
Chapter 30
Strain Stiffening Effects of Soft Viscoelastic Materials in Inertial
Microcavitation

Jin Yang and Christian Franck

Abstract Mechanical characterization of soft materials, e.g. hydrogels, tissues, and various polymeric specimens, at high
strain-rates (103 s−1–106 s−1) is challenging due to their compliance, slow wave speeds, and non-linear viscoelasticity.
However, knowledge of their material is important in many biological and engineering applications from minimizing tissue
damage in ultrasound and laser surgeries to diagnosing and mitigating impact injuries. Recently, a minimally invasive,
local 3D micro-rheology technique based on inertial microcavitation rheometry (IMR) has been developed to determine
the general viscoelastic material properties of soft matter as compliant as a few kilopascals. For example, material behavior
of polyacrylamide undergoing large, finite deformations (|Err| > 0.05) at strain-rates of up to 106 s−1 has been measured
and fitted using nonlinear Kelvin-Voigt model, which extends the traditional quasi-static neo-Hookean description of
polyacrylamide to include a dynamic material viscosity in the order of 10−1 Pa·s.

In the classical case study of polyacrylamide, the nonlinear neo-Hookean Kelvin-Voigt model fitting results shows that
the shear moduli obtained during cavitation are stiffer than their quasi-static counterparts. This strain stiffening effects
needs additional consideration and treatment. Here we address the issue of strain stiffening by replacing the traditional
neo-Hookean spring in the nonlinear Kelvin-Voigt model with a higher order constitutive relation inspired by the Fung
model.
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Introduction

Cavitation is a common phenomenon in hydrodynamics and biology [1–6]. Recently, it was recognized that inertial
microcavitation rheometry (IMR) can be used to characterize the mechanical behavior of viscoelastic materials since the
cavitation bubble collapse is very sensitive to the constitutive equations of the surrounding medium [7–8]. By analyzing the
bubble dynamics, the viscoelastic properties of soft materials can be characterized where the strain rates can reach O (103)
s−1 ~ O (106) s−1 [10]. Recently, Estrada et al. [7] demonstrated experiments to probe viscoelastic mechanical properties of
soft materials using IMR, where time-resolved data for the temporal evolution of bubble radii is fitted to the prediction of the
governing equations of bubble dynamics, combined with a neo-Hookean Kelvin-Voigt constitutive model for surrounding
soft medium. In the case of polyacrylamide hydrogels, the neo-Hookean Kelvin-Voigt model fitting results show that the
shear moduli obtained during cavitation are stiffer than their quasi-static counterparts. This strain stiffening effect, which is
a very common feature of soft materials because of structural transitions such as ordering, crystallization, or shear banding
under large strain, needs additional consideration and treatment in IMR.

In this paper, we first review the physical model of IMR in Section “Physical model”. We address the issue of strain
stiffening by replacing the traditional neo-Hookean spring in the nonlinear Kelvin-Voigt model with a higher order material
constitutive relation inspired by the Fung model [9] in Section “Strain Stiffening Effects”. Our experimental setup is
introduced in Section “Experımental Setup”. We demonstrate our Fung Kelvin-Voigt model in Section “Results and
Dıscussıon”. Finally, we present some conclusions in Section “Conclusıons”.
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Physıcal Model

Bubble Dynamics with Viscoelastic Surroundings

We consider the spherical dynamics of a bubble in an infinite viscoelastic medium, where the surrounding medium is assumed
to be incompressible in the near field, and compressible in the far field. The bubble dynamics are represented by the Keller-
Miksis equation [11]:
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where R(t) is the bubble radius, and the overdots denote derivatives with respect to time t; ρ and c are the density and sound
speed of the surrounding soft materials; γ is the surface tension between bubble inside gas and surroundings; p is the internal
bubble pressure given by the sum of the partial pressures of non-condensible gas (pg) and vapor (pv); p∞(t) is the far-field
driving pressure; Θve is the viscoelastic stress integral defined as
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The specifics of the stress integral depend on the constitutive properties of the material at hand. For example, assuming
the surrounding material obeys neo-Hookean Kelvin-Voigt formulation, the stress tensor can be expressed as
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where r0 (r, t) = (
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is the radial location in the original configuration. The viscoelastic stress integral Θve

can be further integrated analytically:
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where μ is the viscosity of the surrounding soft material, G is the shear modulus, and R∞ is the bubble radius corresponding
to the final equilibrium state.

Strain Stiffening Effects

In addition to a neo-Hookean material model, we also explored strain-stiffening effects and apply a higher order material
model inspired by Fung model [9] whose strain energy density is
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and its stress integral is

�ve,Fung = 2G∞
∫ ∞

R(t)

[( r0

r

)4 −
(

r

r0

)2
]

exp [α (I1 − 3)]
dr

r
. (30.6)



30 Strain Stiffening Effects of Soft Viscoelastic Materials in Inertial Microcavitation 177

Heat and Mass Transfer at the Bubble Wall

The pressure inside the bubble is assumed to be homobaric. The inclusion of heat and mass transfer [12] modify bubble
pressure evolution:
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where T(r, t) is the instantaneous, spatially varying temperature, K is the mixture thermal conductivity inside the bubble
(K = AT + B), Rv is the gas constant of vapor, specific heats ratio κ of vapor is assumed equal to that of air, and ṁv

′′ the
vapor mass flux across the interface. The subscript w denotes variables evaluated at the bubble wall. The vapor mass flux is
related with mass transfer at the bubble wall:
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where C is the mass fraction of vapor gas; D is the diffusion coefficient between water vapor and air; ρm is the mass density
of the mixed vapor that satisfies p = RρmT , where R = CRv + (1 − C)Rg is the mixture gas constant, Rg is the gas
constant of non-condensible gas, and Rv if the gas constant of vapor.

Mass diffusion is assumed to follow Fick’s law such that the mass balance equation for vapor reads
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To account for heat transfer and energy balance, we apply Fourier’s law both inside and outside the bubble:
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where T is the temperature inside bubble and Ts is the temperature in the outside surroundings; Cp = CCp, v + (1 − C)Cp, g

is the heat capacity at constant pressure where Cp, v and Cp, g are the constant specific heats at constant pressure for the vapor
and non-condensible gas, respectively; Ds = Ks/(ρCp) is the thermal diffusivity, and Ks is the constant thermal conductivity
of the soft surrounding medium.

Boundary Conditions

Regarding boundary conditions for the vapor mass fraction and the temperature, at the origin, we have
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due to spherical symmetry. At the bubble wall, we assume that the vapor is in equilibrium with the condensed layer and the
vapor partial pressure is equal to its saturation pressure. We also assume that the surrounding material remains isothermal
with constant temperature T∞ everywhere. All the boundary conditions near the wall are summarized as follows:
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where pv, sat(T) is the temperature-dependent saturation pressure of the vapor with empirical constants pref and Tref .
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Fig. 30.1 Experimental setup and schematic of inertial microcavitation rheometry. (a) A single 6 ns, Q-switched 532 nm Nd:YAG laser pulse of
1–10 mJ passes through a beam expander to fill the back aperture of an objective mounted into an inverted TI-Eclipse microscope, and (inset, star)
converges into a cylindrical hydrogel sample. Bright-field illumination is supplied by a condensed halogen lamp. (b) Bubble growth, collapse, and
subsequent oscillation are imaged using a Phantom v2511 high speed camera (Vision Research, Wayne, NJ). Image size 512×128 pixels, filmed
at 270,000 fps. Scale bar, 200 µm (Image courtesy of Estrada [7])

Fig. 30.2 IMR characterizes stiff & soft polyacrylamide hydrogels viscoelastic properties using neo-Hookean Kelvin-Voigt model and Fung
Kelvin-Voigt model. (a) Bubble radius R-t curve of IMR cavitation experiments inside stiff & soft polyacrylamide hydrogels and water (reference).
(b) Characterized viscoelastic properties of the tested stiff & soft polyacrylamide hydrogels using two types of nonlinear material models (neo-
Hookean Kelvin-Voigt & Fung Kelvin-Voigt)

Experımental Setup

In this study, the experimental setup is the same as in Estrada et al [7] where single bubble inertial cavitation is generated via
single pulses of a frequency-doubled Q-switched Nd:YAG 532 nm laser as shown in Fig. 30.1a. We use a Phantom v2511
CCD high speed camera (Vision Research, Wayne, NJ) to take a sequence of images (exposure time of single frame is set to
be 2 μs) of bubble growth, collapse and subsequent oscillations as shown in Fig. 30.1b. Bubble images were then fit for their
centroid and radius R(t) using a circle fit algorithm (see Figs. 30.1b and 30.2a). Here we tested cavitation experiments using
two types (stiff & soft) of polyacrylamide hydrogels, whose quasi-static shear moduli have also been characterized using
quasi-static compression indentations [7].
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Table 30.1 Material properties used in the present study

Symbol Value Symbol Value Symbol Value Symbol Value

ρ 1060 kg/m3 γ 5.6 × 10−2 N/m D 24.2 × 10−6 m2/s A 5.3 × 10−5 W/mK2

c 1430 m/s κ 1.4 Ks 0.55 W/m B 1.17 × 10−2 W/mK
p∞ 101.3 kPa Cp, v 1.62 kJ/kg · K pref 1.17 × 108 kPa
T∞ 298.15 K Cp, g 1.00 kJ/kg · K Tref 5200 K

Results and Discussıon

Following Barajas et al [8], a fifth-order explicit Dormand-Prince Runge-Kutta method with adaptive step-size control is used
to evolve the governing equations forward in time. Quantitative values of material parameters for the surrounding medium
and the bubble contents used in this study are summarized in Table 30.1. Least squares error (LSE) is defined by minimizing
the perpendicular offset between experimental data points and the numerical simulations. Minimizing the discrete LSE in
the R-t curves gives the best estimate of the viscoelastic properties for each polyacrylamide gel. Figure 30.2b shows the
characterized viscoelastic properties of the tested stiff & soft polyacrylamide hydrogels using neo-Hookean Kelvin-Voigt
and Fung Kelvin-Voigt models.

We find that for both stiff & soft polyacrylamide hydrogels, the nonlinear neo-Hookean Kelvin-Voigt model fitting results
show that the shear moduli obtained during cavitation are stiffer than their quasi-static counterparts (see Fig. 30.2b). On the
other hand, when we account for strain stiffening by replacing the traditional neo-Hookean spring in the nonlinear Kelvin-
Voigt model with a constitutive relation inspired by the Fung model [9], we recover the quasi-static shear modulus at long
time scale. We also find that by applying the Fung Kelvin-Voigt model, the accuracy of the measured dynamic material
viscosity is also improved compared to the neo-Hookean Kelvin-Voigt formulation.

Conclusions

In this paper, we use inertial microcavitation rheometry (IMR) experiments to characterize viscoelastic properties of stiff
& soft polyacrylamide hydrogels undergoing large, finite deformations (|Err| > 0.05) at strain-rates of up to 106 s−1. We
explore the strain stiffening effects of these two types of hydrogels by implementing Fung Kelvin-Voigt model. Compared
with our previous neo-Hookean Kelvin-Voigt model, we find the accuracy of the measured dynamic material viscosity (in
the order of 10−1 Pa·s) is also improved.
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