
Network Alignment by Representation
Learning on Structure and Attribute

Thanh Trung Huynh1(B), Van Vinh Tong2, Chi Thang Duong3,
Thang Huynh Quyet2, Quoc Viet Hung Nguyen1, and Abdul Sattar1

1 Griffith University, Brisbane, Australia
{h.thanhtrung,henry.nguyen,a.sattar}@griffith.edu.au

2 Hanoi University of Science and Technology, Hanoi, Vietnam
thanghq@soict.hust.edu.vn

3 EPFL, Lausanne, Switzerland
thang.duong@epfl.ch

Abstract. Network alignment is the task of recognizing similar net-
work nodes across different networks, which has many applications in
various domains. As traditional network alignment methods based on
matrix factorization do not scale to large graphs, a variety of repre-
sentation learning based approaches has been proposed recently. How-
ever, these techniques tend to focus on topology consistency between two
networks while ignoring other valuable information (e.g. network nodes
attribute), which makes them susceptible to structural changes. To alle-
viate this problem, we propose RAN, a representation-based network
alignment model that couples both structure and node attribute infor-
mation. Our framework first constructs multi-layer networks to represent
topology and node attribute information, then computes the alignment
result by learning the node embeddings for source and target network.
The experimental results show that our method is able to outperform
other techniques significantly even on large datasets.

Keywords: Network alignment · Network embedding

1 Introduction

Networks are natural but powerful structures that capture relationships between
different entities in many domains, such as social networks, citation networks,
bioinformatics, chemistry. In many applications that involves multiple networks
analysis, network alignment, the task of recognizing node correspondence across
different networks, plays an important role. For example, by detecting accounts
from the same user in different social networks, information of that user in
one site can be exploited to perform better downstream functions (e.g. friend
suggestion or content recommendation) in the other site [20]. In computer vision,
network alignment helps to match images without human supervision [19]. In
bioinformatics, analysis of protein-protein interactions networks across species
makes remarkable improvement for gene prioritization [7].
c© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11671, pp. 698–711, 2019.
https://doi.org/10.1007/978-3-030-29911-8_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29911-8_54&domain=pdf
https://doi.org/10.1007/978-3-030-29911-8_54

Network Alignment by Representation Learning on Structure and Attribute 699

Despite its ubiquity, network alignment is challenging as it is an NP-hard
problem [3]. There have been several works aiming to deal with this problem
using matrix factorization to directly achieve the alignment result, such as Iso-
Rank [17], NetAlign [3], UniAlign [10], FINAL [20], REGAL [8]. However, these
methods fail to deal with large networks since their computation time grows
exponentially with network size.

In order to handle large networks, several alignment techniques [11,12,21]
attempt to integrate latent representation learning [5,6,15] to make their models
scalable. Although representation based methods can handle large-scale datasets,
most of them focus only on topology consistency, which states that neighbor-
hood relationship between any two nodes is maintained across different networks.
However, this assumption can be incorrect in many contexts, for example, a per-
son might have more connections in one social network (e.g. Facebook, Twitter)
than others (e.g. LinkedIn, MySpace). When this assumption does not hold, the
performance of these methods is adversely affected.

To alleviate this problem, we propose a representation-based network align-
ment model that couples both topology and node attribute information to
enhance the result. Our framework first converts the given networks to multi-
layered networks to represent topology and node attribute information, then
retrieves the alignment result through learning the node embeddings for source
and target network. The experimental results show that our method outperform
other techniques significantly even on large datasets.

Our contributions may be stated as follows:

– We formulate the attributed network alignment problem which takes into
account the alignment of multiple networks where node attribute information
is available.

– We propose a representation-based alignment on attributed network frame-
work (RAN) which identifies node alignments by learning node embeddings
for each network and obtaining node pairs having similar embedding across
networks after reconciling the embedding spaces.

– Within our framework, we transform the original attributed network into a
multi-layer graph to represent both topology and attribute neighborhood and
use these information simultaneously in representation learning stage. To the
best of our knowledge, we are the first to do so to tackle network alignment
problem.

– Experiments on real-world graphs show that our model outperforms state-
of-the-art network alignment methods and more robust to structural and
attribute noise.

Our paper is organized as follows. Section 2 introduces some necessary pre-
liminaries to our work. Section 3 provides an overview of our approach and
the attributed network alignment problem. Section 4 discusses why and how to
transform the original networks to multi-layer graphs while Sect. 5 gives details
of representation learning strategy with random walk on generated networks.
Section 6 describes how to reconcile the embedding spaces and achieve the align-
ment result. The empirical results are shown in Sect. 7 while Sect. 8 surveys the
related works and Sect. 9 concludes the paper.

700 T. T. Huynh et al.

2 Background

Attributed Network. Network (or graph, we use these terms interchangeably
in this paper) is an omnipresent data structure appearing in applications in var-
ious fields such as computer science, social science, biology. Basically, a network
is presented by a pair G = (V,E) comprising a set V of vertices together with
a set E of edges. However, in many applications, network nodes associate with
valuable information called node attributes. Node attributes can be presented as
a matrix N ∈ R

nxd with n is the number of node in the network and d is the size
of feature vector; each node v ∈ V associates with a feature vector N(v) ∈ R

d.
An network combining with node attribute can now be presented as a triplet
G = (V,E,N).

Network Embedding. Network embedding is an emerging technique in graph
analysis due to the ubiquity of large-scale networks in real-world applications.
The goal of network embedding is to map network nodes to a low-dimensional
embedding space so that similarity of any two nodes reflects their similarity in
the original network. Given a graph G = (V,E), learning node embeddings
requires three main steps:

– Define an encoder φ : V → R
n×d associates each network node to a low-

dimensional vectorial representation.
– Define an similarity function sim : V × V → R in the original network that

measures the relation between any two nodes.
– Optimize the parameters of the encoder so that similarity function sim of

two nodes approximates the distance between their representation vectors:

3 Model and Approach

3.1 Model

Network alignment is the task of identifying corresponding nodes across two dif-
ferent networks. In this work, we address attributed networks as we use both
topology and nodes’ feature of the networks to enhance the performance of our
proposed network alignment model. Given two attributed networks, without loss
of generality, we select one network as source network and the other as target net-
work, denoted by Gs and Gt respectively. For each node in the source network,
we aim to recognize, if any, its counterpart in the target network. To achieve this
goal, network alignment techniques often calculate an alignment matrix S, which
is technically a cross-network similarity matrix: S(u, v) represents the similarity
between a node u ∈ Vs and v ∈ Vt. This can be formally formulated as follow:

Problem 1. Given two attributed networks Gs = (Vs,Es,Ns) and Gt =
(Vt,Et,Nt) where Vs,Vt are sets of nodes, Es,Et are sets of edges and Ns,Nt

are node attribute matrices, the problem of network alignment is to return an
alignment matrix S where S(u, v) represents the similarity between a node u ∈ Vs

and v ∈ Vt.

Network Alignment by Representation Learning on Structure and Attribute 701

Matching node pairs across source and target network then can be inferred by
applying heuristics on this alignment matrix [8,9] to learn M : Vs ×Vt → {0, 1}
such that M(u, v) = 1 if two nodes u ∈ Vs, v ∈ Vt share the same identity;
otherwise M(u, v) = 0.

3.2 Approach

Solving the delineated problem is a complex task. Real-world networks often
have significant amount of nodes, therefore constructing the potential matching
between two networks can be costly, requires the solution method being time
efficient and scalable. Besides, in many cases, networks contain structural noises,
for example two nodes are neighbors in one network do not always maintain the
neighborhood relation in other network. In such case, using topology information
alone is insufficient and can mislead to poor alignment result. In our work,
therefore, we study an alignment approach that integrating attribute of network
nodes into multi-layer network structure.

Figure 1 presents an overview of our model. We start by transforming each
given source and target network into a two-layer network. The first layer, namely
structure layer, corresponds to the structure of the origin network without any
node attribute information. The second layer, named attribute layer, is con-
structed by generating pseudo nodes corresponding to nodes feature, called
attribute node. The intuition behind creating this layer is to capture the relation-
ship between network nodes based on feature through forming links between their
attribute nodes. Attribute node of one node also links to its node in structure
layer to represent the relationship between topology and feature characteristic
of that node. Designing this two-layer network allows us to unify the structure
and attribute property of the network and leverage node feature information to
facilitate the process of generating nodes representation.

Fig. 1. Overview of RAN model

702 T. T. Huynh et al.

To learn latent representations of network nodes, we employ a biased ran-
dom walk and language modeling technique approach. The embedding approach
exploits properties of the multi-layer network by adopting random paths over
the two layers as nodes’ context, enriches the context with both topology and
attribute information. Then, the popular skip-gram model is applied on the ran-
dom walks to learn nodes’ embedding by considering walks as the equivalent of
sentences in language modeling.

After the embedding step, each network is presented by a low-dimensional
space which reflects the characteristic of network nodes through distance: sim-
ilarity in the embedding space approximates similarity in the original network,
which helps to identify the nodes across source and target networks. Because
latent space of source and target networks are independently learned, a map-
ping function is produced in the next step to map the spaces of source and
target network into a shared space where the alignment result can be achieved
by mapping pairs of nodes that have close embeddings.

Following this structure, our model requires the realization of the following
steps:

Multi-layer Network Construction. This step extends each given network to
a two-layer network that represents its structure and attribute information. The
structure layer maintains the original network topology while the attribute layer
captures the attribute neighborhood relationship of network nodes. To construct
the attribute layer, first we group the node feature vectors into k clusters, then
we generate the attribute nodes presenting each cluster. The attribute node of
clusters having close centroids will be linked together to capture nodes feature
similarity. Using clustering result makes our model more robust to small changes
in attribute introduced by noise and reduces the computation time needed.
The detailed process of constructing structure attribute multi-layer networks
is described in Sect. 4.

Network Embedding. In this stage, low-dimensional latent spaces are created
based on the networks produced in the last step. We want to leverage both
topology and attribute information to learn latent representations for network
nodes so that more information are used to identify and distinguish the nodes
across the networks. As a result, random walks are generated over the two layers
and contains both attribute node and structure node. Then, skip-gram model
with negative sampling is employed on the random walks to learn embedding for
the nodes. The detail of this step is described in Sect. 5.

Node Alignment. As the vectorial embedding spaces for the source and target
networks are obtained independently, the embeddings might belong to different
and incomparable vector spaces. Therefore, we produce a mapping function that
reconcile the spaces by mapping one embedding space to the other. We adopt
a supervised algorithm for learning the mapping function inspired by cross-
language dictionary building. After being mapped to the common space, nodes
from source and target network that have similar representation will be chosen
to form the alignment pairs. Node alignment is described in Sect. 6.

Network Alignment by Representation Learning on Structure and Attribute 703

4 Multi-layer Network

First we discuss the preprocessing step that convert each source and target net-
work to a multi-layered network. Given the attributed network G = (V,E,N),
we divide the network into two layers. The first layer corresponds to the struc-
ture, and the second layer is for the content of the network.

4.1 Structure Layer

This layer is designed to capture the topology information of the original net-
work. To this purpose, we replicate the topology of the original network and
discards nodes attribute information in this layer. Mathematically, given the
input network G = (V,E,N), the structure layer is a graph Gst = (Vst,Est),
with Vst = V and Est = E. There are some reasons for constructing the struc-
ture layer this way. First, this helps to avoid losing topology information because
any two neighbor nodes in the original network will be connected in the struc-
ture layer of the new network. Otherwise, if any two nodes lose their neigh-
borhood relationship during the transformation, they will become undesirable
structure noise and consequently adversely affects the final performance of the
model due to the homophily principle assumption. Secondly, separating topology
and attribute information in two different layers allows us to manage and unify
these information easier. While similarity in topology between nodes is presented
in this layer, the relation related to attribute will be specified in the attribute
layer.

4.2 Attribute Layer

This layer is a directed graph which captures the similarity between nodes in
terms of their respective features. Constructing the layer requires two sub-steps:

Creating Attribute Nodes. In this sub-step, we generate pseudo node to
represent features of the original network nodes. To prevent the explosion in the
amount of pseudo nodes that are generated and taken into account, we bin node
features together into k groups, with k << n, then create one attribute node
for each group. The grouping strategy depends on the type of node attributes.
For categorical node attributes where node feature vectors are in the form of
one-hot vectors, we propose using the number of category features as k. For
multi-categorical or real-valued node attributed, a variety of popular clustering
algorithm can be employed accordingly (K-mean algorithm is used in our work).
It is worth noting that this process not only reduces the amount of attribute
node, it also makes our model more resistant to small changes in feature vectors
introduced by noise as their representing attribute node remain the same.

Connecting Attribute Nodes. After forming the attribute nodes, we assign
the edges between these nodes to simulate the attribute similarity between net-
work nodes. For each attribute node vi ∈ V, initially we compute the similarity
or weight to all other nodes vj , (j �= i) based on the similarity of the presenting

704 T. T. Huynh et al.

feature vector of the group. But in this case, the attribute graph can be close to
a complete graph and consequently it would increase the computational time.
To avoid this problem, we propose to use a threshold for average degree of the
attribute graph based on that of structure layer. Let average degree of the struc-
ture layer is avgst, we only keep top avgst edges that have the highest weight.
Using avgst has two advantages: (1) avgst is determined value and (2) leverag-
ing it allows us to maintain the balance between the size of structure layer and
attribute layer. At the end, we get the attribute layer in the form of a graph
Gat = (Vat,Eat).

4.3 Connect Attribute and Structure Layer

Next, we complete the multi-layer network by adding the edges that connects
structure layer and attribute. For any node vi in the original network, suppose it
corresponds to node vst

i in the structure layer and node vat
i in the attribute layer,

we join vst
i and vat

i together by an edge which associated with four transition
weights as follows:

wss
i = ln(e + |Γ ss

i |) | Γ ss
i = {(vst

i , vst
j), vst

j ∈ Vst} (1)

wsa
i = was

i = ln(e + |Γ at
i |) | Γ at

i = {(vat
i , vst

j), vst
j ∈ Vst} (2)

waa
i = ln(e + |Γ aa

i |) | Γ aa
i = {(vat

i , vat
j), vat

j ∈ Vat} (3)

This weights are determined based on the number of direct neighbors in
terms of topology and attribute. The intuition behind these weights is to guide
the random walk generation process to the layer which have more information
in each walk step. The detail of usage of these weights will be discussed later at
Sect. 5.1.

We have generated a multi-layered graph Gmul = (Vmul,Emul) using net-
work structure and attribute. Next, we leverage this graph to learn the latent
representations for network nodes.

5 Structure Attribute Network Embedding

In this step, each network is embedded into a low-dimensional space by combin-
ing structure and attribute information where each node vi is represented as a d-
dimensional vector zi. First we describe a biased random walks generator on the
multi-layered graph, then we address the latent representation learning strategy.

5.1 Biased Random Walks

Algorithm 1 depicts how the random walks are generated. Given the multi-layer
network from the previous step, we would want to produce a random walks set
which plays the same role as corpus in language modelling. There are r random
walks starting from each node in the multi-layered graph as root, each random
walk has the length l.

Network Alignment by Representation Learning on Structure and Attribute 705

Algorithm 1. Random walks construction
1: Input: The network Gmul = (Vmul,Emul),

r: Number of random walk starting form each vertex,
l: Length of each random walk

2: Output: Random walks set C
3: C = [] � Initialize the corpus
4: for n ∈ [1, r] do
5: for v ∈ Vmul do
6: W = [v], v0 = v � Initialize the walk
7: for i ∈ [1, l] do
8: vi = WALKSTEP(vi−1) � Determine the next node in walk step
9: Append vi to W

10: Append W to C

11: return C

Lines 4–9 shows the basis of the generator. Line 4, line 5 specifies the loops with
r and l. For each iteration, line 6 first initialize the walk. Then, given at a particular
time step i of the random walk, we are at node vi, with vi either in the structure
layer or in the content layer; the WALKSTEP function calculates to choose vi+1

to perform the next walk step in line 8. The function first calculate the probability
of taking that step either into the structure layer or into the attribute layer, with
the goal is to move to a layer which is more informative using the weights specified
in Sect. 4.3. The transition probabilities are defined as:

p(vi+1 ∈ Vst|vi ∈ Vst) =
wss

i

wss
i + wsa

i

(4)

p(vi+1 ∈ Vat|vi ∈ Vst) =
wsa

i

wss
i + wsa

i

(5)

p(vi+1 ∈ Vst|vi ∈ Vat) =
was

i

was
i + waa

i

(6)

p(vi+1 ∈ Vat|vi ∈ Vat) =
waa

i

was
i + waa

i

(7)

After selecting the layer, the WALKSTEP function pick randomly a node
from neighbor set of the current node vi in that layer to move to. The chosen
node vi+1 then is appended to the walk in line 9. The loop continues until the
length of the walk reaches l and the walk is added to the corpus in line 10. When
all random walks are generated, the corpus is returned in line 11.

5.2 Latent Representation Learning

After having the random walk set generated, we leverage Skip-Gram with Nega-
tive Sampling (SGNS) technique [14] in language modelling to learn the embed-
ding for network nodes. In language modelling, the main goal is to maximize the

706 T. T. Huynh et al.

likelihood of a sequence of words appearing in a document. In our work, gen-
erated biased random walks play the same role as short sentences in language
modelling and the goal is to maximize the co-occurrence probability of all ver-
tices v1, .., vn in the walk given the observing vertex v0. Mathematically, it can
be written in the following form:

maximize
v0

Pr(v1, .., vn | v0) (8)

Skip-Gram model can be used to produce embedding for nodes given the
random walk corpus C. For a vertex vi, φ(vi) represents the embedding of the
node, we would like to maximize the probability of its neighbors in the walk.
Given w being the window size of the node, the embeddings φ can be found by
maximizing the following objective:

maximize
φ

log(Pr{vi−w, ..., vi+w | vi} | φ(vi)) (9)

6 Node Alignment

To reconcile two latent representation spaces that are learned independently, we
construct a pairwise mapping between two embedding spaces. The idea behind
this technique is to facilitate reconciliation based on a part of groundtruth given
as seed dictionary, called anchor nodes, denoted by A. Because we construct
embedding for source and target network separately, these anchor nodes will
be assigned to different embedding spaces, even if they are related to the same
entities. As a result, these anchor nodes play an important role to align one
embedding space to the other.

Let Zs and Zt denote the embedding matrices for source and target network,
we learn the mapping function Θ : Zs −→ Zt such that the embeddings of the
anchor nodes A are closed in the common space. Our objective can be determined
by the following loss function:

L =
∑

v∈A

||Θ(zs
v) − zt

v||F (10)

where ||.||F is the Frobenius norm.
The mapping function Θ can be either a linear function [2] or a multilayer

perceptron [12]. Although the linear function Θ(Z) = Z×W is a simple model,
we apply this model into our work because of the two reasons. First, according to
[12], it is sufficient to obtain a good mapping. Second, with the linear mapping,
the optimized solution can be found in an exact manner. It is worth noting
that better mapping comes with the addition of orthogonality constraint to
the mapping matrix W, because orthogonal matrix helps to maintain distance
between any two nodes across networks. The optimized orthogonal matrix W∗

can be obtained by using singular value decomposition. In more detail, let

UΣVT = EsET
t (11)

Network Alignment by Representation Learning on Structure and Attribute 707

be the SVD decomposition of the matrix EsET
t . Then the mapping matrix W

is calculated from U,V
W = UVT (12)

After reconciling the two representation spaces, we calculate the alignment
matrix S by:

S(u, v) = sim(φ(u), φ(v)), u ∈ Vs, v ∈ Vt (13)

with sim is the similarity measure, for our work we choose cosine similarity.
Then, we adopt a heuristic greedy algorithm [9] on the similarity matrix to
obtain one-to-one alignments between the source and target networks.

7 Experiments

7.1 Experimental Setup

Datasets. In the experiments, we employ three real-world datasets to evaluate
the performances of our model, including protein-protein interaction (ppi) [6],
economic network (econ) [16] and brain network (bn) [1]. Starting from each real-
world network Gs = (Vs,Es,Ns) with adjacency matrix Ds as source network,
we produce a permuted network Gp = (Vp,Ep,Np) with adjacency matrix Dp

by the following equation:
Dp = PDsPT (14)

where P is the permutation matrix, with Pij = 1 means that node i from the
source network corresponds to node j in the target network, otherwise Pij = 0.

Baseline Methods. We compare against four well-known existing network
alignment methods: (1) UniAlign, which applies alternating projected gradi-
ent descent on formulated bipartie network alignment model [10]; (2) FINAL,
which defines a model with three criteria namely structure consistency, node
feature consistency and edge feature consistency to tackle alignment problem
on attributed networks [20]; (3) REGAL, which models alignment matrix using
topology and nodes’ feature similarity then employs low-rank matrix factoriza-
tion approximation to speed up calculation [8]. (4) DeepLink, which generates
the embeddings using skip-gram model then using auto-encoder and MLP to
construct mapping function [21]. Besides, we use one variant of our method that
using only structure layer to verify the effectiveness of the construction of the
multi-layer graph. We name it as RAN so (RAN with structure layer only).

Settings. Due to the randomness, we run 50 times for each dataset to com-
pute the average results. For our algorithm, we use following hyperparameters:
number of random walks = 100, walk lengths = 5, window size = 2. For other
algorithms, we try our best to tune the parameters to have the best experiment
performance. We use alignment accuracy as the evaluation metric to measure
the performance. All the experiments are conducted on an AMD Ryzen Thread-
Ripper 3.8 GHz system with 64 GB of main memory and four GTX Titan X
graphic cards.

708 T. T. Huynh et al.

7.2 Alignment Performance Analysis

Robustness to Structural Noise. Network alignment methods exploit the
topology consistency in its model, which assumes that the two node neighbors
tends to maintain their relationship across the networks. Therefore, it would be
important to learn about the effect of structural noise to these state-of-the-art
alignment algorithms. To stimulate structural noise, we permute the original
graph then remove edge from the original network with probability pe ranging
from 0 to 0.2 as described in 7.1

(a) ppi (b) bn (c) econ

Fig. 2. Robustness of algorithms to structural noise

Figure 2 illustrates the accuracy results on the datasets. In general, all algo-
rithms suffer accuracy drop when the noise level increased. RAN outperforms
all four existing methods in all scenarios. It achieves 20–40% accuracy improve-
ment over the state-of-the-art method REGAL when the noise level is at around
from 0.05 to 0.1. This is because while both algorithm use network structure
and attribute information, REGAL adopt a strict assumption on topology con-
sistency that two nodes are similar when their neighbor’s degree are the same,
which make its model susceptible to considerable level of structure noise. Fur-
thermore, RAN is more robust to structural noise as the accuracy gap between it
and other methods becomes larger when noise grows. The performance of FINAL
also witnesses a slight decrease but remains stable at average level, around 50%
for ppi and bn dataset and 40% for econ dataset. By contrast, the accuracy of
REGAL, BigAlign and DeepLink drop sharply when the level of noise goes high.
Last but not least, the alignment accuracy of RAN is 10–30% better than its
variant RAN so, which verifies the importance of the construction of multi-layer
graph.

Robustness to Attribute Noise. In this experiment, we study the effect of
attribute noise to the performance of RAN and other baseline methods. Figure 3
shows the effect of attribute noise on alignment algorithms with the attribute
changing pa probability ranging from 0 to 0.5 while the structural noise ps fixing
at 0.05. We only consider RAN, REGAL, FINAL and BigAlign because the
others do not utilize attribute information.

It can be seen from the diagram that REGAL and FINAL performance dete-
riorate with similar rate when level of attribute noise rises, while BigAlign’s

Network Alignment by Representation Learning on Structure and Attribute 709

(a) ppi (b) bn (c) econ

Fig. 3. Robustness of algorithms to attribute noise

accuracy declines with slightly faster pace. RAN performs the best not only on
the accuracy but also on the stability when the level of attribute noise increased
for all three datasets. On the other hand, performance of FINAL and BigAlign
decrease significantly when attribute noise arises, drop below 10% accuracy at
the noise level of 0.5 for all datasets. This is expected due to FINAL and BigAlign
heavy reliance on attribute consistency.

Robustness to Graph Size Imbalance. This experiment investigates the
effect of the difference between the size of two network to the accuracy of all
models. Figure 4 shows the experiment result with the removal ratio of nodes pn

increases from 0 to 0.5.

(a) ppi (b) bn (c) econ

Fig. 4. Robustness of algorithms to graph size imbalance

It can be observed from the diagram that representation based method such
as RAN, RAN so and REGAL are sensitive to graph size imbalance factor. On
the other hand, FINAL, a matrix-factorization based method, is more stable than
the other when the level of imbalance increased. This is because size imbalance
between source and network make the corresponding representation vector space
harder to reconcile. It is worth notice that RAN is not the winner on the stability
of performance when the number of removal nodes increased but it performs the
best in accuracy on all datasets.

710 T. T. Huynh et al.

8 Related Works

Network alignment problem has received a great deal of research interests in
the recent years. The problem appears in various contexts, ranging from data
mining [3], database schema matching [13], computer vision [19], security [4] to
bioinformatics [17].

Many approaches use matrix factorization to compute the alignment matrix
directly, which is natural but effective way to tackle the problem. The classic
and well-known IsoRank algorithm [17], inspired by PageRank [18], propagates
the pairwise node similarity along the network with the assumption that two
corresponding nodes in two networks connect to similar characteristic neighbors.
NetAlign [3] models the alignment problem as an integer quadratic programing
problem and adopts a belief propagation heuristic to solve. UniAlign [10] then
applies alternating projected gradient descent on formulated bipartie network
alignment model. FINAL [20] defines a model with structure, node feature and
edge feature consistency to tackle alignment problem. REGAL [8] employs low-
rank matrix factorization approximation to speed up calculation.

While matrix factorization based methods prove their efficiency in many sce-
nario, they struggle to deal with large-scale networks due to the sparsity and
massive size of their adjacency matrix. With the appearance of network embed-
ding techniques [5,6,15]; alignment techniques leverage their scalability to deal
with large-size network. PALE [12] learns nodes embedding by maximizing the
co-occurrence likelihood of edge’s vertices then applies linear or multilayer per-
ceptron (MLP) as mapping function. IONE [11] uses the same mapping function
as PALE but its embedding process is more complicated as it takes into account
second-order node similarity. DeepLink [21] employs unbiased random walk to
generate embeddings using skip-gram then using auto-encoder and MLP to con-
struct mapping function. While these methods put in solid performance in some
large datasets, they rely only topology information and therefore remain vul-
nerable to structure noise, which is very common in real-world networks. In
this paper, in our end-to-end setting, we integrate both structure and attribute
information to mitigate this problem and enhance the alignment result.

9 Conclusion

This paper proposed a representation learning based technique to align two
attributed networks. The main novelty of our work is to transform the given
networks into a multi-layer network to integrate both topology and attribute
information before mapping network nodes to latent representation vector space.
Then, the alignment matrix is retrieved by reconciling the two embedding spaces
through a mapping function and eventually matching heuristic is applied on
the matrix to retrieve the corresponding node pairs. Experiments on different
benchmark datasets, different settings and numerous alignment methods verify
the efficiency of our method on real-world large scale networks.

Network Alignment by Representation Learning on Structure and Attribute 711

References

1. Amunts, K., et al.: BigBrain: an ultrahigh-resolution 3D human brain model. Sci-
ence 340, 1472–1475 (2013)

2. Artetxe, M., Labaka, G., Agirre, E.: Learning bilingual word embeddings with
(almost) no bilingual data. In: ACL, pp. 451–462 (2017)

3. Bayati, M., Gerritsen, M., Gleich, D.F., Saberi, A., Wang, Y.: Algorithms for large,
sparse network alignment problems. In: ICDM, pp. 705–710. IEEE (2009)

4. Bayati, M., Gleich, D.F., Saberi, A., Wang, Y.: Message-passing algorithms for
sparse network alignment. ACM Trans. Knowl. Discov. Data (TKDD) 7(1), 3
(2013)

5. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: KDD,
pp. 855–864. ACM (2016)

6. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS, pp. 1024–1034 (2017)

7. Hashemifar, S., Xu, J.: HubAlign: an accurate and efficient method for global
alignment of protein-protein interaction networks. Bioinformatics 30(17), i438–
i444 (2014)

8. Heimann, M., Shen, H., Safavi, T., Koutra, D.: REGAL: representation learning-
based graph alignment. In: CIKM, pp. 117–126 (2018)

9. Kollias, G., Mohammadi, S., Grama, A.: Network similarity decomposition (NSD):
a fast and scalable approach to network alignment. TKDE 24(12), 2232–2243
(2012)

10. Koutra, D., Tong, H., Lubensky, D.: BIG-ALIGN: fast bipartite graph alignment.
In: ICDM, pp. 389–398 (2013)

11. Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using
network embedding. In: IJCAI, pp. 1774–1780 (2016)

12. Man, T., Shen, H., Liu, S., Jin, X., Cheng, X.: Predict anchor links across social
networks via an embedding approach. In: IJCAI, vol. 16, pp. 1823–1829 (2016)

13. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph
matching algorithm and its application to schema matching. In: ICDE, pp. 117–
128 (2002)

14. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119
(2013)

15. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: KDD (2014)

16. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: AAAI (2015). http://networkrepository.com

17. Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction
networks with application to functional orthology detection. In: Proceedings of the
National Academy of Sciences, pp. 12763–12768 (2008)

18. Xing, W., Ghorbani, A.: Weighted PageRank algorithm. In: CNSR, pp. 305–314.
IEEE (2004)

19. Yang, H., Song, D., Liao, L.: Image captioning with relational knowledge. In: Geng,
X., Kang, B.-H. (eds.) PRICAI 2018. LNCS (LNAI), vol. 11013, pp. 378–386.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97310-4 43

20. Zhang, S., Tong, H.: Final: fast attributed network alignment. In: KDD, pp. 1345–
1354 (2016)

21. Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., Zhong, T.: DeepLink: a deep
learning approach for user identity linkage. In: INFOCOM, pp. 1313–1321 (2018)

http://networkrepository.com
https://doi.org/10.1007/978-3-319-97310-4_43

	Network Alignment by Representation Learning on Structure and Attribute
	1 Introduction
	2 Background
	3 Model and Approach
	3.1 Model
	3.2 Approach

	4 Multi-layer Network
	4.1 Structure Layer
	4.2 Attribute Layer
	4.3 Connect Attribute and Structure Layer

	5 Structure Attribute Network Embedding
	5.1 Biased Random Walks
	5.2 Latent Representation Learning

	6 Node Alignment
	7 Experiments
	7.1 Experimental Setup
	7.2 Alignment Performance Analysis

	8 Related Works
	9 Conclusion
	References

