
Tomas Bures
Laurence Duchien
Paola Inverardi (Eds.)

LN
CS

 1
16

81

13th European Conference, ECSA 2019
Paris, France, September 9–13, 2019
Proceedings

Software
Architecture

Lecture Notes in Computer Science 11681

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Tomas Bures • Laurence Duchien •

Paola Inverardi (Eds.)

Software
Architecture
13th European Conference, ECSA 2019
Paris, France, September 9–13, 2019
Proceedings

123

Editors
Tomas Bures
Charles University
Prague, Czech Republic

Laurence Duchien
University of Lille
Villeneuve d’Ascq, France

Paola Inverardi
University of L’Aquila
L’Aquila, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-29982-8 ISBN 978-3-030-29983-5 (eBook)
https://doi.org/10.1007/978-3-030-29983-5

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4517-5862
https://doi.org/10.1007/978-3-030-29983-5

Preface

This volume contains the proceedings of the 13th European Conference on Software
Engineering (ECSA 2019), held in Paris, France, during September 9–13, 2019. ECSA
is the premier European software engineering conference that provides researchers and
practitioners with a platform to present and discuss the most recent, innovative, and
significant findings and experiences in the field of software architecture research and
practice. This edition of ECSA builds upon a series of successful European workshops
on software architecture held during 2004–2006, as well a series of European software
architecture conferences during 2007–2018. This year was special, as we shared the
venue and part of the program with the Systems and Software Product Lines
Conference (SPLC) in Paris, France. Some keynotes and tracks were common to both
events.

This year’s technical program included a main research track, five keynote talks, an
industry track, a doctoral symposium track with its own keynote, a Women in Software
Engineering (WSE) track focusing on diversity, and a tools and demonstrations track.
In addition, we also offered several workshops on diverse topics related to the software
architecture discipline. The contributions of all these meetings are included in the
companion proceedings, published in the ACM Digital Library.

This volume, assembling just the papers from the main conference, is published by
Springer, following a tradition which dates back to its origin in 2004. For this reason,
Springer provided 1,000 Euros in funding for the 2019 event. This was used to bestow
the ECSA 2019 Best Paper Award, which was announced during the Gala Dinner.
Also, for this reason, Springer itself was recognized as a bronze sponsor for the ECSA
2019 edition.

For the main research track, we received 63 submissions in the two main categories:
full and short research papers. Based on the recommendations of the Program
Committee, we accepted 11 papers as full papers, and 4 additional papers as short
papers. Hence the acceptance rate for full research papers was 17,4% for ECSA 2019.
For the industrial track, we received 6 submissions and accepted 3 of them. The
conference attracted papers (co-)authored by researchers, practitioners, and academia
from 28 countries (Algeria, Argentina, Austria, Australia, Belgium, Brazil, Canada,
Chile, Columbia, Czech Republic, Equator, Finland, France, Germany, India, Ireland,
Italy, the Netherlands, New Zealand, Spain, Poland, Portugal, Romania, Sweden,
Switzerland, Turkey, the United Kingdom, and the United States).

It was a great pleasure to have prominent keynote speakers at ECSA 2019. The
opening day keynote was delivered by Christian Kästner from Carnegie Mellon
University on “Performance Analysis for Highly-Configurable Systems”. Professor
Carlo Ghezzi from Politecnico di Milano was pleased to accept our invitation to present
a keynote for young researchers at the Doctoral Symposium on “Becoming and Being a
Researcher: What I Wish Someone Would Have Told Me When I Started Doing
Research”. The third keynote was presented by Professor Lidia Fuentes from the

University of Malaga on “Variability Variations in Cyber-Physical Systems”. These
three keynotes were shared with the SPLC program. Rainer Grau from Juropera,
Switzerland, delivered the industrial keynote. He spoke about “Good Practices to
Identify Bounded Context to Build Agile Organizations in Sync with a Smart System
Architecture”. The last Keynote was presented by Professor Awais Rashid from
University of Bristol. He presented his work on “Secure Software Architectures for a
Hyperconnected World: Game Changer or Pipe Dream?”.

The role of women in computing has gained more and more attention. To this end,
the fourth special track on Women in Software Engineering (WSE) co-located with
ECSA 2019 and SPLC 2019 brought together students, junior and senior researchers,
as well as practitioners, to present, share, and celebrate their accomplishments and
experiences in achieving more diversity in SE/STEM. A large panel was dedicated to
this important track. The five panelists, specialized in the field of gender and diversity,
were Serge Abiteboul, researcher at Inria and Ecole Normale Supérieure Paris; Isabelle
Collet, Professor from University of Geneva; Chiara Condi, activist for women’s
empowerment and the founder of Led By HER; Elisabeth Kohler, director of the CNRS
Mission for Women’s Integration; and Florence Sedes, Professor from the University
of Toulouse. 33% of ECSA 2019 registered participants were women, which shows the
importance of organizing such a track to encourage them to find their place in the
community.

We are grateful to the members of the Program Committee for helping us to seek
submissions and provide valuable and timely reviews. Their efforts enabled us to put
together a high-quality technical program for ECSA 2019. We would like to thank the
members of the Organizing Committee of ECSA 2019 for playing an enormously
important role in successfully organizing the event with several tracks and collocated
events, as well as the workshop organizers, who made significant contributions to this
year’s successful event.

We also thank our sponsors who provided financial support for the event: Université
de Lille, I-Site ULNE, Inria, Missions pour les femmes-CNRS, GDR CNRS Génie de
la Programmation et de Logiciel, the Computer Science Lab CRIStAL-UMR CNRS,
and the Spirals research group.

The ECSA 2019 submission and review process was extensively supported by the
EasyChair conference management system. We acknowledge the prompt and
professional support from Springer, that published these proceedings in electronic
volumes as part of the Lecture Notes in Computer Science series. Finally, we would
like to thank the authors of all the ECSA 2019 submissions and the attendees of the
conference for their participation, and we look forward to seeing you in L’Aquila, Italy
for ECSA 2020.

July 2019 Tomas Bures
Laurence Duchien

Paola Inverardi

vi Preface

Organization

General Chair

Laurence Duchien University of Lille, France

Steering Committee

Antónia Lopes University of Lisbon, Portugal
Bedir Tekinerdogan Wageningen University, The Netherlands
Carlos E. Cuesta Rey Juan Carlos University, Spain
Danny Weyns Katholieke Universiteit Leuven, Belgium
David Garlan Carnegie Mellon University, USA
Flavio Oquendo University of Brittany, France
Ivica Crnkovic Mlardalen University, Sweden
Jennifer Pérez Universidad Politécnica de Madrid, Spain
Muhammad Ali Babar University of Adelaide, Australia
Paris Avgeriou University of Groningen, The Netherlands
Patricia Lago VU University Amsterdam, The Netherlands
Raffaela Mirandola Politecnico di Milano, Italy
Rogério de Lemos University of Kent, UK
Uwe Zdun University of Vienna, Austria

Research Track

Program Committee Chairs

Tomas Bures Charles University, Czech Republic
Paola Inverardi University of L’Aquila, Italy

Program Committee

Muhammad Ali Babar University of Adelaide, Australia
Jesper Andersson Linnaeus University, Sweden
Anne Koziolek Karlsruhe Institute of Technology, Germany
Paris Avgeriou University of Groningen, The Netherlands
Rami Bahsoon University of Birmingham, UK
Thais Batista Federal University of Rio Grande do Norte, Brazil
Steffen Becker University of Stuttgart, Germany
Stefan Biffl Technical University Wien, Austria
Jan Bosch Chalmers University of Technology, Sweden
Barbora Buhnova Masaryk University, Czech Republic
Javier Cámara University of York, UK
Carlos Canal University of Malaga, Spain

Rafael Capilla Universidad Rey Juan Carlos, Spain
Siobhán Clarke Trinity College Dublin, Ireland
Ivica Crnkovic Chalmers University of Technology, Sweden
Carlos E. Cuesta Rey Juan Carlos University, Spain
Rogerio De Lemos University of Kent, UK
Ada Diaconescu Paris Saclay University, France
Khalil Drira LAAS-CNRS, France
Matthias Galster University of Canterbury, New Zealand
David Garlan Carnegie Mellon University, USA
Carlo Ghezzi Politecnico di Milano, Italy
Ian Gorton Northeastern University, USA
Volker Gruhn Universität Duisburg-Essen, Germany
Petr Hnetynka Charles University, Czech Republic
Ilias Gerostathopoulos TU Munich, Germany
Pooyan Jamshidi Carnegie Mellon University, USA
Jan Carlson Malardalen University, Sweden
Wouter Joosen Leuven University, Belgium
Rick Kazman Carnegie Mellon University and University of Hawaii,

USA
Heiko Koziolek ABB Corporate Research, Germany
Patricia Lago Vrije Universiteit Amsterdam, The Netherlands
Nuno Laranjerio University of Coimbra, Portugal
Nicole Levy CNAM, France
Grace Lewis Carnegie Mellon Software Engineering Institute, USA
Anna Liu Amazon, Australia
Antónia Lopes University of Lisbon, Portugal
Kristina Lundquist MDH, Sweden
Sam Malek University of California - Irvine, USA
Tomi Männistö University of Helsinki, Finland
Marija Mikic Google, USA
Tommi Mikkonen University of Helsinki, Finland
Mehdi Mirakhorli Rochester Institute of Technology, USA
Raffaela Mirandola Politecnico di Milano, Italy
Henry Muccini Universitá dell’Aquila, Italy
Juan Manuel Murillo University of Extremadura, Spain
Elisa Yumi Nakagawa University of Säo Paulo, Brazil
Elena Navarro University of Castilla-La Mancha, Spain
Elisabetta Di Nitto Politecnico di Milano, Italy
Flavio Oquendo University of Brittany, France
Ipek Ozkaya Carnegie Mellon Software Engineering Institute, USA
Claus Pahl Free University of Bozen-Bolzano, Italy
Liliana Pasquale University College Dublin, LERO, Ireland
Patrizio Pelliccione Chalmers University of Technology, Sweden
Cesare Pautasso USI Lugano, Switzerland
Jennifer Perez Universidad Politécnica de Madrid, Spain
Claudia Raibulet University of Milano-Bicocca, Italy

viii Organization

Ralf Reussner Karlsruhe Institute of Technology, Germany
Romina Spalazzese Malmö University, Sweden
Bradley Schmerl Carnegie Mellon University, USA
Bedir Tekinerdogan Wageningen University, The Netherlands
Chouki Tibermacine University of Montpellier, France
Rainer Weinreich Johannes Kepler University Linz, Austria
Danny Weyns Katholieke Universiteit Leuven, Belgium
Uwe Zdun University of Vienna, Austria
Liming Zhu The University of New South Wales, Australia
Olaf Zimmermann Hochschule für Technik, Switzerland

Additional Reviewers

Tobias Duerschmid
Andrei Furda
Lina Garcés
Negar Ghorbani
Sara Hassan
Chadni Islam
Reyhaneh Jabbarvand
Robbert Jongeling
Cody Kineer
Jochen Kuester
Jair Leite
Francisca Losavio
Carlos Mera Gomez

Peter Mourfield
Juergen Musil
Roman Pilipchuk
Martina Rapp
Navid Salehnamadi
Darius Sas
Stephan Seifermann
Bruno Sena
Dalia Sobhy
Jianhai Su
Faheem Ullah
Roberto Verdecchia
Tiago Volpato

Industry Track

Program Committee Chairs

Javier Cámara University of York, UK
Patrick Farail IRT Saint Exupéry, France

Program Committee

Javier Cámara University of York, UK
Remco De Boer ArchiXL, The Netherlands
Patrick Farail IRT Saint Exupéry, France
María Gómez Lacruz RavenPack, Spain
K. Eric Harper ABB, USA
Eric Jenn Thales, France
Michael Keeling IBM, USA
Heiko Koziolek ABB, Germany
Thomas Kropf Bosch, University of Tuebingen, Germany
Grace Lewis Carnegie Mellon University SEI, USA

Organization ix

Gonçalo Lopes D-Orbit, Portugal
Giuseppe Procaccianti Vandebron B.V., The Netherlands
Magnus Standar Ericsson, Sweden
Eoin Woods Artechra, UK

x Organization

Abstracts of Keynotes

Performance Analysis for Highly-Configurable
Systems

Christian Kästner

Carnegie Mellon University

Abstract. Almost every modern software system is highly configurable with
dozens or more options to customize behavior for different use cases. Beyond
enabling or disabling optional functionality, configuration options often adjust
tradeoffs among accuracy, performance, security, and other qualities. However,
with possible interactions among options and an exponentially exploding con-
figuration space, reasoning about the impact of configurations is challenging.
Which options affect performance or accuracy? Which options interact? What’s
the optimal configuration for a given workload? In this talk, I will give an
overview of different strategies and challenges to learn performance models
from highly-configurable systems by observing their behavior in different
configurations, looking at sampling and learning strategies, transfer learning
strategies, and strategies that analyze the internals or architecture of the system.

Short Bio

Christian Kästner is an associate professor in the School of Computer Science at
Carnegie Mellon University. He received his PhD in 2010 from the University of
Magdeburg, Germany, for his work on virtual separation of concerns. For his disser-
tation he received the prestigious GI Dissertation Award. Kästner develops mecha-
nisms, languages, and tools to implement variability in a disciplined way despite
imperfect modularity, to understand feature interactions and inter-operability issues, to
detect errors, to help with non-modular changes, and to improve program compre-
hension in software systems, typically systems with a high amount of variability.
Among others, Kästner has developed approaches to parse and type check all
compile-time configurations of the Linux kernel in the TypeChef project.

Becoming and Being a Researcher: What I
Wish Someone Would Have Told Me When I

Started Doing Research

Carlo Ghezzi

Politecnico di Milano

Abstract. Why should one wish to become a researcher? What is the role of
research and researchers in society? What does one need to do to become a
researcher as a PhD student (but also before and after)? What can be the pro-
gress of a researcher in his or her career? How to survive and be successful?
These are some of the questions I will try to answer in my presentation, based on
what I learnt from others and from my own experience.
Very often, young researchers are too busy doing their own research and

don’t care about the global picture, ignoring these questions. Often, their aca-
demic supervisors only focus on the technical side of their supervision, and
don’t open the eyes of their young research collaborators. But then, sooner or
later, these questions emerge and an answer must be given. In particular, I will
focus on three issues:

1. Diffusion of research, through publications and other means. What
does a beginning researcher need to know and what is a good per-
sonal strategy?

2. Evaluation of research and researcher. Researchers need to under-
stand that they will be subject to continuous evaluation. Why? How?
And, most importantly, how should they prepare to live through
continuous evaluations?

3. Ethics. Researchers need to be aware of the ethical issues involved in
doing research. On the one side, integrity is needed in the everyday
practice of research. On the other, research is changing the world in
which we live. The products of research lead to innovations that can
have profound influence on society, and because of the increasingly
fast transition from research to practice, they affect the world even
before we understand the potential risks. What researchers might see
as purely technical problems may have ethical implications, and this
requires ethics awareness while doing research.

Short Bio

Carlo Ghezzi is an ACM Fellow (1999), an IEEE Fellow (2005), as well as a member
of the European Academy of Sciences and of the Italian Academy of Sciences. He

received the ACM SIGSOFT Outstanding Research Award (2015) and the Distin-
guished Service Award (2006). He has been President of Informatics Europe. He has
been a member of the Program Committee of flagship conferences in the software
engineering field, such as the ICSE and ESEC/FSE, for which he also served as
program and general chair. He has been the editor in chief of the ACM Transactions on
Software Engineering and Methodology and an associate editor of IEEE Transactions
on Software Engineering, Communications of the ACM and Science of Computer
Programming, and Computing. Ghezzi’s research has predominately focused on dif-
ferent aspects of software engineering. He co-authored over 200 papers and 8 books.
He coordinated several national and international research projects. He has been the
recipient of an ERC Advanced Grant.

Becoming and Being a Researcher xv

Variability Variations in Cyber-Physical
Systems

Lidia Fuentes

University of Malaga

Abstract. With the increasing size and heterogeneity of systems (e.g., IoT,
cyber-physical systems) and enhanced power and versatility of IoT devices (e.g.,
smart watches, home intelligence sensors), the complexity of managing different
kinds of variability for a given vertical domain becomes more difficult to handle.
The structural variability of cyber-physical systems becomes more complex,
comprising not only the inherent hardware variability of IoT devices and their
network access protocols, but also the infrastructure variability derived from
modern virtualization technologies, such as microcontainers or unikernels.
Variability of software frameworks used to develop domain specific applications
and/or services for Cloud/Edge computing environments should not be inter-
mingled with hardware and infrastructure variability modeling. In addition, to
exploit the full potential of flexibility in processing, data storage, and net-
working resource management, experts should define dynamic configuration
processes that optimize QoS such as energy efficiency or latency respecting
application-specific requirements. In this keynote talk, I will present how QoS
assurance in cyber-physical systems implies modeling and configuring different
kinds of variability during design, but also at runtime (e.g., user demands, usage
context variability), enabling the late binding of dynamic variation points, dis-
tributed in IoT/Edge/Cloud devices, and how this can be materialized using
current SPL artefacts.

Short Bio

Lidia Fuentes is a professor at the School of Informatics at the University of Malaga,
Spain since 2011, with more than 25 years of experience teaching, leading research
projects, and supervising thesis. She leads a cross-disciplinary research group CAOSD,
focused on applying advanced software engineering technologies to network and
distributed systems. Her current research interests include modeling different kinds of
variability of Internet of Things (IoT), and cypher-physical systems to support dynamic
reconfiguration and green computing. Her scientific production has been very prolific
so far, with more than two hundred scientific publications in international forums. Her
work has received several best-paper awards at conferences such as ICSR or
SPLC-Tools track. She chaired several conferences as general chair (Modularity 2016),
program chair (SPLC industry track, VaMoS), served on numerous program com-
mittees, and also participated as a panelist at ICSR 2017. She is member of the Steering

Committee of AOSA (Aspect-Oriented Software Association) and VaMoS. She is
currently concerned in promoting the STEM careers in girls, participating as a mentor
of the Technovation Challenge initiative.

Variability Variations in Cyber-Physical Systems xvii

Good Practices to Identify Bounded Context
to Build Agile Organizations in Sync
with a Smart System Architecture

Rainer Grau

Juropera GmbH

Abstract. The term bounded context describes a (ideal world) technical AND
organizational autonomous area of the business model of a company.
A bounded context combines three orthogonal aspects: the technology of
microservices and DevOps; a functional context with its very specific termi-
nology; an as autonomous as possible organizational unit (a team or a set of
teams). The challenge of a company transforming towards the idea of bounded
context is the smart design of the orthogonal aspect into a well-balanced overall
system. The goal of the well-balanced system to minimize the management
overhead required to govern the given complexity of the system.
This talk presents a set of good practices for companies to design a

well-balanced overall system addressing the three orthogonal aspects of boun-
ded context. Influencing factors in these good practices are size of the company;
complexity and number of different business models; level of organizational
complexity such as an international business group with different legal entities;
ratio of in-house development versus X-shoring; or existing IT infrastructure
dependencies.
Although bounded context are very popular especially in agile environments,

this talk will silently communicate that classical methods such as business
process modeling or business analysis still are first class citizens in the method
toolbox of modern companies.

Short Bio

For over 20 years, Rainer Grau engages with or within companies around the topics of
agility, lean leadership, enterprise architecture, and lean organization, or to say it
differently, he engages in continuous improvement to integrate modern ideas and new
approaches in technology, architecture, and organizational design with the goal to
succeed in the market as company and to work with fun as human being.

Steps in his professional life are distinguished consultant and partner at Zühlke
Engineering; head of business development at Digitec Galaxus; founder of the Suisse
Agile Leader Circle SALC; lecturer at universities in topics around innovation, agility,
and digital readiness; founding member and reviewer of the International Requirements
Engineering Board (IREB);and speaker at many conferences and venues. Rainer is
engaged in the agile community in Switzerland with a long-time passion. Discover
more information about Rainer Grau on www.juropera.com.

http://www.juropera.com

Secure Software Architectures
for a Hyperconnected World: Game Changer

or Pipe Dream?

Awais Rashid

University of Bristol

Abstract. The world is experiencing a massive growth in connected
cyber-physical systems. Innovations such as smart cities, Internet of Things
(IoT), body-area networks, smart grids, and wearable sensors mean that future
environments will be hyper-connected, highly open, and regularly collect,
process, or disseminate massive amounts of data. It is not difficult to envisage
large-scale deployments with hundreds of thousands of nodes that are, in turn,
used by a large number of stakeholders to provide a multitude of services. Such
shared cyber-physical infrastructures will remain in operation for a long time
(potentially decades) and the physical composition, the services provided, and
the stakeholders involved will change with time. Software is at the heart of these
critical systems that will underpin our society for the foreseeable future. What is
the role of software architecture in these emerging hyperconnected environ-
ments? In this talk, I will discuss this very question and the challenges of
architecting secure software systems when faced with this scale, longevity, and
dynamicity.

Short Bio

Awais Rashid is Professor of Cyber Security at the University of Bristol, a Fellow
of the Alan Turing Institute, and Director of the EPSRC Centre for Doctoral Training in
Trust, Identity, Privacy and Security in Large-scale Infrastructures. His research spans
software engineering and cyber security - in particular novel techniques to improve the
security and resilience of infrastructures underpinning society. He leads projects as part
of the UK Research Institute on Trustworthy, Interconnected, Cyber-Physical Systems
(RITICS) and the UK Research Institute on Science of Cyber Security (RISCS). He
co-leads the Security and Safety theme within the UK Hub on Cyber Security of
Internet of Things (PETRAS) and heads a major international effort on developing a
Cyber Security Body of Knowledge (CyBOK) to provide interdisciplinary foundations
for education and training programs.

Contents

Research Track

Services and Micro-services

Guiding Architectural Decision Making on Service Mesh Based
Microservice Architectures . 3

Amine El Malki and Uwe Zdun

Supporting Architectural Decision Making on Data Management
in Microservice Architectures . 20

Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, Daniel Schall,
Fei Li, and Sebastian Meixner

From a Monolith to a Microservices Architecture: An Approach Based
on Transactional Contexts . 37

Luís Nunes, Nuno Santos, and António Rito Silva

Software Architecture in Development Process

An Exploratory Study of Naturalistic Decision Making in Complex
Software Architecture Environments . 55

Ken Power and Rebecca Wirfs-Brock

Evaluating the Effectiveness of Multi-level Greedy Modularity
Clustering for Software Architecture Recovery . 71

Hasan Sözer

What Quality Attributes Can We Find in Product Backlogs? A Machine
Learning Perspective . 88

Matthias Galster, Fabian Gilson, and François Georis

Architecturing Elastic Edge Storage Services for Data-Driven
Decision Making. 97

Ivan Lujic and Hong-Linh Truong

Adaptation and Design Space Exploration

Continuous Adaptation Management in Collective Intelligence Systems 109
Angelika Musil, Juergen Musil, Danny Weyns, and Stefan Biffl

ADOOPLA - Combining Product-Line- and Product-Level Criteria
in Multi-objective Optimization of Product Line Architectures 126

Tobias Wägemann, Ramin Tavakoli Kolagari, and Klaus Schmid

Assessing Adaptability of Software Architectures for Cyber Physical
Production Systems . 143

Michael Mayrhofer, Christoph Mayr-Dorn, Alois Zoitl, Ouijdane Guiza,
Georg Weichhart, and Alexander Egyed

Quality Attributes

Optimising Architectures for Performance, Cost, and Security. 161
Rajitha Yasaweerasinghelage, Mark Staples, Hye-Young Paik,
and Ingo Weber

QoS-Based Formation of Software Architectures in the Internet of Things . . . 178
Martina De Sanctis, Romina Spalazzese, and Catia Trubiani

A Survey on Big Data Analytics Solutions Deployment 195
Camilo Castellanos, Boris Pérez, Carlos A. Varela,
María del Pilar Villamil, and Dario Correal

Assessing the Quality Impact of Features in Component-Based
Software Architectures . 211

Axel Busch, Dominik Fuchß, Maximilian Eckert, and Anne Koziolek

Components and Design Alternatives in E-Assessment Systems 220
Michael Striewe

Industry Track

A Four-Layer Architecture Pattern for Constructing and Managing
Digital Twins . 231

Somayeh Malakuti, Johannes Schmitt, Marie Platenius-Mohr,
Sten Grüner, Ralf Gitzel, and Prerna Bihani

Tool Support for the Migration to Microservice Architecture:
An Industrial Case Study . 247

Ilaria Pigazzini, Francesca Arcelli Fontana, and Andrea Maggioni

ACE: Easy Deployment of Field Optimization Experiments 264
David Issa Mattos, Jan Bosch, and Helena Holmström Olsson

Author Index . 281

xxii Contents

Services and Micro-services

Guiding Architectural Decision Making
on Service Mesh Based Microservice

Architectures

Amine El Malki(B) and Uwe Zdun

Faculty of Computer Science, Research Group Software Architecture,
University of Vienna, Vienna, Austria

{amine.elmalki,uwe.zdun}@univie.ac.at

Abstract. Microservices are becoming the de-facto standard way for
software development in the cloud and in service-oriented computing.
Service meshes have been introduced as a dedicated infrastructure for
managing a network of containerized microservices, in order to cope
with the complexity, manageability, and interoperability challenges in
especially large-scale microservice architectures. Unfortunately so far no
dedicated architecture guidance for designing microservices and choosing
among technology options in a service mesh exist. As a result, there is a
substantial uncertainty in designing and using microservices in a service
mesh environment today. To alleviate this problem, we have performed a
model-based qualitative in-depth study of existing practices in this field
in which we have systematically and in-depth studied 40 reports of estab-
lished practices from practitioners. In our study we modeled our findings
in a rigorously specified reusable architectural decision model, in which
we identified 14 architectural design decisions with 47 decision outcomes
and 77 decision drivers in total. We estimated the uncertainty in the
resulting design space with and without use of our model, and found
that a substantial uncertainty reduction can be potentially achieved by
applying our model.

Keywords: Microservices · Service meshes · Software design ·
Software architecture · Modeling

1 Introduction

Microservices are a recent approach for designing service architectures that
evolved from established practices in service-oriented architectures [13,17,28]. As
microservices, especially in large-scale systems, introduce many challenges and
high complexity in terms of manageability and interoperability, service meshes
[15] have been introduced as an infrastructure for managing the communica-
tion of containerized microservices and perform many related tasks. For this,
they usually use a network of lightweight proxies or sidecars that handle all the
communication burden [12,16]. As a result, the coupling between microservices
c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 3–19, 2019.
https://doi.org/10.1007/978-3-030-29983-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-29983-5_1

4 A. El Malki and U. Zdun

and of microservices to the infrastructure services can get drastically reduced.
This also eases establishing interoperability between microservices developed in
different programming languages and with different technologies. The proxies or
sidecars form a data plane that is typically managed by a control plane [22].

Unfortunately so far no dedicated architectural guidance exists on how to
design and architect microservices in a service mesh environment apart from
practitioner blogs, industry white papers, experience reports, system documen-
tations, and similar informal literature (sometimes called gray literature). This
includes that so far there is no guidance for users of service mesh technologies or
even their implementors to select the right design and technology options based
on their respective properties. Very often it is even difficult to understand what
all the possible design options, their possible combination, and their impacts on
relevant quality properties and other decision drivers are. As a result, there is
substantial uncertainty in architecting microservices in a service mesh environ-
ment, which can only be addressed by gaining extensive personal experience or
gathering the architectural knowledge from the diverse, often incomplete, and
often inconsistent existing practitioner-oriented knowledge sources.

To alleviate these problems, we have performed a qualitative, in-depth study
of 40 knowledge sources in which practitioners describe established practices. We
have based our study on the model-based qualitative research method described
in [26], which uses such documented practitioner sources as rather unbiased
knowledge sources and systematically codes them using established coding and
constant comparison methods [6] combined with precise software modeling, in
order to develop a rigorously specified software model of established practices
and their relations. This paper aims to study the following research questions:

– RQ1 What are the established practices that commonly appear in service
mesh based designs and architectures?

– RQ2 What are the dependencies of those established practices? Especially
which architectural design decisions (ADDs) need to be made in service mesh
based designs and architectures?

– RQ3 What are the decision drivers in those ADDs to adopt the practices?

In addition to studying and answering these research questions, we have
estimated the decision making uncertainty in the resulting ADD design space,
calculated the uncertainty left after applying the guidance of our ADD model,
and compared the two. Our model shows a potential to substantially reduce the
uncertainty not only by documenting established practices, but also by organiz-
ing the knowledge in a model.

Guiding Architectural Decision Making on Service Mesh 5

The remainder of this paper is organized as follows: In Sect. 2 we compare to
the related work. Section 3 explains the research method we have applied in our
study. Then Sect. 4 explains a precise specification of the service mesh design
decisions resulting from our study. The uncertainty estimation is discussed in
Sect. 5, followed by a discussion in Sect. 6 and conclusions in Sect. 7.

2 Related Work

Service meshes have been identified in the literature as the latest wave of service
technology [12]. Some research studies use service meshes in their solutions. For
example, Truong et al. [23] use a service mesh architecture to reduce rerouting
effort in cloud-IoT scenarios. Studies on generic architecture knowledge spe-
cific to service meshes are rather rare in the scientific literature so far. One
example that considers them is TeaStore, which intraffic Control Decision int-
troduces a microservice-based reference architecture for cloud researchers and
considers practices used in service meshes [4]. More sources can be found on
general microservice best practices. For instance, Richardson [20] provides a col-
lection of microservice design patterns. Another set of patterns on microservices
has been published by Gupta [8]. Microservice best practices are discussed in
[13], and similar approaches are summarized in a recent mapping study [18]. So
far, none of these approaches has put specific focus on the service mesh practices
documented in our study.

A field of study related to service mesh architectures are studies on microser-
vice decomposition, as this can lead to decision options and criteria related to
the topology of the service mesh. While the microservice decomposition itself is
studied in the scientific literature extensively (see e.g. [1,10,25]), its influence
on the design of the deployment in a service mesh and its topology are stud-
ied only rarely. For instance, Zheng et al. [27] study the SLA-aware deployment
of microservices. Selimi et al. [21] study the service placement in a microser-
vice architecture. Both studies are not specific for service meshes, but could be
applied to them. In contrast to our study which aims to cover a broad variety
of architecting problems, these studies only cover a very specific design issue in
a microservice architecture.

The model developed in our study can be classified as a reusable ADD model
[29]. Decision documentation models have been used by many authors before,
and quite a number of them are focused on services, such as those on service-
oriented solutions [29], service-based platform integration [14], REST vs. SOAP
[19], microservice API quality [26], big data repositories [7], and service discovery
and fault tolerance [9]; however, none of them considers service meshes yet.

6 A. El Malki and U. Zdun

3 Research Method

This paper aims to systematically study the established practices in the field of
service mesh based architectures. A number of methods have been suggested to
informally study established practices, including pattern mining (see e.g. [3]). As
in our work, we rather aim to provide a rigorously specified model of the estab-
lished practices, e.g., to support tool building or the definition of metrics and
constraints in our future work, we decided to follow the model based qualitative
research method described in [26]. It aims to systematically study the estab-
lished practices in a particular field and is based on the established qualitative
research method Grounded Theory (GT) [6] but in contrast to GT it produces
inputs for formal software modeling like model element or relation instances,
not just informal textual codes. Like GT, we studied each knowledge source in
depth. The method uses descriptions of established practices from the so-called
gray literature (i.e., practitioner reports, system documentations, practitioner
blogs, etc.). These sources are then used as unbiased descriptions of established
practices in the further analysis (in contrast to sources like interviews as used in
classic GT). We followed a similar coding process, as well as a constant compar-
ison procedure to derive our model as used in GT. In contrast to classical GT,
our research began with initial research questions, as in Charmaz’s constructivist
GT [2]. Whereas GT typically uses textual analysis, we used textual codes only
initially and then transferred them into formal UML models.

A crucial question in GT is when to stop this process; here, theoretical satura-
tion [6] has attained widespread acceptance in qualitative research: We stopped
our analysis when 5 to 7 additional knowledge sources did not add anything new
to our understanding of the research topic. As a result of this very conservative
operationalization of theoretical saturation, we studied a rather large number of
knowledge sources in depth (40 in total, summarized in Table 1), whereas most
qualitative research often saturates with a much lower number of knowledge
sources. Our search for knowledge sources was based on popular search engines
(e.g., Google, Bing), social network platforms used by practitioners (e.g., Twit-
ter, Medium), and technology portals like InfoQ and DZone.

Proof-of-Concept Implementation. Our proof-of-concept implementation
is based on our existing modeling tool implementation CodeableModels1, a
Python implementation for precisely specifying meta-models, models, and model
instances in code with an intuitive and lightweight interface. We implemented
all models described in this paper together with automated constraint check-
ers and PlantUML code generators to generate graphical visualizations of all
meta-models and models.

1 https://github.com/uzdun/CodeableModels.

https://github.com/uzdun/CodeableModels

Guiding Architectural Decision Making on Service Mesh 7

Table 1. Knowledge sources included in the study

Code Description Reference

S1 Istio prelim 1.2/traffic management (documentation) http://bit.ly/2Js3JXj

S2 Using Istio to support service mesh on multiple . . . (blog) http://bit.ly/2FqMce5

S3 Service mesh data plane vs. control plane (blog) http://bit.ly/2EtC8z6

S4 The importance of control planes with service meshes . . . (blog) http://bit.ly/2He7JYu

S5 Envoy proxy for Istio service mesh (documentation) https://bit.ly/2HaNdrE

S6 Our move to envoy (blog) https://bit.ly/2Vyyefd

S7 Envoy proxy 101: what it is, and why it matters? (blog) https://bit.ly/2HaNhYq

S8 Service mesh with envoy 101 (blog) https://bit.ly/2UjPuVn

S9 Microservices patterns with envoy sidecar proxy (blog) https://bit.ly/2tOWo9C

S10 Ambassador API gateway as a control plane for envoy (blog) http://bit.ly/2TuaZWj

S11 Streams and service mesh - v1.0.x | Kong . . . (documentation) http://bit.ly/2UGX7W1

S12 Istio prelim 1.2/security (documentation) http://bit.ly/2HyOIkH

S13 Consul architecture (documentation) https://bit.ly/2ITnhU2

S14 Global rate limiting—envoy . . . (documentation) http://bit.ly/2Js3JXj

S15 Cilium 1.4: multi-cluster service routing, . . . (blog) http://bit.ly/2Cv49pU

S16 Proxy based service mesh (blog) https://bit.ly/2VzpbL2

S17 Smart networking with consul and service meshes (blog) http://bit.ly/2Uk14jg

S18 A sidecar for your service mesh (blog) http://bit.ly/2ThMrvF

S19 Istio prelim 1.2/multicluster deployments (documentation) http://bit.ly/2udsxI3

S20 Microservices reference architecture from NGINX (blog) http://bit.ly/2U3tNw1

S21 Comparing service mesh architectures (blog) http://bit.ly/2tQ2GWd

S22 Istio multicluster on openshift – red hat openshift . . . (blog) https://red.ht/2FcMyn4

S23 Amazon elasticache for Redis FAQs (documentation) https://amzn.to/2TgGML8

S24 Service mesh for microservices (blog) http://bit.ly/2TCd6Is

S25 Designing microservices: . . . (documentation) http://bit.ly/2tPQkO4

S26 HashiCorp Consul 1.2: service mesh (blog) http://bit.ly/2Fnj1It

S27 Connect-Native app integration (documentation) http://bit.ly/2NEDMlL

S28 Service discovery—envoy . . . (documentation) http://bit.ly/2Tfp59H

S29 Linkerd2 Proxy (open source implementation) https://bit.ly/2HaiFqa

S30 Multi cluster support for service mesh . . . (blog) http://bit.ly/2Jp6isS

S31 Linkerd architecture (documentation) http://bit.ly/2Uki3lt

S32 Federated service mesh on VMware PKS . . . (blog) http://bit.ly/2TNRitD

S33 Consul vs. Istio (documentation) http://bit.ly/2Tdx5gd

S34 Guidance for building a control plane to manage envoy . . . (blog) http://bit.ly/2CCAYRU

S35 Comparing service meshes: Linkerd vs. Istio . . . (blog) http://bit.ly/2TWQAtT

S36 Connect - proxies - Consul by HashiCorp (documentation) http://bit.ly/2UViLWG

S37 Approaches to securing decentralised microservices . . . (blog) http://bit.ly/2Wp50jn

S38 Istio routing basics – google cloud platform . . . (blog) http://bit.ly/2OoR0Dn

S39 Integrating Istio 1.1 mTLS and Gloo proxy . . . (blog) http://bit.ly/2UTpctm

S40 Kubernetes-based microservice observability . . . (blog) http://bit.ly/2FvE4aT

4 Service Mesh Design Decisions

Following our study results, we identified 14 ADDs for service meshes described
in detail below. Service Meshes are usually used together with a Container
Orchestrator such as Kubernetes or Docker Swarm. That is, the services in
the mesh, the central services of the service mesh, and service mesh prox-
ies are usually containerized and the containers are orchestrated. Very often

http://bit.ly/2Js3JXj
http://bit.ly/2FqMce5
http://bit.ly/2EtC8z6
http://bit.ly/2He7JYu
https://bit.ly/2HaNdrE
https://bit.ly/2Vyyefd
https://bit.ly/2HaNhYq
https://bit.ly/2UjPuVn
https://bit.ly/2tOWo9C
http://bit.ly/2TuaZWj
http://bit.ly/2UGX7W1
http://bit.ly/2HyOIkH
https://bit.ly/2ITnhU2
http://bit.ly/2Js3JXj
http://bit.ly/2Cv49pU
https://bit.ly/2VzpbL2
http://bit.ly/2Uk14jg
http://bit.ly/2ThMrvF
http://bit.ly/2udsxI3
http://bit.ly/2U3tNw1
http://bit.ly/2tQ2GWd
https://red.ht/2FcMyn4
https://amzn.to/2TgGML8
http://bit.ly/2TCd6Is
http://bit.ly/2tPQkO4
http://bit.ly/2Fnj1It
http://bit.ly/2NEDMlL
http://bit.ly/2Tfp59H
https://bit.ly/2HaiFqa
http://bit.ly/2Jp6isS
http://bit.ly/2Uki3lt
http://bit.ly/2TNRitD
http://bit.ly/2Tdx5gd
http://bit.ly/2CCAYRU
http://bit.ly/2TWQAtT
http://bit.ly/2UViLWG
http://bit.ly/2Wp50jn
http://bit.ly/2OoR0Dn
http://bit.ly/2UTpctm
http://bit.ly/2FvE4aT

8 A. El Malki and U. Zdun

service meshes are used to deal with heterogeneous technology stacks. That is, a
major goal is that microservices can be written as HTTP servers with any pro-
gramming language or technology, and without modification these services get
containerized and managed in a mesh, including high-level services like service
discovery, load balancing, circuit breaking, and so on. In the first four sections,
we describe ADDs that characterize a service mesh as a whole. The remaining
section describes ADDs that can be made for specific components of a service
mesh.

4.1 Managed Cross-Service Communication Decision

As stated previously, a Service Mesh is composed of a set of networked proxies
or Sidecars that handle the communication between microservices [12,22]. The
decision regarding managed communication across the services in a Service Mesh
is made for the Service Endpoints of these microservices, as illustrated in Fig. 1.
Not using managed cross-service communication is a decision option for each
service endpoint but please note that this essentially means to not follow a service
mesh architecture for the endpoint. Alternatively, we can select between the
two following design options: Service Proxy and API-Based Service Integration.
Service Proxy is the commonly supported option. If the Service Proxy is hosted
in a container that runs alongside the service container (i.e., in the same pod
of the Container Orchestrator), the service proxy is called a Sidecar Proxy. A
few service meshes offer the additional option API-Based Service Integration,
which means that the service uses a service mesh API to register itself in the
mesh and is then integrated without a dedicated proxy. The entire cross-service
communication handled by proxies or otherwise integrated services is called the
Data Plane of the Service Mesh. Centralized services of the service mesh are
usually called the Control Plane (discussed below).

The Service Proxy option has the benefit to make it easier to protect the
service from malicious or overloaded traffic by achieving access control, TLS ter-
mination, rate limiting and quotas, circuit breaking, load balancing, and other
tasks; this is discussed in more depth in Sect. 4.5. Also, the independence of the
service from its proxy increases the extensibility and maintainability of the ser-
vice, which is, as a result, not aware of the network at large and only knows about
its local proxy. However, this option might produce additional communication
overheads and congestions. The major benefit of choosing an API-Based Service
Integration over a Service Proxy is that it makes the service mesh less complex
and there is less communication overhead. However, doing so limits its extensibil-
ity and interoperability. The option not to manage cross-service communication
basically means that all benefits of service mesh are not achievable.

An example realizing the API-Based Service Integration is Connect Proxy
used in Consul that is implemented using language-specific libraries that are
used directly in microservices code. Service Proxy and Sidecar Proxies are more
frequently supported; examples are Envoy Proxy [5] in the Istio Service Mesh
[11], Kong Proxy, NGINX Proxy and Linkerd Proxy. Most such service proxy
technologies can be deployed as a sidecar or a service proxy running in a different

Guiding Architectural Decision Making on Service Mesh 9

Managed Cross-Service Communication
: Decision

Service Endpoint
: Domain Class Service Proxy : Practice

Sidecar Proxy : PracticeContainer Orchestrator
: Pattern

Data Plane
: Design Solution / Domain

Class

API-Based Service Integration
: Practice

No managed cross-service communication
: Do Nothing

«Option»
{name = "use a

proxy per service"}

«Option»
{name = "use a
service mesh

API for service
integration

and communication
without

a proxy"}

«Option»
{name = "service
is not integrated

into service
mesh"}

«decide for all instances
of»

«Variant»«Uses»
sidecar container

runs alongside the service
container (in the same pod)

«Includes»«Includes»

Fig. 1. Managed cross service communication decision

environment (e.g., different server or VM); they usually also offer the option to
be used as a Front Proxy as discussed in the next section.

4.2 Managed Ingress Communication Decision

In addition to handling cross-service communication, service meshes often inter-
cept incoming traffic, usually called ingress traffic. The decision for managed
ingress communication is usually made for the Service Mesh as a whole. The
ingress traffic then needs to be routed to the containers orchestrated in the
mesh. Of course, we might choose not to manage ingress communication but
this is a risky and dangerous option since it might expose the service mesh to
malicious or overloaded traffic. This option may be adopted in case of a private
service mesh, but such meshes seem to be very rare. The typical design option
chosen is a Front Proxy which is used by the Control Plane to intercept ingress
traffic as shown in Fig. 2. An API Gateway [20], a common microservice pattern
with the goal to provide a common API for a number of services, can be real-
ized based on a Front Proxy of a service mesh. A Front Proxy can protect the
service mesh from malicious traffic. It can provide proxy tasks such as load bal-
ancing and multi-protocol support at the perimeter of the service mesh. Clients
are shielded from details about the inner workings of the service mesh and are
provided with an API at the client-needed granularity ; this reduces complexity
for clients. The additional proxy increases complexity for developers of the ser-
vice mesh. The performance of requests can be increased, as less roundtrips from
clients to services are needed, if the Front Proxy can retrieve data from multiple
services for one request from a client. However, the additional network hop for
accessing the Front Proxy decreases the performance. An example of this type of
proxy is the NGINX Ingress Controller. Most of the proxies from the previous
section can also be used as Front Proxies.

10 A. El Malki and U. Zdun

Managed Ingress Communication
: Decision

Service Mesh
: Design Solution / Domain

Class
Front Proxy : PracticeNo managed ingress communication

: Do Nothing

Control Plane
: Design Solution / Domain

Class
API Gateway : Pattern

«Option»
{name = "manage

ingress communication"}

«Option»
{name = "do not
manage ingress
communication"}

«decide for all instances
of» «Can Use» «Can be Realized With»

Fig. 2. Managed ingress communication decision

4.3 Traffic Control Decision

Communication in service meshes generates a lot of traffic and data that needs
to be controlled and captured e.g. to distribute access control and usage policies,
and observe and collect telemetry, traces and metrics. The traffic control decision
is usually made for the whole Service Mesh as illustrated in Fig. 3. There are
four traffic control options:

– Centralized Control Plane – A central component, called the Control Plane,
controls traffic of a service mesh. It is responsible of managing and configuring
sidecars in addition to distributing access control and usage policies, observing
and collecting telemetry, traces and metrics, in addition to numerous other
services like service discovery, as described in Sect. 4.5.

– Distributed Control Plane – Each service of a service mesh has its own cache
that is efficiently updated from the rest of the services. This helps to enforce
policies and collect telemetry at the edge.

– Front Proxy – The proxy is responsible for intercepting incoming traffic from
outside the service mesh as described in Sect. 4.2. It might also be extended
to handle traffic control at the entry point of the service mesh. This option
can potentially be combined with the two previous options (for that reasons,
the decision is marked with a stereotype that indicates that multiple answers
can be selected).

– Finally no dedicated traffic control can be used as well.

The most obvious benefit of using a Centralized Control Plane is its simplic-
ity and ease of administration. However, especially when using one single control
plane, it produces a single point of failure and is hard to scale. Also, it might
cause traffic congestion which increases latency. Centralized Control Planes pro-
vide policies to the Service Proxy on how to perform routing, load balancing and
access control. In that case, the next optional decision to take is related to service
mesh expansion. Istio service mesh, for example, which is based on Centralized
Control Plane supports service mesh expansion in a multi-cluster environment.
On the other hand, a Distributed Control Plane is highly scalable and there is
no single point of failure. However, this option is the most complex and thus
risky option. Using this option, traffic may be forwarded to either a Service

Guiding Architectural Decision Making on Service Mesh 11

«Multiple Answers»
Traffic Control

: Decision

: Do Nothing Distributed Control Plane
: Practice

Control Plane
: Design Solution / Domain

Class

Centralized Control Plane
: Practice Front Proxy : Practice

Service Proxy : Practice API-Based Service Integration
: Practice

Service Mesh Expansion
: Decision

Service Mesh
: Design Solution / Domain

Class

«Option»
{name = "Use a

distributed
control plane"}

«Option»
{name = "Use a

centralized
control plane"}

«Option»
{name = "Perform

traffic control
task on

the front proxy"}

«Option»
{name = "No traffic

control"}

«decide for all instances
of» «Uses»

forwards requests
to proxy

«Uses»
forwards requests

to service

«Optional Next»

«Can Use»«Variant» «Variant»

«Uses»
provides policies

on how to perform routing,
load balancing, and access

control

«Optional Next»

Fig. 3. Traffic control decision

Proxy or directly to a service via API-Based Service Integration as described
in Sect. 4.1. Consul for example, which implements Distributed Control Plane,
consists of a set of client agents that are efficiently updated from server agents
to control traffic at the edge. An example using Front Proxy, described in Source
S10 in Table 1, uses Envoy which can be extended to become an API Gateway,
which then can do traffic control for the service mesh by integrating with Istio.
The Front Proxy solution does not have the fine-grained control offered by the
other options, as it is only applied in a central place. It is also a single point
of failure and is negative for congestion and latency, but is a simple and non-
complex solution. If used together with one of the other options, it increases the
complexity of these options even further, but enables more fine-grained control
for the ingress traffic and thus can reduce the overall traffic in the mesh. These
options lead us to the next optional decision regarding distributing traffic control
and other tasks among Control Plane and Data Plane (see Sect. 4.5 for a list of
these follow-on decisions, not shown in Fig. 3 for brevity). Figure 3 shows these
decision options and their relations.

4.4 Service Mesh Expansion Decision

To scale and achieve redundancy, service meshes can be expanded and form
multi-clustered service meshes, leading to the selection of the option Multi-
Cluster Support in the decision illustrated in Fig. 4. The service mesh expansion
decision is made for the Service Mesh itself. Selecting Multi-Cluster Support
may result in higher complexity and increased network bandwidth need and cost.
The decision option Multi-Cluster Support is in its simple form just using one
Centralized Control Plane (see Sect. 4.3) that controls multiple service meshes.
The most obvious benefit of this option is its simplicity and ease of admin-
istration. However, it is creating a single point of failure and might produce
traffic bottlenecks which increase latency. Multi-Cluster Support has one variant

12 A. El Malki and U. Zdun

Service Mesh Expansion
: Decision

Service Mesh
: Design Solution / Domain

Class

Multi-Cluster Support
: Practice

Multi-Cluster Support with
Multiple Control Planes

: Practice

Multiple Control Planes
: Practice

Control Plane
: Design Solution / Domain

Class

: Do Nothing

«Option»
{name = "Yes"}«Option»

{name = "No"}

«decide for all instances
of»

«Variant» «Uses» «Variant»

Fig. 4. Service mesh expansion decision

Multi-Cluster Support with Multiple Control Planes with no single point of fail-
ure. This option variant uses Multiple Control Planes which is a variant of Control
Plane as shown in Fig. 4.

Istio Multicluster on Openshift, described in source S22 of Table 1, is an
example that implements Multi-Cluster Support using one Centralized Control
Plane. In this example, one cluster is hosting the Control Plane and the others
host the Data Plane as well as some parts of the Control Plane for distributing
certificates and Sidecar Proxy injection. Another example is NSX service mesh,
described in source S32 of Table 1, which is also based on Istio but implements
the variant Multi-Cluster Support with Multiple Control Planes by enabling a
local service mesh per Kubernetes cluster.

4.5 Central Services and Proxy Tasks

As explained above, the Control Plane and Data Plane provide numerous central
services and proxy tasks, and many of those are achieved jointly. The decisions
on central services and proxy tasks are usually made for the Service Mesh itself
but can in many cases be changed for individual services or service clusters from
the default configured for the service mesh. Proxy tasks generally can be imple-
mented on the Service Proxies or in some cases alternatively on a Front Proxy.
All solutions relying on a central service or on the Front Proxy are introducing
a single point of failure (not repeated per case below). The decisions, options,
and decision drivers for central services and proxy tasks are discussed below.
In addition, we have found evidence for decisions that are needed for the basic
functioning of the service mesh such as policy distribution, which we have not
included in our catalog, as the user does not have to make a decision about them.
Based on the services and tasks listed below we found evidence for many possi-
ble follow-on decisions such as support for rate limits, quotas, circuit breaking,
retries, timeouts, fault injection, dashboards, analytics, and so on. We did not
include those in our ADD model either, as the possible list of such higher-level
services is excessive and will likely grow over time.

Service Discovery Decision. In order to communicate in a service mesh, ser-
vices need to locate others based on information like IP address and port number.
Of course, this might be simply hard-coded in each of these services. If a service

Guiding Architectural Decision Making on Service Mesh 13

changes its address, fails or is unavailable for other reasons like congestion, then
it becomes not reachable anymore. Then, there is a huge problem since all ser-
vices code needs to be changed and the mesh needs to be restarted which impacts
negatively availability. To resolve this issue, the Control Plane and Data Plane
use service discovery system usually provided by platforms like Kubernetes for
example. An alternative is using a central Lookup service [24]. The distributed
service discovery option requires a consistency protocol and caching of discovery
information, i.e. it is more complex. However, the lookup is local, thus it offers
better performance. Without service discovery, the manageability, changeabiltiy,
and evolvability of the service mesh would severely suffer.

Load Balancing Decision. Service meshes, especially at scale, have to handle
tremendous traffic loads which might overload services, increase their latency
and decrease their availability. In order to avoid such a situation and maintain
scalability, services are replicated and load is distributed over these instances
by both the Control Plane and Data Plane using a load balancing algorithm.
Load balancing can also be based on geographical location, especially in the case
of service mesh expansion described in Sect. 4.4. If load balancing is used, the
typical option is Load balancing on the Service Proxies. An alternative which
offers balancing loads for the whole ingress traffic is Load balancing on the Front
Proxy; this option offers less fine grained control over the load balancing than
e.g. to balance per service cluster. Both solutions can also be combined, offering
the benefits of both solutions but also increasing the complexity.

Custom Routing Decisions. To manage cross-service and ingress communi-
cation, the Control Plane and Data Plane need to know where each packet should
be headed to or routed; routing is usually configured on the Control Plane and
enacted by the proxies on the Data Plane. In addition to such basic routing, the
service mesh often offers Custom Routing options which can be based on URL
path, host header, API version or other application-level rules for control over the
routing in the mesh. Such routing rules can be dynamically changed, increasing
the flexibility of the architecture. Custom routing can in follow-on decisions be
used for extra tasks, a prominent one is to support continuous experimentation
techniques such as staged rollouts, A/B testing and canary deployment (or not).
The latter can help for more controlled deployments to production, which helps
to minimize deployment risks.

Health Checking Decision. In highly versatile environment such as service
meshes, services go up and down unexpectedly which decreases availability. To
overcome this issue, periodic health checks on services can be applied and e.g.
mitigation strategies like service restarts can be applied. Health checks are usu-
ally performed by the service proxy and a central service collecting the informa-
tion. Alternatively, simple health checks like pinging service proxies can also be
done solely on the central service, but then more complex health checking is not
possible. Of course another decision option is to not perform health checks.

14 A. El Malki and U. Zdun

Security-Related Decisions. Communication in service meshes usually uses
encryption based generated keys and certificates; if not used, the service mesh
might be exposed to malicious traffic and manipulations, unless a key and cer-
tificate management service outside of the service mesh can or must be used. A
simple option is using API Keys [26] and local key management. The alternative
is to introduce a central certificate authority, residing in the Control Plane, that
takes care of storing and distributing security keys and certificates to the Data
Plane. This option is more secure than the other options and creates in large
installations less maintenance overhead for managing various API Keys in the
clients and service proxies, but it is also more complex than e.g. API Keys. Once
authentication is handled, authorization needs to be considered. This can be
achieved by setting up access control in the Control Plane or in the Data Plane.
If we choose not to control access after authentication, then services are exposed
to unintentional and unwanted modifications. Security is the most important
driver in this decision; a solution on the data plane supports more fine-grained
control but is more complex than a solution on the control plane. Using encryp-
tion in service meshes, usually based on mutual TLS, has to be handled at both
ends; not using encryption means security is endangered. There are three deci-
sion options for TLS Termination: either we offer TLS termination directly in
the service, at the Front Proxy, or – the most common option – in the Data
Plane. The first option brings boilerplate code to the service which might also
decrease its performance. The second option is only viable if the service mesh
is in a private environment in which internal unencrypted communication is an
option (or another encryption than the one used for communication with clients).

Collect Telemetry, Traces, and Metrics Decision. To observe telemetry,
traces and metrics in a service mesh, they first need to be collected. Otherwise,
we have to access each of the services and upload this data manually. This is
usually done by a control plane service collecting data from data plane proxies.
With few services, we can choose not to collect them centrally. At large scale, this
might make control and management tasks complex and central features such
as dashboard or metrics are hard to impossible to build. Some telemetry might
also be needed anyway for the functioning of the service mesh itself.

Multi-Protocol Support Decision. In heterogeneous environments like ser-
vice meshes, multi-protocol support is required. It helps to have a unified API
interface that can be used by services using different protocols, which increases
interoperability and extensibility of the service mesh. This can be offered by data
plane proxies or on the front proxy, where the latter option offers less fine-grained
support and is suitable if the mesh uses only one protocol inside. Of course, we
might choose not to use this API interface and relieve the service mesh from the
resulting processing overhead. Then, we need to add boilerplate code to services
to support different protocols or suffer from interoperability issues.

Guiding Architectural Decision Making on Service Mesh 15

5 Estimation of Uncertainty Reduction

There are many different kinds of uncertainties involved in making ADDs in a
field in which the architect’s experience is limited. The obvious contribution of
our ADD model is that it helps to reduce the uncertainty whether all relevant,
necessary and sufficient elements for making a correct decision have been found.
Another kind of uncertainty reduction is the uncertainty reduction our ADD
model provides compared to using the same knowledge, but in a completely
unorganized fashion. We want to estimate this kind of uncertainty reduction
here, following the approach described in detail in [26]. Here, we estimate the
uncertainty reduction only for each individual decision. Please note that in most
decisions combinations of options from different decisions need to be taken; but as
many decisions in our ADD model have different decision contexts, this can only
be calculated precisely for actual decisions made, not for the reusable decisions in
the ADD model. But a consequence is that the actually achievable uncertainty
reduction is much higher than the numbers below when decisions need to be
made in combination. We calculate each number both for using our ADD model
(denoted with ⊕ below) and not using our model (denoted with � below). Let
DEC denote the decisions in our ADD model. For each, d ∈ DEC there are a
number of decision options OPTd possible to choose for decision d. Finally, there
is a set of criteria CRId that need to be considered when making a decision d.

Number of Decisions Nodes (ndec): Our ADD model represents each decision
separately. So the number of decision nodes for a single decision d is always
ndec⊕

d = 1. Without our ADD model, each decision option in the design space
that is not Do Nothing is a possible decision node, and it can either be selected
or not: ndec�

d = |OPTd \ {Do Nothing}|. Please note that, if a design solution
has variants, OPTd contains the base variant plus each possible variant.

Number of Required Criteria Assessments in a Decision (ncri): Our ADD
model includes explicit decision criteria per decision and for all decisions
described above all criteria are pre-decided in the sense that we have assigned
a qualitative value {++, +, o, -, --} to it, represented in the range: very pos-
itive, positive, neutral, negative, and very negative. Thus the required criteria
assessments per decision are one assessment per decision, ncri⊕d = 1. Without
our ADD model, we need to assess each criterion for each decision node (as we
have no pre-decided choices): ncri�d = |CRId| × |ndec�

d |.
Number of Possible Decision Outcomes (ndo): Our ADD model already mod-

els each decision option separately in |OPTd| including Do Nothing options, so
ndo⊕

d usually equals |OPTd| unless the design space allows explicit combinations
of solutions as additional outcomes. For instance, in the decision on managed
ingress communication the API Gateway can be combined with the base variant
Front Proxy. Let the function solComb() return the set of possible solution com-
binations in the options of a decision; then ndo⊕

d = |OPTd| + |solComb(OPTd)|.
The same is true in principle for the decisions made without our ADD model,
but as the decision d is here split into multiple separate decision nodes ndec�

d

and without the ADD model no information on which combinations are possible

16 A. El Malki and U. Zdun

Table 2. Uncertainty reduction estimation

Decision ndec⊕ ndec� Imp. ncri⊕ ncri� Imp. ndo⊕ ndo� Imp.

Managed
cross-service
communication

1 3 66.67% 1 24 95.83% 4 8 50.00%

Managed ingress
communication

1 2 50.00% 1 16 93.75% 3 4 25.00%

Traffic control 1 5 80.00% 1 45 97.78% 6 32 81.25%

Service mesh
expansion

1 2 50.00% 1 16 93.75% 3 4 25.00%

Service discovery 1 2 50.00% 1 16 93.75% 3 4 25.00%

Load balancing 1 3 66.67% 1 21 95.24% 4 8 50.00%

Custom routing 2 4 50.00% 2 8 75.00% 6 10 40.00%

Health checks 1 2 50.00% 1 6 83.33% 3 4 25.00%

Security 3 7 57.24% 3 24 87.50% 10 16 37.50%

Telemetry 1 1 0.00% 1 4 75.00% 2 2 0.00%

Multi protocol
support

1 2 50.00% 1 16 93.75% 3 4 25.00%

Total 14 33 14 196 47 96

Average
improvement per
decision

49.76% 86.70% 32.59%

is present, we need to consider any possible combination in ndec�
d , i.e., the size

of the powerset of the decision nodes: ndo�
d = |P(ndec�

d)| = 2|ndec�
d |.

Table 2 shows the results of the uncertainty reduction estimation. It can be
seen that the number of decisions to be considered ndec can be in total reduced
from 33 to 14, with an average improvement of 49.76% when using our ADD
model. As all decisions have multiple criteria and when not using our ADD model
no decision are pre-decided, the improvement for criteria assessments is higher:
on average a 86.70% improvement is possible. Finally, the possible decision out-
comes is improved from 96 to 47, with an average 32.59% improvement.

6 Discussion and Threats to Validity

We have studied knowledge on established practices in service mesh archi-
tectures, relations among those practices, and decision drivers to answer our
research questions RQ1-3, respectively, with multiple iterations of open coding,
axial coding, and constant comparison to first codify the knowledge in informal
codes and then in a reusable ADD model. Precise impacts on decision drivers
of design solutions and their combinations were documented as well; for space
reasons we only summarized those in the text and did not show them in detailed
tables. In addition, we estimated in Sect. 5 the uncertainty reduction achievable

Guiding Architectural Decision Making on Service Mesh 17

through the organization of knowledge in our ADD model. We may conclude that
our ADD model (and similar models) has the potential to lead to substantial
uncertainty reduction in all evaluation variables due to the additional organiza-
tion it provides and pre-selections it makes. For individual decisions, mastering
and keeping in short term memory the necessary knowledge for design decision
making seems very hard for the case without the ADD model (see numbers in
Table 2), but quite feasible in case of our ADD model. Our model also helps to
maintain an overview of the decisions ndec⊕ and criteria assessments ncri⊕ in
the combinations of contexts. Only the number of possible decision outcomes for
the combination of multiple decisions seem challenging to handle, both in the
ndo⊕ and ndo� case. That is, despite all benefits of our approach, the uncer-
tainty estimations show that a limitation of the approach is that when multiple
decisions need to be combined in a context, maintaining an overview of pos-
sible outcomes and their impacts remains a challenge – even if a substantial
uncertainty reduction and guidance is provided as in our ADD model. Further
research and tool support is needed to address this challenge. As our numbers
are only rough estimates, further research is needed to harden them and confirm
them in empirical studies, maybe based on a theory developed based on such
preliminary estimations.

While we believe generalizability of our results beyond the knowledge sources
we have studied is possible to a large extent, our results are limited to those
sources and to a lesser extent to very similar service mesh architectures. Most
of the sources were public Web sources; there might be inhouse practices not
reported to the public by practitioners not covered here. Some of the sources
were from the technology vendors, which might have introduced bias; but this is
mitigated to a certain extent as we considered sources from most major service
mesh vendors. Our results are only valid in our set scope; we do not claim
any form of completeness. Possible misinterpretations or biases of the author
team cannot be fully excluded and might have influenced our results. We aimed
to mitigate this threat by our own in-depth experience and by carefully cross-
checking among the sources in many iterations.

7 Conclusions

We have performed in this paper a qualitative study in which we have studied
service mesh established practices and proposed a formally defined ADD model.
In total based on our findings, we modeled 14 architectural design decisions
with 47 decision outcomes and 77 decision drivers. In our uncertainty reduction
estimations we were able to indicate that the knowledge organization in our ADD
model can lead to a significant reduction of uncertainty. We plan in our future
work to combine our ADD model with other aspects of microservice design and
DevOps practices, and empirically validate a theory based on the preliminary
uncertainty reduction estimations. We also plan to validate our ADD model
using real life case studies with field practitioners.

18 A. El Malki and U. Zdun

Acknowledgments. This work was supported by: FFG (Austrian Research Promo-
tion Agency) project DECO, no. 846707; FWF (Austrian Science Fund) project ADD-
Compliance: I 2885-N33.

References

1. Baresi, L., Garriga, M., De Renzis, A.: Microservices identification through inter-
face analysis. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017.
LNCS, vol. 10465, pp. 19–33. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-67262-5 2

2. Charmaz, K.: Constructing Ground Theory. Sage, Thousand Oaks (2014)
3. Coplien, J.: Software Patterns: Management Briefings. SIGS Books & Multimedia,

New York (1996)
4. Eismann, S., et al.: A micro-service reference application for cloud researchers.

In: 2018 IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion), pp. 11–12. IEEE (2018)

5. Envoy: Envoy is an open source edge and service proxy, designed for cloud-native
applications. https://www.envoyproxy.io/

6. Glaser, B.G., Leonard Strauss, A.: The Discovery of Grounded Theory: Strategies
for Qualitative Research, vol. 3. Aldine de Gruyter, Chicago (1967)

7. Gorton, I., Klein, J., Nurgaliev, A.: Architecture knowledge for evaluating scalable
databases. In: Proceedings of the 12th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2015), pp. 95–104 (2015)

8. Gupta, A.: Microservice design patterns (2017). http://blog.arungupta.me/
microservice-design-patterns/

9. Haselböck, S., Weinreich, R., Buchgeher, G.: Decision guidance models for
microservices: service discovery and fault tolerance. In: Proceedings of the Fifth
European Conference on the Engineering of Computer-Based Systems. ACM, New
York (2017)

10. Hasselbring, W., Steinacker, G.: Microservice architectures for scalability, agility
and reliability in e-commerce. In: 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), pp. 243–246. IEEE (2017)

11. Istio: What is Istio? https://istio.io/docs/concepts/what-is-istio/
12. Jamshidi, P., Pahl, C., Mendonça, N.C., Lewis, J., Tilkov, S.: Microservices: the

journey so far and challenges ahead. IEEE Softw. 35(3), 24–35 (2018)
13. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term,

March 2004. http://martinfowler.com/articles/microservices.html
14. Lytra, I., Sobernig, S., Zdun, U.: Architectural decision making for service-

based platform integration: a qualitative multi-method study. In: Proceedings of
WICSA/ECSA, pp. 111–120 (2012)

15. Morgan, W.: The history of the service mesh. https://thenewstack.io/history-
service-mesh/

16. Morgan, W.: What’s a service mesh? and why do i need one? (4 2017). https://
blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/

17. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly,
Sebastopol (2015)

18. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: 6th Inter-
national Conference on Cloud Computing and Services Science, Rome, Italy, pp.
137–146 (2016)

https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1007/978-3-319-67262-5_2
https://www.envoyproxy.io/
http://blog.arungupta.me/microservice-design-patterns/
http://blog.arungupta.me/microservice-design-patterns/
https://istio.io/docs/concepts/what-is-istio/
http://martinfowler.com/articles/microservices.html
https://thenewstack.io/history-service-mesh/
https://thenewstack.io/history-service-mesh/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/

Guiding Architectural Decision Making on Service Mesh 19

19. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful web services vs. big web
services: making the right architectural decision. In: Proceedings of the 17th World
Wide Web Conference (WWW), pp. 805–814, April (2008)

20. Richardson, C.: A pattern language for microservices (2017). http://microservices.
io/patterns/index.html

21. Selimi, M., Cerdà-Alabern, L., Sánchez-Artigas, M., Freitag, F., Veiga, L.: Prac-
tical service placement approach for microservices architecture. In: IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. IEEE (2017)

22. Smith, F.: What is a service mesh? April 2018. https://www.nginx.com/blog/
what-is-a-service-mesh/

23. Truong, H.L., Gao, L., Hammerer, M.: Service architectures and dynamic solutions
for interoperability of IoT, network functions and cloud resources. In: 12th Euro-
pean Conference on Software Architecture: Companion Proceedings, p. 2. ACM
(2018)

24. Voelter, M., Kircher, M., Zdun, U.: Remoting Patterns - Foundations of Enterprise,
Internet, and Realtime Distributed Object Middleware. Wiley, Hoboken (2004)

25. Zdun, U., Navarro, E., Leymann, F.: Ensuring and assessing architecture confor-
mance to microservice decomposition patterns. In: Maximilien, M., Vallecillo, A.,
Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 411–429. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 29

26. Zdun, U., Stocker, M., Zimmermann, O., Pautasso, C., Lübke, D.: Guiding archi-
tectural decision making on quality aspects in microservice APIs. In: Pahl, C.,
Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 73–89.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9 5

27. Zheng, T., et al.: SmartVM: a SLA-aware microservice deployment framework.
World Wide Web 22(1), 275–293 (2019). https://doi.org/10.1007/s11280-018-
0562-5

28. Zimmermann, O.: Microservices tenets. Comput. Sci. - Res. Dev. 32(3), 301–310
(2017)

29. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing
architectural decision models with dependency relations, integrity constraints, and
production rules. J. Syst. Softw. 82(8), 1249–1267 (2009)

http://microservices.io/patterns/index.html
http://microservices.io/patterns/index.html
https://www.nginx.com/blog/what-is-a-service-mesh/
https://www.nginx.com/blog/what-is-a-service-mesh/
https://doi.org/10.1007/978-3-319-69035-3_29
https://doi.org/10.1007/978-3-030-03596-9_5
https://doi.org/10.1007/s11280-018-0562-5
https://doi.org/10.1007/s11280-018-0562-5

Supporting Architectural Decision
Making on Data Management in

Microservice Architectures

Evangelos Ntentos1(B), Uwe Zdun1, Konstantinos Plakidas1, Daniel Schall2,
Fei Li2, and Sebastian Meixner2

1 Faculty of Computer Science, Research Group Software Architecture,
University of Vienna, Vienna, Austria

{evangelos.ntentos,uwe.zdun,konstantinos.plakidas}@univie.ac.at
2 Siemens Corporate Technology, Vienna, Austria

{daniel.schall,fei.li,sebastian.meixner}@siemens.com

Abstract. Today many service-based systems follow the microservice
architecture style. As microservices are used to build distributed sys-
tems and promote architecture properties such as independent service
development, polyglot technology stacks including polyglot persistence,
and loosely coupled dependencies, architecting data management is cru-
cial in most microservice architectures. Many patterns and practices for
microservice data management architectures have been proposed, but
are today mainly informally discussed in the so-called “grey literature”:
practitioner blogs, experience reports, and system documentations. As a
result, the architectural knowledge is scattered across many knowledge
sources that are usually based on personal experiences, inconsistent, and,
when studied on their own, incomplete. In this paper we report on a qual-
itative, in-depth study of 35 practitioner descriptions of best practices
and patterns on microservice data management architectures. Following
a model-based qualitative research method, we derived a formal archi-
tecture decision model containing 325 elements and relations. Compar-
ing the completeness of our model with an existing pattern catalog, we
conclude that our architectural decision model substantially reduces the
effort needed to sufficiently understand microservice data management
decisions, as well as the uncertainty in the design process.

1 Introduction

Microservice architectures [14,20] have emerged from established practices in
service-oriented computing (cf. [15,18,21]). The microservices approach empha-
sizes business capability-based and domain-driven design, development in inde-
pendent teams, cloud-native technologies and architectures, polyglot technology
stacks including polyglot persistence, lightweight containers, loosely coupled ser-
vice dependencies, and continuous delivery (cf. [12,14,20]). Some of these tenets
introduce substantial challenges for the data management architecture. Notably,

c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 20–36, 2019.
https://doi.org/10.1007/978-3-030-29983-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-29983-5_2

Data Management in Microservice Architectures 21

it is usually advised to decentralize all data management concerns. Such an archi-
tecture requires, in addition to the already existing non-trivial design challenges
intrinsic in distributed systems, sophisticated solutions for data integrity, data
querying, transaction management, and consistency management [14,15,18,20].

Many authors have written about microservice data management and var-
ious attempts to document microservice patterns and best practices exist
[8,12,15,18]. Nevertheless, most of the established practices in industry are only
reported in the so-called “grey literature”, consisting of practitioner blogs, expe-
rience reports, system documentations, etc. In most cases, each of these sources
documents a few existing practices well, but usually they do not provide system-
atic architectural guidance. Instead the reported practices are largely based on
personal experience, often inconsistent, and, when studied on their own, incom-
plete. This creates considerable uncertainty and risk in architecting microservice
data management, which can be reduced either through substantial personal
experience or by a careful study of a large set of knowledge sources. Our aim is
to complement such knowledge sources with an unbiased, consistent, and more
complete view of the current industrial practices than readily available today.

To reach this goal, we have performed a qualitative, in-depth study of
35 microservice data practice descriptions by practitioners containing informal
descriptions of established practices and patterns in this field. We have based our
study on the model-based qualitative research method described in [19]. It uses
such practitioner sources as rather unbiased (from our perspective) knowledge
sources and systematically codes them through established coding and constant
comparison methods [6], combined with precise software modeling, in order to
develop a rigorously specified software model of established practices, patterns,
and their relations. This paper aims to study the following research questions:

– RQ1. What are the patterns and practices currently used by practitioners
for supporting data management in a microservice architecture?

– RQ2. How are the current microservice data management patterns and prac-
tices related? In particular, which architectural design decisions (ADDs) are
relevant when architecting microservice data management?

– RQ3. What are the influencing factors (i.e., decision drivers) in architecting
microservice data management in the eye of the practitioner today?

This paper makes three major contributions. First, we gathered knowledge
about established industrial practices and patterns, their relations, and their
decision drivers in the form of a qualitative study on microservice data manage-
ment architectures, which included 35 knowledge sources in total. Our second
contribution is the codification of this knowledge in form of a reusable architec-
tural design decision (ADD) model in which we formally modeled the decisions
based on a UML2 meta-model. In total we documented 9 decisions with 30 deci-
sion options and 34 decision drivers. Finally, we evaluated the level of detail and
completeness of our model to support our claim that the chosen research method
leads to a more complete treatment of the established practices than methods
like informal pattern mining. For this we compared to the by far most complete

22 E. Ntentos et al.

of our pool of sources, the microservices.io patterns catalog [18], and are able
to show that our ADD model captures 210% more elements and relations.

The remainder of this paper is organized as follows: In Sect. 2 we compare
to the related work. Section 3 explains the research methods we have applied
in our study and summarizes the knowledge sources. Section 4 describes our
reusable ADD model on microservice data management. Section 5 compares our
study with microservices.io in terms of completeness. Finally, Sect. 6 discusses
the threats to validity of our study and Sect. 7 summarizes our findings.

2 Related Work

A number of approaches that study microservice patterns and best practices
exist: The microservices.io collection by Richardson [18] addresses microservice
design and architecture practices. As the work contains a category on data man-
agement, many of them are included in our study. Another set of patterns on
microservice architecture structures has been published by Gupta [8], but those
are not focused on data management. Microservice best practices are discussed
in [12], and similar approaches are summarized in a recent mapping study [15].
So far, none of those approaches has been combined with a formal model; our
ADD model complements these works in this sense.

Decision documentation models that promise to improve the situation exist
(e.g. for service-oriented solutions [21], service-based platform integration [13],
REST vs. SOAP [16], and big data repositories [7]). However, this kind of
research does not yet encompass microservice architectures, apart from our own
prior study on microservice API quality [19]. The model developed in our study
can be classified as a reusable ADD model, which can provide guidance on the
application of patterns [21]. Other authors have combined decision models with
formal view models [9]. We apply such techniques in our work, but also extend
them with a formal modeling approach based on a qualitative research method.

3 Research Method and Modelling Tool

Research Method. This paper aims to systematically study the established
practices in the field of architecting data management in microservice architec-
tures. We follow the model-based qualitative research method described in [19].
It is based on the established Grounded Theory (GT) [6] qualitative research
method, in combination with methods for studying established practices like
pattern mining (see e.g. [4]) and their combination with GT [10]. The method
uses descriptions of established practices from the authors’ own experiences as a
starting point to search for a limited number of well-fitting, technically detailed
sources from the so-called “grey literature” (e.g., practitioner reports, system
documentations, practitioner blogs, etc.). These sources are then used as unbi-
ased descriptions of established practices in the further analysis. Like GT, the
method studies each knowledge source in depth. It also follows a similar coding

Data Management in Microservice Architectures 23

process, as well as a constant comparison procedure to derive a model. In con-
trast to classic GT, the research begins with an initial research question, as in
Charmaz’s constructivist GT [3]. Whereas GT typically uses textual analysis,
the method uses textual codes only initially and then transfers them into formal
software models (hence it is model-based).

The knowledge-mining procedure is applied in many iterations: we searched
for new knowledge sources, applied open and axial coding [6] to identify candi-
date categories for model elements and decision drivers, and continuously com-
pared the new codes with the model designed so far to incrementally improve
it. A crucial question in qualitative methods is when to stop this process. The-
oretical saturation [6] has attained widespread acceptance for this purpose. We
stopped our analysis when 10 additional knowledge sources did not add any-
thing new to our understanding of the research topic. While this is a rather
conservative operationalisation of theoretical saturation (i.e., most qualitative
research saturates with far fewer knowledge sources that add nothing new), our
study converged already after 25 knowledge sources. The sources included in the
study are summarized in Table 1. Our search for sources was based on our own
experience, i.e., tools, methods, patterns and practices we have access to, worked
with, or studied before. We also used major search engines (e.g., Google, Bing)
and topic portals (e.g., InfoQ) to find more sources.

Modelling Tool Implementation. To create our decision model, we used our
existing modeling tool CodeableModels1, a Python implementation for precisely
specifying meta-models, models, and model instances in code. Based on Code-
ableModels, we specified meta-models for components, activities, deployments
and microservice-specific extensions of those, as outlined above. In addition, we
realized automated constraint checkers and PlantUML code generators to gen-
erate graphical visualizations of all meta-models and models.

4 Reusable ADD Model for Data Management in
Microservice Architectures

In this section, we describe the reusable ADD model derived from our study2.
All elements of the model are emphasized and all decision drivers derived from
our sources in Table 1 are slanted. It contains one decision category, Data Man-
agement Category, relating five top-level decisions, as illustrated in Fig. 1. These
decisions need to be taken for the decision contexts all instances of an API,
Service instances, or the combination of Data Objects and Service instances,
respectively. Note that all elements of our model are instances of a meta-model
(with meta-classes such as Decision, Category, Pattern, AND Combined Group,
etc.), which appear in the model descriptions. Each of them is described in detail
below (some elements may be relevant for more than one decision, but this has
been omitted from the figures for ease of presentation).

1 https://github.com/uzdun/CodeableModels.
2 Replication package can be found at: https://bit.ly/2EKyTnL.

https://github.com/uzdun/CodeableModels
https://bit.ly/2EKyTnL

24 E. Ntentos et al.

Table 1. Knowledge sources included in the study

Name Description Reference

S1b Intro to microservices: dependencies and data sharing https://bit.ly/2YTnolQ

S2a Pattern: shared database https://bit.ly/30L1PW2

S3d Enterprise integration patterns https://bit.ly/2Wr1OHC

S4b Design patterns for microservices https://bit.ly/2EBmIcQ

S5b 6 data management patterns for microservices https://bit.ly/2K3YMTb

S6a Pattern: database per service https://bit.ly/2EDDici

S7b Transaction management in microservices https://bit.ly/2XSKhWL

S8b A guide to transactions across microservices https://bit.ly/2WpQN9j

S9b Saga pattern – how to implement business transactions

using microservices

https://bit.ly/2WpRBuR

S10b Saga pattern and microservices architecture https://bit.ly/2HF6G3G

S11b Patterns for distributed transactions within a

microservices architecture

https://bit.ly/2QqZgUx

S12b Data consistency in microservices architecture https://bit.ly/2K5G79y

S13b Event-driven data management for microservices https://bit.ly/2WlSKUs

S14a Pattern: Saga https://bit.ly/2WpS549

S15b Managing data in microservices https://bit.ly/2HYIvvY

S16b Event sourcing, event logging – an essential microservice

pattern

https://bit.ly/2QusIcb

S17a Pattern: event sourcing https://bit.ly/2K62TOn

S18b Microservices with CQRS and event sourcing https://bit.ly/2JK2IZQ

S19b Microservices communication: how to share data

between microservices

https://bit.ly/2HCR94u

S20b Building microservices: inter-process communication in a

microservices architecture

https://bit.ly/30OVB7U

S21a Pattern: command query responsibility segregation

(CQRS)

https://bit.ly/2X80LcM

S22c Data considerations for microservices https://bit.ly/2WrLeav

S23b Preventing tight data coupling between microservices https://bit.ly/2WptQmJ

S24c Challenges and solutions for distributed data

management

https://bit.ly/2wp5YkO

S25c Communication in a microservice architecture https://bit.ly/2X7UDkT

S26b Microservices: asynchronous request response pattern https://bit.ly/2WjAFqb

S27b Patterns for microservices—sync vs. async https://bit.ly/2Ezhsqg

S28b Building microservices: using an API gateway https://bit.ly/2EA3AfA

S29b Microservice architecture: API gateway considerations https://bit.ly/2YUKWqr

S30a Pattern: API composition https://bit.ly/2WlVqS0

S31a Pattern: backends for frontends https://bit.ly/2X9I3kQ

S32c Command and query responsibility segregation (CQRS)

pattern

https://bit.ly/2wltdMq

S33b Introduction to CQRS https://bit.ly/2HY0sLm

S34b CQRS https://bit.ly/2JKI2Rz

S35b Publisher-subscriber pattern https://bit.ly/2JGtqCx

aDenotes a source taken from microservices.io
bPractitioner blog
cMicrosoft technical guide
dBook chapter

https://bit.ly/2YTnolQ
https://bit.ly/30L1PW2
https://bit.ly/2Wr1OHC
https://bit.ly/2EBmIcQ
https://bit.ly/2K3YMTb
https://bit.ly/2EDDici
https://bit.ly/2XSKhWL
https://bit.ly/2WpQN9j
https://bit.ly/2WpRBuR
https://bit.ly/2HF6G3G
https://bit.ly/2QqZgUx
https://bit.ly/2K5G79y
https://bit.ly/2WlSKUs
https://bit.ly/2WpS549
https://bit.ly/2HYIvvY
https://bit.ly/2QusIcb
https://bit.ly/2K62TOn
https://bit.ly/2JK2IZQ
https://bit.ly/2HCR94u
https://bit.ly/30OVB7U
https://bit.ly/2X80LcM
https://bit.ly/2WrLeav
https://bit.ly/2WptQmJ
https://bit.ly/2wp5YkO
https://bit.ly/2X7UDkT
https://bit.ly/2WjAFqb
https://bit.ly/2Ezhsqg
https://bit.ly/2EA3AfA
https://bit.ly/2YUKWqr
https://bit.ly/2WlVqS0
https://bit.ly/2X9I3kQ
https://bit.ly/2wltdMq
https://bit.ly/2HY0sLm
https://bit.ly/2JKI2Rz
https://bit.ly/2JGtqCx

Data Management in Microservice Architectures 25

Fig. 1. Reusable ADD model on microservice data management: overview

Microservice Database Architecture (Fig. 2). Since most software relies on
efficient data management, database architecture is a central decision in the
design of a microservice architecture. Quality attributes such as performance,
reliability, coupling, and scalability, need to be carefully considered in the deci-
sion making process. The simplest decision option is to choose service stores
no persistent data, which is applicable only for services whose functions are
performed solely on transient data, like pure calculations or simple routing func-
tions. By definition, a microservice should be autonomous, loosely coupled and
able to be developed, deployed, and scaled independently [12]. This is ensured by
the Database per Service pattern [18], which we encountered, either directly or
implicitly, in 33 out of 35 sources: each microservice manages its own data, and
data exchange and communications with other services are realized only through
a set of well-defined APIs. When choosing this option, transaction management
between services becomes more difficult, as the data is distributed across the
services; for the same reason making queries could become a challenge, too.
Thus the optional next decisions on Microservice Transaction Management (see
sources [S7, S8, S11]) and Realization of Queries [18] should be considered (both
explained below). The use of this pattern may also require a next decision on the
Need for Data Composition, Transformation, or Management. Another option,
which is recommended only for special cases (e.g., when a group of services always
needed to share a data object), is to use a Shared Database [18] (see sources [S1,
S19]): all involved services persist data in one and the same database.

There are a number of criteria that determine the outcome of this deci-
sion. Applying the Database per Service pattern in a system results in more
loosely coupled microservices. This leads to better scalability than a Shared
Database closer to the service with only transient data, since microservices can
scale up individually. Especially for low loads this can reduce performance, as
additional distributed calls are needed to get data from other services and estab-
lish data consistency. The pattern’s impact on performance is not always neg-
ative: for high loads a Shared Database can become a bottleneck, or database

26 E. Ntentos et al.

replication is needed. On the other hand, Shared Database makes it easier to man-
age transactions and implement queries and joins; hence the follow-on decisions
for Database per Service mentioned above. Furthermore, Database per Service
facilitates polyglot persistence. The Shared Database option could be viable only
if the integration complexity or related challenges of Database per Service-based
services become too difficult to handle; also, operating a single Shared Database
is simpler. Though Shared Database ensures data consistency (since any changes
to the data made in a single service are made available to all services at the time
of the database commit), it would appear to completely eliminate the targeted
benefits of loose coupling. This negatively affects both the development and
runtime coupling and the potential scalability.

Fig. 2. Microservice database architecture decision

Structure of API Presented to Clients (Fig. 3). When software is decom-
posed into microservices, many major challenges lie in the structure of the API.
This topic has been extensively studied in our prior and ongoing work on API
patterns [19]; here we concentrate only on those decision options relevant to
data management. Many issues in microservice design are resolved at the API
level, such as routing requests to the appropriate microservice, the distribution of
multiple services, and the aggregation of results. The simplest option for struc-
turing a system is Clients Access Microservices Directly : all microservices are
entry points of the system, and clients can directly request the service they need
(each service offers its own API endpoint to clients). However, all studied sources

Data Management in Microservice Architectures 27

recommend or assume the use of the API Gateway pattern [18] as a common
entry point for the system, through which all requests are routed. An alternative
solution, for servicing different types of clients (e.g., mobile vs. desktop clients)
is the Backends for Frontends pattern variant [18], which offers a fine-grained
API for each specific type of client. An API Gateway could also be realized as
an API Composition Service [18], that is a service which invokes other microser-
vices. Furthermore an API Gateway can have Additional centralized data-related
functions (shown in Fig. 3 and discussed below as decision drivers).

The main driver affecting this decision is that API Gateways (and thus API
Composition Service and Backends for Frontends in a more limited capacity)
can provide a number of centralized services. They can work as a proxy service
to route requests to the appropriate microservice, convert or transform requests
or data and deliver the data at the granularity needed by the client, and provide
the API abstractions for the data needed by the client. In addition, they can
handle access management to data (i.e., authentication/authorization), serve as
a data cache, and handle partial failures, e.g. by returning default or cached
data. Although its presence increases the overall complexity of the architecture
since an additional service needs to be developed and deployed, and increases
response time due to the additional network passes through it, an API Gateway
is generally considered as an optimal solution in a microservice-based system.
Clients Access Microservices Directly makes it difficult to realize such centralized
functions. A sidecar architecture [1] might be a possible solution, but if the
service should fail, many functions are impeded, e.g. caching or handling partial
failures. The same problem of centralized coordination also applies to a lesser
extent to Backends for Frontends (centralization in each API Gateway is still
possible). Use API Gateway to cache data reduces the response time, returning
cached data faster, and increases data availability: if a service related to specific
data is unavailable, it can return its cached data.

Data Sharing Between Microservices (Fig. 4). Data sharing must be con-
sidered for each data object that is shared between at least two microservices.
Before deciding how to share data, it is essential to identify the information to
be shared, its update frequency, and the primary provider of the data. The deci-
sion must ensure that sharing data does not result in tightly coupled services.
The simplest option is to choose services share no data, which is theoretically
optimal in ensuring loose coupling, but is only applicable for rather indepen-
dent services or those that require only transient data. Another option, already
discussed above, is a Shared Database. In this solution services share a common
database; a service publishes its data, and other services can consume it when
required. A number of viable alternatives to the Shared Database exist. Syn-
chronous Invocations-Based Data Exchange is a simple option for sharing data
between microservices. Request-Response Communication [11] is a data exchange
pattern in which a service sends a request to another service which receives and
processes it, ultimately returning a response message. Another typical solution
that is well suited to achieving loose coupling is to use Asynchronous Invocations-
Based Data Exchange. Unlike Request-Response Communication, it removes the

28 E. Ntentos et al.

Fig. 3. Structure of API presented to clients decision

need to wait for a response, thereby decoupling the execution of the communicat-
ing services. Implementation of asynchronous communication leads to Eventual
Consistency [17]. There are several possible Asynchronous Data Exchange Mech-
anisms: Publish/Subscribe [11], in which services can subscribe to an event; use
of a Messaging [11] middleware; Data Polling, in which services periodically poll
for data changes in other services; and the Event Sourcing [18] pattern that
ensures that all changes to application state are stored as a sequence of events.

The choices in this decision are determined by a number of factors. With
a Shared Database, the system tends to be more tightly coupled and less scal-
able. Conversely, an Asynchronous Data Exchange Mechanism ensures that the
services are more loosely coupled, since they interact mostly via events, use
message buffering for queuing requests until processed by the consumer, sup-
port flexible client–service interactions, or provide an explicit inter-process com-
munication mechanism. It has minimal impact on quality attributes related to
network interactions, such as latency and performance. However, operational
complexity is negatively impacted, since an additional service must be con-
figured and operated. On the other hand, a Request-Response Communication

Data Management in Microservice Architectures 29

mechanism does not require a broker, resulting in a less complex system archi-
tecture. Despite this, in a Request-Response Communication-based system, the
communicating services are more tightly coupled and the communication is less
reliable, as they must both be running until the exchange is completed. Apply-
ing the Event Sourcing pattern increases reliability, since events are published
whenever state changes, and the system is more loosely coupled. Patterns sup-
porting message persistence such as Messaging, Event Sourcing, and messaging-
based Publish/Subscribe increase the reliability of message transfers and thus
the availability of the system.

Fig. 4. Data sharing between microservices decision

Microservice Transaction Management (Fig. 5). One common problem in
microservice-based systems is how to manage distributed transactions across
multiple services. As explained above, the Database per Service pattern often
introduces this need, as the relevant data objects of a transaction are scat-
tered across different services and their databases. Issues concerning transaction
atomicity and isolation of user actions for concurrent requests need to be dealt
with. One of the easiest and most efficient options to solve the problem of dis-
tributed transactions is to completely avoid them. This can be done through
a Shared Database (with all its drawbacks in a microservice architecture) or
by service redesign so that all data objects of the transaction reside in one

30 E. Ntentos et al.

microservice. If this is not possible, another option is to apply the Saga Trans-
action Management [18] pattern, where each transaction updates data within
a single service, in a sequence of local transactions [S9]; every step is triggered
only if the previous one has been completed. The implementation requires an
additional decision for the Saga Coordination Architecture. There are two pos-
sible options for implementing this pattern: Event/Choreography Coordination
and Command/Orchestration Coordination [S9]. Event/Choreography Coordina-
tion is a distributed coordination approach where a service produces and pub-
lishes events, that are listened to by other services which then decide their next
action. Command/Orchestration Coordination is a centralized approach where
a dedicated service informs other involved services, through a command/reply
mechanism, what operation should be performed. Moreover, Saga Transaction
Management supports failure analysis and handling using Event Log and Com-
pensation Action practices [S12]. Implementing this pattern leads also to Even-
tual Consistency. Another typical option for implementing a transaction across
different services is to apply the Two-Phase Commit Protocol [2] pattern: in
the first phase, services which are part of the transaction prepare for commit
and notify the coordinator that they are ready to complete the transaction; in
the second phase, the transaction coordinator issues a commit or a rollback to
all involved microservices. Here, the Rollback [S7] practice is used for handling
failed transactions.

There are a number of criteria that need to be considered in this deci-
sion. When implementing the Saga Transaction Management pattern, the
Event/Choreography Coordination option results in a more loosely coupled sys-
tem where the services are more independent and scalable, as they have no direct
knowledge of each other. On the other hand, the Command/Orchestration Coor-
dination option has its own advantages: it avoids cyclic dependencies between
services, centralizes the orchestration of the distributed transaction, reduces the
participants’ complexity, and makes rollbacks easier to manage. The Two-Phase
Commit Protocol pattern is not a typical solution for managing distributed trans-
actions in microservices, but it provides a strong consistency protocol, guaran-
tees atomicity of transactions, and allows read-write isolation. However, it can
significantly impair system performance in high load scenarios.

Realization of Queries (Fig. 6). For every data object and data object com-
bination in a microservice-based system, and its services, it must be consid-
ered whether queries are needed. As data objects may reside in different ser-
vices, e.g., as a consequence of applying Database per Service, queries may be
more difficult to design and implement than when utilizing a single data source.
The simplest option is of course to implement no queries in the system, but
this is often not realistic. An efficient option for managing queries is to apply
the Command-Query-Responsibility-Segregation (CQRS) pattern [5]. CQRS is
a process of separation between read and write operations into a “command”
and a “query” side. The “command” side manages the “create”, “update” and
“delete” operations; the “query” side segregates the operations that read data
from the “update” operation utilizing separated interfaces. This is very efficient if

Data Management in Microservice Architectures 31

Fig. 5. Microservice transaction management decision

multiple operations are performed in parallel on the same data. The other option
is to implement queries in a API Composition Service or in the API Gateway.

A number of criteria determine the outcome of this decision. The Command-
Query-Responsibility-Segregation (CQRS) option increases scalability since it
supports independent horizontal and vertical scaling, improves security since
the read and write responsibilities are separated. It also increases availability :
when the “command” side is down the last data update remains available on
the “query” side. Despite these benefits, using CQRS has some drawbacks: it
adds significant complexity, and is not suitable to every system. On the other
hand, implementing queries in an API Composition Service or API Gateway
introduces an overhead and decreases performance, entails the risk of reduced
availability, and makes it more difficult to ensure transactional data consistency.

5 Evaluation

We used our model-based qualitative research method described in Sect. 3
because informal pattern mining, or just reporting the author’s own experi-
ence in a field (which is the foundation of most of the practitioner sources we
encountered), entail the high risk of missing important knowledge elements or
relations between them. To evaluate the effect of our method, we measure the
improvement yielded by our study compared to the individual sources; specifi-
cally microservices.io [18], the by far most complete and detailed of our sources.
This is an informally collected pattern catalog based on the author’s experi-
ence and pattern mining. As such, it is a work with similar aims to this study.

32 E. Ntentos et al.

Fig. 6. Realization of queries decision

Of course, our formal model offers the knowledge in a much more systematically
structured fashion; whereas in the microservices.io texts the knowledge is often
scattered throughout the text, requiring careful study of the entire text to find
a particular piece of knowledge. For this reason, we believe the formal ADD
model to be a useful complement to this type of sources, even if the two contain
identical information.

For evaluation of our results, we studied the microservices.io texts in detail
a second time after completing the initial run of our study, to compare which
of the model elements and relations we found are also covered by microser-
vices.io. Some parts of this comparison might be unfair in the sense that the
microservices.io author does not present a decision model and covers the topic
in a broad manner, so that some elements or relations may have been excluded
on purpose. In addition, there may be some differences in granularity between
microservices.io and our model, but we tried to maintain consistency with the
granularity in the analysis and coding during the GT process. Considering the
relatively high similarity of those microservices.io parts that overlap with the
results of our study, and the general goal of pattern mining of representing the
current practice in a field correctly and completely, we nevertheless believe that
our assumption that the two studies are comparable is not totally off.

Table 2 shows the comparison for all element and relation types in our model.
Only 105 of the 325 elements and relations in our model are contained in
microservices.io: a 210% improvement in completeness has resulted from system-
atically studying and formally modeling the knowledge in the larger set of knowl-
edge sources summarized in Table 1. Apart from the trivial Categories element
type, most elements and relation types display high improvement, most notably,
the Decision driver to patterns/practices relations. That is mainly because design
options (and consequently their relations) are missing entirely. Apart from

Data Management in Microservice Architectures 33

Categories, only the Domain model elements type shows no improvement,
because we only considered those domain elements directly connected to our
decisions here. In the larger context of our work, we use a large and detailed
microservice domain object model, but as there is nothing comparable in the
microservice patterns, we only counted the directly related contexts here (else
the improvement of our model would be considerably higher).

Table 2. Comparison of number of found elements and relation types our ADD model
and microservices.io

Element and relation types ADD model microservices.io Improvement

Domain model elements 4 4 0%

Decisions 9 4 125%

Decision context relations 6 3 100%

Patterns/practices 32 15 113%

Decision to option relations 30 13 131%

Relations between patterns/practices 10 4 150%

Patterns/practices to decision
relations

12 4 200%

Categories 1 1 0%

Category to decision relations 5 3 67%

Unique decision drivers 34 17 100%

Decision drivers to patterns/practices
relations

182 37 392%

Total number of elements 325 105 210%

6 Threats to Validity

To increase internal validity we used practitioner reports produced independently
of our study. This avoids bias, for example, compared to interviews in which the
practitioners would be aware that their answers would be used in a study. This
introduces the internal validity threat that some important information might
be missing in the reports, which could have been revealed in an interview. We
tried to mitigate this threat by looking at many more sources than needed for
theoretical saturation, as it is unlikely that all different sources miss the same
important information.

The different members of the author team have cross-checked all models
independently to minimize researcher bias. The threat to internal validity that
the researcher team is biased in some sense remains, however. The same applies
to our coding procedure and the formal modeling: other researchers might have
coded or modeled differently, leading to different models. As our goal was only

34 E. Ntentos et al.

to find one model that is able to specify all observed phenomena, and this was
achieved, we consider this threat not to be a major issue for our study.

The experience and search-based procedure for finding knowledge sources
may have introduced some kind of bias as well. However, this threat is mitigated
to a large extent by the chosen research method, which requires just additional
sources corresponding to the inclusion and exclusion criteria, not a specific dis-
tribution of sources. Note that our procedure is in this regard rather similar
to how interview partners are typically found in qualitative research studies in
software engineering. The threat remains that our procedures introduced some
kind of unconscious exclusion of certain sources; we mitigated this by assem-
bling an author team with many years of experience in the field, and performing
very general and broad searches. Due to the many included sources, it is likely
our results can be generalized to many kinds of architecture requiring microser-
vice data management. However, the threat to external validity remains that
our results are only applicable to similar kinds of microservice architectures.
The generalization to novel or unusual microservice architectures might not be
possible without modification of our models.

7 Conclusion

In this paper, we have reported on an in-depth qualitative study of existing prac-
tices in industry for data management in microservice architectures. The study
uses a model-based approach to provide a systematic and consistent, reusable
ADD model which can complement the rich literature of detailed descriptions of
individual practices by practitioners. It aims to provide an unbiased and more
complete treatment of industry practices. To answer RQ1 we have found in 32
common patterns and established practices. To answer RQ2, we have grouped
5 top-level decisions in the data management category and documented in total
9 decisions with 6 decision context relations. Further we were able to docu-
ment 30 decision to option relations and 22 (10 + 12) further relations between
patterns and practices and decisions. Finally, to answer RQ3, we have found
34 unique decision drivers with 182 links to patterns and practices influencing
the decisions. The 325 elements in our model represent, according to our rough
comparison to microservices.io, an 210% improvement in completeness. We can
conclude from this that to get a full picture of the possible microservice data
management practices, as conveyed in our ADD model, many practical sources
need to be studied, in which the knowledge is scattered in substantial amounts of
text. Alternatively, substantial personal experiences need to be made to gather
the same level of knowledge. Both require a tremendous effort and run the risk
that some important decisions, practices, relations, or decision drivers might
be missed. Our rough evaluation underlines that the knowledge in microser-
vice data management is complex and scattered, and existing knowledge sources
are inconsistent and incomplete, even if they attempt to systematically report
best practices (such as microservices.io, compared to here). A systematic and
unbiased study of many sources, and an integration of those sources via formal

Data Management in Microservice Architectures 35

modeling, as suggested in this paper, can help to alleviate such problems and
provide a rigorous and unbiased account of the current practices in a field (like
presently on microservice data management practices).

Acknowledgments. This work was supported by: FFG (Austrian Research Promo-
tion Agency) project DECO, no. 846707; FWF (Austrian Science Fund) project ADD-
Compliance: I 2885-N33.

References

1. Sidecar pattern (2017). https://docs.microsoft.com/en-us/azure/architecture/
patterns/sidecar

2. Al-Houmaily, Y., Samaras, G.: Two-phase commit. In: Liu, L., Özsu, M.T. (eds.)
Encyclopedia of Database Systems, pp. 3204–3209. Springer, Boston (2009).
https://doi.org/10.1007/978-0-387-39940-9

3. Charmaz, K.: Constructing Grounded Theory. Sage, Thousand Oaks (2014)
4. Coplien, J.: Software Patterns: Management Briefings. SIGS, New York (1996)
5. Fowler, M.: Command and Query Responsibility Segregation (CQRS) pattern

(2011). https://martinfowler.com/bliki/CQRS.html
6. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for

Qualitative Research. de Gruyter, Berlin (1967)
7. Gorton, I., Klein, J., Nurgaliev, A.: Architecture knowledge for evaluating scalable

databases. In: Proceedings of the 12th Working IEEE/IFIP Conference on Software
Architecture, pp. 95–104 (2015)

8. Gupta, A.: Microservice design patterns (2017). http://blog.arungupta.me/
microservice-design-patterns/

9. van Heesch, U., Avgeriou, P., Hilliard, R.: A documentation framework for archi-
tecture decisions. J. Syst. Softw. 85(4), 795–820 (2012)

10. Hentrich, C., Zdun, U., Hlupic, V., Dotsika, F.: An approach for pattern mining
through grounded theory techniques and its applications to process-driven SOA
patterns. In: Proceedings of the 18th European Conference on Pattern Languages
of Program, pp. 9:1–9:16 (2015)

11. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, Boston (2003)

12. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term
(2014). http://martinfowler.com/articles/microservices.html

13. Lytra, I., Sobernig, S., Zdun, U.: Architectural decision making for service-
based platform integration: a qualitative multi-method study. In: Proceedings of
WICSA/ECSA (2012)

14. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly,
Sebastopol (2015)

15. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: 6th Interna-
tional Conference on Cloud Computing and Services Science, pp. 137–146 (2016)

16. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful web services vs. big web
services: making the right architectural decision. In: Proceedings of the 17th World
Wide Web Conference, pp. 805–814 (2008)

17. Perrin, M.: Overview of existing models. In: Perrin, M. (ed.) Distributed Systems,
pp. 23–52. Elsevier (2017)

https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://doi.org/10.1007/978-0-387-39940-9
https://martinfowler.com/bliki/CQRS.html
http://blog.arungupta.me/microservice-design-patterns/
http://blog.arungupta.me/microservice-design-patterns/
http://martinfowler.com/articles/microservices.html

36 E. Ntentos et al.

18. Richardson, C.: A pattern language for microservices (2017). http://microservices.
io/patterns/index.html

19. Zdun, U., Stocker, M., Zimmermann, O., Pautasso, C., Lübke, D.: supporting
architectural decision making on quality aspects of microservice APIs. In: 16th
International Conference on Service-Oriented Computing. Springer (2018)

20. Zimmermann, O.: Microservices tenets. Comput. Sci. - Res. Dev. 32(3), 301–310
(2017)

21. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing
architectural decision models with dependency relations, integrity constraints, and
production rules. J. Syst. Softw. 82(8), 1249–1267 (2009)

http://microservices.io/patterns/index.html
http://microservices.io/patterns/index.html

From a Monolith to a Microservices
Architecture: An Approach Based on

Transactional Contexts

Lúıs Nunes , Nuno Santos , and António Rito Silva(B)

INESC-ID/Department of Computer Science and Engineering,
Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal

{luis.a.nunes,nuno.v.santos,rito.silva}@tecnico.ulisboa.pt

Abstract. Microservices have become the software architecture of
choice for business applications. Initially originated at Netflix and Ama-
zon, they result from the need to partition, both, software development
teams and executing components, to, respectively, foster agile develop-
ment and horizontal scalability. Currently, there is a large number of
monolith applications that are being migrated to a microservices archi-
tecture. This article proposes the identification of business applications
transactional contexts for the design of microservices. Therefore, the
emphasis is to drive the aggregation of domain entities by the trans-
actional contexts where they are executed, instead of by their domain
structural inter-relationships. Additionally, we propose a complete work-
flow for the identification of microservices together with a set of tools that
assist the developers on this process. The comparison of our approach
with another software architecture tool and with an expert decomposi-
tion in two case studies revealed high precision values, which reflects that
accurate service candidates are produced, while providing visualization
perspectives facilitates the analysis of the impact of the decomposition
on the application business logic.

Keywords: Monolith applications · Microservices architecture ·
Architectural migration · Transactional logic decomposition

1 Introduction

Microservices architecture [22] is increasingly being adopted as the software
architecture of business applications. Initially originated at Netflix and Amazon,
they result from the need to partition, both, software development teams and
executing components. The former promotes the application of software agile
approaches, due to smaller loosely dependent teams associated to partitions of
the domain model, while the later improves the system horizontal scalability, due
to the ability to have different levels of scalability for each execution context. On
the other hand, a large number of existing applications are implemented using

c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 37–52, 2019.
https://doi.org/10.1007/978-3-030-29983-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_3&domain=pdf
http://orcid.org/0000-0002-3924-450X
http://orcid.org/0000-0002-2742-8707
http://orcid.org/0000-0001-9840-457X
https://doi.org/10.1007/978-3-030-29983-5_3

38 L. Nunes et al.

the monolith architecture, where a single database is shared by all the system
functionalities.

A survey done with experts identifies Wrong Cut, when microservices are
split in the basis of technical layers instead of business capabilities, as one of the
two worst bad practices when designing microservices [21]. Therefore, several
approaches [12] are being proposed on how to migrate monolith systems to a
microservices architecture. Most of these approaches are driven by the identifi-
cation of structural modules, which have high cohesion and low coupling, in the
monolith domain model. However, they do not consider the need to change the
application business logic when migrating a monolith to a microservices architec-
ture. This problem is identified in [8] as the Forgetting about the CAP Theorem
migration smell, which states that there is a trade-off between consistency and
availability [6].

We propose the identification of business applications transactional contexts
for the design of microservices. Therefore, the emphasis is to drive the aggrega-
tion of domain entities by the transactional contexts where they are executed,
instead of by their structural domain inter-relationships. This equips software
architects to reason about the impacts of the migration on the overall system
business logic, due to the relaxing of consistency. Additionally, we define a com-
plete workflow for the identification of microservices together with a set of tools
that assist the architects in this process, and apply concepts and techniques such
as code analysis and graph clustering.

The comparison of our approach with another software architecture tool and
an expert decomposition of the case studies resulted in high precision values,
which reflects that accurate service candidates are produced.

The subsequent sections are going to be summarized as follows. Section 2
presents the concepts behind architectural migrations to microservices, Sect. 3
describes the proposed solution, where Sect. 4 evaluates the result of applying
the automatic decomposition to a monolith application. Finally, Sect. 5 presents
the related work and Sect. 6 the conclusions.

2 Concepts

The migration of a monolith to a microservices architecture comprises three
phases: data collection, which collects information about the system that is
intended to migrate to microservices architecture; microservices identification,
where one, or several, criteria are applied to the collected data to identify
microservices candidates; and visualization, which provides a visual representa-
tion of the identified microservices, and their relationships, according to different
perspectives.

The approaches differ on which technique they use to collect the data, either
manual or automatically, the type of data collected, e.g. a call graph or the
execution log of the application, and if they are source code based or model-
based, which in the latter case the data collection corresponds, actually, to a
modeling activity followed by the extraction of information from the model.

Monolith to Microservices 39

The automatic collection of data is based on techniques like, static analy-
sis [20] and dynamic analysis [4], which provide different types of information.
Dynamic code analysis can provide richer information, for instance the number
of times an entity is accessed, but it is more difficult to obtain, because it is nec-
essary to execute the system according to the adequate execution profiles. For
instance, the number of times an entity is accessed depends on the particular
usage of the system, which may even be periodic.

On the other hand, the type of collected information is strongly related to
how each of the authors characterize a microservice and what they consider as
the relevant qualities of a microservices system. For instance, some approaches
use the log of the commits in a version control system repository, because they
emphasize the team work separation quality of microservices architectures, while
other approaches collect the number of invocations between domain entities,
because they intend to reduce the communication cost between microservices in
order to achieve good performance.

In what concerns the model-based approaches, they define high level rep-
resentations of the system, for instance use case models and business process
models, to represent the information considered necessary for the identification
of microservices, arguing that the monolith may have an initial poor design
and it is necessary to do some reverse engineering activities. Additionally, these
approaches may be applied to the development of a microservices system from
scratch. However, the possible mismatch between the source code and its model
representation may hinder the microservices extraction to be done by the devel-
oper, once the microservices are finally identified by architect. Actually, accord-
ing to a recent survey [11], industry experts rely on low-level sources of informa-
tion, like the source code and test suites, which means that even if a model-based
approach is followed, the existence of tools that analyze the source code cannot
be completely dismissed.

In the microservices identification phase a metric is defined over the collected
data. By using this metric a similarity measure between the system elements is
calculated, such that a clustering algorithm can be applied to aggregate the
monolith entities, maximizing the intra-cluster similarity and minimizing the
inter-cluster similarity, where each cluster becomes a microservice candidate.
Some of the approaches do not even suggest the application of a clustering algo-
rithm but foster the identification of the microservices by the human observation
of a graph, where the similarities between the monolith elements are visually rep-
resented.

Obviously, there is a close relationship between the metric and the type
of data collected, for instance, if the data is about the invocations between
microservices, then the metric gives a high similarity value between two monolith
elements, if they have a high number of mutual invocations, such that they can
be part of the same cluster.

The visualization phase uses the collected data and, together with the met-
ric of the previous phase, presents a graph that can be analyzed according to
different perspectives. For instance, it may be possible to visualize information

40 L. Nunes et al.

associated with edges between cluster nodes, for instance, the number of invo-
cations, such that the architect can reason on the impact of these dependencies
on the final microservices architecture.

Sixteen microservices coupling criteria are presented in [13]. They extract
the coupling information from models and create an indirect, weighted, graph to
generate clusters, using two different algorithms that define priorities for each
one of the criteria. Finally, the result clusters are visualized. Although they
provide the most extensive description of coupling criteria, by being based on
models, they require, for some of the criteria, that part of the identification is
already done. For instance, for the consistency criticality criteria it is necessary to
provide information about the consistency level between the monolith elements,
high, eventual, and weak. However, the identification of this information already
assumes that the monolith is somehow divided and the impact of the migration
in the business logic already identified, because in a monolith the consistency
between its elements is always high, due to ACID transactions and their strict
consistency.

3 Decomposition by Transactional Contexts

The main objective of this paper is to present a set of tools that support soft-
ware architects on the process of migrating from a monolithic to a microservices
architecture. Our solution relies on the identification of transactional contexts
where a business transaction is divided into several transactional contexts.

We assume a software architecture for the monolith that applies the Model-
View-Controller (MVC) architectural style, where the business transactions are
represented by the controllers. In the monolith, the execution of a controller
corresponds to the transactional execution of a request. Therefore, the monolith
was designed considering the sequences of these requests, where each one of
them is implemented by an ACID transaction and strict consistency. In order to
reduce the impact of the migration on the system design we intend to group the
domain entities accessed by a controller inside the same microservice, avoiding
the introduction of relaxed consistency to the business functionality. Therefore,
ideally, a controller would be implemented by a single microservice encapsulating
its own database. However, there are domain entities that are accessed by several
controllers. Our metric gives lower values to domain entities that are accessed
the same controllers, such that they can be located in the same cluster.

Although the tools were developed for an implementation of the monolith in
Spring-Boot Java and using the FénixFramework [7] object-relational mapper
(ORM), the overall approached can be applied to any monolith that follows
the MVC style. The FénixFramework generates a set of classes that represent
the domain entities, contain the persistent information, and correspond to the
data access layer. Therefore, in the first phase we do a static analysis to the
monolith source code to collect, for each controller, which classes generated by

Monolith to Microservices 41

the FénixFramework are accessed. This static analysis captures the controllers
call graphs using the java-callgraph1 tool.

The metric is then implement as a similarity measure using the following
formula, which returns higher values for pairs of domain entities that are accessed
by the same controllers:

WE1E2 =
NCtrl(E1E2)
NCtrl(E1)

(1)

Where, given two domain entities, E1 and E2, the weight from entity E1 to
entity E2 is the quotient between the number of controllers for which their invo-
cation tree has both, E1 and E2, as nodes (NCtrl(E1E2)) and the total number
of controllers for which their invocation tree has E1 as a node (NCtrl(E1)). When
applying this measure to a clustering algorithm, in an ideal decomposition, the
entities in the same cluster are accessed by the same controllers. The domain
entities are clustered using a hierarchical clustering algorithm implemented by
the Scipy2 Python library which generates a dendrogram. Finally, a user inter-
face is used where the software architect can experiment with several cuts in
the dendrogram to generate different sets of clusters. After a cut in the dendro-
gram is done, we support additional experimentation by allowing the architect
to rename, merge and split clusters, as well as move an entity between clusters.

Fig. 1. Data flow schema of the tools to be developed.

The overview of the process behind the examination of the monolithic appli-
cation can be seen in Fig. 1, and has the following workflow:

1. Collect Data: The architect uses a static code analyser implemented using
the java-callgraph to generate the text call-graph.

2. Generate Clusters: The architect interacts with the web application to
generate the dendrogram from the call-graph, using a hierarchical clustering
algorithm. Afterwards, cuts the dendrogram, given a value for the maximum
distance between domain entities inside each cluster, generating a set of clus-
ters.

1 https://github.com/gousiosg/java-callgraph.
2 https://www.scipy.org/.

https://github.com/gousiosg/java-callgraph
https://www.scipy.org/

42 L. Nunes et al.

3. Visualization: The architect visualizes the generated information according
to three views: clusters of entities and how they are accessed by controllers;
the accesses pattern of controllers on clusters; the impact of domain entities
data on controllers executing in other clusters.

4. Modeling: The architect can manipulate each one of the views, which sup-
ports informed experimentation because the tool recalculates the weights
whenever a change is done.

4 Evaluation and Discussion

The approach was applied to two monolith web applications, LdoD3 and Blended
Workflow4, but for the sake of space, only the results of the LdoD analysis are
presented in the article. The analysis of the Blended Workflow provided similar
insights.

4.1 LdoD

The LdoD archive5 is a collaborative digital archive that contains the Book of
Disquiet, originally written by Portuguese poet, Fernando Pessoa. LdoD mono-
lith contains 152 controllers and 55 domain entities, being that 37 of the con-
trollers do not make contact with the domain (24% of the systems controllers).

After applying the java-callgraph tool to collect data, and the hierarchical
clustering algorithm to generate the dendrogram, we have analyzed the result
according to different cuts of the dendrogram, which produce distinct cluster
configurations, candidate microservices.

4.2 Metric Evaluation

As supported by the evaluation of other approaches for software architecture
recovery [3,17], an internal and external assessment of the clusters is made.

Internal Evaluation. To perform an intrinsic evaluation of the clustering
results for our applications, we have done an ad hoc analysis with metrics pro-
posed by us, except for the silhouette score. These metrics allows us to compare
the quality of the clustering resulting from the different cuts.

1. Number of Singleton Clusters (NSC), being that having more than
2 singleton clusters is considered negative. Considering a final microservice
architecture with clear functional boundaries established, it is likely that there
are not two services in which their content is a single domain entity.

3 https://github.com/socialsoftware/edition.
4 https://github.com/socialsoftware/blended-workflow.
5 https://ldod.uc.pt.

https://github.com/socialsoftware/edition
https://github.com/socialsoftware/blended-workflow
https://ldod.uc.pt

Monolith to Microservices 43

2. Maximum Cluster Size (MCS), should not be bigger than half of the
size of the system. Even with a cluster size inside this range, there is also
a dependency regarding the number of entity instances that are part of the
aggregate, since invocation of a microservice will bring an aggregate to mem-
ory [10]. This aspect is not addressed in this paper.

3. Silhouette Score (SS), given by Eq. 4, where a represents the mean intra-
cluster distance (Eq. 2: distance between object oi and the remaining objects
in the cluster) and b the mean nearest-cluster distance (Eq. 3: distance
between object oi and the objects of the neighbor cluster, the one that has
the smallest average dissimilarity). This score ranges its values from −1 to
1, representing incorrect clustering (samples on wrong clusters) and highly
dense clustering respectively. For every object in a cluster, when this score is
high (closer to 1) the mean intra-cluster distance is going to be smaller than
the mean nearest-cluster distance, implying that the object is well classified.
This metric creates a parallelism with the overall coupling of the clusters of
the system, as our objective was to obtain a high intra-cluster similarity and
a low inter-cluster similarity, so the partition between clusters is well defined.
The silhouette value evaluates exactly this information. In the scope of our
problem we calculate the silhouette score for the entire cluster data of the
presented cut, meaning that we have to calculate the silhouette of each clus-
ter by averaging the score of all the object inside them and then average the
score of all the clusters, reaching a value for the entire dataset.

a(oi) =
1

|CA| − 1

∑

ojεCA,oj �=oi

d(oi, oj) (2)

b(oi) = minCb �=CA

1
|CB |

∑

ojεCB

d(oi, oj) (3)

Silhouette(oi) =
(b(oi) − a(oi))

max(a(oi), b(oi))
(4)

In Table 1 we apply the metrics for four cuts of a dendrogram with a max
height of 4.0:

Table 1. Internal evaluation results for LdoD.

Cut(0.01) Cut(1.5) Cut(2.5) Cut(3.5)

Number of Retrieved Clusters (NRC) 40 11 3 2

Number of Singleton Clusters (NSC) 34 3 0 0

Maximum Cluster Size (MCS) 5 18 26 31

Silhouette Score (SS) 0.38 0.48 0.55 0.56

44 L. Nunes et al.

1. The maximization of intra-cluster similarity, given by a cut with the lowest
possible value.

2. A cut at an intermediate value, establishing an attempt to make a trade-off
between the granularity and the cluster similarity.

3. Two high valued cuts that try to split the system into its main components,
usually with a size of 2–4 clusters.

Assessing first our ad-hoc metrics, when increasing the value of the height of
the cut on the dendrogram, the NSC and NRC decrease while the MSC increases,
which is expected as higher the height less clusters are formed, being that those
contain more domain entities. Also, the silhouette score increases with height to
a maximum, showing that at that point are formed the ideal clusters according
to this metric.

External Evaluation. In this type of evaluation we compare with an expert
decomposition both, the results of our approach and the results of applying a
software architecture analysis tool, Structure1016, which uses cyclomatic com-
plexity measures and the identification of cyclic dependencies to define a struc-
tural decomposition.

Usually, the computation of evaluation metrics following the use of clustering
is done in a pairwise fashion, where, in our case, the pairs of domain entities in
the clusters of the decomposition being evaluated are compared with the pairs in
the clusters of the domain expert decomposition. The most appropriate metrics
for our approach are pairwise precision, recall and f-score, given by Eqs. 5, 6 and
7 respectively.

precision =
tp

tp + fp
(5)

recall =
tp

tp + fn
(6)

F -score = 2 ∗ precision ∗ recall

precision + recall
(7)

Where tp (true positives) represents the number of pairs that are in both, the
decomposition being evaluated and the expert decomposition, fp (false positives)
the number of pairs that are not in the expert decomposition but are in the
decomposition being evaluated, and fn (false negatives) the number of pairs that
are in the expert decomposition but not in the decomposition being evaluated.
Therefore, the precision captures the accuracy whether two domain entities in a
cluster actually belong to the same microservice, and the recall the percentage
of domain entity pairs correctly assigned to the same microservice.

The pairwise assessment of these metrics for dendrogram cut of 2.5 is pre-
sented in Table 2, when comparing the two generated decompositions with the
expert decomposition. We can see that the results of our approach for all the pre-
sented metrics are higher than Structure101. On the other hand, doing a detailed
6 https://structure101.com/.

https://structure101.com/

Monolith to Microservices 45

analysis, in the three clusters resulting from the 2.5 LdoD cut, we observe that
the first is a sub-cluster of a cluster of the expert decomposition, the second
is accessed by all controllers, and the third one contains five entities that are
responsible for deleting and loading fragments, used by controllers associated
with the administration functionalities. Structure101 originates ten clusters from
which six are singletons. Of the remaining four, three are sub-clusters of the
expert decomposition and the fourth is accessed by all controllers.

Table 2. External evaluation results for 2.5 cut, Structure101 and 1.5 cut.

Precision Recall F-score

Transactional clustering 2.5 cut 73% (445
611

) 48% (445
926

) 0.58

Structure101 58% (166
285

) 18% (166
926

) 0.27

Transactional clustering 1.5 cut 99% (233
234

) 25% (233
926

) 0.40

From this analysis we conclude that, although the use of metrics to iden-
tify the best cuts is relevant, it does not exclude the experimentation of other
intermediate cuts because smaller clusters may be easily analysed by the expert,
which may decided to integrate them with other clusters.

The chosen intermediate cut of the system and its evaluation is also shown
in the Table 2. Note that for the 1.5 cut, our precision is much higher, this
happens as the smaller clusters formed by a lower cut are almost all subsets of
the clusters of the expert decomposition. On the other hand, the recall values
are lower, as the singleton clusters are properly penalized by this metric. The
only false positive (in 1/11 retrieved clusters) resides in the cluster with the
entities LdoD, LdoDUser and VirtualEdition. LdoD is an immutable singleton
and the entry point to the domain entities, which can be easily replicated in any
cluster. LdoDUser and VirtualEdition were identified by the expert as being
used in two different scopes, authentication and virtual edition management,
respectively. Our tool classified these entities as being part of the same cluster
as they appear together transactionally so, we are going to analyze these cases
by using the visualization tool.

4.3 Visualization Analysis

After the metric evaluation of the clusters generated automatically, the software
architect uses the visualization tool to do a detailed analysis of the decomposi-
tion.

Figure 2(a) shows Cluster0 containing the three entities. It has strong connec-
tions with other clusters, the edges thickness represent the number of controllers
shared between the two connected clusters. Which means that almost all con-
trollers access Cluster0. The model was already subjected to some changes by

46 L. Nunes et al.

(a) Initial Model (b) Manipulated Model

Fig. 2. Cluster views presenting clusters and the relations between them

the architect, basically, some of the clusters were renamed to have a domain-
specific name, to improve readability. According to the expert these three enti-
ties, once created, are not further modified and are frequently accessed because
they are the entry point for almost all functionalities. Therefore, since they are
immutable, they can be easily replicated. This case constitutes a good example
why the visualization tools provide an essential help to the software architect.
Part (b) shows the model resulting from several transformation applied to the
initial model, cluster rename, merge and split, and entity move between clusters,
such that the architect can experiment, and fine tune, the decompositions.

Additionally, our visualization tool allows architects to identify how the busi-
ness functionality is split between the different clusters. This is particularly rele-
vant because it helps to analyze the impact of the decomposition in the business
functionality.

Fig. 3. Controller view of updateAnnotation controller and the clusters accessed.

Figure 3 shows the transactional behavior of Update Annotation controller
occurring in the context of four clusters (candidate microservices). It is possible
to identity which entities are accessed in each cluster, whose number is shown in

Monolith to Microservices 47

the edge. By analysing the model we can conclude that this decomposition does
not have impact on the business logic of this functionality, because all semanti-
cally relevant accesses are to cluster Virtual. The accesses to the other clusters
are to read immutable information for authentication (Authentication), access
the persistent information through the LdoD singleton object (Cluster0), and get
the Edition where the annotation is done (Edition). The figure highlights that
the only entity accessed in cluster Edition is entity Edition. Note that this clus-
ter contains more entities. It also illustrates that the controllers are selected by
the number of clusters they access, 4 in this case (top left corner of the figure),
which allows the software architect to easily identify in which controllers the
decomposition can have more impact, if they access more clusters it may be
necessary to relax their transactional behaviour.

Another visualization that can improve the split of functionalities is to iden-
tify which entities are accessed by controllers that also access other clusters,
because it may be necessary to relax their consistency, since they are shared
between business transactions executing through different microservices. How-
ever, when experimenting with this functionality, we realized that the each entity
is accessed by all clusters, because there are some controllers, mainly administra-
tion controllers that create or delete the domain, and so, they access all domain
entities. Therefore, we are considering, in future versions of the visualization
tool, to allow the filtering of controllers, and also to use additional information
to characterize the relations between clusters, for instance, by also collecting
the dataflow between domain entities. Note that currently only the control flow
information was collected.

From this discussion, we conclude that it is useful to analyse the relations
between clusters through the use of our visualization tool, which shows that
it is not enough to rely on the automatic decompositions, but tools should be
provided to help to reason about the decomposition and its impacts, in partic-
ular, because the decomposition may have impact on the system business logic.
Additionally, it is advantageous to enriched the visualization tool with modeling
capabilities.

5 Related Work

In [12] it is done an analysis of several approaches for the migration of a monolith
to a microservices architecture. Most microservices migration proposals do not
consider the need to change the application business logic when migrating a
monolith to a microservices architecture, focusing, instead, on the structural
aspects related with the high cohesion and low coupling of the microservices. This
problem is identified in [8] as the Forgetting about the CAP Theorem migration
smell, and may have an high impact on the migration of a monolith because
it imparts on the users perception of the system operation, which drives our
decision to also provide tools for architectural experimentation.

In [23] the authors apply the three migration phases but the clustering phase
is not automated, it is based on the observation of a graph. The data is collected

48 L. Nunes et al.

from use cases specifications and their decomposition into the domain entities
they access. The metric is based on the data shared between operations, the
operations that access the same data should belong to the same microservice.
It is weighted by the reads and writes from the operations to the data objects,
writes have more weight because there is a emphasis on having reads between
microservices. They share with our approach the concern in focusing on how
business functionalities are decomposed, but their final concern is on the oper-
ation level, instead of the controller, because they seek to have high cohesion
and low coupling between operations. Their final visualization does not high-
light how the business transactions are decomposed into the set of candidate
microservices.

To improve performance, in [19], a runtime profiling is used to collect the
information about the amount of communication between classes. Additionally,
it also supports a semantic clustering that uses a td-idf (term frequency/inverse
document frequency) to create clusters based on the similarity between names of
classes and methods. None of these tactics consider transactional contexts and,
so, the decomposition of the business logic. The user starts by deciding which
of the two clustering criteria to use, and then visualizes the resulting graph,
where a node represents a class and an edge a function call between two classes.
Classes belonging to the same cluster have the same color and the edge thickness
represents the amount of communication between classes. Representing clusters
by colored classes has the advantage of making immediately visible the classes in
a cluster, though it may the too confusing if there is a large number of classes.
This is one of the few approaches that enhance visualization with modelling
capabilities, it allows manipulation of the clusters, e.g. move a class between
clusters, which results in the recalculation of the clusters, as we do.

In order to improve the performance of a microservices architecture, in [16],
they apply a workload-based feature clustering. The approach is model-based, it
uses a feature model, where the microservices identification, each microservice
contains one or more features, is driven by a trade-off between performance,
which is inversely proportional to the amount of inter-microservices communi-
cation, and scalability, which is directly proportional to the number of microser-
vices. They propose the aggregation of features into microservices according to
this trade-off in a specific-workload. They focus on feature model aggregation
for deploy in a cloud instead of the identification of the microservices in a mono-
lith, and consider that the implementation of the feature model allows features
re-combinations, not considering how these impact on the application business
logic, because different recombinations may impact differently.

In [9] it is proposed an approach for migrating a monolith implemented using
Java Enterprise Edition (JEE). They do static analysis to capture the invocations
between the elements. Afterwards, associate a cluster to each session bean and
aggregate them according to a threshold, such that the distance between clus-
ters depends on the number of shared entities. Final clusters have one or more
session beans and the entities may be shared between different clusters. Finally,
it is possible to visualize the clusters, showing the session beans it contains, and

Monolith to Microservices 49

the entities shared between two clusters. In our approach we aggregate the data
entities that are accessed by the same business transactions, controllers, which
is similar to their session beans, but their clusters are formed by session beans
instead of domain entities, which hinders the analysis of how the business logic
of a business transaction is split between microservices. Therefore, they assume
that the microservices interfaces will be preserved, they correspond to the ses-
sion beans interfaces, while we consider that the migration to the microservices
architecture may impact on the application business logic due to the change in
the overall consistency of the system, from strict to eventual or weak, which may
require the carefully redefinition of the microservices interfaces.

In [1] each functional requirement is a microservice candidate. Afterwards
they classify each candidate in terms of scalability and security non-functional
requirements and the level of dependency between them. The candidates for
which it is expected to have a high volume of requests are considered to require
scalability. Then, for those with high and medium scalability requirements it is
verified the level of dependency with the other candidates, where a high depen-
dency level corresponds to the frequency of invocations between them. If two
microservices are highly dependent and require security, which results in an
high overheads, the candidates will be merged into a single microservice. This
approach is model-based, which means that the data for the metrics is captured
through requirements elicitation and focus on functional composition instead of
on a real decomposition of a monolith.

In [15] execution traces analysis are used to generate two types of traces, class-
level traces, which capture the classes accessed, and method-level traces, which
capture the methods invocations. The microservices are identified by clustering
the class-level traces that contain the same classes. Afterwards, the method-level
traces are used to identify the interfaces for the candidate microservices. It does
not propose any visualization tool. Similarly to our proposal, they aggregate
the classes that are shared by the same business capabilities, contrarily to most
approaches that focus on structural, coupling and cohesion, and semantic, nam-
ing convention, aspects. Their process is automatic, whereas we also propose
a visualization tool that allows the experiment with several decompositions, to
analyse the impact on the business logic.

In [2] they identify the microservices from a business process point of view. A
business processes model is used to identify structural dependency, when there
is a direct edge between two activities, and object dependency, when activities
have similar data access, assigning a higher weight for writes. These two relations
are aggregated in a metric that is use to generate clusters that represent candi-
date microservices. This model-based approach focus on the structural aspects,
aggregate activities that access the same data and are executed next to each
other, which result in clusters of activities from which is not possible to assess
the impact of the decomposition on the application business logic. Actually, the
business process model already describes a business logic between activities, and
their aggregation may allow a more strict consistency between the activities

50 L. Nunes et al.

that become aggregated in the same microservice, as they will share the same
transactional context. Their focus is on composition.

In [5] it is proposed a solution based on semantic similarity that matches
the terms used in an OpenAPI specification with a domain vocabulary to sug-
gest decompositions. This is a model-based approach, which requires two models
(OpenAPI specification and domain vocabulary), and it is focused on identify-
ing cohesive operations, which access the same data, ignoring the transactional
business logic.

In [18] microservice candidates are suggested following an algorithmic app-
roach subsequent to the extraction of data from a version control repository of
a monolithic application. They propose three different metrics: single respon-
sibility principle, based on classes that change together in commits; semantic
coupling, based on tfidf to identify classes that contain code about the same
things; and contributor coupling strategy, based on classes accessed by the same
team. These metrics focus on the structural aspects, mainly related with the
development process and the split of a domain model to control its complexity.

Some approaches propose the analysis of design trade-offs and the dynamic
autonomous composition [14], but this is only applicable if the business logic
does not vary according to the composition, which does not apply to all types
of microservices. Therefore, the transactional contexts approach is particularly
suitable for application with a rich domain logic where microservices become
logically interdependent, which may require the redesign of the monolith func-
tionality.

6 Conclusions

This paper proposes an approach to the migration of monolith applications to
a microservices architecture that focus on the impact of the decomposition on
the monolith business logic, an aspect that is not addressed by the existing
approaches, and which is described as forgetting about the CAP Theorem. Our
approach is based on the static analysis of the source code of a monolith, imple-
mented following a Model-View-Controller architectural style, which is enforced
by the most popular tools for web development, like Spring-Boot and Django.
Therefore, a call graph is obtained for controllers, which are associated to the
monolith functionalities. From the call graph are identified the domain entities
that are accessed by each controller, and a clustering algorithm is applied to
aggregate domain entities that are shared by the same controllers, to reduce
the decomposition impact on the monolith business functionality. The resulting
decomposition is analysed according to several metrics and an external evalua-
tion, which compares the results with an existing industrial tool and a domain
expert. The results are promising, but it is clear that it is necessary to provide
more tools to support the experimentation with different candidate decompo-
sitions. Therefore, we also propose a visualization tool that allows the rename,
merge and split of clusters, and the move of entities between clusters. It also
supports different views, cluster, controller and entity, to help on the analysis of
the impact of the decomposition on the monolith business logic.

Monolith to Microservices 51

Additionally, and due to the recent research done on the migration from
monolith to microservices, the paper presents an extensive description of the
related work in order to place our approach in a context that is quickly evolving
and which is not yet completely bounded and classified.

The main limitations of this work are: (1) being specific for applications
developed using the Fénix Framework; and (2) the java-callgraph tool did not
capture calls inside Java 8 streams. Concerning the former limitation, we believe
that the results apply to other implementations of web application, as soon as
they clearly distinguish controllers from entities. Note that this also includes web
applications that do not have views, but which provide a web API, e.g. REST.
In what concerns the use of java-callgraph, we have done a manual verification
of the collect data to ensure its correctness.

In terms of future work, we are already finishing an Eclipse plugin that
captures the controllers call graphs using the Eclipse JDT library. On the other
hand, we intend to experiment with decompositions where more information
is available, in particular, we intend to distinguish reads from write accesses
done by controllers and the dataflows inside controllers, to analyse its impact on
cluster generations and in the visualization tools, because, in terms of eventual
consistency of an application, the separation of reads from writes and dataflows
are crucial for its software architecture design.

The tools source code is publicly available in a github repository7.

Acknowledgment. This work was supported by national funds through Fundação
para a Ciência e Tecnologia (FCT) with reference UID/CEC/50021/2019.

References

1. Ahmadvand, M., Ibrahim, A.: Requirements reconciliation for scalable and secure
microservice (de)composition. In: 2016 IEEE 24th International Requirements
Engineering Conference Workshops (REW), pp. 68–73, September 2016

2. Amiri, M.J.: Object-aware identification of microservices. In: 2018 IEEE Interna-
tional Conference on Services Computing (SCC), pp. 253–256, July 2018

3. Anquetil, N., Fourrier, C., Lethbridge, T.C.: Experiments with clustering as a soft-
ware remodularization method. In: Proceedings of the Sixth Working Conference
on Reverse Engineering, WCRE 1999, p. 235, IEEE Computer Society, Washing-
ton, DC (1999)

4. Ball, T.: The concept of dynamic analysis. SIGSOFT Softw. Eng. Notes 24(6),
216–234 (1999)

5. Baresi, L., Garriga, M., De Renzis, A.: Microservices identification through inter-
face analysis. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017.
LNCS, vol. 10465, pp. 19–33. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-67262-5 2

6. Brewer, E.A.: Towards robust distributed systems (abstract). In: Proceedings of
the Nineteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC 2000, p. 7. ACM, New York (2000)

7 https://github.com/socialsoftware/mono2micro.

https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1007/978-3-319-67262-5_2
https://github.com/socialsoftware/mono2micro

52 L. Nunes et al.

7. Cachopo, J., Rito-Silva, A.: Combining software transactional memory with a
domain modeling language to simplify web application development. In: Proceed-
ings of the 6th International Conference on Web Engineering, ICWE 2006, pp.
297–304. ACM, New York (2006)

8. Carrasco, A., van Bladel, B., Demeyer, S.: Migrating towards microservices: migra-
tion and architecture smells. In: Proceedings of the 2nd International Workshop
on Refactoring, IWoR 2018, pp. 1–6. ACM, New York (2018)

9. Escobar, D., et al.: Towards the understanding and evolution of monolithic appli-
cations as microservices. In: 2016 XLII Latin American Computing Conference
(CLEI), pp. 1–11, October 2016

10. Evans, E.J.: Domain-Driven Design: Tackling Complexity In the Heart of Software.
Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

11. Di Francesco, P., Lago, P., Malavolta, I.: Migrating towards microservice architec-
tures: an industrial survey. In: 2018 IEEE International Conference on Software
Architecture (ICSA), p. 29-2909, April 2018

12. Fritzsch, J., Bogner, J., Zimmermann, A., Wagner, S.: From monolith to microser-
vices: a classification of refactoring approaches. In: Bruel, J.-M., Mazzara, M.,
Meyer, B. (eds.) DEVOPS 2018. LNCS, vol. 11350, pp. 128–141. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-06019-0 10

13. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a system-
atic approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar, S.,
Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 185–200. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44482-6 12

14. Hassan, S., Bahsoon, R.: Microservices and their design trade-offs: a self-adaptive
roadmap. In: 2016 IEEE International Conference on Services Computing (SCC),
pp. 813–818, June 2016

15. Jin, W., Liu, T., Zheng, Q., Cui, D., Cai, Y.: Functionality-oriented microservice
extraction based on execution trace clustering. In: 2018 IEEE International Con-
ference on Web Services (ICWS), pp. 211–218, July 2018

16. Klock, S., Van Der Werf, J.M.E.M., Guelen, J.P., Jansen, S.: Workload-based clus-
tering of coherent feature sets in microservice architectures. In: 2017 IEEE Inter-
national Conference on Software Architecture (ICSA), pp. 11–20, April 2017

17. Maqbool, O., Babri, H.: Hierarchical clustering for software architecture recovery.
IEEE Trans. Softw. Eng. 33(11), 759–780 (2007)

18. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices from monolithic
software architectures. In: 2017 IEEE International Conference on Web Services
(ICWS), pp. 524–531. IEEE (2017)

19. Nakazawa, R., Ueda, T., Enoki, M., Horii, H.: Visualization tool for designing
microservices with the monolith-first approach. In: 2018 IEEE Working Conference
on Software Visualization (VISSOFT), pp. 32–42, September 2018

20. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

21. Taibi, D., Lenarduzzi, V.: On the definition of microservice bad smells. IEEE Softw.
35(3), 56–62 (2018)

22. Thönes, J.: Microservices. IEEE Softw. 32(1), 116 (2015)
23. Tyszberowicz, S., Heinrich, R., Liu, B., Liu, Z.: Identifying microservices using

functional decomposition. In: Feng, X., Müller-Olm, M., Yang, Z. (eds.) SETTA
2018. LNCS, vol. 10998, pp. 50–65. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99933-3 4

https://doi.org/10.1007/978-3-030-06019-0_10
https://doi.org/10.1007/978-3-319-44482-6_12
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-319-99933-3_4
https://doi.org/10.1007/978-3-319-99933-3_4

Software Architecture in Development
Process

An Exploratory Study of Naturalistic Decision
Making in Complex Software Architecture

Environments

Ken Power1(&) and Rebecca Wirfs-Brock2

1 Independent, Galway, Ireland
ken.power@gmail.com

2 Wirfs-Brock Associates, Sherwood, OR, USA
rebecca@wirfs-brock.com

Abstract. Architects always make decisions in some context. That context
shifts and changes dynamically. Different decision-making strategies are
appropriate in different contexts. Architecture decisions are at times made under
conditions of time pressure, high stakes, uncertainty, and with too little infor-
mation. At other times, decision-makers have sufficient time to reflect on the
decision and consider alternatives. Understanding context is critical to choosing
appropriate approaches to architecture decision making. Naturalistic Decision
Making (NDM) explains how people make decisions under real-world condi-
tions. This paper investigates NDM in software architecture and studies archi-
tecture decisions in their environment and decision-making context. The research
approach includes a case study of large technology organizations consisting of a
survey, multiple focus groups, and participant observation. Previous studies that
touch on NDM in software architecture have mainly focused on decision-making
processes or tools or developing decision models. This paper provides three
contributions. First, we build on previous studies by other researchers to produce
an in-depth exploration of NDM in the context of software architecture. We focus
on Recognition-Primed Decision (RPD) making as an implementation of NDM.
Second, we present an examination of the decisions made by experienced
architects under conditions that can be considered naturalistic. Third, we provide
examples and recommendations that help software architects determine when an
NDM approach is appropriate for their context.

Keywords: Naturalistic Decision Making �
Recognition primed decision making � Software architecture � Complexity �
Decision context � Large-scale

1 Introduction

Architecture decision-making is an inherently complex task because decisions often
must satisfy multiple constraints and address multiple stakeholder concerns [1, 2].
Software architects make decisions related to architecture style of the system as well as
technological and economical decisions [2]. Several formal, analytic architecture
decision-making approaches have been published [3, 4] yet software engineering

© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 55–70, 2019.
https://doi.org/10.1007/978-3-030-29983-5_4

http://orcid.org/0000-0002-3782-9539
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-29983-5_4

researchers find few used in practice. One explanation for this may be that complex
real-world decisions are not always about making tradeoffs, but instead about finding a
decision that satisfices the current situation and allows for action [5]. Naturalistic
Decision Making (NDM) originated with the goal of studying how people actually
make decisions in a variety of real-world settings, as opposed to in classroom or
laboratory settings [6]. These settings include conditions of time pressure, high stakes,
experienced decision makers, inadequate information, ill-defined goals, poorly defined
procedures, dynamic conditions, and team coordination [7]. There are times where
architects need to make decisions under such circumstances. This paper seeks to further
contribute to understanding how software architects make decisions under these con-
ditions. In particular we study architecture decision-making in large, complex,
software-intensive systems. Such systems are characterized by many components and
sub systems developed by geographically-distributed teams, with responsibility for the
architecture shared among multiple architects. Interactions among people and systems
with emergent properties often result in non-linear, non-deterministic outcomes. This
paper presents findings from an exploratory case study of architects making decisions
in this context. Section 2 reviews key literature including a comprehensive review of
the NDM literature, and studies in software architecture that mention or explore NDM.
Section 3 presents the research questions and describes the approach used to answer the
questions. Section 4 presents findings from this study. Section 5 is a discussion of the
findings, reflecting on the research questions. Section 6 presents conclusions from this
study, including a set of recommendations based on the findings, and notes future
research that builds on this study.

2 Literature Review

2.1 Naturalistic Decision Making

NDM researchers specifically focus on real-world settings [8]. NDM is a “pragmatic,
realistic approach to understanding decision making” [9]. NDM researchers have
studied many settings, including firefighters, emergency responders, military personnel,
police, surgeons, and design engineers [7, 10–12]. Settings under which NDM applies
include the following [7]:

• Time pressure. NDM is concerned with how decision-makers operate when time is
a constraint. Time pressure does not always mean an instantaneous response is
required; NDM is cognizant of the context of the decision maker.

• High stakes. If a surgeon or firefighter makes a poor decision, lives can be lost. If a
software architect makes a poor decision, millions of dollars can be lost. The
reputation of the company and the product can be at stake.

• Experienced decision makers. NDM assumes experience in the domain as a pre-
requisite for making high-stakes decisions [7].

• Inadequate information. This includes uncertainty about the data, ambiguous data,
and missing data. NDM researchers are interested in how decision makers make
progress in the face of the uncertainty caused by too little information, or even poor
or wrong information [7].

56 K. Power and R. Wirfs-Brock

• Ill-defined goals. The goal is often poorly defined or poorly structured. There is a
lack of clear direction on what to do, and how to do it. The goal might change, or
there could be multiple competing goals [13].

• Poorly defined procedures. NDM is concerned with poorly defined procedures. In
contrast to conventional lab-based studies on decision-making, NDM acknowledges
that decision-makers often need to invent novel procedures, or modify existing
ones, in order to meet a goal [7].

• Cue learning. This refers to the ability of decision-makers to recognize patterns and
make distinctions as an aid to decision making [7]. Building on research by Simon
[14], Kahneman and Klein [15] equate this ability with intuition, noting that intu-
ition is “nothing more and nothing less than recognition.”

• Dynamic and continually changing conditions. Decision makers need to deal
with situations where the conditions around them are changing continually.

• Group coordination. The need for coordination among multiple people is a factor
in most domains in which NDM has been studied [7].

There are many different models of NDM [16]. All these models have a purpose, and
no one model encompasses everything. One of the better-known NDM models is the
Recognition Primed Decision (RPD) model [17]. The RPD model focuses on assessing
the situation, versus judging one option superior to others. RPD describes how people
make decisions using their expertise. Experienced decision makers identify a reason-
ably good option as the first one they consider (cue learning), rather than generate many
options for consideration. Expert decision makers conduct mental simulations of
courses of action to determine if it will work, rather than contrasting strengths and
weaknesses of multiple options. Where multiple options are considered, they are
considered through serial satisficing rather than concurrent deliberation. An advantage
of an RPD strategy is the decision maker is always ready to act, rather than waiting for
a completed analysis that identifies a winner among multiple options.

The conditions under which NDM applies are, of course, not the only conditions
under which architects make decisions. In analytic decision-making models the focus is
on identifying situations such strategies are effective or where they fail due to cognitive
limitations [18]. In contrast RPD models of decision-making focus on the conditions
where people can effectively make decisions without exhaustively considering alter-
natives [5]. Klein identified three strategies for recognition-primed decision making:
when both the details of a situation and an appropriate action are recognized, essen-
tially an if-then-action; when an unknown situation is encountered but there are only a
limited set of reasonable actions, gather and fill in enough missing information before
taking an appropriate action; and when there is a known situation but the appropriate
action to take is unclear, run through a mental simulation of potential actions to find the
first acceptable action.

Early decision-making research focused decision-making models based on a
rational consideration of alternatives. Given a known, limited set of alternatives, a
decision-maker should be able reason about the alternatives. However, Simon [19]
proposed that complex situations, limited time and our limited mental computational
capacities constrain our decision-making and that consequently our decision-making is
“bounded”. Instead of collecting and processing all possible information, we

An Exploratory Study of Naturalistic Decision Making 57

necessarily construct a simplified model of the relevant factors contributing to the
decision, in order to analyze the consequences of each alternative to select the “best”
one. Consequently decision-making is bounded by both the structure of the information
in the environment and limits of our mental capabilities [19].

Klein [6] summarizes how core beliefs in decision-making have changed. NDM
asserts that experienced decision makers draw on patterns to deal with time pressure,
and do not compare options. Expertise primarily depends on tacit knowledge. Projects
don’t always start with a clear description, particularly if dealing with “wicked prob-
lems” [20]. Experienced people in a given situation use their mental models to define
what counts as data, rather than systematically building up from data to information to
knowledge to understanding. Insights arise by detecting contradictions, anomalies, and
connections. Uncertainty is not reduced by gathering more information but can stem
from poor framing of data.

NDM research focuses on understanding the conditions under which experts make
decisions and how they recognize environmental cues to guide their judgment. Skilled
expertise is acquired through practice and developing skilled intuitions in high-validity
environments which provide opportunities to learn [15]. Environments have high
validity when there are stable relationships between cues and subsequent events, or
between cues and the outcomes of actions. High validity does not correlate to certainty;
some highly valid environments are also highly uncertain. Kahneman and Klein [12]
observe that true experts “know when they do not know”, but “non-experts certainly do
not know when they do not know.” The subjective confidence of a decision-maker in a
decision is an unreliable indicator of a decision’s validity.

Kahneman characterizes two modes of thinking: System 1, which operates auto-
matically and quickly; and System 2, which is slower, effortful, and deliberate [21]. Both
systems operate in tandem: System 1 originates impressions and feelings that are the
source of beliefs and more deliberate choices made by System 2. Understanding dis-
tinctions between these systems helps inform how NDM relates to other decision
making approaches [15]. For example, in Recognition-Primed Decision Making
(RPDM), System 1 thinking can bring promising solutions quickly to mind, which then
are simulated and more deliberately evaluated by System 2. As System 2 monitors
environmental cues, System 1 intuitions may be challenged and result in more deliberate
reasoning. Schraagen [22] describes the concept of ‘inner’ and ‘outer’ environments.
The inner environment is about strategies and representations. Klein’s Recognition-
Primed Decision model is a combination of intuition and analysis [22, 23]. Recognition-
based strategies enable decision makers to make decisions continuously [22].

2.2 NDM and Software Architecture

Decision-making in the field of software architecture has been the subject of study for
several decades [24]. Researchers have found that most software architectural decisions
are made by groups, not individuals, and that while the major factors into a decision are
requirements and other constraints, architects report that personal experience and
personal preference also contribute to decisions [25]. Tofan, Galster and Avgeriou [26]
list 22 factors that contribute to the difficulty of architecture decisions. One of those
factors is insufficient information to reduce uncertainty when making the decision.

58 K. Power and R. Wirfs-Brock

Decisions made by software architects often require consensus building and gaining
trust and decisions are often made under conditions where there is insufficient infor-
mation, extreme time pressures, and high stakes [27].

There has been some exploration of NDM in software architecture. This paper
builds on that earlier work and contributes to a foundation on which future NDM-
related research can be based. Zannier, Chiasson and Maurer [5] examine the question
of how software designers make decisions. They conclude that the structure of the
design problem “as defined by the decision maker” determines the aspects of rational
and naturalistic decision-making used. Citing that paper [5], Vliet and Tang [28] study
the process of making decisions in software architecture and conclude that “… the
structure of the design problem determines which aspects of rational and naturalistic
decision making are used. The more structured the design decision, the less a designer
considers different options.” Context is key here, and we need to consider not just
problem structure, but the context under which the designer is making the decision.
Simon [29] defines a set of characteristics that determine what it means for a problem to
be well structured. However, Simon [29] also warns that “definiteness of problem
structure is largely an illusion that arises when we systematically confound the ide-
alized problem that is presented to an idealized … problem solver with the actual
problem that is to be attacked by a problem solver with limited (even if large) com-
putational capacities.” Here, Simon [29] (also cited by [5]) warns that definiteness
around problem structure is largely an illusion, so care should be taken to not put too
much effort into attempting to structure a problem definition in conditions where no
such definition is possible.

Falessi et al. mention NDM in the context of comparing software architecture
decision-making techniques [24]. They categorize NDM as fitting under one of three
types of decision-making, where decision-makers “keep the first available alternative.”
This is not a complete characterization of what occurs. Decision makers do not simply
keep the first available option, but rather use pattern matching [30]. Falessi et al. do not
mention the expert-informed pattern matching that happens. They do acknowledge the
role of intuition, but not explicitly as experience-informed intuition and further char-
acterize NDM as a decision-making technique “where decisions are studied as the
product of intuition, mental simulation, metaphor, and storytelling.” Klein refers to
these four elements as the “sources of power” needed in naturalistic settings [7].

Manjunath, Bhat, Shumaiev, Biesdorf and Matthes [31] mention NDM in a short
paper about decision-making and cognitive biases in software architecture. They state
“evidence has been provided to show that architects either follow rationalistic or
naturalistic decision-making process.” Their reference for this statement, and their only
reference for NDM, is the work by Vliet and Tang [28] in the section “Modeling the
decision-making process.” In contrast to other NDM studies that focus on expert
decision-making in context [8, 22], Manjunath et al. say, “RPDM is derived from the
naturalistic decision-making framework that relies on mental mind maps. It is gen-
erally used by inexperienced architects or in scenarios where ADDs are to be made
under time pressure and other constraints which affect the decision-making quality.”
There are two potential issues with this claim. First, the primary research on NDM
refers to “mental simulation” but does not refer to “mental mind maps.” Second, to say
that NDM is generally used by inexperienced decision makers is not accurate. NDM

An Exploratory Study of Naturalistic Decision Making 59

emphasizes the requisite expertise of the decision maker [8, 22]. Klein further notes
that differences in expertise influence decision strategy [13].

Most of these prior studies of NDM in software architecture reference one of
Klein’s popular books [7] or [10]. While these two books are useful, this paper cites a
wider range of the NDM research literature, contributing to a deeper understanding of
how architects decide and the conditions under which they make expert decisions.
Other studies of NDM and architecture mentioned above examine the decision process,
problem structure, or decision tools. This paper builds on these studies by focusing on
the context of the architecture problem and the architect as decision maker in a dynamic
and complex environment.

3 Research Approach

3.1 Research Setting and Context

This paper studies practicing software architects in their context. This study uses a case
study of a large, global technology organization. Initially the researchers conducted an
online survey of experienced architects. Of these, 70% had 6 or more years of expe-
rience as architects and were located in different sites across a global business
group. The goal of the survey was to understand how architects perceived their role and
interactions with other architects, engineers, product owners and product management.
Following on from the survey, we conducted three focus groups to collect more data
about architecture decision-making. Both the survey and focus groups targeted people
with expertise in their domain, a defining characteristic of NDM settings, as discussed
in Sect. 2. The first part of this study contains details of the study design [27]. Initial
observations about architecture decision-making led to a closer look at the survey and
focus group data with the goal of gaining a deeper understanding of conditions and
contexts under which software architects make decisions.

3.2 Research Questions

This paper is concerned with how Naturalistic Decision Making (NDM), and RPD in
particular, applies to decision-making in software architecture, specifically in large and
complex environments. In this context, “large” relates to large architectures, code bases
with tens-to-hundreds of millions of lines of code, large organizations, geographically
distributed teams, and products and systems developed by hundreds or thousands of
engineers. “Complex” in this context refers to the idea that organizations are complex
adaptive systems, where behavior of systems is often non-linear and non-deterministic,
and the product of the interactions in the system is greater than the sum of the parts
[32]. This paper aims to contribute to the body of knowledge on architecture decision-
making by answering the following questions:

• RQ1: How does NDM apply to Software Architecture decision-making?
• RQ2: What are the conditions under which decisions are suited to an NDM

approach in software architecture?
• RQ3: What are the conditions under which decisions are not suited to an NDM

approach in software architecture?

60 K. Power and R. Wirfs-Brock

3.3 Research Method

This is a qualitative study. This study uses a case study to “understand complex social
phenomena” related to how architects make decisions. Case studies are well suited to
research in software development because they study contemporary phenomena in their
natural setting [33]. This study is concerned with how and why architects make the
decisions they do, the context in which they make those decisions. Case studies can
“uncover subtle distinctions and provide a richness of understanding and multiple
perspectives” [34]. This research includes perspectives from multiple stakeholders, not
just architects. Yin [35] notes that case studies are suitable when “the boundaries
between phenomenon and context may not be clearly evident.”

3.4 Data Collection and Analysis

Data was collected through an online survey of 62 architects from a business group
consisting of approximately 5,000 people worldwide. The survey used an online survey
tool to collect responses. The researchers then followed up with three focus groups
specifically about architecture decision making with 10, 11, and 12 participants,
respectively, from different product lines within the business group. Participants in the
focus groups were architects, program managers, engineers, and engineering managers
located in Israel, the USA, and India. The focus groups were recorded, and the
recordings were transcribed. The authors analyzed the survey data and focus group data
independently and reviewed the analyses together through multiple iterations. Addi-
tional data was collected through participant observation and follow-up semi-structured
interviews. The researchers used NVivo analyze the data.

3.5 Threats to Validity

This section discusses potential threats to the validity of this research study.

• External Validity. The researchers do not claim that these findings are universally
applicable. They are representative of architects in specific, large global technology
organizations. They serve as illustrative examples that others may learn from.

• Construct Validity. To mitigate this threat, data were collected from multiple
sources. The researchers used triangulation between the survey data, focus groups,
and participant observation, thereby converging evidence from multiple distinct
data sources. The researchers compared results across multiple groups, where the
data was collected at different points in time and in different geographic locations.

• Reliability. Relating to the repeatability of the study, the survey instrument and
focus group questions were designed over several iterations and involved other
subject matter experts and architects to review these and provide feedback. Using
respondent validation [36] the researchers reviewed the data with a group of
architects to help ensure validity of the data and the findings.

• Internal validity. This study does not attempt to establish any causal relationships,
so no internal validity threats are described [33].

An Exploratory Study of Naturalistic Decision Making 61

• Bias. People tend to report decision-making experiences where there was a negative
sentiment. This could impact the examples that participants chose to share. The
researchers encouraged participants to consider both positive and negative experi-
ences and outcomes.

4 Findings

4.1 NDM Conditions Under Which Architects Make Decisions

Architects in the survey report being satisfied with their decisions when they are able to
share common goals, collaborate with others, and are involved early and then able
follow-through their architecture decision to its implementation [30]. Feedback is
important to learning. As one architect notes, “To me it is very rewarding (for
everybody) to work and agree on architecture/design decisions in order to achieve a
common goal. The mutual trust and respect is very important as well.”

When asked about challenges they faced in their role, architects expressed senti-
ments that exhibit several characteristics commonly found in NDM contexts. Table 1
contains some examples of architects’ experiences and how they relate to NDM
characteristics. Even with extensive experience, architects don’t always feel confident
about their expertise. As one architect notes, “It would be great to focus on one area for
certain time to build expertise.” Here, they are referring to a particular type of
expertise, i.e., expertise in the product, system, or subsystem. Dynamic, shifting
responsibilities, and changing business demands added to their stress and lack of
confidence in their decision-making abilities.

4.2 How Attributes of NDM Decision Making Influence Decision Making

Focus group participants were asked to share their experiences of architecture decisions
that they were involved with. A significant number of the examples from the focus
groups show evidence of conditions typical of NDM settings as characterized in
Sect. 2. Findings are presented here in the same order as the NDM settings in Sect. 2.2.

Time Pressure. The findings show examples of decisions that were made under time
pressure. One architect told of a decision made to implement a simple coding change,
even though it was known to be inadequate at the time and other alternatives could
have been explored. The reason for accepting the solution was, “because it was urgent.
Right now.” Another architect told of being directed to change their design to “just
make it fit” time allotted. Although architects acknowledged that decisions need to be
made for short-term expediency, e.g. to address an immediate customer need, they
aren’t always happy about it. One architect described frustrations felt about a decision
where, “The right people were in the room, but there were arguments that were raised
for the first time during this meeting. And we came with a proposal, and for some
reason, during a very short discussion there were raised new arguments that couldn’t
be assessed properly. And I think that there was a need to stop the discussion, go and
analyze the feedback, but was under a lot of… I’m not sure if it was the real pressure,

62 K. Power and R. Wirfs-Brock

Table 1. Examples of selected NDM characteristics from the study findings; TC = Team
Coordination, II = Inadequate Information, TP = Time Pressures, PDP = Poorly Defined Proce-
dures, DCC = Dynamic Changing Conditions

Architect’s experience NDM characteristic
TC II TP PDP DCC

“Finding time for direct collaboration in calendars” X X
“Getting enough time from the knowledgeable architects
is difficult - especially when their agendas are not
completely aligned with mine”

X X X

“Time – we’re all busy!” X
“we spend a lot of time in discussions and speculations
of how a feature was designed and implemented, instead
of referring to a system spec”

X

“The transition to feature teams has dissipated in-depth
knowledge of our software”

X X

“Not all the information is shared with architects which
could affect some architecture decisions in the initial
phase of the project”

X

“Not being aware of system-wide decisions (guidelines,
policies) until long after they are made”

X

“It would make my job easier if other architects would
be concerned with making sure that others know what
they are working on, what decisions they have made that
affect my work”

X X

“Without an agreed process, there is always the tension
between the fast and dirty guys and the more structured
guys who keep records of requirements and design”

X

“The developers are encouraged by their managers to
provide independent solutions without seeking for an
agreed design, and sometimes even against an agreed
design”

X X

“Feedback on architectural decisions takes years, if ever,
to arrive. This makes learning from experience difficult
if not impossible”

X

“Our organization has been in firefighting mode for a
long time, and that inhibits the ability to take a step back
and look at the bigger picture”

X

“People are so insecure about their jobs … that they are
protecting information, not sharing, and are not open to
suggestions”

X X X

An Exploratory Study of Naturalistic Decision Making 63

but we wanted to finish up and to get a decision, and I’m not sure that the right
decision has been taken, just because of lack of time.” Was it actually lack of time, or
perceived lack of time? Is there a difference in how action is taken? If the decision-
maker feels time pressure, then it is real for them. Options are narrowed when under
time pressure. There is also evidence of decisions that were not made under time
pressure. Architects shared examples of decisions that were technology focused and
strategic or long-term in nature, e.g., API evolution, or creating guidelines for the use
of microservice frameworks. These decisions were made more deliberately, involving
experimentation and analysis.

High Stakes. The financial stakes are only one perspective of architecture decisions.
Architects in this study make decisions that impact products and systems with multi-
million- and multi-billion-dollar revenue streams. However, high stakes are not just
because of financial concerns. Architects make decisions that impact customer rela-
tionships, company reputation, future evolvability of the architecture, and market
competitiveness. Trust among peers and colleagues is a further theme that emerged; the
stakes are also high if that trust can be damaged. A discussion on how to establish that
trust and mutual respect is beyond the scope of this paper.

Experienced Decision Makers. The architects in our study were experienced and
generally confident about their decisions. However, occasionally they encountered
situations where they felt they lacked expertise. For example, one architect recounted
several situations where teams came to him for decisions even though he was not an
expert in their particular product area. He expressed feelings of self-doubt (“I don’t
know all of these things. Winging it most of the time. I don’t really understand a lot of
this stuff.”). As the discussion progressed it was clear that the architect was an expe-
rienced architect, and familiar with the technology domain. What he felt he lacked was
specific experience with the technical components the teams needed help with, which
were outside his immediate scope of responsibility. However, his general expertise as
an architect and his expertise with the domain resulted in “good enough” decisions that
got the team over their immediate hurdle. This also bought them time to fill the gap in
organization knowledge. In another situation an architect explicitly sought expertise, in
order to make better-informed decisions: “For example, my team was doing a feature
…. They made a lot of changes we’re not still really comfortable about, and then …we
went to approach the guy who had left our team. So, he came and he was the one who
reviewed.” Developing expertise takes time. An experience was shared of a team that
deliberately acquires necessary expertise to competently make decisions in new
domains: “Basically, when they become incompetent, they just close the doors. And
they say, ‘We will not entertain any request on this component for the next six months.
Nothing. Don’t come and talk to us if you want us to do a good job…’. …[And on] the
code, they write test cases, they reverse engineer, the whole thing. Then they come back
six months later, and it really is like you just changed into a butterfly from a cater-
pillar. … At which point, they’re really good.”

Inadequate Information. Finding information can be difficult as one architect
observed: “so much documentation is missing that … it becomes very complex to go
through the code and do the reverse engineering of what was thought.” Yet not every

64 K. Power and R. Wirfs-Brock

architect expects important details to be recorded: “Usually, the decision of what was
decided will be captured in the document. The decision of why it was decided that way
should be captured in somebody’s head”. There are counter examples in the findings
where design rationale was documented: “They do use Confluence for managing
everything about the…decision to be taken and conclusions and conversations and
thoughts around the decision and everything we’ve documented, easily to be accessed
again… I’m using these sites and these pages. I always find what I’m looking for.”

Ill-defined Goals. Designing the high-level architecture for a feature can be compli-
cated as an architect notes: “Just the countless numbers of architects that are involved
and the lack of clear product ownership because we moved away from component
ownership to this feature ownership. Which the lines become blurred because you can
own a feature and you’re shifting a feature into the solution but then it may impact a
number of other things supporting related features and stuff. It’s hard to understand
where’s the start and end of the product that you’re supposed to be driving.”

Poorly-defined Procedures. One architect expressed uncertainty about who should be
involved in decision-making: “I think that job description or responsibilities are not
well defined. Therefore, I’m talking about myself, you can always ask yourself whether
you are the right person to take [a] decision or do you need to consult with someone
else, or are you stepping on someone’s toes or not.” The shift to agile development has
made the process of architecting system infrastructure less obvious; as an architect
noted: “Agile hasn’t given an adequate answer to scaffolding or to infrastructure… So
as long as we’re talking a feature which has some kind of huge impact it’s OK. If it’s
very narrow, end to end, it doesn’t impact on the system then it’s fine.”

Cue Learning. An architect brought up the issue that sometimes short-term decisions
may not be revisited, even when evidence may indicate that this would be judicious:
“The problem is that when what I think is decision making in many, many cases the
first decision is accepted as the final one and the project leader [is] not ready to
change direction and adjust the decision to problems found.” The discussion continued
around what to do with new evidence, as the architecture can’t always be in flux. As
one architect notes, “People, in order to develop a solution, in order to develop
interfaces, in order to… They need some stability. Even if it’s not the ideal solution, we
need a consistent solution.”

Dynamic and Continually Changing Conditions. Under pressure to decide, one
architect stated they had difficulty finding consensus for the bigger decisions that
needed to be made, “just because things are moving too fast for me, and the orga-
nization is too in flux.” Consequently, they made lots of shorter-term decisions to
compensate. This person was an experienced architect and recognized the need for
considering long-term impacts. Under conditions of uncertainty and time pressure they
adopted a strategy that would be good enough in the short term, and keep the team
moving towards their longer-term needs. Another architect shared that they adjust their
initial decisions based on direct feedback and changing conditions. There are also
examples where organization politics can influence decision-making, adding to the
volatility and uncertainty of the context. For example, an architect shared that a
directive was given and not challenged: “my feeling was even though that was a

An Exploratory Study of Naturalistic Decision Making 65

directive or decision, not enough attention was given to nuance and to actual issues
that will arise from the deployment.” Another architect stated that “there are cases
when up to discussion, the people who disagree with mainstream were removed from
the discussion.”

Group Coordination. While not all decisions are made by consensus, it often takes
time to gain consensus. One architect notes “because we’re focused on consensus over
multiple engineering teams and architecture teams all over the place, the process has
just gotten more complicated.” Another architect remarks “To me [it] is very
rewarding (for everybody) to work and agree on architecture/design decisions in order
to achieve a common goal.”

5 Reflections on the Research Questions

RQ1: How Does NDM Apply to Software Architecture Decision-making?
The study found that experienced software architects make many decisions under
dynamically changing business conditions, with time pressure, and having inadequate
information. NDM, and RPD in particular, seems suited to decisions that must be made
quickly and when fast feedback on the decision allows for course corrections. The
conditions under which NDM is appropriate, however, can be short-lived, e.g., the time
pressure is temporary. Goals can become clear, or the need for clarity passes. Infor-
mation becomes available, or the need for that information passes.

RQ2: What are the Conditions Under Which Decisions are Suited to an NDM
Approach in Software Architecture?
Decisions that are made collaboratively, where there is mutual respect and trust among
decision-makers, and there’s enough expertise seem to be well suited to NDM. Kah-
neman and Klein also observe that true experts know when they don’t know and that
ability to recognize a situation as novel is one of the characteristics of experts [15]. The
case study found examples where architects who didn’t know enough to take a decision
with confidence either found a way to limit the scope of a decision to what they felt
expert in, or found and utilized others’ expertise to improve the decision. Given the
complexities of the systems they are designing, architects feel more confident in their
decision-making when they can learn from engineers and receive feedback on the
implementation of their decisions.

RQ3: What are the Conditions Under Which Decisions are Not Suited to an NDM
Approach in Software Architecture?
Decisions that require investigation into new technologies or are outside the area of
expertise of an architect are not suited to NDM approaches. Other examples where
more analytic approaches are appropriate include choosing a new persistence tech-
nology or migrating to a microservice architecture. These are conditions where poor
information is not tolerable. Environments where there are panels for reviewing
architectures generally won’t use NDM approaches. In these settings, decisions are
made through argumentation, persuasion, and influence – tactics for which there is
rarely time in NDM settings. Moreover, even though certain situations may appear

66 K. Power and R. Wirfs-Brock

conducive to NDM approaches, architects themselves, may question their own
expertise, and thus may seek out advice or take a more analytical approach to making
an architecture decision.

6 Conclusions

NDM is not a design decision process, but a way of understanding the context in which
decisions are made that, in the context of this study, impact architecture. NDM is
therefore process-agnostic. This exploratory study concurs with the findings of Klein
[17]; namely that recognition primed decisions are more likely when the decision
maker is experienced in the domain, time pressure is great, and conditions are less
stable. It can be helpful to consider decisions as related to three domains of technology,
solution, and product [27]. NDM is more likely to apply to select decisions where new
technologies are being introduced. NDM also applies in situations where business and
solution contexts are poorly understood, or are being invented, and this has an
immediate impact on architecture. Market and competitive pressures can force situa-
tions that benefit from NDM. The team needs to decide something quickly and move
on. We found evidence that architects learn under conditions of uncertainty when they
get feedback. This feedback adds to their expertise and contributes to their learning of
important cues. This improves their capability for dealing with future scenarios where
recognition-primed decision making is important. These findings are in contrast to
other researchers who claim that “RPDM is generally used by inexperienced architects”
[31]. Working in a complex, distributed environment poses great challenges for nat-
uralistic forms of decision-making. It can be difficult to get meaningful and timely
feedback. Decisions that involve a larger group take more time and consensus building.
One strategy reported to speed up decision-making was taking decisions that were more
limited in scope instead of building consensus. We also found examples where
decision-makers, when they felt they lacked expertise, found other experts to help in
making decisions or took the time to develop necessary expertise before taking any
actions. We also found an example of an architect who was called on to make decisions
because he was perceived as being good at making decisions, even though he lacked
specific expertise. Our findings concurred with the NDM literature that there often is
not enough time to build trust or gain widespread consensus. We observed that
authority is granted to architecture decision-makers based on expertise and role. There
is often an implicit and immediate and unspoken agreement on granting this trust and
authority in a triage situation that requires a rapid architecture decision.

6.1 Recommendations

Based on the findings in this exploratory study into NDM and architecture, the
researchers propose the following preliminary recommendations for architects and
those responsible for creating the conditions under which architects do their work:

An Exploratory Study of Naturalistic Decision Making 67

• Experts may not retain their tacit knowledge-informed expert status under
dynamically changing conditions. They may quickly and temporarily find them-
selves operating in an environment where their particular expertise does not apply.
Architecture expertise needs to be refreshed in software architecture. Architects are
not just doing the same thing over and over again. The context is shifting. Con-
sequently, a lot of learning happens on the job and timely feedback is essential to
learning.

• Consider carefully the consequences of using NDM approaches when the necessary
expertise is lacking. Expertise is a critical factor to successful decision-making.
Growing expertise requires feedback on the consequences of decisions and col-
laboration with others to share knowledge.

• Most architectural decisions are group decisions. NDM is more challenging in the
context of large groups that are distributed. More formality may be required to reach
agreement and document decisions in such settings.

• NDM decision-making may not be appropriate for locally optimized architectural
decisions. Sometimes seemingly localized decisions have broad system impacts. In
these situations, analytic approaches to decision-making may be more appropriate.

6.2 Future Research

This paper describes the first steps in a series of studies that the researchers are working
on towards understanding how the software architecture profession can benefit from
understanding software architecture through the lens of naturalistic decision making.
This has applications for architects, architecting, and architecture. A better under-
standing of Recognition Primed decisions (RPD) and other NDM models will help
architects apply appropriate decision-making strategies in the right context.

While localized decisions may appear expedient, sometimes they can have a
broader impact than anticipated. Understanding what conditions under which narrower
decision-making contexts are appropriate as well as the potential impacts of a series of
micro decisions is a topic of future research.

In addition, the social and political influence on decisions emerged as a point of
interest from these findings and is an area worthy of exploring in the context of NDM.
The NDM literature says little about the social and political context, e.g., they don’t
talk about politics of hospitals or fire stations. They focus on expertise. However, in
real-world software organizations, political factors are also an influence on decisions.

Klein, Ross, Moon, Klein, Hoffman and Hollnagel [36] report that as people gain
experience, they spend more time examining the situation and less on contrasting the
options, whereas novices spend more time contrasting options and less on compre-
hending the situation. We didn’t find evidence to support or disprove this finding, as
the architects in our study weren’t novices; they were experts encountering novel
conditions where they needed to make decisions. Further research is needed into how
experienced architects approach decision-making under novel conditions.

68 K. Power and R. Wirfs-Brock

References

1. Dasanayake, S., Markkula, J., Aaramaa, S., Oivo, M.: Software architecture decision-making
practices and challenges. In: 24th Australasian Software Engineering Conference, pp. 88–97
(2015)

2. Rekha V.S., Muccini, H.: Suitability of software architecture decision making methods for
group decisions. In: Avgeriou, P., Zdun, U. (eds.) ECSA 2014. LNCS, vol. 8627, pp. 17–32.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09970-5_2

3. Zalewski, A., Kijas, S.: Beyond ATAM: early architecture evaluation method for large-scale
distributed systems. J. Syst. Softw. 86, 683–697 (2013)

4. Cervantes, H., Kazman, R.: Designing Software Architectures: A practical Approach.
Addison-Wesley, Boston (2016)

5. Zannier, C., Chiasson, M., Maurer, F.: A model of design decision making based on
empirical results of interviews with software designers. Inf. Softw. Technol. 49, 637–653
(2007)

6. Klein, G.: Reflections on applications of naturalistic decision making. J. Occup. Organ.
Psychol. 88, 382–386 (2015)

7. Klein, G.A.: Sources of Power. MIT Press, Cambridge (2017)
8. Klein, G.: A naturalistic decision making perspective on studying intuitive decision making.

J. Appl. Res. Mem. Cogn. 4, 164–168 (2015)
9. Gore, J., Banks, A., Millward, L., Kyriakidou, O.: Naturalistic decision making and

organizations: reviewing pragmatic science. Organ. Stud. 27, 925–942 (2006)
10. Klein, G.A.: Streetlights and Shadows: Searching for the keys to Adaptive Decision Making.

MIT Press, Cambridge (2009)
11. Klein, G.: Naturalistic decision making. Hum. Factors 50, 456–460 (2008)
12. Klein, G.A., Calderwood, R.: Decision models: some lessons from the field. IEEE Trans.

Syst. Man Cybern. 21, 1018–1026 (1991)
13. Klein, G.: Naturalistic decision making. In: Human Systems IAC XI, pp. 16–19 (1991)
14. Simon, H.A.: What is an explanation of behavior? Psychol. Sci. 3, 150–161 (1992)
15. Kahneman, D., Klein, G.: Conditions for intuitive expertise: a failure to disagree. Am.

Psychol. 64, 515 (2009)
16. Flin, R., Salas, E., Straub, M., Martin, L.: Decision Making Under Stress: Emerging Themes

and Applications. Routledge, New York (2016)
17. Klein, G.: A Recognition-primed decision (RPD) model of rapid decision making. In: Klein,

G.A., Orasanu, J., Calderwood, R., Zsambok, C.E. (eds.) Decision Making in Action:
Models and Methods, pp. 138–147. Ablex Publishing, Norwood (1993)

18. Kahneman, D., Tversky, A.: Choices, values, and frames. Am. Psychol. 39, 341–350 (1984)
19. Simon, H.A.: Invariants of human behavior. Annu. Rev. Psychol. 41, 1–19 (1990)
20. Sherman, R.O.: Wicked problems. Nurse Leader 14, 380–381 (2016)
21. Kahneman, D., Egan, P.: Thinking, Fast and Slow (2011)
22. Schraagen, J.M.: Naturalistic decision making. In: Ball, L.J., Thompson, V.A. (eds.)

International Handbook of Thinking and Reasoning, pp. 487–501 (2017)
23. Klein, G., Calderwood, R., Clinton-Cirocco, A.: Rapid decision making on the fire ground:

the original study plus a postscript. J. Cogn. Eng. Decis. Making 4, 186–209 (2010)
24. Falessi, D., Cantone, G., Kazman, R., Kruchten, P.: Decision-making techniques for

software architecture design. ACM Comput. Surv. 43, 1–28 (2011)
25. Miesbauer, C., Weinreich, R.: Classification of design decisions – an expert survey in

practice. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 130–145. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39031-9_12

An Exploratory Study of Naturalistic Decision Making 69

http://dx.doi.org/10.1007/978-3-319-09970-5_2
http://dx.doi.org/10.1007/978-3-642-39031-9_12

26. Tofan, D., Galster, M., Avgeriou, P.: Difficulty of architectural decisions – a survey with
professional architects. In: Drira, K. (ed.) ECSA 2013. LNCS, vol. 7957, pp. 192–199.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39031-9_17

27. Power, K., Wirfs-Brock, R.: Understanding architecture decisions in context. In: Cuesta,
Carlos E., Garlan, D., Pérez, J. (eds.) ECSA 2018. LNCS, vol. 11048, pp. 284–299.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00761-4_19

28. Vliet, H.V., Tang, A.: Decision making in software architecture. JSS 117, 638–644 (2016)
29. Simon, H.A.: The structure of ill structured problems. AI 4, 181–201 (1973)
30. Klein, G.: Naturalistic Decision Making: Implications for Design. Klein Associates Inc.,

Fairborn (1993)
31. Manjunath, A., Bhat, M., Shumaiev, K., Biesdorf, A., Matthes, F.: Decision making and

cognitive biases in designing software architectures. In: 2018 IEEE International Conference
on Software Architecture Companion (ICSA-C), Seattle, WA, USA, pp. 52–55 (2018)

32. Bohórquez Arévalo, L.E., Espinosa, A.: Theoretical approaches to managing complexity in
organizations: a comparative analysis. Estudios Gerenciales 31, 20–29 (2015)

33. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, Hoboken (2012)

34. Kohn, L.T.: Methods in Case Study Analysis. Technical Publication, Center for Studying
Health System Change (1997)

35. Yin, R.K.: Case Study Research : Design and Methods, 5th edn. SAGE, London (2014)
36. Klein, G., Ross, K.G., Moon, B.M., Klein, D.E., Hoffman, R.R., Hollnagel, E.:

Macrocognition. IEEE Intell. Syst. 18, 81–85 (2003)

70 K. Power and R. Wirfs-Brock

http://dx.doi.org/10.1007/978-3-642-39031-9_17
http://dx.doi.org/10.1007/978-3-030-00761-4_19

Evaluating the Effectiveness of Multi-level
Greedy Modularity Clustering

for Software Architecture Recovery

Hasan Sözer(B)

Ozyegin University, Istanbul, Turkey
hasan.sozer@ozyegin.edu.tr

Abstract. Software architecture recovery approaches mainly analyze
various types of dependencies among software modules to group them
and reason about the high-level structural decomposition of a system.
These approaches employ a variety of clustering techniques. In this paper,
we present an empirical evaluation of a modularity clustering technique
used for software architecture recovery. We use five open source projects
as subject systems for which the ground-truth architectures were known.
This dataset was previously prepared and used in an empirical study
for evaluating four state-of-the-art architecture recovery approaches and
their variants as well as two baseline clustering algorithms. We used
the same dataset for an evaluation of multi-level greedy modularity
clustering. Results showed that MGMC outperforms all the other SAR
approaches in terms of accuracy and modularization quality for most of
the studied systems. In addition, it scales better to very large systems for
which it runs orders-of-magnitude faster than all the other algorithms.

Keywords: Software architecture recovery ·
Software architecture reconstruction · Reverse engineering ·
Modularity clustering · Empirical evaluation

1 Introduction

Software architecture documentation is an important asset for supporting pro-
gram comprehension, communication and maintenance [16]. This documenta-
tion turns out to be usually incorrect or incomplete, especially for old legacy
systems [10,24]. It is also very effort-intensive to recover such a documenta-
tion manually [14], which can quickly become infeasible as the software size and
complexity increases.

Software architecture reconstruction [9] or recovery [21] (SAR) approaches
have been introduced to recover software architecture documentation. These
approaches essentially analyze dependencies among software modules to group
them and reason about the high-level structure of a system. Inter-dependencies

c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 71–87, 2019.
https://doi.org/10.1007/978-3-030-29983-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-29983-5_5

72 H. Sözer

among software modules are usually represented with design structure matri-
ces [11] or (un)weighted (un)directed graphs [9,23]. In addition to these differ-
ent representations, SAR approaches mainly vary with respect to the types of
dependencies considered and the types of clustering techniques employed.

In this work, we focus on recovering the high-level structural decomposition
of a system based on code dependencies. In that respect, a recent empirical
study [21] evaluated the effectiveness of four state-of-the-art SAR approaches
and their variants as well as two baseline clustering algorithms. The study was
conducted on five open source projects as subject systems, for which the “ground-
truth” software architectures were manually recovered. Various types of depen-
dencies extracted from the subject systems were used as input to evaluate their
impact on the accuracy of SAR approaches. We used the same dataset for an
evaluation of modularity clustering [4,28] as an alternative SAR approach.

Modularity clustering aims at decomposing a graph into cohesive compo-
nents that are loosely coupled. This aim is aligned with the very basic modu-
larity principle [26] followed in software design. Hence, it makes sense to apply
this approach for SAR. In fact, there have been clustering techniques [23] intro-
duced for balancing the tradeoff between coupling and cohesion. However, it was
shown that the accuracy of these techniques is low and the utilized modular-
ity metrics are subject to flaws [21]. In this study, we employ the Multi-level
Greedy Modularity Clustering (MGMC) approach [25], which borrows metrics
and heuristics from the physics literature [7,31]. MGMC combines two heuris-
tics, namely greedy coarsening [7] and fast greedy refinement [31] to maximize a
modularity measure. We evaluate the accuracy of MGMC and compare it with
respect to those achieved with other SAR approaches. It was shown that some
of these approaches scale to very large systems that contain 10 MLOC, whereas
others not [21]. Therefore, runtime performance of MGMC is another important
aspect to investiage. We defined the following two research questions based on
these concerns:

– RQ1 : How does the accuracy of MGMC compare to those of other SAR
approaches when various types of dependencies are considered?

– RQ2 : How does the runtime performance of MGMC compare to those of other
SAR approaches?

We applied MGMC on dependency graphs regarding five open source projects.
These graphs represent different types of dependencies extracted from the source
code such as file inclusions and function calls. Then, we measured the quality
of the clustering using the corresponding ground-truth architectures and two
different metrics proposed before [23,36]. We compared these measurements with
respect to the measurements previously reported [21] for the same projects,
input files and metrics but for different SAR approaches. Results showed that
MGMC outperforms all the other SAR approaches in terms of accuracy and
modularization quality [23] for most of the studied systems. In addition, it scales
better to very large systems for which it runs orders-of-magnitude faster than
all the other algorithms.

Multi-level Greedy Modularity Clustering for Software Architecture Recovery 73

This paper is organized as follows. We summarize the related studies on SAR
and position our work in the following section. We introduce MGMC in Sect. 3.
We explain the experimental setup in Sect. 4. We present and discuss the results
in Sect. 5. Finally, in Sect. 6, we conclude the paper.

2 Background and Related Work

There exist many approaches [9] proposed for SAR, some of which are manual or
semi-automated. In this study, we focus on approaches introduced for automat-
ically recovering an architecture. The recovered architecture can be in various
forms for representing various architectural views [16]. The majority of the exist-
ing techniques [21,29,30,33] aim at recovering a module view that depicts the
structural design-time decomposition of a system [16]. Some of them focus on
analyzing the runtime behavior for reconstructing execution scenarios [5] and
behavioral views [27]. There are also tools that construct both structural and
behavioral views [17,34]. In this work, we focus on SAR approaches that are
used for recovering a high-level module view of the system.

SAR approaches also vary with respect to types of inputs they consume [9].
Some of them rely on textual information extracted from source code [8,15].
Many others use dependencies among modules, which are usually represented
with design structure matrices [11] or (un)weighted (un)directed graphs [23].
These dependencies can be extracted from a variety of sources as well. For
instance, a call graph extracted from the source code can be interpreted as a
dependency graph, where each vertex represents a module (e.g., class) and each
directed edge represents a dependency (e.g., method call) from the source ver-
tex to the target vertex [23]. As another example, commonly accessed database
tables (or other external resources) can be interpreted as (indirect) module inter-
dependencies [2]. The goal of a recent empirical study [21] was to measure the
impact of various code dependencies on the accuracy of SAR approaches. These
dependencies were represented in the form of unweighted directed graphs, which
were extracted based on variable accesses, function calls and file inclusions. We
use the same types of dependencies in this work to extend that study with an
evaluation of MGMC.

Finally, the employed clustering algorithm/technique is a major variation
point among SAR approaches. There are many techniques proposed so far and
these techniques have been compared with each other as well. However, an anal-
ysis of existing evaluations [21] show that results are not always consistent. In
a recent study [13], nine variants of six SAR approaches were compared based
on eight subject systems. The overall accuracy of all the evaluated approaches
turned out to be low based on their consistency with respect to the ground-
truth architectures collected for the subject systems. In that study, ACDC [35]
was pointed out as one of the best approaches. In another study, the perfor-
mance of LIMBO (Scalable Information Bottleneck) [3] was shown to be com-
parable to that of ACDC. There also exist a study [38] indicating that WCA
(Weighted Combined Algorithm) [22] performs better than ACDC. However, in

74 H. Sözer

the most recent studies [13,21], ACDC turns out to be superior than others.
Results may differ due to the use of different subject systems and assessment
measures/criteria.

Bunch [23] employs a hill-climbing algorithm for maximizing modularization
quality, while clustering a dependency graph. Its objective function is defined to
balance the tradeoff between the cohesion of clusters and coupling among them.
However, the best objective function value can be achieved by grouping all the
modules in a single cluster [21]. Also, the accuracy of Bunch was shown to be
low in recent empirical studies [21]. We adopt a different formulation of modu-
larity in this study and also a different algorithm to maximize it. We previously
used another variant of modularity clustering [12] for recovering software archi-
tectures of PL/SQL programs. In that approach, dependencies among PL/SQL
procedures are extracted based on their common use of database tables. These
dependencies are represented in the form of a hypergraph. This representation
is converted to a weighted undirected graph, which is then partitioned to maxi-
mize modularity. However, that approach was dedicated for PL/SQL programs
and its evaluation was based on a single case study. Moreover, it employed a
different algorithm [6] to maximize modularity. The effectiveness of MGMC that
we introduce in the following section has not been empirically evaluated as a
SAR approach.

3 Multi-level Greedy Modularity Clustering

Given a graph G(V,E), modularity clustering aims at grouping the set of vertices
V = {v1, v2, ..., vn} into a set of k disjoint clusters C1, C2, ..., Ck such that the
modularity is maximized. The modularity is calculated based on Eq. 1 [28].

M =
1

2m

k∑

l=1

∑

i,j|vi,vj∈Cl

(wij − didj
2m

) (1)

In this equation, wij represents the weight of the edge between vi and vj , di =∑
j �=i wij and m = 1

2

∑
i di. In our dataset, the extracted dependency graphs

are not weighted. Hence, wij can be either 1 or 0, representing the existence
of a dependency between vi and vj or lack thereof, respectively. However, the
objective function and the employed algorithms are generic and they can work
on weighted graphs as well. We should also note that graphs are considered as
undirected in this formulation. Two vertices, vi and vj are adjacent (wij = wji =
1) if either of these vertices depends on the other.

M captures the inherent trade-off in maximizing the number of edges among
the vertices that take place in the same cluster and minimizing the number of
edges among the vertices that take place in different clusters. We can see in Eq. 1
that wij values are summed up only for pairs of vertices that are in the same
cluster. Therefore, decreasing the number of clusters and as such, increasing the
size of each cluster is rewarded by taking more pairs into account. On the other
hand, the value of wij will be 0 for pairs of independent vertices that are in the

Multi-level Greedy Modularity Clustering for Software Architecture Recovery 75

same cluster. Nevertheless, the penalty didj

2m is paid for each such pair as well.
The amount of penalty is proportional to the number of dependencies of these
vertices to all the other vertices in the graph.

It was shown that finding a clustering of a given graph with maximum M
is an NP-hard problem [4]. Exact methods can not scale beyond graphs with
a few hundred vertices [1,39]. Therefore, many heuristic algorithms have been
proposed to address this problem. These are mainly proposed and elaborated in
the physics literature [7,31]. MGMC is one of these and it combines two heuris-
tics [25].

The first heuristic is greedy coarsening [7], which starts with singleton clusters
and iteratively merges cluster pairs as long as the merge operation increases
modularity. Hereby, a merge priority is assigned to each cluster pair, which
determines the order of pairs to be merged at each step. It was empirically
shown that the Significance (Sig) measure is an effective metric to quantify
merge priority [25]. Sig for a cluster pair (A,B) is defined as follows.

Sig =
ΔMA,B√

deg(A) × deg(B)
(2)

Hereby, ΔMA,B defines the amount of increase in modularity as a result of
merging clusters A and B. The deg function provides the total weight of edges
inside a given cluster.

The second heuristic is called fast greedy refinement [31]. This heuristic basi-
cally iterates over all the vertices in the graph and finds the best target cluster
to move for each vertex. The best cluster is the one that leads to the largest
modularity increase by moving the vertex to this cluster. Iteration stops when
the modularity can not be improved further with any vertex movement.

The coarsening and refinement heuristics do not have to be applied in sepa-
rate, sequential phases. Moving individual vertices after the completion of coars-
ening can lead to sub-optimal results. A densely connected group of vertices
may not have a chance to move to another cluster because this would involve
a series of vertex movements that degrade modularity. However, refinement can
be applied at any level of the coarsening hierarchy in principle. An entire clus-
ter can be moved rather than an individual vertex. This is the idea behind
multi-level refinement [18,19], where the application of coarsening and refine-
ment heuristics are interleaved. Intermediate coarsening results are saved as a
coarsening level whenever the number of clusters is decreased by a certain per-
centage called the reduction factor. These intermediate results are embodied as a
graph where vertices represent clusters obtained at the corresponding coarsening
level. The refinement heuristic is applied to every level. It was empirically shown
that modularity improves as reduction factor decreases; however, the amount
of improvement becomes less significant when reduction factor incline below
50% [25].

The algorithm [28] we used in this study follows the steps and recommen-
dations described above. The implementation of the overall greedy algorithm is

76 H. Sözer

discussed in [25]. Further details of the implementation together with pseudo
codes of its various steps are provided in [28].

4 Experimental Setup

In this section, we describe our experimental setup including the properties of
our dataset, SAR approaches being compared with MGMC and the evaluation
criteria.

4.1 Subject Systems and the Dataset

Table 1 lists information about five open source projects, which were used as
subject systems for a previous empirical study [21]. We used the same set of
projects because their ground-truth architectures and module dependency infor-
mation were available.

Table 1. Subject systems.

System Version LOC # of files Description

Chromium svn-171054 10 M 18,698 Web Browser

ITK 4.5.2 1 M 7,310 Image Segmentation Toolkit

Bash 4.2 115 K 373 Unix Shell Command Processor

Hadoop 0.19.0 87 K 591 Data Processing Framework

ArchStudio 4 55 K 604 Architecture Development Tool

Table 2 lists the properties of our dataset. Hereby, the second column lists
the number of clusters in the ground-truth architecture of each system. The
following 3 columns list the numbers of dependencies extracted for 3 basic types
of dependencies considered: (i) Include dependencies are established between two
files if one of them declares that it includes the other. (ii) Symbol dependencies
are established between two files if one of them makes use of a symbol that
is defined in the other. A symbol can be a function or a variable name. (iii)
Function dependencies constitute a subset of Symbol dependencies, just focusing
on function calls between modules.

Types of symbol dependencies were further varied to observe their impact on
the accuracy of SAR approaches. (i) F-GV captures function calls and global
variables together. (ii) S-NoDYB represents symbol dependencies extracted by
ignoring dynamic bindings. The values listed in Table 2 reflect this type of symbol
dependencies. (iii) S-CHA takes dynamic bindings into account by analyzing the
class hierarchies. (iv) S-Int is extracted by resolving dynamic bindings based on
interfaces only. We used these dependency types in our evaluation. There are two
other dependency types that were utilized in the previous empirical study [21],

Multi-level Greedy Modularity Clustering for Software Architecture Recovery 77

namely transitive and module level dependencies. We have not used these two
since the corresponding dependency information was not available for most of
the projects. Information regarding Include, S-CHA, S-Int, S-NoDyB, Function
and F-GV dependencies was available for all the projects. One exception to
this was the Bash project implemented in C, for which information regarding
dynamic bindings could not be extracted. So, dependency information regarding
S-CHA, S-Int and S-NoDyB variants is not available for this project. Depen-
dency information regarding each type of dependency is represented in the form
of an unweighted directed graph, so-called a dependency graph.

Table 2. Properties of the dataset [21].

System # of clusters in
the ground-truth
architecture

of various types
of dependencies

Include Symbol Function

Chromium 67 1,183,799 297,530 123,422

ITK 11 169,017 75,588 16,844

Bash 14 2,512 2,481 1,025

Hadoop 67 1,772 11,162 2,953

ArchStudio 57 866 5,359 1,411

4.2 Architecture Recovery Approaches

We selected the same variants of SAR approaches, for which we took the results
reported [21] regarding their accuracy on the same dataset we use. We only
omitted two of these approaches, namely Architecture Recovery Using Concerns
(ARC) [15] and Zone Based Recovery (ZBR) [8], which use textual informa-
tion from source code as input. Results regarding these approaches were missing
for dependency graphs that are used as input for MGMC. Most of the results
were missing for ARC and ZBR also because they could not scale for large sys-
tems [21]. In particular, we included results regarding ACDC [35], two variants of
Bunch [23], namely Bunch-NAHC and Bunch-SAHC, two variants of WCA [22],
namely WCA-UE and WCA-UENM, and finally, LIMBO [3].

We also included results regarding K-means algorithm used as a baseline for
comparison. There was a second baseline derived from the directory structure of
the project [21]. However, we omitted that one since most of the corresponding
results we missing, just like the case for ARC and ZBR.

4.3 Environment and Parameters

We used a laptop computer with Intel Core i7 1.80 GHz CPU and 16 GB RAM
to run the experiments. We used the implementation of MGMC provided by
Rossi [28], which is available online1. This implementation works on weighted
1 http://apiacoa.org/research/software/graph/index.en.html.

http://apiacoa.org/research/software/graph/index.en.html

78 H. Sözer

undirected graphs. Hence, in our dataset directions are ignored and all the edge
weights are assumed to be 1. We did not provide any of the optional parameters
and as such, used the algorithm with its default parameter settings (i.e., reduction
factor = 25%, merge priority = Sig).

Input files that store dependency graphs [21] conform to the Rigi Standard
Format (RSF) format [32,37]. The clustering results should also be saved in this
format to be provided to the implementations of metrics described in the fol-
lowing subsection. However, the input and output formats of the MGMC imple-
mentation do not conform to RSF. Hence, we developed programs to preprocess
the input and postprocess the output. We did not include the time spent for
input/output transformations in our measurements and just report the time
elapsed during clustering. We run the algorithm 100 times to observe the varia-
tion in running time although the results do not change in these runs.

The reported results for Bunch variants and ACDC are calculated as the
average of five runs due to the non-determinism of the employed clustering algo-
rithms [21]. On the other hand, WCA variants, LIMBO and K-means take the
number of clusters, k as input. Results reported for these approaches are aver-
ages of results obtained from multiple executions, where k is varied in each run.
The values of k range from 20 clusters below to 20 clusters above the number of
clusters in the ground-truth architecture with step size 5 [21].

4.4 Evaluation Criteria

We used two different metrics to evaluate MGMC and compare it with the other
SAR approaches. The first one is the MoJoFM metric [36], of which the imple-
mentation is available online2. This metric is used for measuring the similarity
between the recovered architecture and the ground-truth architecture. It has
been shown to be more accurate than other representative measures and consis-
tently been used in empirical studies on SAR [13,20,21]. The MoJoFM value for
given two clusterings A and B is calculated as follows:

MoJoFM = (1 − mno(A,B)
max(mno(∀A,B))

) × 100% (3)

Hereby, mno(A,B) calculates the minimum number of move or join operations
needed to transform A to B. On the other hand, max(mno(∀A,B)) calculates
the maximum mno(A,B) possible for any A. High and low MoJoFM values
indicate high similarity and high disparity between A and B, respectively.

There might be a lack of consensus on the ground-truth architecture by the
domain experts. Hence, there might be multiple such architectures derived [21].
Moreover, the recovery process is by-and-large manual, and as such, error-prone.
For these reasons, we used a second metric, namely normalized TurboMQ [21],
which measures the quality of a clustering independent of any ground-truth
architecture. This metric is defined based on the Cluster Factor (CF) that is
calculated for each cluster, i as follows:
2 http://www.cse.yorku.ca/∼bil/downloads/.

http://www.cse.yorku.ca/~bil/downloads/

Multi-level Greedy Modularity Clustering for Software Architecture Recovery 79

Table 3. MoJoFM results for Bash.

Method Include Symbol Function F-GV

MGMC 64 52 57 54
ACDC 52 57 49 50
Bunch-NAHC 53 43 49 46
Bunch-SAHC 57 52 43 49
WCA-UE 34 24 29 30
WCA-UENM 34 24 31 30
LIMBO 34 27 22 22
K-means 59 55 47 46

CFi =
μi

μi + 0.5 × ∑
j(εij + εji)

(4)

Hereby, μi is the number of dependencies among the elements in cluster i. The
term

∑
j(εij + εji) defines the sum of dependencies between elements in cluster i

and all the elements residing in other clusters. TurboMQ measure basically adds
up the CF values for all the clusters as shown in Eq. 5.

TurboMQ =
k∑

i=1

CFi (5)

It was observed that TurboMQ measure is biased towards architectures with
large numbers of clusters [21]. Therefore, it is normalized with respect to the total
number of clusters in the recovered architecture. This leads to the normalized
TurboMQ metric, which we used in our study. The implementation of this metric
is available online3 as well.

We discuss the obtained results in the following section.

5 Results and Discussion

Results for each subject system are listed in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11
and 12. The first and the latter five tables list results regarding the MoJoFM
metric and the normalized TurboMQ metric, respectively. In the following section
we first interpret these results to answer RQ1. Then, we evaluate the runtime
performance as the focus of RQ2. We conclude the section with a discussion on
threats to validity.

3 https://github.com/hasansozer/Normalized-TurboMQ.

https://github.com/hasansozer/Normalized-TurboMQ

80 H. Sözer

5.1 Accuracy of Modularity Clustering

Tables 3, 4, 5, 6 and 7 list the results for the MoJoFM metric. The first column
lists the compared SAR approaches, which is followed by results regarding each
type of dependency in the respective columns. The best score obtained by any of
the SAR approaches for a particular type of dependency is highlighted in light
gray. The best score overall is highlighted in dark gray. We can see from these
results that the overall best scores are obtained with either ACDC or MGMC. We
can also see that best scores per various dependency types are also attributed
to these two techniques except a few cases. Overall, MGMC outperforms ACDC
in approximately half of the cases.

Table 4. MoJoFM results for ArchStudio.

Method Include S-CHA S-Int S-NoDyB Function F-GV

MGMC 61 50 64 66 63 63
ACDC 60 60 77 78 74 74
Bunch-NAHC 48 40 49 47 53 46
Bunch-SAHC 54 39 53 40 53 54
WCA-UE 30 30 32 45 31 31
WCA-UENM 30 30 32 45 31 31
LIMBO 23 23 24 25 24 23
K-means 44 37 39 41 39 38

Table 5. MoJoFM results for Chromium.

Method Include S-CHA S-Int S-NoDyB Function F-GV

MGMC 59 56 55 64 67 67
ACDC 64 70 73 71 71 71
Bunch-NAHC 28 31 24 29 29 35
Bunch-SAHC 12 71 43 42 39 29
WCA-UE 23 23 23 27 29 29
WCA-UENM 23 23 23 27 29 29
LIMBO N/A 23 3 26 27 27
K-means 40 42 43 43 45 45

Tables 8, 9, 10, 11 and 12 list the results for the normalized TurboMQ metric.
We can see that MGMC is even much better than all the other SAR approaches
for this metric. It also consistently outperforms ACDC. In fact, this result is
expected because the normalized TurboMQ metric evaluates the modularity of
the clusters and MGMC aims at maximizing this property although the metrics

Multi-level Greedy Modularity Clustering for Software Architecture Recovery 81

Table 6. MoJoFM results for Hadoop.

Method Include S-CHA S-Int S-NoDyB Function F-GV

MGMC 27 24 40 42 37 39
ACDC 24 29 41 41 41 41
Bunch-NAHC 23 21 24 24 26 26
Bunch-SAHC 24 26 28 26 29 28
WCA-UE 13 12 15 28 17 17
WCA-UENM 13 12 15 28 17 17
LIMBO 15 13 14 14 13 14
K-means 30 25 29 28 29 29

Table 7. MoJoFM results for ITK.

Method Include S-CHA S-Int S-NoDyB Function F-GV

MGMC 50 57 56 54 62 62
ACDC 52 55 52 48 60 60
Bunch-NAHC 37 36 35 35 45 47
Bunch-SAHC 32 46 43 41 54 53
WCA-UE 30 31 44 45 36 36
WCA-UENM 30 31 44 45 36 36
LIMBO 30 31 44 38 36 35
K-means 38 42 39 43 60 61

used for assessing modularity are different. Bunch variants also aim at improv-
ing modularity. Hence, it is interesting to see Bunch variants lagging behind for
this metric as well. There is one exception to this observation among the results,
which is related to the Archstudio project (Table 9). Here, Bunch variants out-
perform all the other SAR approaches in general, although the best overall result
is still obtained with MGMC.

We manually analyzed the clustering output provided by MGMC for the S-
CHA dependency file regarding the ArchStudio project in detail. We noticed that
there are many clusters in the output that contain a single item only. Then, we
checked the occurrence of these items in the input dependency graph. We found
out that they are subject to reflexive dependencies. For instance, the following
file is specified to be dependent on itself only:

edu.uci.isr.archstudio4.comp.archipelago.ObjRefTransfer

The output of MGMC is reasonable for such cases. A cluster with no external
dependencies may not be merged with other clusters. Also, an item that is depen-
dent on itself only may not be moved to other clusters. These actions would not
improve the modularity measure. Indeed, we observed that the TurboMQ value
increases from 31 to 70 for MGMC after we remove reflexive dependencies.

82 H. Sözer

5.2 Runtime Performance of Modularity Clustering

Figure 1 depicts a box-plot regarding the execution times of MGMC for the largest
set of input files. Hereby, the x-axis lists the four largest dependency graphs in
the dataset that are provided as input for clustering. These are all extracted
from the Chromium project. The total completion time of clustering is indicated
by the y-axis in seconds. Recall that we used a laptop computer with Intel Core
i7 1.80 GHz CPU and 16 GB RAM to run the experiments. Yet, the execution
time do not exceed half a minute even for the largest input file. However, ACDC,
which was reported as the most scalable technique, took 70–120 min to run for
the same input file on a 3.3 GHz E5-1660 server with 32 GB RAM [21]. Results for
the other SAR approaches obtained only after 8 to 24 h of running or a timeout
error [21]. Therefore, we conclude that MGMC runs orders-of-magnitude faster
than all the other algorithms.

0

5

10

15

20

25

30

Inc. S-CHA Funct. F-GV

se
co
nd

s

Fig. 1. Runtime performance of MGMC on the largest dependency graphs extracted
from the Chromium project.

5.3 Threats to Validity

There are several validity threats to our evaluation. First, our evaluation is based
on the commonly used MoJoFM metric. It was shown that this metric was
preferable to other alternatives when the architectures being compared contain
the same files [21]. The validity of the ground-truth archtiectures poses another
threat for the study. However, actual developers and architects of the projects

Multi-level Greedy Modularity Clustering for Software Architecture Recovery 83

Table 8. Normalized TurboMQ results for Bash.

Method Include Symbol Function F-GV

MGMC 74 64 63 63
ACDC 9 22 29 29
Bunch-NAHC 25 31 33 28
Bunch-SAHC 30 30 28 28
WCA-UE 0 7 10 10
WCA-UENM 0 7 5 10
LIMBO 6 13 7 7
K-means 0 17 14 16

Table 9. Normalized TurboMQ results for ArchStudio.

Method Include S-CHA S-Int S-NoDyB Function F-GV

MGMC 89 31 50 50 54 37
ACDC 66 41 76 84 72 74
Bunch-NAHC 72 42 74 85 74 75
Bunch-SAHC 71 41 76 85 72 74
WCA-UE 1 11 22 65 10 19
WCA-UENM 1 11 22 65 10 19
LIMBO 2 12 31 38 24 27
K-means 13 21 38 51 35 39

were involved in the extraction of this information [21]. To mitigate these threats,
we used a second measure, normalized TurboMQ, which measures the quality
of a clustering independent of any ground-truth architecture. This measure is
based on the modularity metric utilized by the Bunch tool [23] and it is subject
to flaws, i.e., it is possible to obtain the maximum score by grouping all the
modules in a single cluster. We manually checked results for such cases. Our
evaluation is based on five subject systems, which limits the generalizability of
conclusions. These systems were selected to be of different size, functionality and
design/implementation paradigms to mitigate this threat. It is not easy to extend
the dataset due to difficulties in obtaining ground-truth architectures [14].

84 H. Sözer

Table 10. Normalized TurboMQ results for Chromium.

Method Include S-CHA S-Int S-NoDyB Function F-GV

MGMC 94 90 80 94 93 93
ACDC 15 19 18 20 24 24
Bunch-NAHC 4 24 9 26 16 19
Bunch-SAHC 2 30 11 23 29 11
WCA-UE 0 2 2 2 2 2
WCA-UENM 0 2 2 2 2 3
LIMBO N/A 2 2 2 2 2
K-means 0 17 13 19 22 22

Table 11. Normalized TurboMQ results for Hadoop.

Method Include S-CHA S-Int S-NoDyB Function F-GV

MGMC 89 45 48 52 54 45
ACDC 48 28 59 65 57 58
Bunch-NAHC 40 26 53 61 52 48
Bunch-SAHC 40 31 53 61 54 56
WCA-UE 1 5 8 34 6 8
WCA-UENM 1 5 8 33 6 8
LIMBO 2 7 19 25 17 17
K-means 11 13 29 34 26 27

Table 12. Normalized TurboMQ results for ITK.

Method Include S-CHA S-Int S-NoDyB Function F-GV

MGMC 95 92 80 90 94 94
ACDC 33 24 18 32 40 40
Bunch-NAHC 15 23 23 22 34 37
Bunch-SAHC 10 29 23 21 44 37
WCA-UE 3 9 3 2 10 9
WCA-UENM 3 9 3 2 10 19
LIMBO 7 11 5 1 9 9
K-means 13 24 15 13 31 25

6 Conclusion and Future Work

We introduced an empirical evaluation of MGMC used for SAR. We used five
open source projects as subject systems for which the ground-truth architectures
were known. Various types of dependencies extracted from these systems were

Multi-level Greedy Modularity Clustering for Software Architecture Recovery 85

previously used as input to evaluate their impact on the accuracy of state-of-
the-art SAR techniques. We used the same dataset to evaluate the accuracy and
runtime performance of MGMC and compared the results with respect those
achieved with existing techniques. Results showed that the accuracy of MGMC
is comparable to that of the best known algorithm so far, namely ACDC [35],
outperforming it in approximately half of the cases. In addition, it scales better
to very large systems for which it runs orders-of-magnitude faster than all the
other algorithms.

As future work, additional metrics can be employed for evaluating the
accuracy of clustering results. Other types/variants of greedy, heuristic-based
approaches can be employed to maximize modularity. Exact methods can also
be applied to obtain the optimal possible outcome as a reference point although
they do not scale for large projects. The dataset used for experimentation can
also be extended; however, ground-truth architectures are usually not available
and it is very effort-consuming to recover them [14].

Acknowledgements. We thank Thibaud Lutellier for providing the extracted depen-
dency data regarding the subject systems.

References

1. Agarwal, G., Kempe, D.: Modularity-maximizing graph communities via mathe-
matical programming. Eur. Phys. J. B 66(3), 409–418 (2008)

2. Altinisik, M., Sozer, H.: Automated procedure clustering for reverse engineering
PL/SQL programs. In: Proceedings of the 31st ACM Symposium on Applied Com-
puting, pp. 1440–1445 (2016)

3. Andritsos, P., Tsaparas, P., Miller, R.J., Sevcik, K.C.: LIMBO: scalable clus-
tering of categorical data. In: Bertino, E., Christodoulakis, S., Plexousakis, D.,
Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004.
LNCS, vol. 2992, pp. 123–146. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24741-8 9

4. Brandes, U., et al.: On modularity clustering. IEEE Trans. Knowl. Data Eng.
20(2), 172–188 (2008)

5. Callo, T., America, P., Avgeriou, P.: A top-down approach to construct execution
views of a large software-intensive system. J. Softw.: Evol. Process 25(3), 233–260
(2013)

6. Çatalyürek, U., Kaya, K., Langguth, J., Uçar, B.: A partitioning-based divisive
clustering technique for maximizing the modularity. In: Bader, D.A., Meyerhenke,
H., Sanders, P., Wagner, D. (eds.) Graph Partitioning and Graph Clustering. Con-
temporary Mathematics. AMS, Providence (2012)

7. Clauset, A., Newman, M., Moore, C.: Finding community structure in very large
networks. Phys. Rev. E 70, 066111 (2004)

8. Corazza, A., Martino, S.D., Maggio, V., Scanniello, G.: Investigating the use of lex-
ical information for software system clustering. In: Proceedings of the 15th Euro-
pean Conference on Software Maintenance and Reengineering, pp. 35–44 (2011)

9. Ducasse, S., Pollet, D.: Software architecture reconstruction: a process-oriented
taxonomy. IEEE Trans. Softw. Eng. 35(4), 573–591 (2009)

https://doi.org/10.1007/978-3-540-24741-8_9
https://doi.org/10.1007/978-3-540-24741-8_9

86 H. Sözer

10. Eick, S., Graves, T., Karr, A., Marron, J., Mockus, A.: Does code decay? Assessing
the evidence from change management data. IEEE Trans. Softw. Eng. 27(1), 1–12
(2001)

11. Eppinger, S., Browning, T.: Design Structure Matrix Methods and Applications.
MIT Press, Cambridge (2012)

12. Ersoy, E., Kaya, K., Altınışık, M., Sözer, H.: Using hypergraph clustering for soft-
ware architecture reconstruction of data-tier software. In: Tekinerdogan, B., Zdun,
U., Babar, A. (eds.) ECSA 2016. LNCS, vol. 9839, pp. 326–333. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48992-6 24

13. Garcia, J., Ivkovic, I., Medvidovic, N.: A comparative analysis of software archi-
tecture recovery techniques. In: Proceedings of the 28th International Conference
on Automated Software Engineering, pp. 486–496 (2013)

14. Garcia, J., Krka, I., Mattmann, C., Medvidovic, N.: Obtaining ground-truth soft-
ware architectures. In: Proceedings of the International Conference on Software
Engineering, pp. 901–910 (2013)

15. Garcia, J., Popescu, D., Mattmann, C., Medvidovic, N., Cai, Y.: Enhancing archi-
tectural recovery using concerns. In: Proceedings of the 26th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pp. 552–555 (2011)

16. Garlan, D., et al.: Documenting Software Architectures: Views and Beyond, 2nd
edn. Addison-Wesley, Boston (2010)

17. Guo, G.Y., Atlee, J.M., Kazman, R.: A software architecture reconstruction
method. In: Donohoe, P. (ed.) Software Architecture. ITIFIP, vol. 12, pp. 15–33.
Springer, Boston (1999). https://doi.org/10.1007/978-0-387-35563-4 2

18. Hendrickson, B., Leland, R.: A multi-level algorithm for partitioning graphs. In:
Proceedings of the ACM/IEEE Conference on Supercomputing, p. 28 (1995)

19. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

20. Kobayashi, K., Kamimura, M., Kato, K., Yano, K., Matsuo, A.: Feature-gathering
dependency-based software clustering using dedication and modularity. In: Pro-
ceedings of the 28th IEEE International Conference on Software Maintenance, pp.
462–471 (2012)

21. Lutellier, T., et al.: Measuring the impact of code dependencies on software archi-
tecture recovery techniques. IEEE Trans. Softw. Eng. 44(2), 159–181 (2018)

22. Maqbool, O., Babri, H.: The weighted combined algorithm: a linkage algorithm for
software clustering. In: Proceedings of the 8th Euromicro Working Conference on
Software Maintenance and Reengineering, pp. 15–24 (2004)

23. Mitchell, B., Mancoridis, S.: On the automatic modularization of software systems
using the Bunch tool. IEEE Trans. Softw. Eng. 32(3), 193–208 (2006)

24. Murphy, G., Notkin, D., Sullivan, K.: Software reflexion models: bridging the gap
between design and implementation. IEEE Trans. Softw. Eng. 27(4), 364–380
(2001)

25. Noack, A., Rotta, R.: Multi-level algorithms for modularity clustering. In: Vahren-
hold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 257–268. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02011-7 24

26. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15(12), 1053–1058 (1972)

27. Qingshan, L., Hua, C., Ping, C., Yun, Z.: Architecture recovery and abstraction
from the perspective of processes. In: Proceedings of the 12th Working Conference
on Reverse Engineering, pp. 57–66 (2005)

https://doi.org/10.1007/978-3-319-48992-6_24
https://doi.org/10.1007/978-0-387-35563-4_2
https://doi.org/10.1007/978-3-642-02011-7_24

Multi-level Greedy Modularity Clustering for Software Architecture Recovery 87

28. Rossi, F., Villa-Vialaneix, N.: Représentation d’un grand réseau á partir d’une clas-
sification hiérarchique de ses sommets. Journal de la Société Française de Statis-
tique 152(3), 34–65 (2011)

29. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage
complex software architecture. In: Proceedings of the 20th Conference on Object-
Oriented Programming, Systems, Languages and Applications, pp. 167–176 (2005)

30. Sangwan, R., Neill, C.: Characterizing essential and incidental complexity in soft-
ware architectures. In: Proceedings of the 3rd European Conference on Software
Architecture, pp. 265–268 (2009)

31. Schuetz, P., Caflisch, A.: Efficient modularity optimization by multistep greedy
algorithm and vertex mover refinement. Phys. Rev. E 77, 046112 (2008)

32. Storey, M.A., Wong, K., Muller, H.: Rigi: A visualization environment for reverse
engineering. In: Proceedings of the 19th International Conference on Software Engi-
neering, pp. 606–607 (1997)

33. Sullivan, K., Cai, Y., Hallen, B., Griswold, W.: The structure and value of modu-
larity in software design. In: Proceedings of the 8th European Software Engineering
Conference, pp. 99–108 (2001)

34. Sun, C., Zhou, J., Cao, J., Jin, M., Liu, C., Shen, Y.: ReArchJBs: a tool for auto-
mated software architecture recovery of JavaBeans-based applications. In: Proceed-
ings of the 16th Australian Software Engineering Conference, pp. 270–280 (2005)

35. Tzerpos, V., Holt, R.: ACDC: an algorithm for comprehension-driven clustering.
In: Proceedings of the 7th Working Conference on Reverse Engineering, pp. 258–
267 (2000)

36. Wen, Z., Tzerpos, V.: An effectiveness measure for software clustering algorithms.
In: Proceedings of the 12th IEEE International Workshop on Program Compre-
hension, pp. 194–203 (2004)

37. Wong, K.: RIGI User’s Manual. University of Victoria (1996)
38. Wu, J., Hassan, A.E., Holt, R.C.: Comparison of clustering algorithms in the con-

text of software evolution. In: Proceedings of the 21st IEEE International Confer-
ence on Software Maintenance, pp. 525–535 (2005)

39. Xu, G., Tsoka, S., Papageorgiou, L.: Finding community structures in complex
networks using mixed integer optimisation. Eur. Phys. J. B 60(2), 231–239 (2007)

What Quality Attributes Can We Find
in Product Backlogs? A Machine

Learning Perspective

Matthias Galster1(B), Fabian Gilson1, and François Georis2

1 University of Canterbury, Christchurch, New Zealand
{matthias.galster,fabian.gilson}@canterbury.ac.nz

2 University of Namur, Namur, Belgium
francois.georis@student.unamur.be

Abstract. Automatically identifying quality attributes (e.g., security,
performance) in agile user stories could help architects reason about early
architecture design decisions before analyzing a product backlog in detail
(e.g., through a manual review of stories). For example, architects may
already get the “bigger picture” of potential architectural key drivers and
constraints. Applying a previously developed method to automatically
identify quality attributes in user stories, in this paper we investigate (a)
what quality attributes are potentially missed in an automatic analysis
of a backlog, and (b) how the importance of quality attributes (based on
the frequency of their occurrence in a backlog) differs to that of qual-
ity attributes identified in a manual review of a backlog. As in previous
works, we analyzed the backlogs of 22 publicly available projects includ-
ing 1,675 stories. For most backlogs, automatically identified quality
attributes are a subset of quality attributes identified manually. On the
other hand, the automatic identification would usually not find more (and
therefore potentially irrelevant) quality attributes than a manual review.
We also found that the ranking of quality attributes differs between the
automatically and manually analyzed user stories, but the overall trend of
rankings is consistent. Our findings indicate that automatically identify-
ing quality attributes can reduce the effort of an initial backlog analysis,
but still provide useful (even though high-level and therefore potentially
incomplete) information about quality attributes.

Keywords: Agile software development · Quality attributes ·
Product backlog · User stories · Natural language processing

1 Introduction

A key principle of agile software development is to reduce potentially unneces-
sary upfront work. Nevertheless, it is important to understand the most signifi-
cant architectural drivers early on to avoid architectural decisions that negatively
impact modifiability or performance. If agile teams spend too little time thinking
c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 88–96, 2019.
https://doi.org/10.1007/978-3-030-29983-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-29983-5_6

What Quality Attributes Can We Find in Product Backlogs? 89

about architecture design upfront, then there is an increased risk of failure [16].
Quality attributes such as performance, security or interoperability impact archi-
tecture design decisions, e.g., when selecting architectural patterns, tactics or
reference architectures [1]. Therefore, identifying quality attributes early on is
part of software architecture analysis [1]. Furthermore, in agile software devel-
opment we need to balance near-term functional requirements and long-term
quality goals [2]. Hence it is crucial to understand which quality attributes are
relevant and which quality attributes might be more important than others. Pri-
oritizing quality attributes is difficult in early development iterations and wrong
decisions can result in hard-to-modify, unreliable, slow and insecure systems [8].

In agile software development, functional requirements are often specified as
textual user stories. For example, for an online store one may define a story
like “As a customer, I want to be able to create and edit a customer profile so
that I can conveniently use all services of the e-shop.” In our previous work [9]
we showed that user stories do include information about quality attributes,
and explored how to automatically identify user stories that include information
about quality attributes. The goal was to better understand potential architec-
tural key drivers and their “bigger picture” before analyzing a product backlog
in detail (e.g., through a manual and potentially time-consuming review of the
initial backlog).1 As found by others, problems related to architecture are often
found late in development projects [13]. Our previous work [9] also showed that
we cannot rely on keywords when looking for quality attribute-related informa-
tion in user stories. We therefore applied machine learning and natural language
processing [9].

Machine learning and natural language processing are usually limited regard-
ing precision and recall [7]. Therefore, in this paper we build on our previous
work to investigate two exploratory questions: Q1: Does an automatic analysis
of a backlog miss potentially relevant quality attributes? Answering this ques-
tion could help understand whether automatic analysis of backlogs potentially
misguides the architect’s decision making process. Q2: How does the importance
of quality attributes (based on the frequency of their occurrence in a backlog)
differ between an automatic and a manual review of a backlog? Answering this
question helps understand whether quality requirements can be reliably prior-
itized based on an automated analysis. We are interested in a more analytical
and exploratory discussion of the implications of identifying quality attributes
in user stories, rather than a detailed statistical and experimental evaluation as
partially done in our previous work [9]. Thus, in this paper we present a challenge
in software architecture research and promising results.

1 We acknowledge that quality attributes are not the only factors with architectural
significance; however, other factors are outside the scope of this work.

90 M. Galster et al.

2 Related Work

In software architecture, there are already examples of using natural language
processing, e.g., to extract design decisions from issue management systems [3,
14] or to identify architectural knowledge in developer communities [15].

In 2019, Binkhonain and Zhao conducted a review on machine-learning tech-
niques that classify non-functional requirements [4]. However, most techniques
use comprehensive requirement documents (rather than short user stories) writ-
ten by requirement engineers and rely on keywords. On the other hand, we
focus on user stories that are usually written by end users with less training in
requirements engineering and writing requirements. Two techniques identified
in the review [6,12] deal with mobile app reviews which share some common-
alities with user stories (e.g., short and concise sentences), but for a different
context. While most of the works discussed in [4] recover design decisions or
architecture knowledge post-hoc or for reuse, our goal is to inform decisions of
architects early on based on architectural drivers that arise from user require-
ments. Furthermore, our work is also related to prioritizing quality attributes (see
e.g., Koziolek [11]). We aim at a lightweight yet useful analysis of architecture-
relevant quality attributes in agile development.

3 Research Approach

Below we briefly discuss our approach to explore the two questions outlined in
Sect. 1. The corpus of backlogs and user stories in our study was a set of
1,775 publicly available stories similar to that used by Dalpiaz et al. [5] and in
our previous work [9], see Table 1. The number of user stories ranges from 50 to
114 with an average of 76 per backlog. The average length of stories is 24 words.

To manually identify quality attributes, two researchers independently
labelled user stories to indicate up to two quality attributes per user story (part of
our previous work). Then, we merged the labelling and discussed disagreements.
We used quality attributes as described in the ISO/IEC 25010 standard [10] (for
more details see our previous work [9]). For example, the story “As a reposi-
tory administrator, I would like to be able to continue to provide access to the
repository in the event that the server fails.” was labelled as referring to relia-
bility since it mentions continuous access to a system even in case of failures. In
the following, we use abbreviations for quality attributes (C: compatibility, M :
maintainability, PF : performance, PT : portability, R: reliability, S: security).

To automatically identify quality attributes, we relied on our previ-
ous work [9] which compared different natural language-based machine learning
techniques and models using the spaCy library for natural language processing.2

In this paper we used the best performing model to identify quality attributes
(this model had an average precision of 0.65, average recall of 0.67 and average
f1 score of 0.66 in a k-fold 10 validation) trained on manually labeled stories for
all quality attributes.
2 https://spacy.io/.

https://spacy.io/

What Quality Attributes Can We Find in Product Backlogs? 91

Table 1. Corpus of product backlogs and user stories.

Backlog Description Stories

FederalSpending Web platform for sharing US government spending data 94

Loudoun Land management system for Loudoun County, Virginia 57

Recycling Online platform to support waste recycling 50

OpenSpending Website to increase transparency of government expenses 53

FrictionLess Platform for obtaining insights from data 66

ScrumAlliance First version of the Scrum Alliance website 97

NSF New version of the NSF website 72

CamperPlus App for camp administrators and parents 53

PlanningPoker First version of the PlanningPoker.com website 52

DataHub Platform to find, share and publish data online 67

MIS Management information system for Duke University 83

CASK Toolbox to for fast and easy development with Hadoop 63

NeuroHub Research data management portal 102

Alfred Personal interactive assistant for active aging 134

BadCamp Conference registration and management platform 69

RDA-DMP Software for machine-actionable data management plans 82

ArchiveSpace Web-based archiving system 55

UniBath Institutional data repository for the University of Bath 53

DuraSpace Repository for different types of digital content 99

RacDam Software for archivists 100

CulRepo Content management system for Cornell University 114

Zooniverse Platform that allows anyone to help with research tasks 60

For each user story in each backlog (and following the manual and auto-
matic identification procedures from above) we recorded whether or not it
addresses a quality attribute and if so which one(s). For each backlog, we col-
lected a ranked list (or sequence) of quality attributes based on (a) the absolute
number of occurrences of a quality attribute in all stories of a backlog, (b) the
relative occurrence of a quality attribute compared to the number of user stories
in a backlog, and (c) the relative occurrence of a quality attribute based on all
stories that reference a quality attribute over all backlogs. The rankings were
the same using any of these three metrics. We collected this information for
manually and automatically identified quality attributes separately. We do not
consider other priorities of user stories (e.g., based on value): Priorities are often
not known upfront as user stories are usually prioritized by different stakeholders
during initial iteration planning and sometimes even re-prioritized later.

To compare the sequences of manually and automatically identified qual-
ity attributes, we used a simple metric based on the pairwise swaps required
to transform one sequence into the other. In case two ranked sequences did not
include the same number of quality attributes, the shorter sequence was filled up

https://www.planningpoker.com/

92 M. Galster et al.

with empty strings. Then, when transforming one sequence into the other, this
empty string in one sequence was moved to the position of the missing quality
attribute in the other sequence. For example, the sequence sm = {PF,C,R} from
the manual identification and sa = {PF,R} from the automatic identification
would lead to a comparison of sequences sm = {PF,C,R} and sa = {PF,R, ε}
(where ε denotes the empty string). We would require one swap between C and R
in sa to move C to the position of ε in sm. The total number of swaps required in
the example would then be 1. The larger the number of swaps, the more different
the sequences.

4 Results

In Table 2 we provide the sequences of ranked quality attributes for each backlog
(most frequently to least frequently occurring attribute). “Missed” indicates how
many quality attributes appear in the sequence from the manual identification,
but not in the sequence from the automatic identification. “Additional” indicates
the number of quality attributes that appear in the sequence from the automatic
identification, but not in the sequence from the manual identification.

Key Findings Regarding Q1 (Missing Quality Attributes): Table 2 (col-
umn “Difference”) shows that for most backlogs, the automatic classification
identified a subset of the manually labelled quality attributes. For only two back-
logs, the automatic identification found quality attributes that were not iden-
tified through manual inspection (security for backlogs of PlanningPoker and
NSF). This means that the amount of false positives on backlog level is rather
small (we analyzed false positives at story level in [9]). On the other hand, the
most frequently missed quality attributes across all backlogs were security, reli-
ability and portability (eight times each). There are two backlogs for which no
quality attribute were automatically identified. CamperPlus contained two sto-
ries related to security and BadCamp contained two stories related to security
and one related to compatibility. Still, these attributes were indirectly related
to the stories. For example, the story “As a parent, I want to be able to create
an account, so that I can sign up my kids for camp online.” from CamperPlus
was annotated with security albeit no obvious reference to security, the manual
annotations often being subject to human interpretation.

Key Findings Regarding Q2 (Importance of Quality Attributes): We
found that the ranked sequences were quite different mostly because of the miss-
ing quality attributes in the automatic classification (column “Difference”). The
number of swaps is rather small except for a few backlogs, e.g., NSF and CASK
(see column “Swaps”). On the other hand, the sequences for NeuroHub (the only
backlog where the quality attributes were the same in both rankings) showed
quite a different order. Focusing on the top quality attributes, the differences are
rather small (e.g., a quality attribute might be the first ranked in one sequence
and the second ranked in another sequence). An exception is the backlog for
CASK, where compatibility appears least frequently in the manual sequence,

What Quality Attributes Can We Find in Product Backlogs? 93

Table 2. Sequences of ranked quality attributes.

Backlog Sequences Difference Swaps

FederalSpending (manual)
FederalSpending (automatic)

{M,C, PF, S}
{C}

Missed: 3
Additional: 0

1

Loudoun (manual)
Londoun (automatic)

{C, S}
{C}

Missed: 1
Additional: 0

0

Recycling (manual)
Recycling (automatic)

{C, S,M,PT}
{S,C}

Missed: 2
Additional: 0

1

OpenSpending (manual)
OpenSpending (automatic)

{C,M,S, PT}
{C, S}

Missed: 2
Additional: 0

1

FrictionLess (manual)
FrictionLess (automatic)

{C,PF,R,M}
{C,PF, S,M}

Missed: 1
Additional: 1

1

ScrumAlliance (manual)
ScrumAlliance (automatic)

{S,C}
{S,C}

Missed: 0
Additional: 0

0

NSF (manual)
NSF (automatic)

{C,M,PT}
{M,S,C}

Missed: 1
Additional: 1

3

CamperPlus (manual)
CamperPlus (automatic)

{S}
None

Missed: 1
Additional: 0

0

PlanningPoker (manual)
PlanningPoker (automatic)

{C,PF, S}
{S,C}

Missed: 1
Additional: 0

2

DataHub (manual)
DataHub (automatic)

{C,R, PT, S,M}
{C}

Missed: 4
Additional: 0

0

MIS (manual)
MIS (automatic)

{S,C,M,PT,R}
{C, S}

Missed: 3
Additional: 0

1

CASK (manual)
CASK (automatic)

{M,R, PT,C}
{C,M}

Missed: 2
Additional: 0

3

NeuroHub (manual)
NeuroHub (automatic)

{C, S, PT,M,R, PF}
{C, S,M,PT, PF,R}

Missed: 0
Additional: 0

2

Alfred (manual)
Alfred (automatic)

{C, S,M,PT, PF}
{C, S,M,PT}

Missed: 1
Additional: 0

0

BadCamp (manual)
BadCamp (automatically)

{S,C}
None

Missing: 2
Additional: 0

0

RDA-DMP (manual)
RDA-DMP (automatic)

{S, PF,C,R}
{S,C}

Missed: 2
Additional: 0

1

ArchiveSpace (manual)
ArchiveSpace (automatic)

{C, S,R,M}
{C, S}

Missed: 2
Additional: 0

0

UniBath (manual)
UniBath (automatic)

{C, S,R,M,PF}
{C, S}

Missed: 3
Additional: 0

0

DuraSpace (manual)
DuraSpace (automatic)

{S}
{S}

Missed: 0
Additional: 0

0

RacDam (manual)
RacDam (automatic)

{S,C}
{S,C}

Missed: 0
Additional: 0

0

CulRepo (manual)
CulRepo (automatic)

{C, S,R, PF, PT}
{C, S}

Missed: 3
Additional: 0

0

Zooniverse (manual)
Zooniverse (automatic)

{C, S}
{C}

Missed: 1
Additional: 0

0

94 M. Galster et al.

but most frequently in the automatic sequence. When looking at the number of
occurrences of quality attributes in each sequence of CASK, we notice that the
absolute numbers for compatibility are rather close, but the main difference is
related to maintainability.

5 Discussion

Implications: Given our preliminary key findings above, we believe that even
though automatically identifying quality attributes may not result in exactly the
same quality attributes identified by a human analyst, the automatic approach
still provides insights for an initial design space exploration. Considering the time
required to manually review a backlog (magnitude of hours) compared to the
time of conducting the automatic approach (magnitude of seconds or minutes),
we believe that an automated backlog analysis could complement rather than
replace human decision making during architecture design: the automated back-
log analysis provides a starting point for problem and solution space exploration
(e.g., the automated analysis could identify key architectural drivers).

Limitations: One limitation of our work is that we do not differentiate run-
time quality attributes and design time quality attributes. Differentiating types
of quality attributes would allow a more detailed analysis of the implications
and perhaps the importance of quality attributes. Furthermore, we do not con-
sider the business value of user stories when determining the ranking of quality
attributes. Quality attributes that appear in more “valuable” user stories may
receive a higher priority (in addition to considering how often these quality
attributes appear in a backlog). Also, we do not consider changing and growing
backlogs. Our assumption is that quality attributes can be analyzed continu-
ously, but it is important to understand the “bigger picture” early on.

Treats to Validity: In terms of external validity, this research relies on a lim-
ited number of user stories and backlogs. It is unclear whether these backlogs are
representative of industrial practices in general. However, since how user stories
are specified in practice varies (e.g., phrasing patterns and writing guidelines)
and does not always follow best practices, it may be hard to identify a truly
representative set of stories. Also, we only consider stories but no acceptance
criteria. Finally, our set of quality attributes is rather limited as it follows the
structure of the ISO/IEC 25010 quality model. Future work includes considering
more hierarchy levels of that quality model. On the other hand, this will require
a much larger set of user stories to train a machine learning classifier, since the
number of quality attributes in ISO/IEC 25010 is rather large. Regarding inter-
nal validity, there could be confounding variables which impact our results and in
particular the manual labeling of stories, e.g., the labeling did not involve initial
stakeholders. Regarding conclusion validity, when comparing quality attributes
identified manually and automatically, we treated manually identified attributes
as “ground truth”. Thus, our findings depend on the quality of the manual clas-
sification and consistency across stories.

What Quality Attributes Can We Find in Product Backlogs? 95

6 Conclusions

In this paper we presented insights about how automatically identified quality
attributes in user stories can provide information for architectural decision mak-
ing. We found that (a) even though the automatic classification does not identify
all quality attributes considered relevant by human experts, at least it identifies
a subset rather than a random list of quality attributes, and (b) the rankings
of quality attributes identified manually and automatically vary, but trends in
sequences are consistent. Future works include analyzing more backlogs and user
stories and investigating the impact of distinguishing types of quality attributes
on the identified quality attributes and their rankings.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley, Boston (2012)

2. Bellomo, S., Gorton, I., Kazman, R.: Toward agile architecture: Insights from 15
years of ATAM. IEEE Softw. 32(5), 38–45 (2015)

3. Bhat, M., Shumaiev, K., Biesdorf, A., Hohenstein, U., Matthes, F.: Automatic
extraction of design decisions from issue management systems: a machine learn-
ing based approach. In: Lopes, A., de Lemos, R. (eds.) ECSA 2017. LNCS, vol.
10475, pp. 138–154. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
65831-5 10

4. Binkhonain, M., Zhao, L.: A review of machine learning algorithms for identifi-
cation and classification of non-functional requirements. Expert Syst. Appl.: X 1,
1–13 (2019)

5. Dalpiaz, F., van der Schalk, I., Brinkkemper, S., Aydemir, F.B., Lucassen, G.:
Detecting terminological ambiguity in user stories: tool and experimentation. Inf.
Softw. Technol. 110, 3–16 (2019)

6. Deocadez, R., Harrison, R., Rodriguez, D.: Automatically classifying requirements
from app stores: a preliminary study. In: Fourth International Workshop on Arti-
ficial Intelligence for Requirements Engineering (AIRE). IEEE (2017)

7. Domingos, P.: A few useful things to know about machine learning. Commun.
ACM 55(10), 78–87 (2012)

8. Galster, M., Angelov, S., Mart́ınez-Fernández, S., Tofan, D.: Reference architec-
tures in scrum: friends or foes? In: Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), pp. 896–901. ACM (2017)

9. Gilson, F., Galster, M., Georis, F.: Extracting quality attributes from user stories
for early architecture decision making. In: International Workshop on Decision
Making in Software Architecture (MARCH), pp. 1–8. IEEE (2019)

10. ISO/IEC: ISO/IEC 25010 system and software quality models. Technical report,
International Organization for Standardization/International Electrotechnical
Commission (2010)

11. Koziolek, A.: Architecture-driven quality requirements prioritization. In: IEEE
International Workshop on the Twin Peaks of Requirements and Architecture
(TwinPeaks), pp. 1–5. IEEE (2012)

https://doi.org/10.1007/978-3-319-65831-5_10
https://doi.org/10.1007/978-3-319-65831-5_10

96 M. Galster et al.

12. Lu, M., Liang, P.: Automatic classification of non-functional requirements from
augmented app user reviews. In: International Conference on Evaluation and
Assessment in Software Engineering (EASE), pp. 344–353. ACM (2017)

13. Martensson, T., Martini, A., Stahl, D., Bosch, J.: Continuous architecture: towards
the goldilocks zone and away from vicious circles. In: International Conference on
Software Architecture (ICSA), pp. 131–140. IEEE (2019)

14. Shahbazian, A., Lee, Y.K., Le, D., Brun, Y., Medvidovic, N.: Recovering archi-
tectural design decisions. In: International Conference on Software Architecture
(ICSA), pp. 95–104. IEEE (2018)

15. Soliman, M., Galster, M., Riebisch, M.: Developing an ontology for architecture
knowledge from developer communities. In: International Conference on Software
Architecture (ICSA), pp. 89–92. IEEE (2017)

16. Waterman, M., Noble, J., Allan, G.: How much up-front? A grounded theory of
agile architecture. In: International Conference on Software Engineering (ICSE),
pp. 347–357. IEEE (2017)

Architecturing Elastic Edge Storage
Services for Data-Driven Decision Making

Ivan Lujic1(B) and Hong-Linh Truong2

1 Institute of Information Systems Engineering, TU Wien, Vienna, Austria
ivan.lujic@tuwien.ac.at

2 Department of Computer Science, Aalto University, Espoo, Finland
linh.truong@aalto.fi

Abstract. In the IoT era, a massive number of smart sensors produce a
variety of data at unprecedented scale. Edge storage has limited capaci-
ties posing a crucial challenge for maintaining only the most relevant IoT
data for edge analytics. Currently, this problem is addressed mostly con-
sidering traditional cloud-based database perspectives, including stor-
age optimization and resource elasticity, while separately investigating
data analytics approaches and system operations. For better support of
future edge analytics, in this work, we propose a novel, holistic approach
for architecturing elastic edge storage services, featuring three aspects,
namely, (i) data/system characterization (e.g., metrics, key properties),
(ii) system operations (e.g., filtering, sampling), and (iii) data process-
ing utilities (e.g., recovery, prediction). In this regard, we present seven
engineering principles for the architecture design of edge data services.

Keywords: Edge data service · Architectural design ·
Edge computing · Adaptation · Service computing · IoT · Engineering

1 Introduction

The introduction of edge computing can help dealing with time sensitive require-
ments for accurate decisions based on Internet of Things (IoT) data [12]. Unlike
scalable cloud data repositories, edge systems have limited storage capacity,
whereas certain amount of IoT sensor data have to be stored and processed
in proximity of the data sources [13]. Consequently, any edge data service must
store only the most relevant data for edge analytics (streaming or batch), whereas
non-relevant data have to be either discarded or moved to cloud data centers.
But the relevancy is determined by analytics contexts: these new edge infrastruc-
ture conditions and new application analytics requirements, regarding explosive
growth of IoT data, force us to explore novel architectural design and further
implementations critical for elastic edge data services. By investigating edge data
services, we consider strategies, methods, mechanisms and operations for han-
dling and storing constantly generated data at the network edge. We observe
that even within a single edge analytics system:
c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 97–105, 2019.
https://doi.org/10.1007/978-3-030-29983-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_7&domain=pdf
http://orcid.org/0000-0002-8564-6040
http://orcid.org/0000-0003-1465-9722
https://doi.org/10.1007/978-3-030-29983-5_7

98 I. Lujic and H.-L. Truong

(O1) IoT data are categorized into different model types representing multi-
model data, in particular near real-time streaming data and log-based data,
thus, requiring different storage types and governance policies. They also include
different significance levels regarding to storage and edge analytics, especially for
critical applications, such as healthcare [6] (e.g., keeping the most important data
close to the data source) and smart manufacturing [11] (e.g., keeping significance
levels among data streams coming from industrial equipment for maintenance
purposes). Hence, all applications and sensors do not have equal importance;

(O2) Different IoT sensors include various errors such as missing data, out-
liers, noises and anomalies, affecting the designs of edge analysis pipelines and
corresponding differently to decision making processes. In this context, incom-
plete and noisy data can be critical, e.g., for traffic-dependent near real-time
route guidance [9], but can be tolerated by intelligent weather forecasts [8];

(O3) Data from different IoT sensors appear with different data generation
speed, consequently producing different data volumes for the same time interval.
Simultaneously, different types of monitored sensors require different data vol-
umes to make meaningful analytics. In systems like smart cities, it is crucial, for
example, to have big amount of frequent traffic measurements for managing traf-
fic flow in real-time. On the other hand, due to lower volatility, a weather station
can require much less data volumes from its sensors for accurate predictions.

Currently, all these highlighted issues are solved outside edge storage services.
Solutions for these issues are not included in existing designs of edge data services
because, as one might argue, such issues are analytic context-specific. However,
we argue that they are generic enough that can be customized and must be
incorporated into the design of (new) edge data storage systems. These observa-
tions indicate crucial changes for enhancing traditional approaches, which have
assumptions on consistent low latency, high availability and centralized storage
solutions, that cannot be generalized to the edge storage services and unreliable
IoT distributed systems. Our first step in solving the above-mentioned issues is
to focus on architectural requirements and designs. This paper will contribute:
(1) a detailed analysis of edge storage services with application-specific edge
analytics support and different utilities and analytics requirements; (2) a specifi-
cation of necessary principles for engineering highly customized software-defined
elastic storage services for dynamic data workload characterizations at the edge.

2 Motivation

In the IoT sensor environment, such as an exemplified university smart building
shown in Fig. 1, we can observe data workloads from different IoT applications
and decide whether to (1) push data to the cloud data storage, (2) keep relevant
data for local edge analytics or (3) discard data if they are not useful for future
analytics. In the first case, traditionally, all data are transferred to resource-
rich cloud data centers where storage and compute intensive workloads can be
handled, resulting in necessary control commands for IoT actuators. However,
increasing data streams and latency requirements arising from IoT applications

Architecturing Elastic Edge Storage Services 99

CT

F

V

KW

CO

Sensors
Smart

buildings Gateway

Cloud API Cloud
layer

Edge API Edge
layer

HVAC

Energy
mgmt

Server
rooms

Laboratory

Weather
station

Single edge analytics system

Limited
storage

Fig. 1. Traditional single analytics system for university smart buildings use case

makes distant cloud data transfer often impractical. Recent solutions for making
crucial fast decisions in IoT systems have increasingly used edge nodes.

In an IoT system, such as a university smart building equipped with many
sensors measuring internal subsystems, it is obvious that data from HVAC (Heat-
ing, Ventilation, and Air Conditioning) sensors do not have the same importance
as data from smart meters and solar panels essential for energy management
(O1); incomplete data from weather stations can occur due to external condi-
tions while missing data coming from server room sensors can be caused by
some internal failures (O2); an energy management subsystem has higher data
generation frequency than a laboratory subsystem (O3). Accordingly, each of
these subsystems requires different approach to sensor data analysis, although
the same edge storage system is used to integrate data for edge analytics. In
addition, limited storage capacities at the network edge prevents us from keep-
ing all generated data. In the third case, due to the limited underlying network
infrastructure, some data can be filtered or reduced to save bandwidth usage
and storage space, but impacting later degradation of Quality of Service (QoS).

Edge analytics have to meet certain quality of analytics, including amounts
of data available, timely decisions and certain levels of data accuracy. Therefore,
we must identify which data should be kept at the edge nodes, how long should
data be stored, and which processing utilities can assist these problems, providing
ability to access the right data at the right time to make data-driven decisions.

3 Engineering Principles for Edge Data Services

Regarding three important aspects of edge storages, namely; edge data/system
characterization, application context and edging operations, we present seven
principles as guidelines for engineering of elastic edge storage services.

P1: Define and Provide Needed Metrics. To enable efficient customization
and adaptation among elements of edge storage systems, it requires a clear def-
inition and flexible monitoring of end-to-end metrics regarding data workloads,
application context and system activities.

100 I. Lujic and H.-L. Truong

How: Figure 2 shows end-to-end monitoring metrics that can assist in elastic
edge storage management. There are metrics present in four stages of data life
cycle, namely data collection, data preprocessing, storage service analysis and
data analytics. However, the storage system must also allow definition of new
metrics at runtime, depending on application-specific requirements.

Data
Collection

End-to-end Elasticity Metrics
Data generation
rate
Data volume/size
Transmission
reliability
Data quality

Data sensitivity
Application
requirements
(latency,
accuracy)
Dependencies

Storage
capacities
Storage service
availability
Storage service
costs

Data volatility
Prediction
accuracy
Data correlation
Time/space
complexity

Edge Storage
Services

Data
Preprocessing

Data
Analytics

Monitoring

Fig. 2. End-to-end monitoring metrics of elastic edge services through four data stages

Tooling: There are many tools for monitoring cloud systems, e.g., Prometheus1,
and Fluentd2, but few able to monitor edge data metrics. These tools should
be equipped with additional features including pluggable components for edge
systems, such as fluentbit3, providing AI support and tracing instrumentation, as
a promising solution for providing end-to-end metrics for elastic storage services.

P2: Support Application-Specific Requirements. Based on sensor-specific
metrics and relevancy, we can combine different solutions to deliver appropriate
data to local analytics, while meeting application conditions, e.g., clean, complete
or normalize sensor data before storage and analysis. Further, customization for
secure and verifiable storage is required for applications with sensitive data.

How: Shown in Fig. 3, depending on application information, different sensor
data have corresponding data flow routed through the edge architecture to appro-
priate edge analytics, namely, descriptive, predictive or prescriptive. Intercon-
nected storage nodes, with features including data recovery and edge storage
management mechanisms, ensure access to the relevant data at the right time
for different purposes. An algorithm repository contains a set of predefined pro-
cessing utilities, which usage and order are application-specific and dynamically
set at runtime in the elasticity management component. In addition, blockchain
integrator component can capture certain types of application-specific data and
pass them to the edge blockchain network for verification and auditing.

1 https://prometheus.io/.
2 https://www.fluentd.org/.
3 https://fluentbit.io/.

https://prometheus.io/
https://www.fluentd.org/
https://fluentbit.io/

Architecturing Elastic Edge Storage Services 101

Descriptive

Data (De-)
Compression

Transfer
from/to Cloud

Predictive

Edge Storage
Management

Data
Recovery

Application
Information

Elasticity
Management

Sensor
Data

Algorithm
Repository

Blockchain
Integrator

IoT EDGE CLOUD
Storage Nodes Local

Analytics

Prescriptive

Processing
Utilities

Processing
Utilities

... ...

Sensor
Data

Sensor
Data

Anomaly
Detection

Incident
Analysis

Data
Normalization

Data
Preparation

Data
Cleaning

Fig. 3. Application-specific data flows through a holistic edge architecture

Tooling: A repository of available and pluggable microservices can speed up the
DevOps of storage services by supplying needed utilities. Different microservices
can be used to enable elastic activities, such as data cleaning, normalization
and data integration [2]. To keep relevant and complete data in space-limited
storage, nodes might incorporate an adaptive algorithm for efficient edge storage
management and an automatic mechanism for recovery of incomplete datasets.

P3: Enable Adaptive Data Handling. From a software management stand-
point, it is necessary to cope with heterogeneous data workloads including
dynamic data streams, batch transfers, QoS critical requirements. Storage ser-
vice should ensure that stored data are always available, relevant and complete,
i.e., keeping data integrity by utilizing different system and data operations.

How: In this context, critical software technology running on the edge can play
an important role in storage resources abstraction, supporting communications,
configuring suitable data handling features and on-demand data transfers. Tech-
niques for auto-switch data handling algorithms/components should be explored.

Tooling: Fogger4 could be used to support dynamic allocation and contextual
location awareness of storage resources in distributed environment, and featuring
blockchain technology. Microservices-based design concepts, such as Edgex5 open
source platform, might enable decentralized and independent data handling as
well as reliable data integration supported by on-demand data services.

P4: Highly Customized System Bundling. Edge storage features should
be highly customized and application-aware. Considering data workloads and
deployment conditions, traditional inflexibility in software modules bundling can
produce over- or under-bundled features for supporting edge application analyt-
ics. Thus, flexible storage configurations need to meet deployment situations.

How: Based on application-specific information and internal constraints (capac-
ities, resources), the build and deployment process should bundle only compo-
nents to match these constraints for the right infrastructures. This forces us to
4 https://fogger.io/.
5 https://www.mainflux.com/.

https://fogger.io/
https://www.mainflux.com/

102 I. Lujic and H.-L. Truong

develop an optimizer for bundling and deploying different software modules. As
shown in Fig. 3, different utilities should be available for customized bundling.

Tooling: Existing deploying tools like Docker Compose6, Ansible7, and Ter-
raform8, allow us to bundle and deploy stack of services but they do not enable
needed optimization. This requires us to leverage existing work and develop
novel algorithms based on edge node characteristics. Developed algorithms
should select application-specific and customized services to build dependent
components.

P5: Runtime Software-Defined Customization. Different inputs, such as
application information and data workload characteristics, have to be combined
to support runtime customization of elastic operations and data processing util-
ities. A way of combining these inputs must enable dynamic, software-defined
components for the overall system management. A multi-objective optimization
mechanism should enable dynamic prioritization of IoT data and condition eval-
uation from SLOs at runtime, and thus would impact provided storage service.

How: Figure 4 illustrates potential control flow for elastic storage services. It
incorporates a loop for managing internal storage system initially taking valid
application information and current storage system metrics. To evaluate a set of
defined objectives, dynamic workload characteristics are combined with static
knowledge (elastic operations and processing utilities). To decide situational
trade-offs for data quality and storage capacities, and utilizing edging system
operations, we need to derive an optimization strategy for customized storage
with core software-defined APIs for data management and service operations.

Tooling: We need to provide approaches of dynamic configuration, runtime code
change (like model@runtime [4]) and services mesh, to combine different inputs
from distributed storage nodes. The Kinetic Edge9 could enable efficient load
balancing between distributed storage locations. Multi-objective optimization
of customized objectives, e.g., data quality and storage capacities, can be well
addressed by using optimized data placement strategies in multi-cloud stor-
age [14].

P6: Support IoT-Edge Continuum. This principle looks at impacting con-
stant data flows between IoT systems and edge storage services, while supporting
underlying protocols. According to edge storage performances, it requires trig-
gering different actions with changing data generation frequency on-demand.

How: Both IoT and edge nodes require developing an edge-IoT connector to
control data flows that can often be unpredictable. This connector should be able
to (1) discard incoming poor quality data; (2) apply various sampling commands
for collecting only relevant data; (3) trigger actions for turning off/on sensors in
producing data; highly impacting overall performance of edge storage services.
6 https://docs.docker.com.
7 https://www.ansible.com/.
8 https://www.terraform.io/.
9 https://www.vapor.io/kinetic-edge/.

https://docs.docker.com
https://www.ansible.com/
https://www.terraform.io/
https://www.vapor.io/kinetic-edge/

Architecturing Elastic Edge Storage Services 103

Set of
objectives

Multi-objective
optimization

Set of
solutions

Elasticity
controller

Set of
operations

Control
commands

Elastic
operations

Data workload
characteristics

Application
information

Processing
utilities

Core APIs for
Storage Services

...
...

...
...

Load balancing

Adapt data freq.

System metrics Add nodes

Re-routing data

Replication

Actuator

Fig. 4. Elasticity management for customized data flows and edge storage services

Tooling: Novel mechanisms from data viewpoint can be considered allowing
IoT sensors to securely receive and perform actuation requests from edge nodes
and programmability viewpoint supporting actuation capabilities for remote IoT
device programmability. New design patterns for data pipelines should be imple-
mented to control unpredictable data flows and prevent low quality data.

P7: Support Edge-Cloud Continuum. This principle looks at inter-
operation and data transmission between edge and cloud storage systems
(Fig. 3). Despite the advantages of edge nodes, it is obvious that for many appli-
cations, cloud repositories still have to keep large datasets for complex data
mining and big data analytics. Thus, we need to support efficient and secure
data transfer of large datasets. With an increasing number of data-intensive
applications and bandwidth constraints, it will be crucial to reduce data traffic
between the edge and the cloud. Further, once large datasets are available in the
cloud, analytics models can be trained and then deployed at the edge for better
decision making.

How: For efficient edge-cloud cooperation we must build an edge connector to the
cloud, supporting: (1) operation viewpoint featuring timely techniques for data
approximation, (de)compression and encryption/decryption; (2) network view-
point featuring mechanism to avoid excessive data traffic through limited net-
work infrastructure; (3) analytics viewpoint featuring coordination mechanism
for consistent analytics models employing elasticity and deployment strategies.

Tooling: The approaches to push and pull data on-demand can be investigated
for edge-cloud data transfer. Impact of symbolic data representation [10] can be
considered as a good starting point to avoid excessive data traffic. There is need
for a model to support secure data migration among multi-location data stores.

4 Related Work

System Viewpoint. Various system operations have been used to build efficient
edge storage, e.g., authors in [1] discussed a data life cycle while investigating
the optimization of storage mechanisms and data management system design
for the IoT. The concept of data-centric communication [12] proposed different
management strategies to handle stored data from system viewpoint.

104 I. Lujic and H.-L. Truong

Application Viewpoint. According to [3], it is possible to assign dynamic routes
for IoT data based on application context information, considering four objec-
tives, namely; lifetime, delay, reliability and data delivery, but only network
viewpoint is examined. Authors in [7] proposed Storage as a Service model
where unused storage space can be shared as a cloud-based service for different
applications.

Design Viewpoint. Some of the high-level requirements for dealing with a new
design of the edge storage service in our paper is inline with IoT common design
principles [15], but such IoT common principles do not dig into edge storage
services and analytics scenarios. High-level self-adaptation for edge computing
has been discussed in [5], but it does not focus on edge storage services for
application contexts. In our approach, we bridge aforementioned gaps leading to
customized software-defined elastic edge storage services.

5 Conclusions and Future Work

IoT data-intensive applications pose big challenges to satisfy their strict require-
ments for timely and accurate data-driven decision making, while relying on
resource constrained edge systems. It is crucial to dynamically define a highly
customized optimization strategy to handle incoming data from different per-
spectives as well as maintaining only the most relevant data for edge analytics.
To scale future edge analytics processes, we present engineering principles and
demonstrate how they can potentially be implemented. In this context, proposed
approaches can help researchers to improve revealed dependencies in edge data
services. Although new insights are encouraging, many challenges are still open,
considering other application contexts and the implementation of principles.

Acknowledgments. The work in this paper has been partially funded through Rucon
project (Runtime Control in Multi Clouds), FWF Y 904 START-Programm 2015 and
Ivan Lujic’s netidee scholarship by the Internet Foundation Austria.

References

1. Ali, N.A., Abu-Elkheir, M.: Data management for the Internet of Things: green
directions. In: 2012 IEEE Globecom Workshops, pp. 386–390. IEEE (2012)

2. Ali, S., Jarwar, M.A., Chong, I.: Design methodology of microservices to support
predictive analytics for IoT applications. Sensors 18(12), 4226 (2018)

3. Silva Araújo, H., Rodrigues, J.J.P.C., Rabelo, R.A.L., Sousa, N.C., Sobral, J.V.V.,
et al.: A proposal for IoT dynamic routes selection based on contextual information.
Sensors 18(2), 353 (2018)

4. Blair, G., Bencomo, N., France, R.R.: Models@ run.time. Computer 42(10), 22–27
(2009)

5. D’Angelo, M.: Decentralized self-adaptive computing at the edge. In: International
Conference on Software Engineering for Adaptive and Self-Managing Systems, pp.
144–148. ACM (2018)

Architecturing Elastic Edge Storage Services 105

6. Dimitrov, D.V.: Medical Internet of Things and big data in healthcare. Healthc.
Inf. Res. 22(3), 156–163 (2016)

7. He, W., Yan, G., Da Xu, L.: Developing vehicular data cloud services in the IoT
environment. IEEE Trans. Ind. Inform. 10(2), 1587–1595 (2014)

8. Lai, L.L., et al.: Intelligent weather forecast. In: International Conference on
Machine Learning and Cybernetics, vol. 7, pp. 4216–4221 (2004)

9. Lederman, R., Wynter, L.: Real-time traffic estimation using data expansion.
Transp. Res. Part B: Methodol. 45(7), 1062–1079 (2011)

10. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic repre-
sentation of time series. Data Min. Knowl. Disc. 15(2), 107–144 (2007)

11. O’Donovan, P., Leahy, K., Bruton, K., O’Sullivan, D.T.: An industrial big data
pipeline for data-driven analytics maintenance applications in large-scale smart
manufacturing facilities. J. Big Data 2(1), 25 (2015)

12. Psaras, I., Ascigil, O., Rene, S., Pavlou, G., Afanasyev, A., Zhang, L.: Mobile data
repositories at the edge. In: Workshop on Hot Topics in Edge Computing (2018)

13. Satyanarayanan, M., et al.: Edge analytics in the Internet of Things. IEEE Perva-
sive Comput. 14(2), 24–31 (2015)

14. Su, M., Zhang, L., Wu, Y., Chen, K., Li, K.: Systematic data placement optimiza-
tion in multi-cloud storage for complex requirements. IEEE Trans. Comput. 65(6),
1964–1977 (2016)

15. Vogel, B., Gkouskos, D.: An open architecture approach: towards common design
principles for an IoT architecture. In: Proceedings of the 11th European Conference
on Software Architecture: Companion Proceedings, pp. 85–88. ACM (2017)

Adaptation and Design Space
Exploration

Continuous Adaptation Management
in Collective Intelligence Systems

Angelika Musil1,2(B) , Juergen Musil1 , Danny Weyns2,3 , and Stefan Biffl1

1 Christian Doppler Lab SQI, Institute of Information Systems Engineering,
TU Wien, Vienna, Austria

{angelika,jmusil}@computer.org, stefan.biffl@tuwien.ac.at
2 Department of Computer Science, KU Leuven, Leuven, Belgium

danny.weyns@kuleuven.be
3 Department of Computer Science, Linnaeus University, Växjö, Sweden

Abstract. Collective Intelligence Systems (CIS), such as wikis and
social networks, enable enhanced knowledge creation and sharing at orga-
nization and society levels. From our experience in R&D projects with
industry partners and in-house CIS development, we learned that these
platforms go through a complex evolution process. A particularly chal-
lenging aspect in this respect represents uncertainties that can appear
at any time in the life-cycle of such systems. A prominent way to deal
with uncertainties is adaptation, i.e., the ability to adjust or reconfigure
the system in order to mitigate the impact of the uncertainties. However,
there is currently a lack of consolidated design knowledge of CIS-specific
adaptation and methods for managing it. To support software architects,
we contribute an architecture viewpoint for continuous adaptation man-
agement in CIS, aligned with ISO/IEC/IEEE 42010. We evaluated the
viewpoint in a case study with a group of eight experienced engineers.
The results show that the viewpoint is well-structured, useful and appli-
cable, and that its model kinds cover well the scope to handle different
CIS-specific adaptation problems.

Keywords: Collective Intelligence Systems · Adaptation ·
Architecture viewpoint

1 Introduction

In the last decades, Collective Intelligence Systems (CIS), such as wikis, social
networks, and media-sharing platforms, enable enhanced knowledge creation and
sharing at organization and society levels alike. Today, CIS are widely adopted
and influence a large number of people in their daily lives. Established CIS
platforms have a longevity well over a decade and beyond. Consequently, CIS
represent a significant system domain to research from different perspectives.

A CIS is a complex socio-technical multi-agent system that realizes
environment-mediated coordination based on bio-inspired models in order to

c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 109–125, 2019.
https://doi.org/10.1007/978-3-030-29983-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_8&domain=pdf
http://orcid.org/0000-0002-1025-1626
http://orcid.org/0000-0002-2163-3603
http://orcid.org/0000-0002-1162-0817
https://doi.org/10.1007/978-3-030-29983-5_8

110 A. Musil et al.

create a perpetual cycle of knowledge and information aggregation and dissem-
ination among its agents (actors) [12,18]. The system is heavily driven by its
actors who continuously contribute content to a network of information artifacts
[15] (CI artifacts), which represents the coordinative substrate and is hosted by
an adaptive system layer that handles processing [17,23] of aggregated content
(monitoring, analysis, and information filtering) and information dissemination
(using rules, triggers, and notifications). This feedback loop between the actor
base and the computational system is an essential feature of a CIS and must be
carefully designed and maintained and may not be underestimated.

From extensive experience in R&D projects with industry partners and in-
house CIS development, we learned that these platforms typically go through
a complex evolution process during which they mature, leading to a significant
increase of user base size and accumulated content. Thereby, a particular chal-
lenge for software architects represents the multiple inherent uncertainties which
continuously affect the system. In particular, when designing CIS the available
knowledge is not adequate to anticipate all potential changes due to dynamics
in the system context, such as changes of conditions, requirements, resources,
or the emergence of new requirements and factors to consider. One way to deal
with and mitigate the impact of uncertainties is to design systems that adapt or
can be adapted when the missing knowledge becomes available [10].

Recent efforts to support software architecture aspects of CIS comprise an
architecture pattern as foundation of CIS [13], a reference architecture [17], an
architecture framework [14], and an architecture description language [3]. A par-
ticular challenging aspect with regard to evolution represents adaptation of CIS,
which is a multi-dimensional problem that spans the full life-cycle of such plat-
forms. However, the aspect of adaptation has not yet been investigated from a
CIS architecture perspective. Traditional adaptation approaches that are appli-
cable to common software system concerns in CIS are not directly applicable
to CIS-domain-specific concerns. Examples include adaptation elements in the
information dissemination phase of the feedback loop, when in the CIS life-cycle
should adaptation activities be performed, or how to address uncertainties effect-
ing the significant CIS perpetual cycle. Based on experiences from stakeholders
in industry and our own experiences with studying and developing CIS, we
identified a lack of consolidated design knowledge about the adaptation solution
space specific to these systems. Current practice in the CIS domain showed that
adaptation in CIS is added in an ad-hoc manner as a reaction to certain major
incidents, such as rapid decrease of user activities or spam information generated
by bots. However, incorporating adaptation mechanisms in an ad-hoc way may
lead to unpredictable consequences on the system and unintended system behav-
ior. Furthermore, there is a lack of methods to support software architects to
address CIS-specific adaptation with reasonable effort and systematically design,
describe and plan it.

To address these challenges, we study the what, when, and how of contin-
uous adaptation management in the CIS domain. Our goal is to provide soft-
ware architects with CIS-specific adaptation decision-making and management

Continuous Adaptation Management in Collective Intelligence Systems 111

capabilities during the evolution of a CIS software architecture. To achieve this
goal, we applied an empirically grounded research approach. We started with a
survey of existing CIS to identify if adaptation is a relevant concern and what
kind of adaptation is handled in practice. In addition, we reviewed literature
regarding research work on adaptation-related concerns and specifics with focus
on CIS. Next, we conducted a series of in-depth interviews with companies that
have successfully built and operate CIS in order to identify their problems and
challenges and to collect best practices on adaptation management in CIS. The
collected data provided input for the identification of relevant stakeholders, their
concerns during architecture design and requirements for architectural models to
address these CIS-specific concerns. Based on the consolidated data and synthe-
sized knowledge, we developed a novel architecture viewpoint, which provides an
adaptation-specific view on CIS architectures and is implementation agnostic.
The Continuous Adaptation Management Viewpoint (CIS-ADAPT) comprises
four model kinds and aims at supporting software architects across the CIS
life-cycle with a particular focus on the adaptation areas of modeling, scoping,
binding time, and evolution of CIS. To evaluate the viewpoint’s applicability and
usefulness, we conducted a case study with eight experienced engineers.

The remainder of this paper is structured as follows: Sect. 2 summarizes
related work. Section 3 describes the research question and methodology we fol-
lowed. Section 4 presents the proposed architecture viewpoint with its model
kinds. Section 5 describes a case study we used to evaluate the viewpoint’s appli-
cability and usefulness. Finally, Sect. 7 concludes and suggests future work.

2 Related Work

To the best of our knowledge, CIS-specific adaptation has not been the focus of
previous research work. Hence, we discuss a selection of representative work on
architecture-based adaptation and related architecture approaches in general.

Architecture-based adaptation [9,16] is an established approach to engineer
adaptive systems that focuses on the central role of software architecture in
such systems through abstraction and separation of concerns. Two fundamental
concerns of adaptive systems are domain concerns that are handled by the man-
aged subsystem (that realizes the system functionality) and adaptation concerns
that are handled by the managing subsystem (i.e., quality concerns about the
managed subsystem) [25]. A key approach to realize the managing subsystem is
by means of a so called MAPE feedback loop (Monitor-Analyze-Plan-Execute)
[8]. One well-known architecture-based self-adaptive framework is Rainbow [5].
This approach uses an abstract architectural model to monitor software sys-
tem run time specifications, evaluates the model for constraint violations, and
if required, performs global and module-level adaptations. The reference model
FORMS [26] (FOrmal Reference Model for Self-adaptation) provides a vocabu-
lary for describing and reasoning about the key architectural characteristics of
distributed self-adaptive systems and their concerns.

To support reuse of known solutions, [27] consolidated a number of design
approaches for decentralized control in self-adaptive systems in form of MAPE

112 A. Musil et al.

Expert Interviews

Data
Collection

Data
Analysis

Coding
Schema

CIS Survey

Transcripts

Synthesis Evaluation

Data Forms

Recordings

Notes

Analysis

Case Study

Recordings,
Survey, Interviews

Result Discussion

Continuous
Adaptation

Management
Viewpoint

Continuous
Adaptation

Management
Viewpoint

RQRQRQ

Fig. 1. Applied multi-phase research method

patterns. The authors discussed drivers for the design of self-adaptive systems
when choosing one of these MAPE patterns (e.g., optimization, scalability,
robustness). [19] presented twelve adaptation-oriented design patterns that are
collected from literature and open sources projects. These patterns are clustered
around monitoring, decision-making, or reconfiguration. The patterns are at the
level of software design in contrast to our architecture-centric perspective that
we adopt in this work.

One architecture viewpoint related to our work is the variability viewpoint
presented in [4]. However, the focus of that viewpoint was on enterprise soft-
ware systems and variability in general. Furthermore, [24] presented an approach
to augment an architecture viewpoint with a particular variability viewpoint.
Although both viewpoints follow ISO/IEC/IEEE42010 [7], they focus on vari-
ability concerns but do not consider binding times and system domain specifics.

In conclusion, the proliferation of domain-specific adaptation approaches con-
tinues, since the high degree of domain knowledge and complexity widens the
gap between general purpose adaptation approaches and the required additional
efforts of practitioners to make these approaches work and sustainably manage
in specific application domain like CIS.

3 Research Methodology

The main objective of this research is to improve the architectural understanding
of CIS and in particular to consolidate design knowledge on adaptation in CIS
in order to support software architects to handle it. Based on experiences of
stakeholders in the field that built and operate CIS and our own experiences
with studying and developing CIS, we identified the following research question:
What are architectural principles to handle CIS-specific adaptation along its life-
cycle and how can we codify these principles in a systematic way to make them
useful and applicable for software architects?

To answer this research question, we applied an empirically grounded research
method, shown in Fig. 1. We performed a survey of existing CIS and a series of
semi-structured interviews with software architects and senior software engineers

Continuous Adaptation Management in Collective Intelligence Systems 113

of different CIS companies. In the next step the analyzed results and derived
knowledge were consolidated in form of an architecture viewpoint for continuous
adaptation management in CIS following the ISO/IEC/IEEE 42010 standard [7].
Finally, we evaluated the usefulness and applicability of the proposed viewpoint
by conducting a case study with experienced engineers who used the viewpoint
to perform adaptation-specific design tasks in CIS key elements. More details,
generated material and results of the research activities are available online [11].
In the remainder of this section, we briefly summarize the survey and interviews.
The viewpoint and its evaluation are presented in the following sections.

CIS Survey. To investigate different types of CIS-specific adaptation that
address key elements and processes in various CIS application contexts, we
conducted a system survey based on a defined protocol describing the search
strategy, selection and system quality assessment criteria, data extraction pro-
cess, and data analysis methods. In total, we identified around 100 different CIS
based on searches from different sources, such as the web-traffic rankings from
Alexa1, Wikipedia, digital libraries of scientific work, and domain experts from
research and industry. We selected 30 CIS based on the quality of the available
material to assess the system, including design documentation, user guide, and
API specification. We collected data by exploring interaction workflows from an
end-user perspective and reviewing available system design and documentation
material. Based on subsequent analysis of the collected data and material, we
derived initial information about characteristic adaptation points in CIS key
elements and processes. Table 1 summarizes the main outcome of the survey in
terms of adaptation types in CIS and their refinements.

Expert Interviews. Based on the survey results, we conducted interviews with
10 technical stakeholders covering a variety of roles in CIS engineering, e.g.,
CTO, software architect, senior engineer, and product manager. The partici-
pants come from different Austrian and US companies and organizations that
operate a CIS platform in various application domains including medical, soci-
etal networking, employer/platform review & rating, and video/music sharing.
The participants had 2–10 years experience with CIS engineering and operation.
The goal of the interviews was to obtain additional data about stakeholders and
adaptation concerns, rationales for adaptation design, and life-cycle aspects. The
main selection criteria for participants was their experience in the CIS domain.
By applying the guidelines by Hove and Anda [6] and Seaman [22], we designed
semi-structured interviews with a combination of specific and open-ended ques-
tions (e.g., What are the features of your system that have changed over time?
What was your intention of these changes?). We asked them about the different
phases they have gone through since the beginning of their software platform
and challenges and difficulties they faced during design and engineering activi-
ties. The last part dealt with their experiences with respect to platform evolution
and CIS-specific adaptation, adaptation management challenges and practices as
well as the decision-making process. Each interview took about 50 min and was

1 http://www.alexa.com/topsites/global (last visited at 02/25/2019).

http://www.alexa.com/topsites/global

114 A. Musil et al.

Table 1. Identified adaptation types with examples of elements and their option space

Adaptation type Adaptation element examples Element adaptation option
examples

Actor Role & privilege Editor, administrator,
moderator

Application client Desktop, web, app, messenger

Aggregation Artifact attribute Category, review, votes, tags,
comments, actor views

Interaction rule Adding, commenting,
up-voting, tagging

Processing Monitoring mechanism Hot topics monitoring,
abnormal behavior monitoring

Information filtering mechanism Recommender system, artifact
changes, actor activities

Dissemination Trigger mechanism Email, app message, on-site
notification

Dissemination rule Monthly digest, daily report,
weekly recommendations

recorded for analysis. For data analysis, we applied coding [21] and grounded
theory [2] to transform, structure, and analyze the interview transcripts. The
findings of the interviews confirmed and complemented the previous results from
the survey and revealed how designing and planning CIS-specific adaptation over
the system’s life-cycle was managed.

One particular insight is that in later stages changes to adaptation are han-
dled less often than in the beginning and only in a conservative way in order to
prevent negative effects on the system’s behavior and success. So it is essential
to consider the right timing for a CIS’s evolution and when to introduce new
adaptation elements and options. Changes in CIS-specific elements can have a
significant impact on the behavior of the system and consequently on the behav-
ior of the actors.

4 Continuous Adaptation Management Viewpoint

From the data collection and analysis discussed in the previous section, we
defined the architecture viewpoint for continuous adaptation management in
collective intelligence systems (CIS-ADAPT) which unifies CIS-specific aspects
with established adaptation approaches. The viewpoint frames the essential con-
cerns of stakeholders with an interest in handling CIS-specific adaptation across
the system’s life cycle, starting from its inception and during its operation. The
viewpoint defines a set of four model kinds for identifying, designing and real-
izing adaptation in CIS key elements. It is important to note that the focus of
this viewpoint is on CIS-specific adaptation and its impact on the system archi-
tecture. As such, architects may use additional architectural approaches, such as

Continuous Adaptation Management in Collective Intelligence Systems 115

additional viewpoints or patterns, to deal with adaptation in traditional software
system elements and other stakeholder concerns. The architecture viewpoint is
structured using the template of the ISO/IEC/IEEE 42010 standard [7].

Table 2 shows an overview of the identified stakeholders and their adaptation
concerns addressed by this viewpoint. This viewpoint particularly focuses on the
technicalities of adaptation management in CIS, which are no direct concerns
of system users, who contribute continuously to it. Thus the users are no stake-
holders in terms of this viewpoint, but they are certainly affected by the design
decisions made by applying this viewpoint.

The viewpoint comprises four model kinds presented in Tables 3 and 4: adap-
tation types, adaptation definition, adaptation in time and adaptation workflow.

Table 2. Continuous Adaptation Management Viewpoint for CIS - Overview

Overview: The architecture viewpoint deals with the main stakeholder concerns re-
lated to the continuous management of CIS-specific adaptation and defines models
for the identification, design and realization of adaptation elements and their space
of possible options across the system’s life-cycle. The models show the relevant archi-
tectural information that is essential to guide a successful preparation for anticipated
changes in the system’s environment or requirements.

Stakeholders:
Architect(s) who design and describe the CIS architecture and identify the common-
alities and the adaptation space in the system.
Owner(s) who define the CIS’s purpose and business goals and operate it to provide
the service to the users.
Manager(s) who are responsible for overseeing CIS operation.
Analyst(s) who assess the performance of a CIS in terms of quality criteria.

Concerns:
C1 - Adaptation Identification: How can adaptation be exploited to enhance the op-
eration of a CIS? What are possible adaptation elements in a CIS? What are the
implications of adaptation elements in the design of a CIS?
C2 - Adaptation Management: What options are available to resolve an adaptation
element? What are the effects of different options? What are dependencies between
different adaptation elements and options? When are adaptation elements resolved?
Who is responsible for handling the adaptation and selecting adaptation options?
C3 - Adaptation Evolution: When are adaptation activities be performed in the CIS
life-cycle? How does adaptation influence the CIS evolution?

Adaptation Types Model Kind. This model kind describes the subject of
adaptation, comprising four CIS-specific adaptation types along with adapta-
tion elements: (1) Actor, (2) Aggregation, (3) Processing, and (4) Dissemination,
e.g., an adaptation element of the type Actor is Incentive Mechanism. Concrete
options of this adaptation element can be: awarding badges, up-votes, and likes.
Concrete options for adaptation element Dissemination Rule of type Dissemina-

116 A. Musil et al.

Table 3. Continuous Adaptation Management Viewpoint for CIS - Model Kinds

Model Kinds:
MK1 - Adaptation Types (deals with concern C1): A model that describes where adap-
tation can likely be achieved in a CIS to address uncertainties by identifying potential
points of adaptation in CIS-specific system areas along with possible alternatives.
MK2 - Adaptation Definition (deals with concern C2): A model that clarifies what
adaptation is about in the CIS-of-interest and describes details about the adaptation
elements selected for adaptation, the associated element adaptation space of options
to address particular uncertainties, and what constraints are applied on their relations.
MK3 - Adaptation in Time (deals with concern C3): A model that describes when
adaptation activities are applied by responsible entities and how adaptation evolves
across the CIS’s life-cycle.
MK4 - Adaptation Workflow (deals with concern C2): A model that describes how
the adaptation elements are realized and resolved, and who is responsible for selecting
adaptation options and triggering the changes.

Metamodels:
CIS

Adaptation Type

Actor Role &
Privilege

is
 o

f

Application
Client

Incentive
Mechanism

Reputation
Mechanism

CI Artifact
Attribute

Information
Filtering

Mechanism

Analysis
Mechanism

Monitoring
Mechanism

is
 o

f

Trigger
Mechanism

Dissemination
Rule

is
 o

f

is
 o

f

Actor Aggregation Processing Dissemination

CI Artifact
Link

Bot
Mechanism

MK1 –Adaptation Types

Interaction
Rule

CIS Adaptation
Type

CIS Element
Adaptation

Space

CIS Adaptation
Element

CIS Element
Adaptation

Option 10..*
is of

10..*
is of

Optional

Mandatory

0..1
0..*is

0..1
0..*is

0..1

0..*is

0..1

0..*is

Adaptation
Rationale

1..*

1..*

motivates

1..*

1..*

motivates

Constraint0..*

1

subject to

0..*

1

subject to

Dependency

0..*

1

is of

0..*

1

is of

Uncertainty

1..*

1..*

addresses
1..*

1..*

addresses

Exclusion
MK2 –Adaptation Definition

11
has

11
has

0..*

1

subject to

0..*

1

subject to

Key: UML

Continuous Adaptation Management in Collective Intelligence Systems 117

Table 4. Continuous Adaptation Management Viewpoint for CIS - Model Kinds

Metamodels:

CIS Life-cycle
Phase

Ramp-upExploration Expansion Stabilization Decline

Kick-startInception Take-off End-of-life

CIS Milestone

1

1

is part of

1

1

is part of

1

1

triggers

1

1

triggers CIS Activity
Level

Acceleration
Level

Criticality
Level

Maturity
Level

1

1
triggers

1

1
triggers

1

1

triggers 1

1

triggers

1

1

triggers

1

1

triggers
1

1

follows

1

1

follows

1

1
follows

1

1
follows

1 1
follows
1 1
follows

1 1
follows
1 1
follows

1 1
follows
1 1
follows

1 1
follows
1 1
follows

1 1
follows

1 1
follows

1 1
follows
1 1
follows

1 1
follows
1 1
follows

1

1

starts

1

1

starts

1

1

starts

1

1

starts

Adaptation
Activity0..31

uses

0..31

uses

0..*

1

introduces
0..*

1

introduces

Add Activity Remove Activity

10..*
performs

10..*
performs

MK3 –Adaptation in Time
Change Activity

Responsible Entity

Developer Operator System

CIS Adaptation
Element

CIS Element
Adaptation

Option

Responsible Entity

Developer Operator System

Development
Time (offline)

Run Time
(online)

Binding Time
11

has

11

has

1

1
binds
option 1

1
binds
option

1

1

binds option
1

1

binds option
Adaptation
Mechanism

1..*

1..*
analyzes

1..*

1..*
analyzes

1

1

binds option
1

1

binds option

MK4 –Adaptation Workflow

0..1

1..*

applies
0..1

1..*

applies

CIS Element
Adaptation

Space

CIS Adaptation
Element10..*

is of
10..*

is of
11

has
11

has

1..*

1..*

selects
1..*

1..*

selects

Adaptation
Rationale

Uncertainty

0..*

0..*

monitors
0..*

0..*

monitors

1..*

0..*
monitors

1..*

0..*
monitors

0..*

0..* has

0..*

0..* has

Key: UML

Analyses:
A1 - Adaptation Effect Analysis (using MK1 and MK2): Assesses the effects of different
adaptation option selections on the activities of the system and the actor base using
a set of scenarios.
A2 - Adaptation Option Conflict Analysis (using MK2, MK3 and MK4): Reviews the
relations and dependencies between adaptation elements and their spaces of options
that are simultaneously deployed and bound in different life-cycle stages.

tion are artifact change reports, weekly digests, monthly personal recommenda-
tions. This model kind supports architects with defining what adaptation types
and adaptation elements are relevant to implement in the context of the specific
CIS-of-interest based on the concretely identified adaptation types.2

2 Gray shaded boxes in model kinds represent links between multiple model kinds.

118 A. Musil et al.

Adaptation Definition Model Kind. This model kind describes what adap-
tation is. It defines the possible adaptation options of an adaptation element,
i.e., the adaptation space, each option representing a particular setting of the
element. An adaptation element and its adaptation options are subject to con-
straints, i.e., they can exclude one another or may have dependencies, e.g., only
actors with editor role can activate an artifact protection mechanism. A CIS
element adaptation option can be optional or mandatory. Adaptation is then
defined as addressing uncertainties by selecting adaptation options for elements
according to the adaptation rationales (goals). For instance, a lack of actor atten-
tion for specific artifacts observed during operation (uncertainty) may be handled
by activating an awareness trigger (adaptation option) to increase contributions
to these artifacts (rationale).

Adaptation in Time Model Kind. Grounded on the life-cycle and timeline
model for self-adaptive software systems [1], this model describes when adapta-
tion can be applied throughout a CIS’s life-cycle in five phases: (1) Exploration
phase, (2) Ramp-up phase, (3) Expansion phase, (4) Stabilization phase, and (5)
Decline phase. Besides the phases, we identified characteristic milestones that
a CIS can achieve and activity levels to reach. The exploration phase starts
with the inception of the design and building of a first version of the system-
of-interest. Then the ramp-up phase is triggered by the kick-start milestone
of the official launch of the system-of-interest. During this phase the CIS can
reach another milestone when the number of active users and generated content
suddenly “takes-off”. This take-off is triggered by reaching a certain level of
criticality. Then the expansion phase is triggered by reaching a certain level of
acceleration. The stabilization phase is then triggered by reaching a certain level
of maturity. Finally, the decline phase is triggered by reaching the “end-of-life”
point.

Any responsible entity can perform adaptation activities, i.e., add, change, or
remove activities to an adaptation element (by adapting its adaptation options)
in different phases of the CIS’s life-cycle. For instance, the operator introduces a
monitoring mechanism aiming to identify irregular activities in expansion phase.
This activity can be affected by reaching a certain CIS milestone (e.g., take-off
milestone) or activity level (e.g., criticality level). If an option of an adaptation
element is not relevant anymore, a responsible entity can remove it, e.g., the
system may turn off a dissemination rule when user activity is increased over a
period of time.

Adaptation Workflow Model Kind. This model kind describes how CIS-
specific adaptations are realized. The adaptation workflow is realized by an
adaptation mechanism associated with a responsible entity which can be a devel-
oper, an operator, or the system. A developer can apply adaptations offline (and
deploy them on the running system), while an operator and the system can
apply adaptations online. An adaptation mechanism realizes a feedback loop.
The mechanism monitors uncertainties and checks whether the system complies
with its goals (rationales). If the system goals may be jeopardized, the adapta-
tion space of the adaptation elements is analyzed, i.e., the options available for

Continuous Adaptation Management in Collective Intelligence Systems 119

adaptation, to mitigate the uncertainties. Based on this analysis, the adaptation
mechanism selects adaptation options for adaptation elements. These options
are then executed in the system.

Adaptation Effect Analysis. This analysis uses a set of scenarios to assess
the effects of selecting different adaptation options on the behavior of the sys-
tem and the actor base. The analysis results help identifying improvements of
the adaptation elements and their adaptation options. The results can also pro-
vide insights in the conditions when selected options may improve or degrade
the CIS behavior, e.g., in the form of increase/decrease of user activity. In the
exploration and ramp-up phases, adaptation effect analysis can be done using
simulation or via tool-assisted user testing. In later phases further approaches
like A/B testing and/or feature toggles can be added to enable automated, data-
driven processes for performance analysis, simulation and selection of adaptation
options. Figure 2 shows the effects of adaptation for a CIS pilot that we developed
using a NetLogo analysis model. The graphs on the left show results when no
dissemination is used. The graphs on the right show results when a slow-cycled
global dissemination rule and a short-cycled actor-personalized dissemination
rule are activated. The results show that the contribution distribution (top) got
a steeper tail at the beginning with the dissemination rules activated, whereby
the actor activity (bottom) remained unchanged.

Fig. 2. Analysis results: none (left) or two (right) dissemination rules activated

Adaptation Option Conflict Analysis. This analysis performs a review of
the relations and dependencies between adaptation elements, options, and adap-
tation elements and options that are simultaneously deployed and bound in the
different stages of the CIS’s life-cycle. The analysis results help to identify possi-
ble conflicts and inconsistencies between CIS adaptation elements/options that
need to be resolved. In early stage phases, conflict detection and resolution can

120 A. Musil et al.

be performed manually by the architect by using the CIS-specific adaptation def-
inition and workflow models. In later stage phases automated tool-support, such
as feature-to-code traceability and consistency checking of the CIS adaptation
models, is necessary to make conflict identification and resolution viable.

5 Evaluation of the Viewpoint

To obtain qualitative evidence of the usefulness and applicability of the CIS-
ADAPT viewpoint, we performed an in-depth study with eight engineers without
any experience in CIS design and development. Participants had between 1 and 7
years of industrial experience in software engineering/software architecture and
are active in Austrian companies as project managers, software architects and
software developers in various domains. To obtain qualitative data from different
perspectives, criteria to select the participants include a mix of male and female
engineers as well as a broad range of industry experience to get also insights into
how less experienced engineers use the viewpoint.

We applied a case study design to plan our qualitative in-depth study and
followed the guidelines for case studies in software engineering provided by Rune-
son et al. [20]. The concrete objective of the case study is answering the following
questions: (1) To what extent does the viewpoint support correct handling of CIS-
specific adaptation problems? (2) How useful are the model kinds with regard to
managing CIS-specific adaptation?

Here we summarize the case study design and the results. For a detailed
description and the evaluation material, we refer the interested reader to [11].

5.1 Case Study Design

In this case study the participants were instructed to apply the architecture
viewpoint in three adaptation-related design tasks addressing CIS key elements
of a given scenario. The case study was organized as a 6-hours session at TU
Wien. We provided all participants with the same material to perform each task,
including a general description of the CIS scenario, its domain and stakeholders,
a set of pre-defined architecture models related to the particular view on CIS
adaptation management which they had to extend or modify according to the
tasks, and the viewpoint description with its model kinds and analyses.

Before starting with the design tasks, participants were introduced to CIS in
general, software architecture concepts in the context of ISO/IEC/IEEE 42010,
and the CIS-ADAPT architecture viewpoint. The participants were also intro-
duced to the CIS scenario and questions were answered to avoid any misun-
derstanding of the assignment. After the first part, participants were asked to
complete a short survey to gather their background information, including their
education and experience with (CIS) software architecture design as well as
adaptation handling in architecture design.

While the participants performed the design tasks, we video recorded their
actions and progression to gather data how they used the viewpoint in the given

Continuous Adaptation Management in Collective Intelligence Systems 121

scenario. At the end of the study session, we collected the modified architecture
models and the participants were asked to complete a short survey to assess
the applicability, usefulness and understandability of the applied architecture
viewpoint and its model kinds. Finally, we conducted individual semi-structured
interviews of about 10 min each to collect data about the participant’s experi-
ences and challenges during the application of the viewpoint.

We analyzed in total 14 hours of video material as well as the design models
that the participants produced while accomplishing the given tasks to identify
how they applied the viewpoint and used its model kinds and model elements.
The survey results allowed us to better understand and reason about the use-
fulness and understandability of the viewpoint from an architect’s perspective.
Finally, the interviews provided us insights into the experiences and challenges
the participants had to face as well as feedback for improvement.

5.2 Case Study Results

Eight participants completed 3 tasks, each of which required to use the 4 models
of the viewpoint. In total each participant produced 12 models across all tasks,
resulting in 96 models in total across all tasks and participants.

P1 P2 P3 P4 P5 P6 P7 P8 G Y R
MK1 8 0 0
MK2 5 2 1
MK3 1 6 1
MK4 4 3 1
MK1 8 0 0
MK2 7 1 0
MK3 5 2 1

Participant

Ta
sk

 1
sk

 2

MK3 5 2 1
MK4 3 4 1
MK1 6 2 0
MK2 8 0 0
MK3 1 7 0
MK4 5 2 1

4,33 4,00 4,67 3,33 3,33 2,67 2,67 5,00

Ta
s

Ta
sk

 3

Performance
Easy Average Difficult Difficult Average Difficult Average Easy

Average Average Average Difficult Difficult Difficult Easy Average

Useful Average Average V. useful Average Useful V. Useful Useful
Efficient Efficient Average Efficient Efficient Efficient Efficient Efficient

Understanding
Applicability

Usefulness
Efficiency

Fig. 3. Overview of the results of 3 design tasks performed by 8 participants
(G = Green: correct solutions; Y = Yellow: partially correct; R = Red: incorrect) (Color
figure online)

In task 1, participants extended the space of each of two pre-defined adap-
tation elements with a new element adaptation option. In task 2, participants
modified an existing option from manual to automated application of the option
at run time. In task 3, participants defined and introduced a new adaptation
element to the system and added two options to its space.

From the created 96 models, 61 (63.5%) were solved correctly, 29 (30.2%)
with some deviations, and only 6 (6.3%) models were incorrect. Figure 3 shows

122 A. Musil et al.

an overview of the model defects across all participants and tasks. Hence, in
the context of the design tasks, we can answer the first evaluation question (To
what extent does the viewpoint support correct handling of adaptation problems
in CIS?) positively. Nevertheless, some of the participants commented on the
complexity of elements of the viewpoint, e.g., “For me, this [MK3] was the most
difficult model, because it has many aspects such as phases and milestones and
all interact. Also, this one is more formal. For understanding, you can exactly
see how level and phase and milestones are linked.” or “The workflow model
[MK4] was difficult, because it was not clear in the task description specifically
when the resolving should actually happen.” In the following, we elaborate on
the analysis of the usefulness of each model kind.

MK1. For the adaptation types model, 22 of 24 designs were performed without
defects, 2 with defects, and none incorrect. The usefulness of MK1 was scored
2.5/5 on average by the participants. Positive feedback includes “[...] the model
provides a good overview about the adaptation types [...]” and “[...] it was useful
to see the available choices that you have, also when it comes where to add new
options and elements [...]”. Some critical remarks were “[...] I personally would
map the types to my components so that they are not so generic like in the study
scenario [...]” and “[...] the model was not really necessary for me, because its
parts have been repeated already in model 2 [...]”. In conclusion, the usefulness of
MK1 for the tasks at hand is moderate, the opinions among participants differ.

MK2. For the adaptation definition model, 20 of 24 designs were performed
without defects, 3 with defects, and 1 incorrect. The usefulness of MK2 scored
4.1/5 on average by the participants. Some of the positive feedback of the partic-
ipants include “[...] with regards to utility, the definition model was definitely the
best.” and “[...] the most helpful models for me have been models 2 and 3.” One
rather negative comment but showing its criticality was “The definition model
was the most challenging for me because it was so central and the following mod-
els depend on it. [...] you cannot do much meaningful with the later models if
you do not have the definition model straight.” In conclusion, MK2 was regarded
as a central model and indicated as highly useful in the tasks at hand.

MK3. For the adaptation in time model, 7 of 24 designs were performed with-
out defects, 15 with defects, and 2 incorrect. The usefulness of MK3 was scored
2.4/5 on average by the participants. One of the positive comments was “Model
3 and 4 have been pretty useful, in particular if you have to consider the run time
aspects. That was particularly useful.”. A critical comment was “The model was
tricky for me, because there is no definitive solution when there is the ideal point
in time - you know, too early or too late [...]”. In conclusion, MK3 was the worst
performing model kind in terms of correct solutions. Regarding utility the aver-
age score was moderate for the given tasks at hand. One recurring comment was
that the illustration of the CIS life-cycle that was used during the introduction
session would be a beneficial add-on for the viewpoint, e.g., one participant com-
mented “The life-cycle diagram would make using this model easier. I redraw it

Continuous Adaptation Management in Collective Intelligence Systems 123

from memory at the beginning so that I can better envision the life-cycle, instead
of just relying on the model kind.”

MK4. For the adaptation workflow model, 12 of 24 designs were performed
without defects, 9 with defects, and 3 incorrect. The usefulness of MK4 was
scored 4/5 on average by the participants. One of the positive comments was
“The workflow model helps to create a more flexible system and you see clearly
which risks are covered.” A critical comment was “It was not always clear when it
was run time and when it was development time. Also the dependencies between
tasks were rather loose. I think sometimes you cannot sharply discriminate clearly
between user tasks and system tasks, as it is suggested in the model kind.” In
conclusion, MK4 has shown to be a very useful model for the tasks at hand.

6 Threats to Validity

We briefly discuss potential validity threats of this study and ways how they
were mitigated.

Internal Validity. By using well-defined data extraction forms in the CIS sur-
vey and an interview guide, we attempted to conduct the study in a consistent
and objective way to reduce the risk to affect the validity of the data provided by
the study subjects. Especially during the interviews we needed to be very careful
when giving specific examples so that we do not influence the given answers. For
both data collection methods we performed a pilot study for improvement, e.g.,
to identify questions/data items that are confusing or do not provide enough
informative quality. Also expert feedback was used to counter-check the consis-
tency and integrity of the data collection instruments.

To address potential threats of misinterpretation of the collected data, the
findings have been derived by two researchers and two additional experienced
researchers cross-checked and validated the analysis results and conclusions. Fur-
thermore, during the interviews we regularly summarized the given information
and asked the participants to verify the correctness of the interpretation.

External Validity. The presented models are the result of an in-depth analysis
of the gathered data but might be limited by the samples we investigated. To
increase the generalization of the results to a broader context and strengthen the
study results, we plan to conduct a CIS survey with a larger system sample and
do more expert interviews. For the evaluation of the viewpoint, we performed a
case study with eight participants. To enhance generalization of the results, this
qualitative inquiry should be extended with additional cases in other domains.

7 Conclusion

In this paper, we presented an architecture viewpoint for continuous adapta-
tion management in CIS, aligned with ISO/IEC/IEEE 42010. The viewpoint is
intended to address CIS-specific adaptation concerns and existing limitations. It

124 A. Musil et al.

was designed to be compatible with other adaptation approaches so that our con-
tribution represents a useful addition to domain-specific adaptation approaches.
A qualitative evaluation with eight experienced engineers in a case study shows
that the viewpoint is well-structured and particularly useful to handle different
CIS-specific adaptation problems. In future work, we plan to refine the viewpoint
and extend its evaluation. Furthermore, we plan to further develop the analysis
part of the viewpoint and consider to develop tool support for it.

Acknowledgments. The financial support by the Christian Doppler Research Associ-
ation, the Austrian Federal Ministry for Digital and Economic Affairs and the National
Foundation for Research, Technology and Development is gratefully acknowledged.

References

1. Andersson, J., et al.: Software engineering processes for self-adaptive systems. In:
de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for
Self-Adaptive Systems II. LNCS, vol. 7475, pp. 51–75. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5 3

2. Corbin, J., Strauss, A.: Basics of Qualitative Research: Techniques and Procedures
for Developing Grounded Theory, 3rd edn. Sage Publications Inc., Thousand Oaks
(2007)

3. Dorn, C., Taylor, R.N.: Coupling software architecture and human architecture
for collaboration-aware system adaptation. In: Proceedings of the International
Conference on Software Engineering, pp. 53–62. IEEE (2013)

4. Galster, M., Avgeriou, P.: A variability viewpoint for enterprise software systems.
In: Proceedings of Joint WICSA/ECSA, pp. 267–271. IEEE Computer Society
(2012)

5. Garlan, D., et al.: Rainbow: architecture-based self-adaptation with reusable infras-
tructure. Computer 37(10), 46–54 (2004)

6. Hove, S.E., Anda, B.: Experiences from conducting semi-structured interviews in
empirical software engineering research. In: Proceedings of the 11th IEEE Inter-
national Software Metrics Symposium, pp. 23–32. IEEE Computer Society (2005)

7. ISO/IEC/IEEE 42010: Systems and software engineering - architecture description
(2011)

8. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

9. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future
of Software Engineering, pp. 259–268. IEEE Computer Society (2007)

10. Mahdavi-Hezavehi, S., Avgeriou, P., Weyns, D.: A classification framework of
uncertainty in architecture-based self-adaptive systems with multiple quality
requirements. In: Managing Trade-Offs in Adaptable Software Architectures, pp.
45–77. Morgan Kaufmann (2017)

11. Musil, A., Musil, J., Weyns, D., Biffl, S.: Supplementary Material: Continuous
Adaptation Management in Collective Intelligence Systems (2019). http://qse.ifs.
tuwien.ac.at/ci/material/pub/ecsa19/

12. Musil, J., Musil, A., Biffl, S.: Introduction and challenges of environment architec-
tures for collective intelligence systems. In: Weyns, D., Michel, F. (eds.) E4MAS
2014. LNCS (LNAI), vol. 9068, pp. 76–94. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-23850-0 6

https://doi.org/10.1007/978-3-642-35813-5_3
http://qse.ifs.tuwien.ac.at/ci/material/pub/ecsa19/
http://qse.ifs.tuwien.ac.at/ci/material/pub/ecsa19/
https://doi.org/10.1007/978-3-319-23850-0_6
https://doi.org/10.1007/978-3-319-23850-0_6

Continuous Adaptation Management in Collective Intelligence Systems 125

13. Musil, J., Musil, A., Biffl, S.: SIS: an architecture pattern for collective intelligence
systems. In: Proceedings of the 20th EuroPLoP, pp. 20:1–20:12. ACM (2015)

14. Musil, J., Musil, A., Weyns, D., Biffl, S.: An architecture framework for collective
intelligence systems. In: Proceedings of the 12th WICSA, pp. 21–30. IEEE (2015)

15. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
Systems. Auton. Agent. Multi-Agent Syst. 17(3), 432–456 (2008)

16. Oreizy, P., et al.: An architecture-based approach to self-adaptive software. IEEE
Intell. Syst. 14(3), 54–62 (1999)

17. Pääkkönen, P., Pakkala, D.: Reference architecture and classification of technolo-
gies, products and services for big data systems. Big Data Res. 2(4), 166–168
(2015)

18. Dyke Parunak, H.: A survey of environments and mechanisms for human-human
stigmergy. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2005.
LNCS (LNAI), vol. 3830, pp. 163–186. Springer, Heidelberg (2006). https://doi.
org/10.1007/11678809 10

19. Ramirez, A.J., Cheng, B.H.C.: Design patterns for developing dynamically adap-
tive systems. In: Proceedings of the ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, pp. 49–58. ACM (2010)

20. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples, 1st edn. Wiley Publishing, Hoboken (2012)

21. Saldana, J.: The Coding Manual for Qualitative Researchers, 2nd edn. Sage, Thou-
sand Oaks (2013)

22. Seaman, C.B.: Qualitative methods in empirical studies of software engineering.
IEEE Trans. Softw. Eng. 25(4), 557–572 (1999)

23. Sumbaly, R., Kreps, J., Shah, S.: The “big data” ecosystem at LinkedIn. In: ACM
SIGMOD Conference, pp. 1–10. ACM (2013)

24. Tekinerdogan, B., Sözer, H.: Variability viewpoint for introducing variability in
software architecture viewpoints. In: Proceedings of the WICSA/ECSA Compan-
ion, pp. 163–166. ACM (2012)

25. Weyns, D.: Software engineering of self-adaptive systems. In: Cha, S., Taylor, R.,
Kang, K. (eds.) Handbook of Software Engineering, pp. 399–443. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-00262-6 11

26. Weyns, D., Malek, S., Andersson, J.: FORMS: unifying reference model for formal
specification of distributed self-adaptive systems. ACM Trans. Auton. Adapt. Syst.
7(1), 8:1–8:61 (2012)

27. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.
In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering
for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35813-5 4

https://doi.org/10.1007/11678809_10
https://doi.org/10.1007/11678809_10
https://doi.org/10.1007/978-3-030-00262-6_11
https://doi.org/10.1007/978-3-642-35813-5_4

ADOOPLA - Combining Product-Line-
and Product-Level Criteria in

Multi-objective Optimization of Product
Line Architectures

Tobias Wägemann1(B), Ramin Tavakoli Kolagari1, and Klaus Schmid2

1 Technische Hochschule Nürnberg, Keßlerplatz 12, Nuremberg 90489, Germany
{tobias.waegemann,ramin.tavakolikolagari}@th-nuernberg.de

2 Universität Hildesheim, FB4, Universitätsplatz 1, Hildesheim 31141, Germany
schmid@sse.uni-hildesheim.de

Abstract. Product lines of software-intensive systems have a great
diversity of features and products, which leads to vast design spaces
that are difficult to explore. In addition, finding optimal product line
system architectures usually requires a consideration of several quality
trade-offs at once, involving both product-level as well as product-line-
wide criteria. This challenge cannot be solved manually for all but the
smallest problems, and can therefore benefit from automated support.
In this paper we propose ADOOPLA, a tool-supported approach for the
optimization of product line system architectures. In contrast to existing
approaches where product-level approaches only support product-level
criteria and product-line oriented approaches only support product-line-
wide criteria, our approach integrates criteria from both levels in the
optimization of product line architectures. Further, the approach can
handle multiple objectives at once, supporting the architect in exploring
the multi-dimensional Pareto-front of a given problem. We describe the
theoretical principles of the ADOOPLA approach and demonstrate its
application to a simplified case study from the automotive domain.

Keywords: Product line architectures · Design space exploration ·
Architecture optimization · Multiobjective · Variability modeling ·
Automotive

1 Introduction

When working with variant-rich product line architectures, it is essential to
differentiate between two distinct design spaces that can be present in a given
system model. On the one hand, the product line variability (PLV) defines the
set of all valid product configurations of an individual product line. On the
other hand, design options on the architecture level define a set of architectural
degrees of freedom (ADF) for the product line architecture, i.e., they describe
the range of potential alternative product line architectures that satisfy the
c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 126–142, 2019.
https://doi.org/10.1007/978-3-030-29983-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-29983-5_9

ADOOPLA – Product-Line- and Product-Level PLA Optimization 127

demands of the same product line (as defined by its features). Section 3 gives
a detailed description of the differences. For now, it is sufficient to understand
that configuring the ADF will result in a specific underlying architecture for the
product line (e.g., using an ECU from supplier A instead of the functionally
identical ECUs from suppliers B or C, etc.), while configuring the PLV of a
product line will result in a specific product.

In order to distinguish our approach from existing work, we first have to
consider the purpose of different optimization categories in the field. Optimizing
product lines usually aims at finding optimal configurations for the PLV design
space, which results in products that are optimal with regard to particular cri-
teria or a specific use case. Another goal of product line optimization can be
to shape a PLV design space so that it optimally accommodates (only) a set of
given products. Then there is the field of (product) architecture optimization,
which aims at making optimal architectural design decisions (i.e., configuring the
ADF design space) for single products. Conventional architecture optimization
is already a hard combinatorial problem, due to potentially vast design spaces
with dependencies among component selections. However, system architects that
work with product line architectures face the additional challenge of having to
make good design decisions even before the product line variability is resolved.
Their decision making process for the architecture must consider not only one
specific product, but potentially all products of a product line.

In this paper we present a novel approach named ADOOPLA, short for
Automated Design Option Optimization for Product Line Architectures, which
aims at assisting the system architect in identifying optimal product line sys-
tem architectures. It is important to understand how ADOOPLA differs from
the aforementioned optimization categories. The use case we aim at is different,
as it is concerned with finding optimal architectural design decisions for whole
product lines at once. In contrast to the aforementioned categories, the result
of an ADOOPLA optimization is therefore not a specific optimal product, but
rather a product line with optimal architectural design decisions. The purpose
of the ADOOPLA approach is—in principle—closer related to architecture opti-
mization than to product line optimization, it must however also take the feature
characteristics of the PLV design space into account in order to assess optimality
on a product-line-wide scale.

ADOOPLA allows for the optimization of (product) criteria like unit weight
and unit cost, which are only really useful when considered at a product level,
as well as criteria that can indeed be considered at a product-line-wide level, like
the development cost of components. In fact, the ADOOPLA approach allows for
mixing both product-level and product-line-wide criteria in a single design space
exploration process, as we demonstrate in our case study in Sect. 6. To the best
of our knowledge, no other approach has been published that can optimize the
architectural design options of product lines with regard to both product-line-
wide and product-level criteria, making ADOOPLA a novel contribution in the
field of product line architecture optimization. The approach is based on previ-
ous publications by the same authors of this paper, which where concerned with

128 T. Wägemann et al.

representing modeled variability in terms of constraint programming [1], and
with generating simple optimization problems from quality criteria annotated in
system architectures [2]. In addition, the advancement of the ADOOPLA app-
roach is guided by an evaluation of practitioner needs with regard to automated
PLA optimization [3].

The paper is structured as follows. Section 2 gives an overview of related work
and shows the difference between ADOOPLA and existing approaches. Section 3
explains the distinction between the PLV and ADF design spaces. Section 4
details the difference product level and product-line-wide criteria. Section 5 illus-
trates our process of formalizing variant-rich system models into ILP-based opti-
mization problems that can be used to find optimal product line architecture
candidates. The formalization process and it’s application are demonstrated by
means of a simplified automotive case study in Sect. 6. Finally, Sect. 7 concludes
the paper and describes our ideas and plans for future work.

2 Related Work

The use case of automated optimization for design space exploration in software
engineering can be divided into two distinct fields of research. On the one hand,
there is classic system architecture optimization, which is concerned with find-
ing optimal design decisions for a design space defined by architectural design
options. On the other hand, there is product line optimization, which deals with
the search-based exploration of product line design spaces. The ADOOPLA app-
roach proposed in this paper intersects with both research fields, by aiming at
finding optimal architecture design decisions for variant-rich product line system
architectures. However, the methods used for classic architecture optimization
and product line design space exploration, in particular methods based on gen-
erating mathematical formalizations for optimization problems from variability
models, are very much related to the ADOOPLA approach.

With regard to classic architecture optimization, Walker et al. [4] present an
optimization approach for EAST-ADL1 models based on multi-objective genetic
algorithms which considers system dependability, timing concerns and a simple
cost metric. The approach uses HiP-HOPS2 for fault tree analysis and MAST3

for response time computation and is therefore coupled to these tools for the eval-
uation of design objectives. A similar approach for the design objectives cost and
dependability is presented by Mian et al. [5] for the AADL4 language, also using
HiP-HOPS for fault tree analysis. Both approaches use similar input models to
ADOOPLA, but don’t support the optimization of product line architectures
and are limited to objectives that can be evaluated by external tooling.

Kugele et al. [6] propose a framework for multi-objective, constraint-based
optimization of automotive E/E-architectures based on an intermediate trans-
formation into a domain-specific constraint and optimization language called
1 http://www.east-adl.info.
2 http://hip-hops.eu.
3 http://mast.unican.es.
4 http://www.aadl.info.

http://www.east-adl.info
http://hip-hops.eu
http://mast.unican.es
http://www.aadl.info

ADOOPLA – Product-Line- and Product-Level PLA Optimization 129

AAOL. The framework is concerned in particular with generating optimal solu-
tions for the deployment problem, meaning the automated mapping of software
components to available hardware components. Noir et al. [7] propose a tooled
manual process for the exploration of architecture design spaces for software-
intensive systems, integrating both CVL and the MYRIAD method for assessing
the architecture variants. This process does not deal with automated optimiza-
tion per se, but highlights the relevance of tool support for multi-criteria trade-off
analysis of variant-rich system architectures. A manual exhaustive exploration
with tool support is very useful for smaller design spaces, but cannot cover the
large design spaces that are typical for industrial systems. This is where auto-
mated tool support like ADOOPLA, which reduces vast solution spaces to small
Pareto-optimal sets, becomes useful instead.

With regard to product line design space exploration, the current research
is mostly focused on many-objective feature selection, i.e., the automated con-
figuration of optimal products with regard to multiple criteria. Xiang et al. [8]
and Henard et al. [9] propose approaches for finding optimal feature configu-
rations by a combination of multi-objective evolutionary algorithms and SAT
solvers, based on a transformation of variability models into conjunctive normal
form (CNF), which is similar to the constraint formalization method used in
ADOOPLA. Olaechea et al. [10] propose an approach for incorporating design
goals into the configuration process for product lines using their own language
and tool, and for finding optimal products by means of a multi-objective con-
straint solver. While this approach is not applicable to industrial models defined
in industry standard languages, the usage of annotated quality criteria for the
composition of design goals is similar to ADOOPLA.

Thüm et al. [11] propose a classification framework for product line analysis
strategies in order to provide systematic guidance to the research in this field.
They classify the strategies into four categories: product-based, family-based and
feature-based strategies, as well as strategies that use combinations of the three.
While the ADOOPLA approach can generate results that are optimal on a prod-
uct level, it operates only on domain artifacts of the product line architecture
itself. ADOOPLA can therefore be classified as a family-based strategy in regard
to the classification framework introduced by Thüm et al.

3 Product Line Variability and Architectural Design
Options

For the purpose of this paper it is essential to understand the distinction between
two kinds of (architectural) variabilities: 1. Architectural degrees of freedom
(ADF) refers to the set of potential design options for a product (line) architec-
ture. 2. Product line variability (PLV) [12,13] describes the variations of proper
products that are well-formed with respect to the product line design space.
In other words, determining all architectural degrees of freedom will result in
a product line architecture (PLA), whereas determining all product line vari-
ability (called configuration) will result in a single product. These two kinds of

130 T. Wägemann et al.

variabilities also have different binding times, i.e., the times at which they must
be resolved during the system life cycle. While architectural design options must
be resolved at system design time by a system architect, the PLV gets resolved
at a later stage in the life cycle [14].

ADF are all design options that architects have available for decision-making.
Design options are choices determined exclusively by the architect. This choice
is not intended to be made available to the (end) customer. Design options may
for example refer to (sub)systems that do not differ in their functionality but
are from different suppliers. In the system development process, the architect
is required to decide for one alternative and against the other. The architect
thereby converts design options into design decisions by successively restricting
the originally existent choice. Once all design options have been converted into
design decisions, the system created (which can even be a software product line)
does no longer have any ADF.

PLV is the system variability required for the software product line, which
(usually) is a choice offered to the (end) customer. PLV includes, for example,
the choice between two alternative (sub)systems, one of which offers additional
equipment (e.g., automatic climate control). The determination of the PLV can
usually only be carried out in cooperation with the (end) customer. Once the
entire PLV has been determined (configured), the system created no longer con-
tains any variability: it is a single product.

In the ADOOPLA approach, the architectural degrees of freedom are the
basis for the optimization process, which intends to produce an optimal product
line architecture with respect to (multiple) criteria chosen by an architect. The
PLV design space is not resolved as part of the optimization, and is instead
used in order to determine a utilization factor for product-level criteria on a
product-line-wide scale (cf. Sect. 5.3). Therefore, at the end of our optimization
process, no architectural degrees of freedom remain in the system model and the
remaining variability is governed only by the product line design space, i.e., the
result is a product line with optimal architectural design decisions.

4 Optimality on Product Level and Product-Line-Wide
Level

When optimizing design options for product line system architectures, it makes
sense to first consider what optimality in this context actually means. First of
all, an architect is usually confronted with not only one, but several design goals
at once. These design goals are almost always competing with one another; e.g.,
lowering unit cost will increase unit weight, and vice versa. For automated tool
support to be useful in this design task, it must therefore be able to provide a
multi-dimensional trade-off analysis for all relevant design goals. In the context
of architecture optimization, this effectively means that the optimization process
must support multi-objective optimization, resulting in a set of Pareto-optimal
architecture candidates. Pareto-optimality is based on the concept of dominance.
A candidate is called non-dominated—and is therefore part of the Pareto-optimal

ADOOPLA – Product-Line- and Product-Level PLA Optimization 131

set—if and only if there are no other candidates that are better with regard to at
least one design goal without degrading one or more of the other design goals [15,
p. 414ff].

When considering the quality criteria that can be used as design goals for
product line architecture optimization, it becomes obvious that many of the
most relevant criteria don’t have a lot of useful informative value for product line
architectures, as opposed to product architectures. Take for example the criterion
unit cost (as the sum of a unit’s component piece costs) and consider the use case
of finding the (single-objective) optimal architecture candidate for this criterion.
The result of such an optimization would be the one product line architecture,
that has the lowest piece cost over the sum of all its variable components. The
“unit” in unit cost would here refer to the product line itself, not to any particular
product. However, a product line can never itself constitute a “unit” per se.
The unit-cost-optimization result would therefore be cost-optimal with regard
to something that is not—and cannot be—a unit (i.e., the product line), while
providing no information whatsoever about the cost-optimality of actual units
(i.e., products of the product line). The usefulness of such a result for industrial
practice is at least questionable, if not outright useless.

A much more useful outcome would be an optimization result that is (cost-)
optimal with regard to the products of the product line, as opposed to the
product line itself. This is what we call product-level optimality, in contrast
to the product-line-wide-level optimality shown above. For most design goals,
including unit cost, product-level optimality is the key aspect. This is usually
the case when the design goal corresponds to a quality of an instantiated unit
that can be measured, e.g., the unit cost or unit weight of a specific product.

However, there is good reason for not simply discarding the concept of
product-line-wide-level optimality outright. There are certain design goals where
a system-wide consideration, instead of a consideration per unit, is actually the
more useful approach. An example for such a design goal is the criterion devel-
opment cost: a development cost for a variable component is due once and only
once, no matter how many times that component is present in the product line.
In essence, optimizing for the design goal development cost promotes component
reuse in the system. Since a consideration of component reuse makes sense on a
system-wide basis (as opposed to a per-unit basis), an optimization for a design
goal like development cost is indeed most useful on a product-line-wide level.

5 Generating a Useful Optimization Problem

A sound definition of multi-objective optimization is the task of finding the set
of best solutions for a given problem from the set of all feasible solutions for the
problem with regard to certain criteria. Best in our case means Pareto-optimal,
as introduced in Sect. 4. With regard to our problem domain of product line
system architecture optimization, the above definition translates to finding the
best architecture candidates within the design space defined by the ADF, i.e.,
the aggregate of architectural design options.

132 T. Wägemann et al.

In this section we present our formalization approach which we realized
for formalizing variant-rich product line architectures modeled in EAST-ADL,
a domain-specific architecture description language with a focus on variant-
rich software-intensive systems [16]. The language was developed in a series
of European research projects with strong participation of the automotive
industry5. Today the EAST-ADL is managed by the EAST-ADL association6.
The language has been tailored towards compatibility with the well-established
AUTOSAR standard7, which in turn serves as an integral part of the EAST-ADL
language by realizing one of its abstraction layers.

In order to constitute a basis for architecture optimization, the optimization
problem has to be formalized into a rigorous mathematical form. Our product
line architecture optimization problems always have binary decision variables
and usually have multiple design objectives. Therefore, our problem domain is
that of multi-objective integer linear programming (MOILP) with all decision
variables ∈ {0, 1}. With all variable system components assigned to decision
variables x1...xn we can formulate the program as follows:

Minimize Cx

subject to Ax ≥ a0

x ∈ {0, 1}n
(1)

where C is a (m,n)-Matrix of design objective values, A and a0 are a (p, n)-
matrix and a p-vector representing a set of constraints which define the design
space of the architecture and x is an n-vector of binary decisions variables;
with m being the number of design objectives, n being the number of decision
variables and p being the number of ILP-constraints. The matrix Cx is identical
to a set of linear objective functions F (x) = (f1(x), f2(x), ..., fm(x))T , one for
each design objective. ADOOPLA can generate such MOILPs in the standard
formats of OPL8 and AMPL9.

In the following sections we describe how we generate an optimization prob-
lem in MOILP-form based on a variant-rich PL architecture modeled in EAST-
ADL with specific design goals. First, Sect. 5.1 will detail how the variability
information of the model is transformed into a set of ILP constraints equivalent
to Ax ≥ a0 with x ∈ {0, 1}n. Next, Sect. 5.2 will demonstrate the generation
of linear objective functions equivalent to Minimize Cx based on the values of
modeled quality criteria. At this point we already have a MOILP formaliza-
tion of an optimization problem, albeit purely on a product-line-wide level (cf.
Sect. 4). Therefore, Sect. 5.3 will introduce a method for modifying the MOILP
so that objectives with product-level optimality are optimized with regard to the
characteristics of products, instead of characteristics of the product line itself.
5 ITEA EAST-EEA (http://www.itea3.org/project/east-eea.html), ATESST, ATES-

ST2 (http://www.atesst.org), MAENAD (http://www.maenad.eu).
6 http://www.east-adl.info.
7 http://www.autosar.org.
8 https://www-01.ibm.com/software/commerce/optimization/modeling.
9 http://ampl.com.

http://www.itea3.org/project/east-eea.html
http://www.atesst.org
http://www.maenad.eu
http://www.east-adl.info
http://www.autosar.org
https://www-01.ibm.com/software/commerce/optimization/modeling
http://ampl.com

ADOOPLA – Product-Line- and Product-Level PLA Optimization 133

5.1 Formalizing System Variability

First of all, a formalization must be able to differentiate between product line
variability and architecture design options (cf. Sect. 3). As a reminder, what
we ultimately want to produce are product line candidates with Pareto-optimal
architecture design decisions, as opposed to Pareto-optimal configurations of
the product line (i.e., products). We therefore have to omit the product line
variability from the optimization process, so that it doesn’t get resolved down
to a single product automatically.

The ADOOPLA approach can discriminate between product line variability
and architecture design options in EAST-ADL models by making use of the
language traceability across its abstraction levels [17]. Therefore, if a variation
point is part of the system’s product line variability, it’s origin must always be
traceable to the model’s Vehicle Level. If however the variation point can not
be traced to the Vehicle Level, it must necessarily be part of the architectural
degrees of freedom instead. Using this method of distinction, the process assigns
decision variables x to all variable components corresponding to architectural
degrees of freedom.

The transformation of modeled architecture design options into ILP con-
straints is done by applying a set of transformation rules proposed by the authors
of this paper in a previous publication [2], which use a conversion into proposi-
tional logic as an intermediate step. ADOOPLA implements these rules as part
of the generation of the MOILP formalization for product line system archi-
tecture optimization problems. Table 1 gives an overview of the transformation

Table 1. Transformation rules for EAST-ADL variability into ILP constraints [1].

Variability Propositional logic Program constraints

Feature tree Feature has
parent

f → fpar fpar − f ≥ 0

Feature is
excluded

!f (1 − f) = 1

Feature group for all m:
fpar → Mm(f1, .., fn)

for all m:
Mm(f1, .., fn)−fpar ≥ 0

Feature link Needs fstart → fend fend − fstart ≥ 0

Optional
alternative

!(fstart ∧ fend) fend + fstart ≤ 1

Mandatory
alternative

fstart ⊕ fend fstart + fend = 1

Variation group Needs f1 → (f2 ∧ . . . ∧ fn)
∧n

k=2 (fk − f1 ≥ 0)

Optional
alternative

for all m : Mm(f1, .., fn) f1 + f2 + . . . + fn ≤ 1

Mandatory
alternative

f1 ⊕ f2 ⊕ . . . ⊕ fn f1 + f2 + . . . + fn = 1

Configuration decisions criterion → effect effect − criterion ≥ 0

134 T. Wägemann et al.

rules and Sect. 6 demonstrates their application as part of the case study. For a
detailed explanation of the rules please refer to the original publication [1].

5.2 Design Objectives for the Product Line

In order to be able to generate objective functions for our optimization problem,
the considered design goals must be represented in the system model. For the
use case of using EAST-ADL models as input, we evaluate a type of native
EAST-ADL annotations10, which predefine several quantifiable quality criteria
that can be annotated to components of the model; e.g., development cost, piece
cost, weight, power consumption etc. In case of a design goal that is not natively
supported by language annotations, the realization could also be extended in
order to process externally held quality criteria information.

To generate objective functions from constraint annotations, we evaluate the
matrix of annotated criteria values C and assign them as factors to the decision
variables x discovered as part of the process shown in Sect. 5.1. As we already
have a mapping of decision variables x to the associated variable components in
the model, the assignment of the correct criteria values is a simple table look-
up. In case of multi-objective optimization, each decision variable is naturally
assigned multiple criteria factors, one per considered design goal. The result is a
matrix Cx of criteria factors and decision variables, which is equivalent to a set
of linear objective functions F (x) = (f1(x), f2(x), ..., fm(x))T with f(x) = cTx,
where cT is the transposed vector of the values of annotated criteria for the
variable components associated with the decision variables x. For an example
how to generate objective functions from annotated criteria values in practice,
please refer to the problem formalization of the case study in Sect. 6.1.

At this point, when combining the generated objective functions with the
constraints from Sect. 5.1, we already have a fully-fledged optimization problem
in MOILP-form that we could use as input for an optimization tool. However, so
far our formalization does only take criteria into account, which refer to a product
line as a whole (e.g., number of components of the product line architecture). The
optimization would thus be able to yield a PLA that is optimized for product-
line-wide criteria, which would be similar to some existing approaches. However,
this does not yet address the need of optimizing product-level characteristics
like the average weight of the actual products should be minimized. In order to
correct for this issue, the following section will introduce a method for modifying
the program in such a way, that the resulting optimization will instead produce
optima over the average quality of valid products (i.e. product-level optimization)
for appropriate objectives.

5.3 Design Objectives for Products

Firstly, consider an optimization for the design goal unit cost cn based on the
objective function min

∑p
n=1 c

T
nx for p variable components, with the objective

10 EAST-ADL package GenericConstraints [18, p. 170ff].

ADOOPLA – Product-Line- and Product-Level PLA Optimization 135

function generated as shown in the previous section. Optimizing over this func-
tion would in essence minimize over the sum of the cost of all variable components
in the product line architecture. The resulting optimum would be something akin
to the one product line architecture that has the lowest “unit cost”. However, it
is unclear what this actually means conceptually, since a product line can never
itself constitute a “unit”. The resulting optimum would in fact not carry any
information value about potential optimalities of products of the product line.
While a result like this is indeed a mathematical optimum, it isn’t at all useful
for finding a good architecture. For product-level criteria like unit cost or unit
weight, we instead need a way of finding optima that are optimal with regard to
characteristics of products of the product line, instead of characteristics of the
product line itself.

In order to shift optimality to products for product-level design goals, it
is necessary to consider the PLV design space in addition to the architecture
design options. In essence, objective functions are first determined exactly as
with the previous process in Sect. 5.2; i.e. by evaluating annotated quality criteria
in the model as criterion values cn as factors for decision variables x. However,
we now introduce an additional set of factors un, which results in objective
functions in the form of futil(x) =

∑p
n=1 u

T
n c

T
nx for p variable components.

The newly introduced factors un account for the degree of utilization of the
corresponding variable components in the products of the product line. In other
words, components that are used less frequently across the product portfolio
are weighted lower for the optimization, whereas components that occur more
frequently are weighted higher.

The value for the degree of utilization of variable components results from
an evaluation of the product range by means of the product line variability. The
values of the utilization factors un is determined as follows. Let the number of
all valid products of the given product line be G, and the number of all products
that make use of a variable component xk be Pk, then the factor for utilization of
this component in the given product line is equal to uk = Pk/G. This of course
also means that ADF-variable components that are mandatory with regard to
the product line variability have a utilization factor of 1 by default. This makes
sense, because components that are not product-line-variable naturally occur in
every valid product of the product line, thus Pk is equal to G, ergo uk = 1.

Optimizing over objective functions weighted with these utilization factors
will then results in an optimum over the products of the product line, since
the design space of the product line variability is the same for all architecture
candidates; i.e., the number of valid products G is actually constant for each
candidate. This may not be obvious by the way we factorize, however consider the
following simple example. A variant-rich product line architecture has G = 120
valid products, whereby a variable component xi is used in Pi = 80 of these
products, while another variable component xj is used in Pj = 30 products.
With our factorization method we get ui = Pi/G = 0.67 and uj = Pj/G = 0.25,
so the objective function for criterion cT would be in the form of futil(x) =
0.67 ∗ ci ∗ xi + 0.25 ∗ cj ∗ xj + ... + un ∗ cn ∗ xn. In other words, xi is prioritized

136 T. Wägemann et al.

over xj in the optimization by a factor of ui/uj = 2.67, because it is utilized
2.67-times more frequently in the product portfolio.

By factorizing all variable components of the system architecture accordingly,
the components are essentially prioritized relative to each other; with the relative
priority governed by how often a component appears in products of the product
line. The result of optimizing over an objective function futil(x), factorized by
component utilization in the product line, will therefore result in an optimum
over the average of valid products of the product line, as opposed to an optimum
over the average of all variable components of the product line architecture (cf.
Sect. 5.2).

Fig. 1. Case study demonstration model: a wiper control system.

6 ADOOPLA Case Study

In this chapter, we will demonstrate the application and the benefits of the
ADOOPLA approach by means of a simplified case study. The small product
line architecture is based on an example for a windscreen wiper system proposed
by the MAENAD project for demonstrating the variability modeling capabili-
ties of the EAST-ADL language11. The existing example has been extended by
additional variability both on the vehicle level and on the artifact levels, in order
to accommodate a reasonable amount of variation for architecture optimization
purposes. The main purpose of this case study is to demonstrate the functionality
of the ADOOPLA process for extrapolation to real-world industrial models [3].

Figure 1 shows a variant-rich system architecture for a product line of wind-
screen wiper control electronics. The wiper system product line can be configured
11 MAENAD Concept Presentation on EAST-ADL Variability: http://www.maenad.

eu/public/conceptpresentations/6 Variability EAST-ADL Introduction 2013.pdf.

http://www.maenad.eu/public/conceptpresentations/6_Variability_EAST-ADL_Introduction_2013.pdf
http://www.maenad.eu/public/conceptpresentations/6_Variability_EAST-ADL_Introduction_2013.pdf

ADOOPLA – Product-Line- and Product-Level PLA Optimization 137

Table 2. Quality criteria values for variable architecture components from different
suppliers.

Development cost/ke Unit cost/e Unit weight/g

V1 Supplier A 28 1.25 70

V1 Supplier E 30 1.5 65

V2 Supplier B 41 2.1 120

V2 Supplier C 39 2.4 105

WI Supplier A 25 3.6 50

WI Supplier C 27 3.4 35

WI Supplier D 29 3.5 45

RS Supplier A 22 1.8 125

RS Supplier B 24 2.0 110

RS Supplier D 22 2.0 105

in either a basic or an advanced configuration, which–on the artifact levels–
results in using either variant V1 or V2, respectively. The product line can also
support an optional rain sensor component that is mandatory when opting for
the advanced configuration. The product line variability is represented by the
feature tree on the vehicle level.

The demonstration model also contains design options at the artifact levels,
which together define the degrees of freedom for the product line system architec-
ture. Variable components at artifact level are indicated by dashed lines, inter-
dependencies by arrows between variable components. Here, the design options
are used in order to represent functionally identical component alternatives from
five different suppliers A–E; e.g., the component RainSensor has three different
supplier alternatives A, B and D. Some of the component alternatives have
interdependencies to other alternatives; i.e., Variant 1 from supplier A requires
WiperIntegrator from supplier A, RainSensor from supplier D requires com-
ponent WiperIntegrator from supplier D, and Variant 2 from supplier B and
RainSensor from supplier B require each other.

The alternative components from different suppliers have annotated quali-
ties in regard to the criteria development cost, unit cost and unit weight (cf.
Table 2), which are to be considered as design goals for the optimization in our
case study. We will demonstrate the usefulness of the ADOOPLA approach by
comparing it’s results, i.e., mixed product-line-wide and product level Pareto-
optimal architecture candidates, with the result of conventional optimization,
i.e., purely product-line-wide-level Pareto-optimal candidates.

6.1 Case Study Problem Formalization

In order to formalize the given case study into a sound optimization problem in
MOILP form, the ADOOPLA tooling first assigns decision variables to variable

138 T. Wägemann et al.

architecture components. Remember that we only want to optimize the design
space of architectural design options, not the design space of the product line
variability. The first challenge is therefore to differentiate between the two dif-
ferent kinds of variation points at the artifact level of our case study model and
consider only the ones regarding architectural design options for optimization.

While the variation points for the components Variant 1, Variant 2, Wiper-
Integrator and RainSensor satisfy this condition, the variation point for the com-
ponent WiperController does not. This becomes clear when considering that the
variation for WiperController can be traced all the way back to the Vehicle Level
of the model, which indicates that it is part of the product line variability (cf.
Sect. 3).

After selecting for the correct variation points, i.e. only architectural design
options, the process assigns decision variables xi to each of the variable compo-
nents:

x1 = \WiperController\V 1 Supplier A

x2 = \WiperController\V 1 Supplier E

x3 = \WiperController\V 2 Supplier B

x4 = \WiperController\V 2 Supplier C

x5 = \WiperController\WI Supplier A

x6 = \WiperController\WI Supplier C

x7 = \WiperController\WI Supplier D

x8 = \WiperController\RS Supplier A

x9 = \WiperController\RS Supplier B

x10 = \WiperController\RS Supplier D (2)

Secondly, ADOOPLA formalizes the design space defined by the varia-
tion points by transforming them into ILP-constraints. The resulting formal-
ization effectively constitutes our optimization space. Consider the following
example for one ILP-constraint. The variants x1 = ...\V 1 Supplier A and
x2 = ...\V 1 Supplier E are so-called mandatory alternatives, meaning that one,
and only one, must be included in the architecture. This relationship in propo-
sitional logic is equal to x1 + x2 = 1 with x1, x2 ∈ {0, 1}. ADOOPLA is able
to generate ILP-constraints from modeled variability automatically, by applying
the transformation rules introduced in Sect. 5.1. Applying these transformation
rules to our case study model, the resulting constraints are as follows, with all
decision variables xi ∈ {0, 1}:

x1 + x2 = 1 x5 − x1 ≥ 0
x3 + x4 = 1 x7 − x10 ≥ 0
x5 + x6 + x7 = 1 x3 − x9 = 0
x8 + x9 + x10 = 1 (3)

Next, ADOOPLA generates the objective functions for the design goals devel-
opment cost, unit cost and unit weight, using the criteria values defined in

ADOOPLA – Product-Line- and Product-Level PLA Optimization 139

Table 2. Note that two of the design goals, namely unit cost and unit weight, are
only useful when considered at a product-optimal level, whereas development
cost is most useful when considered at a product-line-wide level (cf. Sect. 4).
ADOOPLA can account for this difference and can therefore compose the objec-
tive functions for unit cost and unit weight as futil(x) =

∑p
n=1 u

T
n c

T
nx (cf.

Sect. 5.3) and the objective function for the design goal development cost as
f(x) =

∑p
n=1 c

T
nx (cf. Sect. 5.2).

The utilization factors are the same for each design goal and therefore have to
be calculated by ADOOPLA only once. In our small case study example, there
are only three valid products: BasicController without RainSensor, BasicCon-
troller with RainSensor, and AdvancedController with RainSensor. Calculating
the utilization factors for the corresponding variable components follows the
method introduced in Sect. 5.3. Therefore, ADOOPLA assigns a utilization fac-
tor of uV 1 = 2/3 = 0.67 to BasicController variation point Variant 1, a factor
of uV 2 = 1/3 = 0.33 to the AdvancedController variation point Variant 2, and
a factor uRS = 2/3 = 0.67 to the RainSensor variation point RainSensor. The
WiperIntegrator is present in all products of the product line and therefore has
a utilization of uWI = 3/3 = 1.

With the criteria values from Table 2 and the utilization factors for all vari-
able components, ADOOPLA can now formalize the objective functions for
development cost, unit cost and unit weight, in that order, as follows:

min 28 ∗ x1 + 30 ∗ x2 + 41 ∗ x3 + 39 ∗ x4 + 25 ∗ x5 + 27 ∗ x6 + 29 ∗ x7 + 22 ∗ x8+

24 ∗ x9 + 22 ∗ x10

min 0.67 ∗ 1.25 ∗ x1 + 0.67 ∗ 1.5 ∗ x2 + 0.33 ∗ 2.1 ∗ x3 + 0.33 ∗ 2.4 ∗ x4 + 3.6 ∗ x5+

3.4 ∗ x6 + 3.5 ∗ x7 + 0.67 ∗ 1.8 ∗ x8 + 0.67 ∗ 2 ∗ x9 + 0.67 ∗ 2 ∗ x10

min 0.67 ∗ 70 ∗ x1 + 0.67 ∗ 65 ∗ x2 + 0.33 ∗ 120 ∗ x3 + 0.33 ∗ 105 ∗ x4 + 50 ∗ x5+

35 ∗ x6 + 45 ∗ x7 + 0.67 ∗ 125 ∗ x8 + 0.67 ∗ 110 ∗ x9 + 0.67 ∗ 105 ∗ x10 (4)

We now have a complete MOILP formalization of the pursued optimiza-
tion problem (cf. Sect. 5), which we use as input for an off-the-shelf multi-
criteria decision making software. Our tool of choice is the optimization software
FINNOPT12, which allows the user to guide a multi-criteria decision making
process towards preferred Pareto-optimal solutions as part of a trade-off analy-
sis. FINNOPT is based on the NIMBUS [19] method that was developed by the
Industrial Optimization Group of the University of Jyväskylä, Finland13. The
tool integrates an external ILP-solver and uses it as part of its decision making
process. For this purpose we use the commercial solver CPLEX, which is part
of the IBM ILOG CPLEX Optimization Studio14.

12 http://www.finnopt.com.
13 http://www.mit.jyu.fi/optgroup.
14 http://www.ibm.com/software/products/en/ibmilogcpleoptistud.

http://www.finnopt.com
http://www.mit.jyu.fi/optgroup
http://www.ibm.com/software/products/en/ibmilogcpleoptistud

140 T. Wägemann et al.

Table 3. Quality values for valid PLA candidates.

Candidate Development cost Unit cost Unit weight

(A, A, B, B) 118 6.47 210.0

(A, A, C, A) 114 6.43 215.0

(E, A, B, B) 120 6.63 206.7

(E, A, C, A) 116 6.60 211.7

(E, C, B, B) 122 6.43 191.7

(E, C, C, A) 118 6.40 196.7

(E, D, B, B) 124 6.53 201.7

(E, D, C, A) 120 6.50 206.7

(E, D, C, D) 120 6.63 193.3

Product-level x x

6.2 Optimization Results and Discussion

The optimization results, i.e., the product line architecture candidates, can be
represented using a notation of 4-tuples in the form of (V 1,WI, V 2, RS); e.g.,
(A,A,B,B) would be an architecture candidate where the BasicController and
the WiperIntegrator use components from supplier A, whereas the Advanced-
Controller and the RainSensor use components from supplier B. Table 3 shows
the set of all valid architecture candidates for the given architecture design space
and their respective qualities with regard to the design goals. Listing (and ana-
lyzing) the set of all valid solutions for a design space is not possible for large
design spaces, as the number of valid solutions grows exponentially with each
variation point.

Even for small design spaces like the one of our case study, finding Pareto-
optimal candidates by hand can be a difficult task. It is easy to see that for much
larger real-world models, finding optima by hand is practically impossible. How-
ever, by using a solver on the MOILP formalization generated by ADOOPLA,
it is possible to quickly identify a set of Pareto-optimal architecture candidates.
For the case study formalization, the candidates (A,A,C,A), (E,C,C,A) and
(E,C,B,B) were identified to be part of the Pareto set.

This result is based on using product-level optimization for the design goals
unit cost and unit weight. In comparison, an approach that would not take
product-level optima in account would instead have identified the candidates
(A,A,C,A), (A,A,B,B) and (E,D,C,D) as Pareto-optimal; a set of candidates
much less useful for practical use cases for reasons detailed in Sects. 4 and 5.3.

7 Conclusions

The exploration of design spaces for software product line system architectures
is an extremely difficult task due to its inherent complexity. While design space

ADOOPLA – Product-Line- and Product-Level PLA Optimization 141

exploration is in most cases non-trivial, the two levels of optimality (product-
line-wide criteria vs. product criteria) that are relevant in product line design
scenarios make the analysis of such architectures and the corresponding design
space exploration particularly difficult for system architects.

In this paper, we presented ADOOPLA, an multi-objective optimization app-
roach for product line architectures that takes both levels of criteria into account
and transforms them into an integrated optimization problem. ADOOPLA can
therefore help system architects in finding good PLA candidates, that are Pareto-
optimal with regard to a set of design objectives. The version of the approach
presented in this paper is based on our previous work on identifying optimal
product line architectures [2]. However, the inclusion of product-level criteria
and their combination with product-line-wide criteria in one combined process
is novel in the approach and throughout the literature. We demonstrated the
impact of this novel method by applying the ADOOPLA approach to a sim-
plified case study drawn from our work with automotive suppliers. The results
of the case study show that by being able to take the difference between the
two levels of criteria into account, the approach arrives at different results that
represent more adequate candidates for good product line architectures.

The current realization of ADOOPLA supports only linear design objectives
derived from the set of quantifiable quality criteria that can be modeled natively
in the domain-specific language EAST-ADL. Future work on the approach will be
concerned with extending the range of supported design objectives, for example
to those defined by the ISO/IEC 25010 standard15, which comprises multiple
quality characteristics as part of a system and software quality model.

References

1. Wägemann, T., Werner, A.: Generating multi-objective programs from variant-rich
EAST-ADL product line architectures. In: GI-Jahrestagung, pp. 1673–1685 (2015)

2. Wägemann, T., Tavakoli Kolagari, R., Schmid, K.: Optimal product line architec-
tures for the automotive industry. In: Modellierung 2018 (2018)

3. Wägemann, T., Tavakoli Kolagari, R., Schmid, K.: Exploring automotive stake-
holder requirements for architecture optimization support. In: 2019 IEEE Inter-
national Conference on Software Architecture Companion (ICSA-C), pp. 37–44,
March 2019

4. Walker, M., et al.: Automatic optimisation of system architectures using EAST-
ADL. J. Syst. Softw. 86(10), 2467–2487 (2013)

5. Mian, Z., Bottaci, L., Papadopoulos, Y., Sharvia, S., Mahmud, N.: Model trans-
formation for multi-objective architecture optimisation of dependable systems. In:
Zamojski, W., Sugier, J. (eds.) Dependability Problems of Complex Information
Systems. AISC, vol. 307, pp. 91–110. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-08964-5 6

6. Kugele, S., Pucea, G.: Model-based optimization of automotive E/E-architectures.
In: Proceedings of the 6th International Workshop on Constraints in Software
Testing, Verification, and Analysis, pp. 18–29. ACM (2014)

15 https://iso25000.com/index.php/en/iso-25000-standards/iso-25010.

https://doi.org/10.1007/978-3-319-08964-5_6
https://doi.org/10.1007/978-3-319-08964-5_6
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

142 T. Wägemann et al.

7. Noir, J.L., et al.: A decision-making process for exploring architectural variants
in systems engineering. In: Proceedings of the 20th International Systems and
Software Product Line Conference, pp. 277–286. ACM (2016)

8. Xiang, Y., Zhou, Y., Zheng, Z., Li, M.: Configuring software product lines by
combining many-objective optimization and SAT solvers. ACM Trans. Softw. Eng.
Methodol. 26(4), 14:1–14:46 (2018)

9. Henard, C., Papadakis, M., Harman, M., Le Traon, Y.: Combining multi-objective
search and constraint solving for configuring large software product lines. In: Pro-
ceedings of the 37th International Conference on Software Engineering, vol. 1, pp.
517–528. IEEE Press (2015)

10. Olaechea, R., Stewart, S., Czarnecki, K., Rayside, D.: Modelling and multi-
objective optimization of quality attributes in variability-rich software. In: Pro-
ceedings of the Fourth International Workshop on Nonfunctional System Prop-
erties in Domain Specific Modeling Languages, NFPinDSML 2012, pp. 2:1–2:6.
ACM, New York (2012)

11. Thüm, T., Apel, S., Kästner, C., Kuhlemann, M., Schaefer, I., Saake, G.: Analysis
strategies for software product lines. School of Computer Science, University of
Magdeburg, Technical report FIN-004-2012 (2012)

12. Metzger, A., Pohl, K.: Variability management in software product line engineering.
In: Companion to the Proceedings of the 29th International Conference on Software
Engineering, pp. 186–187. IEEE Computer Society (2007)

13. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Professional, Boston (2001)

14. Tischer, C., Boss, B., Müller, A., Thums, A., Acharya, R., Schmid, K.: Developing
long-term stable product line architectures. In: Proceedings of the 16th Interna-
tional Software Product Line Conference (SPLC 2012), vol. 1, pp. 86–95. ACM
(2012)

15. Burke, E.K., Kendall, G.: Search Methodologies: Introductory Tutorials in Opti-
mization and Decision Support Techniques. Springer, New York (2005). https://
doi.org/10.1007/978-1-4614-6940-7

16. Blom, H., et al.: White paper version 2.1.12: EAST-ADL - an architecture descrip-
tion language for automotive software-intensive systems (2013)

17. Reiser, M.O., Tavakoli Kolagari, R., Weber, M.: Compositional variability: con-
cepts and patterns. In: 42nd Hawaii International Conference on System Sciences,
pp. 1–10 (2009)

18. EAST-ADL Association: EAST-ADL Domain Model Specification, Version V2.1.12
(2013). http://east-adl.info/Specification/V2.1.12/EAST-ADL-Specification V2.
1.12.pdf

19. Miettinen, K.: IND-NIMBUS for demanding interactive multiobjective optimiza-
tion. In: Multiple Criteria Decision Making 2005, vol. 1, pp. 137–150 (2006)

https://doi.org/10.1007/978-1-4614-6940-7
https://doi.org/10.1007/978-1-4614-6940-7
http://east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
http://east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf

Assessing Adaptability of Software
Architectures for Cyber Physical

Production Systems

Michael Mayrhofer1(B), Christoph Mayr-Dorn1,2, Alois Zoitl2,
Ouijdane Guiza1, Georg Weichhart3, and Alexander Egyed2

1 Pro2Future GmbH, Linz, Austria
michael.mayrhofer@pro2future.at

2 Institute of Software Systems Engineering,

Johannes Kepler University, Linz, Austria
3 ProFactor GmbH, Steyr, Austria

Abstract. Cyber physical production systems (CPPS) focus on increas-
ing the flexibility and adaptability of industrial production systems, sys-
tems that comprise hardware such as sensors and actuators in machines
as well as software controlling and integrating these machines. The
requirements of customised mass production imply that control software
needs to be adaptable after deployment in a shop floor, possibly even
without interrupting production. Software architecture plays a central
role in achieving run-time adaptability. In this paper we describe five
architectures, that define the structure and interaction of software com-
ponents in CPPS. Three of them already are already well known and used
in the field. The other two we contribute as possible solution to overcome
limitations of the first three architectures. We analyse the architectures’
ability to support adaptability based on Taylor et al.’s BASE framework.
We compare the architectures and discuss how the implications of CPPS
affect the analysis with BASE. We further highlight what lessons from
“traditional” software architecture research can be applied to arrive at
adaptable software architectures for cyber physical production systems.

Keywords: Software architectures · Manufacturing ·
Reconfiguration · Cyber-physical production systems · Adaptability

1 Introduction

Cyber Physical Systems (CPS) tightly interweave software and physical com-
ponents for integrating computation, networking, and physical processes in a
feedback loop. In this feedback loop, software influences physical processes and
vice versa. CPS in the manufacturing context are referred to as Cyber Physi-
cal Production Systems (CPPS). A production cell involving machines, robots,
humans, and transport systems such as pick and place units are examples of a
CPPS; Not considered are CPS in general: drones, smart buildings, or medical
c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 143–158, 2019.
https://doi.org/10.1007/978-3-030-29983-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-29983-5_10

144 M. Mayrhofer et al.

devices. CPPS increase the flexibility and adaptability of industrial production
systems which enables reconfiguration of a physical plant layout with little effort
and to produce a higher variety of products on the same layout.

Software, and specifically, software architecture plays a central role in achiev-
ing this goal. The general capabilities of a production plant depend on its physical
layout. Yet, which capabilities are invoked, in which order and under which con-
ditions is controlled mostly by software or human operators. Thus, fast and cheap
reconfiguration can only happen through software designed to allow for adapt-
ability and flexibility. Over the last decades, the software architecture community
has focused intensely on these concerns in the scope of “traditional” software
systems. In these systems physical aspects such as material flow, manipulation
of physical objects, and physical layout of machines and humans, play no or
only a marginal role. Little of the work in the software architecture community,
however, addresses specifically CPPS. We believe that concepts, approaches, and
ideas from software architecture are invaluable for guiding the design of CPPS. In
return, we would expect that the constraints and characteristics of CPPS raises
awareness in the software architecture community about the implications stem-
ming from the physical world. Software systems inevitably will become increas-
ingly fused with physical object as we can already observe with systems described
as Smart Devices that are part of the Internet of Things: Software systems that
inherently rely on appropriate software architectures for delivering long-term
benefit to the user.

In the scope of this paper, we focus only on adaptability of CPPS (and
refer for other, equally relevant, properties for example to [1] as well as future
work). Adaptability in CPPS comes in two main categories: adaptation of the
software (i.e., machine configuration, process configuration, etc.) and adapta-
tion of the physical layout (i.e., relocating machine, mobile robots, autonomous
guided vehicles). Both categories imply software adaptability (see Sects. 2 and
3). Whether the goal is assessing the current software architecture of an CPPS
or deciding upon a future CPPS software architecture: in both cases we need a
mechanism to analyse and compare an architecture’s adaptability. Rather than
determining criteria from scratch, we apply the BASE framework introduced
by Oreizy, Medvidovic, and Taylor [2] (Sect. 4). This framework serves as our
basis for evaluating and comparing CPPS architectures. This paper’s core con-
tribution is a comparison of five architectures for CPPS with an explicit focus
on adaptability: the first three architectures describe the predominant approach
to structuring production systems, the latter two architectures are proposed
evolutions for increased adaptability (Sect. 5). We complete the paper with an
overview of related work (Sect. 6) and an outlook on future work (Sect. 7).

2 Background

Similar to software centric companies, manufacturers aim to remain competi-
tive through a higher innovation rate and an increase in product customization
options. The former requires development processes with potential for both agile

Assessing Adaptability of Software Architectures 145

Fig. 1. Simplified PLC architecture
layout

Fig. 2. Direct compilation of control
code

and parallel development. The ultimate goal is lot-size one: the ability to contin-
uously produce ever-changing product configurations on the same product line
at the same low costs as mass production.

From a software architecture point of view, manufacturers face a major chal-
lenge: the ability to reconfigure the production environment (the machines, pro-
cesses, flows, etc) during production time without impairing production pace. At
the most extreme end, no two products produced are the same and thus every
machine involved in the production needs some (software) adaptation for each
product produced.

The foundation of today’s manufacturing systems are programmable logic
controllers (PLCs). PLCs are microcomputers that read data from sensors in
the physical world, process the measurement values, and set output voltages to
control drives, valves, etc. (see Fig. 1). They allow the automation of production
steps by controlling a variety of machines across the shop floor: conveyor belts,
robots, raw material processing machines, measuring devices, packaging, etc.
PLC programs consists of function blocks that access and modify variables, and
communicate with other function blocks. The variables map via access paths to
the input/output ports. PLC-specific programming environments primarily aim
to allow efficient and intuitive creation of such control software (mostly control
algorithms). Engineers then compile these programs to the target platform and
download/deploy them to the PLC for execution. Adaptation with this approach
is cumbersome as we will show in Subsect. 5.1.

Software on PLSs fall into two major categories. First, low level control soft-
ware handles sensor data and actuator signals, that is common for machines of
the same type. This software can be compared to a hardware-centric API and its
implementation: opening/closing a valve, setting the rotation speed of a drive.
We refer to this software as machine-specific code. Second, there is software that
defines parameters for and calls of low-level control, thereby specifying how a
machine must behave on the shop floor: when to open a valve, at which force,

146 M. Mayrhofer et al.

how fast to run a drive. This software is tailored to a product, changing with a
product revision. We, hence, refer to this software as product-specific code.

3 Motivating Scenario

We present a simple running scenario to provide more insights into the type
of adaptation machines, respectively, software at the shop floor is subject to.
We also use this scenario in subsequent sections to exemplify how the various
architectures allow adaptation. In production automation, a machine rarely acts
independently from other shop floor elements. Typical examples of machine-to-
machine interaction include:

• Parts coming from a stamping machine fall onto a conveyor belt for further
transportation.

• A robot feeds raw material to an automated machine tool (e.g., a milling
machine) and retrieves the processed product.

• A robot holding a part, while a second robot processes it (e.g., spray painting
or welding).

In our scenario, we assume a milling machine controlled with an attached
robot arm for removing processed parts and sorting them on trays. Milling
machine and robot are controlled by one PLC each for sake of simplicity. Even
small scale industrial environments such as the VDMA OPC-UA demonstrator1

are too complex to be described in adequate detail here, let along discussing
its adaptability aspects. Our scenario picks out a part of such a setup that is
sufficiently rich for discussing the impact of software architecture on adaptabil-
ity. Traditionally, with little or no product change, engineers custom tailor the
software for the PLCs specifically for a particular product. Here the software
controls the movement, speed, and force of the milling machine’s cutter as well
as the robot arm’s gripping position, force, and moving path.

With increasing demand for adaptability, two orthogonal adaptation dimen-
sions emerge. On the one hand, we distinguish between the level of adaptation,
and on the other hand we differentiate according to the locality of adaptation.
The former describes adaptation of product-specific vs machine-specific code,
while the latter separates adaptation within a machine invisible to the outside
(local) from adaptations affecting multiple machines (distributed). Adaptation
example for resulting four types include:

Machine-specific/Local. Robot manufacturers continuously improve the con-
trol algorithms used in robots and offer frequent updates to existing robots
on the shop floor. Robot manufacturers may introduce new algorithms that
allow for simpler programming of gripping instructions or arm movements.

Product-specific/Local. With lot-size one product customizations, the milling
machine might have to cut away at different locations at the raw part, thus
requiring different control parameter for each product.

1 https://www.youtube.com/watch?v=pUtSA8g9owY.

https://www.youtube.com/watch?v=pUtSA8g9owY

Assessing Adaptability of Software Architectures 147

Product-specific/Distributed. With lot-size one production, when the raw
part size changes between products, then (in addition to the milling machine
control software) the robot arm control software needs new parameters for
different gripping positions and movement paths to avoid dropping the pro-
cessed product or bumping it against the milling machine.

Machine-specific/Distributed. The manufacturer decides to switch among
the milling machines communications capabilities from WiFi to 5G for com-
municating with the robot. Assuming that the robot supports both wireless
standards, now also the robot control software needs to switch connections.

4 Introduction to BASE

The BASE framework developed by Oreizy, Medvidovic, and Taylor defines four
orthogonal criteria to evaluate software systems for their runtime adaptability.
In this section we will summarise these criteria and outline how they match
CPPS. For a detailed explanation of the framework itself refer to [2].

Behavior: How are changes to the behavior represented and applied? Is behavior
limited to a combination of atomic capabilities or is it possible to introduce
completely new behavior?

Changes to machine-specific behavior can come in different forms. New func-
tionality (e.g., enabling the milling machine to create curves and arcs) can be
introduced, or existing functionality can be improved (e.g., extending the cur-
rent control algorithm) or replaced. Outdated functionality needs to be removed
to create space for new functionality. Changes to the physical architecture (e.g.,
upgrading to the 5G communication standard) require updates of the drivers.

On the product level, the order of calling the different machine capabilities
will change with every product. In addition, the machine configuration (e.g.,
cutting speeds and control parameters on milling machines, gripping forces and
tool tip position on handling robots) needs to be altered, especially when the
next product needs different hardware clamps, drills, etc. What looks like a
matter of configuration is indeed (physical and software) adaptation (see also
Sect. 5.1).

Asynchrony: How does the update process affect the system’s execution? Is it
necessary to halt the system until the updated has completed, or can it resume
after already after a partial update? How would correct execution be guaranteed
in case of partial updates?

Given the combination of milling machine and handling robot, it might be
desirable to update the robot’s motion algorithm or positions for a new product
while it is still handling the current product. In general, this aspect focuses on
the architecture properties that ideally allow elements of a CPPS to be adapted
without negatively affecting others, e.g., enabling the milling machine to start
producing while the robot is still under reconfiguration.

State: How does the system react to changes in state? How does it deal with
altered types? Does a state change require an interrupt of the system’s execution?

148 M. Mayrhofer et al.

In CPPS, we primarily distinguish between managing product-specific state (i.e.,
which steps/phases are complete, which ones are currently active, what needs
to be done next) and machine-specific state (e.g., current drill rotation speed or
robot arm position, whether a product is inside the machine).

Execution Context: Constraints on system parts that determine when adapta-
tions are allowed. E.g. the system has to be in a safe state, heap has to be empty,
system has to be disconnected from surrounding systems, . . . While Asynchony
focuses on the timing of the ongoing adaptation actions, Execution context high-
lights adaptation pre-conditions. For example, does an architecture allow the
algorithm controlling the tools position to be updated during execution or only
when the gripper has released the part? Can we update the cutting force esti-
mator on the fly? Do we need to shutdown the robot to alter the path planning?
And, if milling machine and robot are working together in one cell, do we have
to halt the milling machine while updating the robot? Might such dependencies
cascade further across several machines, or even whole cells?

In the next section, we apply the BASE framework to evaluate the adapt-
ability of five architectures: three reference architectures and two proposed evo-
lutions thereof.

5 Architecture Analysis

Our goal is assessing how adaptable various CPPS architectures are. Ideally
they are adaptable and response enough to change the behavior in nearly zero
time. Recall, that we distinguish software according to product-specific code and
machine-specific code. A major difference among the discussed architectures is
how intertwined these two code types become at runtime (i.e., on the PLC). We
assess each architecture with BASE in general and outline how the adaptation
actions from our motivating scenarios may be implemented. Across all architec-
ture Figs. 2, 3, 4, 5 and 6, arrows pointing down indicate transfer of artifacts
(code and/or models) while left to right arrows indicate communication among
machines.

5.1 Hardcoded and Physically Wired

In the most prevalent solutions, the engineer tightly weaves the product-
specific code with the machine-specific code. Machine-specific code is available
as include-files at compile time and is transferred upon each software update to
the controller together with the product-specific code. Transfer occurs often at
runtime when a Manufacturing Execution System (MES) deploys the software
before each production process. This process of “direct compilation” is depicted
in Fig. 2. Communication among several PLCs occurs primarily via digital pins,
thus hard-wired at the hardware level. This approach matches the strict resource
limitations of cheap PLCs. Control code is translated directly to machine code,
allowing for fast execution and minimizing memory footprint. On the downside,
this architectural style comes with significant limitations:

Assessing Adaptability of Software Architectures 149

Behavior: An adaptation implies changes to the software regardless whether is
product-specific code or machine-specific code. To effect the changes, the com-
plete application needs recompilation and retransfer to the PLC. Unsurprisingly,
this approach allows adaptations of existing behavior as well as introduction of
completely new behavior.

Asynchrony: The system is unavailable for the duration of shutting down,
software replacement, and restarting.

State: Due to wholesale software replacement and system shutdown, any state
has to be persisted prior to shutdown or is lost. No separation of machine-specific
state from product-specific state exists.

Execution Context: The machine has to reach a safe state for shutdown. Dur-
ing software redeployment, therefore, the machine is unable to continue produc-
tion or communicate with connected machines. Shutdown needs to be signalled to
connected systems to allow them to gracefully react to the unavailable machine
undergoing updating. Otherwise connected machines might malfunction due to
missing signal values or alternatively have to be shutdown likewise.

Suppose the machines from our motivating scenario are implemented accord-
ing to this reference architecture, the specific adaptation consequences are
the following. The tight coupling of machine-specific and product-specific code
implies that regardless whether the changes are new or improved gripping algo-
rithms, or whether these are different milling parameter, the respective machine
needs to reach a safe-state and subsequently be shutdown. In addition, the tight
coupling among machines on the hardware level requires stopping (or even shut-
ting down) and later restarting of the non-updated machine as well. An engineer,
hence, needs to consider how the affected machine-under-adaptation is connected
to other machines before effecting an update.

5.2 Central Coordinator Architecture

The Central Coordinator Architecture exhibits a clear separation of machine-
specific logic and product-specific logic. Each PLC exposes its functionality (e.g.,
Function Blocks) as higher-level, composable endpoints (i.e., explicit interfaces).
The endpoints’ granularity depends how the underlying machine is typically
used: i.e., how much fine-grained control is needed. See Fig. 3 for an illustra-
tion. The defacto protocol for discovery, endpoint provisioning, and invocation in
CPPS is OPC-Unified Architecture (OPC-UA) [3] (standardized in IEC 62451).
The Centurio Engine [4] is an example for such an architecture.

The machine-specific details behind the exposed endpoints remain opaque
to the production process engineer. Typically only engineers at the machine
manufacturer—or dedicated integration experts that customize the machine for
a particular shop floor—develop and adapt software at the PLC level (including
middleware for exposing endpoints).

An engineer discovers the PLCs’ endpoints and specifies the control-flow of
endpoint invocations and invocation parameter values in a model. The engineer

150 M. Mayrhofer et al.

sends the model to the centralized coordinator and triggers its execution. Note
that this coordinator is central only with respect to the involved PLCs and not
with respect to the overall shop floor. Communication between PLCs occurs
indirectly via the centralized coordinator. Production processes with time crit-
ical invocation sequences require locating the centralized coordinator close to
the involved machines, respectively, PLCs, and/or communication over appro-
priate network infrastructure such as TSN (time-sensitive networking). Based
on BASE, we make the following observations:

Behavior: An engineer specifies product-specific changes as changes to the
production process model. The centralized coordinator’s capabilities determine
whether an updated process model replaces a currently active process wholesale,
or whether it applies only the differences. Two options exist to obtain different
behavior of machine-specific logic: On the one hand, choosing among different
existing behavior occurs via the production process by invoking different end-
points (e.g., for a different algorithm) or using different invocation parameters.
On the other hand, radically new functionality needs to be deployed to the PLC
via side-channels.

Asynchrony: While switching among pre-existing functionality at the machine-
specific level when triggered by the centralized controller is instantaneous, new
functionality requires shutting down the machine for the duration of deploying
new function blocks and making them available via the middleware. Such a shut-
down implies pausing the current product model at the centralized coordinator,
and thereby also potentially any other involved machine. However, scheduling
an updated production process model for execution at the centralized coordina-
tor upon completion of the currently running process are instantaneous. In-situ
changes to running processes may require longer when the process needs to reach
a certain stage before updating can safely occur. Changes to the production pro-
cess become necessary when an interface of the exposed endpoints is affected.
However, other machines, respectively PLCs, remain unaffected.

State: Product-specific state is managed in the centralized coordinator while
machine-specific state remains within the PLC-level middleware. Updating the
product-specific meta-model requires stopping the production, persisting the
state, transforming the persisted state to the new meta-model. Such an adap-
tation typically also requires updating the centralized coordinator but not the
machine-specific logic. Machine-specific state is represented by the underlying
physical state of the machine and hence readily obtainable via reading from the
PLC’s hardware signal pins.

Execution Context: Wholesale replacing product-specific logic requires the
centralized coordinator to bring the current model to a safe state. A safe state
typically describes a situation where the involved machines equally reach a safe
state (e.g., idle) or require no input from the coordinator for the duration of
the adaptation. In-situ adaptation of the product-specific logic requires product
engineering know-how at which state fragments of the model can be updated
quickly enough before the coordinator will access them and given the constraints

Assessing Adaptability of Software Architectures 151

among model fragments. Adaptation of the centralized coordinator itself requires
putting all PLCs in a safe state. Switching among pre-existing machine-specific
logic is only restricted by the machine-state, i.e., whether the desired invocation
of an endpoint is valid at that particular time, but remains independent of the
state of other machines. Adding new functionality at the machine-level typically
requires PLC shutdown and hence requires the centralized coordinator to reach
a safe (product-specific) state first.

Suppose the machines from our motivating scenario are implemented accord-
ing to this reference architecture, the specific adaptation consequences are the
following. Product-specific updates are straight forward implemented via the
model and loading this into the centralized coordinator. There is no differences
whether the update affects only the milling machine or also the robot arm as
neither machines maintain product-specific control software. Machine-specific
adaptations are limited to the machine-under-adaptation: updating the gripping
algorithm may not even require stopping the milling machine if sufficient time
remains to deploy the new algorithm on the robot’s PLC and bind it to the end-
point in use by the centralized controller. Alternatively, the centralized controller
would bring the milling process to a safe state and wait for continuation once
the robot arm becomes operational again. Even machine-specific changes that
affected multiple machines in Baseline Architecture become strongly decoupled.
Switching to 5G on the milling machine, for example, would only affect the com-
munication between the milling machine and the centralized controller (assuming
that the controller supports this on the fly), but not the robot.

Overall, this architecture/approach is typically applied in the batch automa-
tion domain (e.g., pharma, food, beverages) where the product model is a so-
called recipe (e.g., recipe for producing aspirin) defined in ISA 88.2 The Central
Coordinator Architecture, however, is not limited to this standard.

5.3 61499 Architecture

The IEC 61499 standard (and hence this architecture’s name, Fig. 4) defines
a mechanism for specifying and loading product and machine-specific logic in
the form of Function Blocks on the fly. To this end, each PLC hosts a run-time
environment (RTE) that executes configurations of function blocks including the
communication among function blocks across PLC boundaries. A central model
consisting of Function Blocks (algorithmic units for computation, signaling, I/O
control etc) and their wiring represent the product and machine-specific logic.
Any separation between these to types is implicit and depends on a respective
well designed model. While function blocks allow reuse and thus separation of
machine-specific functionality, the RTE makes no such distinction and merely
requires all logic (of all required function blocks) to be provided in an executable
format. The mapping procedure of function blocks across PLCs (and respective
RTEs) includes the automatic generation of communication proxies and hence

2 https://www.isa.org/templates/one-column.aspx?pageid=111294&productId=
116649.

https://www.isa.org/templates/one-column.aspx?pageid=111294&productId=116649
https://www.isa.org/templates/one-column.aspx?pageid=111294&productId=116649

152 M. Mayrhofer et al.

Fig. 3. Central Coordinator Architec-
ture

Fig. 4. 61499 Architecture

allows function blocks to transparently communicate across PLC boundaries.
Strasser et al. [5] describe an exemplary implementation of such an architecture.
The VMDA demonstrator, referred to in the scenario description, shows the
latest state-of-the-art realization of a shop floor by following 61499 Architecture.

Behavior: The 61499 standard defines the ability how to change, replace, and
rewire any function block on the fly.

Asynchrony: Given the finegrained adaptation capabilities, before adaptation,
the impact of the adaptation must be evaluated to specify safe condition when to
effect a change. Both changes in product and machine logic require compilation
to intermediate code and to transfer it to the PLC. The RTE’s mechanisms for
code transfer support transferring deltas thus, reducing network load.

State: The RTE allows to employ algorithms for complete state transfer. This
transfer has to be planned in detail beforehand, together with the code compi-
lation. State required by dependent systems can be kept in memory until the
adaptation is complete. This is safely possible as IEC 61499 assumes that phys-
ical states (positions, velocities, temperatures, ...) do not jump, thus do only
deviate little from one time step to the next.

Execution Context: With the RTE’s capabilities of replacing code at runtime
while keeping the state in memory (or, if necessary, updating state changes
based on estimates) there are no restrictions to adaptation, from the software
perspective. The planning of state transfer might become tedious, especially if
states are removed or added, but not infeasible. The main limitation is, that the
controlled system, the physical system, has to be in a safe state.

Without a clear, dedicated boundary between machine-specific and product-
specific logic, any kind of local adaptation are possible on the fly if the
timing permits, i.e., the change is completed before the change logic segment
is accessed/used by the RTE again. Distributed changes such as switching to 5G

Assessing Adaptability of Software Architectures 153

or updating product dimension requires to synchronize the changes application
on the milling machine and on the robot. Hence, adaptation planning requires
in-depth domain knowhow of the milling machine and the robot at product and
machine level to identify safe states.

5.4 Coordination Middleware Architecture

Having analysed the properties of these three architectures, we propose Coordi-
nation Middleware Architecture depicted in Fig. 5 as the next logical evolution
step towards more adaptability. Similar to the Central Coordinator Architec-
ture, an engineer describes the product-specific logic in a central model and
subsequently assigns model fragments to various execution resources (i.e., the
PLCs). In contrast to the 61499 Architecture, there exists a strict separation
of product-specific logic and machine-specific logic. A local middleware on each
PLC interprets the product model fragments and calls the respective machine-
specific code. The model fragments contain information for registering itself at
the “shopfloor service bus” (SSB), in essence a coordination middleware. The
SSB enables registering endpoints, subscribing to events, and dispatching mes-
sages. The SSB is responsible for routing messages and events among the par-
ticipating PLCs. The local middleware obtains only local view of the overall
production process without insights into which other entities are involved as the
SSB is the only means for external communication. The SSB thereby constitutes
a powerful location for adaptation support due to strong decoupling of machines:
information mapping, message/event buffering, machine availability signalling,
fail-over handling, etc.

Behavior: Adapting Product-specific logic implies transferring any changes
from global model to local fragments. New functionality on machine level requires
either recompilation of the middleware, if using a hardcoded interpretation mid-
dleware, or transfer of the deltas, if using a RTE as in 61499 Architecture.

Asynchrony: Distributing updates to local product-specific logic fragments
occurs independently from changes to other fragments while the machine con-
tinue to produce. Introduction of new machine-specific code without downtime
is dependent on the capabilities of the middleware/RTE.

State: Product state needs to be persisted when adaption implies replacing a
complete product fragment during production. Alternatively, applying deltas to
the product model fragment preserves such state. For impact on machine-state,
see Central Coordinator Architecture.

Execution Context: Updating (or replacing) a process fragment requires it
to be in an safe state, i.e., where it is not expected to react before the end
of the adaptation procedure. The SSB enables PLCs to deregister during non-
instantaneous adaptations or maintenance (both at product fragment level and
machine logic level). The SSB may then signal other participants to suspend,
involve a failover machine (e.g., use another robot), or it temporarily stores
events and messages until the adapting PLC becomes available again. This limits

154 M. Mayrhofer et al.

the impact on other machines when a PLC needs to be shutdown for machine-
level adaptations.

The specific adaptation consequences for our motivating scenario are very
similar to Central Coordinator Architecture for machine-specific and product-
specific adaptations. With respect to product-logic adaptation: adaptations can
be effected on the fly. However, while distributed product-specific adaptations
such as different product dimensions requiring different gripping locations may
be distributed to machine and robot at different times, these adaptations have to
be made effective simultaneously which incurs coordination overhead. Machine-
specific distributed adaptation such as switching to 5G requires also the SSB
seamlessly use that communication means, making the change transparent to
the robot.

5.5 Distributed Middleware Architecture

A further evolution of Coordination Middleware Architecture results in Dis-
tributed Middleware Architecture. It merges the strong separation of product-
specific and machine specific logic of the Central Coordinator Architecture with
the peer-to-peer communication and on-the-fly updating capabilities of the 61499
Architecture, without having a central communication bottleneck as in the Coor-
dination Middleware Architecture (see Fig. 6. An SSB is often not feasible due
to performance reasons (latency, throughput) or infrastructure availability. It
effectively becomes distributed across the participating systems and integrated
in the local middleware there. This implies that participating systems need to
discover other participants, become aware of their role in the product-specific
model, subscribe for events, and track their availability. Consequently adap-
tation support such as message caching, fail-over, etc becomes more complex.
Given the similarities to the other architectures, the analysis with BASE yields
few differences.

Behavior: Similar to Coordination Middleware Architecture.

Fig. 5. Coordination Middleware
Architecture

Fig. 6. Distributed Middleware Archi-
tecture

Assessing Adaptability of Software Architectures 155

Asynchrony: Similar to Coordination Middleware Architecture, despite the
fact, that there is no central, consistent view on the machine availability (for-
merly available at the SBB) but is maintained distributed and hence typically
only eventually consistent.

State: Similar to Coordination Middleware Architecture.

Execution Context: Similar to Coordination Middleware Architecture, Adap-
tation that requires multiple model fragments to be simultaneously updated for
correct production requires a dedicated coordinator mechanism for the adap-
tations in sync. The middleware/coordinators now need to reach an agreement
when to adapt, rather than merely exposing an simple adaptation endpoint for
synchronization.

The adaptation implications for our motivating scenario are almost the same
as for the Coordination Middleware Architecture architecture. Here, machine-
specific distributed adaptation such as switching to 5G now requires all commu-
nicating parties to complete the switch at the same time.

5.6 Discussion

In the authoritative papers on the BASE framework [6,7], highlight that Behav-
ior, Asynchrony, State, and Execution identify the central techniques for achiev-
ing adaptability: In CPPS separating product and machine specific logic enables
defining more precisely what should change, and how that can be changed while
keeping the (side) effects local, and managing machine state separate from prod-
uct(ion) state (see also [2]).

The two general strategies underlying these techniques are making bindings
adaptable and using explicit events or messages for communication. These obser-
vations also hold true in CPPS. Malleable bindings imply that machines and
robots are allocated to the individual production steps as late as possible, e.g.,
which robot instance maneuvers the product into and out of a particular milling
machine instance. In CPPS the physical world limits the bindings to physically
available machines, but having the flexibility at the software (architecture) level
enables for increased flexibility at the physical level, e.g., replacing a robot,
adding one to increase production pace, integrating autonomous transport vehi-
cles. Architectures 2 to 5 make such late binding possible. Architecture 2 allows
late binding of the machines to the production process steps, Architecture 3
explicitly focuses on the ability to change the bindings at runtime, Architecture
4 introduces an SSB with capabilities for dynamically routing messages to the
right endpoints, with Architecture 5 doing the same but in a distributed manner.

Similarly, events/message achieve strong decoupling among components.
There is no shared memory or tight binding. Events allow monitoring and thus
provide feedback on the system state, informing adaptation mechanisms when
and where to engage. Events further allow replaying, transforming, and enhanc-
ing to turn systems interoperable, see architectures 4 and 5.

Maintaining a model of the system (product-specific and/or machine-specific)
is a key towards adaptability. Several approaches demonstrate the runtime adap-

156 M. Mayrhofer et al.

tation based on linking a model, i.e., the system’s architecture with its imple-
mentation, e.g., [6,8,9].

Ultimately, what architecture to select depends on the desired level of adapt-
ability subject to the constraint of the physical properties of the production
process and involved machines. An injection molding machine typically will pro-
duce many similar parts before the molding form is exchanged (a slow procedure)
to produce a different product and thus has different requirements for run-time
adaptation compared to a laser cutter that potentially cuts out a different form
every time. A second selection criterion is whether the architecture meets the
real-time requirements of two communicating machines. When two robots need
to interact to jointly lift a physical object, exchanging messages via an SSB in
Architecture D might not be able to deliver messages quickly enough.

6 Related Work

Software architecture research is an active topic in the cyber physical (produc-
tion) systems community. Ahmad and Babar [1] show that the last decades has
seen adoption of software development paradigms in robotics. As robots are a
specialisation of CPS, we expect a similar development for the CPS and CPPS
community. Pisching et al. [10] propose to use service-oriented architectures for
CPPS and define a layout for CPS to behave as services. Thramboulidis et al.
[11] investigate the usage of CPS as microservices. Others develop architectures,
usually based on patterns studied well already in software architectures [12,13].
Their goal is to improve the compatibility between components, there is only
little focus on runtime adaptation. None of the above works analysed considers
frequent software reconfiguration or in-situ adaptation. This is a topic heavily
investigated in the software architecture community. Several papers propose a
plethora of approaches with many of them being relevant to CPS.

Oreizy, Medvidovic and Taylor [2] gathered an extensive survey on existing
solutions and styles for flexible software. Michalik et al. [14] determine which
code needs to be updated on a system, based on software product lines. The
technology would be a key enabler for lot size one, yet it is left open how the
actual software update is executed. Holvoet, Weyns and Valckenaers [15] identify
patterns for delegate multi-agent systems that allow great reconfigurability at
the level of replacing and rewiring components. They are great visions for future
shopfloors, but might need several steps to be introduced in existing manu-
facturing environments. Fallah, Wolny and Wimmer [16] propose a framework
that uses SysML to model and execute a production process. Their approach
has a strong distinction between machines and machine operators, which we
consider hampering when it comes to mixed scenarios, where machines should
be replaced by humans or vice versa. Moreover, the tools of SysML are less
suited to model dynamic processes compared to e.g. BPMN or SBPM. Other
approaches introduce platform-specific “connectors” [17] or “bindings” [18] and
platform-independent coordination middleware. Prehofer and Zoitl [19] extend
this concept of platform-specific access layer (a.k.a. “thin controller”) with the

Assessing Adaptability of Software Architectures 157

capability to receive control code at runtime. Though various architectures exist
for robotic systems [1,20], CPPS go in scope beyond a single machine or robot
and hence have to satisfy stricter requirements [21,22].

7 Conclusions

We motivated the need for architectural adaptability in cyber physical produc-
tion systems. Using the BASE framework, we showed how Behavior, Asynchrony,
State, and Execution aspects affect an architecture’s adaptability. We presented
three existing and two novel architectures and discussed what makes them adapt-
able. While not the only architecture selection criterion, being aware of the lim-
its of adaptability of a particular architecture is of uttermost importance when
designing for future CPPS.

While this paper focused on the small scale interactions and adaptability
of a few machines (and/or robots) for production, the adaptability on higher
levels such as covering the complete shop floor are not very well understood
yet. Our next steps focus on investigating how architectural styles and patterns
apply for adapting at such higher-levels, especially in the presence of the various
architectures presented in this paper.

Acknowledgement. Supported in part by ENGEL Austria GmbH and Pro2Future,
a COMET K1-Centre of the Austrian Research Promotion Agency (FFG), grant no.
854184.

References

1. Ahmad, A., Babar, M.A.: Software architectures for robotic systems: a systematic
mapping study. J. Syst. Softw. 122, 16–39 (2016)

2. Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime software adaptation: framework,
approaches, and styles. In: Companion of the 30th International Conference on
Software engineering, pp. 899–910. ACM (2008)

3. Mahnke, W., Leitner, S.-H., Damm, M.: OPC Unified Architecture. Springer, Hei-
delberg (2009)

4. Pauker, F., Mangler, J., Rinderle-Ma, S., Pollak, C.: Centurio.work - modular
secure manufacturing orchestration. In: 16th International Conference on Business
Process Management 2018, pp. 164–171 (2018)

5. Strasser, T., et al.: Framework for distributed industrial automation and control
(4diac). In: 2008 6th IEEE International Conference on Industrial Informatics, pp.
283–288 (2008)

6. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evo-
lution. In: Proceedings of the 20th International Conference on Software Engineer-
ing, pp. 177–186. IEEE Computer Society, Washington, DC (1998)

7. Taylor, R., Medvidovic, N., Oreizy, P.: Architectural styles for runtime software
adaptation. In: 2009 Joint IEEE/IFIP Conference on Software Architecture Euro-
pean Conference on Software Architecture, pp. 171–180 (2009)

158 M. Mayrhofer et al.

8. Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

9. Dorn, C., Taylor, R.N.: Coupling software architecture and human architecture for
collaboration-aware system adaptation. In: Proceedings of the 2013 International
Conference on Software Engineering, pp. 53–62. IEEE Press (2013)

10. Pisching, M.A., Junqueira, F., Filho, D.J., Miyagi, P.E.: An architecture based on
IoT and CPS to organize and locate services. In: 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–4
(2016)

11. Thramboulidis, K., Vachtsevanou, D.C., Solanos, A.: Cyber-physical microservices:
an IoT-based framework for manufacturing systems. In: 2018 IEEE Industrial
Cyber-Physical Systems (ICPS), pp. 232–239 (2018)

12. Hussnain, A., Ferrer, B.R., Lastra, J.L.M.: Towards the deployment of cloud
robotics at factory shop floors: a prototype for smart material handling. In: 2018
IEEE Industrial Cyber-Physical Systems (ICPS), pp. 44–50 (2018)

13. Spinelli, S., Cataldo, A., Pallucca, G., Brusaferri, A.: A distributed control archi-
tecture for a reconfigurable manufacturing plant. In: 2018 IEEE Industrial Cyber-
Physical Systems (ICPS), pp. 673–678 (2018)

14. Michalik, B., Weyns, D., Boucke, N., Helleboogh, A.: Supporting online updates of
software product lines: a controlled experiment. In: 2011 International Symposium
on Empirical Software Engineering and Measurement, pp. 187–196 (2011)

15. Holvoet, T., Weyns, D., Valckenaers, P.: Patterns of delegate MAS. In: 2009 Third
IEEE International Conference on Self-Adaptive and Self-Organizing Systems, pp.
1–9 (2009)

16. Fallah, S.M., Wolny, S., Wimmer, M.: Towards model-integrated service-oriented
manufacturing execution system. In: 2016 1st International Workshop on Cyber-
Physical Production Systems (CPPS), pp. 1–5 (2016)

17. Malek, S., Mikic-Rakic, M., Medvidovic, N.: A style-aware architectural middle-
ware for resource-constrained, distributed systems. IEEE Trans. Softw. Eng. 31,
256–272 (2005)

18. Hallsteinsen, S., et al.: A development framework and methodology for self-
adapting applications in ubiquitous computing environments. J. Syst. Softw.
85(12), 2840–2859 (2012)

19. Prehofer, C., Zoitl, A.: Towards flexible and adaptive productions systems based on
virtual cloud-based control. In: Proceedings of the 2014 IEEE Emerging Technology
and Factory Automation (ETFA), pp. 1–4 (2014)

20. Georgas, J.C., Taylor, R.N.: An architectural style perspective on dynamic robotic
architectures. In: Proceedings of the IEEE Second International Workshop on Soft-
ware Development and Integration in Robotics (SDIR 2007), Rome, Italy, p. 6
(2007)

21. Hu, L., Xie, N., Kuang, Z., Zhao, K.: Review of cyber-physical system architec-
ture. In: 2012 IEEE 15th International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops, pp. 25–30 (2012)

22. Sadiku, M., Wang, Y., Cui, S., Musa, S.: Cyber-physical systems: a literature
review. Eur. Sci. J. 13(36), 52–58 (2017). ISSN 1857-7881

Quality Attributes

Optimising Architectures
for Performance, Cost, and Security

Rajitha Yasaweerasinghelage1,2(B), Mark Staples1,2, Hye-Young Paik1,2,
and Ingo Weber1,2

1 Data61, CSIRO, Level 5, 13 Garden Street, Eveleigh, NSW 2015, Australia
{rajitha.yasaweerasinghelage,mark.staples,
hye-young.paik,ingo.weber}@data61.csiro.au

2 School of Computer Science and Engineering, University of New South Wales,
Sydney, NSW 2052, Australia

Abstract. Deciding on the optimal architecture of a software system
is difficult, as the number of design alternatives and component interac-
tions can be overwhelmingly large. Adding security considerations can
make architecture evaluation even more challenging. Existing model-
based approaches for architecture optimisation usually focus on perfor-
mance and cost constraints. This paper proposes a model-based architec-
ture optimisation approach that advances the state-of-the-art by adding
security constraints. The proposed approach is implemented in a pro-
totype tool, by extending Palladio Component Model (PCM) and Per-
Opteryx. Through a laboratory-based evaluation study of a multi-party
confidential data analytics system, we show how our tool discovers secure
architectural design options on the Pareto frontier of cost and perfor-
mance.

Keywords: Software architecture · Software performance ·
Data security · Architecture optimisation

1 Introduction

Many software systems today are complex, with thousands of deployed compo-
nents and many stakeholders [19]. With increasing complexity, there is increas-
ing development cost. Non-functional requirements for systems often include
response time, cost of development and operation, and security. When develop-
ing systems, software architecture should support these requirements effectively.

There are inter-dependencies and trade-offs between quality attributes like
performance, cost, and security. For example, secure components are generally
more costly than non-secure components. Prior work reports costs of $10,000
per line of code to develop highly-secure components, compared to $30–$40 per
line of code for less-secure components [7,11]. When designing systems with
critical requirements for performance, cost, and security, architects try to achieve
optimal trade-offs between them. In a large design space, with many components
c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 161–177, 2019.
https://doi.org/10.1007/978-3-030-29983-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-29983-5_11

162 R. Yasaweerasinghelage et al.

and design options, finding designs with good trade-offs is challenging, even for
experienced architects. Manually assessing and comparing quality attributes for
even a small number of design alternatives is difficult and error-prone.

Model-based design is now a common practice, and helps architects explore
options during design. Many architecture modelling and optimisation meth-
ods have been studied [2–4]. There are well-established methods for optimising
deployment architecture based on the performance of the system [13,16], costs
of development, deployment, and maintenance [16], and other constraints such
as energy consumption [21]. However, security constraints and policies are not
yet well-treated in existing literature on architectural optimisation [1].

In this paper, we propose a new approach for optimising for performance,
cost, and security in architectural design. We demonstrate the feasibility of
the approach by implementing a prototype which extends the Palladio Com-
ponent Model [4] and PerOpteryx optimisation tool [13] to support static taint
analysis. One challenge in designing secure systems is defining and evaluating
system security. Optimisation techniques require automated assessments. Static
taint analysis is a simple automatic security analysis approach. Taint analysis is
not a perfect model of security, but is a popular technique for identification of
architecture-level vulnerabilities related to data propagation in the design phase
[22]. Although our prototype uses taint analysis, our approach is more general
and we discuss the use of other techniques for security analysis.

The main contributions of this paper are: an approach for architectural opti-
misation for cost, performance, and security; a model and method for taint
analysis for security analysis for Palladio and PerOpteryx; and an evaluation of
the approach on an industrial use case demonstrating feasibility and the abil-
ity to generate useful insights: in the case study, best performance and cost
were achieved by non-secure architectures, but secure architectures were not far
behind. Also, the approach discovered distinctive design options on the Pareto
frontier of cost and performance for secure designs.

The paper structured is as follows. In Sect. 2, we introduce existing tech-
nologies relevant to the proposed approach. Then we provide an overview of the
proposed method in Sect. 3. Section 4 provides details about modelling and opti-
misation through a running example. We discuss and compare literature closely
related to this work in Sect. 5, propose suggestions for future work in Sect. 6 and
conclude the paper with Sect. 7.

2 Background

This section reviews: architecture performance modelling; architecture design
space exploration and deployment optimisation; and static taint analysis.

2.1 Architecture Performance Modelling

Architectural models capture the system structure by representing the links
between components. Performance characteristics are associated with these

Optimising Architectures for Performance, Cost, and Security 163

components and their composition. Popular frameworks for architectural mod-
elling are the Palladio Component Model (PCM) [18], and Descartes Modelling
Language [12]. Architectural models can incorporate additional non-functional
attributes associated with the system structure, such as latency, resource usage,
cost and throughput. The resulting models can be used by simulation engines
or analytical solvers to analyse non-functional properties [5]. Simulation-based
prediction can be time-consuming, but provides more flexibility for modelling.

Palladio Component Model (PCM). [18] is the platform used in this paper to
model architecture performance characteristics. Palladio was selected as it is
freely available, supports simulation, provides a familiar ‘UML-like’ interface for
model creation, and has the flexibility to incorporate extensions such as architec-
tural optimisation tools [8,13], new qualities [21], and new kinds of systems [23].
The modelling concepts in Palladio align with component-based development
paradigm and support component reuse across models.

2.2 Architecture Design Space Exploration and Deployment
Architecture Optimisation

Automated software architecture exploration based on architecture models is
increasingly popular in industry. Aleti et al. [1] surveys existing methods.

PerOpteryx. [13] is an automated design space exploration tool for PCM, capable
of exploring many degrees of freedom. PerOpteryx starts with a PCM instance
and a set of design decision models that describe how the architecture can be
changed. Automated search over this design space is performed using a genetic
algorithm. For each generation in the search, a Palladio instance is generated
and analysed to evaluate quality attributes such as performance and cost.

PerOpteryx is capable of optimising multiple quality attributes by searching
for Pareto-optimal candidates. A candidate is Pareto optimal if there exists no
other candidate that is better across all quality metrics. A set of Pareto-optimal
candidates approximate the set of globally Pareto-optimal candidates [8].

2.3 Static Taint Analysis

Defining meaningful quantitative metrics for security is challenging. There have
been a number of approaches proposed, but in our opinion, there is no single
generic method suitable for all applications (see Sect. 5). In this paper, to simplify
our demonstration of security analytics for optimisation, we use taint analysis.
Taint analysis results in a binary secure/not-secure evaluation for a system,
which is arguably the most challenging kind of metric for use in optimisation.
Taint analysis is simple but useful in identifying fundamental issues in the data
flow of the system, as a form of information flow analysis [17,22].

Taint is used to represent the reach of an attack within a system. As shown
in Fig. 1, taint starts at a taint source (node 1), which could be a component
exposed to the external environment, then flows to connected components. Taint

164 R. Yasaweerasinghelage et al.

Fig. 1. Graph taint analysis, illustrating an insecure system. Bad ‘taint’ from the source
Node 1 to the critical target Node 7, via a path through Node 2, despite being blocked
from flowing through the taint barrier at Node 6.

Fig. 2. Method overview, highlighting extensions proposed in this paper.

blockers (e.g. node 6) are secure components which prevent further propagation
of taint. A system security property defines the set of critical components (e.g.
node 7) which must remain free of taint after maximal propagation of taint
through the system. The system in Fig. 1 is not secure, because taint can flow
through non-secure components (e.g. nodes 2, 5) to the critical component.

3 Method Overview

Our approach, shown in Fig. 2, combines architecture-level performance mod-
elling, simulation and optimisation. We use three types of models to represent
the system: the initial architecture model, annotation models, and the design
search space model. We use the Palladio Component Model (PCM) tool for the
underlying architecture model. To define annotation models, we annotate PCM
with information about three quality attributes; performance, cost, and security.

Optimising Architectures for Performance, Cost, and Security 165

The performance annotation model is supported directly in PCM, and the Pal-
ladio cost extension is used for cost annotations. The security model is defined
separately. In Sect. 3.1, we describe how each quality attribute is modelled.

For the design search space model, we used Palladio Design Decision Dia-
grams. These are used to generate candidate architectures in the optimisation
phase. Some design options are specific to security architecture. For example, a
component might be modelled as being a secure component that works as a taint
barrier. So, the default Palladio Design Decision Diagrams need to be extended
to accommodate these model elements.

For design space exploration, we use PerOpteryx optimisation tool with mod-
ifications to use these extended security annotation models. The output is a set of
generated Pareto-optimal candidate architectures, which can be used by experts
to select the final design.

3.1 Quality Attribute Modelling for the Optimisation

The first step of the proposed approach is to model each quality attribute.

Performance Modelling. We used PCM performance analysis, as discussed
in the literature [9], which has been shown to be sufficiently accurate for various
types of applications, including the example system discussed in this paper.
This demonstrates that our approach allows the reuse of previously-developed
Palladio performance models.

The security level of a component may affect the resource utilisation of the
component, impacting the overall performance of the system. (For example,
encrypting communications may incur a performance overhead.) In such cases,
a component with one kind of functionality is modelled with different perfor-
mance (and security) properties as design alternatives, and are used for design
exploration during optimisation.

Cost Modelling. We use the existing and well-studied Palladio cost modelling
extension for modelling cost attributes. This can capture different types of costs
such as component costs, variable and fixed resource costs, and networking costs.

The security level of a component can impact its cost. For example, secure
components are more expensive to develop than less-secure components. We
model a component with one kind of functionality as multiple alternative com-
ponents that represent different levels of security each with a corresponding cost
in the cost model. Then we use those component alternatives when exploring
options during optimisation.

Security Modelling. A key contribution of this paper is integrating security
analysis into automatic design space exploration. Unlike other quality attributes
such as performance and cost, security is not easily quantifiable. Security anal-
yses often only make Boolean judgements about system security (i.e., secure,

166 R. Yasaweerasinghelage et al.

or not), but some analyses give continuous metrics of security (e.g., expected
time to next attack). In this paper, we demonstrate our approach using taint
analysis as the basis for security analysis. However, our general approach could
be adapted to use other security analysis metrics, as discussed in Sect. 5.

4 Modelling and Optimising

The prototype for our approach uses taint analysis (see Sect. 2.3) as the security
analysis technique. As our goal is to optimise performance and cost while sat-
isfying a security requirement, we developed an extension for integrating taint
analysis with existing Palladio Models and incorporating taint properties into
the PerOpteryx optimisation. To describe the modelling and optimisation pro-
cess, we use a running example based on a privacy-preserving computing system
called N1Analytics1 [9]. This section provides details about the extension and
how it works for the running example. Finally, we discuss how the architecture
of the N1 Analytics system can be optimised for performance, cost, and taint
properties.

4.1 Running Example

N1Analytics is a platform that allows statistical analyses using data distributed
among multiple providers, while maintaining data confidentiality between the
providers. Following the main principles of N1Analytics systems, we designed
an initial abstract architecture, to illustrate some of the critical features of our
proposed approach. It should be noted that this abstract architecture differs
from actual N1Analytics implementations.

Base Deployment Architecture. Figure 3 presents the federated deployment
architecture of the N1Analytics platform. Data providers and coordinators are
the two main building blocks. In an analytics operation, the coordinators have
the private key to decrypt the computed results but do not have access to plain or
encrypted input data. They only have a partial output that is not itself capable
of revealing plaintext results.

The private key is not accessible to the data providers, so they cannot violate
the privacy of the encrypted input data shared with them. Data providers and
coordinators may have a set of worker nodes to perform their operations. It is
possible to move data between nodes, as long as they preserve the protocol: the
coordinator should not have access to the encrypted data, and data providers
should not have access to the private keys.

1 https://www.n1analytics.com.

https://www.n1analytics.com

Optimising Architectures for Performance, Cost, and Security 167

Fig. 3. N1Analytics platform distributed architecture

Fig. 4. N1Analytics component architecture in UML notation

Component Architecture. To simplify the demonstration, we modify the
architecture of the N1Analytics system used in our earlier work [24] by assuming
that the basic component architecture of the coordinator and each data provider
is similar. Even so, the resource utilisation and the functionality of each node
are different. Notably, the computation overhead and workflow of each node are
significantly different. We model each node separately to reflect those differences.
Figure 4 presents the architecture model we considered.

4.2 Modelling System for Optimisation

Performance Modelling. We modelled performance characteristics following
the general Palladio approach. Our model of the N1Analytics system is similar
to that presented in our earlier work [24], but introduces changes to demonstrate
cost-based optimization and security-critical components.

In [24], the N1Analytics system was deployed in a test environment, and the
resource utilisation of each development component was measured. Then, each
development component was mapped to a functional component to be used in
the model architecture. The architecture is modelled in PCM using functional
components, and the resource utilisation of each component is derived from

168 R. Yasaweerasinghelage et al.

microbenchmark results. Resource utilisation is defined as a function of work-
load and the size of the data set. The resource environment definition, usage
model, and allocation model were defined based on the design specification of
the system. We reuse their published abstract model2, but with minor modifica-
tions to introduce a user access point component, a parser, and database access
component for demonstrating data propagation design options.

Cost Modelling. We used the standard Palladio Cost modelling approach.
Note that if a single component can have multiple levels of security, it needs to
be modelled as multiple alternative components with different cost properties.
Similarly, when introducing additional components such as secure load balancers
and secure bridging interfaces, base costs and operating costs need to be specified
accordingly. There will also be an overhead for operation cost, because some
secure components may have higher resource utilisation.

User AP

External
API

Taint Access Point

Parser

Init

Controller

Data
Access

Compute

DB

Fig. 5. Taint graph

Security Modelling - Modelling Taint Properties. We extended PCM
to define taint properties of the system. These properties are then used in the
optimisation algorithm. First, the extension retrieves the candidate system archi-
tecture and converts to a taint graph as shown in Fig. 5.

In the proposed method, each software component can be taint safe or taint
unsafe. Assigning this state to a component, based on whether it is secure or
not, is a decision for the model designer, as discussed further in Sect. 6. Taint
safe components act as a taint barrier preventing taint propagation from that
point onwards. In this study, our cost models assume that taint safe components
cost more than their taint unsafe counterparts.

From an initial taint setting, we analyse the graph by graph search, spreading
taint except through taint safe components. The search includes cyclic dependen-
cies which might spread taint over multiple passes. The results about whether
security critical components become tainted are provided to the optimisation
engine (see Sect. 4.4).
2 https://doi.org/10.6084/m9.figshare.5960014.v1.

https://doi.org/10.6084/m9.figshare.5960014.v1

Optimising Architectures for Performance, Cost, and Security 169

When modelling the N1Analytics architecture, we represent each compo-
nent twice, with secure and non-secure alternatives, each with a different cost.
Our not-unrealistic assumption is that a secure component is ten times more
expensive than its non-secure version. Additionally, to explore the impact of
security-specific design patterns, we define two optional secure bridge compo-
nents in front of the parser and the data access component. Our experiments are
executed with and without these secure bridging components.

4.3 Additional Design Options

We modelled additional architectural design alternatives related to data prop-
agation of the system and basic security policies in Design Decision Diagrams.
These define the exploration space for architecture optimisation.

In this paper, we include design options directly related to the security prop-
erties. The design options model their impact on the overall performance, cost,
and security of the analysed architecture. These design options are used along-
side other general architecture design options.

Fig. 6. Design option - taint blockers/secure components

Taint Blockers/ Secure Components. Developing a secure component is sig-
nificantly more expensive than developing a component using a standard devel-
opment process. To be cost-optimal, only a limited number of components can
be secure.

As illustrated in Fig. 6, a component can be made taint safe to act as a
taint barrier protecting critical components and thus ensuring system security.
A secure component may have higher resource utilisation compared to less-secure
components due to validity checks, or encryption, and this is also reflected in
the performance models.

Fig. 7. Design option - secure bridging interfaces

170 R. Yasaweerasinghelage et al.

Secure Bridging Interfaces. There is a significant cost of securing compo-
nents if those components are large. One design strategy to prevent taint prop-
agation is to implement secure bridging interfaces in-between components, as
shown in Fig. 7. A typical bridging interface component is small compared to
major functional components because it focuses on enforcing key security prop-
erties. Being smaller, their development cost can be significantly lower. On the
other hand, introducing a bridging interface component adds new fundamental
cost for developing the component, increases resource utilisation, and may act
as a performance bottleneck.

Fig. 8. Design option - secure component access interfaces and secure load balancers

Secure Component Access Interfaces and Secure Load Balancers. Sim-
ilar to the secure bridging interface components, a design strategy might be to
introduce secure common interfaces/load balancers, or to bring existing com-
mon interfaces/ load balancers to a higher security level (see Fig. 8). Generally,
these components are smaller than major functional components, and so have
significantly lower development cost. However, these components also can be bot-
tlenecks to the system and incur additional base development cost. In addition,
as load balancer interfaces can be concurrently accessed by multiple components
with different resource utilisation, we have to consider such interactions when
optimising the system under different workloads.

4.4 Model Optimisation

We started the optimisation with the architecture shown in Fig. 4. Even though
the proposed approach can handle multiple components defined as taint starting
points or security critical systems, for the simplicity of illustration we define the
external access component as the taint starting point and the database com-
ponent as the only security-critical component. In the initial architecture, all
components are non-secure.

In the Design Decision Model, we allow every component except access points
and databases to be made taint safe or taint unsafe. Additionally, we defined
optional trusted bridge components before the parser and computation con-
troller. Access points, databases, and computation components should only be
allocated to the DMZ server, database server, and computation server respec-
tively. Other components can be allocated to any server.

Optimising Architectures for Performance, Cost, and Security 171

We modelled the example system using Palladio Workbench version 4.0 using
SimuCom Bench for performance analysis with Sensor Framework as the per-
sistence framework. For design space exploration we used PerOpteryx version
4.0 with slight modifications for accommodating taint analysis when optimising.
We executed the optimisation on a machine with a 2.7 GHz Intel Core i5 CPU
and 8 GB main memory. It took approximately 4 h to run 500 iterations of the
simulation.

4.5 Results

The selection of optimal components for a system depends on its requirements.
Here we assume the reasonable goal is the lowest-cost secure architecture that
achieves a response time above a given threshold.

Fig. 9. Response time and cost of candidate architectures generated by PerOpteryx.
(Color figure online)

Figure 9 plots the identified candidate architectures as a distribution of
response time and cost. The red dot indicates the initial architecture config-
uration (i.e. Fig. 4) fed into the system. Secure candidates are shown as blue
diagonal crosses, and non-secure candidates are shown with an orange plus. As
can be seen, the genetic algorithm generated fewer non-secure candidates than
secure candidates. Importantly, the results show that when the architecture is
secure the system tends to be more expensive and have inferior performance.
In other words, if security is ignored when picking a candidate architecture, one
would likely pick a non-secure architecture. However, there are secure alternatives
with just slightly inferior cost and performance.

172 R. Yasaweerasinghelage et al.

Fig. 10. Secure candidate architecture with low cost where the simulated cost is 2,778
units. Simulated response time of this architecture is 33.9 units.

Fig. 11. Secure candidate architecture with low simulated response time of 13.4 units
where simulated cost is 46,692 units.

Data Server
DMZ server

Computation Server

User AP

External Node
AP

Parser

Initializer

Computation
Controler

Data Acess

Computation

Database

cont. processing rate = 3.5

cont. processing rate = 5.6
cont. processing rate = 4.8

Actor

Fig. 12. Secure intermediate point where a bridge component has been introduced.
Cost is 2,832 units and response time is 32.1 units.

Fig. 13. Generated non-secure architecture. Simulated cost is low as 1,580 and response
time is 37.8 units. The system is non-secure despite one component being secure.

Optimising Architectures for Performance, Cost, and Security 173

For some concrete examples, Fig. 10 shows the cheapest secure architecture
that costs 2,778 units but has 33.9 units response time. Figure 11 illustrates
the best performing secure architecture identified, which has a response time of
13.4 units but costs of 46,692 units. Figure 13 shows a non-secure architecture
which has cost low as 1,580 while response time is 37.8. From these examples,
it is evident that this method is capable of generating wide range of feasible
candidate architectures based on given design options. This is true for all the
candidates.

Identifying vastly different architectures with similar performance, cost and
security can be beneficial in some cases. The difference between those archi-
tectures can be measured by calculating the edit distance between two Palla-
dio instances by aggregating the weighted difference of each design option. We
assigned a lower weight for differences in the resource environment and higher
weight for structural changes to identify architectures with vastly different struc-
tural changes. Figures 10 and 12 show a pair of such alternative architectures we
identified by comparing distance between alternatives, i.e., structurally quite
different but with similar performance and cost, and both secure.

5 Related Work

Here we compare our work to related security modelling and analysis approaches.

Design Space Exploration for Security. Eunsuk Kang [10] identifies the
importance of design space exploration for security and outlines key elements of
a framework intended to support it. The main focus of his work is on low-level
system design and configuration, which is not directly applicable to architecture
level design exploration.

Security Modelling Using Palladio Component Model. Busch et al. [6]
provide a Palladio extension to predict the mean time to the next security inci-
dent. Their methodology is to model what to protect (e.g., data of a database),
different ways to access the protected data (e.g., hacking the fronted and then
hacking the non-public database), attacker’s experience, available knowledge
about the system, and the quality of the components in the system. The model
can then predict the mean time to the next security incident.

Busch et al.’s approach facilitates security comparison of different architec-
tures and can be used to identify secure architectures. The main limitation is
the difficulty of identifying specific model parameters such as the experience of
an attacker or quality of a component. It is also complicated to model insider
attacks. Nonetheless, the approach defines a metric for system security that
might be able to be incorporated into the general approach proposed in this
paper.

174 R. Yasaweerasinghelage et al.

Quantifying Security. Sharma et al. [20] propose to use Discrete-Time Markov
Chains (DTMCs) to model software architecture. This is a hierarchical model
that captures quality attributes of components, including security. They quan-
tify security through a model that represents the probability of exposing the
vulnerability of a component in a single execution and its effect on system secu-
rity. This model considers how often a certain component is accessed, which is
ignored in our approach based on the assumption that an attacker accesses a
component as often as needed. Sharma et al. [20] designed the model to con-
sider the system as broken if at least one component is successfully attacked.
Yet, as the systems we consider are typically deployed on several machines, a
broken component does not mean that the whole system is compromised. Hence,
we designed our approach to consider the control flow of a system as could be
followed by an attacker.

Madan et al. [15] propose a Semi-Markov process-based model to quan-
tify security for intrusion-tolerant systems. This model is based on two state-
transition models describing how the system behaves under attack. Their scope
is Denial-of-Service (DoS) and attacks to compromise the system. The objective
of the models is to calculate the Mean Time To Security Failure, to quantify the
security of the system. In contrast to this model, our approach can assess the
security of component-based architectures and is not restricted to monolithic
systems.

SECOMO. SECOMO (Security Cost Model) [14] is a cost modelling tech-
nique associated with a framework for risk management in telecommunications.
It estimates the effort required to conduct a risk management project in a net-
worked environment. This estimation forms a basis for other task estimations
such as the cost, human resources and duration of the project. The estimations
are calculated using network size and parameters called scale factors and effort
multipliers, which combined together can provide a measure for the security task
complexity.

6 Discussion and Future Work

Unlike performance and cost, security is not easily quantifiable. Although secu-
rity must be considered when making architecture design decisions, the com-
plicated nature of security makes it difficult to follow traditional automated
design optimisation practices. In this paper, we demonstrated that, instead of
directly modelling the security of architecture, it is possible to perform architec-
ture optimisation using security analysis techniques in conjunction with other
quantifiable system properties (cost, performance). We used taint analysis as an
example architecture security analysis technique to demonstrate the proposed
approach.

Based on system security requirements and a domain of operation, we expect
it would be possible to use alternative security analysis techniques such as those

Optimising Architectures for Performance, Cost, and Security 175

discussed in Sect. 5 in place of taint analysis. By using alternative security analy-
sis techniques, users may better identify security vulnerabilities relevant to their
domain. We plan to extend this work by developing a wider range of security
analysis techniques to be used along with Palladio component model, covering
different aspects of security analysis.

In an architectural model, secure components may have higher cost, because
of the time and resources required to secure and provide assurance for that com-
ponent. This may include formal security evaluation techniques such as Evalua-
tion Assurance Level (EAL). These assumptions of increased cost are reasonable,
but could be refined or tailored in specific industries or organisations if empiri-
cal cost data is available. The security of a component can also depend on the
domain. For example, a component might be sufficiently secure for a small-scale
software system with no significant security threats, but be non-secure for a
highly security-critical system in a hostile environment.

PerOpteryx performs a heuristic search on the design space. So it is not
guaranteed to find the optimal or simplest viable architecture. Different initial
architectures may converge to different sub-optimal Pareto candidates. The sys-
tem also does not find a single optimal architecture, but instead defines a range
of optimal alternatives on the Pareto frontier. It is the architect’s responsibility
to choose the final architecture. The architectures discussed here are for illus-
tration purposes only. In real-world scenarios, all the relevant components need
to be modelled with higher detail in order to get more accurate results.

Taint analysis technique we chose for the evaluation of the proposed approach
outputs a binary value for the security. In the real world, architects may want
to use continuous values such as mean time for an attack (see Sect. 5). In such
cases, they can apply the same principles we propose and optimise the system for
multi-objectives considering security as another dimension because PerOpteryx
inherently supports multi-objective optimisations.

7 Conclusion

This paper proposes a new method that incorporates security analysis tech-
niques, in addition to cost and performance (latency), when automatically
exploring and optimising system architecture designs. We demonstrate our app-
roach using taint analysis, a basic architecture security analysis technique where
secure components stopped propagation of taint from attackers to security-
critical components, as the basis for security analysis. We prototyped the app-
roach by extending the Palladio Component model and PerOpteryx systems. The
extensions include support for our security modelling and analysis. We reported
on the experiment and demonstrate the feasibility of using the approach, illus-
trating contrasting examples of generated secure system architectures on the
cost/performance Pareto frontier.

The evaluation was performed on an industrial example of a secure system
architecture for a privacy-preserving computing system. The case study high-
lighted the usefulness of the approach, by finding that best performance and

176 R. Yasaweerasinghelage et al.

cost were achieved by non-secure architectures – secure architectures were not
far behind, and a variety of distinct design options were identified. Our approach
is aimed at supporting architects in identifying and selecting good architecture
during the design phase, considering security, cost and performance. In future
work, we plan to augment the prototype with support for other security models
and analysis techniques.

References

1. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software archi-
tecture optimization methods: a systematic literature review. IEEE Trans. Softw.
Eng. 39(5), 658–683 (2013)

2. Ardagna, D., Casale, G., Ciavotta, M., Pérez, J.F., Wang, W.: Quality-of-service
in cloud computing: modeling techniques and their applications. J. Internet Serv.
Appl. 5, 5–11 (2014)

3. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: a survey. IEEE Trans. Softw. Eng. 30(5), 295–
310 (2004)

4. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009)

5. Brunnert, A., et al.: Performance-oriented DevOps: a research agenda. arXiv
preprint arXiv:1508.04752 (2015)

6. Busch, A., Strittmatter, M., Koziolek, A.: Assessing security to compare archi-
tecture alternatives of component-based systems. In: International Conference on
Software Quality, Reliability and Security. IEEE (2015)

7. Colbert, E., Boehm, B.: Cost estimation for secure software & systems. In:
ISPA/SCEA 2008 Joint International Conference (2008)

8. De Gooijer, T., Jansen, A., Koziolek, H., Koziolek, A.: An industrial case study
of performance and cost design space exploration. In: International Conference on
Performance Engineering. ACM (2012)

9. Djatmiko, M., et al.: Privacy-preserving entity resolution and logistic regression on
encrypted data. In: Private and Secure Machine Learning (PSML) (2017)

10. Kang, E.: Design space exploration for security. In: 2016 IEEE Cybersecurity Devel-
opment (SecDev), pp. 30–36. IEEE (2016)

11. Klein, G., et al.: seL4: formal verification of an OS kernel. In: Symposium on
Operating Systems Principles. ACM (2009)

12. Kounev, S., Brosig, F., Huber, N.: The Descartes modeling language. Department
of Computer Science, University of Wuerzburg, Technical report (2014)

13. Koziolek, A., Koziolek, H., Reussner, R.: PerOpteryx: automated application of
tactics in multi-objective software architecture optimization. In: Proceedings of
the QoSA & ISARCS. ACM (2011)

14. Krichene, J., Boudriga, N., Fatmi, S.: SECOMO: an estimation cost model for
risk management projects. In: International Conference on Telecommunications,
ConTEL 2003, vol. 2. IEEE (2003)

15. Madan, B.B., Goševa-Popstojanova, K., Vaidyanathan, K., Trivedi, K.S.: A method
for modeling and quantifying the security attributes of intrusion tolerant systems.
Perform. Eval. 56(1–4), 167–186 (2004)

http://arxiv.org/abs/1508.04752

Optimising Architectures for Performance, Cost, and Security 177

16. Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve soft-
ware architecture models for performance, reliability, and cost using evolution-
ary algorithms. In: International Conference on Performance Engineering (ICPE)
(2010)

17. Newsome, J., Song, D.X.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: NDSS, vol. 5.
Internet Society (2005)

18. Reussner, R.H., et al.: Modeling and Simulating Software Architectures: The Pal-
ladio Approach. MIT Press, Cambridge (2016)

19. Safwat, A., Senousy, M.: Addressing challenges of ultra large scale system on
requirements engineering. Procedia Comput. Sci. 65, 442–449 (2015)

20. Sharma, V.S., Trivedi, K.S.: Architecture based analysis of performance, reliability
and security of software systems. In: International Workshop on Software and
Performance. ACM (2005)

21. Willnecker, F., Brunnert, A., Krcmar, H.: Predicting energy consumption by
extending the Palladio component model. In: Symposium on Software Performance
(2014)

22. Yang, Z., Yang, M.: LeakMiner: detect information leakage on android with static
taint analysis. In: 2012 Third World Congress on Software Engineering (WCSE).
IEEE (2012)

23. Yasaweerasinghelage, R., Staples, M., Weber, I.: Predicting latency of blockchain-
based systems using architectural modelling and simulation. In: International Con-
ference on Software Architecture (ICSA) (2017)

24. Yasaweerasinghelage, R., Staples, M., Weber, I., Paik, H.Y.: Predicting the per-
formance of privacy-preserving data analytics using architecture modelling and
simulation. In: International Conference on Software Architecture (ICSA) (2018)

QoS-Based Formation of Software
Architectures in the Internet of Things

Martina De Sanctis1, Romina Spalazzese2, and Catia Trubiani1(B)

1 Gran Sasso Science Institute, L’Aquila, Italy
{martina.desanctis,catia.trubiani}@gssi.it

2 Department of Computer Science and Media Technology,
Internet of Things and People Research Center,

Malmö University, Malmö, Sweden
romina.spalazzese@mau.se

Abstract. Architecting Internet of Things (IoT) systems is very chal-
lenging due to the heterogeneity of connected objects and devices,
and their dynamic variabilities such as mobility and availability. The
complexity of this scenario is exacerbated when considering Quality-
of-Service (QoS) constraints. Indeed, reasoning about multiple quality
attributes, e.g., power consumption and response time, makes the man-
agement of IoT systems even more difficult since it is necessary to jointly
evaluate multiple system characteristics. The focus of this paper is on
modelling and analysing QoS-related characteristics in IoT architectures.
To this end, we leverage on the concept of Emergent Architectures (EAs),
i.e., a set of things temporarily cooperating to achieve a given goal, by
intertwining EAs with QoS-related constraints. Our approach provides
the automated formation of the most suitable EAs by means of a QoS-
based optimisation problem. We developed an IoT case study and exper-
imental results demonstrate the effectiveness of the proposed approach.

1 Introduction

The Internet of Things (IoT) refers to a complex network of interactive things,
i.e., heterogeneous tags, sensors, actuators, objects, and devices that dynamically
cooperate [1–3]. The IoT is exploited for the development of many applications
spanning multiple domains, such as natural disasters, industrial automation,
smart homes [4]. The IoT attracted the attention of companies, governments,
and citizens, and has given rise to research in both industry and academia [5]. A
recent estimation of the IoT market in the upcoming years has been quantified
of being $1.7 trillion including nearly 50 billion things [6].

Nonetheless, building software architectures that support the execution of
IoT systems brings new challenges, in fact non trivial choices are required when
heterogeneous objects and devices must dynamically cooperate. The IoT environ-
ment changes dynamically, e.g., due to devices’ availability or the user’s mobility.
Given the uncertainty in the operational environment (e.g., faulty things, capa-
bilities appearing/disappearing at any moment), and the high diversity of things
c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 178–194, 2019.
https://doi.org/10.1007/978-3-030-29983-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-29983-5_12

QoS-Based Formation of Software Architectures in the IoT 179

dynamically available in different and often unknown places, it is not feasible to
define a priori a unique software architecture. Moreover, communicating things
may be also potentially resource-constrained. The peculiarity of the IoT domain
is that services may show QoS-based characteristics that are platform-specific
(e.g., the sensing of light level may be offered by multiple sensor devices, each
of them showing a different QoS) and time-varying (e.g., actuators may be con-
strained by the battery level that changes at runtime), and this heterogeneity
makes more complex the QoS-based evaluation of IoT software architectures.
This paves the way for considering Quality-of-Service (QoS) concerns in IoT as
first class citizens.

In the literature, several QoS-based methodologies have been proposed at
various layers of the IoT architecture and different QoS factors, such as per-
formance and reliability, have been considered [7]. However, there is still need
for models, metrics, and tools that facilitate the interaction with the dynami-
cally available things, thus to satisfy QoS-related goals, besides the functional
ones. This paper focuses on the challenge of specifying IoT architectural models
including QoS aspects and providing support for the automatic formation of the
Emergent Architectures (EAs). EAs stem from Emergent Configurations (ECs),
i.e., a set of things that connect and cooperate temporarily through their func-
tionalities, applications, and services, to achieve a user goal [8,9]. Things are
possibly smart connected objects (e.g., curtains) and devices (e.g., temperature
sensors). More specifically, we are interested to derive the most suitable EAs,
i.e., an optimal set of connected things cooperating to jointly address functional
and extra-functional requirements.

In our previous work [10], we make use of Domain Objects (DOs), i.e., a
service-based formalism [11], for forming and enacting ECs in the IoT domain.
However, despite its proved effectiveness in the dynamic and automatic for-
mation of ECs, we experienced improper usage of resources, even reflecting to
end-users unsatisfaction. To tackle these issues, in this paper we extend both the
DOs formalism and the approach in [10] where purely functional requirements
can be specified, and QoS-related concerns were not considered at all. The spe-
cific contributions of this paper are: (i) a model-based approach that embeds
the specification of QoS-related properties at the level of things; (ii) the auto-
mated formation of the most suitable EAs in the IoT relying on the selection of
QoS-based optimal devices; (iii) a case study demonstrating the feasibility and
effectiveness of the proposed approach.

The remainder of this paper is organised as follows. Section 2 describes an IoT
scenario that we use throughout the paper, and some background information.
Section 3 illustrates our approach. Section 4 presents the case study, explains
experimental results, and discusses threats to validity. Section 5 reports related
work, and Sect. 6 concludes the paper pointing out future research directions.

2 Motivating Example and Foundations

In this section we give a motivating scenario that will guide us through the paper
and we describe some relevant background notions.

180 M. De Sanctis et al.

2.1 Smart Light Scenario

In this section we describe the IoT Smart Light (SL) scenario, where things
cooperate to achieve a predefined light level in a lecture room. This scenario
extends the one described in [10] by further including and managing extra-
functional requirements. Consider, for instance, a university campus made by
different buildings hosting diverse types of rooms, e.g., libraries, dormitories,
classrooms, offices. Each room is equipped with several IoT things, i.e., light
sensors, curtains, and lamps. The things, along with their functionalities, are
configured to be controllable via a mobile application allowing authorized users
to increase/decrease the light level while moving in different rooms, based on
their needs. For instance, in a lecture room, the lecturer can decide to decrease
the light level when giving a presentation through a projector or, to the contrary,
to increase it when using the blackboard. As opposite, in a dormitory room, a
student can decide to have a higher light level when studying and a lower one
when resting. A possible way to achieve such goals is to dynamically identify an
EA made, for instance, by the user’s smartphone, a light sensor, and available
curtain(s) and lamp(s). The selected light sensor measures the current light level
in the room, and subsequently the lamps are turned on/off, and the curtains can
be opened or closed.

Besides fulfilling the functional goals of this scenario (e.g., adjusting the light
level), the mobile application committer and the final users are also interested in
fulfilling extra-functional requirements. For instance, the committer may want
to minimise the power consumption of all the devices installed in the campus,
i.e., to positively impact on the campus energy bill, while guaranteeing users
satisfaction. This means that users can set their own preferences modifying the
default settings. Specifically: (i) light sensors display different sensing accuracy
and users may require a certain accuracy level to get trustable estimations; (ii)
curtains expose a time required for opening/closing them, and users may be
interested in minimising it; (iii) lamps contribute with different light intensities,
and users may select the ones that better match with the required light level.

2.2 Background

This work builds upon an existing approach called IoT-FED (Forming and
enacting Emergent configurations through Domain objects in the IoT) [10] that
exploits the Domain Object (DO) model, i.e., the building block of a design for
adaptation [11].

Domain Objects. DOs allow the definition of independent and heterogeneous
things/services in a uniform way. This means that developers can work at an
abstract level without dealing with the heterogeneity of things and their com-
munication protocols. Since the actual system can vary in different execution
contexts, as it can be constituted by disparate things (e.g., sensors, actuators,
smartphones) dynamically available, the DO model supports the systems real-
ization at runtime, when the execution context is known.

QoS-Based Formation of Software Architectures in the IoT 181

To model things, developers wrap them as DOs. This task is done only una
tantum, i.e., when a new device type/brand is available. Each DO implements its
own behavior (i.e., the core process), which is meant to model its capability (e.g.,
the sensing capability of a sensor). At the same time, for its nominal execution, a
DO can optionally require capabilities provided by other DOs (e.g., the lamp and
curtain actuating capabilities are externally required by the SL application). In
addition, it exposes one or more fragments (e.g., the sense light level fragment)
describing offered services that can be dynamically discovered and used by other
DOs. Both core process and fragments are modelled as processes, by means of
the Adaptive Pervasive Flows Language (APFL) [12].

The dynamic cooperation among DOs is performed by exploiting a refine-
ment mechanism. At design time, APFL allows the partial specification of the
expected behaviour of a DO through abstract activities, i.e., activities that the
DO does not implement itself; they are defined only in terms of a goal labelling
them (e.g., sense the light) and they represent open points in DOs’ processes
and fragments. At runtime, the refinement mechanism makes abstract activities
refined according to the (composition of) fragments offered by other DOs, whose
execution leads to achieve the abstract activity’s goal. This enables a chain of
refinements, as will be later discussed (see Fig. 5). We adopt a refinement mech-
anism that makes use of advanced techniques for the dynamic and incremental
service composition, and it is based on Artificial Intelligence (AI) planning [13].
For further details on DOs, we refer to [14] describing the prototype of a travel
assistant application developed by using DOs technologies.

IoT-FED. The IoT-FED approach supports the formation and enactment of
ECs by means of the DOs technologies. Given the user goal type (e.g., adjust
light level) and the goal spatial boundaries, such as the location where the EC
must be formed and enacted (e.g., the lecture room), the execution starts (e.g.,
from the SL application’s DO). If existing, the EC is made up by the set of things
whose corresponding DOs have been involved in the refinement process of all the
encountered abstract activities, through the selection of their fragments.

Fig. 1. Overview of our framework.

Figure 1 shows an abstract
framework [10] where the
shaded box highlights the
newly defined component for
QoS-related concerns, whereas
the boxes with the striped
pattern highlight the compo-
nents that have been modi-
fied to handle QoS aspects. In
the following we describe the
main components.

The Goal Manager is responsible for parsing the user goal and starting the
EC formation process. It has three sub-components: (i) the Process Loader,
responsible for specifying the user goal type and the spatial boundaries, and
for loading the DO process corresponding to the specified goal type; (ii) the

182 M. De Sanctis et al.

Optimization Solver (that will be detailed in Sect. 3.1); (iii) the Planner respon-
sible for the refinement of abstract activities in the loaded process. The Things
Manager is responsible for managing available IoT things and DOs. It answers
queries about available IoT things, their capabilities and locations; dynamically
instantiates needed DOs, and handles co-relations among them. The Enactment
Engine is mainly responsible for enacting the ECs. It (i) forms and enacts the
ECs; (ii) sends instructions to IoT things (e.g., get sensor readings) through
the Things Manager; (iii) handles the injection of the plans received by the
Planner in place of the abstract activities and (iv) executes the final refined pro-
cess that achieves the user goal. The Context Manager is responsible for main-
taining the system knowledge. It retrieves data from the knowledge base (KB),
parses received context from the Enactment Engine (e.g., new things states), and
updates the KB. The Knowledge Base holds the internal system knowledge and
includes repositories storing things operational states (e.g., if lights are turned
on or off), the designed DOs, and the associations among things, DOs and corre-
sponding capabilities. The IoT Services component enables the management and
interaction with things, and it relies on the Amazon AWS-IoT cloud platform1.

To make IoT things and services available in IoT-FED, a developer needs to
do two main operations: (i) register things in the AWS-IoT platform; (ii) model
things, services and applications as DOs. The REST endpoints generated by the
platform are invoked in the DOs processes activities.

3 QoS-Based Approach

Our approach provides mechanisms for determining the near-optimal IoT-EAs
that jointly satisfy functional and extra-functional requirements. In this section
we use the SL scenario described in Sect. 2.1, where things cooperate for reaching
the goal to set a predefined light level in a lecture room.

3.1 Overview of the Approach

This section describes the extensions made to the IoT-FED approach to enable
the automatic QoS-based formation of EAs. To allow developers to specify QoS-
related characteristics of things, we extended the Domain Objects formalism.
This extension clearly impacts on the modelling phase of domain objects (see
the shaded box in Fig. 2).

Fig. 2. IoT-FED extended guideline.

1 https://aws.amazon.com/it/iot.

https://aws.amazon.com/it/iot

QoS-Based Formation of Software Architectures in the IoT 183

The specification of QoS-related characteristics, indeed, is performed at the
level of DOs. In particular, each thing is associated to an arbitrary number
of metrics inherited from its producer. Thus, we enhanced the specification of
DOs (e.g., those representing real world things in the environment, value-added
services or user applications) by adding QoS-related attributes.

Figure 3 reports an example of a domain-specific sensor (i.e., the Sensmitter2)
expressed as a .xml file representing the corresponding light sensor’s DO. In
particular, it shows that the DO’s state also contains QoS-related attributes
(see lines 16–24 of Fig. 3), besides state variables. Specifically, regarding the
SL scenario with the three categories of used devices, the specification of light
sensors is augmented with three metrics: (i) power consumption (see lines 16–18
of Fig. 3), i.e., the energy consumed by sensors to provide measurements on the
light level; (ii) sensing accuracy (see lines 19–21 of Fig. 3), i.e., the precision
provided by sensors about their estimations; (iii) battery level (see lines 22–24
of Fig. 3), i.e., the state of the device’s battery that can be dynamically updated.
Lamps and curtains also include the power consumption in their specification,
but differently from sensors, lamps show a lighting level that expresses their
intensities, and curtains show a timing for opening/closing that denotes the
efficiency of such devices. Note that metrics can be expressed in different units for
sensors and actuators of different brands, however such units can be converted to
a common reference unit in the DO model, thus to avoid misleading comparison.

1<?xml version ="1.0" encoding ="UTF -8"?>
2<tns:domainObject name="SensmitterLightSensor" xmlns:tns="http ://.../">
3
4 <tns:domainKnowledge >
5 <tns:internalDomainProperty name="domainProperties/LightSensing">
6 </tns:internalDomainProperty >
7 </tns:domainKnowledge >
8 <!-- List of state variables -->
9 <tns:state >

10 <tns:stateVariable name="DeviceID" type="string">
11 <tns2:content type="anyType">Sensmitter_435 </tns2:content >
12 </tns:stateVariable >
13 <!-- Other state variables here -->
14
15 <!-- QoS -related attributes -->
16 <tns:QoSAttribute name="PowerConsumption" type="integer">
17 <tns2:content type="anyType">2.5</tns2:content >
18 </tns:QoSAttribute >
19 <tns:QoSAttribute name="SensingAccuracy" type="integer">
20 <tns2:content type="anyType">8</tns2:content >
21 </tns:QoSAttribute >
22 <tns:QoSAttribute name="BatteryLevel" type="integer">
23 <tns2:content type="anyType">100</tns2:content >
24 </tns:QoSAttribute >
25 </tns:state>
26
27 <tns:process name="processes/PROC_SensmitterLightSensor"/>
28 <tns:fragment name="fragments/LS_senseLight"></tns:fragment >
29
30</tns:domainObject >

Fig. 3. Domain object model for the Sensmitter light sensor.

2 https://www.senssolutions.se/.

https://www.senssolutions.se/

184 M. De Sanctis et al.

The default setting of extra-functional requirements (i.e., min, max, threshold
value) is enabled by the developers in the setting of the SL application. However,
end-users may have different preferences while using the available things, hence
they can modify such requirements. This is later translated into the QoS-based
optimisation problem that guides the formation of the most suitable EAs.

The aim of our approach is to verify if an EA can be formed to achieve the
given (functional and extra-functional) goal in the specified spatial boundaries.
In particular, this is strictly related to the refinement of abstract activities.
We recall that the refinement process consists of the automated resolution of a
fragments composition problem. It is transformed into a planning problem, and
AI planning-based techniques are used to solve it.

Fig. 4. IoT-FED extended process.

In particular, we enhanced the fragments composition problem in such
a way that it also considers the QoS-related characteristics of devices. In
Fig. 4 we provide an abstraction of the IoT-FED extended process (see the
shaded box in Fig. 4). This way, the generated planning problem considers both
extra-functional requirements and QoS-based characteristics expressed by DOs.
Indeed, the specification of QoS-related characteristics in the DOs, together with
the setting of extra-functional requirements (i.e., min, max, threshold value),
leads to multiple architectural alternatives and trade-off analyses for the selec-
tion of near-optimal EAs. The mentioned QoS-based optimization problem is
defined and solved by the Optimization Solver component (Fig. 1).

Figure 5 depicts a simplified example of the SL application execution. The
Smart Light Process denotes the specification of the user application, and it rep-
resents the User Application DO. The QoS-based requirements guide the refine-
ment of the encountered abstract activities (i.e., Detect Light Level, Set Light
Level). For instance, the refinement of the Set Light Level abstract activity (i.e.,
goal G2 in Fig. 5) includes the fragment Handle Devices that is provided by the
Device Manager DO (see Step 1 of Fig. 5). If the selected DO is not instanti-
ated, then such operation is performed by the Things Manager component. The
execution of this fragment implies the co-relation between the two instantiated
DOs (i.e., User Application and Device Manager). The settled extra-functional
requirements are passed to the Device Manager, see the QoS input data in the
Receive Device Request activity. Subsequently, it will be considered for the refine-
ment of the Light Actuating (i.e., goal G4 in Fig. 5) abstract activity. Eventu-
ally, the fragments composition (returned for this last refinement) is made by
two fragments provided by those actuators in the room whose QoS-related char-
acteristics are compliant with the QoS-based optimisation problem (see Step 2

QoS-Based Formation of Software Architectures in the IoT 185

Fig. 5. Smart Light execution example.

of Fig. 5). Specifically, the fragments Lamp and Curtain Actuating, respectively
provided by the Philips Hue Lights3 and the Stepper Motor4 DOs are selected,
composed and injected in place of the abstract activity they refine.

3.2 Deriving QoS-Based Optimal IoT-EAs

The QoS-based search for alternative EAs initially deals with the issue of finding
a set of devices (D) that implement the functionalities required by the appli-
cation, but also fulfilling the stated requirements. Note that considering the
requirements leads to trade-off analysis that takes into account the dependen-
cies among the QoS-based properties, thus reducing the solution space. Then,
given this reduced solution space (i.e., a set of devices), it is the planner to look
for the optimal EAs. More formally, the problem can be expressed as follows:
Look for an EAopt derived by an optimal selection of devices Dopt.

To this extent, we defined an optimisation problem. It may also be modified
by adding some constraints, such as costs and further domain-specific charac-
teristics, e.g., the charging level of available devices. In the constrained case, we
assume that there is a cost/restriction associated with each EA for providing a
certain QoS level. In our case study, for example, we can introduce a constraint
regulating the charging level of devices before being selected, e.g., activate lamps
or curtains showing an initial battery level larger than 80%.

The number of different EAs (generated from the Dopt) is conditioned to the
number of sensors and actuators, plus their instances. Since sensors are selected
3 https://www2.meethue.com/en-us.
4 https://bit.ly/2VmRegr.

https://www2.meethue.com/en-us
https://bit.ly/2VmRegr

186 M. De Sanctis et al.

before looking for actuators, we firstly need to evaluate the search space for
sensors. This is O(

∑n
i=1 si) where n is the number of sensor types, and si is the

number of sensor instances (related to the i−th sensor type) that can be used to
form any EA and contributing to provide a specific sensing service (e.g., light).

The number of possible EAs also depends from the number of actuators and
their instances. For each actuator type aj (with j = {1, . . . , k}) we get a com-
plexity of O(

∑mj

i=1 aji) where mj is the number of the j − th actuator type, and
aji is the number of actuator instances for the corresponding j − th type, that
can be used to form any EA and contributing to provide a specific actuating
service. All actuator types and their instances contribute to the search space.
When actuators are individually selected, the complexity is O(

∑k
j=1

∑mj

i=1 aji),

whereas their combination is given by O(
∏k

j=1

∑mj

i=1 aji). We recall that aj rep-
resents the j − th actuator type and the complexity of its instances is inherited
from the definition above. Thus, the size of the solution space for the optimisa-
tion problem is O(

∑n
i=1 si × ∑k

j=1

∑mj

i=1 aji × ∏k
j=1

∑mj

i=1 aji), and it becomes
clear that it may be huge even for small values of si, and aj . For example, in
our case study, we considered the following setting: si = 5, n1 = . . . = n5 = 20,
aj = 2, m1 = 3, m2 = 2, and the size of the solution space is 100 ∗ 5 ∗ 6 � 3k
options which makes an exhaustive search computationally expensive.

To address this challenge, we describe a near optimal solution technique
that takes as input the specification of all the available devices, in the user
spatial boundaries, whose fragments (exposed by the corresponding DOs) are
suitable for the resolution of the planning problem. Such devices are analysed
and discarded from the optimal set whenever their QoS-related characteristics do
not fulfil the stated requirements. This set of devices, namely Dopt, is provided
as output, and it contributes to the domain for the planning.

An optimal selection of devices is performed taking into account the appli-
cation’s settings (also editable by the users). If minimisation or maximisation is
required, then an exhaustive search is necessary. On the contrary, if threshold
values are set, then it is needed to look for the subset of sensors that fulfil such
requirements. This way, the overall set of selected devices for both sensors and
actuators is guaranteed to fulfil the stated extra-functional requirements.

4 Experimentation

This section reports our experimental results for the SL case study. We are
interested to evaluate the QoS-based characteristics while selecting things (i.e.,
sensors and actuators). The scalability of the approach is also investigated.

4.1 Experimental Setup and Results

Table 1 reports the QoS-related characteristics of different brands of light sensors,
lamp and curtain actuators, respectively. Our case study includes five brands of
light sensors showing a power consumption (pc) varying from 1 to 5 W5, and
5 See, e.g., https://bit.ly/2IC6jtd.

https://bit.ly/2IC6jtd

QoS-Based Formation of Software Architectures in the IoT 187

a sensing accuracy (sa) is spanning from 2 to 10 and denoting an increasing
precision. These two QoS-related characteristics are complementary, in fact a
higher accuracy is given by a larger power consumption. Lamp actuators are
of three different brands where power consumption varies between 10 to 20 W6,
whereas their light level (ll) is spanning from 4 to 8 and it indicates an increasing
brightness. As another example, curtains are of two brands with an associated
power consumption of 7 and 9 W7, and a discrete timing for opening/closing (toc)
equal to 8 and 12 s, respectively. All these numbers represent an estimation of
QoS-related characteristics for arbitrary things, however their actual setting is
part of the modelling step, and further numerical values can be considered when
more accurate specification of things is available.

Table 1. QoS-related characteristics.

Light sensors Lamps Curtains
LS1 LS2 LS3 LS4 LS5 LA1 LA2 LA3 CA1 CA2

pc 1 1.8 0.5 5 2.5 10 20 15 7 9

sa 4 7 2 10 8 - - - - -

ll - - - - - 4 8 6 - -

toc - - - - - - - - 12 8

All experimental results
are obtained by using a
laptop equipped with a
dual-core CPU running at
2.7 GHz, and 8 Gb mem-
ory. In the following we
discuss three main experi-
ments that have been per-
formed to evaluate different

aspects of the SL case study. For all experiments we report the average values
calculated over one hundred runs of the SL application. Besides, the execution
time of the overall process is showed to demonstrate that its latency is afford-
able. In fact, we anticipate that all execution times, measured from when the
user starts the SL application to the enactment of the QoS-based formed EA,
vary up to 2.14 s, even when handling up to one hundred devices.

Exp1: evaluation of QoS-related characteristics for sensors only. This exper-
iment is aimed to understand the savings when adding extra-functional require-
ments for a specific device type. In our case study, we evaluated what happens
when incrementally adding requirements (expressed with threshold values) to
the power consumption and sensing accuracy of sensors. Obviously, we achieve a
consistent power consumption saving (up to 50%) when considering constraints
on it; however, when also including sensing accuracy, we still get 35% of sav-
ings that is a remarkable improvement. In this last case, the sensing accuracy
increases, as expected, and this is due to the trade-off analysis among these two
metrics. More in general, the requirements can be separately considered and lead
to optimisation problems that provide different solutions.

Table 2. QoS-based optimisation for sensors.

noQoS QoS(pc) QoS(pc, sa)

Power consumption 233.1 117.7 140.8

Sensing accuracy 6.41 4.63 5.53

Execution time 1.96 1.97 2.14

Table 2 reports the values of
Exp1, and it is structured as fol-
lows. Rows include the metrics
we are considering to quantify
the QoS-based savings, specifi-
cally: (i) the power consumption

6 See, e.g., https://bit.ly/2TibLWj.
7 See, e.g., https://bit.ly/2NYwPKF.

https://bit.ly/2TibLWj
https://bit.ly/2NYwPKF

188 M. De Sanctis et al.

of the sensors used in the EAs; (ii) the sensing accuracy of adopted sensors;
(iii) the execution time (expressed in seconds) for forming and enacting EAs.
On the columns we distinguish three cases: the first one is without setting any
constraint on QoS-related characteristics (i.e., noQoS in Table 2), the second is
when setting the power consumption of sensors being less than 2 W (i.e., QoS(pc)
in Table 2), and the third case is when also establishing that the sensing accuracy
has to be larger than 3 (i.e., QoS(pc, sa) in Table 2). We can notice that QoS-
based savings are relevant for our case study, in fact power consumption goes
from 233 to 118. This implies a modification in the sensing accuracy that instead
decreases (from 6.41 to 4.63), due to the selection of light sensors that consume
less. However, the value for the sensing accuracy slightly improves to 5.53 when
setting the threshold to that metric. Execution times also slightly increase across
experiments when adding QoS-related constraints, but the largest gap is equal
to 2.14 − 1.96 = 0.18 s.

Exp2: evaluation of QoS-based characteristics for all devices. This exper-
iment investigates the savings when adding extra-functional requirements for
both sensors and actuators. In our case study, we evaluated QoS-based savings
when adding threshold values to the power consumption of all devices and pro-
gressively considering further aspects for light sensors, curtains, and lamps.

Table 3. QoS-based optimisation for sensors and
actuators.

noQoS QoS1 QoS2 QoS3

Power consumption 1946.5 1792.4 1588 1828

Sensing accuracy 6.37 4.35 4.29 4.45

Execution time 1.92 1.91 1.88 1.91

Lighting level 6.12 6 4.86 6

Time opening/closing 9.85 9.91 8 8

Table 3 reports the val-
ues of Exp2, and it is
structured as follows. Sim-
ilarly to Table 2, the first
three rows report power
consumption (that is mea-
sured taking into account
all devices), sensing accu-
racy, and execution time.
Last two rows extend the

evaluation to the following metrics: (i) the lighting level of lamp actuators used
in the EAs; (ii) the time for opening/closing curtain actuators involved in the
EAs. On the columns we present four different cases. The first one is without
QoS-related constraints, i.e., noQoS in Table 3. The second (denoted by QoS1 in
Table 3) is a combination of: (1) power consumption of sensors (required to be
less than 2 W), lamp actuators (required to be less than 18 W), curtain actuators
(required to be less than 10 W); (2) lighting level of lamp actuators (required to
be larger than 5). The third case (i.e., QoS2 in Table 3) keeps the same thresh-
old values for the power consumption, but it requires a minimisation of time for
opening/closing curtains. Finally, the forth case (denoted by QoS3 in Table 3) is
a combination of the previous two cases where thresholds for power consumption,
lighting level and time for closing/opening are jointly considered.

Obviously, we can notice that in all QoS-based optimisation procedures power
consumption shows an improvement with respect to noQoS, in fact it goes from
1946.5 up to 1588 in the best case. As drawback, the sensing accuracy decreases
and goes from 6.4 to values around an average of 4.3 (that is larger than the

QoS-Based Formation of Software Architectures in the IoT 189

stated threshold). Execution times are very similar in all cases, and this supports
the efficiency of QoS-based computation. Lighting level varies across cases and
achieves its worst value (i.e., 4.86, see Table 3) when not constrained by any
threshold. Finally, the time for opening/closing is also subject to some variations
that steer it down in cases where such metric is explicitly optimised, i.e., in the
last two columns of Table 3 where it shows a value of 8 vs the initial 9.85 (i.e.,
when measured with no QoS-based constraints). Figure 6 depicts the number
of alternative EAs. We can notice that in case of not considering QoS-based
requirements there are almost 50 different EAs that are enacted.

0

10

20

30

40

50

60

noQoS QoS1 QoS2 QoS3

#
al
te
rn
at
iv
e
E
A
s

1947 W

1792 W 1588 W

1828 W

Fig. 6. Variations in the selection of EAs.

As expected, the handling
of QoS-related requirements
implies a reduction in the num-
ber of valid EAs of roughly
60%, in fact the average value
of EAs in QoS scenarios is
around 12. Obviously, QoS3

is the one showing the low-
est value, since it represents
a combination of requirements
set for QoS1 and QoS2. Power
consumption (see Table 3) is
reported on top of bars in Fig. 6
to remark the variations in
QoS-based savings.

Exp3: scalability of the approach. We added ten and twenty light sensors
instances for each of the considered sensor brand, thus to evaluate the scalability
of the approach when considering up to 50 and 100 light sensors, respectively.

Table 4. Scalability of the approach.

noQoS QoS(pc) QoS(pc, sa)

#sensors= 5 1.96 1.97 2.14

#sensors= 50 2.01 1.98 1.99

#sensors= 100 2.10 2.05 2.07

Table 4 shows the execution
times (expressed in seconds) when
varying the number of sensors on
the rows, and the cases of Exp1 in
the columns. We found that in all
cases the execution time values vary
within a narrow interval, i.e., from

1.96 to 2.14 s. This supports the scalability of our approach since the QoS-based
computation does not largely affect the process of forming and enacting EAs.
The number of devices does not affect the scalability of the approach, since the
planner component of our platform (see Fig. 1) only considers the device brands
and it is not checking their instances when computing plans (i.e., fragments
compositions).

Summarising, these three experiments provide a quantitative evaluation of
our approach and point out two main findings: (i) the effectiveness, since both
Exp1 and Exp2 clearly show QoS-based savings; (ii) the scalability, in fact Exp3
indicates that in the worst case the application of the approach takes 2.14 s, and

190 M. De Sanctis et al.

this can be considered affordable for those classes of IoT systems that do not
expose safety or hard real time constraints.

4.2 Discussion

Our approach includes a set of limitations that we discuss in the following.

Runtime Monitoring. There are some QoS-related characteristics associated to
things that may change over time, e.g., the battery level of devices decreases
when they are in use or increases after charging. These aspects of runtime evo-
lution of things are currently not handled by our approach that instead com-
putes some preliminary check on the current status of devices only. However,
we plan to update these changing values and trigger a QoS-based adaptation
(e.g., switching among actuators showing similar QoS-based characteristics but
with different battery level) of EAs periodically.

Spatial Boundaries. Our analysis is performed taking into account the user spa-
tial boundaries (e.g., a room). In principle, the number of things can scale with
order of magnitude larger than the ones considered in this paper. However,
here we experimented our QoS-based approach by varying the number of sen-
sor instances (in the lecture room of our case study) up to one hundred. We
leave as future work the evaluation of scaling the number of actuators, but we
expect that this does not affect too much our computation due to the intrinsic
nature of the planner component that reasons on device types (brands) instead
of instances.

Requirements Specification. It may happen that the QoS-based optimisation
problem is not able to provide a solution due to invalid requirements. However,
there might be some options that do not deviate largely from users’ expecta-
tions, and we plan to provide these alternatives as feedback to users that may
decide to change their initial settings. Moreover, we plan to introduce weights
associated to users’ preferences on the type of available things. For example,
in the SL application it may happen that users get disturbed by the curtains
opening and closing, hence the activation of lamps is preferred.

Further Architectural Layers. Our approach currently allows the specification of
QoS-related characteristics for the sensors and actuators only, because they are
the main components for building the EAs. However, between these two layers
there are further architectural layers, such as different middleware, operating
systems, and communication protocols that contribute to the QoS of the IoT
system. As future work we plan to extend our approach to embed these layers
in the specification of QoS-related characteristics. An option can be to integrate
benchmarks modelling the delay of these layers in our optimisation problem.

Threats to Validity. Our experimentation may be internally biased from the
settings of input parameters, QoS requirements, and executions of the SL appli-
cation. Both input parameters and QoS requirements lead to specify different
QoS optimisation problems, but the overall procedure is not affected. As oppo-
site, we found relevant to execute multiple runs of the SL application and we

QoS-Based Formation of Software Architectures in the IoT 191

experienced no variations between 50 and 100 runs, hence this latest number has
been considered to smooth biases in the output results. As external threats to
validity, we are aware that the application of the approach to other case studies
has not been performed, but we leave this point as part of our future work.

5 Related Work

The work presented in this paper is related to two main streams of research that
we discuss hereafter, specifically the modelling of IoT architectures and their
QoS-based analysis.

In [5] a reference architecture to plug and produce industrial IoT systems
(whose architectural decisions are tackled in [15]) is presented, and it has the
goal to reduce industrial device commissioning times across vendor products. Dif-
ferently from our approach, the evaluation of IoT architectures in [5,15] builds
upon some industrial (communication protocol and controller description) stan-
dards. On the contrary, our formalism (based on DOs) is aimed to specify any
QoS-related characteristic, by setting QoS-based criteria, such as minimisation,
maximisation, or a specific threshold value.

In [16] a framework for self-architecting service-oriented systems is proposed,
and QoS-based analysis is performed by quantifying the execution time and
availability of the service providers. In [17] QoS-based optimisation of service-
based systems is performed through modelling the application with a Discrete
Time Markov Chain (DTMC) and using a probabilistic model checker to rank
the configurations based on the required extra-functional requirements. In [18]
an approach for QoS-based feedback on service compositions is presented, and
it makes use of design-time and runtime knowledge to manage QoS data over
time [19], thus to support software architects while devising a service compo-
sition that best fits extra-functional requirements. Our approach mainly differs
from these works [16–19] in considering the issues of the IoT domain where ser-
vices may show QoS-based characteristics that are not platform-independent and
time-varying. This heterogeneity makes more complex the QoS-based optimisa-
tion problem. In [20] models at runtime and statistical techniques are combined
to realise adaptation of IoT systems, specifically quality models provides a prob-
abilistic estimate of different adaptation options. Our approach differs in the
specification of QoS-related characteristics that are explicitly modelled at the
architectural level and contribute to the selection of devices fulfilling functional
and extra-functional requirements.

In recent years, research has been done on the usage of business process-based
technologies in the IoT context. Indeed, Business Process Management Systems
(BPMS) approaches have become an efficient solution for the coordinated man-
agement of devices, as reported in [21]. At the same time, interesting research
challenges arise from this novel research field [22]. From the one side, workflow
management systems (WfMS) for industrial IoT have been realized to execute
and monitor IoT-based processes [23]. From another side, standard workflow
languages (e.g., BPMN 2.0) have been extended to support sensors/actuators

192 M. De Sanctis et al.

specific activities and IoT communication paradigms [24]. In our approach, the
use of the APFL and the abstract activities refinement mechanism enables the
dynamic execution of IoT applications. Moreover, APFL has been extended to
support the specification of QoS-related characteristics of things, inherited from
their producers and enabling QoS-based formation of software architectures. To
the contrary, APFL extensions to support things activities and IoT communica-
tion paradigms were not necessary. This is due to the use of the DOs formalism
that allows developers to work at an abstract level without dealing with the
heterogeneity of things and their communication protocols.

Summarising, we can conclude that, to the best of our knowledge, there is no
work that incorporates QoS-related characteristics in the modelling of IoT soft-
ware architectures and exploits this specification to jointly optimise functional
and extra-functional requirements.

6 Conclusion

In this paper we presented an approach to consider QoS-related concerns as
first class citizens in the process of forming software architectures in the Inter-
net of Things. We extended a modelling language for enabling the specification
of QoS-related characteristics of things (tags, sensors, actuators, objects, and
devices). This information is exploited in the automatic formation of EAs since
a QoS-based optimisation problem is adopted, and devices are selected taking
into account extra-functional requirements. The approach is applied to a case
study and the conducted experimentation provides three main lessons learned:
(i) when introducing extra-functional requirements, the savings may be relevant;
(ii) when considering multiple QoS-related characteristics, trade-off analysis is
suitable to balance among contradicting QoS-based goals; (iii) the scalability
of the approach is preserved when considering a realistic number of devices.
As future work, besides addressing the limitations that have been discussed in
the experimentation, we also plan to further investigate the effectiveness of our
approach when involving real-world things and industrial case studies.

Acknowledgments. This work has been partially supported by the MIUR PRIN
project titled “Designing Spatially Distributed Cyber-Physical Systems under Uncer-
tainty (SEDUCE)”.

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

2. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a
vision, architectural elements, and future directions. Future Gener. Comput. Syst.
29(7), 1645–1660 (2013)

3. Lee, I., Lee, K.: The Internet of Things (IoT): applications, investments, and chal-
lenges for enterprises. Bus. Horiz. 58(4), 431–440 (2015)

QoS-Based Formation of Software Architectures in the IoT 193

4. Khan, R., Khan, S.U., Zaheer, R., Khan, S.: Future internet: the internet of things
architecture, possible applications and key challenges. In: International Conference
on Frontiers of Information Technology (FIT), pp. 257–260 (2012)

5. Koziolek, H., Burger, A., Doppelhamer, J.: Self-commissioning industrial IoT-
systems in process automation: a reference architecture. In: International Con-
ference on Software Architecture (ICSA), pp. 196–205 (2018)

6. MacGillivray, C., Turner, V., Shirer, M.: Explosive Internet of Things Spending to
Reach $1.7 Trillion in 2020. IDC Corporate USA (2015)

7. White, G., Nallur, V., Clarke, S.: Quality of service approaches in IoT: a systematic
mapping. J. Syst. Softw. 13, 186–203 (2017)

8. Alkhabbas, F., Spalazzese, R., Davidsson, P.: Architecting emergent configurations
in the Internet of Things. In: IEEE International Conference on Software Archi-
tecture (ICSA), pp. 221–224 (2017)

9. Ciccozzi, F., Spalazzese, R.: MDE4IoT: supporting the internet of things with
model-driven engineering. Intelligent Distributed Computing X. SCI, vol. 678, pp.
67–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48829-5 7

10. Alkhabbas, F., De Sanctis, M., Spalazzese, R., Bucchiarone, A., Davidsson, P.,
Marconi, A.: Enacting emergent configurations in the IoT through domain objects.
In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp.
279–294. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9 19

11. Bucchiarone, A., De Sanctis, M., Marconi, A., Pistore, M., Traverso, P.: Design
for adaptation of distributed service-based systems. In: Barros, A., Grigori, D.,
Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 383–393.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48616-0 27

12. Bucchiarone, A., De Sanctis, M., Marconi, A., Pistore, M., Traverso, P.: Incre-
mental composition for adaptive by-design service based systems. In: International
Conference on Web Services (ICWS), pp. 236–243 (2016)

13. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of web services via
planning in asynchronous domains. Artif. Intell. 174, 316–361 (2010)

14. Bucchiarone, A., De Sanctis, M., Marconi, A.: ATLAS: a world-wide travel assis-
tant exploiting service-based adaptive technologies. In: Maximilien, M., Vallecillo,
A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 561–570.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 41

15. Malakuti, S., Goldschmidt, T., Koziolek, H.: A catalogue of architectural decisions
for designing IIoT systems. In: Cuesta, C.E., Garlan, D., Pérez, J. (eds.) ECSA
2018. LNCS, vol. 11048, pp. 103–111. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00761-4 7

16. Menasce, D., Gomaa, H., Sousa, J., et al.: SASSY: a framework for self-architecting
service-oriented systems. IEEE Softw. 28(6), 78–85 (2011)

17. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.:
Dynamic QoS management and optimization in service-based systems. IEEE
Trans. Softw. Eng. 37(3), 387–409 (2011)

18. Caporuscio, M., Mirandola, R., Trubiani, C.: QoS-based feedback for service
compositions. In: International Conference on Quality of Software Architectures
(QoSA), pp. 37–42 (2015)

19. Mirandola, R., Trubiani, C.: A deep investigation for QoS-based feedback at design
time and runtime. In: International Conference on Engineering of Complex Com-
puter Systems (ICECCS), pp. 147–156 (2012)

20. Weyns, D., Iftikhar, M.U., Hughes, D., Matthys, N.: Applying architecture-based
adaptation to automate the management of internet-of-things. In: Cuesta, C.E.,

https://doi.org/10.1007/978-3-319-48829-5_7
https://doi.org/10.1007/978-3-030-03596-9_19
https://doi.org/10.1007/978-3-662-48616-0_27
https://doi.org/10.1007/978-3-319-69035-3_41
https://doi.org/10.1007/978-3-030-00761-4_7
https://doi.org/10.1007/978-3-030-00761-4_7

194 M. De Sanctis et al.

Garlan, D., Pérez, J. (eds.) ECSA 2018. LNCS, vol. 11048, pp. 49–67. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00761-4 4

21. Chang, C., Srirama, S.N., Buyya, R.: Mobile cloud business process management
system for the internet of things: a survey. ACM Comput. Surv. 49(4), 70:1–70:42
(2017)

22. Janiesch, C., et al.: The internet-of-things meets business process management:
mutual benefits and challenges. CoRR, vol. arXiv:1709.03628 (2017)

23. Seiger, R., Huber, S., Schlegel, T.: Toward an execution system for self-healing
workflows in cyber-physical systems. Softw. Syst. Model. 17(2), 551–572 (2018)

24. Domingos, D., Martins, F., Cândido, C., Martinho, R.: Internet of things aware
WS-BPEL business processes context variables and expected exceptions. J. UCS
20(8), 1109–1129 (2014)

https://doi.org/10.1007/978-3-030-00761-4_4
http://arxiv.org/abs/1709.03628

A Survey on Big Data Analytics Solutions
Deployment

Camilo Castellanos1(B), Boris Pérez1,2, Carlos A. Varela3,
Maŕıa del Pilar Villamil1, and Dario Correal1

1 Systems Engineering and Computing Department,
Universidad de los Andes, Bogotá, Colombia

{cc.castellanos87,br.perez41,mavillam,dcorreal}@uniandes.edu.co
2 Systems Engineering and Computing Department,

Universidad Francisco de Paula Santander, Cúcuta, Colombia
borisperezg@ufps.edu.co

3 Computer Science Department,
Rensselaer Polytechnic Institute, Troy, NY, USA

cvarela@cs.rpi.edu

Abstract. There are widespread and increasing interest in big data ana-
lytics (BDA) solutions to enable data collection, transformation, and
predictive analyses. The development and operation of BDA application
involve business innovation, advanced analytics and cutting-edge tech-
nologies which add new complexities to the traditional software devel-
opment. Although there is a growing interest in BDA adoption, suc-
cessful deployments are still scarce (a.k.a., the “Deployment Gap” phe-
nomenon). This paper reports an empirical study on BDA deployment
practices, techniques and tools in the industry from both the software
architecture and data science perspectives to understand research chal-
lenges that emerge in this context. Our results suggest new research
directions to be tackled by the software architecture community. In par-
ticular, competing architectural drivers, interoperability, and deployment
procedures in the BDA field are still immature or have not been adopted
in practice.

1 Introduction

With recent big data proliferation, enterprises can use analytics to extract valu-
able insights from large-scale data sources, something not possible a few years
ago. Traditional big data analytics (BDA) methodologies [1,2] involve three
knowledge domains: business, analytics, and technology. In the business domain,
business users have to define the business goals to drive the analytics project. In
the analytics domain, these business goals are translated by data scientists into
specific analytics tasks such as data cleaning, model building, and evaluation.
This model development is performed within the data lab. Finally, in the tech-
nology domain, the IT (Information Technology) team take the analytics model

c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 195–210, 2019.
https://doi.org/10.1007/978-3-030-29983-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-29983-5_13

196 C. Castellanos et al.

as an input for software implementation and deployment in the production envi-
ronment respecting Quality Attributes (QA). This migration of the analytics
model from data lab to production environment is called a BDA deployment.

Despite the growing interest of companies in BDA adoption, actual deploy-
ments are still scarce. Chen et al. in [3] coined this phenomenon as the “Deploy-
ment Gap”. Later, Chen et al. in [4] summarized a set of technical, organiza-
tional, and technology challenges that must be handled when developing BDA
projects. Previous works have tackled BDA adoption and challenges in analyt-
ics practices, and they will be reviewed in Sect. 2, but little research has been
carried out to identify practices, behavior, and procedures from the perspective
of software engineering and architecture.

The aforementioned aspects motivate the development of a survey whose
objective is to identify the practices, techniques, and tools used in the design,
development, and deployment of BDA projects from a software architecture per-
spective. We conducted a survey among practitioners following a methodology
proposed by Kitchenham et al. in [5] defining objectives, designing, develop-
ing, and evaluating the survey, then obtaining data, and finally, analyzing the
results. We collected answers from 76 practitioners engaged with cross-industry
BDA projects in Colombia. The objectives of this survey are framed in the BDA
development and deployment context, and they are stated as follows: (i) To
determine used practices and methods. (ii) To determine used techniques and
tools. (iii) To identify perceived challenges. (iv) To identify considered quality
attributes.

The remainder of this paper is structured as follows: Sect. 2 reviews related
work. Section 3 describes our research methodology. Section 4 presents the survey
results. Section 5 discusses the findings. Section 6 presents the threats to validity.
Finally, Sect. 7 draws conclusions and describes future work.

2 Related Work

Chen et al. [3] identified 11 factors which affect BDA adoption, and these factors
include organizational, innovation, and technology. They presented the status
and strategies to deploy BDA solutions based on 25 European enterprise case
studies, but specific behaviors, practices, and tools used in the current deploy-
ment of such solutions were not reviewed.

Previous industry surveys (e.g. [6,7]) have focused on understanding analyt-
ics practices using questionnaires directed to a wide number of data scientists.
They reported trends about algorithms, tools, data scientist roles, and ana-
lytics deployments. These works confirmed low rates (half of the respondents)
of analytics projects being deployed, and delayed time of deployment—25% of
deployments take months or even years. On the other hand, the survey results
presented in [8] were focused specifically on the deployment of BDA solutions.
That survey inquired about procedures for packaging, retraining and monitoring
BDA solutions, finding that 50% of their respondents stated the level of diffi-
culty of analytics model deployment was more than six (from 1 to 10). Real-time

A Survey on Big Data Analytics Solutions Deployment 197

scoring showed a higher level of difficulty, and projects with issues on data qual-
ity and pipeline development presented also delayed deployment. Those surveys
offer important statistics about deployment and operation of analytics solutions,
but they are not framed in the BDA life cycle, and they do not consider either
software engineering or architecture, highly implicated in those processes.

LaValle et al. presented in [9] challenges and opportunities in business ana-
lytics, and highlight the need for analytics capabilities to achieve competitive
advantages and make informed decisions. In addition, they compared analytics
adoption level, practices, and challenges to organization performance to offer
some recommendations to improve analytics adoption across the organization.
Although their research analyses general organizational and technology facets,
detailed practices and techniques related to deployment, software engineering
and architecture are not considered.

3 Methodology

According to Easterbrook et al. [10], the research method depends on the
research questions. Based on the above, we decided to use a survey research
method to identify the practices in industry and academy about how they
develop and deploy BDA solutions. This survey follows the methodology pro-
posed by Kitchenham and Pfleeger [5] for survey designing in empirical software
engineering.

3.1 Research Questions

We formulate the research questions (RQs) of this survey based on the objectives
presented in Sect. 1.

RQ1: What are the practices, methods, techniques, and tools used in BDA devel-
opment and deployment? By answering this question, we intend to char-
acterize practices, techniques and tools used in BDA design, development,
deployment, and operation.

RQ2: What are the main challenges faced in BDA development and deploy-
ment? By answering this question, we aim at identifying the challenges
practitioners have to face in this context.

RQ3: What are the main quality attributes considered in BDA modeling, eval-
uation, and deployment stages? By answering this question, we aim at
characterizing QAs which drive BDA’s software architecture.

3.2 Sample and Population

In our survey, the target population entails practitioners who have participated
in BDA projects, playing a range of roles such as project manager, business
expert, requirements engineer, data scientist/analyst, data engineer software
designer/developer, software/IT/solution architect and IT administrator. We

198 C. Castellanos et al.

employed Convenience sampling (a non-probabilistic sampling method [5]) for
selecting the population because of our access to participants involved in BDA
projects. Participants were available through the master programs in Informa-
tion Engineering and IT Architecture offered by Universidad de Los Andes, and
the Colombian Center of Excellence and Appropriation in Big Data Analytics
(CAOBA). These participants were involved in industry BDA projects and they
were available to collaborate in this research. The master students were signed
up for IT Architecture and Data Science Applied courses.

Inclusion and exclusion criteria enable us to choose valid answers regarding
experience in BDA practice and consistency. This survey considered the following
Inclusion criteria: (i) The respondent has industry experience in BDA projects,
and (ii) The respondent has academic experience in BDA projects. The exclu-
sion criteria were (i) There are inconsistent (i.e. contradictory) answers and, (ii)
respondents that answered less than 50% of the questions.

3.3 Survey Design

This survey can be classified as descriptive research because: (1) This survey was
preplanned and structured, and (2) the information collected can be statistically
inferred over a population. This type of research uses closed-ended questions
allowing us to get a better understanding of opinion or attitude by a group of
people on a specific topic.

This survey is a self-administered questionnaire, where a research participant
is given a set of questions to answer via paper-based questionnaire. Our survey
includes an opening paragraph to introduces the purpose, concepts, and con-
siderations needed to answer the instrument. The questionnaire was reviewed
externally by two other researchers and they checked the content, meaning, and
understandability. Additionally, 9 practitioners on BDA projects answered a
pilot to refine the instrument and estimate the time needed to complete the
survey.

Our questionnaire consisted of 5 parts and 24 questions as presented in Fig. 1
written in Spanish, the participant’s native language. Eighteen questions cor-
responded to closed-ended questions with single choice, and seven questions
included multiple-choice grids to specify the respondent’s level of agreement or
disagreement on a Likert scale. All questions were mandatory. The 5 parts of the
survey were: (a) demographic questions, (b) questions about practices, behavior
and challenges in BDA context, (c) questions about techniques and tools used
in BDA projects, (d) questions about BDA deployment, and (e) questions about
how practitioners dealt with quality attributes. Figure 1 also details how each
questionnaire’s part is related to the Research Questions (RQ).

Demographic questions asked for job, role, level of education and experience
of the subjects. These questions also asked for company information like industry
sector, size, experience, and maturity. This first section helped us to understand
the participants’ background. Remaining parts were used to collect data about
the general perception of deployment of BDA projects.

A Survey on Big Data Analytics Solutions Deployment 199

Fig. 1. Questionnaire sections and Research Questions

Data analysis were done through the following steps: (i) collection of
responses into a single spreadsheet, (ii) analysis of the spreadsheet using descrip-
tive statistics for quantitative answers for each given response, and (iii) identifi-
cation of key findings from results of the statistical analyses. In order to enable
the fully replication of this research, a package with the questionnaire and raw
answers is publicly available1.

4 Survey Results

This Section reports the survey results based on collected data, and the following
four subsections address the questionnaire’s sections detailed in Fig. 1.

In total, 115 answers were collected of which 39 (33.9%) were excluded by cri-
teria detailed in Sect. 3.2. The remaining 76 (66.1%) valid answers were further
analyzed. Hereinafter the 76 subjects who respond valid answers are denomi-
nated “respondents”.

4.1 Personal and Company Data

This subsection describes the background information of the respondents. This
background can influence the perspective and perception of BDA development
and deployment process. This information includes respondent’s profession, the
role played in BDA projects, educational background and specific experience in
this kind of projects.

Regarding respondent’s profession, the vast majority of them (84.2%) are
IT professionals, followed them by mathematicians/statistics (5.2%), engineers
Non-IT and business administrators (3.9%).

The respondent’s role played in BDA allows us to know how is represented the
stakeholders introduced in Sect. 1, IT managers corresponds to 26.3%, software
architects: 19.7%, developers: 15.7%, data scientists: 14.4%, and IT operators:
6.5%.

We also asked respondents the level of education. Most of them (40.7%) hold
an M.Sc degree, 35.5% have a B.Sc. degree, 22.3% a specialization degree and
one respondent holds a Ph.D. degree.

The question related to work experience in BDA projects shows that most
of the respondents are in junior level hence 67.1% have got involved between 1
and 2 projects, 22.3% have participated between 3 and 5 projects, and 10.5% in
1 https://storage.cloud.google.com/ccastellanos/BDA-Survey-package.zip.

https://storage.cloud.google.com/ccastellanos/BDA-Survey-package.zip

200 C. Castellanos et al.

more than 5 projects. Regarding the years of experience, half of the respondents
have worked between 1 and 3 years, 32.8% less than 1 year, 10.5% between 3
and 6 years. Finally, 6.5% of the participants have 6 years of experience or more.

We asked the company’s sector to the respondents to understand the business
environment in which BDA projects are developed, and education (23.6%) is the
most common sector, technology is the second-most popular sector with 22.3%.
Both Financial and Government sectors are in the third place with 13.1% of par-
ticipation, while Communication (9.2%) and Transport (5.2%) sectors complete
the list of the top six.

Questions 8 and 9 inquire about the company size and experience by measur-
ing the number of employees and projects undertaken within the company. Most
respondents (63.1%) work in large companies (more than 250 employees), 18.4
in small (between 11 and 50), 13.1% in medium (between 51 and 250 employees)
and only the 5.2% in micro-enterprises (less than 11 employees). With regard to
the number of BDA projects, 47.3% of all participants work in companies with
1 to 3 projects, 15.7% in companies with more than 9 projects, and 14.4% in
companies between 4 and 6 projects. Finally, 4 respondents answer that their
companies have not developed such projects (5.2%), and 2.6% (2 out of 76)
between 7 and 9 projects.

To know the appropriation level of BDA in the Companies, we asked the
current status of BDA projects. As a result, pilot projects were reported in
progress by 32.8% of respondents, 23.6% have at least an active program in
production, 17.1% in exploration, 9.2% have no a plan and 5.2% have a defined
plan to be implemented.

4.2 Practices, Behavior, and Challenges

Figure 2 depicts the perception of collaboration and teamwork among the stake-
holders involved in the BDA environment. This perception is measured ranging
from 1 to 5 (1-Difficult and disjointed and 5-Very fluid and articulated). Analyt-
ics and IT collaboration and teamwork have the best scoring with a rank greater
than 3 for 56.5% of the respondents. Business/IT, and Business/Analytics inter-
actions report the worst rating with only 26.3% and 22.3% of positive evaluations
(i.e. greater than 3) respectively.

Fig. 2. Collaboration and teamwork.

A Survey on Big Data Analytics Solutions Deployment 201

We also inquired about the difficulty to carry out each BDA phase to iden-
tify the most challenging activities in the BDA life cycle regarding traditional
methodologies [1,2]. This difficulty score ranges from 1 to 10, and the results are
presented in Fig. 3 as boxplot graphs, including mean (x) and standard deviation
(σ). Six out nine activities observe the highest medians (8 points of difficulty):
(1) Define project’s business goals, (3) Align analytics tasks to business goals,
(4) Collect data, (5) Prepare data, (8) Deploy BDA solution and (9) Operation.
Among these six activities, those that present the highest means are: (1) Define
project’s business goals (x = 7.7, σ = 2.1), (3) Align analytics tasks to business
goals (x = 7.2, σ = 2.4), and (8) Deploy BDA solution (x = 7.6, σ = 1.9). The
boxplots of these three challenging activities show that (8) Deploy BDA solution
activity has the smallest Interquartile Range (between 7 and 9) while the other
two activities exhibit more dispersed values. It implies that deployment activity
presents jointly the highest mean and the least disperse difficulty score.

Fig. 3. Level of difficulty to perform BDA activities

4.3 Techniques and Tools

We asked respondents to categorize the usage of an arrangement of techniques to
know how data scientists deal with and work with a myriad of options. Figure 4b
describes the frequency of use of analytics techniques/algorithms to build ana-
lytics models in a scale from 1 (rarely used) to 5 (frequently used). The five
most popular techniques are, in descending order: aggregations (sum, count,
means, etc.), regression, clustering, anomalies (detection) and Principal Compo-
nent Analysis (PCA). Aggregations are not actually ML algorithms, but they
are the most used when data analysis is required. The most novelty techniques

202 C. Castellanos et al.

such as Deep Learning and Support Vector Machines (SVM) present a low level
of usage in the respondents’ context.

In addition to the techniques, we also asked about technology tools usage
in BDA development through the same scale from 1 to 5 and Fig. 4b sum-
marizes the results obtained. It is worth noting that this question comprised
from spreadsheets to distributed processing engines including self-service Busi-
ness Intelligence (BI) tools. This can be explained by the data scientist’s need to
explore, model, visualize and process data. Excel and Standard Query Language
(SQL) to access relational databases predominate in the respondent’s toolbox
with 78.9% of high use frequency. The following eight-most used technologies are
in descending order: Tableau, R, Power BI, Click view, Spark, SAS, IBM SPSS
and Oracle Data mining. Except in the case of R, big data and ML open source
frameworks such as Apache Spark, Scikit Learn, and Mahout are not widely uti-
lized. And some IT big players such as Microsoft (Power BI), SAS, IBM (SPSS)
and Oracle rank in the top ten of the technology preferences.

Fig. 4. Usage frequency of (a) Techniques and (b) Technology tools

4.4 Deployment

In Fig. 5a the frequency of BDA deployments on a production environment is
shown. As can be noted, few times a year (34.2%), several times a year (18.4%)
and “None yet” (18.4%) are the predominant answers, thus confirming the low
frequency in our study’s context.

During maintenance and operation stages is necessary to retrain/adjust mod-
els and software to have up-to-date services. Figure 5b depicts the procedures
used to do such retraining. 22.3% of respondents retrain the model in data lab
environments and they upgrade the production model using a manual proce-
dure. Other respondents group reports that they do not retrain models, but
they have to rewrite the code (18.4%), 14.4% retrain the model and export the
new parameters to production, and only the 6.5% use a DevOps approach.

The respondents were consulted about the procedure or methodology to pack-
age/migrate the analytics models and data transformations from the data lab
to production and Fig. 6a shows these results. Noteworthy, 31.5% of the respon-
dents did not know or answer which deployment procedure is used. The 28.9%

A Survey on Big Data Analytics Solutions Deployment 203

Fig. 5. Frequency of (a) BDA deployment in productive environment and (b) Re-
training procedure.

of respondents reported they do not have a procedure because they have a single
environment of BDA, use an ad-hoc procedure (25%), or have to rewrite whole
source code (9.2%). Only 1 respondent (1.3%) reported the use of interoperable
models such as PMML or PFA.

Fig. 6. Frequency of (a) Deployment procedure and (b) Deployment time.

To gain first-hand knowledge about the lag time in the deployment of BDA
solutions, we also asked the time elapsed between model development and its
deployment in production. Figure 6b details the time scales invested in this
deployment. The most common time scale is months (40.7%), followed by weeks
(22.3%), and in a lower proportion, days (7.8%).

To understand the relationship between deployment procedure and frequency,
we compare such questions results in Fig. 7. Ad hoc procedure is the most com-
mon both in monthly (44.4%, 4 out of 9) and yearly deployments (42.3%, 11 out
of 26). Although maintaining a single environment is highly used (35.7%, 5 out
of 14) in projects with several deployments a year, also it is the most common
procedure (50%, 7 out of 14) among projects which have no deployments yet.
Specifications for sharing and interoperating predictive models are not used or
scarcely used, displaying a lack of knowledge about these de facto standards.

204 C. Castellanos et al.

Fig. 7. Deployment procedure/methodology and frequency.

Figures 8 and 9 compare the appropriation level of the company with the
deployment time and deployment procedure. Companies with active BDA pro-
grams take weeks 46.6% (7 out of 15) and months 24.6% (4 out of 11). While
organizations with a BDA plan to be implemented take months (4 out of 4), pilot
project exhibits monthly deployment (53.8%), and companies in the exploration
phase take months to deploy their applications. Considering deployment proce-
dures, it is noticeable that companies with active programs use mainly (50%) ad
hoc procedures. Something similar occurs with companies with project pilots,
where 28% (7 of 25) use ad hoc procedures, no-answer 28% (7 of 25), and rewrit-
ing code 20% (5 out of 25). Finally, most of the projects in the exploration phase
(53%) or without a BDA plan (71.4%) use a single environment approach (i.e.
data lab and production are the same environment).

Fig. 8. Appropriation level and deployment time.

A Survey on Big Data Analytics Solutions Deployment 205

Fig. 9. Appropriation level and deployment procedure.

4.5 Quality Attributes

The quality attributes drive the architecture of software solutions. In BDA con-
text, it is also true. Hence it is valuable in this research to know how stakeholders
deal with the trade-offs among quality attributes. For this reason, we formulated
a set of questions oriented to answer RQ1.

Fig. 10. Quality attributes relevance in the (a) Data lab and (b) Productive software
solution.

Figure 10a details the weights of relevance (from 1 to 5) for each QA when
analytics techniques and models are selected, built and evaluated in the data lab
environment. The most weighted QA is accuracy with 84.2% of positive ratings
(i.e. greater than 3), followed by testability (77.6%), interpretability (73.6%),
and, security (69.7%) and response time (65.7%) complete the top 5. Availability
and scalability observe the lower ratings (63.1%, 60.5%, and 57.8% respectively)
of relevance inside the data lab.

On the other hand, the same question about QA’s relevance was made, but
in the production environment to compare the quality’s priorities. Figure 10b
shows that accuracy continues in the first place with 88.1% of respondent’s pos-
itive ratings (i.e. greater than 3). The second and third places are occupied by

206 C. Castellanos et al.

performance QAs: availability (82.8%) and response time (82.8%). Interpretabil-
ity fall to fourth place with 78.9% of positive ratings and security ends the top 5
list with 73.6%. Despite the fact scalability and modifiability maintain the last
two places (65.7% and 55.2% respectively), it is worth to note that scalability
increases the rating of Very important from 17.1% to 31.5%.

Fig. 11. Quality attributes relevance regarding stakeholder domains.

Figure 11 reports QA relevance averages (from 1-Not Important to 5-Very
Important) in the data lab and production regarding the stakeholder domains.
In the data lab, accuracy observes the highest relevance for all stakeholders with
slight differences in magnitude. On a second level, analytics (data scientists) and
business stakeholders rank interpretability and testability, while IT stakeholders
prioritize security and testability, respectively. In the production environment,
the picture changes significantly. Data scientists give more relevance to inter-
pretability and latency, while business users prioritize accuracy and security.
IT users rate accuracy and availability with the highest scores. Comparing the
relevance scores between data lab and production, the differences in latency,
availability, scalability, and security for all stakeholders are remarkable, evidenc-
ing a clear change of QA consideration between environments.

Fig. 12. Scaling approaches.

Finally, we included a question to know how is the scalability capacity to
support the BDA context and Fig. 12 summarizes the respondent’s answers.

A Survey on Big Data Analytics Solutions Deployment 207

The most noticeable result is that most of the respondents do not know/do
not respond (32.8%, 25 out of 76), which could reflect the lack of knowledge or
interest about the technical capabilities to support big data processing. Vertical
scaling based on robust appliances is the most used approach with 22.3%. Dis-
tributed batch processing using big data frameworks such as Hadoop or Spark
is used by 21.1% of respondents, 14.4% declared do not have scaling capabilities
because they only work with small data. Distributed streaming processing is
only required by 9.2% of the respondents.

5 Discussion

The BDA adoption and appropriation among companies is incipient as shown
by results in which 47% have only developed between 1 and 3 projects, and only
23.6% have an active BDA program. This situation is slightly better compared to
a report presented by the Colombian IT Ministry [11] that calculates the adop-
tion of big data technologies of 16.8% in big enterprises. Compared to a previous
worldwide report in 2016 [7], our survey reports better levels of appropriation
in terms of the proportion of active programs in organizations (23.6% versus
17%), pilot programs (32.8% versus 17%) and “no–BDA plans” (9.2% versus
23%). In contrast, we find lower indicators regarding organizations in phases of
exploration (17.1% versus 32%) and plans to be implemented (5.2% versus 11%).
These results could suggest a growing interest in companies for BDA adoption
and their respective progress over time.

This survey found that classic analytics techniques such as aggregations,
regression, and clustering are the most used by companies. These results are
similar to previous studies [6,7], the only exception is that in our survey, the
decision tree is not ranked in the top three of the most used algorithms. The
most basic tools like Excel and SQL scripts are in the first places, followed by
Tableau and R. These preferences are different from specific data science studies
where R, SPSS, SAS, and Tableau occupied the top positions. This can suggest
unfamiliarity or lack of skills in data science-oriented tools in the Colombian
context. This survey also reports a lack of standard procedures to deploy and
operate BDA solutions which frequently implies manual code rewriting and con-
figuration, confirming findings presented previously in [8]. It is noticeable the lack
of knowledge and use of de-facto standards (1.3%) for sharing analytics models
across technologies (such as PMML or PFA) compared to previous studies (19%)
such as [8], what can promote the cumbersome and delayed process of putting
analytics services in operation. These findings allow us to argue that DevOps
practices in these specific domains are still unknown, immature, or under-used,
and some recent works such as [12,13] have addressed this concern.

Activities involved in BDA development, such as business objectives and
analytics goals definition, data collection, and deployment, are considered “hard”
on average. Specifically, deployment seems to be a challenging stage, probably
due to different factors such as software development driven by competing QAs
in different environments, tools heterogeneity, and the lack of mature deployment

208 C. Castellanos et al.

procedures, even in organizations with active BDA programs. These factors have
also been identified in previous works [7,8]. Teamwork and collaboration between
data scientists and IT stakeholders are better ranked compared to business/IT
and business/data scientist interaction.

In terms of deployment challenges, our results confirm issues in different
facets: scarcity of deployments into production leading to low operationalization
of BDA solutions and long delays for deployment which range from weeks to
months (63%). This scenario can be caused partly by technical reasons such
as inadequate tools, and inadequate procedures to deploy and retrain BDA
solutions in production environments. These findings coincide with conclusions
reported in [7] and [8] where they reported low rates of deployment, lack of pro-
cedures to deploy BDA solutions, and long deployment times. Even companies
in a more mature BDA stages (i.e. with active programs) reported deployment
times from weeks to months.

Relevant QAs during the data analytics modeling are not the same as those
during the software development phase. The reason for this is that both artifacts
(models and software) pursue different objectives, while the analytics model’s
quality is measured by the accuracy, interpretability, and testability, BDA soft-
ware must achieve expected performance metrics such as availability, response
time, and scalability. This can lead to competing drivers when the software archi-
tect makes decisions (i.e. patterns, tactics, technologies) which may differ for the
same analytics solution in different environments. This situation could also lead
to heterogeneity of technology tools reported along the BDA life cycle.

6 Threats to Validity

In our study, the research methodology was validated to avoid biases as much as
possible. In the following, construct validity, internal validity, external validity
and reliability are presented together with their mitigation strategies as reported
by Runeson and Martin schema [14].

Construct Validity. It reflects the relation between operational measures stud-
ied and researcher’s main idea, according to the research questions [14]. The
phrasing used in sentences for closed-ended questions could be the most recur-
rent threat in questionnaire-based surveys. In order to mitigate this thread, we
first piloted the survey internally several times and then piloted the survey exter-
nally with practitioners involved in BDA projects through an online survey what
allow as to refine the used language.

Another risk is related to participants did not finding any suitable response in
the set of available ones. For this, our strategy was included an “Other” answer
for each question. In our results, we had a relatively low number of respondents
using this alternative answer.

Internal Validity. It reflects the presence of causal relations affecting the inves-
tigated factor [14]. For this, we performed analysis of the data using basic descrip-
tive statistics and performed cross-analysis of the responses of each participant.

A Survey on Big Data Analytics Solutions Deployment 209

We also provided definitions that are used consistently in the survey allowing
the respondents to fully understand the questions asked.

External Validity. It reflects the possibility of generalize the findings, and to
discover if the findings are of interest to other people outside the investigated
case [14]. For our study, a potential threat refers to the demographic distribution
of response samples. We applied Convenience sampling to helped us in selecting
study participants. However, we are aware that this sampling technique could
have had a negative impact on the size of the set of respondents. To mitigate
this potential threat, we ensure that the set of respondents were an heterogenous
sample in terms of demographic information, such as professional experience,
educational background, number of projects, etc. (Sect. 4.1).

Reliability. It reflects the independence between the extracted data and the
obtained results [14]. To mitigate this threat, we employed observer triangula-
tion, having all authors participating in the data extraction and analysis pro-
cesses. Due to the non-statistical nature of convenience sampling used in this
study, we cannot give strong inferences, and we also avoid performing any sta-
tistical correlation analysis because we are aware our sample size is small and
too centered in practitioners who have participated in BDA projects. Despite of
this fact, our results can open new discussions and research lines.

7 Conclusions

We have presented an empirical study of how practitioners deal with the devel-
opment and deployment of BDA solutions. We first developed and evaluated
a pilot to design a paper-based survey. The data extracted from the question-
naires’ answers provide clues for understanding activities, behavior, practices,
and challenges faced by practitioners.

Our results open new research directions within the software architecture and
software engineering community related to BDA procedures, methodologies, and
design. The definition of the project’s business goals, alignment between busi-
ness goals and analytics task, and solution deployment were reported as the most
challenging activities in BDA life cycle. We found communication and interop-
erability concerns across knowledge domains within BDA life cycle. Our results
also found competing QAs (e.g. testability and interpretability vs performance)
when developing analytics models compared to BDA software. Heterogeneity
of technology tools and immature or little-known deployment procedures could
lead to delayed and sporadic deployments which hinder BDA appropriation.

Regarding the practice of software architecture, our results offer insights
about how to plan and design BDA solutions regarding the related challenges
and procedures, and the deployment barriers to be tackled in advance. In addi-
tion, the most common methodologies, techniques, and tools in the industry
could be a starting point to define a BDA adoption road map.

As future work, we can extend this survey by applying it on a wider and varied
population in a regional or worldwide scale. We are researching on methodolo-
gies and frameworks in the BDA context which consider separation of concerns

210 C. Castellanos et al.

among the knowledge domains to reduce the deployment gap by integrating and
interoperating business, analytics, software, and IT specifications.

Acknowledgment. This research is supported by Fulbright Colombia and the Center
of Excellence and Appropriation in Big Data and Data Analytics (CAOBA), supported
by the Ministry of Information Technologies and Telecommunications of the Republic
of Colombia (MinTIC) through the Colombian Administrative Department of Science,
Technology, and Innovation (COLCIENCIAS) within contract No. FP44842-anexo46-
2015.

References

1. Chapman, P., et al.: CRISP-DM 1.0 step-by-step data mining guide. Technical
report, The CRISP-DM consortium, August 2000

2. IBM: Foundational methodology for data science (2015). http://www-01.ibm.com/
common/ssi/cgi-bin/ssialias?htmlfid=IMW14824USEN. Accessed 11 July 2017

3. Chen, H.M., Kazman, R., Matthes, F.: Demystifying big data adoption: beyond IT
fashion and relative advantage. In: Twentieth DIGIT Workshop, Texas, US, pp.
1–14 (2015)

4. Chen, H.M., Schütz, R., Kazman, R., Matthes, F.: How Lufthansa capitalized on
big data for business model renovation. MIS Q. Exec. 1615(14), 299–320 (2017)

5. Kitchenham, B.A., Pfleeger, S.L.: Personal opinion surveys. In: Shull, F., Singer,
J., Sjøberg, D.I.K. (eds.) Guide to Advanced Empirical Software Engineering, pp.
63–92. Springer, London (2008). https://doi.org/10.1007/978-1-84800-044-5 3

6. Rexer, K.: 2013 data miner survey. Technical report, Rexer Analytics (2013)
7. Rexer, K., Gearan, P., Allen, H.: 2015 data science survey. Technical report, Rexer

Analytics (2016)
8. Dataiku: building production-ready predictive analytics (2017). http://

asiandatascience.com/wp-content/uploads/2017/12/Production-Survey-Report.
pdf. Accessed 11 July 2017

9. LaValle, S., Lesser, E., Shockley, R., Hopkins, M.S., Kruschwitz, N.: Big bata,
analytics and the path from insights to value. MIT Sloan Manag. Rev. 52(2), 21
(2011)

10. Easterbrook, S., Singer, J., Storey, M.A., Damian, D.: Selecting empirical methods
for software engineering research. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.)
Guide to Advanced Empirical Software Engineering, pp. 285–311. Springer, London
(2008). https://doi.org/10.1007/978-1-84800-044-5 11

11. Katz, R.L.: El Observatorio de la Economı́a Digital de Colombia. Technical report,
Ministerio de Tecnoloǵıas de la Información y las Comunicaciones (2017)

12. Castellanos, C., Correal, D., Rodriguez, J.-D.: Executing architectural models for
big data analytics. In: Cuesta, C.E., Garlan, D., Pérez, J. (eds.) ECSA 2018. LNCS,
vol. 11048, pp. 364–371. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-00761-4 24

13. Lechevalier, D., Ak, R., Lee, Y.T., Hudak, S., Foufou, S.: A neural network meta-
model and its application for manufacturing. In: 2015 IEEE International Confer-
ence on Big Data (2015)

14. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131 (2008)

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=IMW14824USEN
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=IMW14824USEN
https://doi.org/10.1007/978-1-84800-044-5_3
http://asiandatascience.com/wp-content/uploads/2017/12/Production-Survey-Report.pdf
http://asiandatascience.com/wp-content/uploads/2017/12/Production-Survey-Report.pdf
http://asiandatascience.com/wp-content/uploads/2017/12/Production-Survey-Report.pdf
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-3-030-00761-4_24
https://doi.org/10.1007/978-3-030-00761-4_24

Assessing the Quality Impact of Features
in Component-Based
Software Architectures

Axel Busch1(B), Dominik Fuchß1, Maximilian Eckert2, and Anne Koziolek1(B)

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{busch,koziolek}@kit.edu, dominik.fuchss@student.kit.edu

2 SAP Customer Experience, Munich, Germany
maximilian.eckert@sap.com

Abstract. In modern software development processes, existing software
components are increasingly used to implement functionality instead of
developing it from scratch. Reuse of individual components or even more
complex subsystems leads to more cost-efficient development and higher
quality of software. Subsystems often offer a variety of features whose
use is associated with unclear effects on the quality attributes of the
software architecture, such as performance. It is unclear, whether the
quality requirements for the system can be met by using a certain fea-
ture of a particular subsystem. After initial selection, features must be
incorporated in the target architecture. Due to a multitude of possibil-
ities of placing the subsystem in the target system to be used, many
architectural candidates may result which have to be evaluated in exist-
ing decision support solutions. The approach presented here enables soft-
ware architects to automatically evaluate with the help of software archi-
tecture models the effects on quality of using individual features in an
existing software architecture. The result helps to automatically evalu-
ate design decisions regarding features and to decide whether their use
is compatible with the quality requirements. We show the benefits of
our approach using different decision scenarios driven by features and
their placement alternatives. All scenarios are automatically evaluated,
demonstrating how decisions can be made to best meet the requirements.

Keywords: Automated design decision optimization ·
Quality impact of features · CBSE

1 Introduction

Modern software systems support an increasing number of functionalities. The
influence of the software architecture on the subsequently attainable software
quality has been shown to be one of the critical factors. Therefore, it is impor-
tant to consider quality attributes at design time. A subsequent change of the
software architecture to implement certain functionalities without considering
c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 211–219, 2019.
https://doi.org/10.1007/978-3-030-29983-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-29983-5_14

212 A. Busch et al.

the quality properties in advance can easily lead to high refactoring costs. For
this reason, software architects want to evaluate their design decisions regarding
the software architecture at an early stage. In particular, use of the paradigm of
component-based software design has shown that there already are approaches
that produce very promising results in predicting quality properties during the
design phase, an example being the Palladio approach [12]. Such approaches
benefit from modern software development, in which most of the functionali-
ties are not longer developed from scratch, but are often reused in the form of
libraries or subsystems. Such libraries often provide many features, i.e. func-
tion compositions that fulfill concerns. By reusing libraries or subsystems, not
only the pure functionalities or the features are reused, but also their quality.
Using such software artifacts reduces development time and the risk of recur-
ring, already solved errors in a new development. Nevertheless, prediction of
quality attributes at design time for reusing different systems is not trivial,
especially when software developers have to decide among several similar sys-
tems or solutions. In addition to the supported features, the systems also differ in
their quality attributes. When making decisions, the software architect is there-
fore facing the task of designing the right system to meet both the functional
and quality requirements. Existing approaches for supporting design decisions
with the quality attributes of software architectures, such as ArcheOpteryx [1],
ArcheE [4], and PerOpteryx [11], already allow for an automatic exploration
of architecture candidates with regard to different degrees of freedom. However,
none of the approaches mentioned above provides decision support for evaluating
the impact of using particular features on the quality attributes of the overall
system. Nor do the approaches mentioned entail any recommendations which
subsystem might be the best solution in order to maintain the defined quality
properties.

We base on PerOpteryx and extend the approach for optimizing software
architectures in the design phase or in evolution scenarios by regarding the fea-
tures and the quality of solutions of the same type. This automatically supports
the decision-making process of the software architect when features should be
evaluated in terms of quality attributes regarding different implementations of
functionally similar solutions. These extensions enable software architects to
automatically analyse and optimize the effects of the implementation of func-
tional requirements on quality attributes of the software system, such as perfor-
mance, reliability, and monetary costs in the design phase. Furthermore, we can
analyze whether the configuration of placement and assembly of the new features
affect the quality attributes. The result of the automatic analysis and optimiza-
tion helps software architects to choose the optimal solution among different
functionally similar systems. This increases the efficiency of software develop-
ment by reducing early wrong decisions, improves the quality of the resulting
system, and reduces the risk of project delays or the failure of software projects.

Assessing the Quality Impact of Features in Component-Based Architectures 213

2 Background

2.1 Design Space Exploration: PerOpteryx

We apply our methodology based on PerOpteryx [11], but the concepts are not
limited to this approach. The PerOpteryx approach explores the huge set of
software architecture configurations, in which each configuration is a specific
combination of all possible design decisions. Thus, PerOpteryx supports making
well-informed trade-off decisions for performance, reliability, and costs. For the
design space exploration, PerOpteryx makes use of so-called degrees of freedom
of the software architecture that can either be predefined and derived automat-
ically from the architecture model or be modelled manually by the architect.
As an example of a manually modelled degree of freedom, let us consider that
some of the architecture’s components offer standard functionality, for which
other implementations (i.e. other components) are available. In this example,
let us assume there is a available component QuickDatabase that can replace
a Database. Assuming that QuickDatabase demands less resources but is more
expensive than Database, the resulting architecture model has better response
times but higher costs. The degrees of freedom span a design space and can
be explored automatically. Together, they define a set of possible architecture
models. Each of these possible architecture models is defined by choosing one
design option for each degree of freedom instance (DoFI). We call such a possible
architecture model a candidate model. The set of all possible candidate models
corresponds to the set of all possible combinations of design options. We call this
set of possible architecture models the design space.

Using the quantitative quality evaluation provided by the PCM analysis tools,
PerOpteryx can determine performance, reliability, and cost metrics for each can-
didate model. The quality evaluation for a quality attribute can be expressed
as a quality evaluation function from the set of valid PCM instances to the set
of possible values of the quality metric. In addition to the evaluation functions,
PerOpteryx requires a specification of whether a quality is to be maximized or
minimized. Based on the DoFIs (as optimization variables) and the quality evalu-
ation functions (as optimization objectives), PerOpteryx uses genetic algorithms
and problem-specific heuristics to approximate the Pareto front of optimal can-
didates. Details on the optimization are not required for the discussion in this
paper, but can be found in [9,10].

In its previous version described in this section, PerOpteryx does not support
the analysis of the effect of reusing particular features of subsystems that require
more complex modifications on the architecture model. The effects of using a
single feature or a combination of features across the boundaries of multiple
solutions cannot be studied meaningful by the previous PerOpteryx.

2.2 Feature Completion Meta Model

For the automatic evaluation of the effect of individual features when reusing
components on the quality attributes of the overall system, we use the meta

214 A. Busch et al.

model from [7]. The meta model offers entities for structuring similar systems
with the same underlying features. It consists of three parts, the feature com-
pletion definition, solution definition, and transformation description. The fea-
ture completion definition part consists of a FeatureCompletionRepository
that stores all predefined FeatureCompletions. Such a feature completion is
an abstract entity that can be decomposed into its basic elements, namely
the Feature Completion Components (FCC). These basic elements define the
abstract architecture of a feature completion (FC) that any realizing feature
completion solution such as a MySQL DB for the DBMS FC must apply.
Abstraction allows the automatic integration of inhomogeneous architectures
of similar solutions into a target architecture. Similar to the more concrete
software components, abstract FCCs can require each other’s services or offer
services themselves. Additionally, we define a model for FeatureObjectives.
This model combines features in groups. The task of these groups is to repre-
sent interchangeable or mutually exclusive features. Let us consider a DBMS
example. The FC DBMS could consist of two FCCs (simplified) - the unit for
reading and retrieving structured data (i.e., StructuringDataUnit) and the
unit for actually storing these data (i.e., DataStorageUnit). Correspondingly,
StructuringDataUnit would offer services that require and provide unstruc-
tured data, while DataStorageUnit would require and provide the unstructured
data for storage purposes. All the systems of the class of DBMS on the market
would then be applied to this architecture (solution definition). For this, we use
annotations that identify the integration points of the completion solutions in the
target software architecture. Using an inclusion mechanism, which is also pro-
vided in the meta model (transformation description), the different solutions of
the same feature completion can then be automatically included into the target
architecture. Given the annotated components and transformation descriptions,
the integration engine determines how a feature completion solution has to be
integrated into the target software architecture.

2.3 Feature Completion Integration Mechanism

We can use two different types of integration mechanisms to incorporate the
appropriate features in the target system. The first one is the Adapter-
InclusionMechanism. Whenever a connection is to be established between a
component in the target system and in the solution system, a new adapter
component is (automatically) generated. This adapter component requires the
interface of the solution component. Furthermore, it requires and provides the
interface of the target component. The provided interface of the target compo-
nent is connected to the corresponding required interface of the adapter. The
adapter is then connected to the solution component using the corresponding
interface. For each call to the provided interface, the adapter delegates the call to
the target component and an external call to the subsystem component. After-
wards, the calls to the target component and its assembly contexts, respectively,
are redirected to that of the adapter. As a result, the feature is incorporated in

Assessing the Quality Impact of Features in Component-Based Architectures 215

the system and can be used. In addition, the architect can also define the inter-
faces and signatures for which this mechanism should be performed. The second
integration mechanism is the BehaviorInclusionMechanism. This mechanism
allows a more fine-grained definition of how a feature should be built into the
software architecture. Thus, it is possible to define that a call to the solution is
to be executed in specific control structures of an RDSEFF. It is also possible
to describe that at the beginning or at the end of a method call, this call is
executed in the solution system.

3 Approach

Our approach consists of two parts: First, we demonstrate modelling of the
features supported by the subsystem and the alignment of the features with its
executing components. Second, candidates are created, evaluated, and optimized
together with the target system architecture using degrees of freedom, which are
spanned using the possible features and their configuration.

A subsystem provides services that can be reused in the target system. Only
services that are provided by the subsystem via system external interfaces can
be reused by the target system. Features will either be realized by FCCs as a
whole (i.e. all provided interfaces of an FCC) or by a subset of these interfaces.
In addition to system external interfaces, internal interfaces of the subsystem
can also implement features. These features may be required by other features
in order to implement their actual functionality. From this set of candidates, the
software architect can then select the best candidate according to the project
requirements.

Using the subsystem features and its associated architecture, the optimizer
first generates the degree of freedom instances. If a particular solution supports a
feature, it can be used and vice versa. The selection of a feature opens up further
degrees of freedom, such as the position in the target system or the allocation
of the solution itself. In addition, the three degrees of freedom, namely compo-
nents exchange, component allocation, and development of hardware resources
are included in the DoFI. In the next step, the software architecture candidate
is created and integrated according to the previously generated DoFI. The eval-
uation required for the optimization is then performed according to the quality
attributes (e.g., performance, reliability, cost) defined before. In the end, the soft-
ware architect selects the best candidate from the resulting set of Pareto-optimal
architecture candidates.

In order to extend the approach to decision support in software architecture
design PerOpteryx by the approach described, we have adapted three parts:
First, the meta model for the definition of reusable subsystems must be extended
by the possibility of modelling supported features by a particular class of sub-
systems. Secondly, the degree of freedom model must be extended to include
the existence or non-existence of features when creating architecture candidates.
Depending on the solution and the features supported by this solution, the archi-
tecture candidates must be created. In addition, we need a degree of freedom

216 A. Busch et al.

modelling of placement configurations of the feature in the target architecture.
Finally, the model weaving mechanism must be extended so that the correspond-
ing model (with the selected set of features and the associated solution) is created
according to the architecture candidate created previously.

4 Evaluation

This evaluation is to demonstrate the applicability and benefits for several sce-
narios of (real-world) application environments. With our automated approach,
we show how trade-off decisions to select features can be supported automatically
with regard to the expected software quality and what effects these decisions may
have on the software architecture. For our scenarios, we consider the purpose of
logging, which is often implemented in practice using the log4j framework. We
first model the feature completion corresponding to logging frameworks, includ-
ing different features and apply the defined structure to two real-world logging
solutions, log4j version 1 and log4j version 2. The presented scenarios cover sev-
eral facets of the design questions that arise from the use of a specific feature
in the target architecture such as feature selection, solution selection, feature
placement.

4.1 Target System

To demonstrate our approach, we use the model of a community case study,
namely the Modular Rice University Bidding System (mRUBiS) [13]. mRUBiS
implements a trading and auction platform modelled on the real auction platform
ebay.com. mRUBiS has a component-based software architecture and is fully
implemented in Enterprise Java Beans 3 (EJB3). The domain model is modelled
in the Eclipse Modeling Framework (EMF). As execution engine, mRUBiS uses a
GlassFish application server. mRUBiS supports several shops in which goods can
be offered for sale. Sellers can offer new items for sale within their shops and check
the current inventory. Buyers can register on the platform, log in, search for items
using different categories, bid on items, and submit reviews. The mRUBiS model
internally consists of nine software components that provide the services. Using
ItemService, buyers can search for items and place bids. To do this, buyers
must first register using the Authentication component. The request is then
processed using the Query component and the Database component. Submitted
bids are stored in the database using Persistence. UserInfo lets buyers edit
information about their user profile. Sellers use the Inventory component to
add new items to their shop. This request is forwarded to the database and
processed using the query component. ManageItems checks the inventory and
is then forwarded to the database via BasicQuery. The architecture model of
mRUBiS has annotations to simulate performance analysis (using (RD)SEFFs)
and cost estimation.

Assessing the Quality Impact of Features in Component-Based Architectures 217

4.2 Logger Solutions

A logger collects and records system events, activities, and (inter-)actions over
a period and enables tracking and monitoring, statistical analysis or debugging
and error recovery. Three feature completion components (FCCs) model the
abstract structure of loggers, the Collector, Appender, and Formatter. These
components abstract the functionalities and dependencies of the subsystem’s
software components. In the case of a logger completion, the Collector rep-
resents the entry point of the logger and receives the log messages. The data
are forwarded to the FCC Appender, which uses the FCC Formatter to convert
the logs into a suitable format (e.g. XML) and stores them on a specified write
target (e.g. hard disk). Each of the FCCs can have a set of provided and required
perimeter interfaces. In the case of the logger completion, the FCC Collector
comes with several provided perimeter interfaces, while the FCC Appender con-
sists of one required perimeter interface. The required perimeter interface of the
FCC Appender requires an interface to a database if the feature database logging
is a desired feature. For the evaluation, we model two solutions, namely log4jv1
and log4jv2, and annotate them to the logger completion [8]. These solutions
represent variants of the same completion, since they build on each other, but
differ in their quality attributes as well as in their realized set of features. log4jv2
supports a broader range of features and, thus, both versions can be regarded as
two different solutions for the logger completion1. The two solutions offer both
core features, which makes them logging systems. This includes features, such
as FileLogging and SQLDatabaseLogging. However, log4jv2 offers additional fea-
tures that we consider as optional. One of these is AsyncLogging. For this paper
we have concentrated on a subset of all provided features.

4.3 Scenario-Based Evaluation

We studied several scenario-based examples to demonstrate the applicability and
benefits of the proposed approach. The scenario covers different design issues in
terms of feature alternatives, solution selection, and placement choice. The sim-
ulation series considers more than 1000 architecture candidates and evaluates
performance and cost of each candidate to find the Pareto-optimal solutions.
Here, we evaluate a set of feature alternatives an architect has to consider.

Fig. 1. Comparison of feature alternatives

The scenario is relevant, but not lim-
ited to the requirements engineering
phase. Different functional and qual-
ity requirements of features must be
balanced against each other. Early
evaluation of the quality effects of fea-
ture alternatives that implement the
requirements helps to discuss their

1 Please note that the approach is not limited to systems that build on each other and
are related in their architecture.

218 A. Busch et al.

prioritization with stakeholders on a sound data basis. In particular, we compare
the features FileLogging, SQLDatabaseLogging, and NoSQLDatabaseLogging. As
SQL database, we use MySQL v. 5.7.20 and as NoSQL database, we use Mon-
goDB v. 3.4.10. Both DBMS are configured in the standard configuration. To
analyze the scenario, we annotate the components ItemService, Query, and
BasicQuery of the mRUBiS system with logging. Figure 1 shows the result of
the evaluation. The diagram depicts the Pareto-optimal candidates for each fea-
ture alternative found by the design space exploration. The candidates with
File logging show the best quality in terms of response time. The NoSQL alter-
native reaches 7.8% (average) higher response times. The SQL alternative is
outperformed by the others, namely by 28.4% (average) through NoSQL and by
38.46% through File logging. It should be noted that NoSQL and SQL logging
alternatives also result in slightly increased costs, which is due to the additional
database component required by both alternatives. With the results, an architect
can decide, which write target of the logger meets the requirements best.

5 Related Work

There are numerous papers that present variability models to define a common
architecture for similar solutions. In [3] Atkinson et al. propose their KobrA
approach that focuses on component-based product line development. The main
component of the KobrA method is a framework that encapsulates a generic
description of a family of applications. Here, not only the common parts of
an architecture are relevant, but also all differences. They are considered by
including all possible characteristics in decision models. These describe options
that distinguish between the individual characteristics. If a concrete application
is to be developed, the generic framework is instantiated and all decision models
are solved. This results in a concrete instance, but does not influence the level
of abstraction. There are similar approaches to modeling variability in software
(architectures), such as Product Line Software Engineering (PuLSE) [5], the
product line design process [6] by Bosch, the FAST [14] approach, or the algebraic
language SPLA [2].

6 Conclusion

The approach described here presents a solution for the automatic evaluation
and optimization of software architectures in the decision-making process about
reusable functionalities. It supports decisions for the selection of features, con-
figuration of features in the software architecture, and different solutions and
effects on the quality attributes of the software architecture. The approach is
aimed at supporting the software architect in evaluating the effects of features
on the quality attributes at development time, even before the actual implemen-
tation has been carried out. Through early evaluation, suboptimal decisions can
be discarded before implementation, thus supporting more cost-efficient software
development. We demonstrated the advantages of this approach using a scenario

Assessing the Quality Impact of Features in Component-Based Architectures 219

from real-world systems. We modeled, analyzed, and optimized different design
decisions based on scenarios. The results shown can be used in the next step to
implement the software architecture.

References

1. Aleti, A., Bjornander, S., Grunske, L., Meedeniya, I.: ArcheOpterix: an extendable
tool for architecture optimization of AADL models. In: MOMPES 2009 (2009)

2. Andres, C., Camacho, C., Llana, L.: A formal framework for software product lines.
Inf. Softw. Technol. 55, 1925–1947 (2013)

3. Atkinson, C., et al.: Component-Based Product Line Engineering with UML.
Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

4. Bachmann, F., Bass, L., Klein, M., Shelton, C.: Designing software architectures
to achieve quality attribute requirements. In: SW Proceedings (2005)

5. Bayer, J., et al.: PuLSE: a methodology to develop software product lines. In: SSR
1999, ACM (1999)

6. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving
a Product-line Approach. ACM Press/Addison-Wesley Publishing Co., Boston
(2000)

7. Busch, A., Schneider, Y., Koziolek, A., et al.: Modelling the structure of reusable
solutions for architecture-based quality evaluation. In: CloudSPD 2016. IEEE
(2016)

8. Eckert, M.: Konditionale Platzierung von Architekturelementen zur Optimierung
von Software-Architekt. Master’s thesis, Karlsruhe Institute of Technology (2018)

9. Koziolek, A.: Automated Improvement of Software Architecture Models for Per-
formance and Other Quality Attributes. KIT, Karlsruhe (2013)

10. Koziolek, A., Koziolek, H., et al.: PerOpteryx: automated application of tactics in
multi-objective software architecture optimization. In: QoSA-ISARCS 2011 (2011)

11. Martens, A., Koziolek, H., et al.: Automatically improve software models for per-
formance, reliability and cost using genetic algorithms. In: WOSP/SIPEW ICPE
2010 (2010)

12. Reussner, R.H., Becker, S.: Modeling and Simulating Software Architectures: The
Palladio Approach. The MIT Press, Cambridge (2016)

13. Vogel, T.: mRUBiS: an exemplar for model-based architectural self-healing and
self-optimization. In: SEAMS 2018. ACM (2018)

14. Weiss, D.M., Lai, C.T.R.: Software Product-line Engineering: A Family-Based Soft-
ware Development Process. Addison-Wesley, Boston (1999)

Components and Design Alternatives
in E-Assessment Systems

Michael Striewe(B)

paluno - The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Essen, Germany

michael.striewe@paluno.uni-due.de

Abstract. In the domain of e-learning and e-assessment, many differ-
ent components are used to realise particular system features. Even for
similar features using similar components there are different ways of reali-
sation in terms of connection and integration. This paper presents results
from literature review and design-space explorations that result in a cat-
alogue of components and an overview on design alternatives.

1 Introduction

Following a general trend in recent decades, educational systems transformed in
three generations from monolithic blocks via modular systems to service oriented
frameworks [1]. Recent movements towards cloud based solutions are considered
a fourth generation by some authors [2]. While these developments concern the
general structure of systems, one can also analyse more closely the details of
system design: There are different ways on how to connect components and the
design of a given system may pose constraints on how to integrate additional e-
assessment features. This paper makes two contributions: It provides a catalogue
of system components commonly found in e-assessment systems and an overview
on design alternatives in the context of component integration. Similar ideas
have been explored for different aspects of system integration in the domain of
e-learning [3,4] and intelligent tutoring systems (ITS) [5] in a less general way.

2 Component Catalogue

The component catalogue reports on different kinds of components found in the
literature, that typically appear in the context of educational systems and that
may be integrated with other components in a system offering e-assessment fea-
tures. The overview serves as a baseline for subsequent considerations on design
alternatives. The literature study particularly included (amongst other sources) a
systematic review of papers from the Int. Conf. on Technology Enhanced Assess-
ment (formerly known as Int. Conf. on Computer Assisted Assessment), the
IEEE Global Engineering Education Conf., the Int. Conf. on Intelligent Tutor-
ing Systems, the IEEE Trans. on Learning Technology and the Special Issue on
c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 220–228, 2019.
https://doi.org/10.1007/978-3-030-29983-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-29983-5_15

Components and Design Alternatives in E-Assessment Systems 221

eLearning Software Architectures issued by Science of Computer Programming.
In the review, 36 publications have been identified as relevant, as they provide
enough information about architecture and component design. 13 components
have been extracted and grouped in four categories (see Table 1).

2.1 Frontend Components

Since e-assessment systems receive input, frontends of various kinds naturally
form a category that also was identified earlier by other authors (e.g. [24]). A
student frontend displays assessments to students and retrieves their answers.
Systems often provide one single student frontend component that is extensible
by plug-ins. However, there may also be cases in which a system offers e.g. one
browser-based frontend for general purpose and one app-based frontend specifi-
cally designed for mobile devices. A teacher frontend aggregates features related
to the organizational aspects of assessments (e.g. administration, authentication,
and assessment scheduling). An authoring tool allows to create assessment items,
item pools, and grading schemas. Notably, the naming difference between the
teacher frontend and the authoring tool is intended. While the former is often
designed as a closely coupled system component, the latter is often designed and
perceived as a standalone tool.

2.2 Educational Components

The core of e-assessment systems are their features for generating contents, pro-
viding advice, and evaluating answers. An assessment generator prepares an
assessment for delivery to the student. This often includes selecting appropri-
ate items from an item pool in case of adaptive system behaviour, but can also
appear in non-adaptive context in which nevertheless a particular exam must
be delivered to a student. An item generator fills item templates with actual
content. Consequently, it is not used in contexts using fixed items and in which
any adaptations are performed by the assessment generator mentioned above.
A pedagogical module provides advice as a human teacher would do. A typical
action is to provide hints to students while they work on an assessment item.
Consequently, these components primarily occur in systems that focus on learn-
ing or tutoring instead of formal evaluation of student performance. An evaluator
component analyzes submissions, identifies mistakes and generates feedback. It
is hence somewhat similar to the pedagogical module (and may be used by these
modules), but it may be much simpler in that it just applies a grading schema
to a solution without being able to provide any hint on how to improve a wrong
solution. A domain-specific expert system is a component that is not specific for
the purpose of e-assessment, but is able to solve general problems in a partic-
ular domain. It may be connected to evaluator components to enable complex
analyses or to item generators to allow for sophisticated generation mechanisms.

222 M. Striewe

Table 1. Overview on the component catalogue.

Component name and synonyms Features/functionality/

contents/structure

References in literature

Frontend components (see Sect. 2.1)

Student frontend (also: student
LMS, student VLE, student
CMS, student agent, or
learning interface)

Get and display assessments,

retrieve and store answers

[2,6–22]

Teacher frontend (also: teacher
LMS, teacher VLE, teacher
CMS, or admin agent)

Administration,

authentication, assessment

scheduling

[2,6]

Authoring tool (also: itembank
user interface)

Create contents [10,17–19,21,23]

Educational components (see Sect. 2.2)

Assessment generator (also:
instructional manager,
curriculum agent, task
selector, tutoring component,
or steering component)

Create assessments from item

pool, individualize training

[2,7,9,11–14,16,20,22,24–27]

Item generator (also: problem
generator, item constructor,
exercise generator)

Generate items/problems [7,8,12,17,20,27]

Pedagogical module (also: hint
generator, tutoring engine)

Provides advice like teachers

or hints

[5,11–14,16–18,20,22,24]

Evaluator component (also:
backend, checker, diagnose
module, assessor, grader,
marks calculator)

Analyse submissions and

mistakes, create feedback

[6–10,12–22,25,27,28]

Domain-specific expert system

(also: problem solver, domain
component, knowledge agent)

Perform domain-specific

operations or analyses

[8,10,12,24]

Knowledge representation and storing components (see Sect. 2.3)

Item bank (also: question bank,
repository of questions,
exercise database)

Assessment items including

rules on how to grade

responses and generate

feedback or hints

[13–15,20,22,23,25]

Domain knowledge model (also:
knowledge base)

Information on the

assessment’s domain (e.g.

facts, concepts), organized by

relations or rules

[5,10–12,16,18,20,24]

Student model (also: learner
model)

Information on a particular

student (e.g. competency

levels, overall scores),

organized as records referring

to an underlying competency

structure

[5,9–12,14–16,18,20,22,24–26]

Connector components (see Sect. 2.4)

Queue (also: spooler,
middleware, service broker)

Connects frontend

components and evaluator

components for continuous

data transfer

[6,19,28]

Data transfer component (also:
notify and announce,
reporting agent, assessment
commit agent)

Bulk transfer of data, such as

publishing results or

archiving assessments

[2,7]

Components and Design Alternatives in E-Assessment Systems 223

2.3 Knowledge Representation and Storing Components

Almost every e-assessment system contains data storage for users, courses, or
solutions. These basic features are out of scope here, but there are also compo-
nents for storing more specific data. An item bank stores assessment items includ-
ing rules on how to grade responses and generate feedback or hints. Authoring
tools are typically the only components that have write access to an item bank,
while problem generators and assessment generators may have read access. A
domain knowledge model stores general facts or competency networks relating
to the domain of the assessment. It is used in conjunction with expert systems
and pedagogical modules. A student model reflects actual competencies or alike
that relate to student capabilities or performance. Student models are most often
used in conjunction with adaptive system behaviour.

2.4 Connector Components

In addition to fulfilling core requirements of e-assessment systems, some compo-
nents are introduced for the sake of better software architectures. A queue can
occur in two directions: (1) It may forward data from some frontend or steering
components to evaluator components that possibly run on separate systems. (2)
It may forward data from evaluator components to frontends. While this com-
ponent does not add any educational value to a system, it may be crucial for
several design alternatives on how to connect components. Different to a queue,
a data transfer component is not concerned with continuous forwarding of data,
but performs bulk transfer of data between components.

3 Design Alternatives

For the purpose of this paper, behavioural design defines which components are
callers and callees or which components are used to (re-)direct calls from one
component to another. Some alternatives in that area are discussed in Sects. 3.1
and 3.2. Similarly, structural design defines possible connections between com-
ponents or the number of occurrences of components of a particular type within
an architecture. Some alternatives in that area are discussed in Sects. 3.3 and
3.4.

3.1 General Component Behaviour

As in many other systems, it is possible to design components as passive services
oractive agents. Passive services are found in many e-assessment systems as
explicit design decisions [1,6,27], while active agents are particularly common
in the domain of intelligent tutoring systems [10,26]. In that particular domain
they overcome the problem that students may not know how or when to trigger
a certain feature (e.g. a request for a hint) from a passive service.

224 M. Striewe

3.2 Grading a Response

A response to an assessment item is entered via a frontend component and
processed by an evaluator component. The connection between them can be
realized in different ways. All alternatives discussed below are independent of
the number of evaluator components involved. System designers will surely use
at least one alternative, but may use more within one system.

The synchronous push design corresponds to a plain method call. User inter-
action directly triggers the grading process and the user has to wait until it
finishes. Systems in which grading tasks are short running and in which the next
step depends on the previous result can employ this design. Its main benefit is
its simplicity, as it does not require parallelism for single users. However, it is
not suited for complex grading tasks that may be long-running or consume many
resources. In these cases, students may have to wait for a system response or
may even overload the server with requests.

The asynchronous push design also triggers the grading process directly, but
without blocking user interaction. An example can be found in [27]. Although
users are not blocked, a risk of system overload still exists, as many students can
trigger grading processes at the same time.

In the asynchronous pull design input is stored in a queue and pulled from
there by the evaluator component. Examples of this design can be found in
[6,19,29]. Similar to the previous design, response times are kept low. However,
there is an additional benefit in that many responses at the same time are less
likely to overload server resources as they will just fill the queue and increase
wait times until they are processed.

3.3 System Extensions

In component-oriented systems, extensions (e.g. adding new types of assessment
items and grading functions) are possible by extending existing components and
by adding a new one and connecting it properly to the existing ones. Systems
that do not allow for extensions will not use any of the alternatives discussed
below. Otherwise, a system may use one or more of the following alternatives.

An encapsulated plug-in implements the full feature set of the new compo-
nent. It is written in the same language as the existing system and uses its data
storage and other components. Usually the existing system offers an appropri-
ate API to be used by plug-ins. The benefit is that a well-written plug-in API
can ease plug-in development and assure a close integration. The API may also
limit the plug-ins in what they do, which can protect the system from malicious
components. This may also be a downside if some sophisticated features cannot
be implemented that way. In addition, a badly-written plug-in API may cause
problems in system maintenance or performance.

An unrestricted plug-in only implements a subset of the desired features
directly. Besides connecting to the plug-in API of the existing system, it also
connects to an own backend component that implements the missing part of the
feature set. This design can be found in LMS as with the Moodle External API

Components and Design Alternatives in E-Assessment Systems 225

[30]. It overcomes the drawbacks mentioned above, as the backend component
can implement arbitrarily complexe features. A drawback is that potentially crit-
ical data may leave the system. There is also a risk that the backend component
may become a bottleneck with respect to system performance.

In the external tool design, the existing system redirects the user to an exter-
nal tool via some standard API and receives a callback when the user has finished
their duties there. This mechanism can be realized in learning management sys-
tems via the IMS-LTI standard [31]. This design actually avoids extending an
existing system, but adds functionality by coupling it with another system. The
design enforces a quite strict separation of data that can be a benefit and draw-
back at the same time: It improves privacy and simplifies data management but
it also requires to establish a trusted connection between the tools.

In API-based integrations, there is an even more loose coupling. A system may
use the asynchronous pull design and require all evaluator components reading
from the queue to be active agents. An additional agent can then simply be
added without the need for any kind of dedicated plug-in API. Instead, having
a queue from which other components can read forms an implicit plug-in API.

3.4 Evaluator Granularity

Section 3.2 already discussed ways to invoke evaluator components. This section
deals with design alternatives for structuring them internally. Each evaluator
component will use one of the designs, but if there are many evaluator compo-
nents, each of them may use a different one.

A monolithic evaluator is designed as a single block that receives a submission
as input and returns grades and feedback as output. This is typically sufficient for
short running synchronous grading tasks (e.g. [9,13]). The complete behaviour
of the component can be modelled as a single process in this case. If entirely
different grading procedures are necessary, two or more completely independent
evaluator components can be employed following this pattern, as it is for example
sometimes used for grading solutions in different programming languages [6,32].

If different grading procedures share some common elements, an evaluator
with sub-components can be used. An example for this design can be found in [33],
where the assignment database contains the sequence of modules to be applied
to the submission. While some of the components may be relevant just for one
type of assignments, others may be used for several assignment types. Similarly,
the order of invoking these components may differ between assignment types. As
an additional design choice, this pattern allows to use single-threaded processing
within the evaluator or to call different sub-components in parallel threads. The
main benefit of parallel processing is to speed up the grading process for a single
solution and thus lowering the wait time for the student. On the downside, not
all grading mechanism may be suitable for being split up into parallel tasks, as
one grading step may require results from another grading step. Using several
(single-threaded) evaluator instances in parallel may be an alternative, as it at
least reduces the overall processing time in bulk processing.

226 M. Striewe

4 Conclusions

The paper discussed a catalogue of components in e-assessment systems and
design alternatives for four different aspects. Both catalogues are intended to
serve developers of educational systems to make systematic design decisions and
to serve software architecture researchers who are interested in domain specific
architectural knowledge. All results can be used in a descriptive manner as a
starting point for more detailed description and comparisons of systems in lit-
erature reviews or comparative studies. Moreover, the alternatives can be used
in empirical analyses that elicit criteria for evaluating software architectures of
e-assessment systems based on the design decisions they make.

References

1. Dagger, D., O’Connor, A., Lawless, S., Walsh, E., Wade, V.P.: Service-oriented
e-learning platforms: from monolithic systems to flexible services. IEEE Internet
Comput. 11(3), 28–35 (2007)

2. Gusev, M., Ristov, S., Armenski, G., Velkoski, G., Bozinoski, K.: E-assessment
cloud solution: architecture, organization and cost model. iJET 8(Special Issue 2),
55–64 (2013)

3. Harrer, A., Pinkwart, N., McLaren, B.M., Scheuer, O.: The scalable adapter design
pattern: enabling interoperability between educational software tools. TLT 1(2),
131–143 (2008)

4. Garćıa-Holgado, A., Garćıa-Peñalvo, F.J.: Architectural pattern to improve the
definition and implementation of elearning ecosystems. Sci. Comput. Program.
129, 20–34 (2016)

5. Devedzic, V., Harrer, A.: Architectural patterns in pedagogical agents. In: Cerri,
S.A., Gouardères, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 81–90.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47987-2 13

6. Amelung, M., Krieger, K., Rösner, D.: E-assessment as a service. IEEE Trans.
Learn. Technol. 4, 162–174 (2011)

7. Armenski, G., Gusev, M.: E-testing based on service oriented architecture. In:
Proceedings of the 10th CAA Conference (2006)

8. Bridgeman, S., Goodrich, M.T., Kobourov, S.G., Tamassia, R.: PILOT: an inter-
active tool for learning and grading. In: Proceedings of the 31st SIGCSE Technical
Symposium on Computer Science Education, pp. 139–143 (2000)

9. Cheniti-Belcadhi, L., Henze, N., Braham, R.: Implementation of a personalized
assessment web service. In: Sixth International Conference on Advanced Learning
Technologies (ICALT), pp. 586–590 (2006)

10. Costa, E., Silva, P., Silva, M., Silva, E., Santos, A.: A multiagent-based ITS
using multiple viewpoints for propositional logic. In: Cerri, S.A., Clancey, W.J.,
Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 640–641.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30950-2 100

11. El-Sheikh, E., Sticklen, J.: Generating intelligent tutoring systems from reusable
components and knowledge-based systems. In: Cerri, S.A., Gouardères, G.,
Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 199–207. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-47987-2 24

12. Goguadze, G., Melis, E.: Combining evaluative and generative diagnosis in
ACTIVEMATH. In: AIED, pp. 668–670 (2009)

https://doi.org/10.1007/3-540-47987-2_13
https://doi.org/10.1007/978-3-642-30950-2_100
https://doi.org/10.1007/3-540-47987-2_24

Components and Design Alternatives in E-Assessment Systems 227

13. Gonzalez-Sanchez, J., et al.: A system architecture for affective meta intelligent
tutoring systems. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K.
(eds.) ITS 2014. LNCS, vol. 8474, pp. 529–534. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-07221-0 67

14. Hatzilygeroudis, I., Koutsojannis, C., Papavlasopoulos, C., Prentzas, J.:
Knowledge-based adaptive assessment in a web-based intelligent educational sys-
tem. In: Sixth International Conference on Advanced Learning Technologies
(ICALT), pp. 651–655 (2006)

15. Kenfack, C., Nkambou, R., Robert, S., Tato, A.A.N., Brisson, J., Kissok, P.: A
brief overview of logic-muse, an intelligent tutoring system for logical reasoning
skills. In: Micarelli, A., et al. (eds.) Intelligent Tutoring Systems, ITS 2016, LNCS,
vol. 9684, pp. 511–513 (2016). https://doi.org/10.1007/978-3-319-39583-8

16. Martens, A.: Time in the adaptive tutoring process model. In: Ikeda, M., Ash-
ley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 134–143. Springer,
Heidelberg (2006). https://doi.org/10.1007/11774303 14

17. Martin, B.: Authoring educational games with greenmind. In: Woolf, B.P., Aı̈meur,
E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 684–686.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69132-7 77

18. Murray, T.: Having it all, maybe: design tradeoffs in ITS authoring tools. In: Fras-
son, C., Gauthier, G., Lesgold, A. (eds.) ITS 1996. LNCS, vol. 1086, pp. 93–101.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61327-7 105

19. Richter, T., Boehringer, D.: Towards electronic exams in undergraduate engineer-
ing. In: IEEE Global Engineering Education Conference (EDUCON), pp. 196–201
(2014)

20. Rickel, J.W.: Intelligent computer-aided instruction: a survey organized around
system components. IEEE Trans. Syst. Man Cybern. 19(1), 40–57 (1989)

21. Siddiqi, R., Harrison, C.J., Siddiqi, R.: Improving teaching and learning through
automated short-answer marking. TLT 3(3), 237–249 (2010)

22. Weng, M.M., Fakinlede, I., Lin, F., Shih, T.K., Chang, M.: A conceptual design of
multi-agent based personalized quiz game. In: 11th IEEE International Conference
on Advanced Learning Technologies (ICALT), pp. 19–21 (2011)

23. Davies, W.M., Howard, Y., Davis, H.C., Millard, D.E., Sclater, N.: Aggregating
assessment tools in a service oriented architecture. In: 9th International CAA Con-
ference (2005)

24. Devedzic, V., Radovic, D., Jerinic, L.: On the notion of components for intelligent
tutoring systems. In: Goettl, B.P., Halff, H.M., Redfield, C.L., Shute, V.J. (eds.)
ITS 1998. LNCS, vol. 1452, pp. 504–513. Springer, Heidelberg (1998). https://doi.
org/10.1007/3-540-68716-5 56

25. Kurup, M., Greer, J.E., McCalla, G.I.: The Fawlty article tutor. In: Frasson, C.,
Gauthier, G., McCalla, G.I. (eds.) ITS 1992. LNCS, vol. 608, pp. 84–91. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-55606-0 12

26. Neji, M., Ben Ammar, M.: Agent-based collaborative affective e-learning frame-
work. Electron. J. e-Learn. 5(2), 123–134 (2007)

27. Zschaler, S., White, S., Hodgetts, K., Chapman, M.: Modularity for automated
assessment: a design-space exploration. In: Combined Proceedings of the Work-
shops of the German Software Engineering Conference (SE) (2018)

28. Iffländer, L., Dallmann, A., Daniel-Beck, P., Ifland, M.: PABS - a programming
assignment feedback system. In: Proceedings of the Second Workshop “Automa-
tische Bewertung von Programmieraufgaben” (2015)

29. Striewe, M.: An architecture for modular grading and feedback generation for com-
plex exercises. Sci. Comput. Program. 129, 35–47 (2016)

https://doi.org/10.1007/978-3-319-07221-0_67
https://doi.org/10.1007/978-3-319-07221-0_67
https://doi.org/10.1007/978-3-319-39583-8
https://doi.org/10.1007/11774303_14
https://doi.org/10.1007/978-3-540-69132-7_77
https://doi.org/10.1007/3-540-61327-7_105
https://doi.org/10.1007/3-540-68716-5_56
https://doi.org/10.1007/3-540-68716-5_56
https://doi.org/10.1007/3-540-55606-0_12

228 M. Striewe

30. Casany, M.J., et al.: Moodbile: a framework to integrate m-learning applications
with the LMS. J. Res. Pract. Inf. Technol. 44(2), 129–149 (2012)

31. IMS learning tools integration specification. IMS Global Learning Consortium Std.,
Rev. 1.1.1 (2012)

32. Núñez, A., Fernández, J., Garcia, J.D., Prada, L., Carretero, J.: M-PLAT: multi-
programming language adaptive tutor. In: Eighth IEEE International Conference
on Advanced Learning Technologies (ICALT), pp. 649–651 (2008)

33. Pardo, A.: A multi-agent platform for automatic assignment management. In: Pro-
ceedings of the 7th Annual Conference on Innovation and Technology in Computer
Science Education (ITiCSE), pp. 60–64 (2002)

Industry Track

A Four-Layer Architecture Pattern for
Constructing and Managing Digital Twins

Somayeh Malakuti(B), Johannes Schmitt, Marie Platenius-Mohr, Sten Grüner,
Ralf Gitzel, and Prerna Bihani

ABB Corporate Research Center, Ladenburg, Germany
{somayeh.malakuti,johannes.o.schmitt,marie.platenius-mohr,

sten.gruener,ralf.gitzel,prerna.bihani}@de.abb.com

Abstract. The promise of a digital twin is to make asset lifecycle infor-
mation accessible by providing a single access point to the information.
Thereby, it reduces the required time and effort and enables new data-
intensive use cases. This paper provides an abstract four-layer architec-
ture pattern to construct digital twins and to incorporate information
from various kinds of sources. The pattern is designed to be flexibly
extensible with new information sources and can flexibly support new
kinds of proprietary or standard information. We discuss various alter-
natives to implement the pattern and provide an example realization
based on microservices and OPC UA.

Keywords: Digital twin · Microservice · OPC UA · Information model

1 Introduction

A major problem of industrial systems are information silos. The information
related to different lifecycle phases of an asset (e.g, a device, a production cell)
is scattered across multiple information sources. These information sources are
often maintained by different internal and external organizations and are inter-
faced by various applications. This leads to a broken information flow across the
lifecycle of the assets because these information sources do not properly exchange
information; some information may be duplicated or inconsistent while some oth-
ers may be missing. As a result, significant amounts of time are usually required
to find the relevant information, to convert the information to a suitable format,
to pass the information to different tools, etc.

Digital twins can be seen as a promising solution for providing access to the
lifecycle information of their assets. The underlying definition of the trend has
evolved over time. Initially, a digital twin was considered to be a high fidelity
mathematical model of a physical device that could simulate the device as closely
as possible. This definition has been enriched over the time to be an evolving

The authors were partially supported by German Federal Ministry of Education and
Research in the scope of the BaSys 4.0 project (01IS16022).

c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 231–246, 2019.
https://doi.org/10.1007/978-3-030-29983-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-29983-5_16

232 S. Malakuti et al.

digital profile of the historical and current behavior of an asset together with all
of its properties, where an asset is anything of value for an organization such as
a physical device, a subsystem, a plant, or a software entity1. The information
fragments contained in a digital twin are use case specific and often originate
from different lifecycle phases. Typically, it encompasses elements such as order-
ing details, engineering parameters, operational information, and maintenance
information.

Depending on the use case, differences arise in what kind of information must
be collected, where it is found, and what it is used for. To have a unified solu-
tion, this paper proposes a four-layer architecture pattern to collect information
about an asset from various information sources, to construct the digital twin of
the asset and to aggregate the information in it. The pattern is designed to be
flexibly extensible with new information sources and can support new kinds of
proprietary or standardized information. We outline various alternatives to real-
ize this pattern and sketch an example implementation, which is validated using
our industrial use case, based on microservices and OPC UA [1] technologies.

In the next section, we describe an industrial use case for digital twins from
ABB. Section 3 lists requirements for a solution to create and manage digital
twins. Section 4 introduces our four-layer architecture pattern for such a solu-
tion, while Sect. 5 discusses a concrete realization of this architecture. Section 6
outlines the related work, and Sect. 7 concludes the paper with a discussion
about the future directions of our research.

2 An Industrial Use Case in the ABB Company

Variable speed drives are a common asset in industrial plants to control the
speed of motors. In our real-world example, we show digital twins for both the
drive instance and its type. The latter contains type-design information such as
CAD drawings, simulation models, and documentation. The former is the actual
device used by a specific customer. While all of this information could be stored
in a single digital twin, this would result in a massive amount of information
replication as the type information is the same for all instances. Therefore, we
envision two digital twins – one for the instance and one for the type. Since they
are related to each other, this relation is also established among their digital
twins.

The bottom part of Fig. 1 shows the case where the information related to
different lifecycle phases of the drive and its type is scattered across multiple
information sources. Here, the information about drive types is maintained in
the so-called Product Type Database. Various proprietary applications are used,
for instance the Device Selection Tool is used to select a specific drive type
based on desired settings of customers. Information about the installations such
as associated customers, plants, purchased devices and warranty information is
maintained in a so-called Installed-base Database. The operational parameter
1 https://www2.deloitte.com/insights/us/en/focus/industry-4-0/digital-twin-

technology-smart-factory.html.

https://www2.deloitte.com/insights/us/en/focus/industry-4-0/digital-twin-technology-smart-factory.html
https://www2.deloitte.com/insights/us/en/focus/industry-4-0/digital-twin-technology-smart-factory.html

A Four-Layer Architecture Pattern 233

information of each drive is maintained within the drive firmware itself and
served via an OPC UA (IEC 62541 [1]) server; hence, the drive is labeled as
an OPC UA-Enabled Drive. Further information may be provided by External
Platforms, e.g. production information for drive components manufactured by
external suppliers.

Fig. 1. A digital twin example

As depicted in Fig. 1, the digital twin is considered a means to provide a single
entry point to the information of a drive and its type. Each digital twin contains
information about the relevant asset. Having a digital twin in place helps to
not only easily access the information but can even add further intelligence to
the system. For example, there may be an analytics application which receives
inputs about a drive’s type, initial drive selection parameters, and operational
values from the drive’s digital twin to calculate its current health status.

3 Requirements

Based on our interviews with internal domain experts and evaluation of existing
proposals for digital twins, we identified the following requirements to be fulfilled
by a digital twin solution.

R1, Supporting Multiple Information Sources: To make a digital twin solu-
tion usable in practice, it must be possible to collect information from diverse
sources and feed them to the relevant digital twins. Since the information sources
are already operating for many years, only seamless extensions are allowed for
enabling them to exchange information with digital twins.

234 S. Malakuti et al.

R2, Supporting Modular Extension of Digital Twins: Information pieces are
developed and delivered separately during the lifecycle of an asset. For example,
when a new drive is installed in a plant, service information is only added once
maintenance services take place. Therefore, it must be possible to incrementally
extend the relevant digital twin content upon the availability of new information.

R3, Supporting Various Digital Twins Logics: Different digital twins may differ
in terms of the information pieces that they enclose, the frequency of informa-
tion updates, the lifetime of the digital twin, etc. For example, a product type
exists before a concrete product is manufactured. Therefore, the digital twin of
a product type has a different lifetime than the digital twin of a product itself.
We name these the logics of digital twins. A digital twin solution must facilitate
defining various digital twins with different logics.

R4, Supporting Information Push and Pull: It must be feasible to actively add
information pieces to relevant digital twins upon their availability (push-based),
or to query relevant information from passive data sources (pull-based). For
example, in our use case, organizations usually have databases in which infor-
mation related to all devices are stored; for each device, relevant information
must be queried and added to the relevant digital twin. Each device may also
actively bring more information (e.g., its operational parameters) to its digital
twin.

R5, Syncing Information Between Digital Twins and Information Sources: The
information enclosed by digital twins may be modified over time. To maintain
information consistency, it must be possible to sync information between digital
twins and the information sources. A special case is syncing information between
a digital twin and the corresponding asset so that the information of the digital
twins can be updated based on the actual information of the assets.

R6, Supporting Various Information Formats: Information pieces might be
expressed in proprietary formats or based on different standards to facilitate
interoperability across organizations. It must be feasible to collect and convert
the information pieces and/or an entire digital twin to the desired format in a
permanent way or on the fly when needed. The knowledge about which infor-
mation formats are supported and processable by a certain component needs to
be retrievable by the digital twin solution.

R7, Offering Dedicated Interaction Mechanisms for Each Information Piece:
Each proprietary or standardized information piece requires a suitable user inter-
face to display information and allow user-interaction.

R8, Identifying Digital Twins and Their Corresponding Asset: Since industrial
systems may consist of thousands of assets (e.g. installed devices), it is necessary
to provide a means to uniquely identify the assets and their corresponding digital
twins on the network. Usually multiple identification schemes are in place within

A Four-Layer Architecture Pattern 235

one organization, meaning that the information pieces collected from various
sources might have different identification schemes. Therefore, means are needed
to map these identifiers to each other in order to identify the multiple information
pieces that are relevant to a given asset.

R9, Offering Digital Twin APIs: Suitable APIs must be offered to applications
to access and manipulate information stored within digital twins.

The above-listed requirements mainly cover functional aspects of a digital
twin solution. Several non-functional requirements such as security and distri-
bution are also relevant, but out of the scope of this paper.

4 The Architecture Pattern for Digital Twins

Since collecting lifecycle information from various sources and making it accessi-
ble via digital twins is a recurring problem in companies, we propose an architec-
ture pattern for managing digital twins and their information sources. This helps
various business units or companies to adopt a unified solution for implementing
their digital twins.

Figure 2 shows our four-layer architecture pattern for a digital twin solution.
The bottom level is the Information Providers layer, which consists of vari-
ous information sources (satisfies R1). The Model Providers layer is responsible
for gathering and processing information pieces from the Information Providers
layer, and feeding it to the Digital Twin Providers. In our pattern, we refer to
information pieces as models, since they can be expressed in various proprietary
or standard formats. The Digital Twin Providers layer creates and manages dig-
ital twins. Various applications, e.g. viewing and analytics applications, can be
located at the Applications layer, which can access and manipulate digital twins.

This pattern does not make any assumption on the cardinality and distribu-
tion of the depicted components. We leave these decisions to the implementations
of this pattern based on the quality attributes of the specific use cases. In Sect. 5,
we list a set of design alternatives for our use case.

4.1 The Information Providers Layer

We distinguish among the following kinds of information sources.

Applications/Tools: Digital twins must include the output of various tools
that exist in organizations. For example, in ABB, dedicated tools exist to
select drives suitable for a specific application along with their connected
motors, and to parameterize them. The output of these tools is usually stored
as files in a specific format, and/or in some kind of databases.

Devices: The operational parameters of devices (e.g., temperature or speed),
which are defined within the firmware software of the devices, are another
source of information. It is becoming commonly accepted that future Indus-
trial Internet of Things (IIoT) devices will be delivered with an embedded

236 S. Malakuti et al.

Fig. 2. The architecture pattern

information model in the OPC UA [1] format for defining at least the opera-
tional parameters and methods of the devices. Such devices already implement
the functionality to sync this information with the relevant information within

A Four-Layer Architecture Pattern 237

their firmware. The operational parameters of the devices can be discovered
and added as part of the devices’ digital twin.

Databases: There are different databases such as Product Type Database and
an Installed-base Database, which contain various information about device
types and their installations. These databases usually offer APIs, which can
be used in a seamless manner to exchange information with digital twins.

External platforms: The information about a device and its type may be
scattered in multiple IoT platforms, possibly owned by different companies.
Such platforms are also sources of information that is described in a stan-
dard/agreed format or in the proprietary format of the source platform.

In addition to these, we have two special kinds of information providers:

Digital twin applications: The applications using information about digital
twins (the top layer of Fig. 2) may also modify the content of digital twins.
For example, an application may suggest new maintenance services to be
performed on a device and this information can be included in the digital
twin of the device. These modifications take place using the digital twin APIs
and, if needed, are communicated to the relevant information providers.

Digital twins: Other digital twins provided by the same or different IoT plat-
forms may also be a source of information. For digital twins within one
platform, we assume that the information exchange among them takes place
within the context of specific applications located at the Applications layer.
These applications make use of the APIs offered at the Digital Twin Provider
layer to access digital twins and establish information links among them.

4.2 The Model Providers Layer

We adopt a plugin-based architecture to make the Model Providers layer exten-
sible with new kinds of information sources and new kinds of models at runtime
(satisfies R2). The Information Gateway plugin at the bottom part of this layer
interacts with information sources to retrieve and/or update information. Dedi-
cated plugins can be defined for each kind of information source.

The Model Kind plugin defines necessary components to provide and man-
age different kinds of models (satisfies R6). There is the so-called Model Kind
Description, describing which kind of model is supported by particular plugins;
example model kinds are documentation, CAD drawing, operational parameters,
and maintenance. Dedicated plugins may be provided for each model kind. The
model descriptions will later on be used at the Digital Twin Provider layer to
match the models to the relevant digital twin.

Within the Model Kind plugin, we adopt the Model View Controller (MVC)
pattern [2] to manage each model that is to be included in a digital twin. The
information content corresponds to the Model component of this pattern. Since
each model is defined based on a specific standard or in a proprietary format,
there is a dedicated View associated to each model to visualize its content in
a suitable format. Each model is also associated with a Controller, which com-
municates with the respective view and also populates the model by interacting

238 S. Malakuti et al.

with Information Gateway (view and controller satisfy R7). The interactions
with Information Gateway may be for creating, reading, updating or deleting
(CRUD) information, as well as receiving notifications about the changes in the
source information.

The Model Provider component is the core component, in which other com-
ponents are plugged in. Here, Model Manager instantiates the MVC components
when needed, and keeps a reference to them in Model Components Repository.
Model Manager interacts with the Digital Twin Provider layer through its APIs;
for example, it receives commands to construct a model, or to provide a model to
Digital Twin Manager. The information exchange with the Digital Twin Provider
layer can be push- or pull-based; i.e. the information is actively pushed to, or
can be queried by the Digital Twin Provider layer, respectively (satisfies R4).

Once the models are constructed and added to the relevant digital twins,
the associated Controller component may also be the recipient of the commands
from the Digital Twin Provider layer; for example, to update the content of the
model in a special frequency.

The availability and multiplicity of model providers may change during the
lifetime of a digital twin. To be able to cope with such changes, our architecture
opts for a mechanism to discover model providers. The necessary information to
perform such a discovery is provided as Discovery Daemon, which notifies the
Model Provider Discovery component in the upper layer.

4.3 The Digital Twin Providers Layer

The core part of this layer is the Digital Twin Manager, which is responsible for
managing the lifecycle of digital twins, i.e. construction and destruction. It dis-
covers model providers and their supported model kinds via the Model Provider
Discovery component, which registers the providers at the Model Provider Reg-
istry. This registry allows Digital Twin Manager to retrieve the matching model
provider for a given model kind.

There can be different kinds of digital twins within one system. For example,
in our use case, we distinguish between the digital twin of a drive type and
that of a drive instance. Each contains different kinds of models collected from
different information sources. We adopt a plugin-based architecture to make the
Digital Twin Providers layer extensible with new kinds of digital twins (satisfies
R3). Here, Asset Kind Description specifies desired model kinds for each kind
of digital twin. For example, for the digital twin of a drive type, documentation
models and CAD drawings are model kinds of interest.

Similarly to each individual model, we also adopt the MVC pattern to manage
each kind of digital twins. Here, the actual Digital Twin Content forms the model
component of the pattern. The content of a digital twin is the aggregation of
the models collected from the Model Providers layer, as well as an identification
mechanism to bind these models together (satisfies R8, see Sect. 5 for details).
A Digital Twin Controller component associated with each digital twin instance
updates the model and interacts with the Digital Twin View component.

A Four-Layer Architecture Pattern 239

The point of time at which a digital twin must be constructed is use case
specific. For example, users may explicitly construct a digital twin via a dedi-
cated Application and start collecting information from model providers; another
way is to automatically construct a digital twin upon the presence of its first
constituent model. Either way, the Digital Twin Manager instantiates a Digital
Twin Controller and passes the control to it to proceed with content acquisition
from model providers.

The information about digital twins and their MVC components are main-
tained in the Digital Twin Repository. Suitable APIs are offered to applications
to access and manipulate digital twin information.

4.4 The Applications Layer

Various use case specific applications may be developed to work with digital
twins. These applications may work at the level of digital twins to create, read,
update, and delete (CRUD) digital twins; or, they may work with the information
contained within digital twins. For the latter case, the applications may directly
interact with the respective Digital Twin Controller, and for the former case
with Digital Twin Manager, both of which provide appropriate APIs (satisfies
R9).

5 A Concrete Architecture Example

This section discusses an example implementation of the architecture pattern
for our use case in Sect. 2. We have implemented our example in OPC UA [1]
technology. OPC UA is becoming the de facto machine-to-machine communi-
cation protocol for industrial automation systems, which also offers an object-
oriented information modeling mechanism as well as a service-oriented architec-
ture to access the information. One faces various alternatives in implementing
our abstract architecture. Figure 3 summarizes some alternatives and our deci-
sions for our use case. We will return to them after we explain the concrete
architecture, as depicted in Fig. 4, in the following subsection.

5.1 The Model Providers Layer

Since various pieces of information are delivered by different organizations, we
define a separate model provider for each information provider, so that we can
flexibly extend our implementation with new information providers. One may
consider different cardinalities in other use cases; for example, a use case may
require that one model provider accesses many information providers, or vice
versa.

In our use case, we have the following kinds of information providers: (a) Two
existing databases, i.e., Product Type Database and Installed-base Database, (b)
the Device Selection Tool that generates information about the initial param-
eterization of drives, (c) a drive with embedded OPC UA server, and (d) an
external platform providing production information.

240 S. Malakuti et al.

Fig. 3. Example alternatives for implementing the pattern

For the sake of extensibility, we adopt microservices to implement each model
provider. We use the web-based API of the existing databases to access their
information. The model provider that accesses the Product Type Database has
two plugins for the MVC components because it provides two kinds of mod-
els: documentation and CAD drawing. Other model providers offer one type of
model; hence, they have one MVC plugin.

The model provider that accesses the Device Selection Tool must read the
output files of this tool. To access the files on the file system, we define a so-called
Digital Twin Monitored Folder, where the files must be stored. The existing tool
is extended with an add-in to store their results in this folder.

Since we adopt OPC UA as the technology to implement digital twins, the
OPC UA drive can be seen as a native model provider: An information provider

A Four-Layer Architecture Pattern 241

Fig. 4. An example concrete architecture

that provides the necessary MVC components, which can be directly integrated
into a digital twin, is regarded in our architecture as a native model provider.
In terms of the necessary MVC components, the embedded OPC UA server
of the drive provides the operational parameters of the drive as an OPC UA

242 S. Malakuti et al.

information model. There is a controller object associated with the model to
enable access to the models. The HTML view description is included within the
model and is passed to the upper layers to be rendered at the client-side.

The communication between the OPC UA server and digital twins uses OPC
UA client/server sessions using the OPC UA binary protocol that is based on
TCP/IP.

Different technologies can be adopted to define the APIs of other model
providers to the Digital Twin Provider layer. We have experimented with OPC
UA-based and REST APIs with JSON. The OPC UA-based APIs are used for
the OPC UA-enabled drive; however, they can also be adopted by other model
providers so that their models can easily be integrated with the corresponding
digital twins using native OPC UA services. In this case, the model provider
must include an OPC UA server in which models are maintained, and there is
an OPC UA client at the Digital Twin Provider layer to communicate with this
server. REST APIs with JSON representation of information can be adopted,
where the JSON-based models are translated to OPC UA objects via digital
twin controllers.

The content of models may be defined in a proprietary or standard format.
Even if the content is defined in a proprietary format of the original information
providers, the controller part of MVC may translate the content into a standard
format (satisfies R6). The content of the models may be a copy—accompanied
with a caching mechanism—of the original information in the underlying infor-
mation providers, or a reference to it (satisfies R5). Which of these options is
preferable depends on the desired performance, memory consumption, availabil-
ity of information, and required frequency of information update. For example, if
the original information/model provider becomes unavailable, it is still possible
to work with the latest cached information in case information is copied/cached.
In our use case, we adopt referencing for the OPC UA-based parameters of the
underlying drive and copying for other information.

Our architecture is web-based, meaning that the view part of the MVC com-
ponents is defined via a set of HTML files, and they are rendered at the client
side, i.e. in the Applications layer of the architecture.

5.2 The Digital Twin Providers Layer

In the Digital Twin Providers Layer, there is only one instance of the Digital
Twin Manager which can centrally manage multiple digital twins. There will be
one digital twin instance for each device and one digital twin for each device
type. Hence, there are two Digital Twin Kind plugins in our realization.

The choice of technology for storing digital twins depends on the scale of
the system and desired non-functional requirements such as performance. We
make use of a so-called OPC UA aggregating server to store digital twins, and
to aggregate underlying models in digital twins. An OPC UA aggregating server
is a special OPC UA server, which concentrates the information of underlying
servers and may add more logics on top, e.g. to compute historic information.

A Four-Layer Architecture Pattern 243

In our implementation of the aggregating server, only a reference to the
actual information in the underlying model providers is maintained, and actual
information is retrieved from the underlying model providers on demand.

Since the underlying model providers can communicate via OPC UA or
REST APIs, there are dedicated clients in the Digital Twin Provider to facilitate
the communications. We adopt the multicast DNS (mDNS) [3] discovery mech-
anism to automatically discover the appearance/disappearance of microservices.
Each model provider microservice makes use of its mDNS Discovery Daemon
to announce its presence as well as its list of supported models to the Model
Provider Discovery component. The microservices keep announcing themselves
on a regular basis while they are alive. The Model Provider Discovery com-
ponent will update the Model Provider Registry as soon as new microservices
announce themselves or previously present microservices disappear. In an OPC
UA realization, the disappearance of a microservice will be noted by a closed
client connection, which could also trigger an update of the registry.

The Digital Twin Manager can interact with multiple model providers. The
interactions can be push-based or pull-based (satisfies R4). In the latter case,
the Digital Twin Manager requests models from the available model providers;
in the former case, model providers proactively push the models upon their
availability.

Digital twins may be constructed either manually upon user requests in the
Application layer or automatically upon the availability of a specific model. The
latter is implemented in our use case when a drive is installed in the network, its
presence is detected via mDNS, and its embedded OPC UA information model
is considered as the first model to be included in the digital twin of the drive.
Afterwards, the corresponding digital twin controller pulls other models from
the available model providers and adds them to the corresponding digital twin.

5.3 The Applications Layer

There is one microservice in this layer, which contains an analytics applica-
tion. There are Java components that interact with the Digital Twin Provider
microservice via REST APIs to receive necessary information from within the
digital twin of a device and its type. This information is provided to a Python
application for further analysis, and the results of the analysis are stored back
in the so-called maintenance model. This means that, in addition to consum-
ing digital twin content, the application is also a model provider for the digital
twin. To be able to easily aggregate the maintenance model into the digital twin
of the corresponding device, we have an OPC UA server within the Analytics
microservice, which stores the maintenance model.

5.4 A Common Identification Mechanism

It is usually the case that each information provider adopts its own specific
scheme to uniquely identify information pieces. For example, in our use case,
within the Product Type Database there is a unique alphanumeric ID to designate

244 S. Malakuti et al.

each type, but there are several aliases for one type ID; within the Installed-base
Database there is a numeric identifier for each installation, all its contained
devices, services performed on the devices, etc.; each manufactured device has
a serial number and type information included, which follows a specific format.
Since the information providers are usually developed and managed by separate
organizations, it is not practical to enforce one unique way of identification on
all of them. Instead, we need to define how the various identifiers can be mapped
to each other.

Since in our use case we assume that there is one digital twin per device,
we take the device serial number as the key identifier for the digital twin to
which various identifiers must be mapped. Each information provider must be
extended to provide a mapping between its internal identifier and the associated
serial number, and this mapping must be communicated to the digital twin when
a new model is provided to the Digital Twin Providers layer. This approach
enables us to communicate with the underlying information provider using its
own identifier and yet aggregate multiple models together within one digital
twin.

Fig. 5. Identifiers as part of any
model

Each model that should become a part
of a digital twin must have dedicated fields
defining its identifiers. Figure 5 shows the
generic structure for defining identifiers in
different models. Here, an abstract class
Model contains identifiers that are manda-
tory for every model, since all models inherit from this class. The property
modelID is used to define the unique identifier of the model itself. The property
modelKindID is used to keep the identifier of the model kind, if any. If there
is, for example, any standardized model kind description, a reference to that
description could be stored in this property. The key identifier (serial number in
our use case) and further optional local asset identifiers within each information
provider can be stored in assetIDs collection.

All these identifiers are defined in the class Identification, which has a prop-
erty to keep the value of the identifier, accompanied with zero or more qual-
ifiers in the qualifiers collection. The qualifiers provide additional information
about the identifier, e.g., whether it is a serial number. This mechanism allows
using different formats for various identifiers while preserving their semantics.
The object-oriented definition of model identifiers presented in Fig. 5 allows a
straightforward mapping to the selected implementation technology used by
model providers, e.g., OPC UA or REST APIs with JSON.

6 Related Work

In [4] we discussed various architectural aspects of digital twins. The pattern
proposed in this paper illustrates a concrete realization of these architectural
aspects. Alam and Saddik describe C2PS [5], a “digital twin architecture ref-
erence model” for cloud-based cyber-physical systems. However, they focus on

A Four-Layer Architecture Pattern 245

network communication aspects and controller design. They do not address how
to create a digital twin from the information modeling perspective, nor do they
consider various information sources. Gabor et al. [6] present the definition of an
architectural framework for digital twins as well. In contrast to our approach,
their digital twin is mainly about the simulation of real asset, and their frame-
work is limited to it. Likewise, Delbrügger et al. [7] focus on a digital twin that
simulates a factory and introduce a navigation framework that aims to improve
movement paths.

In [8], a service oriented application for knowledge navigation is presented.
The architecture of the application linking different data sources is outlined
briefly without mentioning the approach of how to link those data source
together. In [9], a twin platform based on a data-centric middleware is defined,
whose architecture mostly focuses on communication and data transfer between
the physical assets and simulation and not the general management of digital
twins.

General cloud providers also started supporting digital twins and include
them as a service into their IoT solutions. For example, Microsoft’s Azure Dig-
ital Twins platform2 enables creating digital twins and populating them with
data. However, all information models to be included must follow a specific data
format; they do not yet provide the flexibility to extend the system with new
information sources and different kinds of information models. In general, Azure
Digital Twins comes with one concrete solution and does not provide many
degrees of freedom regarding different architectural alternatives. Asset Adminis-
tration Shell (AAS) is the digital twin for Industrie 4.0 systems [10]. Our pattern
can be adopted to implement AAS by flexibly collecting information and gener-
ating the so-called submodels for AAS.

7 Conclusions and Future Work

In this paper, we proposed an architecture pattern to construct the digital twin
of an asset considering its various information sources. The pattern is designed
for flexible extension with new information sources and supports new kinds of
proprietary or standard information. We outlined the alternatives to realize this
pattern and described a microservices- and OPC UA-based example implemen-
tation, which was validated based on an industrial use case from ABB.

In the future, digital twin solutions have to take into account composite
structures, e.g., devices that consist of multiple other devices, each having its
own digital twin, leading to composite digital twins. Our architecture pattern
needs to be validated with respect to such scenarios.

2 https://azure.microsoft.com/en-us/services/digital-twins/.

https://azure.microsoft.com/en-us/services/digital-twins/

246 S. Malakuti et al.

References

1. OPC Foundation: IEC 62541–1: OPC Unified Architecture - Part 1: Overview and
concepts (2016). https://webstore.iec.ch/publication/25997

2. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.: Pattern-Oriented Soft-
ware Architecture: A System of Patterns. Wiley, New York (1996)

3. Internet Engineering Task Force (IETF): Multicast DNS. http://www.ietf.org/rfc/
rfc6762.txt

4. Malakuti, S., Grüner, S.: Architectural aspects of Digital Twins in IIoT systems.
In: Proceedings of the 12th European Conference on Software Architecture (ECSA
2018): Companion Proceedings, p. 12. ACM (2018)

5. Alam, K.M., El Saddik, A.: C2PS: A digital twin architecture reference model for
the cloud-based cyber-physical systems. IEEE Access 5, 2050–2062 (2017)

6. Gabor, T., Belzner, L., Kiermeier, M., Beck, M.T., Neitz, A.: A simulation-based
architecture for smart cyber-physical systems. In: IEEE International Conference
on Autonomic Computing (ICAC), pp. 374–379. IEEE (2016)

7. Delbrügger, T., Lenz, L.T., Losch, D., Roßmann, J.: A navigation framework
for digital twins of factories based on building information modeling. In: 22nd
IEEE International Conference on Emerging Technologies and Factory Automa-
tion (ETFA), pp. 1–4. IEEE (2017)

8. Padovano, A., Longo, F., Nicoletti, L., Mirabelli, G.: A digital twin based service
oriented application for a 4.0 knowledge navigation in the smart factory. IFAC-
PapersOnLine 51(11), 631–636 (2018)

9. Yun, S., Park, J., Kim, W.: Data-centric middleware based digital twin platform
for dependable cyber-physical systems. In: 2017 Ninth International Conference on
Ubiquitous and Future Networks (ICUFN), July, pp. 922–926 (2017)

10. Plattform Industrie 4.0: Details of the Asset Administration Shell – Part 1:
The exchange of information between partners in the value chain of Indus-
trie 4.0 (2018). https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/
Publikation/2018-details-of-the-asset-administration-shell.html

https://webstore.iec.ch/publication/25997
http://www.ietf.org/rfc/rfc6762.txt
http://www.ietf.org/rfc/rfc6762.txt
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/2018-details-of-the-asset-administration-shell.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/2018-details-of-the-asset-administration-shell.html

Tool Support for the Migration to
Microservice Architecture: An Industrial

Case Study

Ilaria Pigazzini1(B) , Francesca Arcelli Fontana1 , and Andrea Maggioni2

1 Department of Informatics, Systems and Communication,
Università of Milano-Bicocca, Milan, Italy

i.pigazzini@campus.unimib.it, francesca.arcelli@unimib.it
2 ALTEN Italia, Milan, Italy
andrea.maggioni@alten.it

Abstract. With the introduction of microservice architecture, many
investigate how to migrate their legacy systems into this architectural
paradigm. The migration process requires the recovery of the project
architecture to be migrated together with the knowledge necessary to
understand how to decompose the code and obtain new microservices. At
the moment, this process is realized mostly manually. This paper intro-
duces an approach to identify candidate microservices in monolithic Java
projects, implemented in a tool named Arcan and the validation of the
approach in an industrial setting. The approach involves static analysis
of the system architecture, architectural smell detection and topic detec-
tion, a text mining method used here to model software domains starting
from code analysis. We report the feedbacks we get from an experienced
industrial developer who carried out the migration described in the case
study. From this collaboration with industry we collected useful informa-
tion to enhance the approach, improve the tool and replicate the study.

Keywords: Architectural smells · Architecture migration ·
Microservices · Topic detection · Architecture recovery

1 Introduction

In the past few years the microservices field has received large attention, both
from industrial and academia world [11]. Microservice architecture is an archi-
tectural style that structures an application as a collection of small, loosely cou-
pled and self-contained components, called services, which implement specific
business capabilities [23]. These components communicate through lightweight
protocols and are usually developed by dedicated teams which take care of their
entire life cycle, enabling independent deployment. A single component (service)
in this architecture is elastic, resilient, composable, minimal, and complete; more-
over it is easy to replace it and focused on a single business capability. Services
can be developed with different programming languages and by different teams
c© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 247–263, 2019.
https://doi.org/10.1007/978-3-030-29983-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_17&domain=pdf
http://orcid.org/0000-0003-2629-6762
http://orcid.org/0000-0002-1195-530X
https://doi.org/10.1007/978-3-030-29983-5_17

248 I. Pigazzini et al.

of developers, which makes them ideal in a business environment in continu-
ous evolution. The characteristics of the services enable selective scaling, which
means that the number of instances of each service can be chosen and tailored
depending on the particular need; moreover they enable continuous and fast
delivery. For these reasons, many legacy existing projects are moving from their
original monolithic architecture to embrace this new paradigm.

The migration consists in various steps aimed at refactoring and decompos-
ing the current codebase in independent domain components. At the moment,
these tasks are usually carried out manually [17] with the partial support of
software analysis tools to navigate the code under inspection. In addition to
being time consuming, this process requires specialized personnel on software
analysis with knowledge about the system to be refactored. Moreover, in large
legacy software the documentation of the architecture and code design is often
missing or does not reflect the actual implementation. In a survey conducted
on 18 practitioners, Di Francesco et al. [10] collected feedbacks on migration
to microservices experiences. The questions regarded the activities carried out
during the migration: reverse engineering, architecture transformation and for-
ward engineering. Concerning in particular the reverse engineering phase, the
majority of the interviewed agreed that understanding the existing system, in
particular by identifying its functionalities and subdomains, is very important to
architect the new system. Moreover, the authors identified challenges regarding
the high level of coupling of the existing system, the problems in identifying
the candidate microservices and the system decomposition. They suggest that a
tool able to support practitioners in these activities during migration could be
particularly useful.

Hence, we started a collaboration between academy and a company (Alten,
Italia) in order to experiment how a tool, developed at the ESSeRE Lab of the
University of Milano Bicocca1, could be useful in order to support the migration
towards microservices of a project of the company. The tool called Arcan has
been previously developed for architectural smell detection [4] and then extended
to support the migration process. This extension of the tool will be introduced
for the first time in this paper, together with the description of how the tool has
been used in the industrial setting.

The outcome of this study can be useful both for the academia and the
industries, since the feedbacks on the tool can be exploited in order to improve
or extend the tool on behalf of the ESSeRE Lab and from the company to
identify a useful support to be used during the migration process. Moreover,
other companies could be interested to replicate this study and exploit the Arcan
tool in the migration process of existing systems.

The new extension of Arcan is focused on the detection of features and
domains from existing Java codebases in order to support the migration from
monolithic to microservices architecture. The techniques applied to detect can-
didate microservices vary from graph algorithms to topic detection, where the
latter has been previously used in the literature in different contexts such

1 http://essere.disco.unimib.it/wiki/arcan.

http://essere.disco.unimib.it/wiki/arcan

Tool Support for the Migration to Microservice Architecture 249

for example to analyze code in the context of public projects/repositories
labelling [18,24,27]. In particular the application of Latent Dirichlet Alloca-
tion [7] algorithm has been used in our approach to identify services depending
on the application domain. The results consist in information on the Java classes
and packages that should belong to the same candidate microservice due to their
relationships in the monolithic application.

Hence, the main contributions of this work are:

– development of a new extension of a tool to support the migration from
monolithic to microservice architecture through architectural smells detec-
tion, graph analysis and topic detection algorithms;

– discussion of an industrial case study, where the tool has been used and
evaluated by an experienced practitioner.

– different lessons learned on the usefulness of the tool in real industrial setting,
stimulating the university/industry collaboration in this context.

The paper is structured as follows: Sect. 2 presents related works on microser-
vices migration, Sect. 3 explains the migration approaches implemented in the
tool, Sect. 4 discusses the industrial case study and finally Sect. 5 presents con-
clusions and lessons learned.

2 Related Works

The discussion on how to migrate from monolithic architectures to microservices
produced several practical guidelines to help developers in this process: they
usually come from direct experiences in the industry [8], but also from research
in academia. We describe below some of the most recent proposed approaches.
Balalaie [5] present a catalog of migration patterns to support the migration
from non cloud-native architectures to microservices architectures.

Mazlami [21] propose a formal approach to identify components of monolithic
applications that can be turned into microservices. Their extraction model rep-
resents the system under analysis as a weighted graph on which they run graph
clustering algorithms. They introduce three extraction methods which differ in
how the edge weights of the graph are computed. Mishra [22] propose an app-
roach to enable the migration from the monolith to microservices by exploiting
data flows analysis. Their approach exploits the existing data schema joined
with other information obtained by using profiling tools to understand the data
flow and access patterns: this information is used to propose functional mod-
ules, that are candidate microservices. Furda [12] proposes a set of refactoring
and architectural pattern-based migration techniques relevant to microservice
architectures. Baresi [6] proposes a solution to find the adequate microservices
granularity based on the semantic similarity of foreseen/available functionalities
described through OpenAPI specifications.

The approaches introduced above do not provide tool support, while in this
paper we introduce a tool to support the microservice migration process. On the

250 I. Pigazzini et al.

other hand, Gysel [15] proposed Service Cutter which is a method and tool frame-
work for service decomposition based on 16 coupling criteria distilled from the
literature and industry experience. The tool is able to extract coupling informa-
tion from engineering artifacts such as domain models and use cases, represented
as an undirected, weighted graph to find and score densely connected clusters.
The tool exploits graph clustering algorithms to suggest candidate service cuts
which should reduce coupling between services and raise their cohesion. The tool
that we introduce in this paper differs from Service Cutter since we collect infor-
mation on candidate microservices with other techniques such as architectural
smell detection and topic detection. Moreover our graph investigation is based on
graph algorithms and exploits the information coming from the analysis of the
Java bytecode of the project. For what concerns the detection of architectural
smells during the migration process, Carrasco [9] introduced 9 common pitfalls
that divides in 5 architectural and 4 migration bad smells. However, they do
not offer a tool to automatically identify smells while we propose to exploit the
Arcan tool in order to identify possible architectural smells before or during
the migration process. Hence, with our work we provide a tool specifically for
Java projects able to support the decomposition of the monolithic application
allowing to identify the specific Java classes/packages to be considered during
the migration process and we describe our experience in using it in an industrial
case study. This work is different from the approaches previously described in
this section which often are not implemented in a tool. Moreover, the experimen-
tation in an industrial setting allows to get relevant feedbacks on the usefulness
of the approach and the tool in order to improve it and replicate the study in
other industrial projects.

3 Candidate Microservice Identification Through Arcan

In this section, we introduce the new extension of the Arcan tool in order to iden-
tify candidate microservices in Java projects. This extension has been exploited
and evaluated in the industrial case study described in Sect. 4.

Arcan is a software analysis tool for architectural smell detection [13] in Java
projects which relies on graph database technology: it bases all its computations
on the dependency graph which is the representation of the project under anal-
ysis in form of a directed graph. The basic nodes represent the system entities,
such as Java classes, packages and methods. Other nodes, that can be referred
to as “supernodes”, represent instances of architectural smells. When a partic-
ular structure is found in the graph, all the nodes involved are linked to a new
supernode. Edges represent the relationships among the various entities. The
tool allows to store the graph into a Neo4j2 graph database, which also offers a
browser to visualize and query the graph [3].

The new extension proposed in this work aims to offer a set of implemented
functionalities to gather information on how to decompose the project start-
ing from the code. We propose a migration approach through different steps:
2 https://neo4j.com.

https://neo4j.com

Tool Support for the Migration to Microservice Architecture 251

Dependency Graph
Analysis

Connected
Components

detec on

Topic
Detec on

SLDA

LDA Candidate
Microservices

Input
Project

Logical Layer View

Ver cal
Func onality

View2

3

1
4

5

Architectural
Smell

Detec on

Fig. 1. Migration to microservices process

(1) architectural smell detection (2) dependency graph analysis (3) topic detec-
tion (see Fig. 1). All these steps produce information useful to identify candidate
microservices. The three steps differentiate since the first offers hints on how
to decompose the project under analysis taking in consideration the presence
of architectural smells; the second aims to retrieve blocks of the project that
are structurally independent and can be reused or transformed in microservices,
while the third aims to identify the parts of the project which belong to the
same “domain” in order to return a “semantic map” of the project. In this way
a maintainer involved in the migration is able to collect hints and information of
different kinds, and choose the decomposition solution which best fit the project
under analysis. In particular, as shown in Fig. 1, the Dependency Graph Analysis
step includes different methods to identify microservices, respectively: connected
components detection of the dependency graph 1© and generation of two views,
Vertical Functionality 2© and Logical Layer 3©; while the Topic Detection step
includes the analysis of the text coming from the code and execution of two
topic detection algorithm to extract “hidden concerns”, named Latent Dirich-
let Allocation (LDA) 4© and Seeded Latent Dirichlet Allocation (SLDA) 5©. At
the end of the process, the available information regards the hidden modules
in the monolithic architecture that can be exploited to forward engineer the
future microservice architecture: the proposed solution aims to maximize the
modules’ cohesion to ease the activity of creating single-purpose services. In this
paper, we do not address the problem of transforming the modular monolith
into implemented microservices.

3.1 Architectural Smell Detection

The project architecture to be migrated could be eroded and hard to comprehend
because of existing architectural smells/issues. For instance, a circular depen-
dency among two architectural entities may make it harder to understand how
they interact with each other and how to separate them to obtain single ser-
vices. Hence it is useful to detect the presence of this kind of architectural smells
which could hinder the identification of the services and should be removed before
starting the migration process. In particular, we consider the identification of the
following architectural smells (AS):

252 I. Pigazzini et al.

– Unstable Dependency (UD): describes a subsystem (component) that depends
on other subsystems that are less stable than itself [19]. UD is detected on
packages.

– Hub-Like Dependency (HL): arises when an abstraction has (outgoing and
ingoing) dependencies with a large number of other abstractions [26]. HL is
detected on classes and packages.

– Cyclic Dependency (CD): refers to a subsystem (component) that is involved
in a chain of relations that break the desirable acyclic nature of a subsystem’s
dependency structure. CD is detected on classes and packages. The cycles are
detected according to their different shapes: tiny, circle, star, clique [1].

The details of the detection algorithms of these architectural smells can be
found in [4]. A validation of Arcan results in terms of Precision, Recall and F-
measure on two industrial projects is also available [4]. The detection results
of Arcan were also inspected by practitioners on the analysis of four industrial
projects [20]. Moreover, in this work we introduce the detection of a new smell
through the Arcan tool named Feature Concentration.

– Feature Concentration (FC): occurs when an architectural entity implements
different functionalities in a single design construct [2]. FC is detected on
packages.

The detection of Feature Concentration is crucial because, in addition to being a
smell, FC is particularly indicated to support the identification of functionalities
in the monolithic architecture. In particular it shows the functionalities of each
package: each of them could be a candidate microservice.

3.2 Dependency Graph Analysis

The aim of this step is to obtain an indication on how the monolithic architecture
should be decomposed by looking at the static structure of the project under
analysis i.e. its dependency graph. This step consists of three methods, Connected
Components detection, Vertical Functionality View and Logical Layer View (see
Fig. 1). Both Views generation is based on an assumption: even if Java monolithic
systems are considered a big mixture of lines of code, most of the times they are
composed by well defined Java services such as REST services, JMS services,
SOAP services, EJB services and Servlet/JSP services. The presence of these
services is characterized by the use of dedicated Java libraries which enable their
implementation. These can be detected by inspecting the dependency graph with
graph queries and by executing graph algorithms. The following paragraphs go
deeper in the description of the three methods.

Connected Components Detection. This functionality consists in applying
the Depth First Search (DFS) algorithm [25] in order to find connected compo-
nents (sets of Java classes or packages) in the graph by considering the undirected
edges. The subgraph that can be generated has only nodes corresponding to the
identified components. In Arcan, the algorithm is used to detect totally detached
parts of code, which can be extracted independently from the project.

Tool Support for the Migration to Microservice Architecture 253

Vertical Functionality View. This view aims to isolate and show each func-
tionality contained in the project under analysis in order to support the extrac-
tion of the interested parts of code as microservice candidates. This is obtained
by running the Depth First Paths (DFP) algorithm [25]: by providing a specific
set of source classes, the algorithm is able to compute for each source class the
paths on the directed graph. The nodes of the paths represent the Java classes
and the edges represent the dependencies among the classes. Then, every path is
compared one to the other in order to find eventual “shared” classes i.e. classes
that belong to more than one path. There are various ways to provide to Arcan
the input source classes to be used as starting nodes for functionalities search.

(a) The simplest one, that can be used when the maintainer has zero knowl-
edge about the project under analysis, is to choose the classes with no incoming
dependencies. This means that such classes are never referred from other parts
of code in the project, making them candidate entrypoints.

(b) The second way requires more information: it chooses classes with no
incoming dependencies which refer to specific libraries. For instance if a class
exploits the Java API for RESTful Web Services (JAX RS)3, it may be a good
candidate to find an hidden REST service inside the monolithic architecture. The
tool already recognizes the libraries which implements the JEE Specification.

Logical Layer View. This view allows to divide the classes in groups depend-
ing on the layer they belong to. Layers refers to the ones of the three tier model,
which organizes the code in presentation layer, application processing (business)
layer, and data management (persistence) layer. The tool is able to separate and
assign each class to its layer by looking at their external dependencies, in partic-
ular checking the Java implementation packages of the JEE specification. Unlike
the vertical functionality view, the layered one offers a coarse grained represen-
tation of the project under analysis. In this way it is possible to understand the
role of each class when the maintainer has no information about how the code
is organized.

3.3 Topic Detection

Usually microservices are created depending on specific “domains” or “busi-
ness concerns” of the project. When migrating from a monolithic architecture,
it is not trivial to automatically extract such concerns from the code with-
out human supervision. However, a possible solution to this problem could be
reached through topic detection techniques, by considering code as text and
by looking for topics that could correspond to services. In this work, the algo-
rithms exploited to extract topics from code are Latent Dirichlet Alloca-
tion (LDA) [7] and Seeded Latent Dirichlet Allocation (SLDA), a semi-
supervised variant of the original LDA algorithm [16]. The latter algorithm allows
the maintainer to provide some seed words so that the model is encouraged in
finding evidence of some “expected” topics in the data. The idea behind the
3 The Java API specification that supports the development of RESTful web service.

254 I. Pigazzini et al.

choice of the seeded algorithm is that developers may know some of the topics
which could be hidden inside the monolithic system and enhance the results of
the detection. The following paragraph describes the topic detection process.

(1) Document collection: a document is created by selecting comments and
source code words from a single Java class, in particular the class name, its
membership package name and the name of all its methods. Class attributes
and variables are not included since often they do not distinguish a class from
each other by belonging to a specific topic (e.g. “filename”, “x”, “a”, “temp”).
This step is implemented in Java language.

(2) Preprocessing : this step consists in manipulating the text contained in the
documents to enhance the results of topic detection. In particular, the documents
created starting from Java classes are tokenized i.e. their stream of characters is
broken into words. After tokenization, filtering is applied. The resulting tokens
are converted to lower cases and are analyzed in order to remove numbers, punc-
tuation and stop words, which are the very common words in a language. This
step is implemented in Python language.

(3) (Seeded) Latent Dirichlet Allocation: the last phase is the running of
the topic detection algorithm. In order to run the LDA algorithms, the Python
library guidedLDA4 was used. This library was chosen because it lets the main-
tainer to define a set of seed topics. The output consists in the detected topics
represented as word-topic distribution and the document-topic distribution, that
is the proportion of words of each topic associated to a given document.

At the end of the process, the maintainer can collect hints about the semantics
of the project to be migrated, in particular on which Java classes are associated
to a specific domain.

4 Industrial Case Study

We now describe how the different functionalities/steps provided by Arcan to
support the migration process have been exploited in an industrial project. The
analysis was carried out by an experienced developer which executed Arcan on
an industrial project and identified candidate microservices basing on the tool
outcomes. Moreover, he provided several feedbacks on the migration techniques
offered by Arcan and on the final candidate microservices solution that he was
able to define thanks to the tool. The industrial project analyzed is a Java enter-
prise project developed to manage the collection of information for the initiation
of legal proceedings. It is composed by 267 classes divided into 27 packages.
The developer originally took part in the development of the analyzed project,
in particular he managed the collection of requirements and the development
process. Hence, he possessed remarkable knowledge on the design choices and
business logic: we chose this particular case study because we were interested in
valuable feedbacks on the quality of the solution proposed by Arcan.

4 https://guidedlda.readthedocs.io/en/latest/.

https://guidedlda.readthedocs.io/en/latest/

Tool Support for the Migration to Microservice Architecture 255

Table 1. Detected architectural smells

Unstable
Dependency (UD)

Hub-Like
Dependency (HL)

Cyclic
Dependency (CD)

Feature
Concentration (FC)

10 1 Class 4 Package 2 22

Another validation of the Arcan tool on a simple case study named Daytrader
is available5. Daytrader6 is a project developed by IBM specifically to simulate
the manual migration from a Java monolithic architecture to a microservice
architecture. It was chosen to validate the Arcan algorithms since it offers the
source files and some documentation on the pre and post migration architecture.

The following sections show the results obtained through the different migra-
tion steps implemented in Arcan. The developer followed the approach described
in Sect. 3. The data generated by the tool are available7.

4.1 Architectural Smells Detection

First, the developer executed Arcan to detect all the types of architectural smells
described in Sect. 3.1. Table 1 shows the number of AS detected in the project
under analysis. He could retrieve the most relevant information from the anal-
ysis of Cyclic Dependency and Feature Concentration smells, for the reasons
described below.

Cyclic Dependency. The developer recognized four cycles as real issues for the
monolithic application. However, he reported that “Those cycles will not be a
problem during the migration” except for one cycle on classes. This particular
smell involved 3 classes which are part of the central logic of the application,
whose aim is to create entries on a calendar basing on a set of deadline rules.
He foresaw that in the new architecture this logic will be completely redefined,
in particular it will be divided into different services. He indicated the presence
of the cycle as a possible obstacle to the decomposition of the application.

On the other hand, two of the four CD smells detected on classes resulted
to be false positives. Both are cycles between an anonymous class and its corre-
sponding container class and this Java feature always leads to the introduction
of a tiny cycle.

Feature Concentration. The developer found the detection of this smell partic-
ularly useful. He was able to identify the main domain entities of the applica-
tion, that represent the information managed by the application, since the smell

5 https://drive.google.com/file/d/1YuIery5fzEykuqxufNNAub4xyPwZJhrS/view?
usp=sharing.

6 https://github.com/davemulley/daytrader-ee6.git.
7 https://drive.google.com/drive/folders/1kLJXMPXhG2U8pIrqG MWVU0STSCdIs

MN?usp=sharing.

https://drive.google.com/file/d/1YuIery5fzEykuqxufNNAub4xyPwZJhrS/view?usp=sharing
https://drive.google.com/file/d/1YuIery5fzEykuqxufNNAub4xyPwZJhrS/view?usp=sharing
https://github.com/davemulley/daytrader-ee6.git
https://drive.google.com/drive/folders/1kLJXMPXhG2U8pIrqG_MWVU0STSCdIsMN?usp=sharing
https://drive.google.com/drive/folders/1kLJXMPXhG2U8pIrqG_MWVU0STSCdIsMN?usp=sharing

256 I. Pigazzini et al.

instances affected the packages containing business application classes. Table 2
shows the identified entities. The approach he followed to identify entities start-
ing from FC smell consists in: (1) spotting the affected packages from Arcan
results; (2) exploiting the Neo4J browser to navigate the disconnected subgraphs
and (3) extracting the entities associated to the different subgraphs.

4.2 Dependency Graph Analysis

The following section shows the results of the service detection using the Vertical
Functionality and the Logical Layer views. The results of Connected Components
detection are not discussed since the developer did not use it to build the final
microservices solution; the detected components did not gave him interesting
hints on the business concerns/functionalities (see Sect. 4.4).

Vertical Functionality View Results. The developer chose to run the gener-
ation of the vertical view with the two possible kinds of input offered by Arcan:
classes with no incoming dependencies and classes with no incoming dependen-
cies depending from specific JEE libraries (see Sect. 3.2). The view generation
with the first type of input returns a csv file containing all the directed paths
starting from the classes without incoming relations. In this case study the total
number of detected paths was 69: the developer found the use of this information
expensive in terms of time, hence moved forward with the next analysis. The
second type of input computes DFS paths from nodes which have been identi-
fied as Web and Web Service in JEE Specifications. The results of the second
view generation returned a total of 3 paths. In this case, he reported that one
of the paths was useful during the analysis; it helped in identifying the service
regarding the components which manage the entity called Attachments, where
Attachments represents the files uploaded on the application and saved on a
Mongo Database.

Logical Layer View Results. Table 3 shows the results of the service detection
process using the Logical Layer View functionality. The table shows the different
layers and the number of classes assigned to each layer and the value of True
Positives (TP) and False Positive (FP) class assignments, which the developer
used to compute Precision. By analyzing the false positive results, the developer
reported that Arcan can not assign the correct layer to the classes which use
the Spring framework8 classes, both for the Persistence layer and for the Web
layer. The matching rules implemented in this first version of the Logic Layer
Detection algorithm have been thought basing on old functionalities of the Java
Enterprise Edition, which are used in many legacy projects. In more recent Java
application Spring is a popular framework, hence the developer suggested us to
introduce new rules taking in consideration the use of Spring to achieve higher
precision value on the layer-class assignation.

8 https://spring.io/.

https://spring.io/

Tool Support for the Migration to Microservice Architecture 257

Table 2. Main entities

Entity

Event User

DeadlineItem Suspension

Attachment Notification

Society Proceedings

CronologyChange

Table 3. Logical Layer Results

Layer Number of classes EVAL

TP FP

Persistence 1 0 1

Web 8 6 2

Core 267 207 60

Precision: 77,2%

4.3 Topic Detection

This step consisted into two main parts. First the developer ran the Document
collection generation of Arcan, which reads the Java source files and produces
for each class a csv file which contains the meaningful words contained in the
class. In total Arcan produced 267 files which contain 418 different words. Then
the developer executed the two versions of the LDA algorithms.

From the first run of the classic LDA algorithm, he noticed the noise produced
by some words belonging to technical aspects of the libraries used in the appli-
cation e.g. the HTTP methods connected to the “Spring Controller” of Spring
Framework. Hence, he excluded 119 words from the vocabulary and added them
to the stopwords file (see Sect. 3.3). This because he was interested in retrieving
information referring to the business logic contained in the project respect to the
technical one. The excluded words can be consulted in the available folder (see
footnote 7). Once the developer modified the stopwords file, he proceeded with
the run of both LDA algorithms and compared their results. Both algorithms
needed a parameter setting as input, in addition to the document collection. The
choice of all the parameters except for the number of topics (which was chosen by
the developer) was guided by the state of the art of the topic detection field [14].
The parameters are:

� number of topics: 10
� alpha - prior weight of each topic in a document: 0.01
� beta - prior weight of each word in a topic: 0.1.

Latent Dirichlet Allocation Results: Table 4 contains the 10 topics retrieved
by the classic LDA algorithm. The developer found the results interesting since
the detected topics contain many words that recall the entities and functionalities
of the application. For instance he found references to the functionality of the
application which sends an alert when a proceeding is created by reading the
words of topic 8: “creation”, “proceedings”, alert”. Another example, words of
topic 4 “user”, “change”, “roles” recall the application feature of changing the
roles of a user inside the application.

Moreover, he was able to obtain the same information on the entities identi-
fied with the AS analysis (Table 2): he could label each topic (see column Entity

258 I. Pigazzini et al.

Table 4. Topic detection results

LDA Seeded LDA

Topic Entity Topic

1 Proceedings deadline suspension

attachment start state days

management

Proceedings 1 Proceedings deadline date

suspension reminder item

payment days

2 User history username process

provvedimento email finale change

User 2 Summary date proceedings

comment voice data event

description

3 Delibera subject collegio

approvazione audizione

provvedimenti area action

Key-Value 3 History event activity process

analize society ragione date

4 User change roles summary

cronology voice history date

User 4 State proceedings attachment

society management document

visible event

5 Access data impegni decisoria

payment avvio procedimento

turnover

Key-Value 5 Attachment cronology history

object change interceptor resolver

changed

6 Attachment proceedings reminder

today date events notifications

recipient

Notification 6 Subject impegni decisoria

provvedimenti action istruttoria

procedimento turnover

7 Proceedings deadline event

summary date voice comment

item

Suspension 7 User finale roles username email

provvedimento data role

8 Event state proceedings history

creation proceedings alert

assigned

DeadlineItem 8 Delibera collegio access

approvazione documents

audizione data ammissibilita

9 Date documents response finale

appeal atto determina document

Key-Value 9 Event deadline proceedings voice

summary events simplified owner

10 Society data activity

ammissibilita files status ragione

sociale

Society 10 User date change today event

audit state expire

in Table 4) and became aware of a new entity which, basing on his past knowl-
edge, he called Key-Value.

Seeded Latent Dirichlet Allocation Results: In order to run the modified
version of LDA, the developer defined 5 Seed Topics. He defined 4 of them
on the basis of the entities collected through the AS detection step, while one
(Summary) represented an entity expected by the developer:

1. proceedings, deadline, suspension, item (Deadline)
2. summary, voice, comment, attachment (Summary)
3. society, ragione, sociale, soggetto (Societies)
4. event, reminder, days (Events)
5. notification, recipient, sender, object (Notification).

Table 4 contains the results of the Seeded LDA analysis. The execution of
SLDA was not considered useful by the developer because even if the algorithm
retrieved quite the same information from the execution of classic LDA, he could

Tool Support for the Migration to Microservice Architecture 259

not easily label each topic with a corresponding entity. Moreover, the Summary
entity was not identified as expected by the developer (see Sect. 4.4).

After comparing the results coming from all the methods implemented in
Arcan, the developer produced the final solution. Table 5 shows the candidates
microservices, for each service there is a brief description of the functionality
associated to it. As a results of the topic detection step, the developer chose
to incorporate entity Event, Deadline and Suspension into a unique candi-
date microservice. Moreover, he introduced Key-Value and discarded Cronol-
ogyChange on the base of his past knowledge on the project.

Table 5. Candidates microservices

Candidates microservices

Proceedings This service will manage the Proceedings, the main entity of the

new system

Attachment This service will manage the Attachment, an Attachment is a file

associated to a Proceedings

Society This service will manage the Societies which could be associated to

a Proceedings

User This service will manage the User authentication and the

applications roles associated to a User

Notification This service will manage a chat service

Deadline & Suspension This service will manage the Deadline & Suspension logic

Key-Value This service will manage a new type of entity called Key-Value; this

entity will have only a few attributes (e.g. id, value, type). A

Key-Value will be used by the Front-End part to display show some

select tag at the final users

4.4 Discussion

We now discuss the results and feedbacks obtained from this case study on the
microservice migration process through Arcan. The developer ran Arcan follow-
ing the steps described in Sect. 3 in order to identify how many “business ser-
vices” compose the industrial application under analysis. The AS detection was
the preferred and most useful step for the developer in order to understand how
the application was composed. He was able to identify the parts of code related
to single entities which could become microservices (Table 2). Moreover the AS
detection made him aware of a problem regarding a specific entity named Dead-
line: the creation of a Deadline requires the information present in Suspension
and Proceedings and vice-versa, part of the problem was solved by incorporating
entity Deadline with Suspension, while the Cyclic Dependency between Deadline
and Suspension should be analyzed and possibly removed during the migration
process in order to decouple the services. The Dependency Graph Analysis is
the step which gave him less information, because the implemented methods
are based on the idea that the application under analysis refers to a JavaEE

260 I. Pigazzini et al.

standard architecture used in many legacy projects. The analyzed application is
based on SpringFramework (see footnote 8), so Arcan could not assign the cor-
rect layer to the classes and put all of them in the Core Layer. Moreover he did
not use the results coming from the Connected Component detection, because
the microservices candidates proposed by the algorithm were not in accordance
with his background knowledge. This tells us that in general we have to improve
our current approach about graph analysis. Finally, the developer validated the
topic detection step. He preferred the classic version of the LDA algorithm since
in his opinion the resulting topics were more relevant respect to the seeded ver-
sion. He supposed that the seeded LDA results are strictly connected to the
chosen seed topics. The topic detection confirmed the results of the AS detec-
tion and provided additional information useful to establish the final solution
(Table 5).

In conclusion, the developer stated that “In general the migration process
is not easy to carry out, since a deep knowledge of the project subjected to the
migration is needed in order to have significant results. Arcan can be very useful:
to retrieve knowledge about the project using the architectural smell detection
and the vertical functionality view, and to extract more information about the
services using the LDA algorithm.”

5 Conclusions and Lessons Learned

In this paper we showed how the application of different techniques such as
architectural smells detection, dependency graph analysis and topic detection
can help a maintainer to identify which parts of the code can be migrated to
a microservice. In particular, in this work the Arcan tool has been exploited in
an industrial case study in order to analyze Java projects and retrieve their
dependency graph representing the internal architecture and identify candi-
date microservices through: (1) architectural smell detection, (2) dependency
graph analysis and (3) Latent Dirichlet Allocation. An industrial case study has
been discussed to manually validate the implemented techniques: an experienced
developer successfully identified the candidate microservices through Arcan. The
data provided by the tool are available (see footnote 7).

We collected important lessons learned from the collaboration with the indus-
try. First of all, (1) we received positive feedbacks concerning the usefulness of
the Arcan tool, which stimulate us to continue working in this direction and
increase the collaboration with industry in this context; (2) we collected several
feedbacks useful to the Arcan tool developers in order to enhance and extend the
tool; (3) we understood that the analysis of some data are more time consuming
than other, such as the information provided by the architectural smells detec-
tion and the dependency graph analysis with respect to topic detection. (4) We
observed that AS detection and dependency graph analysis are suitable for a deep
project comprehension, while topic detection could be exploited for the initial
understanding of the project, when few knowledge is available to the practition-
ers. However, in the case study presented in this paper, topic detection results

Tool Support for the Migration to Microservice Architecture 261

enhanced when the developer changed a setting (stopwords file) and executed the
algorithm again: this suggests that the topic detection functionality works better
when applied across multiple iterations. All these findings could lead the Arcan
developers to the refinement of the current migration approach to fully exploit
the potential of Arcan functionalities. Moreover, the current approach addresses
only a step of the migration to microservices i.e. the information extraction from
the current system. We aim to extend our work in order to support the concrete
implementation of the services and provide a method to evaluate the quality
of the migrated architecture, as studied by Carrasco [9]. Having a framework
to evaluate the software quality before and after the migration could assist in
making decisions during the migration phase. Starting from the obtained results,
this work opens up to further extensions and studies. In fact our work presents
some threats to validity, in particular the size of the case study, which is small
in terms of number of classes/packages. Hence, as a first step we plan to extend
the validation on more industrial projects of larger dimension, both in the same
company or in other companies. For what concerns the possible enhancements
of Arcan, it would be interesting to enrich the dependency graph of the tool
with information from topic detection: in this way the graph would offer both
knowledge on the structure and on the semantic of the system under analysis,
through the overlapping of the two approaches which at the moment are con-
sidered separately. Regarding the Vertical Functionality View, a possible future
development is the detection of common libraries and frameworks to implement
Java services, such as Hibernate and Spring frameworks. This would extend the
approach adopted until now, which only considers Java Enterprise API libraries.

References

1. Al-Mutawa, H.A., Dietrich, J., Marsland, S., McCartin, C.: On the shape of circular
dependencies in Java programs. In: Proceedings of the 23rd Australian Software
Engineering Conference (ASWEC 2014), pp. 48–57. IEEE, Sydney, April 2014

2. de Andrade, H.S., Almeida, E., Crnkovic, I.: Architectural bad smells in software
product lines: an exploratory study. In: Proceedings of the WICSA 2014 Compan-
ion Volume, pp. 12:1–12:6. ACM, New York (2014)

3. Arcelli Fontana, F., Pigazzini, I., Roveda, R., Zanoni, M.: Automatic detection
of instability architectural smells. In: Proceedings of the 32nd International Con-
ference on Software Maintenance and Evolution (ICSME 2016). IEEE, Raleigh
(2016)

4. Arcelli Fontana, F., Pigazzini, I., Roveda, R., Tamburri, D.A., Zanoni, M., Nitto,
E.D.: Arcan: a tool for architectural smells detection. In: International Conference
Software Architecture (ICSA) Workshops, Gothenburg, pp. 282–285, April 2017

5. Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D.A., Lynn, T.: Microser-
vices migration patterns. Softw. Pract. Exp. (2018)

6. Baresi, L., Garriga, M., De Renzis, A.: Microservices identification through inter-
face analysis. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017.
LNCS, vol. 10465, pp. 19–33. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-67262-5 2

https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1007/978-3-319-67262-5_2

262 I. Pigazzini et al.

7. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

8. Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S.T., Mazzara, M.: From mono-
lithic to microservices: an experience report from the banking domain. IEEE Softw.
35(03), 50–55 (2018). https://doi.org/10.1109/MS.2018.2141026

9. Carrasco, A., van Bladel, B., Demeyer, S.: Migrating towards microservices:
migration and architecture smells. In: Proceedings of the International workshop
on Refactoring (IWoR), pp. 1–6. ACM (2018). https://doi.org/10.1145/3242163.
3242164

10. Di Francesco, P., Lago, P., Malavolta, I.: Migrating towards microservice architec-
tures: an industrial survey. In: IEEE International Conference on Software Archi-
tecture (ICSA 2018). IEEE, Seattle (2018)

11. Francesco, P.D., Malavolta, I., Lago, P.: Research on architecting microservices:
trends, focus, and potential for industrial adoption. In: 2017 IEEE International
Conference on Software Architecture (ICSA), pp. 21–30. IEEE, April 2017

12. Furda, A., Fidge, C., Zimmermann, O., Kelly, W., Barros, A.: Migrating enter-
prise legacy source code to microservices: on multitenancy, statefulness, and data
consistency. IEEE Softw. 35(3), 63–72 (2018)

13. Garcia, J., Popescu, D., Edwards, G., Medvidovic, N.: Identifying architectural
bad smells. In: CSMR 2009, pp. 255–258. IEEE, Germany (2009)

14. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Nat. Acad. Sci.
101(Suppl. 1), 5228–5235 (2004)

15. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a system-
atic approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar, S.,
Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 185–200. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44482-6 12

16. Jagarlamudi, J., Daumé III., H., Udupa, R.: Incorporating lexical priors into topic
models. In: Proceedings of the 13th Conference of the European Chapter of the
Association for Computational Linguistics, EACL 2012, Stroudsburg, PA, USA,
pp. 204–213 (2012). http://dl.acm.org/citation.cfm?id=2380816.2380844

17. Kecskemeti, G., Marosi, A.C., Kertesz, A.: The ENTICE approach to decompose
monolithic services into microservices. In: 2016 International Conference on High
Performance Computing Simulation (HPCS), pp. 591–596, July 2016

18. Linstead, E., Lopes, C., Baldi, P.: An application of latent Dirichlet allocation
to analyzing software evolution. In: Seventh International Conference on Machine
Learning and Applications, pp. 813–818. IEEE, December 2008

19. Martin, R.C.: Object oriented design quality metrics: an analysis of dependencies.
ROAD 2(3), 5–6 (1995)

20. Martini, A., Fontana, F.A., Biaggi, A., Roveda, R.: Identifying and prioritizing
architectural debt through architectural smells: a case study in a large software
company. In: Cuesta, C.E., Garlan, D., Pérez, J. (eds.) ECSA 2018. LNCS, vol.
11048, pp. 320–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00761-4 21

21. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices from monolithic
software architectures. In: 2017 IEEE International Conference on Web Services,
ICWS 2017, Honolulu, HI, USA, 25–30 June 2017 (2017)

22. Mishra, M., Kunde, S., Nambiar, M.: Cracking the monolith: Challenges in data
transitioning to cloud native architectures. In: Proceedings of the 12th European
Conference on Software Architecture: Companion Proceedings, ECSA 2018 (2018)

23. Newman, S.: Building Microservices, 1st edn. O’Reilly Media Inc., Sebastopol
(2015)

https://doi.org/10.1109/MS.2018.2141026
https://doi.org/10.1145/3242163.3242164
https://doi.org/10.1145/3242163.3242164
https://doi.org/10.1007/978-3-319-44482-6_12
http://dl.acm.org/citation.cfm?id=2380816.2380844
https://doi.org/10.1007/978-3-030-00761-4_21
https://doi.org/10.1007/978-3-030-00761-4_21

Tool Support for the Migration to Microservice Architecture 263

24. Rama, G.M., Sarkar, S., Heafield, K.: Mining business topics in source code using
latent Dirichlet allocation. In: Shroff, G., Jalote, P., Rajamani, S.K. (eds.) Pro-
ceeding of the 1st Annual India Software Engineering Conference, ISEC 2008,
Hyderabad, India, 19–22 February 2008, pp. 113–120. ACM (2008)

25. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley, Boston (2016)
26. Suryanarayana, G., Samarthyam, G., Sharma, T.: Refactoring for Software Design

Smells, 1st edn. Morgan Kaufmann, Burlington (2015)
27. Wang, T., Yin, G., Li, X., Wang, H.: Labeled topic detection of open source soft-

ware from mining mass textual project profiles. In: Proceedings of the First Inter-
national Workshop on Software Mining, SoftwareMining 2012, pp. 17–24. ACM,
New York (2012)

ACE: Easy Deployment of Field Optimization
Experiments

David Issa Mattos1(&) , Jan Bosch1 ,
and Helena Holmström Olsson2

1 Department of Computer Science and Engineering,
Chalmers University of Technology,

Hörselgången 11, 412 96 Gothenburg, Sweden
{davidis,jan.bosch}@chalmers.se

2 Department of Computer Science and Media Technology, Malmö University,
Nordenskiöldsgatan, 211 19 Malmö, Sweden
helena.holmstrom.olsson@mau.se

Abstract. Optimization of software parameters is a recurring activity in the life-
cycle of many software products, from prototypes and simulations, test beds and
hardware-in-the-loop scenarios, field calibrations to the evolution of continuous
deployment cycles. To perform this activity, software companies require a
combination of software developers and optimization experts with domain
specific knowledge. Moreover, in each of life-cycle steps, companies utilize a
plethora of different tools, tailored for specific domains or development stages.
To most companies, this scenario leads to an excessive cost in the optimization of
smaller features or in cases where it is not clear what the returned value will be.
In this work we present a new optimization system based on field experi-

ments, that is aimed to facilitate the adoption of optimization in all stages of
development. We provide two main contributions. First, we present the archi-
tecture of a new optimization system that allows existing software systems to
perform optimization procedures in different domains and in different devel-
opment stages. This optimization system utilizes domain-agnostic interfaces to
allow existing systems to perform optimization procedures with minimal inva-
siveness and optimization expertise. Second, we provide an overview of the
deployments, discuss the advantages and limitations and evaluate the opti-
mization system in three empirical scenarios: (1) offline optimization with
simulations; (2) optimization of a communication system in a test bed in col-
laboration with Ericsson; (3) live optimization of a mobile application in col-
laboration with Sony Mobile. We aim to provide practitioners with a single
optimization tool that can leverage their optimization activities from offline to
live systems, with minimal invasiveness and optimization expertise.

Keywords: Optimization � Black-box optimization � Field experiments �
Software architecture

© Springer Nature Switzerland AG 2019
T. Bures et al. (Eds.): ECSA 2019, LNCS 11681, pp. 264–279, 2019.
https://doi.org/10.1007/978-3-030-29983-5_18

http://orcid.org/0000-0002-2501-9926
http://orcid.org/0000-0003-2854-722X
http://orcid.org/0000-0002-7700-1816
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29983-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-29983-5_18

1 Introduction

Optimization is a recurring activity for many software products in a range of different
domains. Companies continuously try to improve different aspects of their products in
order to make them more desirable, maintain their products’ competitive advantage or
to overcome existing gaps with competitors. Some aspects that are often optimized are
performance, accuracy, usage and user experience.

Traditionally, optimization techniques rely on mathematical or existing empirical
models of the system. These optimization techniques are used in the early stages of the
product/feature development. They require modeling or adapting an existing model to
the desired scenario and the optimization is done within a simulation toolbox and with
domain-specific optimization algorithms, such as the ones provided in Matlab1. These
existing solutions are usually restricted to a particular programming or modeling lan-
guage and each one has their own interface. However, if the simulation environment is
customized and developed by the company themselves, it requires implementation and
validation, or the acquisition of the optimization algorithms. In test beds and hardware-
and software-in-the-loop laboratory scenarios, companies rely on a custom platform
with optimization procedures that mix traditional optimization with statistical evalua-
tion of observations [1, 2].

For field optimization, web-facing companies such as Microsoft, Google, Face-
book, Amazon and LinkedIn, among others started running online experiments to
optimize their systems [3–6]. In the website and mobile domain, companies such as
VWO2 and Optimizely3 offer experimentation services for specific optimization situ-
ations such as A/B testing and multi-armed bandits. However, these companies do not
offer solutions that can be adapted and used in different domains, such as in the
embedded systems and communication domain. Moreover, the algorithms provided in
the online domain only cover a subset of optimization experiments with a discrete and
finite number of alternatives.

Embedded and cyber-physical systems are often deployed and used in uncontrolled
conditions. Web and mobile systems users have uncertainties associated to user
behavior. The results of all these deployment conditions, usage environments and user
behaviors are complex interactions which are infeasible to model, replicate in a lab-
oratory or optimize in pre-deployment activities. Ultimately this leads to a mismatch
between pre-deployment optimal values and field observations. Additionally, in many
real-world engineering problems, the evaluation of the system during the optimization
procedure is limited by the costs or time required to compute an iteration, therefore
restricting the choice of algorithms.

To avoid this complex optimization scenario, companies can choose to embed the
algorithms in their applications. However, the introduction of optimization algorithms
and heuristics inside an application is viewed with skepticism by many practitioners
since they can create performance issues, are hard to validate without directly affecting

1 http://mathworks.com.
2 https://vwo.com/.
3 https://optimizely.com.

ACE: Easy Deployment of Field Optimization Experiments 265

http://mathworks.com
https://vwo.com/
https://optimizely.com

the customer, introduce a significant amount of code that might not be justified by the
gained benefits, require re-validation, re-testing and sometimes even re-certification of
the software application, are difficult to update and replace, and require a knowledge
that might not be available during product development [7, 8].

Optimization of systems throughout the entire lifecycle requires a range of different
tools, techniques, algorithms and expertise that makes it impractical for large scale
software development. These constraints require efficient optimization algorithms to be
deployed in a different environment and communicate with the software application in
consistent ways that can be utilized by software developers at different stages of
product development.

To address these challenges, we present a new optimization system based on the
optimization of expensive black-box systems, which is aimed to facilitate the adoption
of optimization in all stages of development. We provide two main contributions. First,
we present the architecture of a new optimization system called ACE (Automated
Continuous Experiments), that allows existing software systems to perform optimiza-
tion procedures in different domains and in different development stages. This opti-
mization system utilizes domain-agnostic interfaces to allow existing systems to
perform optimization procedures with minimal invasiveness and optimization exper-
tise. Second, we provide an overview of the deployments, discuss the advantages and
limitations and evaluate the optimization system in three empirical scenarios: (1) offline
optimization with simulations; (2) optimization of a communication system in a test
bed in collaboration with Ericsson; and (3) live optimization of a mobile application, in
collaboration with Sony Mobile. We aim to provide practitioners with a single opti-
mization tool capable of leveraging their optimization activities from offline to live
systems, with minimal invasiveness and optimization expertise.

This work is part of a larger research project (as discussed in Sect. 3), with pre-
viously published results. The results of our industrial cases were previously published
in [9] (in collaboration with Sony Mobile) and in [10] (in collaboration with Ericsson).
The first publication focuses on the development and analysis of a field optimization
algorithm with Sony Mobile. This algorithm, though with several modifications and
extensions, was also used in the Ericsson case study. Since this approach is new in the
mobile network optimization domain, the second publication consists of a problem
framing and a description of the case study. This paper significantly differs from the
previous publications in terms of its scope and presents novel content and results,
focusing on the architecture of the experimentation system and discussing it in three
deployment scenarios.

This paper is organized as follows. Section 2 presents background information
regarding the optimization of expensive black-box systems. Section 3 discusses the
research process and provides a brief description of the case studies discussed in the
empirical cases. Section 4 discusses the architecture of the ACE optimization system.
Section 5 presents the three empirical scenarios. Section 6 discusses related work.
Lastly, Sect. 7 concludes the paper and discusses future research directions.

266 D. I. Mattos et al.

2 Background

Black-box software optimization refers to the problem where an algorithm needs to
optimize software parameters based of an objective function in a system utilizing black-
box interfaces. The algorithm can ask the system to evaluate a parameter set, but it only
observes the system response, without any assumptions or a model of the system. The
system’s response can be stochastic or noiseless.

Online companies traditionally conduct experiments based on experiment design
theory when optimizing their systems [3–6]. These experiments – usually sequential
A/B testing or factorial experiments – are used to compare a finite and discrete number
of alternatives [11]. For example, determining if a feature should be deployed to the
whole user base, or selecting between multiple layout options. These techniques have
the advantage of having comparable sample sizes (usually the number of active users or
the number interactions with the system) for all variations in the statistical analysis at
the expense of increase in the regret and the higher sample size for the optimization.

Multi-armed bandit algorithms provide a framework for black-box optimization
with a finite and discrete number of alternatives. Multi-armed bandit algorithms
dynamically change the sample size allocation to the best performing variation [12]. So
at the expense of statistical power, this framework focuses on regret minimization and
it enjoys wide use in the industry [13–15]. Multi-armed bandit algorithms are an active
area of research and provide a number of algorithms for different optimization situa-
tions. Hierarchical methods are one of the extensions of the multi-armed bandit field for
optimization in the continuous space [9, 16].

A prominent approach for the optimization of expensive functions is the Bayesian
Optimization. This approach is a sequential approach which selects a parameter set,
queries the black-box with this parameter set and then based on the response value it
updates the statistical model for the next parameter set [17]. The two key components
are the surrogate model of the objective function and the loss function used to describe
the sequence of parameter sets to be tried.

Shang [18] presents an overview of black-box optimization methods. The report
compares the Bayesian Optimization to the Gaussian Process with bandits hierarchical
methods, such as the HOO [16]. It is concluded that even though Bayesian Opti-
mization methods can provide better function approximations and faster convergence,
they require the selection of better priors and hyper-parameters when compared to
hierarchical methods, thus increasing the need for optimization expertise.

Finally, genetic algorithms have also been used in simulation and field experiments.
Tamburrelli and Margara [19] proposed an infrastructure and a genetic algorithm to
optimize HTML web pages in a large space. However, the proposed solution requires
using non-validated assumptions of the hyper-parameters and of the mating strategies.
Additionally, the solution requires a large space of unique users which restricts its
application in real world scenarios to very large-scale software companies.

Although black-box optimization is an extensive research topic and multiple
algorithms are available, few works have discussed architectures and deployment of
such systems. We discuss and compare existing approaches to our work in Sect. 6.

ACE: Easy Deployment of Field Optimization Experiments 267

3 Research Process

This research is part of a larger project where we aim to facilitate the adoption of
continuous experimentation and leverage the development of optimization experiment
solutions relevant to our industrial partners. We utilize a design science approach [20,
21], grounding our theory on developments from multiple domains, such as experiment
design [11, 22], test bed and simulation experiments [1, 23, 24], black-box optimiza-
tion systems [12, 15, 16] and optimization [15, 19, 25–28].

Our industrial collaboration occurs within the context of the Software Center4.
Based on industrial cases, we iteratively developed artifacts such as an optimization
system and algorithm, which we could refine and evaluate first using simulations and
later using field studies. We built our case studies with companies sequentially and we
have divided our research approach into three phases.

Phase One. The first phase consists of contextualizing, scoping, adapting and for-
malizing our existing research results to a specific company project. This initial step
allows us to evaluate the feasibility of the project and the generality that this project
would add to the research project. If our current solutions are able to address the
problems, we implement them in the company and gather feedback at end of the data
collection. In the case that our current methods are not able to handle the company
project, we proceed to the next phase.

Phase Two. This phase consists of an iterative process where we develop, refine and
deploy our solutions in the context of the company project. In this iterative process, we
aim to identify company specific constraints while abstracting the solutions and research
so that they may be used and applied in a wider range of applications and domains,
including the ones we have previously worked on. This iterative process starts with
simulations and integration activities while understanding the problem domain.
Thereafter, we move towards a limited deployment of the solution to analyze the initial
results and make necessary adjustments. Finally, we proceed to a full deployment where
we collect empirical evidence and evaluate our approach with field data.

Phase Three. The last phase consists of gathering the qualitative and quantitative
information obtained in the industrial case studies together with simulations and other
empirical data, such as meeting notes, emails and comments. We try to abstract this
information and formulate constructs and related them to existing research work. These
constructs are reported in research publications and reviewed by our industrial col-
laborators. In this project we have an ongoing collaboration with two industrial part-
ners, Sony Mobile and Ericsson, and the first company case started in September 2017.
Sony Mobile is a subsidiary of the Sony Corporation and is a leading global innovator
in information technology products for both consumer and professional markets.
Ericsson is a Swedish multinational network and telecommunications company. The
company provides services in software and infrastructure in information and com-
munications technology, including mobile network infrastructure.

4 https://www.software-center.se/.

268 D. I. Mattos et al.

https://www.software-center.se/

4 The ACE System

This optimization system is capable of running traditional A/B experiments, multi-
armed bandit experiments and optimization algorithms in a continuous space. It can run
multiple simultaneous optimization jobs and has the ability to stop and resume an
experiment at any time. The experimentation system, called ACE (Automated Con-
tinuous Experimentation), was inspired by the architectural framework and design
decisions presented in [27, 28], however the proposed instantiation is not equivalent to
previous works.

An overview of the experimentation system is shown in Fig. 1. The system is
divided in three services that can be launched independently as Docker containers5 and
can be deployed locally or in as a cloud service. The main service consists of a Python
backend application with five layers and it is responsible for the algorithms, variant
assignment, data preparation and configuration of the experiment.

The first layer consists of an API layer. This layer utilizes the webserver NGINX6

together with a Flask7 API application. This layer is responsible for securing the
connection and cross-checking authorization such as API keys and login information.
The Flask API application is responsible for parsing the HTTP/HTTPS requests to the
correct modules in the application layer.

The application layer consists of five modules. The configuration module is
responsible for creating and updating the setting of an experiment, for example the
number of variants, the number of dimensions, the precision and range of the search
space, and algorithm parameters. The model update module is responsible for receiving
new data points from the system under experiment (SuE) and updating the statistical
model of the experiment. It receives the reward value and the corresponding arm value
or variant that generated the particular reward. A reward can be a KPI metric, such as
number of clicks to more complex ratios and performance estimations. However,
reward metrics always have a positive direction (higher value is better). The arms
request module is responsible for providing the SuE with a new arm value or variant to
try. The new arm value can either be based on the statistical model or be a randomized
assignment. The data presentation module receives requests to process and present the
experiment data to the experiment owner. This module reads the experiment statistical
model and processes visualization figures, provides an overview of the statistical model
and identifies the best performing arms. The final module, the statistical comparison
module, is independent of the algorithm and the statistical model of the experiment.
This module reads the raw data directly in order to perform a statistical analysis of the
experiment, after its conclusion. This module is based on current frequentist statistical
methods and performs a parametric, non-parametric and factorial analysis for experi-
ments in a discrete space.

5 https://www.docker.com.
6 https://www.nginx.com/.
7 http://flask.pocoo.org/.

ACE: Easy Deployment of Field Optimization Experiments 269

https://www.docker.com
https://www.nginx.com/
http://flask.pocoo.org/

The algorithm layer implements the experimental design algorithms, such as A/B
tests, factorial experiments, discrete multi-armed bandits and continuous-armed bandits.
The case studies presented in Sect. 5 utilize the algorithm LG-HOO described in [9].

The data layer is responsible for formatting and preparing the data according to the
algorithm specification as defined through the configuration module. This step consists
of removing duplicated data, pre-processing metrics, aggregating the raw data for the
statistical analysis, and preparing the input and output of the statistical model to the
application layer.

The database layer is responsible for securing a connection and interfacing the
backend with the local or remote database. All connections from the backend to the
database are processed in this module.

The second service consists of a group of MongoDB NoSQL databases, which
store all experiment data, current status, variant requests and their replies, and the
current statistical model of the experiment. This service is to kept separate from the
backend service so that it can be deployed locally and store the data according to
regional data legislation, such as the GDPR8.

Backend

Experiment
owner

Frontend

Configure
Experiment

Experiment
Status

Database

Experiment
Configuration

Algorithm
Model

Raw data Requests

Data
presentation

Nginx

Arms
request

Configuration

Model update

Algorithms

Statistical
comparison

API Layer Application Layer Algorithm LayerData layer

Nginx

Data
formatting

Database
manager

System under
Experiment

Database Layer

Flask
API
App

Database
administrator

Fig. 1. Overview of the experimentation system. The services are represented in different colors,
in blue the frontend, in green the backend and in orange the database service. The arrows indicate
the flow of data in the software, from computed statistics of the algorithms statistical models to
raw and processed data collected from the users and systems under experiment. (Color figure
online)

8 https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-
reform-eu-data-protection-rules_en.

270 D. I. Mattos et al.

https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en

The third service consists of an optional frontend service to configure a new
experiment and to display information regarding the status of an experiment to the
experiment owner. This service does not add functionality to the experiment execution
but facilitates the usage of the interfaces to configure and launch an experiment and
facilitates the visualization of the experiment data.

4.1 Experiment Configuration and Interfaces

The ACE system was developed with the following in mind: to minimize dependencies
on the SuE, to keep the integration efforts to a minimum and to allow the ACE system
to be integrated with applications from different domains. These constraints motivated
the usage of HTTP/HTTPS POST requests for communication between the SuE and
the backend service. The SuE can launch independently of ACE and run even in the
case of a failure in ACE. In such situations, the default values and variants are used,
instead of the suggested values given by ACE.

The configuration of the optimization experiment is done independently of the SuE
and it can be updated without modifications in the SuE code. The configuration is done
utilizing POST requests with the configuration in a JSON format. This configuration is
then parsed in the backend and an initial statistical model for the experiment is created.
These configuration requests can be made utilizing the frontend or accessing the
interfaces directly with a tool such as curl or Postman. The configuration of an
experiment requires specifying what data is going to be logged in the signals field,
which of these values will be used as the objective or reward metric for the statistical
model, the algorithm specification and its parameters, and the dimensions
specifications.

Requesting and logging information in the ACE system follows a similar pattern.
Note that requesting a new trial or variation and logging metrics are independent of the
statistical model used by the algorithm. Therefore, the configuration and the statistical
model can be updated to a new version without comprising the integration code in the
SuE. This facilitates the update of an algorithm and its hyperparameters to fine-tune it
to a particular case without the need for a re-deployment. Additionally, this scheme
enables the developers to expose interfaces for metrics and parameters that might be of
interest for future observation.

We divide an experiment iteration in four steps, as shown in Fig. 2. First, the
developers implement the interfaces to ACE. Second, the experiment/optimization
owner configures the experiment, specifying the algorithm details, search space, met-
rics to be used, etc. Third, the SuE requests trials from ACE. Finally, after the SuE runs
the request trial it updates the statistical model in ACE. Steps three and four are
repeated until the optimization experiment finalizes.

ACE: Easy Deployment of Field Optimization Experiments 271

5 Empirical Cases

Optimization of the Parameters of a PID Controller
This scenario shows how to optimize the parameters of a PID (proportional-integral-
derivative) controller utilizing the ACE system in a simulation scenario. While simu-
lation packages often provide optimization algorithms, and efficient algorithms for
tuning control systems do exist, we provide an example where little domain knowledge
and implementation effort is needed to optimize a PID system. Additionally, the use of
the ACE system in simulation is the same as the use of the ACE system in testing
scenarios and live systems, as discussed later.

The deployment of ACE in a simulation scenario consists of requesting a new trial
at the beginning of every simulation iteration and updating the statistical model at the
end of the iteration, similar to what is done with other simulation optimization sce-
narios. However, unlike most simulation package, the ACE system does not perform
minimization procedures directly. We follow the recommendations and discussion
provided in [29], where the authors recommend that all experiment and optimization
designs utilize maximization objectives. Figure 3 shows how the ACE system can be
integrated into a simulation environment. The results shown in Fig. 4 compares the
results of this optimization procedure with an existing domain specific algorithm. In
this case, we optimize three variables of the PID controller within 3000 simulation
iterations. Note that in this case we utilize the same algorithm as that used in the
Ericsson and Sony Mobile optimization experiments.

Experiment
owner

Developers

ACE

Optimization
interfaces

Implements

JSON Payload
{
 "job":"example-mlghoo",
 "signals":["reward","x1","x2"],
 "algorithm": {
 "type":"LGHOO",
 "objective": ["reward"],
 "dimensions":[{
 "name":"x1",
 "arm_min":-3,
 "arm_max":3
 },
 {
 "name":"x2",
 "arm_min":-2,
 "arm_max":2
 }]
 }
}

JSON Payload
{
 "job": " example-lghoo",
 "signals" : {
 "reward": 0.5,
 "x1": 2.5,
 "x2": 1.0
 }
}

JSON Payload
{

}

Trial request

SuE

Update model

1

2

43

Fig. 2. Overview of the four steps to run an experiment.

272 D. I. Mattos et al.

Optimization of Radio Base Station Parameters in a Test Bed with Ericsson
One challenge faced by many mobile network operators is the optimization of the
software parameters in a deployed radio base station [10]. The goal with this opti-
mization procedure is to provide quality of experience (QoE) for a range of different
applications, such as voice over LTE, uplink signal, video traffic, web browsing and
online gaming. We deployed ACE in a test bed environment. The radio base station
hardware is connected to a number of real user equipment that generates the profile
traffic used in system testing and verification purposes. A full description of the
domain, the optimization objective, the optimization variables and the different opti-
mization experiments can be found in [10]. In order to modify software parameters and
collect metrics from the radio base station, we utilized an existing command line
interface program which mobile operators can use to configure and monitor their own
mobile networks. We developed an intermediate translator that bridges the commu-
nication between the ACE system and a command line interface (CLI) program. The

ACE
backend

ACE API

Dynamic
system

simulation
with PID

Simulation
start

Request
new PID

trials

 Update
model

End of
simulation

Next simulation step

New PID
parameter values Computed objective

Fig. 3. Overview of the deployment of the ACE system in the PID controller simulation
example

Fig. 4. Optimization experiment of a PID controller using the ACE system (in green) and using
the domain specific heuristic twiddle (in orange). The ACE system is capable of learning the PID
parameters comparable to a domain specific solution. The system dynamics is based on the
project https://github.com/cheind/py-control (Color figure online)

ACE: Easy Deployment of Field Optimization Experiments 273

https://github.com/cheind/py-control

translator is also responsible for initiating and coordinating communication between the
two systems. The translator was implemented with less than 100 lines of code in a
Python script. Figure 5 shows an overview of the deployment of the ACE system with
Ericsson.

This deployment scenario allowed us to run optimization experiments without any
changes to the radio base station software, product roadmap and to the test bed. This
was an important aspect, since direct changes to the radio base station software and to
the test bed will have an impact on product integration, verification and validation. This
deployment approach reinforces a complete separation between the SuE and the
optimization system, allowing both to evolve and to be used independently. One of the
experiments that we ran shows an increase of 46.1% in the objective metric by
changing two simultaneous optimization variables in 200 iterations.

Optimization Based on User Behavior with Sony Mobile
One of Sony Mobile’s products is transitioning to data-driven development and aims to
run experiments continuously throughout its development process. The product is a
business to business solution, where the users of the software consists of employees of
the company that requested the solution. The software development of this product
spans development for web, mobile, backend systems and distributed embedded
hardware. During the development of the product several assumptions were made, such
as numerical, textual, and GUI constants that have a direct impact on the how the users
interact with the system. The development team of this product wants to optimize these
constants and to verify that these assumptions are based on actual user behavior
metrics.

The ACE system was integrated with the SuE utilizing a proxy to route requests,
since the ACE utilizes a different backend solution from the SuE. Figure 6 shows how
the ACE system connects to the Sony Mobile product. This integration allows the
product development team to control the connection and information exchange
between users and the ACE system, adding an internal security layer and the ability to
isolate the SuE from the ACE system when necessary. The integration between the

ACE
backend

ACE
API

CLI
ACE2RBS
Translator

Learned parameters

current parameter
metrics, KPIs

experiment

Visualization

ACE frontend RBSRack with real
mobile phones

Tra c

Request KPIs
Modify parameters

Fig. 5. Overview of the deployment of the ACE system in a test bed with Ericsson.

274 D. I. Mattos et al.

mobile application and the ACE system was done utilizing existing HTTP libraries to
perform the requests. This integration required a low effort from the development team,
since endpoints to collect the required metrics and to modify the necessary parameters
were already available in the system. The team estimates an integration effort with less
than 10 line of code given the existing infrastructure.

With this deployment setup, we ran two optimization experiments. The first was the
optimization of a text message shown in the application. This optimization experiment
was conducted with a traditional A/B experiment method with user consistency. The
goal was to identify which text message led more users to perform a particular task.
The best performing variation increased the expected user action by almost 30%. The
second experiment consisted of optimizing a parameter of one algorithm internal to the
application. It was expected that this parameter would impact a particular user
behavior. The experiment result showed that this parameter in the search space had
little impact on the expected behavior. The estimation of the behavior with the algo-
rithm parameter however led the development team to make informed decisions
regarding the feature roadmap. Additional details of this second experiment and the
algorithm used can be found in [9].

Discussion
The ACE system provides a unique way to optimize software parameters in deployed
systems utilizing field data. The single interface and communication allow developers
to easily expose variables and metrics to the experimentation system during develop-
ment and launch an experiment at a later time after the system is deployed.

In the simulation case, we show how to integrate ACE with existing simulation
models. This allows a company to use the same optimization system in different stages
of the product development. In the case study with Sony, since the mobile applications
access the ACE APIs directly, some code was necessary to connect the mobile
application and the ACE system, however the communication overhead is considered
minimal since as it happens only once a day. However, for the Ericsson case, the
instrumentation and parametrization of the system was already in place. A CLI

ACE
backend

ACE
API

SuE
backend

SuE Proxy

Learned parameters

current parameter
metrics, KPIs

experiment

Visualization

ACE frontend
Users

SuE
application

Fig. 6. Overview of the deployment of the ACE system in a live system with Sony Mobile.

ACE: Easy Deployment of Field Optimization Experiments 275

application can access the different metrics and counters and modify the existing
parameters in the system. This allowed the connection of the ACE system without any
modification in the existing code of the SuE, therefore it does not require to re-test and
re-evaluate the deployment due to ACE. This shows the potential for optimizing
systems without adding complexity to the product and making changes to the product
roadmap. The optimization procedure occurs within defined boundaries and can be
activated, modified and terminated independently of the product release cycle.

Even though the ACE system provides multiple benefits, some restrictions and
downsides are also present. The ACE system can only be applied where instrumen-
tation and parameterization interfaces are possible, and the system can have constant
communication with the ACE server. Additionally, for a deployment in production
additional security is necessary, as in the case of Sony Mobile. The ACE system only
provides basic authentication and security measures and has not been evaluated under
different attack conditions in order to prevent an external source from gaining access to
the open interfaces in the SuE.

Threats to Validity

External Validity: In the system and architecture development, we aimed to minimize
company specific cases as discussed in the research process. Company specific
restrictions where implemented as separated systems, as discussed in the different
deployment situations. Although we have shown empirical evaluations of the ACE
system in the three distinct optimization problems in different domains, these domains
are not exhaustive. Additional modifications to the architecture design might be nec-
essary to allow the ACE system to be used in a broader optimization context.
Internal Validity: In terms of the architecture, its design and interface were iteratively
discussed with the industrial collaborators to achieve a trade-off between generality of
the proposed solution and problem specific needs. The researchers involved discussed
the trade-offs to minimize confounding variables, specific to a company context, in the
proposed solution while still preserving the generality of the solution. However, other
alternative architecture and implementation solutions for the same optimization prob-
lem are possible. In terms of experimental design, the results and conclusion from the
optimization are further subjected to other validity considerations.

6 Related Work

Google’s Vizier [15] is a tool for black-box optimization that takes advantage of multi-
armed bandit algorithms and of Bayesian Optimization. Google’s work provides a high
overview of the system and basic user workflow. The Vizier architecture is modular
and has five main components: the database for persistence; the suggestion service to
create new trials; an early stop service; an API for communication; and the evaluation
workers that correspond to the SuE. While the ACE system shares several similarities
with Google’s Vizier in terms of its main processes, Vizier is described as an internal
application at Google that is used to perform hyperparameter tuning of machine
learning models and A/B testing case scenarios. Google’s paper does not describe the

276 D. I. Mattos et al.

different deployment scenarios and how it integrates with their existing products and
workflows.

Tamburrelli and Margara [19] propose an infrastructure and a genetic algorithm to
optimize HTML web pages in a large space. The work discusses a run-time framework
that generates and selects population variants with its genetic algorithm. The run-time
system is integrated with the existing website application in terms of primitive con-
structs. Although this strategy might have performance gains, compared to our pro-
posed approach it is challenging to reuse in different contexts since it has a tight
integration between the application and the run-time system.

In our previous work, we [27, 28] we present an architecture framework and
architecture decisions to run optimization experiments in the context of a cyber-
physical system. This architecture framework served as the basis for the initial steps
and was iteratively modified as described in the research process in Sect. 3. The
architecture is intended to be external to the application domain, and only connected to
the monitor and effector interfaces. Those interfaces are equivalent to the request trial
and updated model interfaces discussed in Sect. 4. The system provides basic metric
analysis components, which enable the verification of global restrictions. An experi-
ment coordinator handles the active experiment. Algorithms can be implemented in the
version generator component that communicates with the effector interface. The cyber-
physical system application example utilizes a domain specific heuristic for the multi-
armed bandit problem to perform the optimization procedure.

Gerostathopoulos et al. [25, 26] discuss a tool for end-to-end optimization for
black-box systems. The tool utilizes three sequential steps in the optimization. First it
runs a factorial experiment, analyzed with an analysis of variance Second, it inputs the
output of the first step into a Bayesian Optimization. And third, it compares the output
of the Bayesian Optimization with the default values utilizing a t-test. Their system
follows a similar pattern as ACE and Google’s Vizier. It implements a webserver to
control the workflow and interface with the database, the frontend client and middle-
ware that interfaces with the system under experiment. However, the system is eval-
uated only in simulated scenarios, such as a traffic routing system and in just-in-time
compilers in the Java Virtual Machine, and the paper does not describe the deployment
strategy changes when integrating it with new existing systems.

7 Conclusion

Companies often seek to improve their products by optimizing their software in dif-
ferent stages of development. This work proposes a new black-box optimization system
called ACE (Automated Continuous Experimentation), that can be used to run opti-
mization field experiments in a range of different domains and stages of development,
such as simulations, test beds and in deployed systems in addition to different domains.
We present an overview of the ACE system architecture and we discuss different
integration and deployment scenarios where the ACE system was integrated in one
simulation project and two existing industrial products, in collaboration with Ericsson
in a test bed scenario and Sony Mobile in a live system. In this context, we aim to
provide practitioners with a single optimization tool that can leverage their optimization

ACE: Easy Deployment of Field Optimization Experiments 277

activities from offline to live systems and do so with minimal invasiveness and opti-
mization expertise.

In future work, we plan to expand this architecture to different domains in order to
increase the generality of the solution and add new components that facilitate its
adoption and minimizes the need of additional code to connect the optimization system
to the system under experiment. Towards the end of this larger research project, we plan
to make all project artifacts, such as the algorithms and the ACE experimentation system
available open-source in the repository https://github.com/davidissamattos/ACE.

Acknowledgments. This work was partially supported by the Wallenberg Artificial Intelli-
gence, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation and by the Software Center. The authors would also like to express their
gratitude for all the support provided by Ericsson and Sony Mobile. We also would like to thank
to the support and help from Anas Dakkak, Krister Bergh and Erling Mårtensson.

References

1. Piyaratna, S., et al.: Digital RF processing system for Hardware-in-the-loop simulation. In:
2013 International Conference on Radar, pp. 554–559 (2013)

2. Scholz, D., von Stryk, O.: Efficient design parameter optimization for musculoskeletal
bipedal robots combining simulated and hardware-in-the-loop experiments. In: 2015 IEEE-
RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 512–518,
December 2015

3. Tang, D., Agarwal, A., O’Brien, D., Meyer, M.: Overlapping experiment infrastructure. In:
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining - KDD 2010, p. 17 (2010)

4. Bakshy, E., Park, M., Eckles, D., Park, M., Bernstein, M.S.: Designing and deploying online
field experiments. In: Proceedings of 23rd International Conference of World Wide Web -
WWW 2014, pp. 283–292, September 2014

5. Kohavi, R., Deng, A., Longbotham, R., Xu, Y.: Seven rules of thumb for web site
experimenters. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining - KDD 2014, pp. 1857–1866 (2014)

6. Xu, Y., Duan, W., Huang, S.: SQR : balancing speed, quality and risk in online experiments.
In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining - KDD 2018, vol. 1, pp. 895–904 (2018)

7. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Advances in
Neural Information Processing Systems, pp. 2503–2511 (2015)

8. Issa Mattos, D., Bosch, J., Olsson, H.H.: Multi-armed bandits in the wild: pitfalls and
strategies in online experiments. Inf. Softw. Technol. 113, 68–81 (2019)

9. Mattos, D.I., Mårtensson, E., Bosch, J., Olsson, H.H.: Optimization experiments in the
continuous space. In: Colanzi, T.E., McMinn, P. (eds.) SSBSE 2018. LNCS, vol. 11036,
pp. 293–308. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99241-9_16

10. Mattos, D.I., Bosch, J., Olsson, H.H., Dakkak, A., Bergh, K.: Automated optimization of
software parameters in a long term evolution radio base station. In: IEEE 13th Annual
International Systems Conference, pp. 1–8 (2019)

278 D. I. Mattos et al.

https://github.com/davidissamattos/ACE
http://dx.doi.org/10.1007/978-3-319-99241-9_16

11. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on the
web: survey and practical guide. Data Min. Knowl. Disc. 18(1), 140–181 (2009). https://doi.
org/10.1007/s10618-008-0114-1

12. Burtini, G., Loeppky, J., Lawrence, R.: A survey of online experiment design with the
stochastic multi-armed bandit. pp. 1–49 (2015) arXiv:1510.00757

13. Urban, G.L., et al.: Morphing banner advertising. Mark. Sci. 33(1), 27–46 (2014)
14. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized

news article recommendation. In: Proceedings of the 19th International Conference on
World wide web - WWW 2010, p. 661 (2010)

15. Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley, D.: Google vizier. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining - KDD 2017, pp. 1487–1495 (2017)

16. Bubeck, S., Munos, R., Stoltz, G., Szepesvari, C.: X-armed bandits. Theor. Comput. Sci. 412
(19), 1832–1852 (2010)

17. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of
the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)

18. Shang, X., Kaufmann, E., Valko, M.: Hierarchical bandits for “Black Box” optimization,
Lille (2015)

19. Tamburrelli, G., Margara, A.: Towards automated A/B testing. In: Le Goues, C., Yoo, S.
(eds.) SSBSE 2014. LNCS, vol. 8636, pp. 184–198. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-09940-8_13

20. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28(1), 75 (2004)

21. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum
impact. MIS Q. 37(2), 337–355 (2013)

22. Montgomery, D.C.: Design and Analysis of Experiments, 8th edn. Wiley, Hoboken (2012)
23. Krettek, J., Schauten, D., Hoffmann, F., Bertram, T.: Evolutionary hardware-in-the-loop

optimization of a controller for cascaded hydraulic valves. In: 2007 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, pp. 1–6 (2007)

24. Zhao, Y., Dong, W., Zou, X., Tong, L., Zhu, G.: Analysis and design of power hardware-in-
the-loop testing for 400-Hz inverters. In: Proceedings of 2017 12th IEEE Conference on
Industrial Electronics and Applications. ICIEA 2017, pp. 1122–1126, February 2018

25. Gerostathopoulos, I., Uysal, A.N., Prehofer, C., Bures, T.: A tool for online experiment-
driven adaptation. In: Proceedings - 2018 IEEE 3rd International Workshop on Foundations
and Applications of Self Systems FAS*W 2018, pp. 100–105 (2019)

26. Gerostathopoulos, I., Prehofer, C., Bulej, L., Bures, T., Horky, V., Tuma, P.: Cost-aware
stage-based experimentation : challenges and emerging results. In: 2018 IEEE International
Conference on Software Architecture Companion, pp. 72–75 (2018)

27. Mattos, D.I., Bosch, J., Olsson, H. H.: Your system gets better every day you use it: towards
automated continuous experimentation. In: 2017 43rd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), no. Ml, pp. 256–265 (2017)

28. Mattos, I., Bosch, J., Olsson, H.H.: More for less: automated experimentation in software-
intensive systems. In: Felderer, M., Méndez Fernández, D., Turhan, B., Kalinowski, M.,
Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 146–161. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69926-4_12

29. Deng, A., Shi, X.: Data-driven metric development for online controlled experiments. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining - KDD 2016, pp. 77–86 (2016)

ACE: Easy Deployment of Field Optimization Experiments 279

http://dx.doi.org/10.1007/s10618-008-0114-1
http://dx.doi.org/10.1007/s10618-008-0114-1
http://arxiv.org/abs/1510.00757
http://dx.doi.org/10.1007/978-3-319-09940-8_13
http://dx.doi.org/10.1007/978-3-319-09940-8_13
http://dx.doi.org/10.1007/978-3-319-69926-4_12

Author Index

Arcelli Fontana, Francesca 247

Biffl, Stefan 109
Bihani, Prerna 231
Bosch, Jan 264
Busch, Axel 211

Castellanos, Camilo 195
Correal, Dario 195

De Sanctis, Martina 178

Eckert, Maximilian 211
Egyed, Alexander 143
El Malki, Amine 3

Fuchß, Dominik 211

Galster, Matthias 88
Georis, François 88
Gilson, Fabian 88
Gitzel, Ralf 231
Grüner, Sten 231
Guiza, Ouijdane 143

Holmström Olsson, Helena 264

Koziolek, Anne 211

Li, Fei 20
Lujic, Ivan 97

Maggioni, Andrea 247
Malakuti, Somayeh 231
Mattos, David Issa 264
Mayr-Dorn, Christoph 143
Mayrhofer, Michael 143
Meixner, Sebastian 20

Musil, Angelika 109
Musil, Juergen 109

Ntentos, Evangelos 20
Nunes, Luís 37

Paik, Hye-Young 161
Pérez, Boris 195
Pigazzini, Ilaria 247
Plakidas, Konstantinos 20
Platenius-Mohr, Marie 231
Power, Ken 55

Rito Silva, António 37

Santos, Nuno 37
Schall, Daniel 20
Schmid, Klaus 126
Schmitt, Johannes 231
Sözer, Hasan 71
Spalazzese, Romina 178
Staples, Mark 161
Striewe, Michael 220

Tavakoli Kolagari, Ramin 126
Trubiani, Catia 178
Truong, Hong-Linh 97

Varela, Carlos A. 195
Villamil, María del Pilar 195

Wägemann, Tobias 126
Weber, Ingo 161
Weichhart, Georg 143
Weyns, Danny 109
Wirfs-Brock, Rebecca 55

Yasaweerasinghelage, Rajitha 161

Zdun, Uwe 3, 20
Zoitl, Alois 143

	Preface
	Organization
	Abstracts of Keynotes
	Performance Analysis for Highly-Configurable Systems
	Becoming and Being a Researcher: What I Wish Someone Would Have Told Me When I Started Doing Research
	Variability Variations in Cyber-Physical Systems
	Good Practices to Identify Bounded Context to Build Agile Organizations in Sync with a Smart System Architecture
	Secure Software Architectures for a Hyperconnected World: Game Changer or Pipe Dream?
	Contents
	Services and Micro-services
	Guiding Architectural Decision Making on Service Mesh Based Microservice Architectures
	1 Introduction
	2 Related Work
	3 Research Method
	4 Service Mesh Design Decisions
	4.1 Managed Cross-Service Communication Decision
	4.2 Managed Ingress Communication Decision
	4.3 Traffic Control Decision
	4.4 Service Mesh Expansion Decision
	4.5 Central Services and Proxy Tasks

	5 Estimation of Uncertainty Reduction
	6 Discussion and Threats to Validity
	7 Conclusions
	References

	Supporting Architectural Decision Making on Data Management in Microservice Architectures
	1 Introduction
	2 Related Work
	3 Research Method and Modelling Tool
	4 Reusable ADD Model for Data Management in Microservice Architectures
	5 Evaluation
	6 Threats to Validity
	7 Conclusion
	References

	From a Monolith to a Microservices Architecture: An Approach Based on Transactional Contexts
	1 Introduction
	2 Concepts
	3 Decomposition by Transactional Contexts
	4 Evaluation and Discussion
	4.1 LdoD
	4.2 Metric Evaluation
	4.3 Visualization Analysis

	5 Related Work
	6 Conclusions
	References

	Software Architecture in Development Process
	An Exploratory Study of Naturalistic Decision Making in Complex Software Architecture Environments
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Naturalistic Decision Making
	2.2 NDM and Software Architecture

	3 Research Approach
	3.1 Research Setting and Context
	3.2 Research Questions
	3.3 Research Method
	3.4 Data Collection and Analysis
	3.5 Threats to Validity

	4 Findings
	4.1 NDM Conditions Under Which Architects Make Decisions
	4.2 How Attributes of NDM Decision Making Influence Decision Making

	5 Reflections on the Research Questions
	6 Conclusions
	6.1 Recommendations
	6.2 Future Research

	References

	Evaluating the Effectiveness of Multi-level Greedy Modularity Clustering for Software Architecture Recovery
	1 Introduction
	2 Background and Related Work
	3 Multi-level Greedy Modularity Clustering
	4 Experimental Setup
	4.1 Subject Systems and the Dataset
	4.2 Architecture Recovery Approaches
	4.3 Environment and Parameters
	4.4 Evaluation Criteria

	5 Results and Discussion
	5.1 Accuracy of Modularity Clustering
	5.2 Runtime Performance of Modularity Clustering
	5.3 Threats to Validity

	6 Conclusion and Future Work
	References

	What Quality Attributes Can We Find in Product Backlogs? A Machine Learning Perspective
	1 Introduction
	2 Related Work
	3 Research Approach
	4 Results
	5 Discussion
	6 Conclusions
	References

	Architecturing Elastic Edge Storage Services for Data-Driven Decision Making
	1 Introduction
	2 Motivation
	3 Engineering Principles for Edge Data Services
	4 Related Work
	5 Conclusions and Future Work
	References

	Adaptation and Design Space Exploration
	Continuous Adaptation Management in Collective Intelligence Systems
	1 Introduction
	2 Related Work
	3 Research Methodology
	4 Continuous Adaptation Management Viewpoint
	5 Evaluation of the Viewpoint
	5.1 Case Study Design
	5.2 Case Study Results

	6 Threats to Validity
	7 Conclusion
	References

	ADOOPLA - Combining Product-Line- and Product-Level Criteria in Multi-objective Optimization of Product Line Architectures
	1 Introduction
	2 Related Work
	3 Product Line Variability and Architectural Design Options
	4 Optimality on Product Level and Product-Line-Wide Level
	5 Generating a Useful Optimization Problem
	5.1 Formalizing System Variability
	5.2 Design Objectives for the Product Line
	5.3 Design Objectives for Products

	6 ADOOPLA Case Study
	6.1 Case Study Problem Formalization
	6.2 Optimization Results and Discussion

	7 Conclusions
	References

	Assessing Adaptability of Software Architectures for Cyber Physical Production Systems
	1 Introduction
	2 Background
	3 Motivating Scenario
	4 Introduction to BASE
	5 Architecture Analysis
	5.1 Hardcoded and Physically Wired
	5.2 Central Coordinator Architecture
	5.3 61499 Architecture
	5.4 Coordination Middleware Architecture
	5.5 Distributed Middleware Architecture
	5.6 Discussion

	6 Related Work
	7 Conclusions
	References

	Quality Attributes
	Optimising Architectures for Performance, Cost, and Security
	1 Introduction
	2 Background
	2.1 Architecture Performance Modelling
	2.2 Architecture Design Space Exploration and Deployment Architecture Optimisation
	2.3 Static Taint Analysis

	3 Method Overview
	3.1 Quality Attribute Modelling for the Optimisation

	4 Modelling and Optimising
	4.1 Running Example
	4.2 Modelling System for Optimisation
	4.3 Additional Design Options
	4.4 Model Optimisation
	4.5 Results

	5 Related Work
	6 Discussion and Future Work
	7 Conclusion
	References

	QoS-Based Formation of Software Architectures in the Internet of Things
	1 Introduction
	2 Motivating Example and Foundations
	2.1 Smart Light Scenario
	2.2 Background

	3 QoS-Based Approach
	3.1 Overview of the Approach
	3.2 Deriving QoS-Based Optimal IoT-EAs

	4 Experimentation
	4.1 Experimental Setup and Results
	4.2 Discussion

	5 Related Work
	6 Conclusion
	References

	A Survey on Big Data Analytics Solutions Deployment
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Research Questions
	3.2 Sample and Population
	3.3 Survey Design

	4 Survey Results
	4.1 Personal and Company Data
	4.2 Practices, Behavior, and Challenges
	4.3 Techniques and Tools
	4.4 Deployment
	4.5 Quality Attributes

	5 Discussion
	6 Threats to Validity
	7 Conclusions
	References

	Assessing the Quality Impact of Features in Component-Based Software Architectures
	1 Introduction
	2 Background
	2.1 Design Space Exploration: PerOpteryx
	2.2 Feature Completion Meta Model
	2.3 Feature Completion Integration Mechanism

	3 Approach
	4 Evaluation
	4.1 Target System
	4.2 Logger Solutions
	4.3 Scenario-Based Evaluation

	5 Related Work
	6 Conclusion
	References

	Components and Design Alternatives in E-Assessment Systems
	1 Introduction
	2 Component Catalogue
	2.1 Frontend Components
	2.2 Educational Components
	2.3 Knowledge Representation and Storing Components
	2.4 Connector Components

	3 Design Alternatives
	3.1 General Component Behaviour
	3.2 Grading a Response
	3.3 System Extensions
	3.4 Evaluator Granularity

	4 Conclusions
	References

	Industry Track
	A Four-Layer Architecture Pattern for Constructing and Managing Digital Twins
	1 Introduction
	2 An Industrial Use Case in the ABB Company
	3 Requirements
	4 The Architecture Pattern for Digital Twins
	4.1 The Information Providers Layer
	4.2 The Model Providers Layer
	4.3 The Digital Twin Providers Layer
	4.4 The Applications Layer

	5 A Concrete Architecture Example
	5.1 The Model Providers Layer
	5.2 The Digital Twin Providers Layer
	5.3 The Applications Layer
	5.4 A Common Identification Mechanism

	6 Related Work
	7 Conclusions and Future Work
	References

	Tool Support for the Migration to Microservice Architecture: An Industrial Case Study
	1 Introduction
	2 Related Works
	3 Candidate Microservice Identification Through Arcan
	3.1 Architectural Smell Detection
	3.2 Dependency Graph Analysis
	3.3 Topic Detection

	4 Industrial Case Study
	4.1 Architectural Smells Detection
	4.2 Dependency Graph Analysis
	4.3 Topic Detection
	4.4 Discussion

	5 Conclusions and Lessons Learned
	References

	ACE: Easy Deployment of Field Optimization Experiments
	Abstract
	1 Introduction
	2 Background
	3 Research Process
	4 The ACE System
	4.1 Experiment Configuration and Interfaces

	5 Empirical Cases
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

	Author Index

