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Abstract. Modern JavaScript implementations include APIs offering
strong cryptography, but it is easy for non-expert developers to misuse
them and introduce potentially critical security bugs. In this paper, we
formalize a mechanism to rule out such bugs through runtime enforce-
ment of cryptographic API specifications. In particular, we construct a
dynamic variant of Security Annotations, which represent security prop-
erties of values via type-like information. We formalize Security Annota-
tions within an existing JavaScript semantics and mechanize it to obtain
a reference interpreter for JavaScript with embedded Security Annota-
tions. We provide a specification for a fragment of the W3C WebCrypto
standard and demonstrate how this specification can reveal security vul-
nerabilities in JavaScript code with the help of a case study. We define
a notion of safety with respect to Security Annotations and extend this
to security guarantees for individual programs.

1 Introduction

The standardization of cryptographic APIs in JavaScript through the W3C Web
Cryptography API, WebCrypto [31], has made strong cryptography available to
web developers. In theory, this allows non-experts to implement true end-to-end
encryption of confidential data. However, mistakes are easily made when devel-
opers use cryptographic APIs. For example, the JavaScript snippet in Listing 1
generates secure keys and then encrypts and signs a message before sending it.
Here, the developer made the mistake of appending a signature of the plaintext
to the message, allowing an observer to identify retransmissions of the same
message. Mistakes like this undermine the security of the overall system, even
when the implementation of the cryptographic API itself is correct.

Such mistakes are not exclusive to JavaScript, but in fact common across lan-
guages [8,16,20]. Alas, JavaScript exacerbates the problem, due to its dynamic
nature and unconventional semantics [22], which thwart traditional analysis tech-
niques and offer plenty of opportunities to violate API specifications. Exist-
ing work on JavaScript focuses on the verification of protocol implementations
through restriction to small subsets of the language [2,14]. There is currently
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little support to help non-expert developers avoid introducing critical security
bugs into applications built on full JavaScript.

In this work, we introduce a mechanism which rules out misuse of trusted
APIs in JavaScript code through runtime enforcement. We extend the concept
of Security Annotations [19], type-like tags which represent security properties,
such as whether a value is ciphertext or a cryptographic key. Security Annota-
tions are orthogonal to the existing type system and composable to allow for the
expression of multiple distinct security properties.

In particular, we make the following contributions:

– We formalize a runtime semantics for Security Annotations in JavaScript
by extending an existing formal semantics for a core of JavaScript, S5 [22]
(Sect. 4).

– We mechanize Security Annotations, building upon an existing implementa-
tion of S5. We extend this to a reference interpreter for JavaScript programs
through extending the JavaScript-to-S5 desugaring relation (Sect. 5).

– We provide an annotated fragment of the WebCrypto API which defines safe
usage of the API through Security Annotations. Developers can replace the
WebCrypto API with this annotated copy, which allows our mechanism to
report violations of the otherwise implicit API specifications. We demonstrate
how this approach can be used to avoid common cryptographic pitfalls by
detecting violations of security properties in a case study (Sect. 5.3).

– We provide safety guarantees for this Security Annotation mechanism, and
extend these to describe resulting security guarantees for programs using the
annotated WebCrypto fragment (Sect. 6).



A Formal Model for Checking Cryptographic API Usage in JavaScript 343

Fig. 1. Hierarchical Security Annotation judgments [19].

2 Background

We begin by introducing necessary background on Security Annotations
(Sect. 2.1) and our underlying JavaScript semantics (Sect. 2.2).

2.1 Security Annotations

Security Annotations represent security properties valid on objects or values
within a program [19]. For example, the return value of a trusted key generation
API is a valid cryptographic key, so could carry an annotation CryptKey. Annota-
tions are composable: if the value has also been generated as a cryptographically
secure random value (CSRV), then it can be annotated through composition
CSRV ∗ CryptKey, via the commutative operator ∗. Security properties are hierar-
chical: for example, PrivKey is more specific than CryptKey. Security Annotations
therefore have a notion of subannotation judgments, e.g.,PrivKey ≺: CryptKey.
Combined with the composition operator, this yields a lattice of security anno-
tations. We include the rules defining this lattice in Fig. 1. These judgments
follow those given in Mitchell et al. [19]; additional rules governing reflexivity,
transitivity and permutations are included for completeness. In these rules, Si

are arbitrary Security Annotations and Top is the least specific Security Anno-
tation, representing a lack of security properties.

Mitchell et al. [19] enforce Security Annotations statically within a small
lambda calculus. The expression v asS adds S as an annotation to v, representing
newly valid security properties. Similarly, v dropS discards S from v, using a cut

operator to remove an annotation whilst ensuring super-properties remain valid.
We cut the annotation S2 from S1 via the following definition: cut(S1, S2) is the
annotation R with (i) S1 ≺: R and (ii) R ⊀: S2 such that whenever R′ also
satisfies (i) and (ii) in place of R, then R ≺: R′ and R′ ⊀: R [19].

2.2 S5: A Semantics for JavaScript

S5 [22] is a lambda calculus-like language which reflects the semantics of the
strict mode of EcmaScript 5.1 (ES5). S5 is accompanied by a desugaring func-
tion, which takes native JavaScript source programs and translates them to
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Fig. 2. The reduction relations for S5 [22].

S5 programs. S5 itself is described via small-step semantics, incorporating ES5
features such as getters, setters and eval. The language is not a complete ref-
erence implementation for the entire standard but is tested against the official
ES5 test suite.

Terms in S5 are 3-tuples comprised of an expression, e, a store σ (mapping
locations to values) and an object store Θ (mapping references to object literals);
the evaluation context is denoted E. The reduction relation → is split into four
parts dependent on which portions of the term are manipulated; their definitions
are given in Fig. 2. For ease of reference, S5’s syntax is given in Appendix A; full
details of S5 are contained in the work of Politz et al. [22].

3 Overview

We present an overview of our approach. First, we discuss how Security Annota-
tions express properties of cryptography APIs (Sect. 3.1). We describe, through
example, how such properties are enforced without changes to client code
(Sect. 3.2).

3.1 Annotating APIs with Security Annotations

We provide a thin layer of JavaScript code (a shim) which adds pre- and post-
conditions to WebCrypto APIs. Listing 2 gives an example of such a shim for the
encrypt API, which encodes the runtime specification for the API. This shim is
included directly into application code via require; line 15 redefines WebCrypto’s
encrypt. This is the only addition an application developer need make to their
codebase; the propagation of these annotations is governed by the mechanisms
formalized in Sect. 4. Security Annotations on arguments are checked against the
API’s preconditions, made explicit through annotation guards. Security Anno-
tations are then attached to return values of functions when these API calls
contain specific postconditions.

Lines 1–3 define the annotation lattice for this API; this implicitly contains
Top, which represents a lack of security properties. The syntax SecAnnS1∗. . .∗Sn

defines orthogonal annotations S1, . . . , Sn. Lines 2–3 use the syntax SecAnn S1∗
. . .∗Sn Extends S, to define new annotations S1, . . . , Sn with Si ≺: S for each i.
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Security Annotations are enforced at function boundaries via arg :S, which
ensures arg meets the annotation guard S. For example, on line 8, we enforce that
if the symmetric encryption algorithm AES is selected, then the key argument
to the function is annotated with SymKey. On line 6, :E checks that the specified
object property meets its guard. In this case, we check that the initialization
vector supplied as part of the alg object is a properly generated random value.

Postconditions are attached as annotations to return values. Encryption is
performed by the original API (line 12); annotations representing newly valid
security properties are then attached (line 13). First, cpAnn attaches all anno-
tations from the data argument to res: security properties of the data are not
invalidated as a result of encryption. The advantage of cpAnn is that we do not
need to know the precise annotations of data. The exception is that if data was
annotated with Plaintext (e.g., if it had been previously decrypted), we discard
this annotation via the drop operator. Finally, we attach Ciphertext to the return
value via the as operator.

3.2 Transparent Property Enforcement

The application in Listing 1 sends an encrypted, signed message across a network
via the send method (line 15). The application developer uses WebCrypto in
order to encrypt and sign this message; without our drop-in WebCrypto shim
this application will execute and the developer will be unaware of a security flaw.
Although individual wrapper functions for signing and encryption are correct,
there is a logical error that causes a security bug. In particular, a signature is
generated of the plaintext and sent alongside the corresponding ciphertext. This
undermines the security of the application: attacks against this signature can
reveal details about the underlying plaintext.

At runtime, the application builds the object to send: the ct property is
constructed by calling the developer’s enc function. This function is correct: the
array stored in iv is annotated with CSRV, the postcondition of WebCrypto’s
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Fig. 3. Syntax modifications to add Security Annotations to S5.

getRandomValues. The generateKey API, when the algorithm is symmetric (i.e., in
the case of both HMAC and AES), returns a valid symmetric key (annotated with
SymKey). The call to WebCrypto’s encrypt succeeds since each argument satisfies
the specification (Listing 2). Next, the developer calls hmac with argument the
unencrypted msg. Similarly, the key is correctly generated via the API. However,
there is an implicit precondition of sign—data to be signed must be ciphertext
to avoid common attacks against the signature revealing information about it.
By using our drop-in shim for WebCrypto, this bug is detected: since msg is
not annotated with Ciphertext an error is thrown on entry to sign, reporting the
violation to the developer.

4 Security Annotations for S5

We formalize Security Annotations within S5 [22], starting with modifications
to the syntax (Sect. 4.1). We describe mechanisms for manipulating annotations
(Sect. 4.2), runtime enforcement (Sect. 4.3), and their effect on the rest of S5
(Sect. 4.4).

4.1 Syntax

The additions and modifications to the syntax of S5 (given in Appendix A)
to incorporate Security Annotations are contained in Fig. 3. We introduce
atomic annotations a, which represent a single security property, and general
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annotations S, which are either Top, the least specific annotation, an atomic
annotation, or the composition of two annotations, given by ∗. Annotations are
only attached to certain prevalues w. Prevalues which should not be annotated
are given by w′, values are then either references r,w <S> or w′, where w <S> is
syntactic sugar for the pair of an annotatable value w along with its correspond-
ing Security Annotation S. An additional modification to the syntax reflects
the addition of annotations to objects: we consider pre-objects, θ′, which form
objects when annotated with a Security Annotation S. We annotate objects
directly as opposed to their references; properties within objects are annotated
in the same manner as values. When an object is modified, previously valid secu-
rity properties on the object are no longer guaranteed: modifying an object field
should alter the annotations associated to the field, and also the annotations of
the overall object.

Additional expressions, e, based on manipulating security annotations, cover
the as, drop and cpAnn constructs. We add evaluation contexts, E′, to cover
these cases, where these are built in the same manner as in S5 (see Appendix A).
Finally, enforcement of Security Annotations is added to functions via the form
func(x : S, . . .); this does not require modification of the evaluation contexts.

4.2 Coercing Security Annotations

The evaluation judgments for coercion of annotations on values and objects are
given in Fig. 4, distinguished by case analysis on values. The expressionv asS
upcasts v to a more specific annotation, achieved by composing the previously
valid annotation with S. Dependent on whether we treat w <S> (in [E-AsW]),
or a reference r ([E-AsR]), we make use of distinct reduction relations (Fig. 2).
In the former case, [E-Compat] is used to govern the evaluation. In the latter,
[E-Objects] is used to modify the object’s annotation in the object store.
Finally, we throw an error whenever a function, null or undefined is passed to
one of these expressions treating coercion of annotations (e.g., [E-AsW’]). The
case analysis for drop are similar; v dropS downcasts v to a less specific annota-
tion. This is accomplished via the cut operator (Sect. 2.1) to prune the S from
the annotation of v. Listing 2 illustrates the use of cpAnn to ensure properties of
data are still valid after encryption by copying annotations from one value (or
object) to another. As with as, the addition of newly valid annotations does not
render previous annotations invalid, so composition unifies them; the evaluation
rules are therefore similar in structure.

4.3 Checking Security Annotations

Figure 5 codifies the enforcement of Security Annotations at function bound-
aries. [E-App] governs the case when arguments meet their annotation-guards
and the function is evaluated. This rule inspects the object store (to look up
object annotations when arguments are references) and modifies the variable
store (to bind arguments to the corresponding variables); we therefore use
the standard reduction relation rather than the split components (Fig. 2). To
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Fig. 4. Judgments for coercing annotations: as, drop and cpAnn.

reflect the hierarchy of the annotation lattice, this rule bakes in subsumption,
e.g., enforcement of CryptKey would accept the more specific PrivKey. A com-
mon JavaScript paradigm is for non-annotatable values, e.g., functions, to be
passed as arguments; we insist the guard for such arguments is Top, i.e., no
security precondition. For any annotatable values, w <S>, we insist S satisfies
the guard S′. For references r, we look up the corresponding object and insist
the annotation meets the guard. Direct checking of object properties and the
this argument is achieved via source-to-source rewritings, described in Sect. 5.2.
[E-AppFail] describes what happens when annotation-checking fails, i.e.,
whenever an argument carries a less precise annotation than its guard.
FailedSecurityCheck is thrown to report the potential security vulnerability to the
user, rather than simply halting evaluation.
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Fig. 5. Function application with Security Annotation enforcement.

4.4 Completing S5 with Security Annotations

The rest of S5 remains largely unchanged. After object fields are manipulated,
there is no guarantee the object annotation remains valid. For example, mod-
ifying the keyUsages field of a key object returned from the generateKey API
may undermine the security of any future operation involving the key. Any pre-
viously valid security properties on the object can no longer be guaranteed;
Top is therefore associated as the object’s annotation. Figure 6 includes judg-
ments for field manipulation, including adding fields which do not exist and
writable ‘shadow’ fields. These semantics are transparent to annotations to allow
prevalues to govern control flow, e.g., the configurable property must be true in
[E-DeleteField].

5 Security Annotations for JavaScript

We describe the mechanization of this model (Sect. 5.1) and a desugaring rela-
tion which allows the execution of JavaScript with Security Annotations1. We
discuss the annotation checking of object internals (Sect. 5.2) and demonstrate
its operation on a case study (Sect. 5.3).

5.1 Implementing Security Annotations in S5

We mechanize Security Annotations on top of the existing reference implemen-
tation of S5 [22]. Alongside object and variable stores, we maintain a third
annotation store, the lattice of valid annotations in the program. Security Anno-
tations are declared via the SecAnn and Extends expressions described in Sect. 3.1.
These expressions modify the annotation store to reflect additions to the lattice
and evaluate to undefined. Using an annotation prior to declaration results in

1 An accompanying implementation is available at: https://github.com/duncan-
mitchell/SecAnnRefInterpreter.

https://github.com/duncan-mitchell/SecAnnRefInterpreter
https://github.com/duncan-mitchell/SecAnnRefInterpreter
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Fig. 6. Judgments for setting, deleting and adding fields.

an exception. The lattice is also inspected in function application (Fig. 5) to
compare annotations with respect to subsumption. Section 4 describes functions
in which each argument is checked against some annotation guard. In implemen-
tation, we retain enforcement-free functions and do not insist every argument
has an annotation-guard. This allows reuse of existing ES5 environment imple-
mentations described in the work of Politz et al. [22].

5.2 A Reference Interpreter for Security Annotations in JavaScript

We execute JavaScript code with Security Annotations by extending the
JavaScript-to-S5 desugaring relation. We extend the syntax of JavaScript by
adding Security Annotations and function guards, as well as the expressions
as, drop, cpAnn, SecAnn and SecAnn Extends. Our desugaring rewrites these
expressions into their S5 equivalents, which are then executed in the reference
interpreter.

Checking Object Properties. Listing 2 demonstrates the need for checking proper-
ties of objects. We achieve this via source-to-source rewritings at the JavaScript
level; these are simplified by an assert function

There are three possible cases; first, checks obj[prop] meets S.
We check the specified property exists, and insist it satisfies the guard S:
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Second, checks all properties meet the guard S; to achieve this we iter-
ate over all object properties:

Finally, checks at least N properties satisfy S. As before, we
iterate over object properties, counting the number that meet the guard:

Checking this. Functions have an implicit this argument, the context object in
which the current code is executing. In the manner of checking object properties,
we check this via the syntax which is rewritten
to .

5.3 Using the Reference Interpreter

We provide a reference implementation of Security Annotations for the correct-
ness of future implementations in native JavaScript. Our interpreter translates
a subset of Node.js programs into S5 programs; we demonstrate the scope of
this reference interpreter by describing the modifications to programs neces-
sary for execution. We outline how we envisage Security Annotations being used
by developers to detect security vulnerabilities through case study within our
interpreter.

A Client-Server Application. We implement a small chat application which takes
as argument a confidential message a client wishes to transmit to a server2. The
server and client negotiate a key exchange, and an encrypted copy of this message
is sent to the server, which decrypts it. We omit authentication from this case
study for simplicity of presentation. WebCrypto is not implemented in Node.js,
so we construct a synchronous mock using the Node.js crypto module.
2 The source code for this application is available alongside the reference interpreter.
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Execution in S5. Library mocks are necessary to execute the case study in S5.
S5 does not support asynchronous code, so we construct a synchronous mock
of the networking API, net. An extension to asynchronous code is possible in
principle based on an existing formalization of JavaScript promises [18]. Second,
cryptographic operations are mocked as stub functions returning objects of the
same underlying structure. Finally, S5 programs do not take input, so we declare
process.argv to simulate this.

Completing the WebCrypto Shim. Listing 3 contains an annotated shim of a
fragment of WebCrypto for use by developers. These method specifications follow
the same structure as Listing 2. getRandomValues fills the supplied array with
random values, so this array is annotated with CSRV. Despite the lack of a return,
the annotation on this array persists because the annotation is attached directly
to the object. generateKey constructs a key (or key pair) object for the supplied
algorithm; postconditions of this method are differentiated by case analysis.
deriveKey is used to compute a shared secret key from the other party’s public
key and the private key. The contract for decrypt is similar to encrypt; we do not
enforce Ciphertext against data—or that the IV is randomly generated—to allow
decryption of messages received across a network. importKey allows public keys
received across a network to be formatted for use with other WebCrypto APIs.
This API allows the upcasting of arbitrary data; however, without importKey, it
would be impossible to use WebCrypto across a network.

A Security Property Violation. When constructing the IV, the developer ensures
that it can be encoded directly as an ASCII string. Despite correctly generating
an IV of the same size as the cipher block size (calling getRandomValues on a
Uint8Array of size 16), they reduce entropy of the IV by zeroing the top bit of
each element of this array. This causes the IV to contain only 112 bits of entropy,
less than the block size: a potential security flaw which does not visibly affect
runtime behavior. To detect such bugs, a developer includes our WebCrypto
shim. The IV is initially generated by a WebCrypto API call and annotated
with CSRV; however, the manipulation of the array drops the annotation (per
[E-SetField] in Fig. 6). Since the iv property of the alg object is not annotated
with CSRV, the call to encrypt fails, FailedSecurityCheck is thrown and this security
flaw is reported to the developer. When the loss of entropy is removed, no error is
thrown; the security pre- and postconditions enforced in the shim are respected.

6 Properties of Security Annotations

We discuss safety guarantees for S5 programs with Security Annotations
(Sect. 6.1) and extend this to security guarantees (Sect. 6.2). Finally, we apply
this to prove security of our case study (Sect. 6.3). Throughout this section, we
assume all programs discussed terminate.

6.1 Safety Guarantees

We adopt a relatively modest notion of safety: first, a program is safe if it does
not evaluate to an exception as a result of a function argument failing to meet
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the annotation guard. Second, the program should not coerce the annotation of
a non-annotatable value, e.g., null as <CSRV>. This gives us the definition:
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Definition 1 (Annotation Safety). An S5 program is safe with respect to Secu-
rity Annotations (or, annotation safe) if the execution of the program does not
result in either a FailedSecurityCheck or NotAnnotatable exception.

Although programs in S5 are deterministic, programs in JavaScript (or any
meaningful language) are not: their execution depends on the DOM or user
input. Suppose P is a program expecting input, we extend Definition 1 as fol-
lows:

Definition 2 (Annotation Safety for Programs with Input). P, is annotation
safe if no execution of the program results in either a FailedSecurityCheck or
NotAnnotatable exception.

Consider a family of S5 programs, Π, which are deterministic and simulate
input by declaring a global variable process.argv assigned to an object containing
N fields. For each field, fi suppose there is an accompanying value vi. For each
vi, we fix a base type and range over all possible prevalues (and undefined, which
simulates a lack of input). If vi is a reference to an object, we range over all
possible objects θ. The resulting family of programs represents the space of
possible executions for P. We can therefore reformulate Definition 2:

Lemma 3. Let P be an S5 program with input and Π the family of deterministic
programs p describing all possible inputs for P. Then P is annotation safe if and
only if every program p ∈ Π is annotation safe.

Proof. By construction, each execution of P is considered as a separate deter-
ministic program P so the result is immediate. ��
Since this family Π is very large, we formalize safety in terms of a subset of these
programs. Let π be the set of all p ∈ Π following exactly the same sequence of
evaluation judgments. This set of S5 programs corresponds to a single control-
flow path of P: so if any p is annotation safe, so are all programs in π. Since the
union of all (clearly disjoint) possible paths π is equal to the overall family of
programs Π, we can obtain a simpler notion of safety for P:

Theorem 4. Let Π be the family of deterministic programs describing all possi-
ble inputs for P. Consider all disjoint subsets π ⊆ Π representing single control
flow paths of P, and for each, choose a single p ∈ π. Then P is annotation safe
if and only if each p is annotation safe.

Proof. Suppose first that P is annotation safe. Then by Lemma 3, we know every
P ∈ Π is annotation safe. Since each π ⊆ Π, each p must be annotation safe as
required. For the other direction, suppose each p is annotation safe. Pick one such
p, and the subset of Π to which it belongs, π. Let p′ be some other program in π,
and suppose that p′ is not annotation safe. Then the execution of p′ results in either
a FailedSecurityCheck or NotAnnotable exception. This means that the final evalua-
tion judgment applied in the evaluation of p′ is either [E-AppFail], [E-AsW’],
[E-DropW’], [E-CpW’V] or [E-CpVW’]. Since p and p′ both belong to π, they
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follow the same sequence of evaluation judgments. But then p is not annotation
safe, which is a contradiction. Thus each p in π is annotation safe, and extending
this across all disjoint subsets π of Π, each program in Π must be annotation safe.
Applying Lemma 3 again, we are done. ��
This result says that if any set π is not safe, then some control-flow path in P vio-
lates the Security Annotation specification of the program, indicating a possible
security vulnerability. This description of safety requires us to find these subsets
π to obtain a guarantee. In practice, this is equivalent to enumerating all control
flow paths of a program over all types of input values and objects, which makes
our mechanism ideally suited for combination with feedback-directed fuzzing or
dynamic symbolic execution [17].

6.2 Security Guarantees

Let L be a library and L′ an annotated shim of this library; any security guar-
antees are conditional on the correctness of L, e.g., that WebCrypto itself is a
correct implementation of cryptographic primitives. Let P be an S5 program
which calls L, and suppose the developer of P in-lines this annotated shim in a
program P ′ = L′;P . We assume that P does not contain any expressions which
manipulate Security Annotations. We can make the following (overapproximate)
claim, which states that the whenever P ′ is annotation safe, it respects the secu-
rity properties enforced by the Security Annotation specifications of the methods
in L′.

Lemma 5. Suppose P ′ is annotation safe. Then the Security Annotation spec-
ifications described in L′ are respected.

Proof. Suppose a Security Annotation specification in L′ is not respected. Then
some function precondition fails, so the judgment [E-AppFail] is evaluated, con-
tradicting our assumption that P ′ is annotation safe. Since P does not involve
the manipulation of Security Annotations, any annotations must be the post-
conditions of an API call in L′; hence these specifications are respected. ��
Analogously to Sect. 6.1, we extend this result to programs with input:

Theorem 6. Let P be a program with input and suppose P ′ = L′;P is anno-
tation safe. Then the Security Annotation specifications described in L′ are
respected.

Proof. This is immediate from the combination of Theorem 4 and Lemma 5. ��

6.3 Security Guarantees in Practice

We use Theorem 6 to describe concrete security guarantees for the case study
outlined in Sect. 5.3, which are conditional on the correctness of WebCrypto.
Recall that after fixing the security vulnerability involving the ASCII-encoded
IV, when a message supplied as argument, the program executes without error;



356 D. Mitchell and J. Kinder

if no message is provided the application simply reports this to the user and
exits. Both control-flow paths of this program are annotation safe. Referring
to the specifications described in our WebCrypto shim (Listing 3), there are
two caveats to our claim; the first assumes the developer does not leak keying
material and the second relates to the omission of authentication from the case
study.

Theorem 7. Suppose that: (i) neither the symmetric key nor either party’s
secret keys are leaked across the network, and (ii), an attacker impersonates
neither party. Then encrypted messages sent by the client can only be read by
the server.

Proof. The application does not manipulate annotations; when executed with a
non-annotated copy of the library the program is annotation safe. As described
above, both control-flow paths of the program are annotation safe with our anno-
tated library in-lined, we can directly apply Theorem 6. It remains to demon-
strate the specification enforced by the annotation library. The encryption—
via AES-CBC with a 128-bit key—is secure only when the symmetric key has
been securely derived, and the IV is a block-sized CSRV (Listing 2). Our Web-
Crypto specification enforces the CSRV portion of the contract directly: calling
getRandomValues annotates the IV with CSRV (lines 7–9 of Listing 3), and this
array is not subsequently modified, the annotation check on entry to encrypt

passes.
Second, the symmetric key used for AES must be shared between the two

parties secretly. The key is derived through an ECDH key exchange; both the
server and client use generateKey (lines 11–20 of Listing 3) to compute a key pair.
Public keys are exchanged, and validated it through importKey (lines 36–39). The
client supplies their private key and the server’s public key to deriveKey (lines 21–
26). Neither key has been tampered with, so the client’s key is annotated with
PrivKey and the server’s with PubKey. This satisfies the guard of deriveKey, and
so the key for AES is computed, and annotated SymKey. The provenance of the
secret key as derived from safe API calls can be confirmed, so the guard against
the key in encrypt succeeds (line 10 of Listing 2). Therefore, only someone in
possession of the private key corresponding to the server’s public key can read
the message supplied as data to this API. ��

7 Related Work

Checking Cryptographic API Usage. Mitchell et al. [19] introduce Security Anno-
tations within a lambda calculus (discussed in Sect. 2.1); this paper extends this
work to JavaScript. Recent work on cryptographic API use in Android appli-
cations shows that the majority of cryptographic bugs are due to misuse of
APIs [16]; Egele et al. [8] show that such errors are common. Nadi et al. [20]
survey usage of Java cryptographic APIs, and argue that the APIs are too low-
level and require implicit understanding of the underlying cryptographic pro-
tocols. Krüger et al. [15] present CrySL, a domain specific language for the
specification of correct usage of cryptographic APIs, focusing on the Java
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Cryptography Architecture. Our approach of encoding pre- and postconditions
via security annotations on values and objects embraces the dynamicity of
JavaScript which is notoriously difficult to statically analyze.

JavaScript Analysis. While our approach is purely dynamic, various dialects
allow for the static checking of JavaScript code [6,7,23,30]. The effective use of
such static typing approaches would require modification of APIs and seman-
tics, e.g., prohibiting byte array indexing of Key types. Design-by-contract sys-
tems for JavaScript [13] enforce program properties directly expressible within
the language. Our work focuses on security properties which cannot be directly
expressed in this manner. Previous work on cryptographic testing for JavaScript
focuses on implementations of the underlying cryptographic protocols. This work
runs parallel to our own: we assume the correctness of these implementations and
check existing usage of these APIs. Taly et al. [29] describe an automatic analysis
to ensure security-critical APIs correctly protect resources from untrusted code.
Domain-specific languages [2,3,14] have been proposed to enable verification of
bespoke implementations by cryptographic experts. Existing programs are not
amenable to this approach, since these languages are small subsets of JavaScript
without many of the common idioms and advantages of the language.

Type-Based Approaches for Security. Type systems for F#, such as F7 [1,4,5]
and F* [28], allow for the description of security properties of terms via depen-
dent types which are checked statically. Static security type systems [24] to
enforce secure information flow offer strong guarantees but have proved imprac-
tical in the JavaScript setting. Work on JavaScript monitors for information
flow [10,26] provide mechanisms for dynamic enforcement of this in JavaScript;
work on information flow monitoring in the presence of libraries [11] extends
the applicability of monitor-based approaches. We follow a similar dynamic tag-
based approach as such approaches [10], however we adopt a fine-grained system
allowing for declassification coupled with precondition checking through anno-
tation guards on functions. COWL [12,27] is an information flow control system
for web browsers preventing third-party library code from leaking sensitive infor-
mation, achieved via the labeling of browser contexts.

Formalizing JavaScript. Various formalizations of JavaScript exist [9,21,22,25].
λJS [9] and its successor S5 [22] provide a small language modeling the key features
of JavaScript and have been extended to provide models for static and dynamic
analyses. S5 remains close to the minimal lambda calculus described by Mitchell
et al. [19], which allowed for a natural translation of Security Annotations.

8 Conclusions and Future Work

In this paper we described a formal model for Security Annotations in JavaScript,
a mechanism to help non-expert developers avoid introducing security-critical
bugs. We introduced a runtime semantics for Security Annotations in a core of
JavaScript and presented a reference implementation of this system. We specified
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a partial fragment of the WebCrypto API in terms of Security Annotations, and
demonstrated how to use it to detect a potential security vulnerability. Finally,
we described the security guarantees offered by Security Annotations.

In future work, we plan to further develop Security Annotations as a runtime
analysis for JavaScript by implementing them as an extension for the full lan-
guage via source code instrumentation. The semantics described in this paper
and accompanying implementation serve as a reference to guide the correctness
of Security Annotations in full JavaScript.

A Syntax of S5

For convenience we provide the complete syntax of S5 from the work of Politz
et al. [22] in Fig. 7.

Fig. 7. The syntax of S5 [22].
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29. Taly, A., Erlingsson, Ú., Mitchell, J.C., Miller, M.S., Nagra, J.: Automated analysis
of security-critical JavaScript APIs. In: IEEE Symposium on Security and Privacy
(S&P) (2011)

30. Vekris, P., Cosman, B., Jhala, R.: Refinement types for TypeScript. In: ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI)
(2016)

31. Watson, M.: Web cryptography API. W3C recommendation, W3C, January 2017

https://doi.org/10.1007/978-3-642-55415-5_23

	A Formal Model for Checking Cryptographic API Usage in JavaScript
	1 Introduction
	2 Background
	2.1 Security Annotations
	2.2 S5: A Semantics for JavaScript

	3 Overview
	3.1 Annotating APIs with Security Annotations
	3.2 Transparent Property Enforcement

	4 Security Annotations for S5
	4.1 Syntax
	4.2 Coercing Security Annotations
	4.3 Checking Security Annotations
	4.4 Completing S5 with Security Annotations

	5 Security Annotations for JavaScript
	5.1 Implementing Security Annotations in S5
	5.2 A Reference Interpreter for Security Annotations in JavaScript
	5.3 Using the Reference Interpreter

	6 Properties of Security Annotations
	6.1 Safety Guarantees
	6.2 Security Guarantees
	6.3 Security Guarantees in Practice

	7 Related Work
	8 Conclusions and Future Work
	A Syntax of S5
	References




