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Abstract. Most existing ordinal regression methods are adapted from
traditional supervised learning algorithms (e.g., support vector machines
and neural networks) which have shown to work well mostly on dense
data. However, the use of existing ordinal regression methods on sparse
data has received less scrutiny. This paper proposes to address the spar-
sity issue arose in many real-world ordinal regression applications by
leveraging the feature interaction modeling techniques. Following the
popular threshold methodology in ordinal regression studies, we extend
Factorization Machines, an effective solution to modeling pairwise feature
interactions in sparse feature space, to ordinal regression. The proposed
model, namely Factorization Machines for Ordinal Regression (FMOR),
combines the ability of threshold methodology in predicting targets of
ordinal scale with the advantages of factorization models in handling
high-dimensional sparse data. Through extensive experimental studies,
we show that the proposed FMOR is both effective and efficient against
state-of-the-art baselines.
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1 Introduction

Ordinal regression is an important type of supervised learning paradigm, which
aims to learn predictive models for ordinal targets. Ordinal regression problems
are very common in massive domains from social sciences [9] to financial technol-
ogy [1] and clinical research [23]. In recent years, ordinal regression has experi-
enced significant developments, with many prevalent methods adapted from tra-
ditional machine learning algorithms such as support vector machines [3,24], neu-
ral networks [2,4,6,13], boosting [11] and discriminant learning [21,22]. These
methods have shown to be effective in many scenarios, but unavoidably, retain
substantial weaknesses of the original methods. One significant challenge comes
from the fact that the feature space can be of very high dimension but sparse in
many real-world ordinal regression applications, e.g., collaborative filtering, click-
through rate prediction, and computer-aided pathology diagnosis. It is known that
the sparse representation problem greatly hinders the performance of traditional
machine learning methods, as well as their extensions for ordinal regression [7].
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One successful solution to the sparse representation problem is to model
the inherent interactions among features because co-occurrence of features often
helps reveal high-level domain knowledge about the task under consideration.
One effective approach to model feature interaction is Factorization Machines
(FM) [19], which embeds high-dimensional sparse features into a rank-low latent
space and learns pairwise feature interactions via the inner product of features’
embedding vectors. Although originally proposed in the context of recommender
systems, FM has yielded great promise in a wide range of prediction tasks,
especially those with very high and sparse feature space [16–18,25]. However,
the target variables of traditional FM models can only be either discrete or
continuous. Thus, the tradition FM does not yet cater for the ordinal relationship
among learning targets. To our best knowledge, there is little work adapting FM
for ordinal regression.

In this paper, we propose a novel Factorization Machines for Ordinal
Regression (FMOR), in which the sparsity issue in ordinal regression is tack-
led through factorized feature interactions. Motivated by the popular threshold
methodology of ordinal regression studies, the proposed FMOR extends the tra-
ditional FM by introducing a set of threshold parameters that map real-valued
outputs of FM to ordinal labels. We implement the learning algorithm of FMOR
based on stochastic gradient descent, and further claim that the ordinal thresh-
old constraint required by threshold-based ordinal regression methods can be
automatically satisfied by the derived model. Finally, we perform comprehensive
experiments on several benchmark datasets and compare FMOR with state-of-
the-art approaches. The results show that FMOR noticeably outperforms all
counterparts, especially in case of sparse feature space.

The rest of this paper is organized as follows. Section 2 briefly discusses the
literature of ordinal regression. Section 3 gives the details of the proposed fac-
torization machines for ordinal regression. Section 4 reports the experimental
results. Section 5 gives some conclusive remarks.

2 Related Work

Generally, ordinal regression methods can be classified into three categories:
(i) naive methods, (ii) ordinal binary decomposition methods, and (iii) threshold-
based methods.

Naive Methods. Ordinal regression, akin to nominal classification and met-
ric regression, can be simplified into these conventional supervised learning
paradigms by either ignoring the ordinal relationship among classes or cast-
ing ordinal labels into real values. A more advanced method of this type is to
transform ordinal regression as cost-sensitive classification, in which the ordinal
information is encoded as misclassification costs [10].

Ordinal Binary Decomposition Methods. The main idea of ordinal binary
decomposition methods is to decompose the ordinal classes into several binary
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pairs, each modeled by single or multiple traditional classifiers. Lin et al. [12]
proposed a reduction framework from ordinal regression to binary classification:
each sample is extended with a series of ordinal patterns, then a binary classifier
is learned for each ordinal class that answers the question: “Is the rank of x
greater than r or not?”. Liu et al. [14] made use of triplets with each element
from a different rank as samples and a binary classifier is learned for each ordinal
class that answers the question: “Is the rank of x greater than r − 1 and smaller
than r + 1?”.

Threshold-Based Methods. Threshold-based methods have been one pop-
ular technique for handling ordinal samples. Threshold-based methods aim to
estimate: (i) a latent regression function f(x) that maps the input feature space
to a one-dimensional real space; and (ii) a set of thresholds b1 ≤ · · · ≤ bR

that cast the real-valued f(x) into an interval corresponding to an ordinal class.
The proportional odds model (POM) [15] is one of the first threshold-based
methods and inspires many subsequent studies. Another well-known threshold-
based ordinal regression method is Support Vector Ordinal Regression (SVOR)
[3,20] that generalize the “large margin” principle adopted by support vector
machines to ordinal regression. Two solutions to SVOR have been developed:
one maximizes the margin of the closest neighboring classes (called fixed-margin
strategy) and one maximizes the sum of margins of all classes (called sum-of-
margin strategy). In a recent survey on ordinal regression [5], SVOR is proved
to be the best threshold-based methods for its competitive performance on both
prediction accuracy and training time.

3 The Proposed Method

In this section, we first give a preliminary introduction to the traditional FM,
and then elaborate our proposed FMOR method.

3.1 Preliminary

Factorization Machines (FM) [19] are a generic model class that capable of deal-
ing with high-dimensional and sparse features. Formally, FM takes as input a
real valued vector x ∈ R

d, and estimates the target by modelling pairwise inter-
actions of sparse features using low-rank latent factors. The model equation of
FM is formulated as:

ŷFM(x; Θ) = w0 +
d∑

j=1

wjxj +
d∑

j=1

d∑

j′=j+1

〈vj ,vj′〉xjxj′ (1)

where the parameters Θ have to be estimated are:

w0 ∈ R; w ∈ R
d; V = (v1, · · · ,vd) ∈ R

p·d
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In Eq. 1, the first two items are linear combinations of every features with
weights wj (1 ≤ j ≤ d) and a global bias w0, and the last item is pairwise
feature interactions using a factorized weighting schema ŵjj′ = 〈vj ,vj′〉 =∑p

k=1 vjk · vj′k, where vj is factor vector of the j-th feature, and p ∈ N
+ is

the hyper-parameter that defines the dimensionality of factor vectors. Feature
factors in FM are commonly said to be low-rank, due to p � d. Compared with
traditional ways (e.g., polynomial SVM) to model feature interactions using
separated interaction weights, the factorization schema of FM can reduce the
model complexity from O(d2) to O(p · d), which is a favored property for high-
dimensional feature space.

Furthermore, FM is practically efficient for its linear computation time com-
plexity. The model equation of FM in Eq. 1 can be reformulated as:

ŷFM(x; Θ) = w0 +
d∑

j=1

wjxj +
1
2

p∑

k=1

⎛

⎜⎝

⎛

⎝
d∑

j=1

vjkxj

⎞

⎠
2

−
d∑

j=1

v2
jkx2

j

⎞

⎟⎠ (2)

Equation 2 indicates that the model equation of FM has only linear time
complexity in both d and p. In fact, the pairwise feature interaction can be only
computed over the non-zero elements of x, i.e., the computation complexity
is O(p · Nz). Under sparsity settings, Nz can be much smaller than d, thus
the computation of decision function of FM can be very efficient. In brief, FM
provides a promising framework for handling high dimensional and sparse data.

3.2 Factorization Machines for Ordinal Regression

We realize Factorization Machines for Ordinal Regression (FMOR) by leveraging
the threshold methodology. The basic idea is to introduce a set of consecutive
thresholds to partition real line into several intervals which define the boundaries
of ordinal classes.

Given an ordinal regression problem with R ordinal classes, OrdinalFM esti-
mates the target of an input vector x ∈ R

d as:

ŷ(x) = arg min
r∈{1,··· ,R}

{f(x) − br ≤ 0} (3)

where b1, · · · , bR ∈ R are the R thresholds partitioning real line into intervals,
each corresponding to an ordinal class. Besides, the thresholds are required to
satisfy the constraint b1 ≤ · · · ≤ bR. For mathematical convenience, bR is simply
set as +∞. f(x) is the latent factor regression function that captures all possible
interactions between features (up to second-order, practically):

f(x) =
d∑

j=1

wjxj +
d∑

j=1

d∑

j′=j+1

〈vj ,vj′〉xjxj′ (4)

Note that f(x) is the same as the traditional FM model in Eq. 1 except the
global bias item. In essence, FMOR extend the traditional FM by introducing a
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set of thresholds instead of the single global bias. The thresholds are used to map
the regression function value f(x) into ordinal targets. Particularly, an input is
predicted as r if and only if br−1 < f(x) ≤ br.

The model parameters of FMOR that have to be estimated are:

b1, · · · , bR−1 ∈ R; w ∈ R
d; v1, · · · ,vd ∈ R

p

Next, we discuss the learning procedure of FMOR, including the learning
objective and the optimization algorithm.

The Learning Objective. Following the traditional supervised learning frame-
work, the parameters Θ are learned from a given training set D that minimizes
the following regularized empirical risk:

O(Θ,D) = Remp(Θ,D) + λΩ(Θ) (5)

where Remp is the empirical risk of an ordinal regression model on the training
data, and Ω(·) is the regularization item. λ is the trade-off between the empirical
risk and regularizer of model parameters.

In order to account for the ordinal relationship among targets when cal-
culating the empirical risk, we consider measuring the predicting errors w.r.t.
each ordinal class. Formally, give a training set D = D(1) ∪ · · · ∪ D(R), where
D(r) = {(xi, r), · · · , (xNk

, r)} (1 ≤ r ≤ R) is the set of training samples with the
class r, the empirical risk of a FMOR model is defined as:

Remp(Θ,D) =
R∑

r=1

Nr∑

i=1

(
r−1∑

k=1

�(f(x) − bk) +
R−1∑

k=r

�(bk − f(x))

)
(6)

where �(·) is the surrogate loss function that penalizes an erroneous prediction.
In fact, the empirical risk is contributed over all thresholds, including the lower-
grading ones (k = 1, · · · , r − 1) and the upper-grading ones (k = r, · · · , R),
involved when a predicting error occurs.

Generally, a surrogate loss function is required to be monotonically decreasing
in true positives. Moreover, smoothness is a derivable property such that efficient
optimization techniques can be applied to estimate model parameters. Here, we
adopt the smoothed hinge loss:

�(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if z ≥ 1

(1 − z)2

2
if 0 < z < 1

0.5 − z if z ≤ 0

(7)

As mentioned above, the threshold parameters need to satisfy the ordinal
inequality constraint b1 ≤ · · · ≤ bR. Interestingly, the constraint, although not
being imposed on the learning procedure explicitly, can be automatically satisfied
at the optimal solution of OrdinalFM, as will be shown in the following theorem.
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Theorem 1. Let Θ∗ = (b∗
1, · · · , b∗

R−1,w
∗,v∗

1, · · · ,v∗
d) be the optimal solution of

the regularized empirical risk minimization problem in Eq. 5, i.e.,

Θ∗ = arg min
Θ

{Remp(Θ,D) + λΩ(Θ)},

Then we have b∗
1 ≤ · · · ≤ b∗

R−1.

Theorem 1 not only establishes a nice property of FMOR but also induces a
heuristic that is helpful for finding a better FMOR model. Theorem1 leads to
the following corollary.

Corollary 1. Given two solution Θ̇ = (ḃ1, · · · , ḃR−1, ẇ, v̇1, · · · , v̇d) and Θ̈ =
(b̈1, · · · , b̈R−1, ẇ, v̇1, · · · , v̇d), where (b̈1, · · · , b̈R−1) is sorted in an ascending
order of (ḃ1, · · · , ḃR−1), we have Remp(Θ̈,D) ≤ Remp(Θ̇,D).

Due to space limitation, the proofs will be provided in the full version of the
paper.

The Learning Algorithm. We employ the Adaptive Moment Estimation
(Adam) [8] algorithm, a popular variant of stochastic gradient descent algo-
rithm that uses adaptive per-parameter learning rates, to solve the regularized
empirical risk minimization problem in Eq. 5. The main idea is to iterate over
each sample (x, r) in the training set, and update model parameters towards the
direction of negative gradient of the objective:

θ(t) = θ(t−1) − η(θ,t) ·
(

∂Remp(Θ, {(x, r)})
∂θ

+ λ
∂Ω(Θ)

∂θ

)
(8)

where η(θ,t) is the individual adaptive learning rate for θ at the t-th iteration.
For the empirical risk in Eq. 6, the gradient is given by

∂Remp(Θ, {(x, r)})
∂θ

=
r−1∑

k=1

∂�(f(x) − bk)
∂θ

+
R−1∑

k=r

∂�(bk − f(x))
∂θ

(9)

From Eq. 7, the gradient of the smoothed hinge loss is:

∂�(z)
∂z

=

⎧
⎪⎨

⎪⎩

0 if z ≥ 1
z − 1 if 0 < z < 1
− 1 if z ≤ 0

(10)

From Eq. 4, the gradient of the factorized-based regression function is:

∂f(x)
∂wj

= xj (j = 1, · · · , d)

∂f(x)
∂vj,l

= xj ·
∑

j′ �=j

vj′,lxj′ (j = 1, · · · , d; l = 1, · · · , p)
(11)
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Through embedding Eqs. 10 and 11 into Eq. 9, we can obtain the gradient
used in the optimization algorithm.

One thing to be noted here is gradient-based algorithms, though simple and
efficient, are not guaranteed to find the global optimum solution, since the regu-
larized empirical risk minimization problem is usually highly non-convex empir-
ically. Thus the ordinal inequality constraint might be violated in the estimated
parameters. Fortunately, according to Corollary 1, we can find better parame-
ters, which not only satisfies the ordinal inequality constraint but also achieve
lower regularized empirical risk, by sorting the learned threshold parameters in
ascending order.

4 Empirical Study

In this section, we report the results of the empirical studies on the proposed
FMOR using several benchmark datasets.

4.1 Experimental Settings

As the proposed FMOR is essentially a threshold-based method, we select several
state-of-the-art threshold-based ordinal regression methods as baselines. We also
compare FMOR against the traditional FM.

– ORBoost: The thresholded ensemble model for ordinal regression proposed
by Lin and Li [11]. The two implementations, namely ORBoost-LR (Ordi-
nal Regression Boosting with Left-Right margins) and ORBoost-All (Ordinal
Regression Boosting with All margins), are used as the baselines.

– SVOR: The support vector formulation for ordinal regression proposed by
Chu and Keerthi [3]. The two implementations, namely SVOREX (Support
Vector Ordinal Regression with EXplicit constraints) and SVORIM (Support
Vector Ordinal Regression with IMplicit constraints), are used as the base-
lines. Both methods are implemented with Gaussian kernel (with kernel width
as 1) and linear kernel, respectively.

– POMNN: The ordinal neural network based on the proportional odds model
proposed by Gutiérrez [6].

– FM: The original factorization machines proposed by Rendle [19]. The FM
model is learned with the regression least-squares loss and the predictions are
rounded to the nearest ordinal class.

The ORBoost methods, the SVOR methods and the traditional FM are run
using the publicly available implementations provided by the authors1. We imple-
mented the POMNN method using TensorFlow. As for the proposed FMOR,
we implemented it on basis of LibFM. The hyper-parameters of each method
are chosen from a certain range (shown in Table 1) using 5-fold cross-validation
within the training set. For other parameters of each method, we use default
settings provided by the implementations.
1 http://www.work.caltech.edu/∼htlin/program/orensemble/.

http://www.gatsby.ucl.ac.uk/∼chuwei/svor.htm.
http://www.libfm.org/.

http://www.work.caltech.edu/~htlin/program/orensemble/
http://www.gatsby.ucl.ac.uk/~chuwei/svor.htm
http://www.libfm.org/
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Table 1. The ranges for hyper-parameter selection

Method Hyper-parameter Range

SVOR Trade-off parameter {0,0.001,0.01,0.1,1,10}
POMNN Neurons in the hidden layer {10,25,50,75,100}

Learning rate {0.001,0.005,0.01,0.05,0.1}
FM/FMOR Dimensionality of factor vector p {5,10,15}

Trade-off parameter λ {0,0.001,0.01,0.1,1,10}
The general learning rate η {0.001,0.005,0.01,0.05,0.1}

All the methods are evaluated using the following measures:

1. MZE : The Mean Zero–one Error (MZE) is the fraction of incorrect predic-
tions:

MZE =
1
N

N∑

i=1

�ŷ(xi) 
= yi�

2. MAE : The Mean Absolute Error (MAE) is the average absolute deviation of
the predictions from the ground-truth:

MAE =
1
N

N∑

i=1

|ŷ(xi) − yi|

4.2 Prediction Accuracy

In this experiment, we compared the proposed FMOR against the baselines on
9 benchmark datasets which are taken from public machine learning data repos-
itories2. All these datasets are real ordinal datasets with a varying number of
samples, features and classes. We preprocess each dataset by normalizing every
numeric attributes into [0, 1] and transforming every categorical attributes to
binary forms with one-hot encoding (one feature per value). As for the winequal-
ity dataset, we generate one more preprocessed dataset by transforming all
attributes, including both numeric ones and categorical ones, to binary forms.
To be specific, each numeric attribute in the original dataset is discretized into
pre-defined bins and then converted into one-hot vectors. This dataset, denoted
as winequality0/1 in Table 2, is of high sparsity as each sample is described by a
180-dimension binary feature vector. The characteristics of benchmark datasets
are described in Table 2.

2 https://archive.ics.uci.edu/ml/.
https://www.openml.org.

https://archive.ics.uci.edu/ml/
https://www.openml.org
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Table 2. Characteristics of the benchmark datasets

Datasets #sample #feature #class Class distribution

Balance-scale 625 20 3 288, 49, 288

Car-evaluation 1728 21 4 1210, 384, 69, 65

User-knowledge 258 5 4 24, 83, 88, 63

Eucalyptus 736 89 5 130, 105, 214, 107, 180

School-grades 648 124 14 16, 14, 35, 35, 97, 104, 72, 81, 63, 49, 36, 29, 15, 2

Lecturer-eval 1000 20 5 93, 280, 403, 197, 27

Social-worker 1000 31 4 32, 352, 399, 217

Turkiye-eval 5820 32 5 1902, 1028, 792, 1252, 846

Winequality 4898 11 7 20, 163, 1457, 2198, 880, 175, 5

Winequality0/1 4898 180 7 20, 163, 1457, 2198, 880, 175, 5

Each dataset is randomly split 5 times into training and testing sets with
ratio 2:1. The averaged MZE and MAE over 5 runs along with the standard
deviations are reported in Tables 3 and 4 (best in bold), respectively. From the
results, we can see the proposed FMOR beats all baselines 6 of 10 times in
terms of both MZE and MAE. Among the datasets that the proposed FMOR
performs best, the most significant improvement is obtained on the winequality0/1

dataset of which the feature space is sparser than others. This indicates that
the advantage of the proposed FMOR can be more significant as the level of
sparsity gets higher. Actually, in these datasets (i.e., user-knowledge, eucalyptus
and turkiye-eval) that FMOR or traditional FM fails to outperform traditional
ordinal regression methods, the sparsity issue rarely occurs. Taking the user-
knowledge dataset3 as an example, the attributes are all numerical ones such
as the exam performance or the study time of a student. However, this result
does not necessarily mean that the proposed FMOR cannot be applied to the
ordinal regression problems with dense feature space. In fact, there is only a
small gap between FMOR and the best-performed baselines on these datasets.
Also note that the proposed FMOR still achieves the best performance on the
dense dataset winequality. Among all the baselines, SVOR methods perform best
in most cases. We also notice that POMNN does not perform as well as expected.
We argue that more advanced techniques for training deep neural networks need
to be employed to learn a better neural networks model for ordinal regression.

3 https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling.

https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling
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Table 3. The MZE results (means and standard deviations over 5 runs) on benchmark
datasets

Balance-scale Car-evaluation User-knowledge Eucalyptus

ORBoost-LR 0.0208±0.012 0.0230±0.005 0.1500±0.031 0.3696±0.028

ORBoost-All 0.0211±0.013 0.0249±0.004 0.1538±0.009 0.3634±0.034

SVOREX-Gau 0.0221±0.013 0.0191±0.003 0.1537±0.019 0.3452±0.041

SVOREX-Lin 0.0187±0.016 0.0262±0.006 0.1431±0.024 0.3724±0.016

SVORIM-Gau 0.0225±0.017 0.0196±0.003 0.1362±0.014 0.3655±0.029

SVORIM-Lin 0.0185±0.016 0.0242±0.004 0.1430±0.032 0.3920±0.044

POMNN 0.0227±0.014 0.0258±0.037 0.1501±0.018 0.3493±0.024

FM 0.0193±0.014 0.0243±0.019 0.2418±0.019 0.4029±0.016

FMOR 0.0189±0.012 0.0174±0.002 0.1436±0.005 0.3643±0.026

School-grades Lecturer-eval Social-work-decs Turkiye-eval

ORBoost-LR 0.8742±0.024 0.4030±0.004 0.4250±0.016 0.8210±0.014

ORBoost-All 0.8395±0.030 0.4023±0.003 0.4261±0.014 0.6187±0.016

SVOREX-Gau 0.8395±0.030 0.3780±0.020 0.4260±0.013 0.5878±0.012

SVOREX-Lin 0.8332±0.030 0.3960±0.015 0.4250±0.015 0.5885±0.013

SVORIM-Gau 0.8240±0.027 0.3781±0.002 0.4160±0.011 0.7833±0.012

SVORIM-Lin 0.8257±0.041 0.4050±0.005 0.4200±0.105 0.6361±0.035

POMNN 0.8370±0.020 0.3671±0.003 0.4181±0.013 0.6319±0.020

FM 0.8381±0.085 0.3660±0.017 0.4191±0.021 0.6732±0.028

FMOR 0.7735±0.043 0.3583±0.017 0.3950±0.013

Winequality Winequality0/1

ORBoost-LR 0.5188±0.012 0.5194±0.018

ORBoost-All 0.5360±0.005 0.5319±0.018

SVOREX-Gau 0.4941±0.005 0.5153±0.015

SVOREX-Lin 0.5329±0.003 0.5186±0.011

SVORIM-Gau 0.5184±0.009 0.5273±0.014

SVORIM-Lin 0.4984±0.007 0.5153±0.018

POMNN 0.4816±0.012 0.5122±0.011

FM 0.8989±0.011 0.5148±0.021

FMOR 0.4839±0.018 0.4767±0.011

4.3 Training Efficiency

In this experiment, we evaluate the training efficiency of the proposed FMOR
by comparing training time with other methods. In this experiment, we only
consider SVOR methods for comparison for the consistent outperformance over
other baselines. All comparison methods were run on a single core of an Intel(R)
Xeon(R) CPU E7-4830 processor clocked at 2.13 GHz with access to 24 GB RAM.
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Due to space limitation, only the results on the turkiye-eval dataset are reported.
Figure 1 plots the training time of every comparison methods with varying sizes
of the training dataset. It can be clearly seen that the proposed FMOR scales
much better than SVOR methods. On large training sets with thousands of sam-
ples, training a FMOR model takes only seconds while training SVOR models
can take several hours.

Table 4. The MAE results (means and standard deviations over 5-fold cross validation
runs) on benchmark datasets

Balance-scale Car-evaluation User-knowledge Eucalyptus

ORBoost-LR 0.0307±0.019 0.0271±0.013 0.1660±0.038 0.3966±0.050

ORBoost-All 0.0310±0.021 0.0258±0.013 0.1702±0.011 0.3823±0.058

SVOREX-Gau 0.0309±0.019 0.0206±0.013 0.1701±0.023 0.3768±0.035

SVOREX-Lin 0.0275±0.022 0.0265±0.016 0.1583±0.029 0.4185±0.058

SVORIM-Gau 0.0317±0.024 0.0204±0.014 0.1507±0.017 0.3816±0.046

SVORIM-Lin 0.0283±0.024 0.0246±0.014 0.1583±0.039 0.4197±0.037

POMNN 0.0321±0.021 0.0272±0.020 0.1662±0.022 0.3776±0.051

FM 0.0248±0.024 0.0248±0.020 0.2676±0.024 0.4414±0.027

FMOR 0.0281±0.019 0.0188±0.010 0.1589±0.006 0.3784±0.037

School-grades Lecturer-eval Social-work-decs Turkiye-eval

ORBoost-LR 2.7298±0.031 0.4369±0.016 0.4470±0.020 1.3115±0.025

ORBoost-All 2.3175±0.058 0.4349±0.014 0.4511±0.018 1.2529±0.032

SVOREX-Gau 2.3175±0.058 0.4140±0.011 0.4360±0.017 1.1560±0.042

SVOREX-Lin 2.2938±0.033 0.4299±0.020 0.4380±0.060 1.1663±0.035

SVORIM-Gau 2.1029±0.100 0.4130±0.009 0.4290±0.012 1.0979±0.016

SVORIM-Lin 1.9158±0.056 0.4380±0.012 0.4330±0.052 1.0450±0.039

POMNN 2.0764±0.091 0.4020±0.013 0.4290±0.050 1.0297±0.035

FM 2.1595±0.035 0.4010±0.021 0.4431±0.020 1.3324±0.042

FMOR 1.8970±0.027 0.3910±0.019 0.4100±0.021 1.1998±0.057

Winequality Winequality0/1

ORBoost-LR 0.5847±0.024 0.5892±0.030

ORBoost-All 0.6107±0.015 0.6058±0.015

SVOREX-Gau 0.5545±0.015 0.5835±0.024

SVOREX-Lin 0.6074±0.013 0.5863±0.016

SVORIM-Gau 0.5870±0.016 0.5998±0.019

SVORIM-Lin 0.5574±0.017 0.5820±0.015

POMNN 0.5492±0.017 0.5820±0.016

FM 2.0390±0.055 0.5940±0.406

FMOR 0.5384±0.025 0.5306±0.015
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Fig. 1. Training time with varying dataset size

5 Conclusion

In this paper, we put forward Factorization Machines for Ordinal Regression
(FMOR), a latent factor model addressing the sparsity issue in ordinal regres-
sion problems. Using the factorization machines as the base generic framework
for modeling sparse feature space, we incorporate the threshold methodology to
handle the ordinal targets in a proper way. We experimentally show that FMOR
has the dual advantages of effectiveness and efficiency, and can be applied not
only to sparse ordinal data, but competitive results can even be obtained for
dense data. Future work includes applying FMOR to model ordinal user prefer-
ence scores in recommender systems.
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