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Abstract. Software architecture recovery approaches mainly analyze
various types of dependencies among software modules to group them
and reason about the high-level structural decomposition of a system.
These approaches employ a variety of clustering techniques. In this paper,
we present an empirical evaluation of a modularity clustering technique
used for software architecture recovery. We use five open source projects
as subject systems for which the ground-truth architectures were known.
This dataset was previously prepared and used in an empirical study
for evaluating four state-of-the-art architecture recovery approaches and
their variants as well as two baseline clustering algorithms. We used
the same dataset for an evaluation of multi-level greedy modularity
clustering. Results showed that MGMC outperforms all the other SAR
approaches in terms of accuracy and modularization quality for most of
the studied systems. In addition, it scales better to very large systems for
which it runs orders-of-magnitude faster than all the other algorithms.
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1 Introduction

Software architecture documentation is an important asset for supporting pro-
gram comprehension, communication and maintenance [16]. This documenta-
tion turns out to be usually incorrect or incomplete, especially for old legacy
systems [10,24]. It is also very effort-intensive to recover such a documenta-
tion manually [14], which can quickly become infeasible as the software size and
complexity increases.

Software architecture reconstruction [9] or recovery [21] (SAR) approaches
have been introduced to recover software architecture documentation. These
approaches essentially analyze dependencies among software modules to group
them and reason about the high-level structure of a system. Inter-dependencies
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among software modules are usually represented with design structure matri-
ces [11] or (un)weighted (un)directed graphs [9,23]. In addition to these differ-
ent representations, SAR approaches mainly vary with respect to the types of
dependencies considered and the types of clustering techniques employed.

In this work, we focus on recovering the high-level structural decomposition
of a system based on code dependencies. In that respect, a recent empirical
study [21] evaluated the effectiveness of four state-of-the-art SAR approaches
and their variants as well as two baseline clustering algorithms. The study was
conducted on five open source projects as subject systems, for which the “ground-
truth” software architectures were manually recovered. Various types of depen-
dencies extracted from the subject systems were used as input to evaluate their
impact on the accuracy of SAR approaches. We used the same dataset for an
evaluation of modularity clustering [4,28] as an alternative SAR approach.

Modularity clustering aims at decomposing a graph into cohesive compo-
nents that are loosely coupled. This aim is aligned with the very basic modu-
larity principle [26] followed in software design. Hence, it makes sense to apply
this approach for SAR. In fact, there have been clustering techniques [23] intro-
duced for balancing the tradeoff between coupling and cohesion. However, it was
shown that the accuracy of these techniques is low and the utilized modular-
ity metrics are subject to flaws [21]. In this study, we employ the Multi-level
Greedy Modularity Clustering (MGMC) approach [25], which borrows metrics
and heuristics from the physics literature [7,31]. MGMC combines two heuris-
tics, namely greedy coarsening [7] and fast greedy refinement [31] to maximize a
modularity measure. We evaluate the accuracy of MGMC and compare it with
respect to those achieved with other SAR approaches. It was shown that some
of these approaches scale to very large systems that contain 10 MLOC, whereas
others not [21]. Therefore, runtime performance of MGMC is another important
aspect to investiage. We defined the following two research questions based on
these concerns:

– RQ1 : How does the accuracy of MGMC compare to those of other SAR
approaches when various types of dependencies are considered?

– RQ2 : How does the runtime performance of MGMC compare to those of other
SAR approaches?

We applied MGMC on dependency graphs regarding five open source projects.
These graphs represent different types of dependencies extracted from the source
code such as file inclusions and function calls. Then, we measured the quality
of the clustering using the corresponding ground-truth architectures and two
different metrics proposed before [23,36]. We compared these measurements with
respect to the measurements previously reported [21] for the same projects,
input files and metrics but for different SAR approaches. Results showed that
MGMC outperforms all the other SAR approaches in terms of accuracy and
modularization quality [23] for most of the studied systems. In addition, it scales
better to very large systems for which it runs orders-of-magnitude faster than
all the other algorithms.
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This paper is organized as follows. We summarize the related studies on SAR
and position our work in the following section. We introduce MGMC in Sect. 3.
We explain the experimental setup in Sect. 4. We present and discuss the results
in Sect. 5. Finally, in Sect. 6, we conclude the paper.

2 Background and Related Work

There exist many approaches [9] proposed for SAR, some of which are manual or
semi-automated. In this study, we focus on approaches introduced for automat-
ically recovering an architecture. The recovered architecture can be in various
forms for representing various architectural views [16]. The majority of the exist-
ing techniques [21,29,30,33] aim at recovering a module view that depicts the
structural design-time decomposition of a system [16]. Some of them focus on
analyzing the runtime behavior for reconstructing execution scenarios [5] and
behavioral views [27]. There are also tools that construct both structural and
behavioral views [17,34]. In this work, we focus on SAR approaches that are
used for recovering a high-level module view of the system.

SAR approaches also vary with respect to types of inputs they consume [9].
Some of them rely on textual information extracted from source code [8,15].
Many others use dependencies among modules, which are usually represented
with design structure matrices [11] or (un)weighted (un)directed graphs [23].
These dependencies can be extracted from a variety of sources as well. For
instance, a call graph extracted from the source code can be interpreted as a
dependency graph, where each vertex represents a module (e.g., class) and each
directed edge represents a dependency (e.g., method call) from the source ver-
tex to the target vertex [23]. As another example, commonly accessed database
tables (or other external resources) can be interpreted as (indirect) module inter-
dependencies [2]. The goal of a recent empirical study [21] was to measure the
impact of various code dependencies on the accuracy of SAR approaches. These
dependencies were represented in the form of unweighted directed graphs, which
were extracted based on variable accesses, function calls and file inclusions. We
use the same types of dependencies in this work to extend that study with an
evaluation of MGMC.

Finally, the employed clustering algorithm/technique is a major variation
point among SAR approaches. There are many techniques proposed so far and
these techniques have been compared with each other as well. However, an anal-
ysis of existing evaluations [21] show that results are not always consistent. In
a recent study [13], nine variants of six SAR approaches were compared based
on eight subject systems. The overall accuracy of all the evaluated approaches
turned out to be low based on their consistency with respect to the ground-
truth architectures collected for the subject systems. In that study, ACDC [35]
was pointed out as one of the best approaches. In another study, the perfor-
mance of LIMBO (Scalable Information Bottleneck) [3] was shown to be com-
parable to that of ACDC. There also exist a study [38] indicating that WCA
(Weighted Combined Algorithm) [22] performs better than ACDC. However, in
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the most recent studies [13,21], ACDC turns out to be superior than others.
Results may differ due to the use of different subject systems and assessment
measures/criteria.

Bunch [23] employs a hill-climbing algorithm for maximizing modularization
quality, while clustering a dependency graph. Its objective function is defined to
balance the tradeoff between the cohesion of clusters and coupling among them.
However, the best objective function value can be achieved by grouping all the
modules in a single cluster [21]. Also, the accuracy of Bunch was shown to be
low in recent empirical studies [21]. We adopt a different formulation of modu-
larity in this study and also a different algorithm to maximize it. We previously
used another variant of modularity clustering [12] for recovering software archi-
tectures of PL/SQL programs. In that approach, dependencies among PL/SQL
procedures are extracted based on their common use of database tables. These
dependencies are represented in the form of a hypergraph. This representation
is converted to a weighted undirected graph, which is then partitioned to maxi-
mize modularity. However, that approach was dedicated for PL/SQL programs
and its evaluation was based on a single case study. Moreover, it employed a
different algorithm [6] to maximize modularity. The effectiveness of MGMC that
we introduce in the following section has not been empirically evaluated as a
SAR approach.

3 Multi-level Greedy Modularity Clustering

Given a graph G(V,E), modularity clustering aims at grouping the set of vertices
V = {v1, v2, ..., vn} into a set of k disjoint clusters C1, C2, ..., Ck such that the
modularity is maximized. The modularity is calculated based on Eq. 1 [28].

M =
1

2m

k∑

l=1

∑

i,j|vi,vj∈Cl

(wij − didj
2m

) (1)

In this equation, wij represents the weight of the edge between vi and vj , di =∑
j �=i wij and m = 1

2

∑
i di. In our dataset, the extracted dependency graphs

are not weighted. Hence, wij can be either 1 or 0, representing the existence
of a dependency between vi and vj or lack thereof, respectively. However, the
objective function and the employed algorithms are generic and they can work
on weighted graphs as well. We should also note that graphs are considered as
undirected in this formulation. Two vertices, vi and vj are adjacent (wij = wji =
1) if either of these vertices depends on the other.

M captures the inherent trade-off in maximizing the number of edges among
the vertices that take place in the same cluster and minimizing the number of
edges among the vertices that take place in different clusters. We can see in Eq. 1
that wij values are summed up only for pairs of vertices that are in the same
cluster. Therefore, decreasing the number of clusters and as such, increasing the
size of each cluster is rewarded by taking more pairs into account. On the other
hand, the value of wij will be 0 for pairs of independent vertices that are in the
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same cluster. Nevertheless, the penalty didj

2m is paid for each such pair as well.
The amount of penalty is proportional to the number of dependencies of these
vertices to all the other vertices in the graph.

It was shown that finding a clustering of a given graph with maximum M
is an NP-hard problem [4]. Exact methods can not scale beyond graphs with
a few hundred vertices [1,39]. Therefore, many heuristic algorithms have been
proposed to address this problem. These are mainly proposed and elaborated in
the physics literature [7,31]. MGMC is one of these and it combines two heuris-
tics [25].

The first heuristic is greedy coarsening [7], which starts with singleton clusters
and iteratively merges cluster pairs as long as the merge operation increases
modularity. Hereby, a merge priority is assigned to each cluster pair, which
determines the order of pairs to be merged at each step. It was empirically
shown that the Significance (Sig) measure is an effective metric to quantify
merge priority [25]. Sig for a cluster pair (A,B) is defined as follows.

Sig =
ΔMA,B√

deg(A) × deg(B)
(2)

Hereby, ΔMA,B defines the amount of increase in modularity as a result of
merging clusters A and B. The deg function provides the total weight of edges
inside a given cluster.

The second heuristic is called fast greedy refinement [31]. This heuristic basi-
cally iterates over all the vertices in the graph and finds the best target cluster
to move for each vertex. The best cluster is the one that leads to the largest
modularity increase by moving the vertex to this cluster. Iteration stops when
the modularity can not be improved further with any vertex movement.

The coarsening and refinement heuristics do not have to be applied in sepa-
rate, sequential phases. Moving individual vertices after the completion of coars-
ening can lead to sub-optimal results. A densely connected group of vertices
may not have a chance to move to another cluster because this would involve
a series of vertex movements that degrade modularity. However, refinement can
be applied at any level of the coarsening hierarchy in principle. An entire clus-
ter can be moved rather than an individual vertex. This is the idea behind
multi-level refinement [18,19], where the application of coarsening and refine-
ment heuristics are interleaved. Intermediate coarsening results are saved as a
coarsening level whenever the number of clusters is decreased by a certain per-
centage called the reduction factor. These intermediate results are embodied as a
graph where vertices represent clusters obtained at the corresponding coarsening
level. The refinement heuristic is applied to every level. It was empirically shown
that modularity improves as reduction factor decreases; however, the amount
of improvement becomes less significant when reduction factor incline below
50% [25].

The algorithm [28] we used in this study follows the steps and recommen-
dations described above. The implementation of the overall greedy algorithm is
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discussed in [25]. Further details of the implementation together with pseudo
codes of its various steps are provided in [28].

4 Experimental Setup

In this section, we describe our experimental setup including the properties of
our dataset, SAR approaches being compared with MGMC and the evaluation
criteria.

4.1 Subject Systems and the Dataset

Table 1 lists information about five open source projects, which were used as
subject systems for a previous empirical study [21]. We used the same set of
projects because their ground-truth architectures and module dependency infor-
mation were available.

Table 1. Subject systems.

System Version LOC # of files Description

Chromium svn-171054 10 M 18,698 Web Browser

ITK 4.5.2 1 M 7,310 Image Segmentation Toolkit

Bash 4.2 115 K 373 Unix Shell Command Processor

Hadoop 0.19.0 87 K 591 Data Processing Framework

ArchStudio 4 55 K 604 Architecture Development Tool

Table 2 lists the properties of our dataset. Hereby, the second column lists
the number of clusters in the ground-truth architecture of each system. The
following 3 columns list the numbers of dependencies extracted for 3 basic types
of dependencies considered: (i) Include dependencies are established between two
files if one of them declares that it includes the other. (ii) Symbol dependencies
are established between two files if one of them makes use of a symbol that
is defined in the other. A symbol can be a function or a variable name. (iii)
Function dependencies constitute a subset of Symbol dependencies, just focusing
on function calls between modules.

Types of symbol dependencies were further varied to observe their impact on
the accuracy of SAR approaches. (i) F-GV captures function calls and global
variables together. (ii) S-NoDYB represents symbol dependencies extracted by
ignoring dynamic bindings. The values listed in Table 2 reflect this type of symbol
dependencies. (iii) S-CHA takes dynamic bindings into account by analyzing the
class hierarchies. (iv) S-Int is extracted by resolving dynamic bindings based on
interfaces only. We used these dependency types in our evaluation. There are two
other dependency types that were utilized in the previous empirical study [21],
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namely transitive and module level dependencies. We have not used these two
since the corresponding dependency information was not available for most of
the projects. Information regarding Include, S-CHA, S-Int, S-NoDyB, Function
and F-GV dependencies was available for all the projects. One exception to
this was the Bash project implemented in C, for which information regarding
dynamic bindings could not be extracted. So, dependency information regarding
S-CHA, S-Int and S-NoDyB variants is not available for this project. Depen-
dency information regarding each type of dependency is represented in the form
of an unweighted directed graph, so-called a dependency graph.

Table 2. Properties of the dataset [21].

System # of clusters in
the ground-truth
architecture

# of various types
of dependencies

Include Symbol Function

Chromium 67 1,183,799 297,530 123,422

ITK 11 169,017 75,588 16,844

Bash 14 2,512 2,481 1,025

Hadoop 67 1,772 11,162 2,953

ArchStudio 57 866 5,359 1,411

4.2 Architecture Recovery Approaches

We selected the same variants of SAR approaches, for which we took the results
reported [21] regarding their accuracy on the same dataset we use. We only
omitted two of these approaches, namely Architecture Recovery Using Concerns
(ARC) [15] and Zone Based Recovery (ZBR) [8], which use textual informa-
tion from source code as input. Results regarding these approaches were missing
for dependency graphs that are used as input for MGMC. Most of the results
were missing for ARC and ZBR also because they could not scale for large sys-
tems [21]. In particular, we included results regarding ACDC [35], two variants of
Bunch [23], namely Bunch-NAHC and Bunch-SAHC, two variants of WCA [22],
namely WCA-UE and WCA-UENM, and finally, LIMBO [3].

We also included results regarding K-means algorithm used as a baseline for
comparison. There was a second baseline derived from the directory structure of
the project [21]. However, we omitted that one since most of the corresponding
results we missing, just like the case for ARC and ZBR.

4.3 Environment and Parameters

We used a laptop computer with Intel Core i7 1.80 GHz CPU and 16 GB RAM
to run the experiments. We used the implementation of MGMC provided by
Rossi [28], which is available online1. This implementation works on weighted
1 http://apiacoa.org/research/software/graph/index.en.html.

http://apiacoa.org/research/software/graph/index.en.html
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undirected graphs. Hence, in our dataset directions are ignored and all the edge
weights are assumed to be 1. We did not provide any of the optional parameters
and as such, used the algorithm with its default parameter settings (i.e., reduction
factor = 25%, merge priority = Sig).

Input files that store dependency graphs [21] conform to the Rigi Standard
Format (RSF) format [32,37]. The clustering results should also be saved in this
format to be provided to the implementations of metrics described in the fol-
lowing subsection. However, the input and output formats of the MGMC imple-
mentation do not conform to RSF. Hence, we developed programs to preprocess
the input and postprocess the output. We did not include the time spent for
input/output transformations in our measurements and just report the time
elapsed during clustering. We run the algorithm 100 times to observe the varia-
tion in running time although the results do not change in these runs.

The reported results for Bunch variants and ACDC are calculated as the
average of five runs due to the non-determinism of the employed clustering algo-
rithms [21]. On the other hand, WCA variants, LIMBO and K-means take the
number of clusters, k as input. Results reported for these approaches are aver-
ages of results obtained from multiple executions, where k is varied in each run.
The values of k range from 20 clusters below to 20 clusters above the number of
clusters in the ground-truth architecture with step size 5 [21].

4.4 Evaluation Criteria

We used two different metrics to evaluate MGMC and compare it with the other
SAR approaches. The first one is the MoJoFM metric [36], of which the imple-
mentation is available online2. This metric is used for measuring the similarity
between the recovered architecture and the ground-truth architecture. It has
been shown to be more accurate than other representative measures and consis-
tently been used in empirical studies on SAR [13,20,21]. The MoJoFM value for
given two clusterings A and B is calculated as follows:

MoJoFM = (1 − mno(A,B)
max(mno(∀A,B))

) × 100% (3)

Hereby, mno(A,B) calculates the minimum number of move or join operations
needed to transform A to B. On the other hand, max(mno(∀A,B)) calculates
the maximum mno(A,B) possible for any A. High and low MoJoFM values
indicate high similarity and high disparity between A and B, respectively.

There might be a lack of consensus on the ground-truth architecture by the
domain experts. Hence, there might be multiple such architectures derived [21].
Moreover, the recovery process is by-and-large manual, and as such, error-prone.
For these reasons, we used a second metric, namely normalized TurboMQ [21],
which measures the quality of a clustering independent of any ground-truth
architecture. This metric is defined based on the Cluster Factor (CF) that is
calculated for each cluster, i as follows:
2 http://www.cse.yorku.ca/∼bil/downloads/.

http://www.cse.yorku.ca/~bil/downloads/
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Table 3. MoJoFM results for Bash.

Method Include Symbol Function F-GV

MGMC 64 52 57 54
ACDC 52 57 49 50
Bunch-NAHC 53 43 49 46
Bunch-SAHC 57 52 43 49
WCA-UE 34 24 29 30
WCA-UENM 34 24 31 30
LIMBO 34 27 22 22
K-means 59 55 47 46

CFi =
μi

μi + 0.5 × ∑
j(εij + εji)

(4)

Hereby, μi is the number of dependencies among the elements in cluster i. The
term

∑
j(εij + εji) defines the sum of dependencies between elements in cluster i

and all the elements residing in other clusters. TurboMQ measure basically adds
up the CF values for all the clusters as shown in Eq. 5.

TurboMQ =
k∑

i=1

CFi (5)

It was observed that TurboMQ measure is biased towards architectures with
large numbers of clusters [21]. Therefore, it is normalized with respect to the total
number of clusters in the recovered architecture. This leads to the normalized
TurboMQ metric, which we used in our study. The implementation of this metric
is available online3 as well.

We discuss the obtained results in the following section.

5 Results and Discussion

Results for each subject system are listed in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11
and 12. The first and the latter five tables list results regarding the MoJoFM
metric and the normalized TurboMQ metric, respectively. In the following section
we first interpret these results to answer RQ1. Then, we evaluate the runtime
performance as the focus of RQ2. We conclude the section with a discussion on
threats to validity.

3 https://github.com/hasansozer/Normalized-TurboMQ.

https://github.com/hasansozer/Normalized-TurboMQ
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5.1 Accuracy of Modularity Clustering

Tables 3, 4, 5, 6 and 7 list the results for the MoJoFM metric. The first column
lists the compared SAR approaches, which is followed by results regarding each
type of dependency in the respective columns. The best score obtained by any of
the SAR approaches for a particular type of dependency is highlighted in light
gray. The best score overall is highlighted in dark gray. We can see from these
results that the overall best scores are obtained with either ACDC or MGMC. We
can also see that best scores per various dependency types are also attributed
to these two techniques except a few cases. Overall, MGMC outperforms ACDC
in approximately half of the cases.

Table 4. MoJoFM results for ArchStudio.

Method Include S-CHA S-Int S-NoDyB Function F-GV

MGMC 61 50 64 66 63 63
ACDC 60 60 77 78 74 74
Bunch-NAHC 48 40 49 47 53 46
Bunch-SAHC 54 39 53 40 53 54
WCA-UE 30 30 32 45 31 31
WCA-UENM 30 30 32 45 31 31
LIMBO 23 23 24 25 24 23
K-means 44 37 39 41 39 38

Table 5. MoJoFM results for Chromium.

Method Include S-CHA S-Int S-NoDyB Function F-GV

MGMC 59 56 55 64 67 67
ACDC 64 70 73 71 71 71
Bunch-NAHC 28 31 24 29 29 35
Bunch-SAHC 12 71 43 42 39 29
WCA-UE 23 23 23 27 29 29
WCA-UENM 23 23 23 27 29 29
LIMBO N/A 23 3 26 27 27
K-means 40 42 43 43 45 45

Tables 8, 9, 10, 11 and 12 list the results for the normalized TurboMQ metric.
We can see that MGMC is even much better than all the other SAR approaches
for this metric. It also consistently outperforms ACDC. In fact, this result is
expected because the normalized TurboMQ metric evaluates the modularity of
the clusters and MGMC aims at maximizing this property although the metrics
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Table 6. MoJoFM results for Hadoop.

Method Include S-CHA S-Int S-NoDyB Function F-GV

MGMC 27 24 40 42 37 39
ACDC 24 29 41 41 41 41
Bunch-NAHC 23 21 24 24 26 26
Bunch-SAHC 24 26 28 26 29 28
WCA-UE 13 12 15 28 17 17
WCA-UENM 13 12 15 28 17 17
LIMBO 15 13 14 14 13 14
K-means 30 25 29 28 29 29

Table 7. MoJoFM results for ITK.

Method Include S-CHA S-Int S-NoDyB Function F-GV

MGMC 50 57 56 54 62 62
ACDC 52 55 52 48 60 60
Bunch-NAHC 37 36 35 35 45 47
Bunch-SAHC 32 46 43 41 54 53
WCA-UE 30 31 44 45 36 36
WCA-UENM 30 31 44 45 36 36
LIMBO 30 31 44 38 36 35
K-means 38 42 39 43 60 61

used for assessing modularity are different. Bunch variants also aim at improv-
ing modularity. Hence, it is interesting to see Bunch variants lagging behind for
this metric as well. There is one exception to this observation among the results,
which is related to the Archstudio project (Table 9). Here, Bunch variants out-
perform all the other SAR approaches in general, although the best overall result
is still obtained with MGMC.

We manually analyzed the clustering output provided by MGMC for the S-
CHA dependency file regarding the ArchStudio project in detail. We noticed that
there are many clusters in the output that contain a single item only. Then, we
checked the occurrence of these items in the input dependency graph. We found
out that they are subject to reflexive dependencies. For instance, the following
file is specified to be dependent on itself only:

edu.uci.isr.archstudio4.comp.archipelago.ObjRefTransfer

The output of MGMC is reasonable for such cases. A cluster with no external
dependencies may not be merged with other clusters. Also, an item that is depen-
dent on itself only may not be moved to other clusters. These actions would not
improve the modularity measure. Indeed, we observed that the TurboMQ value
increases from 31 to 70 for MGMC after we remove reflexive dependencies.
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5.2 Runtime Performance of Modularity Clustering

Figure 1 depicts a box-plot regarding the execution times of MGMC for the largest
set of input files. Hereby, the x-axis lists the four largest dependency graphs in
the dataset that are provided as input for clustering. These are all extracted
from the Chromium project. The total completion time of clustering is indicated
by the y-axis in seconds. Recall that we used a laptop computer with Intel Core
i7 1.80 GHz CPU and 16 GB RAM to run the experiments. Yet, the execution
time do not exceed half a minute even for the largest input file. However, ACDC,
which was reported as the most scalable technique, took 70–120 min to run for
the same input file on a 3.3 GHz E5-1660 server with 32 GB RAM [21]. Results for
the other SAR approaches obtained only after 8 to 24 h of running or a timeout
error [21]. Therefore, we conclude that MGMC runs orders-of-magnitude faster
than all the other algorithms.
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Fig. 1. Runtime performance of MGMC on the largest dependency graphs extracted
from the Chromium project.

5.3 Threats to Validity

There are several validity threats to our evaluation. First, our evaluation is based
on the commonly used MoJoFM metric. It was shown that this metric was
preferable to other alternatives when the architectures being compared contain
the same files [21]. The validity of the ground-truth archtiectures poses another
threat for the study. However, actual developers and architects of the projects
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Table 8. Normalized TurboMQ results for Bash.

Method Include Symbol Function F-GV

MGMC 74 64 63 63
ACDC 9 22 29 29
Bunch-NAHC 25 31 33 28
Bunch-SAHC 30 30 28 28
WCA-UE 0 7 10 10
WCA-UENM 0 7 5 10
LIMBO 6 13 7 7
K-means 0 17 14 16

Table 9. Normalized TurboMQ results for ArchStudio.

Method Include S-CHA S-Int S-NoDyB Function F-GV

MGMC 89 31 50 50 54 37
ACDC 66 41 76 84 72 74
Bunch-NAHC 72 42 74 85 74 75
Bunch-SAHC 71 41 76 85 72 74
WCA-UE 1 11 22 65 10 19
WCA-UENM 1 11 22 65 10 19
LIMBO 2 12 31 38 24 27
K-means 13 21 38 51 35 39

were involved in the extraction of this information [21]. To mitigate these threats,
we used a second measure, normalized TurboMQ, which measures the quality
of a clustering independent of any ground-truth architecture. This measure is
based on the modularity metric utilized by the Bunch tool [23] and it is subject
to flaws, i.e., it is possible to obtain the maximum score by grouping all the
modules in a single cluster. We manually checked results for such cases. Our
evaluation is based on five subject systems, which limits the generalizability of
conclusions. These systems were selected to be of different size, functionality and
design/implementation paradigms to mitigate this threat. It is not easy to extend
the dataset due to difficulties in obtaining ground-truth architectures [14].
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Table 10. Normalized TurboMQ results for Chromium.

Method Include S-CHA S-Int S-NoDyB Function F-GV

MGMC 94 90 80 94 93 93
ACDC 15 19 18 20 24 24
Bunch-NAHC 4 24 9 26 16 19
Bunch-SAHC 2 30 11 23 29 11
WCA-UE 0 2 2 2 2 2
WCA-UENM 0 2 2 2 2 3
LIMBO N/A 2 2 2 2 2
K-means 0 17 13 19 22 22

Table 11. Normalized TurboMQ results for Hadoop.

Method Include S-CHA S-Int S-NoDyB Function F-GV

MGMC 89 45 48 52 54 45
ACDC 48 28 59 65 57 58
Bunch-NAHC 40 26 53 61 52 48
Bunch-SAHC 40 31 53 61 54 56
WCA-UE 1 5 8 34 6 8
WCA-UENM 1 5 8 33 6 8
LIMBO 2 7 19 25 17 17
K-means 11 13 29 34 26 27

Table 12. Normalized TurboMQ results for ITK.

Method Include S-CHA S-Int S-NoDyB Function F-GV

MGMC 95 92 80 90 94 94
ACDC 33 24 18 32 40 40
Bunch-NAHC 15 23 23 22 34 37
Bunch-SAHC 10 29 23 21 44 37
WCA-UE 3 9 3 2 10 9
WCA-UENM 3 9 3 2 10 19
LIMBO 7 11 5 1 9 9
K-means 13 24 15 13 31 25

6 Conclusion and Future Work

We introduced an empirical evaluation of MGMC used for SAR. We used five
open source projects as subject systems for which the ground-truth architectures
were known. Various types of dependencies extracted from these systems were
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previously used as input to evaluate their impact on the accuracy of state-of-
the-art SAR techniques. We used the same dataset to evaluate the accuracy and
runtime performance of MGMC and compared the results with respect those
achieved with existing techniques. Results showed that the accuracy of MGMC
is comparable to that of the best known algorithm so far, namely ACDC [35],
outperforming it in approximately half of the cases. In addition, it scales better
to very large systems for which it runs orders-of-magnitude faster than all the
other algorithms.

As future work, additional metrics can be employed for evaluating the
accuracy of clustering results. Other types/variants of greedy, heuristic-based
approaches can be employed to maximize modularity. Exact methods can also
be applied to obtain the optimal possible outcome as a reference point although
they do not scale for large projects. The dataset used for experimentation can
also be extended; however, ground-truth architectures are usually not available
and it is very effort-consuming to recover them [14].

Acknowledgements. We thank Thibaud Lutellier for providing the extracted depen-
dency data regarding the subject systems.
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tique 152(3), 34–65 (2011)

29. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage
complex software architecture. In: Proceedings of the 20th Conference on Object-
Oriented Programming, Systems, Languages and Applications, pp. 167–176 (2005)

30. Sangwan, R., Neill, C.: Characterizing essential and incidental complexity in soft-
ware architectures. In: Proceedings of the 3rd European Conference on Software
Architecture, pp. 265–268 (2009)

31. Schuetz, P., Caflisch, A.: Efficient modularity optimization by multistep greedy
algorithm and vertex mover refinement. Phys. Rev. E 77, 046112 (2008)

32. Storey, M.A., Wong, K., Muller, H.: Rigi: A visualization environment for reverse
engineering. In: Proceedings of the 19th International Conference on Software Engi-
neering, pp. 606–607 (1997)

33. Sullivan, K., Cai, Y., Hallen, B., Griswold, W.: The structure and value of modu-
larity in software design. In: Proceedings of the 8th European Software Engineering
Conference, pp. 99–108 (2001)

34. Sun, C., Zhou, J., Cao, J., Jin, M., Liu, C., Shen, Y.: ReArchJBs: a tool for auto-
mated software architecture recovery of JavaBeans-based applications. In: Proceed-
ings of the 16th Australian Software Engineering Conference, pp. 270–280 (2005)

35. Tzerpos, V., Holt, R.: ACDC: an algorithm for comprehension-driven clustering.
In: Proceedings of the 7th Working Conference on Reverse Engineering, pp. 258–
267 (2000)

36. Wen, Z., Tzerpos, V.: An effectiveness measure for software clustering algorithms.
In: Proceedings of the 12th IEEE International Workshop on Program Compre-
hension, pp. 194–203 (2004)

37. Wong, K.: RIGI User’s Manual. University of Victoria (1996)
38. Wu, J., Hassan, A.E., Holt, R.C.: Comparison of clustering algorithms in the con-

text of software evolution. In: Proceedings of the 21st IEEE International Confer-
ence on Software Maintenance, pp. 525–535 (2005)

39. Xu, G., Tsoka, S., Papageorgiou, L.: Finding community structures in complex
networks using mixed integer optimisation. Eur. Phys. J. B 60(2), 231–239 (2007)


	Evaluating the Effectiveness of Multi-level Greedy Modularity Clustering for Software Architecture Recovery
	1 Introduction
	2 Background and Related Work
	3 Multi-level Greedy Modularity Clustering
	4 Experimental Setup
	4.1 Subject Systems and the Dataset
	4.2 Architecture Recovery Approaches
	4.3 Environment and Parameters
	4.4 Evaluation Criteria

	5 Results and Discussion
	5.1 Accuracy of Modularity Clustering
	5.2 Runtime Performance of Modularity Clustering
	5.3 Threats to Validity

	6 Conclusion and Future Work
	References




