
Assessing the Quality Impact of Features
in Component-Based
Software Architectures

Axel Busch1(B), Dominik Fuchß1, Maximilian Eckert2, and Anne Koziolek1(B)

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{busch,koziolek}@kit.edu, dominik.fuchss@student.kit.edu

2 SAP Customer Experience, Munich, Germany
maximilian.eckert@sap.com

Abstract. In modern software development processes, existing software
components are increasingly used to implement functionality instead of
developing it from scratch. Reuse of individual components or even more
complex subsystems leads to more cost-efficient development and higher
quality of software. Subsystems often offer a variety of features whose
use is associated with unclear effects on the quality attributes of the
software architecture, such as performance. It is unclear, whether the
quality requirements for the system can be met by using a certain fea-
ture of a particular subsystem. After initial selection, features must be
incorporated in the target architecture. Due to a multitude of possibil-
ities of placing the subsystem in the target system to be used, many
architectural candidates may result which have to be evaluated in exist-
ing decision support solutions. The approach presented here enables soft-
ware architects to automatically evaluate with the help of software archi-
tecture models the effects on quality of using individual features in an
existing software architecture. The result helps to automatically evalu-
ate design decisions regarding features and to decide whether their use
is compatible with the quality requirements. We show the benefits of
our approach using different decision scenarios driven by features and
their placement alternatives. All scenarios are automatically evaluated,
demonstrating how decisions can be made to best meet the requirements.

Keywords: Automated design decision optimization ·
Quality impact of features · CBSE

1 Introduction

Modern software systems support an increasing number of functionalities. The
influence of the software architecture on the subsequently attainable software
quality has been shown to be one of the critical factors. Therefore, it is impor-
tant to consider quality attributes at design time. A subsequent change of the
software architecture to implement certain functionalities without considering
c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 211–219, 2019.
https://doi.org/10.1007/978-3-030-29983-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-29983-5_14


212 A. Busch et al.

the quality properties in advance can easily lead to high refactoring costs. For
this reason, software architects want to evaluate their design decisions regarding
the software architecture at an early stage. In particular, use of the paradigm of
component-based software design has shown that there already are approaches
that produce very promising results in predicting quality properties during the
design phase, an example being the Palladio approach [12]. Such approaches
benefit from modern software development, in which most of the functionali-
ties are not longer developed from scratch, but are often reused in the form of
libraries or subsystems. Such libraries often provide many features, i.e. func-
tion compositions that fulfill concerns. By reusing libraries or subsystems, not
only the pure functionalities or the features are reused, but also their quality.
Using such software artifacts reduces development time and the risk of recur-
ring, already solved errors in a new development. Nevertheless, prediction of
quality attributes at design time for reusing different systems is not trivial,
especially when software developers have to decide among several similar sys-
tems or solutions. In addition to the supported features, the systems also differ in
their quality attributes. When making decisions, the software architect is there-
fore facing the task of designing the right system to meet both the functional
and quality requirements. Existing approaches for supporting design decisions
with the quality attributes of software architectures, such as ArcheOpteryx [1],
ArcheE [4], and PerOpteryx [11], already allow for an automatic exploration
of architecture candidates with regard to different degrees of freedom. However,
none of the approaches mentioned above provides decision support for evaluating
the impact of using particular features on the quality attributes of the overall
system. Nor do the approaches mentioned entail any recommendations which
subsystem might be the best solution in order to maintain the defined quality
properties.

We base on PerOpteryx and extend the approach for optimizing software
architectures in the design phase or in evolution scenarios by regarding the fea-
tures and the quality of solutions of the same type. This automatically supports
the decision-making process of the software architect when features should be
evaluated in terms of quality attributes regarding different implementations of
functionally similar solutions. These extensions enable software architects to
automatically analyse and optimize the effects of the implementation of func-
tional requirements on quality attributes of the software system, such as perfor-
mance, reliability, and monetary costs in the design phase. Furthermore, we can
analyze whether the configuration of placement and assembly of the new features
affect the quality attributes. The result of the automatic analysis and optimiza-
tion helps software architects to choose the optimal solution among different
functionally similar systems. This increases the efficiency of software develop-
ment by reducing early wrong decisions, improves the quality of the resulting
system, and reduces the risk of project delays or the failure of software projects.



Assessing the Quality Impact of Features in Component-Based Architectures 213

2 Background

2.1 Design Space Exploration: PerOpteryx

We apply our methodology based on PerOpteryx [11], but the concepts are not
limited to this approach. The PerOpteryx approach explores the huge set of
software architecture configurations, in which each configuration is a specific
combination of all possible design decisions. Thus, PerOpteryx supports making
well-informed trade-off decisions for performance, reliability, and costs. For the
design space exploration, PerOpteryx makes use of so-called degrees of freedom
of the software architecture that can either be predefined and derived automat-
ically from the architecture model or be modelled manually by the architect.
As an example of a manually modelled degree of freedom, let us consider that
some of the architecture’s components offer standard functionality, for which
other implementations (i.e. other components) are available. In this example,
let us assume there is a available component QuickDatabase that can replace
a Database. Assuming that QuickDatabase demands less resources but is more
expensive than Database, the resulting architecture model has better response
times but higher costs. The degrees of freedom span a design space and can
be explored automatically. Together, they define a set of possible architecture
models. Each of these possible architecture models is defined by choosing one
design option for each degree of freedom instance (DoFI). We call such a possible
architecture model a candidate model. The set of all possible candidate models
corresponds to the set of all possible combinations of design options. We call this
set of possible architecture models the design space.

Using the quantitative quality evaluation provided by the PCM analysis tools,
PerOpteryx can determine performance, reliability, and cost metrics for each can-
didate model. The quality evaluation for a quality attribute can be expressed
as a quality evaluation function from the set of valid PCM instances to the set
of possible values of the quality metric. In addition to the evaluation functions,
PerOpteryx requires a specification of whether a quality is to be maximized or
minimized. Based on the DoFIs (as optimization variables) and the quality evalu-
ation functions (as optimization objectives), PerOpteryx uses genetic algorithms
and problem-specific heuristics to approximate the Pareto front of optimal can-
didates. Details on the optimization are not required for the discussion in this
paper, but can be found in [9,10].

In its previous version described in this section, PerOpteryx does not support
the analysis of the effect of reusing particular features of subsystems that require
more complex modifications on the architecture model. The effects of using a
single feature or a combination of features across the boundaries of multiple
solutions cannot be studied meaningful by the previous PerOpteryx.

2.2 Feature Completion Meta Model

For the automatic evaluation of the effect of individual features when reusing
components on the quality attributes of the overall system, we use the meta



214 A. Busch et al.

model from [7]. The meta model offers entities for structuring similar systems
with the same underlying features. It consists of three parts, the feature com-
pletion definition, solution definition, and transformation description. The fea-
ture completion definition part consists of a FeatureCompletionRepository
that stores all predefined FeatureCompletions. Such a feature completion is
an abstract entity that can be decomposed into its basic elements, namely
the Feature Completion Components (FCC). These basic elements define the
abstract architecture of a feature completion (FC) that any realizing feature
completion solution such as a MySQL DB for the DBMS FC must apply.
Abstraction allows the automatic integration of inhomogeneous architectures
of similar solutions into a target architecture. Similar to the more concrete
software components, abstract FCCs can require each other’s services or offer
services themselves. Additionally, we define a model for FeatureObjectives.
This model combines features in groups. The task of these groups is to repre-
sent interchangeable or mutually exclusive features. Let us consider a DBMS
example. The FC DBMS could consist of two FCCs (simplified) - the unit for
reading and retrieving structured data (i.e., StructuringDataUnit) and the
unit for actually storing these data (i.e., DataStorageUnit). Correspondingly,
StructuringDataUnit would offer services that require and provide unstruc-
tured data, while DataStorageUnit would require and provide the unstructured
data for storage purposes. All the systems of the class of DBMS on the market
would then be applied to this architecture (solution definition). For this, we use
annotations that identify the integration points of the completion solutions in the
target software architecture. Using an inclusion mechanism, which is also pro-
vided in the meta model (transformation description), the different solutions of
the same feature completion can then be automatically included into the target
architecture. Given the annotated components and transformation descriptions,
the integration engine determines how a feature completion solution has to be
integrated into the target software architecture.

2.3 Feature Completion Integration Mechanism

We can use two different types of integration mechanisms to incorporate the
appropriate features in the target system. The first one is the Adapter-
InclusionMechanism. Whenever a connection is to be established between a
component in the target system and in the solution system, a new adapter
component is (automatically) generated. This adapter component requires the
interface of the solution component. Furthermore, it requires and provides the
interface of the target component. The provided interface of the target compo-
nent is connected to the corresponding required interface of the adapter. The
adapter is then connected to the solution component using the corresponding
interface. For each call to the provided interface, the adapter delegates the call to
the target component and an external call to the subsystem component. After-
wards, the calls to the target component and its assembly contexts, respectively,
are redirected to that of the adapter. As a result, the feature is incorporated in



Assessing the Quality Impact of Features in Component-Based Architectures 215

the system and can be used. In addition, the architect can also define the inter-
faces and signatures for which this mechanism should be performed. The second
integration mechanism is the BehaviorInclusionMechanism. This mechanism
allows a more fine-grained definition of how a feature should be built into the
software architecture. Thus, it is possible to define that a call to the solution is
to be executed in specific control structures of an RDSEFF. It is also possible
to describe that at the beginning or at the end of a method call, this call is
executed in the solution system.

3 Approach

Our approach consists of two parts: First, we demonstrate modelling of the
features supported by the subsystem and the alignment of the features with its
executing components. Second, candidates are created, evaluated, and optimized
together with the target system architecture using degrees of freedom, which are
spanned using the possible features and their configuration.

A subsystem provides services that can be reused in the target system. Only
services that are provided by the subsystem via system external interfaces can
be reused by the target system. Features will either be realized by FCCs as a
whole (i.e. all provided interfaces of an FCC) or by a subset of these interfaces.
In addition to system external interfaces, internal interfaces of the subsystem
can also implement features. These features may be required by other features
in order to implement their actual functionality. From this set of candidates, the
software architect can then select the best candidate according to the project
requirements.

Using the subsystem features and its associated architecture, the optimizer
first generates the degree of freedom instances. If a particular solution supports a
feature, it can be used and vice versa. The selection of a feature opens up further
degrees of freedom, such as the position in the target system or the allocation
of the solution itself. In addition, the three degrees of freedom, namely compo-
nents exchange, component allocation, and development of hardware resources
are included in the DoFI. In the next step, the software architecture candidate
is created and integrated according to the previously generated DoFI. The eval-
uation required for the optimization is then performed according to the quality
attributes (e.g., performance, reliability, cost) defined before. In the end, the soft-
ware architect selects the best candidate from the resulting set of Pareto-optimal
architecture candidates.

In order to extend the approach to decision support in software architecture
design PerOpteryx by the approach described, we have adapted three parts:
First, the meta model for the definition of reusable subsystems must be extended
by the possibility of modelling supported features by a particular class of sub-
systems. Secondly, the degree of freedom model must be extended to include
the existence or non-existence of features when creating architecture candidates.
Depending on the solution and the features supported by this solution, the archi-
tecture candidates must be created. In addition, we need a degree of freedom



216 A. Busch et al.

modelling of placement configurations of the feature in the target architecture.
Finally, the model weaving mechanism must be extended so that the correspond-
ing model (with the selected set of features and the associated solution) is created
according to the architecture candidate created previously.

4 Evaluation

This evaluation is to demonstrate the applicability and benefits for several sce-
narios of (real-world) application environments. With our automated approach,
we show how trade-off decisions to select features can be supported automatically
with regard to the expected software quality and what effects these decisions may
have on the software architecture. For our scenarios, we consider the purpose of
logging, which is often implemented in practice using the log4j framework. We
first model the feature completion corresponding to logging frameworks, includ-
ing different features and apply the defined structure to two real-world logging
solutions, log4j version 1 and log4j version 2. The presented scenarios cover sev-
eral facets of the design questions that arise from the use of a specific feature
in the target architecture such as feature selection, solution selection, feature
placement.

4.1 Target System

To demonstrate our approach, we use the model of a community case study,
namely the Modular Rice University Bidding System (mRUBiS) [13]. mRUBiS
implements a trading and auction platform modelled on the real auction platform
ebay.com. mRUBiS has a component-based software architecture and is fully
implemented in Enterprise Java Beans 3 (EJB3). The domain model is modelled
in the Eclipse Modeling Framework (EMF). As execution engine, mRUBiS uses a
GlassFish application server. mRUBiS supports several shops in which goods can
be offered for sale. Sellers can offer new items for sale within their shops and check
the current inventory. Buyers can register on the platform, log in, search for items
using different categories, bid on items, and submit reviews. The mRUBiS model
internally consists of nine software components that provide the services. Using
ItemService, buyers can search for items and place bids. To do this, buyers
must first register using the Authentication component. The request is then
processed using the Query component and the Database component. Submitted
bids are stored in the database using Persistence. UserInfo lets buyers edit
information about their user profile. Sellers use the Inventory component to
add new items to their shop. This request is forwarded to the database and
processed using the query component. ManageItems checks the inventory and
is then forwarded to the database via BasicQuery. The architecture model of
mRUBiS has annotations to simulate performance analysis (using (RD)SEFFs)
and cost estimation.



Assessing the Quality Impact of Features in Component-Based Architectures 217

4.2 Logger Solutions

A logger collects and records system events, activities, and (inter-)actions over
a period and enables tracking and monitoring, statistical analysis or debugging
and error recovery. Three feature completion components (FCCs) model the
abstract structure of loggers, the Collector, Appender, and Formatter. These
components abstract the functionalities and dependencies of the subsystem’s
software components. In the case of a logger completion, the Collector rep-
resents the entry point of the logger and receives the log messages. The data
are forwarded to the FCC Appender, which uses the FCC Formatter to convert
the logs into a suitable format (e.g. XML) and stores them on a specified write
target (e.g. hard disk). Each of the FCCs can have a set of provided and required
perimeter interfaces. In the case of the logger completion, the FCC Collector
comes with several provided perimeter interfaces, while the FCC Appender con-
sists of one required perimeter interface. The required perimeter interface of the
FCC Appender requires an interface to a database if the feature database logging
is a desired feature. For the evaluation, we model two solutions, namely log4jv1
and log4jv2, and annotate them to the logger completion [8]. These solutions
represent variants of the same completion, since they build on each other, but
differ in their quality attributes as well as in their realized set of features. log4jv2
supports a broader range of features and, thus, both versions can be regarded as
two different solutions for the logger completion1. The two solutions offer both
core features, which makes them logging systems. This includes features, such
as FileLogging and SQLDatabaseLogging. However, log4jv2 offers additional fea-
tures that we consider as optional. One of these is AsyncLogging. For this paper
we have concentrated on a subset of all provided features.

4.3 Scenario-Based Evaluation

We studied several scenario-based examples to demonstrate the applicability and
benefits of the proposed approach. The scenario covers different design issues in
terms of feature alternatives, solution selection, and placement choice. The sim-
ulation series considers more than 1000 architecture candidates and evaluates
performance and cost of each candidate to find the Pareto-optimal solutions.
Here, we evaluate a set of feature alternatives an architect has to consider.

Fig. 1. Comparison of feature alternatives

The scenario is relevant, but not lim-
ited to the requirements engineering
phase. Different functional and qual-
ity requirements of features must be
balanced against each other. Early
evaluation of the quality effects of fea-
ture alternatives that implement the
requirements helps to discuss their

1 Please note that the approach is not limited to systems that build on each other and
are related in their architecture.



218 A. Busch et al.

prioritization with stakeholders on a sound data basis. In particular, we compare
the features FileLogging, SQLDatabaseLogging, and NoSQLDatabaseLogging. As
SQL database, we use MySQL v. 5.7.20 and as NoSQL database, we use Mon-
goDB v. 3.4.10. Both DBMS are configured in the standard configuration. To
analyze the scenario, we annotate the components ItemService, Query, and
BasicQuery of the mRUBiS system with logging. Figure 1 shows the result of
the evaluation. The diagram depicts the Pareto-optimal candidates for each fea-
ture alternative found by the design space exploration. The candidates with
File logging show the best quality in terms of response time. The NoSQL alter-
native reaches 7.8% (average) higher response times. The SQL alternative is
outperformed by the others, namely by 28.4% (average) through NoSQL and by
38.46% through File logging. It should be noted that NoSQL and SQL logging
alternatives also result in slightly increased costs, which is due to the additional
database component required by both alternatives. With the results, an architect
can decide, which write target of the logger meets the requirements best.

5 Related Work

There are numerous papers that present variability models to define a common
architecture for similar solutions. In [3] Atkinson et al. propose their KobrA
approach that focuses on component-based product line development. The main
component of the KobrA method is a framework that encapsulates a generic
description of a family of applications. Here, not only the common parts of
an architecture are relevant, but also all differences. They are considered by
including all possible characteristics in decision models. These describe options
that distinguish between the individual characteristics. If a concrete application
is to be developed, the generic framework is instantiated and all decision models
are solved. This results in a concrete instance, but does not influence the level
of abstraction. There are similar approaches to modeling variability in software
(architectures), such as Product Line Software Engineering (PuLSE) [5], the
product line design process [6] by Bosch, the FAST [14] approach, or the algebraic
language SPLA [2].

6 Conclusion

The approach described here presents a solution for the automatic evaluation
and optimization of software architectures in the decision-making process about
reusable functionalities. It supports decisions for the selection of features, con-
figuration of features in the software architecture, and different solutions and
effects on the quality attributes of the software architecture. The approach is
aimed at supporting the software architect in evaluating the effects of features
on the quality attributes at development time, even before the actual implemen-
tation has been carried out. Through early evaluation, suboptimal decisions can
be discarded before implementation, thus supporting more cost-efficient software
development. We demonstrated the advantages of this approach using a scenario



Assessing the Quality Impact of Features in Component-Based Architectures 219

from real-world systems. We modeled, analyzed, and optimized different design
decisions based on scenarios. The results shown can be used in the next step to
implement the software architecture.

References

1. Aleti, A., Bjornander, S., Grunske, L., Meedeniya, I.: ArcheOpterix: an extendable
tool for architecture optimization of AADL models. In: MOMPES 2009 (2009)

2. Andres, C., Camacho, C., Llana, L.: A formal framework for software product lines.
Inf. Softw. Technol. 55, 1925–1947 (2013)

3. Atkinson, C., et al.: Component-Based Product Line Engineering with UML.
Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

4. Bachmann, F., Bass, L., Klein, M., Shelton, C.: Designing software architectures
to achieve quality attribute requirements. In: SW Proceedings (2005)

5. Bayer, J., et al.: PuLSE: a methodology to develop software product lines. In: SSR
1999, ACM (1999)

6. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving
a Product-line Approach. ACM Press/Addison-Wesley Publishing Co., Boston
(2000)

7. Busch, A., Schneider, Y., Koziolek, A., et al.: Modelling the structure of reusable
solutions for architecture-based quality evaluation. In: CloudSPD 2016. IEEE
(2016)

8. Eckert, M.: Konditionale Platzierung von Architekturelementen zur Optimierung
von Software-Architekt. Master’s thesis, Karlsruhe Institute of Technology (2018)

9. Koziolek, A.: Automated Improvement of Software Architecture Models for Per-
formance and Other Quality Attributes. KIT, Karlsruhe (2013)

10. Koziolek, A., Koziolek, H., et al.: PerOpteryx: automated application of tactics in
multi-objective software architecture optimization. In: QoSA-ISARCS 2011 (2011)

11. Martens, A., Koziolek, H., et al.: Automatically improve software models for per-
formance, reliability and cost using genetic algorithms. In: WOSP/SIPEW ICPE
2010 (2010)

12. Reussner, R.H., Becker, S.: Modeling and Simulating Software Architectures: The
Palladio Approach. The MIT Press, Cambridge (2016)

13. Vogel, T.: mRUBiS: an exemplar for model-based architectural self-healing and
self-optimization. In: SEAMS 2018. ACM (2018)

14. Weiss, D.M., Lai, C.T.R.: Software Product-line Engineering: A Family-Based Soft-
ware Development Process. Addison-Wesley, Boston (1999)


	Assessing the Quality Impact of Features in Component-Based Software Architectures
	1 Introduction
	2 Background
	2.1 Design Space Exploration: PerOpteryx
	2.2 Feature Completion Meta Model
	2.3 Feature Completion Integration Mechanism

	3 Approach
	4 Evaluation
	4.1 Target System
	4.2 Logger Solutions
	4.3 Scenario-Based Evaluation

	5 Related Work
	6 Conclusion
	References




