
From a Monolith to a Microservices
Architecture: An Approach Based on

Transactional Contexts

Lúıs Nunes , Nuno Santos , and António Rito Silva(B)

INESC-ID/Department of Computer Science and Engineering,
Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal

{luis.a.nunes,nuno.v.santos,rito.silva}@tecnico.ulisboa.pt

Abstract. Microservices have become the software architecture of
choice for business applications. Initially originated at Netflix and Ama-
zon, they result from the need to partition, both, software development
teams and executing components, to, respectively, foster agile develop-
ment and horizontal scalability. Currently, there is a large number of
monolith applications that are being migrated to a microservices archi-
tecture. This article proposes the identification of business applications
transactional contexts for the design of microservices. Therefore, the
emphasis is to drive the aggregation of domain entities by the trans-
actional contexts where they are executed, instead of by their domain
structural inter-relationships. Additionally, we propose a complete work-
flow for the identification of microservices together with a set of tools that
assist the developers on this process. The comparison of our approach
with another software architecture tool and with an expert decomposi-
tion in two case studies revealed high precision values, which reflects that
accurate service candidates are produced, while providing visualization
perspectives facilitates the analysis of the impact of the decomposition
on the application business logic.

Keywords: Monolith applications · Microservices architecture ·
Architectural migration · Transactional logic decomposition

1 Introduction

Microservices architecture [22] is increasingly being adopted as the software
architecture of business applications. Initially originated at Netflix and Amazon,
they result from the need to partition, both, software development teams and
executing components. The former promotes the application of software agile
approaches, due to smaller loosely dependent teams associated to partitions of
the domain model, while the later improves the system horizontal scalability, due
to the ability to have different levels of scalability for each execution context. On
the other hand, a large number of existing applications are implemented using

c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 37–52, 2019.
https://doi.org/10.1007/978-3-030-29983-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_3&domain=pdf
http://orcid.org/0000-0002-3924-450X
http://orcid.org/0000-0002-2742-8707
http://orcid.org/0000-0001-9840-457X
https://doi.org/10.1007/978-3-030-29983-5_3

38 L. Nunes et al.

the monolith architecture, where a single database is shared by all the system
functionalities.

A survey done with experts identifies Wrong Cut, when microservices are
split in the basis of technical layers instead of business capabilities, as one of the
two worst bad practices when designing microservices [21]. Therefore, several
approaches [12] are being proposed on how to migrate monolith systems to a
microservices architecture. Most of these approaches are driven by the identifi-
cation of structural modules, which have high cohesion and low coupling, in the
monolith domain model. However, they do not consider the need to change the
application business logic when migrating a monolith to a microservices architec-
ture. This problem is identified in [8] as the Forgetting about the CAP Theorem
migration smell, which states that there is a trade-off between consistency and
availability [6].

We propose the identification of business applications transactional contexts
for the design of microservices. Therefore, the emphasis is to drive the aggrega-
tion of domain entities by the transactional contexts where they are executed,
instead of by their structural domain inter-relationships. This equips software
architects to reason about the impacts of the migration on the overall system
business logic, due to the relaxing of consistency. Additionally, we define a com-
plete workflow for the identification of microservices together with a set of tools
that assist the architects in this process, and apply concepts and techniques such
as code analysis and graph clustering.

The comparison of our approach with another software architecture tool and
an expert decomposition of the case studies resulted in high precision values,
which reflects that accurate service candidates are produced.

The subsequent sections are going to be summarized as follows. Section 2
presents the concepts behind architectural migrations to microservices, Sect. 3
describes the proposed solution, where Sect. 4 evaluates the result of applying
the automatic decomposition to a monolith application. Finally, Sect. 5 presents
the related work and Sect. 6 the conclusions.

2 Concepts

The migration of a monolith to a microservices architecture comprises three
phases: data collection, which collects information about the system that is
intended to migrate to microservices architecture; microservices identification,
where one, or several, criteria are applied to the collected data to identify
microservices candidates; and visualization, which provides a visual representa-
tion of the identified microservices, and their relationships, according to different
perspectives.

The approaches differ on which technique they use to collect the data, either
manual or automatically, the type of data collected, e.g. a call graph or the
execution log of the application, and if they are source code based or model-
based, which in the latter case the data collection corresponds, actually, to a
modeling activity followed by the extraction of information from the model.

Monolith to Microservices 39

The automatic collection of data is based on techniques like, static analy-
sis [20] and dynamic analysis [4], which provide different types of information.
Dynamic code analysis can provide richer information, for instance the number
of times an entity is accessed, but it is more difficult to obtain, because it is nec-
essary to execute the system according to the adequate execution profiles. For
instance, the number of times an entity is accessed depends on the particular
usage of the system, which may even be periodic.

On the other hand, the type of collected information is strongly related to
how each of the authors characterize a microservice and what they consider as
the relevant qualities of a microservices system. For instance, some approaches
use the log of the commits in a version control system repository, because they
emphasize the team work separation quality of microservices architectures, while
other approaches collect the number of invocations between domain entities,
because they intend to reduce the communication cost between microservices in
order to achieve good performance.

In what concerns the model-based approaches, they define high level rep-
resentations of the system, for instance use case models and business process
models, to represent the information considered necessary for the identification
of microservices, arguing that the monolith may have an initial poor design
and it is necessary to do some reverse engineering activities. Additionally, these
approaches may be applied to the development of a microservices system from
scratch. However, the possible mismatch between the source code and its model
representation may hinder the microservices extraction to be done by the devel-
oper, once the microservices are finally identified by architect. Actually, accord-
ing to a recent survey [11], industry experts rely on low-level sources of informa-
tion, like the source code and test suites, which means that even if a model-based
approach is followed, the existence of tools that analyze the source code cannot
be completely dismissed.

In the microservices identification phase a metric is defined over the collected
data. By using this metric a similarity measure between the system elements is
calculated, such that a clustering algorithm can be applied to aggregate the
monolith entities, maximizing the intra-cluster similarity and minimizing the
inter-cluster similarity, where each cluster becomes a microservice candidate.
Some of the approaches do not even suggest the application of a clustering algo-
rithm but foster the identification of the microservices by the human observation
of a graph, where the similarities between the monolith elements are visually rep-
resented.

Obviously, there is a close relationship between the metric and the type
of data collected, for instance, if the data is about the invocations between
microservices, then the metric gives a high similarity value between two monolith
elements, if they have a high number of mutual invocations, such that they can
be part of the same cluster.

The visualization phase uses the collected data and, together with the met-
ric of the previous phase, presents a graph that can be analyzed according to
different perspectives. For instance, it may be possible to visualize information

40 L. Nunes et al.

associated with edges between cluster nodes, for instance, the number of invo-
cations, such that the architect can reason on the impact of these dependencies
on the final microservices architecture.

Sixteen microservices coupling criteria are presented in [13]. They extract
the coupling information from models and create an indirect, weighted, graph to
generate clusters, using two different algorithms that define priorities for each
one of the criteria. Finally, the result clusters are visualized. Although they
provide the most extensive description of coupling criteria, by being based on
models, they require, for some of the criteria, that part of the identification is
already done. For instance, for the consistency criticality criteria it is necessary to
provide information about the consistency level between the monolith elements,
high, eventual, and weak. However, the identification of this information already
assumes that the monolith is somehow divided and the impact of the migration
in the business logic already identified, because in a monolith the consistency
between its elements is always high, due to ACID transactions and their strict
consistency.

3 Decomposition by Transactional Contexts

The main objective of this paper is to present a set of tools that support soft-
ware architects on the process of migrating from a monolithic to a microservices
architecture. Our solution relies on the identification of transactional contexts
where a business transaction is divided into several transactional contexts.

We assume a software architecture for the monolith that applies the Model-
View-Controller (MVC) architectural style, where the business transactions are
represented by the controllers. In the monolith, the execution of a controller
corresponds to the transactional execution of a request. Therefore, the monolith
was designed considering the sequences of these requests, where each one of
them is implemented by an ACID transaction and strict consistency. In order to
reduce the impact of the migration on the system design we intend to group the
domain entities accessed by a controller inside the same microservice, avoiding
the introduction of relaxed consistency to the business functionality. Therefore,
ideally, a controller would be implemented by a single microservice encapsulating
its own database. However, there are domain entities that are accessed by several
controllers. Our metric gives lower values to domain entities that are accessed
the same controllers, such that they can be located in the same cluster.

Although the tools were developed for an implementation of the monolith in
Spring-Boot Java and using the FénixFramework [7] object-relational mapper
(ORM), the overall approached can be applied to any monolith that follows
the MVC style. The FénixFramework generates a set of classes that represent
the domain entities, contain the persistent information, and correspond to the
data access layer. Therefore, in the first phase we do a static analysis to the
monolith source code to collect, for each controller, which classes generated by

Monolith to Microservices 41

the FénixFramework are accessed. This static analysis captures the controllers
call graphs using the java-callgraph1 tool.

The metric is then implement as a similarity measure using the following
formula, which returns higher values for pairs of domain entities that are accessed
by the same controllers:

WE1E2 =
NCtrl(E1E2)
NCtrl(E1)

(1)

Where, given two domain entities, E1 and E2, the weight from entity E1 to
entity E2 is the quotient between the number of controllers for which their invo-
cation tree has both, E1 and E2, as nodes (NCtrl(E1E2)) and the total number
of controllers for which their invocation tree has E1 as a node (NCtrl(E1)). When
applying this measure to a clustering algorithm, in an ideal decomposition, the
entities in the same cluster are accessed by the same controllers. The domain
entities are clustered using a hierarchical clustering algorithm implemented by
the Scipy2 Python library which generates a dendrogram. Finally, a user inter-
face is used where the software architect can experiment with several cuts in
the dendrogram to generate different sets of clusters. After a cut in the dendro-
gram is done, we support additional experimentation by allowing the architect
to rename, merge and split clusters, as well as move an entity between clusters.

Fig. 1. Data flow schema of the tools to be developed.

The overview of the process behind the examination of the monolithic appli-
cation can be seen in Fig. 1, and has the following workflow:

1. Collect Data: The architect uses a static code analyser implemented using
the java-callgraph to generate the text call-graph.

2. Generate Clusters: The architect interacts with the web application to
generate the dendrogram from the call-graph, using a hierarchical clustering
algorithm. Afterwards, cuts the dendrogram, given a value for the maximum
distance between domain entities inside each cluster, generating a set of clus-
ters.

1 https://github.com/gousiosg/java-callgraph.
2 https://www.scipy.org/.

https://github.com/gousiosg/java-callgraph
https://www.scipy.org/

42 L. Nunes et al.

3. Visualization: The architect visualizes the generated information according
to three views: clusters of entities and how they are accessed by controllers;
the accesses pattern of controllers on clusters; the impact of domain entities
data on controllers executing in other clusters.

4. Modeling: The architect can manipulate each one of the views, which sup-
ports informed experimentation because the tool recalculates the weights
whenever a change is done.

4 Evaluation and Discussion

The approach was applied to two monolith web applications, LdoD3 and Blended
Workflow4, but for the sake of space, only the results of the LdoD analysis are
presented in the article. The analysis of the Blended Workflow provided similar
insights.

4.1 LdoD

The LdoD archive5 is a collaborative digital archive that contains the Book of
Disquiet, originally written by Portuguese poet, Fernando Pessoa. LdoD mono-
lith contains 152 controllers and 55 domain entities, being that 37 of the con-
trollers do not make contact with the domain (24% of the systems controllers).

After applying the java-callgraph tool to collect data, and the hierarchical
clustering algorithm to generate the dendrogram, we have analyzed the result
according to different cuts of the dendrogram, which produce distinct cluster
configurations, candidate microservices.

4.2 Metric Evaluation

As supported by the evaluation of other approaches for software architecture
recovery [3,17], an internal and external assessment of the clusters is made.

Internal Evaluation. To perform an intrinsic evaluation of the clustering
results for our applications, we have done an ad hoc analysis with metrics pro-
posed by us, except for the silhouette score. These metrics allows us to compare
the quality of the clustering resulting from the different cuts.

1. Number of Singleton Clusters (NSC), being that having more than
2 singleton clusters is considered negative. Considering a final microservice
architecture with clear functional boundaries established, it is likely that there
are not two services in which their content is a single domain entity.

3 https://github.com/socialsoftware/edition.
4 https://github.com/socialsoftware/blended-workflow.
5 https://ldod.uc.pt.

https://github.com/socialsoftware/edition
https://github.com/socialsoftware/blended-workflow
https://ldod.uc.pt

Monolith to Microservices 43

2. Maximum Cluster Size (MCS), should not be bigger than half of the
size of the system. Even with a cluster size inside this range, there is also
a dependency regarding the number of entity instances that are part of the
aggregate, since invocation of a microservice will bring an aggregate to mem-
ory [10]. This aspect is not addressed in this paper.

3. Silhouette Score (SS), given by Eq. 4, where a represents the mean intra-
cluster distance (Eq. 2: distance between object oi and the remaining objects
in the cluster) and b the mean nearest-cluster distance (Eq. 3: distance
between object oi and the objects of the neighbor cluster, the one that has
the smallest average dissimilarity). This score ranges its values from −1 to
1, representing incorrect clustering (samples on wrong clusters) and highly
dense clustering respectively. For every object in a cluster, when this score is
high (closer to 1) the mean intra-cluster distance is going to be smaller than
the mean nearest-cluster distance, implying that the object is well classified.
This metric creates a parallelism with the overall coupling of the clusters of
the system, as our objective was to obtain a high intra-cluster similarity and
a low inter-cluster similarity, so the partition between clusters is well defined.
The silhouette value evaluates exactly this information. In the scope of our
problem we calculate the silhouette score for the entire cluster data of the
presented cut, meaning that we have to calculate the silhouette of each clus-
ter by averaging the score of all the object inside them and then average the
score of all the clusters, reaching a value for the entire dataset.

a(oi) =
1

|CA| − 1

∑

ojεCA,oj �=oi

d(oi, oj) (2)

b(oi) = minCb �=CA

1
|CB |

∑

ojεCB

d(oi, oj) (3)

Silhouette(oi) =
(b(oi) − a(oi))

max(a(oi), b(oi))
(4)

In Table 1 we apply the metrics for four cuts of a dendrogram with a max
height of 4.0:

Table 1. Internal evaluation results for LdoD.

Cut(0.01) Cut(1.5) Cut(2.5) Cut(3.5)

Number of Retrieved Clusters (NRC) 40 11 3 2

Number of Singleton Clusters (NSC) 34 3 0 0

Maximum Cluster Size (MCS) 5 18 26 31

Silhouette Score (SS) 0.38 0.48 0.55 0.56

44 L. Nunes et al.

1. The maximization of intra-cluster similarity, given by a cut with the lowest
possible value.

2. A cut at an intermediate value, establishing an attempt to make a trade-off
between the granularity and the cluster similarity.

3. Two high valued cuts that try to split the system into its main components,
usually with a size of 2–4 clusters.

Assessing first our ad-hoc metrics, when increasing the value of the height of
the cut on the dendrogram, the NSC and NRC decrease while the MSC increases,
which is expected as higher the height less clusters are formed, being that those
contain more domain entities. Also, the silhouette score increases with height to
a maximum, showing that at that point are formed the ideal clusters according
to this metric.

External Evaluation. In this type of evaluation we compare with an expert
decomposition both, the results of our approach and the results of applying a
software architecture analysis tool, Structure1016, which uses cyclomatic com-
plexity measures and the identification of cyclic dependencies to define a struc-
tural decomposition.

Usually, the computation of evaluation metrics following the use of clustering
is done in a pairwise fashion, where, in our case, the pairs of domain entities in
the clusters of the decomposition being evaluated are compared with the pairs in
the clusters of the domain expert decomposition. The most appropriate metrics
for our approach are pairwise precision, recall and f-score, given by Eqs. 5, 6 and
7 respectively.

precision =
tp

tp + fp
(5)

recall =
tp

tp + fn
(6)

F -score = 2 ∗ precision ∗ recall

precision + recall
(7)

Where tp (true positives) represents the number of pairs that are in both, the
decomposition being evaluated and the expert decomposition, fp (false positives)
the number of pairs that are not in the expert decomposition but are in the
decomposition being evaluated, and fn (false negatives) the number of pairs that
are in the expert decomposition but not in the decomposition being evaluated.
Therefore, the precision captures the accuracy whether two domain entities in a
cluster actually belong to the same microservice, and the recall the percentage
of domain entity pairs correctly assigned to the same microservice.

The pairwise assessment of these metrics for dendrogram cut of 2.5 is pre-
sented in Table 2, when comparing the two generated decompositions with the
expert decomposition. We can see that the results of our approach for all the pre-
sented metrics are higher than Structure101. On the other hand, doing a detailed
6 https://structure101.com/.

https://structure101.com/

Monolith to Microservices 45

analysis, in the three clusters resulting from the 2.5 LdoD cut, we observe that
the first is a sub-cluster of a cluster of the expert decomposition, the second
is accessed by all controllers, and the third one contains five entities that are
responsible for deleting and loading fragments, used by controllers associated
with the administration functionalities. Structure101 originates ten clusters from
which six are singletons. Of the remaining four, three are sub-clusters of the
expert decomposition and the fourth is accessed by all controllers.

Table 2. External evaluation results for 2.5 cut, Structure101 and 1.5 cut.

Precision Recall F-score

Transactional clustering 2.5 cut 73% (445
611

) 48% (445
926

) 0.58

Structure101 58% (166
285

) 18% (166
926

) 0.27

Transactional clustering 1.5 cut 99% (233
234

) 25% (233
926

) 0.40

From this analysis we conclude that, although the use of metrics to iden-
tify the best cuts is relevant, it does not exclude the experimentation of other
intermediate cuts because smaller clusters may be easily analysed by the expert,
which may decided to integrate them with other clusters.

The chosen intermediate cut of the system and its evaluation is also shown
in the Table 2. Note that for the 1.5 cut, our precision is much higher, this
happens as the smaller clusters formed by a lower cut are almost all subsets of
the clusters of the expert decomposition. On the other hand, the recall values
are lower, as the singleton clusters are properly penalized by this metric. The
only false positive (in 1/11 retrieved clusters) resides in the cluster with the
entities LdoD, LdoDUser and VirtualEdition. LdoD is an immutable singleton
and the entry point to the domain entities, which can be easily replicated in any
cluster. LdoDUser and VirtualEdition were identified by the expert as being
used in two different scopes, authentication and virtual edition management,
respectively. Our tool classified these entities as being part of the same cluster
as they appear together transactionally so, we are going to analyze these cases
by using the visualization tool.

4.3 Visualization Analysis

After the metric evaluation of the clusters generated automatically, the software
architect uses the visualization tool to do a detailed analysis of the decomposi-
tion.

Figure 2(a) shows Cluster0 containing the three entities. It has strong connec-
tions with other clusters, the edges thickness represent the number of controllers
shared between the two connected clusters. Which means that almost all con-
trollers access Cluster0. The model was already subjected to some changes by

46 L. Nunes et al.

(a) Initial Model (b) Manipulated Model

Fig. 2. Cluster views presenting clusters and the relations between them

the architect, basically, some of the clusters were renamed to have a domain-
specific name, to improve readability. According to the expert these three enti-
ties, once created, are not further modified and are frequently accessed because
they are the entry point for almost all functionalities. Therefore, since they are
immutable, they can be easily replicated. This case constitutes a good example
why the visualization tools provide an essential help to the software architect.
Part (b) shows the model resulting from several transformation applied to the
initial model, cluster rename, merge and split, and entity move between clusters,
such that the architect can experiment, and fine tune, the decompositions.

Additionally, our visualization tool allows architects to identify how the busi-
ness functionality is split between the different clusters. This is particularly rele-
vant because it helps to analyze the impact of the decomposition in the business
functionality.

Fig. 3. Controller view of updateAnnotation controller and the clusters accessed.

Figure 3 shows the transactional behavior of Update Annotation controller
occurring in the context of four clusters (candidate microservices). It is possible
to identity which entities are accessed in each cluster, whose number is shown in

Monolith to Microservices 47

the edge. By analysing the model we can conclude that this decomposition does
not have impact on the business logic of this functionality, because all semanti-
cally relevant accesses are to cluster Virtual. The accesses to the other clusters
are to read immutable information for authentication (Authentication), access
the persistent information through the LdoD singleton object (Cluster0), and get
the Edition where the annotation is done (Edition). The figure highlights that
the only entity accessed in cluster Edition is entity Edition. Note that this clus-
ter contains more entities. It also illustrates that the controllers are selected by
the number of clusters they access, 4 in this case (top left corner of the figure),
which allows the software architect to easily identify in which controllers the
decomposition can have more impact, if they access more clusters it may be
necessary to relax their transactional behaviour.

Another visualization that can improve the split of functionalities is to iden-
tify which entities are accessed by controllers that also access other clusters,
because it may be necessary to relax their consistency, since they are shared
between business transactions executing through different microservices. How-
ever, when experimenting with this functionality, we realized that the each entity
is accessed by all clusters, because there are some controllers, mainly administra-
tion controllers that create or delete the domain, and so, they access all domain
entities. Therefore, we are considering, in future versions of the visualization
tool, to allow the filtering of controllers, and also to use additional information
to characterize the relations between clusters, for instance, by also collecting
the dataflow between domain entities. Note that currently only the control flow
information was collected.

From this discussion, we conclude that it is useful to analyse the relations
between clusters through the use of our visualization tool, which shows that
it is not enough to rely on the automatic decompositions, but tools should be
provided to help to reason about the decomposition and its impacts, in partic-
ular, because the decomposition may have impact on the system business logic.
Additionally, it is advantageous to enriched the visualization tool with modeling
capabilities.

5 Related Work

In [12] it is done an analysis of several approaches for the migration of a monolith
to a microservices architecture. Most microservices migration proposals do not
consider the need to change the application business logic when migrating a
monolith to a microservices architecture, focusing, instead, on the structural
aspects related with the high cohesion and low coupling of the microservices. This
problem is identified in [8] as the Forgetting about the CAP Theorem migration
smell, and may have an high impact on the migration of a monolith because
it imparts on the users perception of the system operation, which drives our
decision to also provide tools for architectural experimentation.

In [23] the authors apply the three migration phases but the clustering phase
is not automated, it is based on the observation of a graph. The data is collected

48 L. Nunes et al.

from use cases specifications and their decomposition into the domain entities
they access. The metric is based on the data shared between operations, the
operations that access the same data should belong to the same microservice.
It is weighted by the reads and writes from the operations to the data objects,
writes have more weight because there is a emphasis on having reads between
microservices. They share with our approach the concern in focusing on how
business functionalities are decomposed, but their final concern is on the oper-
ation level, instead of the controller, because they seek to have high cohesion
and low coupling between operations. Their final visualization does not high-
light how the business transactions are decomposed into the set of candidate
microservices.

To improve performance, in [19], a runtime profiling is used to collect the
information about the amount of communication between classes. Additionally,
it also supports a semantic clustering that uses a td-idf (term frequency/inverse
document frequency) to create clusters based on the similarity between names of
classes and methods. None of these tactics consider transactional contexts and,
so, the decomposition of the business logic. The user starts by deciding which
of the two clustering criteria to use, and then visualizes the resulting graph,
where a node represents a class and an edge a function call between two classes.
Classes belonging to the same cluster have the same color and the edge thickness
represents the amount of communication between classes. Representing clusters
by colored classes has the advantage of making immediately visible the classes in
a cluster, though it may the too confusing if there is a large number of classes.
This is one of the few approaches that enhance visualization with modelling
capabilities, it allows manipulation of the clusters, e.g. move a class between
clusters, which results in the recalculation of the clusters, as we do.

In order to improve the performance of a microservices architecture, in [16],
they apply a workload-based feature clustering. The approach is model-based, it
uses a feature model, where the microservices identification, each microservice
contains one or more features, is driven by a trade-off between performance,
which is inversely proportional to the amount of inter-microservices communi-
cation, and scalability, which is directly proportional to the number of microser-
vices. They propose the aggregation of features into microservices according to
this trade-off in a specific-workload. They focus on feature model aggregation
for deploy in a cloud instead of the identification of the microservices in a mono-
lith, and consider that the implementation of the feature model allows features
re-combinations, not considering how these impact on the application business
logic, because different recombinations may impact differently.

In [9] it is proposed an approach for migrating a monolith implemented using
Java Enterprise Edition (JEE). They do static analysis to capture the invocations
between the elements. Afterwards, associate a cluster to each session bean and
aggregate them according to a threshold, such that the distance between clus-
ters depends on the number of shared entities. Final clusters have one or more
session beans and the entities may be shared between different clusters. Finally,
it is possible to visualize the clusters, showing the session beans it contains, and

Monolith to Microservices 49

the entities shared between two clusters. In our approach we aggregate the data
entities that are accessed by the same business transactions, controllers, which
is similar to their session beans, but their clusters are formed by session beans
instead of domain entities, which hinders the analysis of how the business logic
of a business transaction is split between microservices. Therefore, they assume
that the microservices interfaces will be preserved, they correspond to the ses-
sion beans interfaces, while we consider that the migration to the microservices
architecture may impact on the application business logic due to the change in
the overall consistency of the system, from strict to eventual or weak, which may
require the carefully redefinition of the microservices interfaces.

In [1] each functional requirement is a microservice candidate. Afterwards
they classify each candidate in terms of scalability and security non-functional
requirements and the level of dependency between them. The candidates for
which it is expected to have a high volume of requests are considered to require
scalability. Then, for those with high and medium scalability requirements it is
verified the level of dependency with the other candidates, where a high depen-
dency level corresponds to the frequency of invocations between them. If two
microservices are highly dependent and require security, which results in an
high overheads, the candidates will be merged into a single microservice. This
approach is model-based, which means that the data for the metrics is captured
through requirements elicitation and focus on functional composition instead of
on a real decomposition of a monolith.

In [15] execution traces analysis are used to generate two types of traces, class-
level traces, which capture the classes accessed, and method-level traces, which
capture the methods invocations. The microservices are identified by clustering
the class-level traces that contain the same classes. Afterwards, the method-level
traces are used to identify the interfaces for the candidate microservices. It does
not propose any visualization tool. Similarly to our proposal, they aggregate
the classes that are shared by the same business capabilities, contrarily to most
approaches that focus on structural, coupling and cohesion, and semantic, nam-
ing convention, aspects. Their process is automatic, whereas we also propose
a visualization tool that allows the experiment with several decompositions, to
analyse the impact on the business logic.

In [2] they identify the microservices from a business process point of view. A
business processes model is used to identify structural dependency, when there
is a direct edge between two activities, and object dependency, when activities
have similar data access, assigning a higher weight for writes. These two relations
are aggregated in a metric that is use to generate clusters that represent candi-
date microservices. This model-based approach focus on the structural aspects,
aggregate activities that access the same data and are executed next to each
other, which result in clusters of activities from which is not possible to assess
the impact of the decomposition on the application business logic. Actually, the
business process model already describes a business logic between activities, and
their aggregation may allow a more strict consistency between the activities

50 L. Nunes et al.

that become aggregated in the same microservice, as they will share the same
transactional context. Their focus is on composition.

In [5] it is proposed a solution based on semantic similarity that matches
the terms used in an OpenAPI specification with a domain vocabulary to sug-
gest decompositions. This is a model-based approach, which requires two models
(OpenAPI specification and domain vocabulary), and it is focused on identify-
ing cohesive operations, which access the same data, ignoring the transactional
business logic.

In [18] microservice candidates are suggested following an algorithmic app-
roach subsequent to the extraction of data from a version control repository of
a monolithic application. They propose three different metrics: single respon-
sibility principle, based on classes that change together in commits; semantic
coupling, based on tfidf to identify classes that contain code about the same
things; and contributor coupling strategy, based on classes accessed by the same
team. These metrics focus on the structural aspects, mainly related with the
development process and the split of a domain model to control its complexity.

Some approaches propose the analysis of design trade-offs and the dynamic
autonomous composition [14], but this is only applicable if the business logic
does not vary according to the composition, which does not apply to all types
of microservices. Therefore, the transactional contexts approach is particularly
suitable for application with a rich domain logic where microservices become
logically interdependent, which may require the redesign of the monolith func-
tionality.

6 Conclusions

This paper proposes an approach to the migration of monolith applications to
a microservices architecture that focus on the impact of the decomposition on
the monolith business logic, an aspect that is not addressed by the existing
approaches, and which is described as forgetting about the CAP Theorem. Our
approach is based on the static analysis of the source code of a monolith, imple-
mented following a Model-View-Controller architectural style, which is enforced
by the most popular tools for web development, like Spring-Boot and Django.
Therefore, a call graph is obtained for controllers, which are associated to the
monolith functionalities. From the call graph are identified the domain entities
that are accessed by each controller, and a clustering algorithm is applied to
aggregate domain entities that are shared by the same controllers, to reduce
the decomposition impact on the monolith business functionality. The resulting
decomposition is analysed according to several metrics and an external evalua-
tion, which compares the results with an existing industrial tool and a domain
expert. The results are promising, but it is clear that it is necessary to provide
more tools to support the experimentation with different candidate decompo-
sitions. Therefore, we also propose a visualization tool that allows the rename,
merge and split of clusters, and the move of entities between clusters. It also
supports different views, cluster, controller and entity, to help on the analysis of
the impact of the decomposition on the monolith business logic.

Monolith to Microservices 51

Additionally, and due to the recent research done on the migration from
monolith to microservices, the paper presents an extensive description of the
related work in order to place our approach in a context that is quickly evolving
and which is not yet completely bounded and classified.

The main limitations of this work are: (1) being specific for applications
developed using the Fénix Framework; and (2) the java-callgraph tool did not
capture calls inside Java 8 streams. Concerning the former limitation, we believe
that the results apply to other implementations of web application, as soon as
they clearly distinguish controllers from entities. Note that this also includes web
applications that do not have views, but which provide a web API, e.g. REST.
In what concerns the use of java-callgraph, we have done a manual verification
of the collect data to ensure its correctness.

In terms of future work, we are already finishing an Eclipse plugin that
captures the controllers call graphs using the Eclipse JDT library. On the other
hand, we intend to experiment with decompositions where more information
is available, in particular, we intend to distinguish reads from write accesses
done by controllers and the dataflows inside controllers, to analyse its impact on
cluster generations and in the visualization tools, because, in terms of eventual
consistency of an application, the separation of reads from writes and dataflows
are crucial for its software architecture design.

The tools source code is publicly available in a github repository7.

Acknowledgment. This work was supported by national funds through Fundação
para a Ciência e Tecnologia (FCT) with reference UID/CEC/50021/2019.

References

1. Ahmadvand, M., Ibrahim, A.: Requirements reconciliation for scalable and secure
microservice (de)composition. In: 2016 IEEE 24th International Requirements
Engineering Conference Workshops (REW), pp. 68–73, September 2016

2. Amiri, M.J.: Object-aware identification of microservices. In: 2018 IEEE Interna-
tional Conference on Services Computing (SCC), pp. 253–256, July 2018

3. Anquetil, N., Fourrier, C., Lethbridge, T.C.: Experiments with clustering as a soft-
ware remodularization method. In: Proceedings of the Sixth Working Conference
on Reverse Engineering, WCRE 1999, p. 235, IEEE Computer Society, Washing-
ton, DC (1999)

4. Ball, T.: The concept of dynamic analysis. SIGSOFT Softw. Eng. Notes 24(6),
216–234 (1999)

5. Baresi, L., Garriga, M., De Renzis, A.: Microservices identification through inter-
face analysis. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017.
LNCS, vol. 10465, pp. 19–33. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-67262-5 2

6. Brewer, E.A.: Towards robust distributed systems (abstract). In: Proceedings of
the Nineteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC 2000, p. 7. ACM, New York (2000)

7 https://github.com/socialsoftware/mono2micro.

https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1007/978-3-319-67262-5_2
https://github.com/socialsoftware/mono2micro

52 L. Nunes et al.

7. Cachopo, J., Rito-Silva, A.: Combining software transactional memory with a
domain modeling language to simplify web application development. In: Proceed-
ings of the 6th International Conference on Web Engineering, ICWE 2006, pp.
297–304. ACM, New York (2006)

8. Carrasco, A., van Bladel, B., Demeyer, S.: Migrating towards microservices: migra-
tion and architecture smells. In: Proceedings of the 2nd International Workshop
on Refactoring, IWoR 2018, pp. 1–6. ACM, New York (2018)

9. Escobar, D., et al.: Towards the understanding and evolution of monolithic appli-
cations as microservices. In: 2016 XLII Latin American Computing Conference
(CLEI), pp. 1–11, October 2016

10. Evans, E.J.: Domain-Driven Design: Tackling Complexity In the Heart of Software.
Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

11. Di Francesco, P., Lago, P., Malavolta, I.: Migrating towards microservice architec-
tures: an industrial survey. In: 2018 IEEE International Conference on Software
Architecture (ICSA), p. 29-2909, April 2018

12. Fritzsch, J., Bogner, J., Zimmermann, A., Wagner, S.: From monolith to microser-
vices: a classification of refactoring approaches. In: Bruel, J.-M., Mazzara, M.,
Meyer, B. (eds.) DEVOPS 2018. LNCS, vol. 11350, pp. 128–141. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-06019-0 10

13. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a system-
atic approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar, S.,
Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 185–200. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44482-6 12

14. Hassan, S., Bahsoon, R.: Microservices and their design trade-offs: a self-adaptive
roadmap. In: 2016 IEEE International Conference on Services Computing (SCC),
pp. 813–818, June 2016

15. Jin, W., Liu, T., Zheng, Q., Cui, D., Cai, Y.: Functionality-oriented microservice
extraction based on execution trace clustering. In: 2018 IEEE International Con-
ference on Web Services (ICWS), pp. 211–218, July 2018

16. Klock, S., Van Der Werf, J.M.E.M., Guelen, J.P., Jansen, S.: Workload-based clus-
tering of coherent feature sets in microservice architectures. In: 2017 IEEE Inter-
national Conference on Software Architecture (ICSA), pp. 11–20, April 2017

17. Maqbool, O., Babri, H.: Hierarchical clustering for software architecture recovery.
IEEE Trans. Softw. Eng. 33(11), 759–780 (2007)

18. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices from monolithic
software architectures. In: 2017 IEEE International Conference on Web Services
(ICWS), pp. 524–531. IEEE (2017)

19. Nakazawa, R., Ueda, T., Enoki, M., Horii, H.: Visualization tool for designing
microservices with the monolith-first approach. In: 2018 IEEE Working Conference
on Software Visualization (VISSOFT), pp. 32–42, September 2018

20. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

21. Taibi, D., Lenarduzzi, V.: On the definition of microservice bad smells. IEEE Softw.
35(3), 56–62 (2018)

22. Thönes, J.: Microservices. IEEE Softw. 32(1), 116 (2015)
23. Tyszberowicz, S., Heinrich, R., Liu, B., Liu, Z.: Identifying microservices using

functional decomposition. In: Feng, X., Müller-Olm, M., Yang, Z. (eds.) SETTA
2018. LNCS, vol. 10998, pp. 50–65. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99933-3 4

https://doi.org/10.1007/978-3-030-06019-0_10
https://doi.org/10.1007/978-3-319-44482-6_12
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-319-99933-3_4
https://doi.org/10.1007/978-3-319-99933-3_4

	From a Monolith to a Microservices Architecture: An Approach Based on Transactional Contexts
	1 Introduction
	2 Concepts
	3 Decomposition by Transactional Contexts
	4 Evaluation and Discussion
	4.1 LdoD
	4.2 Metric Evaluation
	4.3 Visualization Analysis

	5 Related Work
	6 Conclusions
	References

