
A Better Understanding of the
Interaction Between Users and Items by
Knowledge Graph Learning for Temporal

Recommendation

Chunjing Xiao(B), Cong Xie, Shuyan Cao, Yuxiang Zhang,
Wei Fan, and Hongjun Heng

School of Computer Science and Technology, Civil Aviation University of China,
Tianjin, China

chunjingxiao@163.com

Abstract. Recently the knowledge graph (KG) as extra auxiliary infor-
mation is widely used to improve recommendation. Existing methods
usually treat knowledge representation as characteristic information for
addressing data sparsity and cold start issues. However, they ignore the
implicit and explicit interaction between users and items, which may be
gained by the relation extraction and knowledge reasoning, to lead to
suboptimal performance. Thus, we believe that it is crucial to incorpo-
rate both relations and attributes of users and items into recommender
system. That can better capture the extent that a user prefer to an
item. In this paper, we propose a novel knowledge graph-based tem-
poral recommendation (KGTR) model. Firstly, we design a lightweight
KG on the basis of a single independent domains knowledge without
extra supplement. We define three relationships to express interactions
within/between users and items, including the interaction of a user
browsing an item, the social relation of two users browsing one item,
and the behavior of a user browsing items in the meantime. Different
from previous knowledge translation-based recommendation methods,
we embed interactions by adding them to the transformation from one
entity to another in KG. Extensive experiments on real world dataset
show that our KGTR outperforms several state-of-the-art recommenda-
tion methods.

Keywords: Knowledge graph · Implicit interaction ·
Explicit interaction · Temporal recommendation

1 Introduction

The various facts from different domains interlink with each other and store
in a complex heterogeneous graph called knowledge Graph (KG). The entities,
such as people, books, musics, movies, are treated as nodes in KG and the
relations between entities are denoted as edges. Owing to the connection of
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various information from different topic domains in KG, knowledge exploration
can develop insights on problems. That are difficult to determine on a single
domain data. Over the past years, KG has been widely adopted in many fields,
including dialogue system, Web search, and recommendation system.

The rich information of KG has recently shown great potential to enhance
accuracy and explainability of recommendation [17]. For example, Zhang et
al. [19] extract items’ semantic representations from structural content, tex-
tual content and visual content by considering the heterogeneity of both nodes
and relationships in KG. Sun et al. [15] employ recurrent networks learning
semantic representations of both entities and paths for characterizing user pref-
erences to improve recommendation. In these cases, the semantic representations
of user and item or user’s preference have accurately been obtained. However,
the potential of the KG may still fail to be exploited since they suffer from
the following limitations: (1) relying on a large-scale knowledge graph and extra
knowledge base to extract features by heavy feature engineering process. (2) only
utilizing the semantic representations into recommender system while ignoring
the implicit and explicit interaction between users and items. For instance, two
users are likely to have interaction when they both connect one item.

To address the above issues, we propose a novel knowledge graph-based tem-
poral recommendation (KGTR) model, which captures the joint effects of users
and items interactions information. We design a lightweight KG by only utiliz-
ing the facts in one domain as the knowledge, meanwhile, extra auxiliary data
is lack. Three categories relationships are defined to exploit user-item inter-
action, including user relationship, item relationship and rating activity. User
social relationship implies that two different users browse one item simultane-
ously, and can be called as user relationship. Item relationship means that one
user browses various items. They are considered as implicit interaction in rec-
ommendation. Rating activity expresses that a user has rated the item, which is
regard as explicit interaction in recommendation. Then representations of users’
and items’ static feature are obtained by TransE [1] in the light of three kind
of relationships separately. Meanwhile, embeddings of users’ and items’ various
attributes are learned by the KR-EAR [11] on the basis of former static repre-
sentations, which serve as explicit information of user and item.

Considering the important effect of temporal context, we hold that prevailing
items at the previous moment, similar to users’ preference changing, have affected
in recommendation result. Therefore, different from traditional temporary rec-
ommendation, we aggregate long-term and short-term features of users and items
in recommender process. The attributes features and static feature learned by
above procedure constitute the user’s long-term features. The item’s long-term
features are similar. The user’s short-term features are learned by LSTM [9] with
the user’s interaction data in a short period of time (such as hourly, weekly).
The item’s short-term features are learned by attention machine [16] according
to all users’ behavior at the latest moment. The personalized recommendation
process applies implicit and explicit interactions of users and items to long-term
and short-term of users and items features.
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We summarize our main contributions as follows:

– We design a lightweight KG based on one topic domain without extra aux-
iliary data, and explore the nature of interaction under less information by
relation extraction and knowledge reasoning.

– We learn implicit and explicit interaction of users and items by TransE accord-
ing to the second-order proximity between the entities, which is determined
by the shared neighborhood structures of the entities.

– KGTR considers freshness and popularity of items in recommendation, and
learning the items’ short-term feature by attention machine with all users
behavior at previous moment.

2 Related Work

2.1 Knowledge Representation Learning

User/item clustering or matrix factorization techniques only represent single
relation between the connectivity entities. Most existing methods have been
designed to learn multi-relations from latent attributes [5,18]. Making use of
multi-relational KG in recommender systems has been found to be effective in
recent years.

TransRec [6] represented a user as a relation vector to capture the transition
from the previous item to the next item in large sequences. A user’s previous
preference is important for predicting the next item in sequence recommenda-
tions, but the social relationships among users cannot be overlooked in context
recommendations. TransTL [13] took both time and location into consideration
with a translation-based model, which captured the joint effects of spatial and
temporal information. Cao et al. [3] jointly learned the recommendation model
and KG, which utilized the facts in KG to augment the user-item interaction.
These models are not general for arbitrary recommendation scenarios, and ignore
structures relationships among entities. Recent studies for KG focus on learning
low-dimensional representations of entities and relations, and structural informa-
tion of the graph is preserved. For completing knowledge graph and extracting
relation from text, TransE learned a continuous vector space to preserve certain
information of the graph, regarded relations as a translation between entities.
TransE and its extensions TransH [21] and TransR [12] promoted prediction
accuracy and computational efficiency by modeling multi-relational data. The
most related work to ours is KR-EAR model, the method distinguished existing
KG-relations into attributes and relations.

The entities embeddings were learned by building translation between enti-
ties according to relations, and attribute values embeddings were learned based
on entity embeddings. We extend the KR-EAR to learn user’s and item’s repre-
sentations. Three relations are defined according to the second-order proximity
between the entities, which is determined by the shared neighborhood structures
of the entities in KG.
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2.2 Implicit and Explicit Interaction

Due to the significant impact for the quality of recommendations, many works
have made great effort on gaining variety information. Cao et al. [2] described
heterogeneity exists between users and between items, meanwhile detected
the various coupling relationships to essentially disclose why a user liked an
item. Methods [20] incorporated explicit and implicit couplings about users-
items interactions and attributes’ inter-coupled interactions. A classic work was
the CoupledCF model [20], which integrated the explicit user-item couplings
within/between user’s and item’s attributes and the implicit user-item cou-
plings. The model were trained by deep learning. Different from these models,
the explicit and implicit information of our model is more substantial by adding
user’s and item’s interactions in various relationships.

User/item information has been increasingly involved into CF. NCF [7]
can express and generalize matrix factorization by replacing the inner prod-
uct with a neural architecture. NCF model may be supercharged with non-
linearities, a multi-layer perceptron to learn the user-item interaction func-
tion. Wide&Deep [4] trained wide linear models by using cross-product feature
transformations and deep neural networks to generalize recommendation. Unlike
Wide&Deep model, we treat raw features as input by knowledge representation
learning.

3 Our Proposed Model

In this section, we introduce our Model. Suppose there is a sparse user-item rat-
ing matrix that consists of users, items, and the rating. The rating is represented
by numerical values from 1 to 5, where the higher value indicates the user has
more interest in an item. Meanwhile, there are various attributes of users and
items, such as gender and profession, which are important additional informa-
tion for recommendation result. Given a dataset with user-item rating matrix
and explicit attributes, we aim to build temporal personalized recommendation
model for a user, and recommend a ranked list of items that are of interest to
her/him accordingly.

As shown in Fig. 1, long-short term features of users and items are jointed
in recommender process. The attributes features and static features capturing
by knowledge representations learning are considered as the long-term features
of users and items, that is explained in Sect. 3.1. The static features of items
browsed by user previously are treated as input to LSTM. The fashionable items
are interacted by users at the latest moment, and their attributes features and
static features are served as input to attention machine. The implicit and explicit
interactions of users and items are blended into long-short term of users and
items features to recommendation.

3.1 Knowledge Representation Learning for Interaction

We design a lightweight KG with information of the dataset. As shown in
Fig. 2(a), the users and items are treated as entities in KG. When the user has
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Fig. 1. The framework of knowledge graph-based temporal recommendation model

rated the item, there is a edge between the user and the item. The attributes
of users and items are linked with corresponding entities. According to the
extracted neighborhood structures of the entities in KG, we express first-order
and second-order proximity [10] as three relationship definitions for learning
static features.

We define the attribute triple additionally, for the purpose of learning
attributes features based on former relationships representations. Our objective
is to learn embeddings of users, items, and attributes preserving the structures
information and semantic relations. The static feature belongs to the implicit
interactions within/between user and item. The attribute feature is part of the
explicit information.

Definition 1. Rating Activity. As shown in up of Fig. 2(b), a rating activity is
a triple (u, r, v), which means user u give a rating to item v.

Definition 2. Users Relationship. As shown in left of Fig. 2(b), a triple
(ui, v, uj) represent users relationship, which implies both user ui and uj give
ratings to item v.

Definition 3. Items Relationship. As shown in right of Fig. 2(b), Item relation-
ship is a triple (vi, u, vj), which shows user u give rating to item vi and vj.

Definition 4. Attribute Triple. An attribute triple of user or item is a triple
(u/v, a, e), which indicates the attribute a of user u or item v with values e, such
as (u1, gender, female) illustrates the gender of user u1 is female.

We aim to embed users and items to capture the implicit and explicit correlations
between them. We usually optimize the probability P(u, r, v), P(ui, v, uj) and
P(vi, u, vj) for learning from relational triples. In this paper, we adopt TransE
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Fig. 2. Knowledge representation learning for implicit and explicit interaction

to encode relational triples. So the probability P(u, r, v) is formalized as follows:

P (u, r, v) =
∑

(u,r,v+)∈KG

∑

(u,r,v−)∈KG−
σ(g(u, r, v+) − g(u, r, v−)) (1)

where σ(x) = 1/(1 + exp(x)) is sigmoid function, g(·) is the energy function
which indicates the correlation of rating r and entity pair (u, v). The KG and
the KG− are the positive and negative instances set, respectively. KG− contains
incorrect triplets constructed by replacing tail entity in a valid triplet randomly.
The probabilities of P(ui, v, uj) and P(vi, u, vj) are similar. Here, we can follow
TransE to define the function g(u, r, v) as Eq. 2:

g(u, r, v) = ||u + r − v||L1/L2 + b1 (2)

where b1 is a bias constant. A classification model is used for capturing the
correlations between entities and their attributes. Hence, we consider the proba-
bility P(u, a, e) for each triple (u, a, e) and P(v, a, e) for each triple (v, a, e), and
formalize the probability P(u, a, e) for example, it is formalized as follows:

P (u, a, e) =
∑

(u,a,e+)∈KG

∑

(u,a,e−)∈KG−
σ(h(u, a, e+) − h(u, a, e−)) (3)

where h(·) is the scoring function for each attribute value of a given entity. The
function h(·) is described in Eq. 4. We first transform entity embedding into the
attribute space by a single-layer neural network. For training attribute embed-
ding, we calculate the semantic distance between the transformed embedding
and it, as shown in Eq. 4:

h(u, a, e) = ||f(uWa + ba) − eae||L1/L2 + b2 (4)
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where f(·) is a nonlinear function such as tanh, Wa is the parameters by learning,
eae is the embedding of attribute value a and b2 is a bias constant.

The final embeddings of users’ and items’ static features propagating infor-
mation between triples are recorded as Ur, Vr, respectively. And the attribute
embeddings of users’ and items’ are written as Ua, Va, respectively. The static
features based on knowledge representation learning remain relatively stable over
time, while a user’s preference is affected by current prevalence. The freshness
and temporal dynamics of the items are more likely to improve recommendation.
Therefore, we extend our model by including user-item temporal information.
Different from existing models, the item’s short-term features are also discussed.

3.2 Temporal Recommendation

Users Preference. The users’ short-term features are learned by recurrent
neural networks (RNN). Instead of modeling the user history sequence using
RNN which is difficult to calculate, our model combines users’ static features
and attribute features as pre-train input. This can make neural network training
faster and more effective. The key issue of dynamic preferences is to choose the
granularity of each input time spot t. Using smaller time spans can capture more
fine-grained interest changes, but the feature space is very sparse and learning
process is difficult [14]. Having large time spans may lead to sufficient content at
each time spot, but makes the model less adaptive for capturing users’ dynamics
change. Unlike the previous model, we order 16 items for one user according
to the latest browsing records. That can sure the enough context in behavior
sequence to train user preference. To this end, we propose leveraging LSTM in
capturing sequential patterns, and use it to model user’s recent interaction trail.
The output of LSTM US is took as the users’ short-term features.

Items Preference. The items’ popularity are changing over time, and the
features of most fashionable items currently have a greater impact on user pref-
erence. Here, we apply attention to obtain items’ short-term characteristics.
Attention can keep the contextual sequential information and capture the rela-
tionships between elements in the sequence. The items viewed by all users in the
latest hour are considered as the items sequence. That is matched with items
of the whole training datas C to refine representation. The input of attention
consists of items’ attribute features and static features. The output is a weighted
sum of the items, where the weight matrix T t is determined by similarity. Similar
to [16], the attention vector are calculated at each output time t over the input
items (1, . . . , I) with Eq. 5.

T t
i = zT tanh(Wcct + Wyyi)

St
i = softmax(T t

i )

V ′
s =

∑
St
iyi

(5)

The vector z and matrices Wc,Wy are learnable parameters, ct is the train item
at time t and yi is i-th item of input sequence. The i-th item of vector T t ∈ RI
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indicates the similarity between yi and the training datas. The attention weight
matrix St is created by normalizing similarity scores with softmax. Lastly, we
concatenate ct with V ′

s , which is regarded as ct+1 at the next time step. Here,
the final attentive output Vs can be viewed as item’s short-term feature.

3.3 Model Learning

Objective Function. Our task is to predict the item which the user will inter-
act at next time, according to given long-short term preferences of users and
items. A straightforward solution is to combine the outputs of their charac-
teristics. So Us,a,r are the concatenation of Us, Ua, Ur, and Vs,a,r are the con-
catenation of Vs, Va, Vr. Similar with the NCF, hidden layers are added on the
concatenated vector by using a standard multi-layer perceptron (MLP) to learn
the long-short term features. Specifically, the model can be formulated as

q1 = Φ1(Us,a,r, Vs,a,r) =
[

Us,a,r

Vs,a,r

]

Φ2(q1) = α2(wT
2 q1 + b2)

· · ·
Φl(ql−1) = αl(wT

l ql−1 + bl)

ŷuv = σ(hTΦl(ql−1))

(6)

where wx, bx and αx denote the weight matrix, bias vector, and ReLU activation
function for the x-th layer’s perceptron, respectively. ŷuv indicates whether the
user u is likely to interact with the item v.

Considering implicit feedback of interaction, we treat the value of yuv as a
label. 1 means user u has browsed item v, and 0 otherwise. The prediction score
ŷuv represents how likely u interacts with v. We limit the output ŷuv in the
range of [0,1], thus, the output is achieved by using a probabilistic function as
the activation function. Finally, we define the likelihood function as

p(y, y−|Θf ) =
∏

(u,v)∈y

ŷuv
∏

(u,v)∈y−
(1 − ŷuv) (7)

Taking the negative logarithm of the likelihood, we gain the objective function
to minimize for KGTR in Eq. 8.

L = −
∑

(u,v)∈y

log ŷuv −
∑

(u,v)∈y−
log(1 − ŷuv)

= −
∑

(u,v)∈y∪y−
yuv log ŷuv + (1 − yuv) log(1 − ŷuv)

(8)

For the negative instances y−, we uniformly sample them from unobserved inter-
actions in each iteration and control the sampling ratio about the number of
observed interactions. The sigmoid function restricts each neuron to be in [0,1],
where neurons stop learning when their output is near either 0 or 1.
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We optimize the proposed approach with adaptive gradient algorithm which
could adapt the step size automatically. Hence it reduces the efforts in learning
rate tuning. In the recommendation stage, candidate items are ranked in ascend-
ing order based on the recommendation score computed by Eq. 8, and the top
ranked items are recommended to users.

4 Experiments

In this section, we evaluate our proposed framework for movie recommendation
scenarios. We test our methods against the related baselines for recommenda-
tions items to users. The experimental results demonstrate that our method
better than many competitive baselines.

4.1 Experimental Settings

Dataset Description. We used MovieLens-1M1 dataset in our experiments.
The dataset consists of one million ratings from 6,040 users and 3,952 items,
user auxiliary information (Gender, Age, Occupation and Zip code) and some
item attributes (Genres, Title and release dates). We transformed the original
rating matrix scaled from R ∈ {1, 2, ..., 5} into a binarized preference matrix
R ∈ {0, 1}. Each rating was expressed as either 0 or 1, where 1 indicates an
interaction between a user and an item, otherwise 0. Then we sampled four
negative instances per positive instance.

For each user, we sorted the user-item interactions by the time stamps at
first. Then we took her/his latest interaction as the test positive instance and
utilized the remaining data for training positive instance. Finally we randomly
sampled 99 items that are not interacted by the user as the test negative instance
and randomly sampled four negative instances for per positive instance.

Evaluation Metrics. Similar to [4], we ranked the test item among the 100
items and used Hit Ratio (HR) and Normalized Discounted Cumulative Gain
(NDCG) to evaluate the performance of a ranked list [8]. The HR intuitively
measures whether the test item is included in top-K list. The NDCG measures
the position of the hit on top-K list. The higher NDCG scores show that the
test item hits at top ranks. We calculated both metrics for each test user and
reported the average score.

Baseline Methods. We evaluated our framework from in three versions based
on the different input.

– KGTR user: for every user, we used the sequence of items recently watched by
user as the input vector of LSTM and the sequence of items recently viewed
by all users as the input of attention. The input vector of LSTM was learned
by translation representation learning and the input vector of attention was
one-hot encoding of items;

1 https://grouplens.org/datasets/movielens/.

https://grouplens.org/datasets/movielens/
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– KGTR item: different from KGTR user, the input vector of LSTM is one-hot
encoding of items and the input vector of attention was learned by translation
representation learning.

– KGTR NCF:different from KGTR user and KGTR item, both the input vec-
tor of LSTM and attention were learned by translation representation learn-
ing.

The following relevant and representative state-of-the-art methods were used as
the baselines to evaluate our methods.

– NCF [7]: It presents a neural architecture replacing the inner product and pro-
poses to leverage a multi-layer perceptron to learn the user-item interaction
function.

– CoupledCF [20]: This model proposes a neural user-item coupling learning
for collaborative filtering, which jointly learns explicit and implicit couplings
within/between users and items.

– Wide&Deep [4]: It combines memorization and generalization for recommen-
dation, which involves feature engineering (such as cross-product features) of
the input to the wide network.

Parameter Settings. The configurations of TransE are k = 100, b1 = 7, b2 =
−2, and taking L1 as distance metric. The KGTR model was implemented in
Python based on the Keras framework. We selected 16 items recently watched
by every user as the input vector of LSTM, and the items viewed by the users
in the latest hour were selected as input to the attention.

To determine hyper-parameters of KGTR, we randomly sampled one inter-
action for each user as the validation data and tuned hyper-parameters on it.
All KGTR models were learnt by optimizing the log loss of Eq. 8. We used mini-
batch Adam as the optimizer for our model. We initialized the embedding matrix
with a random normal distribution (the mean and standard deviation are 0 and
0.01 respectively). All biases are initialized with zero. We tested all combinations
of the batch size (S = {128, 256, 512, 1024}) and the learning rate (R = {0.0001,
0.0005, 0.001, 0.005}) that S = 256 and R = 0.001 was the best combination.
From Fig. 3, we could see that HR@10 and NDCG@10 increased firstly. When S
= 256 and R = 0.001, the performance of KGTR was best, and then HR@10 and
NDCG@10 decreased or stabilized with the increase of batch size and learning
rate. So we set S = 256 and R = 0.001 as the optimal parameters.

4.2 Results and Analysis

First, the performances of the KGTR and baselines were shown in Table 1 for
TOP@10 recommendation. From Table 1, A number of interesting observations
could be noted. Our method KGTR item and CoupleCF were superior to NCF
and Wide&Deep in both HR@10 and NDCG@10. The reason is that the user
preference and item popularity contributed to improve the recommendation per-
formance. Both the KGTR item and CoupleCF integrated item popularity, user-
item interaction and implicit user-item interaction to gain the best performance.
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Fig. 3. Performance of KGTR models w.r.t the learning rate (bach size = 256) and the
bach size s(learning rate = 0.001)

The results confirmed that the interactions between users and items were use-
ful. Beside, KGTR item is slightly worse than CoupleCF. That may because the
CoupleCF used the rating values from the users and the items, our method only
used the rating relationship between the users and the items.

Second, we also tested the top@K item recommendations in Fig. 4. As previ-
ously introduced, KGTR models were customized to three versions: KGTR user,
KGTR item and KGTR NCF. KGTR item was compared with KGTR user,
KGTR NCF and all the baselines. Figure 4 shows the performance of the top@K
recommendation, where K ranges from 1 to 10. As shown in Fig. 4, all the base-
lines and KGTR item highly outperformed KGTR user and KGTR NCF. That
were mainly because KGTR user and KGTR NCF were personalized recom-
mendation method via learning individual user’s preference. When learning user

Table 1. HR@10 and NDCG@10 for Top-10 item recommendation

#HR@10 #NDCG@10

NCF 0.6947 0.4149

CoupledCF 0.7310 0.4819

Wide&Deep 0.6864 0.4082

KGTR user 0.5801 0.3691

KGTR item 0.7012 0.4518

KGTR NCF 0.5861 0.3719
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Fig. 4. HR@K and NDCG@K results comparison between our framework and related
baselines

temporary preferences by LSTM, we selected 16 items viewed recently by every
user, and did not divide the time period according to the traditional time
spots (minutes, hours or days). Therefore, recommendation performances in
KGTR user and KGTR NCF were not improved by adding user preferences.

5 Conclusions

In this paper, we proposed a knowledge graph-based temporal recommendation
(KGTR) model to explore implicit/explicit and latest interactions between users
and items. Firstly, we designed a lightweight KG based on one domain knowledge
without extra information. We defined three categories relationships by TransE,
according to the implicit/explicit interactions of users’ and items’. That could
capture global structural dependencies in the historic behavior and united infor-
mation between triples. Taking the different impact of long-short term interest
into account, our model was trained by deep learning. Specially, the popular
features of items were jointed in the course of learning dynamic preferences. The
experimental results showed significant improvement has obtained over state-of-
the-art baselines on large dataset. In future, we will study how to incorporate
short-term users’ preferences and the ratings for better recommendation.
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