
Towards a Marketplace for Secure
Outsourced Computations

Hung Dang1(B), Dat Le Tien2, and Ee-Chien Chang1

1 National University of Singapore, Singapore, Singapore
{hungdang,changec}@comp.nus.edu.sg

2 University of Oslo, Oslo, Norway
dattl@ifi.uio.no

Abstract. This paper presents Kosto – a framework that provisions
a marketplace for secure outsourced computations, wherein the pool of
computing resources aggregates that which are offered by a large cohort
of independent compute nodes. Kosto protects the confidentiality of
clients’ inputs and the integrity of the outsourced computations using
trusted hardware’s enclave execution (e.g., Intel SGX). Furthermore,
Kosto mediates exchanges between the clients’ payments and the com-
pute nodes’ work in servicing the clients’ requests without relying on a
trusted third party. Empirical evaluation on the prototype implemen-
tation of Kosto shows that performance overhead incurred by enclave
execution is as small as 3% for computation-intensive operations, and
1.5× for I/O-intensive operations.

1 Introduction

Recent years have witnessed an emergence of online marketplaces that offer
alternatives to traditional vendor-specific service providers. Examples include
Airbnb [1] in lodging, Uber [13] in transportation. In such marketplaces, the
shared pool of resources is neither owned, provisioned nor controlled by a single
party. Instead, it aggregates that which are offered by a large cohort of indepen-
dent individuals. Designing a marketplace for secure outsourced computations,
however, faces various technical challenges.

The first technical challenge is in protecting the confidentiality of the clients’
data and the integrity of the outsourced computations, for the resource providers
(or compute nodes) may be untrustworthy. Solutions to protect the confiden-
tiality and integrity of outsourced computations have been studied in the lit-
erature [25–27,46]. For examples, homomorphic encryption [26,46] and secure
multi-party computation [27] are designed to protect data confidentiality, while
verification by replications [2,11] and verifiable computation [25] aim to protect
computation integrity. Nevertheless, these approaches either incur high over-
heads, or support only a limited range of applications. These limitations hinder
their adoption in practical systems.

H. Dang and D. Le Tien—Lead authors are alphabetically ordered.

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 790–808, 2019.
https://doi.org/10.1007/978-3-030-29959-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_38&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_38


Towards a Marketplace for Secure Outsourced Computations 791

Another technical challenge is in mediating exchanges between clients’ pay-
ments and compute nodes’ work in servicing the clients’ requests without relying
on a trusted third party. One approach is to commits a remuneration for a task
into an escrow which shall autonomously release the payment to the compute
node upon successful task completion. This approach, however, does not general-
ize. For micro tasks that yield small remunerations, the transaction fee (i.e., the
cost to conduct the payment transaction) becomes an overhead. On the other
hand, compute nodes may inadvertently abort macro or complex tasks midway,
exerting computational work but could not claim the reward. We believe that an
ideal solution to mediate fair exchanges between clients’ payments and compute
nodes’ work would require trusted metering of the compute nodes’ work and a
self-enforcing, autonomous agent (e.g., smart contract) responsible for settling
payments based on the aforementioned metering.

In this paper, we present a framework that enables a marketplace for secure
outsourced computations, which we name Kosto. Under our framework, the
shared pool of computing resources is contributed to by a cohort of indepen-
dent compute nodes. Clients in Kosto can request computational services from
the compute nodes, while enjoying confidentiality protection on their data and
integrity assurance on their outsourced computations. This is achieved by the
use of Trusted Execution Environments (TEEs). In particular, each compute
node in Kosto is capable of provisioning a TEE such as Intel SGX enclave for
outsourced computations. The enclave prevents other processes, the operating
system and even the owner of the compute node from tampering with the exe-
cution of the code loaded inside the enclave or observing its state. A compute
node services a client’ request by executing the outsourced computation inside
an enclave that is attested to be correctly instantiated. The attestation allows
secrets to be provisioned to the enclave only after it is instantiated.

Kosto mediates exchange of the clients’ payment and compute nodes’ work
via a hybrid architecture that combines TEE-based metering with blockchain
micro payment channel [10,37]. Our framework incorporates in each enclave an
accounting logic that meters the compute node’s work. Such metering is then
translated to a payment promise with which the compute node can settle the pay-
ment escrow and claim the corresponding reward. This approach facilitates the
exchange between the client and the compute node without incurring excessive
transaction fee or involving a trusted third party.

Our experiments reveal that the overhead incurred by enclave execution and
the trusted metering is as small as 3% for computation-intensive operations, and
1.5× for I/O-intensive operations. We expect these overheads can be further
reduced by incorporating optimizations that enhance the efficiency of enclave
execution [36,44,47], thereby allowing Kosto to attain better efficiency.

In summary, this paper makes the following contributions.

– We propose a framework, called Kosto, which facilitates a marketplace for
secure outsourced computations. Under our framework, both confidentiality
of clients’ inputs and integrity of the outsourced computations are protected
through the use of TEEs. In addition, Kosto mediates fair exchanges between



792 H. Dang et al.

clients’ payments for the execution of the outsourced computations and com-
pute nodes’ work in servicing the clients’ requests via a hybrid architecture
that combines TEE-based metering with blockchain micro payment channel.

– We implement a prototype of Kosto and evaluate the overhead incurred by
enclave execution and the TEE-based metering. The experiments shows that
performance overhead incurred by enclave execution and trusted metering
is as small as 3% for computation-intensive operations, and 1.5× for I/O-
intensive operations.

2 Preliminaries

Intel SGX. Intel SGX [33] is a set of CPU extensions capable of providing
hardware-protected TEE (or enclave). Each enclave is associated with a pro-
tected address space. The processor blocks any non-enclave code’s attempt to
access the enclave memory. Memory pages are encrypted using the processor’s
key prior to leaving the enclave. Intel SGX provides attestation mechanisms
allowing an attesting enclave to demonstrate to a validator that it has been cor-
rectly instantiated [15], and to establish a secure, authenticated connection via
which they can securely communicate sensitive data.

Ethereum Smart Contract. Ethereum enables smart contract which is an
“autonomous agent” associated with a predefined executable code. Incentive and
security mechanisms of the Ethereum ecosystem encourage miners to execute the
contract’s code faithfully [18]. A smart contract could be used to implement an
escrow that enforces a payment from a payer to a payee once the payee has
delivered some service to the payer, while keeping the payment inaccessible to
the payee before such condition is met. The transaction fee to settle the escrow
does not depend on the monetary value that the escrow holds. Consequently,
should the payment value is too small (i.e., micro transaction), the transaction
fee becomes a significant overhead.

Payment Channel. Payment channel enables two parties to transact a large
number of micro payments without incurring high transaction fee or overload-
ing the blockchain with excessive number of transactions [10,37]. A channel is
established after a deposit is made on the blockchain (on-chain). A payer makes
a micro payment to the payee by issuing a digitally signed and hash-locked trans-
fer, called payment promise, and sending it off-chain to the payee. The payee can
use such payment promise to close the channel and claim the payment she has
been promised so far at any time. The value of the payment promises should not
exceed the on-chain deposit, otherwise it cannot be fully collateralized.

3 The Problem

3.1 System Model

We study a marketplace for secure outsourced general-purposed computations.
Unlike vendor-specific cloud services, the pool of computing resources in such a



Towards a Marketplace for Secure Outsourced Computations 793

marketplace aggregates that which are offered by a large cohort of independent
compute nodes (discussed below). More specifically, we consider a system model
that comprises the following three main parties: clients, compute nodes and
brokers.

Program
Standardized

Instrumentation
Procedure

ProgKT

Input

Output

Input

OutputPoW

Fig. 1. The standardized instrumentation procedure that converts Program into
ProgKT. PoW reflects the compute node’s work in executing Program on Input.

– Clients are the system’s end users. A client would like to execute a program
Program on an input Input, obtaining an computation outcome Output. The
program Program can be written by the client, or an open-source software
provided by a third party. In either case, the client outsources such compu-
tational task to a compute node (which we shall define in the following). The
clients are not expected to maintain constant connection with the compute
node over the course of the outsourced computation. While the clients can
discover the compute nodes and initiate the outsourced computation on their
own, this approach is unlikely to scale. Instead, we propose to delegate such
tasks to a broker.

– Compute nodes are machines equipped with commodity trusted processors
(e.g., Intel SGX processors) capable of provisioning TEEs (or enclaves). A
compute node services a client request by running its code in an enclave,
and generating an attestation that proves the correctness of the code execu-
tion (and thus the result). In return, the compute node receives remuneration
v proportional to computational work it has asserted in executing the out-
sourced task.

– Brokers facilitate node discovery and load balancing, and assist the clients
in attesting correct instantiation of the enclaves housing the outsourced com-
putations on the compute nodes. Brokers may charge clients and/or compute
nodes certain commission fee in return to their services. To eliminate broker
monopoly and single-point-of-failure, we allow multiple brokers to co-exist,
thus enabling better brokering service for both clients and compute nodes.

Hereafter, we denote by P a client, by C a compute node, and by B a bro-
ker. The program to be executed on the compute node incorporates logic that
meters the compute node’s work in a fine-grained and tamper-proof fashion.
For simplicity, let us assume that such logic is defined in the system configu-
ration, and agreed upon by all clients and compute nodes. We further assume
that there exists a standardized instrumentation procedure that converts the



794 H. Dang et al.

client’s program Program into a program ProgKT that adheres to the metering
logic requirements. Figure 1 illustrates an overview of the instrumentation, and
the relation between ProgKT and Program.

3.2 System Goals

We now formalize the security guarantees that a marketplace for outsourced com-
putations should offer. The guarantees motivate and justify our design choices.

– Correct and attested execution requires that the output Output obtained by
the client correctly reflects the faithful execution of Program on Input.

– Data confidentiality requires that Input, and secret states of Program from a
client remain encrypted outside the enclave memory, and thus are not known
to any other party, including the compute node (e.g., its OS and its owner).
The key to decrypt them resides only inside the enclave.

– Fair exchange requires that the work a compute node exhausts in executing
the outsourced task is accurately metered and remunerated in fine granularity.
At the same time, it dictates that a compute node gets the full reward for the
outsourced computation if and only if a client gets a correct result of such
computation.

Besides the security guarantees, for practical usability reason, we also wish
to limit the required interaction between client and compute node and optimize
assignment of clients’ request to compute nodes. The former unburdens clients
from constantly maintaining a connection with their assigned compute nodes
prior to and during execution of the outsourced computations, while the latter
maximizes the resource utilization in the marketplace.

3.3 Threat Model

Trust Assumptions. We study a threat model in which the parties (namely
C,B and P) are mutually distrustful. We assume that a standardized instru-
mentation procedure that converts the client’s program Program into a program
ProgKT that meters the compute node’s work in a fine-grained and tamper-proof
fashion (Fig. 1) can be formally verified and therefore is trusted. We further
assume that commodity trusted processors provisioning TEEs on the compute
nodes, in particular Intel SGX processors, are implemented correctly and their
protection mechanisms are not compromised. Finally, we make an assumption
that the Ethereum blockchain is decentralised and trusted (i.e., it is publicly
accessible, and its underlying consensus and smart contract execution mecha-
nisms are intact).

Adversary. We consider a party who deliberately deviates from a prescribed
protocol an adversary. The adversarial goal is to violate the system guarantees
described earlier in Sect. 3.2, namely confidentiality of client’s data, integrity of
the outsourced computations, and the fair exchange between P’s payment and
C’s work in servicing the former’s request.



Towards a Marketplace for Secure Outsourced Computations 795

B CP
Escrow

(1a) Request (1b) Resource offer

(2b) pkg = 〈ProgKT, Enc(kP , Input), AuxData〉
(4a) Enc(kCP , Output)

(3) ProgKT enclave attestation & provision of kP

(2a) v (4b) v

Fig. 2. Kosto overview. kCP is derived from a secret chosen by C and kP .

We assume the adversary is computationally bounded, and that the cryp-
tographic primitives employed in the system (e.g., encryption scheme or hash
function) are secure. Adversarial clients and brokers can deviate arbitrarily from
the prescribed protocol, but they can neither control the compute node’s oper-
ating system (OS) nor its enclaves’ execution. An adversarial compute node can
control its operating system, schedule its processes, reorder and tamper with its
network messages. Nonetheless, it cannot tamper with the enclaves’ execution,
nor observe theirs internal state.

We do not consider side-channel attacks against the hardware and the enclave
execution [45,48]. Besides, denial of service attack wherein an adversary denies
service to honest clients, or blocks honest compute nodes from the system are
beyond scope. Consequently, we require some compute nodes to behave correctly
so as to guarantee the system’s availability. As mentioned earlier, since the clients
can serve as their own broker, handling compute node discovery and connecting
to the compute nodes directly, there will always be honest self-serving brokers
in the system, which eliminates the broker’s single-point-of-failure problem.

4 Kosto Design

4.1 Workflow

P and C can post their requests and available resource offers to a broker B of their
choice, perhaps based on B’s reputation or quality of service. B then evaluates
among all requests and offers it has received a suitable assignments of requests
to compute nodes. Alternatively, the clients and the compute nodes can directly
discover and connect to each other. In such case, they play an additional role of
self-serving broker.

Let v be the remuneration that P pays to C in exchange for executing
Program on Input and delivering the result Output. Kosto requires Program
to be instrumented into ProgKT which incorporates trustworthy metering of the
compute node’s work. To guarantee payment to C upon its completion of the
computational task, Kosto requires P to maintain a deposit worth at least v
on an on-chain escrow. P sends pkg = 〈ProgKT, Enc(kP , Input), AuxData〉 to C,
wherein Enc() is a symantically secure symmetric-key encryption scheme [29],



796 H. Dang et al.

and AuxData contains auxiliary data needed for the execution. C instantiates the
ProgKT enclave, and attests to P that the enclave has been instantiated correctly.
Upon successful attestation, a secret key kP is provisioned to the ProgKT enclave,
allowing it to process and compute on Input. Finally, the output Output of the
computation is sent to P. Output is encrypted in such a way that its decryption
by P ensures full payment of v to C. Figure 2 depicts the workflow in Kosto.

4.2 Enclave Execution

Kosto relies on Intel SGX [33] to offer attested execution and data confidential-
ity to the outsourced computations. The outsourced program Program should
be SGX-compliant (i.e., it inherently supports SGX enclave execution). Tech-
niques that enable enclave executions for unmodified legacy applications, such
as Haven [16] and Panoply [41] are orthogonal to Kosto.

A compute node services the client’s request by first instantiating the ProgKT
enclave, and generating an attestation proving that the enclave has been instanti-
ated correctly. The attestation mechanism allows P to establish a secure, authen-
ticated connection to the enclave, via which the secret key kP is communicated.
The compute node then invokes the enclave execution on Input to collect the
output Output. In addition to Output, the enclave also returns a “proof of work”
indicating a computational effort that C has asserted thus far, which C can use
to claim the remuneration. We elaborate on this in Sect. 4.3.

4.3 Fair Exchange

Kosto splits the reward v of the outsourced computation into two portions,
namely vc = αv and vd = (1 − α)v, where α is a parameter set by the client
P, and agreed upon by C. The first portion (i.e., vc) remunerates C for its work
on a fine-grained basis, while the second portion (i.e., vd) rewards the delivery
of the result. The configuration of the parameter α, and by its extension, the
remuneration policy, is beyond Kosto’s scope.

C is entitled to vc upon the completion of the outsourced computation. In case
the computation is inadvertently aborted midway, C is still remunerated with
a fraction of vc according to its progress prior to the suspension. The remain-
ing portion of v, namely vd, is only payable to C when the computation output
is delivered to P. This discourages C from denying P of the result. Additional
mechanism that disincentivises result withholding (e.g., requiring C to make a
security deposit which is forfeited should they repeatedly abort the computa-
tion [17,30]) can also be incorporated into Kosto.

TEE-Based Metering. To enable an fair exchange described above, Kosto has
to meter the compute node’s work in a fine-grained and tamper-proof fashion.
We follow Zhang et al. [49] in implementing a reliable metering logic inside
the enclave. More specifically, Kosto requires the client’s program Program to be
instrumented into a wrapper program ProgKT (see Fig. 1). The wrapper program
reserves the logic of the original program (i.e., it executes Program’s logic on



Towards a Marketplace for Secure Outsourced Computations 797

Input), while keeping a counter of the number of instructions that has been
executed. This is then used as a measurement of the compute node’s work.

ProgKT maintains the instruction counter in a reserved register which is inac-
cessiable to any other process. To prevent a malicious Program from manipu-
lating the instruction counter, Kosto does not support Program that is multi-
threaded or contains writeable code pages [5,49]. When the ProgKT enclave halts
or exits, it returns a “proof of work” (i.e., the number of instruction executed)
based on which Kosto settles the payment of vc (or a fraction of it). We note that
if the compute node (i.e., its OS) intentionally kills the enclave process, ProgKT
does not return such proof of work, which eliminates a remuneration-draining
attack where a malicious compute node deliberately interrupts the enclave exe-
cution before it finishes, so as to drain vc without an intention of completing the
outsourced computation.

We remark that the restriction of single-threaded Program is not necessary
a severe limitation, for threading in SGX enclave is much different compared to
that of legacy software [3]. In particular, one cannot create or destroy an SGX
thread on the fly, and an SGX thread is mapped directly to a logical processor.
Consequently, a typical SGX-compliant program (i.e., a program that inherently
supports SGX-enclave execution) is often single-threaded.

On the Choice of Instruction Counting. One may argue that instructions
are not the most accurate metric for CPU effort. Alternative metrics include CPU
time and CPU cycles. Nevertheless, these metrics are subject to manipulation by
the malicious OS. Even if they were not manipulated, they are incremented even
when an enclave is swapped out [49]. Consequently, we believe that instruction
counting is the most appropriate method for securely measuring the compute
node’s effort using available tools in SGX.

Micro Payments with Off-Chain Payment Channel. One naive approach
to settle the proof of work is for C to send it to P, who then responds with
a transaction paying a corresponding amount of reward to C. This approach,
however, does not payment for C in case P neglects her outsourced computa-
tion. Another approach is to have P commit a number of equally-valued micro
transactions, each of which contains a fraction of vc, to a payment escrow on the
blockchain, and to structure the proof such that it can be used to autonomously
claim a subset or all of those micro transactions. Nonetheless, settling a large
number of micro transactions on the blockchain incurs high overhead.

Kosto sidesteps this challenge by leveraging payment channel [10], allowing
two parties to transact a large number of micro payments without incurring high
transaction fee or overloading the blockchain with transactions. It is assumed
that a payer and a payee maintain a payment channel (discussed in Sect. 2), and
each micro payment is represented by a payment promise to be communicated
off-chain (i.e., off the blockchain) between the payer and the payee. To settle
the payments, the payee posted the latest payment promise (accompanied by
settling-data such promise requires, if any) to the blockchain, thereby closing
the channel. However, establishing a new channel for each pair of client and



798 H. Dang et al.

B CP
Pick randB

hB = H(randB)
Pick 〈s1, s2, . . . sn〉, compute hi = H(si)
Pick randP , compute hP = H(randP)

h1

mB
1
. . .

hn

mB
n

hP hB
mB

d

Pick randC
hC = H(randC)

h1

mC
1
. . .

hn

mC
n

hP hC
mC

d

Collect Enc(kCP , Output) from ProgKT

Enc(kCP , Output)
randP

Fig. 3. An overview of the fair exchange in Kosto. mB
i and mC

i are hash-locked by hi,
mB

d by hP and hB, mC
d by hP and hC , and kCP = kP ⊕ randC .

compute node is inefficient. Kosto, instead, makes use of multi-hop channels1 to
better utilize the channel capacity, requiring fewer channels to be established.

To this end, Kosto assumes that each client P maintains a payment channel
with the broker B that, in turn, maintains a channel with each compute node
C. The payment from P to C does not require a direct channel; rather, it could
be securely routed via B, in a sense that once C collects a payment from B,
the latter is guaranteed of a corresponding payment from P2. We assume that
each payment channel has sufficiently large capacity (i.e., its on-chain deposit)
to accommodate the payment of various outsourced computations during its
lifetime.

Figure 3 summarizes the fair exchange of the reward v and the outsourced
computation of ProgKT. v is split over n+1 micro payments, n of which summing
up to vc, while the last one is worth vd. The protocol does not require any
communication between P and C prior to or during the computation, nor an on-
chain channel between them. It, however, requires an off-chain communication
between P and C in the final step to decrypt the output.

Payment of vc. Without loss of generality, let us assume that the payment of vc

is divided into n equally-valued payment promises, which are routed via B. That
is, P generates n payment promises to B, and B generates the corresponding n
payments promises to C with the same value and claiming condition.

To generate the n payment promises 〈mB
1 ,mB

2 , . . . mB
n〉 to B, P first picks

n random strings 〈s1, s2, . . . sn〉, and computes their hashes 〈h1, h2, . . . hn〉 (i.e.,
hi = H(si)). A digest hi is used to lock a promise mB

i , such that B can only use
mB

i to close the channel if it is aware of si such that H(si) = hi. The payment

1 While we discuss unidirectional channels, Kosto supports bidirectional channels.
2 While B could charge a service fee for the routing, for simplicity, we assume B offers

such routing free of charge. Extending Kosto to support such service fee is trivial.



Towards a Marketplace for Secure Outsourced Computations 799

promise mB
i is worth [debtP + (i × vc)/n] wherein debtP is the accumulated

amount of unsettled payment for P’s previous requests. Finally, P encrypts the
random strings 〈s1, s2, . . . sn〉 with kP , and attaches them as well as the payment
promises to AuxData.

Similarly, B generates the corresponding promises 〈mC
1 ,mC

2 , . . . mC
n〉 to C.

Each promise mC
i is locked by hi (i.e., the same hash-lock as mB

i ), and worth
[credC + (i × vc)/n] wherein credC is the accumulated unsettled credit that C
is entitled to claim for its previous services. B includes these promises into the
AuxData before forwarding pkg to C.

Payment of vd Upon Output Delivery. To ensure that the remaining portion
of v, namely vd, can only be collected upon the delivery of the output to P,
ProgKT encrypts the output using a key kCP derived from kP and a secret randC
chosen and committed to by C. At the same time, the full payment of v is
encumbered until the disclosure of randC .

As shown in Fig. 3, besides the n payment promises above, P generates
another payment promise mB

d to B that is worth [debtP + v] and is hash-locked
by two digests hB and hP . Similarly, B also generate one more payment promise
mC

d to C that is worth [credC+v], and hash-locked by hP and hC . The three hash-
locks hP , hB and hC can be settled by three independent settling-data randP ,
randB and randC chosen independently at random by the three parties P,B and
C, respectively.

Dynamic Runtime Checks. The fair exchange requires the wrapper enclave
ProgKT to perform some dynamic checks at runtime prior to executing Program’s
logic. More specifically, besides Input and AuxData, ProgKT also consumes
the hash-lock hC and randC . It first verifies the validity of the settling-data
〈s1, s2, . . . sn〉 (i.e., hi = H(si)∀〈hi, si〉 ∈ AuxData). Next, it checks if hC =
H(randC). Only when the verification passes does it execute Program on Input,
obtaining Output. It then encrypts Output with kCP = kP ⊕randC , producing an
encrypted output Enc(kCP , Output). Finally, the enclave returns the appropriate
settling-data si based on the instruction counter and the encrypted output (if it
successfully completes the computation) to C.

Payment Settlement. The settling-data si renders the promise mC
i claimable,

enabling C to collect (a portion of) vc according to its work. In order to collect
a payment from a promise, one posts the corresponding settling-data to the
blockchain, thereby making it publicly available.

To obtain the settling-data necessary to claim mC
d (i.e., the full reward v),

C has to send the encrypted output to P, who then responds with randP . If C
chooses to settle the payment thereby closes the channel between C and B, it has
to post both randP and randC on the blockchain. Since all data posted to the
blockchain are publicly available, P can now collect randC to compute kCP and
obtain Output, while B can collect randP to claim mB

d . Alternatively, should C
wish to maintain the channel, it back-propagates the settling-data to B and P so
that they can update credC , debtP , and P can decrypt the encrypted output. In
a situation where P’s response is invalid (i.e., its digest produced by the standard



800 H. Dang et al.

hash function H(·) does not match hP), C can check this invalidity locally and
use it as a evidence to accuse P of conducting mischief. In such situation, fair
exchange requirement is still guaranteed (i.e., C does not claim vd from B, who
in turn does not claim vd from P and P cannot decrypt Enc(kCP , Output) to
obtain Output).

4.4 Delegated Attestation

Kosto relieves P from conducting a remote attestation with C at the beginning
of every request execution by implementing a delegated attestation scheme. The
scheme requires each broker B to run an attestation manager enclave AM, and
each compute node C to run a key handler enclave KH. The execution of AM and
KH are protected by Intel SGX.

Without loss of generality, the delegated attestation builds a chain of trust
that comprises three links. The first and second links are established via remote
attestations between P as a validator and AM as an attesting enclave, and AM as a
validator and KH as an attesting enclave. The final link entails ProgKT enclave to
prove its correctness to KH via local attestation. Chaining all three links together,
P gains confidence that the ProgKT enclave has been properly instantiated on
the compute node C using the correct code, without contacting C or the IAS.

Each attestation manager enclave has its own (unique) public-private key
pair (pkAM, skAM) that are generated uniformly at random during the enclave
instantiation. Upon successfully instantiating AM, B requests the trusted proces-
sor for its remote attestation πAM = 〈MAM, pkAM〉σTEE

, where MAM is the enclave’s
measurement, and σTEE is a group signature signed by the processor’s private
key. The certificate πAM attests for the correctness of the AM enclave and its public
key. Nonetheless, the only party that can verify πAM is the IAS acting as group
manager [15]. Kosto converts πAM into a publicly verifiable certificate by hav-
ing B obtain and store the IAS response CertAM = 〈πAM, validity〉σIAS

where
σIAS is the IAS’s publicly verifiable signature on πAM and the validity flag. By
examining CertAM, any party can verify the correctness of and establish a secure
connection to the AM enclave.

Likewise, every compute node C runs a key handler enclave KH. C obtains
(from the IAS) and stores a publicly verifiable certificate CertKH =
〈πKH , valid〉σIAS

, where πKH is KH’s remote attestation containing its mea-
surement MKH and its unique public key pkKH. By examining CertKH, any party
can be assured of the correctness of KH and communicate securely with it.

Delegated Attestation Protocol. Fig. 4 depicts the workflow of Kosto’s
delegated attestation. After instrumenting Program into ProgKT and verify-
ing the correctness of the instrumentation, P initiates the delegated attes-
tation by obtaining CertAM from B and verifies its validity. It then estab-
lishes a secure and authenticated channel with AM using pkAM. P then sends
pkg = 〈ProgKT, Enc(kP , Input), AuxData〉 to B, and kP to AM via the secure
channel. Once B finds a compute node C that is willing to match P’s request, AM
obtains CertKH from C, verifies its validity, and establishes a secure and authen-
ticated connection with C’s KH to communicate kP . B then sends pkg to C.



Towards a Marketplace for Secure Outsourced Computations 801

P BAM

CKH ProgKT

(1) CertAM

(2b) kP

(2b) pkg

(3) CertKH
(4a

) kP (4b) pkg

(5) C instantiates
ProgKT enclave

(6) ψProgKT

(7) kP

Fig. 4. An overview of the delegated attestation scheme.

The compute node instantiates an enclave to execute ProgKT, and performs a
local attestation with KH to prove its correctness. Upon successfully attestation,
KH sends the key kP to the ProgKT enclave. Once the ProgKT enclave completes
the computation, it returns the encrypted output, which is then sent to P (per-
haps being routed through B).

This mechanism only invokes IAS to obtain attestation certificates for AM
and KH, instead of constantly involving IAS in every task execution. Further, it
allows P to post a request (along with the payment) and then go offline until
the time she wishes to collect the output, as opposed to remaining online till her
request is picked up by some computation node.

5 Security Arguments

5.1 Attested Execution and Data Confidentiality

Kosto’s relies on Intel SGX [33] to offer attested execution and data confiden-
tiality to outsourced computations. In particular, SGX enables isolated execu-
tion [43] ensuring that code loaded and running inside the enclaves cannot be
tampered with by any other processes including the operating system or hyper-
visor. This, in combination with attestation capabilities, allows Kosto to offer
attested execution in which the computation correctness is guaranteed. More-
over, data (i.e., input, output) and secret states of the enclave execution always
remain encrypted outside of the enclave memory, thus their confidentiality are
guaranteed. Furthermore, SGX memory encryption engine is capable of protect-
ing data integrity and preventing memory replay attacks [28,32].

Nonetheless, SGX’s attested execution does not inherently offer protections
against side-channel leakages [24,40,48]. The access pattern incurred by data
(or code page) moving between the enclave and the non-enclave environment
(e.g., page fault) could leak sensitive information about the code or data being
processed within the enclave. Such side-channel leakage could be mitigated by
ensuring that the enclave execution is data oblivious; i.e., the access pattern no
longer depends on the input data [21]. While Kosto does not explicitly eliminate



802 H. Dang et al.

side-channel leakage, it could benefit from a vast amount of research on defenses
against side-channel leakages [20,21,31,40,42], which we shall incorporate into
Kosto in future work.

5.2 Fair Exchange

TEE-Based Metering. To enable an fair exchange between client’s payment
and compute node’s computation, Kosto necessitates dynamic runtime checks
incorporated within the enclave that houses the outsourced computation. We
implement this by providing a compiler that instruments any SGX-compliant
program Program into a wrapper program ProgKT. We believe that these addi-
tional steps and the overall instrumentation are simple enough to lend themselves
to formal verification and vetting by Program writer, or by the client.

As we mentioned earlier, the original Program should not contain writable
code pages, for they would allow the program to rewrite itself at runtime and
thus evade the instrumentation. This could be enforced by requiring the code
page to have either write or executable permission exclusively (i.e., it cannot have
both permission at the same time). This practice has also been recommended
by Intel to the enclave writers [5].

In addition, Kosto requires Program to be single-threaded. While the instruc-
tion counter is maintained in a reserved register which is inaccessible to any other
processes (Sect. 4.3), it remains accessible by different threads of Program, should
it be multi-threaded. Thus, a malicious program that has multiple threads could
manipulate the instruction counter value by carefully crafting the interactions
of its threads.

Payment of vc. Kosto builds on payment channel [10] to enable efficient micro
payments and relies on the security of the Ethereum blockchain to ensure pay-
ment escrow is faithfully executed. To optimize for efficiency and avoid overload-
ing the blockchain, Kosto securely routes payment from P to C via the broker
B. A careful design of hash-lock payment promises, wherein promise from P to
B, and that of B to C could be settled using the same settling-data, guarantees
that B can always claim from P which he pays to C on behalf of P.

Ensuring Output Delivery. At the end of the computation, ProgKT enclave
encrypts the Output using key kCP = kP ⊕randC . Since mC

d is partially locked by
randC , the decryption of the output and the settling of mC

d are bound together. In
particular, in order to claim mC

d , C has to post randC to the blockchain, making it
publicly available. This enables P to compute kCP and obtain Output. Should P
deny C of randP after receiving the encrypted output, the latter does not reveal
randC , causing the output to remain encrypted. On the other hand, should C
wish to deny P of the output, it would have to forfeit vd. In sum, it is either the
case that P obtains the output and C is entitled to claim mC

d , or both of them
are denied of the exchange’s outcome (i.e., Output for P and vd for C).



Towards a Marketplace for Secure Outsourced Computations 803

5.3 Delegated Attestation

Kosto’s delegated attestation relies on AM and KH enclaves to attest correct
instantiation of ProgKT enclave. Therefore, their correct instantiations are of
utter importance. Fortunately, these enclave are fixed (as opposed to the ProgKT
enclave that houses client-defined program), and thus are easy to vet and verify.

Kosto’s delegated attestation requires minimal involvement of P (i.e., exam-
ine the publicly verifiable certificates CertAM = 〈πAM, validity〉σIAS

). By check-
ing that πAM indeed contains the expected measurement MAM, that its validity
flag indicates valid, and that the certificate has been properly certified (using
Intel’s published public key [9]), P can ascertain the correct instantiation of AM.
Moreover, using the public key pkAM included in πAM, P can establish a secure
and authenticated channel to AM via which the secret key kP is communicated.
Likewise, AM can verify the correct instantiation of KH and securely communicate
kP to the latter in the exact same manner. The security of the local attestation
and communication between KH and ProgKT enclave follows directly from Intel
SGX’s specifications [15]. Therefore, provided that cryptographic primitives in
use are secure, and SGX hardware protection mechanisms are not subverted,
Kosto’s delegated attestation is secure.

6 Evaluation

6.1 Experimental Setup

All experiments are conducted on a system that is equipped with Intel i7-6820HQ
2.70 GHz CPU, 16 GB RAM, 2TB hard drive, and running Ubuntu 16.04 Xenial
Xerus. We evaluate the overhead of Kosto’s enclave execution using a number
of computational tasks including five benchmarks (i.e., mcf, deepsjeng, leela,
exchang2, and xz) selected from SPEC CPU2017 [12], and two standard cryp-
tographic operations (i.e., SHA256 and AES Encryption). The enclave trusted
codebases are implemented using Intel SGX SDK [4]. To quantify the cost of
task matching in Kosto, we measure the runtime of the Mucha-Sankowski algo-
rithm [34] that we implemented in C. All experiments are repeated over 10 runs,
and the average results are reported.

6.2 Cost of Enclave Execution

Overhead in Execution Time. We evaluate the five SPEC CPU2017 bench-
marks in three different execution modes, namely baseline, SGX-compliant and
Kosto-compliant. The baseline mode compiles the benchmarks as-is and runs
them in untrusted execution environment. SGX-compliant mode requires port-
ing the benchmarks to support SGX-enclave execution. This entails replacing
standard system calls and libraries in the original code with SGX-compliant
ones supported in the SGX SDK [4]. Finally, the Kosto-compliant mode further
instruments SGX-compliant code with dynamic runtime checks and TEE-based
metering discussed in previous section.



804 H. Dang et al.

mc
f

dee
psj

eng lee
la xz

exc
han

ge
0

1

2

3

N
or
m
al
is
ed

ru
nn

in
g
ti
m
e

baseline
SGX-compliant
Kosto-compliant

Fig. 5. Kosto’s enclave execution overhead. The running time of each benchmark is
normalized against its own baseline mode’s.

28 212 216 220 224
0

100

200

300

400

Message Size (Bytes)

M
B
ps

OpenSSL
SGXSSL

(a) SHA256 throughput

28 212 216 220 224
0

1

2

3

4

5

Message Size (Bytes)

G
B
ps

OpenSSL
SGXSSL

(b) AES-GCM throughput

Fig. 6. Throughput of enclave and non-enclave based cryptographic operations.

Figure 5 compares the running time of the five benchmarks in three modes,
with the running time of each benchmark normalized against its own baseline.
We observe that the SGX-compliant mode incurs from 1.5× to 3.7× overhead
over the baseline. This overhead is mostly due to enclave’s control switching. The
instrumentations introduced in Kosto-compliant mode incur an extra 8%–14%
overhead relative to the SGX-compliant mode.

Various techniques have been proposed for minimizing the overhead of
enclave execution, typically by reducing the control switching between the
enclave code and the untrusted application that services OS-provided func-
tions [36,44,47]. We leave the incorporation of such optimization into Kosto
for future work.

Overhead in Throughput. Next, we measure the overhead in throughput
incurred by enclave execution on computation-intensive works. This set of exper-
iments measure performances of SHA256 and AES-GCM encryption operations
under OpenSSL [7] and Intel SGXSSL [6] implementations against exponentially



Towards a Marketplace for Secure Outsourced Computations 805

increasing input size (ranging from 256 B to 4 MB). OpenSSL implementation
runs in an untrusted non-enclave memory, whereas SGXSSL ports OpenSSL to
support SGX enclave execution.

Figure 6a shows a significant gap between the throughput of SGXSSL and
OpenSSL implementations of SHA256 when a message size is small (e.g.,
OpenSSL’s throughput is upto 5× for 1 KB message). Nonetheless, such a gap
reduces as the message size increases (e.g., as small as 1.5× for 4 MB message). A
similar trend is observed in throughput of AES-GCM encryption (the decryption
throughput is similar), with the throughput overhead incurred by enclave execu-
tion reduces from 6.3× for 1 KB message to 3% for 4 MB message. We attribute
this throughput gap to the I/O cost and context switching that enclave execution
incurs. Fortunately, this overhead is amortized as the input size increases.

7 Related Works

Decentralised Outsourced Computation. Golem [2] explores a marketplace
for outsourced computation. Unlike Kosto, it does not feature the attested execu-
tion environment. Consequently, Golem needs to redundantly execute the same
task on multiple compute nodes in order to verify the execution correctness.
Concurrent to our work, AirTNT [14] proposes the use of enclave execution
for outsourced computations, and devises a protocol that allows fair exchange
between the client and the compute nodes. Such protocol necessitates a separate
payment channel for every pair of client and compute node, and requires con-
stant communication between the two parties over the course of the outsourced
computation (i.e., highly interactive). Kosto, in contrast, alleviates the client
and the compute nodes from these inconveniences.

Reliable Resource Accounting. Early approaches to resource accounting
in the context of outsourced computations rely on nested virtualization and
TPMs, or place a trusted resource observer underneath the service provider’s
software [19,39]. Alternatively, REM [49] instruments the client’s program with
dynamic runtime checks that maintain an instruction counter to self account its
computational effort. The correctness and integrity of these runtime checks are
enforced by the trusted hardware. Kosto adopts REM’s approach in metering
the compute nodes’ work.

SGX-Based Systems. Trusted hardware, in particular Intel SGX processors,
have been used to enhance security in various application domains, including
data analytics [21,24,38], machine learning [35] and outsourced storage [20,23].
In addition, SGX has also been utilized to scale the blockchain [8,22]. To our
knowledge, Kosto is the first solution to provision a full-fledged marketplace for
secure outsourced computations using Intel SGX.

8 Conclusion

We have presented Kosto – a framework enabling a marketplace for secure out-
sourced computations. Kosto protects confidentiality of clients’ input, integrity of



806 H. Dang et al.

the computations, and ensures fair exchange between the clients and the compute
nodes. Our experiments show that Kosto is suitable for computation-intensive
operations, incurring an overhead as low as 3% over untrustworthy non-enclave
execution. I/O-intensive operations are also supported, albeit as a higher over-
head (e.g., 1.5×). We leave an incorporation of enclave execution optimizations
and defenses against side-channel leakages to future work.

Acknowledgement. This research has been supported by the National Research
Foundation, Prime Minister’s Office, Singapore under its Strategic Capability Research
Centres Funding Initiative. We thank the anonymous reviewers their helpful feedback
and insightful suggestions. Opinions and findings expressed in this work are those of
the authors and do not necessarily reflect the views of any of the sponsors.

References

1. Airbnb. https://www.airbnb.com
2. Golem. https://golem.network/
3. Intel SGX notes. https://intelsgx.blogspot.com/2016/06/great-notice-about-

basics-of-sgx.html
4. Intel SGX SDK for Linux. https://github.com/01org/linux-sgx
5. Intel Software Guard Extensions Enclave Writer’s Guide. https://software.intel.

com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-
Writers-Guide.pdf

6. Intel Software Guard Extensions SSL. https://github.com/intel/intel-sgx-ssl
7. OpenSSL Cryptography and SSL/TLS Toolkit. https://www.openssl.org/
8. Proof of elapsted time. https://sawtooth.hyperledger.org
9. Public key for Intel attestation service. https://software.intel.com/en-us/sgx/

resource-library
10. Raiden network. http://raiden.network
11. SETI@home. https://setiathome.berkeley.edu/
12. SPEC CPU2017 Benchmarks. https://www.spec.org/cpu2017/Docs/overview.

html
13. Uber. https://www.uber.com
14. Al-Bassam, M., Sonnino, A., Król, M., Psaras, I.: Airtnt: fair exchange payment for

outsourced secure enclave computations. arXiv preprint arXiv:1805.06411 (2018)
15. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU

based attestation and sealing. In: HASP (2013)
16. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted

cloud with haven. In: OSDI (2014)
17. Bentov, I., Kumaresan, R., Miller, A.: Instantaneous decentralized poker. In: Tak-

agi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 410–440.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 15

18. Buterin, V.: Ethereum: a next-generation smart contract and decentralized appli-
cation platform (2014). https://github.com/ethereum/wiki/wiki/White-Paper

19. Chen, C., Maniatis, P., Perrig, A., Vasudevan, A., Sekar, V.: Towards verifi-
able resource accounting for outsourced computation. In: ACM SIGPLAN Notices
(2013)

20. Dang, H., Chang, E.C.: Privacy-preserving data deduplication on trusted proces-
sors. In: IEEE CLOUD (2017)

https://www.airbnb.com
https://golem.network/
https://intelsgx.blogspot.com/2016/06/great-notice-about-basics-of-sgx.html
https://intelsgx.blogspot.com/2016/06/great-notice-about-basics-of-sgx.html
https://github.com/01org/linux-sgx
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://github.com/intel/intel-sgx-ssl
https://www.openssl.org/
https://sawtooth.hyperledger.org
https://software.intel.com/en-us/sgx/resource-library
https://software.intel.com/en-us/sgx/resource-library
http://raiden.network
https://setiathome.berkeley.edu/
https://www.spec.org/cpu2017/Docs/overview.html
https://www.spec.org/cpu2017/Docs/overview.html
https://www.uber.com
http://arxiv.org/abs/1805.06411
https://doi.org/10.1007/978-3-319-70697-9_15
https://github.com/ethereum/wiki/wiki/White-Paper


Towards a Marketplace for Secure Outsourced Computations 807

21. Dang, H., Dinh, T.T.A., Chang, E.C., Ooi, B.C.: Privacy-preserving computation
with trusted computing via scramble-then-compute. In: PETs (2017)

22. Dang, H., Dinh, T.T.A., Loghin, D., Chang, E.C., Lin, Q., Ooi, B.C.: Towards
scaling blockchain systems via sharding. In: SIGMOD (2019)

23. Dang, H., Purwanto, E., Chang, E.C.: Proofs of data residency: checking whether
your cloud files have been relocated. In: AsiaCCS (2017)

24. Dinh, T.T.A., Saxena, P., Chang, E.C., Ooi, B.C., Zhang, C.: M2R: enabling
stronger privacy in MapReduce computation. In: USENIX Security (2015)

25. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

26. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: STOC
(2009)

27. Goldreich, O.: Secure multi-party computation. Manuscript, Preliminary version
(1998)

28. Gueron, S.: A memory encryption engine suitable for general purpose processors.
IACR Cryptology ePrint Archive (2016)

29. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca
Raton (2014)

30. Kumaresan, R., Bentov, I.: Amortizing secure computation with penalties. In: CCS
(2016)

31. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: ObliVM: a programming
framework for secure computation. In: IEEE S&P (2015)

32. Matetic, S., et al.: ROTE: rollback protection for trusted execution. In: USENIX
Security (2017)

33. McKeen, F., et al.: Innovative instructions and software model for isolated execu-
tion. In: HASP, Article no. 10 (2013)

34. Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In:
FOCS (2004)

35. Ohrimenko, O., et al.: Oblivious multi-party machine learning on trusted proces-
sors. In: USENIX Security (2016)

36. Orenbach, M., Lifshits, P., Minkin, M., Silberstein, M.: Eleos: ExitLess OS services
for SGX enclaves. In: EuroSys (2017)

37. Poon, J., Dryja, T.: The Bitcoin lightning network: scalable off-chain instant pay-
ments (2016)

38. Schuster, F., et al.: VC3: trustworthy data analytics in the cloud using SGX. In:
IEEE S&P (2015)

39. Sekar, V., Maniatis, P.: Verifiable resource accounting for cloud computing services.
In: WSCC (2011)

40. Shinde, S., Chua, Z.L., Narayanan, V., Saxena, P.: Preventing page faults from
telling your secrets. In: AsiaCCS (2016)

41. Shinde, S., Le Tien, D., Tople, S., Saxena, P.: Panoply: low-TCB Linux applications
with SGX enclaves. In: NDSS (2017)

42. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol.
In: CCS (2013)

43. Subramanyan, P., Sinha, R., Lebedev, I., Devadas, S., Seshia, S.A.: A formal foun-
dation for secure remote execution of enclaves. In: CCS (2017)

44. Taassori, M., Shafiee, A., Balasubramonian, R.: VAULT: reducing paging overheads
in SGX with efficient integrity verification structures. In: ASPLOS (2018)

https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25


808 H. Dang et al.

45. Van Bulck, J., et al.: Foreshadow: extracting the keys to the Intel SGX Kingdom
with transient out-of-order execution. In: USENIX Security (2018)

46. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

47. Weisse, O., Bertacco, V., Austin, T.: Regaining lost cycles with HotCalls: a fast
interface for SGX secure enclaves. In: ISCA (2017)

48. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: deterministic side chan-
nels for untrusted operating systems. In: IEEE S&P (2015)

49. Zhang, F., Eyal, I., Escriva, R., Juels, A., Van Renesse, R.: REM: resource-efficient
mining for blockchains. In: USENIX Security (2017)

https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2

	Towards a Marketplace for Secure Outsourced Computations
	1 Introduction
	2 Preliminaries
	3 The Problem
	3.1 System Model
	3.2 System Goals
	3.3 Threat Model

	4 Kosto Design
	4.1 Workflow
	4.2 Enclave Execution
	4.3 Fair Exchange
	4.4 Delegated Attestation

	5 Security Arguments
	5.1 Attested Execution and Data Confidentiality
	5.2 Fair Exchange
	5.3 Delegated Attestation

	6 Evaluation
	6.1 Experimental Setup
	6.2 Cost of Enclave Execution

	7 Related Works
	8 Conclusion
	References




