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Abstract. Smart contracts allow untrusting parties to arrange agree-
ments encoded as code deployed on a blockchain platform. To release
their potential, it is necessary to connect the contracts with the outside
world, such that they can understand and use information from other
infrastructures. However, there are many challenges associated with real-
izing such a system, and despite the existence of many proposals, no
solution is secure, provides easily-parsable data, introduces small over-
heads, and is easy to deploy.

In this paper, we propose Practical Data Feed Service (PDFS), a sys-
tem that combines the advantages of the previous schemes and introduces
new functionalities. PDFS extends content providers by including new
features for data transparency and consistency validations. This combi-
nation provides multiple benefits like content which is easy to parse and
efficient authenticity verification without breaking natural trust chains.
PDFS keeps content providers auditable and mitigates their malicious
activities (like data modification or censorship) and allows them to cre-
ate a new business model. We show how PDFS is integrated with content
providers, report on a PDFS implementation and present results from
conducted experimental evaluations.
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1 Introduction

The concept of smart contracts was introduced by Szabo [13,26,27]. They allow
mutually untrusting parties to arrange and execute agreements without involv-
ing any third trusted party. These agreements are expressed in a programming
language, hence can encode any processing logic possible to express in the used
language in a precise and unambiguous way. The concept has been unexplored
for decades; however, with the rise of Bitcoin [23], distributed consensus, and
blockchain platforms in general, smart contracts can finally be implemented in
a practical way. Smart contracts deployed solely on a blockchain platform have
some fundamental limitations. One problem is that a smart contract can only
use resources available on the blockchain. This issue limits them from using
external data provided by other infrastructures, like HTTP(S) data feeds. Ide-
ally, smart contracts could process data provided by other infrastructures and
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use that to encode processing logic. Unfortunately, there are many challenges
associated with that.

One such challenge is the authenticity of data feeds. Data provided to a
smart contract should be authentic, so that the smart contract can verify its
origin and execute accordingly. Unfortunately, the widely deployed Transport
Layer Security (TLS) protocol [24] is inoperable in such a setting. Secure web
servers that deploy it (i.e., running HTTP over TLS – HTTPS), cannot provide
data authenticity to third parties like smart contracts. First approaches to make
this data accessible to smart contracts were centralized oracles [6,9,18,31]. This
introduced new trusted third parties which fetch HTTPS websites, parse them,
and provide the data to smart contracts (which finally process it). These solu-
tions present strong trust assumptions (i.e., a new trusted party). To relax it,
a concept of oracles based on trust computing was proposed [31]. These ora-
cles work similarly, however, the code run by them is executed with the Intel’s
Software Guard Extensions (SGX) [15] framework, which allows proving attes-
tation of the code executed by the oracles. A disadvantage of this approach is to
position Intel as a centralized trusted entity, and SGX as a trusted technology.
In contrast to these approaches, TLS-N [25] enhances the TLS protocol by pro-
viding non-repudiation. TLS-N authenticates TLS records sent to clients during
client-server TLS sessions. TLS-N requires TLS stack modifications and provides
hard-to-process data feeds, but it does not introduce any new trusted entities.

In this paper, we propose PDFS, a practical data feed service for smart
contracts that aims to fill the gap between oracle solutions and transport-layer
authentication. Our architecture allows content providers to link their web enti-
ties with their blockchain entities. This design provides many benefits like secu-
rity, efficiency, and possible new features. In PDFS, data is authenticated over
blockchain but without breaking TLS trust chains or modifying TLS stacks.
Moreover, content providers can specify data formats they would like to use
freely; thus data can be easily-parsable and tailored for smart contracts. Besides
that, PDFS provides content providers with a payment framework, but it does
not allow content providers to misbehave by equivocating or censoring queries.

2 Background

2.1 Blockchain and Smart Contracts

Bitcoin [23] introduced the concept of open and decentralized consensus which,
in combination with an append-only data structure, leaded to the existence of
cryptocurrency without trusted parties. This combination and its variants are
usually referred to as a blockchain. Bitcoin has inspired other systems (e.g.,
Litecoin [4] and Namecoin [5]). Interesting and promising platforms leverage
blockchain to implement smart contracts. These systems rely on the append-
only property provided by blockchain platforms that allow realizing smart con-
tracts by a replicated execution (i.e., all participants execute the same code for
the same inputs, thus maintaining the same state). Those platforms introduce
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high-level languages that allow to specify agreements by any parties and execute
these agreements on top of the blockchain.

The most prominent smart contract platform is Ethereum [30]. It follows the
replicated execution model, and it provides smart contract oriented high-level
languages. In Ethereum, anyone can specify a smart contract (i.e., an object
with a set of methods and an associated state) and deploy it on the blockchain
(each smart contract gets a unique blockchain address). From this point, anyone
can interact with the contract by sending transactions to its address and calling
its method(s). Smart contracts can implement almost arbitrary logic, including
monetary transfers, thus making this technology appealing to financial related
services and other businesses.

2.2 Transport Layer Security

The Transport Layer Security (TLS) protocol [24] is one of the most widely
deployed security protocols on the Internet. The protocol is designed for the
client-server architecture. TLS aims to provide data confidentiality and integrity
and authentication of protocol participants, but it was not designed to provide
non-repudiation. Therefore, a communicating party (i.e., a client or a server)
cannot prove to any third party that a given content was produced during the
TLS connection. The TLS is prominently deployed for securing web traffic (i.e.,
HTTPS).

Authentication in TLS is based on the X.509 public-key infrastructure
(PKI) [14]. Every entity that wishes to get its identity authenticated has to
obtain a digital certificate asserting the identity and its public key. Certificates
are issued by trusted entities called certification authorities, which are obligated
to verify the identity of a requester and issue a certificate correspondingly. Dur-
ing a TLS connection establishment, a server presents its certificate to the client
which verifies the certificate and the server’s identity and then uses the corre-
sponding public key to continue an agreement of a shared secret key. This key
is used for protecting the subsequent communication.

2.3 Tamper-Evident Data Structure

A Tamper-evident Data Structure (henceforth as TDS) is a data structure that
allows building log systems where an untrusted logger records clients’ entries
in an append-only log. The logger must be able to prove to auditors that: (a)
every logged entry is still present in the log, and (b) one snapshot of the log is
consistent with any its previous version.

Many early proposals aimed to achieve similar properties, mainly in the con-
text of building a digital notary [11,19,20]. However, the semantics of TDS
and multiple efficient constructions to achieve it were proposed by Crosby and
Wallach [16]. In their system TDS is based on a Merkle tree [22] (also called a
hash tree). A Merkle tree is a binary tree where leaf nodes are labeled with the
hash of entries and non-leaf nodes are labeled with the hash of the concatenated
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labels of its child nodes. Therefore, the root of the tree is an aggregated integrity
information about all its leaves.

In the Crosby-Wallach construction, the log structure is a Merkle hash tree
with submitted entries as the leaves. The log is append-only, i.e., the entries
are sorted in chronological order of their submission, and no leaf can be retro-
spectively removed or modified. The log supports the following history-related
operations (we give examples of these operations in Sect. 4.3):

Addition of an entry. Whenever a new entry is added to a log, a new leaf is
added to the tree, and the tree is re-computed (entries can be added in batches,
so that the tree need not re-compute for every single entry). Adding new data
entries requires re-computing O(log n) nodes, where n is the number of log
entries.

Membership Proof Generation for an entry produces a membership proof
that proves that it is part of the log. The membership proof of an entry is the
minimal set of tree nodes (i.e., hashes) required to reconstruct the root. In the
described construction, a membership proof requires O(log n) nodes.

Membership Verification for a given entry verifies whether the entry is
part of the given log snapshot. It takes an entry, a membership proof, and a root
value as input and verifies whether the entry matches the proof and whether
the proof terminates at the given root (i.e., the computed path has the root at
the end). The operation returns True if the verification is successful and False
otherwise. It is efficient since it only requires O(log n) hash operations.

Consistency Proof Generation for two different snapshots of the log, a
newer and an older, provides a short proof (i.e., O(log n) nodes) that the newer
snapshot is an extension of the older one, i.e., the newer snapshot was produced
by only appending entries to the older snapshot.

Consistency Verification takes as an input a consistency proof between
two snapshots and verifies whether the consistency proof is correct, i.e., whether
indeed the new version of the log was obtained by appending new entries. The
verification procedure is also efficient (i.e., logarithmic in time and space) with
respect to the log’s size.

3 Architecture Overview

3.1 System Model

There are the following parties in a PDFS system:
Content Providers are entities that provide content. For a simple and

intuitive description, we assume that the content is provided through the secure
web (HTTPS); however, such a setting is not mandatory, and content providers
do not have to run web services. Domain names identify content providers, and
their content is accessed through URL addresses. Each content provider has a
valid TLS certificate. In essence, content providers are not different from today’s
websites.

Contract Parties are mutually untrusting parties that would like to arrange
a smart-contract-based agreement which requires data from a content provider.
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Contract parties have to agree on who can act as the content provider for their
relying contract. Therefore, content providers are trusted only locally by parties
that want to trust them. We assume that the protocol parties have access to a
blockchain platform with smart contracts enabled (e.g., Ethereum).

We assume an adversary whose goal is to produce fake data on behalf of a
content provider. The adversary can eavesdrop, modify, and inject any protocol
messages. She can also interact freely with protocol parties and the blockchain
platform. We assume that the adversary cannot compromise underlying crypto-
graphic primitives and protocols (i.e., TLS), and cannot violate properties of the
deployed blockchain platform. Moreover, we assume that the adversary cannot
compromise content providers’ secret keys (i.e., the one used to interact with the
blockchain, also known as wallet private key) and cannot obtain a malicious cer-
tificate for a content provider (i.e., cannot compromise the TLS PKI). However,
we discuss such strong adversaries in Sect. 5.

We also assume a content provider trying to misbehave by launching an
equivocation attack [28] or by censoring queries for its content. In the former
case, the content provider should not be able to modify or delete any published
content retrospectively. For the latter case, censorship is especially important
in the context of the smart contract, as a content provider could influence a
contract execution by censoring some required content. Thus for this attack,
censorship attempts should be at least visible.

3.2 Desired Properties and Design Space

Below we list the desired properties of a data feeds service for smart contracts.
Easily parsable data feeds: data feeds should be easily parsable by smart

contracts which use them. Besides practical implications like a more straightfor-
ward code base, this property improves the cost-effectiveness of smart contracts
deployment, as smart contract platforms usually charge contract executions per
number of operations.

Authenticity of data feeds: the high evidence that data feeds are authen-
tic (i.e., were produced by a content provider trusted by contract parties) should
be provided. Ideally, authenticity verification should follow a direct and natu-
ral trust chain (i.e., contract parties trusting example.com can specify in their
contract that the contract can rely only on data provided by example.com).

Easy to adopt and deploy: all protocol parties (including content
providers) should be able to start using the data feed system without major
changes like requiring new infrastructure or non-backward compatible changes
to lower-layer protocols. Ideally, the system should be implementable and deploy-
able in today’s setting with existing protocols and infrastructures.

Non-equivocation: Data feeds should be unable to modify or delete con-
tent retrospectively once data are committed and published. It enforces a con-
tent provider to verify and guarantees the correctness of data before performing
publications. Preferably, providers should implement data structures that are
append-only for their publications database.

http://example.com
http://example.com
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3.3 High-Level Overview

Design decisions behind PDFS try to achieve all stated properties above. First
of all, in our system non-repudiation is provided directly by content providers.
This is similar to the approaches that modify the TLS protocol; however, the
authentication is not conducted at the TLS layer. Instead, we introduce a layer
of indirection that allows authenticating content on the blockchain.

Blockchain

Relying 
Contract

Create and 
interact with

Authoritative
Contract

Contract Parties

Create and 
update

Content provider

Trust and get data from

Censorship-evident query

Verify data authenticity

Fig. 1. High-level overview of PDFS.

In our design, content providers link
their TLS identities with their blockchain
identities and the locations of special smart
contracts used for authenticating and veri-
fying their content. Such a design provides
multiple benefits. Firstly, it enables verify-
ing blockchain identities, directly through
the existing TLS PKI. Secondly, it allows
relying contracts to validate the authen-
ticity of data as simple as calling another
smart contract’s method (without involving
any in-contract expensive public-key opera-
tions). Lastly, integrating content providers
with blockchain enables new features like keeping the providers accountable,
proving their unavailability or providing a payment framework that can incen-
tivize them to initiate the service. A high-level overview of our system is shown
in Fig. 1, and in this section, we describe its steps and the main components.

The first step in our protocol is to create a authoritative contract by a con-
tent provider who wishes to participate in PDFS. The main aim of authoritative
contracts is to enable other contracts to verify the authenticity of the content
produced by content providers. Authoritative contracts provide additional func-
tionalities by ensuring that content providers do not misbehave: (a) by retro-
spectively tampering with their data, or (b) by censoring queries sent to them.

Every authoritative contract provides an API that allows: (a) its owner (i.e.,
the content provider) to update it, (b) other contracts to verify that the content
provider indeed produced given data, (c) contract parties to make censorship-
evident queries to the content provider for the specific content (this option is
used when the content provider seems unavailable or is censoring some queries).

In the second step, the content providers create a signed manifest that con-
tains the following elements: (a) a location (i.e., a blockchain address) and inter-
face structure of its authoritative contract, (b) metadata specifying details of
provided content. The manifest is signed, and the manifest’s signature is com-
puted using the private key corresponding to the public key from the content
provider’s TLS certificate. Such a setting follows the natural trust chain; there-
fore, it allows contract parties to verify the authenticity of manifests directly,
using the TLS PKI, and without breaking existing trust chains.

The content provider creates a TDS that will store data entries that the
content provider wants to serve. The first entry of this data structure is the
manifest. Although PDFS data may be published using HTTPS services, those
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services focus on data privacy and integrity. We define that the manifest must
be signed and added into the TDS to extend security properties including non-
repudiation and non-equivocation to it.

For every update, the content provider adds new data entries to its TDS,
re-computes the data structure, and sends the new root and its corresponding
consistency proof to the authoritative contract (they do not store any actual
content, but only TDS roots — the short authentication information about the
content.) The authoritative contract validates the sent information enforcing the
append-only property (i.e., it makes sure that the content provider is appending
data only – not modifying nor removing any entries). The data entries with their
corresponding membership proofs are published at a pre-defined URL location,
so that everyone can locate and access it.

Contract parties that would like to deploy a relying contract (i.e., a smart
contract which depends on a data feed from an external website) have to find
and agree on a content provider (this process is realized out of band). When
contract parties find the content provider they would like to use, they locate
and verify its manifest and authoritative contract, and associate the location of
the authoritative contract as an oracle in their relying contract.

Whenever one contract party would like to call a method that uses content
provider’s data, it accesses the required data entry and its membership proof
from the content provider and then calls this method with this pair (and a fee
for content provider) as the arguments. Now, the method needs to verify whether
the content provider indeed produced the data entry and to do so, the relying
contract only requires to call the authoritative contract’s membership verification
method. When the data entry is verified, the relying contract’s method can
continue with its processing logic.

4 Details

In this section, we describe components of the PDFS architecture and explain
its different steps from a content provider establishing its PDFS service until
contract parties using the provider’s data to make a transaction within their
smart contract. We also discuss how the content provider maintains the service.
As shown in Fig. 2, a PDFS service consists of an authoritative contract, a web
service whose entries are kept within a TDS, and a manifest. We provide details
of these components and their functionality in this section.

4.1 Service Initialization

In the first step, the content provider initializes a PDFS service by deploying
an authoritative contract in the blockchain. This contract is designed to inter-
act with the content provider’s back-end service, relying contracts, and contract
parties. Initially, the authoritative contract has empty storage; however, it will
store root hashes of the deployed TDS. These root hashes will enable the con-
tract to check on demand the consistency between two TDS snapshots (i.e.,
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ensuring that the content provider updates its TDS correctly) and to conduct a
membership verification (i.e., verifying for relying parties that an entry is part
of the content provider’s TDS). Further details of authoritative contracts are
discussed in Sect. 4.2. Once it is deployed, the content provider gets an address
of the authoritative contract instance.

Content
Provider
Private

TLS Key

Signs Locates

Authoritative
Contract

Blockchain

Authenticates

TLS certificate

Root CA

Int. CA

Content 
Provider 

Certificate

The manifest

Web service
supporting PDFS

TDS

Content Provider

Relying
Contract

Verifies

Contract Parties

Adds

Query

FeedSubmits

Fig. 2. Details of the PDFS architecture and
parties interactions.

Then, the content provider cre-
ates a manifest. The manifest is
a file that describes details of the
PDFS service. It is necessary for
contract parties, since based on the
manifest, they can create a work-
able relying contract. The mani-
fest has to be authentic. There-
fore, the content provider signs it.
As TLS certificates issued by CA
are widely trusted parties on the
Internet, the content provider can
sign the manifest using the private
key corresponding to its TLS cer-
tificate for supporting HTTPS web traffic. Such a design choice has multiple
benefits. Firstly, it simplifies the signature creation and verification process
since contract parties can obtain the required certificate by visiting the content
provider’s website. Secondly, the manifest is authenticated following an already
existing trust chain. When the manifest is signed, it is added as the first element
to the content provider’s TDS. We define and describe the fields that a manifest
contains:

URL corresponds to the URL address used by the content provider to publish
data, and it indicates where contract parties can access data entries.

Authoritative Contract Address is the address in the blockchain asso-
ciated with the deployed authoritative contract. Contract parties preload their
relying contract with the value of this field (to allow them calling procedures or
functions on the authoritative contract instance).

Authoritative Contract Interface is an abstract structural descriptor of
the authoritative contract. It includes definitions of functions, access method,
and parameters. Likewise the authoritative contract address, data contained in
this field has to be embedded in the relying contracts as an object interface. This
field is platform dependent (e.g., the ABI in Ethereum).

Data Structure describes the encoding or structure of data entries that
the content provider stores in its TDS. Typically, content providers use widely
adopted data encodings, such as JSON or XML. Thus, the content provider
presents here which values and data types are expected to be found within
every data entry. This field is necessary for contract parties to understand the
semantics of data entries and to create their relying contracts able to parse data
entries and implement their processing logic correctly.
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Signature is a field that authenticates all values contained in the manifest.
As described above, the signature is computed using the private key associated
with the content provider’s TLS certificate.

If the TLS certificate expires, the PDFS service is not affected for relying
contracts already deployed. It is because contract parties use the certificate to
verify the manifest signature before they create relying contracts. Furthermore,
neither the authoritative contract nor relying contracts perform any signature
verification later. Also, the content provider does not require to terminate the
PDFS service if the TLS certificate is reissued using the same private-public key
pair that was used in the manifest creation.

4.2 Authoritative Contract

The authoritative contract is a central point in the PDFS architecture. It inter-
acts with the content provider back-end, relying contracts, and contract parties.
Its primary goal is to ensure that the content provider indeed published a spe-
cific data entry. A detailed pseudo-code of the authoritative contract is shown
in Algorithm 1. An authoritative contract consists of the functions that allow:

– The content provider to store root hashes once the consistency is verified.
This procedure is executed by calling the update function (details about the
consistency verification in Sect. 4.3). The update function can be executed
only by the content provider. For efficient storage management and time
delays or race conditions avoidance, the authoritative contract only stores an
array of the last K root hash values committed (K is defined by the content
provider).

– Relying contracts to make trustworthy transactions based on data entries
whose origin and integrity are verified by calling the membership function.
This function checks whether a data entry and its membership proof is valid
comparing to stored roots.

– Contract parties to make censorship-evident queries using the query function
and get responses by calling the get response function. These queries and
responses are sent over the blockchain, therefore they are publicly visible.

Functionalities offered to contract parties are designed to require payments
for their executions. It allows content providers to adopt a new business model
receiving payments for providing data over a PDFS service.1

1 Fees for executing PDFS functions are different from fees for executing transactions
on the blockchain (e.g., Ethereum gas cost).
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Algorithm 1. Authoritative Contract Pseudo-Code.

FEEmem: the cost for membership verification,
FEEquery : the cost for making a censorship-

evident query,
locked: boolean value that indicates whether the

authoritative contract can be updated,
roots: a map of roots hashes; it uses a timestamp as

the key,
time: a value that indicates the last updating time,
queries: a map of censorship-evidence query made;

it uses a number as the key,
responses: a map of responses for queries made; the

key is associated to existing identifiers in the
queries map,

counter: an incremental number used as the identi-
fier for the queries made,

NOW(): the current block timestamp,
HASH(): a cryptographic hash function.

1: procedure init

2: roots ← ∅
3: time ← 0
4: locked ← False

5: end procedure

6: procedure update(root, proofcons)
7: assert(sender = owner)
8: assert(locked = False)
9: if CONSISTENCY(root, proofcons) then

10: time ← NOW()
11: roots[time] ← root

12: end if

13: end procedure

14: procedure lock

15: assert(sender = owner)
16: locked ← True

17: end procedure

18: procedure consistency(root, proofcons)
19: if time = 0 then

20: return true
21: end if

22: (rootnew, rootold) ← MTH(proofcons, ∅)
23: return (rootnew = root & rootold =

roots[time])
24: end procedure

25: procedure membership(data, proofmem, fee)
26: assert(fee = FEEmem)
27: leaf ← HASH(data)
28: (rootmem, ) ← MTH(proofmem, leaf)
29: return rootmem ∈ roots

30: end procedure

31: procedure mth(proof, leaf)
32: i ← 0
33: hashx ← hashy ← leaf

34: if leaf = ∅ then

35: i ← 1
36: hashx ← hashy ← proof(0).hash

37: end if

38: for i < len(proof) do

39: if proof(i).side = RIGHT then

40: hashx ← HASH(hashx||proof(i).hash)

41: else

42: hashx ← HASH(proof(i).hash||hashx)

43: hashy ← HASH(proof(i).hash||hashy)

44: end if

45: i ← i + 1
46: end for

47: return (hashx, hashy)
48: end procedure

49: // Censorship Evidence functions
50: procedure query(filter, fee)
51: assert(fee = FEEquery)
52: counter ← counter + 1
53: queries[counter] ← filter

54: return counter

55: end procedure

56: procedure store response(id, data)
57: assert(sender = owner)
58: assert(id ≤ counter)
59: responses[id] ← data

60: end procedure

61: procedure get response(id)
62: assert(id ≤ counter)
63: return responses[id]
64: end procedure

4.3 Data Update

Adding new data entries to the TDS requires re-computing the root. To run
PDFS service properly, it also requires synchronization of changes between the
content provider back-end (maintaining the TDS) and the authoritative con-
tract which has to be updated to enable the membership verification of any
newly added entry. To synchronize, the content provider submits the new root
hash value along with a corresponding proof for the consistency verification.
This verification uses the provided proof to re-calculate two hash values. and
then, it compares those calculated hashes checking whether they are equal to
the new root value to store and the last one stored in the authoritative contract
accordingly. This guarantees that the new TDS is an extension of the last one
committed confirming that no previous data entry has been altered or removed.
If there is an error, the authoritative contract ignores the submitted data and
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Fig. 3. An example of maintaining a TDS. It is a representation of information provided
for the consistency verification when a new snapshot of the TDS is updated to the
authoritative contract. Each element of the proofcons indicates the hash value and the
corresponding side (hxL refers left position and hxR refers right position).

remains in the current state. Once the new root is accepted by the authorita-
tive contract, the content provider can make the updated TDS accessible over
HTTPS.

In Fig. 3, we show an example of how a TDS evolves when data entries
are added, and what values are sent for submitting roots to the authoritative
contract. In case (a), the new root is directly stored with no previous validation
as it is the first one, and there is no consistency to evaluate. In case (b), the new
root is submitted along with the following consistency proof (proofcons). The
authoritative contract uses the provided data to evaluate the TDS consistency.
In this case, the consistency verification is easy to deduce since the previous root
(h0) is contained in the provided proof. Similarly in the case (c), the previous
root (h123) is contained in the proofcons array.

However, the case (c) shows a particular situation due to the TDS is unbal-
anced. It changes how the consistency verification works for the next root sub-
mission, the case (d). For it, the consistency proof provided is: proofcons =
{h4L , h5R , h67R , h123L}. Because of the unbalanced TDS, the consistency verifica-
tion re-calculates both roots, the previous one (h1234) and the new one (h1234567)
by using the same provided proof. To calculate the previous root, the consistency
verification only needs the contained elements {h4L , h123L}. Furthermore, the
complete array is used to re-calculate the new root. Therefore, the procedure
can confirm the consistency of the new TDS.

4.4 Relying Contracts

A relying contract is a smart contract which is created by contract parties and
needs content providers data to validate conditions and perform transactions.
Before it is created, contracts parties agree on a content provider they trust
which provides a PDFS service. After validating its manifest signature, contract
parties extract the information contained in the manifest and use it to prepare
and deploy a relying contract. In that way, the relying contract will interact with
the correct authoritative contract and be able to: (a) execute the membership
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verification procedure, (b) get the response for a censorship-evident query, and
(c) parse data entries and execute a processing logic depending on data entry
fields. We provide a pseudo-code example of a relying contract in Algorithm2.

When needed, contract parties request a specific data entry to the content
provider, which responses a data entry along with its respective membership
proof. Considering case (c) in Fig. 3, let us assume the content provider is queried
for the data entry d2, so its response will contain the asked data entry d2 along
with a membership proof proofmem = {h3R , h01L , h4R}. Once that data is sub-
mitted to the relying contract, it will execute the membership verification intreat-
ing with the authoritative contract. As we see in this example, the provided proof
and the data entry’s hash value lead to re-calculate the root h1234 which is stored
in the authoritative contract and it confirms data authenticity. If any value is
modified, either the data or the proof, the membership verification re-calculates
a different hash value which does not correspond to any stored root, so the
verification fails.

Algorithm 2. Relying Contract Template.

cc: authoritative contract object interface.

1: procedure init(addr)
2: cc ← Authoritative Contract(addr)
3: end procedure

4: procedure submit data(data, proofmem, feemem)
5: v ← False

6: v ← cc.membership(data, proofmem, feemem)
7: if v = True then

8: . . . Decode data input
9: . . . Decide and make transaction
10: end if

11: end procedure

12: procedure if censorship(id)
13: data ← cc.get response(id)
14: if data �= ∅ then

15: . . . Decode data input
16: . . . Decide and make transaction
17: end if

18: end procedure

19: interface Authoritative Contract:

20: procedure membership(data, proof, fee)
21: procedure get response(id)
22: . . . Any additional procedure defined

4.5 Censorship Evidence

Censorship is an especially challenging threat since a content provider censor-
ing queries can influence executions of agreements based on smart contracts, and
censorship is difficult to prove. However, PDFS extends the authoritative and the
relying contract with functions to allow censorship-evident queries. So contract
parties can query a content provider over the blockchain whenever they cannot
obtain data directly through conventional channels (e.g., like HTTPS). All inter-
actions, contract parties’ query and content provider’s response, are recorded as
transactions in the blockchain. Therefore, they are visible for anyone, and any
censorship attempt is publicly observable. We discuss censorship attacks further
in Sect. 5.2.

4.6 PDFS Service Termination

Content providers might need to terminate a PDFS service due to operational
management or security reasons. To do so, they can execute the lock function
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which disallows any future update attempt of the authoritative contract. Locking
authoritative contracts does not introduce collateral damage to already-deployed
relying contracts. A locked authoritative contract can be used for membership
verifications as long as the corresponding root value is stored. In particular, the
locking function might be useful in the case of a security breach (like a stolen
blockchain private key), to prevent an adversary from submitting malicious root
values (we discuss details in Sect. 5.1).

5 Security Discussion

In this section, we discuss different attacks and their implications over PDFS.
However, this discussion is extended in Sect. A in the appendix which also
addresses issues and disagreements that one might argue against our proposed
solution.

5.1 PKI and Key Compromise

An adversary able to compromise the TLS PKI can create a malicious mani-
fest and an authoritative contract, and can impersonate the content provider by
creating arbitrary content. Interestingly, even if successful, such an adversary
cannot undermine the security of the relying contracts already deployed since
these contracts use the correct authoritative contract instance for data verifi-
cation. Moreover, by deploying a new (malicious) authoritative contract, the
adversary needs to deploy it over the blockchain, which makes the attack visible
and detectable.

A more severe attack is a compromise of the private key used for the inter-
actions between the content provider and the blockchain platform. In such a
case, the adversary can add to the existing TDS malicious entries, re-compute
the structure, and update the authoritative contract with a new root. Then,
these malicious entries can be used by relying smart contracts for processing.
However, even in that case the attack is visible since the authoritative contract
is updated publicly, on the blockchain. Thus, the content provider will notice it
and terminate its service (see Sect. 4.6).

5.2 Malicious Content Provider

PDFS prevents and mitigates some attacks conducted by a malicious content
provider. The design of authoritative contracts in PDFS does not allow the con-
tent provider (or an adversary with the content provider’s blockchain key) to
retrospectively modify or remove content. The authoritative contract enforces
the consistency of the TDS for every update (see Fig. 3). This property is also
crucial for thwarting equivocation attacks [28]. A manifest file identifies the
authoritative contract that guarantees that the content provider cannot equivo-
cate as long as the blockchain platform is secure (see Sect. A.2 in the appendix).
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The content provider can create multiple manifest files and authoritative con-
tract, however, (a) it does not influence already deployed contracts, (b) is not
necessarily a malicious activity, and (c) is visible over the blockchain; thus, it
can be monitored.

PDFS provides non-equivocation by ensuring that content providers’
database is append-only. However, it does not prevent a content provider from
adding two semantically conflicting entries to their databases (e.g., two different
results for a same football game). Conflicting entries can be harmful to relying
contracts as they may lead to completely different execution paths. Since PDFS
does not allow content providers to “overwrite” their entries, we suggest that
such conflicts should be handled by relying contracts themselves. More precisely,
using agreement protocols like implementing grace periods or submitting data
from multiple content providers before making final decisions, such that any
conflicting entry submitted can reverse contracts agreements.

A subtler attack is a content provider censoring queries. That risk is espe-
cially important, when a malicious content provider ignores contract parties’
queries, pretending unavailability or displaying incorrect data that cannot be
successfully verified by relying contracts. In such a case, PDFS allows contract
parties to query the content provider over the blockchain for a required query
(see Sect. 4.5). The content provider is obligated to response due to the query
and content provider’s response are publicly visible.

6 Realization in Practice

In this section, we demonstrate that PDFS fulfills the desired properties
explained in Sect. 3.2. We fully implemented a proof of concept which involved
both parties of a PDFS architecture (the content provider and contract par-
ties). Although we tested PDFS under a generic scenario (see Sect. B.1 in the
appendix), PDFS can be integrated into any context where smart contracts need
to make decisions based on external data. Our solution allows content providers,
regardless of the content and data type, to become a trustworthy data feed for
smart contracts.

6.1 Implementation

To approach our implementation of PDFS, we developed a web service for the
content provider using Go v1.10.1 as the programming language. It is a REST-
Ful API which offers data entries encoded in JSON format. This application is
configured to support HTTPS, and we deployed a private PKI infrastructure
and TLS certificates using OpenSSL v1.1. For contract parties, we implemented
a client in Python v3.6.5 which is able to request data entries to the created web
service. Smart contracts, the authoritative and the relying contract are coded
in Solidity v0.4.21 and deployed in an Ethereum blockchain. To allow repro-
ducibility of our experiments and evaluations, we publish our implementation
at https://gitlab.com/juan794/pdfs.

https://gitlab.com/juan794/pdfs
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6.2 Evaluation

In this section, we discuss results obtained from a series of experiments we per-
formed. To evaluate PDFS, we used a computer which has 16 GB of RAM and
a CPU Intel Core i7 7700H. We performed measurements regarding the execu-
tion cost which is expressed in Ethereum gas units, and then, converted to US
dollars.

We analyzed the cost growth according to the number of data entries in the
TDS. As shown in Fig. 4, we observe that the cost for the consistency and mem-
bership verification grows on a logarithmic scale as expected since we deployed
a TDS using binary Merkle trees. In the case of the JSON parsing, the cost is
constant and does not change with the TDS size. We also disaggregate total costs
to investigate the details for executing PDFS procedures (see details in Table 1).
In the case of having a data feed with more than 1 million (220) data entries,
we observe that the consistency verification has a gas cost of 86,642 on average,
where only 4% of this cost is related to the hash calculations. The remain-
ing percentage corresponds to miscellaneous code, including storage and control
statements, such as asserts. Moreover, we also measured the cost of executing
a membership verification, and we observe that it has an average gas cost of
204,242. However, as JSON parsing is not natively supported in Ethereum, 55%
of the total cost is spent on performing this task. On the other hand, the gas con-
sumptions are 813,111 and 4,355,638 respectively for the authoritative contract
and the relying contract deployment.

Next, we show in Fig. 4 what would be the maximum cost considering the
two prices involved. For our measures, we assumed a price of 5 Gwei per gas
unit and a price of US$105.05 per ether; those are maximum conversion rates
presented at the writing time. As a result, the consistency verification costs
around US $0.048 in a PDFS service that contains more than 1 million data
entries. This means a cost of US $1.7x10−7 per data entry. On the other hand,
the membership verification of one data entry in a TDS of that size (220) costs
around US $0.11. We recall that it is including the JSON parsing which is a
costly task on smart contracts. Therefore, we show that PDFS is costly viable
to create and deploy a trustworthy data feed for a smart contract. The cost
can decrease if Ethereum starts supporting JSON parsing natively or if content
providers use a more efficient data entry encoding.

Fig. 4. Ethereum gas consumption and price variation analysis converted to US dol-
lars. (a) Gas cost of PDFS operations (b) membership verification cost (c) consistency
verification cost.
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Table 1. Cost analysis for membership and consistency verification considering mul-
tiple sizes of the TDS.

TDS size 21 25 210 215 220

Membership verification cost

JSON Parsing 113,349 (74%) 113,325 (69%) 113,293 (63%) 113,273 (59%) 113,298 (55%)

Hash calculation 447 (1%) 1,107 (1%) 1,933 (2%) 2,757 (2%) 3,583 (3%)

Miscellaneous 39,253 (25%) 49,369 (30%) 61,905 (35%) 74,633 (39%) 87,361 (42%)

Total 153,049 163,801 177,131 190,663 204,242

Consistency verification cost

Hash calculation 149 (1%) 809 (2%) 1,634 (3%) 2,294 (3%) 3,284 (4%)

Miscellaneous 38,419 (99%) 48,551 (98%) 60,961 (97%) 71,158 (97%) 86,358 (96%)

Total 38,568 49,360 62,595 73,452 89,642

Table 2. Ethereum gas consumption of
PDFS compared to signature verifications.

PDFS secp256r1 RSA ECRecover

87,361 1,854,634 596,287 38,887

In Table 2, we show the gas con-
sumption comparing PDFS against
signature verification algorithms, such
as ECRecover [2] (native in Ethereum),
TLS-N implementation of secp256r1
[10] and RSA [7]. We observe that the
Ethereum native function for signature verification is cheaper than PDFS. On
the other hand, PDFS is significantly cheaper that implementations coded on
Solidity programming language. Although those alternatives allow contract par-
ties to verify integrity and provenance, they do not provide accountability or
non-equivocation properties from content providers.

Table 3. The gas cost of the query and response
operations.

Oper. 50B 150B 500B 1KB 2KB 5KB

Query 25,597 32,399 56,337 90,483 158,644 363,282

Resp. 25,804 32,606 56,544 90,690 158,851 363,489

Lastly, we investigated the
cost of censorship-evident
queries and responses (see
Sect. 4.5). As storing data
in Ethereum smart contracts
is expensive [30], we imple-
mented this functionality with-
out involving smart contract storage. Instead, queries and responses are pub-
lished as blockchain transactions (as calls to the corresponding functions), but
without storing them in authoritative contracts. That improves the cost effi-
ciency greatly while providing the same functionality i.e., queries and responses
can be read (as they are part of the blockchain) and responses are authentic (as
they are sent within blockchain transactions signed by content providers). The
gas cost of these operations depending on a size of a query and response are
shown in Table 3. As presented, the cost grows linearly with query/response’s
size, but queries and responses of the same size have roughly the same cost.

7 Related Work

TLSNotary [9] is a service that introduces a third-party auditor which attests
TLS session data exchanged between a client and a server. To provide this
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functionality, the protocol requires changes to the TLS protocol like an intro-
duction of a dedicated client-auditor protocol. TLSNotary has many drawbacks.
For instance, it is only compatible with TLS 1.0 and 1.1, while TLS 1.2 is widely
deployed and recommended as default [8]. TLSNotary is specified with obsolete
cryptography algorithms, and it supports only cipher suites with the RSA algo-
rithm for a secret key establishment. As TLS records are being authenticated,
the output obtained from TLSNotary is hard to parse and process by smart
contracts. Although, the protocol has many disadvantages, it got adopted by
other solutions, like Oraclize [6], which integrates multiple data feed systems.
However, as combined with TLSNotary, it introduced a trusted third-party that
holds secret keys used for auditing TLS sessions.

An alternative approach proposed is to use prediction markets for providing
data feeds, such as [1] and [3]. In such systems, users try to predict real-world
events by betting or voting for them. Usually, these systems are implemented on
top of blockchain platforms, hence they could be easily integrated with smart
contracts. Unfortunately, they have many drawbacks as in the case of disputes
there is no responsible party (i.e., responsibility is distributed). Moreover, data
feeds depend on human inputs which can be biased, slow, or incomplete.

Town Crier (TC) [31] takes a different approach to instantiate data feeds
for smart contracts. TC deploys trusted computing (i.e., the Intel SGX technol-
ogy [15]) to allow special applications to interact with HTTPS-enabled websites.
In order to provide authentic data feeds, such an application, is executed within
an SGX enclave. Thus, it is possible to conduct a remote attestation that the
correct code was executed. The application establishes a secure TLS connec-
tion with a website and parses its content, which then can be used as an input
to smart contracts. In contrast to TLSNotary, TC can provide easy-to-parse
data and is flexible since there can be many applications. With the assumption
that the contract parties have verified an attestation of the used enclave, TC
allows relying contracts to avoid expensive public-key verifications by making
assertions between enclaves and their blockchain identities (this is a similar con-
cept as in PDFS). However, TC has some significant limitations. First of all,
it positions Intel as a trusted party required to execute a remote attestation.
Secondly, its security relies on the security of the SGX framework (undermined
by recent severe attacks [29]) and the security of its attestation infrastructure,
which is especially undesired as the SGX attestation infrastructure is a weakest-
link-security system (i.e., one leaked attestation private key allows an adversary
to attest any application). TC has inspired other systems, like ChainLink [18],
which aims to decentralize TC applications by forming a network of them (to
detect and deal with possible inconsistencies). Unfortunately, this design does
not solve the main drawbacks of TC.

TLS-N [25] is a more generic approach to provide non-repudiation to the
TLS protocol. In order to realize it, TLS-N modifies the TLS stack such that
TLS records sent by a server are authenticated (in batches). Therefore, TLS-
N clients can present received TLS-N records to third parties which can verify
it, just trusting the server (without any other third trusted parties). The main



784 J. Guarnizo and P. Szalachowski

drawbacks of TLS-N are in its deployability. It requires significant changes to the
TLS protocol and as learnt from the previous deployments the TLS standard-
ization and adoption processes are very slow. Because of the TLS-N’s layer of
authentication, TLS records are being authenticated which is inconvenient and
expensive to process by smart contracts. Furthermore, the TLS layer is uncon-
trollable by web developers, and thus, most of their applications would need to
be rewritten for TLS-N. Besides that, TLS-N relying contracts have to conduct
an authentication verification which is a costly operation.

Table 4. Comparison to most related works.

No third
trusted party

Easy content
parsing

Required
changes on

TLSNotary [9] — — TLS
Protocol

TLS-N [25] � — TLS
Protocol

Town Crier [31] — � —

PDFS � � App

In Table 4 we compare
PDFS with the competing
schemes. As shown, PDFS
makes data feeds authen-
tic and easy to parse with-
out major changes. It is
easy to implement, and it
does not require modifica-
tions beyond adding new
functionalities in the con-
tent provider web service.
It is an advantages compared to the solutions which require changes on the
TLS protocol for operating. Additionally, PDFS does not require an additional
trusted party besides the content provider itself.

Moreover, we believe that the adoption of PDFS is much more likely than
the adoption of competing schemes. In contrast to transport-layer authentica-
tion systems, PDFS requires changes only on the application layer. It also does
not require trusted hardware or relies on ubiquitous TLS certificates following
natural for HTTPS trust relationships. Last but not least, content providers are
motivated by economic incentives as PDFS allows them to be paid for authen-
ticating content which usually they publish for free.

8 Conclusions

In this paper, we proposed PDFS, a practical system that provides authenticated
data feeds for smart contracts. In contrast to the previous work, PDFS seamlessly
integrates content providers with the blockchain platform. This combination
provides multiple benefits like efficient and easy data verification without any
new trusted parties, and new interesting features that the previous platforms do
not provide. Thanks to the deployed tamper-evident data structure (TDS) that is
monitored by a smart contract, content providers cannot equivocate. To mitigate
censorship, our scheme provides a blockchain based API for querying content
providers. Besides that, native to blockchain platforms monetary transfers allow
content providers to explore new business models, where relying contracts would
pay a fee for the content verification. Last but not least, PDFS can be easily
deployed today in the application layer without any modifications to underlying
protocols.
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We plan to investigate PDFS and its components in other applications. One
particularly interesting example is a non-equivocation scheme for lightweight
clients. Due to placing validation logic in smart contracts, it should be more
efficient than, for instance, Catena [28], where clients have to collect and validate
all related transactions by themselves. We believe PDFS could achieve the same
property with much shorter proofs.

Acknowledgment. This research was supported by ST Electronics and National
Research Foundation (NRF), Prime Minister’s Office Singapore, under Corporate Lab-
oratory @ University Scheme (Programme Title: STEE Infosec - SUTD Corporate
Laboratory).

A Extended Security Discussion

A.1 Data Authentication

Our first claim is that an adversary cannot create a content on behalf of a content
provider. To achieve that, the adversary need to either: (a) tamper authenticated
proofs generated by the content providers, or (b) update the authoritative con-
tract on behalf of the content provider, or (c) forge the manifest binding the
authoritative contract and identity of the content provider. All these attacks are
out of scope our adversary model.

The first attack is infeasible due to the security of the tamper-evident data
structured used [16]. More specifically, generating a membership proof for a non-
element of the data structure is equivalent to breaking a deployed hash function.
Therefore, the adversary to create such a proof for a malicious element has to
extend the data structure by adding the element and updating the authoritative
contract by a new root. However, in this attack, the adversary cannot update
the authoritative contract as it enforces the update procedure (see Sect. 4.3).
The update procedure allows only the contract’s owner to update it. Therefore,
without the content provider’s blockchain key, the adversary cannot update the
legitimate authoritative contract and prove on the malicious content.

For the last attack, the manifest’s digital signature is verified using the TLS
PKI. Thus, without the ability to (a) use a TLS private key of the content
provider, or (b) obtain a digital certificate of the content provider, the adversary
cannot create a malicious manifest on behalf of the content provider. These
attacks are out of the scope of our adversary model, but we discuss them and
their implications in the next section.

A.2 51%-Blockchain Attack

In this section we discuss how adversaries able to undermine the blockchain
properties (although they are outside our adversary model) can impact PDFS.
In particular, we focus on the 51%-attack [23] where an adversary possesses more
than 50% of the total mining power of the blockchain network, which would allow
her to rewrite the blockchain history. Such an adversary, could attack availability
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of PDFS (and any other blockchain application) by reverting or denying arbitrary
transactions (or even authoritative contract creations).

An interesting scenario is an adversary colluding with a content provider.
Besides availability attacks, the adversary could allow the content provider to
equivocate by creating two conflicting TDS versions. One version would be main-
tained on the “main” blockchain, while the second one would exist only on the
“malicious” blockchain mined by the adversary. Such an attack violates the
desired property of keeping content providers consistent, and enables attacks
similar as double-spending attacks [21].

Another interesting scenario is an adversary colluding with one of the con-
tract parties to attack another contract party. Such an adversary cannot forge
data entries or an outcome of the membership verification. However, it is a com-
mon practice that smart contracts define a timeout for inaction, after which
deposits of the contract parties are sent back to them. In that case, the adver-
sary could reverse a genuine transaction of the victim, causing the timeout from
which the colluding party would benefit.

A.3 General Discussion

By analyzing the implications and costs of adopting it, we present PDFS as a
viable alternative for smart contracts to receive authenticated data from content
providers. In this paper, we focus on design a system with desired properties
explained in Sect. 3.2. However, we are aware of issues and disagreements that
one might argue against our proposed solution.

Firstly, one might claim that signature verification solutions would requires
less effort for contract providers, and further, it provides properties of authen-
ticity and provenance of data. Nevetherless, as observed in Sect. 6.2, PDFS is
cheaper regarding gas cost and extends security properties to include account-
ability and non-equivocation for content providers. On the other hand, a naive
solution would be to publish data hashes itself in a smart contract, however,
that would be prohibitively expensive due to smart contract storage fees.

Secondly, we aimed a design for smart contracts data feed that avoids the
complexity of alternative solutions and related works. We consider that mod-
ifying a protocol extensively used or including special hardware and network
specifications makes a solution highly difficult to deploy; such as modifying the
TLS protocol or including oracles using SGX. By contrast, PDFS offers as a
simplier alternative that only requires changes on the application layer for con-
tent providers and contract-to-contract communication for contract parties. We
consider it makes PDFS more practical and easy to adopt, even without taking
the new business model that a content providers might get by providing data in
a PDFS service.

Lastly, our current approach keeps the common trust chain with only includes
contract parties who want to stablish an agreements and a content provider who
is an autoritative entity who defines trustworthy data, also known as the truth.
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Although the content provider may be able to misbahave, PDFS is not able to
detect such actions due to data content is not analyzed, but that issue also affects
the related works. However, it can be solved by including agreement protocols.
For instance, the relying contract might revoke any agreement if two conflicting
data are submitted within a time gap.

B Case Study and Implementation Details

B.1 Case Study

In our proof of concept, we considered a scenario where contract parties decide
to settle gambling agreement creating and deploying a smart contract which uses
trusted data from a content provider who adopts PDFS in its service.

Content Provider. Following specifications in Sect. 4 and templates provided
in Sect. B.2, our implementation of the content provider is a web service which
offers data of football matches in JSON format. We configured it to support
HTTPS, and we obtained a free dataset from https://www.football-data.org/.
We implemented the TDS using Keccak-256 [12] as a cryptographic hash func-
tion. We chose Keccak as it is a state-of-the-art hash function (the current stan-
dard SHA-3 [17] is an instance of Keccak) and it allows us to reduce the cost
of membership and consistency verifications due to its native support in the
Ethereum platform.

Contract parties. It is an HTTP client application able to interact with the
content provider and a relying contract. It is capable to get and validate the
authenticity of the manifest, and it is able to submit data obtained from the
content provider to the relying contract which executes the membership veri-
fication, interacting with the authoritative contract, and proceeds to parse the
JSON data. In this case, we use a JSON parser coded in Solidity since it is not
supported natively in Ethereum platform.

B.2 Implementations

In this section, we show examples of how JSON data look like in our imple-
mentation and experiments. The JSON examples are related to the case study
explained in Sect. B.1.

https://www.football-data.org/
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{
” s igned ” :{

” u r l ” : ” https : // example . com/
soc c e r ” ,
” s c add r e s s ” :”0 x539c94cb89E127
. . . ” ,
” s c i n t e r f a c e ” :

” [{” constant ” : true ,
” inputs ” : [ { ” name” :” j son ” ,

” type ” :” s t r i n g
”} ] ,

”name” :” parseJSONdata ” ,
” outputs ” : [ { ” name” :”” ,

” type ” :” bool
”} ] ,

. . . } ] ” ,
” da t a s t ru c tu r e ” :

”{ id : s t r i ng , l o c a l : s t r i ng ,
v i s i t o r : s t r i ng , l o ca lGoa l s :

int ,
v i s i t o rGoa l s : i n t }”

} ,
” s i gna tu r e ” :”63

cc6a76 fd07252 f f 4a f 4 c . . . ”
}

Listing 1.1. A manifest example.

{
” content ” :{

” id ” :”341576” ,
” date ”:”2018−07−15T18 : 0 0 : 0 0Z”
” l o c a l ” : ” France ” ,
” v i s i t o r ” :” Croat ia ” ,
” l o ca lGoa l s ” : 4 ,
” v i s i t o rGoa l s ” :2

} ,
” p roo f s ” : [

{” s i d e ” : 0 , ”hash ” :”5 e41 f . . . ” } ,
{” s i d e ” : 1 , ”hash ” : ” 0 1 9 5 0 . . . ” } ,
. . . more items ]

}

Listing 1.2. A PDFS data entry example.
It consist of the data content itself and
its membership proof which is an array
of elements containing a hash value and
a side (0 indicates left side and 1 indicates
right one).
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