
Viscoelastoplastic Damage with Maximum Rate
of Dissipation-Based Growth Criterion and Tri-Component Lie
Rate Decomposition

Richard B. Hall

Abstract Maximization of the rate of dissipation is applied to develop a viscoelastoplastic damaging material model with
anisotropic properties and finite deformation. The thermodynamic framework suggests a new damage activation criterion
based on the sum of stress and an energy release rate based on a damage-based strain measure. The framework combines
the usually disjointed ideas of effective stress and damage strain kinematics to track the dimensional changes attributed to
damage while retaining the physical link to load-bearing area reduction. Potential applications include large volume change
oxidation of SiC CMC composites, high temperature creep and relaxation influences on damage processes in reinforced
polymers and ceramics, and opening/closing of cracks via natural elastic behavior as opposed to treatments based on loading
criteria.

Maximum rate of dissipation analysis is applied to develop a framework corresponding to a material model incorporating
three strain elements characterized by viscoelastic, damage, and viscoplastic behaviors. A push-pull framework associates
these behaviors with respective multiplicative deformation gradients with rates determined by Lie material derivatives.
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Kinematic/Kinetic Definitions

The present study considers materials which may undergo viscoelastoplastic damage under finite strains. The configurations
and associated deformation gradients are depicted in Fig. 1, where Fc is viscoplastic/creep, Fd is damage, and Fveis
viscoelastic, with F = FeFdFc the multiplicative decomposition of the total deformation. τ is the Kirchhoff stress.

Denoting also Fdc = FdFcfor convenience and with Fe = Fve and Ee = Eve (Voigt assumption), strain measures are given
by, strain measures are given by
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Ẽ = Ẽe + Ẽd + ẽc.

It can be noted that while Ẽe = Ẽe [Fe] and ẽd = ẽd
[
Fd

]
, ẽc has the mixed dependency ẽc

[
Fc, Fd

]
, but ẽc = 0 when

Fc = 0 and ẽc pushes/pulls properly with the deformation.
The Lie derivatives employed for tensors associated with κ̃ are material derivatives of these tensors when pulled back to

the reference configuration κR, then pushed back to κ̃ , as illustrated by that of Ẽ:
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Fig. 1 Body configurations κR (reference), κ , κ̃ and κ t (current time). XK , x�, x̃α , xj are coordinates

�
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, l̃dc = ḞdcFdc−1.

Stress measures and stress power combinations are given by:

S = F−1τF−T = Fdc−1S̃Fdc−T = Fc−1SFc−T S̃ = Fe−1τFe−T S = Fed−1τFed−T

S̃ ·
�

Ẽ = S̃ · d̃ = τ · d = S · Ė

with

tr (TS) = Tij Sj i = T · S.

A similar kinematic/kinetic framework with one intermediate configuration is detailed by Stumpf [1].

Thermodynamics/Constitutive Development

The reduced energy dissipation equation, assuming a split of the entropy production into mechanical and thermal
components, is given by (ψ , ρo, η, θ , q0 are respectively Helmholtz energy, reference density, specific entropy, temperature,
and heat flux referred to the reference configuration):

−ρ0ψ̇ − ρ0ηθ̇ + S̃ ·
�
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θ
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Assuming ψ = ψ̃
[
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]
with the chain rule for
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ψ it follows:
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ẽd +

�
ẽc
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Based on the dissipation relation, the following are adopted as inelastic activation criteria:
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The second activation criterion is noteworthy. ẽd is a strain-based measure of damage; Ỹ is thus called here the damage
strain energy release rate, and appropriately reflects the loss of stored energy occurring with damage. The combination of
Ỹwith the stress S̃ is thus thermodynamically implied to drive damage in accordance with the dissipation eq.

A Lagrange function is defined for application of assumed maximization of the rate of dissipation (cf. [2, 3]),

where s =
{
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}

is the state and λ is a Lagrange multiplier constraining the assumed dissipation function
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ẽc; s

]
to obey the derived dissipation equation:
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ẽd ,

�
ẽc; s

]
− λ

{(
S̃ − S̃e

)
·

�
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Maximization of � leads to
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Assuming simple quadratic dissipation relations for each of ξ̃ ve, ξ̃ d , ξ̃ c leads to the following integrable relations:
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Conclusion

The described model corresponds to a Voigt viscoelastic element in combination with damage and viscoplastic elements. The
stress employed in the above relations is obtained via an effective stress continuum damage argument, e.g [4]. A fourth-order
damage measure connected to the damage strain ẽd permits memory of the accrued damage state while ẽdfluctuates with
deformation. Work continues on further defining the detailed constitutive relations and computational implementations.
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