)
acquired is removed from Y . Thus, assuming unary constraints are included in
the target network of the problem, in the worst case only one variable will
be removed from Y in each repetition. As a result, the worst case number of
iterations made by MQuAcq-2 to acquire multiple constraints of CT , is equal
to |Y |. �	

Therefore, given a negative example, MQuAcq-2 learns multiple constraints
of the target network in a complexity lower than MQuAcq. As we will see in the
experiments, it significantly improves its time performance.

5 Experimental Evaluation

To evaluate our proposed algorithm, we ran experiments comparing MQuAcq-2
against MQuAcq. We also ran QuAcq as a reference point. Some more details
about our experiments:

– All the experiments were conducted on a system carrying an Intel(R) Xeon(R)
CPU E5-2667, 2.9 GHz clock speed, with 8 GB of RAM.

– The maxB heuristic [17] was used for the generation of the queries by all algo-
rithms. maxB focuses on examples violating as many constraints as possible
from B without necessarily building a complete variable assignment. bdeg was
used for variable ordering, that is the variable with the most constraints in
B is chosen. Random value ordering was used.

– For all the algorithms we set some cutoffs in the query generation step. The
best (according to maxB) example found within 1 s is returned, even if not
proved optimal. If after 5 s, not a single example is found, the system takes one
by one each constraint c in B and tries to solve CL ∪ {¬c} with a additional
cutoff of 5 s.

– We do not check for collapse before the generation of the queries, as it can
be very time consuming, especially in large problems, with a lot of variables
and a large CT . We assume that the problem the user has in mind is solvable,
the user’s answers are correct and CT is representable by B.

– In the function FindQCliques, γ was set to 0.8.
– As finding all the quasi-cliques is an NP-hard problem, we have added a cutoff

of 1 s in the function FindQCliques, which then returns all the quasi-cliques
found within this time limit.

We used the following benchmarks in our study:
Sudoku. The Sudoku puzzle is a n2×n2 grid. It must be completed in such a

way that all the rows, all the columns and the n2 non-overlapping n×n squares
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contain the numbers 1 to n. We use two variations of the problem with n = 3
and n = 4. This gives a vocabulary having 81 (256 respectively) variables and
domains of size 9 (16 respectively). The target networks for the two problems are
of size 810 and 4,992. The bias was initialized with 12,960 and 130,560 binary
constraints respectively, using the language Γ = {=, �=, >,<}.

Latin Square. The Latin square problem consists of an n×n table in which
each element occurs once in every row and column. That means that the domain
is of size n. We use two variations of the problem. The first one with 100 variables
(i.e., n = 10) having a target network of 900 binary �= constraints on rows and
columns, and the second with 225 variables (i.e., n = 15) and a target network of
size 3,150. The language used was Γ = {=, �=, >,<}, resulting in a bias of 19,800
binary constraints in the first problem and 100,800 constraints in the second.

Random. We used a problem with 100 variables and domains of size 5.
We generated a random target network with 495 �= constraints. The bias was
initialized with 19,800 constraints, using the language Γ = {=, �=, >,<}.

Radio Link Frequency Assignment Problem. The RLFAP is the prob-
lem of providing communication channels from limited spectral resources [29].
We use a simplified version which consists of 50 variables with domains of size 40.
The target network contains 125 binary distance constraints. We built the bias
using a language of 2 basic distance constraints ({|xi − xj | > y, |xi − xj | = y})
with 5 different possible values for y. This led to a language of 10 different
distance constraints. In total, B contains 12,250 constraints.

AllDiff. We used a problem with 50 variables and domains of size 50 with the
condition that all variables must take different values. Thus, the target network
contains a clique of 1,225 binary �= constraints. The bias was initialized with
4,900 constraints, using the language Γ = {=, �=, >,<}.

To compare all the algorithms on the same simple scenario, all our experi-
ments take the extreme case where we start from an empty constraint network.
Even for the best algorithms, this scenario leads to an overall number of queries
that can be considered as too large when the user is a human. In real applica-
tions, the user often has some background knowledge that give a frame of basic
constraints. If not, the user may take other methods, such as ModelSeeker [6], to
extract constraints from the structure of solutions of the problem. In this case,
the interactive acquisition algorithm is only used to finalize the model.

5.1 Results

We measure the size of the learned network CL, the average waiting time T̄
(in seconds) for the user, the total number of queries #q, the average size q̄
of all queries, the number of complete queries #qc, and the total time needed
to converge Ttotal. We present results of MQuAcq, QuAcq, MQuAcq-2 without
analyze&Learn (denoted by MQuAcq-2 w/o A&L) and full MQuAcq-2. Each
algorithm was run 5 times and the means are presented in Table 2.

Looking at the time performance of MQuAcq-2 without analyze&Learn we
see that in all problems except AllDiff (which is relatively small) it decreases
the total time of the acquisition process compared to MQuAcq. In the larger
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Table 2. Results of MQuAcq-2

Benchmark Algorithm |CL| #q q̄ #qc T̄ Ttotal

Latin 15 × 15 MQuAcq 3150 37176 101 27 0.18 6730.88

QuAcq 3150 31426 117 2345 0.18 5808.12

MQuAcq-2 w/o A&L 3150 28364 70 42 0.04 1069.80

MQuAcq-2 3150 25517 61 49 0.11 2757.66

Latin 10 × 10 MQuAcq 900 8457 46 16 0.02 155.84

QuAcq 900 7997 53 784 0.13 1026.86

MQuAcq-2 w/o A&L 900 7265 33 31 0.02 139.58

MQuAcq-2 900 6133 19 33 0.03 168.88

Sudoku 16 × 16 MQuAcq 4992 59953 90 18 0.49 29612.70

QuAcq 4992 42648 52 120 0.33 14092.20

MQuAcq-2 w/o A&L 4992 43958 61 36 0.06 2771.94

MQuAcq-2 4992 40905 51 35 0.15 6098.34

Sudoku 9 × 9 MQuAcq 810 6964 32 14 0.02 124.07

QuAcq 810 6478 38 518 0.14 880.96

MQuAcq-2 w/o A&L 810 6136 24 31 0.02 94.12

MQuAcq-2 810 4912 15 30 0.04 191.63

Random MQuAcq 495 5959 45 10 0.03 168.52

QuAcq 495 5500 53 472 0.10 570.96

MQuAcq-2 w/o A&L 495 4930 34 16 0.02 79.35

MQuAcq-2 495 4962 34 16 0.02 79.05

RLFAP MQuAcq 122 1520 22 26 0.14 222.72

QuAcq 106 1168 25 71 0.23 274.01

MQuAcq-2 w/o A&L 124 1102 21 27 0.19 218.88

MQuAcq-2 124 1113 21 23 0.19 237.27

AllDiff MQuAcq 1225 3912 26 24 0.03 107.82

QuAcq 1225 5082 34 1116 0.25 1280.27

MQuAcq-2 w/o A&L 1225 4153 23 51 0.03 135.24

MQuAcq-2 1225 2774 14 37 0.12 345.65

problems the decrease in total time is quite significant: MQuAcq is 6.3 times
slower on Latin 15 × 15 and 10.7 times slower on Sudoku 16 × 16. This confirms
our intuition and complexity analysis. In terms of number of queries, we also
have an important decrease compared to MQuAcq in all the problems except
AllDiff (up to 26.7% in Sudoku 16× 16). This decrease in the number of queries
is mainly due to the fact that avoiding the extensive branching that MQuAcq
makes, MQuAcq-2 also avoids posting a lot of small positive partial queries. As
a result, the pruning of B is achieved with fewer queries. Another observation
is that although the number of complete queries posted to the user is increased
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in all problems, the average size of the queries is reduced. This reduced size of
the queries is mainly due to the smaller negative queries asked by MQuAcq-
2 because, as opposed to MQuAcq, MQuAcq-2 removes the entire scope of
the previous constraint learned (line 17) before proceeding with the search for
constraints.

When MQuAcq-2 takes into account the structure of the problem by using
analyze&Learn, we observe that the total time is larger than without using ana-
lyze&Learn, but it is still significantly faster than MQuAcq on the large problems.
The decrease in time is 59% on Latin 15×15, 79.4% on Sudoku 16×16 and 46.9%
on Random. In contrast, the run time is increased by 8.4% on Latin 10 × 10,
54.5% on Sudoku 9× 9, 6.5% on RLFAP and 220.6% on AllDiff. The increase in
time in these smaller problems is due to the overhead of analyze&Learn. The
largest increase is in the AllDiff problem. This is not surprising as the AllDiff
problem consists of a single clique of constraints. Focusing on the number of
queries, by using analyze&Learn to exploit the structure of the learned network,
MQuAcq-2 offers significant improvements compared to MQuAcq on all prob-
lems. The number of queries is decreased by 31.4% on Latin 15 × 15, 27.5% on
Latin 10 × 10, 30.4% on Sudoku 16 × 16, 29.5% on Sudoku 9 × 9, 17.3% on
Random 26.8% on RLFAP and 29.1% on AllDifferent. Interestingly, it seems
that the larger the target network, the bigger the gain. We also observe that
the more structured the problem is, the more queries full MQuAcq-2 saves com-
pared to MQuAcq-2 without analyze&Learn. The average size of the queries is
even smaller than with MQuAcq-2 without analyze&Learn. This is because ana-
lyze&Learn focuses on small scopes in the most promising parts of the network,
avoiding the large negative queries that FindScope-2 would have asked to find
these scopes.

Looking at the performance of full MQuAcq-2 on the Random problem, we
see that both in terms of time and number of queries it dominates MQuAcq.
Random is a pure random problem without any kind of structure. Thus, although
MQuAcq-2 tries to exploit the structure of the problem to enhance the acquisi-
tion process, it performs quite well even in the absence of structure. The results
with and without analyze&Learn are quite similar, confirming that in the absence
of structure the overhead of analyze&Learn is relatively small. The same occurs
on the RLFAP problem, which does not contain any cliques.

Finally, regarding QuAcq, we observe that this algorithm is better than
MQuAcq both in run times and in number of queries on the largest problems
that had not been considered before. However, it is inferior to MQuAcq-2 both
in terms of time and number of queries on all problems.

6 Conclusion

Although the MQuAcq algorithm for constraint acquisition was shown to outper-
form previous algorithms such as QuAcq and MultiAcq, we have demonstrated
that it suffers from two important drawbacks. First, the process of learning
a maximum number of constraints from each negative generated example is



724 D. C. Tsouros et al.

time-consuming. This makes MQuAcq inefficient for large problems. Second,
MQuAcq, as well as QuAcq and MultiAcq, does not take into account the
structure revealed as constraints are learned. We have proposed a new algo-
rithm, named MQuAcq-2, that integrates solutions to both of these problems.
MQuAcq-2 exploits the structure of the learned problem by focusing the queries
it generates to quasi-cliques of constraints that are being revealed. In addition,
it alleviates the high cpu time requirements of MQuAcq by acquiring multiple
constraints from each generated negative example, but not trying to learn all
of them. Experiments with benchmark problems demonstrate that MQuAcq-2
outperforms MQuAcq both in terms of the number of queries and in the total
time of the acquisition process, especially on large problems.
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Abstract. Solar-based energy is an intermittent power resource whose
potential pattern varies in space and time. Planning the penetration of
such resource into a regional power network is a strategic problem that
requires both to locate and bound candidate parcels subject to multiple
geographical restrictions and to determine the subset of these and their
size so that the solar energy production is maximized and the associ-
ated costs minimized. The problem is also permeated with uncertainty
present in the estimated forecast energy demand, resource potential and
technical costs. This paper presents a novel combination of Geographic
Information Systems (GIS) and Robust Optimization (RO) to develop
strategic planning scenarios of a collection of parcels that accounts for
their spatio-temporal characteristics, and specifically their hourly radia-
tion patterns that are location dependent, to best fit the network tem-
poral demand and minimize technical costs.

The problem is formulated as a GIS spatial placement problem and a
RO fractional knapsack problem to plan the effective power penetration
and geographical suitability of new PV facilities. The combination GIS-
RO generates an excellent decision support system that allows for the
computation of optimized parcel scenarios (locations, sizes and power).
The qualitative and quantitative effectiveness of the approach is demon-
strated on real data on the French Guiana region. Results show that
the proposed approach provides reliable fine grained planning that also
accounts for the risk adversity of the decision maker towards forecast
demand and solar potentials.

Keywords: Renewable energy planning ·
Geographic Information Systems · Robust optimization

1 Introduction and Related Work

Energy transition from a high-carbon regime born of fossil fuels to low-carbon
solutions is a major challenge of current societies [10]. Most of the energy
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planning strategies therefore aim at enhancing the share of renewable energy
(RE) sources within power networks [23]. When those energies are dispatchable,
the integration remains pretty straightforward [16,36]. However, when it comes
to volatile, or intermittent RE sources, this is no longer true. Their unstable and
variability nature implies that the resulting aggregated power injected into the
grid may threaten network’s stability by not matching the power demand [23].

Thus, the full problem of integrating intermittent RE sources in power net-
works involves irregular spatio-temporal energy potential patterns, related to
the location and dimensions of power facilities. It is a multi-criteria uncertain
optimization and planning problem that combines the spatial placement of can-
didate parcels for installing power facilities subject to geographical constraints
and temporal resource constraints, and the selection (location, size and capacity)
of optimal plants such that the power into the network is increased at minimal
costs and short-term unpredictability is limited to an acceptable level.

Taking into account spatio-temporal energy potential data, together with het-
erogeneous land, network, and technico-economic constraints for effective renew-
able energy planning remains a challenging multi-dimensional problem perme-
ated with uncertain data [37]. The computational approaches are broadly divided
into two research streams: (1) geographical information system (GIS) modeling
with multi-criteria decision-making (MCDM) [3,6,13,34], and (2) bottom-up
engineering approaches [7,23,35,37]. GIS models with MCDM focus on pro-
viding suitability maps based on static resource assessment and expert-based
decision criteria. The maps depict areas with their respective weighted criteria
values to be used in the MCDM model, such as economic, environmental or
technical ones. These approaches do not aim at optimizing the actual parcel
selection that would require taking into consideration the short-term tempo-
ral variation of both the resource and power demand, or their evolution in the
long-term. On the other hand, bottom-up engineering approaches allow for time
simulation and optimization of given energy system configurations. Their main
objective is to guide energy policy road map often at a national scale and longer
time horizon. This systemic approach gives a significant insight into the poten-
tial contribution of RE sources [11,12], but does not aim at identifying physical
parcel locations. Similarly [22] addresses the resource management problem as
a knapsack problem, that shows the suitability of linear programming to select
among experts’ given parcels, the ones with highest resource potential. It does
not consider the hourly temporal patterns of the different sites and their pro-
jected uncertainty, the possibility to consider a fraction of a given parcel, nor
the impact of geographical restrictions and distances, and the complexity of the
associated technical costs.

In summary, to date we are not aware of computational approaches that
tackle the spatio-temporal optimization problem consisting of identifying the
best parcels that increase solar energy penetration into the network at minimal
cost, while satisfying a region’s specific constraints (terrain, resource, infrastruc-
tures, etc) and related costs. This paper addresses this problem by proposing a
two-steps specification in terms of a spatial placement and a resource planning
problem, and we propose an integrated computational approach. The approach
contributes a novel framework based on GIS spatio-temporal data and constraint
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processing, connected to a Robust Optimization (RO) knapsack model to plan
renewable energy scenarios. The combination GIS-RO generates an excellent
decision support system that allows for the planning of parcel scenarios (loca-
tions and areas) that will best increase the RE power into the network at minimal
cost, according to the decision maker risk adversity. A GIS can handle very large
volumes of data, including remote sensing images for solar radiation indicators,
land use maps, and various networks maps (electrical, roads, water). The appli-
cation of global and multi-layers geographical constraints and various control
parameters allow for an effective deterministic pruning of the region, to deter-
mine suitable candidate parcels, and their relevant properties without impairing
the optimization problem.

The core contributions of this paper are: (1) the specification of a complex
spatial placement and planning problem, (2) a computational approach that effi-
ciently exploits GIS geographical constraints, and makes powerful use of large
scale spatio-temporal environmental data, and (3) an integration of the spa-
tial analysis with a robust optimization module through a comprehensive set of
resource and contextual features. Through the use of Robust Optimization, data
uncertainty present in the forecast figures for the planned horizon is tackled with
a measure of robustness, allowing best and worst case scenarios to be studied
according to various risk adversity positions of the decision maker.

The GIS-RO framework presented in this paper, is applied to a real world
challenge of PV solar power plants planning in the region of French Guiana.
It illustrates the qualitative and quantitative efficiency of the approach as a
decision support system providing solution scenarios. The paper is organized as
follows: Sect. 2 describes the problem and overall approach; Sect. 3 presents the
GIS module; Sect. 4 the robust optimization model; Sect. 5 is the experimental
section based on a real-world case study for robust spatial decision making from
time series resources; and Sect. 6 concludes the paper.

2 Problem Description, Application and Approach

The problem is motivated by a renewable energy scenario planning problem from
the 2015 Energy Transition Act. France’s energy policy has the target for over-
seas regions, in particular French Guiana, of 50% of renewable energy in final
consumption in 2020 and full energy self-sufficiency by 2030 [15]. The challenge
is to identify suitable candidate parcels for RE parks and determine the ones,
and their optimal size, that would maximize power network contribution at min-
imal costs. A candidate parcel must satisfy a number of geographical constraints,
including topographic land use restrictions, type of ground surface, be at a max-
imum distance threshold from the electrical grid, and have a maximum surface
with limited land slope. These constraints bound the areas for candidate parcels.

The scenarios for the best parcels selection deal with the resource potential
and costs associated with each candidate parcel. The intermittent resource fol-
lows a temporal pattern specific to the geographic location. The costs are mainly
technical costs (installation, maintenance, grid connection) that depend on the
size of the parcel and its distance to the grid. These data have a degree of uncer-
tainty in terms of their future value. The full problem can actually be defined
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as a spatial placement problem to identify candidate parcels, and a fractional
uncertain knapsack problem with forecast time-series resource, to compute sce-
narios of optimal parcel selection and sizes. This paper aims at defining and
showing the strengths of a combined GIS and RO computational approach to
tackle complex spatial decision making problems with time-series resources, with
application here to solar energy placement and planning.

Integrated Computational Work-flow. The work-flow depicted in Fig. 1 best
describes the computational process and integration of the two modules. We
first describe the main inputs, then each module. Geographical data layers and
control parameters input the developed GIS GREECE module, which imple-
ments methods to determine the candidate parcels, and contributes a despatial-
ization of the relevant features for each parcel (resource pattern, maximal size
and costs), needed to enrich the RO model.

Fig. 1. GIS-RO integrated workflow

Data, Constraints and Control Parameters. In GIS terminology, the concept of
layer corresponds to geographic datasets. When the dataset is an image, the term
Raster is commonly used. The geometric objects are in vector mode and can be
specified as polygons, lines or points. As depicted in Fig. 1, input data layers
correspond to: (1) the study region or base layer, (2) the restricted area layers,
(3) specific objects for which distance to resulting polygons must be computed
(e.g. road, grid), (4) terrain features (land use and topography) and (5) the
resource of interest (here solar radiation maps).
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The restricted area layers stand for polygons where facilities cannot or should
not be established. Typically, they include urban areas, ecological zones, water-
courses, military sectors, cultural heritage, etc. They may also represent zones
too far from specific objects (e.g. electrical grid). Geographic elements for which
distance must be computed can be of any kind but are generally related to con-
nection and accessibility costs such as road and grid networks. Topography and
land use allow terrain to be characterized within each polygon. Finally, resource
dataset is a set of raster or vector processed images, potentially with time series.
Data layers and maps are retrieved from national and international geographic
databases or remote sensing image processing.

The range control parameters are set by the user, and allow for different land
management scenarios to be generated. Buffers surrounding geographic objects
depend both on their type and on the kind of power station. Distance thresholds
to given layers (e.g. road network, electrical grid) stand for the limit beyond
which establishing a facility is not economically viable. Finally, land surface area
specify a region’s land management in terms of minimum and maximum allowed
surface thresholds. Smaller or larger parcels might respectively be excluded from
the study, or partitioned into suitable smaller parcels.

3 GIS Module: GREECE

We specify the Geographical REnewable Energy Candidate Extraction problem
below, then describe our spatial partitioning and placement solution methods.

Given:

Blayer Base layer (i.e. a set of polygons)
Rlayer Restricted area layers
Dlayer Distance threshold layers (i.e. sets of geometries)
h Matrix of elevation values (DEM) associated to the base layer
Rmaps Set of resource raster maps
LUlayer Land-use layer
NETlayers Layers (e.g. grid, roads, ...) for which distance to each resulting

polygon must be calculated
Buffers Control parameter: Set of buffer values, each associated with a given layer
DistT Control parameter: Set of distance threshold values, defined for each Dlayer

smin, smax Control parameter: Surface thresholds
Find:

The set P of candidate parcels
The de-spatialized resource time series and geographical features for each parcel

Such that the following geographical restrictions hold:
A candidate parcel is geographically disjoint from all layers of restricted areas
The surface of a candidate parcel is within given bounds
A candidate parcel is within a bounded distance from the threshold layers

For space reasons, we give the main procedure in Algorithm 1, the spatial
partitioning algorithm, and describe our spatial slicing and extraction methods,
developed with Python GIS packages. The general procedure is decomposed in
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two main steps: (1) spatial placement and partitioning (Algorithm 1: line 2–10),
(2) conversion of the resulting polygons defined by their geographical coordinates
into de-spatialized items with relevant features (Algorithm 1: line 11–20). The set
of relevant built-in Python GIS functions for topological, raster, set and graph
operations is defined (packages used: geopandas, shapely, rtree, gdal [21], numpy
[43], and networkx).

Topological geometric and raster images operators
DISTANCE(p,P) Minimum euclidean distance between centroid

of polygon p and all elements in set P
UNION(p1, .., pn) geometric union of the polygons pi
RTREEIDX(P) Compute spatial index idx of all elements in P
INTERSECTS(p,P,idx) geometric intersection of p with elements in P
SHAPE(p) Shape factor of polygon p (e.g. roundness)
SURFACE(p) Surface of polygon p
SLOPE(h) Slope raster from the Digital Elevation Model h
ASPECT(h) Raster of slope orientation values from DEM h
Set and graph functions
HONEYCOMB(x,shex) Creates a honeycomb grid corresponding to polygon x

of x with hexagonal elements having surface shex
PARTGRAPH(G, n, Wpart) Partitions a graph G into n parts having weights Wpart

Algorithm 1: GREECE main algorithm
1 begin
2 /* Compute candidate parcels specified spatially as polygons */

3 P ← MASK(Blayer, Rlayers, Buffers)

4 for p ∈ P :
5 if SURFACE(p) >= smax:

6 P .DELETE(p)

7 P .INSERT(PARTITION(p, smax, fd))/* see algorithm 2 */

8 for p ∈ P :

9 if SURFACE(p) < smin ∨ DISTANCE(p, i ∈ Dlayer) > dti, dti ∈ DistT :
10 P .DELETE(p)

11 /* Compute, store de-spatialized features for each polygon p (Section

3.2) */

12 for p ∈ P :

13 p.APPEND(DISTANCE(p, N ∈ NETlayers))

14 p.APPEND(SHAPE(p)), p.APPEND(SURFACE(p))

15 p.APPEND(sk ∈ SURFACE(p ∩ INTERSECTS(p, LUlayer, RTREEIDX(LUlayer))))

16 /* Aggregate raster cell values, terrain features, within p */

17 p.APPEND(μn ∈ ZONALSTAT({h, SLOPE(h), ASPECT(h)}, p, μ))

18 p.APPEND(σn ∈ ZONALSTAT({h, SLOPE(h), ASPECT(h)}, p, σ))
19 /* Mean energy resource values per raster time series */

20 p.APPEND({μ1, μ2, · · · , μt} ∈ ZONALSTAT(Rmaps, p, μ))

http://geopandas.org/
https://shapely.readthedocs.io/
http://toblerity.org/rtree/
https://gdal.org/python/
https://www.numpy.org/
https://networkx.github.io/
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3.1 Spatial Placement and Partitioning of Polygons

Slicing the Base Layer: Extracting Parcel Polygons. The slicing of the whole
study area is divided into two main steps. The first consists in identifying and
removing the restricted areas that intersect a base polygon (our study area)
as well as zones beyond the distance threshold from given elements (electrical
grid, road network, etc.). The procedure Mask(Blayer, Rlayers, Buffers) applies
set-based topological operators, that mask out portions of restricted layers and
buffered zones, intersecting the base layer (Algorithm 1:line 3). It corresponds
to a 2-dimensional difference operation. The result of this first step is a finite
set P of new polygons, representing available land for potential power facilities,
illustrated in Fig. 2(a).

The second step (Algorithm 1:lines 4–10), consists in filtering in a deter-
ministic manner the polygons belonging to this set, based on their surface and
distance to the grid. First we identify the parcels whose surface is beyond the
allowed threshold. We developed a 2D space partitioning approach based on a
k-way graph partitioning method, that partitions these parcels into smaller ones
of suitable sizes (Algorithm 1: line7). Then, we prune further the resulting set of
potential parcels according to the minimal surface threshold and distance to the
grid, illustrated in Fig. 2(b). This last step is best handled using GIS geograph-
ical metric operators (Algorithm 1: lines 8–10). The extracted and computed
parcels can all contribute to a solution, without inconsistent pruning of viable
parcels from the standpoint of the threshold and land restriction constraints.
Figure 2 illustrates the spatial layers masking process as well as the pruning of
parcels below a surface threshold, and beyond a distance threshold to network
layers (grid, roads, ...).

Fig. 2. Pruning restricted areas and threshold layers

Spatial Partitioning Method. To partition a polygon into smaller plots of equal
size, we propose a k-way graph partitioning approach, depicted in Algorithm 2.
First, we specify the initial polygon as a honeycomb mesh, that is a set of con-
nected hexagonal plots of given size (line 6). We then map the mesh to a graph,
and apply a k-way graph partitioning (lines 7, 20–29). Each hexagon denotes
a vertex connected to its concomitant neighbors by unweighted and undirected



736 N. Al-Kurdi et al.

Algorithm 2: Surface partitioning
1 def PARTITION(p, smax, fd): /* Partition polygon p into a set of

polygons P of equal surface */
Input : polygon p, maximal area per partition smax, disaggregation

factor fd
Output : a set P of polygons

2 /* Initialization */

3 k ← � SURFACE(p)
smax

� /* Number of targeted plots */

4 if k <= 1 and SURFACE(p) − spart < spart/fd:
5 return {p}
6 H ← HONEYCOMB(p, area:smax/fd) /* create the mesh of hexagons */

7 G ← TOGRAPH(H, SURFACE(hexa ∈ H))

8 for i ∈ {1, .., k}:
9 /* Set the weight for each sought plot */

10 Wplot.APPEND(smax)

11 if SURFACE(p) mod smax not = 0:
12 Wplot.APPEND(SURFACE(p) − n · smax)

13 k ← k + 1

14 /* k-way graph partitioning of G into a set of k clusters C */

15 C ← PARTGRAPH(G, k, Wplot)

16 /* Convert the clusters of vertices into a set polygons */

17 for set ∈ C:
18 P .INSERT(UNION(pi | i ∈ set))

19 return P

20 def TOGRAPH(H, Whexa): /* Convert the weighted mesh into a graph */
Input : set of hexagons H, set of corresponding weights Whexa

Output : a graph G
21 /* Initialization */

22 G ← GRAPH()

23 for (h,w) ∈ (H,Whexa):
24 /* set of polygons concomitant to h, frontiers */

25 F ← INTERSECTS(h, H, RTREEIDX(H))

26 for f ∈ F :
27 G.INSERT(EDGE(h, f))

28 G.INSERT(NODE(p, weight:w))

29 return G

edges. The k value is first initialized using a disaggregation factor, that sets the
size of each hexagon (lines 3–5). The bigger the factor value, the smaller each
hexagon and thus the more refined is the mesh. Each vertex is weighted with the
corresponding hexagon surface. The weight of the sought clusters (final plots)
is initialized (lines 8–13), to feed the k-way graph partitioning (line 15). The
procedure derives k clusters of vertices, to reach the surface threshold of each
plot. The algorithm minimizes the number of edge cuts and forces contiguous
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partitions [29], so that the final aggregates present round-like geometries. The
algorithm was developed using Python library networkx and the METIS package
[30]. Finally the k-clusters are translated into k polygons (lines 17–18).

Example 1. The figure illustrate a 16-way graph partitioning of a 781 km2 poly-
gon into plots of 50 km2, using an hexagonal honeycomb mesh. k is initialized
to � 781

50 �. The algorithm derives 15 plots between 49 km2 and 51 km2 plus one
(marked with an asterisk) which fills the leftover space (≈ 32km2). The output
is a finite set of polygons of acceptable surface (below the maximum threshold).

3.2 Contextual Data and Resource Time Series De-Spatialization

Geospatial data is an invaluable source of contextual information, to characterize
in general, multiple land features and resources, but also their proximity with all
sorts of infrastructure networks. The challenge when dealing with optimization
problems evolving around resources, costs and constraints, is to seek a compu-
tational approach to specify and solve a problem as closely as possible to its real
setting. A contribution of the proposed GIS-RO framework is to achieve this
by using the qualitative and large spatio-temporal and contextual information
analyzed and extracted through GREECE, with a de-spatilization process. The
goal is to convert the polygons into items without their geo-referencing, and to
associate to each the features relevant to the optimization module. Regarding
energy planning, the features must capture many land properties, and resource
time series, but also dimensions and distances that will allow a reliable conver-
sion to technical costs for each candidate parcel.

The localization and maximal surface of a candidate parcel can provide
numerous relevant information from the intersected data layers: (1) the distance
to specific infrastructures such as substations, electrical grid or road network
contributes to assessing energy losses as well as accessibility costs, (2) the maxi-
mal surface is linked to construction and maintenance costs [3,6,42]. In addition,
terrain slope is a critical criterion for establishing power facilities [4,46]; in the
same way, final cost might also be affected by land type and land use, or even the
shape of the parcel. In the case of solar and wind energies, geo-referenced resource
maps are available from satellite images or field studies [5,6,20]. By overlaying
the previously sliced polygons with these raster images, it is therefore possible to

https://networkx.github.io/
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aggregate the resource within each parcel. Essentially, the de-spatialization con-
sists in translating the geography of each candidate into either static or dynamic
quantifiable features. These features can then be integrated into energy mod-
els, converted into construction and operation costs, or used as constraints or
in the objective functions of the optimization model. In the case of solar PV,
GREECE extracts the following parameters from each candidate parcel: area,
shape, distance to the grid, land use share, elevation, slope, aspect and solar
GHI time series (Algorithm 1:lines 13–20). The whole implementation has made
use of the python libraries referred earlier. SURFACE(p) provides information on
the maximum power plant capacity that could eventually be set up within the
parcel. SHAPE ranges from 0 to 1 and measures the roundness of a parcel, that
is how spread out a solar PV plant might eventually be. DISTANCE to the grid
is computed from the polygon centroid and is used to get both connection costs
and transmission losses. Land use share can be correlated to construction costs,
as well as elevation (from DEM h) using SLOPE and ASPECT. They may also
be used as exclusion thresholds. Land use share is retrieved by computing the
intersecting area between the given parcel and each attribute of a land use layer
LUlayer (line 15). Elevation, slope and aspect are retrieved from the 3 arc sec-
ond SRTM-based digital elevation model (DEM) [27] and by calculating average
and standard deviation from raster cells overlapping with each candidate parcel
(lines 17–18). Finally, solar GHI time series are obtained in the same way as
with the DEM but for as many time steps as available solar radiation maps (line
20). As a result, each candidate parcel is now a compound item with geometric
and terrain features, and time series of solar GHI values. In the case of solar PV,
we have also converted GHI into power by adapting the pvlib library from the
Sandia National Laboratory (SNL) [25].

4 Optimization Module - Fractional Knapsack Approach

The Optimal planning and sizing of PV plants (OPSPV) is an optimization
problem permeated with uncertainty, rooted in projection estimates from cur-
rent data relative to the growth of energy demand and the resource values. As
shown in Fig. 1, it takes the candidate parcels with their de-spatialized features
to select the ones and their optimal size such that the PV power penetration
in the network is maximized at minimal cost. We propose a robust optimiza-
tion approach based on the seminal works of [8,14], that specifies uncertainty
using deterministic intervals. They denote the robust bounds within which the
uncertain data is known to take its value. This modelling approach enables reli-
able best and worst case planning scenarios to guide the decision makers, and
to assess the impact of his risk adversity impact on the output scenarios. The
specification of the problem is given in Fig. 3.

Robust Constraint Optimization Model. The OPSPV, energy strat-
egy planning problem can be modelled as a fractional knapsack problem
with additional constraints. In this analogy, the knapsack corresponds to

https://pvlib-python.readthedocs.io/en/stable/
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Fig. 3. OPSPV problem specification

the forecast energy demand to be provided by existing and new intermit-
tent RE sources (in (KW/hr), and the items are the candidate parcels
with their potential supply (KW/hr) plus their associated technical costs
(installation relative to the size thus production (e/KW ), and connection to
the grid and substation (e). The objective is to maximize hourly penetration of
additional RE power in the network while minimizing global costs.

We first specify the problem and then describe the model developed in terms
of variables, constraints and cost functions.

Variables. We consider two sets of variables that need to be linked to each other.
Boolean variables relate to the selection or not of a candidate parcel, needed to
determine whether the unit connection cost is applied or not (Cconi). The area
variables, ranging over a real interval, are involved in the energy production
constraint and the installation, capital and operational costs, that depend on
the size of a new PV plant.

∀ i ∈ N,Bi ∈ {0, 1} 1 if parcel is selected, 0 otherwise
∀ i ∈ N,SAi ∈ [0.00..Smaxi] Area of a parcel
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Knapsack Constraints. The first set of constraints relates to the forecast energy
demand, using existing resources augmented with new PV production. It seeks
to determine the capacity of new PV plants to contribute to the anticipated
demand. Two scenarios are considered: (1) best case scenario (highest PV energy
forecast and lowest forecast demand) and (2) worst case scenario (lowest PV
energy forecast and highest forecast demand). This allows to study the impact
of the decision maker risk adversity in planning the creation of new PV plants.

Best case scenario: ∀ t ∈ H, ΣiSAi × Ppvt,i + Eintt + Ept ≤ Demt

Worst case scenario: ∀ t ∈ H, ΣiSAi × Ppvt,i + Eintt + Ept ≤ Demt

Network Penetration Constraints. The second set of constraints states that the
amount of intermittent energy resource into the network should be less than
35% of the total forecast energy demand per hour (upper bound) [17]. The time
stamp is the hour. It is also set for the best and worst case scenarios:

Best case scenario: ∀ t ∈ H, ΣiSAi × Ppvt,i + Eintt ≤ 0.35 × Demt

Worst case scenario: ∀ t ∈ H, ΣiSAi × Ppvt,i + Eintt ≤ 0.35 × Demt

Connecting Parcel Selection and Size. The third set of constraints establishes
a link between the Boolean and PV plant area variables. This relationship is
needed to connect the energy production and the various costs. If a plant size is
not null then the parcel is selected, and conversely if a parcel is not selected its
size is forced to be null.

∀i ∈ N, SAi ≤ Smaxi × Bi, Bi × Smin ≤ SAi

Objectives and Cost Functions. The OPSPV problem has two main objective
functions: (1) to maximize the total hourly RE energy production over the year
through new PV energy production, (2) to minimize the total technical costs.
Since the functions are in different units, a single weighted function is not mean-
ingful, instead we seek the pareto frontier, by optimizing PV production function
while constraining the cost function with more restrictive values at each run.

Maximize PV Production: depending on the scenario considered, Ppvt,i will take
its highest estimate (Ppvt,i for best case) or lowest estimate (Ppvt,i for the worst
case). The cost function to maximize is:

ΣiΣtSAi × Ppvt,i

Minimize Costs: Modelling Non-Linear Functions. Four cost functions are
involved and relate to the installation and size of a PV plant as defined in
Fig. 3. Typically, capital and operational costs are approximated as linear func-
tions [9,19,24]. However, this approach is unrealistic as both the Capi and Copi
costs are in fact non-linear, since they depend on the size of the plant (linked to
the related number of PV panels) [31]. Basically the fewer the number of panels
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the highest the relative cost per panel. To get closer to reality, we thus consider
an innovative approach using a piece-wise linear function such that ai is the
coefficient of the slope, and yi the value of the coordinate where the new slope
begins. It is illustrated below for Capi, and Copi follows a similar specification
with different constants. Values have been set from [31]:

Capi =

⎧
⎪⎨

⎪⎩

a1 × Pnom × SAi + y1 if 0MW ≤ SAi × Pnom ≤ 1MW

a2 × Pnom × SAi + y2 if 1MW ≤ SAi × Pnom ≤ 10MW

a3 × Pnom × SAi + y3 if 10MW ≤ SAi × Pnom

On the other hand, the unit connection cost of a PV plant, and the capital
cost of a new station for a plant, are both linear functions that depend respec-
tively on the creation of the plant in a parcel with its Euclidian distance to the
grid, and the unit cost of a substation proportional to the computed size of the
plant. We have the following functions:

Cconi = Clan × Dgi × Bi, Cstai = Csta × Pnom × SAi

5 Experimental Study and Evaluation

The proposed GIS-RO framework seeks to make powerful use of multi-scale con-
textual information for spatial decision making and optimization. It is evaluated
on the timely challenge in the region of French Guiana, where the objective
is to reach the energy policy plan of 100% renewable by the year 2030, first
by increasing PV, then biomass. The challenge lies in the strategic planning of
solar PV scenarios using contextual real data characterized by spatio-temporal
patterns and permeated with uncertainty (resource projections). In this section
we present our results and analysis. Input data layers, retrieved from various
national and world databases [26,28,32,33], and associated buffer values are
depicted in Table 1. In addition, maximum distance to both power grid and road
network has been set to 20 km, twice the value commonly used [6,39]. Land sur-
face area minimum and maximum thresholds for establishing solar PV plants
are respectively set to 1.5 ha [44] and 50 ha [17]. Finally, regarding plot resource,
monthly solar GHI time series derived from satellite-based raster images [5,20]
have been disaggregated at the hour using an updated version of a synthetic
generation model [1,2,38].

Table 1. Land management scenario used in this study for restricted areas.

Layer Protected

areas

Forest Urban

areas

Flood

savanna

Water

bodies

Shore Power

grid

Road

network

Wetland Dune/

Sand

Rice/

Orchard

Buffer (m) 500 200 200 100 100 100 100 30 0 0 0

Refs [45] [6] [3,45] [41] [40,41] [40] [3,39,41] [3,39,41] [41]
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The GREECE module was implemented in Python using GIS-Python
libraries recalled in the paper. It provides de-spatialized data items to the
OPSPV module, which was implemented using IBM ILOG OPL CPLEX
Optimization studio, on a 2 processors (Intel(R) Xeon(R) CPU E5-2609 v4
@1.70GHz) of 32 Go RAM. The GREECE module led to the extraction of 133
candidate parcels with their relevant features. The execution CPU time for the
GREECE module is about 460 s. (reading files: 30 s; mask: 380 s.; partitioning:
3 s.; feature + monthly resource extraction: 50 s.), handled as a one off spatial
placement preprocessing. The optimization CPU time varies from 23 s to 47 s
depending on the bound set on the constrained objective function (runtime dif-
ferences come from handling piece-wise linear functions that depend on the park
sizes).

Data Sets. Restricted area layers handled in MASK correspond to a total of 21088
geographical objects. Here, the base layer Blayer corresponds to Guiana’s land
use LUlayer, which gathers 2643 polygons. Road network and power grid used in
distance threshold computation are made of 2247 lines. Monthly solar resource
is represented by a raster set of 12 × 3999 × 3999 cells. Global energy demand
and existing production data are known from the sources and extractions from
records of 2016 [18]. For the 2030 horizon we projected hourly energy demand
values according to EDF estimations of worst case 5% annual growth and best
case of 2% annual growth.

5.1 Results and Analysis

We analyzed three aspects of relevance to the decision maker and network man-
ager (power plant energy investors in Guiana and EDF) that are made possible
with the combination of geographical and temporal contextual information and
optimization: (1) the impact of the spatio-temporal energy patterns on the geo-
graphic selection process (Figs. 4 and 6 (b)), (2) the study of the risk adversity
comparing best and worst case scenarios (Fig. 5), (3) the identification of robust
planning investment scenarios where the optimal plants show to be identical
regardless of the degree of spatio-temporal uncertainty on the power resource
(Fig. 6 (a)).

Figure 4 depicts the resulting spatial variation of the solar GHI patterns
(derived by GREECE) on the produced power from the optimal solar PV plants
(location and size) whose placement is visible in Fig. 6 (b). P1 and P4 sites (P2
and P3) have similar patterns for they are located in the same solar potential
cluster zone. Essentially, it shows how our GIS-RO approach manages real site
spatial arrangement so that the global output power is robust through time from
the optimal PV plants: impact of their RE intermittency on future network power
management is limited.

Figure 5 gives information about (a) the volume of solar PV plants one may
install within the region without threatening the power grid in the long-term,
and (b) its corresponding final share in the energy mix. As long as both Pareto
lines remain together in Fig. 5 (a), the solution is robust, i.e. power generation
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Fig. 4. Normalized output power from solar PV sites of Fig. 6.

over time from selected plants fills up the same free energy volume regardless of
the scenario: corresponding PV sites can be explored safely in the limits of their
maximum capacity estimated by the RO. In contrast, once the best case reaches
its plateau , and so Pareto lines split in half (around 40 Me), power generation
no longer fills up the same volume. At this point, the more the energy generated
in the worst case scenario, the more it exceeds the energy generation limit in the
best case: the risk grows as much as the gap between both lines.

Fig. 5. Pareto charts for both scenarios with respect to (a) generated energy and (b)
PV penetration.

Finally, Fig. 6 evaluates the robustness of the investment according to spatio-
temporal uncertainty on the resource: (i) estimated GHI, energy potential (in
blue), (ii) its mitigation by a random uniform noise per hour and per parcel,
between 0 and 10% (in green) and (iii) between 0 and 20% (in red) respectively.
The safety zone lies below a cost of 70 Me (C70), meaning that the selected PV
sites are the same for all resource time series projections. Those sites are sorted
by ascending parcel size area from the smallest (P1) to the largest (P4). The
investment costs grow naturally when the optimal PV plant size grows within
its corresponding parcel area (fractional knapsack optimization).
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Fig. 6. Robustness of the worst-case scenario solution with decreasing resource (Color
fig online)

6 Conclusion

In this paper we have proposed a two-step specification and novel computa-
tional approach of the spatio-temporal placement and energy planning problem.
We addressed key challenges of sustainable science in terms of spatial decision
making and usage of complex contextual data, constraints and time series of
resources. The presented GIS-RO framework allows for real world and large
scale applications to be solved through an integrated approach at the inter-
face of GIS science, graph and robust optimization models and methods. The
case study showed in particular the importance of taking into account actual
resource patterns and allowing for fractional parcel selection to optimize power
plants location and size, and thus optimize the power penetration at minimal
cost. Current work includes its generalization to include the cost-effectiveness of
energy storage considered not profitable to this date in Guiana, and the gener-
alization to biomass resources that raises a complex temporal renewability issue
of the resource.
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Abstract. In this work we consider an information-based system to
reduce metropolitan rail congestion in Melbourne, Australia. Existing
approaches aim to reduce congestion by asking commuters to travel out-
side of peak times. We propose an alternative approach where congestion
is reduced by enabling commuters to make an informed trade-off between
travel time and ride comfort. Our approach exploits the differences in
train frequency and stopping patterns between stations that results in
trains, arriving within a short time of each other, to have markedly differ-
ent levels of congestion, even during peak travel periods. We show that,
in such cases, commuters can adjust their departure and arrival time by
a small amount (typically under 10 min) in exchange for more comfort-
able travel. We show the potential benefit of making this trade-off with
a discrete optimisation model which attempts to redistribute passenger
demand across neighbouring services to improve passenger ride comfort
overall. Computational results show that even at low to moderate levels
of passenger take-up, our method of demand shifting has the potential
to significantly reduce congestion across the rail corridor studied, with
implications for the metropolitan network more generally.

1 Introduction

Home to more than 4.8 million residents, Melbourne is Australia’s second-
largest, and fastest growing city. Melbourne residents enjoy access to an exten-
sive public transportation network which includes metropolitan rail, light rail
and bus services. According to Public Transport Victoria (PTV)1 there were
565 million trips on public transport in the Melbourne metropolitan area in the
year from 1 July 2017 – 30 June 2018 [2]. Of these, the largest share belongs to
rail, with 240.9 million trips recorded. One of the major challenges facing trans-
port planners in Melbourne is that rail passengers often experience high levels
of congestion, especially during morning and afternoon peak periods. Attempts
to tackle Melbourne’s congestion tend to focus on the addition of more infras-
tructure, that is, rail lines and trains. However, this approach is expensive, and
1 PTV is the government agency responsible for providing and coordinating public

transport for Melbourne and across the state of Victoria.
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sometimes impossible due to limitations on available space and other resources.
Two alternative strategies, both widely studied in the research literature, are:
(i) optimisation-based demand management and; (ii) demand management via
incentives. We briefly discuss each.

Optimisation-based demand management, sometimes called passenger flow
control, works by directing passengers to services based on their planned jour-
ney; e.g. [8,14]. This body of research shows that passenger load can be effectively
moved downstream until the demand in a saturated system is resolved. Disad-
vantages of this type of approach include high planning overheads, as passenger
flows need to be optimised in near real time, and a dependence on significant
physical infrastructure, such as waiting areas, boarding areas and designated
entries. This approach also presumes that passengers will tolerate it.

Incentive-based demand management, by comparison, exploits trade-offs that
exist between passenger preferences for time, comfort and cost. The idea is to
encourage passengers to travel during periods of reduced demand and to discour-
age travel during periods of peak-demand. Studies in this area often apply equi-
librium modelling, seeking to quantify, under certain conditions, the dis-utility of
travelling early or late against the cost of discomfort and the willingness to pay
[12,17]. The main disadvantage of such in-principle economic models is that pro-
posed fare structures are complicated and their actual effects on real schedules
are usually not clear. When applied in practice, incentive-based systems employ
more simplified structures. One example is PTV’s Early Bird train travel [9] a
scheme that allows Melbourne passengers to ride for free provided they arrive
at their destination before 7:15am on weekdays. Another example is Singapore’s
INSINC [13] system, which rewards passengers who shift their travel away from
periods of peak demand. These approaches report varying degrees of success but
related studies [9,16] show that relatively high reductions in fare are sometimes
necessary to overcome the reluctance of some passengers to avoid peak periods.

In this work we consider a different approach where we aim to shift demand
within peak periods by encouraging commuters to make informed trade-offs. We
are motivated by evidence from the literature which suggests that passengers are
willing to incur some additional travel time in order to secure a more comfortable
trip [3,5–7]. In the case of Melbourne, electronic noticeboards at rail stations,
and also travel apps, show only the time of the next departure. However, many
stations are serviced by multiple lines, including some with low levels of occu-
pancy, even during peak periods. We posit that, if congestion information was
made available, passengers could make informed trade-offs based on preferences
and needs. For example, pregnant, elderly, or disabled passengers might prefer
a longer seated trip to a shorter one that involves standing.

Working with our industrial partner, PTV, we undertake a capacity-based
study to investigate the congestion-reducing benefits from such an information
scheme including under varying degrees of passenger uptake. Our approach relies
on travel-card data, from which we construct a detailed congestion model of
two rail lines in the Melbourne network: Werribee and Williamstown. We com-
bine this data with an optimisation-based model that measures the impact of
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Fig. 1. The south-western region of the Melbourne Metropolitan Rail Network com-
prising the Werribee and Williamstown lines.

passenger demand shifting on congestion during times of peak demand. We show
that with even modest levels of uptake (e.g., 20%) congestion measures can be
almost halved. Meanwhile with an uptake of 60% we show that overcrowded
trains can be almost entirely eliminated.

2 Background: The Melbourne Rail Network

The Melbourne Metropolitan Rail Network is a large hub-and-spoke system com-
prised of 217 stations, connected by 837 km of rail [1]. Figure 1 shows the south-
western region of this network, the focus of our study.

The network consists of 16 lines which connect at a central terminus, Flinders
Street Station. Trains in the network operate from 5am to midnight on weekdays
and until 1am on weekends. Morning peak demand occurs between 7:00 am and
9:30 am, and afternoon peak between 3:30 pm and 7:00 pm week days.

The network is serviced by a fleet of more than 200 trains which are managed
by Metro Trains, a privately-owned rail operator. The fleet is currently made
up of 3 models [1]. These are: Comeng, having 536–556 seats, with a target
capacity of 800 passengers; and X’ Trapolis and Siemens, both having 528
seats and target capacity of 900 passengers. Any train which exceeds its target
capacity is considered to be in breach of the service agreement between PTV and
Metro Trains. Breach events are undesirable because they typically cause delays
at stations and increase the risk of accidents when passengers are boarding and
disembarking. Systematic breaching can result in penalties for the rail operator.
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3 Modelling Assumptions

3.1 Trains and Rail Network

We focus our attention on the south-western section of the Melbourne Rail Net-
work (Fig. 1). This network consists of two rail lines, with origins at Werribee
and Williamstown, and three distinct types of train services:

– Werribee Express services, which originate at Werribee, have a frequency of
approximately 10 min and run non-stop between the stations of Laverton and
Newport and between Newport and Footscray.

– Williamstown services, which originate at Williamstown, have a frequency of
approximately 20 min and stop at all stations.

– Laverton services, which originate at Laverton, have a frequency of approxi-
mately 20 min and stop at all stations, running through the so-called Altona
loop.

We study demand shifting for the morning peak period. We consider all sched-
uled trains and we work with actual arrival times (cf. departure times) at each
station, as measured by our industrial partner PTV. Additionally, owing to the
configuration of the rail lines, overtaking is not possible. That means the relative
order of arrival of trains at each station is fixed.

3.2 Measuring Congestion

In this section we discuss the region we study, the definitions of different levels
of congestion, and the way we translate trip data into congestion measurements.

In the modelling that follows, we consider 5 levels of congestion. We use the
capacity of Comeng trains as a reference, since these trains service the south-
western rail network. We believe that this does not affect the generality of our
conclusions. The congestion levels we use accord to PTV’s own scale for conges-
tion, and are broadly in line with those reported in [6].

1. sparse 0 to 264 passengers: no more than half seated capacity.
2. seated 265 to 528 passengers: fewer passengers than seats.
3. standing 529 to 662 passengers: more passengers than seats, but less than

half standing capacity.
4. target 663 to 800 passengers: more passengers than seats, and more than

half standing capacity.
5. breach 800+ passengers.

3.3 Data Collection and Train Occupancy Calculation

We calculate passenger counts on each train service from smart card data, which
records the location and times at which a passenger entered and exited the rail
system by touch on and touch off. The data used for this project comprised
3.6 m passenger touch on and 3.5 m touch off instances throughout Melbourne’s
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rail network from January 30 to February 5 2017. We impute train occupancy
from these data by assigning passenger trips to specific train services through
the entry and exit stations during the corresponding time window using the
following protocol. In each 10-min period, at each station:

1. Count the passengers arriving (touch on); identify each passenger’s destina-
tion (touch off location).

2. Identify eligible services stopping at the current station (during the current
period, or immediately after if no service is available during the current
period) and stopping at the touch off station.

3. Remove passengers disembarking at their touch off station.
4. Assign waiting passengers equally to eligible services.
5. Record congestion level.

We assume that city-bound passengers exiting the train system outside the
south-western region remain on board the train until the last hub. For the pur-
pose of our study, this was Footscray. Figure 2a shows train occupancy during the
Thursday, February 2, 2017 morning peak period calculated using this method.
(Thursday has the busiest morning peak; 15,927 trips were identified over this
period.) Passenger occupancy (shaded to show congestion) highlights the over-
crowding that motivated this study.

4 Greedy Demand Shifting

To observe the potential reduction in congestion due to passenger demand shift-
ing, we modify the passenger load calculation to simulate passengers choosing
less congested adjacent services at Laverton and Newport. This includes trains
arriving up to 10 min earlier and departing 10 min after the current time period.
We use greedy shifting, moving as many boarding passengers as possible in order
to keep the congestion score of the current train and alternative services to a
minimum. Treating levels 4 and 5 as congested, we use the same protocol as
shown above, modified as follows:

4. Check congestion level of the incoming train; Distribute boarding passengers
equally to all eligible services; for congested services, reassign a proportion of
these passengers equally to all the non-congested trains arriving during the
interval from 10 min prior, to 10 min post current time window.

Figure 2b shows passenger occupancy and congestion during the February
2, 2017 morning peak after greedy demand shifting is applied at Laverton and
Newport. We only present results up to 8:30 am to save space but note that con-
gestion levels are low for all services departing any station in the south-western
rail corridor after this time, with available seating in all cases. Comparing the
two figures it is evident that the number of breach incidents decreases from 13
in the original case to 11 when greedy shifting is adopted.
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Fig. 2. Passenger counts and congestion levels during the morning peak for all services
operating on the Werribee-Williamstown-Footscray network on February 2, 2017.

5 Reducing Congestion with Discrete Optimisation

Although the greedy approach shows some potential benefit from demand shift-
ing, it does not reveal the greatest reduction in congestion that could be achieved
if a whole network view was taken. In this section we describe a discrete opti-
misation model which assigns passengers to trains to reduce congestion globally.
This enables us to determine the maximum reduction in congestion that could
be achieved by demand shifting.

The principal data set used by the model contains trip information quan-
tised into time blocks of 10 min. This shows, for each time block, the number
of city-bound passengers travelling between each pair of stations during that
period. From this, a flow network is constructed, which assigns the number of
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passengers embarking and disembarking for each service and each station. This
enables the occupancy of each train to be calculated along its journey. Passen-
gers are constrained to maintain a feasible trip across the network that is similar
to their recorded trip touch on and touch off times. The objective is to minimise
the congestion in the network. The optimal solution automatically reroutes pas-
sengers to reduce congestion. We recognise the solution given by this model
represents an idealisation not achievable in practice, as it is based on perfect
future knowledge, and assumes complete compliance by passengers. However, it
does show the degree to which congestion could be reduced in a perfect situation.

The core sets of the model are given below, along with the name we shall use
for indices that refer to elements in that set

ST, st The set of stations considered
L, l The set of lines considered
B, b The set of time blocks considered
S, s The set of train services considered

The core data of the problem model is given by

mpax ∈ Z Maximum passengers on any service
seql ⊆ ST The sequence of stations for line l
lines ∈ L Which line is used by service s
tripb,st1,st2 ∈ Z The number of passengers commencing a jour-

ney at station st1 in time block b to go to st2
compb,st,s ∈ {true, false} Is it possible for a passenger to enter service s

at station st at time block b

The compatibility, compb,st,s, of a station st and time block b with a service
s is determined as follows. Assuming we are allowing demand shifting be able to
change passenger arrival times at their start station by no more than δ minutes
from the time shown by recorded trip data, then s is compatible with b and st if
the departure time for s from station st is no earlier than δ minutes before the
time block commences, and no later than δ minutes after the time block ends.
If we disallow forward shifting of passenger arrivals (i.e., assigning passengers
to a train departing earlier than their touch on time), then only services that
arrive between when the time block commences, and up to δ minutes later are
compatible.

We assume sequence functions first(Q) returning the first element q1 of a
sequence Q = [q1, q2, . . . , qn], and succ(Q) returning the set of adjacent pairs
{(q1, q2), (q2, q3), . . . , (qn−1, qn)} of sequence Q. We compute auxiliary data

onb,st =
∑

st′∈ST tripb,st,st′ The number of passengers entering the system
at station st at time b

off b,st =
∑

st′∈ST tripb,st′,st The number of passengers leaving the system
at station st that entered at time b

visitss,st = st ∈ seqlines Whether service s visits the station st
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The principle decisions enter and exit and auxiliary decision variables pax
are defined below. They are all constrained to lie in the range 0..mpax.

enterb,st,s The number of passengers entering service s at sta-
tion st at time block b

exitb,st1,st2,s The number of passengers exiting service s at station
st2 that entered at station st1 in time block b

paxst,s The number of passengers on service s when depart-
ing station st

We are now in a position to define the constraints of the problem.

enterb,st,s = 0 ∀b ∈ B, st ∈ ST, s ∈ S,¬visitss,st (1)
exitb,st1,st2,s = 0 ∀b ∈ B, st1, st2 ∈ ST, s ∈ S,¬visitss,st1 (2)

exitb,st,st,s = 0 b ∈ B, st ∈ ST, s ∈ S (3)
paxst,s = 0 s ∈ S,¬visitss,st (4)

Equation (1) ensures no passengers enter a service at a station it does not
visit. Similarly, Eq. (2) ensures no passengers exiting a service commence at a
station it does not visit. Equation (3) ensures no one enters and exits a service
at the same station. Equation (4) ensures that the passengers for a station st
not visited by a service s is 0.

∑

b∈B,s∈S

enterb,st,s =
∑

b∈B

onb,st ∀st ∈ ST (5)

∑

b∈B,st1∈ST,s∈S

exitb,st1,st2,s =
∑

b∈B

off b,st2 ∀st2 ∈ ST (6)

∑

s∈S,compb,st,s

enterb,st,s = onb,st ∀b ∈ B, st ∈ ST (7)

∑

s∈S

exitb,st1,st2,s = tripb,st1,st2 (8)

exitb,st1,st2,s ≤ enterb,st1,s ∀b ∈ B, st1, st2 ∈ ST, s ∈ S (9)

paxst,s =
∑

b∈B

enterb,st,s s ∈ S, st = first(seqlines) (10)

paxst2,s = paxst1,s +
∑

b∈B enterb,st2,s − ∑
st3∈ST,b∈B exitb,st3,st2,s

∀s ∈ S, (st1, st2) ∈ succ(seqlines)
(11)

Equation (5) ensures that all passengers arriving in the system enter a train.
Equation (6) similarly ensures that all passengers leaving the system at a station
st2 beginning at st1 are exiting a service. Equation (7) ensures that every pas-
senger entering the system at a station gets on a compatible service. Equation
(8) ensures that the number of trips from station st1 to st2 commencing in block
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b matches the travel data. Equation (9) ensures that no more passengers take a
trip from st1 to st2 on service s commencing in block b than enter the service.
Equation (10) ensures the passengers on the service s at its starting station are
correct. Equation (11) ensures the passengers on the service s at later stations in
the line are correct by adding in newly entering passengers and removing exiting
passengers.

Finally we can specify the objective for optimising. We consider two objec-
tives. The first is based on PTV’s own congestion scale. It just counts the num-
ber of stations and services which reach each capacity level, and penalises each
capacity level by a rapidly increasing amount. Let sparse = 264, seated = 528,
standing = 662 and target = 800, then the first objective is simply:

minimize

∑
st∈ST,s∈S,paxst,s>sparse,paxst,s≤seated 10

+
∑

st∈ST,s∈S,paxst,s>seated,paxst,s≤standing 100
+

∑
st∈ST,s∈S,paxst,s>standing,paxst,s≤target 1000

+
∑

st∈ST,s∈S,paxst,s>target 10000

(12)

The objective above is deceptive: a train running at seated + 1 passengers
is given the same objective cost as one running at standing. For example, this
means that once a train needs more than seated passengers the objective will
try to fill it to standing.

An alternative objective builds a continuous piecewise linear function which
defines a cost for each passenger load, which grows steadily with higher capacities
increasing faster. The function we use is

cost(p) =

0 p ≤ sparse
p − sparse p > sparse, p ≤ seated
5 × (p − seated) + cost(seated) p > seated, p ≤ standing
10 × (p − standing) + cost(standing) p > standing, p ≤ target
100 × (p − target) + cost(target) p > target

where cost(level) represents the cumulative costs per passenger before reaching
the current congestion level. Then the objective is simply

minimize
∑

st∈ST,s∈S

cost(paxst,s) (13)

Restricting Passenger Movement. The model as defined above allows all pas-
sengers to be shifted from their original service. While this provides a strong
lower bound on possible congestion, we are unlikely to be able to enforce this
behaviour. We also consider cases where only some percentage p of the customers
can be moved. This reflects an assumption that any take-up in advice will only
ever be followed by at most p% of customers. Adding this to the model simply
requires adding lower bounds to the enterb,st,s variables to be (100 − p)% of the
baseline ridership on each service (as computed in Sect. 3.3).
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6 Experiments and Results

6.1 Design of Experiments

In the experiments we compare the raw congestion values determined by the
train occupancy calculation of Sect. 3.3, with the congestion values where we
enact greedy policies that divert passengers away from congested services, as
well as against the discrete optimisation model of Sect. 5.

The discrete optimisation model is written in MiniZinc [11] and solved with
the Gurobi 8.1.0 mixed integer programming solver [4]. Note that the entire
model of Sect. 5 is linear, except for the piece-wise linear objectives. We rely on
MiniZinc’s automatic linearisation to encode the objective for Gurobi.

We consider experiments where we are allowed to shift 100% of passengers,
which gives us a lower bound on possible congestion. To be more realistic we
also consider where at most some smaller percentage p% of customers can have
their behaviour changed. We examine the cases where p = 20, 40, 60, and 80.
With p = 0 there is no shifting possible, we just show the calculated congestion
levels.

Forward shifting of passengers, which requires some way of informing pas-
sengers to arrive earlier at the station, is more complex than simply backward
shifting, which just requires information available at the station. Our experi-
ments consider allowing both backward and forward shifting of passengers, as
well as disallowing forward shifting.

To reduce the computational complexity of the optimisation model we also
simplify the network by merging passenger data for stations where there is no
potential for demand shifting. Therefore, Werribee incorporates Hoppers Cross-
ing, Williams Landing and Aircraft; Williamstown incorporates Williamstown
Beach and North Williamstown; Newport incorporates Spotswood, Yarraville
and Seddon. Passenger travel from Westona, Seaholme and Altona is low and
we consolidate demand in the so-called Altona loop.

The resulting network consists of 7 stations, with an observed daily demand
ranging between 15,000 and 17,000 passengers. The network is serviced by 34
trains running during the peak period: 16 Werribee Express services, and 9
trains for each Laverton and Williamstown lines. The resulting reduced-network
model requires up to 15 s to be solved for most instances, with a few exceptions
requiring up to a maximum of 3 h of execution.

6.2 Heatmaps

We re-examine the morning peak period for Thursday, February 2, 2017, now
using the optimisation model. The resulting passenger counts and congestion
levels are shown in Fig. 3a assuming forward shifting is not allowed, and Fig. 3b
assuming forward shifting is allowed.

Clearly the optimisation-based solution drastically reduces congestion levels.
With forward shifting, it is able to restrict congestion levels on all services to
standing. Even without forward shifting, it is able to remove all breach events
from the system.
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Fig. 3. Optimised passenger counts and congestion levels during the morning peak for
all services operating on the Werribee-Williamstown-Footscray network on February
2, 2017.

6.3 Effect of Passenger Uptake

In the next experiment we vary passenger uptake levels, thus restricting the
number of passengers that can be moved from their original service. We also
consider the five different weekdays from Monday, January 30, 2017 until Friday,
February 3, 2017.

Figure 4 shows on the left how the objective function of Eq. (12) changes
for different levels of passenger uptake, for all five weekdays. We compare
greedy demand shifting versus the optimisation-based demand shifting using
the objective of Eq. (12), with and without forward shifting. Note that Mon-
day has noticeably less passengers than the other days. Clearly, greedy demand
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Fig. 4. Congestion levels (left) and percentage of passengers experiencing congestion
at some point in their trip (right), using Eq. (12).

shifting only has a slightly beneficial effect on the network and can indeed worsen
the congestion score, because it makes myopic decisions which end up leading to
later congestion. In contrast, the optimisation-based approaches can drastically
reduce congestion. With 100% take-up, congestion is always reduced to nearly
zero when allowing forward shifting. Enabling forward shifting, while universally
improving the results, does not appear to make that much difference, at least at
the granularity visible in the plot. But the gains are substantial when considered
in relative terms (c.f. Fig. 3).

Figure 4 on the right shows how many passengers experience congestion on
their trip, that is, passengers that travel at least one segment in a breached train.
Again we see the greedy demand shifting can worsen this measure, while the opti-
misation approaches can quickly find solutions where no passenger experiences
congestion.

Figure 5 shows the results measured with the more fine-grained objective
function of Eq. (13). In these experiments, the optimisation approach was run
minimising this objective. On the left we see how the objective value changes
as passenger uptake increases. Interestingly, using this measure we can see that
greedy shifting is in fact reducing congestion per passenger, although not per
service, and it does improve as passenger uptake increases. The optimisation
solutions are again far superior, reducing the objective function to very low
values smoothly as the uptake increases.

Figure 5 on the right shows the percentage of passengers experiencing con-
gestion. The results for greedy shifting are unchanged. Again, the optimisation
results show a significant reduction on the proportion of passengers travelling on
breached services. The peak for Wednesday and 40% uptake can be explained by
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Fig. 5. Balancing objective function values (left) and percentage of passengers experi-
encing congestion at some point in their trip (right), using Eq. (13).

considering that our model is not directly minimising the percentage of passen-
gers experiencing congestion. According to the recorded trips, several services
ran well above the breach threshold on this day. Considering a small uptake (e.g.,
20%) evens out the number of passengers on these services, but keeps most trains
previously running at target on the same congestion level. At 40% uptake, the
number of shifted passengers is not enough to bring the former services below
breach, but some passengers can be re-allocated to different trains that were
operating just under the breach threshold. Passengers on these services, who
were not considered to be experiencing congestion before, are now travelling
on breached trains. However, despite the percentage increasing, passenger num-
bers on board over-congested trains are lower and more balanced across services.
Table 1 summarises the results obtained with the proposed fine-grained objective
function aimed at balancing passengers between services, including the number
of breach incidents and the percentage of passengers experiencing congestion for
different levels of take-up.

6.4 Experimental Results and Discussion

If forward shifting is not allowed, the model yields results that will help alleviate
congestion, but do not completely eliminate it. We still obtain some trains where
utilisation is very close to the breach threshold. This increases the risk of over-
congestion if passenger numbers keep rising. However, this kind of intervention
is the easiest and most likely the cheapest, since it does not require a major
change in passenger behaviour. Arrival and touch-on patterns remain the same,
but passengers are given recommendations to board specific alternative trains
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Table 1. Results obtained with our optimisation model using Eq. (13) for different
percentages of shifted passengers showing number of breach incidents and percentage
of passengers experiencing a breach service.

Day Forward 0% 20% 40% 60% 80% 100%

Breach PAX Breach PAX Breach PAX Breach PAX Breach PAX Breach PAX

inc. (%) inc. (%) inc. (%) inc. (%) inc. (%) inc. (%)

Mon ✕ 11 32.62 8 22.02 0 0.00 0 0.00 0 0.00 0 0.00

✓ 11 32.62 8 21.45 0 0.00 0 0.00 0 0.00 0 0.00

Tue ✕ 13 38.21 10 28.86 7 19.79 1 6.30 0 0.00 0 0.00

✓ 13 38.21 9 27.84 4 13.53 0 0.00 0 0.00 0 0.00

Wed ✕ 13 38.13 9 23.11 10 31.75 0 0.00 0 0.00 0 0.00

✓ 13 38.13 9 23.32 4 13.42 0 0.00 0 0.00 0 0.00

Thu ✕ 13 37.29 10 27.83 7 26.11 0 0.00 0 0.00 0 0.00

✓ 13 37.29 10 27.42 4 13.76 0 0.00 0 0.00 0 0.00

Fri ✕ 14 37.16 4 16.12 4 14.40 0 0.00 0 0.00 0 0.00

✓ 14 37.16 4 16.36 4 14.84 0 0.00 0 0.00 0 0.00

in order to avoid an uncomfortable trip on a congested service. This could be
achieved by, e.g., providing additional on-screen information about alternative
trains and congestion levels. One example of this is the smartphone app of NS,
the Dutch national rail operator, which shows the expected congestion levels of
arriving trains, from which passengers can make an informed choice of whether
to wait for a less congested service or not. We observe the greatest reduction in
congestion is achieved when forward shifting is allowed. For this to work, pas-
sengers might need to arrive at the station up to 10 min prior to their intended
trip departure for a less congested ride. This would require a change in passenger
behaviour, and might need to be implemented in conjunction with other incen-
tive mechanisms, such as fare reduction. However, our results show that even a
quite modest adoption of such a program (of the order of 20%) could provide a
significant reduction on congestion levels during the morning peak.

Our optimisation results also show that demand shifting up the line (closer to
where the service originates) can lead to a major reduction in congestion down
the line—that is, closer to Melbourne. The results for simulated demand shifting
show that myopic interventions lead at most to a minor alleviation of conges-
tion for some services. The implications of this research for PTV is that better
management of demand originating at Werribee, Hoppers Crossing, Williams
Landing, or Aircraft, could reduce congestion at busy stations down the line.
For example, many trains originating at Werribee currently depart Laverton and
Newport at or above target levels, so that it is almost inevitable that these trains
will become congested as they journey towards Melbourne. Results from our opti-
misation model show that reducing demand for these services when alternatives
are available at origin could prevent congestion down the line. Our results, thus,
give some guidance on where to trial interventions to reduce congestion in the
morning peak.
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7 Conclusions and Future Work

Much has been written on the various ways in which to optimise rail networks,
but relatively little work that we are aware of exists on providing information
for passengers to modify their behaviour in ways that improve the system for
all users. Our pilot study shows how this might be achieved in the southwest
Melbourne rail network. As Melbourne grows, the efficient usage of all public
transport infrastructure will become more and more important, and modifying
passenger behaviour is an attractive alternative to provisioning more services.

There are several ways in which the work presented here might be extended.
The actual weights (or costs) in our objective functions from Sect. 5 are ad hoc.
Analysis of the relative importance ascribed to comfort over the other competing
concerns of passengers from the survey literature may, perhaps, more realistically
weight the objective function in our model. We could consider the multi-objective
problem measuring both trip time and comfort and explore the efficient (Pareto)
set of possible solutions arising from this.

Deeper analysis of customer arrival times at stations could also be valuable.
Patterns in customer arrival may arise from a mixture of behaviours—for exam-
ple, we would expect to see schedule-aware customers whose arrival time is some
function of when the next train is scheduled to depart, and schedule-oblivious
customers whose arrival time is largely independent of the timetable. This leads
to the possibility of using mixture modelling [10], possibly incorporating the
Poisson distribution [15], to more accurately model customer behaviour. Fur-
ther to such mixture modelling for different customer arrival times, re-visiting
the discussion of [17], our greedy and optimisation models could be modified to
treat customers of various behaviour types differently.
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Abstract. Finding gene regulatory pathways that explain outcomes of
wet-lab experiments is one of the holy grails of systems biology. SAT-
solving techniques have been used in the past to find few small explana-
tory pathways assuming either zero or a few known perturbations in the
experimental observations. Unfortunately, these approaches do not work
when (i) there is noise in the experimental data or domain knowledge, as
opposed to known perturbations, and (ii) the number of possible path-
ways generated by repeatedly invoking a SAT-solver is too large to be
analyzed by enumeration. In such settings, determining if an actor plays
a functionally significant role towards explaining experimental observa-
tions is very difficult using existing SAT-based techniques.

In this paper, we formalize the problem of functional significance
checking in gene-regulatory pathways in the presence of a bounded
amount of noise. We show that this problem is ΔP

2 -hard and hence
cannot be efficiently encoded into SAT (unless the polynomial hierar-
chy collapses). We then propose an algorithm that uses a polynomial
number of SAT-oracle invocations to solve a practically useful version
of this problem. Finally, we present results on checking functional sig-
nificance of suspect genes in real microarray data obtained from cancer
cell-line experiments, some of which are corroborated by subsequent wet-
lab knock-off experiments.

1 Introduction

A central problem in systems biology concerns finding gene regulatory pathways
that explain observed outcomes of wet-lab experiments. In a typical wet-lab
experiment, a pre-determined stimulus is given to specially prepared cells under
controlled conditions, and the expressions of various genes (i.e. concentrations
of corresponding gene products) measured at carefully timed instants. Practical
constraints (including cost, unknown time constants of biological processes etc.)
often limit the number of gene expression profiles that can be measured dur-
ing the course of an experiment. In addition, measured gene expression profiles
almost inevitably have noise. As a consequence, it becomes difficult to infer if a
c© Springer Nature Switzerland AG 2019
T. Schiex and S. de Givry (Eds.): CP 2019, LNCS 11802, pp. 767–785, 2019.
https://doi.org/10.1007/978-3-030-30048-7_44
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suspected gene plays a functionally significant role in the outcome of the experi-
ment. This motivates us to ask if we can computationally predict the functional
significance of a gene even when a single noisy expression profile (in addition to
a reference profile) is available, by taking into account domain knowledge about
gene interactions from public-domain databases, and by bounding a quantitative
metric of the admissible noise.

The gene expression profile (often measured using microarray [5] or RNA-
sequencing [52]) is usually given as log fold changes relative to a reference profile
corresponding to a normal (or wild-type) cell, and serves as a proxy for the acti-
vation level of a gene. An activated (resp. inhibited) gene in the experimental
cells usually yields higher (resp. lower) concentrations of the corresponding gene
product compared to a normal cell. The use of contextual gene interaction infor-
mation from a public-domain database like KEGG [23] provides a reasonable
encoding of domain knowledge. “Noise” in our setting can be along two dimen-
sions: (a) some gene expression measurements can be erroneous, (b) interactions
between gene pairs in the context of the experiment under study may differ from
what is recorded in KEGG, giving rise to “noise” in gene interaction information.
Given these noisy inputs, we wish to identify if a suspect gene plays a function-
ally significant role in the outcome of the wet-lab experiment. Informally, this
happens if the presence of the gene makes it possible to “easily” explain the
measured gene expression profile consistently with domain knowledge, while its
absence makes it difficult to provide any such explanation. We quantify the “eas-
iness” via a quantitative metric, which we formalize as the number of relaxations
or changes that must be admitted in the input to obtain an explanation.

A+

G+

B−

D

F+

C E

Fig. 1. Example gene
interactions

An illustrative example: To better understand the
computational aspects of the problem, consider a hypo-
thetical wet-lab experiment in which cancer cells are
treated with a drug known to activate gene A. Suppose
we wish to determine how this affects the activation of
another gene F in the cancerous cells. For simplicity,
assume that only 7 genes named A, B, C, D, E, F
and G potentially play any role in the outcome of the
experiment. Let the gene expression profile obtained at
an appropriate time instant be as follows: A,F,G over-

expressed, B under-expressed, C,D,E did not show any significant difference
in expressions relative to that of a normal (non-cancerous) cell. From this, we
infer that A, F and G are activated and B is inhibited in the context of the
experiment. Genes C,D and E in the cancerous cells could either be in their
respective ground states (as in a normal cell), or could even be in mildly acti-
vated or mildly inhibited states (mild enough so that they do not express their
effect overwhelmingly in the gene expression profile). Suppose we are also told
that the domain knowledge about mutual interaction of genes A through G are as
in the graph shown in Fig. 1 (sans the ± labelings). In this figure, a → denotes
an activating interaction (A → E implies that if A is active, so must E be)
and a � denotes an inhibiting edge (G � B implies that if G is active, B must
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be inactive). Since the ground state (in a normal cell) of a gene may itself be
activated/inhibited, we must be careful in interpreting the → and � edges. For
example, the edge A → E not only admits both A and E being activated, but
also admits both being inhibited. To see why this makes sense, note that if E
has an inhibited ground state, then an inhibited A cannot activate E through
an A → E edge. Similarly, G � B not only admits G activated and B inhibited,
but also vice versa, i.e. B has an activated ground state, and G being inhibited,
cannot inhibit B.

Given domain knowledge encoded in a graph like Fig. 1, we represent acti-
vation levels of genes in the experiment under study by ± labelings of nodes,
where activated genes are labeled “+” and inhibited genes are labeled “-”. Our
first goal is to determine if there exists a set of paths from A to F in Fig. 1, and
a ± labeling of nodes along these paths, such that the labeling is consistent with
both the observed gene expressions and the domain knowledge. Informally, such
a set of paths “explains” the experimental observations consistently with domain
knowledge. In this example, it is indeed possible to find such an explanation with
three paths from A to F , namely: A(+) → G(+) � B(-) � D(+) → F (+), A(+)
→ E(+) → D(+) → F (+) and A(+) → G(+)→ E(+) → D(+) → F (+) There
are several points to note here: (i) although E was not differentially expressed in
the observed profile, it is fine to assign label “+” to E in the explanation, since E
could indeed have been in a mildly activated state that didn’t result in a strong
gene expression profile, (ii) although E and B are included in the explanation,
the induced edge E → B is not included since the labelings of B,E are not
consistent with E → B, and (iii) the presence of a topological path from A to
F through B doesn’t necessarily imply that this path explains the experimental
observations consistently with domain knowledge. For example, although there
is a topological path A(+) → G(+) � B(-) → C(?) → F (+) in Fig. 1, there
is no way of assigning a label (“+” or “-”) to C that is consistent with the
interpretation of activating and inhibiting edges. Thus, finding explanations is
significantly harder than finding topological paths or induced sub-graphs.

We now ask: Does gene D play a functionally significant role in explaining
the observed expressions consistently with domain knowledge? While the precise
notion of functional significance will be discussed later, informally, we ask if
we can find a domain knowledge-consistent explanation of the observed gene
expressions even if node D is removed from Fig. 1. It is easy to see from Fig. 1
that the answer is in the negative. In contrast, if node E or C (or both) is (are)
removed from Fig. 1, the path A(+) → G(+) � B(-) � D(+) → F (+) continues
to explain the observed gene expressions. Therefore, if we assume that all gene
expression measurements are noise-free, D is functionally significant, while E
and C are not. However, if we admit that one gene expression measurement can
be noisy, then functional significance of D warrants re-examination. Indeed, with
D removed from Fig. 1, the paths A(+) → E(+) → B(+) → C(+) → F (+) and
A(+) → G(+) → E(+) → B(+) → C(+) → F (+) explain the observed gene
expressions with the (noisy) label of B changed from “-” to “+”. This shows that
functional significance of a gene can vary depending on the admissible noise.
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Generalizing from the above discussion, our objective is to study computa-
tional techniques that (i) work with a single gene expression profile (in addition
to a reference profile), (ii) are tolerant to a bounded amount of noise in both
gene expression measurements and in the encoding of domain knowledge as gene
interactions, and (iii) allow us to check whether a suspect gene (provided as
input) plays a functionally significant role in explaining observed gene expres-
sion levels. By bounded noise, we mean that the number of errors either in the
gene expression measurements or difference wrt KEGG must be at most a fixed
constant, which is typically small. Note that this does not mean we know the
errors, just that their number is limited. This is a reasonable assumption since
allowing an arbitrarily large amount of noise would invalidate the experiment
and any inferences made from it entirely.

In this paper, we formalize the problem described above, show that it is ΔP
2 -

hard and in ΠP
2 as well as present an algorithm to solve a useful variant of the

problem. We are not aware of any earlier proof of hardness of even the simplest
problem of finding explanations in the absence of noise. We fill this gap and
go much beyond to prove the ΔP

2 -hardness of functional significance checking
with bounded weighted noise. This shows that functional significance checking
cannot be reduced to propositional SAT-solving (unless the polynomial hierarchy
collapses). Our treatment of noise is also more robust than that used in earlier
work. Specifically, we allow different genes and gene interactions to contribute
in a weighted manner to the overall noise metric. Additionally, we don’t need
the user to specify the exact set of gene expressions or gene interactions that
may be noisy. Instead, we allow all combinations of noisy gene expressions and
gene interactions subject to the weighted noise metric staying within specified
bounds. This permits exploring a much larger space of possible explanations
than that in earlier work (viz. [10]). Finally, our algorithm detects functional
significance of a gene without actually enumerating the potentially explosively
many explanations of the observed gene expressions while admitting bounded
noise. This makes it possible to analyze much larger systems of gene interactions.

The entire work reported in this paper was done by a team of three com-
puter scientists and two molecular biologists. As such, the biological relevance
of modeling artifacts and predictions were discussed and validated at each step.
However, this paper is focused more on the computational aspects.

Related Work. Biological phenomena have been modeled in various ways, viz.
using Petri-nets, ODEs, sets of rules, Boolean networks, etc (see [20,51]). A
popular way of representing biological networks, especially gene regulatory net-
works, is influence graphs [42], which are (partially) edge-labeled graphs, used
to model incomplete data. The Sign Consistency Model (SCM) of [41] enhances
this with a (partial) labeling of nodes such that the whole labeled graph is con-
sistent with a set of constraints [19]. In [18], a SAT-solver and MAX-SAT solver
are used to check for consistency, somewhat similar to our work. Answer set
programming (ASP) is yet another technique for obtaining models to a set of
logical constraints used in AI [43], for searching models of NP-hard problems
[30] and to detect inconsistencies, repair and prediction in biological networks
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[11,12]. The works in [33,46] model different notions of sign consistency and use
an ILP solver to obtain a minimal set of nodes whose sign needs to be changed
to be consistent. Such variants can also be encoded in our approach.

Several tools have been built over the years to analyze biological pathway
networks [4,8,15,16,44,50]. Of these [15,16] apply statistical methods to corre-
late the network topology and gene expression data, which allows them to also
identify some functional associations, assuming the availability of sufficient gene
interaction data. The approaches in [6,9,31,38,53] try to find enriched path-
ways based only on gene information, whereas [2,7,29,32,48,54] use both gene-
expression and topology information for selecting candidate enriched pathways.
In spite of the apparent difficulty, some tools such as [13,21,35,45,49] have tried
to exploit the full annotation on the interactions, while recently [24,27,28] have
stringently analyzed relations between genes. In [14], SMT-solvers have been
used to analyze robustness under mutations of gene regulatory networks.

While encoding the problem of finding an explanation from known pathways
and expression data as a SAT problem has similarities with other work in litera-
ture [10,40], such an encoding often gives no explanation subgraphs or too many
of them as solutions to the SAT problem. Crucially it doesn’t solve functional
significance checking when expression data and knowledge about pathways are
noisy, unless we examine every explanation subgraph for all noisy inputs – an
impractical task. The primary differentiator of our work vis-a-vis these earlier
work is in the way we model noise and implicitly consider all possible noisy inputs
subject to the weighted noise being bounded, while still requiring a polynomial
number of SAT invocations.

Finally, identifying important actors in a network has been studied in mul-
tiple contexts, including the web, social media networks, gene regulatory and
protein-protein interaction networks. Various graph theoretic metrics have been
used to detect crosstalk and identify hubs and bottlenecks in large biological
networks [37,55]. Our work can be used in tandem with these techniques by
first obtaining potential candidates using graph theoretic techniques, and then
checking their functional significance using our approach.

2 Problem Formulation

While we have used KEGG [23] to encode domain knowledge of gene interactions
in our experiments, our abstract problem formulation is not KEGG specific. To
keep the exposition simple, we assume that there are only two types of edges –
activating (A) and inhibiting (I). The domain knowledge of gene interactions is
given as an edge labeled graph Gdom = (V,E, μ), where V is the set of genes,
E ⊆ V × V is the set of interactions (directed edges) between genes, and μ :
E −→ Le is a labeling of edges with Le = {A, I}. The interpretation of activating
and inhibiting edges is as follows: For an edge e = (u, v), if μ(e) = A, then gene
v must be activated whenever u is active. In addition, as discussed in Sect. 1, an
activating edge (u, v) is consistent with both u and v being in inhibited states.
Similarly, if μ(e) = I, v must be inhibited whenever u is active. In addition, an
inhibiting edge (u, v) is consistent with u being inhibited and v being active.
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In order to represent the gene expression profile, we decorate each node v in
the graph Gdom with a label λ(v) from the set Lv = {+,−, ?}. Here, + denotes an
over-expressed (and by implication, active) gene, − denotes an under-expressed
(and by implication, inhibited) gene, and ? denotes a gene that is not significantly
differentially expressed with respect to the expression level of a normal cell. For
clarity of exposition, we use ∗ to denote either + or −, but not both.

The domain knowledge and gene expression profile can be represented
together as a node- and edge-labeled graph G = (V,E, λ, μ), where λ : V → Lv

and μ : E → {A, I}. We also assume that we are given three nodes s, t, i ∈ V
as follows: s represents a stimulus gene, the effect of whose activation we wish
to study, t represents a target gene that is eventually activated (possibly after a
long chain of interactions) due to activation of s, and i represents a suspect gene
whose functional significance in the activation of t by s is the subject of our inves-
tigation. For simplicity, we fix λ(s) = λ(t) = +; other combinations of λ(s) and
λ(t) are easily handled. To formally define the notion of functional significance,
we first define an explanation subgraph. Informally, this is a subgraph of G that
contains s-t paths along with a labeling of nodes that “explains” the observed
gene expression profile while being consistent with the domain knowledge.

Definition 1 (Explanation subgraph). Let G = (V,E, λ, μ) be as defined
above, and let s and t be nodes in V s.t. λ(s) = λ(t) = +. An explanation
subgraph of (G, s, t) is a node- and edge-labeled graph G′ = (V ′, E′, λ′, μ′) s.t.,

1. Subgraph containing s, t: We require V ′ ⊆ V , E′ ⊆ E ∩ (V ′ × V ′), μ′ is
the restriction of μ to E′, and s, t ∈ V ′.

2. Labels consistent with observed expressions: λ′(v) ∈ {+,−} for all
v ∈ V ′, and λ′(v) = λ(v) if λ(v) �= ?.

3. No floating nodes: Every v ∈ V ′ is reachable from s in G′.
4. Activity condition: Every s-t path of length > 1 in G′ passes through some

node v �∈ {s, t} with λ(v) = +, and every such node v in G′ appears on some
s-t path in G′. Effectively, for a pathway to credibly explain how s eventually
activates t, it must be supported by at least one other active node along the
pathway. Also, every node in G′ that was originally active must contribute
towards explaining how s activates t along some path in G′.

5. Compatible labeling: For every edge e = (u, v) in E′, if μ′(e) = A, then
λ′(u) = λ′(v), and if μ′(e) = I, then λ′(u) �= λ′(v). Moreover, every node
other than s in G′ must have at least one incoming compatible edge.

For the example in Fig. 1, the path A(+) → E(+) → D(+) → F (+) doesn’t
constitute an explanation subgraph because the activity condition is violated.
However, A(+) → G(+) � B(-) � D(+) → F (+) is an explanation subgraph.

2.1 Graph Relaxation: Modeling Errors and Noise

A startling finding of our initial experiments with real micro-array data and
KEGG pathways was that often no explanation subgraphs could be found at
all. Delving deeper, we realized that there were two primary reasons for this:
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(a) the pathway information in KEGG didn’t relate to the context in which the
experiments were performed (i.e., some edge attributes were incorrectly labeled),
and (b) there was noise in the micro-array data (i.e., node attributes were incor-
rectly labeled). Thus we need to search for explanation subgraphs not on the
original graphs, but graphs obtained by changing some (unknown) edges and
nodes. To formalize this, we introduce the notion of relaxations. Specifically, we
associate an integer relaxation weight to each node and edge, and allow node
and edge labels to be changed when finding an explanation subgraph. The total
node noise (resp. edge noise) introduced to obtain an explanation subgraph is
simply the sum of relaxation weights of all nodes (resp. edges) whose labels had
to be ignored or changed to obtain the explanation subgraph. We bound the
admissible noise by specifying an upper bound (n, e) of node and edge noise
respectively. For notational convenience, we refer to (n, e) as relaxation bounds
in the subsequent discussion. Thus, these bounds provide a quantitative metric
to deal with noise (caused by errors or inconsistencies in KEGG and microar-
ray data), as mentioned in the introduction. Our definition of noise is driven by
specific biological experiments and hypotheses as explained in Sect. 5. However,
our techniques and encoding can also model other related notions considered in
the literature, such as creation of new edges.

Formally, for a subgraph G′ of G, a node in G is said to be relaxed in G′ if
one of the following hold: (i) it is labeled + in G, but is absent in G′, i.e. a node
active in G is excluded from G′, (ii) it is labeled + (resp. −) in G, and is present
but labeled − (resp. +) in G′. If a node is inhibited in G but excluded from G′,
we do not treat it as relaxed. Similarly, edge e = (u, v) in G is relaxed in G′ if
u, v ∈ V ′, e ∈ E′ and either μ(e) = I and μ′(e) = A or μ(e) = A and μ′(e) = I.

Definition 2 (Relaxed explanation). Given G = (V,E, λ, μ), source s, tar-
get t, a relaxation weight R : V ∪ E → N and (n, e) ∈ N

2, we call H an (n, e)-
relaxed explanation of (G, s, t) under R if (a) there exists a subgraph G′ of
G obtained by relaxing nodes and/or edges, (b)

∑
{v∈V |v relaxed in G′} R(v) ≤

n, (c)
∑

{e∈E|e relaxed in G′} R(e) ≤ e (d) H is an explanation subgraph of
(G′, s, t).

2.2 Pareto Optimality and Functional Significance

As mentioned earlier, often there are no explanation subgraphs with 0 node and
edge relaxations. Interestingly, our experiments indicate that there is a large
multiplicity (literally 1000s) of explanation subgraphs if we allow small node
and/or edge relaxations. In this context, solutions obtained with very large val-
ues of node and/or edge relaxations may not be meaningful. Relaxing too many
nodes allows activation status of many nodes to differ from the observed gene
expression profile. Similarly, relaxing too many edges amounts to making sig-
nificant modifications to a curated database of regulatory pathways. None of
these are desirable. Indeed, if we allow all nodes or all edges to be relaxed, we
can always find an explanation subgraph that may hardly relate to the wet-lab
experiment under investigation. Hence it makes sense to ask for minimal node
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and edge relaxations that yield at least one explanation subgraph. Not surpris-
ingly, increasing node relaxations reduces the requirement of edge relaxations,
and vice versa. Therefore, we have a multi-objective optimization problem and
obtain a set of minimal or Pareto-optimal (n, e) values. Further, since large
node and edge relaxations are undesirable, we want explanations where node
and edge relaxations are within given bounds. This motivates us to define a win-
dow of relaxation W as a pair of intervals, 〈[nl, nu], [el, eu]〉, for node and edge
relaxations respectively. We say that (n, e) ∈ W iff n ∈ [nl, nu] and e ∈ [el, eu].

Consider the partial order  on N × N defined by (n′, e′)  (n, e) iff n′ ≤ n
and e′ ≤ e. We say (n, e) dominates (n′, e′) if (n′, e′)  (n, e), and that (n, e)
strictly dominates (n′, e′) if (n′, e′)  (n, e) but (n′, e′) �= (n, e). Given an input
instance (G, s, t,W,R), where G, s, t, are as before, R is a relaxation weight
function and W a relaxation window, let Sol(G, s, t,W,R) denote the set of
(n, e) ∈ W such that there exists an (n, e)-relaxed explanation of (G, s, t) under
R. If (n, e) ∈ Sol(G, s, t,W,R) but both (n − 1, e) and (n, e − 1) are not in
Sol(G, s, t,W,R), we say (n, e) is on the solution curve of (G, s, t,W,R). The set
of points on the solution curve forms a Pareto-optimal curve; any point in W
that dominates a point on the curve is in Sol(G, s, t,W,R) and any point in W
that is strictly dominated by a point on the curve is not in Sol(G, s, t,W,R).

We now make two reasonable, yet important, assumptions.

A1: The “golden truth” pathway for the wet-lab experiment under study, hence-
forth called true explanation subgraph, is present, modulo relaxations and
inter-pathway crosstalk, in the input graph G = (V,E, λ, μ).

A2: The true explanation subgraph corresponds to a Pareto-optimal point
(n�, e�) in the relaxation window W of interest for the given relaxation
weight function R. It is reasonable to expect (n�, e�) to be a Pareto-optimal
point, as otherwise, we’d have an alternative explanation of the microar-
ray data with fewer relaxations than that required for the true explanation
subgraph to provide a plausible explanation.

Definition 3. Under assumptions A1 and A2, a node v is said to be function-
ally significant in (G, s, t,W,R) if its removal from G leaves no (n�, e�)-relaxed
explanation subgraph. In other words, Sol(G \ {v}, s, t, 〈[n�, n�], [e�, e�]〉, R) = ∅.
Unfortunately, Definition 3 does not yield a practical algorithm for checking
functional significance of a node, due to two reasons. First, we do not know the
values of n� and e� for a given experiment. Second, our studies show that there
are literally thousands of explanation subgraphs at each Pareto-optimal point
in the window of relaxation of interest. So, even if we knew (n�, e�), it would
be practically impossible to examine all (n�, e�)-relaxed explanation subgraphs
and identify a common node. Thus, we must find a way to decide the functional
significance of a node without knowing (n�, e�) exactly, and without generating
all explanation subgraphs corresponding to Pareto-optimal pairs. The following
lemma provides a sufficient condition to surmount the above hurdles.
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Lemma 1. Suppose Sol(G, s, t,W,R) �= ∅ and either Sol(G \ {i}, s, t,W,R) =
∅ or for every (n, e) ∈ Sol(G \ {i}, s, t,W,R), there exists (n′, e′) ∈
Sol(G, s, t,W,R) such that (n, e) strictly dominates (n′, e′). Then i is function-
ally significant in (G, s, t,W,R) under assumptions A1 and A2.

3 Complexity Results

Theorem 1. Checking the existence of an explanation subgraph, even without
relaxations, is NP-complete.

Proof. It is easy to see that the problem is in NP, since we can guess the
explanation subgraph, and check it in polynomial time. To prove NP-hardness,
we reduce 3-SAT to our problem. Let ϕ be an instance of 3-SAT in CNF, with
� variables x1, . . . , x� and m clauses.

naiai

nbibi

+ ndi+di

Fig. 2. Gadget Ai

For each variable xi, we first construct a gadget Ai of 6
nodes depicted in Fig. 2, three for variable xi (which we call
ai, bi, di) and three for ¬xi (which we denote nai, nbi, ndi).
We add activating edges from source s to ai and nai for all
i. Also add 4 activating edges from ai to bi, bi to di, nai

to nbi and nbi to di and 4 inhibiting edges from ai to nbi,
nai to bi, bi to ndi and nbi to ndi. Finally, we add node
label + for di and ndi and activating edges from both to
target t. This gadget Ai ensures that xi and its negation
are not active at the same time.

s
+

++++ + + + +

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

Clause 1 Clause 2 Clause 3

+ + +

t +

Fig. 3. Construction for reduction from 3-SAT

For each clause c, we
construct gadget Bc with 4
nodes: one for each of the
3 literals that occurs in the
clause, denoted lci (i.e., lci =
xi or ¬xi) and an additional
node lcc. Now if lci = xi,
(resp = ¬xi) then we add
an edge from bi in gadget Ai

to it, else we add an edge
from nbi. Further we add
edges from each literal in a
clause c to the additional
node lcc. Each of these addi-
tional nodes lcc are labeled +,

which is used to ensure that each clause does evaluate to true in a valid explana-
tion. Each clause of the original instance is replicated by edges from a variable
or its negation as appropriate, which finally converge at lcc emulating the dis-
junctions within each clause. Finally from each lcc node we add an edge to the
target node t. Recall that the target is also labeled +.
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We claim that an explanation subgraph from s to t exists iff the formula is
satisfiable. In one direction, if there is an explanation from s to t, the additional
node lcc at clause c for every clause must be active and each variable is assigned
a unique value. Further, to make this active, by the compatibility condition,
one of the literals in that clause gadget must be active. In turn to make that
literal active, node corresponding to the literal should be active and this gives the
satisfying assignment. Conversely, if the formula is satisfiable, then the satisfying
assignment defines an explanation subgraph. This completes the proof of NP-
hardness. An example is the formula ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x3 ∨ x4 ∨ ¬x1) ∧
(x2 ∨ ¬x3 ∨ x4), whose graph is shown in Fig. 3 with a source s and target t. ��

Depending on whether the relaxation window W is fixed or part of the input
to a decision procedure, we obtain the following results.

Theorem 2. For every (n, e) ∈ N
2, for every relaxation weight function R,

1. Checking for an (n, e)-relaxed explanation subgraph under R is NP-complete.
2. Checking functional significance of a node in (G, s, t,W,R), where W =

〈[0, n], [0, e]〉 is co-NP complete.

Proof. Part 1. follows from proof of Theorem 1 with a simple modification: we
replicate the gadget for each variable and clause n + e + 1 times, so that even if
n nodes and e edges are relaxed, finding an explanation subgraph would require
setting each variable in way that all clauses are satisfied. For Part 2., we modify
the construction in Theorem 1 by adding a special node ni , where i is the node
whose significance we wish to check. We add an edge from the source s to ni and
from ni to each node lcc for each clause c and to nodes di and ndi for each xi. In
the resulting graph G′, there is a path from s to ni to each of lcc (for each clause
c), di, ndi and then to t. Thus, with no relaxations, we can find an explanation.
However, if ni is removed, then there is an explanation with no relaxations iff
ϕ is satisfiable. In other words the solution curve shifts, i.e., i is functionally
significant in G iff ϕ is unsatisfiable.

Theorem 3. If the relaxation window is part of the input, functional signifi-
cance checking is ΔP

2 -hard and is contained in ΠP
2 .

Proof. For the hardness, we show a reduction from the following ΔP
2 -complete

problem [25]: Given a satisfiable CNF formula ϕ and a linear ordering of
x1 ≺ . . . xn in ϕ, does the lexicographically largest satisfying assignment of
ϕ have its least significant bit x1 = 1? To reduce this to functional significance
checking, consider the construction in the proof of NP-hardness above, but with
the following modification. The gadget in Fig. 2 is modified so that nodes ai,
nai are removed and so are all edges coming in and out of them. We add an
inhibiting edge from the source s to each nbi, and an inhibiting edge from each
nbi to the corresponding node bi. Let G be the resulting graph. Let R be the
relaxation weight function that assigns weight 2i−1 to the inhibiting edge from
s to nbi and 2n to all other edges. R also assigns weight 2n to all nodes. We ask
if b1 is functionally significant in (G, s, t,W,R), where W = 〈[0, 0], [0, 2n − 1]〉.
The size of (G, s, t,W,R) is polynomial in |ϕ|. Also, the choice of W disallows
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relaxation of any node and any edge other than those from s to some nbi. The
lexicographically largest satisfying assignment of ϕ corresponds to an explana-
tion graph with the smallest edge relaxation noise. If this explanation includes
b1, then removing b1 from G disallows this explanation. This proves ΔP

2 hardness
of functional significance checking.

Containment in ΠP
2 is easy to see. We encode the problem as: for all (n′, e′)-

relaxed solutions without the actor, there is an (n, e)-solution with the actor,
where (n′, e′) strictly dominates (n, e) and both are within relaxation bounds.
Since n, e, n′, e′ are integers within given relaxation bounds, the quantifier free
part has a polynomial sized propositional encoding.

The problem of counting explanation subgraphs corresponds to #SAT, which
is widely believed to be beyond the polynomial hierarchy (by Toda’s theo-
rem [47]). Thus, unless long-standing complexity-theory conjectures are falsified,
checking functional significance (in ΠP

2 ) is easier than counting explanations.

4 SAT Encoding and Pareto-Curve Generation

Given a problem instance (G, s, t,W,R), and a path length bound Δ, we first
extract a sub-graph Ĝ = (V̂ , Ê, λ̂, μ̂) of G that contains every simple path of
length ≤ Δ from s to t in G. This can be done easily using a forward and back-
ward bounded search. Once V̂ is defined, Ê, λ̂ and μ̂ are obtained by restricting
E, λ and μ respectively to V̂ and Ê. In practice, Δ is chosen based on domain
expert inputs, such that all potentially important s-t paths are included. Hence-
forth, whenever we refer a labeled graph G, we mean the pruned graph Ĝ for a
value of Δ that is assumed to be constant.

The problem of deciding whether an (n, e)-relaxed explanation subgraph
exists was shown to be NP-complete in Sect. 3. A SAT encoding of the problem
is rather straightforward. Given a labeled graph G = (V,E, λ, μ), nodes s, t ∈ V ,
a relaxation weight function R, and a relaxation window W = 〈[0, n], [0, e]〉,
we construct a propositional formula ϕG,s,t,W,R that is satisfiable iff there is an
(n, e)-relaxed explanation subgraph of (G, s, t) under R. The formula ϕG,s,t,W,R

has seven sub-formulas: (i) ϕconn encoding topological connectivity between
nodes in the explanation subgraph (this uses the fact that all paths are of length
≤ Δ), (ii) ϕdata encoding the labeling of nodes obtained from microarray data,
(iii) ϕact encoding the activity condition in Definition 1, (iv) ϕcomp encoding the
compatibility condition in Definition 1, (v) ϕrel encoding that total node relax-
ation is ≤ n and total edge relaxation is ≤ e, and (vii) ϕimp encoding that every
node is reachable from s by a path of length at most Δ. These sub-formulas
use a set of variables as described below. For each v ∈ V , we use 3 boolean
variables, pv, av and rv, that encode whether v is present, active and relaxed
respectively, in the explanation subgraph. Similarly, for each edge e ∈ E, we use
3 boolean variables, pe, re and fe that encode whether e is present, relaxed and
contributes to the activity condition in Definition 1 respectively, in the explana-
tion subgraph. Finally, for each v ∈ V , we use log Δ + 1 propositional variables
dv,0, . . . dv,log Δ to encode a measure of “distance” from source s to v in the
explanation subgraph.
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Once ϕG,s,t,W,R is obtained, a SAT solver (Z3 [34] in our case) can be used
to obtain an (n, e)-relaxed explanation subgraph. We exploit the observation
that satisfiability of ϕG,s,t,W,R implies satisfiability of ϕG,s,t,W ′,R where W ′ =
〈[0, n′], [0, e′]〉 and (n, e)  (n′, e′). Therefore, given any set of (n, e) pairs linearly
ordered w.r.t. , we can use binary search to determine the smallest (under )
pair (n, e) for which ϕG,s,t,W,R is satisfiable. This suggests the following sim-
ple algorithm for constructing the Pareto-optimal curve. We first use binary
search along the (nl, el) to (nu, eu) diagonal of the window W = 〈[nl, nu], [el, eu]〉
to find the smallest (under ) pair (nd, ed) for which ϕG,s,t,Wd,R is satisfi-
able, where Wd = 〈[nl, nd], [el, ed]〉. Note that (nd, ed) may not be a Pareto-
optimal point. We then use binary search on (n, e) pairs in 〈[nd, el], [nd, ed]〉
and 〈[nl, ed], [nd, ed]〉 to find the projections of (nd, ed) on the Pareto-optimal
curve. Once a Pareto-optimal point (np, ep) is obtained, the problem can be
recursively decomposed into those of generating Pareto-optimal curves in the
relaxation windows 〈[np, nu], [el, ep]〉 and 〈[nl, np], [ep, eu]〉. This requires a total
of O(k log2 k) invocations of a SAT solver, where k = max(n, e), and gives us
the Pareto curves, from which we can determine functional significance.

Note that our methodology is not contingent on a specific choice of relax-
ation, but implicitly considers all relaxations within given bounds. However, our
tool also has the functionality of printing a set of relaxations used to obtain
explanation subgraphs, if the user so desires.

5 Experimental Results and a Case-Study

We began by constructing a database of existing pathways, by merging the 163
pathways from the KEGG database [22,23], giving a master network of 2498
nodes and 10497 edges. In discussion with molecular biologists, we then fixed the
gene expression data from a specific microarray experiment, with the following
features: (i) the source, target and the differentially expressed nodes were not
merged with any other id, (ii) if a gene occurred more than once in the expression
data, we took the average of the fold-change for more than one occurrence of a
gene, (iii) after considering realistic lengths of regulatory chains in the biological
context, the path bound (Δ in Sect. 4) was chosen to be 7. This resulted in a
pruned subgraph with 297 nodes and 1858 edges. Of these nodes, 55 are up-
regulated and 26 are down-regulated, as per the microarray data (see [1] for
details). Finally, we also fixed an upper bound on number of relaxations that we
allow among the nodes and edges in the worst case, i.e., the window size, denoted
below as W to be at most 30× 30. Note that this does not mean that we cannot
have fewer perturbations, just that more than 30 errors (of either nodes or edges)
were considered impractical. While we fix all the above parameters to be able to
present results, we emphasize that these are easily tunable by the user. In our
experiments, the relaxation weight function R assigned weight 1 to all nodes and
edges. But the formulation allows generalizing to other weight functions, e.g., to
not relax a node or edge, it suffices to assign a large weight to that node/edge.

With this setup, we encoded finding a relaxed explanation graph, as discussed
in Sect. 4, and considered different source and target pairs, as well as different
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candidate actors which were checked for functional significance. We computed
the Pareto optimal curves with and without the actor to check functional signifi-
cance of the actor. All experiments were performed on an Intel(R)-Core(TM)-i7-
3770 CPU. It had 8 cores with clock speed 3.40 GHz and total of 32 GB RAM.
The code used C++ API of Z3 version 4.7.1 on Ubuntu 18.04.

One way to understand the explanations is to enumerate and exhaustively
look at each solution. However, with window size 30 × 30, there are 900 points,

Table 1. Shift of Pareto curves

Source-target pair

(Expt condition)

Func. Sign. Cand. Pareto shift (Y/N) # SAT Calls Time (in hrs)

Synthetic1-5var-

W (5, 5)

x Y 5 .035

Synthetic2-15var-

W (5, 5)

x Y 6 .35

Synthetic3-45var-

W (0, 0)

x Y 2 .004

TNFa-IkBa

(Expr/Act merged)

None - 62 5

TNFa-IkBa

(Expr/Act merged)

p38 Y 72 5

TNFa-IkBa

(Expr/Act merged)

ERK N 62 2.6

TNFa-IkBa

(Expr/Act merged)

PIK3CA Y 71 1.5

TNFa-IkBa

(Expr/Act merged)

AKT Y 42 11

TNFa-IkBa (Expr

only)

None - 63 9

TNFa-IkBa (Expr

only)

p38 Y 63 15

TNFa-IkBa (Expr

only)

ERK Y 63 15

TNFa-IkBa (Expr

only)

PIK3CA N 68 14

TNFa-IkBa (Expr

only)

AKT N 68 18.4

TNFa-IkBa (Act

only)

None - 64 15.6

TNFa-IkBa (Act

only)

p38 Y 64 37

TNFa-IkBa (Act

only)

ERK N 64 25.8

TNFa-IkBa (Act

only)

PIK3CA Y 64 18.5

TNFa-IkBa (Act

only)

AKT Y 54 44

TNFa-A20 None - 56 0.3

TNFa-A20 ERK Y 57 0.7

TNFa-A20 AKT N 52 0.3

TNFa-A20 p38 N 54 0.3
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of which all points on or above the PO curve have multiple solutions. In our
case, we found that for all such points there were at least >1000 solutions per
point. And enumerating these, and printing the solutions for just 30 of them (for
inspection), for a single PO curve took over 100 hours of computations time.
Thus, examining all solutions even at each point on the Pareto-optimal curve
(to identify key players in the solution) is already prohibitively expensive. This
leads us to use the shift of the Pareto-optimality curves to identify key players
in context of an experiment. In Table 1, we present the results for a few different
source-target pairs, different candidate actors and whether a shift was observed
in the Pareto-curves or not, along with the time taken to plot these curves. The
Pareto-optimality curves themselves, along with further experiments with more
source-target pairs including ITGB1-ACTB, ITGB1-STAT3 are in [1]. We also
performed experiments on synthetically constructed benchmarks motivated by
Proof of Theorem 2. The benchmarks were parametrized by number of variables
(in the 3SAT problem), and node, edge relaxation upper bounds, and a special
node x that was made functionally significant. A select few results are in Table 1,
with more in [1]. Interestingly, almost the entire time taken by our tool went
into SAT solving using a state-of-the-art solver (Z3). Our tool minimizes the
number of SAT calls as described in Sect. 4. The scalability of our approach
hence crucially depends on the performance of the SAT solver, and is expected
to improve with further improvements in SAT solvers.

In Table 1, Act/Expr merged means we included both types of edges in our
potential explanation. However, we also experimented by (i) asking for the target
IkBa to be expressed, and not just activated (by required the solution to have at
least one expression edge reaching the target) and (ii) asking target IkBa to be
activated (by requiring the solution to have at least one activation edge reaching
the target), which led to surprisingly different Pareto-shifts.

Case-Study: Role of ERK,A20 in PSMD9-Induced Inhibition of
NFkB: We performed a detailed case-study on a mammalian cell line model sys-
tem, created as part of a joint project with researchers from a Cancer research
institute: these were the embryonic human kidney cell lines called HEK 293
cell that stably over express PSMD9 (an important gene associated with radio
resistance in breast cancer and glioblastoma [26,36].) and obtained differential
gene expression data specific to PSMD9. Among the many signalling events
that could possibly be modulated by PSMD9, we were interested in finding key
players that regulated the expression of IkBa, for a very specific reason. IkBa
is a potent inhibitor of NFkB a transcription factor induced upon chemo and
radiation therapy in cancer treatment [3,17].

One of the mechanisms by which PSMD9 may achieve this is by inducing
NFkB activation [39]. However, besides the reported mechanism, there are a
number of other ways in which the activity of this gene can be modulated and
this can vary depending on the context. Several kinases and transcription factors
are involved and inflammatory cytokines such as TNFa can modulate activity
of these players. NFkB is also under a remarkable tight feed-back loop involv-
ing both positive and negative regulators that are transcribed by NFkB and
other TFs. Therefore any attempt towards developing therapeutic mechanism to
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overcome therapy resistance associated with PSMD9 demands a comprehensive
understand of the many mechanism leading to the expression of the target genes
of NFkB including IkBa, the contribution of other TFs, the role of kinases and
their crosstalk. Since this also involves feed-back loops and it can become chal-
lenging to identify the activation/repression status of the genes involved both
for experimental verification and computational approaches. This provided us
with a case study: we considered the gene expression data from above and took
TNFa, a gene induced by PSMD9 overexpression as the stimulus and IkBa as
the target to help uncover the key players involved in the expression of IkBa, the
endogenous inhibition of NFkB. From the literature and using domain knowl-
edge, 4 candidate key actors were chosen, namely p38, ERK, PIK3CA and AKT.
The Pareto-optimality curves generated for TNFa to IkBa are shown in Fig. 4.

Biological Validation. Among nodes explored for functionality, we completed wet-
lab investigations at submission-time for ERK and AKT kinases, which showed
PSMD9-induced phosphorylation. As mentioned earlier, we used a merged
KEGGgraph combining activation and expression edges for simplicity. Since
negative feedback loops involving both IkBa and A20 control NFkB activation
and target gene expression, we also conducted experiments for both these tar-
gets after separating the composite graphs into activation and expression graphs
(see [1]). Phosphorylation impacts (in)activation status of transcription factors
(in-built in Response: KEGG) and hence must be integrated into gene expression
studies. Indeed, excluding ERK from composite graphs did not induce Pareto
shift, whereas separating into activation and expression graphs did. As can be
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Fig. 4. Individual plots of the exclusion experiments for TNFa-IkBa
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gleaned from Table 1 (and [1]) , ERK exclusion, but not AKT exclusion induced
a Pareto shift indicating its requirement in both IkBa and A20 expression. Only
AKT induced IkBa (in)activation Pareto shift (see [1]). We tested ERK’s sig-
nificance in IkBa and A20 gene expression using qPCR. A two-fold decrease
in A20 mRNA was observed in PSMD9 overexpression cells upon ERK inhi-
bition [p = 0.03] whereas AKT inhibition did not impact IkBa or A20 mRNA
levels, a trend consistent even upon TNFa stimulation (t = 3hrs). The lack of
impact of ERK inhibition on IkBa mRNA levels is likely due to as yet unex-
plored PSMD9-specific effects. The NFkB-dependence for IkBa or A20 expres-
sion was evident from lack of solutions upon its exclusion. The routinely-used
PD98059 and LY294002 signaling inhibitors achieved ERK (∼100%) and AKT
(∼90%) phosphorylation inhibition, respectively, at recommended IC50 values.
They may have off-target effects. Importantly, these inhibition-dependent mRNA
level changes were PSMD9-specific, consistent with computational predictions.

6 Conclusion

We presented a novel problem formulation to capture functional signficance of a
node in an interaction pathway between a stimulus and a target observation, in
a highly noisy environment with minimal experimental data and using publicly
available pathway databases. Our definition comes closest to a computational
simulation of a knockout experiment that is classically done to establish the
functional significance of a node in wet-lab experiments. After showing theoret-
ical hardness results, we design practical encodings using SAT, which we imple-
mented and validated by some wet-lab experiments and domain knowledge.
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