
What Quality Attributes Can We Find
in Product Backlogs? A Machine

Learning Perspective

Matthias Galster1(B), Fabian Gilson1, and François Georis2

1 University of Canterbury, Christchurch, New Zealand
{matthias.galster,fabian.gilson}@canterbury.ac.nz

2 University of Namur, Namur, Belgium
francois.georis@student.unamur.be

Abstract. Automatically identifying quality attributes (e.g., security,
performance) in agile user stories could help architects reason about early
architecture design decisions before analyzing a product backlog in detail
(e.g., through a manual review of stories). For example, architects may
already get the “bigger picture” of potential architectural key drivers and
constraints. Applying a previously developed method to automatically
identify quality attributes in user stories, in this paper we investigate (a)
what quality attributes are potentially missed in an automatic analysis
of a backlog, and (b) how the importance of quality attributes (based on
the frequency of their occurrence in a backlog) differs to that of qual-
ity attributes identified in a manual review of a backlog. As in previous
works, we analyzed the backlogs of 22 publicly available projects includ-
ing 1,675 stories. For most backlogs, automatically identified quality
attributes are a subset of quality attributes identified manually. On the
other hand, the automatic identification would usually not find more (and
therefore potentially irrelevant) quality attributes than a manual review.
We also found that the ranking of quality attributes differs between the
automatically and manually analyzed user stories, but the overall trend of
rankings is consistent. Our findings indicate that automatically identify-
ing quality attributes can reduce the effort of an initial backlog analysis,
but still provide useful (even though high-level and therefore potentially
incomplete) information about quality attributes.

Keywords: Agile software development · Quality attributes ·
Product backlog · User stories · Natural language processing

1 Introduction

A key principle of agile software development is to reduce potentially unneces-
sary upfront work. Nevertheless, it is important to understand the most signifi-
cant architectural drivers early on to avoid architectural decisions that negatively
impact modifiability or performance. If agile teams spend too little time thinking
c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 88–96, 2019.
https://doi.org/10.1007/978-3-030-29983-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-29983-5_6


What Quality Attributes Can We Find in Product Backlogs? 89

about architecture design upfront, then there is an increased risk of failure [16].
Quality attributes such as performance, security or interoperability impact archi-
tecture design decisions, e.g., when selecting architectural patterns, tactics or
reference architectures [1]. Therefore, identifying quality attributes early on is
part of software architecture analysis [1]. Furthermore, in agile software devel-
opment we need to balance near-term functional requirements and long-term
quality goals [2]. Hence it is crucial to understand which quality attributes are
relevant and which quality attributes might be more important than others. Pri-
oritizing quality attributes is difficult in early development iterations and wrong
decisions can result in hard-to-modify, unreliable, slow and insecure systems [8].

In agile software development, functional requirements are often specified as
textual user stories. For example, for an online store one may define a story
like “As a customer, I want to be able to create and edit a customer profile so
that I can conveniently use all services of the e-shop.” In our previous work [9]
we showed that user stories do include information about quality attributes,
and explored how to automatically identify user stories that include information
about quality attributes. The goal was to better understand potential architec-
tural key drivers and their “bigger picture” before analyzing a product backlog
in detail (e.g., through a manual and potentially time-consuming review of the
initial backlog).1 As found by others, problems related to architecture are often
found late in development projects [13]. Our previous work [9] also showed that
we cannot rely on keywords when looking for quality attribute-related informa-
tion in user stories. We therefore applied machine learning and natural language
processing [9].

Machine learning and natural language processing are usually limited regard-
ing precision and recall [7]. Therefore, in this paper we build on our previous
work to investigate two exploratory questions: Q1: Does an automatic analysis
of a backlog miss potentially relevant quality attributes? Answering this ques-
tion could help understand whether automatic analysis of backlogs potentially
misguides the architect’s decision making process. Q2: How does the importance
of quality attributes (based on the frequency of their occurrence in a backlog)
differ between an automatic and a manual review of a backlog? Answering this
question helps understand whether quality requirements can be reliably prior-
itized based on an automated analysis. We are interested in a more analytical
and exploratory discussion of the implications of identifying quality attributes
in user stories, rather than a detailed statistical and experimental evaluation as
partially done in our previous work [9]. Thus, in this paper we present a challenge
in software architecture research and promising results.

1 We acknowledge that quality attributes are not the only factors with architectural
significance; however, other factors are outside the scope of this work.



90 M. Galster et al.

2 Related Work

In software architecture, there are already examples of using natural language
processing, e.g., to extract design decisions from issue management systems [3,
14] or to identify architectural knowledge in developer communities [15].

In 2019, Binkhonain and Zhao conducted a review on machine-learning tech-
niques that classify non-functional requirements [4]. However, most techniques
use comprehensive requirement documents (rather than short user stories) writ-
ten by requirement engineers and rely on keywords. On the other hand, we
focus on user stories that are usually written by end users with less training in
requirements engineering and writing requirements. Two techniques identified
in the review [6,12] deal with mobile app reviews which share some common-
alities with user stories (e.g., short and concise sentences), but for a different
context. While most of the works discussed in [4] recover design decisions or
architecture knowledge post-hoc or for reuse, our goal is to inform decisions of
architects early on based on architectural drivers that arise from user require-
ments. Furthermore, our work is also related to prioritizing quality attributes (see
e.g., Koziolek [11]). We aim at a lightweight yet useful analysis of architecture-
relevant quality attributes in agile development.

3 Research Approach

Below we briefly discuss our approach to explore the two questions outlined in
Sect. 1. The corpus of backlogs and user stories in our study was a set of
1,775 publicly available stories similar to that used by Dalpiaz et al. [5] and in
our previous work [9], see Table 1. The number of user stories ranges from 50 to
114 with an average of 76 per backlog. The average length of stories is 24 words.

To manually identify quality attributes, two researchers independently
labelled user stories to indicate up to two quality attributes per user story (part of
our previous work). Then, we merged the labelling and discussed disagreements.
We used quality attributes as described in the ISO/IEC 25010 standard [10] (for
more details see our previous work [9]). For example, the story “As a reposi-
tory administrator, I would like to be able to continue to provide access to the
repository in the event that the server fails.” was labelled as referring to relia-
bility since it mentions continuous access to a system even in case of failures. In
the following, we use abbreviations for quality attributes (C: compatibility, M :
maintainability, PF : performance, PT : portability, R: reliability, S: security).

To automatically identify quality attributes, we relied on our previ-
ous work [9] which compared different natural language-based machine learning
techniques and models using the spaCy library for natural language processing.2

In this paper we used the best performing model to identify quality attributes
(this model had an average precision of 0.65, average recall of 0.67 and average
f1 score of 0.66 in a k-fold 10 validation) trained on manually labeled stories for
all quality attributes.
2 https://spacy.io/.

https://spacy.io/


What Quality Attributes Can We Find in Product Backlogs? 91

Table 1. Corpus of product backlogs and user stories.

Backlog Description Stories

FederalSpending Web platform for sharing US government spending data 94

Loudoun Land management system for Loudoun County, Virginia 57

Recycling Online platform to support waste recycling 50

OpenSpending Website to increase transparency of government expenses 53

FrictionLess Platform for obtaining insights from data 66

ScrumAlliance First version of the Scrum Alliance website 97

NSF New version of the NSF website 72

CamperPlus App for camp administrators and parents 53

PlanningPoker First version of the PlanningPoker.com website 52

DataHub Platform to find, share and publish data online 67

MIS Management information system for Duke University 83

CASK Toolbox to for fast and easy development with Hadoop 63

NeuroHub Research data management portal 102

Alfred Personal interactive assistant for active aging 134

BadCamp Conference registration and management platform 69

RDA-DMP Software for machine-actionable data management plans 82

ArchiveSpace Web-based archiving system 55

UniBath Institutional data repository for the University of Bath 53

DuraSpace Repository for different types of digital content 99

RacDam Software for archivists 100

CulRepo Content management system for Cornell University 114

Zooniverse Platform that allows anyone to help with research tasks 60

For each user story in each backlog (and following the manual and auto-
matic identification procedures from above) we recorded whether or not it
addresses a quality attribute and if so which one(s). For each backlog, we col-
lected a ranked list (or sequence) of quality attributes based on (a) the absolute
number of occurrences of a quality attribute in all stories of a backlog, (b) the
relative occurrence of a quality attribute compared to the number of user stories
in a backlog, and (c) the relative occurrence of a quality attribute based on all
stories that reference a quality attribute over all backlogs. The rankings were
the same using any of these three metrics. We collected this information for
manually and automatically identified quality attributes separately. We do not
consider other priorities of user stories (e.g., based on value): Priorities are often
not known upfront as user stories are usually prioritized by different stakeholders
during initial iteration planning and sometimes even re-prioritized later.

To compare the sequences of manually and automatically identified qual-
ity attributes, we used a simple metric based on the pairwise swaps required
to transform one sequence into the other. In case two ranked sequences did not
include the same number of quality attributes, the shorter sequence was filled up

https://www.planningpoker.com/


92 M. Galster et al.

with empty strings. Then, when transforming one sequence into the other, this
empty string in one sequence was moved to the position of the missing quality
attribute in the other sequence. For example, the sequence sm = {PF,C,R} from
the manual identification and sa = {PF,R} from the automatic identification
would lead to a comparison of sequences sm = {PF,C,R} and sa = {PF,R, ε}
(where ε denotes the empty string). We would require one swap between C and R
in sa to move C to the position of ε in sm. The total number of swaps required in
the example would then be 1. The larger the number of swaps, the more different
the sequences.

4 Results

In Table 2 we provide the sequences of ranked quality attributes for each backlog
(most frequently to least frequently occurring attribute). “Missed” indicates how
many quality attributes appear in the sequence from the manual identification,
but not in the sequence from the automatic identification. “Additional” indicates
the number of quality attributes that appear in the sequence from the automatic
identification, but not in the sequence from the manual identification.

Key Findings Regarding Q1 (Missing Quality Attributes): Table 2 (col-
umn “Difference”) shows that for most backlogs, the automatic classification
identified a subset of the manually labelled quality attributes. For only two back-
logs, the automatic identification found quality attributes that were not iden-
tified through manual inspection (security for backlogs of PlanningPoker and
NSF ). This means that the amount of false positives on backlog level is rather
small (we analyzed false positives at story level in [9]). On the other hand, the
most frequently missed quality attributes across all backlogs were security, reli-
ability and portability (eight times each). There are two backlogs for which no
quality attribute were automatically identified. CamperPlus contained two sto-
ries related to security and BadCamp contained two stories related to security
and one related to compatibility. Still, these attributes were indirectly related
to the stories. For example, the story “As a parent, I want to be able to create
an account, so that I can sign up my kids for camp online.” from CamperPlus
was annotated with security albeit no obvious reference to security, the manual
annotations often being subject to human interpretation.

Key Findings Regarding Q2 (Importance of Quality Attributes): We
found that the ranked sequences were quite different mostly because of the miss-
ing quality attributes in the automatic classification (column “Difference”). The
number of swaps is rather small except for a few backlogs, e.g., NSF and CASK
(see column “Swaps”). On the other hand, the sequences for NeuroHub (the only
backlog where the quality attributes were the same in both rankings) showed
quite a different order. Focusing on the top quality attributes, the differences are
rather small (e.g., a quality attribute might be the first ranked in one sequence
and the second ranked in another sequence). An exception is the backlog for
CASK, where compatibility appears least frequently in the manual sequence,



What Quality Attributes Can We Find in Product Backlogs? 93

Table 2. Sequences of ranked quality attributes.

Backlog Sequences Difference Swaps

FederalSpending (manual)
FederalSpending (automatic)

{M,C, PF, S}
{C}

Missed: 3
Additional: 0

1

Loudoun (manual)
Londoun (automatic)

{C, S}
{C}

Missed: 1
Additional: 0

0

Recycling (manual)
Recycling (automatic)

{C, S,M,PT}
{S,C}

Missed: 2
Additional: 0

1

OpenSpending (manual)
OpenSpending (automatic)

{C,M,S, PT}
{C, S}

Missed: 2
Additional: 0

1

FrictionLess (manual)
FrictionLess (automatic)

{C,PF,R,M}
{C,PF, S,M}

Missed: 1
Additional: 1

1

ScrumAlliance (manual)
ScrumAlliance (automatic)

{S,C}
{S,C}

Missed: 0
Additional: 0

0

NSF (manual)
NSF (automatic)

{C,M,PT}
{M,S,C}

Missed: 1
Additional: 1

3

CamperPlus (manual)
CamperPlus (automatic)

{S}
None

Missed: 1
Additional: 0

0

PlanningPoker (manual)
PlanningPoker (automatic)

{C,PF, S}
{S,C}

Missed: 1
Additional: 0

2

DataHub (manual)
DataHub (automatic)

{C,R, PT, S,M}
{C}

Missed: 4
Additional: 0

0

MIS (manual)
MIS (automatic)

{S,C,M,PT,R}
{C, S}

Missed: 3
Additional: 0

1

CASK (manual)
CASK (automatic)

{M,R, PT,C}
{C,M}

Missed: 2
Additional: 0

3

NeuroHub (manual)
NeuroHub (automatic)

{C, S, PT,M,R, PF}
{C, S,M,PT, PF,R}

Missed: 0
Additional: 0

2

Alfred (manual)
Alfred (automatic)

{C, S,M,PT, PF}
{C, S,M,PT}

Missed: 1
Additional: 0

0

BadCamp (manual)
BadCamp (automatically)

{S,C}
None

Missing: 2
Additional: 0

0

RDA-DMP (manual)
RDA-DMP (automatic)

{S, PF,C,R}
{S,C}

Missed: 2
Additional: 0

1

ArchiveSpace (manual)
ArchiveSpace (automatic)

{C, S,R,M}
{C, S}

Missed: 2
Additional: 0

0

UniBath (manual)
UniBath (automatic)

{C, S,R,M,PF}
{C, S}

Missed: 3
Additional: 0

0

DuraSpace (manual)
DuraSpace (automatic)

{S}
{S}

Missed: 0
Additional: 0

0

RacDam (manual)
RacDam (automatic)

{S,C}
{S,C}

Missed: 0
Additional: 0

0

CulRepo (manual)
CulRepo (automatic)

{C, S,R, PF, PT}
{C, S}

Missed: 3
Additional: 0

0

Zooniverse (manual)
Zooniverse (automatic)

{C, S}
{C}

Missed: 1
Additional: 0

0



94 M. Galster et al.

but most frequently in the automatic sequence. When looking at the number of
occurrences of quality attributes in each sequence of CASK, we notice that the
absolute numbers for compatibility are rather close, but the main difference is
related to maintainability.

5 Discussion

Implications: Given our preliminary key findings above, we believe that even
though automatically identifying quality attributes may not result in exactly the
same quality attributes identified by a human analyst, the automatic approach
still provides insights for an initial design space exploration. Considering the time
required to manually review a backlog (magnitude of hours) compared to the
time of conducting the automatic approach (magnitude of seconds or minutes),
we believe that an automated backlog analysis could complement rather than
replace human decision making during architecture design: the automated back-
log analysis provides a starting point for problem and solution space exploration
(e.g., the automated analysis could identify key architectural drivers).

Limitations: One limitation of our work is that we do not differentiate run-
time quality attributes and design time quality attributes. Differentiating types
of quality attributes would allow a more detailed analysis of the implications
and perhaps the importance of quality attributes. Furthermore, we do not con-
sider the business value of user stories when determining the ranking of quality
attributes. Quality attributes that appear in more “valuable” user stories may
receive a higher priority (in addition to considering how often these quality
attributes appear in a backlog). Also, we do not consider changing and growing
backlogs. Our assumption is that quality attributes can be analyzed continu-
ously, but it is important to understand the “bigger picture” early on.

Treats to Validity: In terms of external validity, this research relies on a lim-
ited number of user stories and backlogs. It is unclear whether these backlogs are
representative of industrial practices in general. However, since how user stories
are specified in practice varies (e.g., phrasing patterns and writing guidelines)
and does not always follow best practices, it may be hard to identify a truly
representative set of stories. Also, we only consider stories but no acceptance
criteria. Finally, our set of quality attributes is rather limited as it follows the
structure of the ISO/IEC 25010 quality model. Future work includes considering
more hierarchy levels of that quality model. On the other hand, this will require
a much larger set of user stories to train a machine learning classifier, since the
number of quality attributes in ISO/IEC 25010 is rather large. Regarding inter-
nal validity, there could be confounding variables which impact our results and in
particular the manual labeling of stories, e.g., the labeling did not involve initial
stakeholders. Regarding conclusion validity, when comparing quality attributes
identified manually and automatically, we treated manually identified attributes
as “ground truth”. Thus, our findings depend on the quality of the manual clas-
sification and consistency across stories.



What Quality Attributes Can We Find in Product Backlogs? 95

6 Conclusions

In this paper we presented insights about how automatically identified quality
attributes in user stories can provide information for architectural decision mak-
ing. We found that (a) even though the automatic classification does not identify
all quality attributes considered relevant by human experts, at least it identifies
a subset rather than a random list of quality attributes, and (b) the rankings
of quality attributes identified manually and automatically vary, but trends in
sequences are consistent. Future works include analyzing more backlogs and user
stories and investigating the impact of distinguishing types of quality attributes
on the identified quality attributes and their rankings.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley, Boston (2012)

2. Bellomo, S., Gorton, I., Kazman, R.: Toward agile architecture: Insights from 15
years of ATAM. IEEE Softw. 32(5), 38–45 (2015)

3. Bhat, M., Shumaiev, K., Biesdorf, A., Hohenstein, U., Matthes, F.: Automatic
extraction of design decisions from issue management systems: a machine learn-
ing based approach. In: Lopes, A., de Lemos, R. (eds.) ECSA 2017. LNCS, vol.
10475, pp. 138–154. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
65831-5 10

4. Binkhonain, M., Zhao, L.: A review of machine learning algorithms for identifi-
cation and classification of non-functional requirements. Expert Syst. Appl.: X 1,
1–13 (2019)

5. Dalpiaz, F., van der Schalk, I., Brinkkemper, S., Aydemir, F.B., Lucassen, G.:
Detecting terminological ambiguity in user stories: tool and experimentation. Inf.
Softw. Technol. 110, 3–16 (2019)

6. Deocadez, R., Harrison, R., Rodriguez, D.: Automatically classifying requirements
from app stores: a preliminary study. In: Fourth International Workshop on Arti-
ficial Intelligence for Requirements Engineering (AIRE). IEEE (2017)

7. Domingos, P.: A few useful things to know about machine learning. Commun.
ACM 55(10), 78–87 (2012)

8. Galster, M., Angelov, S., Mart́ınez-Fernández, S., Tofan, D.: Reference architec-
tures in scrum: friends or foes? In: Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), pp. 896–901. ACM (2017)

9. Gilson, F., Galster, M., Georis, F.: Extracting quality attributes from user stories
for early architecture decision making. In: International Workshop on Decision
Making in Software Architecture (MARCH), pp. 1–8. IEEE (2019)

10. ISO/IEC: ISO/IEC 25010 system and software quality models. Technical report,
International Organization for Standardization/International Electrotechnical
Commission (2010)

11. Koziolek, A.: Architecture-driven quality requirements prioritization. In: IEEE
International Workshop on the Twin Peaks of Requirements and Architecture
(TwinPeaks), pp. 1–5. IEEE (2012)

https://doi.org/10.1007/978-3-319-65831-5_10
https://doi.org/10.1007/978-3-319-65831-5_10


96 M. Galster et al.

12. Lu, M., Liang, P.: Automatic classification of non-functional requirements from
augmented app user reviews. In: International Conference on Evaluation and
Assessment in Software Engineering (EASE), pp. 344–353. ACM (2017)

13. Martensson, T., Martini, A., Stahl, D., Bosch, J.: Continuous architecture: towards
the goldilocks zone and away from vicious circles. In: International Conference on
Software Architecture (ICSA), pp. 131–140. IEEE (2019)

14. Shahbazian, A., Lee, Y.K., Le, D., Brun, Y., Medvidovic, N.: Recovering archi-
tectural design decisions. In: International Conference on Software Architecture
(ICSA), pp. 95–104. IEEE (2018)

15. Soliman, M., Galster, M., Riebisch, M.: Developing an ontology for architecture
knowledge from developer communities. In: International Conference on Software
Architecture (ICSA), pp. 89–92. IEEE (2017)

16. Waterman, M., Noble, J., Allan, G.: How much up-front? A grounded theory of
agile architecture. In: International Conference on Software Engineering (ICSE),
pp. 347–357. IEEE (2017)


	What Quality Attributes Can We Find in Product Backlogs? A Machine Learning Perspective
	1 Introduction
	2 Related Work
	3 Research Approach
	4 Results
	5 Discussion
	6 Conclusions
	References




