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Abstract. The schema matching problem is at the basis of integrat-
ing structured and semi-structured data. Being investigated in the fields
of databases, AI, semantic Web and data mining for many years, the
core challenge still remains the ability to create quality matchers, auto-
matic tools for identifying correspondences among data concepts (e.g.,
database attributes). In this work, we investigate human matchers behav-
ior using a new concept termed match consistency and introduce a novel
use of cognitive models to explain human matcher performance. Using
empirical evidence, we further show that human matching suffers from
predictable biases when matching schemata, which prevent them from
providing consistent matching.
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1 Introduction

Schema matching is at the basis of integrating structured and semi-structured
data. The schema matching task revolves around providing correspondences
between concepts describing the meaning of data in various heterogeneous, dis-
tributed data sources, such as SQL and XML schemata, entity-relationship dia-
grams, ontology descriptions, interface definitions, and forms format [28].

Schema matching research originated in the database community [28] and
has been a focus for other disciplines as well, from artificial intelligence [10,20],
to semantic web [17] to data mining [18]. Schema matching research has been
going on for more than 30 years now, focusing on designing high quality match-
ers, automatic tools for identifying correspondences among database attributes.
Initial heuristic attempts (e.g., COMA [11]) were followed by theoretical ground-
ing (e.g., see [5,16]).

Recently, the information explosion (a.k.a Big Data) has provided many novel
sources for data and with them the need for efficient and effective integration.
Crowd-sourcing has allowed pay-as-you-go frameworks for data integration (e.g.,
[21,35]), to make flexible use of human input in the matching process.
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A basic tenet of the matching process, present from its inception, is that an
algorithmic matcher provides a set of definite (true or false) correspondences to
be then validated by a human expert. Human validation of algorithmic results
assumes the superiority of human matchers over algorithms, which may be näıve,
partially because different human matchers may have different opinions and
may differ in the way they match schemata [31]. The emergence of crowd-based
solutions has not changed this assumption, but merely extended the validation
phase to include additional individuals.

A popular contemporary trend involves developing human-level AI. We
believe it is equally important to understand human’s strengths and predictable
biases when determining the appropriate sharing of responsibility with the
machine. Hence, in this work we focus on analyzing human’s performance in
matching. The central new concept in this work is match consistency, which we
use, aided by cognitive principles, to show that human behavior in matching vary
along consistency dimensions, namely temporal, consensuality, and control (as
defined in this work). Given a set of human matchers, we assess their abilities,
much like traditional models do for algorithms. Additionally, however, human
matchers have biases that we can detected and accounted for when making use
of human matching.

We present theoretical analyses, using cognitive models, of human matchers
strengths and biases (Sect. 3) as well as empirical results on match consistency
(Sect. 4) to support our framework. Additionally, Sect. 2 presents background on
matching and metacognition. We review of related work in Sect. 5 and conclude
in Sect. 6.

2 Background

We next present a formal matching model (Sect. 2.1) and models for human
involvement in matching (Sect. 2.2).

2.1 Schema Matching Model

Let S, S′ be two schemata with attributes {a1, a2, . . . , an} and {b1, b2, . . . , bm},
respectively. A matching process matches S and S′ by aligning their attributes
using matchers that utilize matching cues such as attribute names, instance data,
and schema structure (see surveys e.g., [6] and books e.g., [16]). A matcher’s
output is conceptualized as a similarity matrix M(S, S′) (M for short), having
entry mi,j (typically a real number in [0, 1]) represent a degree of similarity
between ai ∈ S and bj ∈ S′. A match, denoted σ, between S and S′ is a subset
of M ’s entries.

Matching is a stepped process of applying algorithms, rules, and con-
straints. Matchers can be separated into first-line matchers – 1LMs, which are
applied directly to the problem, returning a similarity matrix, and second-line
matchers – 2LMs, which are applied to the outcome of matchers, receiving sim-
ilarity matrices and returning a similarity matrix.
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Table 1. A similarity matrix example

S1 1 2 3 4
S2

1 0.84 0.32 0.32 0.30
2 0.29 1.00 0.33 0.30
3 0.34 0.33 0.35 0.64

Example 1 (Matchers). To illustrate the variety of available matchers, consider
three 1LMs. Term [16] compares attribute names to identify syntactically sim-
ilar attributes (e.g., using edit distance and soundex). WordNet uses abbrevia-
tion expansion and tokenization methods to generate a set of related words for
matching attribute names. Token Path [27] integrates node-wise similarity with
structural information by comparing the syntactic similarity of full paths from
root to a node.

Example 2 (Similarity Matrices). Table 1 provides an example of an outcome
of a matching process between fragments of two reservation systems’ schemata,
one (S1) with four attributes and the other (S2) with three attributes, con-
ceptualized in a similarity matrix. S1 consists a CardNum attribute with long
data-type and a city attribute, which contains some example instances (city
names). Attributes may be independent of other attributes or composable, cre-
ating compound attributes. E.g., ArrivalDay and CheckInTime attributes can be
composed to a compound arrival day/time attribute. S2 has clientNum, city, and
checkInDay attributes.

2.2 Human Involvement in Matching Models

Human schema matching is a complex decision making process, which involves a
series of interrelated tasks. Each attribute in one schema is examined to decide
whether and which attributes from the other schema correspond. Humans either
validate an algorithmic result or locate a candidate attribute unassisted. Human
matchers may choose to rely upon superficial information such as string simi-
larity of attribute names (e.g., qty is similar to quantity) or explore additional
information such as data-types, instances, and position within the schema hier-
archy. The decision whether to explore additional information relies upon self-
monitoring of confidence.

Most of the works in schema matching over the years assume that an algo-
rithmic matching system provides a set of definite (true or false) correspondences
to be then validated by a human expert who can provide the ultimate match-
ing. Human validation is typically prohibitively large. High matching costs and
limited expert availability spawned research into crowd sourcing usage by break-
ing the matching task into small-sized tasks, suitable for unskilled workers with
minimal compensation (pay-as-you-go approach) [23]. McCann et al. proposed
methods to validate algorithmic matchers, ranging from direct match validation
(e.g., does ccost match pcost?) to constraint validation (e.g., does bDate < 2007
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always hold?) [26]. Zhang et al. provided tools for validation task selection [35],
Bozovic and Vassalos used feedback to tune matcher weights [8], and Hung et al.
suggested methods to select conflicting matches in a network of schemata [22].
Sagi and Gal proposed the Expert Sourcing model [29], which we follow in this
work, in which knowledgeable humans examine substantial parts of the matching
task or the entire task (e.g., for small-medium scaled schemata).

3 Match Consistency

Historically, humans (relative) strong matching abilities put them as final deci-
sion makers, disregarding biases that affect their ability to provide accurate
matches. To capture the impact of human biases on matching, we present a for-
mal notion of a consistent matcher, and use cognitive models to explore human
matcher variability.

3.1 Consistent Match Definition

Matchers are typically measured using a global matching evaluation measure,
e.g., precision and recall. Such a measure evaluates the similarity matrix a
matcher generated against some reference matrix. Given a similarity matrix M
of n × m entries and an evaluation measure E, we define matcher consistency
with respect to a consistency dimension D = {d1, d2, . . . , dk} using a dimension
function FD : {mi,j | mi,j ∈ M} −→ D that maps each entry in M into a
value in D. In Sect. 3.3 we present a classification of dimensions and give four
examples.

Given a similarity matrix M of n × m entries, a dimension D =
{d1, d2, . . . , dk} induces a partition M1,M2, . . . ,Mk over M such that Ml =
{mi,j ∈ M | FD(mi,j) = dl}. We apply the evaluation measure E over each par-
tition E(M1), E(M2), . . . , E(Mk) and define match consistency using coefficient
of variation as follows:

Definition 1 (Match Consistency). Let M be an n×m similarity matrix and
D = {d1, . . . , dk} a consistency dimension. Let E ∈ [0, 1] be a random variable,
with an expected value of μ(E) and a standard deviation of sd(E), representing
an evaluation of partitions M1, . . . ,Mk over M . MC is a match consistency
measure of M wrt D, computed as follows:

MC(M,D,E) = 1 − sd(E)
μ(E)

(1)

A higher MC value should correlate with increasingly consistent match per-
formance across the partitions induced by D. Coefficient of variation, which was
chosen as a best practice measure of data consistency (see [33]), achieves this cor-
relation through its standard deviation component. A higher standard deviation
increases the coefficient of variation and reduces the value of MC. This is in line
with our understanding of consistency, where a lower standard deviation means
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a more consistent match. The second parameter is the average performance of
the different partitions. Here, we take into account not only consistency but also
our desire to achieve a good match, which entails an overall high evaluation
measure.

3.2 Self Monitoring of Performance

Cognitive psychology has been examining factors impacting humans when per-
forming knowledge intensive tasks [4]. The metacognitive approach, traditionally
applied for learning and answering knowledge questions [7], highlights the role
of subjective confidence in regulating efforts while performing challenging tasks.

Metacognition research was recently applied to reasoning and decision mak-
ing tasks [2]. It suggests that online monitoring of subjective confidence regulates
the cognitive effort invested in each task (e.g., identifying a correspondence). The
Discrepancy Reduction Theoretical Framework (DRTF) explains learning effort
investment by suggesting that people set a target knowledge level as a stopping
criterion. They continue to invest time and effort, while subjectively monitoring
their confidence level, until meeting the stopping criterion [7].

Metacognitive models use three basic components of effort regulation mea-
sures, which we use for the matching task:

(1) Subjective confidence: Human matchers report matching confidence as
their performance monitoring.

(2) Invested time: Elapsed time from selection of a term to the final match-
ing decision is used as an objective measure that presumably reflects the
metacognitive control decision to either continue or terminate a task, based
on the ongoing monitoring of the chance of success.

(3) Objective performance evaluation: We use the well accepted precision
and recall to evaluate performance.

Fig. 1. Correctness by confidence, partitioned into buckets of 0.1



A Cognitive Model of Human Bias in Matching 637

By way of motivation, we provide an illustration (Fig. 1) of the relationship
between human confidence in matching and correctness (in terms of precision)
based on our experiments (see Sect. 4). It is clear that human subjective confi-
dence cannot serve as a good predictor to matching correctness. In this work we
show how human biases affect confidence levels via consistency dimensions.

3.3 Consistency Dimensions

Consistency dimensions can be classified as continuous or discrete and may be
performed using individual or collective matchers, as illustrated in Fig. 2. We
introduce four consistency dimensions, namely (local and global) temporal, con-
sensuality, and control, as examples to the full set of dimension possibilities.

Continuous

Discrete

CollectiveIndividual
Temporal
(Global)

Temporal
(Local)

Control Consensuality

Fig. 2. Consistency dimensions

Fig. 3. DCM with hypothetical confidence ratings for four items and a self-imposed
time limit (adapted from [1]).

(Local and Global) Temporal Dimension: This dimension is continuous
(can be discretized into buckets to fit Definition 1) with both individual and
collective variations.

The motivation to analyze the temporal dimension for human biases is
rooted in the Diminishing Criterion Model (DCM) [1], a DRTF-based model
(see Sect. 3.2) that models a common bias in human confidence judgment. DCM
stipulates that the stopping criterion of a DRTF model is relaxed over time.
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Thus, a human matcher is more willing to accept a low confidence level after
investing some time and effort on finding a correspondence.

Figure 3 illustrates hypothetical confidence ratings while performing a schema
matching task. Each dot in the figure represents a possible solution to a matching
decision (e.g., attributes ai and bj correspond), and its associated confidence,
which changes over time. The search for a solution starts at time t = 0 and
the first dot for each of the four examples represents the first solution a human
matcher reaches.

As time passes, human matchers continuously evaluate their confidence. In
case A, the matcher has a sufficiently high confidence after a short investigation,
thus decides to accept it right away. In case B, a candidate correspondence is
found quickly but fails to meet the sufficient confidence level. As time passes,
together with more comprehensive examination, the confidence level (for the
same or a different solution) becomes satisfactory (although the confidence value
itself does not change much) and thus it is accepted. In Case C, no immediate
candidate stands out, and even when found, its confidence is too low to pass
the confidence threshold. Therefore, a slow exploration is performed until the
confidence level is sufficiently high. In Case D, an unsatisfactory correspondence
is found after a long search process, which fails to meet the stopping criterion
before the individual deadline passes. Thus, the human matcher decides to reject
the correspondence. When fitting a model based on the temporal dimension
we can address human matchers individually, fitting a model for each human
matcher separately (Local temporal), or collectively by fitting a general DCM
model based on a group of human matchers (Global temporal).

Consensuality Dimension: This dimension models agreement among match-
ers. Metacognitive studies suggest that the frequency in which a particular
answer is given by a group of people predicts confidence strongly [24].

The consensuality principal serves as a strong motivation to use crowd sourc-
ing for matching, and was indeed proposed, e.g., [35]. Although consensuality
does not ensure accuracy [25], in this study we examine whether the number of
people who chose a particular match can be used as a predictor of its chance
to be correct. This can also support using majority voting based solutions as
indication of correctness [3].

Consensuality requires multiple opinions to measure matchers agreement and
a repetition of choices. We therefore classify this dimension as collective and
discrete.

Control Dimension: Control analyzes the consistency of human matchers
when assisted by a result of an algorithmic solution. This dimension is discrete
(binary, in fact). In this work we consider control as an individual dimension,
although it can be easily extended, using a general model for assisted/non-
assisted matchers, to be collective.

Metacognitive control decisions are the regulatory decisions people take,
given a self-assessment of their chance for success [7]. In the context of this
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study, the use of algorithmic output for helping the matcher in her task is taken
as a control decision.

Variability in this dimension may be attributed to the predicted tendency of
humans who do not use system suggestions to be more engaged in the task and
recruit more mental effort than those who use suggestions as a way to ease their
cognitive load (see [32]). Shraga et al. showed that human matchers who rely on
algorithmic support are likely to follow the algorithm suggested [31].

4 Empirical Evaluation

The experiments analyze match consistency along consistency dimensions.
Results indicate variability along consistency dimensions with varying trends
of correctness.

4.1 Experiment Setup

Dataset and evaluation measures are presented next.

Human Matching Dataset: The dataset contains match results of 106 human
matchers, all Industrial Engineering undergraduates who studied logistics and
database management courses. Participants were briefed in schema matching
prior to the task. Four pilot participants completed the task prior to the study
to ensure its coherence and instruction legibility. Participants were trained on a
pair of small schemata (9–12 attributes) from the Thalia dataset1 prior to the
main task.

The main schema matching task was chosen from the Purchase Order
dataset [11]. The schemata used are medium size, with 142 and 46 attributes,
and with high information content (labels, data types, and instance examples).
Correspondences are of differing difficulty levels, with both easy matches and
complex relationships, which may yield low precision and recall, even when using
the strongest of matchers. Potentially, a maximum number of 6,532 correspon-
dences are possible per human matcher, by (impossibly) evaluating each and
every pair of attributes. In reality, each matcher chose to evaluate 51 correspon-
dences on average, creating a dataset of ∼5,600 human matcher’s correspon-
dences (1,229 distinct correspondences). A reference match for evaluation was
compiled by domain experts over the years in which this dataset has been used
for testing.

A side-by-side view of the two schemata and a dynamic match table were
provided. The system records the time it takes for a matcher to determine on a
correspondence. Match confidence was inserted by participants directly into the
match table as a value between 0 and 1, displayed as a percentage.

Participants were randomly assigned to one of four conditions, differing by
the algorithmic support provided. No suggestions (0), where participants per-
form the task with no algorithmic assistance; limited suggestions (1a), where
1 www.cise.ufl.edu/research/dbintegrate/thalia/howto.html.

www.cise.ufl.edu/research/dbintegrate/thalia/howto.html


640 R. Ackerman et al.

participants are allowed a limited (8 clicks) use of a lifesaver button. A counter of
the suggestions used vs. remaining is presented; unlimited suggestions (1b),
where participants are allowed an unlimited use of a lifesaver button; and val-
idate algorithmic result (2), where algorithmic suggestions are pre-entered,
letting participants validate, override, or complete them. The latter represents
the classic “humans as validators” approach. The algorithmic matcher we used
to create suggestions was Term (see Example 1) with typical performance (F1 ≈
0.5) for automatic schema matchers on difficult instances.

To analyze the control dimension, we further separated participants into
two groups. The first contains those participants who did not have suggestions
(condition 0) or did not use the suggestion (from conditions 1a and 1b). The
second contains those who actively requested suggestions from conditions 1a
and 1b, in addition to the participants from condition 2.

Duplicate ratings for the same correspondence were removed, taking the lat-
est. Out of the 106 participants, 6 were discarded due to technical faults, leaving
100 valid results. Elapsed time outliers (over 2 standard deviations from the
mean of each participant) were removed due to the sensitivity of our measures
to outliers, which may occur due to methodical pauses, unrelated to the matching
task.

We created a group of the top 10% performing human matchers, considered
as performance idealization of humans as validators, to show that even they
suffer from biases and therefore are non-distinguishable from others a-priori.

Evaluation Measures: Let Me be a reference matrix, such that mi,j = 1
whenever the correspondence (ai, bj) is part of the reference match and mi,j = 0
otherwise. The precision (P) and recall (R) evaluation measures are defined as
follows:

P (σ) =
| σ ∩ Me+ |

| σ | , R(σ) =
| σ ∩ Me+ |

| Me+ | (2)

where Me+ represent non-zero entries of Me and recalling that σ is a subset of
M ’s entries. The F1 measure, F (σ), is calculated as the harmonic mean of P (σ)
and R(σ).

Given a consistency dimension D = {d1, d2, . . . , dk}, precision and recall can
be defined similarly per value di, by replacing σ with σ ∩ Mi (see Sect. 3.1). To
compute match consistency we use Eq. 1 by estimating μ as the sampled average
and sd as the sampled standard deviation over the evaluation measure of choice
(e.g., precision).

To analyze human matcher confidence we use metacognitive measures of
calibration and resolution, based upon performance monitoring.

Calibration(σ) = σ − P (σ), Resolution(σ) = γ(σ,Me+) (3)
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Table 2. Resolution, (P)recision, (R)ecall, and (F)1 of matchers.

Matcher Resolution Sig. (p-value) P R F

Term 0.63 0.045 0.35 0.80 0.48

TokenPath 0.72 0.140 0.25 0.86 0.33

WordNet 0.94 0.035 0.31 0.87 0.44

Human matchers 0.16 (SD=0.46) 0.001 0.63 0.36 0.45

Top-10 human matchers 0.58 (SD=0.57) 0.104 0.91 0.60 0.71

where σ is a user average confidence and γ(·, ·) is GK-Gamma correlation [19].
Positive calibration is interpreted as overconfidence and negative calibration

as under-confidence. Resolution measures the extent to which confidence dis-
criminates between correct and incorrect correspondences. GK-Gamma ranges
in [−1, 1] where scores of 1 and −1 indicate perfect resolution and 0 indicates no
resolution. Negative resolution scores are interpreted as identifying good results
as bad and vice-versa.

4.2 Results

We present a confidence analysis and empirical evaluation along consistency
dimensions as evidence for human matching biases. Experiments show that
human matchers are, in general, overconfident with low ability to distinguish cor-
rect from incorrect correspondences. In terms of consistency, results demonstrate
significance variability along all dimensions with varying trends of correctness.

Confidence Analysis: We begin with a metacognitive evaluation, examining
calibration and resolution (Sect. 4.1) in a schema matching setting. Average cal-
ibration (over participants) for match decisions was .26. 45 participants had
over .3 calibration and 8 had negative calibration. Overall, the calibration levels
demonstrate a right skewed distribution, interpreted as overconfidence, which
was reported in the literature as a well-established human tendency [13].

Resolution results are given in Table 2. To compute matches, a 0.5 threshold
was applied over the results. Human matchers, as a group, have significant, but
low positive resolution (.16) with high variance. Only 25 (31%) had significant
resolution (.68 average resolution within the group). Of those, 23 had significant
positive resolution (average positive resolution was .79) and 2 had significant
negative resolution (average negative resolution was −.57).

Note that performing the same calculation with algorithmic matchers yields
much better resolution (see Table 2). Comparing human and algorithmic match-
ing, overall the former has better precision, while the latter has better recall.
However, even matching algorithms with comparatively fair F1 scores such as
TokenPath, demonstrate high resolution. This serves as empirical evidence that
the traditional view of “humans as validators”, may not be suitable for matching.
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(a) Temporal Dimension (b) Consensuality Dimension (c) Control Dimension

Fig. 4. Confidence (Blue) and correctness (Red) by dimension (Color figure online)

(Local and Global) Temporal Dimension: We validate that the DCM
(Sect. 3.3) reflects human matchers behavior by showing the predicted associ-
ation between elapsed time and reported confidence. We show evidence of tem-
poral bias and our ability to use elapsed time as a predictor of human matching
performance. Support for this model would manifest itself via negative correla-
tion between elapsed time and confidence per participant (local) and all partic-
ipants (global).

Experimental results support the DCM model both locally and globally.
A collective negative mean slope of −.23 suggests that on average, confidence
decreases with time, which supports global temporal dimension. Zooming in on
individual confidence reports, mean slope varied in [−.274,−.213] with 40% indi-
vidual matchers having significant (negative) correlations. A single-sample t-test
was used to reject the null hypothesis of the slopes being random-noise. Also, a
one-way ANOVA test was used to reject the null hypothesis of all participants
sharing the same confidence mean (F1,80 = 23.6, p-value < 10−5) emphasizing
the need for a local model. To support the DCM self-imposed time limit, we
followed [34] and found a significant curvilinear relation between time and con-
fidence, reflecting the combination of two stopping criteria, which are unique to
the DCM [1].

With correlated confidence and elapsed time, we now validate the use of
DCM in matching, by examining the accuracy of human matchers as predicted
by elapsed time. We tested the correlation between elapsed time and participant
chance of providing correct matches. We partitioned the elapsed time into buck-
ets, each of 5 s (0–5, 6–10, etc.) and examined an aggregative temporal behavior
of human matchers. With MC = 0.42, the temporal dimension exhibits high
variability among the dimension buckets. Correctness was computed as the pre-
cision within the bracket’s time frame (Sect. 4.1). Mean slope was found to be
−.54 (statistically significant with pval < 10−5). This serves as evidence that
time spent is predictive of matching (in)correctness.

Figure 4a compares correctness with confidence, by showing precision (red)
and mean of confidence across all human matchers (blue), partitioned according
to elapsed time. For each measure we also include a linear trend-line and error
bars for each time bucket. As discussed before, as time passes, less decisions
made by humans are correct and there is a decline in human confidence. We
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also note that confidence consistently receives higher values than correctness
proportion, which reflects the overall overconfidence, as reported above. The
difference between the two becomes more prominent as time elapses, which is a
classic finding in metacognitive literature, called hard-easy effect [9]. Note that
error bars show variance in the way confidence is determined.

Offline examination of the top 10 human matchers reveals a slight (statisti-
cally insignificant) improvement in consistency. Accuracy is not available in real-
life scenarios and therefore cannot be used to identify the best human matchers
a-priori.

Consensuality Dimension: Next, we validate that the agreement level among
matchers is correlated with self-reported confidence, and show evidence to its
impact on human matching performance (Sect. 3.3).

We partitioned the number of votes for correspondence into increasing agree-
ment levels (0–5, 6–10, etc.). For each level we computed the average confidence
of correspondences and proportion of correctly matched correspondences out
of all correspondences that were determined within the level. Figure 4b (simi-
larly to Fig. 4a) presents confidence (blue) and correctness (red), partitioned by
agreement level (number of votes). For each measure we also include a linear
trend-line and error bars.

Overconfidence is demonstrated in lower agreement levels, while for higher
levels the human matchers underestimate correctness. The error bars illustrate
a significant variance in lower agreement levels and becomes negligible at higher
levels, possibly as a result of correspondences that are easier to detect in levels
where consensus is higher.

We also tested the correlation between level of agreement among partic-
ipants and participant chance of providing correct matches. Although recent
studies suggest that consensuality does not ensure accuracy [25], mean slopes
for accuracy was found to be .13 (statistically significant with a p-value < 10−5),
showing that consensus among matchers is predictive of matching correctness.
Consistency was measured at MC = 0.36, which is indicative of high variabil-
ity. Here we see an improvement among the top 10 human matchers probably
because they agree more among themselves on correct matches (evaluated only
95 correspondences compared to 1,229 overall).

Control Dimension: Finally, we show the impact of availability of algorithmic
correspondences on human matching performance. To evaluate the performance
of human matchers we compare the self-reported confidence and objective per-
formance of participants by the control condition.

Figure 4c presents a comparison between participants who used (actively or
passively) suggestions (left side) and those who did not (right side). A statis-
tically significant (Pearson) correlation (p-value < 10−5) was found between a
binary variable indicating the use of a suggestion given a correspondence and a
binary variable indicating whether this correspondence is a part of the reference
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match. Clearly, the human matcher is overconfident, regardless of the algorith-
mic assistance. Yet, results show better performance of participants who did not
use the system’s suggestions versus those who did. This can be explained by
the fact that human matchers with machine support are more likely to behave
as suggested [31], because of shallower processing than without this opportu-
nity (see [32]). It is worth noting that with MC = 0.85, the control dimension
demonstrates a more consistent pattern than the other two dimensions. Offline
examination shows that the top 10 human matchers exhibit better consistency
but show larger difference in confidence levels. The matchers assisted among the
top 10 are much more confident (.81 compared to non assisted confidence of .69)
but also live up to the expectations, achieving high accuracy levels (.86).

5 Related Work

Section 2.2 outlined the main effort in human involvement in matching. We now
focus on demonstrating the contribution of this work on the background of state-
of-the-art.

Using humans to answer schema matching validation questions was first pro-
posed in [26]. This work was later extended [21,35] by using crowd sourcing to
reduce uncertainty. Sarasua et al. suggested mechanical turks to validate match-
ing by providing context information [30]. A recent work [35] also acknowledged
the fact that the crowd is not always correct, associating probabilities to answers
based on the question hardness (hard-easy effect as addressed in this paper) and
worker’s trustworthiness, which are estimated empirically, based on [15]. We take
the observation that humans are not perfect a step further, analyzing cognitive
biases that make human evaluation error prone.

Schema matching and ontology alignment [14] are closely related research
areas, both aiming at finding matches between concepts. The two vary in their
matching objects (schemata vs. ontologies), matching refinement (equivalence
vs. richer semantics such as inclusion), and the underlying mathematical tools
(e.g., similarity matrix analysis vs. logic). To date, little work was devoted to the
role of human matchers in either research areas. Nevertheless, a recent work in
ontology alignment have acknowledged the fact that humans (users) can make
mistakes [12]. Although it addresses cognitive oriented issues, e.g., cognitive load,
their aim is to avoid them. Further, they propose to collect confidence as a future
work, which we collected and showed it may be unreliable (overconfidence). Our
research insights can be readily applied to ontology alignment.

6 Conclusions and Future Work

This work introduces match consistency as a measure of human matching vari-
ability along potential bias dimensions. We view match consistency as a powerful
tool to analyze human matching behavior. In future work we intend to identify
additional dimensions, beyond the dimensions identified in this work, namely
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temporal, consensuality, and control. Our empirical evaluations serve as proof-
of-concept that validate the important roles of humans as participants in the
matching process, and less so as validators. Therefore, future work will involve
collaboration models, supporting both human and algorithmic matchers, jointly
performing schema matching considering humans biases.
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