)

Check for
updates

Breaking Deadlocks in Multi-agent
Reinforcement Learning
with Sparse Interaction

Toshihiro Kujirai(m) and Takayoshi Yokota

Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8550, Japan
tkujiraski@gmail. com, yokota@eecs. tottori-u.ac. jp

Abstract. Although multi-agent reinforcement learning (MARL) is a promis-
ing method for learning a collaborative action policy that will enable each agent
to accomplish specific tasks, the state-action space increased exponentially.
Coordinating Q-learning (CQ-learning) effectively reduces the state-action space
by having each agent determine when it should consider the states of other
agents on the basis of a comparison between the immediate rewards in a single-
agent environment and those in a multi-agent environment. One way to improve
the performance of CQ-learning is to have agents greedily select actions and
switch between Q-value update equations in accordance with the state of each
agent in the next step. Although this “GPCQ-learning” usually outperforms CQ-
learning, a deadlock can occur if there is no difference in the immediate rewards
between a single-agent environment and a multi-agent environment. A method
has been developed to break such a deadlock by detecting its occurrence and
augmenting the state of a deadlocked agent to include the state of the other
agent. Evaluation of the method using pursuit games demonstrated that it
improves the performance of GPCQ-learning.

Keywords: Reinforcement learning - Multi-agent - Sparse interaction -
Fully cooperative - Deadlock

1 Introduction

Multi-agent reinforcement learning (MARL) is a promising method for learning a
collaborative action policy that will enable each agent to accomplish specific tasks
(Bloembergen et al. 2015; Vlassis 2007). Each agent tries to learn an optimal action
policy, one that maximizes the expected cumulative rewards, while sharing the envi-
ronment with other agents. Agents that learn their action policy by considering the
states and actions of other agents are called joint-action learners. Those that learn it
independently are called independent learners (Claus and Boutilier 1998).

If each agent shares the same reward for a task, i.e., a fully cooperative task,
independent learners can sometimes learn a collaborative action policy without con-
sidering the states and actions of other agents because a random exploration strategy
may enable them to learn collaborative actions coincidently (Lauer and Riedmiller
2000; Sen et al. 1994). While joint-action learners may perform better because they
take information about other agents into account, they suffer an exponential increase in

© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11670, pp. 746-759, 2019.
https://doi.org/10.1007/978-3-030-29908-8_58

http://orcid.org/0000-0002-6874-647X
http://orcid.org/0000-0002-3229-2250
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29908-8_58&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29908-8_58&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29908-8_58&domain=pdf
https://doi.org/10.1007/978-3-030-29908-8_58

Breaking Deadlocks in Multi-agent Reinforcement Learning with Sparse Interaction 747

the state-action space for learning, thereby reducing the learning speed and increasing
the cost of communication and the cost of estimating information about other agents
(Tan 1993).

In many real-world tasks, agents behave independently most of the time and
sometimes must behave cooperatively. For example, consider a task involving multiple
robots working together to move a heavy box to a specific position. A rational approach
is for them to independently approach the box and then cooperatively move it in the
same direction to the final position. Each should decide its actions taking other agents’
positions and actions into account only when the robots are close to each other. The
basic idea of MARL with sparse interaction is to reduce the state-action space by
considering information about other agents only when necessary because a smaller
state-action space makes the learning process more efficient. This means that identi-
fying when cooperative actions are required is a key function in MARL with sparse
interaction. Melo and Veloso (2009) reported a method in which a pseudo-action,
COORDINATE, is added to the action space of each agent. The agents learn when they
should consider other agents by estimating the Q-value for the COORDINATE action
for each state. Hauwere et al. (2010, 2011) proposed the coordinating Q-learning (CQ-
learning) concept. Each agent determines when it should consider the state of other
agents by comparing the immediate rewards in a single-agent environment with those
in a multi-agent environment. In CQ-learning, the state-action space is partially aug-
mented when an agent detects a difference in the immediate rewards using Student’s t-
test. Kujirai and Yokota (2018, 2019) reported three methods for improving the per-
formance of CQ-learning: greedily selecting actions (GCQ-learning), switching
between Q-value updating equations on the basis of the state of each agent in the next
step (PCQ-learning), and their combination (GPCQ-learning). Evaluation using several
maze games validated their effectiveness, especially that of GPCQ-learning.

We previously observed that agents using GPCQ-learning sometimes fall into a
deadlock if there is no difference in the immediate rewards between a single-agent
environment and a multi-agent environment. We have now developed a method for
breaking the deadlock by detecting its occurrence and augmenting the state of a
deadlocked agent to include the state of the other agent. Evaluation using pursuit games
demonstrated that it improves the performance of GPCQ-learning.

The reminder of this paper is organized as follows. Section 2 gives an overview of
MARL and discusses related work. Section 3 discusses MARL with sparse interaction
and the deadlock caused by GPCQ-learning. Section 4 presents our method for
breaking the deadlock. Section 5 describes our evaluation and compares the perfor-
mance of our proposed method with those of existing methods including GPCQ-
learning. Section 6 concludes this paper with a summary of the key points.

2 Multi-agent Reinforcement Learning

2.1 MDP and Reinforcement Learning

A Markov decision process (MDP) is formalized as a problem in which an agent
optimizes its action policy by maximizing the expected cumulative reward resulting

748 T. Kujirai and T. Yokota

from the actions it takes in its environment. The MDP is defined as a tuple (S, 7, R, n),
where S stands for the state space of the agent, T(= p(s'|s, @)) and R(= (s, a, s")) stand
for the transition probability matrix and immediate reward matrix for the combinations
of state s, action a, and next state s', and 7(= p(als)) stands for the action policy of the
agent. An optimal policy, i.e., one that maximizes the expected cumulative reward, is
described as m*.

Reinforcement learning is one method for iteratively estimating n*. Q-learning
(Watkins 1989, 1992) is a typical reinforcement learning method. Instead of estimating
¥, Q-learning estimates the optimal Q-value Q* by updating the Q-value using (1),
wherein ¢, indicates the learning rate and y indicates the discount rate.

Q(s,a) — (1 —o,)Q(s,a) + o [r(s,a) + ymax,yQ(s, a)] (1)

2.2 Extended Multi-agent Systems

As shown in Table 1, an MDP can be extended for multi-agent systems in at least four
ways. A natural extension is multi-agent MDP (MMDP), in which agents share all the
system states (full observability) and rewards. The agents share all their states and
actions and obtain the same rewards from the environment as a result of their joint
actions (Boutilier 1996).

Table 1. Extended multi-agent systems.

Full observability | Full joint observability
Shared rewards MMDP DEC-MDP
Independent rewards | MG DEC-MG

Another extension is decentralized MDP (DEC-MDP), in which each agent can
observe only its own states, and the agents obtain the same rewards (Melo and Veloso
2011). If they can know the complete state of the environment by sharing their
observations, the agents are said to have full joint observability.

These two extensions are called fully cooperative games because the agents obtain
the same rewards.

In contrast, in a Markov game (MG) and a decentralized Markov game (DEC-MG),
each agent has an independent reward function. This results in a competitive situation
(Aras 2004).

2.3 Related Work

The focus here is on fully cooperative games, which have at least one optimal action
policy for each agent. The agents can serendipitously learn a cooperative behavior
without having any information about the other agents. This is because coincidental
actions that lead to high cumulative reward are reinforced (Sen et al. 1994).

Breaking Deadlocks in Multi-agent Reinforcement Learning with Sparse Interaction 749

For example, assume that an agent randomly selects an action at a certain position
in a maze game, and the action results in the agent obtaining a high cumulative reward
because the action coincidentally prevents the agent from colliding with another agent.
The agent may thereby learn a cooperative action policy without having any infor-
mation about the other agents. An agent learns a more precise cooperative action policy
if it has knowledge of not only its own state-action combinations but also those of other
agents. However, the resulting exponential increase in the state-action space and
communication cost between agents slows down the learning process.

Figure 1 shows two example maze games in which each agent i tries to find an
optimal path from start position S; to goal G;. In both games, the goal for each agent is
the start position of another agent. They collide if each one simply takes the shortest
path. The optimal solution is for one of the agents to take a detour immediately a
collision. However, finding this solution requires extensive exploration of potential
detours because there are a number of unsuitable detour routes.

I:‘ Il
5 e E %mmm@

(a) ISR (b) CMU

Fig. 1. Example maze games.

Figure 2 shows the average number of steps needed to complete the two games for
every 100 episodes using three different learning methods. These methods are
straightforward extensions of Q-learning for a multi-agent environment. The first
method is independent learning, which is Q-learning itself. Each agent learns its own
action policy without having any information about the other agents. The second one is
joint-state learning (JSQ-learning), in which each agent always knows the states of the
other agents and decides its actions independently on the basis of its own policy. The
third is joint-state-action learning (JSAQ-learning), in which one super-agent observes
all the states and decides the joint actions for all agents.

As shown in Fig. 2, even the agents using independent learning learned how to
avoid collisions and reach their goals unimpeded. In the ISR game, which has a small
state-action space, the agents using independent learning converged the fastest although
the average number of steps to the goal was the highest because they did not explicitly
consider the other agents. In the CMU game, which has a larger state-action space, the
agents trained using independent learning had superior performance because 10,000
episodes were not enough for the other methods to learn an optimal policy in the large
state-action space.

750 T. Kujirai and T. Yokota

140
Independent learning 2500 —— Independent learning
© 120 — — —JSQ-learning — - — = JSQ-learning
-------- JSAQ-learnin, 3 wreenen JSAQ-le@rning
9
52000 i
Q1o > ;
7] -
Seo & so0{ A
= Q iy
1z} k1 B
G 60 i\
S G o000 N
\
2. g R
g 2 o — T
Z 2 e
S z -
o

0 100 X 102 o 20 80 100 X 102

0 0 8 20 60
Number of episodes Number of episodes

(a) ISR (b)CMU

Fig. 2. Learning curves for two maze games.

Policy convergence was slower for the agents trained using JSQ-learning, and the
average number of steps to the goal was less than that for the agents trained using
independent-learning in the ISR game because these agents consider the other agents
when selecting their actions. In the CMU game, the convergence of their policies was
slower than that of the agents trained using independent learning because they had a
larger state-action space: 43 X 43 x 4 = 7396 in the ISR game and 133 x 133 x 4

= 70,756 in the CMU game for each agent.

The agents trained using JSAQ-learning learned a better policy than the agents
trained using the other two methods in the ISR game because the combined state-action
space was small enough for each agent to learn an optimal joint-action policy. All the
agents had difficulty learning an optimal policy in the CMU game because the com-
bined state-action space was too large (133 x 133 x 4 x 4 = 283,024) for the agents
to sufficiently explore all the state-action pairs in the limited number of episodes.

3 Multi-agent Reinforcement Learning with Sparse
Interaction

3.1 Existing Methods of MARL with Sparse Interaction

In some fully cooperative games, agents can decide their actions without considering
any information about the other agents for most states. That is, an independent optimal
action policy might be optimal for most states. In the other states, each agent needs
information about the other agents to learn an optimal action policy. Therefore,
exponential increases in the state-action space and in the communicational cost can be
avoided by having each agent consider information about the other agents only when
necessary. This type of framework is called decentralized sparse interaction MDP
(DEC-SIMDP) (Melo and Veloso 2011) and is a special case of DEC-MDP. Several
methods have been proposed for agents to learn their action policy for DEC-SIMDP.

As mentioned in the introduction, Melo and Veloso (2009) reported a method in
which a pseudo-action, COORDINATE, is added to the action space of each agent.
When COORDINATE is selected as an action by an agent, the agent obtains infor-
mation about the other agents and behaves in accordance with that information while
suffering the penalty of communication cost. Because the Q-value for selecting

Breaking Deadlocks in Multi-agent Reinforcement Learning with Sparse Interaction 751

COORDINATE can be obtained with Q-learning, the agent can decide when it should
consider the other agents. Setting the cost of COORDINATE for a specific task is a
difficult issue because, if the cost is too low, the agents will always choose COOR-
DINATE, and, if the cost is too high, the agents will seldom choose it.

Hauwere et al. (2010, 2011) proposed a method in which the state of an agent is
augmented to include the state of another agent if the two agents are likely to interfere
with each other. Each agent behaves in accordance with Q-values learned in advance in
a single-agent environment. Each agent can identify potential interference with other
agents by comparing the distribution of a state’s immediate rewards to those for a
single-agent environment. Once the state of an agent is augmented, the agent selects an
action on the basis of Q-values corresponding to the augmented joint state when the
agent and another agent are in an augmented joint state (Fig. 3).

(a)Prelearningin a single-agentenvironment (b)Detectinga difference of instantrewards
between a single/multi-agentenvironment

X
I.
X X
—Red agent got -1 on each step —Red agent got —10 as a reward for collision
as a reward before arriving the goal into anotheragent

—The reward is different from expected reward
in a single agent environment(i.e. -1)

(c)Augmenting an interfered states (d) Collaborative actions are learned on the basis

. of Q-values of the augmented states
Qk: Q table for agentk learnt aug
in single agentenvironment Qi ~: Augmented Q table for agentk
ENrECEINEREE Funmr:l-n
1 o o1 05 07 02 |1 |- [1] S S S S T S
el |- 1= o1 01 08 o1
01 08 0.1
X X
— Augmenting the state of Red agent - Q-values for the augmented state are updated
considering the state of Blue agent and Down’is selected to avoid collisions

- Q-values are copied and Red agent
still selects Right’

Fig. 3. Illustrated CQ-learning algorithm.

This method is called cooperating Q-learning (CQ-learning). To be more specific,
CQ-learning augments the state of agent k s;, creating augmented joint state s; =
(sk,s1) that considers the state of agent I. Its Q-values are represented as 0y (sx, ax)
when Student’s t-test rejects the hypothesis that the distribution of immediate rewards
in the state comes from that of a single-agent environment. This partial augmentation of
joint states dramatically reduces the state-action space in sparse interaction tasks
compared with JSQ-learning and JSAQ-learning and thereby improves the efficiency
and optimality of the learned action policy.

752 T. Kujirai and T. Yokota

Kujirai and Yokota (2018, 2019) pointed out two issues on CQ-learning and
proposed an improved method of CQ-learning, called GPCQ-learning. The first issue
on CQ-learning is its unnecessary exploration. An agent using CQ-learning selects its
action e-greedily even it is not in an interfered state. This causes unnecessary explo-
ration and interferences in a multi-agent environment. In addition to that, taking a
random action might coincidently prevent interference with another agent, resulting in
a lost opportunity for the agent to identify the difference between a single-agent
environment and multi-agent environment (Fig. 4)

Qk: Q table for agentk learnt
in single agent environment

PR e

4 2 01 01 08 01

greedy
Ra dom$ actio

act ons,_. .

Fig. 4. Unnecessary exploration by CQ-learning.

The second issue is that CQ-learning optimistically updates the Q-values of an
augmented joint state based on the Q-values learned in the single-agent environment as
shown in Eq. (2). This updating assumes that after taking the selected action, the agent
can behave based on independent Q-values without subsequent interference.

QG i) « (1= a)Q™ 5%, i) + e[+ ymax,, Qi (s'i, a')]

This assumption is too optimistic because when an agent is in an interference states
with another agent the probability of being in another interference states for the agent
can not be neglectable. In Fig. 5 a red agent avoid collision by selecting its action based
on its augmented Q-values. CQ-learning assumes that the agent can independently
select its action because it has already avoided the collision. However, it is likely that
the agent may collide with the same agent because another agent is still in the near
location.

aug
Q

Qk
HEOCIEENEE CErECE e
4

4 2 5 2 0.1 06 04 0.1 3 0.1 0.1 0.1 0.7
’ t) t
avoid c@ision

Fig. 5. Example subsequent interferences. (Color figure online)

still in an int%;ered situation

2)

Breaking Deadlocks in Multi-agent Reinforcement Learning with Sparse Interaction 753

GPCQ-learning greedily selects an action when an agent is not in an interfered state
to avoid unnecessary exploration, and it changes the equation for updating the Q-value
of the augmented joint state depending on whether the agent is in an interfered state in
the next step in order to avoid optimistic evaluation of the optimal Q-value of the
augmented joint state. GPCQ-learning was demonstrated to outperform CQ-learning in
several maze games.

3.2 Deadlock Resulting from GPCQ-Learning

In pursuit games, agents (depicted by numbers in Fig. 6) try to move next to a target
(depicted by T) in a square field, and the game finishes when all the agents are next to
the target. In this paper, the target does not move from the initial position. A state of
each agent is represented by a difference in positions between the agent and the target,
ie. (—6<dx<6,—-6<dy<6). Actions are Up, Down, Left, and Right to move.
Rewards are designed as —1 for a movement, —10 for a collision with another agent,
and O for a movement next to the target and a finish.

Initial position Finish position

Fig. 6. Example pursuit game.

First, an agent is trained to learn how to move in order to touch the target in a
single-agent environment. The initial positions of the target and the agent are randomly
selected in every episode. Then, multiple agents try to find an optimal policy for
moving in order to touch the target at the same time in a multi-agent environment. The
initial positions of the target and the agents were fixed in seven patterns for evaluation,
as shown in Fig. 7. For patterns 1-3, the agents can touch the target by greedily
selecting their actions without interference with the other agents. For patterns 4-7, an
agent collides with another agent if it greedily selects its action on the basis of Q-values
learned in a single-agent environment.

754 T. Kujirai and T. Yokota

1 2 1
1 T 3 T
T 2
2
Pattern 1 Pattern 2 Pattern 3
1
2 T 1 3 T
1 2
T 2 2
T
Pattern 4 Pattern 5 Pattern 6 Pattern 7

Fig. 7. Seven initial agent/target-position patterns used for evaluation.

For patterns 1-3, the agents using GPCQ-learning find optimal paths resulting in
the minimum number of steps to finish while agents using CQ-learning take more steps
because they e-greedily select their actions, resulting in unnecessary exploration. For
pattern 4, the agents using GPCQ-learning perform better because they avoid unnec-
essary augmentation of joint states. For patterns 5-7, the agents using CQ-learning
perform much better. For patterns 67, in particular, the agents using GPCQ-learning
rarely finish the games (depicted as — in Table 2). This is because a repetitive pattern of
action-states does not create a difference in the immediate rewards.

Table 2. Comparison of CQ and GPCQ-learning for pursuit games

Patterns | Interference | No. of agents | Min No. of steps | CQ GPCQ
Mean | Std dev. | Mean | Std dev.
1 No 2 4 5.17 |1.89 4.00 |0.00
2 No 2 4 6.23 |8.12 4.00 |0.00
3 No 3 4 561 |13.7 4.00 |0.00
4 No 2 4 5.88 |1.51 5.14]0.53
5 Yes 2 4 853 | 124 274.00 | 1620.00
6 Yes 2 4 117 |219 - -
7 Yes 3 4 39.5 458 - -

Looking at Fig. 8, we see that agent 1 first greedily selects an action of upward in
accordance with the prelearned Q-value and detects a difference in immediate rewards
because it collides with agent 2 (Fig. 8(a)). It then augments its state with the state of
agent 2. For this augmented joint state, agent 1, using GPCQ-learning, decides its

Breaking Deadlocks in Multi-agent Reinforcement Learning with Sparse Interaction 755

action g-greedily and may select an action Left (Fig. 8(b)). After it moves to the left,
because it is no longer in an augmented joint state, it greedily selects action Right to
move back to the previous position in accordance with the prelearned Q-value (Fig. 8
(c)). The reward of selecting action Right in a multi-agent environment is the same (i.e.
—1) as that in a single-agent environment. Agent 2 also gains the same reward (i.e. 0) as
in a single-agent environment because rewards for a touch and finish are the same.
Because both rewards are the same as in a single-agent environment, the state of agent
1 is not augmented. Even if agent 1 selects an action of Right or Down, it may return to
the same position because of the same reason. Because any state of the agent is no
longer augmented in the situation, it becomes trapped in repetitive movements (i.e.
deadlock).

T T T
2 2 2
1 11 11
(a) Coliision results in augmented (b) Different action is learned (c) Greedy action selection
joint state from augmented joint state results in return to previous
position

Fig. 8. Mechanism of deadlock resulting from GPCQ-learning.

4 Proposed Method

In Algorithm 1, the hatched portions show the differences between CQ-learning and
GPCQ-learning and the underlined portion shows the difference between GPCQ-
learning and our proposed method. GPCQ-learning selects its action greedily in an
unaugmented state (line 13) and changes updating equations based on whether the
agent is still in an interfered state in the next step (line 28-29). The proposed method
detects repetitive movements between an augmented joint state and a non-augmented
state on the basis of states’ log and then augments the state of a deadlocked agent to
include the state of the other agent, which enables the agent to learn how to avoid the
deadlock by updating Q-values.

Although the proposed algorithm can only detect two steps cycle deadlocks, a
longer cycle deadlock can be neglectable thanks to the assumption of the sparse
interaction.

756

T. Kujirai and T. Yokota

Algorithm 1: Improved GPCQ-learning algorithm

1:Train @Qp independently first, initialize wa to zero

and Wy=empty

2:8et t=0
3:while true do

4:
5:

11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:

24:
25:

26:

27:

28:
29:

observe local state si(t)
if s,(t) is part of a 5; and the info of s, present
in the system state s(t) then
if a set of 5; contains more than two s, with
sg(t) = s, then
Select an agent 1 randomly from a set of §;
with s,(t) = s
Select ai(t) in accordance with szqsbsa

e-greedily
else
Select ai(t) in accordance with Qfm
e-greedily
end if
else

Select ai(t) in accordance with @, greedily
end if
observe 1, = Ri(s(t),a(t)), s’y from T(s(t),a(t))
Store <sp(t), ap(t),r(t)> in Wy (s, ay)
if p-value of Student’s t-test (Wi(sk ax), E(Rx(sk, ar))
< pg, then
Store <sp(t), a,(t),s;(t), 7. (t)> in Wy(sk, ar, s;)
for all other agents
for all extra information s; about another agent 1
Present in s(t) do
if p-value of Student’s t-test
Wi (sk, ay, 51) » E(Rk (Sg, ax))<pen then

augment s, with s to §; and add it to QY
end if
end for
end if

if agent k selected a greedy action and agent k
was/will be in the same augmented joint state
at t=t-1/t+1 then

augment s, with s to 5, and add it to Q,
if s5,(t) is part of 5, and information of sy
is in s(t) then

if s; and s; is in part of s; then

Qe G ar) « (1 — a) Q™ (Si, ay) +
@[+ ymax, Q29 (s}, af, s0)]

aug

Breaking Deadlocks in Multi-agent Reinforcement Learning with Sparse Interaction 757

30: else

31: QG ar) « (1 —a)Qe™ (5i, ar) +
ac[re + ymax,: Qi (s ai)]

32: end if

33: else

34: No need to update Q-value
35: end if

36: t=t+l

37:end while

5 [Evaluation

We evaluated our proposed learning method in comparison with existing methods:
independent learning, JSQ-learning, JSAQ-learning, CQ-learning, and GPCQ-learning.
The number of episodes was set to 20,000 for independent learning, JSQ-learning, and
JSAQ-learning and 10,000 for CQ-, GPCQ-, and improved GPCQ-learning because
CQ-learning and its extensions require prelearning (in this case, 10,000 episodes) in a
single-agent environment. In the prelearning, the initial positions of the agents and the
target are randomly selected, and € was set to 0.3 to ensure that the agents could
sufficiently explore the environment.

The seven initial agent/target-position patterns shown in Fig. 7 were used for our
evaluation. For CQ-, GPCQ-, and improved GPCQ-learning, the length of the window
used to calculate the distribution of immediate rewards was set to 20. The threshold of
the Student’s t-test, p,,, was set to 0.01, as was done by Hauwere et al. (2010, 2011).

State-action space of an agent is 13 x 13 x 4 = 676 for an agent using indepen-
dent learning. If the number of agents is two, the space is 13 x 13 x 13 x 13 x
4 = 114,244 for the agents using JSQ-learning, 13 x 13 x 13 x 13 x 4 x 4 =
456,976 for the agents using JSAQ-learning. If the number of agents is three, the space
is 13 x 13 x 13 x 13 x 13 x 13 x 4 =19,307,236 for the agents using JSQ-
learning and 13 x 13 x 13 x 13 x 13 x 13 x 4 x 4 x 4 = 308,915,776 for the
agents using JSAQ-learning.

Table 3 shows the number of steps to finish and the standard deviation. For patterns
3 and 7 in which there are three agents, the increase of the state-action space by JSQ-
learning and JSAQ-learning clearly reduces the efficiency of finding an optimal action
policy. For patterns 1-3, the proposed method, as well as GPCQ-learning, found the
optimal paths because there were no interferences between the agents if the agents
greedily selected their actions. A slight improvement was obtained for pattern 4. The
proposed method substantially outperformed GPCQ-learning for patterns 5—7 while the
performance of GPCQ-learning was worst because of deadlocks. For pattern 7, the path
found using GPCQ-learning was far from being optimal because there were frequent
collisions between the agents in this setting, which is inconsistent with the assumption
of sparse interaction. In this case, independent learning, which coincidentally found
better paths, performed the best.

758 T. Kujirai and T. Yokota

Table 3. Evaluation results

Independent JsQ JSAQ cQ GPCQ Proposed
Patterns Mean | Stddev.| Mean | Stddev.| Mean | Stddev.| Mean | Stddev.| Mean | Stddev.| Mean | Stddev.
1 5.07 1.56 5.23 2.35 6.91 9.65 517 1.89 4.00 0.00 4.00 0.00
2 5.65 1.76 5.38 282 711 10.5 6.23 8.12 4.00 0.00 4.00 0.00
3 5.02 1.54 6.87 8.14 108 110 5.61 13.7 4.00 0.00 4.00 0.00
4 6.77 2.56 6.69 4.12 7.73 14.2 5.88 1.51 5.14 0.527 5.09 0.41
5 5.11 1.72 5.22 2.47 141 10.7 8.53 124 274 1620 4.35 0.87
6 6.40 5.07 6.59 4.91 8.54 31.2 117 219 - - 5.50 1.02
7 8.32 1.27 11.5 11.8 141 119 39.5 458 - - 9.66 3.65

6 Conclusion

We previously observed that agents using GPCQ-learning sometimes fall into a
deadlock if there is no difference in the immediate rewards between a single-agent
environment and a multi-agent environment.

Our proposed method breaks such a deadlock by detecting them and augmenting
the state of a deadlocked agent to include the state of the other agent.

Evaluation against existing five methods, including GPCQ-learning, using seven
initial agent/target-position patterns demonstrated that the proposed method outper-
forms existing methods for most patterns.

References

Bloembergen, D., Tuyls, K., Hennes, D., Kaisers, M.: Evolutionary dynamics of multi-gent
learning: a survey. J. Artif. Intell. Res. 53(1), 659-697 (2015)

Vlassis, N.: A concise introduction to multiagent systems and distributed artificial intelligence.
Synth. Lect. Artif. Intell. Mach. Learn. 1(1), 1-71 (2007)

Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative multiagent
systems. In: Proceedings of the 15th National Conference on Artificial Intelligence, pp. 746—
752 (1998)

Lauer, M., Riedmiller, M.: An algorithm for distributed reinforcement learning in cooperative
multi-agent systems. In: Proceedings of the 17th International Conference on Machine
Learning, pp. 535-542 (2000)

Sen, S., Sekaran, M., Hale, J.: Learning to coordinate without sharing information. In:
Proceedings of the 12th National Conference on Artificial Intelligence, pp. 426—431 (1994)

Tan, M.: Multi-agent reinforcement learning: independent vs. cooperative agents. In: Proceedings
of the 10th International Conference on Machine Learning, pp. 330-337 (1993)

Melo, F., Veloso, M.: Learning of coordination: exploiting sparse interactions in multiagent
systems. In: Proceedings of the 8th International Conference on Autonomous Agents and
Multiagent Systems, pp. 773-780 (2009)

Hauwere, Y., Vrancx, P., Nowé, A.: Learning multi-agent state space representations. In:
Proceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems, pp. 715-722 (2010)

Hauwere, Y.: Sparse interactions in multi-agent reinforcement learning. Ph.D. thesis, Vrije
Universiteit Brussel (2011)

Breaking Deadlocks in Multi-agent Reinforcement Learning with Sparse Interaction 759

Kujirai, T., Yokota, T.: Greedy action selection and pessimistic Q-value updates in cooperative
Q-learning. In: Proceedings of the SICE Annual Conference, pp. 821-826 (2018)

Kujirai, T., Yokota, T.: Greedy action selection and pessimistic Q-value updating in multi-agent
reinforcement learning with sparse interaction. SICE J. Control Meas. Syst. Integr. 12(3), 76—
84 (2019)

Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis, Cambridge University (1989)

Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3-4), 279-292 (1992)

Boutilier, C.: Planning, learning and coordination in multiagent decision processes. In:
Proceedings of the 6th Conference on Theoretical Aspects of Rationality and Knowledge,
pp. 195-210 (1996)

Melo, F., Veloso, M.: Decentralized MDPs with sparse interactions. Artif. Intell. 175(11), 1757-
1789 (2011)

Aras, R., Dutech, A., Charpillet, F.: Cooperation through communication in decentralized
Markov games. In: Proceedings of the International Conference on Advances in Intelligent
Systems - Theory and Applications (2004)

	Breaking Deadlocks in Multi-agent Reinforcement Learning with Sparse Interaction
	Abstract
	1 Introduction
	2 Multi-agent Reinforcement Learning
	2.1 MDP and Reinforcement Learning
	2.2 Extended Multi-agent Systems
	2.3 Related Work

	3 Multi-agent Reinforcement Learning with Sparse Interaction
	3.1 Existing Methods of MARL with Sparse Interaction
	3.2 Deadlock Resulting from GPCQ-Learning

	4 Proposed Method
	5 Evaluation
	6 Conclusion
	References

