
Optimising Architectures
for Performance, Cost, and Security

Rajitha Yasaweerasinghelage1,2(B), Mark Staples1,2, Hye-Young Paik1,2,
and Ingo Weber1,2

1 Data61, CSIRO, Level 5, 13 Garden Street, Eveleigh, NSW 2015, Australia
{rajitha.yasaweerasinghelage,mark.staples,
hye-young.paik,ingo.weber}@data61.csiro.au

2 School of Computer Science and Engineering, University of New South Wales,
Sydney, NSW 2052, Australia

Abstract. Deciding on the optimal architecture of a software system
is difficult, as the number of design alternatives and component interac-
tions can be overwhelmingly large. Adding security considerations can
make architecture evaluation even more challenging. Existing model-
based approaches for architecture optimisation usually focus on perfor-
mance and cost constraints. This paper proposes a model-based architec-
ture optimisation approach that advances the state-of-the-art by adding
security constraints. The proposed approach is implemented in a pro-
totype tool, by extending Palladio Component Model (PCM) and Per-
Opteryx. Through a laboratory-based evaluation study of a multi-party
confidential data analytics system, we show how our tool discovers secure
architectural design options on the Pareto frontier of cost and perfor-
mance.

Keywords: Software architecture · Software performance ·
Data security · Architecture optimisation

1 Introduction

Many software systems today are complex, with thousands of deployed compo-
nents and many stakeholders [19]. With increasing complexity, there is increas-
ing development cost. Non-functional requirements for systems often include
response time, cost of development and operation, and security. When develop-
ing systems, software architecture should support these requirements effectively.

There are inter-dependencies and trade-offs between quality attributes like
performance, cost, and security. For example, secure components are generally
more costly than non-secure components. Prior work reports costs of $10,000
per line of code to develop highly-secure components, compared to $30–$40 per
line of code for less-secure components [7,11]. When designing systems with
critical requirements for performance, cost, and security, architects try to achieve
optimal trade-offs between them. In a large design space, with many components
c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 161–177, 2019.
https://doi.org/10.1007/978-3-030-29983-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-29983-5_11

162 R. Yasaweerasinghelage et al.

and design options, finding designs with good trade-offs is challenging, even for
experienced architects. Manually assessing and comparing quality attributes for
even a small number of design alternatives is difficult and error-prone.

Model-based design is now a common practice, and helps architects explore
options during design. Many architecture modelling and optimisation meth-
ods have been studied [2–4]. There are well-established methods for optimising
deployment architecture based on the performance of the system [13,16], costs
of development, deployment, and maintenance [16], and other constraints such
as energy consumption [21]. However, security constraints and policies are not
yet well-treated in existing literature on architectural optimisation [1].

In this paper, we propose a new approach for optimising for performance,
cost, and security in architectural design. We demonstrate the feasibility of
the approach by implementing a prototype which extends the Palladio Com-
ponent Model [4] and PerOpteryx optimisation tool [13] to support static taint
analysis. One challenge in designing secure systems is defining and evaluating
system security. Optimisation techniques require automated assessments. Static
taint analysis is a simple automatic security analysis approach. Taint analysis is
not a perfect model of security, but is a popular technique for identification of
architecture-level vulnerabilities related to data propagation in the design phase
[22]. Although our prototype uses taint analysis, our approach is more general
and we discuss the use of other techniques for security analysis.

The main contributions of this paper are: an approach for architectural opti-
misation for cost, performance, and security; a model and method for taint
analysis for security analysis for Palladio and PerOpteryx; and an evaluation of
the approach on an industrial use case demonstrating feasibility and the abil-
ity to generate useful insights: in the case study, best performance and cost
were achieved by non-secure architectures, but secure architectures were not far
behind. Also, the approach discovered distinctive design options on the Pareto
frontier of cost and performance for secure designs.

The paper structured is as follows. In Sect. 2, we introduce existing tech-
nologies relevant to the proposed approach. Then we provide an overview of the
proposed method in Sect. 3. Section 4 provides details about modelling and opti-
misation through a running example. We discuss and compare literature closely
related to this work in Sect. 5, propose suggestions for future work in Sect. 6 and
conclude the paper with Sect. 7.

2 Background

This section reviews: architecture performance modelling; architecture design
space exploration and deployment optimisation; and static taint analysis.

2.1 Architecture Performance Modelling

Architectural models capture the system structure by representing the links
between components. Performance characteristics are associated with these

Optimising Architectures for Performance, Cost, and Security 163

components and their composition. Popular frameworks for architectural mod-
elling are the Palladio Component Model (PCM) [18], and Descartes Modelling
Language [12]. Architectural models can incorporate additional non-functional
attributes associated with the system structure, such as latency, resource usage,
cost and throughput. The resulting models can be used by simulation engines
or analytical solvers to analyse non-functional properties [5]. Simulation-based
prediction can be time-consuming, but provides more flexibility for modelling.

Palladio Component Model (PCM). [18] is the platform used in this paper to
model architecture performance characteristics. Palladio was selected as it is
freely available, supports simulation, provides a familiar ‘UML-like’ interface for
model creation, and has the flexibility to incorporate extensions such as architec-
tural optimisation tools [8,13], new qualities [21], and new kinds of systems [23].
The modelling concepts in Palladio align with component-based development
paradigm and support component reuse across models.

2.2 Architecture Design Space Exploration and Deployment
Architecture Optimisation

Automated software architecture exploration based on architecture models is
increasingly popular in industry. Aleti et al. [1] surveys existing methods.

PerOpteryx. [13] is an automated design space exploration tool for PCM, capable
of exploring many degrees of freedom. PerOpteryx starts with a PCM instance
and a set of design decision models that describe how the architecture can be
changed. Automated search over this design space is performed using a genetic
algorithm. For each generation in the search, a Palladio instance is generated
and analysed to evaluate quality attributes such as performance and cost.

PerOpteryx is capable of optimising multiple quality attributes by searching
for Pareto-optimal candidates. A candidate is Pareto optimal if there exists no
other candidate that is better across all quality metrics. A set of Pareto-optimal
candidates approximate the set of globally Pareto-optimal candidates [8].

2.3 Static Taint Analysis

Defining meaningful quantitative metrics for security is challenging. There have
been a number of approaches proposed, but in our opinion, there is no single
generic method suitable for all applications (see Sect. 5). In this paper, to simplify
our demonstration of security analytics for optimisation, we use taint analysis.
Taint analysis results in a binary secure/not-secure evaluation for a system,
which is arguably the most challenging kind of metric for use in optimisation.
Taint analysis is simple but useful in identifying fundamental issues in the data
flow of the system, as a form of information flow analysis [17,22].

Taint is used to represent the reach of an attack within a system. As shown
in Fig. 1, taint starts at a taint source (node 1), which could be a component
exposed to the external environment, then flows to connected components. Taint

164 R. Yasaweerasinghelage et al.

Fig. 1. Graph taint analysis, illustrating an insecure system. Bad ‘taint’ from the source
Node 1 to the critical target Node 7, via a path through Node 2, despite being blocked
from flowing through the taint barrier at Node 6.

Fig. 2. Method overview, highlighting extensions proposed in this paper.

blockers (e.g. node 6) are secure components which prevent further propagation
of taint. A system security property defines the set of critical components (e.g.
node 7) which must remain free of taint after maximal propagation of taint
through the system. The system in Fig. 1 is not secure, because taint can flow
through non-secure components (e.g. nodes 2, 5) to the critical component.

3 Method Overview

Our approach, shown in Fig. 2, combines architecture-level performance mod-
elling, simulation and optimisation. We use three types of models to represent
the system: the initial architecture model, annotation models, and the design
search space model. We use the Palladio Component Model (PCM) tool for the
underlying architecture model. To define annotation models, we annotate PCM
with information about three quality attributes; performance, cost, and security.

Optimising Architectures for Performance, Cost, and Security 165

The performance annotation model is supported directly in PCM, and the Pal-
ladio cost extension is used for cost annotations. The security model is defined
separately. In Sect. 3.1, we describe how each quality attribute is modelled.

For the design search space model, we used Palladio Design Decision Dia-
grams. These are used to generate candidate architectures in the optimisation
phase. Some design options are specific to security architecture. For example, a
component might be modelled as being a secure component that works as a taint
barrier. So, the default Palladio Design Decision Diagrams need to be extended
to accommodate these model elements.

For design space exploration, we use PerOpteryx optimisation tool with mod-
ifications to use these extended security annotation models. The output is a set of
generated Pareto-optimal candidate architectures, which can be used by experts
to select the final design.

3.1 Quality Attribute Modelling for the Optimisation

The first step of the proposed approach is to model each quality attribute.

Performance Modelling. We used PCM performance analysis, as discussed
in the literature [9], which has been shown to be sufficiently accurate for various
types of applications, including the example system discussed in this paper.
This demonstrates that our approach allows the reuse of previously-developed
Palladio performance models.

The security level of a component may affect the resource utilisation of the
component, impacting the overall performance of the system. (For example,
encrypting communications may incur a performance overhead.) In such cases,
a component with one kind of functionality is modelled with different perfor-
mance (and security) properties as design alternatives, and are used for design
exploration during optimisation.

Cost Modelling. We use the existing and well-studied Palladio cost modelling
extension for modelling cost attributes. This can capture different types of costs
such as component costs, variable and fixed resource costs, and networking costs.

The security level of a component can impact its cost. For example, secure
components are more expensive to develop than less-secure components. We
model a component with one kind of functionality as multiple alternative com-
ponents that represent different levels of security each with a corresponding cost
in the cost model. Then we use those component alternatives when exploring
options during optimisation.

Security Modelling. A key contribution of this paper is integrating security
analysis into automatic design space exploration. Unlike other quality attributes
such as performance and cost, security is not easily quantifiable. Security anal-
yses often only make Boolean judgements about system security (i.e., secure,

166 R. Yasaweerasinghelage et al.

or not), but some analyses give continuous metrics of security (e.g., expected
time to next attack). In this paper, we demonstrate our approach using taint
analysis as the basis for security analysis. However, our general approach could
be adapted to use other security analysis metrics, as discussed in Sect. 5.

4 Modelling and Optimising

The prototype for our approach uses taint analysis (see Sect. 2.3) as the security
analysis technique. As our goal is to optimise performance and cost while sat-
isfying a security requirement, we developed an extension for integrating taint
analysis with existing Palladio Models and incorporating taint properties into
the PerOpteryx optimisation. To describe the modelling and optimisation pro-
cess, we use a running example based on a privacy-preserving computing system
called N1Analytics1 [9]. This section provides details about the extension and
how it works for the running example. Finally, we discuss how the architecture
of the N1 Analytics system can be optimised for performance, cost, and taint
properties.

4.1 Running Example

N1Analytics is a platform that allows statistical analyses using data distributed
among multiple providers, while maintaining data confidentiality between the
providers. Following the main principles of N1Analytics systems, we designed
an initial abstract architecture, to illustrate some of the critical features of our
proposed approach. It should be noted that this abstract architecture differs
from actual N1Analytics implementations.

Base Deployment Architecture. Figure 3 presents the federated deployment
architecture of the N1Analytics platform. Data providers and coordinators are
the two main building blocks. In an analytics operation, the coordinators have
the private key to decrypt the computed results but do not have access to plain or
encrypted input data. They only have a partial output that is not itself capable
of revealing plaintext results.

The private key is not accessible to the data providers, so they cannot violate
the privacy of the encrypted input data shared with them. Data providers and
coordinators may have a set of worker nodes to perform their operations. It is
possible to move data between nodes, as long as they preserve the protocol: the
coordinator should not have access to the encrypted data, and data providers
should not have access to the private keys.

1 https://www.n1analytics.com.

https://www.n1analytics.com

Optimising Architectures for Performance, Cost, and Security 167

Fig. 3. N1Analytics platform distributed architecture

Fig. 4. N1Analytics component architecture in UML notation

Component Architecture. To simplify the demonstration, we modify the
architecture of the N1Analytics system used in our earlier work [24] by assuming
that the basic component architecture of the coordinator and each data provider
is similar. Even so, the resource utilisation and the functionality of each node
are different. Notably, the computation overhead and workflow of each node are
significantly different. We model each node separately to reflect those differences.
Figure 4 presents the architecture model we considered.

4.2 Modelling System for Optimisation

Performance Modelling. We modelled performance characteristics following
the general Palladio approach. Our model of the N1Analytics system is similar
to that presented in our earlier work [24], but introduces changes to demonstrate
cost-based optimization and security-critical components.

In [24], the N1Analytics system was deployed in a test environment, and the
resource utilisation of each development component was measured. Then, each
development component was mapped to a functional component to be used in
the model architecture. The architecture is modelled in PCM using functional
components, and the resource utilisation of each component is derived from

168 R. Yasaweerasinghelage et al.

microbenchmark results. Resource utilisation is defined as a function of work-
load and the size of the data set. The resource environment definition, usage
model, and allocation model were defined based on the design specification of
the system. We reuse their published abstract model2, but with minor modifica-
tions to introduce a user access point component, a parser, and database access
component for demonstrating data propagation design options.

Cost Modelling. We used the standard Palladio Cost modelling approach.
Note that if a single component can have multiple levels of security, it needs to
be modelled as multiple alternative components with different cost properties.
Similarly, when introducing additional components such as secure load balancers
and secure bridging interfaces, base costs and operating costs need to be specified
accordingly. There will also be an overhead for operation cost, because some
secure components may have higher resource utilisation.

User AP

External
API

Taint Access Point

Parser

Init

Controller

Data
Access

Compute

DB

Fig. 5. Taint graph

Security Modelling - Modelling Taint Properties. We extended PCM
to define taint properties of the system. These properties are then used in the
optimisation algorithm. First, the extension retrieves the candidate system archi-
tecture and converts to a taint graph as shown in Fig. 5.

In the proposed method, each software component can be taint safe or taint
unsafe. Assigning this state to a component, based on whether it is secure or
not, is a decision for the model designer, as discussed further in Sect. 6. Taint
safe components act as a taint barrier preventing taint propagation from that
point onwards. In this study, our cost models assume that taint safe components
cost more than their taint unsafe counterparts.

From an initial taint setting, we analyse the graph by graph search, spreading
taint except through taint safe components. The search includes cyclic dependen-
cies which might spread taint over multiple passes. The results about whether
security critical components become tainted are provided to the optimisation
engine (see Sect. 4.4).
2 https://doi.org/10.6084/m9.figshare.5960014.v1.

https://doi.org/10.6084/m9.figshare.5960014.v1

Optimising Architectures for Performance, Cost, and Security 169

When modelling the N1Analytics architecture, we represent each compo-
nent twice, with secure and non-secure alternatives, each with a different cost.
Our not-unrealistic assumption is that a secure component is ten times more
expensive than its non-secure version. Additionally, to explore the impact of
security-specific design patterns, we define two optional secure bridge compo-
nents in front of the parser and the data access component. Our experiments are
executed with and without these secure bridging components.

4.3 Additional Design Options

We modelled additional architectural design alternatives related to data prop-
agation of the system and basic security policies in Design Decision Diagrams.
These define the exploration space for architecture optimisation.

In this paper, we include design options directly related to the security prop-
erties. The design options model their impact on the overall performance, cost,
and security of the analysed architecture. These design options are used along-
side other general architecture design options.

Fig. 6. Design option - taint blockers/secure components

Taint Blockers/ Secure Components. Developing a secure component is sig-
nificantly more expensive than developing a component using a standard devel-
opment process. To be cost-optimal, only a limited number of components can
be secure.

As illustrated in Fig. 6, a component can be made taint safe to act as a
taint barrier protecting critical components and thus ensuring system security.
A secure component may have higher resource utilisation compared to less-secure
components due to validity checks, or encryption, and this is also reflected in
the performance models.

Fig. 7. Design option - secure bridging interfaces

170 R. Yasaweerasinghelage et al.

Secure Bridging Interfaces. There is a significant cost of securing compo-
nents if those components are large. One design strategy to prevent taint prop-
agation is to implement secure bridging interfaces in-between components, as
shown in Fig. 7. A typical bridging interface component is small compared to
major functional components because it focuses on enforcing key security prop-
erties. Being smaller, their development cost can be significantly lower. On the
other hand, introducing a bridging interface component adds new fundamental
cost for developing the component, increases resource utilisation, and may act
as a performance bottleneck.

Fig. 8. Design option - secure component access interfaces and secure load balancers

Secure Component Access Interfaces and Secure Load Balancers. Sim-
ilar to the secure bridging interface components, a design strategy might be to
introduce secure common interfaces/load balancers, or to bring existing com-
mon interfaces/ load balancers to a higher security level (see Fig. 8). Generally,
these components are smaller than major functional components, and so have
significantly lower development cost. However, these components also can be bot-
tlenecks to the system and incur additional base development cost. In addition,
as load balancer interfaces can be concurrently accessed by multiple components
with different resource utilisation, we have to consider such interactions when
optimising the system under different workloads.

4.4 Model Optimisation

We started the optimisation with the architecture shown in Fig. 4. Even though
the proposed approach can handle multiple components defined as taint starting
points or security critical systems, for the simplicity of illustration we define the
external access component as the taint starting point and the database com-
ponent as the only security-critical component. In the initial architecture, all
components are non-secure.

In the Design Decision Model, we allow every component except access points
and databases to be made taint safe or taint unsafe. Additionally, we defined
optional trusted bridge components before the parser and computation con-
troller. Access points, databases, and computation components should only be
allocated to the DMZ server, database server, and computation server respec-
tively. Other components can be allocated to any server.

Optimising Architectures for Performance, Cost, and Security 171

We modelled the example system using Palladio Workbench version 4.0 using
SimuCom Bench for performance analysis with Sensor Framework as the per-
sistence framework. For design space exploration we used PerOpteryx version
4.0 with slight modifications for accommodating taint analysis when optimising.
We executed the optimisation on a machine with a 2.7 GHz Intel Core i5 CPU
and 8 GB main memory. It took approximately 4 h to run 500 iterations of the
simulation.

4.5 Results

The selection of optimal components for a system depends on its requirements.
Here we assume the reasonable goal is the lowest-cost secure architecture that
achieves a response time above a given threshold.

Fig. 9. Response time and cost of candidate architectures generated by PerOpteryx.
(Color figure online)

Figure 9 plots the identified candidate architectures as a distribution of
response time and cost. The red dot indicates the initial architecture config-
uration (i.e. Fig. 4) fed into the system. Secure candidates are shown as blue
diagonal crosses, and non-secure candidates are shown with an orange plus. As
can be seen, the genetic algorithm generated fewer non-secure candidates than
secure candidates. Importantly, the results show that when the architecture is
secure the system tends to be more expensive and have inferior performance.
In other words, if security is ignored when picking a candidate architecture, one
would likely pick a non-secure architecture. However, there are secure alternatives
with just slightly inferior cost and performance.

172 R. Yasaweerasinghelage et al.

Fig. 10. Secure candidate architecture with low cost where the simulated cost is 2,778
units. Simulated response time of this architecture is 33.9 units.

Fig. 11. Secure candidate architecture with low simulated response time of 13.4 units
where simulated cost is 46,692 units.

Data Server
DMZ server

Computation Server

User AP

External Node
AP

Parser

Initializer

Computation
Controler

Data Acess

Computation

Database

cont. processing rate = 3.5

cont. processing rate = 5.6
cont. processing rate = 4.8

Actor

Fig. 12. Secure intermediate point where a bridge component has been introduced.
Cost is 2,832 units and response time is 32.1 units.

Fig. 13. Generated non-secure architecture. Simulated cost is low as 1,580 and response
time is 37.8 units. The system is non-secure despite one component being secure.

Optimising Architectures for Performance, Cost, and Security 173

For some concrete examples, Fig. 10 shows the cheapest secure architecture
that costs 2,778 units but has 33.9 units response time. Figure 11 illustrates
the best performing secure architecture identified, which has a response time of
13.4 units but costs of 46,692 units. Figure 13 shows a non-secure architecture
which has cost low as 1,580 while response time is 37.8. From these examples,
it is evident that this method is capable of generating wide range of feasible
candidate architectures based on given design options. This is true for all the
candidates.

Identifying vastly different architectures with similar performance, cost and
security can be beneficial in some cases. The difference between those archi-
tectures can be measured by calculating the edit distance between two Palla-
dio instances by aggregating the weighted difference of each design option. We
assigned a lower weight for differences in the resource environment and higher
weight for structural changes to identify architectures with vastly different struc-
tural changes. Figures 10 and 12 show a pair of such alternative architectures we
identified by comparing distance between alternatives, i.e., structurally quite
different but with similar performance and cost, and both secure.

5 Related Work

Here we compare our work to related security modelling and analysis approaches.

Design Space Exploration for Security. Eunsuk Kang [10] identifies the
importance of design space exploration for security and outlines key elements of
a framework intended to support it. The main focus of his work is on low-level
system design and configuration, which is not directly applicable to architecture
level design exploration.

Security Modelling Using Palladio Component Model. Busch et al. [6]
provide a Palladio extension to predict the mean time to the next security inci-
dent. Their methodology is to model what to protect (e.g., data of a database),
different ways to access the protected data (e.g., hacking the fronted and then
hacking the non-public database), attacker’s experience, available knowledge
about the system, and the quality of the components in the system. The model
can then predict the mean time to the next security incident.

Busch et al.’s approach facilitates security comparison of different architec-
tures and can be used to identify secure architectures. The main limitation is
the difficulty of identifying specific model parameters such as the experience of
an attacker or quality of a component. It is also complicated to model insider
attacks. Nonetheless, the approach defines a metric for system security that
might be able to be incorporated into the general approach proposed in this
paper.

174 R. Yasaweerasinghelage et al.

Quantifying Security. Sharma et al. [20] propose to use Discrete-Time Markov
Chains (DTMCs) to model software architecture. This is a hierarchical model
that captures quality attributes of components, including security. They quan-
tify security through a model that represents the probability of exposing the
vulnerability of a component in a single execution and its effect on system secu-
rity. This model considers how often a certain component is accessed, which is
ignored in our approach based on the assumption that an attacker accesses a
component as often as needed. Sharma et al. [20] designed the model to con-
sider the system as broken if at least one component is successfully attacked.
Yet, as the systems we consider are typically deployed on several machines, a
broken component does not mean that the whole system is compromised. Hence,
we designed our approach to consider the control flow of a system as could be
followed by an attacker.

Madan et al. [15] propose a Semi-Markov process-based model to quan-
tify security for intrusion-tolerant systems. This model is based on two state-
transition models describing how the system behaves under attack. Their scope
is Denial-of-Service (DoS) and attacks to compromise the system. The objective
of the models is to calculate the Mean Time To Security Failure, to quantify the
security of the system. In contrast to this model, our approach can assess the
security of component-based architectures and is not restricted to monolithic
systems.

SECOMO. SECOMO (Security Cost Model) [14] is a cost modelling tech-
nique associated with a framework for risk management in telecommunications.
It estimates the effort required to conduct a risk management project in a net-
worked environment. This estimation forms a basis for other task estimations
such as the cost, human resources and duration of the project. The estimations
are calculated using network size and parameters called scale factors and effort
multipliers, which combined together can provide a measure for the security task
complexity.

6 Discussion and Future Work

Unlike performance and cost, security is not easily quantifiable. Although secu-
rity must be considered when making architecture design decisions, the com-
plicated nature of security makes it difficult to follow traditional automated
design optimisation practices. In this paper, we demonstrated that, instead of
directly modelling the security of architecture, it is possible to perform architec-
ture optimisation using security analysis techniques in conjunction with other
quantifiable system properties (cost, performance). We used taint analysis as an
example architecture security analysis technique to demonstrate the proposed
approach.

Based on system security requirements and a domain of operation, we expect
it would be possible to use alternative security analysis techniques such as those

Optimising Architectures for Performance, Cost, and Security 175

discussed in Sect. 5 in place of taint analysis. By using alternative security analy-
sis techniques, users may better identify security vulnerabilities relevant to their
domain. We plan to extend this work by developing a wider range of security
analysis techniques to be used along with Palladio component model, covering
different aspects of security analysis.

In an architectural model, secure components may have higher cost, because
of the time and resources required to secure and provide assurance for that com-
ponent. This may include formal security evaluation techniques such as Evalua-
tion Assurance Level (EAL). These assumptions of increased cost are reasonable,
but could be refined or tailored in specific industries or organisations if empiri-
cal cost data is available. The security of a component can also depend on the
domain. For example, a component might be sufficiently secure for a small-scale
software system with no significant security threats, but be non-secure for a
highly security-critical system in a hostile environment.

PerOpteryx performs a heuristic search on the design space. So it is not
guaranteed to find the optimal or simplest viable architecture. Different initial
architectures may converge to different sub-optimal Pareto candidates. The sys-
tem also does not find a single optimal architecture, but instead defines a range
of optimal alternatives on the Pareto frontier. It is the architect’s responsibility
to choose the final architecture. The architectures discussed here are for illus-
tration purposes only. In real-world scenarios, all the relevant components need
to be modelled with higher detail in order to get more accurate results.

Taint analysis technique we chose for the evaluation of the proposed approach
outputs a binary value for the security. In the real world, architects may want
to use continuous values such as mean time for an attack (see Sect. 5). In such
cases, they can apply the same principles we propose and optimise the system for
multi-objectives considering security as another dimension because PerOpteryx
inherently supports multi-objective optimisations.

7 Conclusion

This paper proposes a new method that incorporates security analysis tech-
niques, in addition to cost and performance (latency), when automatically
exploring and optimising system architecture designs. We demonstrate our app-
roach using taint analysis, a basic architecture security analysis technique where
secure components stopped propagation of taint from attackers to security-
critical components, as the basis for security analysis. We prototyped the app-
roach by extending the Palladio Component model and PerOpteryx systems. The
extensions include support for our security modelling and analysis. We reported
on the experiment and demonstrate the feasibility of using the approach, illus-
trating contrasting examples of generated secure system architectures on the
cost/performance Pareto frontier.

The evaluation was performed on an industrial example of a secure system
architecture for a privacy-preserving computing system. The case study high-
lighted the usefulness of the approach, by finding that best performance and

176 R. Yasaweerasinghelage et al.

cost were achieved by non-secure architectures – secure architectures were not
far behind, and a variety of distinct design options were identified. Our approach
is aimed at supporting architects in identifying and selecting good architecture
during the design phase, considering security, cost and performance. In future
work, we plan to augment the prototype with support for other security models
and analysis techniques.

References

1. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software archi-
tecture optimization methods: a systematic literature review. IEEE Trans. Softw.
Eng. 39(5), 658–683 (2013)

2. Ardagna, D., Casale, G., Ciavotta, M., Pérez, J.F., Wang, W.: Quality-of-service
in cloud computing: modeling techniques and their applications. J. Internet Serv.
Appl. 5, 5–11 (2014)

3. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: a survey. IEEE Trans. Softw. Eng. 30(5), 295–
310 (2004)

4. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009)

5. Brunnert, A., et al.: Performance-oriented DevOps: a research agenda. arXiv
preprint arXiv:1508.04752 (2015)

6. Busch, A., Strittmatter, M., Koziolek, A.: Assessing security to compare archi-
tecture alternatives of component-based systems. In: International Conference on
Software Quality, Reliability and Security. IEEE (2015)

7. Colbert, E., Boehm, B.: Cost estimation for secure software & systems. In:
ISPA/SCEA 2008 Joint International Conference (2008)

8. De Gooijer, T., Jansen, A., Koziolek, H., Koziolek, A.: An industrial case study
of performance and cost design space exploration. In: International Conference on
Performance Engineering. ACM (2012)

9. Djatmiko, M., et al.: Privacy-preserving entity resolution and logistic regression on
encrypted data. In: Private and Secure Machine Learning (PSML) (2017)

10. Kang, E.: Design space exploration for security. In: 2016 IEEE Cybersecurity Devel-
opment (SecDev), pp. 30–36. IEEE (2016)

11. Klein, G., et al.: seL4: formal verification of an OS kernel. In: Symposium on
Operating Systems Principles. ACM (2009)

12. Kounev, S., Brosig, F., Huber, N.: The Descartes modeling language. Department
of Computer Science, University of Wuerzburg, Technical report (2014)

13. Koziolek, A., Koziolek, H., Reussner, R.: PerOpteryx: automated application of
tactics in multi-objective software architecture optimization. In: Proceedings of
the QoSA & ISARCS. ACM (2011)

14. Krichene, J., Boudriga, N., Fatmi, S.: SECOMO: an estimation cost model for
risk management projects. In: International Conference on Telecommunications,
ConTEL 2003, vol. 2. IEEE (2003)

15. Madan, B.B., Goševa-Popstojanova, K., Vaidyanathan, K., Trivedi, K.S.: A method
for modeling and quantifying the security attributes of intrusion tolerant systems.
Perform. Eval. 56(1–4), 167–186 (2004)

http://arxiv.org/abs/1508.04752

Optimising Architectures for Performance, Cost, and Security 177

16. Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve soft-
ware architecture models for performance, reliability, and cost using evolution-
ary algorithms. In: International Conference on Performance Engineering (ICPE)
(2010)

17. Newsome, J., Song, D.X.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: NDSS, vol. 5.
Internet Society (2005)

18. Reussner, R.H., et al.: Modeling and Simulating Software Architectures: The Pal-
ladio Approach. MIT Press, Cambridge (2016)

19. Safwat, A., Senousy, M.: Addressing challenges of ultra large scale system on
requirements engineering. Procedia Comput. Sci. 65, 442–449 (2015)

20. Sharma, V.S., Trivedi, K.S.: Architecture based analysis of performance, reliability
and security of software systems. In: International Workshop on Software and
Performance. ACM (2005)

21. Willnecker, F., Brunnert, A., Krcmar, H.: Predicting energy consumption by
extending the Palladio component model. In: Symposium on Software Performance
(2014)

22. Yang, Z., Yang, M.: LeakMiner: detect information leakage on android with static
taint analysis. In: 2012 Third World Congress on Software Engineering (WCSE).
IEEE (2012)

23. Yasaweerasinghelage, R., Staples, M., Weber, I.: Predicting latency of blockchain-
based systems using architectural modelling and simulation. In: International Con-
ference on Software Architecture (ICSA) (2017)

24. Yasaweerasinghelage, R., Staples, M., Weber, I., Paik, H.Y.: Predicting the per-
formance of privacy-preserving data analytics using architecture modelling and
simulation. In: International Conference on Software Architecture (ICSA) (2018)

	Optimising Architectures for Performance, Cost, and Security
	1 Introduction
	2 Background
	2.1 Architecture Performance Modelling
	2.2 Architecture Design Space Exploration and Deployment Architecture Optimisation
	2.3 Static Taint Analysis

	3 Method Overview
	3.1 Quality Attribute Modelling for the Optimisation

	4 Modelling and Optimising
	4.1 Running Example
	4.2 Modelling System for Optimisation
	4.3 Additional Design Options
	4.4 Model Optimisation
	4.5 Results

	5 Related Work
	6 Discussion and Future Work
	7 Conclusion
	References

