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Abstract. To address the data sparsity and cold start problems in the traditional
recommender systems, lots of researchers aim at incorporating knowledge
graphs (KG) into recommender systems to enhance the recommendation per-
formance. However, existing efforts mainly rely on hand-engineered features
from KG (e.g., meta paths), which requires domain knowledge. What’s more, as
relations are usually excluded from meta paths, they hardly specify the holistic
semantics of paths. To address the limitations of existing methods, we propose
an end-to-end neural user preference modeling framework (UPM) to incorporate
features of entity and relation of KG into the representations of users and items,
so as to learn user latent interests precisely. Specifically, UPM first propagate
user’s interests along links between entities in KG iteratively to learn user’s
potential preferences for the item. Furthermore, these preference features are
dynamically during the preference propagation process. That is to say, the
importance of these preference features to characterize user is different.
Therefore, an attention network is used in UPM to calculate the influence of
preference features at different propagating stages, then the final preference
vector of the user is calculated from the preference features and the corre-
sponding weights. Lastly, the final prediction probability of user-item interaction
is obtained by inner product operation between the embedding of item and
user. To evaluate our framework, extensive experiments on two real-world
datasets demonstrate significant performance improvements over state-of-the-art
methods.
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1 Introduction

With the rapid development of the Internet, user’s personalized needs have been
constantly improving. How to help users get the information they need and how to
address the information overload are the research hotspots in recommender systems
field. Traditional collaborative filtering based recommender systems only use historical
interactive information (explicit or implicit feedback) of user and item as input. This
brings two problems: First, the interactive information between users and items is
usually very sparse. Second, since the systems do not have historical interactive
information, it cannot represent user accurately by historical interests and preferences
of user, nor can it push personalized information to users. This situation is called cold
start problem.

A common way to address the problems of data sparsity and cold start is to
introduce some additional auxiliary information as a complementary of the recom-
mendation algorithm. Recently, KG, which is a type of directed heterogeneous graph,
has attracted a lot of researcher’s attention due to large quantity of entities and concepts
and rich semantic relations [1]. KG contains various types of information related to
entities in the form of triplet which is expressed as (h, r, t), where h, r and ¢ are head
entity, relation and tail entity respectively, e.g. (Saving Private Ryan, directed, Spiel-
berg). The form of triplet can seamlessly integrate user-item interactive data and
improve the sparsity of interactive data.

At present, the methods of introducing KG into recommender systems can be
divided into two categories: feature-based method and path-based method. The feature-
based approaches unify features of users and items as input of recommendation
algorithms [2]. However, these methods are not specifically designed for KG, so it
cannot utilize all the information of KG effectively. For example, feature-based
methods fail to learn multi-hop relational knowledge. To address this weakness, path-
based approaches regard KG as a heterogeneous information network, and constructs
meta path-based features between items [3]. A meta path is a specific path linking two
entities. For example, there is a path (Tom Hanks — The Terminal — Stephen
Spielberg — Schindler List) linking Tom Hanks and Schindler List, so this path can be
used as a way to mining the potential relation between actors and movies. However,
these methods heavily rely on handcrafted features to encode the semantics of path,
which further relies on domain knowledge. Furthermore, this approach cannot be
applied in where entities do not belong to the same domain (e.g. news recommenda-
tion) [4], and the meta paths cannot be predefined.

To address the problems mentioned above, we propose a novel neural user pref-
erence modeling framework (abbr. UPM), which takes user-item interaction as input
data and predicts the probability of a user interact with a particular item. Specifically,
for each user, each item he has interacted with is regarded as a seed item in the KG, and
extends the user’s interests iteratively along the links in the KG. In this process, the
preference features at different stages of the user with respect to the candidate item can
be learned, and the influence of the preference features are different to characterize user,
thus, we propose get the weights of different preference features through an attention
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mechanism. After get the weights, UPM takes the sum of different preference features
weighted by the corresponding weight, and the final preference vector of a user is
generated. Finally, the probability of user-item interaction (e.g. a clicking or browsing
action) is calculated by inner product of embedding of user and item. The experimental
results on real-world datasets show that the proposed framework outperforms all of the
baseline methods in click through rate (CTR) task.

The major contributions of this paper are as follows:

e We propose innovatively combines feature-based methods, path-based methods and
attention mechanism in KG-aware recommendation.

e In order to introduce KG into recommender systems, an end-to-end user preference
modeling framework (UPM) is proposed to mine the potential preference of user
automatically by a user preference propagating process in the KG.

e To distinguish the importance of preference features at different propagating stages
to characterize user, we propose calculate a weight for each preference features by
an attention network, and make the preference features contribute to the preference
vector of user according to the importance weights.

e Compared with the baseline methods, the proposed model performs best on two
real-world datasets, indicating the superiority of our model.

2 Related Work

In this section, we mainly introduce the related work of introducing KG into recom-
mender systems, i.e. feature-based and path-based methods. And the attention mech-
anism used in KG-aware recommendation.

2.1 Introducing KG into Recommender Systems

Feature-Based Methods. In the news recommendation scenario, Wang et al. [4]
proposed to fuse the word vectors of news headlines, the entity vectors of KG and the
entity context vectors, to generate the vector representation of news. Huang et al. [5]
used TransE [6] to generate vector representations of entities and item, and then
updates user’s vector representations through memory networks based on user pref-
erences for specific entities. Compared with other existing methods, feature-based
methods have better performance. However, these methods ignore the semantics of the
relations between entities represented by paths, so it cannot fully obtain the rich
semantics of KG. On the other hand, since the links between users and items are
realized by an implicit way, the regularization term of KG feature learning cannot fully
discover the links between users and items.

Path-Based Methods. In the path-based approaches, some previous studies [7, 8]
referred to the link patterns between KG entities as meta paths, and used meta paths to
improve the performance of recommendations. Meta paths are defined as a sequence of
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entity types, e.g. a meta path (user — movie — director — movie) obtain user-item
related attributes contained in KG. Yu et al. [3] proposed HeteMF to factorize the user-
item rating matrix and constrain the distance between latent vectors of similar entities
by a graph regularization method.

Meanwhile, there are some other works aim at using meta paths to model user-user
or user-item relations. Luo et al. [9] proposed Hete-CF to model user-item, user-user
and item-item relations based on the similarity of meta paths. Shi et al. [10] proposed
SemRec model and introduced the concept of weighted meta path, which aims at
describing the path semantics by distinguishing the nuances between link attribute
values. Wang et al. [11] design a matrix factorization method by regularizing the user-
user relation using the calculated similarity based on meta paths.

However, the above methods heavily depend on the quality and quantity of meta
paths, what’s more, the sequence dependencies of entities and relations in meta paths
are neglected, which limits the quality of the generated recommendations.

2.2 Attention Mechanism in Recommendation

Attention mechanism shows the effectiveness in various machine learning tasks, such
as machine translation [12], text categorization [13] et al. Recently, more and more
researchers have applied attention mechanism to recommendation tasks. For example,
Pei et al. [14] used the attention network to capture the joint effects of user-item
interaction and measure the relevance between users and item. Chen et al. [15] pro-
posed item-level and component-level attention mechanisms to model implicit feed-
back in multimedia recommendation.

Compared with the simple path-based and feature-based approaches, UPM com-
bines merits of path-based and feature-based approaches to model user’s preferences
through rich semantic information contained in the KG, and obtain embedding of users
by an attention network. Compared with the existing methods, UPM can automatically
learning the semantic relations of entities and the sequence dependencies of entities and
relations in the path.

3 Neural User Preference Modeling Framework

In this section, we present the proposed UPM framework in detail.

3.1 Notations and Definition

Table 1 summarizes all the notations used in this paper. The user-item interaction
matrix Y = {y,|u € U,v € V}, if the interaction between u and v is observed y,, = 1,
otherwise y,, = 0. A KG G consists of a large number of triplets (%, r, ¢), where h, r and
t are the head entity, relation and tail entity of G respectively.

The relevant definitions are as follows:
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Table 1. Notations and descriptions

Notations Descriptions

U= {uy,uz,...,un} | User set

V={vi,v2,...,vy} |Item set

Y € R User-item interaction matrix
e={e1,er,....} Entity set

R ={ry,rs,...,r,} |Relation set

G KG

45 k-hop relevant entities set of user u

Sk k-hop triplets set of user u

H, = {hy,hy,...,h} | Historical interaction record of u

P; Relevance probability

o) k-hop preference features of user u

Att Attention network

Wi Weight of k-hop preference features of u
v Embedding of item v

u Embedding of user u

Vuy Predicted probability that u interact with v

Definition 1 (KG). Define ¢ = {e;,es,...,e.}, R = {r1,r2,...,r,} denote the sets of
entities and relations respectively. G = (g, L) is a directed graph with an entity type
mapping function ¢ : ¢ — A and a link type mapping function ¥ : L — R. Each entity
e € ¢ belongs to an entity type ¢(e) € A, and each link r € L belongs to a link type
(relation) ¥(r) € R [3].

Definition 2 (Relevant Entity). Given user-item interaction matrix Y and the k-hop
relevant entities set of user u is defined as follows:

d={t(hr)eG&hed™} k=1,2,.. K (1)

Where 82 = H, = {v|yw = 1}, i.e. the historical interaction record of user u [4].

Relevant entities can be regarded as the natural extensions of a user’s interest in the
KG. Given the definition of the relevant entity, the k-hop triplets set of user « is defined
as follows:

Definition 3 (Set of Triplets). The k-hop triplets set of user u is defined as the set of
triplets from aﬁ’l [4]:

SE = {(h,r,0)|(hyr,1) €G&A € 1) k=1,2,.. K 2)

With the increase of hop number £, the set of triplets may become very large, which
will greatly increase the computational overhead. In order to address the problems, we



A Neural User Preference Modeling Framework 181

proposes the following restrictions: (1) In a specific recommendation scenario (such as
movie recommendation), the relations in the KG can be limited to movie-related
attributes. (2) In practice, the total number of hop K is generally not very large, because
entities locating far away from user history interaction items may be irrelevant to user
latent preference. In this paper, K = 2 or 3.

3.2 Architecture of Framework

The framework of UPM is illustrated in Fig. 1. UPM takes a user u# and an item v as
input of the framework, and outputs the probability that the user u will interact (click,
browse, etc.) with the item v. Specifically, for the input user u, his historical interaction
record H, is treated as seeds in the KG, then extended along links to form multiple
triplet sets S’; (k=1,2,...,K). A triplet set S’; is the set of knowledge triplets that are k-
hops away from the seed set H,. And the user’s preference features (the dark blue, olive
and yellow blocks) at different hops are obtained through extended interests of user
iteratively along the links in triplet sets S*. Then the preference features of user and
embedding (the light blue block) of item are input into the attention network simul-
taneously, and the final preference vector (the pink block) of user is calculated. The
probability y,, of user-item interaction can be obtained by inner product between the
embedding of item v and user u.

1-hop triplets set 2-hop triplets set K-hop triplets set
User click |_Extend along links [ (5, 1) —~ ¢ |_Extend along links | (5, 1) - ¢ )t
history H,

Useru —»

® | 2. l*-:]
®
tem v - - e

Embedding i .

of v _ _

Inner Product

User
embedding

Predicted +

probability y,,
Fig. 1. The framework architecture. The light blue part is the embedding of item v, the dark blue
part, the olive part and the yellow part are 1-hop, 2-hop and K-hop preference features of user
respectively. (Color figure online)

3.3 1-Hop Preference Feature of User

The traditional collaborative filtering methods firstly learns the latent representation of
users and items, then calculates the predicted probability through the inner product. In
order to model user-item interaction more accurately, we proposes a neural user
preference modeling framework to represent potential preferences of users.
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As shown in Fig. 1, each item v has an associated embedding v € RY, d is
dimension of the embedding. Each item embedding is generated by the attributes of this
item. Given v and 1-hop triplets set S! of user u, by calculating similarity between item
v, head entity /; and entity relations 7; in S!, each triplet in S is assigned a relevance
probability P;:

exp(virh;)
P; = softmax (vTr;h;) = 3
l ( l) Z(h.r,z)eS}, eXp(VTI‘h) ( )

Where r; € R4, h; € R? are the vector representation of r; and h; respectively,
softmax function ensures that the sum of all calculated relevance probabilities is 1. P;
can be regarded as the similarity between item v and head entity 4; on entities relations
r;. It should be noted that the vector representation r; of »; must be taken into account
when calculating the above relevance probability P;, because the similarity between
item v and head entity #; may be different on different entities relations. For example,
“Saving Private Ryan” and “Schindler’s List” are highly similar when considering
director and genre, but they are completely different from the actor attribute.

After obtaining the relevance probability P; of each triplet (;, r;, #;) in 1-hop triplets
set S1, all tail entity # of triplets in S! are weighted by the corresponding relevance
probability P;, and the 1-hop preference feature 0,14 of user u is given by:

1 f— -1
0" - Z(h,-,r,-,t,v)esll‘ Pltl (4)
Where t; € R? is the vector representation of tail entity ;.

3.4 Preference Propagation

There are rich semantic relations between entities, more complete user preferences can
be obtained by the extension of entities and relations. Through the operation in Eqgs. (3)
and (4), the interest preferences of user u# can be propagated from his historical
interaction record H, along the links in the 1-hop triplets set S} to his 1-hop relevant
entities set & This process is called preference propagation.

The preference propagation process is repeated by replacing the embedding v of
item v in (3) with the 1-hop preference features Oi of user u. As shown in Fig. 1, 0,14 as
u’s historical preference is propagated along the links in 2-hop triplets set S! to his 2-
hop relevant entities 33, repeating the operation in Egs. (3) and (4) to obtain u’s 2-hop
preference features Oi, which is iteratively performed on user u’s k-hop triplets
S¥(k=1,2,...,K). Therefore, a user’s preference is propagated from his historical
interaction record H, to K-hop relevant entities 85 . Thus, the preference features of user
u at different hops can be obtained: 0,14, Oi, .. .05 . The final preference vector of user u
with respect to item v can be obtained by simply combining the preference features of
user u at different hops:
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u=0,+0,+...+0% (5)

In theory, with the increase of hop number k, the preference feature Of, of user u in
the last hop contains all the information of the previous preference features, but they
may be weakened in O{f , so the preference features at all hops must be superimposed.

3.5 Attention-Based User Preference Extraction

The above method does not take into account that the weights of user preference
features 0L, 02, ...0% at different hops to user’s final preference vector are different.
As shown in Fig. 1, to model the different effects of user preference features
O;, 03, .. .05 on the final preference vector of user u, we proposes calculate the weight
wy of k-hop preference features of user u by an attention network Az, wy formulated by:

exp(Att (v, O
wi = softimax(Att(v,0%)) = K e(xp(g”(v )(zk)) k=1,2,...K  (6)
k=1 P u

Attention network At takes user preference features O 02, ...OX at different hops
and embedding of item v as input, and outputs the corresponding weights wy of
0,1“ 05, . .Of . The weight wy, can be regarded as the important scores of user preference
features at different hops,wy adaptively select the informative preference features with
different importance, and make the informative preference features contribute more to
characterize preference vector of user u. Then we sum up the user preference features
0,1‘, 05, .. .Of at different hops according to the weight wy provided by A# to get the
final preference vector of user u:

K
u= Zk:l wiOF (7)

Finally, given the embedding of user u and item v, the probability of the user
interact with the item is calculated by inner product:

Yur = o (u'v) (8)

Where o(x) = ﬁp(_x) is the sigmoid function.

3.6 Model Optimization

Given G and implicit feedback matrix Y, the objective of model optimization is to
maximize the posterior probability of model parameter ®:

maxp(0|G,Y) 9)
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® includes the vector representations of all entities, relations. So it’s equivalent to
maximizing:

p(0,G,Y)

pl,Y) ="

x p(®)-p(G|©) - p(Y[®,G) (10)

Taking the negative logarithm of (10) and have the following loss function:

minL = —log(p(®) - p(G|®) - p(Y|®, G))
= Z _(yuv log U(HTV) + (1 —yuw) log(l — a(uTv)))

(u,v)€Y (11)
JVZ 2 }d 2 2 2
+ 32 [T — BTRE|}; + = { (VI + [[E]l; + IR
reR reR

Where V, R and E are the embedding matrices for all items, relation and entities,
respectively, I, is the slice of the indicator tensor I in the KG. The stochastic gradient
descent (SGD) algorithm is used to iteratively optimize the loss function. In order to
make the calculation more efficient in each training process, positive (negative) records
of the smallest batch are sampled randomly from Y and positive (negative) triplets are
sampled from G. The gradient of loss L relative to model parameter ® is calculated,
and all parameters are updated by back propagation algorithm.

4 Experiments and Analysis

In this section, the framework is evaluated by compared with the baseline methods on
MovieLens-1M and Book-Crossing datasets.

4.1 Datasets and Preprocessing

The proposed framework is evaluated on two real-world datasets from different
domains: MovieLens-1M and Book-Crossing. MovieLens-1M contains about 1 million
user ratings (ranging from 1 to 5) on movie websites. Book-Crossing contains
1,149,780 explicit ratings (ranging from O to10) of books. In this experiment, we use
the pre-processed data in [4]. Because MovieLens-1M and Book-Crossing are explicit
feedback data, we transform them into implicit feedback data. Similar to [4], the ID
embedding of users and items are used as the original input of framework in this
experiment. The data statistics are shown in Table 2.
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Table 2. The statistics of datasets

Datasets MovieLens-1 M | Book-Crossing
User-item interaction | #Users 6,036 17,860
#ltems 2,445 14,967
#Ratings 753,772 139,746
#Data Density 5.108% 0.0523%
KG #Entities 182,011 77,903
#Links 12 25
#The first 4-hops triplets | 1,440,815 241,163

4.2 Baselines

We use the following methods to compare with the framework proposed in this paper:

CKE [1] unifies collaborative filtering with structured knowledge, text knowledge
and pictures information etc. in a framework for recommendation.

DKN [4] treats word vectors, entity vectors and entity context vectors as multiple
channels to fuse in the framework of CNN for click rate prediction.

SHINE [16] designed a deep self-encoder to combine semantic network, social
network and user profile network for celebrity recommendation.

LibFM [2] is a widely used feature-based factorization framework for click-through
rate prediction. In this experiment, user ID, item ID and corresponding entity
embedding learned through TransR are used as input of LibFM.

Wide&Deep [17] is a general deep framework for recommendation, which com-
bines linear and non-linear channels. The embedding of users, items and entities are
used as input for Wide&Deep.

4.3 Experiment Setup

In the experiments, d = 16 denotes the dimension of the embedding of items and KG,
and 1 = 0.008 denotes the learning rate. Specific hyper-parameter settings are shown in
Table 3. For fairness, all baseline methods have the same dimension settings as
Table 3, while other baseline hyper-parameters are based on grid search. The ratio of
training, evaluation and test set is 6:2:2. Each experiment was repeated 5 times and the
average results is reported. Accuracy and area under curve (AUC) were used to
evaluate the performance of click through rate (CTR) prediction.

Table 3. Hyper-parameter settings for the two datasets

Datasets Hyper-parameter settings
MovieLens-1M |d = 16, T=2, A, = 1077, J, = 0.01, n = 0.008
Book crossing |d =4, T=3, /4 =107, ), = 0.01, 5 = 0.001
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4.4 Performance Comparison

The results of all methods in click through rate prediction are shown in Table 4.

The proposed framework UPM achieves the best performance on two datasets with
all evaluation metrics. CKE performs poorly than LibFM and Wide&Deep, since there
is no text and visual information, and structural knowledge cannot characterize users
completely. DKN performs worst among all methods in the two datasets, because film
titles and book titles are usually short and contains limited information. SHINE per-
forms better than DKN only, because we have no social and user profile networks. As
two general recommendation algorithms, LibFM and Wide&Deep performs satisfac-
torily, which shows that LibFM and Wide&Deep can make full use of semantic
information from KG.

Table 4. The results of AUC and accuracy in click through rate prediction

Framework MovieLens-1M Book crossing
AUC ACC AUC ACC
CKE 0.796 0.739 0.674 0.635
SHINE 0.778 0.732 0.668 0.631
DKN 0.655 0.589 0.621 0.598
LibFM 0.892 0.812 0.685 0.639
Wide&Deep 0.903 0.822 0.711 0.623
UPM 0.928 0.855 0.740 0.695

4.5 The Sensitivity of Hyper-parameters

The effect of dimension of embedding ¢ and training weight of KG term /7, on AUC
and ACC are shown in Fig. 2, which have similar trends on Book Crossing dataset.
d range from 2 to 64, 1, range from O to 1, while keeping other parameters fixed.

With the increase of d, both AUC and ACC improves and becomes stable, because
embedding with larger dimensions can encode more useful information, but when d is
greater than 16, both AUC and ACC begin to drops because of possible overfitting.
AUC and ACC performed best when 4, = 0.01. This is because when training weight
of KG term is very small, it is not enough to provide effective regularization con-
straints, while a large training weight may mislead the objective function.
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Fig. 2. Parameter sensitivity of the proposes framework on MovieLens-1M.

In order to further explore the relationships between the performance of the
framework and the maximal hop number K, we vary the maximal hop number K to see
how AUC changes in UPM, the results as shown in Table 5.

Table 5. The results of AUC w.r.t. different hop numbers

Hop number K | 1 2 3 4
MovieLens-1M | 0.927 | 0.928 | 0.925 | 0.926
Book crossing | 0.739 | 0.734 | 0.740 | 0.732

As shown in Table 5, the best performance is achieved when K is 2 or 3. This is
because too small of an K can hardly explore inter-entity relatedness and dependency of
long distance, while too large of an K brings much more noises than useful signals.

5 Conclusion

To address the challenges of traditional KG-aware recommendation methods, we
innovatively combine feature-based methods, path-based methods and attention
mechanism in KG-aware recommendation. Specifically, we proposed an end-to-end
neural user preference modeling framework (UPM) for recommendation, which
introduces KG into recommender systems effectively. UPM mine potential preferences
of a user by propagating the user’s interests in KG. The attention network is used to
adaptively discriminate the importance of the preference features of user at different
propagation stages for the final preference vector of user. Experimental results on two
real-world datasets shows that the performance of the proposed framework is better
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than other baseline methods, which further proves the effectiveness of the proposed
method. In the future we will further explore how to represent entity-relation interac-
tions efficiently and how to apply the framework to real-world scenarios.
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