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Abstract. In recent years, deep learning methods have achieved out-
standing performances in sentence classification. However, many sentence
classification models do not consider the out-of-vocabulary (OOV) prob-
lem, which generally appears in sentence classification tasks. Input units
smaller than words, such as characters or subword units, have been con-
sidered the basic unit for sentence classification to cope with the OOV
problem. Although this approach naturally solves the OOV problem, it
has obvious performance limitations because a character by itself has
no meaning, whereas a word has a definite meaning. In this paper, we
propose a neural sentence classification model that is robust to the OOV
problem, even though the proposed model utilizes words as the basic
unit. To this end, we introduce the unknown word prediction (UWP)
task as an auxiliary task to train the proposed model. Owing to joint
training of the proposed model with the objectives of classification and
UWP, the proposed model can represent the meanings of entire sen-
tences robustly even if a sentence includes a number of unseen words. To
demonstrate the effectiveness of the proposed model, a number of exper-
iments are conducted using several sentence classification benchmarks.
The proposed model consistently outperforms two baselines over all four
benchmark datasets in terms of the classification accuracy.

Keywords: Sentence classification · Out-of-vocabulary problem ·
Neural network · Multi-task learning

1 Introduction

Sentence classification is a fundamental task in natural language processing
(NLP), which is being studied extensively for sentiment analysis in social media
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and political ideology analysis, among other purposes [3,15]. Recently, deep
learning approaches that employ recurrent neural networks (RNNs), convolu-
tional neural networks (CNNs), and attention mechanisms have been shown
to be effective for sentence classification. Among them, BLSTM2DCNN [18]
employs a two-dimensional (2D) convolutional network on top of a bidirectional
LSTM for text classification. BLSTM2DCNN has been shown to perform well
on several text-classification tasks because the network can capture the depen-
dency among feature vector dimensions via 2D convolutions and the bidirec-
tional long-term contextual information via BLSTM. By contrast, DARLM [19]
is another recently developed neural network for sentence classification. This
model includes two attention subnets that attending different parts of a sen-
tence with each other. Then, an example discriminator assigns a label to the
given sentence by utilizing attention information from both subnets. The neu-
ral models proposed in these studies have network architectures and decision
mechanisms optimized for sentence classification.

Despite these advances in deep learning for sentence classification, many sen-
tence classifiers do not consider the out-of-vocabulary (OOV) problem, which
appears in almost all sentence classification tasks. During training, neural clas-
sifiers have access to complete information about a sentence to be classified.
By contrast, in practice, these classifiers may be applied to sentences contain-
ing multiple unseen words. This OOV problem interferes with the prediction of
neural classifiers, and the problem becomes severe when the unseen words in a
sentence deliver the key information that determines the class of the sentence.
One possible solution for the OOV problem is using characters or subwords [13]
as basic units for sentence classification instead of words [17]. Because characters
and subwords are smaller units than words, sentence classifiers based on such
small units can avoid the OOV problem naturally. However, the performance of
character-level sentence classifiers is inferior to that of word-level models, even
though character-level sentence classifiers have considerably deeper and more
complex network structures [7]. This is because a character by itself has no
meaning, whereas a word has a definite meaning.

In this paper, we propose a neural sentence classification model that is robust
to the OOV problem, even if the proposed model utilizes words as the basic unit
for classification. To this end, we introduce the unknown word prediction (UWP)
task as an auxiliary task to train the proposed model. The UWP task predicts
the would-be word when an unknown word is included in a sentence. To train
a network for this task, some proportion of the words in training sentences
are randomly selected and replaced with the 〈unk〉 token. Then, a network is
trained to predict the words to be substituted instead of the 〈unk〉 tokens by
considering all other words in a sentence. The objective of UWP is similar to that
of the masked language model (MLM) [2], which has been proved to be useful
for obtaining robust and contextual word representations of a given sentence.

The proposed neural network consists of three sub-networks, namely, a shared
sentence encoder, sentence classification network, and an UWP network. The
sentence encoder takes a sentence, that is, a sequence of words, as input and
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outputs a sequence of contextual word representations. Because the auxiliary
UWP task is executed to generate robust word representations that can be used
for sentence classification, the sentence encoder should be shared across both
the main and the auxiliary task-specific networks. The UWP network is placed
on top of the sentence encoder, and then the network predicts the word that
is the original word of a given 〈unk〉 token based on all other known words in
the sentence. Concurrently, the sentence classification network takes a sequence
of word representations from the sentence encoder and performs classification
based on the given sequence.

In multi-task learning, an auxiliary task can give the model useful hints,
which are difficult to learn in the main task [1]. By applying the UWP task to
a network as an auxiliary task for sentence classification, the proposed model
obtains such hints for solving the OOV problem from two perspectives. The first
perspective is that a neural classifier can be configured to predict the approxi-
mate meanings of unseen words. Thus, the UWP task provides a direct solution
for the OOV problem encountered in sentence classification. Another perspec-
tive is that word representations of known words become more contextual. As a
result, the meaning representation of the entire sentence becomes robust, even
if a sentence includes a number of unseen words.

To demonstrate the effectiveness of the proposed model, a number of exper-
iments are conducted on several sentence classification benchmarks including
SST-1, SST-2, TREC-6, and TREC-50. In a comparison with the baselines with-
out the UWP auxiliary task, the proposed model consistently outperforms the
baselines over all four benchmark datasets; especially, on the SST-1 benchmark,
the performance gain in terms of accuracy is up to 1.2% compared to that of the
baselines.

The rest of this paper is organized as follows. In Sect. 2, we briefly introduce
previous works on recent neural models for sentence classification. In Sects. 3
and 4, we describe the learning algorithm and the architecture of the proposed
model. The experimental setting and the results are given in Sects. 5 and 6.
Finally, we conclude the study in Sect. 7.

2 Related Work

In recent years, deep learning methods, including modern neural modules such as
recurrent units, convolutions, and attention mechanisms, have yielded notable
performance when applied to sentence classification. Even more recently, the
developers of most deep learning models have blended more than two of the
aforementioned modules to enhance performance. In BLSTM2DCNN [18], 2D
convolutions are introduced, and their filters are defined across the feature vec-
tor dimension as well as the word sequence. These 2D convolutions summarize
the contextual information generated by a bidirectional LSTM to classify a sen-
tence. The DARLM [19] combines all three of the aforementioned modules; it is
thus composed of a convolutional layer for text encoding, two different attention
mechanisms for feature selection, and two LSTM layers on top of each attention
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mechanism for aggregating the contextual information. These studies show the
importance of generating appropriate contextual representations and summariz-
ing them.

Breaking words down into smaller units is one of solutions to the OOV prob-
lem. A number of character-level [8,17] and subword-level [5,13] classification
models have been proposed. Essentially, these models seem to eliminate the
OOV problem from sentence classification. However, the smaller units rarely
convey meanings and increase the length of the input sequence. By contrast, the
proposed model uses a word as the basic unit and infers contextual meanings by
considering the surrounding words.

Multi-task learning is widely used to improve sentence classification perfor-
mance [12]. To facilitate multi-task learning, the tasks to be performed should
be related each other. When this condition is satisfied, an auxiliary task can
help improve the performance of the associated main task through the provi-
sion of additional hints that can only be obtained from the auxiliary task. For
instance, the execution of a word-level sentiment classification task can improve
the performance of the associated sentence level sentiment classification task [16].
This makes sense because the polarity of each word in a sentence is crucial for
determining the sentiment of the entire sentence. It is also intuitive that under-
standing the contextual meaning of each word in a sentence is very important
for predicting the class of the sentence. In addition, human beings understand a
sentence that contains words unknown to them by contextually approximating
the meaning of those words. Based on this intuition, we set UWP as the auxiliary
task for sentence classification.

The proposed UWP task was motivated by the masked language model
(MLM), which is used for training BERT [2]. In the training procedure of MLM,
a neural network is forced to predict the original words of masked words in a
sentence. With this training, the network produces more robust word represen-
tations, even when a word is masked. Unlike the MLM in BERT, which applied
to a very large-scale corpus to obtain robust word representations, we show that
with relatively small data, the UWP task is adequately effective as an auxiliary
task for sentence classification.

3 Sentence Classification with Auxiliary Word Predictor

Figure 1 describes the overall architecture of the proposed model. As shown in
this figure, the proposed model follows a general network structure for multi-task
learning, which comprises one shared sub-network and multiple task-specific sub-
networks [12]. In the proposed model, the shared network is a sentence encoder,
and two task-specific networks constitute a sentence classification network for
the main task and an UWP network for the auxiliary task. Let D = {(x,y)}
be the training dataset for sentence classification, where x = (w1, . . . , wL) is a
input sentence of length L, and y ∈ {0, 1}C is a one-hot vector for the class label
of a sentence x. Because D does not provide the training data for the auxiliary
task, we first generate a training dataset D′ = {(x′,y)} for both tasks. x′ is a
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Fig. 1. Architecture of proposed sentence classification network with an auxiliary word
predictor.

corrupted x obtained by replacing a few words with the unknown token 〈unk〉.
In this study, 15% of the words in x were randomly replaced with the 〈unk〉
token.

After D′ is prepared, x′ with U unknown words is input to the RNN-based
sentence encoder fenc to produce a sequence of word vectors H = (h1, . . . ,hL).
Then, the CNN-based sentence classification network fcls takes H and predicts
the probability distribution of the class label y of x. Thus, two parameter sets
θcls and θenc with respect to fenc and fcls are trained to minimize

∑

(x′,y)∈D′
Lcls(y, fcls(fenc(x′; θenc); θcls)), (1)

where Lcls is the cross-entropy loss.
The UWP network faux for the auxiliary task is a feed-forward neural net-

work, and it takes H as the input. Because more than one 〈unk〉 token can be
included in x′, faux predicts the original word for each 〈unk〉 token. Then, θaux,
a set of all parameters of the auxiliary word predictor, is jointly trained with
θenc to minimize

∑

(x′,i:wi=〈unk〉)∈D′
Laux(wi, faux(fenc(x′; θenc); θaux)), (2)

where wi is a one-hot vector for the i-th word in x, which is replaced by the
〈unk〉 token, and Laux is the cross-entropy loss.
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Algorithm 1. Training procedure of entire proposed model
input : Training set D = (x,y), hyperparameters α and λ
Parameters : Θ = (θenc, θcls, θaux)

initialize : All parameters Θ are randomly initialized.
1 repeat
2 Dbatch ← sample(D, b) // sample a minibatch of size b
3 D′

batch ← Ø // initialize the corrupted training set

4 for (x,y) ∈ Dbatch do
5 (x′,y) ←generate(Dbatch) // sample a corrupted tuple

6 D′
batch ← D′

batch ∪ {(x′,y)}
7 end

// joint training of entire networks

8 Train fenc and fcls by Eq. 1
9 Train fenc and faux by Eq. 2

10 until convergence;

The goal of the auxiliary task is to help the sentence encoder produce a
robust representation of x. Thus, fenc should be optimized to jointly minimize
both loss Lcls and Laux. As a result, the final loss of the proposed model is as
follows.

L = Lcls + αLaux + λ‖Θ‖2, (3)

where Θ = (θenc, θcls, θaux) denote all parameters of the proposed model, and
the hyperparameter α balances the main classification task and the auxiliary
word prediction task. λ is an l2 regularization hyperparameter.

Algorithm 1 describes the detailed procedure for training the proposed model.
The proposed model contains three parameter sets, namely, θenc, θcls, and θaux,
which come from fenc, fcls, and faux, respectively. All these parameters are ini-
tialized randomly before training. In each epoch of the algorithm, a small set of
tuples is sampled from the training set and corrupted with 〈unk〉 tokens. Once
a corrupted training set is prepared, the entire network is trained jointly with
the loss given in Eq. 3 by lines 8–9 until the training converges.

4 Network Implementation

The proposed model begins with a shared sentence encoder fenc. The shared
sentence encoder consists of an embedding layer and a Bi-LSTM layer. The
embedding layer converts an input sentence x of L words into a sequence of
word vectors in the form of the matrix X = [vT

1 , . . . ,vT
L ]. The Bi-LSTM layer

encodes X into a contextual representation H by reflecting the left and right
contexts against each d-dimensional embedding vector hi. That is,

hi =
−→
hi ⊕ ←−

hi, (4)
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where ⊕ is the element-wise sum. Thus, the output of the sentence encoder
is H = [hT

1 , . . . ,hT
L], where H ∈ R

L×d. This H is fed to both the sentence
classification network and the UWP network.

We employ a CNN as the sentence classification network fcls because the
performance of CNNs in sentence classification has been demonstrated [18].
Most CNNs used for sentence classification generally apply one-dimensional
(1d) convolution and 1d pooling operations [4]. However, Zhou et al. [18] intro-
duced 2d convolution and 2d pooling operations to sentence classification and
showed the effectiveness of the 2d operations in practice. Following the work
of Zhou et al., we use a 2d convolutional layer and a 2d max pooling layer for
fcls. The convolution operation of the convolutional layer involves a 2D filter
m ∈ R

k×dm , which is applied to a window of k words and dm feature dimen-
sions. After the convolution operation is applied to H, the convolutional layer
outputs a feature matrix Oconv ∈ R

(l−k+1)×(d−dm+1). The 2d max pooling oper-
ation is then applied to obtain a summarized feature map. With the pooling size
p ∈ R

p1×p2 , the operation is applied to Oconv for extracting the maximum value
features. By flattening the max-pooled feature map, a fixed-sized feature vector
o ∈ R

�(l−k+1)/p1�·�(d−dm+1)/p2� is obtained. Finally, o is fed to the classification
layer, and the target class label is determined by

y = softmax(Wy · o + by), (5)

where Wy and by denote a weight matrix and a bias vector of the classification
layer, respectively.

The UWP network faux consists of a fully-connected layer that serves as
a word prediction layer. faux takes H, the output of fenc, as its input. Then,
the network computes the probability distribution of the output words at each
position i by

[w1, . . . ,wL] = softmax(Waux · HT + baux), (6)

where Waux and baux are the weight matrix and the bias vector, respectively.
The output of the word prediction layer includes all L predicted words, but only
U words at the same positions as the 〈unk〉 tokens are words of interest for the
auxiliary task. To solve this problem, a one-hot masking vector mi ∈ R

L that
indicates the position of a 〈unk〉 token at the i-th position is used to generate
the final output of faux as follows.

wi = [w1, . . . ,wL] · mT
i . (7)

Note that this operation is executed for all U 〈unk〉 tokens.

5 Experiments

To demonstrate the effectiveness of the proposed model, we conducted a number
of experiments on four widely used benchmark datasets for sentence classifica-
tion.
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Table 1. Summary statistics of datasets. c: number of classes, l: average sentence
length, m: max sentence length, train/dev/test: train/development/test set size, vocab:
vocabulary size in training data, unk num: number of sentences that include at least 1
unknown word, and unk max: max number of unknown word in a sentence.

Data c l m train dev test vocab unk num unk max

SST-1 5 19 56 8544 1101 2210 16581 1240 9

SST-2 2 19 56 6920 872 1821 14830 1080 9

TREC-6 6 7 17 5452 - 500 8679 266 4

TREC-50 50 7 17 5452 - 500 8679 266 4

– SST-1: Stanford Sentiment Treebank was introduced by Socher et al. [14].
This dataset includes reviews with fine-grained labels (very negative, negative,
neutral, positive, very positive).

– SST-2: This dataset is a coarse-grained version of SST-1. Thus, this dataset
contains only the sentences with positive and negative labels from SST-1.

– TREC-6: A question classification dataset [9]. This dataset contains ques-
tions of six types, namely, abbreviation, description, entity, human, location,
and numeric value.

– TREC-50: Another question classification dataset [9]. This dataset was cre-
ated to classify a question into one of the fine-grained 50 question types.

Table 1 summarizes the statistics of the four benchmark datasets. As shown in
this table, over 50% of the test sentences contain unseen words during training
time. Thus, we can infer that the unseen words may significantly influence the
classification performance of the proposed model.

The classification performance of the proposed model is compared with that
of two baseline models. The first baseline model is a neural network with the
same architecture as that of the proposed model, except for the auxiliary word
predictor. Thus, this baseline did not encounter the 〈unk〉 token during train-
ing. Note that this baseline is a re-implemented version of BLSTM2DCNN [18],
which exhibits the state-of-the-art performances on several sentence classifica-
tion benchmarks. The second baseline model has the same architecture as the
first baseline model. However, this baseline model is trained with the corrupted
dataset D′. The injection of some noises into the training dataset has the effect
of network regularization, which often improves performance.

5.1 Training Details and Hyperparameters

In the experiments, the Word2Vec embeddings trained by [11] were utilized
as the pretrained word vectors. We initialized the vectors of the words that
appeared only in the benchmark training datasets through random sampling
from a uniform distribution in the range of [−0.1, 0.1]. The dimensions of the
word embedding vector vi and the contextual word vector hi from the sentence
encoder fenc were set to 300. We used 100 convolutional filters with the window
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Table 2. Classification results obtained with four sentence classification benchmarks.
BLSTM2DCNN: the performance reported in [18]. BLSTM2DCNN baseline: a
re-implemented version of BLSTM2DCNN. BLSTM2DCNN baseline w/ noise
injection: a re-implemented version of BLSTM2DCNN with 〈unk〉 tokens injected
into the training dataset.

Model SST-1 SST-2 TREC-6 TREC-50

BLSTM2DCNN [18] 52.4 89.5 96.1 -

BLSTM2DCNN baseline 47.2 86.6 95.0 86.6

BLSTM2DCNN baseline w/ noise injection 47.5 87.1 94.1 86.0

Proposed model 48.4 87.1 95.6 87.0

size of (3,3). The 2D pooling size was set to (2,2). We performed mini-batch
training with a batch size of 10. AdaDelta was used as an optimizer with the
default learning rate of 0.1. For regularization, we employed the dropout opera-
tion with a rate of 0.5 for word embeddings, 0.2 for the Bi-LSTM layer, and 0.4
for the output of the pooling layer. Moreover, we imposed the l2 penalty with
the coefficient 10−5 over all parameters.

6 Results and Analysis

Table 2 shows the classification results obtained with four benchmark datasets.
Unfortunately, we could not reproduce the exact performance of BLSTM2DCNN
because the accuracy of the BLSTM2DCNN baseline is 1%–5% lower on three
datasets than the corresponding performance reported in the original paper. As a
result, the proposed model failed to exceed the result reported in the work of [18].
However, the proposed model consistently outperformed two baseline models on
all four benchmark datasets. The proposed method achieved the best accuracies
of 48.4% on SST-1, 95.6% on TREC-6, and 84.0% on TREC-50 relative to the
baseline models.

It is known that training a neural network with noise-injected data regularizes
the network, which may improve network performance. In our experiments, this
was true for the tasks of SST-1 and SST-2 but not for the tasks of TREC-6
and TREC-50. More specifically, noise injection into the training data increased
the accuracy of the BLSTM2DCNN baseline by 0.3% on SST-1 and by 0.5%
on SST-2, while it decreased the accuracy of the BLSTM2DCNN baseline by
0.9% on TREC-6 and 0.6% on TREC-50. However, the proposed model yielded
additional performance gains by introducing UWP as an auxiliary training task.
This can be ascribed to the fact that the proposed auxiliary word predictor
ensures that the sentence encoder produces not only more robust contextualized
word representations but also well-approximated meaning representations for
〈unk〉 tokens.

We can understand the reason for performance improvement by observing the
sentence representations produced by different models. Figure 2 shows two visu-
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Fig. 2. Two visualizations of sentence representations by BLSTM2DCNN baseline
(left) and proposed model (right) on SST-1 test dataset. All sentences in this figure
contain 〈unk〉 tokens. (Color figure online)

Table 3. Performance comparison among the proposed model and BLSTM2DCNN
baselines with different basic units on the benchmark datasets. Note that none of the
models use any pretrained embeddings.

Model SST-1 SST-2 TREC-6 TREC-50

BLSTM2DCNN using
character

31.1 ± 0.5 63.7 ± 0.8 86.4 ± 0.5 76.4 ± 0.2

BLSTM2DCNN using
subword2000

36.8 ± 0.4 76.2 ± 0.6 91.2 ± 0.2 80.2 ± 0.4

BLSTM2DCNN using
subword4000

36.9 ± 1.1 76.0 ± 0.7 92.2 ± 0.6 81.9 ± 0.1

BLSTM2DCNN using
word

39.7 ± 1.3 79.5 ± 0.9 93.0 ± 0.1 82.6 ± 0.5

Proposed model 41.1 ± 0.7 81.3 ± 1.0 93.2 ± 0.2 83.7 ± 0.3

alizations of sentence representations projected using T-SNE [10]. The left visual-
ization in Fig. 2 shows sentence representations generated by the BLSTM2DCNN
baseline, while the right one shows those generated by the proposed model.
Because SST-1 is a difficult task, and the sentences in this figure contain more
than one 〈unk〉 tokens, the red circles (very positive sentences) and blue crosses
(very negative sentences) are jumbled in both figures. Nonetheless, in the right
figure, the two areas of positive (top-right) and negative sentences (bottom-left)
are more distinguishable than those in the left figure. These sentence representa-
tions were generated by summarizing hi’s in Eq. 4. Thus, the difference between
the left and the right figures can be ascribed to the contextual representation
power of the sentence encoder, which is jointly optimized for the UWP task.
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Table 4. Examples of sentence classifications and unknown word predictions. All
sentences are taken from SST-1 test dataset.

Sentence Every good actor needs to
do his or her own 〈unk〉

The film is surprisingly
well-directed by brett
〈unk〉, who keeps things
moving well – at least
until the problematic
third act

Baseline prediction Positive Negative

Proposed model prediction Neutral Positive

Original word of 〈unk〉 Hamlet Ratner

Top-5 most probable words
of 〈unk〉

Time . character way one Character comedy way
time director

Consequently, this different representation power inevitably contributes to the
superior sentence classification performance of the proposed model.

Table 3 summarizes the classification results of the BLSTM2DCNN baselines
with various basic units and those of the proposed model. The BLSTM2DCNNs
using characters and subword units [6] eliminated the OOV problem by break-
ing down words into smaller units so that the vocabulary opened up. For the
subword-level models, we limited the vocabulary size to 2,000 and 4,000. As can
be seen, the results obtained with the BLSTM2DCNNs with the smaller units
(character-level and two subword-level) are inferior to those achieved with the
word-level BLSTM2DCNN over all benchmarks. These results indicate that the
use of smaller units requires more complex and sophisticated architecture design.
Finally, the proposed model achieved the best performance on all benchmarks
because it replaced 〈unk〉 tokens with appropriate contextualized meaning rep-
resentations.

Lastly, in Table 4, we introduce two example sentences that were correctly
classified by the proposed model but misclassified by the baseline model. Each
sentence in this table includes a 〈unk〉 token and the table shows the originals
word of them as well as top-5 most likely words predicted by the proposed model.
For the first sentence, the unknown word is ‘hamlet’ which means a representative
character or acting methods. Thus words like ‘character’ and ‘way’ predicted by
the proposed model are quite appropriate for the 〈unk〉 token. Similarly, the
actual word of 〈unk〉 token in the second sentence is ‘ratner’ – the last name of
the film director. Again, the proposed model correctly predicted the unknown
word as the word ‘director.’ Although, unknown words in both sentences are
not very critical for classification, the proposed model was able to make right
decisions through appropriately contextualized word representations as well as
properly estimated 〈unk〉 tokens.
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7 Conclusion

In this paper, we propose a neural sentence classifier with an auxiliary UWP. To
improve the classification performance of the model during testing, the proposed
model was trained to predict not only the class label of the given sentences but
also unknown words by considering all other words as contextual information.
As a result, the proposed model generated robust representations of unknown
words. In addition, the proposed auxiliary task enhanced the robustness of the
entire sentence representation, which improved the classification performance
of the proposed model. In the experiments, the proposed model consistently
outperformed two baselines in terms of the sentence classification performance
on four benchmark datasets.
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