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Preface

These proceedings in three volumes contain the papers presented at the 16th Pacific
Rim International Conference on Artificial Intelligence (PRICAI 2019) held during
August 26–30, 2019, in Yanuca Island, Fiji. PRICAI started as a biennial conference
inaugurated in Tokyo in 1990. It provides a common forum for researchers and
practitioners in various branches of artificial intelligence (AI) to exchange new ideas
and share experience and expertise. Over the past years the conference has grown, both
in participation and scope, to be a premier international AI event for all major Pacific
Rim nations as well as countries from further afield. Indeed, the growth has merited
holding PRICAI on an annual basis starting this year.

Submissions to PRICAI 2019 were received through two different routes: (1) some
papers were directly submitted to PRICAI as in earlier years, and (2) in a special
arrangement with IJCAI 2019, authors of submissions that narrowly missed out being
accepted were encouraged to resubmit to PRICAI, along with the reviews and
meta-reviews they received. The submissions of the first category underwent a
double-blind review process, and were reviewed by the PRICAI Program Committee
(PC) members and external reviewers against criteria such as significance, technical
soundness, and clarity of presentation. Every paper received at least two, and in most
cases three, reviews. Submissions of the second category were not subjected to further
review, keeping in mind the workload of the reviewers in the community.

Altogether we received 311 high-quality submissions (with 265 submissions being
of the first category) from 34 countries, which was impressive considering that for the
first time PRICAI was being held in consecutive years. The program co-chairs read the
reviews, the original papers, and called for additional reviews if necessary to make final
decisions. The entire review team (PC members, external reviewers, and co-chairs)
expended tremendous effort to ensure fairness and consistency in the paper selection
process. Of the 265 submissions under the first category, 105 (39.6%) were accepted as
full papers for the main-track, and 6 as full papers for the industry-track. A small
number of papers were also accepted as short papers for the main-track (6), short papers
for the industry-track (7), and as posters (6) – with the understanding that papers in the
last category will not be included in these proceedings. The papers are organized in
three volumes, under three broad (and naturally overlapping) themes, “Cognition”,
“Investigation”, and “Application.”

The technical program consisted of two workshops, five tutorials, and the main
conference program. The workshops and tutorials covered important and thriving
topics in AI. The workshops included the Pacific Rim Knowledge Acquisition
Workshop (PKAW 2019) and the Knowledge Representation Conventicle (2019). The
former was co-chaired by Prof. Kouzou Ohara and Dr. Quan Bai, while the latter was
organized by Dr. Jake Chandler. The tutorials focused on hot topics including Big Data
in bioinformatics, Data Science, Cognitive Logics, and Identity Management. All
papers at the main conference were orally presented over the three days in parallel, and



in thematically organized sessions. The authors of the posters were also offered the
opportunity to give short talks to introduce their work.

It was our great honor to have four outstanding keynote/invited speakers, whose
contributions have pushed boundaries of AI across various aspects: Prof. Hiroaki
Kitano (Sony Computer Science Laboratories Inc. and The System Biology Institute,
Japan), Prof. Grigoris Antoniou (University of Huddersfield, UK), Prof. Mary-Anne
Williams (University of Technology Sydney, Australia), and Prof. Byoung-Tak Zhang
(Seoul National University, South Korea). We are grateful to them for sharing their
insights on their latest research with us.

The success of PRICAI 2019 would not have been possible without the effort and
support of numerous people from all over the world. First of all, we would like to thank
the PC members and external reviewers for their engagements in providing rigorous
and timely reviews. It was because of them that the quality of the papers in this volume
is maintained at a high level. We wish to thank the general co-chairs, Professors Abdul
Sattar and MGM Khan for their continued support and guidance, and Dr. Sankalp
Khanna for his tireless effort toward the overall coordination of PRICAI 2019. We are
also thankful to various chairs and co-chairs, namely the industry co-chairs, workshop
co-chairs, the tutorial co-chairs, the web and publicity co-chairs, the sponsorship chair,
and the local organization chair, without whose support and hard work PRICAI 2019
could not have been successful. We also acknowledge the willing help of Kinzang
Chhogyal, Jandson S. Ribeiro, and Hijab Alavi toward the preparation of these
proceedings.

We gratefully acknowledge the financial and/or organizational support of a number
of institutions including the University of the South Pacific (Fiji), Griffith University
(Australia), Macquarie University (Australia), Fiji National University (Fiji), RIKEN
Center for Integrative Medical Sciences (Japan), University of Western Australia
(Australia), Australian Computer Society (ACS), and Springer Nature. Special thanks
to EasyChair, whose paper submission platform we used to organize reviews and
collate the files for these proceedings. We are also grateful to Alfred Hofmann and
Anna Kramer from Springer for their assistance in publishing the PRICAI 2019 pro-
ceedings in the Lecture Notes in Artificial Intelligence series, as well as sponsoring the
best paper awards.

We thank the Program Chair and the Conference Chair of IJCAI 2019, Professors
Sarit Kraus and Thomas Eiter, for encouraging the resubmission of many IJCAI
submissions to PRICAI 2019. Last but not least, we thank all authors and all confer-
ence participants for their contribution and support. We hope all the participants took
this valuable opportunity to share and exchange their ideas and thoughts with one
another and enjoyed their time at PRICAI 2019.

August 2019 Abhaya C. Nayak
Alok Sharma
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Abstract. Explaining black-box machine learning models is important
for their successful applicability to many real world problems. Existing
approaches to model explanation either focus on explaining a particular
decision instance or are applicable only to specific models. In this paper,
we address these limitations by proposing a new model-agnostic mech-
anism to black-box model explainability. Our approach can be utilised
to explain the predictions of any black-box machine learning model. Our
work uses interpretable surrogate models (e.g. a decision tree) to extract
global rules to describe the preditions of a model. We develop an opti-
mization procedure, which helps a decision tree to mimic a black-box
model, by efficiently retraining the decision tree in a sequential man-
ner, using the data labeled by the black-box model. We demonstrate
the usefulness of our proposed framework using three applications: two
classification models, one built using iris dataset, other using synthetic
dataset and a regression model built for bike sharing dataset.

Keywords: Explainability · Bayesian optimisation · Gaussian process

1 Introduction

Application of artificial intelligence (AI) can be found in almost any field rang-
ing from medical diagnosis to making million dollar decisions. AI algorithms
are popular due to their excellent generalization capabilities. Complex machine
learning models make accurate predictions and classifications. However, there
is a trade-off between performance and explainability [7]. Simple models e.g.
logistic regression are explainable, but have lower predictive power compared to
more complex models like deep neural network, Support Vector Machine (SVM)
etc. Usually more complex a model gets, the less interpretable it becomes. With
the gaining popularity of complex models, lack of interpretability is posing a
problem. For any model to be effective, both accuracy and explainability are
important. If the decisions made by the model cannot be understood, the model
might not be deployed, especially in areas where providing explanation is crucial,
like medical diagnosis, law making and finance [1,4]. Recently European Union
c© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11670, pp. 3–15, 2019.
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proposed in its regulations that people affected by algorithmic decisions have
the right to explanation [6]. With these developments providing explanations to
a black-box algorithm has become an urgent step.

Researchers have been trying to come up with explanations for black-box
models. The term explanation, is not a monolith [11]. It could mean different
things. Explanations can be given in terms of relationship between input features
and output. It could also mean algorithmic transparency, i.e., the mechanism
of the decision making of an algorithm. Since the term explainability is not
precisely defined, multiple approaches have been made to address this problem.
These approaches can be broadly classified into two categories. The first one is
to provide post-hoc explanation, i.e., explaining the output of a black-box model
while the other is algorithmic transparency, i.e., explaining the internal working
of an algorithm. Post-hoc explanations aim to provide explanation for an output
through another similar input. Deep learning techniques perform well in image
and video classifications. Providing descriptions for image and videos through
the outputs of other similar images or videos is a form of post-hoc explanation
[8,9]. Algorithmic transparency aims to come up with explanations for existing
models [5,13]. Explaining existing complex models is challenging. Most of the
existing methods try to extract rules by perturbing the test points and observing
how these affect the outputs [5]. Others try to learn rules from neural network by
training it with a subset of inputs, and observing which neurons get activated for
the dominant feature in the subset. A recent work has been done to approximate
a complex model using a surrogate model [13].

Although the explainability of black-box model has been tried to tackle in
many ways, it still remains an open problem. Post-hoc explanations do not
provide any insight into the working of the model. So the underlying model
still remains a black-box. Also the mapping of descriptions to outputs remain
opaque. The accuracy of novel interpretable algorithms depends a lot on good
prior knowledge. Also these algorithms have to be tailor made for each problem.
One of the key reasons for the popularity of neural networks is that it can work
across different datasets with slight tuning of the hyperparameters. It would be
ideal if complex machine learning models that have been successfully deployed
could also be explained. Even better if the mechanism of explanation could be
agnostic to model type, that is, if explanation mechanism remains same irre-
spective of whether it is used to explain a neural network, random forest or
a gradient boosting model. Such an explanation scheme, then could be imple-
mented as an abstraction layer over the black-box models and can be applied
in a wide range of problems. In this paper, we take up this problem and aim
to develop a solution. Our work focuses on extracting global rules to describe
internal working of a model, while remaining model agnostic. Decision trees are
interpretable models as they make decisions based on a hierarchy of decisions.
If decision trees can be modified to mimic a given black-box model, we can use
them as a surrogate for the complex black-box model. We make this possible by
starting with a black-box model and a decision tree both trained using a training
set. Next, we find the region in the input space where the difference between the
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black-box model and the decision tree model is the highest. We sample a small
set of data points in this region and train the decision tree with this data labeled
by the black-box model. This process is repeated until the difference between the
two models becomes small. After this training process, decision tree rules can
be used to explain the internal working of the black-box model. In this paper,
we have used a neural network to represent the black-box model. We demon-
strate our proposed framework using three applications: a classification model
built using synthetic dataset, a classification model built using iris dataset, and
a regression model built for bike sharing dataset.

Our contributions can be summarized as below:

– We introduce a novel model-agnostic mechanism for black-box model explain-
ability.

– We develop an optimization procedure to retrain the explainable surrogate
model (decision tree) in a sequential manner.

– We demonstrate the usefulness of our proposed framework using two appli-
cations: a classification model built using iris dataset and a regression model
built for bike sharing dataset.

2 Framework

Complex models are usually black-box. There are many black-box models like
neural networks, SVM etc. In our work we have chosen neural network as the
black-box model. Decision tree is capable of modelling non-linear functions. The
prediction made by the decision tree can be explained by the hierarchy of deci-
sions. For this reason, we have chosen decision tree as our surrogate model. The
prediction technique of neural network and decision tree are briefly summarized
in the Subsects. 2.1 and 2.2. Both the models are trained with a training set
Dtrain = {xi, yi}Ni=1,where x εRd and y = f(xi) is realization from an unknown
and smooth function f : Rd → R.

The goal of training any model is to learn f as accurately as possible. We
denote fn as the function learned by neural network and f t as the function
learned by decision tree. We expect fn to model the input data more accurately
than f t. This is usually true as the prediction accuracy of neural network is more
than that of decision tree. Our goal is to approximate the function f t to that
of fn, as they both are likely to be different as shown in Fig. 1(a). For this, we
train the decision tree iteratively using the neural network, to make f t close to
fn, as desirable in Figure 1(b) (c) (d). In each iteration of retraining, we train
the surrogate model with the data points sampled around the point at which
the difference between the functions is maximum. Finding the point of maximum
difference is an optimization problem. Since the data point at which the functions
differ maximum might be virtual, we denote this point as xv ∈ R

d. Then our
task has reduced to iteratively optimizing the following objective function:

xv = argmax
x∈X

|fn(x) − f t(x)| (1)
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Fig. 1. The illustration of function differences before and after introducing new data.
(a) The functions learnt from neural network and decision tree with only the initial
training data. (b), (c), (d) The functions learnt by neural network and decision tree
after introducing new data iteratively by following our method.

where X is the search space for both the training data and the new data. Note
that both fn and f t have no tractable form and thus the objective function is
a black-box function. We can use Bayesian optimization [3] - an efficient and
popular unknown function optimizer to solve the Eq. 1.

We illustrate our framework in Fig. 2. The first step is to training a neural
network and decision tree based on the initial training data (Step 1). The neural
network learns a function fn and decision tree learns f t. The function fn by
neural network is fixed and we use it only to label a new data. We run Bayesian
optimization for several iterations to suggest a new data xv, where function
differences (Eq. 1) are maximum (Step 2). In order to approximate the function
of decision tree to that of neural network at the point xv, we uniformly sample
points from [(1−δ)xv, (1+δ)xv] with the radius coefficient δ. These new samples
are labeled using the prediction of the trained neural network (Step 3). We next
augment the training data with these samples and retrain the decision tree (Step
4). The steps 2, 3, and 4 are repeated until the performance of the decision
tree converges. The algorithm can be found in Algorithm1. We give a detailed
explanation of the key steps below.

2.1 Training Neural Network

Neural network is a framework describing the relationship between input and
output by connected neurons in the hidden layers. A neuron is a decision unit
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Neural network

Decision tree

Run BO
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1

1
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4

Fig. 2. The diagram of our algorithm using decision tree to interpret neural network.
We illustrate the detail steps in texts.

based on the input vector x and the weight vector ω. The output y of a neuron
can be formalized as y = f(ωᵀx + b), where b is the bias vector and f is the
activation function. The activation function has several choices. The popular
ones include rectified linear units (ReLU), tanh and sigmoid function.

The training for neural network aims to learn the weights between connected
neurons. A reasonable choice is to compute the gradients of the output with
respect to the weights and then we can use any gradient based optimizer. Back-
propagation makes it possible by transmitting the gradients using chain rules
[2]. The difficulty of the interpretability of neural network is attributed to its
highly interconnected hidden layers.

2.2 Training Decision Tree

A decision tree is a predictive model, which starts with a single node and then
splits into different branches according to the information gain and finally forms
a tree structure. Decision tree can be a classification or regression tree. At each
node the feature that can maximize the purity of the classes is used to split the
node. The metrics for the purity can be Gini index or information gain.

From the tree structure, we can easily interpret the decision process. Using
decision tree as a surrogate model, we expect the function learned by decision tree
to approximate the function learned by neural network. As we stated before, the
existing training data might be not sufficient to have the decision tree function,
closely approximate the neural network function. We next need to find additional
data to refine the function of decision tree.

2.3 Bayesian Optimization to Search New Data

Having a trained decision tree and neural network from the original training set,
our goal is to minimize the Eq. 1 to find the region in the input space, where the
two functions are the most different. We choose the technique of Bayesian opti-
mization to accomplish it, since Bayesian optimization (BO) has demonstrated
superior power on a black-box function optimization. To simplify, we describe a
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generic Bayesian optimization procedure given observations {xj , yj}Jj=1, where
J is the number of observations, yj = f(xi) + ε with ε ∼ N (0, σ2) and
σ2 is the noise variance. For our problem, the initial training set for BO is
DBO

0 = {xi,�yi}ni=1 where, x is the training input and �y is the corresponding
difference |fn(x) − f t(x)|. In case of regression problem �y is the difference of
the predicted real values. In classification the predicted values are class labels.
We take the prediction by neural network as the ground truth and calculate the
difference as the difference between the probabilities associated with the class
labels.

In Bayesian optimization, we often first use Gaussian process to model the
latent function based on observations. Then we can construct an acquisition
function to query the next point. Specifically, Gaussian process is a stochastic
process where the joint distribution of any point in the domain space is still a
Gaussian distribution. Therefore, for a predicted point x∗, its predictive posterior
distribution is a Gaussian distribution N (μ(x∗), σ2(x∗)). With a typical zero-
mean assumption for GP mean function, we can write the mean and variance

μ(x∗) = kT
∗J(KJJ + σ2I)−1y1:J

σ2(x∗) = k∗∗ − kT
∗J(KJJ + σ2I)−1k∗J

where k∗∗ is the kernel function, k∗J = [k(x∗,x1), · · · , k(xt+1,xt)] and KJJ is
the Gram matrix between x1:J . Note that k is the kernel function representation
of the smoothness of the latent function. The popular choice includes the SE-
kernel and Matern kernel [14]. The assumptions we make about the data such as
the function that models it is smooth etc is incorporated by choosing the kernel
function appropriately. In out framework, we have used squared exponential
kernel exp(− 1

2l2 ||xi − xj ||2). The hyperparameter l decided the width of then
kernel function.

Next based on the built GP before, we want an acquisition function to sug-
gest the next evaluation point. A natural choice is to use a function to measure
the possible improvement over the best observation so far (minimal or maximal).
The popular ones such as probability of improvement (PI), expected improve-
ment (EI) [3] have been derived. In our work we opted for EI, although other
acquisition functions can also be used. We can maximize the acquisition function
to obtain the next point and then update Gaussian process and these steps will
be repeated. The BO will return the maxima of the difference function. It is a
new data point in the function space that maximizes our objective function. We
sample around this new data point in a window of [(1−δ)xv, (1+δ)xv]. The size
of δ vary with the complexity of data. It is ideally small, so as to limit sampling
close to the optima. This new set of points form Xnew. The target values Ynew

for these data points are found using neural networks as Ynew = fn(Xnew). The
training data is augmented with these new data points. The steps are repeated
until the performance of the decision tree converges. BO has also been proposed
to work in high dimensions [10,12], although we have used only low dimensional
data for our work.
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Algorithm 1. The proposed decision tree retraining algorithm.
1. Input: Training set Dtrain = {X, Y } with X = {xi}n

i=1 and Y = {yi}n
i=1 , the

number of rounds K, the number of iterations M at each round, a small radius δ.
2. Train Neural network and Decision tree functions fn(x) and f t(x) using Dtrain.
3. Initialize a set for BO DBO

0 = {X, ΔY } with ΔY = {Δyi}n
i=1, where Δyi =

fn(xi) − f t(xi).
4. For k = 1 : K Do
5. Build up a GP using DBO

6. For m = 1 : M Do
7. Recommend xm using EI acquisition function and compute Δym = fn(xm)−

f t(xm)
8. Update the GP based on the data DBO ⋃{xi, Δyi}m

i=1

9. end For
10. Obtain the point xv corresponding to the maximum function difference xv =

argmaxxm∈x1:M
|fn(xm) − f t(xm)|

11. Obtain a new data set Xnew = {xv∪x1:J}, where x1:J ∼ U((1−δ)xv, (1+δ)xv)
is uniformly sampled.

12. Use Neural network to label Y n
new = fn(Xnew)

13. Augment the training data with the new data Dtrain = Dtrain ⋃{Xnew, Y n
new}

14. Update f t via retraining decision tree on Dtrain and recompute �Y for all
points in X = X

⋃
Xnew

15. Reset the data for BO DBO
0 = {X, ΔY }

16. end For

3 Experiments

In this section we show the results obtained by our framework on different
datasets. The black-box model we have chosen for our experiments is a sim-
ple neural network and the surrogate used to explain it, is a decision tree. We
first show the results on synthetic dataset. We demonstrate how the decision
boundary of the decision tree changes after it has been trained by neural net-
work. We have also used our framework on regression and classification data.
In both these data, our framework helps in the improvement of accuracy of the
prediction.

Experiments with Synthetic Dataset

The synthetic data was generated using the function f(x1, x2) = x2
1 − x2

2. If the
function value was greater than zero, then the data point was assigned to class
1, else to class 2. The decision space between −15 and 15 was considered for
the experiments. The neural network used for the synthetic data was a simple
neural network with 10 input nodes, 10 nodes in the hidden layer and two nodes
in the output layer. The decision tree used has a maximum depth of 6. Initially
a set of 250 data points was generated. The initial points were randomly split
into 75% training data and 25% testing data.
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The decision tree was iteratively trained for 100 rounds. At each round a set
of 60 data points was appended to the original training set. These 60 datapoints
were sampled around the point, where the difference between the decision made
by neural network and decision tree was found to be maximum. The decision of
both models are represented by the class probability associated to datapoints.
The difference is calculated as the difference in the class probability predicted
by neural network and decision tree. This difference in the function is denoted
as Δy. Bayesian optimization was used to find the point of maximum difference.
New data points are sampled around this point within a window of δ = 0.01. In
Fig. 3 the decision boundary of the neural network and the decision boundary
of the surrogate before and after the training are shown. After the training
the decision boundary of the decision tree resembles more of that of the neural
network.

Fig. 3. Decision space. (a) shows the decision boundary of neural network, (b) shows
the initial decision boundary of decision tree and the blue point marks the point at
which the decision of the two models differs maximum. (c) shows the decision boundary
of decision tree after iterative training of 100 rounds. (Color figure online)

As the boundaries are more similar, the predictions of the surrogate is more
similar to that of the black-box model. This is further indicated by the improve-
ment in the accuracy of the decision tree and also by the decrease in the difference
of the decision probabilities of the black-box model and the surrogate. This is
illustrated in Fig. 4.

Experiments with Bike Sharing Dataset

It is a regression dataset from UCI repository. It contains the hourly and daily
count of rental bikes with the corresponding weather and seasonal information.
We use only the hourly count of rental bikes as the dependent variable. We have
selected the most related 5 dependent variables out of 14 based on the correlation
between input and output variables. We later use these 5 selected variables
(‘season’, ‘hour’, ‘holiday’, ‘actual temperature’ and ‘apparent temperature’) to
predict the daily count of rental bikes. We randomly split the total 17389 data
points into 75% training data and 25% test data.
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Fig. 4. Performance of the decision tree at each round of training. (a) shows the max-
imum difference between the functions of 2 models at each round and (b) shows the
percentage error of decision tree at each round.

We train a fully-connected neural network with 1 hidden layer consisting
of 30 neurons. We also train a decision tree, for which the appropriate depth
is estimated via a validation set as 8. We run our method for 20 rounds. For
each round, we run Bayesian optimization with 60 iterations (approximately
12 iterations per feature) to recommend a new point. And we sample 30 new
data around the recommended one (within a radius of δ = 0.01). Along with
the original training data, we retrain the decision tree with these 30 samples.
We show how the maximum difference (Δy) between the functions of neural
network and decision tree changes at each round in Fig. 5(a). We can see it is
decreasing with the number of rounds, that is to say, the function trained by
decision tree would be close to that of neural network. The improvement in the
prediction of the decision tree is illustrated by the decreasing trend in the RMSE
at each iteration as shown in Fig. 5(b). The initial RMSE of test data in decision
tree is 96.3 and becomes 95.7 after 20 rounds. We also extracted rules from the
decision tree we have obtained finally. We show an example of a subtree and
rules extracted from it in Fig. 6 and Table 1 respectively.

Table 1. Rules extracted from the subtree in Fig. 6.

Rule 1 (Blue) If between 1 am and 5 am, then number of bikes rented is 15.92

Rule 2 (Red) If between 12 midnight and 1 am, and ifspring or summer then
number of bikes rented is 38.34, if fall or winter then 22.24

Rule 3 (Green) If after 5 am and temperature less than 13 Celsius then number
of bikes rented is 13.68
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Fig. 5. Performance of the decision tree at each round of training. (a) shows the max-
imum difference between the functions of 2 models at each round and (b) shows the
RMSE of decision tree at each round.

Fig. 6. The examples of the extracted rules from a subtree learnt from bike sharing
data. We explain the rules in Table 1. (Color figure online)

Experiments with IRIS Dataset

This data has been used for our classification task, where there are 4 attributes
(‘sepal length’, ‘sepal width’, ‘petal length’, ‘petal width’) and 3 classes of iris
flower. We use the same percentage for training data and test data as the bike
sharing data. The neural network here is a 1 hidden layer with 10 neurons. We set
the depth of decision tree as 3. We run 500 rounds and 150 Bayesian optimization
iterations at each round. Since only the class label is available in the classification
problem, we use the difference of the class probability from neural network and
decision tree as the objective value. Other settings are similar to the bike sharing
dataset.

We run our method for 500 rounds. For each round, we run Bayesian opti-
mization with 150 iterations to recommend a new point. As per the suggestion of
BO, we again sample 50 new data points around the recommended one (within
a radius of δ = 0.001). Along with the original training data, we retrain the deci-
sion tree with these additional 50 points. We show how the maximum difference
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(Δy) between the functions of neural network and decision tree changes at each
round in Fig. 7(a). We can see that after a few round of training, the maximum
difference between the decision of the neural network and the decision tree has
reduced to a low value. In Fig. 7(b), we show the decrease in the error percentage
of the decision tree. It demonstrates that the iterative training of the decision
tree reduces the difference in the predictions about a data point. Also, it implies
that the decision made by the surrogate are more similar to the neural network
model.

Fig. 7. Performance of the decision tree at each round of training. (a) shows the max-
imum difference between the functions of 2 models at each round and (b) shows per-
centage error of decision tree at each round.

Figure 8 and Table 2 show some rules that have been learned using our deci-
sion tree for iris data.

Fig. 8. The examples of the extracted rules from a subtree learnt from iris dataset. We
explain the rules in Table 2. (Color figure online)
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Table 2. Rules extracted from the subtree in Fig. 8.

Rule 1 (Blue) If petal length is between 4.75 and 2.85, then Iris Verisicolor

Rule 2 (Red) If petal length less than 2.85 and width less than 1.55 then Iris setosa

Rule 2 (Green) If petal length greater than 4.75 and petal width greater than 1.7
then Iris Verginica

4 Conclusion

We presented a new model-agnostic framework for explaining black-box machine
learning models. This mechanism is capable of extracting rules of internal work-
ing of any black-box machine learning models. We use a decision tree to mimic
the black-box model through an efficient training scheme devised by Bayesian
optimization. We applied our proposed framework on three problems: two clas-
sification model, one built using iris dataset and other using synthetic data, a
regression model built for bike sharing dataset. Empirical results demonstrate
the usefulness of the proposed framework.
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Abstract. Class imbalance is a common problem in classifier learning
but it is difficult to solve. Textual data are ubiquitous and their analytics
have great potential in many applications. In this paper, we propose a
solution to build accurate sentiment classifiers from imbalanced textual
data. We first establish topic vectors to capture local and global patterns
from a corpus. Synthetic minority over-sampling technique is then used
to balance the data while avoiding overfitting. However, we found that
residue overfitting is still prominent. To address this problem, we pro-
pose an autoencoded oversampling framework to reconstruct balanced
datasets. Our extensive experiments on different datasets with various
imbalanced ratios and number of classes have found that our approach
is sound and effective.

Keywords: Imbalanced learning · Sentiment analysis ·
Over-sampling · Autoencoding

1 Introduction

Class imbalance problem happens when there are more instances of some classes
than the others in a dataset and it often occurs in classification tasks. In such
settings, traditional machine learning classifiers are likely to be mainly trained
by the large classes than the small ones. This problem is very prevalent in many
real-world applications [10]. Among various domains, we would like to focus on
textual data. Our goal is to build a unified classifier to predict the sentiment
of unseen documents when the class labels in the training data from each class
exhibit different distributions.

Traditional supervised learning models are designed to optimize overall accu-
racy without considering different distributions of different classes. As a result,
it is easy to come up with models that overfit observations of majority classes as
well as underfit minority classes [10,18]. Researchers have tried many approaches
to address this problem, such as algorithmic modification [18,28], cost-sensitive
learning [27], data sampling [5], etc. The algorithms modification method modi-
fies learning process to deal with imbalanced data cases [18]. The cost-sensitive
learning method applies a penalty cost when training major classes so as to learn
c© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11670, pp. 16–29, 2019.
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minority classes properly [27]. Data sampling alleviates imbalance ratio among
classes to make fully balanced training dataset [18].

Among those many approaches, data sampling has been widely studied. Since
under-sampling can lose information by dropping data of majority class as many
as the number of minority class, we do not consider it as a solution. Alternately,
over-sampling has been regarded to be appropriate for imbalanced data. How-
ever, with Bag-of-Words (BOW) representation, over-sampling does not work
properly because BOW representation suffers from high-dimensionality, sparsity
and small disjunct problems [10,27,30]. Classification of sparse data is hard [1]
and small disjunct problem is likely to create overfitting problem by generating
more decision regions [3].

To tackle the above issues, we use topic vector for sentiment classification on
class imbalanced textual data. Topic embedding is a hybrid method to construct
feature vectors for plain texts by topic modeling and word embeddings. Topic
modeling maps documents onto low-dimensional topic space by utilizing global
word collocation patterns in a corpus whereas embedding space by exploiting
local word collocation patterns in a small context window [15]. Therefore, they
can be regarded as complementary. By combining them together, we can obtain
more elaborate models for imbalanced textual data. Word embedding approach
is better than tradition BOW representation in higher quality of textual data.

Next, we apply SMOTE to the training data. A lot of variants of SMOTE
have been published but most of them mainly focus on numerical data and
recently. With SMOTE, we can achieve balanced training datasets. However, we
found that residue overfitting is still prominent. To address this problem, we pro-
pose autoencoded oversampling to reconstruct balanced datasets. Autoencoder
is a shallow neural network to reconstruct input at the output layer. Recently,
many variants of autoencoder have been published; however, most of them focus
on image data [6]. Zhai and Zhang [31] pointed that difficulties of autoencoder
for texts came from their complex properties, e.g., high-dimensionality, sparsity
and power-law word distribution. These properties are found to be resurfacing
after embedding and sampling in empirical studies. So far autoencoder has been
proven to be effective in extracting meaningful features from input data. From
our experiments, we found that it can also be applied to imbalanced textual data
in topic-vector representation. By autoencoded over-sampling, we have success-
fully reconstructed more meaningful feature vectors and obtained better results
in our experiments.

The contributions of this paper are summarized as follows:

– We first apply topic embedding to provide a better representation of our data
that combines topic modeling with word embedding

– Next, we address the class imbalanced problem by proposing a novel autoen-
coded over-sampling framework

– Our findings can potentially be reapplied to other imbalanced training prob-
lems
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2 Related Work

In this section, we summarize related work which are related to our methodology
for sentiment classification on imbalanced textual data.

Topic models and word embeddings are mainstream approaches for text rep-
resentation. Latent Dirichlet Allocation (LDA) [19] is a well-known topic model
to represent documents by distributions of topics and their words. On the other
hand, word embedding is to estimate parameters for a word and its context
words to learn semantic regularities between the words [16]. While Word2vec
uses softmax function as a link function, there exists other extended models
which use various link functions [7,14,16,23]. Recently, there have been some
research combining topic models and word embeddings. Larochelle and Lauly
assigned each word with a unique topic vector summarizing the context of the
current word [12]. Paragraph vector assumes that each text has a latent para-
graph vector influencing the distributions of all words in this text [13]. Topical
word embedding is a hybrid approach of word embedding and LDA by concate-
nating word embedding and the topical word embedding of a word [17]. Li et al.
proposed a link function to combine LDA and word embeddings [15].

On the other hand, data sampling is a common approach to address
data imbalance problem that includes under-sampling, over-sampling and other
hybrid methods that use both together [18]. Under-sampling reduces the number
of examples of majority class as same as the number of the minority to create
fully balanced dataset [4]. This method has not been used for opinion analysis
and emotion classification because it can lose information by deleting training
data [30]. A simple and easy over-sampling method is to duplicate examples of
minority randomly to make the number of samples similar to the number of
majority class. However, this can cause overfitting. Chawla et al. [4] proposed
a synthetic over-sampling method, namely SMOTE, which generates additional
samples based on their nearest neighbors. There are many variants of SMOTE.
Borderline-SMOTE generates new samples only among the borderline samples
of minority class [8]. On the other hand, Safe-Level-SMOTE only generates new
samples for the central instances of a minority class [2]. DBSMOTE [3] is a
density-based approach by combining DBSCAN clustering [24] and SMOTE.
Adaptive synthetic sampling approach for imbalanced learning (ADASYN) [9]
uses a weighted distribution for different minority class examples according to
their learning difficulty. There have been many variants of SMOTE published in
recent time, but most of the works and experiments have been done mainly for
numerical data rather than textual data.

Lately, many successes in data reconstruction by autoencoder have been pub-
lished. The denoising autoencoder (DAE) [29] inputs a corrupted version of data
and the contractive autoencoder (CAE) [25] adopts the Frobenius norm of the
Jacobian matrix of the encoder activations into the regularization term. The
variational autoencoder (VAE) [22] is a generative model by adopting variational
inference and the k-sparse autoencoder (KSAE) [20] explicitly enforces sparsity
by only keeping the k highest activities in the feedforward phase. So far, autoen-
coder has been developed for image data and hardly studied on textual data due
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Fig. 1. Our proposed autoencoded over-sampling framework. SMOTE is used to make
balanced training dataset and KATE aims to reconstruct topic vector.

to its compounding properties. Zhai and Zhang [31] proposed a semi-supervised
autoencoder to overcome some of those difficulties by a weighted loss function.
Kumar and D’Haro [11] introduced a new approach adding sparsity and selec-
tivity penalty terms to decrease sparsity because they found that all the topics
extracted from the autoencoder were dominated by the most frequent words
due to sparsity. Chen and Zaki [6] presented an effective autoencoder for text by
adding competition between the neurons in hidden layer, namely k-competitive
autoencoder for text (KATE). By doing so, each neuron becomes specialized in
recognizing specific data patterns and finally the model can learn meaningful
representations of textual data.

3 Our Proposed Autoencoded Over-Sampling

Figure 1 is a sketch of our proposed autoencoded over-sampling solution. First,
we construct Topic Vector from raw text corpora. Secondly, we apply SMOTE
to make balanced training datasets. We can expect it will improve our model’s
performance by making distribution of classes equal. Thirdly, we apply KATE
to address residue overfitting by reconstructing feature vectors.

3.1 Topic Vector for Document Representation

First, we adopt topic embedding which is a combination of topic models (i.e.,
LDA) and word embeddings, (i.e., PSDVec).

The main algorithm of most word embedding methods is a link function that
connects the embeddings of a focus word with its context words. To define the
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distribution of the focus word, Li et al. [15] proposed the following link function
by incorporating topic of wc in a way like latent word, and corresponding topic
embedding tik as a new log-bilinear term that influences the distribution of wc.
That is

P (wc|w0 : wc−1, zc, di)

≈ P (wc)exp{vT
wc

(
c−1∑

l=0

vwl + tzc
) +

c−1∑

l=0

awlwc
+ rzc

},

where di is current document, rzc
is topic residual, logarithm of normalizing con-

stant. Note that topic embeddings tzc
may be specific to di. By adding constrain

rzc
, we can avoid overfitting.
The generative process of words in documents can be regarded as a hybrid

between LDA and PSDVec [15]. The approach in PSDVec, the word embed-
ding vsi

and residual asisj
are drawn from respective Gaussians. The generative

process is as follows [15]:

1. For the k-th topic, draw a topic embedding uniformly from a hyperball of
radius γ, i.e. tk ∼ Unif(Bγ);

2. For each document di :
(a) Draw the mixing proportions φi from the Dirichlet prior Dir(α);
(b) For the j-th word:

i. Draw topic assignment zij from the categorical distribution Cat(φi)
ii. Draw word wij from S according to P (wij |wi,j−c : wi,j−1, zij , di)

3.2 SMOTE for Topic Vector

Secondly, we apply SMOTE on topic vectors. Although most of variants of
SMOTE have been proven on numerical data, WEC-MOTE [30] present suc-
cess in text domain.

We extend WEC-MOTE by altering topic vectors as an input feature vectors.
WEC-MOTE uses sentence vectors as inputs of SMOTE and it has been proven
effective to improve the quality of the representation of imbalanced textual data.
However, it has limitation that it can only handle up to 25 dimensions due to the
complexity of recursive neural tensor network [26], which is used to construct
sentence vectors. Also, as WEC-MOTE uses sentence vectors, it cannot convey
the meaning of entire text like topic. Differently, our proposed model has less
limitation on the dimension of data and also we can capture both local and
global word patterns. It is because topic vector algorithm is base on both topic
modeling and word embedding.

To make fully balanced training datasets, we generate additional examples
of minority classes before classification phase as follows. For the test dataset, we
do not apply SMOTE.

For a given minority class where each real sample S corresponds to a topic
vector Vt, new synthetic samples Vnew are generated by

Vnew = Vt + R0−1 × Vtn
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Table 1. Results for finding best vector normalization parameter using multiple-class
dataset

Precision Recall F1

Base (no KATE) 71.9 63.4 65.8

No scaling 70.3 64.1 65.8

ε = 1 66.5 68.5 67.3

ε = 10−10 68.6 67.8 68.2

V /max (V) 56.9 49.2 47.9

where Vtn is one of the k-nearest neighbors of Vt, R0−1 is a real number between
zero and one. This algorithm can generate many Vnew as needed [4].

3.3 K-competitive Autoencoder for Topic Vector

Thirdly, we apply autoencoder KATE to address the residue overfitting of
SMOTE and also extract more meaningful patterns from texts.

KATE uses a log-normalized word count vector, but there are some differ-
ences between the data of KATE originally designed to handle and our topic
vector. While count vector has non-negative integers and zero, topic embeddings
include negative value and very small float numbers. Therefore, we enhance the
model by introducing a new vector normalization step.

Let x ∈ Rd d-dimensional input vector,

xi =
log(Vi + ε)

maxi∈C log(Vi + ε)
,

{
ε = 1, if mini∈CVi > −1
ε = |mini∈CVi| + 10−10 otherwise,

where Vi is topic vector, C is a set of the entire corpora. The epsilon is decided
empirically from the results of below using multiple-class dataset in the experi-
ments (Table 1).

Algorithm 1 represents the competitions among neurons to capture important
patterns by adding constraints using mutual competition among neurons. In the
hidden layer, each neuron has competition by followings the original KATE
autoencoder [15]. Only competitive k neurons that have the largest absolute
activation values are used.

3.4 Rationalization of Autoencoded Over-Sampling

Chawla et al. [4] proposed SMOTE algorithm for class-imbalanced classification,
which is an elegant and effective over-sampling method. It assumes that there
exist a virtual minority sample between two minority samples that are near
to each other. Therefore, SMOTE generates new minority samples artificially
between the two real minority samples that are near to each other. Compared to
over-sampling, the SMOTE algorithm produces new minority samples that are
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Algorithm 1. K-competitive Layer
1: function K-COMPETITIVE-LAYER(z)
2: sort positive neurons in ascending order z+

1 ...z+
p

3: sort negative neurons in descending order z−
1 ...z−

n

4: if P − �k/2� > 0 then

5: Epos =
∑P−�k/2�

i=1 z+
i

6: for i = P − �k/2� + 1, ..., P do
7: z+

i := z+
i + α · Epos

8: end for
9: for i = 1, ..., P − �k/2� do

10: z+
i := 0

11: end for
12: end if
13: if N − �k/2� > 0 then

14: Eneg :=
∑N−�k/2�

i=1 z−
i

15: for i = N − �k/2� + 1, ..., N do
16: z−

i := z−
i + α · Eneg

17: end for
18: for i = 1, ..., N − �k/2� do
19: z−

i := 0
20: end for
21: end if
22: return updated z+

1 ...z+
P , z−

1 ...z−
N

23: end function

different from each other and does not copy the original minority samples at all.
This can effectively avoid the overfitting problem caused the over-sampling. At
the same time, it is not very complex. However, we found that residue overfitting
is still prominent in our dataset. In our experiments, we use python imbalanced-
learn library. We set type of SMOTE algorithm as ‘svm’ because it outperformed
other options in our sample tests conducted prior to our main experiments. We
varies the number of nearest neighbours to construct synthetic samples from 5
to 120 to find its best match.

We adopt KATE for imbalanced text training because KATE’s competitive
hidden layer can better capture topic vector of imbalanced text. KATE has been
proven to be better representing textual data than other text representation
models, including various types of autoencoders such as denosing, constractive,
variational, and k-sparse autoencoders. Also, KATE outperforms deep generative
models, probabilistic topic models and even word representation models such as
Word2Vec [6]. In their experiments, KATE outperforms not only on balanced
but also on imbalanced textual data. In our experiments, we set the number
of topics (hidden neurons) same as the number of features of topic vector, and
varies the number of winners k from 1 to 300 to find its best match to the given
number of topics. We set the energy amplification parameter α as default value
(i.e., 6.26 in the original paper [6]).
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Table 2. Twitter sentiment corpus created by Sanders Analytics - positive, negative,
neutral and irrelevant

Exp1 # of classes : 4

Positive Negative Neutral Irrelevant

Train (80%) 415 458 1866 1351

Test (20%) 104 114 467 338

Ratio (%) 10.15 11.19 45.63 33.03

In our proposed autoencoded over-sampling framework, we apply SMOTE
first to make a balanced training set, and then use KATE to avoid overfitting.
Note that Chen and Zaki suggested that KATE can be regarded as a regularized
autoencoder in a sense that a positive adder and negative adder constrain the
energy [6]. KATE selects the k highest activation neurons as winners in the hid-
den layer, and reallocates the amplified energy (aggregate activation potential)
from the losers [6]. By doing so, recognition of important patterns from texts is
made possible.

4 Empirical Evaluation

In this section, we evaluate our proposed model on various imbalanced ratio data
with multiple- and binary-class datasets. To examine the effect of our hybrid
model, we compare our proposed model with the baseline (i.e., Topic Vector)
and other combinations of model components.

4.1 Datasets

Multiple-Class Dataset. The twitter sentiment corpus created by Sanders
Analytics has 5,113 hand-classified tweets. Each tweet has a class label (Positive,
Negative, Neutral and Irrelevant). Table 2 provides statistics of a multiple-class
dataset. We split the entire data into a training (80%) set and a test (20%) set.
Note that the original dataset is available from https://github.com/zfz/twitter
corpus.

Binary-Class Dataset. Large Movie Review Data is intended for binary (pos-
itive and negative) sentiment classification task. It contains 50,000 reviews splits
evenly 25,000 train and 25,000 test sets. The entire distribution of classes is
completely balanced (25,000 positive and 25,000 negative). However, we inten-
tionally adjust the number of examples to make imbalanced experiment settings
(19:1, 9:1 and 4:1). Table 3 shows the statistic of original dataset and Table 4
shows information of manipulated dataset for imbalanced settings. Note that
the original dataset is available from http://andrew-maas.net/data/sentiment.

https://github.com/zfz/twitter_corpus
https://github.com/zfz/twitter_corpus
http://andrew-maas.net/data/sentiment
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Table 3. Original data of large movie review data

Class Positive Negative Total

Train 12,500 12,500 25,000

Test 12,500 12,500 25,000

4.2 Experiment Setting

Construction Topic Vector. Li et al. presented two best models using their
topic vector algorithm in their paper [15].

– TopicVec: the topic proportions learned by TopicVec
– TV+WV: the topic proportions concatenated with the mean word embedding

of the document

TV+WV shows better results for both multiple- and binary-data classifica-
tions (with 10 topics for each category) in our experiments as shown in Tables 5
and 6. Therefore, we develop a model base on this representation. To increase
readability, we will notate it as just ‘Topic Vector’ in the rest of this paper. l -1
regularized linear SVM one-vs-all is used for sentiment document classification.
The learning process is implemented by Python scikit-learn library.

When data is highly imbalanced, traditional empirical measures including
accuracy are no longer appropriate [18]. It is because correctly classifying all
examples corresponding to the majority class will achieve a high accuracy rate
despite misclassifying minority classes. Considering our datasets are imbalanced,
we use macro-averaged precision, recall and F1 (harmonic mean of precision and
recall) as our evaluation metrics. They are fundamentally designed for imbal-
anced data whereas normal accuracy does not consider imbalanced data setting.

To avoid the average results being dominated by the performance of major-
ity class, we adopt macro-averaged evaluation metrics. Macro-averaged method
gives equal weight to each class, whereas micro-averaged method gives equal
weight to each per-document classification decision. Because the F1 ignores true
negatives and its magnitude is mostly determined by the number of true posi-
tives, large classes dominate small classes in micro-averaged. Therefore, micro-
averaged results are indeed an accurate measure of effectiveness on the large
classes in a test collection, and macro-averaged results are effective for small
classes [21].

4.3 Experiment Results

Tables 7 and 8 summarize our experiment results. Our proposed model
Topic Vector+SMOTE+KATE shows best F1 scores over the multiple- and
binary-class datasets with diverse imbalance ratios. Throughout our experi-
ments, both SMOTE and KATE work well for imbalanced textual data. However,
we found that SMOTE+KATE can create a synergy effect as KATE alleviates
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Table 4. Manipulated data of large movie review data

Exp2 positive:negative = 19:1

Positive Negative Total

Train 11,875 625 12,500

Test 11,875 625 12,500

Exp3 positive:negative = 9:1

Positive Negative Total

Train 11,250 1,250 12,500

Test 11,250 1,250 12,500

Exp4 positive:negative = 4:1

Positive Negative Total

Train 10,000 2,500 12,500

Test 10,000 2,500 12,500

Table 5. Comparing TopicVec and TV+WV with multiple-class dataset

Precision Recall F1

TopicVec 67.9 52.3 54.2

TV+WV 71.9 63.4 65.8

Table 6. Comparing TopicVec and TV+WV with binary-class dataset

Precision Recall F1

TopicVec 80.2 57.8 60.8

TV+WV 85.1 79.3 81.7

overfitting of SMOTE. For example, in Table 7, SMOTE or KATE alone shows an
improvement in F1 and SMOTE+KATE shows the highest F1 value. However,
we can observe that using only SMOTE can result in very high F1 in training
dataset but with poor result in test data. It is a clear signal of overfitting. Com-
paring only KATE and KATE+SMOTE, the training result of KATE+SMOTE
is much higher than only KATE. However, the test result shows opposite result.
Therefore, we can conclude that SMOTE can cause overfitting. In addition, by
comparing SMOTE and SMOTE+KATE, we found that KATE is well suited
in alleviating the residue overfitting from SMOTE. While only SMOTE shows
overfitting, SMOTE+KATE shows better test result.

We can confirm similar trends in the result of the binary-class dataset. When
applying only SMOTE, F1 of training data is always higher than 90%. However,
applying KATE after SMOTE results less F1 in train data, but shows better
F1 in test data. This means that employing KATE after SMOTE can correct
overfitting of SMOTE and significantly increase the performance on the test
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Table 7. Results from multiple-class dataset

Exp1 Training set Test set

Precision Recall F1 Precision Recall F1

Topic Vector 86.7 78.2 81.4 71.9 63.4 65.8

Topic Vector+SMOTE 92.1 92.1 92.1 67.4 68.3 67.7

Topic Vector+KATE 81.1 59.4 61.8 68.6 67.8 68.2

Topic Vector+KATE+SMOTE 85.1 85.0 85.0 67.5 68.2 65.1

Topic Vector+SMOTE+KATE 84.8 84.7 84.7 67.8 71.6 68.9

Table 8. Results from binary-class dataset

Exp2 positive:negative = 19:1

Training set Test set

Precision Recall F1 Precision Recall F1

Topic Vector 90.1 62.9 68.9 85.0 60.1 64.9

Topic Vector+SMOTE 92.2 92.1 92.2 65.9 76.6 69.5

Topic Vector+KATE 91.0 58.0 62.5 78.2 61.7 66.1

Topic Vector+KATE+SMOTE 94.3 94.3 94.3 62.1 79.1 65.7

Topic Vector+SMOTE+KATE 90.3 88.6 89.4 70.3 73.6 71.8

Exp3 positive:negative = 9:1

Training set Test set

Precision Recall F1 Precision Recall F1

Topic Vector 89.3 74.2 79.5 85.3 70.2 75.1

Topic Vector+SMOTE 93.8 93.8 93.8 73.7 80.6 76.5

Topic Vector+KATE 92.5 67.1 72.8 77.9 75.0 76.3

Topic Vector+KATE+SMOTE 92.5 92.5 92.5 62.8 80.5 63.4

Topic Vector+SMOTE+KATE 92.5 92.4 92.4 77.0 78.0 77.5

Exp4 positive:negative = 4:1

Training set Test set

Precision Recall F1 Precision Recall F1

Topic Vector 88.5 82.2 84.8 85.1 79.3 81.7

Topic Vector+SMOTE 91.2 91.2 91.2 79.5 84 81.4

Topic Vector+KATE 86.7 77.3 80.7 81.8 82 81.9

Topic Vector+KATE+SMOTE 89.5 89.5 89.5 77.6 83.5 79.8

Topic Vector+SMOTE+KATE 89.7 89.7 89.7 82.1 81.7 81.9

data (8.8% to 36.3%). On the other hand, ironically applying KATE and then
SMOTE later shows worst results from all cases. F1 of test data is always worse
than using one of them separately. In other words, the results show that using
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only SMOTE and KATE each works a little for class imbalance tasks. However,
when using them together it can reach best results. In addition, the order in
applying SMOTE and KATE is indeed very important. Our experiment results
indicate that KATE first and SMOTE later is the worst combination because
SMOTE turns out maximizing overfitting.

5 Conclusion

Class imbalance is a common problem in classifier learning. With the potential
in many applications, it is inevitable to exploit class imbalance problem on tex-
tual data. In this paper, we have presented a solution to this tricky problem in
sentiment analysis. We first establish topic vectors to capture local and global
patterns from a corpus. SMOTE is then used to balance the data while avoiding
overfitting. However, the residue overfitting is still prominent. To address this
problem, we have propose an autoencoded oversampling framework to recon-
struct balanced datasets, which is found to be effective from our extensive exper-
iments. Our future work is to investigate how to adapt our proposed approach
to more extremely imbalanced data, such as imbalance ratios of 100:1, 1000:1
or 10000:1. Moreover, we also interested in applying our proposed approach to
address data imbalance problem in recommender systems and ranking systems.
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Abstract. Due to the heterogeneous representation and incongruous distribu-
tion of cross-media data, like text, image, audio, video, and 3D model, how to
capture the correlations of heterogeneous data for cross-media retrieval is a
challenging problem. In order to handle with multiple media types, this paper
proposes a novel distance-preserving correlation learning and multi-modal
manifold regularization (DCLMM) approach to exploit the common represen-
tation of heterogeneous data. The method mines the distance-preserving corre-
lation by minimizing (maximizing) the distances between media samples with
positive (negative) semantic correlations, while most existing methods only
focus on positive correlations of pairwise media types. DCLMM also utilizes an
intrinsic multi-modal manifold to well describe the geometry distribution of both
labeled and unlabeled heterogeneous cross-media data. Moreover, DCLMM
incorporates the distance-preserving correlation and multi-modal manifold into a
kernel based regularization framework to explore more rich complementary
information from high dimensional space. Extensive experimental results on two
widely-used cross-media datasets with up to five media types demonstrate the
effectiveness of DCLMM for cross-media retrieval, compared with the state-of-
the-art methods.

Keywords: Cross-media retrieval � Distance-preserving correlation �
Multi-modal manifold regularization

1 Introduction

Cross-media retrieval is a new search paradigm desired by users in big data era. By
using it, people can submit any media type at hand and get relevant results with various
media types conveniently. However, there is a challenging issue that how to mine the
semantic correlation between low-level features and high-level concepts. Researchers
consider that heterogeneous media data with the same semantics have latent
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correlations, it is possible to construct a common representation space where the
similarities of different media types can be measured easily. Many approaches have
been proposed to model the low-level feature correlation or semantic information
[1–4]. However, these methods only deal with two media types.

Modeling multiple media types simultaneously can boost each other, so cross-
media retrieval needs diversified media types. Recently, graph regularization methods
are successfully introduced for naturally extending to multiple media types [5–8]. For
example, joint representation learning (JRL) [5] applies graph regularization to jointly
model the correlation and semantic information on XMedia dataset, which is the first
dataset containing five media types. Joint graph regularized heterogeneous metric
learning (JGRHML) [7] utilizes heterogeneous metric and graph regularization to learn
a high-level semantic metric through label propagation. Whereas the methods only
exploit positive semantic correlations, the negative correlations between media samples
of different semantic categories are neglected. Accordingly, a semisupervised regu-
larization and correlation learning (SSRCL) approach is proposed to exploit both
semantic similarity and dissimilarity by graph regularization [8]. However, the per-
formances of these methods are limited by linear projections, which make them
powerless when low-level features of cross-media data are high nonlinear.

A positive semantic correlation reflects the concurrence information and a negative
semantic correlation supplies the exclusive information. For example, a piece of text
description about the “sport” category may have a strong positive correlation with the
image of basketball player Jordan. But it also has a negative correlation with the image
about a bird sitting on a branch. Therefore, we hold that negative correlation should
also be excavated. Inspired by the main idea of metric learning [9] that a sample’s good
neighbors should lie closer than its bad neighbors, we learn cross-media features by
minimizing (maximizing) the distances between media data with positive (negative)
correlations. We name it distance-preserving correlation learning.

Moreover, we construct a multi-modal manifold to capture the underlying geometry
distribution information of both intra-modality and inter-modality, motived by [10]. In
this paper, the distance-preserving correlation learning and multi-modal manifold
(DCLMM) are incorporated in a kernel based regularization method to exploit com-
plicated cross-media features. Our main idea is to find a nonlinear projection function
of each media type that projects heterogeneous data into a common space for cross-
media similarity measure.

The distinct contributions of our approach are summarized as follows.

• DCLMM jointly models not only low-level feature correlations, but also the pos-
itive semantic and negative semantic information of all media types in a unified
framework, which takes full use of the potential correlations among cross-media
data. The retrieval accuracy can be boosted by optimizing them simultaneously.

• DCLMM proposes a multi-modal manifold to better exploit the geometry distri-
bution of cross-media data, which integrates both labeled and unlabeled samples
from all modalities for describing diversified relations. While traditional semisu-
pervised methods only exploit the distributional information of single-media data.

• DCLMM utilizes a kernel based method to explore more rich complementary
information from high dimensional ambient space, and two regularization terms are

Semisupervised Cross-Media Retrieval by Distance-Preserving Correlation Learning 31



incorporated. One imposes smoothness conditions on possible solutions in ambient
space, the other along the intrinsic multi-modal manifold.

Experimental results on two widely-used datasets with up to five media types are
reported to show the effectiveness and superiority of our approach. The rest of this
paper is organized as follows. Section 2 introduces the overview of our framework.
Section 3 describes the objective function and optimization solution of DCLMM. Then
experimental results and analyses are shown in Sect. 4. Finally, Sect. 5 draws our
conclusions.

2 Overview of Our Framework

We first present the formulated definition of cross-media retrieval problem. Let
D ¼ Dð1Þ; . . .;DðsÞ� �

be the labeled cross-media dataset, where s is the number of

media types, and DðiÞ ¼ xðiÞp ; yðiÞp
n olðiÞ

p¼1
, xðiÞp 2 R

dðiÞ is the p-th data of i-th media, dðiÞ is

the dimension of feature vector of i-th media, lðiÞ is the number of labeled data of i-th

media, yðiÞp 2 R
c is the corresponding label of sample xðiÞp , and c is the number of

semantic category. Let D� ¼ Dð1Þ�; . . .;DðsÞ�� �
be the unlabeled cross-media dataset,

where DðiÞ� ¼ xðiÞp
n oNðiÞ

p¼lðiÞ þ 1
, NðiÞ ¼ lðiÞ þ uðiÞ, uðiÞ is the number of unlabeled data of

i-th media. Given a query of any media type, the goal of cross-media retrieval is to
retrieve the most related results of all media types.

The framework of our DCLMM is shown in Fig. 1. As we can see from the figure,
the proposed approach consists of two main phases. Firstly, we construct s Gram
matrices (with label correlations embedded) by kernel transformation, and a multi-
modal manifold. Then we exploit a cross-media similarity graph in a common

Multi-modal similarity graph in 
common representation space

Image space

Text space
.
.
.

Cross-media data

Audio space

Gram matrices with label embedded

Distance-preserving correlation learning

Multi-modal Manifold

Image

Text ...

Audio

Image
Text

Audio

...

Image data
Text data

Audio data

...

Labeled data
Unlabeled data

Preserve Locality

Fig. 1. Framework of proposed DCLMM algorithm.
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representation space by distance-preserving correlation learning on the Gram matrices
and multi-modal manifold. Our approach focuses on finding a nonlinear function of
each media type that projects all media objects into common feature space. In projected
common space, the similarity of samples can be measured by traditional methods.

3 Semisupervised Distance-Preserving Correlation Learning
and Multi-modal Manifold Regularization

3.1 Objective Function of DCLMM Algorithm

Now we begin with the cost function according to the initial label information on
training dataset. The loss of label consistency is set to be the Frobenius norm least
squares, which is defined as

lossðlabelÞ ¼
Xs
i¼1

jjYðiÞ � FðiÞ
l jj2F ð1Þ

where FðiÞ
l ¼ ðf ðiÞðxðiÞ1 Þ; . . .; f ðiÞðxðiÞlðiÞ Þ; 0; . . .; 0Þ 2 R

c�NðiÞ
is the mapped feature matrix

of lðiÞ labeled samples from i-th media, 0 2 R
c denotes zero vector for an unlabeled

sample, f ðiÞðxðiÞp Þ represents for the nonlinear mapping function of sample xðiÞp .

YðiÞ ¼ ðyðiÞ1 ; . . .; yðiÞlðiÞ ; 0; . . .; 0Þ 2 R
c�NðiÞ

represents for the label matrix comprising lðiÞ

known tags of labeled samples with yðiÞp ¼ 0, for all p[ lðiÞ. jj � jjF is the Frobenius
norm. This loss function is the reconstruction error, which restricts media samples are
in accordance with their initial semantic labels.

For comprehensively mining the semantic correlation of inter-modality, we make
full use of the concurrence information (positive correlation) and exclusive information
(negative correlation) among different media types by distance-preserving correlation
learning. This idea is achieved by minimizing (maximizing) the distances of similar
(dissimilar) media samples. Here similar media samples refer to those that are close to
each other in common representation space, or from the same semantic category;
otherwise, the dissimilar media samples. Then, a contrastive loss for labeled samples to
capture the distance-preserving correlation is designed as follows:

lossðdp corÞ ¼ kmij
Xs
i¼1

Xs
j¼iþ 1

jjFðiÞ
mij � FðjÞ

mijjj2F � kdij
Xs
i¼1

Xs
j¼iþ 1

jjFðiÞ
dij � FðjÞ

dijjj2F ð2Þ

where FðiÞ
mij and FðjÞ

mij represent for two mapped feature matrices of media samples from

i-th media and j-th media with the same semantic labels. Conversely, FðiÞ
dij and FðjÞ

dij

denote two mapped feature matrices of media samples with different semantic labels.
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Considering the complexity of cross-media low-level features, we use the idea
surrounding regularization in vector-valued reproducing kernel Hilbert space (RKHS),
and corresponding norm is defined as

normKðFð1Þ; . . .;FðsÞÞ ¼ cK
Xs
i¼1

jjFðiÞjj2K ð3Þ

where cK controls the complexity of the function in ambient space. This term ensures
that the solution is smooth with respect to the ambient space.

Next, we will show how to incorporate the geometry knowledge of distribution of
both labeled and unlabeled cross-media samples. The support of probability distribu-
tion is a compact submanifold of the ambient space, which can be empirically repre-
sented by an undirected adjacency graph. We construct a multi-modal manifold by a
multi-modal similarity graph G ¼ ðV ;EÞ, where vertex set V contain total media
samples of all modalities. The edge set E connect samples with symmetric, nonnegative
weight matrix W, which is defined as follows:

W ¼
W11 . . . aW1s

..

. . .
. ..

.

aWs1 � � � Wss

0
B@

1
CA ð4Þ

where a is a trade-off parameter for the similarity effect between intra-modality and

inter-modality. And the similarity of samples xðiÞp and xðjÞq is defined as

Wij
pq ¼

exp �jjxðiÞp � xðjÞq jj2=n2
� �

if i ¼ j and ðxðiÞp 2 NðxðjÞq Þ or xðjÞq 2 NðxðiÞp ÞÞ
1 if i 6¼ j and yðiÞp ¼ yðjÞq
0 otherwise

8><
>:

ð5Þ

where NðxðiÞp Þ is a set consisting of the k-nearest neighbors of xðiÞp . If samples xðiÞp and

xðjÞq share a same modality where i ¼ j, the similarity between them is measured

according to their neighborhood relationship. And if samples xðiÞp and xðjÞq are from
different modalities, and correspond to a same semantic tag, the similarity is set to be 1.
Laplacian L of graph G is defined as L ¼ D�W, where D is a diagonal matrix with
Dpp ¼

P
q
Wpq. Then, an intrinsic norm of data-driven smoothness is given by

normMðFð1Þ; . . .;FðsÞÞ ¼ kM
N̂2

X̂N
p¼1

X̂N
q¼1

Wpqjjfp � fqjj2 ¼ kM
N̂2

trðFLFTÞ ð6Þ

where N̂ is the number of the total samples from all modalities, 1
N̂2 is the natural scale

factor for the empirical estimate of Laplace operator. trðZÞ is the trace of a matrix Z.
F ¼ ðFð1Þ; . . .;FðsÞÞ denotes the projected data of all modalities in the common space.

34 T. Wang et al.



Finally, we obtain our objective function by adding function (1), (2), (3) and (6) as

argmin
FðiÞ2Rc�NðiÞ

Xs
i¼1

jjYðiÞ � FðiÞ
l jj2F þ kmij

Xs
i¼1

Xs
j¼iþ 1

jjFðiÞ
mij � FðjÞ

mijjj2F � kdij
Xs
i¼1

Xs
j¼iþ 1

jjFðiÞ
dij � FðjÞ

dijjj2F

þ cK
Xs
i¼1

jjFðiÞjj2K þ kM
N̂2

trðFLFTÞ

ð7Þ

3.2 Optimization Solution

We move to the detail of solving this optimization problem in this section. The classical
Representer Theorem states that the minimizer f ðiÞ� of optimization problem (7) is a
linear combination of kernel functions, which can be defined as

f ðiÞ�ðxðiÞÞ ¼
XNðiÞ

t¼1

b
ðiÞ
t kðxðiÞt ; xðiÞÞ ð8Þ

where b
ðiÞ
t ¼ ½bðiÞ1t ; bðiÞ2t ; . . .;bðiÞct �T 2 R

c; 1� t�NðiÞ is the vector to be estimated. The
matrix form of target function is that

FðiÞ� ¼ BðiÞKðiÞ ð9Þ

where BðiÞ ¼ ðbðiÞ1 ; . . .; b
ðiÞ
NðiÞ Þ 2 R

c�NðiÞ
is weight coefficient matrix, Gram matrix

KðiÞ ¼ ðkðxðiÞp ; xðiÞq ÞÞ 2 R
NðiÞ�NðiÞ

consists of both labeled and unlabeled samples of i-th

media. We choose a Gaussian kernel as kðxðiÞp ; xðiÞq Þ in our paper, which is given by

kðxðiÞp ; xðiÞq Þ ¼ exp �jjxðiÞp � xðiÞq jj2=n2
� �

ð10Þ

and we have F ¼ ðBð1ÞKð1Þ; . . .;BðsÞKðsÞÞ.
Substituting (9) in the optimization problem (7), we arrive at the following dif-

ferentiable objective function of variable BðiÞ

argmin
BðiÞ2Rc�NðiÞ

Xs
i¼1

jjYðiÞ � BðiÞKðiÞJðiÞjj2F þ kmij
Xs
i¼1

Xs
j¼iþ 1

jjBðiÞKðiÞ
mijJ

ðiÞ
inter � BðjÞKðjÞ

mijJ
ðjÞjj2F

� kdij
Xs
i¼1

Xs
j¼iþ 1

jjBðiÞKðiÞ
dijJ

ðiÞ
inter � BðjÞKðjÞ

dijJ
ðjÞjj2F þ cK

Xs
i¼1

trðBðiÞKðiÞBðiÞT Þ

þ cM
N̂2

Xs
i¼1

Xs
j¼1

trðBðiÞKðiÞLijKðjÞBðjÞT Þ

ð11Þ
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where JðiÞ ¼ diagð1; . . .; 1; 0; . . .; 0Þ is the NðiÞ � NðiÞ diagonal matrix where the first

lðiÞ diagonal positions are 1, and the rest 0. KðiÞ
mij and KðjÞ

mij denote two Gram matrices of

media objects from i-th media and j-th media with the same labels, whereas KðiÞ
dij and

KðjÞ
dij represent for two Gram matrices of that with different labels. JðiÞinter is the matrix for

coordinating different sample sizes of i-th media and j-th media.
Now, the minimization problem of (7) is reduced to optimizing over s finite

dimensional coefficient matrices BðiÞ; i ¼ 1; . . .; s in function (11). We utilize an
alternating optimization method to solve function (11). Differentiating function (11)
with respect to BðiÞ and comparing to zero, we have

ðBðiÞKðiÞJðiÞ � YðiÞÞJðiÞKðiÞ þ kmij
Xs
j¼iþ 1

ðBðiÞKðiÞ
mijJ

ðiÞ
inter � BðjÞKðjÞ

mijJ
ðjÞÞJðiÞTinterK

ðiÞ
mij

� kdij
Xs
j¼iþ 1

ðBðiÞKðiÞ
dijJ

ðiÞ
inter � BðjÞKðjÞ

dijJ
ðjÞÞJðiÞTinterK

ðiÞ
dij

þ cKB
ðiÞKðiÞ þ cM

N̂2
BðiÞKðiÞLiiKðiÞ þ cM

N̂2

X
j6¼i

BðjÞKðjÞLjiKðiÞ ¼ 0

ð12Þ

which can be rewritten as

BðiÞ ¼
kmij

Ps
j¼iþ 1

BðjÞKðjÞ
mijJ

ðjÞJðiÞ
T

interK
ðiÞ
mij � kdij

Ps
j¼iþ 1

BðjÞKðjÞ
dijJ

ðjÞJðiÞ
T

interK
ðiÞ
dij

þYðiÞJðiÞKðiÞ � cM
N̂2

P
j 6¼i

BðjÞKðjÞLjiKðiÞ

0
BB@

1
CCA

kmij
Xs
j¼iþ 1

KðiÞ
mijJ

ðiÞ
interK

ðiÞ
mij � kdij

Xs
j¼iþ 1

KðiÞ
dijJ

ðiÞ
interK

ðiÞ
dij þKðiÞJðiÞKðiÞ þ cKK

ðiÞ þ cM
N̂2

KðiÞLiiKðiÞ
 !�1

ð13Þ

In view of (13), we propose an iterative optimization approach to minimize the

objective function. First, we initialize each weight matrix BðiÞ
0 with a random value.

Then, in each iteration, we calculate Bð1Þ
tþ 1; . . .;B

ðsÞ
tþ 1

n o
under the condition of given

Bð1Þ
t ; . . .;BðsÞ

t

n o
. The iteration stops when the ratio change of loss value of (11)

between two iterations is less than 1%. We summarize DCLMM algorithm in Algo-

rithm 1. The algorithm requires OðNðiÞ3Þ time complexity involving an inversion and
several multiplications of NðiÞ � NðiÞ matrix in each iteration. In our experiments, we
obtain satisfactory accuracy by only a few iterations, so the time cost is acceptable.

So far, we have learnt s weight matrices BðiÞ; i ¼ 1; . . .; s for different media types,

and each sample xðiÞp is successfully projected into the common feature space

oðiÞp ¼PNðiÞ
t¼1 b

ðiÞ
t kðxðiÞt ; xðiÞp Þ 2 R

c. In our common feature space, we use k-nearest
neighbors (KNN) classifier to measure the cross-media similarity for cross-media
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retrieval as [5, 8, 11], where the similarity of sample oðiÞp and oðjÞq is defined as the
marginal probability.

Algorithm 1: Common Representation Learning with DCLMM
Input:  

The matrix of ( ) ( ) ( )i i iN l u= + samples 
( ) ( )( ) i ii N d×∈X 

The matrix of labels 
( )( ) ii c l×∈Y 

Parameters , , ,mij dij K Mλ λ γ γ
Output: Common feature space
1. Initialize each projection matrix ( )

0
iB with a random value and set t = 0;

2. Calculate the Gram matrix ( )iK by (10), and calculate the weight matrix W by (4);
3. Compute the Laplacian matrix of multi-modal graph ˆˆN N×∈L  ;  
4. repeat
5. Compute the loss value according to (11);
6. Update ( )

1
i

t+B according to following equation:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

11( )
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( ) ( ) ( ) ( ) ( )
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≠
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 (14)

7. t = t + 1;
8. until Convergence
9. Compute common feature space according to (9).

4 Experimental Results

This section describes our experiments on two real-world datasets to validate the
efficiency of DCLMM. We compare our results with five state-of-the-art methods,
specifically, JGRHML [7], CMCP [4], HSNN [11], JRL [5] and SSRCL [8].

4.1 Datasets and Evaluation Metric

Wikipedia dataset [12] is the most widely-used dataset for cross-media retrieval. All
articles are organized into 29 categories, and 10 most populated categories are pre-
served at last. Wikipedia dataset consists of 2866 image/text pairs, and is randomly
split into 2173 pairs for training and 693 pairs for testing.

XMedia dataset [7] consists of 5000 texts, 5000 images, 1140 videos, 1000 audios,
and 500 3D models in our experiments. They are organized into 20 categories, and is
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randomly divided into 10112 media data for training and 2528 media data for testing.
The random division is performed on each media type with the ratio of training set to
testing set being 4:1.

We extract 4096 dimensional convolutional neural network (CNN) feature from the
highest layer (called FC7) of VGGNet [13] for each image, 3000 dimensional bag-of-
words (BoW) feature for each text. And an audio clip is represented by 29 dimensional
MFCC feature, a video clip is represented by 4096 dimensional CNN feature, a 3D
model is represented by the concatenated 4700 dimensional vector of a set of Light-
Field descriptors [14]. All experimental methods adopt the same features in our
experiments for fair comparison.

We evaluate the retrieval results by precision-recall (PR) curves and mean average
precision (MAP), which are widely used in information retrieval area. In the experi-
ments, we set kmij ¼ 0:01; kdij ¼ 0:0009; cK ¼ 0:0006; cM ¼ 7;K ¼ 150 and a ¼ 0:05
for the two datasets according to the five-fold cross validation result on training set.

4.2 Experimental Results and Analyses

We conduct two cross-modal retrieval experiments on Wikipedia and XMedia datasets:
bi-modal retrieval and multi-modal retrieval. Bi-modal retrieval is retrieving one
modality in testing set using a query of another modality, and multi-modal retrieval is
retrieving multiple modalities in testing set using a query of any modality.

Table 1 lists the MAP scores of bi-modal retrieval on Wikipedia dataset with our
DCLMM and five state-of-the-art methods. The “Image ! Text” task means we use an
image to retrieval texts. Comparing with the state-of-the-art method, DCLMM
improves the average MAP from 48.28% to 49.71% on bi-modal retrieval tasks.
Table 2 shows the MAP scores of bi-modal retrieval on XMedia dataset with all
approaches. Compared with the five methods, our DCLMM improves the average
MAP from 49.32% to 55.49%. We also observe that the MAP scores of our method
improve the most for the retrieval tasks including Audio or 3D model with small
sample size. For example, in “Text ! Audio” task, comparing with SSRCL, our map
score increases by 15.59%. It suggests that our DCLMM is attractive in practical
applications when training samples are insufficient. DCLMM performs better than
other methods so far, which is due to that our method learn the distance-preserving
correlation in a kernel based regularization framework. This strategy exploits not only
positive but also negative semantic correlation from high dimensional space, and more
rich complementary information of media samples can be explored.

Table 1. MAP scores of bi-modal retrieval on Wikipedia dataset with different methods

Dataset Task JGRHML CMCP HSNN JRL SSRCL DCLMM

Wikipedia dataset Image ! Text 0.2633 0.3879 0.4740 0.5150 0.5180 0.5270
Text ! Image 0.2074 0.3508 0.4239 0.4382 0.4476 0.4672

Average 0.2354 0.3694 0.4490 0.4766 0.4828 0.4971

38 T. Wang et al.



Figure 2 shows the PR curves of bi-modal retrieval with all methods on Wikipedia
dataset. For the limitation of pages, we just shows part PR curves of bi-modal retrieval
on XMedia dataset in Fig. 3. It can be seen that the results of PR curves are consistent
with MAP scores, where our DCLMM achieves the highest precision at most levels of
recall rate on two datasets, outperforming the five compared approaches. It should be
owning to that our DCLMM models the geometry distribution of all heterogeneous
data in a multi-manifold, which integrates the incongruous distribution information of
media data from different modalities to describe the diversified relations. Based on
multi-manifold regularization, DCLMM imposes smoothness constraints of possible
solutions to boost retrieval precision.

Table 2. MAP scores of bi-modal retrieval on XMedia dataset with different methods

Dataset Task JGRHML CMCP HSNN JRL SSRCL DCLMM

XMedia dataset Image!Text 0.4606 0.7099 0.7734 0.8837 0.9014 0.9045
Image!Audio 0.1627 0.3703 0.3814 0.2417 0.3480 0.4271
Image!Video 0.2978 0.4735 0.4840 0.4688 0.5223 0.559
Image!3D 0.4508 0.5410 0.5242 0.5501 0.5912 0.7127
Text!Image 0.3626 0.7269 0.7969 0.8801 0.8951 0.9022
Text!Audio 0.1766 0.3057 0.3150 0.3283 0.3725 0.5284
Text!Video 0.3945 0.4030 0.4193 0.5125 0.5497 0.5496
Text!3D 0.4958 0.4631 0.4848 0.5343 0.5969 0.7311
Audio!Image 0.1108 0.3790 0.3663 0.3204 0.3947 0.469
Audio!Text 0.1346 0.3370 0.2953 0.3612 0.4237 0.5431
Audio!Video 0.1313 0.1442 0.2046 0.2080 0.2372 0.3156
Audio!3D 0.1761 0.2093 0.2380 0.2889 0.3312 0.4035
Video!Image 0.2450 0.4334 0.4856 0.4493 0.5537 0.5586
Video!Text 0.3260 0.3525 0.3842 0.5081 0.5723 0.5776
Video!Audio 0.1443 0.1533 0.1650 0.2065 0.2355 0.305
Video!3D 0.2327 0.3251 0.3344 0.3462 0.4088 0.4711
3D!Image 0.4205 0.5086 0.5069 0.5273 0.6038 0.6542
3D!Text 0.4961 0.4168 0.4087 0.5267 0.6236 0.6811
3D!Audio 0.1531 0.1426 0.1669 0.2390 0.2989 0.3552
3D!Video 0.2170 0.3476 0.3220 0.3067 0.4026 0.4434

Average 0.2794 0.3871 0.4028 0.4344 0.4932 0.5549

PR curves of image  text on Wikipedia dataset PR curves of text image on Wikipedia dataset

Fig. 2. Precision-recall curves of bi-modal retrieval on Wikipedia dataset.
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Table 3 lists the MAP scores of multi-modal retrieval on Wikipedia dataset with all
methods. Comparing with the state-of-the-art method, DCLMM improves the average
MAP from 53.17% to 54.97%. It further demonstrates the feasibility and effectiveness
of our proposed method for cross-media retrieval. For challenging XMedia dataset, we
use one media type to retrieve multiple media types. For example, we use an image to
retrieve “images”, “images and texts”, “images, texts and audios”, and so on. Figure 4
shows the PR curves of retrieval tasks where query types are image and video for
length limitation. We find when image or text are added into the retrieved media types,
the precision increases, and when video, audio and 3D model are added into the
retrieved media types, the precision decreases. This is probably due to the large sample
size and relatively good low-level features of image and text; on the other hand, the
difficulty of retrieval increases with the increase of retrieved media types.

PR curves of 3D model image on XMedia datasetPR curves of image 3D model on XMedia dataset 

PR curves of video audio on XMedia dataset PR curves of audio video on XMedia dataset 

Fig. 3. Precision-recall curves of bi-modal retrieval on XMedia dataset.

Table 3. MAP scores of multi-modal retrieval on Wikipedia dataset with different methods

Dataset Task JGRHML CMCP HSNN JRL SSRCL DCLMM

Wikipedia
dataset

Image ! Multiple* 0.2133 0.3193 0.4020 0.4259 0.4310 0.4436
Text ! Multiple 0.3219 0.4787 0.5914 0.6298 0.6323 0.6558

Average 0.2676 0.3990 0.4967 0.5279 0.5317 0.5497
*Q ! Multiple means that Q serves as the query and the results include images and texts
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5 Conclusion

A semisupervised cross-media retrieval approach with distance-preserving correlation
learning and multi-modal manifold regularization (DCLMM) has been proposed in this
paper. The proposed method jointly models not only the low-level feature correlation,
but also the positive semantic and negative semantic information of all media types in a
unified kernel based framework, which takes full advantage of the potential informa-
tion. Besides, DCLMM constructs a multi-modal manifold to better exploit the
geometry distribution of all cross-media samples, which further improves the accuracy.
Extensive experiments are conducted on two cross-media datasets show the effec-
tiveness of our approach. In the future, we will further optimize the algorithm by
modeling more kinds of correlations, such as fine-grained information.
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Abstract. Machine learning algorithms generally suffer from a prob-
lem of explainability. Given a classification result from a model, it is
typically hard to determine what caused the decision to be made, and
to give an informative explanation. We explore a new method of gen-
erating counterfactual explanations, which instead of explaining why a
particular classification was made explain how a different outcome can
be achieved. This gives the recipients of the explanation a better way
to understand the outcome, and provides an actionable suggestion. We
show that the introduced method of Constrained Adversarial Examples
(CADEX) can be used in real world applications, and yields explana-
tions which incorporate business or domain constraints such as handling
categorical attributes and range constraints.

Keywords: Explainable AI · Adversarial examples ·
Counerfactual explanations

1 Introduction

The recent explosion in the popularity of machine learning methods has led to
their wide adoption in various domains, outside the technology sector. Machine
learning algorithms are used to predict how likely convicted felons are to recidi-
vate, which candidates should be interviewed for a job, and which bank customers
are likely to default on a given loan. These algorithms assist human decision
making, and in some cases may even replace it altogether. When humans are
responsible for a decision, we can ask them to explain their thought process
and give a reason for the decision (although often that is not done). Asking a
machine learning algorithm to explain itself is a challenging problem, especially
in the case of deep neural networks.

Throughout this work, we will refer to the following scenario. Assume that a
bank has trained a deep learning model to predict which of its customers should
be eligible for a loan. The input is a vector that represents the customer, using
attributes such as age, employment history, credit score, etc. The output is a
label which says whether said customer is likely to repay a loan or default. Now
c© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11670, pp. 43–56, 2019.
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suppose that a customer requests a loan, and is denied based on the decision of
the algorithm. The customer would obviously like to know why he or she was
rejected, and what prompted the decision. The bank, on the other hand, is faced
with two problems:

– The bank has difficulty giving a meaningful explanation. Various explanation
methods exist, but it is hard to determine which ones give valuable feedback
to the customer.

– The bank doesn’t want to expose its algorithm, or even the full set of features
it uses for classification. Credit scoring and loan qualification mechanisms are
typically closely guarded by most banks.

The Constrained Adversarial Examples (CADEX) method presented here
aims to answer both problems. Instead of directly explaining why a model clas-
sified the input to a particular class, it finds an alternate version of the input
which receives a different classification. In the bank scenario it produces an alter-
nate version of the customer, which would get the loan. The customer can act
on this explanation in order to receive a loan in the future, without the bank
revealing the inner working of its algorithms. Such explanations are referred to
as Counterfactual Explanations. As shown in a recent study of AI explainability
from the perspective of social sciences by [9], people tend to prefer contrastive
explanations over detailed facts leading to an outcome, and that they find them
more understandable. In fact, when people explain why an event occurred, they
tend to explain it in comparison to another event which did not occur.

The CADEX method offers several improvements over current techniques for
finding counterfactual explanations:

– It supports directly limiting the number of changed attributes to a predeter-
mined amount.

– It allows specifying constraints on the search process, such as the direction
attributes are allowed to change.

– It fully supports categorical one-hot encoded attributes and ordinal
attributes.

– It surpasses current explainability methods by providing better, more under-
standable explanations.

2 Related Work

2.1 Explainability

As machine learning models become increasingly complex and have a large num-
ber of internal weights and dependencies, it becomes more and more challenging
to explain how they work, and why they produce the predictions they make.
Explainability of machine learning models has been an active topic of research
recently, and multiple methods and techniques have been developed to try and
address these difficulties from several points of view.
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Some methods attempt to explain what a model has learned in its training
phase. Such methods examine the weights of the trained model and present them
in an interpretable way. These methods are particularly common for CNNs, and
so the explanations have a highly visual nature. A recent survey [15] mentions
many such techniques, which include visualizing the patterns learned in each
layer and generating images which correspond to feature maps learned by the
network. However, these methods are all specifically tailored to work on CNNs
and don’t generalize to any black box model.

Other methods seek to explain the output of a classifier for a specific given
input. These methods aim to answer the question: “why did the model predict
this class?”, by assigning a weight or significance score to the individual features
of the input. Most notable in this category are LIME [11] and SHAP [8].

LIME takes a given input, and creates different versions of it by zeroing
various attributes (or super pixels in the case of images), and then builds a
local linear model while weighting the inputs by their distance to the original.
The model is trained to minimize the number of non-zero coefficients by using a
method such as LASSO. This results in an explainable linear model where the
model’s coefficients act as the explanation, and describe the contribution of each
attribute (or super pixel) to the resulting classification.

SHAP attempts to unify several explanation methods such as LIME and
DeepLift [12], in a way that the feature contributions are given in Shapley values
from game theory, which have a better theoretic grounding than those produced
by LIME. For tabular data the method is called Kernel SHAP, which improves
LIME by replacing the heuristically chosen loss function and weighting kernel
with ones that yield Shapley values.

Both methods produce an output that highlights which attributes con-
tributed most to the classification, and which reduced the probability of classifi-
cation. There are several drawbacks to this approach. First, it typically requires
a domain expert to understand the significance of the output, and what the val-
ues mean for the model. Second, the explanation they provide is not actionable.
In the bank scenario, they can tell the user, for example, that she didn’t get the
loan because of her salary and age. They won’t say what she needs to do to get
the loan in the future - should she wait until she’s older? How much older? Or
can she change another attribute such as education level and get the loan?

Some recent methods try to provide such explanations by looking for coun-
terfactuals. A counterfactual explanation answers the question: “Why was the
outcome Y observed instead of Y ∗?”. The more specific formulation for machine
learning models is: “If X had the values of X∗, the outcome Y ∗ would have
been observed instead of Y ”, where X represents the input to the model. By
observing the difference between X and X∗, we can provide a “what-if” scenario
which is actionable to the end user. In the bank scenario the explanation could
be, for example, “If you had $5000 instead of $4000 in your account you would
have gotten the loan”.

A näıve way of finding counterfactuals would be to simply find the near-
est training set instance to the input, which receives a different classification.
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The limitation in that approach is that it is limited by the size and quality
of the training set. It cannot find a counterfactual that isn’t explicitly in the
set. Additionally, showing the user a counterfactual which represents the details
of another user may not even be legal considering data protection rights and
confidentiality.

[7] finds synthetic counterfactual explanations by sampling from a sphere
around the input in a growing radius, until one is found which classifies differently
than the original. Then, the number of changed attributes is constrained by
iteratively setting them to the value of the original as long as the same contrastive
classification is kept. However, the method is sensitive to hyperparameter choices
which affect how close the found counterfactuals will be to the original, and the
paper doesn’t suggest how to determine their optimal value.

[14] generates counterfactuals by optimizing a loss function, which factors
the distance to the desired classification as well as a distance measure to the
original input. The distance measure is used to limit the number of attributes
changed via regularization, but the process of finding the counterfactual requires
iteration over various coefficient values, and doesn’t allow a hard limit on the
number of changed attributes. In addition, it doesn’t have a facility to handle
one-hot encoded categorical attributes.

2.2 Adversarial Examples

Adversarial examples were discovered by [13], who showed that given a trained
image classifier, one could take a correctly classified image and perturb its pixels
by a small amount which is indistinguishable to the human eye, and yet causes
the image to receive a completely different label by the classifier. [4] developed
an efficient way of finding adversarial examples called FGSM, which uses the
neural network’s loss function’s gradient to find the direction where adversarial
examples can be found. [6] improved the technique and enabled it to target a
specific desired classification, as well as using a more iterative approach to find
the adversarial examples.

Most of the discussion around adversarial examples has been in the context
of security and attacks against models deployed for real world applications. [10]
demonstrate an attack against an online black-box classifier, by training a dif-
ferent classifier on a synthetic dataset and showing that adversarial examples
found on that classifier also fooled the online one. They also show that multiple
types of classifiers can be attacked that way, such as linear regression, decision
trees, SVMs, and nearest neighbours. Others show that adversarial examples can
carry over to the real world by printing or 3D printing them, and fooling camera
based classifiers [1,2,6].

CADEX uses adversarial examples to facilitate an understanding of the model
instead of attacking or compromising it, by finding counterfactual explanations
close to the original input. The search process is constrained to enforce domain
or business constraints on the desired explanation.
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3 Generating Explanations

We present the CADEX method for generating explanations for deep learning
models. Let f(x) = ŷ, where f is the model, x is a specific input sample, and ŷ is
the output class. The method aims to find x∗ for which f(x∗) = y∗, where ŷ �= y∗,
and x∗ is as close as possible to x while satisfying a number of constraints. This
allows us to present the user a “what if” scenario. In the case of the bank loan
application, the user can be told: “if you had the attributes of x∗, you would get
the loan”. That is, in that scenario ŷ = reject and y∗ = approve. The full
algorithm is listed as Algorithm 1. The code used to implement the method and
perform the evaluation can be found at https://github.com/spore1/cadex.

3.1 Finding Adversarial Examples

The main motivation in CADEX is to find the explanations through adversarial
examples. Adversarial examples work in a very similar sense, by changing the
model input with a minimal perturbation so that it receives a different classifi-
cation.

Given the original input x, we can calculate the loss of the model between
the actual output ŷ, and the desired target classification y∗. This is typically the
cross entropy loss between the predicted class probabilities and the desired one.
Then, we take the gradient of the loss with respect to the input.

∇Loss =
∂

∂x
Loss(ŷ, y∗) (1)

We then follow the gradient in input space using an optimizer such as Adam [5]
or RMSProp, until f(x∗) = y∗, which is our target classification. This typically
results in an input that lies right on the decision boundary between the classes.

3.2 Constraining the Number of Changed Attributes

Following the method above will indeed find adversarial examples that are close
to the original sample. However, since we calculate the gradient in input space
and don’t constrain it, any number of attributes in x may change. Typically, the
gradient is nonzero for all attributes, meaning that the resulting x∗ is different
than x in all attributes. The issue with this approach is that there could be
dozens or hundreds of different attributes, and showing the user an explanation
which is different in so many attributes is hardly useful, and doesn’t constitute
an explanation the user can act on. Ideally, we would like to limit the changed
attributes to a small number, so that it is perceived as actionable by a human.

Previous work such as [14] has attempted to limit the number of changed
attributes by adding a form of L1 regularization to the loss function. However,
this approach cannot guarantee the number of changed attributes will in fact be
under an acceptable amount.

We limit the number of changed attributes by applying a mask to the gra-
dient. The mask is used to zero the gradient in all attributes except the ones

https://github.com/spore1/cadex
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(a) Before adjustment (b) After adjustment

Fig. 1. Visual explanation of categorical attribute adjustment. On the left, the internal
state of the algorithm has category A with the highest value, followed by B. We assume
that A is the categorical value of the original sample. Category B is above the predefined
threshold of 0.2, so its attribute is set to one and the rest are zeroed.

we wish to allow to change. When this gradient is applied to the input, only
the selected attributes will be modified. The decision of where to zero out the
gradient is performed as follows. First, get the gradient of the loss function with
respect to the input as in Eq. 1. Then, sort the gradient attributes by their abso-
lute value from large to small, and take the top nchange attributes, where nchange

is the number of desired attributes to change (e.g. 3 or 5). Then, prepare a mask
which is set to 1 for the top nchange attributes and zero elsewhere. At each iter-
ation of gradient descent, after getting the gradient but before applying it to the
weights by the optimizer, multiply the gradient by the mask. Then proceed as
usual to update the weights.

3.3 Constraining the Direction of the Gradient

In addition to the number of changed attributes, we may want to place another
constraint on the search process. The gradient may change each attribute in
any direction - positive or negative - which depending on context may not be
acceptable. Consider that in the bank scenario, the input may contain attributes
such as “age” or “number of children”. The algorithm may suggest that the user
would get the loan if she were younger, or if she had one less child. For obvious
reasons, no bank would ever want to make such a suggestion. We therefore wish
to constrain the direction that some of the attributes would be permitted to
change in.

We introduce a new parameter C which is used to build a mask to further
constrain the gradient. This parameter is a vector of the same dimensions as
the model’s input, and is defined to be positive for each attribute that may
only increase in value, negative for those that may only decrease, and 0 where
the value may go in any direction. We assume that this will be defined by a
domain expert, who understands each attribute in the data and the implications
of changing it. Then, we build the following mask, for each attribute i in the
input vector:
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Algorithm 1. Cadex - counterfactual explanation for a given input
Input: x: original input sample

f(x): trained model
target: desired output class for input x
max epochs: maximum number of epochs to allow
nchange: maximum number of changed attributes
C: directional constraints
nskip: number of attributes to skip from the top
tflip: threshold to flip categorical attributes

Output: x∗: modified input sample x which classifies as target
1 x∗ ← x

2 ∇0 ← ∂
∂x

Loss(f(x), target)
3 ∇0 ← ∇0 ∗ Cmask // See eq 2

4 i ← Argsort(∇0) in descending order
5 mask ← 0
6 mask

[
i[nskip..nskip + nchange]

] ← 1
7 result ← ∅; epoch ← 0
8 while epoch < max epochs and result = ∅ do
9 ∇epoch ← ∂

∂x
Loss(f(x), target) ∗ mask

10 x∗ ← x∗−Adam(∇epoch)
11 x∗ ← FlipCategorical(x∗, tflip)
12 xadjusted ← ApplyConstraints(x∗)
13 if f(xadjusted)=target then
14 result ← xadjusted

15 end
16 epoch ← epoch + 1

17 end
18 return result

Cmaski
=

⎧
⎪⎨

⎪⎩

1 if Ci > 0 and ∇Lossi < 0 or
Ci < 0 and ∇Lossi > 0

0 else
(2)

Note that if C is positive, we allow only a negative gradient, since the gradient
is subtracted from the current input at each step of gradient descent, and vice
versa when C is negative.

The resulting mask is used during training similar to the process described
in Sect. 3.2. In fact, the two techniques can be used together, by first using the
directional constraint function to zero the gradient where needed, followed by
selecting the top nchange attributes. This way, the selected attributes are those
which change in the allowed direction.
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Algorithm 2. FlipCategorical

Input: x∗: modified input sample
tflip: threshold

Output: x∗ with flipped attributes where neccessary
1 result ← x∗

2 foreach attr set in categorical attributes of x∗ do
3 i ← Argsort(x∗[attr set]) in decreasing order
4 if x∗[i[1]] > tflip then
5 result[attr set] ← 0
6 result[i[1]] ← 1

7 end

8 end
9 return result

Algorithm 3. ApplyConstraints

Input: x∗: modified input sample
Output: x∗ with adjusted attributes

1 result ← x∗

2 foreach attr set in categorical attributes of x∗ do
3 i ← Argmax(x∗[attr set])
4 result[attr set] ← 0
5 result[i] ← 1

6 end
7 foreach attr in ordinal attributes of x∗ do
8 result[attr] ← Round(result[attr])
9 end

10 return result

3.4 Handling Categorical and Ordinal Attributes

Categorical attributes are frequently found in many real world datasets. They
pose a challenge to the algorithm, which relies on changing the attributes grad-
ually by following the gradient. Categorical attributes are typically one-hot
encoded, which means that each attribute may only be set to 0 or 1, and only
one attribute per attribute set must be set to 1 at any given time. By näıvely
following the gradient, the algorithm will easily violate these constraints.

We use the following method to deal with categorical attributes. During
training, we continue to treat the categorical attributes as any other attribute,
in the sense that they are allowed to change gradually by the gradient. Inter-
nally, there could be a moment where the representation of the modified input
sample violates the rules of one-hot encoded attributes, but that is acceptable
as long as we don’t return this as the final result. At each epoch, two extra steps
are performed. First, a check is made to determine whether certain categorical
attributes need to be “flipped”, that is to set the value 1 to a different category
than that of the original. Assuming that an “attribute set” is defined to be the
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set of attributes that represent a one-hot encoded categorical value, then for
each attribute set we find the second highest valued attribute, and if it’s above
a threshold tflip we set it to 1 and zero the rest. The reasoning behind this is
that the highest attribute would be that which was equal to one in the original
sample, and the second highest is the one that has been most affected by the
gradient. This is illustrated visually in Fig. 1 and described in Algorithm 2. The
threshold is a hyper-parameter which tunes how quickly the algorithm choses to
change the categorical attributes.

Additionally, at each epoch we need to determine whether the stopping con-
dition has been met, which is that the modified observation is classified as the
desired label. We test this against an adjusted version of the observation, where
the highest attribute in each attribute set to one and the rest to zero. This means
we’re testing against the valid version of the observation, where attribute values
can only have values of 1 or 0.

Ordinal attributes - which must hold integer values - are handled in a similar
fashion. During training they are allowed to have any fractional value, but when
evaluating the stopping condition we round them to the nearest integer. The
adjustment process is described in Algorithm 3.

3.5 Finding Alternate Explanations

In some cases, it would be useful to be able to present more than one adversarial
example and show user multiple alternate scenarios with the desired classifica-
tion.

As described in Sect. 3.2, the method sorts the gradient in descending order
of the absolute value of the attributes, and selects the top nchange attributes.
By skipping the first top nskip attributes, the method chooses a different set
of attributes to change and will arrive at a different solution. Thus, by trying
various values for nskip, we can generate multiple alternate adversarial examples.

4 Evaluation

We evaluate CADEX with several different approaches. First, we train a feed-
forward neural network on the German loan dataset [3], which contains 1000
observations of people who applied for a loan and has a range of numeric, cate-
gorical and ordinal attributes. Every categorical attribute was one-hot encoded,
and assigned a readable label from the data dictionary supplied with the data.
Numerical attributes were normalized to have zero mean and unit standard devi-
ation. The dataset was split to 80% training and 20% validation. The model had
one hidden layer with 15 neurons with ReLU activations, and one classification
layer with two output neurons with softmax activations to represent the classi-
fication labels of Approved and Rejected. The model was trained using the
Adam optimizer with early stopping when the validation loss started to increase.

Then for each training set sample, we ran CADEX to find 10 explanations by
varying nskip from 0 to 9. We used ordinal constraints on the attributes Exist-
ing credits and People maintained, and directional constraints to allow
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only positive changed on Age and People maintained. tflip was set to 0.2
for all experiments. We repeated the above process for nchanged = (5, 7, 10).

4.1 Sample Explanation

Table 1 Illustrates three explanations found for one particular validation set sam-
ple, who was refused a loan. The explanations are clear and concise, and can be
immediately understood by non-domain experts. They also provide an interest-
ing insight into the inner workings of the model and what it has managed to
learn. We can see that the individual would have been given a loan if she were
older or had a longer employment history. We can also see it would have been
better for her not to have a checking account at all rather than have a nega-
tive balance. Finally, we learn that had she been a male instead of a female, she
would have gotten the loan which indicates a possible bias of the model to prefer
men over women.

Upon investigation, we found that for all of the women which the model
classified as Reject, we were able to produce a counterfactual that changed the
sex attribute to male, and therefore the model is in fact biased. We conclude
that in addition to providing actionable explanations to an end user, CADEX
is also a valuable method to aid in the understanding the inner workings of the
model.

4.2 Number of Solutions Found

It is possible that for a particular configuration of CADEX parameters, the
method will not converge on an adversarial example. Since we’re zeroing many
of the gradient’s elements, it may get stuck in a local minimum or simply not
point at the right direction to cross the decision boundary. To see how significant
this is, we plot histograms of how many solutions were found per training set
item, for the 3 values of nchanged. As can be seen in Fig. 2, for most samples
CADEX finds at least 3 or 4 explanations which should be enough for any real
world use case.

4.3 Comparison to Training Set Counterfactuals

We compared CADEX to the method of finding the counterfactuals directly from
the training set. For each item in the validation set which was denied a loan, we
find nearest training set sample using L2 distance which receives a different clas-
sification, without limiting the number of attributes that are allowed to change.
We plot the cumulative distribution of the distances compared with those found
using CADEX. As can be seen from Fig. 3, CADEX generates counterfactual
explanations that are much closer to the original.
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Table 1. Sample explanations for one refused loan candidate

Attribute Original Explanation 1 Explanation 2 Explanation 3

Duration 24 21.74 - -

Credit 3123 2563.85 - -

Installment percent 4 3.77 3.59 -

Age 27 29.31 31.09 -

Account status <0 DM No checking account - -

Sex status Female - Male single -

Property Building society
savings agreement

- Real estate -

Employment <1 year - 4..7 years 4..7 years

Purpose Car (new) - - Car (used)

Fig. 2. Number of solutions found by nchanged

4.4 Comparison to SHAP

We compare CADEX to the well known SHAP method [8] mentioned in Sect. 2.1.
SHAP does not directly seek to find counterfactual explanations, but instead
explain the effect of each input attribute on the resulting classification. Posi-
tive SHAP values are interpreted as increasing the likelihood of the observed
classification, and vice versa for the negative values.

When CADEX produces a counterfactual explanation by modifying some
attributes in the original input, we expect SHAP to have non-zero coefficients
for the same attributes, since they are clearly important to the resulting classifi-
cation. We have, however, observed that often that is not the case. We perform
the comparison as follows. For each CADEX explanation found, we find the
attributes which were modified, and count how many of them are zero in the
SHAP coefficients of the original input. We used the SHAP implementation on
github1, and used the kernel explainer with the training set as the background
dataset. From the results in Fig. 4 we see that in over 93% of the cases, at least
one attribute modified by CADEX had a zero SHAP coefficient.
1 https://github.com/slundberg/shap.

https://github.com/slundberg/shap
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Fig. 3. Cummulative distribution of distances found using CADEX vs. training set

Fig. 4. Distribution of zero SHAP attributes, which were used to produce counterfac-
tual explanations by CADEX

From the comparison we can learn that CADEX can find meaningful
attributes to change in the input in order to get a counterfactual explanation,
which are undetected and unexplained by SHAP.

4.5 Transferability

We have assumed so far that the bank in our scenario has used a neural network
to assign the loan classification to its customers. We now consider the case where
the bank has instead used another classifier, which is not a neural network. As
shown by [10,13], adversarial examples found using one model can transfer to
another one trained on different but similar data, even if that model is not a
neural network such as SVM, decision tree and logistic regression. We examined
the transferability of CADEX explanations by training a random forest classifier
on the same training set with 100 trees and the default scikit-learn parameters.
Then, for each validation set item where the classifications of the neural net
model and random forest model agreed, we checked how many explanations were
indeed adversarial on the random forest model. We repeated the experiment 100
times with different random seeds. We found that on average, in 95.2% of the
cases at least one CADEX explanation was adversarial on the random forest
model, and in 87.6% of the time at least two. In total, 86.1% of all generated
CADEX explanations were found to be adversarial on the random forest model.
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This shows that the explanations are largely transferable. For future work,
we can consider training more than one neural network model on the data, and
to search all of them until a transferable explanation is found.

5 Conclusion

We have shown that CADEX is a robust method to produce counterfactual
explanations. Such explanations are by nature highly understandable and action-
able by people who receive them. We have demonstrated that CADEX is rela-
tively easy to compute, and can be used to impose various domain and business
constraints on the search process.

Going back to the bank scenario, we have shown how the hypothetical bank
would benefit from having a way to generate such explanations to its customers.
It can use the technique to allow a form of transparency where none exists today,
without compromising itself. We believe that such approaches become crucial as
machine learning models take a more active part in our daily lives, when we wish
to be able to establish trust between the algorithm and the people it serves, and
as the public demand for explainability increases.
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Abstract. Due to potential applications in chronic disease management
and personalized healthcare, the EHRs data analysis has attracted much
attentions of both researchers and practitioners. There are three main
challenges in modeling longitudinal and heterogeneous EHRs data: het-
erogeneity, irregular temporality and interpretability. A series of deep
learning methods have made remarkable progress in resolving these chal-
lenges. Nevertheless, most of existing attention models rely on capturing
the 1-order temporal dependencies or 2-order multimodal relationships
among feature elements. In this paper, we propose a time-guided high-
order attention (TGHOA) model. The proposed method has three major
advantages. (1) It can model longitudinal heterogeneous EHRs data via
capturing the 3-order correlations of different modalities and the irregu-
lar temporal impact of historical events. (2) It can be used to identify the
potential concerns of medical features to explain the reasoning process
of healthcare model. (3) It can be easily expanded into cases with more
modalities and flexibly applied in different prediction tasks. We evalu-
ate the proposed method in two tasks of mortality prediction and disease
ranking on two real world EHRs datasets. Extensive experimental results
show the effectiveness of the proposed model.

1 Introduction

With the wide use of digital devices and information systems in hospital, a large
volume of Electronic Health Records (EHRs) data have been accumulated dur-
ing the patients’ admissions to the hospital. EHRs consist of sequential records
such as diagnoses, physical test indicators and medication prescriptions. Due to
potential applications in chronic disease management and personalized health-
care, such EHRs data have attracted remarkable attentions of both researchers
and practitioners. Deep learning based methods are widely used to model EHRs
data in healthcare tasks, including disease detection [11,16,23], medical con-
cept embedding [2,5], computational phenotyping [1,3,22] and clinical event
prediction [4,11,25]. However, it is still challenging to improve the quality and
efficiency of the healthcare/disease management by mining large-scale hetero-
geneous EHRs data, where the treatment records provided by senior doctors
c© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11670, pp. 57–70, 2019.
https://doi.org/10.1007/978-3-030-29908-8_5
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and physical examination results monitored during hospital staying always have
different formats with various recording frequencies.

There are three challenges in modeling the vast amount of longitudinal het-
erogeneous EHRs data: (1) Heterogeneity : EHRs data are collected from multiple
devices and monitors. Multiple data streams are recorded for different destina-
tions in different forms. For example, during a patient’s hospital stay, primary
diagnostic codes are recorded by doctors for developing treatment plan, while
some physical examination results are recorded by medical instruments for mon-
itoring and evaluating the patient’s conditions. (2) Irregular temporality : On the
one hand, the diagnostic codes and physical indicators are always sampled at
different frequencies (e.g., ECG sampled dozens per second and vital signs sam-
pled minutely). Moreover, the varying length of hospital staying also leads to
the different length of the record sequence in different hospital visits. On the
other hand, for a patient with multiple hospital visits, the time interval between
two consecutive visits can vary from days to months. (3) Interpretability : It is
important to improve the interpretability of the healthcare analysis model in
addition to the prediction performance on EHRs sequence data. To help doc-
tors and patients with a lot of complex EHRs data, a natural requirement is to
identify the supporting evidences for the conclusions.

Over the past few years, a series of deep learning methods have made remark-
able progress in resolving these challenges. Existing models often make efforts
on improving the prediction performance by capturing the sequential manner of
the EHRs data [1,8], or representing the recorded medical concepts [5,17]. In
order to getting interpretable results, attention-based models geared towards a
specific form of input for a particular task. [6] learns medical concepts with exter-
nal knowledge. [7,25] learn to selectively attend on different medical features.
Most of these models rely on aggregated features via capturing the 1-order tem-
poral dependencies or 2-order multimodal relationships among feature elements
of the EHRs data.

In fact, when evaluating patients’ health condition, a doctor would com-
prehensively review both the past medical records and the current reports to
find correlation factors, then focus on specific medical features, and make their
decisions finally. This kind of reasoning process simultaneously explores the cor-
relations of multiple data sources, such as medical diagnoses, lab indicators and
the history medical events. Since most of existing attention models in health-
care only consider 1-order or 2-order relationships, the opportunity is likely to
derive from learning high-order correlations (3-order and above) among feature
elements. Learning these correlations effectively directs the appropriate atten-
tion to the relevant elements in different data modalities and at different time
steps that are required to jointly solve the prediction task.

In this paper, we propose a Time-Guided High-Order Attention (TGHOA)
model for analyzing the heterogeneous and irregular temporal longitudinal EHRs
data. The proposed TGHOA jointly models the correlations of different types
of longitudinal medical records and the irregular temporal impact of historical
events. Specifically, we compute the one-hot medical diagnose feature by embed-
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ding scheme. The uniform representations of physical indicators with different
recording frequencies and lengths are computed by convolution kernels. The
diagnose features, physical indicator features and historical event features are
comprehensively used to compute a relationship matrix which is further trans-
formed to attention scores. Considering that a larger time interval between the
previous visit and the current visit leads to less impact of the historical event
feature, the time gap is used as an important factor to guide the attention com-
puting. Finally, the attended features are combined together to predict patient’s
health. Figure 1 shows the framework of the proposed method.

To summarize, the main contributions of this paper are as follows:

– The proposed method can model longitudinal heterogeneous EHRs data via
an efficient 3-order attention mechanism, to simultaneously capture the corre-
lations of different modalities and the irregular temporal impact of historical
events.

– The proposed high-order attention module can be used to identify the poten-
tial concerns of medical features to explain the reasoning process of healthcare
model.

– Due to the efficient computation formula of the proposed higher-order atten-
tion mechanism, it can be easily expanded into cases with more modalities
and flexibly applied in different prediction tasks. In our work, we evaluate the
proposed method in two tasks of mortality prediction and disease ranking on
two real world EHRs datasets.

2 Related Work

Traditional health analysis system often depends on labor intensive efforts, such
as expert-defined phenotyping [18,20] and manual feature engineering [24]. We
briefly review the three kinds of deep learning based methods mostly related to
our work.

Deep Learning on Longitudinal EHRs Data. [15] shows that RNN models,
which can capture the dynamic relationships in sequential data, perform pretty
good in large historical data of EHRs. In addition, [3] found that the irregularity
of longitudinal EHRs data would affect model performance and used Dynamic
Time Warping (DTW) to match irregular temporal patterns in data sequences.
[1] proposed a novel LSTM architecture, which performs a subspace decomposi-
tion module and a time-decaying memory module followed by the standard gated
architecture of LSTM, to handle time irregularities in sequences. These methods
do not consider hidden inter-correlation between different medical variables in
heterogeneous EHRs data and lack of interpretability.

Deep Learning on Heterogeneous EHRs Data. [12] designed a heteroge-
neous LSTM structure to explore multiple inter-correlations of different medical
sequences with different lengths and record frequencies. [25] proposed an efficient
multi-channel attention model of multimodal EHRs time series. However, these



60 Y. Huang et al.

models only focus on an instance encounter and do not consider the longitudi-
nally historical records of patients.

Attention-Based Interpretable Deep Methods. RETAIN [7] used two
RNNs to model visit-level and variable-level attention mechanisms. Thus it could
determine which visit and which medical variable it should pay attention while
doing predicting. GRAM [6] used a graph-based attention model in two sequen-
tial diagnoses prediction tasks and one heart failure (HF) prediction task. This
method could learn robust representations of medical code via a knowledge graph
which describes medical ontology relationships. RAIM [25] proposed a recurrent
attentive and intensive model for analyzing the multimodal EHR time series.
RAIM uses an efficient multi-channel attention on continuous monitored data,
which is guided by discrete clinical data. Different from these works, we design
a high-order attention module to jointly handle the irregular temporality and
heterogeneity of the EHRs data.

3 Methods

In this section, we first define the notations describing the original EHRs events
sequence, followed by representation methods of two types of heterogeneous
sequential data. Then we describe the details of the proposed time-guided high-
order attention module. Finally, we introduce the decision-making process based
on the attended features. Figure 1 shows an overview of our method.

3.1 Notations

To reduce clutter, we will introduce our method for a single patient. We define
a patient’s t-th visit to hospital as one EHRs event Et, and multiple visits are
denoted as a EHRs event sequence P = {E1, E2, . . . , Et, . . . , ET } where T is the
number of this patient’s all visits. Each visit Et = {Dt,W t} where Dt is an
integrated set of discrete diagnoses data indicating what diseases are the patient
suffering from. W t is a set of lab results, such as saturation of pulse O2 and
arterial blood pressure. y is patient’s groundtruth health evaluation after the T
visits. In the experiment, y is death rate in the mortality estimation task and
the grade of diseases in the disease ranking task.

Patients would be diagnosed with different diseases, so the number of ele-
ments in Dt is varying in different visits. We denote Dt = {dt

1,d
t
2, . . . ,d

t
nu

},
where dt

n ∈ R
|D| is a one-hot representing of patient’s n-th disease in t-th visit.

The D denotes the medical code set. The |D| is the number of unique medical
codes of diseases. The nu is the number of diseases that the patient is suffering
from. The lab indicator set W t = {wt

1,w
t
2, . . . ,w

t
nv

}, where wt
i denotes i-th lab

indicator at the t-th visit of the patient.
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Fig. 1. An overview of the proposed model.

3.2 EHRs Data Representation

In this section, we introduce how to to represent two types of heterogeneous
data respectively. The expressive data representations are very important for
capturing their correlation patterns.

Diagnose Embedding. Given a medical code representation dt
n ∈ R

|D|, we
can obtain its embedding representation ut

n ∈ R
du as follows:

ut
n = Θed

t
n (1)

where Θe ∈ R
du×|D| is a learned embedding matrix and du is the dimension

of the embedding vector. Thus the diagnostic information Dt is transformed to
U t = {ut

1,u
t
2, . . . ,u

t
nu

}.

Lab Indicator Feature Extracting. As mentioned in Sect. 3.1 that lengths
of lab indicator waveforms are different within a single visit. Besides, a lab
indicator has different length in multiple visits. To uniformly represent these
indicator waveforms, we design a one-dimension convolutional neural network to
extract the fixed length features:

vt
i = fi(wt

i) (2)

where fi(·) is a two-layer convolutional neural network. The first convolutional
block consists of a convolution layer, a max-pooling layer and a activation func-
tion ReLu. The second convolutional block consists of a convolution layer and a
max-overtime pooling layer [14], which is applied to naturally deals with variable
waveform lengths. So we could get the feature representation vt

i ∈ R
dv of the

lab indicator wt
i with a fixed-length. For different lab indicators, we initialize

different network parameters of fi(·) to compute their features respectively. And
the network parameters are shared among different visits for the same lab indi-
cator. Then the final feature of nv lab indicators in t-th visit are represented as
V t = {vt

1,v
t
2, . . . ,v

t
nv

}.
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3.3 Time-Guided High-Order Attention

In the following parts, we will refer to the iteration of LSTM with a single step
using notations as follows:

ht, ct = LSTM(xt,ht−1, ct−1) (3)

where ht ∈ R
d is the LSTM hidden state vecotor, ct ∈ R

d is the LSTM memory
cell vecotor and xt is the LSTM input vector which contains the information of
U t and V t. Here we use d to denote the dimensionality of hidden vectors.

Subsequently we consider the attention mechanism as an importance model
with each part computing “importance” of medical variable from each types of
data. We use λu,q and λv,q to denote the intra-sequence temporality of two types
of sequential data. λu,v expresses inter-sequence correlation between two data
sequences. λu,v,q captures third-order correlation among two types of sequential
data and the history event feature. We compute the importance scores αu and
αv of the medical diagnose representations and the lab indicator features by com-
bination of intra-sequence irregular temporality unit, inter-sequence correlation
unit, third-order correlation unit:

αt
u(iu) = σ

(
η1λ

t
u,q(iu) + η2λ

t
u,v(iu) + η3λ

t
u,v,q(iu) + η4

)

αt
v(iv) = σ

(
ε1λ

t
v,q(iv) + ε2λ

t
u,v(iv) + ε3λ

t
u,v,q(iv) + ε4

) (4)

here, ηi and εi are learned parameters and σ(·) refers to the Softmax operation
over iu ∈ {1, . . . , nu} and iv ∈ {1, . . . , nv} respectively. Such a linear combination
of units provides extra flexibility for the model, since it can learn the reliability
of the unit from the data.

Intra-sequence Irregular Temporality. The intra-sequence irregular tem-
porality unit is designed to calculate the importance of medical factors from
intra-sequence data based on the historical event feature. We first define atten-
tion query qt as the nonlinearly transformed feature of the previous memory
ct−1 by a one-layer neural network. What’s more, considering that the reference
value of historical records would change over time, we use a decaying function
g(Δt) = 1/ log(e + Δt) [1,19] as time guidance to adjust impact of historical
memory. Δt is an irregular time interval between two neighborhood visits. So
the memory query is obtained via:

qt = g(Δt) tanh(Θdc
t−1 + bd) (5)

where Θd and bd are learned parameters.
The intra-sequence irregular temporality attention weights are formally for-

mulated as:
λt
u,q(iu) = tanh

(
(Θu1u

t
iu)TΘu,qq

t
)

λt
v,q(iv) = tanh

(
(Θv1v

t
iv )TΘv,qq

t
) (6)

where Θu1 ∈ R
d×du , Θv1 ∈ R

d×dv , Θu,q and Θv,q ∈ R
d×d are trainable parame-

ters.
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Inter-sequence Correlation. Besides the mentioned temporal dependencies
of each data sequence, we now introduce a inter-sequence correlation unit, which
is able to learn the correlation between the representations of two data sequences.
We use a relationship matrix Cu,v between data sequences U t and V t, where each
entry is calculated as follows:

Ct
u,v(iu, iv) = (Θu2u

t
iu)TΘv2v

t
iv . (7)

The Θu2 ∈ R
d×du and Θv2 ∈ R

d×dv are trainable parameters. Ct
u,v(iu, iv) mea-

sures the correlation between the iu-th diagnostic code and the iv-th lab indi-
cator. Therefore, to retrieve the attention for a specific diagnostic code or lab
indicator, we convolve the matrix along the corresponding feature dimension
using a 1 × 1 dimensional kernel. Specifically,

λt
u,v(iu) = tanh

( nv∑

iv=1

θv2(iv)C
t
u,v(iu, iv)

)

λt
u,v(iv) = tanh

( nu∑

iu=1

θu2(iu)Ct
u,v(iu, iv)

)
(8)

where θv2 ∈ R
nv and θu2 ∈ R

nu are trainable parameters.

Time-Guided Inter-sequence Correlation. We formulate the high-order
correlation between historical records and all data sequences as follows:

Ct
u,v,q(iu, iv) = (Θu3u

t
iu � Θqq

t)TΘv3v
t
iv (9)

where Θu3 ∈ R
d×du , Θv3 ∈ R

d×dv and Θq ∈ R
d×d are trainable parameters.

Similar to the inter-sequence correlation unit, we use the relationship matrix
Ct

u,v,q(iu, iv) to compute correlated attention scores for each data sequence:

λt
u,v,q(iu) = tanh

( nv∑

iv

θv3(iv)C
t
u,v,q(iu, iv)

)

λt
u,v,q(iv) = tanh

( nu∑

iu

θu3(iu)Ct
u,v,q(iu, iv)

)
(10)

where θv3 ∈ R
nv and θu3 ∈ R

nu are trainable parameters.

3.4 Prediction Model

After obtaining attention scores αu(iu) and αv(iv) for medical diagnoses and lab
indicators, the attended features of different data sequences can be calculated
respectively. We obtain the final representation of medical codes via attentive
mean-pooling as following:

ût =
nu∑

iu=1

αu(iu)ut
iu (11)
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For all features of lab indicators, we concatenate them with attention weights:

v̂t = αv(1)vt
1 ⊕ αv(2)vt

2 ⊕ . . . ⊕ αv(nv)vt
nv

. (12)

We further concatenate the attended medical diagnose feature ût and lab indi-
cator feature v̂t and get xt = [ût, v̂t]. Then, we feed xt as input into the LSTM
sequence model described in Eq. (3). After obtaining the final state hT , the esti-
mated distribution over possible patient’s health evaluation y is given by:

ŷ = Softmax(Θofo(hT ) + bo) (13)

where fo(·) a fully-connected layer followed by activation function ReLu. The
Θo and bo are learnable parameters of the output layer.

The parameters of all modules are trained end-to-end together by minimizing
the following cross entropy loss: L = −yT log ŷ + (1 − y)T log(1 − ŷ).

4 Experiments

4.1 Data

In our experiment, we adopt two real world EHRs datasets, namely MIMIC-
III [13] and PPMI [9]. For the MIMIC-III dataset, the proposed high-order
attention model is applied to a binary classification task of predicting whether
the patient would die or survive in ICU. For the PPMI dataset, the proposed
attention model is applied in prediction of disease ranking.

MIMIC-III Dataset. Medical Information Mart for Intensive Care III
(MIMIC-III) is a publicly available multimodal EHRs dataset comprising deiden-
tified health data associated with critical care patients in Beth Israel Deaconess
Medical Center over 11 years [13]. The data contains vital signs, laboratory mea-
surements, diagnostic codes, survival data of 46,520 patients. In the mortality
prediction task, we only consider a subset of this dataset. We extract data of
patients who have more than two hospital visits. In order to acquire better gen-
eralization ability, we choose 1,629 diagnostic codes, whose total frequency of
occurrence is greater than 95% in the dataset. For the lab indicators, we choose
heart rate, saturation of pulse O2, blood glucose and arterial blood pressure from
the CHARTEVENTS table as primary physical examination data. We finally
get 9,171 records of 2,348 patients. We randomly split the dataset into train-
ing and testing sets with a ratio of 4:1. The groundtruth mortality rate in the
pre-processed dataset is about 22.7%.

PPMI Dataset. Parkinson’s Progression Markers Initiative (PPMI) is an
observational clinical and longitudinal study comprising evaluations of people
with Parkinson’s disease (PD), those people with high risk, and those who are
healthy [9]. We refer to [3] for data pre-processing. In our experiments, we use
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Table 1. Performance comparison of models on prediction task

Model MIMIC-III PPMI

Accuracy AUC-PR AUC-ROC Accuracy AUC-PR AUC-ROC

LSTM 0.7790 0.8520 0.8555 0.8319 0.8669 0.9595

LSTM-Att 0.7811 0.8710 0.8766 0.8319 0.9180 0.9747

T-LSTM 0.7854 0.8643 0.8643 0.8230 0.8998 0.9660

RETAIN 0.8047 0.8704 0.8772 0.8584 0.9213 0.9755

LSTM+TGA 0.7961 0.8769 0.8829 0.8407 0.9185 0.9764

LSTM+CoA 0.7876 0.8602 0.8664 0.8496 0.9312 0.9808

TGCoA 0.8062 0.8878 0.8867 0.8673 0.9408 0.9837

TGHOA 0.8155 0.9091 0.9071 0.8938 0.9581 0.9883

medication prescriptions as medical codes and choose 318 physical examination
features as lab indicators according to [21]. As a result, we get 13,768 records of
586 patients. We randomly split the dataset into training and testing sets with
a ratio of 4:1. For the groundtruth labels, we use Hoehn and Yahr (NHY) scale
scores [10] which describe how the motor functions of PD patients deteriorate.

4.2 Implementation

All the model parameters introduced in Sect. 3 are randomly initialized and
trained in an end-to-end form. We use RMSProp optimizer with gradient descent
to train the model. Instead of padding the sequences to the same length, we
use the sequences with same number of visits to form a training batch. The
learning rate is set to 0.001. Dimension of the medical code embedding is 64.
The dimension of the LSTM hidden layer is set to 128. The unit of Δt is set
to year on the MIMIC-III dataset and day on the PPMI dataset respectively.

To evaluate the performance of the proposed model, we compare it with the
following baseline models:

– LSTM: We use basic LSTM as a simple baseline model. Without considering
the irregular temporal impact and inter-correlations of EHRs data, we feed
the mean-pooled feature ūt and mean-concatenated feature v̄t into the LSTM
instead of the attended feature ût and v̂t.

– LSTM+Att: This model uses LSTM with attention mechanism which only
considers the intra-sequence temporal unit without time-guided query.

– T-LSTM [1]: T-LSTM uses a decaying function of time interval to adjust
previous memory cell ct−1 which affects current output in LSTM. We set T-
LSTM as a baseline model which considers the characteristic of varying time
intervals in EHRs sequences.

– RETAIN [7]: RETAIN uses two RNNs to model visit-level and variable-level
attention. It could detect influential past visits and clinical variables.
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Fig. 2. The effects of time-guided strategies.

– LSTM+TGA: This model uses LSTM with interactive attention mechanism
which only considers the intra-sequence irregular temporality item λt

u,q and
λt
v,q in Eq. (4).

– LSTM+CoA: This model uses LSTM with interactive attention mechanism
which considers only the inter-sequence correlation item λt

u,v in Eq. (4).
– TGCoA: This model uses LSTM with attention mechanism which considers

both the intra-sequence irregular temporality item λt
u,q and λt

v,q, and the
inter-sequence correlation item λt

u,v in Eq. (4).
– TGHOA: This is the proposed time-guided high-order attention model which

considers all attention items as shown in Eq. (4).

4.3 Result Analysis

The prediction results obtained by all baselines are measured by three evaluation
metrics including Accuracy, AUC-PR and AUC-ROC. Table 1 shows the experi-
mental results on both MIMIC-III and PPMI datasets. As shown, The proposed
TGHOA outperforms all other models on both datasets.

For the mortality prediction task on the MIMIC-III dataset, LSTM+TGA
performs better than LSTM+Att. It indicates intra-sequence irregular tempo-
rality unit could better capture the irregular temporal impact than LSTM+Att
which do not consider time intervals of sequential data. We also get better per-
formance than RETAIN Besides, LSTM+TGA has better performance than
T-LSTM. It shows that considering irregular temporal impact with time-guided
attention is more effective. LSTM+CoA has higher scores compared to LSTM
model. It indicates that considering the inter-correlation between two types of
EHRs data via attention mechanism is helpful. The model LSTM+CoA that
incorporates the intra-sequence irregular temporality unit and the inter-source
correlation unit further improves the performance. Lastly, the proposed model
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Table 2. Diagnoses ranked according to attention scores.

Model Diagnoses (ICD-9 Code)

TGHOA Acidosis (276.2); History of kidney neoplasm (V10.52)

Urinary complications (997.5); Atrial fibrillation (427.31)

Other noninfectious disorders of lymphatic channels (457.8)

Other iatrogenic hypotension (458.29)

TGCoA Other noninfectious disorders of lymphatic channels (457.8)

Acidosis (276.2); History of kidney neoplasm (V10.52)

Atrial fibrillation (427.31); Urinary complications (997.5)

Other iatrogenic hypotension (458.29)

LSTM+CoA Atrial fibrillation (427.31); Other iatrogenic hypotension (458.29)

Urinary complications (997.5); History of kidney neoplasm (V10.52)

Acidosis (276.2)

Other noninfectious disorders of lymphatic channels (457.8)

LSTM+TGA Urinary complications (997.5); Other iatrogenic hypotension
(458.29)

Atrial fibrillation (427.31); Acidosis (276.2)

History of kidney neoplasm (V10.52)

Other noninfectious disorders of lymphatic channels (457.8)

TGHOA that considers the time-guided high-order correlations obtains the best
performance. For the parkinson ranking task on the PPMI dataset, the proposed
TGHOA has similar performance improvements over baseline models.

4.4 Effects of Time-Guided Strategy

In the proposed method, the high-order attention module jointly considers the
correlation between different modalities and the irregular temporal impact of
historical memory. To further analysis the time-guided attention scheme, we
investigate the effects of different time-guided functions to the performance of
TGHOA. We compare four kinds of decaying functions including g1(Δt) = 1
without any decaying, g2(Δt) = 1/ log(Δt+e), g3(Δt) = e/(Δt+e) and g4(Δt) =
max{0, 1−Δt/e}. Here, the g2 is the adopted decaying function of the proposed
method as introduced in Sect. 3.3. Figure 2(a) shows four function curves. Note
that the unit of Δt is year on the MIMIC-III dataset and day on the PPMI
dataset respectively. Figure 2(b) shows results obtained by our method with four
decaying functions.

When using g1 as a guided function without time decaying, our model obtains
worst performance. This further demonstrates that the time-guided attention
scheme works well for modeling longitudinal EHRs data. What’s more, the decay-
ing function g2 performs better than g3 and g4. It indicates that if the attention



68 Y. Huang et al.

model forgets the history feature too quickly, we can only make a suboptimal
health assessment, especially obvious on the PPMI dataset.

4.5 Case Study

A key advantage of our model is its interpretability. We conduct a case study of
an unseen patient in the testing set of the MIMIC-III dataset.

In Table 2, we rank the diagnostic codes according to their attention scores.
We could see that Acidosis (276.2) and History of kidney neoplasm (V10.52),
which have high fatality rate, have got high attention scores in TGHOA. While
other diseases are complications which would not directly cause death. This
results demonstrate that proposed attention mechanism gives reasonable cues of
the medical features for the mortality prediction. On the other hand, TGHOA
and TGCoA generate very different attention scores of the medical feature Other
noninfectious disorders of lymphatic channels (457.8) while other diagnoses have
similar rank. The LSTM+CoA and LSTM+TGA have distinctly different diag-
nostic attention ranks. It shows that neither LSTM+CoA nor LSTM+TGA has
modeled the complete correlation information of the EHRs data.

5 Conclusions

In this paper, we proposed a time-guided high-order attention (TGHOA) model
for analyzing the heterogeneous and irregular temporal longitudinal EHRs data.
The diagnose features, physical indicator features and historical event features
were comprehensively used to compute a relationship matrix which was fur-
ther transformed to attention scores. The irregular time interval was used as
an important factor to guide the attention computing. The proposed high-order
attention model was evaluated on the MIMIC-III and PPMI datasets. Extensive
experimental results demonstrated the effectiveness and interpretability of the
proposed method.
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Abstract. The paper focuses on two pivotal cognitive functions of both
natural and AI agents, namely classification and identification. Inspired
from the theory of teleosemantics, itself based on neuroscientific results,
we show that these two functions are complementary and rely on dis-
tinct forms of knowledge representation. We provide a new perspective
on well-known AI techniques by categorising them as either classifica-
tional or identificational. Our proposed Teleo-KR architecture provides
a high-level framework for combining the two functions within a single AI
system. As validation and demonstration on a concrete application, we
provide experiments on the large-scale reuse of classificational (ontologi-
cal) knowledge for the purposes of learning-based schema identification.

Keywords: Classification · Identification · Teleosemantics ·
Cognitive architecture · Knowledge representation

1 Introduction

Class and classification are powerful notions in computer science and AI, yet the
terms hide a variety of interpretations. Library classifications, for instance, are
a traditional form of knowledge organisation that apply principled methods to
structuring written human knowledge. The notion of class as used in ontologies
by the Semantic Web community, while also a form of knowledge organisation,
is different as it is defined through formal logic and it aims to cater to computa-
tional applications such as reasoning or data integration. The machine learning
community also heavily relies on the notion of classification, understanding it
as the sorting of a discrete number of input elements into a discrete number of
output categories, classes or clusters, in a supervised or unsupervised manner.

Our paper looks behind the diverse uses of these notions by various AI com-
munities to find that they are not merely the result of different procedural
approaches towards similar goals. Rather, they are complementary and serve
tasks with markedly different purposes and representational needs.
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The theoretical underpinning of our work is the philosophical theory of
teleosemantics (also known as biosemantics or the teleological theory of men-
tal content), and in particular Ruth Millikan’s results. Teleosemantics is one of
the most popular naturalistic explanations of mental representations: it binds
together models of cognition, such as the classical and connectionist models, and
has yielded results in fields such as communication theory or genetics [18]. Based
on neuroscientific evidence from animals and humans—and thus formulated
in total independence from results in AI or computer science—teleosemantics
states that classification and identification are two distinct tasks that are per-
formed using separate devices of the brain that rely on separate representations
of knowledge [23].

The paper offers four main contributions. (1) Based on a teleosemantic per-
spective, we interpret the notions of classification and identification and clarify
the difference between the two. Our goal is not to redefine terminology already
in use in various fields of AI, but rather to propose a both theoretically and
practically useful distinction between kinds of functions that are often conflated
into the same task. (2) We categorise a wide range of AI solutions as based on
either of the two or their combination, shedding light on why ‘classificational’
and ‘identificational’ tasks need different representations of knowledge in order
to be efficient. (3) We introduce a novel Teleo-KR architecture that bridges these
two fundamental cognitive functions and combines them into a unified AI agent.
This high-level theoretical framework may serve, in our view, as a blueprint for
future hybrid AI solutions for learning to map between different kinds of rep-
resentations. (4) Finally, we demonstrate the application of the framework on
the AI task of matching data schemas via a combined use of the two kinds of
knowledge. We implement the setup as a series of experiments on large sets of
data schemas and interpret the results.

In Sect. 2, we define and describe classification and identification based on
results from teleosemantics. In Sect. 3, we situate well-known AI tasks with
respect to these two functions. Section 4 presents the Teleo-KR architecture that
models cognitive abilities of artificial agents. Section 5 presents our case study
on schema identification. Finally, in Sect. 6 we look at the significance of our
results and possible future work.

2 Classification and Identification

Teleosemantics considers biological perceptual-cognitive systems (PCS)—i.e.,
what is able to perceive the external environment, to organize sensory informa-
tion and to know—to be composed of devices having specific functions. A device
corresponds to a biological component of the brain while the notion of func-
tion, as used in neurobiology, describes the role fulfilled by the device. Devices
perform tasks with specific goals, in relation to other devices or to the external
environment.

In a classic clarifying example [21], bees can be considered as PCSs, i.e.,
sender/receiver representational systems, having a device whose function is to
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accumulate information about a portion of the environment, such as the location
where nectar can be found, as well as a device to communicate it to other bees,
e.g., through the bee dance.

‘Communication’ and ‘accumulation’ can be generalised as pivotal applica-
tions of classification and identification, respectively. Classificational representa-
tions are views over the stream of diverse data sources collected by the represen-
tational system over time. Different individuals may have different classificational
representations for the same world state (e.g., a car dealer and a mechanic may
classify cars differently), and even the same individual may describe the same
world state differently according to context and pragmatic requirements. Nev-
ertheless, classes within individual classifications aim to remain consistent and
unequivocal.

Identification, in turn, is required to make learning possible: its purpose is
to keep track of things over time, to understand whether they were previously
encountered or not, and to focus on new incoming information. In contrast to
classification, identification relies on an open and adaptive space for diverse,
potentially fuzzy, or contradicting information. Identificational representations
afford non-invariant knowledge, adapting to changes in how one perceives things
over multiple encounters [3,23].

The device implementing identification relies on knowledge necessary to
recognise what is encountered through sensory experience (directly observing
the world through seeing, hearing, etc.) and to gather information about it.
The device implementing classification builds unequivocal and shareable knowl-
edge from the stream of diverse data collected over experience. Accordingly,
a central statement of teleosemantics-which this paper applies to AI as a key
contribution-is that devices may provide their own distinct representations of
the world, rather than sharing one common representation. In particular, classi-
ficational and identificational representations of knowledge are distinct and are
organised in different ways [20].

Applying these insights to computational agents, we model identificational
representation (KRI) as follows:

KRI =
〈
S,CI ,

{(
s, cI

)}〉
(1)

where s is a formalization of a perceptual state, i.e., a cognitive representation
posterior to perception, also called neural state in [3]. A perceptual state is the
initial cognitive encoding of an object encountered by the agent in the external
environment. S is a set of all such perceptual states represented within KRI . cI

is the representational unit of KRI that [20] calls substance concept and defines
as ‘nodes that help in storing knowledge and information arriving at the sensory
surfaces’ [23]. For our purposes, cI is a symbol in KRI that groups perceptual
states together as being from the same object in the external environment [11].
CI is the set of such substance concepts in KRI . While the simple formalization
above suits the purposes of our paper, in practice we expect KRI to be more
complex and fine-grained both for biological and artificial agents.
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We model classificational representation (KRC) as follows:

KRC =
〈
S,CC ,

{(
i, cC

)}〉
(2)

where i ∈ I are instances, i.e., representations of occurrences of a given object
[14], and cC ∈ CC are classes. Here we commit on the classical definition of class
provided in [1], taken as a set of instances. A true classificational KR may be a
superset of this minimal modelling, e.g., based on first-order logic.

It is important to notice that the difference between instance and class (e.g.,
‘cat’ and ‘my cat Misty’ ), pivotal in classificational knowledge, does not occur in
the identificational knowledge: both always map into a substance concept [14].

A teleosemantic cognitive device can be modelled as a pair consisting of a
knowledge representation and a cognitive function: D =

〈
KRD, fD

〉
. Accord-

ingly, the classification and identification devices are composed, respectively, as
DC =

〈
KRC , fC

〉
and DI =

〈
KRI , f I

〉
, where fC and f I correspond to the

cognitive functions of classification and identification.
We model identification (f I) as the function:

f I :
〈
S,KRI

〉 → CI (3)

that assigns perceptual states resulting from an encounter to a given substance
concept. For example, recognising a black shape on a photo as ‘a cat’ or ‘my cat
Misty’ is an act of identification.

We model classification (fC) as the function:

fC :
〈
I,KRC

〉 → CC (4)

that assigns the instances of a given classification to a given class. The statement
‘cats are mammals’, where the mammal is applied to cat, both defined within
KRC , is an example of classification.

The representation of identificational knowledge via the substance concept
strongly relates, in our view, to what in cognitive linguistics is called basic level
category. As shown in Eleanor Rosch’s experiments, the power of identifying
something (such as a cat or my cat) depends highly on the ability to mirror the
structure of information perceived in the world [27], and this key indicator can
be tuned through the accumulation of new information.

Despite the fundamental differences, classification and identification heav-
ily rely on each other. On the one hand, teleosemantics states that the act of
recognising is necessarily prior to the act of classifying [20]. On the other hand,
the means employed in identification are often heavily influenced by organised
classificational knowledge. For instance, the phrase ‘lynxes are large-sized wild
cats’ may help someone in correctly recognising a cat-like creature in the forest
as a lynx. In this particular example, natural language is used to vehicle clas-
sificational knowledge that the receiver can use to improve their identification
abilities. Language, for humans, is on par with other perceptual ways of acquir-
ing information, such as vision or hearing [21,22]. We adopt this point of view
for artificial agents in our case study, where we process semi-formal language as
a particular form of perceptual input.
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3 Classification and Identification in AI

The findings of teleosemantics bear a high relevance to computational models
of intelligence. While AI communities have not always been defining the terms
classification and identification in exactly the same manner as above, the respec-
tive functions do have AI equivalents. In this section, we map a few important
existing AI approaches and tasks to either of these two functions, explaining
their differences in the light of teleosemantics. We also show examples of com-
plementary use of identificational and classificational knowledge in existing AI
solutions.

In computational systems, classifications are crucial for reasoning, the shar-
ing of knowledge, standardisation, and are generally widely used as vehicles of
semantic interoperability, e.g., for data integration. In AI, and in particular in the
field of KR, several kinds of representational systems were developed to model
classifications as formal and machine-readable grid or tree structures: semantic
networks such as in KL-ONE [6] or top-level and domain ontologies (e.g., Dolce
[12] or FOAF [7], respectively).

Identification being such a crucial function in processing sensory input in
living beings, it is no surprise to find it playing a central role in AI as well.
Machine learning (ML) has proven successful for identificational tasks, espe-
cially on unstructured ‘sensory-like’ input such as images or spoken or written
natural language [16,25,28]. ML classifiers expect such input to be pre-processed
(‘perceived’) as features (that map to S in Eq. 1) and produce classes or clusters
as output (that map to CI) [5]. ML models, that map to KRI , are built through
the accumulation of input associated to hypotheses (‘training’), as foreseen by
teleosemantics for identificational representations, instead of the clear-cut classes
of classificational KR.

ML is far from being the sole example of identification in AI. Schema/ontology
matching or entity matching, crucial tasks in practical applications such as data
integration, involve identification that maps one or more incoming structures
to a set of reference structures. While the inputs of these matching tasks are
typically classificational and not perceptual, most matchers analyse them using
techniques common for unstructured input, e.g., the extraction of ‘features’ from
ontology labels via NLP [4,26] and then perform a similarity-based (but not
necessarily learning-based) analysis of such features. Note that our teleosemantic
model of identification considers the matching of schemas/classes on the one
hand and instances on the other hand as essentially the same task over data
of different levels of granularity, as opposed to state-of-the-art approaches that
regard them as distinct tasks [10]. The need for unifying these tasks has already
been recognised in AI in the field of Structured Machine Learning [9].

There have been efforts in AI for the mutual reuse of classificational KRs
for identificational purposes and vice versa. Statistical Relational Learning [13]
applies ML to classificational structures. In OntoClean [15], a lot of work has
been devoted to defining identifying (i.e., rigid) properties for instances of a
certain class (e.g., for an instance of the class Person, the birth date is an iden-
tifying property while profession is not as people can change their jobs). In this
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approach, identificational knowledge is fixed by design as part of classificational
knowledge, instead of being derived by gradual accumulation of information. In
ontology matching, relying on classificational background knowledge is a com-
mon technique for improving precision and recall [10]. Likewise, reusing symbolic
knowledge in learning-based (e.g., neural) applications has been a challenging
research topic in AI [1,2,17,29,30]. Giunchiglia and Fumagalli [14] motivate the
need for two distinct data layers for the two kinds of knowledge in a context of
an ontology built for recognition.

The other direction, namely using identification for building classifications, is
manifest in ontology learning from unstructured, e.g., textual input [8], ontology
matching combined with repair [19], and Inductive Logic Programming [24]. The
latter constructs classificational knowledge by learning from examples, without,
however, the use of separate identificational knowledge.

4 The Teleo-KR Architecture

This section aims to formalise the principles of teleosemantics, presented in
Sect. 2, as a high-level Teleo-KR architecture. We intend the architecture as a
frame of reference for interpreting and structuring AI solutions that combine the
two essential—classificational and identificational—functions of cognition. The
approach is demonstrated in a concrete AI use case in Sect. 5.

Figure 1 shows a high-level schema of the architecture. Rounded boxes cor-
respond to teleological devices, and arrows represent the flow of information.
Devices fall into one of three general functional areas or layers, modelled within
a classic perceptual-cognitive paradigm:

– the perceptual layer contains devices that take various forms of input from
the outside world: sensory, structured data, unstructured text, etc.;

– the cognitive layer with devices that collect and organise information about
the world;

– and the behavioural layer with devices that act upon the world: moving the
agent, communicating with other agents, etc.

The contributions of this paper mostly concern the cognitive layer. As shown
in Fig. 1, the two pivotal devices of teleological representational systems, namely
classification and identification, play the role of connecting environmental inputs
to behavioural outputs. (Other devices may also be part of this layer, such as
one for linguistic reasoning, but they are out of scope for our paper.) Percep-
tual input first enters into the cognitive layer through the identification device.
This design choice encodes the teleosemantic hypothesis that identification pre-
cedes classification and, more generally, other cognitive and behavioural acts.
The fact that in our architecture identification acts as a bridge between percep-
tion and other cognitive functions reflects neuroscientific evidence on the com-
plex transition between perception and cognition and is in line with combined
perceptual–conceptual theories of knowledge [3].
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On the other hand, as shown by the architecture, both forms of knowledge
play a role in controlling the agent’s behaviour. For instance, a communica-
tive act may either be the direct result of instinctive recognition (e.g., shouting
upon seeing something frightening) or the vehicle of knowledge in an organised
manner.

In this model, classificational knowledge is generated through a process of
formalization, which we model as a function fF : KRI → KRC by which clas-
sificational knowledge is derived from identificational knowledge.

Formalisation synthesizes information coming from the external environment,
collected through identification during encounters, obtained through various per-
ceptual devices, into a theory about the world. For example, a biologist may
observe a living organism from diverse points of view, using an array of sensory
inputs (his or her own eyes and hearing, the image provided by a microscope,
etc.), before concluding on having discovered an individual of a new species. In
the knowledge representation community, this process is known as ontological
commitment.

Classifications and deductive thought processes may, in turn, play a role in
revising the hypotheses within identificational knowledge, as in the example of
the lynx in Sect. 2. Accordingly, we model revision as a function fR : KRC →
KRI by which classificational knowledge is used to update identificational knowl-
edge.

The two processes that interconnect the two forms of reasoning—formalisa-
tion and revision—hide deep open questions about both biological and artifi-
cial cognitive systems. Formalisation, i.e., converting a set of incomplete and
potentially contradictory hypotheses into a representation of formal classes and
relations, amounts to ‘making sense’ of identification results in a conscious and
fine-grained manner. In the context of AI, it is an instance of the semantic gap
problem that remains only partially solved, especially in the case of deep learning
approaches to identification. Likewise, the process of revision, i.e., controlling the
inductive process of identification using formally organised rational knowledge,
remains ill-understood: one of the major challenges in current AI research is to
find efficient ways for plugging in formal knowledge into learning-based systems.
These two functions within the Teleo-KR architecture map to an important set
of open problems in AI that will remain subject to extensive research in the near
future.

5 Case Study

The goals of our case study are: (1) to demonstrate the conceptual power of
the Teleo-KR architecture by applying it to a well-known AI task, showing how
the latter can be solved through combining classificational and identificational
knowledge; and (2) to propose and test a novel idea on the large-scale reuse of
existing classificational knowledge for identificational purposes.

The underlying scenario can be described as the identification of data
schemas: given a set of input attributes (or properties), find the schema that
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matches them best. It is a sub-problem of the well-known schema alignment
problem, used in applications of semantic interoperability, such as data integra-
tion or dynamic data matching.

We map this problem onto the Teleo-KR architecture by building a ‘teleolog-
ical AI agent’. We use this agent to simulate a ‘cognitive cycle’ that starts from
perception, identifies the input, builds identificational and classificational knowl-
edge through accumulation and formalisation, respectively, and finally performs
a revision of its identificational knowledge to optimise its abilities. We cover the
entire cycle through four successive experiments.

Input. As input classificational knowledge we used schemas collected from
15 resources from Linked Open Vocabularies1 (details will be given in each exper-
iment). A major role of such vocabularies, as explained in Sect. 2, is to commu-
nicate conventions for interoperability. It thus makes sense to consider them as
natural language input received by an intelligent agent through perception, also
considering the commitment of teleosemantics on language being on par with
other forms of perceptual input (see Sect. 2).

Perceptual Preprocessing. We consider the preprocessing of linguistic input
as part of perception before identification. Its goal is to generate the percep-
tual states (see Sect. 2 above) that constitute the input of identification. We
filtered the input classificational knowledge to retain only (Schema, attribute1,
. . . , attributek) relations of labels, e.g., Person or dateOfBirth. We did not
consider attributes inherited from ancestors in order not to bias results by
the inheritance hierarchy. Perceiving attribute names as natural language text,
we converted them to lowercase, and discarded frequent or meaningless stop
words, e.g., dateOfBirth → {date, birth}. The goal was to eliminate surface
variations related to orthography, word order, etc. The final output was, for
each schema, a bag-of-words vector representation of its corresponding attribute
words Schemai → (wattr

1 , wattr
2 , . . . , wattr

n ). In machine learning terms, we con-
sider the words in attributes names as the features used by the subsequent
identification function. While we could just as well have used a different set
of features, optimising this aspect of the setup any further was irrelevant with
respect to our experiments.

Table 1. Accuracies of identificational devices trained (down) and tested (across) on
three schema resources.

1 https://lov.linkeddata.es.

https://lov.linkeddata.es
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Identification. We modelled identification essentially as a machine-learning-
based supervised document classification task, KRI being the trained learning
model and f I the learning algorithm. We pre-evaluated multiple algorithms, such
as maximum entropy or decision trees; however, our tests showed that, while the
results changed in absolute terms, there was no effect on the overall trends and
insights gained. The optimisation of f I not being of concern to this paper, we
finally settled for a decision-tree-based implementation. The training and test
sets were all based on the perceived input as described above, with schemas
corresponding to output classes and bags of attributes words being the input.

Formalisation. We provide examples to show how acquired identificational
knowledge can enrich classificational knowledge. As a form of ontology learn-
ing, we formalised similarities found among class definitions of various resources
by converting them into ontological knowledge of class equivalence, subsumption,
or semantic similarity.

Revision. To close the loop, we reused the newly created classificational knowl-
edge to revise identificational knowledge through the optimisation of training
data, and thus improve identification results.

Experiment 1: Identification Ability

In our first experiment we trained three identificational devices using three
well-known top-level classificational KR resources: SUMO2 (178 schemas, 755
attributes), Schema.org3 (608, 877 ), and DBpedia4 (775, 2861 ). We then eval-
uated each device with respect to their ability to identify schemas, both over
themselves (using the same data as for training) and over each other. These
evaluations, shown in Table 1, quantify the ability of each resource to serve as
identificational knowledge.

While identification did perform much better, as expected, when the train-
ing and test sets were identical, it is also clear that there can be major differ-
ences between resources in this respect. Schema.org thus fared much worse for
identifying its own schemas. On close analysis, this was due to major overlaps
between attribute sets of different schemas, such as the schemas TVSeries and
RadioSeries whose attributes sets were almost identical. The very weak results
across resources are, in turn, explained by the relatively low overlap among the
schemas and their names (e.g., Film in DBpedia and Movie in Schema.org are
considered as distinct schemas). This experiment suggests the possibility of a
practical tool that evaluates the potential performance of an ontology or a set of
schemas in matching tasks. The results may be used, e.g., to finetune schemas
in an open-world data integration scenario.

2 http://www.adampease.org/OP/.
3 https://schema.org/.
4 https://wiki.dbpedia.org/.

http://www.adampease.org/OP/
https://schema.org/
https://wiki.dbpedia.org/
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Fig. 1. The Teleo-KR architecture, showing the two pivotal teleosemantic cognitive
devices and their relation to perception and behaviour. The schema does not aim an
exhaustive description of intelligent agents, hence the inclusion of ‘other’ devices.

Experiment 2: Knowledge Accumulation

This experiment investigates the effect of accumulation of training informa-
tion on identification results. We increased the size of training sets by merg-
ing the three resources from the previous experiment: (A) Schema.org alone;
(B) Schema.org + DBpedia; (C) Schema.org + DBpedia + SUMO. We tested the
resulting models on a new, more heterogeneous test set consisting of the fusion
of 12 vocabularies, some general and some domain-specific, retrieved once again
from LOV: Proton, Bibo, the Semantic Web for Research Communities, SwetoD-
blp, the Comic Book Ontology, Linked Earth, DNB Metadata Terms, Ontology
Design Patterns, PREMIS, EBU, Bio, and FOAF. We restricted the evaluation
to top-level schemas that were shared by most resources: Action, Event, Place,
Organization, Person, Vehicle, CreativeWork, and Product.

Results can be seen in Fig. 2. While accumulation improves the identification
of Action, Event, and Place, the improvement is only partial for Organization and
Person, and a deterioration is observed for Vehicle, CreativeWork, and Product.
The most salient observation we can make is one well known to the machine
learning community: more training data does not systematically lead to higher
accuracy. The latter greatly depends on a number of other factors such as input
data quality and relevance with respect to the task, how features are defined,
the learning algorithm, or the structure of the hypothesis space. In our case, we
attribute the low overall scores and the lack of salient improvement of results
after accumulation to the high level of heterogeneity of input KRs with respect
to the amount of training data.

In conclusion, in a scenario of sparse and heterogeneous identificational
knowledge, alternative ways to improve f I need to be considered beyond the
accumulation of more evidence. The Teleo-KR architecture suggests us the
improvement of perception (e.g., through feature engineering) but also the cyclic
revision of KRI using knowledge from KRC . Our two last experiments illustrate
the latter process.
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Fig. 2. The effect of accumulation of training data on precision, recall, and F1 for eight
core types.

Table 2. Formalisation results: equivalence classes of schemas from Schema.org,
derived from identificational similarity scores.

Similar schemas Similarity

Apartment, SingleFamilyResidence 1.00

Accommodation, House 1.00

Authorize-, Donate-, Give-, Pay-, Return-, TipAction 1.00

Inform-, Invite-, Join-, LeaveAction 1.00

Insert-, Move-, TransferAction 1.00

Comment-, Order-, Reply-, TrackAction 1.00

PropertyValue, QuantitativeValue 0.98

TvSeries, RadioSeries 0.96

Experiment 3: Knowledge Formalisation

This experiment demonstrates formalisation by reusing the output of identifi-
cation to enrich classificational knowledge. This operation is analogous to the
ontology repair or ontology learning step that is a regular post-processing feature
of many ontology matchers [19].

Table 2 shows sets of schemas from Schema.org that were found to be iden-
tical or very similar by f I due to overlapping attributes. The high number
of shared attributes found across schemas (the table only shows the tip of
the iceberg, as we used a similarity cutoff of 0.95) explains the relatively low
identificational power of Schema.org in experiment 1. Formalisation converts
these observed similarities into acquired classificational knowledge of equiva-
lence, e.g., TV Series ≡ RadioSeries. With a larger-scale analysis that includes
property set containment, subsumption relations could also be discovered. Note
that in this experiment we only consider extensional similarity based on shared

https://schema.org/
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attributes. Possible intensional similarities and differences could also be taken
into account in a more sophisticated formalisation approach that, for example,
would consider the semantics of schema names.

Experiment 4: Knowledge Revision

Knowledge revision updates KRI by classificational knowledge, in our case by
the axioms formalised in the previous experiment. We re-trained the Schema.org-
based model of experiment 1 with schemas found equivalent in step 3. In the
training data we replaced each schema with a single one representing their equiv-
alence class, e.g., TVRadioSeries or AccommodationHouse. We then re-ran eval-
uations of the retrained Schema.org over the original (unmodified) data, and
obtained an overall accuracy increase of 2.61%, from 63.77% to 66.38%. With a
more aggressive approach to formalisation that does not stop at the similarity
threshold of 0.95, accuracy could be increased up to 96.52%. This demonstrates
the importance of the formalisation–revision cycle as a means to improve the
overall cognitive abilities of the artificial agent.

6 Conclusion and Perspectives

Our paper aimed to reframe a range of tasks and open issues of AI with respect
to the functions of classification and identification. Building on the results of
teleosemantics, we defined the two notions, clarified their difference based on
analogous functions of natural agents, and demonstrated their pivotal role in
AI. Our Teleo-KR architecture proposed a schematic model for AI agents based
on the combination of these two functions through formalisation and revision.
We demonstrated the use of the architecture on a set of AI tasks inspired from
the well-known problems of schema identification and repair. The case study also
introduced a novel idea for the large-scale reuse of symbolic knowledge resources
for identification and learning tasks in general.

Among the potential paths of research opened up by our results, we now
present two areas of future work. A first perspective concerns the testing of
Rosch’s seminal hypotheses on the relatedness of identification with basic level
categories. We plan to verify her results through computational experimenta-
tion using the Teleo-KR framework. A second perspective concerns the notion
of reward, a central tool of teleosemantics for the evolution and stabilisation of
accumulated knowledge. We wish to formalise reward within the Teleo-KR archi-
tecture and investigate parallels with results in AI on reinforcement learning.
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Abstract. In crowdsourcing, one effective method for encouraging par-
ticipants to perform tasks is to run contests where participants compete
against each other for rewards. However, there are numerous ways to
implement such contests in specific projects. They could vary in their
structure (e.g., performance evaluation and the number of prizes) and
parameters (e.g., the maximum number of participants and the amount
of prize money). Additionally, with a given budget and a time limit,
choosing incentives (i.e., contest structures with specific parameter val-
ues) that maximise the overall utility is not trivial, as their respective
effectiveness in a specific project is usually unknown a priori. Thus, in
this paper, we propose a novel algorithm, BOIS (Bayesian-optimisation-
based incentive selection), to learn the optimal structure and tune its
parameters effectively. In detail, the learning and tuning problems are
solved simultaneously by using online learning in combination with
Bayesian optimisation. The results of our extensive simulations show
that the performance of our algorithm is up to 85% of the optimal and
up to 63% better than state-of-the-art benchmarks.

Keywords: Incentive · Crowdsourcing · Bayesian optimisation

1 Introduction

Crowdsourcing has emerged as an efficient approach for obtaining solutions to a
wide variety of problems by engaging a large number of Internet users from
many places in the world (Ghezzi et al. 2018; Doan et al. 2011). However,
the success of crowdsourcing projects relies critically on a crowd to contribute
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(Simula 2013; Doan et al. 2011). Given this, contests1 have been shown to be an
effective approach in these projects, as they are effective and cheap. In particular,
by rewarding participants in a contest, task requesters do not necessarily have
to pay for every task completed as in other types of financial rewarding schemes,
such as paying for performance (Mason and Watts 2010) or using bonuses (Yin
and Chen 2015). Indeed, they have to pay only for a certain number of partici-
pants, e.g., the top two who have completed the most tasks or the top participant
who has completed the tasks with the highest quality. 99designs (www.99designs.
com), TopCoder (www.topcoder.com), and Taskcn (www.taskcn.com) are some
well-known crowdsourcing platforms that use contests to attract participants.

Much work has taken a game-theoretic approach to investigate the optimal
(or efficient) design of contests in general and crowdsourcing contests in partic-
ular. It tries to answer the questions of how to distribute the prizes (number
of prizes and their values) in contests (Luo et al. 2015; Cavallo and Jain 2012;
Moldovanu and Sela 2001). Yet, applying this body of research in building effi-
cient contests for real-world crowdsourcing projects is still challenging. This is
because these studies assume rational participants, whereas real participants in
crowdsourcing might be partly rational or irrational, as they might lack informa-
tion, knowledge, or time. Also, these studies do not consider other factors related
to the participants’ intrinsic motivation that might affect their behaviour such
as the project purpose (e.g., collecting data for scientific studies, for govern-
ment agencies or for companies) or the task nature (e.g., interesting or boring)
(Rogstadius et al. 2011; Frey and Jegen 2001).

Furthermore, currently on many crowdsourcing platforms such as Amazon
Mechanical Turk (www.mturk.com) and Figure Eight (www.figure-eight.com),
the requesters can create tasks and get the submissions in an autonomous manner
using programmable Application Programming Interfaces (APIs). This makes it
possible to build autonomous agents to monitor and adaptively switch contest
structures (e.g., performance evaluation and the number of prizes) and parame-
ters (e.g., the maximum number of participants and the amount of prize money)
when appropriate. We refer to a contest structure with specific values of the
parameters as an incentive2. Indeed, it is inconvenient or almost impossible in
many cases to switch between incentives manually to identify the best one.

Therefore, another direction for dealing with the incentive problem is to
design incentives that are likely to be effective based on previous studies and
then empirically select the most effective one. In detail, the above-mentioned
studies can be used to design several contest structures with specific ranges of

1 We use the term “contest” in a broad sense to refer to any situation in which partic-
ipants exert effort to submit tasks for prizes, which are provided based on relative
performance. The prizes can be tangible rewards, points, or positions on a leader-
board. Thus, all-pay auctions, lotteries, and leaderboards are considered as contests
for the purpose of this paper.

2 Although the incentives focused on in this paper relate to contests, the problem
stated and the algorithms discussed can be used with any other types of incentive
in the literature, such as pay for performance or bonuses. Thus, to keep the problem
general, we use the term “incentives” instead of “contest structures”.

www.99designs.com
www.99designs.com
www.topcoder.com
www.taskcn.com
www.mturk.com
www.figure-eight.com
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their parameters which are referred to as candidate incentives. Then, based on
the proposed candidates, an adaptive approach could be used to identify the
most effective candidate efficiently. Hence, finding an appropriate way for an
autonomous agent (i.e., a computer programme) to select an effective incentive
in a crowdsourcing project is a key problem. We refer to this as the incentive
selection problem (ISP) (Truong et al. 2018).

To identify the most effective incentive to utilise (i.e., exploit), the agent
has to try each incentive several times to evaluate its respective effectiveness
(i.e., explore). Given this need to balance exploitation and exploration, budgeted
multi-armed bandits (MABs) are a promising approach for the ISP. Specifically,
they model the problem as a machine with N arms (corresponding to N incen-
tives), pulling an arm (offering the corresponding incentive to a group of partic-
ipants) incurs a fixed cost (attached to the arm) and delivers a random utility
(e.g., the number of tasks completed) drawn from an unknown distribution. The
objective in an MAB problem is to find a policy that maximises the total utility
within a given budget (e.g., £500) before a deadline (e.g., in the next two weeks).

A number of studies about budgeted MABs have been conducted, such as
Badanidiyuru et al. (2018), Ho et al. (2016), and Tran-Thanh et al. (2010). But
these studies cannot be applied directly to the ISP as they cannot deal with
the tuning problem (i.e., choosing appropriate parameter values for a contest
structure) effectively. This is because they do not take advantage of the possible
correlations between the arms (i.e., the incentives in a contest structure). Many-
armed bandits work well with many or even an infinite number of arms (Li and
Xia 2017; Trovo et al. 2016; Bubeck et al. 2011). Yet, none of them can be used
to solve the ISP. Actually, they do not consider all important characteristics of
the ISP, such as the budget constraints, multidimensional structure of the incen-
tives (i.e., a contest structure has a certain number of parameters), correlations
between the arms, and the group-based nature of the arm. Bayesian optimisa-
tion (BO) is shown to be an efficient alternative (Snoek et al. 2012). Indeed, BO
is designed to find the global optima of functions in as few steps (i.e., function
evaluations) as possible. This fits the ISP as applying an incentive incurs a cost.
Also, as BO incorporates prior beliefs, if we have some prior knowledge about
user performance in the current crowsourcing project, BO can make use of this
to find the global optimum more quickly.

Therefore, in this paper we combine the two (online learning with MABs and
tuning with BO) to deal with the ISP. By so doing, we decouple a complicated
problem (with both learning the best structure and tuning its parameters) into
two simple problems and deal with these in a learning process). The ultimate
purpose of this work is to build an autonomous agent that can automatically
and effectively select the right incentives, so that we can easily deploy projects
on crowdsourcing platforms by using the provided APIs. To this end, our main
contributions are:

(1) We formalise the ISP and then introduce BOIS, a novel algorithm to solve
the ISP effectively by combining an MAB approach to learn the contest
structures and BO to tune the parameters of the structures.
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(2) We empirically demonstrate that BOIS is generally more effective compared
to the state-of-the-art approaches in an extensive series of simulations.

2 The Incentive Selection Problem

Suppose a requester wants to run a crowdsourcing project. The objective is
typically to maximise the requester’s overall utility with a given financial budget
B and time budget T . We can include task quantity, task quality, task completion
time, or some subset of them in the utility function. For example, Yin and Chen
(2015) consider the quantity and quality of the tasks. To achieve this objective,
the requester spends the available budget on providing incentives to encourage
participants (referred to as users) to perform tasks. For a better presentation,
we group the incentives with the same structure in a cluster, which is referred to
as incentive cluster (or cluster for short). We assume that there are correlations
between different incentives in a cluster. Figure 1 shows possible correlations
between the incentives in a cluster. Specifically, Fig. 1a shows the effectiveness
of the incentives, measured by utility per cost unit3, in a cluster when there
is only one parameter (group size). This figure depicts that the utility initially
increases with increasing group size. However, when it is larger than 20, the
effectiveness starts decreasing. Figure 1b shows another example in a cluster
with two parameters, the group size and the amount of prize money for the best
user. We are interested in finding an effective means of selecting the incentives
(i.e., exploring their effectiveness and exploiting the most effective one) in order
to maximise the requester’s overall utility. This is referred to as the ISP.

Formally, let C denote the number of clusters that are being considered in
a crowdsourcing project. Cluster i (or Ci for short) has Ki parameters. An
incentive a in Ci corresponds to a structure vector va = (v(1)

a , . . . , v
(Ki)
a ), where

v
(k)
a is the value corresponding to the kth parameter and v

(k)
a ∈ [v(k)

min,i, v
(k)
max,i]

(v(k)
min,i, v

(k)
max,i ∈ R). Let ga be the group size of a and ca denote the cost of

applying incentive a once. The expected utility of a is μa which is unknown a
priori. Let N = {n

(t)
a | t = 1, . . . , T ; a ∈ Ci; i = 1, . . . , C} denote a policy, where

n
(t)
a is the number of times incentive a is applied in period t, i.e., incentive a

is offered to n
(t)
a different groups. Let u

(t)
a be the total utility of applying this

incentive n
(t)
a times in period t. The objective is to find a policy that maximises

the overall utility:

max
T∑

t=1

C∑

i=1

∑

a∈Ci

u(t)
a subject to

T∑

t=1

C∑

i=1

∑

a∈Ci

n(t)
a ca ≤ B. (1)

3 The measurement of an incentive’s effectiveness will be discussed in Subsect. 3.1.
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Fig. 1. Illustrative examples of correlations between the incentives in a cluster when
it has one (a) and two (b) parameters.

3 The BOIS Algorithm

In this section, we introduce BOIS (which stands for BO-based Incentive Selec-
tion), a novel algorithm for the ISP. However, we first describe how the algorithm
and the benchmarks measure the effectiveness of the incentives (Subsect. 3.1).
We then give an overview of the algorithm (Subsect. 3.2). Finally, we detail how
BOIS splits the learning and tuning process into steps and how it acts in these
steps (Subsects. 3.3–3.5).

3.1 Measuring the Effectiveness of the Incentives

To measure the effectiveness of the incentives, we use the utility-cost ratio4,
as it reflects the average utility per cost unit. The effectiveness of incentive a
is defined as δa = μa/ca. However, as the real effectiveness of the incentives
are unknown in advance, we have to estimate them. Right after period t, the
estimate of incentive a’s effectiveness is:

d(t)a = μ̂(t)
a /ca, (2)

where μ̂
(t)
a =

(
1/m

(t)
a

) ∑t
τ=1 u

(τ)
a is the current estimate of incentive a’s expected

utility
(
m

(t)
a is the number of times incentive a has been applied until the end of

period t
)
. To keep the presentation simple, we use the best incentive to denote

the incentive with the highest estimate, as opposed to the real best incentive.

3.2 Algorithm Overview

The idea of BOIS is using an MAB approach to deal with the learning prob-
lem (i.e., identifying the best cluster) and using BO5 with Gaussian processes

4 This ratio is called “density” in Tran-Thanh et al. (2010).
5 See Snoek et al. (2012) for more information about the method.
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to tackle the tuning problem (i.e., finding the optimal values of the parameters
of a cluster). In more detail, in each period (except the first one), it selects the
incentive whose value of the acquisition function corresponding to this incen-
tive is the largest compared to those of the other incentives in all clusters.
Note that in BO, acquisition functions are to propose the next sampling incen-
tive in the search space. We have tried several acquisition functions such as
expected improvement, maximum probability of improvement, and upper confi-
dence bound (UCB). However, we chose the UCB (which is the upper confidence
bound of the estimate of the incentive’s effectiveness) as it is the most effective.

The general idea of tuning parameter values of a contest structure (i.e., find-
ing the real best incentive in a cluster) using BO with Gaussian processes is
the following. In each period, based on the incentives sampled in the previous
periods, BOIS estimates the mean utilities of the incentives in the cluster using
Gaussian process regression (GPR). Then, it calculates the UCBs of the incen-
tives. After that, the incentive with the highest UCB will be the candidate to
be applied next in the cluster. BOIS will then choose the candidate incentive in
the cluster which has the highest UCB to be applied in that period. In order for
the algorithm to use BO, it must have initial estimates of the incentives in each
cluster. Therefore, in the first period (i.e., period 1), it samples several incen-
tives, in order to obtain good estimates of the incentives. This step is referred
to as the sampling step. Then, in each of the next periods (except the last one),
it applies the most promising incentive (a), i.e., the incentive with the largest
UCB. After that, it updates the UCBs of the incentives in the same cluster (i.e.,
Ci if a ∈ Ci). We refer to this step as the stepped exploitation step. Finally, in
the last period it applies the best incentive with the remaining budget. This step
is called the pure exploitation step, as it simply exploits the best incentive after
exploring in the previous periods.

Regarding the UCBs, to select an incentive in a period t + 1, at the end of
the previous period (t), BOIS uses GPR to estimate the mean utilities of all
incentives in each cluster. The results of the estimation are μ̂

(t)
a and σ̂

(t)
a ∀a ∈

Ci; i = 1, . . . , C. Then, it calculates the potential effectiveness of all incentives:

d∗(t)
a =

1
ca

⎛

⎝μ̂(t)
a + z(t)

σ̂
(t)
a√

m
(t)
a ga

⎞

⎠ . (3)

In Eq. 3, z(t) = Z
(
1 − t−1

T−2

)
, where Z is the critical value (e.g., 1.96) cor-

responding to the initial confidence level (e.g., 95%) of the estimates. In more
detail, as in the first periods we are not confident about the estimates of the
incentives, the confidence intervals should be large to make sure that the algo-
rithm does not leave out the real best incentive. That means at first, it is better
to focus on exploration. Then in the next periods, the intervals should become
smaller gradually. By so doing, it not only solves the learning and tuning prob-
lems simultaneously, but also it performs a smooth transition from exploration
to exploitation. Literally, the first period (t = 1), z(t) = Z means that it focuses
more on exploration. Then, its value gradually decreases as time goes by. And
finally, when t = T , z(t) = 0 means that it focuses only on exploitation.
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Fig. 2. An illustration of candidate incentives in a cluster in the Sampling step when
the cluster has one (a) and two (b) parameters

Additionally, the denominator,
√

m
(t)
a ga, signifies that the exploration level is

inversely propotional to the number of sampled users.
In the next subsections, details of the steps will be discussed. The explana-

tions will be linked to the corresponding parts of the pseudocode of BOIS shown
in Algorithm 1.

3.3 The Sampling Step

As mentioned above, the purpose of this step (Lines 2–10) is to obtain initial
estimates of the incentives in each cluster, which are then used for the regression
in the next step. BOIS uses the miniMax distance design (Johnson et al. 1990)
to sample the incentives in each cluster to ensure that all other incentives in the
cluster are not too far from the sampled ones. An illustration of this space-filling
design is shown in Fig. 2. In more detail, for the kth parameter of cluster i, BOIS
chooses two values, one in the first quarter and the other in the third quarter of its
range, i.e., v(k)

min,i +0.25Δ
(k)
i and v(k)

min,i +0.75Δ
(k)
i , where Δ

(k)
i = v

(k)
max,i −v

(k)
min,i

(Fig. 2a). From these values, we have a set of 2Ki candidate incentives to be
sampled. Figure 2b shows four candidate incentives in a cluster which has two
parameters.

One issue is that the financial budget is limited and we also want to spend it
on further exploration and exploitation. So, BOIS only uses ε1B (e.g., 0.2B) for
sampling. This amount might not be enough to sample all the above-mentioned
2Ki candidate incentives (∀i = 1, . . . , C). Therefore, BOIS simply iterates over
the clusters (Line 4) and at each cluster it chooses a random (without repetition)
incentive from this set. This is conducted by the NextSample() function (Line
5). Once an incentive is chosen, it will be applied several times so that it has
about U1 (e.g., 20) sampled users, which is calculated by rounding the division
U1/ga to the nearest integer (Lines 8–9). By so doing, it guarantees to have
enough sampled users if the group size of the incentive is small (e.g., 2). Note
that �b1/ca� in Line 8 is to guarantee the budget being used in this step does
not exceed ε1B. BOIS stops sampling when the budget for sampling is exceeded
(Lines 6–7).
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Algorithm 1. The BOIS Algorithm
Input: B, T, C, and Ki ∀i = 1, . . . , C
Predefined parameters: ε1, ε2,U1, Dmin, and Z
Output: u, N = {n

(t)
a | t = 1, . . . , T ; a ∈ Ci; i = 1, . . . , C}

Note: ApplyIncentive(a, n) is to apply incentive a n times and return the total utility.

01: b ← B; � overall residual budget
02: b1 ← ε1B; � residual budget for sampling
03: while true do
04: for i = 1 → C do
05: a ← NextSample(Ci);
06: if b1 < ca then � sampling budget is exceeded
07: Stop the for and while loops;

08: n
(1)
a ← max

{
1, min{[U1/ga], �∗�b1/ca}}

;

09: u
(1)
a ← ApplyIncentive

(
a, n

(1)
a

)
; b1 ← b1 − n

(1)
a ca; b ← b − n

(1)
a ca;

10: UpdateEstimates(Ci, 1, Z) ∀i = 1, . . . , C;

11: b2 ← ε2b; � residual budget for exploration
12: for t = 2 → T − 1 do
13: a ← arg maxa′∈Ci; i=1,...,C{d

∗(t−1)

a′ };

14: if d
∗(t−1)
a < Dmin then � a is too bad

15: i ← a random cluster; a ← a random incentive in Ci;

16: if b2 < ca then � budget for exploration is exceeded
17: Stop the for loop;

18: n
(t)
a ← max

{
1, min{[U1/ga], �∗�b2/ca}}

;

19: u
(t)
a ← ApplyIncentive

(
a, n

(t)
a

)
; b2 ← b2 − n

(t)
a ca; b ← b − n

(t)
a ca;

20: UpdateEstimates(Ci, t, Z,);

21: a ← arg maxa′∈Ci; i=1,...,C{d
∗(T−1)

a′ };

22: n
(T )
a ← max

{
1, �∗�b/ca

}
;

23: u
(T )
a ← ApplyIncentive

(
a, n

(T )
a

)
;

24: u ← ∑T
t=1

∑C
i=1

∑
a∈Ci

u
(t)
a ; � overall utility

25: return u, N ;
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3.4 The Stepped Exploitation Step

At first, BOIS sets the budget for stepped exploitation, a specific portion of
the residual budget which is identified by ε2, e.g., 0.5 (Line 11). Then, in each
period (t) before the deadline, it will choose the incentive (a) with the highest
potential effectiveness (Line 13). The incentives are chosen based on their UCBs
which contain both the estimates of the incentives’ effectiveness so far and the
certainty of the estimates. Thus, this step can be considered as both exploiting
(choosing the incentives whose estimates are high) and exploring (choosing the
incentives whose potential to be the real best one are high).

In some cases, the potential effectiveness of this incentive (d∗(t−1)
a ) can be

very low since the sampled incentives so far in this cluster (Ci) had very low
utilities. To prevent it from falling into the trap of exploring ineffective incentives,
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Algorithm 2. The UpdateEstimates() Function
Input: Ci, t and Z
Output: Ci with updated d

∗(t)
a ∀a ∈ Ci

1: Use Gaussian process regression to estimate μ̂
(t)
a and σ̂

(t)
a ∀a ∈ Ci;

2: Calculate d
∗(t)
a based on Equation 3 ∀a ∈ Ci;

if d
∗(t−1)
a is less than some lower bound (Dmin), BOIS will randomly choose

another incentive (Lines 14–15). It is not difficult to determine a value for Dmin.
For example, if the utility is measured by the number of tasks completed and we
expect an acceptable incentive to have about 20 completed tasks per £, then we
can set Dmin to this value or even 10 if we are not quite sure about this number.
Yet, it should be larger than the possible minimum number of tasks, e.g., 0. As
in the sampling step, after having an incentive, BOIS will apply the incentive
several times so that it obtains about U1 sampled users (Lines 18–19). This step
stops when the budget for exploration is exceeded (Lines 16–17).

3.5 The Pure Exploitation Step

This step (Lines 21–23) simply applies the best incentive with the residual bud-
get. Indeed, from Eq. 3 we can see that in this period the factor z(T ) is zero.
That means it does not explore anymore but totally exploits the incentive with
the highest estimate of the effectiveness.

4 Experimental Evaluation

To systematically evaluate the performance of BOIS, we run simulations in a
wide range of settings. It would be infeasible to undertake this evaluation in
a real crowdsourcing project as we have to deploy the project multiple times
with different financial budgets, time budgets, and numbers of clusters, as well
as different values of the parameters of each cluster. Even then, we could not
guarantee we have explored the main cases in a comprehensive fashion. In the
following, we present the benchmarks (Subsect. 4.1), the experimental settings
(Subsect. 4.2), and then discuss the corresponding results (Subsect. 4.3).

4.1 Benchmarks

As the state-of-the-art algorithms are not specifically designed to deal with
choosing the best cluster together with tuning its parameter values, we make
a number of modifications for them to perform well with the ISP.

(1) ε-first: This algorithm spends εB (where ε is specified in advance, e.g., 0.1)
in the first period to explore by sequentially applying a random incentive in
each cluster until this budget is exceeded (Tran-Thanh et al. 2010). With a
chosen incentive a, it applies this incentive max{1, [U1/ca]} times to obtain
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about U1 (e.g., 20) sampled users. In the second period, it uses GPR to
estimate the best incentive. Then it spends the subsequent period purely
exploiting the best incentive explored in the first period with the remaining
budget, i.e., (1 − ε)B.

(2) Decaying ε-greedy (or ε-greedy for short): It spreads the budget B over T
periods. In each period, with the given budget, it applies the best incentive
with probability (1 − ε) and a random incentive in a random cluster with
probability ε, where ε = (T − t)/(T − 1). It totally explores when t = 1
(i.e., ε = 1). When t increases, ε gradually decreases. And when t = T , it
completely exploits the best incentive (i.e., ε = 0). At the end of period t
(1 < t < T ), it uses GPR to estimate the best incentive for period t + 1.

(3) Random: It spreads the budget B over T periods. Then in each period, it
applies a random incentive in a random cluster with the given budget.

(4) Optimal Solution: It simply applies the real best incentive all the time. To
have this optimality, we have to know the values μa (∀a ∈ Ci;∀i = 1, . . . , C)
in advance, which is typically impossible in practice. Thus, this approach
represents an upper bound of what any algorithm could achieve.

4.2 Simulation Settings

To evaluate the performance of the algorithms, we run simulations in three
different settings where the independent variables are time budget, financial
budget, and number of clusters. In the simulations of each setting, the related
quantities, i.e., utility, B, T , C, group size, and the amount of prize money for the
best user (except the corresponding independent variable) are drawn uniformly
from specific ranges. The ranges are chosen to represent realistic settings in real
crowdsourcing projects. Specifically, C is generated randomly from 1 to 10. The
group sizes (ga) are from 1 to 50. The amount of prize money for the best user
is between £1 and £25. T is between 2 and 30. And B is from 10 to 200 times
the round cost. Here, round cost is the cost of applying all the clusters, where
in each cluster the incentive which the highest cost is applied once. This is to
guarantee B is not too small compared to the generated values of C and ga, so
that we can carry out a meaningful performance comparison.

For each value of the independent variables, we run 2,000 simulations to
achieve statistically significant results at the 99% confidence level. Error bars of
the line graphs in Fig. 3 represent the confidence intervals. We run the algorithms
with different values of the predefined parameters and then choose appropriate
values for the parameters. For instance, with ε of ε-first, we first run this algo-
rithm with different values (such as 0.05, 0.1, 0.2, 0.3, and 0.4). Then we choose
one value that helps ε-first perform well in different settings. A similar process is
used for the other predefined parameters such as ε1 and ε2 of BOIS. As changing
these values slightly does not result in a significant difference (i.e., the trends
of the algorithms’ performance are broadly the same), in Subsect. 4.3 we only
present the results on the simulations with the following values of the algorithms’
predefined parameters. With BOIS, ε1 = 0.1, ε2 = 0.5, U1 = 20, and Z = 1.96.
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Fig. 3. Results of the simulations

With ε-first, ε = 0.1 and U1 = 20. In the simulations, we assume that the per-
formance of a group (i.e., the total utility of all users in the group) is linearly
proportional to the group size. This means the more users there are in a group,
the better the performance of the whole group. This assumption is based on an
empirical study conducted by Araujo (2013).

4.3 Results

In general, BOIS performs best in most cases (Fig. 3). With a looser deadline, the
algorithm performs better, especially when T is greater than 15 (Fig. 3a). This
is mainly because of the miniMax space-filling design and the BO. Specifically,
if T = 2 (i.e., no exploration) the performance of BOIS is good enough (which
is a utility of about 70 per £). And if T = 15, its performance increases clearly
(up to about 79 per £). Note that the time budget is used to learn all the clusters.
This confirms that BO can quickly approach a global optimum (i.e., the real best
incentive). ε-greedy also performs better with a larger T , since it has more time
to explore. Yet, its performance is far below that of BOIS. Whereas, different
values of T does not affect the performance of ε-first as it always uses two
periods. Nonetheless, with a larger financial budget, ε-first performs better, as
there is more budget for exploration (Fig. 3b). As the way it explores is inflexible
(i.e., always εB), when B is small, the budget for exploration is not enough, so
that the GPR conducted in the second period does not have enough samples to
identify one of the best incentives.

Figure 3b suggests that B should be large enough (e.g., at least £5000 as
in the simulations) for BOIS to achieve a good performance. A larger B helps
improve its performance slightly. Actually, it needs enough budget to sample
all 2Ki candidate incentives ∀i = 1, . . . , C. And with a larger B, the amount
of the added budget will be used for exploiting. In Fig. 3c, the performance of
BOIS drops significantly when C becomes larger. This is easy to understand, as
with a fixed B and a larger C, ε1B is not enough to sample all the candidate
incentives in all clusters. Similarly, ε-first’s performance drops more quickly than
that of BOIS. The reason is that it does not make use of the time budget to
conduct further exploration. Regarding the number of parameters, as BOIS does
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not scale well to settings with large values of Ki, we only ran experiments with
Ki = 2, 3, and 4. These results have a similar trend as in Fig. 3c, i.e., that BOIS
performs well when Ki = 2 (a utility of about 82 per £). Then, its performance
drops down to about 69 when Ki = 3 and 62 when Ki = 4. Also, even when
Ki = 4, the time to run the algorithm (the whole episode, i.e., t = 1, . . . , T ) is
less than one minute, which is acceptable in practice.

The results suggest several guidlines for using BOIS effectively in practice.
First, both T and B should be large enough and a larger T has more effect
on the algorithm. Second, C and Ki (∀i = 1, . . . , C) should be small. If there
are many (e.g., 15) candidate clusters to choose from, it is better to continue
using related studies from psychology, sociology, or computer science to filter
out clusters which are not actually promising. A similar process should be done
with the parameters.

5 Conclusions and Future Work

We have discussed the incentive selection problem (ISP) and introduced an algo-
rithm (BOIS) to solve the ISP effectively. Our algorithm performs efficiently in a
wide range of different cases without the need to tune its predefined parameters.
It is shown to outperform the state-of-the-art approaches in simulations. Even
though BOIS is specifically designed for incentives in the form of contests, it
can also be used with other types of incentives where the group size is 1 (i.e.,
there are no contests, such as pay for performance or using bonuses). Although
BOIS is an important initial step towards solving the ISP, there are some areas
of further work. First, we assume that time steps are homogeneous and a new
incentive can be started only when all previous ones have completed. Addressing
this limitation would shorten waiting times and thereby the total time used by
the algorithm. Additionally, this could improve the overall performance as the
algorithm has more time to conduct exploring, especially when the time budget
is limited. Second, we also asume that the cost of applying an incentive is the
same at all times. This may be limiting in more general settings. For example,
some incentives are inherently designed with variable payment such as pay for
performance or using bonuses. Third, the model of user performance used in
the simulations is rather simple, while it might be more complicated in different
projects. Thus, running experiments might help us better understand how peo-
ple behave in different cases. Hence, we can design better algorithms to solve the
ISP more efficiently. Regarding other applications of our work, the model and
the algorithm developed can be applied in other domains with a group-based
nature such as in schools, companies, or organisations (i.e., finding the most
effective groups of students or employees to work or study together).
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Abstract. In image recognition, there are many cases where train-
ing samples cannot cover all target classes. Zero-shot learning (ZSL)
addresses such cases by classifying the samples of unseen categories that
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semantic information. In this paper, we propose a novel and simple end-
to-end framework, called Global Semantic Consistency Network (GSC-
Net for short), which makes complete use of the semantic information of
both seen and unseen classes to support effective zero-shot learning. We
also employ a soft label embedding loss to further exploit the semantic
relationships among classes and use a seen-class weight regularization to
balance attribute learning. Moreover, to adapt GSC-Net to the setting of
Generalized Zero-shot Learning (GZSL), we introduce a parametric nov-
elty detection mechanism. Experiments on all the three widely-used ZSL
datasets show that GSC-Net performs better than most existing meth-
ods under both ZSL and GZSL settings. Especially, GSC-Net achieves
the state of the art performance on two datasets (AWA2 and CUB).
We explain the effectiveness of GSC-Net from the perspectives of class
attribute learning and visual feature learning, and discover that the val-
idation accuracy of seen classes can serve as an indicator of ZSL perfor-
mance.
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1 Introduction

In some real computer vision applications, such as species classification [3], activ-
ity recognition and anomaly detection [22], labeled training samples cannot cover
all target classes. Zero-shot Learning (ZSL) [1] provides a systematic way to
address this type of problems by utilizing the semantic information of classes.
Such class semantic information, including annotated attributes [9], label word
vectors [16] etc., can be uniformly encoded in attribute vectors [20,32]. This
process is also referred to as class embedding or (label) semantic embedding.

ZSL uses the samples of the seen classes (those having training samples) for
training and tests on the samples of the unseen classes (those having no training
samples). The semantic embeddings of both seen and unseen classes are used
as the bridge connecting them. The essence of ZSL is to learn the association
between the visual features of samples (images) and the class embeddings, which
is then transferred to the samples of unseen classes.

In the test stage, ZSL considers only classifying new images of unseen classes.
However, in some real-world applications, an image classification system usually
needs to recognize new images from both seen and unseen classes of the appli-
cation domain. This is addressed by the so-called generalized zero-shot learning
(GZSL). Figure 1 illustrates both ZSL and GZSL tasks. Most of the existing ZSL
methods [29] can be grouped into three types:

Visual Feature Space
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Fig. 1. Illustration of ZSL and GZSL tasks. Available data are labeled images of the
seen classes (source domain, Ys) and semantic information of both seen and unseen
classes (Ys+t). In essence, both ZSL and GZSL learn the mapping or compatibility
between visual feature space and semantic space, then apply it to unseen classes (target
domain, Yt). At the test stage, ZSL model is only evaluated on unseen classes (Yt)
whereas GZSL recognizes images from both seen and unseen classes (Ys+t).

The 1st-type of works includes these that learn a compatibility function
between the image features and the class embeddings, and treat ZSL classifi-
cation as a compatibility score ranking problem [2,10,26]. However, these meth-
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ods suffer from the following drawbacks: the attribute annotations are pointwise
rather than pairwise, compatibility scores are unbounded, and ranking may fail
to learn some semantic structures due to the fixed margin [4].

Methods of the 2nd-type project the visual features and semantic embed-
dings into a shared space and treat ZSL training as ridge regression. The shared
space can be visual space, semantic space or a common space of visual features
and semantic embeddings. The prediction process of these methods is a nearest
neighbor search in the shared space, which may cause hubness problems [19].

Most of recent works fall into the 3rd-type. They either employ deep neural
networks [5,15,30], or use generative models [13,28,33], to pursue better per-
formance. For example, Morgado et al. [17] adopted a semantically consistent
regularization of the last fully-connected (FC) layer’s weights of the neural net-
work in end-to-end training, based on the attribute matrix of the seen classes.
These methods are usually complex and hard to be deployed in general situation,
and very time-consuming to be trained.

To overcome the limitations of existing ZSL methods, in this paper we pro-
pose a novel and simple end-to-end framework, called global semantic consistency
network (GSC-Net) to exploit the semantic embeddings of both seen and unseen
classes while preserving the global semantic consistency. By treating the global
semantic consistency layer as a fully-connected (FC) layer with fixed weights,
we can easily employ all kinds of CNN techniques such as the dropout policy,
sigmoid activation, and cross entropy loss. The softmax layer and loss layer in
GSC-Net are both over all classes of the learning problem domain, which thus
makes full use of the semantic information in training.

Furthermore, we employ the label embedding loss to exploit the semantic
relationships among classes and propose a seen-class weight regularization to
balance the training, which thus guides the net to learn a more comprehensive
representation. Moreover, We design a parametric novelty detection mechanism
for adapting GSC-Net to the GZSL task. Experimental results over three widely-
used datasets show that GSC-Net performs better than most existing methods
under both ZSL and GZSL settings. We also explain the effectiveness of GSC-
Net from the perspectives of class attribute learning and visual feature learning,
and discover that the validation accuracy of seen classes can be an indicator of
ZSL performance.

2 Method

2.1 Problem Formulation

Assume there are ns seen classes (denoted by set Ys) and nt unseen classes
(denoted by set Yt) in a problem domain, where seen classes and unseen classes
are disjoint, i.e., Ys ∩Yt = ∅. So the number of total classes nc = ns +nt. In the
seen class space Ys, given a dataset with Ns labeled samples, Ds = {(Ii, yi), i =
1, . . . , Ns} where Ii is the i-th training image, and yi ∈ Ys is the label of Ii.
Given the class attribute matrix A = [As,At] where As ∈ R

L×ns corresponds



Global Semantic Consistency for Effective Zero-Shot Learning 101

CNN
FC w/o bias As

At

ys

yt

Lo
ss

006. Least_Auklet

attribute matrix

W

Softmax

regularization

Fig. 2. The GSC-Net architecture. The class attribute matrix A = [As,At] where
As is for the seen/training classes and At is for the unseen/test classes. Though no
training images belong to the unseen classes, the Global Semantic Consistency (GSC)
Layer, softmax layer and loss layer are designed for all classes Ys+t.

to the seen classes, At ∈ R
L×nt corresponds to the unseen classes, L is the

attribute dimension.
Now, given a new test image Ij , the goal of ZSL is to predict its label ŷj just

among the unseen classes, i.e., ŷj ∈ Ys, while the goal of GZSL is to predict its
label ŷj among all classes, i.e., ŷj ∈ Ys+t where Ys+t = Ys ∪ Yt.

2.2 Global Semantic Consistency Network

Architecture. To exploit the semantic attributes of both seen and unseen
classes for training, we propose a novel, simple yet effective end-to-end approach,
called Global Semantic Consistency Network (GSC-Net for short) for the ZSL
task, and adapt it to the GZSL task later. Figure 2 is the architecture of GSC-
Net, which consists of four major components as follows:

1. CNN block: x = CNN(I). In this paper, we use the pretrained resnet50 [11]
as the CNN by default. The pretrained CNN acts as a feature extractor, with
the original last fully-connected (FC) layer being dropped. For fast end-to-end
training, we freeze this block’s parameters in the first 5 epochs.

2. FC w/o bias: xa = Wx. This FC layer (its weight matrix is W and bias
is 0) maps the CNN features into a L-dimensional space. Its output can be
interpreted as the image embedding in attribute space.

3. Global Semantic Consistency (GSC) Layer: yout = Axa. Here, A is the
class attribute matrix (it can also be label word embeddings). [32] discussed
how to fuse multiple semantic vectors together. If the auxiliary information
needs a neural encoding layer, then we can include this layer in end-to-end
co-training. Since the semantic information is usually about classes and can
be fixed for different samples, like the class attribute matrix, we can freeze it
in the net, which thus makes it equivalent to a fully connected network with
no bias. In this framework, the prediction process can be almost the same in
both the training stage and the test stage by just taking the class with the
maximum score.



102 F. Wu et al.

4. Loss: First, we normalize the output score vector to [0, 1] with a softmax
ŷ = softmax(yout). Then, we adopt a global attribute balancing loss to handle
the imbalance problem between the attributes of seen classes and that of
unseen classes. This will be detailed in the next section.

Semantic Consistency vs. Global Semantic Consistency. In order to
investigate whether GSC can give a better supervision on both seen and unseen
classes, we also design a semantic consistency network (SC-Net) for comparison.
In SC-Net, As and At are respectively used in the training stage and the test
stage, which means the semantic manifold formed by seen classes (As) is not
aware of the unseen class information (At).

In GSC-Net, as we use unseen class information (At) in the training stage,
though unseen class images are not input to the net, we can still use the global
softmax training to form a more comprehensive discriminant space. Intuitively,
this can improve performance not only on the ZSL task, but also on the GZSL
task that recognizes both training and test classes (Ys+t) at the same time.
Furthermore, the softmax and cross entropy loss are also applied to the (ns +
nt)-dimension output vector ŷ. Therefore, GSC-Net pays more attention to the
attributes mainly owned by unseen classes, which can make the learned features
more discriminative among the unseen classes.

2.3 Global Attribute Balancing Loss

Since the class attribute matrix is given as the only term connecting seen and
unseen classes, the key of ZSL or GZSL is to make the net learn a suitable
embedding xa on the L-dimension (attribute) space. In GSC-Net, there are two
major reasons that may leave the embedding xa extremely imbalanced on differ-
ent attributes: (1) only the seen classes are supervised positively in GSC-Net; (2)
there may be domain shift between seen and unseen classes. Taking these into
account, we propose a global attribute balancing loss (GAB-loss) for GSC-Net as
follows:

LGAB = αLCE + (1 − α)LSLE + λ||WAs||22 + β||W||22 (1)

where the 1st term is the standard one-hot target cross entropy loss LCE , and
the 4th term is a simple weight decay on W for better generalization. Our
contributions lie in the 2nd term and the 3rd term. Concretely, the 2nd term
is the soft label embedding loss LSLE , and the 3rd term is a L2 regularization
to constrain the weights of seen classes, where As is the seen class attribute
matrix. It is actually to balance the attributes of seen and unseen classes, so we
call it attribute balancing regularization, or AB-regularization for short. In what
follows, we give detailed explanations on these terms.

Cross Entropy Loss LCE . Formally, it is

LCE = q(ŷ, ytrue) (2)
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where q(·) is a typical cross entropy loss function, ŷ is the output vector of
the net, ytrue is the one-hot vector of the target label. Here, we do not use
weighted approximate ranking loss [1] because the class semantic matrix used
in experiments is point-wisely labeled and cross entropy loss performs better in
various experiments.

Soft Label Embedding Loss LSLE . With the GSC-Net, less seen class images
will be misclassified into unseen classes in GZSL, but more unseen class images
will be misclassified into seen classes. This is because the training samples all fall
into seen classes ys, making the weights corresponding to ys larger and larger
than those corresponding to yt during training process.

As the one-hot supervision will cause the net to ‘lazily’ learn a smaller
weight for these attributes on which unseen classes have high scores (in the
class attribute matrix), so we add a soft label guide to the original cross entropy
loss as in [23]:

LSLE = q(ŷ, Y l
emb) (3)

where l is the true label index and Y l
emb is the l-th row of soft label embedding

matrix Yemb. We have to utilize the semantic information again to generate the
soft label embedding matrix Yemb for all classes Ys+t. Inspired by label propaga-
tion, we use the class attribute matrix A to build a label graph, and employ the
adaptive scale policy [31] to compute the class similarity. The similarity between
two classes is

Sij =

⎧
⎨

⎩
e

−η
||Ai−Aj ||2
h(Ai)h(Aj) , Aj ∈ N (Ai);

0, otherwise.
(4)

N (Ai) is the neighbor set of Ai, which can be evaluated by setting a distance
threshold to reduce the computation cost. We can also directly replace the values
of relatively small Sij with 0. The local scale function h(x) is defined as

h(x) = ||x − x(k)|| (5)

where x(k) is the k-th nearest neighbor of point x. In experiments, we find that
it is good enough to set k to 1 or 2.

η in Eq. (4) is a hyperparameter to control the centralization degree of S.
The larger η is, the farther a node is away from its neighbors, then Yemb will
degenerate to the naive one-hot label. Since the local scale function h(x) actually
normalizes the numerator term of Eq. (4), it can be easy to set η to get an
appropriate similarity.

Normalizing S by row, then we get the normalized class embedding matrix
Yemb ∈ R

nc×L, each row can be viewed as the soft label.

Attribute Balancing Regularization. We have two L2 regularizations (the
third and the fourth terms) in Eq. (1). The two terms can be derived as follows:

Inspired by [12], we can minimize the reconstruction error and the regression
term as follows:

min
Xi,W

||WT Xi − Ai||2 + λ||WAi − Xi||2 + β||W ||2 (6)
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where Xi is the CNN feature of the i-th sample while Ai is the attribute vector of
the sample’s corresponding class. Since Ai is fixed, this formula can be rewritten
as:

minXi,W −2(1 + λ)AT
i WT Xi + ||WT Xi||2 + ||Xi||2

+λ||WAi||2 + β||W ||2 (7)

Through simple deduction, the optimization directions of the first two terms in
Eq. (7) are consistent with LCE . We can approximately replace the first two
terms in Eq. (7) with LCE . Furthermore, the third term ||Xi||2 is restricted
by batch normalization. Since only seen class samples are put into the training
pipeline, the regularization on Ai can be generalized into As. Then the target
function turns out to be:

min
X,y∗

LCE + λ||WAs||2 + β||W ||2 (8)

which matches the GAB-loss in Eq. (1).
Overall, GAB-loss can be applied to many problems with unbalancing train-

ing data. In the GAB-loss of Eq. (1), α is a hyperparameter falling in [0, 1]. A
large α will degenerate the loss to a standard cross entropy. We set it around
0.5 if no prior knowledge. If α = 0, LSLE dominates GAB-loss. If the FC layers
are randomly initialized at the beginning, the projection on each class is almost
the same, so LSLE will make the learning process slow at the starting stage. By
increasing the value of α, we can make training faster and get higher accuracy
for seen classes. Since the training samples all belong to seen classes, LGAB puts
more positive supervision to the unseen class attributes.

Relationship to Existing Deep ZSL Models. Many methods [1,14,32] map
the visual features and the label semantic vectors into a shared space, then do
classification by computing the nearest label embedding vector:

c = arg min
c

||θ(x) − Ac
y||2 (9)

where Ac
y is the embedding vector of the c-th class. This nearest search method

can be clearly visualized and easy to interpret. However, the mean square error
is less effective than cross entropy loss in end-to-end training. So we actually
transform the search into a softmax classification. Since θ(x) is independent of
classification, Eq. (9) can be written as

c = arg min
c

−θ(x)T Ac
y +

1
2
||Ac

y||2. (10)

Since Ac
y is set statistically equal for each class, Eq. (10) can be simplified to

c = arg max
c

θ(x)T Ac
y (11)

where θ(x)T Ac
y can be seen as expression score on class c. Equation (11) is

equivalent to the last FC layer with no bias in GSC-Net. This maximization
process can be integrated into a softmax layer and trained with cross entropy
loss.
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Table 1. Details of the ZSL datasets with the proposed splits

Dataset No. of
attributes

No. of
seen
classes

No. of
unseen
classes

No. of
sample

No.of
samples
(Train)

No. of samples
from unseen
classes (Test)

No. of samples
from seen
classes (Test)

SUN [18] 102 645 72 14340 10320 1440 2580

AWA2 [27] 85 40 10 37322 23527 7913 5882

CUB [25] 312 150 50 11788 7057 2967 1764

2.4 Parametric Novelty Detection for GZSL

Here we adapt our model for the generalized zero-shot learning (GZSL) task by
adding a parametric novelty detection (PND) mechanism. In GSC-Net, unseen
class images still have relatively high scores on seen classes, which means in most
cases ySeen > yUnseen in the output vector. Therefore, we set a hyperparameter
γ to control the novelty detection as in [7]. When

max
i

ySeen
i < γ · max

j
yUnseen

j , (12)

we say an unseen class image is detected, and take the maximum yUnseen term as
the predicted class. So the prediction method with controllable novelty detection
goes as follows:

c =

{
argmaxi ySeen

i , maxi ySeen
i ≥ γ · (maxj yUnseen

j );
argmaxj yUnseen

j , otherwise.
(13)

In experiments, γ must be larger than 1. The larger the γ value is, the higher
the accuracy on unseen classes is. Our PND mechanism can be easily applied to
a typical deep ZSL model. When applied to a certain method, we just append
‘*’ to the method’s name for notation.

3 Performance Evaluation

3.1 Datasets and Experimental Settings

Datasets: Xian et al. [27] gave a comprehensive evaluation on the existing ZSL
methods on several widely used datasets, and proposed an adapted dataset Ani-
mals with Attributes 2 (AWA2) as well as some suggestions on dataset splits for
these ZSL datasets. Since our target is to develop a unified end-to-end ZSL frame-
work, we choose 3 datatsets that have open original images and class attribute
annotations: AWA2 [27], CUB-200-2011 (CUB) [25] and Scene UNderstanding
(SUN) [18]. Table 1 shows more details about these datasets.

In order to make our approach more practical and applicable to more sce-
narios, we utilize only the class attribute annotations rather than individual
samples’ attributes. It is common in the datasets that the numbers of images in
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some classes are much larger than that in the other classes. Therefore, we use
the average per-class accuracy to present our results.

Settings: The 2-stage methods use the 2048-D ResNet101 [11] features provided
by [27] for all the datasets. To show that our framework can get better results
on even smaller CNN base models, we use pretrained ResNet50 [11] as our CNN
module, which also outputs 2048-D vectors. In the beginning epochs, since CNN
is well pretrained on ImageNet, we can freeze the CNN parameters and train
the FC layers only.

Training Policy: We use AdaGrad optimizer [8] with a learning rate 10−3.
Regularization ratios λ and β are set to 0.1 and 0.005. LCE ratio α is set to
0.5 by default. For our 3 datasets, to avoid tuning parameters according to test
results, we set the affinity factor η = 1.4, and novelty factor γ = 1.4. Since we
use local function, η ∈ [1.2, 1.8] is suitable enough. In real applications, γ can be
set to meet different requirements. If the number of training samples per class
is large, which means the seen classes overwhelm unseen classes, γ needs to be
large. If α is small, the target label will be soft, then small γ is considered. We
run experiments on Titan Xp GPUs with early stopping policy.

3.2 Ablation Study

To testify the benefit of each component in GSC-Net, we consider 3 comparison
cases: SC-Net, GSC-Net without LSLE (setting λ = 0.1 and α = 1.0) and GSC-
Net without attribute balancing regularization (setting λ = 0 and α = 0.5).

ZSL Results. The results are presented in Table 2. The upper part shows
the 2-stage methods whose results were reported in [27]. ALE [2] is simple but
effective on all datasets. These methods all use 2048-D ResNet101 features. The
lower part stands for end-to-end approaches. Under the same protocol, we imple-
mented Deep-SCoRe, DEM, and our models SC-Net and GSC-Net on ResNet50.
The result of S2GA [30] is directly cited from the original paper where it was
evaluated only on CUB.

On the basis of SC-Net, GSC-Net improves performance a lot by making
full use of the total class attribute matrix and boosting the feature learning
for unseen classes. With LSLE , GSC-Net further lifts the performance. Over-
all, GSC-Net surpasses the existing methods and achieves the state-of-the-art
performance on all the three datasets.

Comparing the end-to-end (E2E) methods and 2-stage (2S) methods, we can
easily discover that E2E methods exceed 2 S methods significantly on AWA2 and
CUB, but hit a draw on SUN. The reasons may be: (1) there are only 16 images
per seen class in SUN, which does not contribute much to CNN finetuning.
(2) There are 717 classes but only 102 attributes annotated in SUN. Note that
the dimension of the class attribute matrix W , i.e., the last FC weights, is
717 × 102, therefore the feature dimensionality of 102 is not large enough for
717-way classification.
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Table 2. Average per-class accuracy (top-1 in %) for the ZSL task

Method SUN AWA2 CUB

LATEM [26] 55.3 55.8 49.3

ALE [2] 58.1 62.5 54.9

DEVISE [10] 56.5 59.7 52.0

SJE [3] 53.7 61.9 53.9

ESZSL [21] 54.5 58.6 53.9

SYNC [6] 56.3 46.6 55.6

SAE [12] 40.3 54.1 33.3

Deep-SCoRe [17] (Resnet50) 51.7 69.5 61.0

DEM [32] (Resnet50) 51.1 68.7 60.1

RELATION NET [24] (GoogleNet) - - 62.0

S2GA [30] - - 68.9

SC-Net (baseline, Resnet50) 52.7 71.2 61.4

GSC-Net without LSLE (Resnet50) 56.9 73.7 65.1

GSC-Net without AB-regularization (Resnet50) 58.1 74.5 68.2

GSC-Net (Resnet50) 58.3 75.4 69.2

Table 3. Results on the GZSL task. ‘*’ refers to employing our novelty detection
mechanism.

Method SUN AWA2 CUB

ts tr H ts tr H ts tr H

LATEM [26] 14.7 28.8 19.5 11.5 77.3 20.0 15.2 57.3 24.0

ALE [2] 21.8 33.1 26.3 14.0 81.8 23.9 23.7 62.8 34.4

DEVISE [10] 16.9 27.4 20.9 17.1 74.7 27.8 23.8 53.0 32.8

SJE [3] 14.7 30.5 19.8 8.0 73.9 14.4 23.5 59.2 33.6

ESZSL [21] 11.0 27.9 15.8 5.9 77.8 11.0 12.6 63.8 21.0

SYNC [6] 7.9 43.3 13.4 10.0 90.5 18.0 11.5 70.9 19.8

SAE [12] 8.8 18.0 11.8 1.1 82.2 2.2 7.8 54.0 13.6

DeepSCoRe* [17] 17.3 30.8 22.2 8.8 91.1 16.0 20.3 65.8 31.0

f-CLSWGAN with softmax [28] 42.6 36.6 39.4 - - - 43.7 57.7 49.7

SC-Net* (baseline) 10.3 33.4 15.8 3.8 93.4 7.3 15.0 70.1 24.7

GSC-Net* without LSLE 35.3 30.1 32.5 27.0 72.9 39.4 51.9 59.7 59.1

GSC-Net* without AB-regularization 30.7 35.3 32.8 21.3 90.8 34.5 50.4 61.3 55.3

GSC-Net* 37.5 31.5 34.2 40.2 80.5 53.7 53.6 68.9 60.3

GZSL Results. In GZSL setting, the search space contains both the seen classes
and the unseen classes. We use the same evaluation protocol as in [27]. Let ts
be GZSL accuracy on unseen classes and tr GZSL accuracy on seen classes. H
is the harmonic mean between ts and tr. H pays attention to the smaller one
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(a) SUN (b) CUB

Fig. 3. GSC-Net (α = 0.5) training processes for ZSL task and GZSL task on (a) SUN
and (b) CUB respectively. The X-axis is the number of training epochs. The left Y-axis
means ZSL (GZSL) accuracy while the right Y-axis is training accuracy. The blue and
purple lines indicate training accuracy and validation accuracy on seen classes. (Color
figure online)

between tr and ts, it is a balanced evaluation for the GZSL task. Table 3 reports
the results of GZSL on the three datasets. Some results of existing approaches
are obtained from [27]. In the upper part, we can see that most existing ZSL
methods perform very poorly on GZSL task in terms of H and ts. Comparing
with these methods, our method can effectively boost the H accuracy on all 3
datasets by a large margin.

For the three datasets, GSC-Net improves performance most significantly on
CUB, with H increasing from 24.7% to 60.3%, mainly due to better attribute
balancing between seen and unseen classes. For SUN, there are too many classes
and only 16 images per training seen class, which makes it a challenging problem
to get high accuracy on both ts and tr, since the small number of images per class
in SUN cannot support end-to-end finetuning well on this setting. It is worthy to
notice that [28] uses pretrained ResNet101 features, so it gets better results on
SUN. On the other hand, AWA2 faces an extremely unbalancing situation: the
number of images in each seen class is quite large, which may make many test
images of unseen classes be classified into seen classes in GZSL. Nevertheless,
our method still significantly improves the performance on AWA2, lifting H from
7.3% (baseline) to 53.7%.

Figure 3 shows the training processes of GSC-Net (α = 0.5) for ZSL task and
GZSL task on SUN and CUB respectively. We can see that ts for unseen classes
in GZSL is much lower than ZSL accuracy for seen classes, which shows that
GZSL is a much harder task than ZSL.

The model reaches a high accuracy in less than 20 epochs and then oscillates
irregularly, so we save the earlier models with early stopping policy. Figure 3
also shows that ZSL/GZSL accuracy fluctuates with the validation accuracy val
(purple line in Fig. 3) almost in the same pace. This obviously reveals that better
feature learning gives better ZSL/GZSL prediction. Therefore, we can refer to
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(a) abs(feature) averaged over seen
classes in CUB

(b) abs(feature) averaged over unseen
classes in CUB

Fig. 4. Attribute analysis on CUB. Attributes (dimensions) are sorted by std (A).
(Color figure online)

the validation accuracy for seen classes to select the saved models in real scenar-
ios. This can effectively alleviate the situation that the previous deep learning
methods of ZSL have to leave some of seen classes as unseen validation set. So
this discovery can help exploit the full power of training data.

3.3 Effectiveness of the AB-Regularization

Here, we investigate how GSC-Net and AB-regularization work on the CUB
dataset. First, we get the feature vectors (xa layer) for validation images of the
200 CUB classes and compute the average features for each class. Thus, we can
get a 200 * 312 matrix Xa by concatenating these 200 vectors, which can be
compared with the class attribute matrix A. Then, we compute the standard
deviation of A, i.e. std(A), for both seen and unseen classes. As shown in Fig. 4,
the attributes are sorted in ascending order by std(A). From left to right, std(A)
goes bigger, which in some extent means that the classes are more distinguishable
on those attributes of the right part in Fig. 4(a) and (b). From Fig. 4, we can see
that GSC-Net with AB-regularization tends to learn balanced features, rather
than biased to a small part of attributes when learning on samples from seen
classes. The AB-regularization makes the network tend to utilize more attributes,
and the features more balanced and effective, with larger values on the right part
attributes of unseen classes, as shown by the orange histograms in Fig. 4(b).
Moreover, for seen and unseen classes, both the attribute feature distributions
and std(A) in corresponding positions are nearly similar, which can explain why
ZSL works well on CUB.

4 Conclusion

In this work, we try to make full use of the global class semantic information
to improve the classification performance of ZSL and GZSL. We first propose
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a novel end-to-end model with a neural weighted unit to increase the learning
ability under a global semantic constraint. We then employ a soft label embed-
ding loss with attribute balancing regularization to further exploit the semantic
relationships between classes, which thus enables the neural network to transfer
more knowledge to unseen classes without overfitting either the seen classes or
their highly related attributes. We show the effectiveness and advantage of the
proposed method by extensive experiments for both ZSL and GZSL tasks. We
also discover that the validation accuracy on seen classes can be an indicator for
ZSL performance, which can be a practical guide for training and early stopping.
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Abstract. Social capital brings individuals benefits and advantages in
societies. In this paper, we formalize two types of social capital: bond-
ing capital refers to links to neighbours, while bridging capital refers to
brokerages between others. We ask the questions: How would a marginal
individual gain social capital with imperfect information of the society?
We formalize this issue as the partially observable network building prob-
lem and propose two reinforcement learning algorithms: one guarantees
the convergence to optimal values in theory, while the other is efficient in
practice. We conduct simulations over a real-world dataset, and experi-
mental results coincide with our theoretical analysis.

Keywords: Social capital · Network building · Reinforcement learning

1 Introduction

Social networks grant individuals with both tangible benefits, e.g., economic
resources and human resources, and impalpable advantages such as social sup-
port, information control, and social influence. The concept of social capital
epitomizes various incarnations of benefits obtained via engaging in and main-
taining social relationships [4]. Prominent differences of origins divide researches
on social capital into two dimensions: bonding capital depicts the aggregate social
benefits that an individual draws from its neighbours [2], while bridging capital
rises from brokering diverse communities that captures an individual’s potentials
over acquiring opportunities and information [3]. Human societies can be seen as
the product of interactions among all participating individuals regarding gain-
ing social capital. A question naturally arises from this scenario that how would
an individual take a tactic to gain social capital? The reward theory of attrac-
tion in social psychology – indicating that people like those whose behaviour
is rewarding to them or whom they associate with rewarding events – points
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out approaches to this question on a fundamental level [7]. That is, regarding
social capital as rewards and accessing others through building interpersonal ties.
Several assumptions are naturally derived from this theory: (1) Since rewards
are typical of hindsight, an individual demands learning from experience via
trial-and-error. (2) An individual has limited abilities to establish and maintain
relationships. Since if otherwise, trivially she can link to all others to maximize
rewards. (3) An individual gives priorities to surrounding persons on creating
links, as it is difficult to access to and gain rewards from remote parts of society.

Motivated by concerns and assumptions above, we model this issue as par-
tially observable network building process (PONB) problem, which involves a
network and an agent within. The agent has a partial observation of the net-
work and can create a limited number of ties. To capture that the agent learns
a strategy for gaining social via trial-and-error, we tackle PONB problem using
the reinforcement learning method. We propose two Q-learning algorithms. One
is optimal in theory but impractical, while the other is efficient in practice.

Related Works. Pioneering works of sociologists advanced the research on
social capital, in which homophily and weak ties are the sources of two types
of social capital, respectively [2–4]. Game-based research on network formation
focuses on equilibria among rational agents [5], where behaviours of agents are
subject to restricted predefined rules. Our work surpasses theirs as the learning
process captures initiatives of agents. Algorithmic research on network building
problem asks for integrating a newcomer to the center of an existing static or
dynamic network via establishing a minimum number of links [6,11]. Our work
differs from theirs as: (1) we assume an agent does not have global knowledge
of the network which is more realistic; (2) we solve PONB using reinforcement
learning instead of heuristic-based algorithms.

2 Problem Setup

A social network is considered as an undirected graph G = (V,E), where V is a
set of nodes social actors (agents) and E ⊆ V 2 \ {uu | u ∈ V } is a set of edges.
A (k-length) path is a sequence of nodes u1u2, . . . uk+1 where uiui+1 ∈ E,∀1 ≤
i ≤ k. Denote by distG(u, v), the distance between u and v is the length of a
shortest path between u and v. If distG(u, v) = d, then we say that u, v are d-hop
neighbors. The d-hop neighbor set of v ∈ V is Nd

G(v) := {u ∈ V |distG(u, v) = d}.
From an individualistic perspective, the social surrounding of a node v ∈ V
contains all ties that v maintains and perceives. This can be captured using the
2-level ego network, which is the subgraph Ov

G of G consisting of v, v’s 1- and
2-hop neighbors and edges between, i.e., the nodes set of Ov

G is V v
G = {u ∈

V |distG(u, v) ≤ 2} and the edges of Ov
G is Ev

G = {uw ∈ E | u,w ∈ VG}.

Bonding Capital. Bonding social capital is inclined to the collective resources
generated by the strong relationship between group members. This kind of col-
lective resource is generated by the social cohesion of the agent. We measure
such kind of cohesion using personalized PageRank index, which is adapted from
PageRank that evaluates structural proximity between nodes through predict-
ing the likelihood of edges between any pairs of nodes [8]. It takes as input a
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starting node s, and assigns a score to every node u that captures the likelihood
of a random walk from s to u [10]. More formally, let au be the column vector in
the adjacency matrix of G corresponding to node u. The personalized PageRank
vector pr is defined by

pru = (1 − β)ru + β(pr · au/|N1
G(u)|),

where β ∈ (0, 1) is the restart probability, and ru = 1 if u = s and ru = 0
otherwise. pru is used as the link prediction score between s and u. In this work,
we use pru to evaluate likelihood between s and u. Denote by boG(v), the bonding
capital of v is defined by summing personalized PageRank indices between v and
v’s neighbors, namely, boG(v) :=

∑
u∈N1

G(v) pru.

Bridging Capital. Occupying a central position to act as a gateway for
information exchange brings an individual bridging capital [3]. Following the
work [1], we formalize bridging capital using betweenness centrality. Formally,
brG(v) :=

∑
s �=v �=t∈V σst(v)/σst, where σst is the number of shortest paths

between nodes s and t, and σst(v) is the number of shortest paths passing v.

Mixed Capital. An individual may show different preferences to two types of
capital. To cope with this, we employee a preference weight w ∈ [0, 1]. The mixed
capital induced by w is defined as mixw

G(v) := wboG(v) + (1 − w)brG(v).
Assuming an inside individual that aims to gain social capital through build-

ing interpersonal ties. We model this interaction as the (�-round) network build-
ing process in discrete time steps τ = 0, 1, . . . , � − 1, which involves a network
G and an agent ν within. In each time step τ , ν chooses a node uτ from
its 2-hop neighbor set to create a link, resulting in a sequence of networks
G0, G1, . . . , G�−1, G� where G0 = G and Gτ+1 is obtained by adding edge νuτ to
Gτ . The tactic for agent v to select the node is called a network building strategy.
More formally, a network building strategy is a function ϕ that takes as input a
2-level ego network Oν

G and outputs a node u ∈ N2
G(ν). Any NB process is said

to be consistent with a strategy ϕ if ∀0 ≤ τ ≤ � − 1 : uτ = ϕ(Oν
Gτ

).
We are now ready to formally define partially observable network building

(PONB) problem. A PONB problem is a tuple 〈G, ν, �, w〉, where G = (V,E) is
a graph, ν ∈ V is the learner, � ∈ N

+ and w ∈ [0, 1]. The problem asks for an
NB strategy ϕ∗ so as to maximize the mixed capital mixw

G�
(ν) via an �-round

NB process consistent with ϕ∗.

3 Reinforcement Learning Algorithms for PONB

To cope with the inherent high computational complexity and incomplete
knowledge of the environment, we tackle PONB using reinforcement learning
approaches, which also captures an individuals’ learning process in reality.

Algorithm 1 (OQL). We first investigate the optimal Q-learning algorithm
(OQL) that uses 2-level ego networks as states and nodes as actions. The reward
is defined as the difference of mixed capital between two time steps. More for-
mally, for a PONB problem 〈G, ν, �, w〉, the Q-value update rule of OQL is
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Qt+1

(
Oν

Gτ
, aτ

)
= (1 − αt)Qt

(
Oν

Gτ
, aτ

)
+ αt

[
rτ+1 + max

a′
Qt

(
Oν

Gτ+1
, a′

)]
, (1)

where αt ∈ [0, 1) is the learning rate, aτ ∈ N2
Gτ

(ν), rτ+1 = mixw
Gτ+1

(ν)−mixw
Gτ

(ν)
and a′ ∈ N2

Gτ+1
(ν). It is clearly that the underlying process of OQL is an Markov

decision process. Therefore, the optimality and convergence of OQL hold. Hence,
after convergence an optimal strategy is obtained by setting ∀0 ≤ τ < � :
ϕ(Oν

Gτ
) = arg maxaτ

Q(Oν
Gτ

, aτ ).

Algorithm 2 (FQL). However, OQL is impractical for most of the time as
the space of 2-level ego networks is typically too large to learn from. Therefore
we propose a fast Q-learning algorithm (FQL) that directly use time steps, τ =
0, 1, . . . , � − 1, as states. Hence, the Q-value update rule of FQL is

Qt+1(τ, aτ ) = (1 − αt)Qt(τ, aτ ) + αt

[
rτ+1 + max

a′
Qt(τ + 1, a′)

]
. (2)

The reward distribution is not stationary in FQL as the underlying network
Gτ+1 induced by a same aτ may vary, which implies that the cost of a fast speed
is losing the guarantee of optimality. However, surprisingly, we observe that FQL
achieves a good trade-off between time and accuracy in practice (see Sect. 4).

4 Experiments and Discussion

We test two algorithms on a real-world dataset, which represents American foot-
ball games between Division IA colleges during regular season Fall 2000. Nodes
and edges represent teams and matches, respectively [9]. We set learning rate
α = 0.1 and use ε-greedy for exploration with ε = 0.3. We set the length of
NB processes � = 5 and the preference weight w = 0.5. We select two possi-
bly encountered 2-level ego networks (denoted by o1 and o2) at round τ = 1,
and a node a (see Fig. 1). We execute 10 independent runs for this experiment.
The learning curves of Q(o1, a) and Q(o2, a) in OQL, Q(τ = 1, a) in FQL, and
tendencies of social capital are plotted in Fig. 2.

Fig. 1. The agent ν and action a are set as node 113 and 56, respectively. Red nodes
represent ν’s initial 2-hop neighbors. Green nodes in the left figure represents ν’s new
2-hop neighbors after linking to node 0 at round 1. Blue nodes in the right figure
represents 2-hop neighbors after linking to node 11 at round 1. o1 is induced by red
and green nodes (left figure), and o2 is induced by red and blue nodes (right figure).
(Color figure onlone)
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Fig. 2. Results of applying two Q-learing algorithms on football network. Left: Q-values
by OQL (Q(o1, a) and Q(o2, a)) and FQL (Q(1, a)). The line shows the median over 10
independent runs. Right: Results of mixed capital by OQL and FQL with preference
weight w = 0.5.

We make two discussions: (1) FQL standouts as Q(1, a) stabilizes consid-
erably faster than two Q-values in OQL, though to a non-optimal value. This
coincides with our theoretical results. (2) Thanks to the fast stabilization, FQL
surpasses OQL in the speed of enhancing social capital. Therefore, it is explicitly
that FQL successfully achieves a trade-off between efficiency and accuracy.

References

1. Alaa, A.M., Ahuja, K., van der Schaar, M.: A micro-foundation of social capital in
evolving social networks. IEEE Trans. Netw. Sci. Eng. 5(1), 14–31 (2018)

2. Bourdieu, P.: The forms of capital. In: Handbook of Theory and Research for the
Sociology of Education (1986)

3. Burt, R.S.: Structural holes and good ideas. Am. J. Sociol. 110(2), 349–399 (2004)
4. Coleman, J.S.: Social capital in the creation of human capital. Am. J. Sociol. 94,

S95–S120 (1988)
5. Jackson, M.O.: A survey of network formation models: stability and efficiency.

Group Formation Econ. Netw. Clubs Coalitions 664, 11–49 (2005)
6. Moskvina, A., Liu, J.: How to build your network? A structural analysis. In: Pro-

ceedings of the Twenty-Fifth International Joint Conference on Artificial Intelli-
gence, pp. 2597–2603. AAAI Press (2016)

7. Myers, D.: Relationship rewards. In: Social Psychology, pp. 392–439 (2010)
8. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:

bringing order to the web. Technical report, Stanford InfoLab (1999)
9. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph

analytics and visualization. In: Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence (2015)

10. Tong, H., Faloutsos, C., Pan, J.Y.: Fast random walk with restart and its appli-
cations. In: Sixth International Conference on Data Mining, pp. 613–622. IEEE
(2006)

11. Yan, B., Liu, Y., Liu, J., Cai, Y., Su, H., Zheng, H.: From the periphery to the cen-
ter: information brokerage in an evolving network. In: Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, pp. 3912–3918.
AAAI Press (2018)



Knowledge Handling



Emotion Recognition from Music
Enhanced by Domain Knowledge

Yangyang Shu and Guandong Xu(B)

Advanced Analytic Institute, University of Technology Sydney, Sydney, Australia
Yangyang.Shu@student.uts.edu.au, guandong.xu@uts.edu.au

Abstract. Music elements have been widely used to influence the
audiences’ emotional experience by its music grammar. However, these
domain knowledge, has not been thoroughly explored as music gram-
mar for music emotion analyses in previous work. In this paper, we
propose a novel method to analyze music emotion via utilizing the
domain knowledge of music elements. Specifically, we first summarize
the domain knowledge of music elements and infer probabilistic depen-
dencies between different main musical elements and emotions from the
summarized music theory. Then, we transfer the domain knowledge to
constraints, and formulate affective music analysis as a constrained opti-
mization problem. Experimental results on the Music in 2015 database
and the AMG1608 database demonstrate that the proposed music con-
tent analyses method outperforms the state-of-the-art performance pre-
diction methods.

Keywords: Music emotion recognition · Domain knowledge ·
Probabilistic dependencies

1 Introduction

We are surrounded by digital music collections due to the popularity of the Inter-
net and the proliferation of user friendly MP3 players. Since almost every piece
of music is created to convey emotion, naturally, music emotion recognition has
attracted increasing attention in recent years. Automatic emotion recognition
from music pieces has wide potential application in both music creation and
music distribution.

The framework of current research into music emotion recognition mainly
consists of feature extraction and classification. First, various features, including
timbre, rhythm and harmony, are extracted from music pieces. Then, a classifier,
such as support vector machine, is used to classify music pieces into several
discrete emotion categories, or a regressor, such as support vector regression, is
adopted to predict continuous emotional dimensions, such as valence and arousal.
An extensive review of emotion recognition from music can be found in [18].
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Fig. 1. Music elements used by composers to communicate emotions to audiences

Although various discriminative features and classifiers have been developed,
automatic emotion recognition from music pieces is still a very challenging task
due to the complexity and subjectivity of human emotions, and the rich variety
of music content.

Almost all the current work on music emotion recognition focuses on devel-
oping discriminative features and classifiers. This kind of data-driven approach
does not successfully exploit the domain knowledge of emotion and music, i.e. the
inherent psychological relationship between human emotion and music, which
carries crucial information for music emotion recognition.

Specifically, main musical dimensions, i.e., rhythm, tonality, timbre, dynam-
ics and pitch are often used to affect users’ emotional experience. The tempo,
mode, brightness, loudness and pitch can represent the five main musical dimen-
sions respectively [10]. Figure 1 [15] summarized the relations between music
elements and emotions. From Fig. 1, we can find that fast tempo is usually uti-
lized to result in the arousal atmosphere, while the slow tempo is utilized to
generate quiet environment [5–8]. Major mode can be used to induce happiness
and excitement, and minor mode can create a more tense and sad music [13].
Brightness is related to arousal [6]. Higher brightness can be used to induce
excitement and astonishment, while lower brightness can be used to induce sad-
ness and softness. As for loudness, higher loudness can be used to induce anger,
fear and excitement, and lower loudness can create a more relaxed and quiet



Emotion Recognition from Music Enhanced by Domain Knowledge 123

music [6]. High pitch may lead to happiness, anger and fear, while low pitch may
induce sadness [6]. Such inherent dependencies between music elements and emo-
tions can be leveraged for emotion recognition from music, but have not been
explored yet.

Therefore, in this paper, we propose a novel method to analyze musical emo-
tion through exploring domain knowledge. As a primary study to explore music
theory for music emotion analysis, this paper utilize main musical dimensional
elements to demonstrate the superiority of the proposed music emotion analy-
ses method enhanced via domain knowledge. Specifically, summarized in music
theory, we first infer probabilistic relations between main musical dimensional
elements and emotions. Then we transfer this probabilistic dependencies based
on domain knowledge as a constrained optimization problem. In order to demon-
strate the superiority of the proposed method, we conduct our experiments on
two benchmark databases.

2 Domain Knowledge

Rhythm, tonality, timbre, dynamics are often used by composers to invoke emo-
tions to audiences, which constitute musical main dimensions, audiences [9]. In
this section, we introduce the dependencies between musical elements and emo-
tions from the summarized music theory.

2.1 Rhythm

Tempo is one of the most import musical elements to affect the mood of audi-
ences [5–8]. Generally, tempo express the rhythm and fluency of the music [9].
By changing the tempo, the composers can fully put the emotions into their
music. Especially, as mentioned in [6], fast tempo is usually used to generate the
exaggerated mood, which result in high arousal atmospheres. On the other hand,
the slow tempo is utilized to generate quiet mood, which result in low arousal
atmospheres.

From the perspective of the audiences, the perceived music tempo can
well influence their feelings. Specifically, when receiving fast music tempo
signals, people will intuitively associate with activity/excitement, happi-
ness/joy/pleasantness, potency, surprise, flippancy, anger, uneasiness and fear.
However, when perceiving slow-tempo music, people may be associated with
calmness/serenity, peace, sadness, dignity/solemnity, tenderness, longing, bore-
dom and disgust [6]. Thus the fast tempo music can induce high arousal from
audiences, while slow tempo music can invoke low arousal from audiences.

Normally, the tempo are categorized into Largo (40–60 bpm), Adagio (66–76
bpm), Andante (76–10 bpm), Moderato (108–120 bpm) and Allegro (120–168) as
shown in Table 1 [13]. Since the difference between slow tempo and intermediate
tempo are not obvious, we adopt the 108 bpm as the threshold and categorize
the tempo as fast tempo and slow tempo.
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Table 1. The correspondence between common music speed terms and speed values

tempo mark bpm

slow tempo Grava 40
Largo 46
Lento 52
Adagio 56

medium tempo Larghetto 60
Andante 66
Andantino 69
Moderato 88
Allegretto 108

fast tempo Allegro 132
Vivace 160
Presto 184
Prestissimo 208

Table 2. The dependencies between four music elements (tempo, mode, brightness and
loudness) and emotions. Note that the

√
demonstrates great dependencies between

emotion and the music elements. Details are discussed in Sect. 2

high Arousal low Arousal high Valence low Valence

fast tempo
√

slow tempo
√

major mode
√

minor mode
√

high brightness
√

low brightness
√

high loudness
√

low loudness
√

2.2 Tonality

In the composers’ perspective, musical tonality is one of the most important
musical elements for music presentation. Since mode is a system of musical
tonality involving a type of scale coupled with a set of characteristic melodic
behaviors [13], composers control the musical tonality by adjusting the mode.
Generally, the mode is scaled in to a heptationic scale, in which the first, third,
and fifth scale degrees play important roles. As stated in [13], the mode is cat-
egorized into two groups: major mode and minor mode. Specifically, the major
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mode is constructed by adjusting the first, third, and fifth scale degrees with a
major triad, while the minor mode is constructed by adjusting the first, third,
and fifth scale degrees with a minor triad. In hands of the composers, they intend
to present an audio of grace with major mode, while present an audio of anxiety
and sad with minor mode. Thus, major mode is used for invoking high valence
from the audiences, and minor mode is used to induce low valence. From the
perspective of the audiences, studies also show that major mode is strongly cor-
related to grace, serene, and solemn, while minor mode is strongly correlated to
dreamy, dignified, tension, disgust, and anger [8].

In this paper, we extract the mode features with the MIR toolbox, which
ranges between −1 and +1. After obtaining the mode features, we adopt the
median mode value as the threshold and categorized the audio clips into major
mode and minor mode. Specifically, audio clips whose mode values are above
the median are assigned as major mode while audio clips whose mode values are
below the median are assigned as minor mode.

2.3 Timbre

Musical timbre denoted as brightness [17] is a powerful component in construct-
ing the music piece. The composer usually express their music emotion with the
audiences via different musical instruments and equalizer. Normally, in order to
show joyful, angry or thrill atmosphere, the composer compose the music using a
bright tone, while with depression or tender, compose the music with dull sound
[6]. Thus, dull sound is utilized to deliver low valence while bright sound is uti-
lized for delivering high valence. From the perspective of the psychology, while
perceiving bright sound, the audience is more likely to feel the arousal emotion
[16], e.g. excitement and astonishment. On the other hand, they feel sadness or
softness after hearing dull sound.

In this paper, we extract the brightness features via measures the proportion
of high frequency (over 1500 HZ) in the music piece. The formulation is shown
as below:

Brightness = Xabove/Xtotal ∗ 100% (1)

where Xabove represents component whose the energy above 1500 Hz, and Xtotal

represents the total energy of the music.

2.4 Dynamics

In music, the dynamics of a piece is the variation in loudness between notes or
phrases, which usually used by musicians to deliver dynamic in a music piece
instrumentalist and Singers playing a song to express their emotion and cre-
ate atmosphere through the loudness. As stated in [6], the volume of the music
can strongly influence arousal. Specifically, great joy, surprise, excitement and
anger are often invoked by Loud sound while peaceful mood, tender and sadness
associated with soft sound [6]. Thus, the loudness can well influence the audi-
ences. Specifically, audiences tend to feel high arousal mood while listening high
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loudness songs, and tend to feel low arousal mood while listening low loudness
songs.

In this paper, we use root-mean-square amplitude (rms) to calculate loud-
ness. Rms can be extacted with the MIR toolbox with its values from 0 to 1.
We calculate the median value as the threshold to categorize the rms and divide
loudness into high loudness and llow loudness. In conclusion, the dependencies
between emotions and main musical dimensions including rhythm, tonality, tim-
bre and dynamics discussed above are shown in Table 2.

3 Proposed Method

3.1 Problem Statement

Denote three tuple S = {(xi, hi, yi)|i = 1, ..., N}, where xi represents D-
dimensional features, hi = (ht

i, h
m
i , hb

i , h
l
i) ∈ {0, 1} represents the binarized

tempo values, mode values, brightness values and loudness values respectively,
yi ∈ {yv

i , ya
i | − 1 ≤ yv

i , ya
i ≤ 1} represents continuous valence and arousal values,

and N is the number of training samples. The goal is to learn a classifier f(x,w)
as follows:

min
w

N∑

i=1

α�(fθ(xi), yi) +
N∑

i=1

βL(xi, hi, yi) (2)

where α and β are the coefficients, �(fθ(xi), yi) represents the basic loss function,
and L(xi, hi, yi) captures the domain knowledge between music elements h and
the emotion values y. The first section denotes the basic loss function. The second
section denotes the regularization term associating domain knowledge.

For the first term, any loss function can be used. In this paper, we adopt the
support vector regression as the basic loss function:

�(fθ(xi), yi) =
1
2
||w||2 + α

N∑

i=1

�ε(f(xi, w) − yi) (3)

where the function �ε(z) satisfy the below:

�ε(z) =

{
0, if |z| ≤ ε

|z| − ε, otherwise.
(4)

where ε is a constant which defines the maximum deviation allowed for a pre-
diction to be considered as correct; α is used as a trade-off between the model
complexity and regression loss.

As for the second term, the relations between music elements and emotions
as domain knowledge, can be exploited to build better emotion classifiers from
music. In this paper, domain knowledge of four music elements, i.e., tempo, mode
brightness and loudness are discussed, with respect to dynamic, rhythm, timbre
and tonality of the music dimension.
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3.2 Representation of Domain Knowledge

Domain Knowledge in Arousal Space. From Table 2, tempo, brightness
and loudness have the strong relationship with musical emotion in the arousal
space. Fast tempo features, high brightness and high loudness are more possi-
ble to express high arousal mood of audiences, while the slow tempo features,
low brightness and low loudness are more likely to deliver the low arousal of
the audiences. Thus the probabilistic dependencies between tempo and arousal
emotion shown as:

p(ŷa ≥ 0|h{t,b,l} = 1) > p(ŷa < 0|h{t,b,l} = 1)

p(ŷa < 0|h{t,b,l} = 0) > p(ŷa ≥ 0|h{t,b,l} = 0)
(5)

where p(ŷa ≥ 0|h{t,b,l} = 1) and p(ŷa < 0|h{t,b,l} = 1) indicate the probabilities
of high arousal and low arousal respectively, when observing fast tempo, high
brightness and loudness. p(ŷa < 0|h{t,b,l} = 0) and p(ŷa ≥ 0|h{t,b,l} = 0) show
the probabilities of low arousal and high arousal respectively, when given slow
tempo, low brightness and low loudness.

ReLU function is adopt in our method to penalize the samples violating
the domain knowledge. The corresponding penalty l

{ta,ba,la}
i (xi, hi, ŷi) from the

domain knowledge according to Eq. 5 is encoded as below:

�
{ta,ba,la}
i (xi, hi, ŷi) = h

{t,b,l}
i ∗ [p(ŷa < 0|h{t,b,l} = 1) − p(ŷa ≥ 0|h{t,b,l} = 1)]++

(1 − h
{t,b,l}
i ) ∗ [p(ŷa ≥ 0|h{t,b,l} = 0) − p(ŷa < 0|h{t,b,l} = 0)]+

= h
{t,b,l}
i ∗ [1 − 2 ∗ p(ŷa ≥ 0|h{t,b,l} = 1)]+

+ (1 − h
{t,b,l}
i ) ∗ [2 ∗ p(ŷa ≥ 0|h{t,b,l} = 0) − 1]+

(6)
where [·] = max(·, 0).

Since there is no obvious relationship between mode and arousal, we treat the
major mode and minor equal important. In other words, major mode and minor
mode have equal chances to invoke low arousal mood or high arousal mood from
audiences. Hence, mode information is not used in arousal space.

Domain Knowledge in Valence Space. From Table 2, major mode (high-
value mode) features are more possible to invoke high valence mood from audi-
ences, while the minor mode (low-value mode) features are more likely to invoke
the low valence of the audiences in the valence space. Thus we can infer the
probabilistic dependencies between mode and valence emotion as:

p(ŷv ≥ 0|hm = 1) > p(ŷv < 0|hm = 1)

p(ŷv < 0|hm = 0) > p(ŷv ≥ 0|hm = 0)
(7)

Thus the corresponding constraint lmv
i (xi, hi, ŷi) for valence according to Eq. 7

is encoded as below:
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�mv
i (xi, hi, ŷi) = hm

i ∗ [p(ŷv < 0|hm = 1) − p(ŷv ≥ 0|hm = 1)]+
+ (1 − hm

i ) ∗ [p(ŷv ≥ 0|hm = 0) − p(ŷv < 0|hm = 0)]+
= hm

i ∗ [1 − 2 ∗ p(ŷv ≥ 0|hm = 1)]+
+ (1 − hm

i ) ∗ [2 ∗ p(ŷv ≥ 0|hm = 0) − 1]+

(8)

Since there is no obvious relationship between valence and another elements, e.g.
tempo, brightness, loudness, the information of tempo, brightness and loudness
is not used in valence space.

3.3 Proposed Model

We propose to learn classifier with the objectives as below:

F {a,v} =
1
2
wT w + α

N∑

i=1

�ε(f(xi, w) − yi)+

βt
N∑

i=1

�
{ta}
i (xi, h

t
i, ŷi) + βm

N∑

i=1

�
{mv}
i (xi, h

m
i , ŷi)+

βb
N∑

i=1

�
{ba}
i (xi, h

b
i , ŷi) + βl

N∑

i=1

�
{la}
i (xi, h

l
i, ŷi)

(9)

where w is the parameter of the classifier, α, βt, βm, βb and βl are coefficients. We
use f(x,w) = w·φ(x) as our function where φ(x) maps the features space into the
kernel space. According to the property of logistic regression, we apply sigmoid
function to replace the probabilistic dependencies between audio elements and
emotion labels as follow:

p(ŷ > 0|h) = sigmoid(f(x,w))
p(ŷ ≤ 0|h) = 1 − sigmoid(f(x,w))

(10)

where sigmoid(x) = 1
1+e−x .

In order to solve the optimization we adopt the stochastic gradient descent
(SGD) to solve the problem. The updating rule is shown as follows:

w(t+1) = w(t) − η(t) ∂F {a,v}

∂w
(11)

where t and η are the number of iterations and the learning rate differently.
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The gradient of loss function to the weight can be computed as below:

∂F {a,v}

∂w
= w + α

N∑

i=1

∂�i(f(xi, w) − yi)
∂w

+ βt
N∑

i=1

∂�
{ta}
i (f(xi, h

t
i, ŷi)

∂w
+ βm

N∑

i=1

∂�
{mv}
i (f(xi, h

m
i , ŷi))

∂w
+

βb
N∑

i=1

∂�
{ba}
i (f(xi, h

b
i , ŷi))

∂w
+ βl

N∑

i=1

∂�
{la}
i (f(xi, h

l
i, ŷi))

∂w

(12)

where the specific gradient of loss function to the weight is computed as:

∂�i(f(xi, w) − yi)
∂w

=

{
0, if |f(xi) − yi| ≤ ε

φ(x), otherwise.
(13)

∂�ta
i (f(xi, h

t
i, ŷi))

∂w
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− 2sigmoid(f(xi, w))[1 − sigmoid(f(xi, w))]φ(xi),

if ht
i = 1 and 1 − 2sigmoid(f(xi, w)) ≥ 0

2sigmoid(f(xi, w))[1 − sigmoid(f(xi, w))]φ(xi),

if ht
i = 0 and 2sigmoid(f(xi, w)) − 1 ≥ 0

0, otherwise.
(14)

Gradients of �ta
i , �mv

i , �ba
i and �la

i can be computed as Eq. 14 similarly.
The learning algorithm is shown in Algorithm1.

Algorithm 1. Training algorithm of the proposed model
Input:

training samples(xi, hi, yi),
coefficient α, βt, βm, βb and βl learning rate η

Output: Model parameters w
Randomly initialize w;
repeat
for each training sample (xi, hi, yi) do

Calculate the probabilistic dependencies p(ŷ > 0|h)
and p(ŷ ≤ 0|h) as Eq. 10;
Calculate the specific gradient as Eq. 13 and Eq. 14;

end for
Calculate ∂F{a,v}

∂w as Eq. 12
w ← w − η(∂F{a,v}

∂w )
until
Converges
return w
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After training, the proposed approach can evaluate the predicted emotion
value for testing samples according to function f(x,w).

4 Experiments

4.1 Experimental Conditions

We conduct experiments on two benchmark databases: the Music Emotion in
2015 database [1] and the All Music Guide 1608 database (AMG1608) [3].

The Music Emotion in 2015 database consists of royalty-free music, with
diverse genres of rock, classical, pop, jazz, country, folk, rap etc. [2]. The database
is divided into two subsets: the development set and the test set. Specifically, the
development set consists of 430 clips of 45 s, and the test set is comprised of 58
complete music pieces with an average duration of 234±105.7 s. We use 260 low-
level feature set provided by [1], which are extracted using openSMILE features.
The 260 dimensional feature set represent the music from 65 dimensional mean
deviation, 65 dimensional standard deviation, and their first-order derivatives
from acoustic descriptors. We also extract tempo, mode, brightness, loudness
with MIR toolbox.

The AMG1608 database consists of 1608 preview clips of Western songs,
collected from a popular music stream service named 7 digit. Each preview clips
is 30-second long. For experiments, we adopt the four-fold cross-validation on the
database. We use the public feature set provided by [3], including MFCC, Tonal,
Spectral and Temporal. We also extract tempo, mode, brightness, loudness with
MIR toolbox.

To further demonstrate the effectiveness of domain knowledge, we con-
duct the following experiments in the arousal space: music audio emo-
tion analysis ignoring all domain knowledge (none), music audio emo-
tion analysis only exploiting single domain knowledge (tempo, bright-
ness, loudness), music audio emotion analysis exploiting two of domain
knowledge(tempo+brightness, tempo+loudness, brightness+loudness)
and music audio emotion analysis exploiting all domain knowledge
(tempo+brightness+loudness). In the valence space, since mode is the only
musical elements that affects the valence, we conduct experiments as: music
audio emotion analysis ignoring all domain knowledge (none), and music audio
emotion analysis exploiting mode (mode). We also conduct experiments using
music audio emotion analysis fusing the musical elements as features (fusion).

Root-Mean-Square Error (RMSE) and Pearson Correlation (R) is adopted
to evaluate the effectiveness of the proposed method.

During training phrase, we use grid search to select our hyper parameter.
Specifically, we first initialize small random number as weights, then through
grid search, we choose the hyper parameter α, βt, βm, βb and βl ranging from
{0.1, 1, 10, 20, 50}. On the Music Emotion in 2015 database, a fixed split of
training/validation/testing 400/30/58 is adapted. On the AMG1608 database,
we adopt 4-fold cross-validation.
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Table 3. Music emotion analyses results on the music in 2015 database and the
AMG1608 database in valence space

Music in 2015 database AMG1608 database
RMSE R RMSE R2

none 0.357 0.012 0.275 0.064
fusion 0.351 0.019 0.272 0.063
mode 0.318 0.044 0.254 0.140

Table 4. Music emotion analyses results on the music in 2015 database and the
AMG1608 database in arousal space

Music in 2015 database AMG1608 database
RMSE R RMSE R2

none 0.270 0.3740 0.2670 0.5680
fusion 0.270 0.377 0.262 0.589
tempo 0.2626 0.4649 0.265 0.5975
brightness 0.2650 0.4887 0.266 0.6257
loudness 0.2618 0.4759 0.252 0.6068
tempo+brightness 0.2454 0.5185 0.264 0.6395
tempo+loudness 0.2550 0.5417 0.246 0.6162
brightness+loudness 0.2566 0.5782 0.244 0.6461
tempo+brightness+loudness 0.2340 0.5970 0.240 0.669

4.2 Experimental Results and Analysis

Tables 3 and 4 show the music audio analyses results on the Music Emotion
in 2015 database and the AMG1608 database in the valence space and arousal
space. From Tables 3 and 4, we observe as follows:

First, the proposed method exploiting all domain knowledge has the best
performance among all methods with the lowest RMSE and highest Pearson
correlation. Specifically, compared with music audio analyses ignoring all domain
knowledge, the proposed method achieves 0.039 and 0.021 decrement of RMSE,
and 0.032 and 0.076 increment of Pearson correlation, with respect to the Music
Emotion in 2015 database and the AMG1608 database in the valence space. In
the arousal space, the proposed method decrease the RMSE of 0.036 and 0.027,
and increase the Pearson correlation of 0.223 and 0.101 on the Music Emotion
in 2015 database and the AMG1608 database respectively. The method ignoring
domain knowledge is totally data-driven method, which only learns the mapping
from the extracted features to the predictions and it ignores the well-established
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music knowledge. On the contrary, our method capture the relations between
domain knowledge and training data, and thus achieves better performance.

Second, the methods utilizing more domain knowledge have better perfor-
mance than that using less domain knowledge. Specifically, in the arousal space,
the methods with one domain knowledge is worse than the methods leverag-
ing two domain knowledge. Since temp, brightness, and loudness describes the
music from different aspects, the effects of these musical elements on the music
emotion analyses are complementary. Thus, the methods using more domain
knowledge can build more relations between music elements and emotion, and
achieves better prediction.

4.3 Comparison with Related Work

In this section, we aim to evaluate the effectiveness of the proposed method. We
compared the proposed method with the state-of-the-art methods.

On the Music Emotion in 2015 database, we compare the proposed method
with Aljanaki’s [1], Liu’s [11], Chin’s [4], Markor’s [12], and Patra’s [14]. Specif-
ically, Aljanaki et al. provided the baseline for MediaEval 2015. Liu et al. pro-
posed Arousal-Valence Similarity Preserving Embedding (AV-SPE) to extract
the intrinsic features embedded in music signal, and train the SVR which takes
the extracted features as the input and the emotion values as labels; Chin et
al. adopted deep recurrent neural network to predict the valence and arousal for
each moment of a song; Markor et al. used Kernel Bayes Filter (KBF) for predict-
ing the valence and arousal. Patra et al. proposed the music emotion recognition
system consisting of feed-forward neural networks, which predicts the dynamic
valence and arousal values continuously. The comparisons are given in Table 5.
As we can see from the table, we conclude that:

Compared with the others’ works, our method achieves best performance
in most cases. The state-of-the-art method only learns the maps from the fea-
tures, and makes prediction of the music emotion. On the contrary, the proposed
method not only learns the mapping from the features, but also captures the
dependencies between musical elements and emotions through domain knowl-
edge. Thus the proposed capture more information, and achieves better perfor-
mance.

Rare work is conducted on the AMG1608 database. Thus, we only compare
the proposed method with the baseline methods provided in [3]. In [3], Chen
et al. adopted the Music emotion recognition (MER) system to recognize music
emotion on the AMG1608 database. We adapted the Average Euclidean Dis-
tance (AED) and Pearson correlation as evaluation. The comparison is shown
in Table 4. From the table, we observe as follows:

Compared with baseline method, the proposed method achieve better per-
formance of AED and Pearson correlation. Since the proposed method captures
the more information by constraints of domain knowledge, it is reasonable that
the proposed method achieves better performance.

Taking the comparisons above into consideration, the proposed method has
an excellent generalization ability with respect to affective audio music analy-
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Table 5. Comparison with related works on Music Emotion 2015 and AMG1608
database

Database models Music emotion in 2015 AMG1608
Arousal Valence Arousal Valence
RMSE R RMSE R AED R2 AED R2

Our model 0.234 0.597 0.318 0.044 0.240 0.669 0.254 0.140

Baseline 0.27 0.36 0.37 0.01 0.288 0.651 0.288 0.120
Liu et al.’s 0.2377 0.5610 0.3834 −0.0217
Chin et al.’s 0.2555 0.3417 0.3359 −0.0103
Markov et al.’s 0.419 0.498 0.620 −0.035
Patra et al.’s 0.2689 0.4678 0.3538 −0.0082

sis. This demonstrates our approach successfully achieves higher music emotion
prediction supported by domain knowledge.

5 Conclusion

This paper has proposed to analyze music emotion recognition by exploring
domain knowledge. Probabilistic dependencies is used for music emotion recog-
nition between emotions and music elements, i.e., tempo, mode, brightness and
loudness. Then we model such probabilistic dependencies to the domain knowl-
edge constraints in order to regularize our objective function. Experimental
results on the Music emotion in 2015 database and the AMG1608 database
demonstrate that our model outperforms the state-of-the-art approaches. This
further demonstrates the importance of the domain knowledge to music emotion
recognition.
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Abstract. Recently the knowledge graph (KG) as extra auxiliary infor-
mation is widely used to improve recommendation. Existing methods
usually treat knowledge representation as characteristic information for
addressing data sparsity and cold start issues. However, they ignore the
implicit and explicit interaction between users and items, which may be
gained by the relation extraction and knowledge reasoning, to lead to
suboptimal performance. Thus, we believe that it is crucial to incorpo-
rate both relations and attributes of users and items into recommender
system. That can better capture the extent that a user prefer to an
item. In this paper, we propose a novel knowledge graph-based tem-
poral recommendation (KGTR) model. Firstly, we design a lightweight
KG on the basis of a single independent domains knowledge without
extra supplement. We define three relationships to express interactions
within/between users and items, including the interaction of a user
browsing an item, the social relation of two users browsing one item,
and the behavior of a user browsing items in the meantime. Different
from previous knowledge translation-based recommendation methods,
we embed interactions by adding them to the transformation from one
entity to another in KG. Extensive experiments on real world dataset
show that our KGTR outperforms several state-of-the-art recommenda-
tion methods.

Keywords: Knowledge graph · Implicit interaction ·
Explicit interaction · Temporal recommendation

1 Introduction

The various facts from different domains interlink with each other and store
in a complex heterogeneous graph called knowledge Graph (KG). The entities,
such as people, books, musics, movies, are treated as nodes in KG and the
relations between entities are denoted as edges. Owing to the connection of
c© Springer Nature Switzerland AG 2019
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various information from different topic domains in KG, knowledge exploration
can develop insights on problems. That are difficult to determine on a single
domain data. Over the past years, KG has been widely adopted in many fields,
including dialogue system, Web search, and recommendation system.

The rich information of KG has recently shown great potential to enhance
accuracy and explainability of recommendation [17]. For example, Zhang et
al. [19] extract items’ semantic representations from structural content, tex-
tual content and visual content by considering the heterogeneity of both nodes
and relationships in KG. Sun et al. [15] employ recurrent networks learning
semantic representations of both entities and paths for characterizing user pref-
erences to improve recommendation. In these cases, the semantic representations
of user and item or user’s preference have accurately been obtained. However,
the potential of the KG may still fail to be exploited since they suffer from
the following limitations: (1) relying on a large-scale knowledge graph and extra
knowledge base to extract features by heavy feature engineering process. (2) only
utilizing the semantic representations into recommender system while ignoring
the implicit and explicit interaction between users and items. For instance, two
users are likely to have interaction when they both connect one item.

To address the above issues, we propose a novel knowledge graph-based tem-
poral recommendation (KGTR) model, which captures the joint effects of users
and items interactions information. We design a lightweight KG by only utiliz-
ing the facts in one domain as the knowledge, meanwhile, extra auxiliary data
is lack. Three categories relationships are defined to exploit user-item inter-
action, including user relationship, item relationship and rating activity. User
social relationship implies that two different users browse one item simultane-
ously, and can be called as user relationship. Item relationship means that one
user browses various items. They are considered as implicit interaction in rec-
ommendation. Rating activity expresses that a user has rated the item, which is
regard as explicit interaction in recommendation. Then representations of users’
and items’ static feature are obtained by TransE [1] in the light of three kind
of relationships separately. Meanwhile, embeddings of users’ and items’ various
attributes are learned by the KR-EAR [11] on the basis of former static repre-
sentations, which serve as explicit information of user and item.

Considering the important effect of temporal context, we hold that prevailing
items at the previous moment, similar to users’ preference changing, have affected
in recommendation result. Therefore, different from traditional temporary rec-
ommendation, we aggregate long-term and short-term features of users and items
in recommender process. The attributes features and static feature learned by
above procedure constitute the user’s long-term features. The item’s long-term
features are similar. The user’s short-term features are learned by LSTM [9] with
the user’s interaction data in a short period of time (such as hourly, weekly).
The item’s short-term features are learned by attention machine [16] according
to all users’ behavior at the latest moment. The personalized recommendation
process applies implicit and explicit interactions of users and items to long-term
and short-term of users and items features.
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We summarize our main contributions as follows:

– We design a lightweight KG based on one topic domain without extra aux-
iliary data, and explore the nature of interaction under less information by
relation extraction and knowledge reasoning.

– We learn implicit and explicit interaction of users and items by TransE accord-
ing to the second-order proximity between the entities, which is determined
by the shared neighborhood structures of the entities.

– KGTR considers freshness and popularity of items in recommendation, and
learning the items’ short-term feature by attention machine with all users
behavior at previous moment.

2 Related Work

2.1 Knowledge Representation Learning

User/item clustering or matrix factorization techniques only represent single
relation between the connectivity entities. Most existing methods have been
designed to learn multi-relations from latent attributes [5,18]. Making use of
multi-relational KG in recommender systems has been found to be effective in
recent years.

TransRec [6] represented a user as a relation vector to capture the transition
from the previous item to the next item in large sequences. A user’s previous
preference is important for predicting the next item in sequence recommenda-
tions, but the social relationships among users cannot be overlooked in context
recommendations. TransTL [13] took both time and location into consideration
with a translation-based model, which captured the joint effects of spatial and
temporal information. Cao et al. [3] jointly learned the recommendation model
and KG, which utilized the facts in KG to augment the user-item interaction.
These models are not general for arbitrary recommendation scenarios, and ignore
structures relationships among entities. Recent studies for KG focus on learning
low-dimensional representations of entities and relations, and structural informa-
tion of the graph is preserved. For completing knowledge graph and extracting
relation from text, TransE learned a continuous vector space to preserve certain
information of the graph, regarded relations as a translation between entities.
TransE and its extensions TransH [21] and TransR [12] promoted prediction
accuracy and computational efficiency by modeling multi-relational data. The
most related work to ours is KR-EAR model, the method distinguished existing
KG-relations into attributes and relations.

The entities embeddings were learned by building translation between enti-
ties according to relations, and attribute values embeddings were learned based
on entity embeddings. We extend the KR-EAR to learn user’s and item’s repre-
sentations. Three relations are defined according to the second-order proximity
between the entities, which is determined by the shared neighborhood structures
of the entities in KG.
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2.2 Implicit and Explicit Interaction

Due to the significant impact for the quality of recommendations, many works
have made great effort on gaining variety information. Cao et al. [2] described
heterogeneity exists between users and between items, meanwhile detected
the various coupling relationships to essentially disclose why a user liked an
item. Methods [20] incorporated explicit and implicit couplings about users-
items interactions and attributes’ inter-coupled interactions. A classic work was
the CoupledCF model [20], which integrated the explicit user-item couplings
within/between user’s and item’s attributes and the implicit user-item cou-
plings. The model were trained by deep learning. Different from these models,
the explicit and implicit information of our model is more substantial by adding
user’s and item’s interactions in various relationships.

User/item information has been increasingly involved into CF. NCF [7]
can express and generalize matrix factorization by replacing the inner prod-
uct with a neural architecture. NCF model may be supercharged with non-
linearities, a multi-layer perceptron to learn the user-item interaction func-
tion. Wide&Deep [4] trained wide linear models by using cross-product feature
transformations and deep neural networks to generalize recommendation. Unlike
Wide&Deep model, we treat raw features as input by knowledge representation
learning.

3 Our Proposed Model

In this section, we introduce our Model. Suppose there is a sparse user-item rat-
ing matrix that consists of users, items, and the rating. The rating is represented
by numerical values from 1 to 5, where the higher value indicates the user has
more interest in an item. Meanwhile, there are various attributes of users and
items, such as gender and profession, which are important additional informa-
tion for recommendation result. Given a dataset with user-item rating matrix
and explicit attributes, we aim to build temporal personalized recommendation
model for a user, and recommend a ranked list of items that are of interest to
her/him accordingly.

As shown in Fig. 1, long-short term features of users and items are jointed
in recommender process. The attributes features and static features capturing
by knowledge representations learning are considered as the long-term features
of users and items, that is explained in Sect. 3.1. The static features of items
browsed by user previously are treated as input to LSTM. The fashionable items
are interacted by users at the latest moment, and their attributes features and
static features are served as input to attention machine. The implicit and explicit
interactions of users and items are blended into long-short term of users and
items features to recommendation.

3.1 Knowledge Representation Learning for Interaction

We design a lightweight KG with information of the dataset. As shown in
Fig. 2(a), the users and items are treated as entities in KG. When the user has
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Fig. 1. The framework of knowledge graph-based temporal recommendation model

rated the item, there is a edge between the user and the item. The attributes
of users and items are linked with corresponding entities. According to the
extracted neighborhood structures of the entities in KG, we express first-order
and second-order proximity [10] as three relationship definitions for learning
static features.

We define the attribute triple additionally, for the purpose of learning
attributes features based on former relationships representations. Our objective
is to learn embeddings of users, items, and attributes preserving the structures
information and semantic relations. The static feature belongs to the implicit
interactions within/between user and item. The attribute feature is part of the
explicit information.

Definition 1. Rating Activity. As shown in up of Fig. 2(b), a rating activity is
a triple (u, r, v), which means user u give a rating to item v.

Definition 2. Users Relationship. As shown in left of Fig. 2(b), a triple
(ui, v, uj) represent users relationship, which implies both user ui and uj give
ratings to item v.

Definition 3. Items Relationship. As shown in right of Fig. 2(b), Item relation-
ship is a triple (vi, u, vj), which shows user u give rating to item vi and vj.

Definition 4. Attribute Triple. An attribute triple of user or item is a triple
(u/v, a, e), which indicates the attribute a of user u or item v with values e, such
as (u1, gender, female) illustrates the gender of user u1 is female.

We aim to embed users and items to capture the implicit and explicit correlations
between them. We usually optimize the probability P(u, r, v), P(ui, v, uj) and
P(vi, u, vj) for learning from relational triples. In this paper, we adopt TransE
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Fig. 2. Knowledge representation learning for implicit and explicit interaction

to encode relational triples. So the probability P(u, r, v) is formalized as follows:

P (u, r, v) =
∑

(u,r,v+)∈KG

∑

(u,r,v−)∈KG−
σ(g(u, r, v+) − g(u, r, v−)) (1)

where σ(x) = 1/(1 + exp(x)) is sigmoid function, g(·) is the energy function
which indicates the correlation of rating r and entity pair (u, v). The KG and
the KG− are the positive and negative instances set, respectively. KG− contains
incorrect triplets constructed by replacing tail entity in a valid triplet randomly.
The probabilities of P(ui, v, uj) and P(vi, u, vj) are similar. Here, we can follow
TransE to define the function g(u, r, v) as Eq. 2:

g(u, r, v) = ||u + r − v||L1/L2 + b1 (2)

where b1 is a bias constant. A classification model is used for capturing the
correlations between entities and their attributes. Hence, we consider the proba-
bility P(u, a, e) for each triple (u, a, e) and P(v, a, e) for each triple (v, a, e), and
formalize the probability P(u, a, e) for example, it is formalized as follows:

P (u, a, e) =
∑

(u,a,e+)∈KG

∑

(u,a,e−)∈KG−
σ(h(u, a, e+) − h(u, a, e−)) (3)

where h(·) is the scoring function for each attribute value of a given entity. The
function h(·) is described in Eq. 4. We first transform entity embedding into the
attribute space by a single-layer neural network. For training attribute embed-
ding, we calculate the semantic distance between the transformed embedding
and it, as shown in Eq. 4:

h(u, a, e) = ||f(uWa + ba) − eae||L1/L2 + b2 (4)
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where f(·) is a nonlinear function such as tanh, Wa is the parameters by learning,
eae is the embedding of attribute value a and b2 is a bias constant.

The final embeddings of users’ and items’ static features propagating infor-
mation between triples are recorded as Ur, Vr, respectively. And the attribute
embeddings of users’ and items’ are written as Ua, Va, respectively. The static
features based on knowledge representation learning remain relatively stable over
time, while a user’s preference is affected by current prevalence. The freshness
and temporal dynamics of the items are more likely to improve recommendation.
Therefore, we extend our model by including user-item temporal information.
Different from existing models, the item’s short-term features are also discussed.

3.2 Temporal Recommendation

Users Preference. The users’ short-term features are learned by recurrent
neural networks (RNN). Instead of modeling the user history sequence using
RNN which is difficult to calculate, our model combines users’ static features
and attribute features as pre-train input. This can make neural network training
faster and more effective. The key issue of dynamic preferences is to choose the
granularity of each input time spot t. Using smaller time spans can capture more
fine-grained interest changes, but the feature space is very sparse and learning
process is difficult [14]. Having large time spans may lead to sufficient content at
each time spot, but makes the model less adaptive for capturing users’ dynamics
change. Unlike the previous model, we order 16 items for one user according
to the latest browsing records. That can sure the enough context in behavior
sequence to train user preference. To this end, we propose leveraging LSTM in
capturing sequential patterns, and use it to model user’s recent interaction trail.
The output of LSTM US is took as the users’ short-term features.

Items Preference. The items’ popularity are changing over time, and the
features of most fashionable items currently have a greater impact on user pref-
erence. Here, we apply attention to obtain items’ short-term characteristics.
Attention can keep the contextual sequential information and capture the rela-
tionships between elements in the sequence. The items viewed by all users in the
latest hour are considered as the items sequence. That is matched with items
of the whole training datas C to refine representation. The input of attention
consists of items’ attribute features and static features. The output is a weighted
sum of the items, where the weight matrix T t is determined by similarity. Similar
to [16], the attention vector are calculated at each output time t over the input
items (1, . . . , I) with Eq. 5.

T t
i = zT tanh(Wcct + Wyyi)

St
i = softmax(T t

i )

V ′
s =

∑
St
iyi

(5)

The vector z and matrices Wc,Wy are learnable parameters, ct is the train item
at time t and yi is i-th item of input sequence. The i-th item of vector T t ∈ RI
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indicates the similarity between yi and the training datas. The attention weight
matrix St is created by normalizing similarity scores with softmax. Lastly, we
concatenate ct with V ′

s , which is regarded as ct+1 at the next time step. Here,
the final attentive output Vs can be viewed as item’s short-term feature.

3.3 Model Learning

Objective Function. Our task is to predict the item which the user will inter-
act at next time, according to given long-short term preferences of users and
items. A straightforward solution is to combine the outputs of their charac-
teristics. So Us,a,r are the concatenation of Us, Ua, Ur, and Vs,a,r are the con-
catenation of Vs, Va, Vr. Similar with the NCF, hidden layers are added on the
concatenated vector by using a standard multi-layer perceptron (MLP) to learn
the long-short term features. Specifically, the model can be formulated as

q1 = Φ1(Us,a,r, Vs,a,r) =
[

Us,a,r

Vs,a,r

]

Φ2(q1) = α2(wT
2 q1 + b2)

· · ·
Φl(ql−1) = αl(wT

l ql−1 + bl)

ŷuv = σ(hTΦl(ql−1))

(6)

where wx, bx and αx denote the weight matrix, bias vector, and ReLU activation
function for the x-th layer’s perceptron, respectively. ŷuv indicates whether the
user u is likely to interact with the item v.

Considering implicit feedback of interaction, we treat the value of yuv as a
label. 1 means user u has browsed item v, and 0 otherwise. The prediction score
ŷuv represents how likely u interacts with v. We limit the output ŷuv in the
range of [0,1], thus, the output is achieved by using a probabilistic function as
the activation function. Finally, we define the likelihood function as

p(y, y−|Θf ) =
∏

(u,v)∈y

ŷuv
∏

(u,v)∈y−
(1 − ŷuv) (7)

Taking the negative logarithm of the likelihood, we gain the objective function
to minimize for KGTR in Eq. 8.

L = −
∑

(u,v)∈y

log ŷuv −
∑

(u,v)∈y−
log(1 − ŷuv)

= −
∑

(u,v)∈y∪y−
yuv log ŷuv + (1 − yuv) log(1 − ŷuv)

(8)

For the negative instances y−, we uniformly sample them from unobserved inter-
actions in each iteration and control the sampling ratio about the number of
observed interactions. The sigmoid function restricts each neuron to be in [0,1],
where neurons stop learning when their output is near either 0 or 1.
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We optimize the proposed approach with adaptive gradient algorithm which
could adapt the step size automatically. Hence it reduces the efforts in learning
rate tuning. In the recommendation stage, candidate items are ranked in ascend-
ing order based on the recommendation score computed by Eq. 8, and the top
ranked items are recommended to users.

4 Experiments

In this section, we evaluate our proposed framework for movie recommendation
scenarios. We test our methods against the related baselines for recommenda-
tions items to users. The experimental results demonstrate that our method
better than many competitive baselines.

4.1 Experimental Settings

Dataset Description. We used MovieLens-1M1 dataset in our experiments.
The dataset consists of one million ratings from 6,040 users and 3,952 items,
user auxiliary information (Gender, Age, Occupation and Zip code) and some
item attributes (Genres, Title and release dates). We transformed the original
rating matrix scaled from R ∈ {1, 2, ..., 5} into a binarized preference matrix
R ∈ {0, 1}. Each rating was expressed as either 0 or 1, where 1 indicates an
interaction between a user and an item, otherwise 0. Then we sampled four
negative instances per positive instance.

For each user, we sorted the user-item interactions by the time stamps at
first. Then we took her/his latest interaction as the test positive instance and
utilized the remaining data for training positive instance. Finally we randomly
sampled 99 items that are not interacted by the user as the test negative instance
and randomly sampled four negative instances for per positive instance.

Evaluation Metrics. Similar to [4], we ranked the test item among the 100
items and used Hit Ratio (HR) and Normalized Discounted Cumulative Gain
(NDCG) to evaluate the performance of a ranked list [8]. The HR intuitively
measures whether the test item is included in top-K list. The NDCG measures
the position of the hit on top-K list. The higher NDCG scores show that the
test item hits at top ranks. We calculated both metrics for each test user and
reported the average score.

Baseline Methods. We evaluated our framework from in three versions based
on the different input.

– KGTR user: for every user, we used the sequence of items recently watched by
user as the input vector of LSTM and the sequence of items recently viewed
by all users as the input of attention. The input vector of LSTM was learned
by translation representation learning and the input vector of attention was
one-hot encoding of items;

1 https://grouplens.org/datasets/movielens/.

https://grouplens.org/datasets/movielens/
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– KGTR item: different from KGTR user, the input vector of LSTM is one-hot
encoding of items and the input vector of attention was learned by translation
representation learning.

– KGTR NCF:different from KGTR user and KGTR item, both the input vec-
tor of LSTM and attention were learned by translation representation learn-
ing.

The following relevant and representative state-of-the-art methods were used as
the baselines to evaluate our methods.

– NCF [7]: It presents a neural architecture replacing the inner product and pro-
poses to leverage a multi-layer perceptron to learn the user-item interaction
function.

– CoupledCF [20]: This model proposes a neural user-item coupling learning
for collaborative filtering, which jointly learns explicit and implicit couplings
within/between users and items.

– Wide&Deep [4]: It combines memorization and generalization for recommen-
dation, which involves feature engineering (such as cross-product features) of
the input to the wide network.

Parameter Settings. The configurations of TransE are k = 100, b1 = 7, b2 =
−2, and taking L1 as distance metric. The KGTR model was implemented in
Python based on the Keras framework. We selected 16 items recently watched
by every user as the input vector of LSTM, and the items viewed by the users
in the latest hour were selected as input to the attention.

To determine hyper-parameters of KGTR, we randomly sampled one inter-
action for each user as the validation data and tuned hyper-parameters on it.
All KGTR models were learnt by optimizing the log loss of Eq. 8. We used mini-
batch Adam as the optimizer for our model. We initialized the embedding matrix
with a random normal distribution (the mean and standard deviation are 0 and
0.01 respectively). All biases are initialized with zero. We tested all combinations
of the batch size (S = {128, 256, 512, 1024}) and the learning rate (R = {0.0001,
0.0005, 0.001, 0.005}) that S = 256 and R = 0.001 was the best combination.
From Fig. 3, we could see that HR@10 and NDCG@10 increased firstly. When S
= 256 and R = 0.001, the performance of KGTR was best, and then HR@10 and
NDCG@10 decreased or stabilized with the increase of batch size and learning
rate. So we set S = 256 and R = 0.001 as the optimal parameters.

4.2 Results and Analysis

First, the performances of the KGTR and baselines were shown in Table 1 for
TOP@10 recommendation. From Table 1, A number of interesting observations
could be noted. Our method KGTR item and CoupleCF were superior to NCF
and Wide&Deep in both HR@10 and NDCG@10. The reason is that the user
preference and item popularity contributed to improve the recommendation per-
formance. Both the KGTR item and CoupleCF integrated item popularity, user-
item interaction and implicit user-item interaction to gain the best performance.
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Fig. 3. Performance of KGTR models w.r.t the learning rate (bach size = 256) and the
bach size s(learning rate = 0.001)

The results confirmed that the interactions between users and items were use-
ful. Beside, KGTR item is slightly worse than CoupleCF. That may because the
CoupleCF used the rating values from the users and the items, our method only
used the rating relationship between the users and the items.

Second, we also tested the top@K item recommendations in Fig. 4. As previ-
ously introduced, KGTR models were customized to three versions: KGTR user,
KGTR item and KGTR NCF. KGTR item was compared with KGTR user,
KGTR NCF and all the baselines. Figure 4 shows the performance of the top@K
recommendation, where K ranges from 1 to 10. As shown in Fig. 4, all the base-
lines and KGTR item highly outperformed KGTR user and KGTR NCF. That
were mainly because KGTR user and KGTR NCF were personalized recom-
mendation method via learning individual user’s preference. When learning user

Table 1. HR@10 and NDCG@10 for Top-10 item recommendation

#HR@10 #NDCG@10

NCF 0.6947 0.4149

CoupledCF 0.7310 0.4819

Wide&Deep 0.6864 0.4082

KGTR user 0.5801 0.3691

KGTR item 0.7012 0.4518

KGTR NCF 0.5861 0.3719
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Fig. 4. HR@K and NDCG@K results comparison between our framework and related
baselines

temporary preferences by LSTM, we selected 16 items viewed recently by every
user, and did not divide the time period according to the traditional time
spots (minutes, hours or days). Therefore, recommendation performances in
KGTR user and KGTR NCF were not improved by adding user preferences.

5 Conclusions

In this paper, we proposed a knowledge graph-based temporal recommendation
(KGTR) model to explore implicit/explicit and latest interactions between users
and items. Firstly, we designed a lightweight KG based on one domain knowledge
without extra information. We defined three categories relationships by TransE,
according to the implicit/explicit interactions of users’ and items’. That could
capture global structural dependencies in the historic behavior and united infor-
mation between triples. Taking the different impact of long-short term interest
into account, our model was trained by deep learning. Specially, the popular
features of items were jointed in the course of learning dynamic preferences. The
experimental results showed significant improvement has obtained over state-of-
the-art baselines on large dataset. In future, we will study how to incorporate
short-term users’ preferences and the ratings for better recommendation.

Acknowledgement. This work was supported by the Fundamental Research Funds
for the Central Universities (No. ZXH2012P009).
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Abstract. Distantly supervised relation extraction (RE) has been an
effective way to find novel relational facts from text without a large
amount of well-labeled training data. However, distant supervision
always suffers from wrong labelling problem. Many neural approaches
have been proposed to alleviate this problem recently, but none of them
can make use of the rich semantic knowledge in the knowledge bases
(KBs). In this paper, we propose a knowledge-aware attention model,
which can leverage the semantic knowledge in the KB to select the
valid sentences. Furthermore, based on knowledge representation learn-
ing (KRL), we formalize distantly supervised RE as relation retrieval
instead of relation classification to leverage the semantic knowledge
further. Experimental results on widely used datasets show that our
approaches significantly outperform the popular benchmark methods.

Keywords: Distantly supervised relation extraction ·
Knowledge-aware attention · Relation retrieval

1 Introduction

Relation extraction (RE), aiming at extracting semantic relations between enti-
ties, is a fundamental task in natural language processing (NLP). It can augment
current knowledge bases (KBs) by adding new relational facts to them, which are
widely used in NLP tasks, such as question answering [12,24]. Formally, given
a pair of annotated head entity h and tail entity t, the goal of RE is to predict
the relation between h and t. Most supervised methods of RE are limited by a
large amount of well-labeled training data. Distant supervision [15] is proposed
to solve this challenge by automatically generate a large amount of training data.
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Its intuition is that any sentence containing a pair of entities that participate
in a KB will express the relation in some way. However, it suffers from wrong
labelling problem inevitablely. For example, as shown in Fig. 1, distant super-
vision believes that sentences S1, S2, S3 that mentioning (Steve Jobs, Apple)
express of the relation Found. However, S2, S3 do not express Found.

Recent studies have explored multi-instance learning [5] paradigm to solve
this problem. In this paradigm, all instances (sentences) aligned by a triplet
(h, t, r) constitute a bag, for example, in Fig. 1, S1, S2, S3 can constitute a
bag corresponding to (Steve Jobs, Found, Apple). And distantly supervised RE
learns a relation extractor from the bags in training data to predict the relation
of an unseen bag towards the entity pair (h, t). In this paradigm, Zeng et al.
[25] proposed piecewise convolutional neural networks (PCNNs) to extract the
features of a sentence. Lin et al. [11] and Ji et al. [8] proposed two different
attention mechanisms to alleviate the wrong labelling problem. The former uses
selective attention model to filter out meaningless sentences (S2 and S3), the lat-
ter (denoted by APCNN) uses sentence-level attention model based on PCNNs
to select valid sentences (S1) in a bag. APCNN assumes that vector (e1 − e2)
represents the relation, where e1 and e2 are word embeddings of the two anno-
tated entities. Although APCNN achieves significant improvements, it suffers
from the following flaws: (1) The semantics of the word embeddings of most
entities are not rich because of their low frequencies of occurrence; (2) Reusing
their word embeddings can not employ auxiliary features, since PCNNs have
taken into account various features between them when extracting the sentence
features.

In this paper, we propose a novel knowledge-aware attention mechanism
based on PCNNs (denoted by KBPCNN) to leverage semantic knowledge in
KBs and text semantics of the bag to help select valid sentences in a bag by
assigning higher weights to the valid instances and lower weighs to the invalid
ones, as shown in Fig. 2, inspired by the success of [23] which leverages KBs in
long and short time memory networks (KB-LSTM). Specifically, for each triplet
(h, r, t), the translation model TransE [3] in knowledge representation learning
(KRL) task treat the relation vector lr as the translation from the head entity
vector lh to the tail entity vector lt, i.e., lh + lr ≈ lt. We define the vector
la = lt − lh as an abstract representation of all the relations between the two
entities. As shown in Fig. 1, la = lApple− lSteve Jobs is an abstract representation
of the two relations Found and WorkIn. Vector la is full of semantic knowledge,
which helps neural networks predict whether Steve Jobs has relation Manage
with Apple, since the founder of a company still working in it is likely to manage
it. In addition, as shown in Fig. 2, our model can rationally weight text semantics
and semantic knowledge by calculating a generation probability pgen [18], which
is used to assess the importance of semantic knowledge relative to text seman-
tics. KBPCNN can also use pgen to handle the cases that annotated entities are
unseen in the KB by assigning a extremely low value to the semantic knowledge
part.
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We further improve KBPCNN by introducing an innovative knowledge rela-
tion retrieval module (denoted by KBPCNN+R). Based on the relation embed-
dings trained by the TransE model, KBPCNN+R innovatively formalizes dis-
tantly supervised RE as relation retrieval instead of relation classification which
is the practice of previous works, as shown in for Retrieval channel of Fig. 2. Dif-
ferent from treating relations as isolated categories, which usually represented by
onehot embedding ignoring semantic knowledge in the relations, relation retrieval
can introduce features from informative relation embeddings to the networks by
forcing the bag embedding to be more and more relevant to the target relation
embeddings.

In general, our contributions can be summarized as follows:

– We propose a novel knowledge-aware attention model, which can leverage the
semantic knowledge in KBs to better select the valid sentences in a bag.

– We further improve the model by creatively treating RE as relation retrieval
instead of relation classification.

– We conduct experiments on real-world dataset to prove the effectiveness of
the proposed method, and provide some in-depth analysis.

2 Methodology

In this section, we will introduce the models in three main parts: Sentence
Encoder, Knowledge-aware Attention Module and Relation Retrieve Module.

2.1 Sentence Encoder

Given an instance S from a bag and two entities h and t corresponding to the
bag, the sentence encoder uses PCNNs to compute a representation vector s
for S.

In order to fit the input of the neural networks, we should convert raw words
in sentences into low-dimensional vectors. Similar to [8], in our methods, each
word vector is obtained by concatenating the word embedding and position
embedding of the word. We look up the word embedding matrix pre-trained
by the word2vec [14] model to transform words to word embeddings. Position
Embedding is defined as the combination of the relative distances from the cur-
rent word to h and t, and each word has two relative distances [8]. For example,
in the sentence Steve Jobs is the founder of Apple, the relative distance from the
word founder to head entity Steve Jobs is 3 and tail entity Apple is 2. Assum-
ing that the dimension of the word embedding is kw and the dimension of the
position embedding is kd, then the dimension of the word vector of a word is
k = kw + 2kd.

Given an input sentence sequence S = {v1,v2, . . . ,v|S|}, where vi represents
the word vector of the i-th word, We use piecewise convolutional neural networks
(PCNNs) to calculate the distributed representation s of the sentence.

s = PCNNs(S) (1)



Knowledge-Aware and Retrieval-Based Models 151

where s ∈ R
3n, PCNNs define convolution operations and piecewise max-pooling

operations, n is the number of convolution kernel. In this paper, we strictly
follow [25] to implement PCNNs, and we recommend readers to read their works
carefully.

2.2 Knowledge-Aware Attention

In order to reduce the impact of the invalid instances in a bag, we introduce
the knowledge-aware attention mechanism, and hope that the attention model
can learn the effective attention weight distribution by leveraging the semantic
knowledge in the KB. That is, the model can assign higher weights for valid
instances and lower weights for invalid ones. Then the model calculates the bag
features by using all the sentence feature vectors in the bag computed by PCNNs
according to the attention weights.

Fig. 1. Samples of relational fact and sentence containing the entity pair (Steve Jobs,
Apple).

Knowledge Abstract Relation. We leverage semantic knowledge in KBs by
using their knowledge embeddings trained by a translation model. In this paper,
we use the TransE model. Better methods can be chosen, while it is not the
focus of this paper. Specifically, for each triplet (h, r, t), TransE assumes that
their corresponding knowledge embeddings lh, lr and lt satisfy lh + lr ≈ lt. But
there may be m relations {r1, r2, . . . , ri, . . . , rm} (m ∈ {0, 1, 2, . . .}) between two
entities in a KB, all the m relations should satisfy lh + lri ≈ lt, i.e., lri ≈ lt − lh.
Let la = lt − lh, that is, la is related to any relation embedding lri . We argue
that la is a more abstract representation of all relations between two entities,
called abstract relation between the two entities. It contains a wealth of semantic
knowledge that can improve our model.

Attention Mechanism. Our method weighs semantic knowledge in the KB
and text semantics of the bag to generate attention weight distribution, as shown
in Fig. 2. We look up the knowledge embedding matrices trained by TransE
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Fig. 2. The architecture of the Knowledge-aware Attention Module with the Knowl-
edge Relation Retrieval Module. for Classifier and for Retrieval channel are softmax
classifier in KBPCNN and relation retrieval module in KBPCNN+R. s1, s2, . . . , sq are
instance feature vectors computed by PCNNs, let , leh , lri (1 ≤ i ≤ u) are knowledge
embeddings of tail entity, head entity and target relation ri respectively, and la is the
embedding of the knowledge abstract relation.

model to transform entities to entity embeddings, relations to relation embed-
dings. In Fig. 2, s1, s2, . . . , sq are the feature vectors (computed by PCNNs) of
all instances in a bag, the context vector ct which represents the text semantics
of the bag can be computed as follows:

ct = Wc(
1
q

q∑

i=1

si)T (2)

where W c ∈ R
ke×3n is a transformation matrix, and ke is the dimension of

knowledge embeddings. We use a generation probability pgen [18] to integrate
text semantics and semantic knowledge and to address the problem that the
annotated entities are not in the KB. In our method, we assign the generation
probability pgen ∈ [0, 1] to the abstract relation vector la to determine its impor-
tance relative to the context vector ct. Further, when the two entities are unseen
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in the KB, that is, la is filled with 0, we hope the model to assign a extremely
low value, even 0, to pgen to reduce noise. In our method, pgen is calculated as
follows:

pgen = δ(laWgct + bg) (3)

where Wg ∈ R
ke×ke is a intermediate matrix, bg is a bias, and δ(•) is the sigmoid

function. Next, the alignment vector can be calculated as follows:

valign = pgenla + (1 − pgen)cTt (4)

Then, we use the general score method [13] to calculate the attention weight
between each instance feature vector and alignment vector, which reflects the
similarity or relevance between them. The formula is as follows:

αi =
exp(ei)∑q
j=1 exp(ej)

ei = valignWas
T
i + ba

(5)

where 1 ≤ i ≤ q,Wa ∈ R
ke×3n is an intermediate matrix and ba is an offset value.

And weight vector α = [α1, α2, . . . , αq] is the attention weight distribution of all
instances in the bag. Then the bag features can be calculated as follows:

b =
q∑

i=1

aisi (6)

2.3 Relation Retrieval

Based on the bag feature vector b, we have two ways to calculate the condi-
tional probability of relation ri, as shown in Fig. 2. One in for Classifier channel
(KBPCNN) is to treat the distantly supervision RE as a classification task,
which is the practice of previous works, and the other in for Retrieval channel
(KBPCNN+R) is to treat it as a relation retrieval task, which is first proposed
in this paper.

Softmax Classifier. The final output scores of the neural networks, which are
associated to all relations, can be calculated as follows:

o = Wob
T + do (7)

where o ∈ R
u, Wo ∈ R

u×3n is the weight matrix and do ∈ R
u is the bias vector.

Then the conditional probability of relation ri can be defined as:

p(ri|B, θ1) =
exp(oi)∑u
j=1 exp(oj)

(8)

where θ1 indicates all the parameters of the KBPCNN model.
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Relation Retrieval Ranking. As shown in for Retrieval channel of Fig. 2,
knowledge relation retrieval module of KBPCNN+R can further leverage the
semantic knowledge in the KB. As a neural retrieval model [16,22], we calculate
the relevance score between the bag B and each relation ri of u target relations
in distantly supervised RE task by measuring the cosine similarity between the
bag feature vector b and the relation embedding lri . The relevance score R(B, ri)
can be computed as follows:

R(B, ri) = cosine(lri ,Wbb
T ) =

lri(Wbb
T )

‖lri‖‖WbbT ‖ (9)

where 0 ≤ i ≤ u, Wb ∈ R
ke×3n is a transition matrix. In practice, given a bag,

the u target relations are ranked by their semantic relevance scores, and the
most relevant one is considered to be the relation between the two entities.

Given a bag B, we calculate the conditional probability of relation ri by
converting the semantic relevance score between the bag and the relation to the
posterior probability through softmax:

p(ri|B, θ2) =
exp(γR(B, ri))∑u
j=1 exp(γR(B, rj))

(10)

where γ is a smoothing factor in the softmax function, which is set empirically
in our experiment, θ2 indicates all parameters of KBPCNN+R model.

Optimization. Here we introduce the details of the learning and optimization
of our models. Assume there are N bags in the training set {B1, B2, . . . , BN}, and
their corresponding labels are relations {r1, r2, . . . , rN}. We define the training
objective function using cross-entropy as follows:

J(θ) =
N∑

i=1

p(ri|Bi, θ) (11)

where θ ∈ {θ1, θ2}. To train our models, we use stochastic gradient descent
(SGD) to minimize the objective function, and employ dropout strategy [6] to
prevent overfitting.

3 Experiments

3.1 Dataset and Evaluation Metrics

Dataset. We evaluate our models on the dataset generated by aligning Freebase
relations with the New York Times (NYT) corpus, which is developed by [17] and
has been widely used in distantly supervised RE [7,8]. And sentences from the
years 2005–2006 of the NYT corpus used for training and sentences from the year
2007 used for testing. There are 53 possible target relations including a special
NA relation. There are 570,088 sentences, 63,428 entities and 19,601 relational



Knowledge-Aware and Retrieval-Based Models 155

facts (excluding NA) in training data, 172,448 sentences, 16,705 entities and
1,950 relational facts (excluding NA) in testing data.

We choose the available mini dataset from Freebase, i.e., FB15k used in
[10], as a part of our external KBs. In order to make the results of the model
more convincing, we first removed the triplets that appeared in the testing set
from FB15k. As shown in Table 1, we build three knowledge bases with different
completeness based on FB15k and training set, named ZeroKB, HalfKB and
AllKB. AllKB is obtained by taking unions of the relation sets, entity sets and
triplet sets in FB15k and training data respectively. We randomly select half of
the entity set in the training data to form HalfE, then HalfKB is the remaining
set after filtering out the entities and the triplets that contain the entities of
HalfE from AllKB. And ZeroKB is the remaining set after filtering out the
entities and the triplets that contain the entities in the entity set in the training
data from AllKB.

Table 1. Details of various KBs with different completeness. The above part shows
the numbers of entities e and triplets t in each KB. The following shows the details of
the intersections of each KB and the training set str.

Items FB15k ZeroKB HalfKB AllKB

e 14951 9310 41558 73007

t 483142 193415 437131 1052915

str e(x/63428) 5640 0 31848 63428

t(x/293143) 2261 0 71454 293143

Evaluation Metrics. Following [8,15], we evaluate our models in two ways:
held-out evaluation and manual evaluation. The held-out evaluation automati-
cally compares the extracted relation instances from bags against Freebase rela-
tion data, i.e., labels of the bags, and reports the precision/recall curves of the
experiments. Due to the incomplete nature of Freebase, the held-out method
marks all extracted relation instances which are unseen in Freebase as incor-
rect, and it needs manual evaluation to find those relation instances that are
essentially correct from them. And we use P@N metric to report the results.

3.2 Experimental Settings

Knowledge and Word Embeddings. We use the word2vec tool to train word
embeddings on NYT corpus and keep the words which occur more than 100 times
in the corpus as vocabulary [11]. We use the open source tool KB2E, which
has implemented the TransE model, to train knowledge embeddings for these
three KBs: ZeroKB, HalfKB, and AllKB. Following [3], we set latent dimension
ke = 50, learning rate λe = 0.01, margin γe = 1.

Parameter Settings. We tune our models using three-fold validation on train-
ing set, and use a grid search to determine the optimal parameters. We
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select smoothing factor γ among {0.5, 1, 2, 5}, the learning rate λ among
{0.1, 0.01, 0.001, 0.0001} and the bath size bs among {30, 60, 120}. Following
[8,11], we set the dimension of word embedding kw to 50, the dimension of
position embedding kd to 5, the window size l to 3, the number of convolu-
tion kernels n to 200. And the optimal settings of experimental parameter are
λ = 0.001, γ = 1, and bs = 60. Following [6], the dropout rate is set to 0.5.

3.3 Experimental Results and Analysis

Results and Comparisons. We compare the proposed models with the fol-
lowing seven previous work. (1) Mintz [15] represents the distant supervision
model. (2) MultiR [7] is a method based on multi-instance learning. (3) MIML
[21] is a multi-instance and multi-relation model. (4) PCNN+ONE [25] uses
PCNNs to extract feature vectors of sentences and select the most valid one to
represent the bag. (5) PCNN+ATT [11] proposes an inner selective attention
model to select valid sentences based on PCNNs. (6) APCNN [8] use features
from word embeddings of the entities to align sentence feature vectors to gener-
ate attention weights. (7) APCNN+D [8] uses external description information
based on APCNN. We implement the APCNN model ourselves, and the other
models with the source codes provided by the authors.

Held-Out Evaluation. Figure 3 shows the aggregate precision/recall curves
of our models (KBPCNN and KBPCNN+R) and other baseline methods. From
Fig. 3 we can find out that our models significantly outperform all the baselines.
We can find that: (1) Neural models based on PCNNs perform much better than
feature-based methods, indicating that the human-designed features can not
effectively express the semantics of sentences, and the error propagation brought
by NLP tools will hurt the performances of the extractors; (2) In all the neural
models, the attention-based models achieve further improvement, because the
attention models can select the valid sentences and alleviate the wrong labelling
problem in the distantly supervised RE; (3) Among all the attention mechanisms,
the proposed knowledge-aware attention models perform better, indicating that
employing the semantic knowledge in the external KB with text semantics of
the bag can select valid instances more effectively; (4) Compared to KBPCNN,
the KBPCNN+R using the knowledge relation retrieval module achieves higher
precision in most range of recalls, indicating that further knowledge of the KB
can be used to further improve model, and for the cases where the precision
of both ends of the curve is lower than KBPCNN, we believe that this is due
to the incompleteness of the KB, which results in insufficient representation of
semantic knowledge.

Manual Evaluation. We further use manual evaluation because the held-out
evaluation suffers from false negative in Freebase [8]. We conduct manual evalu-
ation by two PhD and one master students whose research directions are Infor-
mation Extraction. Table 2 presents the precisions of the manual evaluation on
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Fig. 3. Aggregate precision/recall curves of various methods.

the top 100, top 200, and top 500 extracted instances. The results show the
KBPCNN achieves higher precision, which indicates that our knowledge-aware
attention mechanism can more effectively select valid instances in a bag. And
KBPCNN+R achieves the best performance, illustrating that employing seman-
tic knowledge of KBs in neural models is effective.

Effect of KB’s Completeness. Figure 4 shows the effect of KB’s complete-
ness on model KBPCNN+R. AllKB, HalfKB and ZeroKB are three KBs with
different completeness. All, Half, and Zero are the models trained by using
KBPCNN+R method based on these KBs respectively. From Fig. 4, we can find
out that KB’s completeness dose have a significant effect on the method. With
Zero as the baseline, Half performs slightly better than Zero. This is because the
HalfKB contains relatively few triplet facts, so the knowledge Half can leverage
is limited. But All achieves a significant improvement over the Zero and Half,
because the AllKB contains more triplet facts. In general, the more complete
the KB is, the better the model performs.

Cases Study. Table 3 shows examples of generation probability pgen. From
Table 3, we can find that when the annotated entity pair does not appear in the
KB, that is, the model can not use semantic knowledge, the attention model
assigns a low weight (2.92e−10) to the semantic knowledge part, and leverages
only the text semantics of the bag to generate the attention distribution almost,
as the 1st and 2nd cases. Otherwise, the model will consider both semantic
knowledge and text semantics, as the 4th case; sometimes assigns a high value
(0.99933) to pgen to leverage almost only semantic knowledge, as the 3rd case.

Table 4 shows an example of knowledge-aware attentions from the testing
data. The bag contains 5 instances, where S4 is an invalid instance. Our models
assign S4 low weights (0.08699 and 0.07850) and assign higher ones to other
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Table 2. Precision values for the top 100, 200, and 500 extracted relation instances.

Methods Top 100 Top 200 Top 500 Average

Mintz 0.77 0.71 0.55 0.676

MultiR 0.83 0.74 0.59 0.720

MIML 0.85 0.75 0.61 0.737

PCNN+ONE 0.84 0.77 0.64 0.750

PCNN+ATT 0.86 0.80 0.68 0.780

APCNN 0.87 0.82 0.72 0.802

APCNN+D 0.87 0.82 0.74 0.813

KBPCNN 0.89 0.83 0.74 0.820

KBPCNN+R 0.88 0.84 0.75 0.823

Fig. 4. Effects of the KBs with different completeness on KBPCNN+R.

valid sentences. Both models assign significantly higher weights to S2 (0.28877
and 0.31279) compared to other valid sentences, because S2 contains the words
“... the prosperous city in ...” which express the label obviously. That is, the
knowledge-aware attention mechanism can effectively select valid sentences. In
addition, we also find out that the weights assigned by KBPCNN+R are more
reasonable than KBPCNN, such as assigning a lower weight (0.07850) to S4 and
assigning a higher (0.31279) one to S2. It also shows that further knowledge of
the KB can be used to further improve the model.

4 Related Work

Relation Extraction. Relational extraction (RE) is a fundamental task in
NLP. The methods proposed earlier can be classified as supervised methods
generally, and most of them require a large amount of annotated data, which is
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Table 3. Examples of generation probability pgen generated by KBPCNN θ1 and
KBPCNN+R θ2. Entity pairs of the 1st and 2nd cases are unseen in the KB, but
entity pairs of the 3rd and 4th cases are in the KB.

EntityPair rid InKB θ1 θ2

italy, fiesol 48 False 0.12677 2.92e-10

pixar, edwin catmull 6 False 0.05664 0.01381

bernard marcus, atlanta 36 True 0.96074 0.99933

honest tea, seth goldman 6 True 0.85938 0.66321

Table 4. Attention weights generated by KBPCNN θ1 and KBPCNN+R θ2.

Bag Label: /location/location/contains(Germany, Stuttgart)

Instances θ1 θ2

S1. Merz and solitude of Stuttgart, Germany, printed 800 copies, which are being sold

for $20 each at the angola3. [valid]

0.22045 0.23464

S2. Calling it a shotgun introduction to Stuttgart, the prosperous city in southwest

Germany where car worship, like one’s taxi driver, seems to know no limits. [valid]

0.28877 0.31279

S3. Mrs.Somary is the managing director of the mendelssohn project, a nonprofit

organization founded in Manhattan and Stuttgart, Germany, by the bridegroom, its

music director. [valid]

0.18494 0.18181

S4. But as Germany’s carmakers each try to outpolish the competition with these

brand-driven monuments, only Stuttgart can claim a high-octane mix of automotive

bravado and seminal tradition. [invalid]

0.08699 0.07850

S5. At the same time, Stuttgart is in some ways playing catch-up with other auto-crazed

cities in Germany. [valid]

0.21885 0.19226

labor intensive and time consuming. To solve this problem, Mintz et al. [15] pro-
posed the distant supervision method, which uses structured triplets in the KB to
align plain text to generate a large amount of training data. But this method will
inevitably bring the wrong labelling problem. To alleviate the problem, Bunescu
et al. [4] employed multi-instance learning in distantly supervised RE. But these
methods use traditional NLP tools to extract the features of instances. Recent
methods are based on deep learning. Zeng et al. [25] proposed the piecewise
convolutional neural networks (PCNNs) model, which can automatically extract
the sentence-level features. Selective attention model proposed by Lin et al. [11]
can filter out meaningless sentences by generating inner attentions relying on
the sentences’ own features. Sentence-level attention model (APCNN) proposed
by Ji et al. [8] assumes that vector (e1 −e2) represents the relation, and use it to
calculate the attention weight distribution, where e1 and e2 are word embeddings
of the two given entities.

Knowledge Representation Learning. The task of Knowledge Representa-
tion Learning (KRL) [9] is to learn the distributed representations of entities and
relations in the knowledge base. This paper focuses on the translation model,
especially the TransE model [3]. For each triplet (h, r, t), TransE treats the rela-
tion vector lr as the translation from the head entity vector lh to the tail entity
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vector lt, i.e., lh + lr ≈ lt. Knowledge embeddings trained by translation models
contain a wealth of semantic knowledge. The methods of Knowledge Graph Com-
pletion (KGC) [20] task related to KRL directly use the vector operation based
on knowledge embeddings to find missing relation connections between entities,
thus adding new triplets to KBs. However, compared to distantly supervised RE,
KGC suffers from the problem that KGC can not find out the triplets contain-
ing new entities that are unseen in the KB. To the best of our knowledge, our
methods are the first efforts to adopt semantic knowledge of the KB in distantly
supervised RE.

5 Conclusions

In this paper, we propose the neural knowledge-aware attention and retrieval-
based models for distantly supervised RE. The attention mechanism can leverage
semantic knowledge in the KB to generate attention weights, and select valid
sentences by assigning them higher weights. The knowledge relation retrieval
module can further leverage the semantic knowledge to improve the model. The
experimental results show that the proposed methods achieve significant and
consistent improvements over the popular benchmark methods.
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Abstract. Entity alignment aims to automatically determine whether an entity
pair in different knowledge graphs refers to the same entity in reality. Existing
entity alignment methods can be classified into two categories: string-similarity-
based methods and embedding-based methods. String-similarity-based methods
have higher accuracy, however, they might have difficulty in dealing with literal
heterogeneity, i.e., an entity pair in diverse forms. Though embedding-based
entity alignment can deal with literal heterogeneity, they also suffer the short-
comings of higher time complexity and lower accuracy. Moreover, there remain
limitations and challenges due to only using the structure information of triples
for existing embedding methods. Therefore, in this study, we propose a two-
stage entity alignment framework, which can combine the advantages of both
methods. In addition, to enhance the embedding performance, a hybrid
knowledge graph embedding model with both fact triples and logical rules is
introduced for entity alignment. Experimental results on two real-world datasets
show that the proposed method is significantly better than the state-of-the-art
embedding-based entity alignment methods.

Keywords: Entity alignment � Knowledge graph embedding �
Relation alignment

1 Introduction

Knowledge graphs (KGs) have been widely used by researchers in many AI-related
applications, such as knowledge acquisition [1], answering questions [2], and recom-
mendation systems [3]. Because different knowledge graphs are multi-source hetero-
geneous, it is particularly important that heterogeneous entities are integrated in multi-
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knowledge graphs to obtain a consistent form (called entity alignment) in the process of
building a more complete and richer knowledge graph.

Conventional entity alignment methods have achieved excellent performance in the
past decade. Most of these methods are based on similarity calculation [4–6] or
propagation [7, 8]. That is, two entities are determined to be equal based on the equality
or similarity of character strings, attributes, or neighboring nodes. However, due to the
reliance on symbolic characteristics, conventional methods may not work well in the
condition of literal heterogeneity (see Sect. 4.1 for details).

In order to ignore the literary form of entities, embedding-based entity alignment
was proposed and yielded considerable results [9–11]. Embedding-based entity
alignment embeds entities and relations into low-dimensional vector spaces, and a
model using structural information between triples is built subsequently. The
embedding-based entity alignment determines counterparts for entities through the
distance between vectors, regardless of literal characteristics such as characters, words,
or even languages. For example, Yang et al. [9] proposed a cross-lingual knowledge
alignment model from various transfer matrices; Liu et al. [11] proposed an iterative
entity alignment method using joint knowledge embeddings; and Sun et al. proposed an
alignment-oriented KG embedding with bootstrapping alignment [10]. However,
embedding models also have the low accuracy problem.

Therefore, in this study, we propose a two-stage framework to combine the
advantages of the above two methods. Specifically, in Stage I, a string-similarity-based
method was adopted to align relation pairs of different KGs, instead of all entity pairs.
It is based on the following observations on real-world datasets: (1) the number of
relations is far less than the number of entities, which means aligning relation pairs
requires less time than aligning entity pairs; (2) a relation corresponds to a number of
entities in KGs under normal conditions, that is, it is very helpful for the task of
aligning entity pairs if the performance of relation alignment is enhanced; and
(3) string-similarity-based methods have high accuracy. Therefore, even if only a part
of relation pairs can be aligned, the performance of aligning entity pairs in Stage II is
expected to be enhanced.

In Stage II, a hybrid embedding model which simultaneously considers both logical
rules and fact triples is introduced. To the best of our knowledge, embedding-based
methods for entity alignment has not drawn much attention yet. What is more, most of
existing methods on entity alignment only use facts to learn an embedding model and
ignore abundant logical rule information contained in the knowledge graphs. Some
existing studies indicate that incorporating path information [12], attribute information
[13], internal character information [14], and other information into the KG embedding
process can effectively improve the performance of the model. Following this idea,
logical rules can be used to deduce new triples and mine hidden information in the
knowledge graph for enriching the semantic information of entities. We inject logical
rules into the embedding model to produce hybrid embedding of rules and triples.
Although the use of logical rules proposed by some papers enhance the representation
learning, the domain characteristics of entity alignment tasks were not taken into
account.

The main contributions of this paper are threefold. (1) A two-stage entity alignment
framework is proposed, which combines the advantages of string-similarity-based
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methods and embedding-based methods. (2) A hybrid embedding model for entity
alignment is proposed, which represents triples and logical rules into a uniform space in
order to enhance the embedding of individual entities. (3) We evaluate the proposed
method with several real-world datasets, and the experimental results show that our
model is superior to state-of-the-art methods.

The rest of this paper is organized as follows: Sect. 2 introduce the background,
including the concepts of KG embedding, entity alignment, and some learning
resources. The preliminary is introduced in Sect. 3, and the proposed framework is
detailed in Sect. 4. Experimental results and analysis are presented in Sect. 5, followed
by our main conclusion and future work in the final section.

2 Background

In this section, we discuss the background including KG embedding and entity
alignment. In addition, the learning resources including rule and grounding rule are
introduced.

KG Embedding. Knowledge graphs are usually not easy to manipulate because of the
underlying symbolic nature of fact triples. To tackle this issue, KG embedding has been
proposed and gained considerable attention. KG embedding refers to embed the entities
and relations in the knowledge graphs into continuous vector spaces [15].

Entity Alignment. Entity alignment refers to automatically determining entity pairs in
different knowledge graphs that have the same representation in reality. For example,
subjects KG1:e1 and KG2:e1 from two different sources refer to the same entity e1, even
though they are in diverse forms. The illustration of entity alignment is shown in
Fig. 1.

Rule. We call the triple that the position of the head or tail is a variable an atom, and a
rule refers to the complex form expressing certain logical meanings formed by several
atoms connected by logical conjunction. The atom to the left of the conjunction is
called condition and the atom to the right of the conjunction is called conclusion. For
example, countryofbirth<?a, ?b> ) placeofbirth<?a, ?b> means that if there is a

KG1
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Fig. 1. Illustration of entity alignment (reproduced from [11]). KG1 and KG2 are two different
knowledge graphs. Given some aligned entity pairs, called aligned seeds (connected by black
lines) and the goal of entity alignment is to find all potential entity pairs (connected by red lines)
that can be aligned. (Color figure online)
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triple (?a, countryofbirth, ?b) in the knowledge graph, then there should be a triple (?a,
placeofbirth, ?b) in the knowledge graph. In our method, we only account for rules
where the number of atoms in condition is 1 and the number of atoms in conclusion is
less than or equal to 2. The details are shown in Table 1.

Grounding Rule. The process of replacing a variable located in an atom with a
concrete entity is called instantiation, and we will obtain grounding rules after this
step. For example, countryofbirth <?a, ?b> ) placeofbirth<?a, ?b> can transform to
countryofbirth<Lisa, America> ) placeofbirth<Lisa, America> after instantiation.
The types of grounding rules are shown in Table 2.

3 Preliminary

Sun et al. proposed an alignment-oriented KG embedding called AlignE [10]. Before
introducing our method, the details of AlignE are first described.

The entity alignment task assumes a significant difference between the positive and
negative samples in order to capture the semantic information of the equivalent entities
in different knowledge graphs. Based on this idea, AlignE includes the proposed
alignment-oriented loss function for triples:

OT ¼ P
T2Tþ

f Tð Þ � c1½ �þ þ l1
P

T 0 2T�
c2 � f T

0� �� �
þ ð1Þ

f Tð Þ ¼ k hþ r� t k22 ð2Þ

Where h; r; tð Þ is the vector embedding of triple h; r; tð Þ; k � k22 is the L2-norm;
�½ � þ¼ maxð�; 0Þ, c1, l1, and c2 are hyper-parameters; T and T

0
stand for positive and

negative sample triples, respectively; Tþ is the set of positive sample triples and T
� is

the set of negative sample triples. As for negative sampling, the s-nearest neighbor set
of entities are first found and a random element in the set is chosen as the negative
sample.

Table 1. Types of rules.

Types of rules, where ?a, ?b, and ?c denote entities, and r1, r2, and r3 are relations.

8 ?a, ?b: r1 <?a, ?b> ) r2<?a, ?b>
8 ?a, ?b, ?c: r1 <?a, ?b> && r2<?b, ?c> ) r3<?a, ?c>

Table 2. Types of grounding rules.

Types of grounding rules, where a1, b1, a2, b2, and c2 denote concrete entities, and r1, r2, and r3
are relations.

R1: r1 <a1, b1> ) r2<a1, b1>
R2: r1 <a2, b2> && r2<b2, c2> ) r3<a2, c2>
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In contrast to the previous embedding-based entity alignment method, AlignE
abandons the tradition of direct reuse in the TransE model. The proposed loss function
significantly expands the gap between positive and negative sample scores and reduces
drift of entity vector embedding. However, representation learning in AlignE is still
based on the use of triples. Semantic entity information can be enriched if a large
amount of logical rule information in the knowledge graph is used for learning with
triples, yielding fuller entity vectors.

4 Method

In this section, the motivation is introduced in Sect. 4.1 and an overview of our
proposed model is presented in Sect. 4.2. Next, we detail the two-stages of the model in
Sects. 4.3 and 4.4.

4.1 Motivation

(1) Similarity-based Relation Alignment with KG Embedding
Existing study on entity alignment can be classified into two types, i.e., traditional
string-similarity-based methods and embedding-based methods [16]. The basic
idea of string-similarity-based methods is calculating the string similarity of two
entities to judge whether they represent the same entity. Although string-
similarity-based methods have higher accuracy, they may have difficulties in
dealing with the situations of cross-language [9] and literal heterogeneity [10]. For
example, the name “Kobe” (in English) and “科比” (in Chinese) shown in Fig. 2
(a) actually refer to the same person, and this person may also be called as “Black
Manba” in some occasions as shown in Fig. 2(b). That is to say, string-similarity-
based methods are not able to handle these two situations directly.

The basic idea of embedding-based methods, however, is to embed the
semantic information of these entities into low-dimensional vectors. Compared
with string-similarity-based methods, this kind of methods can deal with the
above two situations efficiently [9, 10]. However, embedding-based methods also
have the shortcomings of higher time complexity and lower accuracy.

KG1:(Kobe, Profession, Basketballer)

KG2:( , , )

(a) cross-language (b) literal heterogeneity

Kobe

KG1:(Kobe, Profession, Basketballer)

KG3:(Black Manba, Profession, Basketballer)

Kobe

Fig. 2. Illustration of the shortcomings of string-similarity-based methods. The string-similarity-
based methods might not work well when encountering the situations of: (a) cross-language; or
(b) literal heterogeneity.
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Therefore, we propose a two-stage framework in this study to combine the advantages
of these two methods. The idea is given as follows. In the first stage, a string-
similarity-based method was adopted to align relations, rather than align all the
entities. The task of relation alignment is regarded as more important than entity
alignment, because a relation generally corresponds to multiple entities. That is, an
aligned relation pair can be beneficial for aligning multiple entities in the next
step. Moreover, relation pairs are regarded as more suitable to be aligned by string-
similarity methods, because the cases of literal heterogeneity in relation pairs might be
much less than those in entity pairs in general. In the second stage, an embedding-
based method was adopted to align entity pairs based on the previously aligned
relations and some aligned entity pairs given in advance, which can address the two
problems shown in Fig. 2.
(2) Hybrid Embedding with both Fact Triples and Logical Rules

In recent years, KG embedding based on translational models (e.g. TransE) has
attracted a lot of attention because of its simplicity and efficiency, and has
achieved excellent performances in many real-world applications like link pre-
diction and question answering [15]. TransE [17] is a representative translation
model that states the translational rule, i.e., h + r – t � 0, must be true if the triples
h; r; tð Þ are contained in a knowledge graph. In other words, vector embedding of
the head entity plus vector embedding of the relation is approximately equal to the
vector embedding of the tail entity. This translational rule was inspired by the
famous word2vec [18], which found the translation invariance in the embedding
spaces. For example, the word embedding of “king” minus the embedding of
“queen” is approximately equal to the embedding of “man” minus “woman”, i.e.,
C(king) – C(queen) = C(man) – C(woman).

Although translating embedding methods have been demonstrated effective in
many other applications, there are not enough studies on the task of entity alignment
[9–11]. Moreover, existing studies on entity alignment mainly focus on learning an
embeddingmodel based on only the triples facts, ignoring the information of logical
ruleswhich can certainly enrich and enhance the expression of the embeddingmodel
by deducing new triples [19]. Although several existing methods have already
attempt to combine fact triples and logical rules to learn an embedding model for
other applications [20, 21], as far aswe know, the information of logical rules has not
been considered in the task of entity alignment yet.

Therefore, in this study, we propose a hybrid embedding with both fact triples
and logical rules to enhance the embedding of entities. And we introduce an
alignment-oriented loss function for logical rules that improve the accuracy of
entity alignment.

4.2 Overall Architecture

The overall architecture is illustrated in Fig. 3, which contains two components
including similarity-based relation alignment with KG embedding (Fig. 3a), and hybrid
embedding with both fact triples and logical rules (Fig. 3b).

The relation alignment can be used to enhance the hybrid embedding. We use
string-similarity-based method for relation alignment to gain a part of aligned relations
and then adjust the hybrid embedding through relation exchange. The relation align-
ment is detailed in Sect. 4.3.
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The hybrid embedding is intended to facilitate hybrid embedding of hidden logical
rule information and triple information in a knowledge graph, and to orient rule
embedding towards alignment. This is divided into three parts: triple embedding, rule
embedding, and hybrid embedding. The triple embedding adopts the method described
in Sect. 3, and the rule embedding and hybrid embedding are described in detail in
Sect. 4.4. The details of the proposed model are summarized in Algorithm 1.

Algorithm 1. KG embedding procedure of the proposed model
Require: triples 

grounding rules 
aligned seeds

1. Align relations according to edit distance.
2. Randomly initialize entity and relation embeddings.
3. Exchange the aligned relations to obtain new triples, and then add these new triples to . 
4. Calculate the number of s -nearest neighbors for relations ( cf. Eq. (9)).
5. for n = 1: N do
6.       Generate the dictionary of neighbor nodes for relations;
7.       for i = 1: k do
8.            Generate negative triples and negative grounding rules;
9.            Calculate the loss function of triples cf. Eq. (1);
10.          Calculate the loss function of grounding rules cf. Eq. (8); 
11.          Minimize the embedding loss function cf. Eq. (10). 
12.     end for
13. end for
Ensure: Embeddings of entities 

4.3 Stage I: Similarity-Based Relation Alignment with KG Embedding

Relation Alignment. The relations are aligned based on edit distance. Knowledge
graphs often use a URL address to describe entities or relations, thus we first find the
keywords in the URL. Some techniques are required to finish this step, such as regular
expressions and web crawlers. And then the edit distance between two relation strings
is calculated. The editing distance between two strings is the minimum operation cost
of converting one string to another by adding, deleting, or replacing characters, and
each operation will be assigned a certain cost, e.g., 1. The editing distance is generally
calculated using dynamic programming with the following recursive formula [22]:

d i; j½ � ¼ min
d i; j� 1½ � þ 1
d i� 1; j½ � þ 1

d i� 1; j� 1½ � þ c s1 i½ �; s2 j½ �ð Þ

8<
: ð3Þ

c s1 i½ �; s2 j½ �ð Þ ¼ 1; s1 i½ � 6¼ s2½j�
0; s1 i½ � ¼ s2½j�

�
ð4Þ
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where s1 i½ � is the ith character in the string s1 and s2 j½ � is the jth character in the
string s2.

Relation Exchange. We generate aligned relations with a relation alignment and then
apply these aligned relations to coordinate entity embedding in different knowledge
graphs based on the relation exchange strategy. The relation exchange strategy unifies
the embedding of triples with the same relation in different knowledge graphs. As
follows, where a pair of aligned relations ðrs; rkÞ exists, then we can obtain the triples as
Eq. (5):

T
r
ðrs;rkÞ ¼ h; rk; tð Þj h; rs; tð Þ 2 T

þ
1

� � [ h; rs; tð Þj h; rk; tð Þ 2 T
þ
2

� � ð5Þ

where T
þ
1 and T

þ
2 are the set of positive sample triples from KG1 and KG2, respec-

tively. The final positive sample set is Tþ ¼ T
þ
1 [T

þ
2 [T

s
ðx;yÞ [T

r
ðrs;rkÞ, where T

s
ðx;yÞ

is the triple set after executing the exchange strategy [10].

4.4 Stage II: Hybrid Embedding with Both Fact Triples and Logical
Rules

Rules Embedding. Rule embedding is specific to the grounding rules. Grounding
rules are regarded as special complex triples whose scores are determined by the triples
and their logical connectives. According to [19], the scores of the two types of
grounding rules in Table 2 can be defined as follows:

f R1ð Þ ¼ f ða1; r1; b1Þ � f ða1; r2; b1Þ � f ða1; r1; b1Þþ 1 ð6Þ

f R2ð Þ ¼ f ða2; r1; b2Þ � f ðb2; r2; c2Þ � f ða2; r3; c2Þ � f ða2; r1; b2Þ � f ðb2; r2; c2Þþ 1 ð7Þ

After obtaining rule scores, we design a loss function for optimizing the vectors of
rules. Optimization of the traditional translation model uses margin-based ranking loss
and attempts to reduce the score of positive samples below that of negative samples,
which improves the effectiveness of the model. However, the difference between the
score of positive and negative samples is not obvious in the traditional translation
model. Furthermore, similar scores between positive and negative sample scores will
reduce the accuracy of entity alignment. Therefore, based on [10], the following
objective function for grounding rules is introduced:

OR ¼ P
R�2Rþ

f R�ð Þ � c1½ �þ þ l1
P

R0
�2R�

c2 � f R
0
�

� �� �
þ ð8Þ
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where R� is a grounding rule (R1 or R2) and R
0
� is the negative sample of R�; Rþ and

R
� refer to the positive sample set and negative sample set, respectively. Equation (8)

shows that the positive sample will tend to have a lower score and the negative sample
will tend to have a higher score in some cases, e.g., when f R�ð Þ� c1 and f R

0
�

� �� c2. At
this point, the score difference between positive and negative samples will be more
significant than that from TransE.

Negative Sampling. Negative sample triples can help modify the embedding model.
For triples, we choose to replace the head or tail entities with negative sample triples.
When generating negative samples of rules, the strategy is to first find the triple of the
conclusion of each grounding rule, and then replace the relation in the triple with
another relation. Specifically, the s-nearest neighbor of the relation are calculated, and
then a relation is randomly selected from the neighbor to replace the original relation,
yielding the negative sample of the rule. The value of s can be determined from the
following equation:

s ¼ ð1� �Þ �Md e ð9Þ

where M is the total number of relations and � is a balance parameter.

Hybrid Embedding. The purpose of hybrid embedding is to unify triples and
grounding rules such that they reflect the actual information in the knowledge graph.
The grounding rules embody the process of logical reasoning, while the reasoning itself
is inevitably flawed. Therefore, when building hybrid embedding, we should pay
attention to the proportion of triples and grounding rules in the final embedding model.
Then, we introduce the balance hyper-parameter w and obtain the following model as
Eq. (10):

Oe ¼ OT þwOR ð10Þ

where OT (defined in Eq. 1) is the loss function of triples, OR (defined in Eq. 8) is the
loss function of grounding rules, and Oe is the overall loss function of triples and
grounding rules.

5 Experiments

In this section, the validity of the proposed method for entity alignment is evaluated
with different data sets. We use TensorFlow, a popular open source framework for
tensor computing, to complete our experiments. Our experiments were performed on a
PC with an Intel Xeon E5 2.40 GHz CPU with 128 GB RAM.
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5.1 Datasets

The DBP15K [10] dataset and the large-scale DBP-WD [10] dataset were adopted for
the experiments. DBP15 K was extracted from DBpedia and consists of three cross-
language datasets: DBPZH-EN (Chinese to English), DBPJA-EN (Japanese to English),
and DBPFR-EN (French to English). Each dataset contains approximately 100,000 tri-
ples (positive sample triples) and 15,000 aligned entity pairs; 30% of the data were
used for reference alignment, and the remaining 70% were used as training data. And
DBP-WD [10] is a large-scale dataset containing triples from DBpedia and Wikidata,
totaling approximately 900,000 triples and 100,000 aligned entity pairs.

5.2 Experiment Setup

Four state-of-the-art algorithms were used for comparison: MTransE [9], IPTransE
[11], JAPE [13], and AlignE [10]. The source codes1 and the experimental results of
these algorithms were taken from [10]. The proposed algorithm is called RTEA-RA. In
addition, the proposed algorithm without the relation alignment strategy (called RTEA)
was tested to analyze the effectiveness of stage I.

The parameter settings of the proposed algorithms are given as follows: c1 ¼ 0:03,
c2 ¼ 1:7, l1 ¼ 0:2, and w ¼ 0:2. During the process of iterative learning, the learning
rate is 0.01 and the maximum iteration number is 500. For the negative sampling
strategy, the parameter � is set to 0.98 for the DBP-WD dataset and 0.9 for other
datasets; and 10 negative samples were generated for each sample.

The AMIE+ [23] was adopted to extract logical rules for each knowledge graph. In
order to obtain rules with higher reliability, we take the PCA (partial completeness
assumption) confidence [23] as the filter and then set the threshold value to 1 to filter
out rules that may have defects. Furthermore, instantiation is required after a rule is
obtained. The grounding rules must be screened again because inferred triples that are
not included in the knowledge graph are the only effective logical inferences.
Grounding rules that only condition triples are contained in the knowledge graph were
considered valid. In the process of relation alignment, we require the edit distance of
two relation strings to be 0, i.e., they are completely equal. This ensures the effec-
tiveness of the relation exchange strategy.

5.3 Results and Analysis

By convention, Hits@k and MRR were selected as our metrics, where Hits@k repre-
sents the proportion of correct alignments in the first k results, and Hits@1 represents
the accuracy. MRR represents the average value of the reciprocal ranks of the results.
Higher Hits@k and MRR values indicate better alignment.

The results of our method for entity alignment with different datasets are shown in
Table 3. We observe that:

• RTEA outperforms MTransE, IPTransE, JAPE and AlignE significantly, due to its
hybrid embedding.

1 https://github.com/nju-websoft/BootEA.
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• As expected, RTEA-RA gets better results than RTEA, because it used the relation
alignment to help enhancing the hybrid embedding.

• In general, both RTEA and RTEA-RA consistently outperform the baseline
methods, which demonstrates that the proposed two-stage method works well for
entity alignment.

Fig. 3. Overview of our proposed two-stage model. Firstly, in stage I, a set of aligned relations
are gained through the string-similarity-based method. Secondly, the vector embedding of
entities are learned base on both the logical rules and the triples through stage II. Thus, we can
determine whether they are equal entities according to the distance between the vector
embedding of entities.

Table 3. Result comparison on entity alignment.

Approaches DBPZH-EN DBPJA-EN
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE [9] 30.83 61.41 0.364 27.86 57.45 0.349
AlignE [10] 47.18 79.19 0.581 44.76 78.89 0.563
IPTransE [11] 40.59 73.47 0.516 36.69 69.26 0.474
JAPE [13] 41.18 74.46 0.490 36.25 68.50 0.476
RTEA 50.89 82.56 0.617 49.04 82.72 0.604
RTEA-RA 57.30 86.44 0.674 53.39 85.73 0.644
Approaches DBPFR-EN DBP-WD

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR
MTransE [9] 24.41 55.55 0.335 28.12 51.95 0.363
AlignE [10] 47.36 82.06 0.593 56.55 82.70 0.655
IPTransE [11] 33.30 68.54 0.451 34.85 63.84 0.447
JAPE [13] 32.39 66.68 0.430 31.84 58.88 0.411
RTEA 52.71 86.54 0.643 58.19 84.60 0.673
RTEA-RA 53.84 86.78 0.652 58.44 84.75 0.675
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5.4 Parameter Sensitivity

To analyze whether RTEA is sensitive to the proportion of the grounding rules, the
changes of Hits@k (Hits@1 and Hits@10) through different values of w are given in
Fig. 4. From Fig. 4 we can observe that the results are related to the value of w, and the
best configuration on both datasets is w ¼ 0:2 for the experiments in this study.

To evaluate the relation alignment strategy in stage I, we tested the proportion of
aligned relations from 0 to 100% with step 25% on DBPZH-EN and DBPJA-EN. Figure 5
depicts the evaluation results with different proportion of aligned relations. As
expected, the proposed algorithm performs better with an increase in the proportion of
aligned relations on both datasets, which demonstrate that the relation alignment
strategy enhanced embedding and worked well for entity alignment.
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Fig. 4. Hits@k on entity alignment w.r.t. the proportion of the grounding rules.
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6 Conclusion and Future Work

In this paper, we proposed a two-stage entity alignment framework combining the
advantages of string-similarity-based methods and embedding-based methods. More-
over, the KG embedding model considering both logical rules and fact triples was
introduced for entity alignment. The experimental results with several datasets showed
that our proposed model is better than the state-of-the-art algorithms. In the future, the
following topics are worthy of further study. Firstly, because the cases of literal
heterogeneity still exist in relation pairs, embedding-based methods should also be
adopted to aligning relation pairs. Secondly, logical rules can also be obtained by an
ontology knowledge base, in addition to extracting from data.
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Abstract. To address the data sparsity and cold start problems in the traditional
recommender systems, lots of researchers aim at incorporating knowledge
graphs (KG) into recommender systems to enhance the recommendation per-
formance. However, existing efforts mainly rely on hand-engineered features
from KG (e.g., meta paths), which requires domain knowledge. What’s more, as
relations are usually excluded from meta paths, they hardly specify the holistic
semantics of paths. To address the limitations of existing methods, we propose
an end-to-end neural user preference modeling framework (UPM) to incorporate
features of entity and relation of KG into the representations of users and items,
so as to learn user latent interests precisely. Specifically, UPM first propagate
user’s interests along links between entities in KG iteratively to learn user’s
potential preferences for the item. Furthermore, these preference features are
dynamically during the preference propagation process. That is to say, the
importance of these preference features to characterize user is different.
Therefore, an attention network is used in UPM to calculate the influence of
preference features at different propagating stages, then the final preference
vector of the user is calculated from the preference features and the corre-
sponding weights. Lastly, the final prediction probability of user-item interaction
is obtained by inner product operation between the embedding of item and
user. To evaluate our framework, extensive experiments on two real-world
datasets demonstrate significant performance improvements over state-of-the-art
methods.

Keywords: Recommender systems � Knowledge graph � User modeling �
Preference propagation

© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11670, pp. 176–189, 2019.
https://doi.org/10.1007/978-3-030-29908-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29908-8_14&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29908-8_14&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29908-8_14&amp;domain=pdf
https://doi.org/10.1007/978-3-030-29908-8_14


1 Introduction

With the rapid development of the Internet, user’s personalized needs have been
constantly improving. How to help users get the information they need and how to
address the information overload are the research hotspots in recommender systems
field. Traditional collaborative filtering based recommender systems only use historical
interactive information (explicit or implicit feedback) of user and item as input. This
brings two problems: First, the interactive information between users and items is
usually very sparse. Second, since the systems do not have historical interactive
information, it cannot represent user accurately by historical interests and preferences
of user, nor can it push personalized information to users. This situation is called cold
start problem.

A common way to address the problems of data sparsity and cold start is to
introduce some additional auxiliary information as a complementary of the recom-
mendation algorithm. Recently, KG, which is a type of directed heterogeneous graph,
has attracted a lot of researcher’s attention due to large quantity of entities and concepts
and rich semantic relations [1]. KG contains various types of information related to
entities in the form of triplet which is expressed as (h, r, t), where h, r and t are head
entity, relation and tail entity respectively, e.g. (Saving Private Ryan, directed, Spiel-
berg). The form of triplet can seamlessly integrate user-item interactive data and
improve the sparsity of interactive data.

At present, the methods of introducing KG into recommender systems can be
divided into two categories: feature-based method and path-based method. The feature-
based approaches unify features of users and items as input of recommendation
algorithms [2]. However, these methods are not specifically designed for KG, so it
cannot utilize all the information of KG effectively. For example, feature-based
methods fail to learn multi-hop relational knowledge. To address this weakness, path-
based approaches regard KG as a heterogeneous information network, and constructs
meta path-based features between items [3]. A meta path is a specific path linking two
entities. For example, there is a path (Tom Hanks ! The Terminal ! Stephen
Spielberg ! Schindler List) linking Tom Hanks and Schindler List, so this path can be
used as a way to mining the potential relation between actors and movies. However,
these methods heavily rely on handcrafted features to encode the semantics of path,
which further relies on domain knowledge. Furthermore, this approach cannot be
applied in where entities do not belong to the same domain (e.g. news recommenda-
tion) [4], and the meta paths cannot be predefined.

To address the problems mentioned above, we propose a novel neural user pref-
erence modeling framework (abbr. UPM), which takes user-item interaction as input
data and predicts the probability of a user interact with a particular item. Specifically,
for each user, each item he has interacted with is regarded as a seed item in the KG, and
extends the user’s interests iteratively along the links in the KG. In this process, the
preference features at different stages of the user with respect to the candidate item can
be learned, and the influence of the preference features are different to characterize user,
thus, we propose get the weights of different preference features through an attention
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mechanism. After get the weights, UPM takes the sum of different preference features
weighted by the corresponding weight, and the final preference vector of a user is
generated. Finally, the probability of user-item interaction (e.g. a clicking or browsing
action) is calculated by inner product of embedding of user and item. The experimental
results on real-world datasets show that the proposed framework outperforms all of the
baseline methods in click through rate (CTR) task.

The major contributions of this paper are as follows:

• We propose innovatively combines feature-based methods, path-based methods and
attention mechanism in KG-aware recommendation.

• In order to introduce KG into recommender systems, an end-to-end user preference
modeling framework (UPM) is proposed to mine the potential preference of user
automatically by a user preference propagating process in the KG.

• To distinguish the importance of preference features at different propagating stages
to characterize user, we propose calculate a weight for each preference features by
an attention network, and make the preference features contribute to the preference
vector of user according to the importance weights.

• Compared with the baseline methods, the proposed model performs best on two
real-world datasets, indicating the superiority of our model.

2 Related Work

In this section, we mainly introduce the related work of introducing KG into recom-
mender systems, i.e. feature-based and path-based methods. And the attention mech-
anism used in KG-aware recommendation.

2.1 Introducing KG into Recommender Systems

Feature-Based Methods. In the news recommendation scenario, Wang et al. [4]
proposed to fuse the word vectors of news headlines, the entity vectors of KG and the
entity context vectors, to generate the vector representation of news. Huang et al. [5]
used TransE [6] to generate vector representations of entities and item, and then
updates user’s vector representations through memory networks based on user pref-
erences for specific entities. Compared with other existing methods, feature-based
methods have better performance. However, these methods ignore the semantics of the
relations between entities represented by paths, so it cannot fully obtain the rich
semantics of KG. On the other hand, since the links between users and items are
realized by an implicit way, the regularization term of KG feature learning cannot fully
discover the links between users and items.

Path-Based Methods. In the path-based approaches, some previous studies [7, 8]
referred to the link patterns between KG entities as meta paths, and used meta paths to
improve the performance of recommendations. Meta paths are defined as a sequence of
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entity types, e.g. a meta path (user ! movie ! director ! movie) obtain user-item
related attributes contained in KG. Yu et al. [3] proposed HeteMF to factorize the user-
item rating matrix and constrain the distance between latent vectors of similar entities
by a graph regularization method.

Meanwhile, there are some other works aim at using meta paths to model user-user
or user-item relations. Luo et al. [9] proposed Hete-CF to model user-item, user-user
and item-item relations based on the similarity of meta paths. Shi et al. [10] proposed
SemRec model and introduced the concept of weighted meta path, which aims at
describing the path semantics by distinguishing the nuances between link attribute
values. Wang et al. [11] design a matrix factorization method by regularizing the user-
user relation using the calculated similarity based on meta paths.

However, the above methods heavily depend on the quality and quantity of meta
paths, what’s more, the sequence dependencies of entities and relations in meta paths
are neglected, which limits the quality of the generated recommendations.

2.2 Attention Mechanism in Recommendation

Attention mechanism shows the effectiveness in various machine learning tasks, such
as machine translation [12], text categorization [13] et al. Recently, more and more
researchers have applied attention mechanism to recommendation tasks. For example,
Pei et al. [14] used the attention network to capture the joint effects of user-item
interaction and measure the relevance between users and item. Chen et al. [15] pro-
posed item-level and component-level attention mechanisms to model implicit feed-
back in multimedia recommendation.

Compared with the simple path-based and feature-based approaches, UPM com-
bines merits of path-based and feature-based approaches to model user’s preferences
through rich semantic information contained in the KG, and obtain embedding of users
by an attention network. Compared with the existing methods, UPM can automatically
learning the semantic relations of entities and the sequence dependencies of entities and
relations in the path.

3 Neural User Preference Modeling Framework

In this section, we present the proposed UPM framework in detail.

3.1 Notations and Definition

Table 1 summarizes all the notations used in this paper. The user-item interaction
matrix Y ¼ yuvju 2 U; v 2 Vf g, if the interaction between u and v is observed yuv = 1,
otherwise yuv = 0. A KG G consists of a large number of triplets (h, r, t), where h, r and
t are the head entity, relation and tail entity of G respectively.

The relevant definitions are as follows:
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Definition 1 (KG). Define e ¼ e1; e2; . . .; eef g, R ¼ r1; r2; . . .; rrf g denote the sets of
entities and relations respectively. G = (e, L) is a directed graph with an entity type
mapping function / : e ! A and a link type mapping function w : L ! R. Each entity
e 2 e belongs to an entity type /ðeÞ 2 A, and each link r 2 L belongs to a link type
(relation) wðrÞ 2 R [3].

Definition 2 (Relevant Entity). Given user-item interaction matrix Y and the k-hop
relevant entities set of user u is defined as follows:

eku ¼ tj h; r; tð Þ 2 G& h 2 ek�1
u

� �
; k ¼ 1; 2; . . .;K ð1Þ

Where e0u ¼ Hu ¼ vjyuv ¼ 1f g, i.e. the historical interaction record of user u [4].
Relevant entities can be regarded as the natural extensions of a user’s interest in the

KG. Given the definition of the relevant entity, the k-hop triplets set of user u is defined
as follows:

Definition 3 (Set of Triplets). The k-hop triplets set of user u is defined as the set of
triplets from ek�1

u [4]:

Sku ¼ h; r; tð Þj h; r; tð Þ 2 G& h 2 ek�1
u

� �
; k ¼ 1; 2; . . .;K ð2Þ

With the increase of hop number k, the set of triplets may become very large, which
will greatly increase the computational overhead. In order to address the problems, we

Table 1. Notations and descriptions

Notations Descriptions

U ¼ u1; u2; . . .; umf g User set
V ¼ v1; v2; . . .; vnf g Item set
Y 2 Rm�n User-item interaction matrix
� ¼ e1; e2; . . .eef g Entity set
R ¼ r1; r2; . . .; rrf g Relation set
G KG

eku k-hop relevant entities set of user u

Sku k-hop triplets set of user u

Hu ¼ h1; h2; . . .; htf g Historical interaction record of u
Pi Relevance probability
Ou

k k-hop preference features of user u
Att Attention network
wk Weight of k-hop preference features of u
v Embedding of item v
u Embedding of user u
yuv Predicted probability that u interact with v
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proposes the following restrictions: (1) In a specific recommendation scenario (such as
movie recommendation), the relations in the KG can be limited to movie-related
attributes. (2) In practice, the total number of hop K is generally not very large, because
entities locating far away from user history interaction items may be irrelevant to user
latent preference. In this paper, K = 2 or 3.

3.2 Architecture of Framework

The framework of UPM is illustrated in Fig. 1. UPM takes a user u and an item v as
input of the framework, and outputs the probability that the user u will interact (click,
browse, etc.) with the item v. Specifically, for the input user u, his historical interaction
record Hu is treated as seeds in the KG, then extended along links to form multiple
triplet sets Sku (k = 1, 2,…, K). A triplet set Sku is the set of knowledge triplets that are k-
hops away from the seed set Hu. And the user’s preference features (the dark blue, olive
and yellow blocks) at different hops are obtained through extended interests of user
iteratively along the links in triplet sets Sku. Then the preference features of user and
embedding (the light blue block) of item are input into the attention network simul-
taneously, and the final preference vector (the pink block) of user is calculated. The
probability yuv of user-item interaction can be obtained by inner product between the
embedding of item v and user u.

3.3 1-Hop Preference Feature of User

The traditional collaborative filtering methods firstly learns the latent representation of
users and items, then calculates the predicted probability through the inner product. In
order to model user-item interaction more accurately, we proposes a neural user
preference modeling framework to represent potential preferences of users.

...

W1 W2 WK

...

User u

Item v

User click 
history Hu

...

rh so max t

(h, r)  t
...

Extend along links
1-hop triplets set 

...

Weighted
average

...

rh tso max

...

(h, r)  t
...

... (h, r)  t
...

Embedding 
of v

A en on Net

User 
embedding

Inner Product

Predicted 
probability

2-hop triplets set K-hop triplets set
Extend along links

Weighted
average

...

yuv

Fig. 1. The framework architecture. The light blue part is the embedding of item v, the dark blue
part, the olive part and the yellow part are 1-hop, 2-hop and K-hop preference features of user
respectively. (Color figure online)
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As shown in Fig. 1, each item v has an associated embedding v 2 Rd , d is
dimension of the embedding. Each item embedding is generated by the attributes of this
item. Given v and 1-hop triplets set S1u of user u, by calculating similarity between item
v, head entity hi and entity relations ri in S1u, each triplet in S1u is assigned a relevance
probability Pi:

Pi ¼ softmax vTrihi
� � ¼ exp vTrihið ÞP

h;r;tð Þ2S1u exp vTrhð Þ ð3Þ

Where ri 2 Rd�d , hi 2 Rd are the vector representation of ri and hi respectively,
softmax function ensures that the sum of all calculated relevance probabilities is 1. Pi

can be regarded as the similarity between item v and head entity hi on entities relations
ri. It should be noted that the vector representation ri of ri must be taken into account
when calculating the above relevance probability Pi, because the similarity between
item v and head entity hi may be different on different entities relations. For example,
“Saving Private Ryan” and “Schindler’s List” are highly similar when considering
director and genre, but they are completely different from the actor attribute.

After obtaining the relevance probability Pi of each triplet hi; ri; tið Þ in 1-hop triplets
set S1u, all tail entity ti of triplets in S1u are weighted by the corresponding relevance
probability Pi, and the 1-hop preference feature O1

u of user u is given by:

O1
u ¼

X
hi;ri;tið Þ2S1u

Piti ð4Þ

Where ti 2 Rd is the vector representation of tail entity ti.

3.4 Preference Propagation

There are rich semantic relations between entities, more complete user preferences can
be obtained by the extension of entities and relations. Through the operation in Eqs. (3)
and (4), the interest preferences of user u can be propagated from his historical
interaction record Hu along the links in the 1-hop triplets set S1u to his 1-hop relevant
entities set e1u. This process is called preference propagation.

The preference propagation process is repeated by replacing the embedding v of
item v in (3) with the 1-hop preference features O1

u of user u. As shown in Fig. 1, O1
u as

u’s historical preference is propagated along the links in 2-hop triplets set S1u to his 2-
hop relevant entities e2u, repeating the operation in Eqs. (3) and (4) to obtain u’s 2-hop
preference features O2

u, which is iteratively performed on user u’s k-hop triplets
Sku k ¼ 1; 2; . . .;Kð Þ. Therefore, a user’s preference is propagated from his historical
interaction record Hu to K-hop relevant entities eKu . Thus, the preference features of user
u at different hops can be obtained: O1

u;O
2
u; . . .O

K
u . The final preference vector of user u

with respect to item v can be obtained by simply combining the preference features of
user u at different hops:
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u ¼ O1
u þO2

u þ . . .þOK
u ð5Þ

In theory, with the increase of hop number k, the preference feature Ok
u of user u in

the last hop contains all the information of the previous preference features, but they
may be weakened in OK

u , so the preference features at all hops must be superimposed.

3.5 Attention-Based User Preference Extraction

The above method does not take into account that the weights of user preference
features O1

u;O
2
u; . . .O

K
u at different hops to user’s final preference vector are different.

As shown in Fig. 1, to model the different effects of user preference features
O1

u;O
2
u; . . .O

K
u on the final preference vector of user u, we proposes calculate the weight

wk of k-hop preference features of user u by an attention network Att, wk formulated by:

wk ¼ softmax Att v; Ok
u

� �� � ¼ exp Att v; Ok
u

� �� �
PK

k¼1 exp Att v;Ok
u

� �� � k ¼ 1; 2; . . .;K ð6Þ

Attention network Att takes user preference features O1
u;O

2
u; . . .O

K
u at different hops

and embedding of item v as input, and outputs the corresponding weights wk of
O1

u;O
2
u; . . .O

K
u . The weight wk can be regarded as the important scores of user preference

features at different hops,wk adaptively select the informative preference features with
different importance, and make the informative preference features contribute more to
characterize preference vector of user u. Then we sum up the user preference features
O1

u;O
2
u; . . .O

K
u at different hops according to the weight wk provided by Att to get the

final preference vector of user u:

u ¼
XK

k¼1
wkOk

u ð7Þ

Finally, given the embedding of user u and item v, the probability of the user
interact with the item is calculated by inner product:

yuv ¼ r uTv
� � ð8Þ

Where r xð Þ ¼ 1
1þ exp �xð Þ is the sigmoid function.

3.6 Model Optimization

Given G and implicit feedback matrix Y, the objective of model optimization is to
maximize the posterior probability of model parameter H:

maxp HjG;Yð Þ ð9Þ
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H includes the vector representations of all entities, relations. So it’s equivalent to
maximizing:

p HjG;Yð Þ ¼ p H;G;Yð Þ
p G;Yð Þ / p Hð Þ � p GjHð Þ � p YjH;Gð Þ ð10Þ

Taking the negative logarithm of (10) and have the following loss function:

minL ¼� log p Hð Þ � p GjHð Þ � p YjH;Gð Þð Þ
¼
X
u;vð Þ2Y

� yuv log r uTv
� �þ 1� yuvð Þ log 1� r uTv

� �� �� �

þ k2
2

X
r2R

jjIr � ETREjj22 þ
k1
2

jjVjj22 þ jjEjj22 þ
X
r2R

jjRjj22
 ! ð11Þ

Where V, R and E are the embedding matrices for all items, relation and entities,
respectively, Ir is the slice of the indicator tensor I in the KG. The stochastic gradient
descent (SGD) algorithm is used to iteratively optimize the loss function. In order to
make the calculation more efficient in each training process, positive (negative) records
of the smallest batch are sampled randomly from Y and positive (negative) triplets are
sampled from G. The gradient of loss L relative to model parameter H is calculated,
and all parameters are updated by back propagation algorithm.

4 Experiments and Analysis

In this section, the framework is evaluated by compared with the baseline methods on
MovieLens-1M and Book-Crossing datasets.

4.1 Datasets and Preprocessing

The proposed framework is evaluated on two real-world datasets from different
domains: MovieLens-1M and Book-Crossing. MovieLens-1M contains about 1 million
user ratings (ranging from 1 to 5) on movie websites. Book-Crossing contains
1,149,780 explicit ratings (ranging from 0 to10) of books. In this experiment, we use
the pre-processed data in [4]. Because MovieLens-1M and Book-Crossing are explicit
feedback data, we transform them into implicit feedback data. Similar to [4], the ID
embedding of users and items are used as the original input of framework in this
experiment. The data statistics are shown in Table 2.
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4.2 Baselines

We use the following methods to compare with the framework proposed in this paper:

• CKE [1] unifies collaborative filtering with structured knowledge, text knowledge
and pictures information etc. in a framework for recommendation.

• DKN [4] treats word vectors, entity vectors and entity context vectors as multiple
channels to fuse in the framework of CNN for click rate prediction.

• SHINE [16] designed a deep self-encoder to combine semantic network, social
network and user profile network for celebrity recommendation.

• LibFM [2] is a widely used feature-based factorization framework for click-through
rate prediction. In this experiment, user ID, item ID and corresponding entity
embedding learned through TransR are used as input of LibFM.

• Wide&Deep [17] is a general deep framework for recommendation, which com-
bines linear and non-linear channels. The embedding of users, items and entities are
used as input for Wide&Deep.

4.3 Experiment Setup

In the experiments, d = 16 denotes the dimension of the embedding of items and KG,
and g = 0.008 denotes the learning rate. Specific hyper-parameter settings are shown in
Table 3. For fairness, all baseline methods have the same dimension settings as
Table 3, while other baseline hyper-parameters are based on grid search. The ratio of
training, evaluation and test set is 6:2:2. Each experiment was repeated 5 times and the
average results is reported. Accuracy and area under curve (AUC) were used to
evaluate the performance of click through rate (CTR) prediction.

Table 2. The statistics of datasets

Datasets MovieLens-1 M Book-Crossing

User-item interaction #Users 6,036 17,860
#Items 2,445 14,967
#Ratings 753,772 139,746
#Data Density 5.108% 0.0523%

KG #Entities 182,011 77,903
#Links 12 25
#The first 4-hops triplets 1,440,815 241,163

Table 3. Hyper-parameter settings for the two datasets

Datasets Hyper-parameter settings

MovieLens-1M d = 16, T = 2, k1 = 10−7, k2 = 0.01, g = 0.008
Book crossing d = 4, T = 3, k1 = 10−5, k2 = 0.01, g = 0.001
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4.4 Performance Comparison

The results of all methods in click through rate prediction are shown in Table 4.
The proposed framework UPM achieves the best performance on two datasets with

all evaluation metrics. CKE performs poorly than LibFM and Wide&Deep, since there
is no text and visual information, and structural knowledge cannot characterize users
completely. DKN performs worst among all methods in the two datasets, because film
titles and book titles are usually short and contains limited information. SHINE per-
forms better than DKN only, because we have no social and user profile networks. As
two general recommendation algorithms, LibFM and Wide&Deep performs satisfac-
torily, which shows that LibFM and Wide&Deep can make full use of semantic
information from KG.

4.5 The Sensitivity of Hyper-parameters

The effect of dimension of embedding d and training weight of KG term k2 on AUC
and ACC are shown in Fig. 2, which have similar trends on Book Crossing dataset.
d range from 2 to 64, k2 range from 0 to 1, while keeping other parameters fixed.

With the increase of d, both AUC and ACC improves and becomes stable, because
embedding with larger dimensions can encode more useful information, but when d is
greater than 16, both AUC and ACC begin to drops because of possible overfitting.
AUC and ACC performed best when k2 = 0.01. This is because when training weight
of KG term is very small, it is not enough to provide effective regularization con-
straints, while a large training weight may mislead the objective function.

Table 4. The results of AUC and accuracy in click through rate prediction

Framework MovieLens-1M Book crossing
AUC ACC AUC ACC

CKE 0.796 0.739 0.674 0.635
SHINE 0.778 0.732 0.668 0.631
DKN 0.655 0.589 0.621 0.598
LibFM 0.892 0.812 0.685 0.639
Wide&Deep 0.903 0.822 0.711 0.623
UPM 0.928 0.855 0.740 0.695
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In order to further explore the relationships between the performance of the
framework and the maximal hop number K, we vary the maximal hop number K to see
how AUC changes in UPM, the results as shown in Table 5.

As shown in Table 5, the best performance is achieved when K is 2 or 3. This is
because too small of an K can hardly explore inter-entity relatedness and dependency of
long distance, while too large of an K brings much more noises than useful signals.

5 Conclusion

To address the challenges of traditional KG-aware recommendation methods, we
innovatively combine feature-based methods, path-based methods and attention
mechanism in KG-aware recommendation. Specifically, we proposed an end-to-end
neural user preference modeling framework (UPM) for recommendation, which
introduces KG into recommender systems effectively. UPM mine potential preferences
of a user by propagating the user’s interests in KG. The attention network is used to
adaptively discriminate the importance of the preference features of user at different
propagation stages for the final preference vector of user. Experimental results on two
real-world datasets shows that the performance of the proposed framework is better

Table 5. The results of AUC w.r.t. different hop numbers

Hop number K 1 2 3 4

MovieLens-1M 0.927 0.928 0.925 0.926
Book crossing 0.739 0.734 0.740 0.732

(a) ACC score w.r.t 2 and d      (b) AUC score w.r.t 2 and d
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Fig. 2. Parameter sensitivity of the proposes framework on MovieLens-1M.
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than other baseline methods, which further proves the effectiveness of the proposed
method. In the future we will further explore how to represent entity-relation interac-
tions efficiently and how to apply the framework to real-world scenarios.

Acknowledgments. This work was partially supported by the National Natural Science Foun-
dation of China (Nos. U1501252, 61572146, U1711263), the Natural Science Foundation of
Guangxi Province (No. 2016GXNSFDA380006, AC16380122), the Guangxi Innovation Driven
Development Project (No. AA17202024), the Platform Construction Project of Guangxi Infor-
mation Science Experiment Center (No. PT1601), the Basic Ability Promotion Project for Young
and Middle-aged Teachers in Universities of Guangxi (2018KY0203) and the Innovation Project
of GUET Graduate Education (Nos. 2019YCXS042).

References

1. Zhang, F., Yuan, N., Lian, D., et al.: Collaborative knowledge base embedding for
recommender systems. In: 22th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 353–362. ACM, New York (2016)

2. Rendle, S.: Factorization machines with libFM. Trans. Intell. Syst. Technol. 3(3), 57:1–
57:22 (2012)

3. Yu, X., Ren, X., Sun, Y., et al.: Personalized entity recommendation: a heterogeneous
information network approach. In: 7th International Conference on Web Search and Data
Mining, pp. 283–292. ACM, New York (2014)

4. Wang, H., Zhang, F., Xie, X., et al.: DKN: deep knowledge-aware network for news
recommendation. In: 27th International Conference on World Wide Web, pp. 1835–1844.
ACM, New York (2018)

5. Huang, J., Zhao, W., Dou, H., et al.: Improving sequential recommendation with knowledge-
enhanced memory networks. In: 41th International ACM SIGIR Conference on Research &
Development in Information Retrieval, pp. 505–514. ACM, New York (2018)

6. Bordes, A., Usunier, N., Garcia-D, A., et al.: Translating embeddings for frameworking
multi-relational data. In: 26th International Conference on Neural Information Processing
Systems, pp. 2787–2795. MIT Press, Cambridge (2013)

7. Sun, Y., Han, J.: Mining heterogeneous information networks: a structural analysis
approach. ACM SIGKDD Expl. Newslett. 14(2), 20–28 (2013)

8. Yu, X., Ren, X., Gu, Q., et al.: Collaborative filtering with entity similarity regularization in
heterogeneous information networks. In: 23th International Joint Conference on Artificial
Intelligence. Elsevier, Burling (2013)

9. Luo, C., Pang, W., Wang, Z., et al.: Hete-CF: social-based collaborative filtering
recommendation using heterogeneous relations. In: 2014 IEEE International Conference
on Data Mining. IEEE Computer Society, Washington (2015)

10. Shi, C., Zhang, Z., Luo, P., et al.: Semantic path based personalized recommendation on
weighted heterogeneous information networks. In: 24th ACM International on Conference
on Information and Knowledge Management, pp. 453–462. ACM, New York (2015)

11. Wang, Y., Xia, Y., Tang, S., et al.: Flickr group recommendation with auxiliary information
in heterogeneous information networks. Multimedia Syst. 23(6), 703–712 (2017)

12. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: 31th Conference
on Neural Information Processing Systems, pp. 6000–6010. MIT Press, Cambridge (2017)

13. Yang, Z., Yang, D., Dyer, C., et al.: Hierarchical attention networks for document
classification. In: NAACL-HLT 2016, pp. 1480–1489. ACL, Stroudsburg (2016)

188 G. Zhu et al.



14. Pei, W., Yang, J., Sun, Z., et al.: Interacting attention-gated recurrent networks for
recommendation. In: 26th ACM Conference on Information and Knowledge Management,
pp. 1459–1468. ACM, New York (2017)

15. Chen, J., Zhang, H., He, X., et al.: Attentive collaborative filtering: multimedia
recommendation with item- and component-level attention. In: 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp. 335–344.
ACM, New York (2017)

16. Wang, H., Zhang, F., Hou, M., et al.: Shine: Signed heterogeneous information network
embedding for sentiment link prediction. In: 11th ACM International Conference on Web
Search and Data Mining, pp. 592–600. ACM, New York (2018)

17. Cheng, H., Levent, K., Jeremiah, H., et al.: Wide & deep learning for recommender systems.
In: 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10. ACM, New York
(2016)

A Neural User Preference Modeling Framework 189



Jointing Knowledge Graph and Neural
Network for Top-N Recommendation

Wei Chen, Liang Chang, Chenzhong Bin(&), Tianlong Gu,
and Zhonghao Jia

Guangxi Key Lab of Trusted Software, Guilin University of Electronic
Technology, Guilin 541004, China

w_chen369@163.com, binchenzhong@163.com,

changl@guet.edu.cn

Abstract. Currently, neutral networks attract much attention and show great
potential in recommendation systems. The existing works mainly aim at
leveraging neural network to model the nonlinear representations of users and
items. However, they only use historical interaction sequence of user-items to
learn the latent features of users and items, while ignoring the rich self-attributes
of items. Recent methods utilize knowledge graphs as auxiliary information to
learn the latent features between users and items, but they fail to represent the
relevance and similarity of attributes among items. Based on this observation,
we propose a novel model named JKN that incorporates knowledge graph and a
neural network for item recommendation. The key point of JKN is to learn
accurate latent representations of item attributes through knowledge graph, then
to integrate them into a feedforward neural network to model user-item inter-
actions in nonlinear. Empirical results on a real-world dataset demonstrate the
superior performance of our model in Top-n recommendation task.

Keywords: Recommendation system � Knowledge graph � Neural network �
Implicit feedback

1 Introduction

Recommendation system that effectively alleviates information overload has been
widely used in various online services. There are two major approaches (explicit or
implicit feedback) to predict items in recommendation system. Implicit feedback gen-
erates the ranking list through the historical records of user-item interactions and is more
sufficient for personalized recommendation. As a typical recommendation method,
Matrix Factorization(MF) [1, 2] based on implicit feedback, projects users and items
into a low-dimensional shared vector space as latent features, and produces ranking lists
through inner product. It adopts a simple inner product of linear combination, but may
not satisfy complex user-item interactions in different semantic environments.

In recent years, researchers have focused on the nonlinear structure of neural
network can effectively model the complex interactions of user-item [5]. However, they
only use interactive sequences to construct latent features of items and these items
features are acquired by randomly initializing the sequence of items during the training
of the model. The item features are not actually used, so these models may not be able
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to realize the fine-grained model where users have preferences on the features of each
item. To overcome the mentioned disadvantages, some researchers study to introduce
knowledge graph (KG) to the recommendations systems [4]. Since KG contains var-
ious types of relationships, the correct preferences of the users can be reasonably
extracted, improving the accuracy of the recommendation system. These recommen-
dation methods of KG can improve recommendation performance by flexibly using
item embedded in recommendation system. However, there is a shortcoming in
ignoring the relevance and similarity of attributes among items and they have weakness
to model user-item interactions. Here, we put forward a jointing KG and neural net-
work recommendation model (JKN). In this model, we first obtain the latent features of
all items through the method of graph embedding, then model user-item interactions by
applying multi-layer neural networks. The proposed model not only accurately acquires
item embedding, but also maintains the interactive ability of user-item of neural net-
work, and enhances the interactive ability of data by using the attributes of items.

Our contributions are summarized as follows: (1) We show that the method
accurately obtain the item vectors with various attributes from KG. (2) We propose a
recommendation model that combines the attributes of the items to represent latent
features and incorporates them into a neural network to learn the users’ preference for
the item attributes. (3) We perform experiments on a real-world dataset to show that the
model is more effective in recommendation systems.

2 The Proposed Method

2.1 Notations

In our work, the structure of KG consists of triples G ¼ ðE;R; TÞ, where a set of
entities, a set of relationships and various relational types are denoted as E, R and T ,
respectively. The set T of relationship types are stored in the knowledge base DBpedia
and the item type handled in this paper is b = abo:Movie [3]. We project the knowl-
edge base to get the entitys of Movie type. As is shown in Fig. 1, we define that the
item of attribute-values directly connecting to the item as the subgraph of item in KG.

Fig. 1. The framework of JKN. On the bottom of the figure, the KG contains the user (blue),
movie (yellow) and other entities (green) and entities are connected by different relationships.
(Color figure online)
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The subgraph of item contains other attributes of the item except the preference.
According to the observation of subgraph of items, we find two different items’ sub-
graph are structurally similar and represent similarities in vector space and obtain the
item embedding vector by fusing the attributes of each item so that the user’s pref-
erence for the item attributes can be accurately trained. Following, a set of users and
items are denoted as U and I, respectively. Let a user is denoted as u 2 U � E, an item
is denoted as v 2 V � E, and yu;v be the label of the interaction of u and v. If u has
preference with v, the value of yu;v be 1, and 0 otherwise. Here, 0 does not mean that u
hasn’t preference with v, it may be that u does not observe v.

2.2 The Model of Recommendation

Encoding the User and Item. Our model takes in two inputs, namely user and item.
We define the one-hot coding representation of user u as Xu 2 R uj j�1 and convert it into
a vector Pu by applying a embedding layer. We randomly walk through the subgraph of
item v to learn the attributes of item v by node2vec [4] and obtain the item vectors trðvÞ
with the corresponding attribute. The ultimate item vector can be represented as qv by
fusing item vector trmðvÞ in the vector space. The preference pairs ðu; vÞ are transformed
into the vector of latent features as below:

pu ¼ PT � Xu; qv ¼
X1

m

trmðvÞ; ð1Þ

Predict: In a real-life scenario, the user-item interactions are modeled mainly through
linear and nonlinear methods. The nonlinear method is more flexible and more
adaptable to characterize the interaction with the fusion attributes of item in various
scenarios. In order to increase the effectiveness of the user-item interactions, we apply
MLP to our model. Next, we have

h0 ¼ f ðpu; qvÞ ¼ pu
qv

� �
; hL ¼ f kðWT

l�1hl�1 þ bl�1Þ; p̂u;v ¼ rðWT
L hLÞ; ð2Þ

Among them, l = 1, …, L, f ð�Þ is a function that concatenates two embedding
vectors, f kð�Þ is Rectifier Linear Unit (relu) nonlinear activation function. And Wx and
bx are the weight matrix and the offset vector, respectively. In the prediction layer, r is
the sigmoid function, which is defined as d(x) ¼ 1=1þ expðxÞ, p̂u;v is the conditional
probability after MLP layer and stands for the preference relationship of user for item.

2.3 The Loss Function for Optimization

In order to train my model, we utilize cross-entropy loss as the objective function,

L ¼ �
X

\u;v;yu;v [
ðyu;v � log p̂u;v þð1� yu;vÞ � logð1� p̂u;vÞÞ; ð3Þ
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The objective function mainly minimizes the loss values of our model and the
parameters of our model that are optimized using the SGD. Since there are no explicit
negative examples in the data, we uniformly sample the data which user does not
observe as a negative example in each iteration. In order to prevent over-fitting caused
by excessive dimension, we introduce dropout to reduce the shared neurons randomly
during training and improve the robustness of our model. In each training, we randomly
select four negative examples that is unobserved corresponding to a positive example.
We test the min-batch Adam size of [128, 256, 512, 1024] respectively, and the
learning rate is set to 0.001. Since the dimensions of the last layer of JKN directly affect
the predicted results, we use the tested dimensions as [8, 16, 32, 64] and the dropout
rate is set to 0.3. In the general test, the number of hidden layers that we employ JKN
is three.

3 Experiment

3.1 Experimental Settings

Dataset and Evaluation Metrics. The dataset used in the experiment is Movielens
1M which is widely used in recommendation system. We project the movies of
Movielens to the corresponding movie entities in DBpedia and obtain the entities and
relationships about movie. The processed dataset has seven attributes and 915,100
rating records consisting of 6040 users and 3,125 movies. We evaluate the performance
of item recommended by the leave-one-out. For each user, we randomly select 100
negative items which have been unobserved. Evaluation indicators include Hit Ratio
(HR) and Normalized Discounted Cumulative Gain (NDCG).

Baseline. We will compare the performance of the following baselines. (1) MF-BPR
[2]: MF-BPR uses pairwise loss to optimize MF to perform implicitly recommended
tasks. (2) GMF [5]: This method applies element-wise above user and item embedding
to predict item from data. (3) MLP [5]: This is a state-of-the-art model which adopts a
non-linear approach to model user-item interactions. (4) NAIS [6]: NAIS Based on the
similarity between items, distinguishes the importance of items by attention network.

3.2 Experimental Results

Top-N Item Recommendation Results. As is shown in Fig. 2, we can observe the
recommendation result by Top-N (1-10) on Movielens. BPR and GMF are similar in
performance, MLP performance are better than the former two methods, mainly due to
its nonlinear structure. JKN is superior to other models in ranking from 1 to 10. The
performance of JKN is much better than that of NAIS and MLP in top-10 recom-
mendation, especially on NDCG. Based on this observation, it is proved that our
proposed model can generate high quality data in Top-N recommendation.
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Efficacy of Deep. To further verify the impact of different numbers of hidden layers on
recommended performance, the experimental results are shown in Table 1. Layer3
means that there are three hidden layers (except the embedding layer). As we have
seen, even if the models have the same dimension which is at the last layer, adding
more layers is beneficial to the performance of the model. This result is mainly due to
the multi-layer nonlinear layer that improves the interactive information of feature
semantics.

4 Conclusion

This paper presents a novel model named JKN that incorporates KG into neural net-
work. JKN learns the relationship between the item and the item’s attribute-values from
KG, applies the feature learning to accurately obtain the latent feature representation of
the item attributes and finally utilizes the multi-layer perceptron to model the user-item
interactions for top-n recommendation. Experiment results on a real-world dataset
show the effectiveness of our model.

Acknowledgments. This work was partially supported by the National Natural Science Foun-
dation of China (Nos. U1501252, 61572146, U1711263), the Project of Cultivating Excellent
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Fig. 2. HR@N and NDCG@N results of Top-N item recommendation (dimension = 64).

Table 1. HR@10 and NDCG@10 of JKN with different layers.

Dimensions HR@10 NDCG@10
Layer1 Layer2 Layer3 Layer4 Layer1 Layer2 Layer3 Layer4

8 0.5654 0.6204 0.6896 0.6859 0.3185 0.3561 0.4161 0.4125
16 0.6325 0.6803 0.7204 0.7199 0.3649 0.4059 0.4426 0.4482
32 0.6685 0.7118 0.7382 0.7482 0.3923 0.4368 0.4474 0.4624
64 0.6962 0.7272 0.7411 0.7429 0.425 0.4321 0.4603 0.458
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Abstract. Uncertain Capacitated Arc Routing Problem (UCARP) is a
challenging optimization problem. Genetic Programming (GP) has been
successfully applied to train routing policies (heuristics to make deci-
sions in real time rather than a fixed solution) to respond to uncertain
environments effectively. However, the effectiveness of routing policy is
scenario dependent, and it takes time to train a new routing policy for
each scenario. In this paper, we investigate GP with knowledge transfer
to improve the training efficiency by reusing useful knowledge from pre-
viously solved related scenarios. We propose a novel knowledge transfer
approach which our experimental results show that it obtained signifi-
cantly higher training efficiency than the existing GP knowledge transfer
methods, and the vanilla training process without knowledge transfer.

Keywords: Uncertain arc routing · Genetic programming ·
Hyper-heuristics · Transfer learning

1 Introduction

Uncertain Capacitated Arc Routing Problem (UCARP) has many important
real-world applications in supply chain and logistics. In UCARP, a graph G(V,E)
is given, where V and E are the set of nodes and edges. Each edge e ∈ E has
a positive stochastic deadheading cost dc(e), a non-negative serving cost sc(e),
and a non-negative stochastic demand d(e). An edge with positive demand is
called a task. A number of vehicles with capacity Q are located at the depot
v0 ∈ V . The problem is to find the optimal routes for the vehicles subject to the
constraints: (1) each vehicle needs to start and end its route at the depot; (2)
between two refills, the total demand served by each vehicle cannot exceed its
capacity.

There have been several studies dedicated to solving UCARP (e.g. (Mei et
al. 2010)), among which the Genetic Programming (GP) based approaches have
achieved great success. GP evolves (trains) routing policies, which are decision-
making heuristics, rather than solutions. A routing policy can generate the solu-
tion in an online fashion based on the latest information, and thus is effective to
handle uncertain environments.
c© Springer Nature Switzerland AG 2019
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The effectiveness of routing policies depends on the problem scenario (e.g. the
topology of the graph, and the number of vehicles to be used). The performance
of a routing policy can dramatically decrease when changing from one scenario
to another. Intuitively, one can retrain the routing policy in the new scenario
from scratch. However, it can be time consuming and inefficient. In this case, we
propose GP with transfer learning to improve the efficiency of the retraining.

Transfer learning can be defined as “the improvement of learning in a new
task through the transfer of knowledge from a related task that has already
been learned” (Torrey and Shavlik 2010). For transfer learning in GP, a com-
monly used strategy is to transfer sub-trees from the source domain to the target
domain. Intuitively, different subtrees in the source domain should have differ-
ent levels of importance and should be more likely to be transferred. However,
it is challenging to quantitatively measure the re-usability of a subtree. Existing
studies mostly select the subtree in promising individuals randomly (e.g. (Dinh
et al. 2015)), which is not an optimal strategy. Another measure of defining
importance of subtrees is to consider the number of times that they appeared
in the source domain (Ansari Ardeh et al. 2019). However, frequency may be
misleading because the final GP tree may have many redundant branches and
some frequent subtrees can be in the redundant branches. In addition, subtrees
can be structurally different but essentially the same.

In this paper we aim to propose a novel GP with subtree transfer to improve
the effectiveness of retraining routing policies for UCARP. The research objec-
tives that we follow in this paper are (1) propose a new and more accurate
measure for the reusability of subtrees based on their contribution to the individ-
uals; (2) develop a novel GP with knowledge transfer based on the new reusabil-
ity measure to transfer subtrees from source domains to the target domain of
UCARP; (3) verify the efficacy of the proposed algorithm on different transfer
scenarios.

2 Novel Subtree Transfer for Genetic Programming
Hyper-heuristic

We propose a novel method for filtering good transferable knowledge by evalu-
ating the reusability of subtrees to distinguish their potential for transfer. We
choose the final GP population in the source domain as the knowledge source.

When identifying transferable subtrees, it is natural to conjecture that indi-
viduals with good fitness value are better sources for knowledge extraction.
Therefore, we consider the subtrees of the top 50% individuals in the final pop-
ulation in terms of their test performance in the source domain.

To form the pool of the candidate subtrees, we adopt the following two strate-
gies that are commonly used by existing works: (1) All: All the subtrees of all
the considered individuals are included in the pool; (2) Root Subtrees: Imme-
diate subtrees of the roots of the considered individuals are included in the pool.
The subtrees in the pool have different reusability. To select the transferred
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subtrees more intelligently, we propose a new reusability measure based on the
contribution of a subtree to its tree (Mei et al. 2017).

Given a GP tree x, the contribution ξ(x, τ) of its subtree τ is defined as:

ξ(x, τ) = fit(x|τ = 1) − fit(x). (1)

Then, the weight (importance) of the subtree τ is defined as follows:

w(τ) =
∑

x∈Ω

ξ(x, τ)pow(x), pow(x) =
g(x) − gmin

gmax − gmin
, (2)

in which Ω is the set of all the considered individuals, and pow(x) is the nor-
malised fitness of individual x. Let fit(x) be the fitness of individual x and Ψ
the set of all individuals that were evaluated in the source domain,

g(x) =
1

(1 + fit(x))
, gmin = min{g(x)|x ∈ Ψ}, gmax = max{g(x)|x ∈ Ψ} (3)

The motivation behind Eq. (2) is to let good subtrees of good individuals
have higher weights. In the target domain, the subtrees in the pool are sorted
by their weights and the top subtrees form 50% of the initial population. The
corresponding algorithms are named (1) ContribSub-all and (2) ContribSub-
subtree.

3 Experimental Studies

A collection of experimental source and target domain settings are designed to
evaluate the proposed methods. In our design, the difference between source and
target domain is in terms of the number of vehicles. Several UCARP instances
with different sizes are chosen to have a thorough investigation of knowledge
transfer in different scenarios. GP settings and datasets in this paper are based
on the work in (Mei and Zhang 2018). All algorithms are run 30 times indepen-
dently. The compared algorithms include FrequentSub-all, FrequentSub-subtree
(Ansari Ardeh et al. 2019), SubTree50 (Dinh et al. 2015), ContribSub-all and
ContribSub-subtree and GPHH without any knowledge transfer. The reason
for including SubTree50 is that it has the same pool of candidate trees as
FrequentSub-subtree and ContribSub-subtree.

Figures 1 and 2 show the convergence curves of the test performance in the
target domain. We conducted Wilcoxon’s rank sum test to compare between the
final test performance of the algorithms, and the results showed no significant
difference.

Overall, we have the following observations:

– Subtree transfer can improve the efficiency of the retraining process of routing
policies in the target UCARP domain.

– The contribution measure is an effective indicator for the reusability of sub-
trees, and can identify better subtrees to the target domain than the random
selection and frequency-based selection.



GPHH with Knowledge Transfer for UCARP 199

(a) (b)

Fig. 1. Convergence curves of the compared algorithms on gdb9 from 10 to (a) 9 and
(b) 11 vehicles.

(a) (b)

Fig. 2. Convergence curves of the compared algorithms on val9C from 5 to (a) 4 and
(b) 6 vehicles.

– The frequency measure for both the “All” and “root” pools performed com-
parable with the random subtree selection for the “root subtrees” pool.

The possible reasons for the above observations are that the subtrees of
the root are large and may not appear more than once. Thus, frequency-based
method is very similar to random selection. If considering all the subtrees, then
the small subtrees are more likely to have higher frequency, and tend to be
selected. However, the frequency can be misleading as the occurrences can be
in redundant branches but the contribution-based measure can handle this, and
identify the truly important subtrees regardless of their frequency. Therefore,
the contribution-based transfer methods can work better.

In our experiments, we noticed subtrees could receive different opinions
from the frequency and contribution measures. For example, the subtree
max(max(min(FUT, FRT), CFH/FULL), CFH/FULL) appeared 47 times in
the source domain and was transferred by the FrequentSub-all method. How-
ever, its contribution to one of its trees min(CTT1, max(min(FUT, (max(DEM,
DC)/max (CFR1/CTT1))/((FRT * CR)/DEM1)), min(FUT, FRT))) + (((CR
+ FULL) * (FUT/CTD) * (FULL * max(DC, FUT))) * ((max(max(min(FUT,
FRT), CFH/FULL), CFH/FULL))/(max(min(CFD, RQ), RQ/DEM))/ RQ)
was −47.57. Thus, ContribSub-all considered it as useless and did not trans-
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fer it. Note that the subtree had a complex structure and thus, the commonly
considered algebraic simplification (Zhang et al. 2005) plus frequency measure
cannot effectively detect the important subtrees for transfer.

4 Conclusions and Future Works

In this paper, we proposed a new GP with knowledge transfer for retraining
routing policies for UCARP. To reduce the noise caused by random selection,
we proposed two strategies to detect more useful subtrees. Our experiments
showed that subtree transfer can effectively improve the efficiency of the retrain-
ing process, making GP achieve the desired performance in a much shorter time.
Specifically, the contribution measure showed better efficiency and effectiveness
than random selection and thus achieved much better convergence speed in the
retraining process. In the future, we will develop more advanced tree transforma-
tion techniques to reduce the noise. We will also consider clustering methods to
cluster the similar subtrees together to avoid transferring redundant knowledge.
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Abstract. Convolutional neural networks (CNNs) have demonstrated
advanced performance on image multi-label classification. However, rec-
ognizing labels of paintings is still a challenging problem due to the
huge collection and labeling cost on painting training set. Inspired by
the similarity between natural image and painting image, we propose
an approach based on progressive learning to solve this issue by use of
a few labeled paintings. In addition, we set up an effective framework
built upon visual cascaded attention for multi-label image classification.
Different from the existing approaches, the proposed model extracts and
integrates multi-scale features to learn discriminative feature represen-
tations, which are then fed to the class-wise attention module with a
simple scheme. Experimental results on the challenging benchmark MS-
COCO dataset show that our proposed model achieves the best perfor-
mance compared to the state-of-the-art models. We also demonstrate the
effectiveness of the model on our constructed painting testing datasets
(Datasets will be made publicly available soon.).

Keywords: Deep neural network · Multi-label recognition ·
Cascaded attention

1 Introduction

Multi-label classification of natural image has recently witnessed a rapid progress
due to the large scale labeled datasets and the fast development of convolutional
neural networks (CNNs) [1–5]. However, little research has been made in the
label recognition of paintings as described in Fig. 1. The challenges of the task
are mainly two-fold: one is from the variations and differences of the same object
category among different paintings, and the other is the construction of a large
painting dataset because it is much more difficult to collect painting images
than natural images. To tackle these problems, we introduce a progressive learn-
ing scheme considering the similarity and difference between natural image and
painting. The artificially generated painting based on image-to-image translation
algorithm [6] is utilized to bridge the gap. To the best of our knowledge, this
work represents the first attempt to achieve multi-label recognition of paintings
by use of a few labeled paintings.
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Fig. 1. Multi-label paintings. The variations and differences of the same object category
among different paintings make the task of multi-label recognition of painting more
challenging.

Recently, there have been attempts to apply the visual attention mecha-
nism in multi-label classification [5,7–10]. Most related methods do not take
full advantage of high resolution information of low-level features and seman-
tic information of high-level features simultaneously. Some work [11] aggregates
the predictions from multiple attention masks on different representation scales,
however, multi-scale features are not fused and redundant computational cost is
taken with additional learning parameters.

Inspired by the effective attention mechanism, we propose a cascaded atten-
tion framework built on multi-scale features extraction. Specially, the proposed
model consists of the main net, multi-scale feature extraction module and atten-
tion branch, as shown in Fig. 3. Our attention mechanism includes two cascaded
modules to learn attention maps. One is used to improve the discriminability
of feature representations, and the other is class-wise feature-based attention
module with a more lightweight (with less parameters) architecture.

Extensive comparative evaluations demonstrate the superiority of the pro-
posed network over a wide range of state-of-the-art methods. Besides, our exper-
imental results on the constructed painting dataset show that our method can
make the multi-label recognition task for painting achievable and practical, with-
out involving a large scale of annotated painting dataset.

To sum up, our main contributions are as follows: (I) We develop a multi-label
painting classification framework with no need for a large number of annotated
paintings as training set. (II) We further formulate a cascaded attention neural
network by use of more than one scale of image features. The lightweight net-
work is designed to learn discriminative class-specific features efficiently. (III)
The experimental results show the superiority of the proposed model. The con-
structed painting dataset is used to evaluate the performance of the proposed
multi-label classification scheme for paintings.

2 Methodology

Inspired by the similarity between natural images and paintings, we propose a
transfer learning method to realize multi-label recognition of paintings. Here,
most training images are from natural images and artificially generated images.
Only a few real painting images are used.
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2.1 Workflow Overview

Our goal is to generate labels of paintings through progressive learning from
natural images to real painting images, as shown in Fig. 2(left). Assuming that
the training dataset consists of N images and has C categories, the labeled
training set is denoted as 1l = {(

I 1,y1
)
, . . . ,

(
IN ,yN

)
}, where I is the image

data and corresponding C-dimensional label vector is y = [y1, . . . , yi, . . . , yC]T ,
i ∈ {0, . . . ,C}. yi is a binary value indicating whether the specific object is
present in the image. The natural image training set is denoted as 1lS , and the
real painting training set is collected as 1lT . The categories to be detected in 1lT
are a subset of the categories in 1lS .

The challenge mainly arises from the large gap between natural image and
painting. We propose to bridge the gap with three main steps as depicted in
Fig. 2(right): (1) content learning, (2) texture adaptation and (3) fine-tuning
both content and texture. In content learning step, we train the multi-label
classification network illustrated below using the natural images 1lS . In texture
adaptation, the Image-to-Image Translation method [6] is employed to obtain
artificially generated paintings. Afterwards, the model is fine-tuned on the gen-
erated paintings to learn the discriminative representations specific to painting.
In the last adaptation step, we further fine-tune the network with real paintings
1lT to increase the specificity of painting feature representation.

Remarks. The natural image represents the common content characteristics
of different types of paintings. But for the generated image, it has the texture
features of paintings, but loses content information details. So only using the
synthetic and real paintings for the model training without natural images will
result in worse performance.

Fig. 2. Left: content feature similarity exists between the natural image and painting of
the same object category, so the label recognition of paintings can be realized through
progressive learning. Right: the progressive representation adaptation workflow of our
framework.
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2.2 Proposed Multi-label Classification Network

Framework Overview. The proposed multi-label recognition model is a multi-
branch scheme composed of three components: a main net, a multi-scale feature
extraction module and a cascaded attention learning sub-network. The feature
extraction module employs a stack of features at different scales, which are then
fed into the cascaded attention module to produce class-specific feature maps.
Figure 3 shows the entire network of our proposed model.

More specifically, we select the ResNet-101 [14] for building the main net
modeled as fcnn (·). It extracts the visual features from input image I , then
ends with a global average pooling layer and a fully-connected (FC) layer with
C-dimensional output ŷ1, where C is the number of labels of interest.

For the local branch, the feature extraction module is first applied to combine
local context information with semantically strong features. Then the cascaded
attention network is attached to explore features with respect to each category.
As illustrated in the bottom of Fig. 3, it consists of two attention modules: (1)
the module to fuse and strengthen the feature representations, and (2) the class-
wise attention feature extraction model. The local branch ends up with a global
sum pooling layer to get the C-dimensional output. At last, the predictions from
the attention branch and the main net classifier are aggregated at a score level.

Multi-scale Features Extraction. For the main net, the activations of lower
layers are more accurately localized and higher layers extract the better semantic
information, which motivates us to incorporate multi-layer information to infer
the visual attention features. Using the feature maps from the second or third
stage with shallow neural networks will result in bad performance. In consid-
eration of both resolution and expense of computing resources, we opt for the
feature maps 14 × 14 and 7 × 7 from the outputs of the fourth and fifth stage
respectively.

The top of Fig. 3 illustrates the feature extraction block denoted as fex (·).
Given the 224×224 input image I , the three-dimensional feature representations
are denoted as tensors X 1 ∈ R

H1×W1×C1 ,X 2 ∈ R
H2×W2×C2 , and H1 = W1 =

14, C1 = 1024, H2 = W2 = 7, C2 = 2048, where Hi, Wi, and Ci denote the
number of pixel in the height, width and channel dimensions. We first make
X 1 and X 2 undergo 1 × 1 convolution layer to reduce dimensions from 1024
and 2048 channels to 256 channels separately. Then we directly up-sample the
low-dimension feature maps by a factor of 2 and the spatial size is the same as
the finer feature maps. Finally, the different levels of features are concatenated
to achieve the different scales aggregation. The concatenated feature maps are
denoted as XC ∈ R

14×14×512, which fuse these features under two different scales
to obtain both semantically strong and high-resolution feature representations.

Cascaded Attention Network. In order to refine more discriminative features
and accelerate the model convergence, we embed a feature enhancement module
before the class-wise attention learning subnet. As depicted in the bottom half
of Fig. 3, such stacking mechanism can naturally be regarded as a sequential
refinement process of generating class specific attention maps.
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Fig. 3. An overview of our network architecture. Given an input image, deep CNN
(Top) is used to get feature maps and get predictions from fully-connected layer. Then
a multi-scale feature extraction module is applied to form the feature representations
which carry both local context and semantically strong information. After that, the
concatenating features are fed into the cascaded attention network (Bottom) which
consists of feature enhancement subnet (a) and class-wise attention subnet (b). Finally,
the combination of outputs of main net and attention branch is taken as the final label
prediction. The ReLU and Batch Normalisation (applied to each conv layer) are not
shown for brevity.

(I) Feature Enhancement Subnet (FES). For the feature enhancement sub-
net modeled as fatt1 (·), we first generate the strengthened feature representa-
tions using the position attention module (PAM) and channel attention module
(CAM) proposed in the works as [13]. It is convenient to embed the two blocks
in the network pipeline with only a small number of additional parameters.
PAM generates new features of spatial long-range dependencies through model-
ing the spatial relationship between any two pixels of the features. CAM captures
the long-range dependencies through calculating the correlation matrix between
channels. In fatt1 (·), we apply a convolution layer with 512 kernels of 1 × 1,
batch normalization and ReLU layers to follow PAM and CAM respectively,
then perform an element-wise sum to accomplish feature fusion. Given the input
visual features XC ∈ R

14×14×512, our attention model extracts the strengthened
representations Z 1 by applying the function expressed as

Z 1 = fatt1(XC ;θatt1),Z 1 ∈ R
14×14×512. (1)

FES module plays dual roles in our model. On one hand, the multi-scale features
are fully fusion in the spatial (inter-pixel) and channel (inter-scale) dimensions to
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augment visual representations. On the other hand, we observe that this module
helps the attention mechanism accelerate learning process effectively.

(II) Class-wise Attention Subnet (CAS). Taking the enhanced features Z 1

as input, the class-wise attention learning module fatt2 (·) is proposed to extract
the discriminative features with respect to each category. We denote the class
specific feature maps as Z 2, which are got from

Z 2 = fatt2(Z 1;θatt2),Z 2 ∈ R
14×14×C . (2)

fatt2 (·) is modeled as a 3-layers sub-network, and it consists of convolutional
layers with 256 kernels of 1 × 1, 256 kernels of 3 × 3, and C kernels of 1 × 1,
respectively. The batch normalization and ReLU layers are appended to the
first two convolution layers. Then we apply a softmax operation to calculate the
spatially normalized attention maps with

Ac(h,w) =
exp(Zc

2(h,w))
∑

h,w exp(Zc
2(h,w))

,A ∈ R
14×14×C , (3)

where Zc
2 represents the unnormalized value at (h,w), and c corresponds to the

class label. For each label c, the corresponding attention feature map has the
property of

∑
h,w Ac (h,w) = 1 and the most relevant region is salient.

Following previous attention mechanism idea in SRN [5], a mask branch also
with the features Z 1 as input, is designed to assign the label confidence weights
to the class-wise attention features. The weighted attention learning aims at
discriminating the label confidence information at different spatial positions.
The mask branch comprises of two consecutive 1 × 1 convolution layers and
aims to produce salient confidence maps S ∈ R

14×14×C with the same size as
attention maps A. Different from main net classifier, the classification output ŷ2
of the attention subnet is computed through element-wise multiplying attention
maps A and label confidence maps S , and then followed by a global pooling.

Finally, we make the combination of the outputs of main net and attention
branch as ŷ = αŷ1 + (1 − α) ŷ2, where α is a weighting factor. Then ŷ is taken
as the final label prediction of an image.

Remarks. The proposed attention model is conceptually similar to SRN [5]
because both are designed as multi-branch scheme with aggregating the outputs
of two branches. However, they differ significantly in design: (1) SRN only uses
one scale of feature map, and applies some extra layers to refine features as
the input of attention branch, while the model we designed directly extracts
the multi-scale features from main net. The latter has smaller parameters but
more information is utilized. (2) SRN explores semantic and spatial relations of
labels through learning spatial regularizations, which makes the network deeper.
Our model embeds a module with fewer parameters to fuse features in spatial
and channel dimensions to strengthen visual representation. The latter model is
trained easier and faster. (3) Compared to SRN, our attention scheme is designed
to get outputs without using fully-connected layer.
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2.3 Training Scheme

We organize our network training in a progressive learning mode with three
steps via Stochastic Gradient Descent method (SGD). The loss term is defined
as sigmoid cross-entropy loss function for multi-label image classification.

Ls(y, ŷ) =
C∑

c=1

yclogσ(ŷc) + (1 − yc)log(1 − σ(ŷc)) (4)

where yc and ŷc denote the ground truth and prediction of the c-th label, and
σ (·) is the sigmoid activation function.

(1) Train the network on natural image set. First, we initialize main net
except FC layer with pre-trained parameters of ResNet-101 network on ImageNet
[15], and randomly initialize the weights of the modified classification layers and
added parameters. Only main net fcnn (·) is trained with cross-entropy loss
L1 (y, ŷ1). Second, main net is frozen and we only train all other sub-networks
as fex (·), fatt1 (·) and fatt2 (·) with cross-entropy loss L2 (y, ŷ2). Finally, the
whole network is fine-tuned to get model M 1 with loss term

L(y, ŷ) = L1(y, ŷ1) + L2(y, ŷ2), (5)

(2) Fine tune the model on artificially generated paintings. Taking M 1 as
pre-trained model, we train end-to-end to fine tune the whole network to obtain
model M 2.

(3) Fine tune the model on the real paintings. Based on model M 2, the
whole network is fine-tuned to obtain the final learned model M 3.

3 Experiments

Our experiment consists of two parts. (I) To evaluate the proposed network
architecture, we carry out experiments on benchmark dataset MS-COCO [16].
(II) To verify the effectiveness of transfer learning approach for painting label
recognition, we evaluate the method on our collected datasets including natural
images, watercolors and oil paintings.

3.1 Dataset, Evaluation Metrics and Implementation

Dataset Description. MS-COCO dataset is primarily built for object recogni-
tion task in the context of scene understanding, also used for multi-label recogni-
tion without bounding box information. The training set is composed of 82,783
images and the validation set is composed of 40504 images. The dataset covers
80 classes of common objects in the scenes.

As there is no suitable dataset for transfer learning from natural image to
painting, we construct three datasets: natural image dataset, generated painting
dataset and a small dataset of real paintings. We collect and annotate 10,000
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Fig. 4. Example paintings generated by CycleGAN which makes natural image with
painting style (oil painting and watercolor).

photography images from the search engines by crawlers. These images contain
12 classes that usually appear in art paintings. We collect and annotate 1200 oil
paintings and 1200 watercolors as our real painting dataset which has the same
categories as natural images.

Besides, the generated oil paintings and watercolors from natural images
are needed. We employ an image-to-image translation method CycleGAN [6]
to train a model to achieve this, as shown in Fig. 4. The color and texture of
generated paintings almost imitate the real paintings, and most of the edges and
semantics of the natural images are kept. Then 10,000 generated oil paintings and
10,000 generated watercolors are respectively got based on the image-to-image
translation model and 10,000 photography images above.

Implementation Details. We train our proposed model with Pytorch. All the
experiments in this paper are conducted on a NVIDIA Tesla P100 GPU, 16
GB. For MS-COCO and the natural image dataset, we employ SGD algorithm
with multi-step learning strategy, with a batch size of 24, a momentum of 0.9
and weight decay of 0.0005. The initial learning rate is set as 0.001, 0.01 and
0.0005 respectively during training steps, and the epoch is set as 7, 15 and 15
respectively. For the generated painting dataset, the fine tuning process is with
initial learning rate of 0.0005 and 10 epochs. For the real painting dataset, the
fine tuning process is with initial learning rate of 0.00005 and 10 epochs.

3.2 Results on MS-COCO

Baselines. We compare our results with the following state-of-the-art methods:
RIA [4], CNN-RNN [2], LESP [12], RLSD [3], Resnet-101 and SRN [5] on the MS-
COCO dataset in Table 1. We select the top-3 labels for each image to compute
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Table 1. Evaluation results with top-3 label predictions of our proposed approach and
other methods on MS-COCO validation set. The method with asterisk indicates that it
is our re-implementation for fair. “mAP”, “F1-C”, “P-C” and “R-C” are evaluated for
each class before averaging. “F1-O”, “P-O” and “R-O” are averaged over all sample-
label pairs.

Method mAP F1-C P-C R-C F1-O P-O R-O

LESP [12] - 63.8 73.5 56.4 68.3 76.3 61.8

RIA [4] - 58.7 64.3 54.1 69.1 74.2 64.5

CNN-RNN [2] - 60.4 66.0 55.6 67.8 69.2 66.4

RLSD [3] 67.4 62.0 67.6 57.2 66.5 70.1 63.4

ResNet-101* 73 63.6 83.4 54.6 70.1 86.1 59.1

SRN* 74.2 64.6 83.2 55.7 70.7 85.7 60.1

Ours 74.7 65.1 84.6 55.9 71.1 86.7 60.3

Table 2. Ablation experiments with threshold predictions on MS-COCO validation
set to analyze the impact of each submodule to the final result. “mAP” and “F1-
C” are evaluated for each class before averaging. “F1-O” is averaged over all sample-
label pairs. FC: Fully-connected layer. CAS: Class-wise Attention Subnet. FES: Feature
Enhancement Subnet.

Main Net FC CAS FES F1-C F1-O mAP

ResNet-101 � 67.0 72.6 73.0

ResNet-101 � 67.5 73.1 73.7

ResNet-101 � � 67.9 73.4 73.9

ResNet-101 � � � 68.6 73.8 74.7

metrics following [2]. We can see that the baseline models ResNet-101 and SRN
show a superior performance over many other recent models. In order to allow for
a fair comparison with the rest of methods, we re-implement the both methods
ResNet-101 and SRN (there is an asterisk marked in Table 1) on the MS-COCO
dataset.

Evaluation Results. As shown in Table 1, our proposed approach achieves F1-
C score of 65.1%, F1-O score of 71.1% and boots mAP to 74.7%. The improve-
ment of mAP metric reaches almost 1.7% and 0.5% compared with ResNet-101
and SRN method respectively. From the results above, our method performs
better than state-of-the-art approaches, and shows an improvement over SRN
with a smaller model size and a simpler training scheme.

Ablation Experiment. In order to investigate the contributions of different
components of our work, we further perform ablation experiments with threshold
criterion as described in Table 2.
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Fig. 5. Attention map visualizations for SRN model and our model in COCO. Red
region corresponds to high activation for class. Figure best viewed in color.

– Main Net + FC: only using main net and fully connected layer, which is taken
as baseline.

– Main Net + CAS: using main net and attention mechanism only with CAS.
– Main Net + CAS + FES: using main net and cascade attention mechanism.
– Main Net + FC + CAS + FES: using main net, FC and cascaded attention

mechanism.

Compared with the baseline, the other three architectures enhance the mAP
metrics gradually. The attention branch based on multi-scale features fusion
(the second row in Table 2) boots 0.7% in terms of mAP, whereas the cascaded
attention mechanism (the third row in Table 2) boots 0.9% which verifies the
efficiency of FES module. Ensemble mechanism of main net and cascaded atten-
tion mechanism (last row in Table 2) is proved to be with the best performance
and boots mAP to 74.7%.

Visualization and Analysis. We visualize and analyze the output of the pro-
posed cascaded attention modules compared with SRN attention maps. Some
examples on COCO are shown in Fig. 5. The attention maps highlight discrimina-
tive areas for different categories and exhibit almost no activations with respect
to absent classes. It is observed that our model is highly class-discriminative and
more effective for co-existing labels in the same image. For example in Fig. 5(b),
the region between “person” and “bird” is also highlighted in SRN attention
map, whereas the proposed class attention learning is capable of tracking the
object localization precisely. The final predicted result is highly related with the
localization precision of attention maps.

3.3 Results on Painting Dataset

Oil Painting Dataset. To evaluate the effectiveness and contribution of each
step of progressive learning approach, we train three models corresponding to
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Table 3. Progressive learning results: mAP for Oil-painting1K testing set.

Model Datasets mAP

Training Process M 1 Natural images 84.3

M 2 Generated paintings 85.2

M 3 Real oil paintings 87.2

M
′
2 Only generated paintings 83.0

Table 4. Progressive learning results: mAP for Watercolor1K testing set.

Model Datasets mAP

Training Process M 1 Natural images 82.8

M 2 Generated paintings 84.0

M 3 Real watercolors 85.7

M
′
2 Only generated paintings 82.4

three steps respectively: the model M 1 trained only using 10,000 natural images,
the model M 2 fine-tuned on M 1 using 10,000 generated oil paintings, and the
model M 3 fine-tuned on M 2 using 200 real oil paintings. The performance of
each model is examined based on testing set composed of 1,000 real oil paintings.

The progressive training results are displayed in Table 3. It can be seen that
fine-tuning the model on both generated paintings and real oil paintings could
provide an obvious improvement in terms of mAP. The last fine-tuning step
boots mAP metric from 84.3% to 87.2%. Note that we also train the model M

′
2

only on generated paintings and the mAP metric is 83.0% which is lower than
M 2. This result proves that the pre-trained process on natural images is quite
necessary.

Figure 6(left) shows AP metric of each category in progressive learning pro-
cess. It can be seen that AP metrics of most classes are gradually improved.
Especially for the classes of “person”, “hill”, “house”, “boat”, “bridge”, “horse”,
“flower” and “table”, the AP metric of model M 3 rises more than 3% compared
with M 1. The AP metrics of a few classes decline slightly after fine-tuning the
model with generated paintings, which is caused by the large differences of some
object representations between style-transfer and real painting.

Watercolor Dataset. The evaluation of our method on watercolor dataset
adopts the same process as oil paintings. Table 4 displays that the last fine-
tuning step boots mAP metric from 82.8% to 85.7%. We also train the model
M

′
2 only on generated paintings and the mAP metric is 82.4% which is lower

than M 2. From Fig. 6(right), we can see that AP metrics of all classes rise
after transfer learning except for the classes of “water” and “bridge”, and we
believe that is because of the big difference between watercolor and natural
image on the color and texture for the objects of “water” and “bridge”. To
solve this problem, more training images of real paintings are needed for these
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Fig. 6. Progressive learning results. Left: each category AP metric for Oil-painting1K
testing set. Right: each category AP metric for Watercolor1K testing set.

kinds of objects. In brief, the results above demonstrate the effectiveness of our
multi-label painting recognition method, which does not need a large dataset of
annotated real paintings.

Visualization and Analysis. We further compute the class-wise heat maps on
all 12 oil-painting categories visualizations learned from the proposed attention
layers. The class attention maps are shown in Fig. 7, where the left is original
oil painting and the predicted label score is above each feature map. As we can
see, the attention maps highly correlate the scores of predicted labels and exhibit
excellent spatially localization characteristics. The maps highlight discriminative
regions for positive classes, for example, the first row leads to positive predic-
tions. From the visualizations, we can see that the class “bridge” at the second
row is a fake label but activated because of the similarity between “bridge”and
“housetop” in the painting. Besides the classification, the proposed attention
modules can also be utilized in the field of weakly supervised object detection.

Fig. 7. Class attention maps of an oil painting example with respect to different classes,
with predicted label and score above the attention map. Figure best viewed in color.
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4 Conclusion

In this paper, we aim to achieve the multi-label painting recognition without a
large scale painting training set. It is solved by transfer learning and an effective
classification framework which is based on multi-scale features extraction and
cascaded attention scheme. The experimental results on the MS-COCO dataset
and our constructed painting datasets demonstrate that the proposed approach
achieves superior performance to the state-of-the-art methods.
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Abstract. Human pose estimation is an important problem in computer
vision, which has been dominated by deep learning techniques in recent
years. In this paper, we propose a novel model, named Mixed-Scale Dense
Block, that exploits dilation convolution layers and dense concatenation
connections to maximise the information flow through the block. Con-
sequently, it captures the feature representation in different scales more
effectively and efficiently. Comparing with the baseline method, Hour-
glass models, our model employs fewer learning parameters. Neverthe-
less, experiments demonstrate that the proposed model produces more
accurate predictions. Meanwhile, our method achieves the comparable
accuracy to state-of-the-art techniques. Especially in some indicators,
our approach has better performance. In addition, this model is easy to
implement and could be improved by most existing techniques that are
adopted to promote the hourglass models.

1 Introduction

Estimating the location of keypoints of human body given a single RGB image,
which is defined as human pose estimation, is an important problem attracting
lots of attention in computer vision community. Obtaining the accurate human
pose often serves as the crucial part in many research fields such as entertainment
interaction, animation and action recognition.

Many early approaches adopt tree-structured graphical models [1,7], and
formulate the pose estimation as the inference problem on the graph. The spa-
tial dependencies between adjacent joints are encoded. In the recent years, the
research of pose estimation has shifted to Deep Neural Network (DNN) tech-
niques, especially the Convolutional Neural Network (CNN), which have already
made the great progress on most computer vision tasks. One of the most popular
methods, in pose estimation, is Stacked Hourglass Network [16] with encoder-
decoder structure and skip connections. In conjunction with the use of interme-
diate supervision, the stacked multiple hourglass networks are trained to capture
c© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11670, pp. 217–229, 2019.
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and consolidate the information across different scales. The design of hourglass
networks are adopted as the basic unit or extended by many other approaches.

In this work, we propose a novel architecture, called Mixed-Scale Dense
(MSD) network (or block), that can effectively and efficiently learn the fea-
ture representation across all scales more. Figure 1 shows a demonstration of
our MSD block. The block is formed with a few groups of dilation convolution
layer(s). Without using the statistical down-sampling operation, adopted in clas-
sical encoder-decoder architecture, the detailed spatial information is naturally
preserved. It mixes scales within each group via densely concatenates outputs
of all the groups together. Hence in the block, the information flow between
groups is maximised. Specifically, the information passing about input and gra-
dient are more effective and efficient. Therefore, less learning parameters are
exploited in the block, comparing with the standard hourglass network. Given
the designed MSD block, we construct the entire network by stacking multiple
blocks together end-to-end. Relying on the intermediate supervision, the stacked
MSD blocks repeatedly infer the human pose. Finally, the accurate estimation
is yielded by the last block.

Fig. 1. Demonstration of an MSD block.

We demonstrate that our method is more effective and efficiency by evaluate
it on standard benchmark. The experimental results show that our network
outperforms the state-of-the-art approaches. Comparing against the hourglass
network, only 1/2 parameters are employed though, the presented method still
yields more accurate results on standard benchmark [2].

2 Related Works

Coming with the popularities of deep learning techniques in computer vision, the
CNN-based methods add a huge boost to the field of human pose estimation.
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A variety of architectures are introduced to tackling this challenging task. We
follow the same pipeline of the CNN-based methods. A novel architecture is pre-
sented to tackle this challenging problem by effectively and efficiently capturing
the feature representation in all the scales.

In Yu and Koltun [22], Dilation Convolution (also called atrous convolution)
is proposed to solve the problem of semantic image segmentation. The main
advantages of dilation convolution is two-fold. On the one hand, by removing
the down-sampling operations in network, the detailed spatial information is
preserved. On the other hand, the resolution of intermediate image can be con-
trolled, when enlarging the receptive field.

To capture more information across multiple scales, the deeper networks
are desired. However, this often leads to the vanishing-gradient problem.
ResiNets [8], Highway Networks [18], Stochastic depth [10] and FractalNets [13]
tackle this problem by creating short paths between layers. A more efficient app-
roach, DenseNets [11] is presented. The featuremaps are concatenated with all
the subsequent layers, such that it can exploit less parameters to reach the better
performance on public datasets.

Recently, several deep learning techniques [3–6,12,14,16,17,20,21] have been
proposed to tackle the problem of human pose estimation, the most adopted one
of which is stacked hourglass models in Newell et al. [16]. It resembles several
hourglass networks, in which successive steps of pooling and up-sampling are
employed to produce a set of predictions. The encoder-decoder model captures
multi-scale features, and the skip connections have to be exploited to preserve
the detailed information. Based on the hourglass models, several adaptations [6,
17,21] have been made. Chu et al. [6] rely on CRF (Conditional Random Field)
based attention map and increase the network complexity to extend the standard
hourglass network. In Ning et al. [17], the inception-resnet is employed as the
building block in hourglass design. The Pyramid Residual module [21] is added
to the network to promote the performance. In addition to the hourglass-based
approaches, in Luvizon et al. [14], the residual separable convolution is proposed
to replace the residual block in the stacked hourglass model. Moreover, some
approaches relying adversarial networks are proposed to tackle the problem of
human pose estimation and reach a good performance.

3 Design of Mixed-Scale Dense Networks

Most existing human pose estimation approaches fall into two categories: detec-
tion based methods and regression based methods. In this paper, we aim at
the detection based method that produces the likelihood heatmap for each
joint of human body. In hourglass networks, the encoder-decoder architecture
is exploited to capture multi-scale features. However, using the statistical sam-
pling operation, E.g.max pooling, the details of spatial information could not be
preserved. Relying on the skip connection of matching featuremaps, the infor-
mation flow in hourglass networks nonetheless can be promoted. To this end, we
present a novel architecture, called mixed-scale dense block. The block consists
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of several groups of the dilation convolution layer, which are exploited to capture
multi-scale features. By concatenating the output of all the groups, the feature-
maps across all the scales are densely mixed. Figure 2 briefly demonstrates the
full configuration of our network.

Fig. 2. Demonstration of our full network.

Dense Connection. Similar to previous methods [11,16], our network is formed
with multiple stacked basic blocks. Inspired by ResNets [8], hourglass networks
employs skip connections to avoid vanishing gradient problem. The skip con-
nection bypasses the non-linear transformations by connecting the early layer
and the later layer. Relying on the skip connection, the network can be designed
extremely deep. This brings great capacity of the feature representation, how-
ever the number of learning parameters explosively increases. Relying on dense
connections [11] is an efficient method of drawing the representational power.
Instead of using deep or wide architectures, the information flow is improved by
densely connecting the featuremaps. Motivated by DenseNets, in MSD block,
the outputs of all the groups of dilation convolutional layers are connected. Such
that, the comparable performance can be achieved by using significantly fewer
parameters.

Dilation Convolution. In DenseNets, the existence of pooling layers makes
the use of concatenation operation unavailable, because the size of feature-maps
changes. To tackle this problem, the DenseNets is divided into multiple dense
blocks. The pooling layers are only placed between the adjacent dense blocks,
hence the feature-maps in a single block have the same size and can be concate-
nated. However, these connections can only maximize the in-block information
flow. In these blocks, the scale of feature-maps changes slightly. Instead, we make
use of the dilation convolution layer and remove the pooling layer from our net-
work. The adopted dilation convolution layers can enlarge the receptive field
and preserve the resolution of feature-maps simultaneously. As a result, we can
concatenate the feature-maps produced by all the groups of dilation convolu-
tion layers together. In addition, the feature-maps in each block of our network
are captured in all the scales. By another words, the information flow between
different scales is improved.

Intermediate Supervision. Our method adopts the intermediate supervision
similarly to hourglass networks. Nevertheless, the more effective and efficient
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MSD blocks are employed as the building blocks in such framework. Following
the standard pipeline, the intermediate inference yielded by each block is super-
vised by applying a loss to it. Given the use of intermediate supervision, the
high level features and high order spatial relationships are repeatedly processed
through the consecutive blocks. Incorporating MSD blocks, the presented net-
work produces more accurate estimation than the state-of-the-art approaches.

Layer Implementation. In our experiments, several mixed-scale dense (MSD)
blocks are stacked to fully extract and utilise the feature information of differ-
ent scales contained in the images. Before entering the MSD blocks, the input
images are firstly convoluted, batch normalised and ReLU activated to convert
the 3 image channels to 64 feature channels. Then, the features go through
a sequence of convolutional layers to bring their number of channels from 64
up to 256. This sequence contains three bottleneck layers (whose configurations
are shown in Figure 3 bottleneck), each with its own residual connection, and
between the first and second bottleneck layer there is a size 2, stride 2 max-
pooling layer. Here the bottleneck layer indicates a sequence of layers which
contains three convolutional layers, respectively of size 1 × 1, 3 × 3 and 1 × 1,
together with their batchnorm and ReLU layers. Behind the third convolutional
layer and its batchnorm layer, we specially insert an SE layer [9], then the ReLU
layer is appended. After that, our MSD blocks with bottleneck layers and resid-
ual connections officially show up. For MSD blocks, there are several groups
of dilated convolutional layers (each dilated convolutional layer is followed by a
batchnorm and a ReLU layer), each with its own dilation rate set defined before-
hand (e.g. [1], [1,2], [1,2,4], [1,2,4,8], etc.). Each time the features produced by
the last group of dilated convolutional layers are entering the next group, they
are firstly concatenated with every set of features produced by all of the previous
dilated convolutional layer groups. That is to say, every group of dilated convo-
lutional layers is utilising the features produced by all of the previous groups,
thus the feature information with different scales is shared between every two
groups. Next, the features go through a bottleneck layer. Now at this point,
the output produced by the bottleneck layer and the input before entering the
MSD blocks are added together to create a residual connection. Then, the out-
put is remapped by a 1 × 1 convolution and added back in order to implement
the intermediate supervision. To achieve better performance, this MSD blocks
+ bottleneck layers + intermediate supervision setting is repeated for several

Fig. 3. Demonstration of a bottleneck layer (with residual connection).
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times, which resembles the configuration in the stacked hourglass network, in
which several “hourglasses” are “stacked” (Fig. 3).

4 Experiments

In this section, several experiments are conducted to evaluate our approach by
comparing with the state-of-the arts and doing ablation studies.

Datasets. Our network is trained on the well-adopted MPII human pose
dataset [2] which consists of about 25k images of multiple people with anno-
tations, providing altogether 40k annotated samples (about 28k for training and
11k for testing). Since MPII doesn’t provide annotations for the test set, we val-
idate our results on a subset of the training set containing about 3,000 images.
Each provided annotation consists of 16 landmarks on the whole human body,
which marks the 16 body joints of a certain person.

Experimental Settings. The network is implemented by PyTorch, and the
code for handling the data follows closely to the PyTorch implementation of
the stacked hourglass network [16]. The images are cropped around the target
person using the scale and centre annotations provided by the dataset, and then
resized to 256 × 256 pixels. We also augmented the data by 0.75–1.25 random
scaling, +/-30◦ random rotation and left-right flipping.

In our experiments there are two settings inside a single MSD block. Setting
I is that one MSD block contains 10 dilated convolutional layer groups, and the
groups iteratively pick the dilation rate arrays in the set [ [1], [1, 2], [1, 2, 4], [1,
2, 4, 8], [1, 2, 4, 8, 16] ]. In setting II, there are 18 dilated convolutional layer
groups in a single MSD block, and the groups iteratively follow the dilation rate
arrays of [ [1], [1, 2], [1, 2, 4], [1, 2, 4, 8], [1, 2, 4, 8, 12], [1, 2, 4, 8, 16], [1, 2, 4,
8, 16, 24] ].

Training Details. We train our network for 90 epochs with a learning rate
of 2.5e−4 and rmsprop optimization. For the loss function we adopt the Mean
Squared Error (MSE) loss between the predicted heatmap and the groundtruth
heatmap of each joint. A 8-stack network with setting I takes about 2 days on
two 11 GB NVIDIA 1080ti GPUs, and setting II with 8 stacks takes about 4
days. For evaluation we adopt the same trick as is in [16] that the heatmaps are
generated on both original and flipped versions of the input images and averaged
together, and the final prediction for a given joint is the max activating location
of its corresponding heatmap.

4.1 Evaluation

We evaluate our network performance using the standard Percentage of Cor-
rect Keypoints (PCK) metric. This metric describes the percentage of detected
keypoints which fall within a normalised distance of the ground truth. Here we
adopt the PCKh configuration, in which the distance threshold is set to 0.5, and
the fraction of head size is used to normalise the distance.
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Table 1. PCKh@0.5 of an 8-stack hourglass network (hg-s8) and our 8-stack mixed-
scale dense network with setting II (msd2-s8). Δ indicates how much better our app-
roach is to the hg-s8 network. The results are obtained on validation set.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

hg-s8 96.59 94.97 89.02 83.57 87.45 83.48 78.53 87.72

msd2-s8 96.86 95.84 90.80 86.33 89.30 86.34 82.40 89.78

Δ +0.27 +0.87 +1.60 +2.76 +1.85 +2.86 +3.87 +2.06

Fig. 4. Example predictions of our MSD network.

Table 1 shows a comparison on the validation set between our 8-stack MSD
network with setting II and an 8-stack hourglass network. From this we can see
that our network achieves a competitive 2% increase in PCKh scores on the
validation set. Example predictions made by our network are shown in Fig. 4.

We then generate predictions on the MPII test set using our 8-stack mixed-
scale dense network with setting I, and the test results are shown in Table 2,
together with some state-of-the-art results from recent years’ works. Just as
expected, our MSD network outperforms the stacked hourglass network [16] and
the ones [3,12,20] that come before and several [14,17] which go after. What
is more, our network produces comparable results to that of [6], which is yet
another modification of the stacked hourglass network. There are several works
that perform slightly better than this version of our network, in which [5] and
[4] utilise the adversarial architecture, which may not be very stable to train.
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In fact, msd1-s8 is a relatively simple setting of our network. With this set-
ting we can acquire the performance comparable to the state-of-the-arts, in the
meantime maintain our advantage of training with a small number of hyper-
parameters. An 8-stack MSD network with setting 2 has already gotten higher
accuracy on the validation set, which indicates that our test results may still be
tuneable with proper settings of the dilation rate groups and some increase on
the scale of the network.

!

(a) PCKh total

Fig. 5. Visualisation of test accuracies for total joints, PCKh@0-0.5.

Figure 5 visualises the test accuracy of the average PCKh scores of total
joints. Meanwhile, the accuracies of some specific joints (i.e. ankle, wrist, shoul-
der, knee, elbow and hip) are illustrated in Fig. 6. For both cases, the scope
of PCKh scores varies from 0 to 0.5. From the graph we can observe that our
network produces satisfying results across the scope, and outperforms all of the
state-of-the-arts in around PCKh@0.15-0.30, indicating that our network excels
in predicting at micro-scales because of our well-preserved multi-scale features.

4.2 Component Analysis

In this section we conduct some ablation studies to look into the properties of
our network. Two main design configurations in our network are explored: the
number MSD blocks stacked in the network, and the design of dilation groups
inside a single MSD block.

Stacks of MSD Blocks. In [16], the effect of stacking several hourglass modules
is studied. Here, we compare 2- and 8-stack hourglasses with our 2- and 8-stack
MSD blocks with setting I on the validation set, and the results of which are
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Table 2. Comparison with the state-of-the-arts on test set, PCKh@0.5.

Method Head Sho. Elb. Wri. Hip Knee Ank. Total AUC

Insafutdinov et al. [12] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5 60.8

Wei et al. [20] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5 61.4

Bulat and Tzimiropoulos [3] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7 59.6

Newell et al. [16] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9 62.9

Ning et al. [17] 98.1 96.3 92.2 87.8 90.6 87.6 82.7 91.2 63.6

Luvizon et al. [14] 98.1 96.6 92.0 87.5 90.6 88.0 82.7 91.2 63.9

Chu et al. [6] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5 63.8

Chou et al. [5] 98.2 96.8 92.2 88.0 91.3 89.1 84.9 91.8 63.9

Chen et al. [4] 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9 61.6

Yang et al. [21] 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0 64.2

msd1-s8 98.1 96.4 91.8 87.8 90.7 87.9 84.4 91.4 64.1

shown in Table 3. From this we can observe that stacking more blocks increases
the detection accuracies, and in both cases our MSD network performs better
than HG network. Our 2-stack MSD network even yields slightly better results
than the 8-stack hourglass network. What is more, by achieving higher accuracies
our models have less parameters to train, which indicates that our MSD block
design is more expressive and require potentially less training time.

Table 3. PCKh@0.5 of different stacks of hourglass networks and mixed scale dense
networks with setting I and II. Pars(M) indicates the number of training parameters
(in million) of each network.

Method Pars(M) Head Sho. Elb. Wri. Hip Knee Ank. Mean

hg-s2 6.73 95.80 94.57 88.12 83.31 86.24 80.88 77.44 86.76

hg-s8 25.59 96.59 94.97 89.02 83.57 87.45 83.48 78.53 87.72

msd1-s2 4.54 96.28 95.26 88.89 83.07 88.71 82.99 79.15 87.88

msd1-s8 16.58 96.96 95.79 90.52 85.76 89.80 86.00 81.93 89.61

msd2-s8 28.23 96.86 95.84 90.80 86.33 89.30 86.34 82.40 89.78

Groups of Dilated Convolutional Layers. In Table 3 we can also see the
comparison between the performance of settings I and II of our MSD network
when 8 MSD blocks are stacked. Setting II slightly outperforms setting I, indicat-
ing that the increase of dilated convolutional groups in a single MSD block does
help with the network performance. In setting II, however, the network is much
larger than that in setting I, and has much more parameters to train. Therefore,
in practical design of the MSD blocks, a tradeoff need to be considered between
the number of groups and the network performance (Fig. 7).



226 X. Wang et al.

(a) PCKh ankle

(b) PCKh wrist

!

(c) PCKh shoulder

Fig. 6. Visualisation of test accuracies for single joints, PCKh@0-0.5.
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(a) PCKh knee

(b) PCKh elbow

!

(c) PCKh hip

Fig. 7. Visualisation of test accuracies for single joints, PCKh@0-0.5.
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5 Summary

In this paper, we propose an end-to-end deep net, stacked mixed-scale dense
blocks. Departing from the original stacked hourglass models, the dilation convo-
lution layers are exploited to, more effectively and efficiently, capture the multi-
scale features. It outperforms the original hourglass models and achieve compa-
rable accuracy comparing with the state-of-the-art approaches. In addition, the
presented model consists of multiple same building blocks. Hence, it is easy to
implement. Such that it has great potential to be promoted by the techniques
that are applied to the original hourglass models. Furthermore, to extend our
model to the more challenging 3D case is also a possible future works.
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Abstract. For the image classification task, usually, the image collected
in the wild contains multiple objects instead of a single dominant one.
Besides, the image label is not explicitly associated with the object
region, i.e., it is weakly annotated. In this paper, we propose a novel
deep convolutional network for image classification under a weakly super-
vised condition. The proposed method, namely MIDCN, formulate the
problem into Multiple Instance Learning (MIL), where each image is a
bag which contains multiple instances (objects). Different with previ-
ous deep MIL methods which predict the label of each bag (i.e., image)
by simply performing pooling/voting strategy over their instance (i.e.,
region) predictions, MIDCN directly predicts the label of a bag via bag
features learned by measuring the similarities between instance features
and a set of learned informative prototypes. Specifically, the prototypes
are obtained by a newly proposed Global Contrast Pooling (GCP) layer
which leverages instances not only coming from the current bag but also
the other bags. Thus the learned bag features also contain global informa-
tion of all the training bags, which is more robust and noise free. We did
extensive experiments on two real-world image datasets, including both
natural image dataset (PASCAL VOC 07) and pathological lung cancer
image dataset, and show the results of the proposed MIDCN consistently
outperforms the state-of-the-art methods.

Keywords: Multiple instance learning ·
Convolutional neural network · Lung cancer · Image classification

1 Introduction

Convolutional Neural Networks (CNNs) have demonstrated their efficacy in var-
ious computer vision tasks, including image classification [15], object detection
[9], and image captioning [14], etc. CNN and its variations have nearly reached
the human-level performance in many tasks, such as, face recognition [28]. How-
ever, for common tasks like image classification, there are still problems to solve
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and it remains to achieve higher performance. One problem of image classifi-
cation is that it is usually weakly supervised, i.e., global image-level label is
given without been associated with specific image regions. In many real appli-
cations, there are usually multiple objects on an image. However, only a small
region of the image (contains a label related object) is related to the image label.
The basic CNN treats every pixel of the image equally for classification which
leads to deteriorating performance. Another problem is that even a single object
can have various appearance under different situations, making robust feature
learning very difficult.

To solve the weakly supervised problem, Oquab et al. [20] proposed to train
a CNN with multiple image patches of multiple scales as input, and used a max-
pooling operation to aggregate the prediction results of multiple inputs. However,
they use sliding window to sample input image patches which makes it sensitive
to object size and this operation may also lead to many image patches that are
meaningless. Besides, Xu et al. [31] presented a method that directly fed the
deep features to a traditional Multiple Instance Learning (MIL) classifier, where
the deep feature extractor and MIL classifier are learned separately. Another
work of Wu et al. [30] proposed to address the problem by formulating image
classification as a MIL problem.

Moreover, a few other works [8,27] also formulate image classification as a
MIL problem. These previous works all demonstrated that learn in a weakly-
supervised setting for image classification can further improve the performance
of CNNs that are originally trained in a fully-supervised way. However, one
drawback of these methods is that they predict the label or feature of a bag
by simply performing pooling/voting strategy over their instance predictions or
instance features. This scheme may weaken the contribution of instances that
are most correlated with the image label.

In this paper, we also formulate image classification as a MIL problem. For-
mally, in MIL setting, both training and testing data are formed of a num-
ber of bags, where each bag has an arbitrary number of feature vectors (called
instances). A bag is labeled as positive if at least one instance is labeled as posi-
tive. Otherwise, the bag is labeled as negative. The goal of MIL is to predict the
bag label without given instance labels. For image classification tasks, according
to the previous studies [1,11], the aforementioned assumption in MIL is usually
too strict to follow in practice. Thus, an extended assumption of MIL has been
widely applied: the images to be classified are regarded as bags, and the regions
of these images are regarded as instances, where instances are labeled as positive
if they are highly relevant to the positive labels. We also adopted this extended
assumption in this work.

Based on the assumption, we proposed a Multiple Instance Deep Convo-
lutional Network (MIDCN) for image classification. The major difference of
MIDCN compared with the previous works is that it is based on learning pro-
totypes to learn more representative bag features. MIDCN can learn a set of
representative concepts from the training images to quantize the similarity of
instance features and prototypes. Specifically, the learning is done by a newly
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proposed Global Contrast Pooling (GCP) layer from all the training instances.
The network is learned in an end-to-end manner by minimizing the classification
loss of training bags. With the learned prototypes, the bag feature is defined as
the similarities of the instances and the prototypes. In this way, prototypes are
correlated to a set of informative concepts. A concept is related to a specific
object class. If multiple prototypes are used to represent a class, it relates to
multiple appearance of the class is learned. Therefore, an instance of a specific
class can always find a best matched prototype with a high similarity score,
making the extracted bag feature more robust and noise free.

The pipeline of MIDCN is: Firstly, some overlapped region proposals are
generated from images. Secondly, a shared-weight pre-trained Caffenet [13] (or
some other pre-trained networks) is used to extract fixed size features for these
regions. In this case, the output of the fully-connected layer 7 (fc7 ) with 4096-
dimension is used as instance feature. Thirdly, the novel GCP layer is proposed
to calculate the inner product of all the obtained instance features from one bag
with the prototype weights to obtain a bag feature.

Typically, each dimension of a bag feature represents the maximum similarity
of its instances to one specific prototype. The GCP layer is named because all
the instances are employed to generate a pooling operation in the proposed
prototype learning, which can be regarded as pooling in the global perspective.
Finally, a softmax classifier is utilized to predict a bag. The whole network is
trained in a standard Back-Propagation (BP) procedure.

Our implementation is based on the open source framework pytorch [21]. The
implementation details are introduced in the experimental results section. The
experiments are conducted on a popular benchmark dataset PASCAL VOC 07
[7] and a pathological lung cancer image dataset [26]. These two datasets are
challenging with multiple objects contained in their images. The objects have
complex structures and large appearance variations. Thus they naturally fit the
MIL assumption and the problems we aim to address.

The contributions of MIDCN are three-fold:

• A novel multiple instances deep convolutional network is proposed to learn
bag-level features based on the learned prototypes. Results show learning in
a weakly supervised way can further improve the performance of existing
CNNs.

• A novel Global Contrast Pooling (GCP) layer is proposed which offers an
efficient prototype learning scheme for neural networks and can be easily
embedded into various pre-trained networks for performance improvement.

• Extensive experiments on two real-world datasets (including both the nat-
ural image dataset PASCAL VOC 07 and a pathological lung cancer image
dataset) show promising results are achieved by MIDCN.

2 Related Work

We review the methods of multiple instance learning and weakly supervised deep
networks.



MIDCN 233

2.1 Multiple Instance Learning

Basically, previous MIL methods for image classification can be roughly divided
into two categories, instance-level methods and bag-level methods. The instance-
level methods follow the assumption that all instances in a bag contribute equally
to the bag label [1]. Under the above assumption, the prediction of the label of
a bag is conducted by aggregating (e.g., voting or pooling) the predictions of
instances. This kind of learning approaches (e.g., [23,30]) predict the labels of
instances separately. Besides, while aggregating instance labels to make bag label
predictions, the relation of instances is not considered. However, information
from other instances in the same bag is usually considered useful. As proved
by [1], compared with the instance-level methods, predicting the labels in bag-
level usually achieves higher accuracy as well as better time efficiency. As MIL
naturally fits the weakly supervised image classification problem, more and more
works are working on using MIL for image classification [3,27,30]. Specially, with
the development of deep features, MIL is consistently combined with deep neural
networks for solving the problem.

2.2 Weakly Supervised Deep Neural Networks

A few studies for developing deep learning methods under MIL assumption have
been proposed in recent years [30,31]. Besides, the methods developed in weakly
supervised learning setting can also be adapted into MIL assumption. [20] devel-
oped a method using CNN for object recognition in a weakly supervised con-
dition. The goal of this work is achieved by first constructing the network with
an extended score mapping for the region of the image. Then average pool the
score map under a weakly supervised assumption to get the final prediction. [18]
proposed a weakly supervised approach to learn features for object recognition.
[22] presented a network inferring in a weakly supervised condition, for which
the output was encouraged to follow a latent probability distribution which lies
in a constrained manifold. It is obvious that these methods developed in weakly
supervised setting can be equivalently transformed to that in MIL setting, by
regarding the mapped scores/mid-level features as instance predictions and final
scores/features as bag predictions. Therefore, all of these methods can be catego-
rized into instance-level methods. It inspired us to explore the bag-level methods
for deep networks.

3 Multiple Instance Deep Convolutional Network

An overview of the MIDCN framework is shown in Fig. 1, which has three major
components. Firstly, a region proposal extractor is used to detect class relevant
saliency regions from all the images. Secondly, the detected regions are resized
to a fixed size and fed into a shared-weight pre-trained Caffenet [13] in order
to get the instance features for all the image regions. Then, the proposed GCP
layer combines the instance features to generate a bag feature. Finally, the bag
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Fig. 1. Overall framework of MIDCN. It predicts image-level labels without region-
level labels. With the region proposals generated, it is an n to 1 system, meaning that
1 image label supervises the learning of a whole network with n inputs. Here n is the
number of region proposals.

feature is mapped by a fully connected (FC) layer, followed by a softmax clas-
sifier to decide the label. In this following, we present the whole architecture
of the network, the design of the GCP learning layer and the detailed learning
procedure.

3.1 Generate Instance Features

Based on the MIL assumption mentioned in the first section, the images to be
classified are treated as bags. The region proposals of images are treated as
instances. Therefore, one important step of the proposed method is to detect
image regions that may contain objects. In our method, most of the popular
region proposal methods can be adopted, for example, BING [6], R-CNN [9]
and Region Proposal Network (RPN) [24]. In the PASCAL VOC 07 experiment,
BING is chosen to efficiently detect salient regions. For the pathological lung
cancer dataset, a specifically designed detection method is used to detect cells.
Details can be found in the experimental section. The detected regions are then
resized to fixed size required by the instance feature extractor.

An intuitive way to extract all the instance features is to use multiple CNNs
with respect to all the region proposals. However, it is very computationally
expensive and the number of region proposals of each image is not fixed. There-
fore one simple shared-weights CNN is adopted to extract all the instance fea-
tures.

3.2 Global Contrast Pooling Layer

Preliminaries and Bag Feature Encoding. Given the i-th and j-th bags
as Bi = {xi1,xi2, ...,xini

}, and Bj = {xj1,xj2, ...,xjnj
}, respectively. ni and nj

are the number of instances in bag Bi and Bj . xik ∈ R
d (k = 1, 2, ..., ni) is the
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k-th instance contained in Bi, where d is the feature dimensionality. In our case,
instance feature is the output of the CNN based feature extraction module.

As can be seen, under the MIL setting, bags (images) are sets of instances
(regions). Previous works predict the label of a bag use max-pooling or voting
over the predicted label of instances. This kind of method predicts the label of
instances separately and does not take the relationship of instances into consider-
ation. Although there are also works using max-pooling over features of instances
to extract bag features, such scheme is relatively simple and may weaken the
importance of key instance’s feature. The aim of the GCP layer is also to extract
bag features while take the relationship of instances into consideration.

To this end, prototypes are introduced to quantize bag features. We define
the bag feature as a vector of similarity scores. Each element of the vector is a
similarity score of the most similar instance and a specific prototype. As pro-
totypes correlate to class of concepts, such as concepts of ‘aeroplane’, ‘car’ and
so on, a high similarity score indicates the existence of an instance that has the
concept of the prototype. In this way, the bag feature encodes the possibility of
existence of a set of basic concepts. It is this bag feature that is used for further
classification. Therefore, co-existence of some concepts can help distinguish the
label. For example, coexistence aerofoil and wheels indict the label of ‘aeroplane’.

Formally, the bag feature is defined as follows. Denote the m-th prototype
as zm ∈ R

d, a bag feature is defined as the similarity score of this prototype
with the most similar instance in this bag. Typically, the similarity score can
be defined as the negative distance (usually the Euclidean distance). However,
the neural network may suffers during the back propagation process when an
Euclidean distance calculation module is embedded in it.

To address this problem, [16] advised to use a sigmoid function instead of
directly using the Euclidean distance. However, this solution will lead to heavy
calculation burden because of the non-linear sigmoid function. Besides, it will
binarize the continuous similarity values. We here propose a new solution that is
equivalent to transform the distance between the i-th bag and m-th prototype
to a similarity value sim with parameter wm. The equivalence relationship is as
follows:

dim =
ni

min
k=1

‖xik − zm‖ ∼ nimax
k=1

w�
mxik = sim, (1)

where dim is the distance of the i-th bag and m-th prototype. It is defined as the
minimum distance of all the instances in the ith bag and m-th prototype. ‖ · ‖ is
the l2 norm. Therefore, ‖xik −zm‖ is the Euclidean distance of the kth instance
and the m-th prototype. sim is defined as the maximum similarity score of all
the instances with the m-th parameter wm. Suppose xik and zm are normalized
to unit vectors with their l2 norm equal to 1 and set wm with the same value
as zm, the two equations are equivalent. Therefore, instead of embedding the
Euclidean distance module into the neural network, we used the similarity score
based module for prototype learning and bag feature encoding. The learning of
prototype zm is now changed to learning wm. In the following section, wm is
also referred as prototype indistinctively.
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The transformation introduced above has two additional advantages: (1)
Parameters of prototype can be learned according to image labels. A loss defined
on the classification score of the bag label can be used to tune the network. (2)
It prevents heavy computational cost of prototype initialization. If the distance
module is used, clustering methods are usually needed to initialize the proto-
type parameter to achieve good results. However, in the proposed method, the
weights wm can be initialized randomly.

More prototypes will usually strengthen the learned network and make the
extracted bag feature more robust. However, too many prototypes will lead to
heavy computational burden. Thus there should be a balance between the num-
ber of prototypes and computational cost. With all the prototypes learned, sup-
pose p weights of prototypes are learned and is defined as W = {w1, ...,wp}.
Maximum similarity values of the instances in a bag and the learned prototypes
are used to represent a bag. Using the aforementioned prototype weights, the
feature of the i-th bag can be formulated as,

bi = [si1, si2, ..., sim, ..., sip], (2)

sim =
nimax

k=1
w�

mxik + R(wm), (3)

bi is the feature of the ith bag. The set of weights of prototypes W is the parame-
ter used to control the bag feature encoding. Also, a L2 norm regularization term
which is usually used in normal convolutional neural networks is also adopted
here to constraint the weight parameter wm, denote as R(wm). It can be used
to constraint the magnitude of the values in the weight parameter.

Principle for Prototype Learning. We now give the overall objective func-
tion to learn the multiple instance based neural network. Firstly, we give a brief
principle of prototype learning. As introduced before, a bag feature is encoded
by the GCP layer with the similarity scores as its feature values. The prototypes
used by the GCP layer can be coarsely divided into two categories, prototypes
that are highly relevant to the ground truth label and others that are not. In the
meanwhile, instances can also be divided into these two categories. Therefore
the learning principle should be prototypes and instances that are relevant to
the same label should be close with high similarity score. Therefore, they should
be pulled together during training. Otherwise they will be pushed apart. The
learning principle of prototypes is shown in Fig. 2.

However, the relationship between the learned prototypes and the labels is
unknown. The prototypes are latent values. Instead of using a separate learning
objective function to learn prototypes, we used an overall objective function to
learn the whole network. The final objective function is parameterized with a
set of classification parameter to classify the bag feature. Thus, the final objec-
tive is somewhat like a logsoftmax loss calculated on the bag feature. The final
prediction w.r.t the network parameter θ is formulated as,

p(Y i = j|bi; θ) =
eθ�

j (bi)

∑c
l=1 eθ�

l (bi)
. (4)
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Then, the final loss is:

J(θ) = −1
b

⎡

⎣
b∑

i=1

c∑

j=1

1{Y i = j} log p(Y i = j|bi; θ)

⎤

⎦ , (5)

where b is the number of bags in one batch, c is the number of total classes, Y i is
the probability of the i-th class, and 1{·} is an indicator function, with a value 1
if the expression is true and with value 0 otherwise. One difference of the above
loss function of the proposed multiple instance based network compared with
traditional CNN network is that the feature bi in Eq. (5) is the output of the
GCP layer, which are similarity values of the instances and prototypes. During
learning, the loss function will automatically correlates the similarity score in
the bag feature to the bags’ label. Therefore, losses on the bag feature can be
used to guide the learning of prototypes, making prototypes learned implicitly
correlate to the bag labels (concepts). This learning method has two advantages:

• Prototypes are learned from the whole training set which encodes global infor-
mation, making bag feature also contains global information and is therefore
more robust.

• The method is trained with an overall loss to classify bags, which avoids
inferring from the unknown instance and prototype relation.

Instance B

Prototype

Instance A
Before Learning After Learning

Instance A
Prototype

Instance B

pull

push

Fig. 2. Brief learning principle of proto-
types. Correlated prototype and instance
are in same color. (Color figure online)

NA

SC

AC

SCC

NC

Fig. 3. Images of pathological lung can-
cer image set in five categories: Squa-
mous Carcinoma (SC), Adenocarcinoma
(AC), Small Cell Cancer (SCC), Nuclear
Atypia (NA) and Normal type (NC).

3.3 Optimization

Stochastic Gradient Descent (SGD) algorithm with mini-batches is used for
weight optimization. The whole network is trained under standard back prop-
agation. Prototype parameters W in the GCP layer can be treated as normal
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parameters of the neural network and updated as usual. This works well in the
experiments. Given L the final loss calculated for the whole network, b the num-
ber of bags contained in one batch, and the partial derivative with respect to
the GCP layer output ∂L

∂y , thus the gradient of the GCP layer parameters can
be easily calculated. The partial derivatives with respect to weights wm are,

∂L
∂wm

=
∂L
∂y

×
b∑

i=1

x�
im∗ +

∂R(wm)
∂wm

, (6)

where “∗” denotes the instance feature which has the maximum similarity to
a prototype among all the instances of a bag. For example, xim∗ denotes the
instance feature in bag Bi which has the maximum similarity to the m-th pro-
totype. Besides, the partial derivatives with respect to weights xik∗ are,

∂L
∂xik∗

=
∂L
∂y

× 1
r

∑

m∈Sk

wm, (7)

Notice only those instances that have the maximum similarities to prototypes
will get updated, since only these instances contribute to the final prediction.
This is constrained by the weakly supervised condition. r denotes the number of
times xik∗ been the most similar instance feature to all the prototypes in bag Bi.
Sk is the indices of prototypes for which xik∗ has maximum similarity values.
Finally, by using Eq. (2)–(7), learning can be conducted in a simple forward and
backward pass.

4 Experimental Results

4.1 Datasets

PASCAL VOC 07 [7]: This dataset is well known because of the PASCAL
VOC challenge. It has been widely used as a benchmark dataset for evaluating
MIL methods [22,30]. It contains about 9963 images coming from 20 different
classes. It is challenging because the images usually contain various objects, and
these objects are not well centralized. We used both the commonly suggested
training and validation set division for training. Results are reported on the test
set.
Pathological Lung Cancer Image Set [26]: This dataset has about 1200
histopathological lung cancer images of five classes: four types of lung cancer
(NA, SC, AC, SCC), and normal (NC), with 200–400 images per class. The
images have a higher resolution than PASCAL VOC 07, which is 576 × 768.
The major challenges include large intra-class appearance variations, obscure
boundaries between cellula and background, and the variations of the cellula
shapes. Actually, this pathological image dataset is suitable to evaluate MIL
methods, as the intra-class images have both private structures (cancer cells) as
well as public structures (common tissues) (see Fig. 3).
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Table 1. Quantitative comparison of MIDCN and the state-of-the-art methods in AP
(%) on PASCAL VOC 07 (best are in bold). We only display selected classes as limited
by spaces for better visualization. The mAP is calculated on all 20 classes.

Methods aero btl bus car cat chair table dog mbk per plant sofa tv mAP

OverFeat 91.2 51.6 81.6 84.4 83.9 54.5 53.8 72.3 75.6 83.7 47.4 60.0 79.4 73.0

DMIL-R 92.9 53.9 81.8 86.8 83.4 53.7 51.8 72.3 77.3 86.1 50.1 61.7 80.1 74.7

DMIL-J 93.5 54.2 81.6 86.6 85.2 54.5 53.8 73.2 79.0 86.6 51.2 63.7 80.4 75.5

[19] 88.5 47.5 75.5 90.1 87.2 61.6 67.3 85.5 80.0 95.6 60.8 58.0 77.9 77.7

[29] 95.1 51.5 80.0 91.7 91.6 57.7 70.9 89.3 85.2 93.0 64.0 62.7 78.3 81.5

VGG-F 88.7 46.9 77.5 86.3 85.4 58.6 72.6 82.0 80.7 91.8 58.5 66.3 71.3 77.4

VGG-S 95.3 54.4 81.9 91.5 91.9 64.1 74.9 89.7 86.9 95.2 60.7 68.0 74.4 82.4

MIDCN-C 90.8 76.0 82.0 91.1 86.9 71.5 74.2 84.3 81.5 94.5 83.3 67.0 86.3 82.6

MIDCN-F 86.5 78.8 78.3 91.3 85.9 74.6 70.9 83.5 83.9 94.6 80.9 69.9 85.5 83.3

MIDCN-S 91.7 81.1 81.9 92.4 89.1 72.5 75.3 88.2 86.4 94.8 81.2 68.0 87.6 84.2

4.2 Implementation Details

We construct our model with pre-trained Caffenet [13] as instance feature-
extractor (named as “MIDCN-C”) to keep the consistency and conduct the fair
comparison with the previous work [30]. However, for PASCAL VOC 07 exper-
iments, we also employ VGG-F and VGG-S net [5] which are reported to have
a better performance of top5 error rate in ILSVRC compared with Caffenet,
named “MIDCN-F” and “MIDCN-S”. We do not use more deeper ResNet [10]
or DenseNet [12] as we only want to demonstrate our assumption, not to achieve
the optimal performance. For PASCAL VOC 07, we use BING [6] trained with
PASCAL VOC 07 as the region proposal extractor. In addition, for the patho-
logical lung cancer image dataset, a simple ROI detection method is performed
to crop patches of cancer cells in images. According to the settings of BING,
we adopt the combined along with the high confidence scored frames in order
to get 20 instances for each image. It is easy to observe that region proposals
are important for the final classification performance. Here, we did not illustrate
and compare all the possible region proposal methods for MIDCN, as our goal
is to validate the efficacy of the proposed MIL-based method. The batch size we
used is set to 20 for bags, as each bag has 20 image regions. Therefore, the total
batch size is 400 of instance features for the neural network. Prototype number
is also a data-relevant parameter, where we chose 200 to make a tradeoff between
time efficiency and performance efficacy. The prototype weights are initialized
by sampling from a normal distribution with a variance of 0.01.

4.3 Image Classification on PASCAL VOC 07 Dataset

We followed the previous works to pre-train the feature extractor network with
extra training data ILSVRC in our method [25,30], and adopted Average Pre-
cision (AP) as the metric to evaluate the performance.

The quantitative comparison with the state-of-the-art methods in AP are
reported in Table 1. In the first bar, we compared with the methods that either



240 K. He et al.

under purely fully-supervised condition (i.e. OverFeat [25]) or instance-based
MIL assumption (i.e. DMIL-R/J [30]). For a fair comparison, MIDCN-C is con-
structed on Caffenet. The performance of this network was reported to have sim-
ilar performance to the Alexnet [13] which is used in OverFeat method. OverFeat
(CNN-SVM) is a widely used deep learning based baseline method. It is worth
noting that we also compared with DMIL-R and DMIL-J, which are deep multi-
ple instance learning frameworks that performs predictions at the instance-level.
Specifically, the method DMIL-J is DMIL-R joint learned with text annotations,
which leveraged information of an additional modality. According to Table 1,
the first observation is, the three proposed methods achieved the highest perfor-
mance in mAP. This shows the general performance of the proposed method out-
performs the state-of-the-art methods. Besides, compared with OverFeat which
is trained without weakly supervised condition, the methods such as DMIL-R,
DMIL-J and MIDCN-C can obtain superior performance. Also, compared with
DMIL R/J which adopts the deep features purely trained on instances, MIDCN
shows better performance because of the more reasonable inference on bag-level.
The advantage of using prototype learning is construction of the bag features
by incorporating global information, hence previous challenging classes (e.g.,
dinning table, chair, potted plant) can be well classified by MIDCN.

In the last two bars, we investigated the improvement of performance given
specific instance feature extractors. Compared with the original networks, i.e.,
OverFeat, VGG-F and VGG-S, MIDCNs constructed with these instance feature
extractors boost the performance of mAP by 9.6%, 5.9%, and 1.8%.

4.4 Five Class Classification on Pathological Lung Cancer Image
Set

Table 2 presents the classification results on the pathological lung cancer image
dataset. Accuracy, Precision, Recall, F1 and TNR of MIDCN and competi-
tive methods are reported on this dataset. The first four methods mcSVM [4],
ESRC [17], KSRC [32], mSRC [26], belong to non-deep methods. These methods
adopted hand crafted features to extracted features for lung cellula, including
shape, color, texture, etc. The last four rows in Table 2 provide results of deep
learning based methods. CNN-SVM is an OverFeat like method which is regarded
as the baseline of deep models. An general observation is that deep methods
are significantly better compared with non-deep methods. This indicates the
quality of deep features are much better than traditional hand-crafted features.
Besides, results of weakly supervised mi-SVM and MI-SVM [2] trained over the
deep features are even better than CNN-SVM which indicates weakly-supervised
learning is more suitable than fully-supervised learning in this application. The
best results are achieved by the proposed MIDCN-C indicates the effectiveness
of the proposed method. Also, we found that the feature extractor trained on
ILSVRC still works well in pathological images, which expanded the limits of
using the pre-trained feature extractor across different datasets while only for
natural images in previous works [25,30].
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Table 2. Comparison of performance on pathological lung cancer image set.

Methods Accuracy Precision Recall F1 TNR

mcSVM 0.674 0.598 0.577 0.576 0.921

ESRC 0.800 0.730 0.884 0.777 0.940

KSRC 0.830 0.782 0.843 0.804 0.953

mSRC 0.867 0.834 0.913 0.862 0.962

CNN-SVM 0.968 0.968 0.968 0.968 0.992

CNN-miSVM 0.987 0.988 0.987 0.987 0.997

CNN-MISVM 0.981 0.981 0.981 0.981 0.995

MIDCN-C 0.996 0.996 0.996 0.996 0.998

5 Conclusion

In this paper, we propose a multiple instance deep convolutional network
(MIDCN). In MIDCN, we introduce a global contrast pooling (GCP) layer for
prototype learning above instance features, which is able to create more informa-
tive bag-level representations. The proposed GCP layer can be easily embedded
into other pre-trained networks to further improve the performance. Experimen-
tal results evaluated on PASCAL VOC 07 and pathological lung cancer image
set, show promising results by MIDCN.
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Abstract. Although the power of hashing methods has been proved in
image retrieval, they cannot effectively extract discriminative features
for face image retrieval as the discriminative differences in face regions
are subtle and the background information interferes with the feature
expression. To solve this problem, we propose an end-to-end deep hashing
method with attention mechanisms to learn discriminative hash codes.
Specifically, a face spatial network is designed to enhance the discrimi-
nation of face features from the spatial aspect. With a specially designed
face spatial loss, it can automatically mine differentiated facial regions,
and reduce the interference of background information. Furthermore, an
attention-aware hash network, in which facial features could be enhanced
by fusing strategy and channel attention module, is designed to learn
compact and discriminative hash codes. Experimental results on two
widely used datasets demonstrate the inspiring performance over several
state-of-the-art hashing methods.

Keywords: Deep hashing · Face image retrieval · Deep learning

1 Introduction

With the growth of social media users, a large number of face-containing images
have been uploaded to the Internet [9]. Face image retrieval, which aims to return
images containing the specific query face, has attracted increasing interest. As
a popular image retrieval solution, hashing shows its power in image retrieval.
Owing to hashing methods, the similarity search of images could be done in
Hamming space, which is efficient in terms of time and storage costs. In this
work, we are focusing on learning effective hashing functions for face image
retrieval.

Existing hashing methods can be divided into non-deep methods and deep
methods. Representative non-deep methods include [2–5,15,18]. These methods
usually try to generate hash code based on handcraft features. However, the qual-
ity of handcraft features affects the performance of the generated hash codes.
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Fig. 1. The overall architecture of the proposed method. Our proposed method is
comprised of three components: (1) a face spatial network based on FCN for the learning
of spatial weight map. (2) a hashing network based on CNN for the learning hashing
codes. (3) a set of loss functions including classification loss, quantization loss and face
spatial loss for the optimization. In the training stage, the face spatial network and the
hashing network are trained alternately. Classification loss and quantization loss are
used to supervise the learning of hash network while face spatial loss guides the learning
of face spatial network. When training, the original face image (Branch@1) and the
spatial weighed face images (Branch@2) are fed into hash network respectively to get
their binary-like codes. When testing, only spatial weighed face images (Branch@2) are
used to generate their hash codes.

On the contrary, deep hashing methods adopt deep learning techniques to per-
form feature learning and hash code generation simultaneously [6,7,11,13,20,21],
reducing the information loss between the feature learning stage and hash code
generation stage. For example, Deep Supervised Hashing (DSH) [11] learns hash
codes for input raw images by optimizing the binary-like output to minimize
the Hamming distance of relevant images. Nevertheless, most of the hashing
methods are designed for general image retrieval instead of face image retrieval.

Recently, some works try to apply deep hashing methods to face image
retrieval tasks, such as Discriminative Deep Hash (DDH) [10] and Discrimi-
native Deep Quantization Hash (DDQH) [17]. DDH proposes a deep network to
extract multi-scale face image features and uses a divide-and-encode module to
generate compact binary codes. Further, DDQH proposes a batch normalization
quantization module to improve the performance. These methods mainly focus
on designing network structures to generate hash codes with features directly
extracted from the image. However, as face features are critical to generating
compact hash codes, it is important to optimize the face feature extraction pro-
cess for face image retrieval task.

Unlike general image retrieval, where shapes and appearances are obviously
different from class to class, images in face image retrieval often have an overall
facial appearance but with subtle facial differences. Therefore, we need to focus
on features from the face regions that represent the facial differences. Extract-
ing face features directly from images may result in an insufficient expression of
the subtle facial differences, as background information may interfere with the
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expression. In addition, not all features from face regions are equally important,
as discriminative face features are more advantageous for generating discrimina-
tive hash codes. How to effectively optimize the features for face image retrieval
and how to integrate feature optimization with the hash codes learning process
need to be addressed.

To solve the above issues, we propose a deep attention-aware hashing method
for face image retrieval. Figure 1 illustrates the overall view of our proposed
method. It’s a two-component, end-to-end framework which learns discrimina-
tive face features and generates compact hash codes. Firstly, we propose a face
spatial network based on Fully Convolutional Network (FCN) [14] to generate
spatial weight maps to indicate discriminative facial regions. After a matrix
dot production between the original data points and the corresponding spatial
weights, data points are fed into a Convolutional Neural Network (CNN) to
extract multi-scale face features and generate compact binary codes. Further-
more, we use channel attention modules to generate channel weight vectors for
face feature maps, thus, discriminative face features are enhanced from the chan-
nel aspect. Finally, an alternate training strategy is introduced to the network
training process with three loss functions. Classification loss and quantization
loss are used to supervise the hash network, while a specially designed face spa-
tial loss to supervise the training of face spatial network.

Our contributions can be summarized as follows:

• We propose a new deep hashing method for face image retrieval, in which
face features extracted from images are enhanced by both spatial-wise and
channel-wise attention mechanisms.

• We propose a face spatial loss, combined with an alternating training strategy,
to guide the face spatial network to mine discriminative facial regions and
alleviate the interference of background information of face images.

• Extensive experiments conducted on two widely-used face image datasets
demonstrate that our proposed method achieves inspiring improvements com-
pared with several state-of-the-art methods.

2 The Proposed Approach

Given N face images X = {xi}N
1 associated with label information Y ∈ R

N×M ,
the goal of the proposed method is to learn hashing function H(·) that projects
X into binary hash codes B = {bi}N

1 , where M denotes the class number and
yij = 1 if xi belongs to the j-th class and 0 otherwise. bi ∈ {−1, 1}K denotes the
corresponding K-bit hash code of the i-th image xi ∈ R

W×H×C , with W,H,C
stand for the image width, height and channel number respectively.

As shown in Fig. 1, our framework consists of two networks. (1) Face spatial
network: in order to effectively utilize features from facial regions and reduce the
interference of background information on images, we use the FCN-based net-
work as a spatial attention mechanism to capture spatial information of images.
(2) Hash network: a CNN which maps images to hash codes is deployed in which
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two feature optimization strategies are used to enhance face features. The two
networks are trained alternately. Classification loss requires the learned hash
codes to preserve class information while quantization loss forces the output of
hash network to be more binary-like codes. Face spatial loss guides the face
spatial network to exploit discriminative facial regions.

2.1 Face Spatial Network

In face image retrieval, only features from facial regions are helpful. Background
information may interfere with the expression of face features. Therefore, we
introduce a FCN-based network called face spatial network in our architecture
to mine discriminative facial regions. As shown in Fig. 1, it is composed of several
convolutional layers and deconvolutional layers. Instead of generating the label
vector for each pixel as it is in semantic segmentation, we generate a spatial
weight map wi ∈ R

W×H for each input face image xi, so that each pixel of
the image is assigned a value in the spatial weight map which indicates its
importance:

wi = fspatial(xi; θspatial), (1)

where fspatial denotes the face spatial network and θspatial represents its param-
eters. The following normalization is used to limit spatial weight maps in the
range of 0 to 1:

wi(p, q) =
wi(p, q) − min(wi)
max(wi) − min(wi)

, (2)

where p ∈ [1,W ] and q ∈ [1,H]. After normalization, the spatial weighted face
image xspatial

i can be obtained through a matrix dot product operation is con-
ducted:

xspatial
i = xi ∗ wi, (3)

where ∗ denotes matrix dot production. With the face spatial loss defined in
Eq. 9, the face spatial network learns to mine discriminative facial regions auto-
matically.

2.2 Hash Network

The aim of the proposed hash network is to learn a compact and discrimi-
native hash code for the input data. It consists of several convolutional layers,
max-pooling layers, channel attention modules, and fully connected layers. Since
effective face features could improve the quality of the generated hash codes, we
introduce the following two strategies in the hash network:

(1) Feature fusing. As shallow layers of CNN often extract shallow-level fea-
tures like edges and textures and deep layers extract high-level features [16],
fusing features from different layers could generate multi-scale features.
Therefore, features from the last two convolutional layers are passed to the
channel attention modules respectively, and then, fused together to get a
weighted fused feature.
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Fig. 2. Demonstration of the channel attention module.

(2) Channel attention module. Considering that not all features from facial
regions are equally important, we use channel attention module to high-
light features from discriminative channels. The architecture of the chan-
nel attention module is shown in Fig. 2. Input feature f is unfolded as
f = [f1, f2, ..., fc], where c denotes its channel number and fi ∈ R

w×h

denotes the i-th channel slice of f and w and h denotes its width and height
respectively. Channel weight vector v ∈ R

c, which indicates the importance
of different channels, could be obtained through channel attention modules.
Following normalization is applied to limit the weights in v to be in the range
of 0 to 1:

v(i) =
v(i) − min(v)

max(v) − max(v)
, (4)

where i ∈ [1, c]. Then, channel-weighted face feature fch is generated through
a channel-wise multiplication between f and v.

Channel-weighted face features are concatenated and passed to fully con-
nected layers. The last fully connected layer is named as hash layer, in which
the number of features is the same as the length of hash codes. In the train-
ing process, the spatial-weighted image xspatial

i and the original image xi are
encoded by the hash network respectively to get their corresponding binary-like
codes. Parameters in hash network are updated with the classification loss and
quantization loss defined in Sect. 2.3. Once the training process is finished, only
spatial-weighted images are encoded through hash network. Then, binary hash
code can be obtained by applying sign(·) function on the output of hash layer,
where sign(x) = 1 when x > 0 and sign(x) = −1 otherwise.

2.3 Loss Functions

There are three loss functions in our method, classification loss and quantization
loss are used to supervise the learning of hash network while face spatial loss
guides the learning of face spatial network. Since discrete optimization is difficult
to be solved by deep networks, we relax the binary constraint to binary-like code
for the training process. We use hi to denote the binary-like code of original image
xi, and h

′
i to denote the binary-like code of the spatial weighted image xspatial

i

in this sections.
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Classification Loss. The generated hash codes are expect to preserve their
class information, thus, we assume that class labels can be well predicted by the
generated hash codes. We deploy a softmax function for the classification loss,
which can be formulated as follows:

Lorigin
c =

N∑

i=1

M∑

j=1

−yij log
eσT

j hi

∑M
k=1 eσT

k hi
=

N∑

i=1

lc,i, (5)

Lspatial
c =

N∑

i=1

M∑

j=1

−yij log
eσT

j h
′
i

∑M
k=1 eσT

k h
′
i

=
N∑

i=1

l
′
c,i, (6)

where Lorigin
c and Lspatial

c respectively represent the classification loss of the
original face images and the classification loss of spatial weighted face images.
σj is a prediction function for the j-th class. lc,i and l

′
c,i denote the classification

loss of xi and the classification loss of xspatial
i respectively.

Quantization Loss. To minimize the information loss caused by sign(·) func-
tion, we want the output of hash layer to be more binary-liked, which means
values in hi and h

′
i are close to +1/−1. Therefore, the quantization loss can be

formulated as follows:

Lorigin
q =

N∑

i=1

|||hi| − 1||1 =
N∑

i=1

lq,i, (7)

Lspatial
q =

N∑

i=1

|||h′
i| − 1||1 =

N∑

i=1

l
′
q,i, (8)

where Lorigin
q and Lspatial

q respectively stand for the quantization loss of original
face images and the quantization loss of spatial weighted face images. 1 denotes
the vector of ones, |·| is an element-wise absolute value operation, and ‖·‖1 is
l1-norm. lq,i and l

′
q,i denote the quantization loss of xi and the quantization loss

of xspatial
i respectively.

Face Spatial Loss. Face spatial loss is designed to guide the face spatial net-
work to mine discriminative facial regions so that effective face spatial maps
could be generated. The key idea is that the hash code of the spatial weighed
images are more discriminative, thus, the binary-liked code of spatial weighed
facial images will have a smaller classification loss and quantization loss com-
pared to the ones the original images. Considering that, we define face spatial
loss as follows:

Lspatial =
N∑

i=1

max(l
′
c,i + αl

′
q,i − (1 − m)(lc,i + αlq,i), 0), (9)
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Algorithm 1. Training Strategy.
Input:

Training face image set X with label Y ;
Max training epoch T ;

Output:
Face spatial network fspatial(x; θspatial);
Hash network fhash(x; θhash);

1: for t = 1: T do
2: Compute Xspatial according to Eq. 3;
3: Fixing θspatial, update θhash according to Eq. 10 through Back Propagation;
4: Fixing θhash, update θspatial according to Eq. 9 through Back Propagation;
5: end for
6: return fspatial(x; θspatial), fhash(x; θhash);

where α is a trade-off parameter to balance classification loss and quantization
loss. m ∈ [0, 1] is the margin parameter. When m is set to 0, the face spatial
loss will push the face spatial network to mining a better face spatial map every
time the weighted sum of classification loss and quantization loss of the spatial
weighted face images (l

′
c,i + αl

′
q,i) is larger than the ones of the original face

images (lc,i + αlq,i).

2.4 Training Strategy

Our proposed method is a two-stage, end-to-end deep model which contains a
face spatial network and a hash network. Face spatial network is used to generate
spatial weight maps for face images and the hash network is used to generate
hash codes. As shown in Algorithm 1, we train the two networks alternately.

For the training process, the hash network is expected to generate effective
hash codes for both original images and spatial weighted images, thus, both
classification loss defined in Eqs. 5 and 6 and quantization loss defined in Eqs. 7
and 8 are used to form the overall hash loss:

Lhash =
N∑

i=0

lc,i + l
′
c,i + α(lq,i + l

′
q,i), (10)

where α is the same trade-off parameter defined in Eq. 9. By minimizing this
term, the hash network is trained to generate class-preserving hash codes for
both the original face images and the spatial weighed face images.

For the training of face spatial network, the face spatial loss defined in Eq. 9
is used. By minimizing this term, the face spatial network is trained to mining
discriminative face regions of the input face images. Thus, after the matrix dot
production between the original images and the spatial weight map produced
by face spatial network, the background information is reduced, and the face
regions are highlighted, leading to more discriminative hash codes.
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2.5 Out-of-Sample Extension

When the training process is finished, we can use this model to generate K-bit
length hash codes for face images.

Since our proposed model consists of two networks, firstly, as discussed in
Sect. 2.1, the face image xi is mapped to spatial weighted face image xspatial

i by
face spatial network.

Then, xspatial
i is fed into hash network to generate binary-like code h

′
i.

Finally, as discussed in Sect. 2.2, the binary hash code can be obtained by
applying sign(·) function to h

′
i.

3 Experiments

In order to validate the performance of our proposed method, we conduct exper-
iments with several state-of-the-art hashing methods on two widely-used face
image datasets, YouTube Faces [19] and FaceScrub [12]. Experiments are imple-
mented with PyTorch on NVIDIA Tesla M40 with CUDA9.0 and cuDNN v7.1.2.
Our source codes are released at https://github.com/deephashface/DDAH.

3.1 Datasets and Evaluation Metric

YouTube Faces is a video face dataset which contains 3,425 videos of 1,595
different people. We randomly select 40 face images for every person as the
training set and 5 face images per person as the testing set. Therefore, we get
63,800 training face images and 7,975 testing face images. All face images are
resized to 32 × 32.

FaceScrub comprises a total of 106,863 face images of 530 celebrities, with
about 200 images per person. In our experiments, 5 face images for every person
are randomly selected as the testing set and the remaining face images as the
training set. All face images are resized to 32 × 32.

To evaluate our proposed method, following four evaluation metrics are
employed: mean average precision (MAP), precision recall curves, precision with
Hamming distance 2, and precisions w.r.t different top returned samples. When
evaluation, images from the test sets are used as queries and the training sets
are regarded as the galleries.

3.2 Experimental Settings

We compare our proposed method with several non-deep methods and deep
methods. Non-deep methods include ITQ [4], SH [18], LSH [2], KSH [3],
SDH [15], SpH [5], and deep methods include DSH [11], DDH [10] and
DDQH [17]. For non-deep methods, 256-D local binary pattern (LBP) [1] features
are extracted to represent the face images. For fair comparisons, deep features
from CNN are also extracted for the non-deep methods which are denoted as
“+CNN”. We reimplement DDH and DDQH with PyTorch and results of other
methods are obtained with public available source codes.

https://github.com/deephashface/DDAH
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Table 1. Mean Average Precision (MAP) results for different number of bits on Face-
Scrub and YouTube Faces.

Method YouTube Faces FaceScrub

12 bits 24 bits 36 bits 48 bits 12 bits 24 bits 36 bits 48 bits

ITQ [4] 0.0089 0.0138 0.0209 0.0198 0.0024 0.0026 0.0027 0.0028

LSH [2] 0.0039 0.0042 0.0059 0.0120 0.0022 0.0024 0.0027 0.0025

SH [18] 0.0104 0.0170 0.0289 0.0366 0.0026 0.0031 0.0033 0.0034

SpH [5] 0.0145 0.0373 0.0541 0.0656 0.0030 0.0035 0.0038 0.0039

KSH [3] 0.0176 0.0466 0.0740 0.1000 0.0037 0.0038 0.0039 0.0039

SDH [15] 0.0160 0.0410 0.0667 0.0844 0.0027 0.0033 0.0036 0.0039

ITQ+CNN 0.0248 0.1900 0.3420 0.4394 0.0186 0.0352 0.0504 0.0667

LSH+CNN 0.0391 0.1926 0.3354 0.4439 0.0064 0.0132 0.0238 0.0366

SH+CNN 0.0154 0.0851 0.1603 0.2421 0.0036 0.0081 0.0114 0.0145

SpH+CNN 0.0524 0.2006 0.3245 0.4080 0.0093 0.0165 0.0230 0.0295

KSH+CNN 0.0481 0.2663 0.4167 0.5047 0.0230 0.0348 0.0767 0.1026

SDH+CNN 0.5474 0.7676 0.8100 0.8331 0.1281 0.2388 0.2934 0.3291

DSH [11] 0.1538 0.4274 0.5341 0.5718 0.0122 0.0186 0.0246 0.0247

DDH [10] 0.5681 0.8526 0.9208 0.9437 0.0798 0.1109 0.1284 0.1419

DDQH [17] 0.7334 0.9721 0.9789 0.9878 0.2103 0.3431 0.4748 0.5532

Our method 0.8987 0.9831 0.9838 0.9911 0.3574 0.4842 0.6247 0.6475

For FCN, there are four convolutional layers and three deconvolutional layers.
The filter size of the first convolutional layer is 3 × 3 while the next two are
2 × 2. The fourth convolutional layer has a filter size 1 × 1 with stride 1 × 1.
For convolutional layers, the number of feature maps is set to 32, 64, 128 and
128 respectively. For deconvolutional layers, filter size is set to 3 × 3 with stride
2×2, padding 1, dilation 1, and their feature map numbers are set to 64, 32 and
16 respectively.

For CNN, the first three convolutional layers are the same as FCN except for
additional max-pooling layers with filter size 2 × 2, stride 2 × 2. The number of
feature maps of the fourth convolutional layer is set to 256, with a filter size 2,
and stride 2×2. The number of features of the first fully connected layer is set to
1024. For channel attention module, feature number of the first fully connected
layer is set to 512 while the second fully connected layer is set according to its
input feature number, in our experiments, 128 and 256 respectively.

In the training process, we use Adam algorithm [8] to optimize the network
with batch size fixed as 256 and weight decay parameter as 0.0001. We select
the hyper-parameters m and α, by cross-validation.

3.3 Results and Discussions

Results on Mean Average Precision. The MAP results for different bits
on FaceScrub and YouTube Faces are shown as Table 1. In our experiments, the



Discriminative Deep Attention-Aware Hashing for Face Image Retrieval 253

Fig. 3. Comparison of different methods on YouTube Faces. (a) Precision curves of
different top returned images with 48 bits. (b) Precision recall curves of Hamming
ranking with 48 bits. (c) Precision curves with Hamming distance 2.

Fig. 4. Comparison of different methods on Facescrub. (a) Precision curves of different
top returned images with 48 bits. (b) Precision recall curves of Hamming ranking with
48 bits. (c) Precision curves with Hamming distance 2.

bit length of the hash codes is set to 12, 24, 36 and 48, respectively. It can be
observed that, in general, non-deep methods using deep features achieve better
results compared with the ones using LBP features. This is because deep features
are more robust and selective. Second, the performances of deep methods are bet-
ter than non-deep methods. In deep methods, face feature extracting and hash
code learning are conducted in a unified framework, reducing the information
loss between the two stages. Third, compared to DDH and DDQH, our proposed
method achieves better performance. This is because DDH and DDQH directly
extract features from images, but our proposed method is specially designed for
face images. In our proposed method, the face spatial network learns to exploit
discriminative facial regions to reduce the interference of the background infor-
mation and highlight the facial regions, the channel attention module enhances
discriminative face features from channel aspect, leading to a more discriminative
hash code.

Results on Precision Recall Curves, Precision Curves. Experimental
results of precision recall curves, precision curves w.r.t. different top returned
images and precision curves within Hamming distance 2 for FaceScrub and
YouTube Faces are shown in Figs. 3 and 4 respectively. Non-deep methods with
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Table 2. MAP result of different combinations with 12 bits on YouTube Faces and
FaceScrub.

Combinations YouTube Faces FaceScrub

HashNet-Channel 0.8017 0.3024

HashNet 0.8184 0.3166

SpatialNet+HashNet-Channel 0.8130 0.3127

SpatialNet+HashNet-Channel+Lspatial 0.8586 0.3292

SpatialNet+HashNet+Lspatial 0.8987 0.3574

handcraft features are not included due to the better results of CNN features. We
can get the same observations as ones from Table 1 that our proposed method
achieves better results than other hash methods. It’s worth noting that as the
number of bits increases, Hamming space may become sparse and fewer data
points will fall within Hamming distance 2, which is the reason why precisions
of some hashing methods decrease within Hamming distance 2. However, our
proposed method achieves a relatively mild decrease, validating that our pro-
posed method learns compact hash codes effectively. The alternate learning of
the face spatial network and hash network increases the quality of the generated
hash codes.

Ablation Study. Since our proposed method contains two attention mech-
anisms: face spatial network and channel attention module, to evaluate their
contribution, we further study the retrieval performance of their different com-
binations. The results are shown in Table 2. We use “HashNet”, “Channel” and
“SpatialNet” to denote the hash network trained with hash loss, channel atten-
tion module and the face spatial network respectively. “Lspatial” denotes the
alternate learning with face spatial loss. For example, “SpatialNet + HashNet-
Channel” denotes that both face spatial network and hash network are used but
there’s no channel attention module and face spatial loss. It can be observed that
both these two mechanisms improve the results. With the guidance of face spa-
tial loss, the face spatial network learns to enhance features from discriminative
facial regions, which improves the performance. Furthermore, combining these
two mechanisms together achieves a better performance, as the two attention
mechanisms improve face features from two different aspects, spatial aspect and
channel aspects respectively.

Sensitivity Study. We further study the influence of parameters α and m. We
set α within

{
10−4, 10−3, 10−2, 10−1

}
and m within

{
0, 2−4, 2−3, 2−2, 2−1

}
. The

results on FaceScrub dataset are shown in Fig. 5. The best result is obtained with
α = 10−3 and m = 2−4. It can be observed that α affects the performance more
than m. As α balances the classification loss and quantization loss, an inappro-
priate value will affect the quality of hash codes generated by hash network. m



Discriminative Deep Attention-Aware Hashing for Face Image Retrieval 255

Fig. 5. Sensitivity to hyper-parameters on FaceScrub dataset.

controls the learning of face spatial network, a too large or too small value may
lead to the face spatial network not learned well.

4 Conclusion

This paper presents a deep hashing approach specially designed for face image
retrieval. With the integration of face spatial network and hash network
enhanced by channel attention module, discriminative face features can be
exploited and effective binary hash codes can be generated. Experiments on
two widely-used datasets compared with some state-of-the-art methods show
that our proposed method achieves inspiring performance.
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Abstract. Despite the significant success in image-to-image translation and
latent representation based facial attribute editing and expression synthesis, the
existing approaches still have limitations of preserving the identity and sharp-
ness of details, and generating distinct image translations. To address these
issues, we propose a Texture Deformation Based GAN, namely TDB-GAN, to
disentangle texture from original image. The disentangled texture is used to
transfer facial attributes and expressions before the deformation to target shape
and poses. Sharper details and more distinct visual effects are observed in the
synthesized faces. In addition, it brings faster convergence during training. In
the extensive ablation studies, we also evaluate our method qualitatively and
quantitatively on facial attribute and expression synthesis. The results on both
the CelebA and RaFD datasets suggest that TDB-GAN achieves better
performance.

Keywords: Texture � Deformation � Generative Adversarial Networks �
Multi-domain face editing

1 Introduction

Face editing aims to change or enhance facial attributes such as hair color, expression,
gender and age, and add virtual makeup to human faces etc. In recent years, face
editing has attracted great interests in computer vision fields [1, 16, 22]. Several
methods [8, 24, 27] have achieved facial attributes and expressions manipulation on
single or multiple domains. Most of them are based on the generative adversarial
networks (GANs) [3] like Cycle GAN [27], IcGAN [14], StarGAN [2], etc. These
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image-to-image translation approaches feed the generator with the input image directly,
which might lead to indistinctive modification of the input.

The recent works [21, 26] demonstrate that intuitively decomposing a single image
into shading and albedo components can benefit the perception of images. The intrinsic
image model assumes that color image I can be reconstructed by the point-wise product
of shading S and albedo A : I = A ∙ S. Here, albedo is the reflectance of surfaces in the
scene. Compared to standard autoencoder architectures, intrinsic image decomposition
can lead to better synthesis results for tasks such as facial attributes and expression
manipulation. In [15], the author extended the intrinsic image decomposition by
decompose the image into shading, albedo and deformation components. The defor-
mation component can dispel the variation of rotations, translation, or scaling, which
makes it more feasible to control and understand deep networks. Note that, in [15] I is
termed texture by the author. By dispelling the deformation, the face textures extracted
by shading and albedo are all well-aligned and have more strong representation of
intrinsic images.

Inspired by these works, we first adopt the DAE [15] model to extract a well-aligned
texture image from the input image. Then, we feed both the generated texture and target
domain labels into a GAN model to synthesize a new texture image with target attri-
butes. Finally, we warp the generated texture with the spatial deformation and employ
an identity loss to preserve the identity. Overall, our main contributes are summarized as
follows: (1) We propose the Texture Deformation Based GAN, a novel framework that
learns the mappings among multiple domains based on disentangled texture and warps
the generated texture spatially to generate the face image in target domain. (2) We
empirically demonstrate the effectiveness of our TDB-GAN through the ablation studies

Fig. 1. TDB-GAN transfer attributes by texture based deformation. The first and second
columns are the input images and the texture generated by DAE, respectively. In the remaining
columns, while the even columns show the textures produced by generator for the target attribute,
the odd ones show the synthesized images by warping the texture.
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on facial attribute editing and expression synthesis. The results justify the superiority of
texture-to-image translation over the image-to-image translation.

2 Related Work

The popularity of generative models has a great effect on face editing. The Encoder-
Decoder architecture and Generative Adversarial Network (GAN) [3] are the two major
categories of methods for this task.

Generative Adversarial Networks (GANs) [3] is a promising generative model
and can be used to solve various computer vision tasks such as image generation [6, 20,
23], image translation [8, 11, 24, 27], and face image editing [2, 13, 22]. The GAN
model is mainly designed to learn a generator to generate fake samples and a dis-
criminator to distinguish between real and fake samples. Besides leveraging the typical
adversarial loss, a reconstruction loss is often employed [2, 4] to generate the faces as
realistic as possible. Additionally, an identity loss is proposed to assure that the gen-
erated faces preserve the original identity in our approach.

Image-to-image translation based methods, e.g. MUNIT [7], CycleGAN [27], and
IcGAN [14], are commonly used to transfer style, as they can learn the mapping
between input and output domains. As for the multi-domain image translation, Star-
GAN [2] and AttGAN [4] are proposed recently. StarGAN employs only one generator
to achieve this translation across different datasets, and its generator is allowed to
reconstruct the original image from the fake image given the original domain label.
However, StarGAN does not involve any latent representation, so its capability of
changing facial attributes is limited. As for AttGAN, it contains three components at
training: the attribute classification constraint, the reconstruction learning and the
adversarial learning. AttGAN tries to generate fake images from the attribute-
independent latent representation, while our approach encodes the input image to
texture and employs an image-to-image translation to achieve face editing. Tex-
tureGAN [17] using the same terminology can synthesize objects consistent with the
given texture suggestions, which is completely in a different context.

Intrinsic Image Decomposition decomposes a single image into shading, albedo
and deformation components. DAE [15] is a novel intrinsic image decomposition
model which decomposes the input image into texture and deformation. DAE follows
the deformable template paradigm and models image generation through texture syn-
thesis and spatial deformation. DAE can obtain the prototypical object by removing the
deformation. Discarding variability due to deformations, the texture encoded from the
original image is a disentangled representation. Moreover, by modeling the face image
with a low-dimensional latent code, we can more easily control the facial attributes and
expression over the generation process. However, DAE is only proposed for recon-
structing the intrinsic image, which is not applicable for multi-domain face editing.
Thus, we integrate disentangled representation capability of DAE to the popular GAN-
based framework in this paper, for multi-domain translation. Combing these two
architectures, we can more easily control the process of face attributes editing on
textures separated from the shape variability.
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3 Texture Deformation Based GAN

StarGAN takes an image as input, which cannot transfer attributes specifically and
disentangle the attribute-related information from the attribute-independent informa-
tion. Inspired by AttGAN, we utilize DAE to synthesize an attribute-independent
texture. Furthermore, we adopt an identity loss to strength the identity preservation
between the input and the generated texture.

3.1 Intrinsic Deforming Autoencoder

While editing facial attributes and synthesizing expression, an ideal algorithm shall be
able to disentangle the pose and shape of face from such process. Thus, we utilize the
Intrinsic DAE [15] to separate a face image into texture and deformation to disentangle
the pose and shape. Without the geometric information, the identity, illumination and
face attributes etc. contained in the texture can be deformed by the spatial gradient of
the warping field (spatial transformation).

As visualized in Fig. 2, the encoderEhenc , a densely connected convolutional network,
takes an input image IInput as input and generates a latent representation Z ¼ ZS; ZA; ZD½ �,
where ZS; ZA and ZD are shading-related, albedo-related and deformation-related repre-
sentations, respectively. Then, three separate decoders for shading, albedo and defor-
mation, including DS;DA and DD, are fed with the latent representations ZS; ZA and ZD
respectively. The decoders can provide us with a clear separation of shading, albedo and
deformation. Next, the texture T of the input image can be computed by the Hadamard
product of the shading S and albedo A. Finally, we spatially warp the generated texture
with the deformation De to synthesize the ultimate image IOutput.

Fig. 2. Overview of texture deformation based GAN.
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3.2 Multi-domain Texture-to-Image Translation

To achieve multi-domain texture-to-image translation, we first feed the generator with
texture t and target domain label c randomly sampled from training data. Then, we
warp the generated texture t̂ with deformation De of input image to synthesize the fake
face image. We also introduce texture reconstruction loss and identity loss to synthesize
more realistic texture and identity-preserved face images, respectively.

Adversarial Loss. We utilize the adversarial loss to enable the generated images as
genuine as the real samples. It can be written as:

Ladv ¼ Ex logDsrc xð Þ½ � þEt;c log 1� Dsrc WðG t; cð Þ;Deð Þð Þ½ �: ð1Þ

In adversarial loss, G generates a new texture G t; cð Þ conditioned on both the face
texture t and target domain label c, while D strives to differentiate the real face texture
from the generated face texture. In Eq. (1), DsrcðxÞ denotes a probability distribution
over sources given by D. The discriminator tries to maximize this objective, whereas
the generator tries to minimize it.

Domain Classification Loss. To enable the generator to generate the fake image with
the target domain, we add a domain classifier on the top of D. For the optimization of
D and G, we define the domain classification of the real image as follow:

Lrcls ¼ Et;c0 �logDcls c
0 j x

� �h i
; ð2Þ

where c
0
stands for the original domain label for the real face image. The term

Dcls c
0 j x� �

represents a probability distribution over domain labels produced by D. In
addition, the domain classification loss of the fake face texture is defined as:

L f
cls ¼ Et;c �logDcls cjWðG t; cð Þ;DeÞð Þ½ �; ð3Þ

where W denotes spatially warping.

Reconstruction Loss. By optimizing the adversarial and classification loss, G is able
to generate the realistic face texture with proper attributes. Nonetheless, we cannot
guarantee that the generated face texture preserves the content of the input face texture
while changing the domain-related parts of the input face texture. Therefore, the
reconstruction loss is imposed to the reconstructed texture and image, respectively. For
the texture image, we apply a cycle consistency loss proposed by Zhu et al. [27] to our
generator, which is defined as:

Ltrec ¼ Et;c;c0 t � G G t; cð Þ; c0
� ����

���
1

h i
; ð4Þ

where G takes the generated face texture G(t, c), the original domain label c
0
as input

and tries to reconstruct the original face texture and �k k1 denotes the L1 norm.
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For the reconstructed image, L1 norm of the difference between the input and the
generated image is defined as below:

Lirec ¼ Et;c0 x�W G t; c
0

� �
;De

� ����
���
1

h i
ð5Þ

Lrec ¼ Ltrec þ Lirec ð6Þ

Identity Loss. To preserve the identity while transferring attributes, we exploit an
identity preserving network Fip to retain the identity discrimination of the synthesized
face texture, and an identity loss Lip to preserve personal facial features, which is
derived from the work proposed by Huang [5]. Fip denotes a feature extractor to extract
the feature of the synthesized face texture t̂ and the real face texture t. We select the
LightCNN [19] as our feature extractor and apply the output of the second to last fully
connected layer of Fip to the identity loss Lip:

Lip ¼ Fip tð Þ � Fip t̂ð Þ�� ��2
2; ð7Þ

where �k k1 denotes the L2-norm.

GAN-Related Objective Function. Overall, the final objective functions to optimize
G and D are illustrated as:

LD ¼ �Ladv þ kclsL
r
cls; ð8Þ

LG ¼ Ladv þ kclsL
f
cls þ krecLrec þ kipLip; ð9Þ

where kcls, krec and kip are hyper-parameters to control the weight of domain classi-
fication, reconstruction and identity loss.

4 Implementation

The proposed TDB-GAN is implemented using Pytorch toolbox with reference to the
source code of DAE [15] and StarGAN [2]. We use DAE [15] as our backbone and
adopt a multi-stage training strategy to stabilize and accelerate the training procedure of
TDB-GAN. In the first stage, we only optimize the DAE model, namely the LR, Lsmooth,
LB and LShading. Then, we fix the pretrained weights of DAE model. Simultaneously,
the generator G and discriminator D are trained with the LG (with kip ¼ 0) and LD loss,
respectively. Finally, we jointly train LDAE, LG and LD. Note that, we impose the
identity loss Lip in the final training stage to ensure that the generated image preserves
the identity.
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5 Experiments

5.1 Datasets

The CelebFaces Attributes (CelebA) dataset [12] contains 202,599 face images of
10,177 celebrities, each annotated with 40 binary attributes. We resize all aligned
images from the 178 � 218 into 64 � 64. We randomly select 2,000 images as test set
and use the remaining images for training. We mainly test ten domains with following
attributes: expression (smiling/not smiling), skin color (pale skin/normal skin), acces-
sory (eyeglasses/no eyeglasses), gender (male/female) and age (young/old).

The Radboud Faces Database (RaFD) [10] consists of 4,824 images collected
from 67 subjects. Each subject has eight facial expressions in three different gaze
directions, which are captured from three different angles. We first detect all face
images with MTCNN [25] and crop out the images with size 384 � 384, where the
faces are centered, and resized to 64 � 64. In all the experiment, we fix the input
domain as the ‘neutral’ expression and set the target domain to the seven remaining
expressions. Thus, the proposed task aims to impose a particular expression to a neutral
face. Then, we randomly split the RaFD dataset into training and testing sets with a
90%:10% ratio, namely 4,320 training images and 504 testing images including 63
neutral faces.

5.2 Training

All the models are optimized with Adam [9], where b1 ¼ 0:5 and b2 ¼ 0:999. We flip
the images horizontally with a probability of 0.5. We perform one generator update
after five discriminator updates as described in [2]. The batch size is 100. We first train
the DAE module for 5 epochs with a learning rate of 0.0002. Then, we train the GAN
module for 200 epochs. Next, we impose the identity loss to the GAN module and train
the GAN-related part for 29 epochs with a learning rate of 0.0001 and apply the
aforementioned decaying strategy over the next 29 epochs. The learning rate starts with
0.0001 and is decreased linearly to 0 after 100 epochs. We set kcls ¼ 1, krec ¼ 10 and
kip ¼ 0:001.

5.3 Qualitative and Quantitative Evaluation on CelebA

Qualitative Evaluation. Figure 1 shows the images and textures transferred to dif-
ferent attributes, which are synthesized by our method. Figure 3 shows the face images
generated by IcGAN [14], CycleGAN [27], StarGAN [2] and our TDB-GAN for
attribute transfer in smiling, pale, eyeglasses, gender and age. Note that, we used the
hyper-parameters mentioned in their papers without any further parameters tuning. As
visualized in the Fig. 3, the images generated by image-to-image translation approa-
ches are better than that generated by IcGAN. Our approach contains more information
than the low-dimension latent representation and also preserves the attribute-
independent information, like hairstyle. The faces generated by TDB-GAN for
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gender and age transfer are better than that generated by StarGAN, and the eyeglasses
added by TDB-GAN are more natural than that added by CycleGAN. Furthermore, our
method not only achieves higher visual quality but also preserves the identity related to
the input image due to the proposed identity loss.

Quantitative Evaluation. For quantitative evaluation, we perform a user study on the
visual effect of transferred facial attributes to evaluate IcGAN, CycleGAN, StarGAN
and TDB-GAN. Each of the four approaches were applied to transfer smile, pale skin,
eyeglasses, gender, and age of faces from randomly selected twenty subjects of the
CelebA dataset. For each of the five attributes, four images synthesized by different
models were shuffled and randomly shown to volunteers. As a number of 15 volunteers
participated the questionnaire, a maximum of 20 � 5 = 300 votes can be received for
each approach and attribute. They were asked to select the best one, in terms of the
realism, preservation of identity and quality of the facial attribute synthesis. Table 1
lists the ratio of votes received for each model and attribute. While StarGAN received
the highest votes for pale skin transfer, our TDB-GAN received the highest votes for
four of the five attributes.

Fig. 3. Facial expression synthesis results on CelebA dataset.

Table 1. The perceptual evaluation of different models. Note that, the sum of probability of each
row is not strictly equal to 100% due to numerical precision loss.

Models Smile Pale skin Eyeglasses Gender Age

IcGAN 2.33% 2.00% 0 1.33% 0.33%
CycleGAN 21.33% 37.00% 28.00% 35.00% 20.00%
StarGAN 19.00% 36.67% 30.33% 9.67% 17.67%
TDB-GAN 57.33% 24.33% 41.67% 54.00% 62.00%
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5.4 Qualitative and Quantitative Evaluation on RaFD

Qualitative Evaluation. Figure 4 shows an example of seven facial expressions syn-
thesized by IcGAN, CycleGAN and StarGAN and our TDB-GAN. In Fig. 4, the images
generated by StarGAN and our TDB-GAN have better visual quality than that generated
by IcGAN and CycleGAN. The images generated by IcGAN have the lowest quality.
We believe that the latent vector extracted from IcGAN lacks effective representability.
While the performance of CycleGAN is considerably better than that of IcGAN, the fake
images generated by CycleGAN are still ambiguous. The fake faces synthesized by
StarGAN have much more natural and distinct expressions. Nonetheless, TDB-GAN is
superior to StarGAN for the sharper details and the more distinguishable expressions.
For example, the faces generated by our TDB-GAN for angry, fearful and surprised are
much more representative than that of StarGAN in the eye regions.

Quantitative Evaluation. For a quantitative evaluation, we compute the classification
error of facial expression recognition on the generated images. We first train a facial
expression classifier with the 4,320 training images. And then we train all the GAN
models using the same training set. For testing, we first use the trained GANs to
transfer all the neutral expression of the testing images to seven different expressions.
Then we use the aforementioned classifier to classify these synthesized expressions.
Table 2 lists the accuracies of the facial expression classifier on the images synthesized
by different GAN models. As shown in Table 2, the images synthesized by TDB-GAN
model achieves the highest accuracy, which suggests that it synthesizes the most
realistic facial expressions compared with the other methods.

Fig. 4. Facial expression synthesis results on RaFD dataset.

Table 2. The expression classification accuracies of images synthesized by different GAN
models.

Models IcGAN CycleGAN StarGAN TDB-GAN

Accuracy (%) 91.61 88.44 92.06 97.28
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5.5 Ablation Studies

In this section, we conduct an experiment on TDB-GAN with/without DAE module
and prove that the proposed identity loss helps to preserve more identity information
through a verification result.

Results with/without DAE. Note that, TDB-GAN without DAE is a typical StarGAN.
We argue that deformation would significantly affect the quality of face editing and the
convergence of the domain classification loss of fake face texture during training. As
illustrated in Fig. 5, the eyeglasses generated by TDB-GAN with DAE are more
obvious. For example, no glasses can be observed for the faces in column C, E, G and I
generated by TDB-GAN without DAE. The images generated by TDB-GAN without
DAE (A, C) do not show the pale skin as realistic as those generated by TDB-GAN.
While the faces of C and E generated by TDB-GAN without DAE are still smiling,
TDB-GAN with DAE correctly and naturally transfers the face image to smile or not.
Lastly, our method generates more genuine transfer of feminization, masculinity, aging
and rejuvenation than the TDB-GAN without DAE module.

As depicted in Fig. 6 (a), TDB-GAN with DAE achieves a lower domain classifi-
cation loss of fake face textures than the TDB-GAN without DAE. There is a clear
margin between the curves in the chart. The lower domain classification loss of fake
face textures indicates the better attributes transferring.

Results for Identity Loss. To verify the effectiveness of the identity loss, we evaluate
the performance of the domain transferring in terms of face recognition accuracy
generated by the identity loss.

Fig. 5. Facial attribute transfer results on the CelebA dataset. The first row demonstrates the
input image, next five rows show the single attribute transfer results. The odd columns display
the results generated by the TDB-GAN without DAE module, while the even columns show the
results produced with DAE.
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For each of the neutral face, we apply our network to generate seven facial
expression images, i.e. in total 63 � 7 = 441 fake facial expression images were
generated. Based on the 441 generated faces and 504 test images, we randomly gen-
erate 3,000 client and 3,000 impostor accesses. The network proposed by Wen and
Zhang [18] is employed to extract 512-dimension identity features from the face
images. The cosine distance is adopted to measure the similarity of two faces. The
similarity was compared with a threshold (e.g. 0.5) to decide whether they are from the
same person, or not. In this work, TPR (True Positive Rate), FPR (False Positive Rate),
EER (Equal Error Rate), AP (Average Precision) and AUC (Area under curve) are used
to evaluate the performance of face verification. The higher scores of these metrics,
except EER, the better results.

Figure 6 (b) and Table 3 show the ROC curves and the verification results of the
TDB-GAN with/without identity loss. From Table 3, while the TPR@FPR = 1% for
TDB-GAN without identity loss is 8.70, the identity loss significantly increases the
TPR@FRP = 1% to as high as 11.07. Identity loss almost doubles the TPR@FPR =
0.1% of the TDB-GAN. Table 3 also suggests that the TDB-GAN with identity
loss achieves the lower EER and higher AP and AUC than the TDB-GAN without
identity loss.

(a) (b)

Fig. 6. (a) The domain classification loss of the fake face textures generated by the TDB-GAN
with/without DAE module. (b) ROC curves on the test set of RaFD dataset.

Table 3. Verification performance on RaFD dataset.

Method TDB-GAN with identity loss TDB-GAN w/o identity loss

TPR@FPR = 1% 11.07 8.7
TPR@FPR = 0.1% 1.6 0.6
EER (%) 23.6 24.5
AP (%) 81.89 80.29
AUC (%) 83.73 82.82
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6 Conclusion

In this paper, we proposed Texture Deformation Based GAN to perform texture-to-
image translation among multiple domains. The proposed TDB-GAN can generate
images with higher quality and preserved identity compared to the existing methods,
due to the disentangled texture and deformation, and the identity loss.
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Abstract. While most image captioning aims to generate objective
descriptions of images, the last few years have seen work on generating
visually grounded image captions which have a specific style (e.g., incor-
porating positive or negative sentiment). However, because the stylistic
component is typically the last part of training, current models usu-
ally pay more attention to the style at the expense of accurate content
description. In addition, there is a lack of variability in terms of the
stylistic aspects. To address these issues, we propose an image caption-
ing model called ATTEND-GAN which has two core components: first,
an attention-based caption generator to strongly correlate different parts
of an image with different parts of a caption; and second, an adversar-
ial training mechanism to assist the caption generator to add diverse
stylistic components to the generated captions. Because of these compo-
nents, ATTEND-GAN can generate correlated captions as well as more
human-like variability of stylistic patterns. Our system outperforms the
state-of-the-art as well as a collection of our baseline models. A linguistic
analysis of the generated captions demonstrates that captions generated
using ATTEND-GAN have a wider range of stylistic adjectives and
adjective-noun pairs.

Keywords: Image captioning · Attention mechanism ·
Adversarial training

1 Introduction

Deep learning has facilitated the task of supplying images with captions. Cur-
rent image captioning models [2,27,29] have gained considerable success due to
powerful deep learning architectures and large image-caption datasets including
the MSCOCO dataset [17]. These models mostly aim to describe an image in a
factual way. Humans, however, describe an image in a way that combines sub-
jective and stylistic properties, such as positive and negative sentiment, as in
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1. the gorgeous sky really makes  
the man on the board stand out!
2. a great man flying through the
air while riding a kite board.

1. a group of horses have a tough
race around the track.
2. small number of horses with
jockeys in a race on a track.

Fig. 1. Examples of positive (green) and negative (red) captions. (Color figure online)

the captions of Fig. 1. Users often find such captions more expressive and more
attractive [8]; they have the practical purpose of enhancing the engagement level
of users in social applications (e.g., chatbots) [14], and can assist people to make
interesting image captions in social media content [8]. Moreover, Mathews et
al. [19] found that they are more common in the descriptions of online images,
and can have a role in transferring visual content clearly [18].

In stylistically enhanced descriptions, the content of images should still be
reflected correctly. Moreover, the descriptions should fluently include stylistic
words or phrases. To meet these criteria, previous models have used two-stage
training: first, training on a large factual dataset to describe the content of an
image; and then training on a small stylistic dataset to apply stylistic properties
to a caption. The models have different strategies for integrating the learned
information from the datasets. SentiCap has two Long Short-Term Memory
(LSTM) networks: one learns from a factual dataset and the other one learns
from a stylistic dataset [19]. In comparison, Gan et al. [8] proposed a new type of
LSTM network, factored LSTM, to learn both factual and stylistic information.
The factored LSTM has three matrices instead of one multiplied to the input
caption: two matrices are learned to preserve the factual aspect of the input cap-
tion and one is learned to transfer the style aspect of the input caption. Chen et
al. [5] applied an attention-based model which is similar to the factored LSTM,
but it has an attention mechanism to differentiate attending to the factual and
sentiment information of the input caption.

However, since the stylistic dataset is usually small, preserving the correla-
tions between images and captions as well as generating a wide variety of stylistic
patterns is very difficult. An imperfect caption from the system of Mathews et
al. [19]—“a dead man doing a clever trick on a skateboard at a skate park”—
illustrates the problem: the man is not actually dead; this is just a frequently
used negative adjective.

Recently, Mathews et al. [18] dealt with this by applying a large stylistic
dataset to separate the semantic and stylistic aspects of the generated captions.
However, evaluation in this work was more difficult because the dataset includes
stylistic captions which are not aligned to images. To address this challenge with-
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out any large stylistic dataset, we propose ATTEND-GAN, an image caption-
ing model using an attention mechanism and a Generative Adversarial Network
(GAN); our particular goal is to better apply stylistic information in the sort of
two-stage architecture in previous work. Similar to this previous work, we first
train a caption generator on a large factual dataset, although ATTEND-GAN
uses an attention-based version attending to different image regions in the cap-
tion generation process [2]. Because of this, each word of a generated caption
is conditioned upon a relevant fine-grained region of the corresponding image,
ensuring a direct correlation between the caption and the image. Then we train
a caption discriminator to distinguish between captions generated by our cap-
tion generator, and real captions, generated by humans. In the next step, on a
small stylistic dataset, we implement an adversarial training mechanism to guide
the generator to generate sentiment-bearing captions. To do so, the generator is
trained to fool the discriminator by generating correlated and highly diversified
captions similar to human-generated ones. The discriminator also periodically
improves itself to further challenge the generator. Because GANs are originally
designed to face continuous data distributions not discrete ones like texts [9],
we use a gradient policy [31] to guide our caption generator using the rewards
received from our caption discriminator for the next generated word, as in rein-
forcement learning [23]. The contributions of this paper are1:

– To generate human-like stylistic captions in a two-stage architecture, we pro-
pose ATTEND-GAN (Sect. 3) using both the designed attention-based cap-
tion generator and the adversarial training mechanism [9].

– ATTEND-GAN achieves results which are significantly better than the
state-of-the-art (Sect. 4.5) and a comprehensive range of our baseline models
(Sect. 4.6) for generating image captions with styles.

– On the SentiCap dataset [19], we show how ATTEND-GAN can result in
stylistic captions which are strongly correlated with visual content (Sect. 4.8).
ATTEND-GAN also exhibits significant variety in generating adjectives and
adjective-noun pairs (Sect. 4.7).

2 Related Work

2.1 Image Captioning

The encoder-decoder framework of Vinyals et al. [27] where the encoder learns
to encode visual content, using a Convolutional Neural Network (CNN), and the
decoder learns to describe the visual content, using a long-short term memory
(LSTM) network, is the basis of modern image captioning systems. Having an
attention-based component has resulted in the most successful image caption-
ing models [2,22,29,30]. These models use attention in either the image side or
the caption side. For instance, Xu et al. [29] and Rennie et al. [22] attended to

1 Our code and trained model are publicly available from https://github.com/
omidmnezami/ATTEND-GAN.

https://github.com/omidmnezami/ATTEND-GAN
https://github.com/omidmnezami/ATTEND-GAN
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the spatial visual features of an image. In comparison, You et al. [30] applied
semantic attention attending to visual concepts detected in an image. Anderson
et al. [2] applied an attention mechanism to attend to spatial visual features
and discriminate not only the visual regions but also the detected concepts in
the regions [2]. In addition to factual image captioning, the ability to generate
stylistic image captions has recently become popular. The key published work
[5,8,18,19] uses a two-stage architecture, although end-to-end is possible. None
of the existing work uses an adversarial training mechanism; we show this, com-
bined with attention, significantly outperforms the previous work.

2.2 Generative Adversarial Network

Goodfellow et al. [9] introduced Generative Adversarial Networks (GANs), whose
training mechanism consists of a generator and a discriminator; they have been
applied with great success in different applications [12,15,21,28,31]. The dis-
criminator is trained to recognize real and synthesized samples generated by the
generator. In contrast, the generator wants to generate realistic data to mislead
the discriminator in distinguishing the source of data.

GANs were originally established for a continuous data space [9,31] rather
than a discrete data distribution as in our work. To handle this, a form of
reinforcement learning is usually applied, where the sentence generation process
is formulated as a reinforcement learning problem [23]; the discriminator provides
a reward for the next action (in our context the next generated word), and the
generator uses the reward to calculate gradients and update its parameters,
as proposed in Yu et al. [31]. Wang and Wan [28] applied this to generating
sentiment-bearing text (although not conditioned on any input, such as the
images in our captioning task).

3 ATTEND-GAN Model

The purpose of our image captioning model is to generate sentiment-bearing
captions. Our caption generator employs an attention mechanism, described in
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Fig. 2. The architecture of the ATTEND-GAN model. {a1, ..., aK} are spatial visual
features generated by ResNet-152 network. Attend and MC modules are our attention
mechanism and Monte Carlo search, respectively.
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Sect. 3.1, to attend to fine-grained image regions a = {a1, ..., aK}, ai ∈ R
D,

where the number of regions is K with D dimensions, in different time steps
so as to generate an image caption x = {x1, . . . , xT }, xi ∈ R

N , where the size
of our vocabulary is N and the length of the generated caption is T . We also
propose a caption discriminator, explained in Sect. 3.2, to distinguish between
the generated captions and human-produced ones. We describe our training in
Sect. 3.3. Our proposed model is called ATTEND-GAN (Fig. 2).

3.1 Caption Generator

The goal of our caption generator Gθ(xt|x1:t−1, ât) is to generate an image
caption to achieve a maximum reward value from our caption discriminator
Dφ(x1:T ), where θ and φ are the parameters of the generator and the discrimi-
nator, respectively. The objective function of the generator, which is dependent
on the discriminator, is to minimize:

L1(θ) =
∑

1≤t≤T

Gθ(xt|x1:t−1, ât).ZGθ

Dφ
(x1:t) (1)

where ZGθ

Dφ
(x1:t) is the reward value of the partially generated sequence, x1:t, and

is estimated using the discriminator. The reward value can be interpreted as a
score value that x1:t is real. Since the discriminator can only generate a reward
value for a complete sequence, Monte Carlo (MC) search is applied, which uses
the generator to roll out the remaining part of the sequence at each time step.
We apply MC search N times, and calculate the average reward (to decrease the
variance of the next generated words):

ZGθ

Dφ
(x1:t) =

⎧
⎨

⎩
1
N

N∑
n=1

Dφ(xn
1:T ), xn

1:T ∈ MCGθ
(x1:t;N ) if t < T

Dφ(x1:t) if t = T

(2)

xn
1:T is the n-th MC-completed sequence at current time step t. In addition to

Eq. (1), we calculate the maximum likelihood estimation (MLE) of the generated
word with respect to the attention-based content (ât) and the hidden state (ht)
at the current time of our LSTM, which is the core of our caption generator, as
the second objective function:

L2(θ) = −
∑

1≤t≤T

log(pw(xt | ât, ht)) + λ1

∑

1≤k≤K

(1 −
∑

1≤t≤T

atk)2 (3)

pw is calculated using a multilayer perceptron with a softmax layer on its output
and indicates the probabilities of the possible generated words:

pw(xt | ât, ht) = softmax(âtWa + htWh + bw) (4)

Wx and bw are the learned weights and biases. The last term in Eq. (3) is to
encourage our caption generator to equally consider diverse regions of the given
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Algorithm 1. ATTEND-GAN Training Mechanism.
1: Pre-train the caption generator (Gθ) using Eq. (9).
2: Use Gθ to generate sample captions PG and select ground-truth captions PH .
3: Pre-train the caption discriminator (Dφ) using Eq. (10) and the combination of PG

and PH .
4: repeat
5: for g steps do
6: Apply Gθ to generate image captions.
7: Calculate ZGθ

Dφ
using Eq. (2).

8: Update θ, the parameters of Gθ, using Eq. (8).
9: end for

10: for d steps do
11: Generate sample captions PG by Gθ and select human-generated captions PH .

12: Update φ, the parameters of Dφ, using Eq. (10).
13: end for
14: until ATTEND-GAN converges

image at the end of the caption generation process. λ1 is a regularization param-
eter. ht is calculated using our LSTM:

it = σ(Hiht−1 + Wiwt−1 + Aiât + bi)
ft = σ(Hfht−1 + Wfwt−1 + Af ât + bf )
gt = tanh(Hght−1 + Wgwt−1 + Agât + bg)
ot = σ(Hoht−1 + Wowt−1 + Aoât + bo)
ct = ftct−1 + itgt

ht = ot tanh(ct)

(5)

Here, it, ft, gt, ot, and ct are the LSTM’s gates and represent input, forget,
modulation, output, and memory gates, respectively. wt−1 is the embedded pre-
vious word in M dimensions, wx ∈ R

M . Hx,Wx, Ax, and bx are learned weights
and biases; and σ is the Sigmoid function. Using ht, our soft attention module
generates unnormalized weights ej,t for each image region aj . Then, the weights
are normalized using a softmax layer, e′

t:

ej,t = WT
e tanh(W ′

aaj + W ′
hht), e′

t = softmax(et) (6)

WT
e and W ′

x are our trained weights. Finally, ât, our attention-based content, is
calculated using Eq. (7):

ât =
∑

1≤j≤K

e′
j,taj (7)

During the adversarial training, the objective function of the caption gener-
ator is a combination of Eqs. (1) and (3):

LG(θ) = λ2L1(θ) + L2(θ) (8)
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λ2 is a balance parameter. The discriminator cannot be learned effectively from
a random initialization of the generator; we therefore pretrain the generator with
the MLE objective function:

LG(θ) = L2(θ) (9)

3.2 Caption Discriminator

Our caption discriminator is inspired by the Wasserstein GAN (WGAN) [3]
which is an improved version of the GAN [9]. The WGAN generates continuous
values and solves the problem of the GAN generating non-continuous outputs
leading to some training difficulties (e.g. vanishing gradients). The objective
function of our WGAN is:

LD(φ) = Ex∼PH
[Dφ(x)] − Ex∼PG

[Dφ(x)] (10)

where φ are the parameters of the discriminator (Dφ); PH is the set of the
generated captions by humans; and PG is the set of the generated captions by
the generator. Dφ is implemented via a Convolutional Neural Network (CNN)
that calculates the score value of the input caption. To feed a caption to our
CNN model, we first embed all words in the caption into M embedding dimen-
sions, {w′

1, . . . , w
′
T }, w′

i ∈ R
M , and build a 2-dimensional matrix for the caption,

S ∈ R
T×M [31]. Our CNN model includes Convolutional (Conv.) layers with P

different kernel sizes {k1, . . . , kP }, ki ∈ R
C×M , where C indicates the number

of the words (C ∈ [1, T ]). Applying each Conv. layer to S results a number of
feature maps, vij = ki ⊗ Sj:j+C−1 + bj , where ⊗ is a convolution operation and
bj is a bias vector. We apply a batch normalization layer [11], and a nonlinearity,
a rectified linear unit (ReLU), respectively. Then, we apply a max-pooling layer,
v∗

i = max vij . Finally, a fully connected layer is applied to output the score value
of the caption. The weights of our CNN model are clipped to be in a compact
space.

3.3 ATTEND-GAN Training

As shown in Algorithm 1, we first pre-train our caption generator for a specific
number of epochs. Then, we apply the best generator model to generate sample
captions. The real captions are selected from the ground truth. In Step 3, our
caption discriminator is pre-trained using a combination of the generated and
real captions for a specific number of epochs. Here, both the caption generator
and discriminator are pre-trained on a factual dataset. In Step 4, we start our
adversarial training on a sentiment-bearing dataset with positive or negative
sentiment. We continue the training of the caption generator and discriminator
for g-steps and d-steps, respectively. Using this mechanism, we improve both
the caption generator and discriminator. Here, the caption generator applies the
received rewards from the caption discriminator to update its parameters using
Eq. (8).



Towards Generating Stylized Image Captions via Adversarial Training 277

4 Experiments

4.1 Datasets

Microsoft COCO Dataset. We use the MSCOCO image-caption dataset [17] to
train our models. Specifically, we use the training set of the dataset including
82K+ images and 413K+ captions.

SentiCap Dataset. To add sentiment to the generated captions, our models are
trained on the SentiCap dataset [19] including sentiment-bearing image captions.
The dataset has two separate sections of sentiments: positive and negative. 2,873
captions paired with 998 images (409 captions with 174 images are for validation)
are for training and 2019 captions paired with 673 images are for testing in the
positive section. 2,468 captions paired with 997 images (429 captions with 174
images are for validation) are for training and 1,509 captions paired with 503
images are for testing in the negative section. We use the same training/test
folds as in the previous work [5,19].

4.2 Evaluation Metrics

ATTEND-GAN is evaluated using standard image captioning metrics:
METEOR [7], BLEU [20], CIDEr [26] and ROUGE-L [16]. SPICE has not previ-
ously been used in the literature; however, it is reported for future comparisons
because it has shown a close correlation with human-based evaluations [1]. Larger
values of these metrics indicated better results.

4.3 Models for Comparison

We first trained our models on the MSCOCO dataset to generate factual cap-
tions. Then, we trained our models on the SentiCap dataset to add sentiment
properties to the generated captions. This two-stage training mechanism is simi-
lar to the training methods of [19] and [8]. The work of [5], the newest one in this
domain, was also implemented in a similar way. Following this training approach
makes our results directly comparable to the previous ones. Our models are com-
pared with a range of baseline models from Mathews et al. [19]: CNN+RNN,
which is only trained using the MSCOCO dataset; ANP-Replace, which adds
the most common adjectives to a randomly chosen noun; ANP-Scoring, which
applies multi-class logistic regression to select an adjective for the chosen noun;
RNN-Transfer, which is CNN+RNN fine-tuned on the SentiCap dataset; and
their key system SentiCap, which uses two LSTM modules to learn from fac-
tual and sentiment-bearing caption. We also compare with SF-LSTM+Adap,
which applies an attention mechanism to weight factual and sentiment-based
information [5]. The results of all these models in Table 1 are obtained from
the corresponding references. Moreover, we first train our attention-based model
only on the factual dataset MSCOCO (we name this model ATTEND-GAN−SA).
Second, we train our model additionally on the SentiCap dataset but without
our caption discriminator (ATTEND-GAN−A). Finally, we train our full model
using the caption discriminator (ATTEND-GAN).
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4.4 Implementation Details

Encoder. In this work, we apply ResNet-152 [10] as our visual encoder model pre-
trained using the ImageNet dataset [6]. In comparison with other CNN models,
ResNet-152 has shown more effective results on different image-caption datasets
[4]. We specifically use its Res5c layer to extract the spatial features of an image.
The layer gives us 7 × 7 × 2048 feature map converted to 49 × 2048 representing
49 semantic-based regions with 2048 dimensions.

Vocabulary. Our vocabulary has 9703 words, coming form both the MSCOCO
and SentiCap datasets, for all our models. Each word is embedded into a 300
dimensional vector.

Generator and Discriminator. The size of the hidden state and the memory cell
of our LSTM is set to 512. For the caption generator, we use the Adam function
[13] for optimization and set the learning rate to 0.0001. We set the size of our
mini-batches to 64. To optimize the caption discriminator, we use the RMSprop
solver [24] and clip the weights to [−0.01, 0.01]. The mini-batches are fixed to
80 for the discriminator. We apply Monte Carlo search 5 times (Eq. (2)). We set
λ1 and λ2 to 1.0 and 0.1 in Eqs. (3) and (8), respectively. During the adversarial
training, we alternate between Eqs. (8) and (10) to optimize the generator and
the discriminator, respectively. We particularly operate a single gradient decent
phase on the generator (g steps) and 3 gradient phases (d steps) on the dis-
criminator every time. The models are trained for 20 epochs to converge. The
METEOR metric is used to select the model with the best performance on the
validation sets of positive and negative datasets of SentiCap because it has a
close correlation with human judgments and is less computationally expensive
than SPICE which requires dependency parsing [1].

4.5 Results: Comparison with the State-of-the-Art

All models in Table 1 used the same training/test folds of the SentiCap dataset to
make them comparable. In comparison with the state-of-the-art, our full model
(ATTEND-GAN) achieves the best results for all image captioning metrics in
both positive and negative parts of the SentiCap dataset. We report the average
results to show the average improvements of our models over the state-of-the-
art model. ATTEND-GAN achieved large gains of 6.15, 6.45, 3.00, and 2.95
points with respect to the best previous model using BLEU-1, ROUGE-L, CIDEr
and BLEU-2 metrics, respectively. Other metrics show smaller but still positive
improvements.

4.6 Results: Comparison with Our Baseline Models

Our models are compared in Table 1 in terms of image captioning metrics.
ATTEND-GAN outperforms ATTEND-GAN−A over all metrics across both
positive and negative parts of the SentiCap dataset; the discriminator is thus
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Table 1. The compared performances on different sections of SentiCap and their aver-
age. BLEU-N metric is shown by B-N. (The best results are bold.)

Senti Model B-1 B-2 B-3 B-4 ROUGE-L METEOR CIDEr SPICE

Pos CNN+RNN 48.7 28.1 17.0 10.7 36.6 15.3 55.6

ANP-Replace 48.2 27.8 16.4 10.1 36.6 16.5 55.2

ANP-Scoring 48.3 27.9 16.6 10.1 36.5 16.6 55.4

RNN-Transfer 49.3 29.5 17.9 10.9 37.2 17.0 54.1

SentiCap 49.1 29.1 17.5 10.8 36.5 16.8 54.4

SF-LSTM + Adap 50.5 30.8 19.1 12.1 38.0 16.6 60.0

Ours: ATTEND-GAN−SA 56.1 32.5 19.4 11.8 44.8 17.1 63.0 15.9

Ours: ATTEND-GAN−A 55.8 33.4 20.1 12.4 44.2 18.6 61.1 15.7

Ours: ATTEND-GAN 56.9 33.6 20.3 12.5 44.3 18.8 61.6 15.9

Neg CNN+RNN 47.6 27.5 16.3 9.8 36.1 15.0 54.6

ANP-Replace 48.1 28.8 17.7 10.9 36.3 16.0 56.5

ANP-Scoring 47.9 28.7 17.7 11.1 36.2 16.0 57.1

RNN-Transfer 47.8 29.0 18.7 12.1 36.7 16.2 55.9

SentiCap 50.0 31.2 20.3 13.1 37.9 16.8 61.8

SF-LSTM + Adap 50.3 31.0 20.1 13.3 38.0 16.2 59.7

Ours: ATTEND-GAN−SA 55.4 32.4 19.4 11.9 44.4 17.0 63.4 15.6

Ours: ATTEND-GAN−A 54.7 32.6 20.4 12.9 43.2 17.7 60.4 16.1

Ours: ATTEND-GAN 56.2 34.1 21.3 13.6 44.6 17.9 64.1 16.2

Avg CNN+RNN 48.15 27.80 16.65 10.25 36.35 15.15 55.10

ANP-Replace 48.15 28.30 17.05 10.50 36.45 16.25 55.85

ANP-Scoring 48.10 28.30 17.15 10.60 36.35 16.30 56.25

RNN-Transfer 48.55 29.25 18.30 11.50 36.95 16.60 55.00

SentiCap 49.55 30.15 18.90 11.95 37.20 16.80 58.10

SF-LSTM + Adap 50.40 30.90 19.60 12.70 38.00 16.40 59.85

Ours: ATTEND-GAN−SA 55.75 32.45 19.40 11.85 44.60 17.05 63.20 15.75

Ours: ATTEND-GAN−A 55.25 33.00 20.25 12.65 43.70 18.15 60.75 15.90

Ours: ATTEND-GAN 56.55 33.85 20.80 13.05 44.45 18.35 62.85 16.05

an important part of the architecture. ATTEND-GAN outperforms ATTEND-
GAN−SA for all metrics except, by a small margin, CIDEr and ROUGE-L. Recall
that ATTEND-GAN−SA is trained only on the large MSCOCO (with many
captions), and so is in a sense encouraged to have diverse captions; second-stage
training for ATTEND-GAN−A and ATTEND-GAN leads to more focussed cap-
tions relevant to SentiCap. As CIDEr and ROUGE-L are the two recall-oriented
metrics, they suffer in this two-stage process, illustrating the issue we noted in
Sect. 1. The discriminator, however, removes almost all of this penalty, as well as
boosting the other metrics beyond ATTEND-GAN−SA. Furthermore, Sect. 4.7
illustrates how ATTEND-GAN−SA produces unsatisfactory captions in terms of
sentiment.
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Table 2. Entropy and Top4 of the generated adjectives using different models.

Senti Model Entropy Top4

Pos ATTEND-GAN−SA 2.2457 93.33%

ATTEND-GAN−A 3.0324 72.11%

ATTEND-GAN 3.5671 62.33%

Neg ATTEND-GAN−SA 2.2448 91.67%

ATTEND-GAN−A 4.1040 48.44%

ATTEND-GAN 3.9562 50.51%

Avg ATTEND-GAN−SA 2.2453 92.50%

ATTEND-GAN−A 3.5682 60.28%

ATTEND-GAN 3.7617 56.42%

Table 3. The top-10 adjectives that are generated by our models and are in the
adjective-noun pairs of the SentiCap dataset.

Senti Model Top 10 adjectives

Pos ATTEND-GAN−SA white, black, small, blue, different, little, busy, , ,

ATTEND-GAN−A nice, beautiful, happy, busy, great, sunny, good, cute,
pretty, white

ATTEND-GAN nice, beautiful, happy, great, good, sunny, busy,
white, pretty, delicious

Neg ATTEND-GAN−SA black, white, small, blue, different, tall, little, , ,

ATTEND-GAN−A lonely, dead, broken, stupid, dirty, bad, cold, little,
crazy, lazy

ATTEND-GAN lonely, stupid, broken, dirty, dead, cold, bad, white,
crazy, little

4.7 Qualitative Results

To analyze the quality of language generated by our models, we extract all
generated adjectives using the Stanford part-of-speech tagger software [25], and
select the adjectives found in the adjective-noun pairs (ANPs) of the SentiCap
dataset. Then, we calculate Entropy of the distribution of these adjectives as a
measure of variety in lexical selection (higher scores mean more variety) using
Eq. (11).

Entropy = −
∑

1≤j≤U

log2[p(Aj)] × p(Aj) (11)

where p(Aj) is the probability of the adjective (Aj) and U indicates the number
of all unique adjectives. Moreover, we calculate the total probability mass of the
four most frequent adjectives (Top4) generated by our models. Here, lower values
mean that the model allocates more probability to other generated adjectives,
also indicating greater variety.
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Table 2 shows that ATTEND-GAN achieves the best results on average for
Entropy (highest score) and Top4 (lowest) compared to other models, by a large
margin with respect to ATTEND-GAN−SA. It is not surprising that ATTEND-
GAN−SA has the lowest variability of use of sentiment-bearing adjectives because
it does not use the stylistic dataset. As demonstrated by the improvement of
ATTEND-GAN over ATTEND-GAN−A, the discriminator helps in generating
a greater diversity of adjectives.

The top-10 adjectives generated by our models are shown in Table 3. “white”
is generated for both negative and positive sections because they are common
in both sections. ATTEND-GAN and ATTEND-GAN−A produce a natural
ranking of sentiment-bearing adjectives for both sections. For example, these
models rank “nice” as the most positive adjective, and “lonely” as the most
negative. As ATTEND-GAN−SA does not use the stylistic dataset, it generates
a similar and limited (<10) range of adjectives for both.

AS: a bus is parked on the  
side of the road.  
A: a red bus drives down
a nice street.
AG: a bus drives down a  
nice street in a beautiful
city.

AS: a woman is playing  
tennis on a court. 
A: a woman is playing  
tennis on a beautiful court. 
AG: a pretty woman is  
playing tennis on a tennis  
court.

AS: a table with a variety  
of food on it. 
A: a table with a great  
variety of food and plates
of food. 
AG: a table with a plate
of tasty food and a good meal.

AS: a group of people
playing a game of soccer. 
A: a dead man is playing  
frisbee on a field. 
AG: a group of stupid
people are playing
frisbee on a field.

AS: a person riding skis
down a snow covered slope.
A: a person on a snowboard
riding down a rough hill.
AG: a skier is going down
a rough hill on a cold day.

AS: a woman is cutting a
piece of cake on a table.
A: a person is making a  
bad food at a table.
AG: a man is making a  
bad picture of a sandwich.

Fig. 3. Examples on the positive (first 3) and negative (last 3) datasets (AS for
ATTEND-GAN−SA, A for ATTEND-GAN−A and AG for ATTEND-GAN). Green
and red colors indicate the generated positive and negative adjective-noun pairs in
SentiCap, respectively. (Color figure online)

4.8 Generated Captions

Figure 3 shows sample sentiment-bearing captions generated by our models for
the positive and negative sections of the SentiCap dataset.2 For instance, for
the first two images, ATTEND-GAN correctly applies positive sentiments
to describe the corresponding images (e.g., “nice street”, “tasty food”). Here,
ATTEND-GAN−A also succeeds in generating captions with positive sentiments,
but less well. In the third image, ATTEND-GAN uses “pretty woman” to
describe the image which is better than the “beautiful court” of ATTEND-
GAN−A: for this image, all ground-truth captions have positive sentiment for
the noun “girl” (e.g. “a beautiful girl is running and swinging a tennis racket”);
none of them describes the noun “court” with a sentiment-bearing adjective as

2 See a link to supplementary materials for additional samples: https://github.com/
omidmnezami/ATTEND-GAN/blob/master/st.pdf.

https://github.com/omidmnezami/ATTEND-GAN/blob/master/st.pdf
https://github.com/omidmnezami/ATTEND-GAN/blob/master/st.pdf
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ATTEND-GAN−A does. For all images, since ATTEND-GAN−SA is not trained
using the SentiCap dataset, it does not generate any caption with sentiment.
For the fourth image, ATTEND-GAN generates “a group of stupid people are
playing frisbee on a field”, applying “stupid people” to describe the image neg-
atively. Here, one of the ground-truth captions exactly includes “stupid people”
(“two stupid people in open field watching yellow tent blown away”). ATTEND-
GAN−A, like our flawed example from Sect. 1, refers instead inaccurately to a
dead man. For the fifth image (as for the first image), ATTEND-GAN has
incorporates more (appropriate) sentiment in comparison to ATTEND-GAN−A.
It generates “rough hill” and “cold day”, while ATTEND-GAN−A only gener-
ates the former. It also uses “skier” which is more appropriate than “person”.
In the last image, ATTEND-GAN adds “bad picture” and ATTEND-GAN−A

generates “bad food”. One of the ground-truth captions exactly includes “bad
picture”.

5 Conclusion

In this paper, we proposed ATTEND-GAN, an attention-based image caption-
ing model using an adversarial training mechanism. Our model is capable of
generating stylistic captions which are strongly correlated with images and con-
tain diverse stylistic components. ATTEND-GAN achieves the state-of-the-art
performance on the SentiCap dataset. It also outperforms our baseline models
and generates stylistic captions with a high level of variety. Future work includes
developing ATTEND-GAN to generate a wider range of captions and develop-
ing further mechanisms to ensure compatibility with the visual content.
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Abstract. Automatic text summarization is an important research task
in the field of natural language processing (NLP). The abstractive app-
roach to automatic text summarization produces the condensed ver-
sion of the source text by generating new words and phrases. Recently,
the attentional sequence-to-sequence models have shown good ability in
abstractive text summarization. Nevertheless, these neural network mod-
els are still hard to cover most key points of the source text and may pro-
duce unfactual details. To address these issues, we proposed a keywords-
based auxiliary information model to guide the process of encoding and
decoding. Firstly, we proposed an auxiliary information network based
on the keywords of the document, which aims to generate the modified
encoded representation. In addition, we designed a novel selective beam
search mechanism to keep more keywords and reduce redundancy in the
decoded summaries. We evaluated our model on different datasets includ-
ing the benchmark CNN/Daily Mail dataset. The experimental results
show that our model leads to significant improvements compared with
abstractive baseline models.

Keywords: Abstractive text summarization ·
Keywords-based auxiliary information network ·
Selective beam search mechanism

1 Introduction

Automatic text summarization has become an important and effective method
for processing and interpreting text information [6] and its task is to generate a
brief and informative summary text from an input text. The approaches to auto-
matic text summarization can roughly fall into two categories: extractive and
abstractive [19]. Extractive models usually assemble summaries by extracting a
set of sentences or keywords directly from the source text [12,24], thus extrac-
tive models unavoidably suffer from redundancy and incoherence. On the other
hand, abstractive models can generate novel phrases and restructure sentences
to form concise summary [5,23].
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https://doi.org/10.1007/978-3-030-29908-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29908-8_23&domain=pdf
https://doi.org/10.1007/978-3-030-29908-8_23


288 H. Wang et al.

Based on the attentional sequence-to-sequence (seq2seq) framework [1,26],
neural network models are capable to generate the summaries with good per-
formance [2,21]. However, these models still have weaknesses such as producing
unfactual details and redundant sequences in summary text [4]. To solve these
issues, the model need to capture the information accurately and control the
generation process, which requires improving the quality of encoded represen-
tation and optimizing the decoding strategy [7,29]. Inspired by the process of
human writing summaries—the key information, such as key concepts and key
entities of the source text, is first identified and then summaries are generated
based on these key information, we propose a keywords-based auxiliary infor-
mation model, which uses the keywords of the source text as a guidance to
control the procedures for both encoding and decoding. Specifically, We con-
struct an auxiliary information network that uses the key vector derived from
the keywords to guide the generation process of the encoded word representa-
tion. Moreover, we employ a selective beam search mechanism to control the
selection of the candidate summaries by applying a hypotheses scoring function.
Compared with existing work on abstractive text summarization, the proposed
model utilizes the auxiliary information to guide the generation and has better
ability of grasping the key points of the text.

To summarize, we make the following contributions:

– We propose a keywords-based auxiliary information network that injects the
auxiliary information into the encoding process to generate the modified
encoded representation.

– A novel selective beam search mechanism is introduced to rerank and select
the candidate summary with more keywords and less redundancy in the
decoding process.

– We evaluate our model on different datasets compared with the state-of-the-
art abstractive model with pointer mechanism. Experimental results indicate
that our model achieves significant improvements and obtains higher ROUGE
scores on benchmark CNN/Daily Mail dataset.

The rest of the paper is organized as follows. Section 2 reviews the related
research. Section 3 introduces the concrete implementation of our model.
Section 4 presents the experiment settings and performs a qualitative analysis of
the results. Section 5 concludes the paper and discusses the future direction.

2 Related Work

Sequence-to-sequence model was first proposed for the natural language process
task of machine translation [18,26]. The seq2seq model belongs to a family of
encoder-decoders, which first encodes the input text to the abstract represen-
tation and then decodes the summary based on the encoded representation [9].
Motivated by its success on machine translation, this model was then applied to
the task of abstractive text summarization [21,23].
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Many abstractive models attempt to improve the encoding process in differ-
ent ways [3,15]. Nallapati et al. [21] used the lexical and statistic features to
enrich the encoder by concatenating them to embedding vector, which boosts
performance incrementally. Zhou et al. [29] proposed a selective encoding model
to improve encoding efficiency. This model is capable of selecting the encoded
information to construct the second level representation by applying a selec-
tive gate network, which leads to better performance. Lin et al. [17] designed
a global encoding framework, which implements a convolutional gated unit to
improve the influence of the global context on word representation. These models
employed diverse ways to improve the representation of the source-side informa-
tion, which leads to certain progress on the task of short text summarization.
However, on the task of multi-sentence summarization, obtaining a high-quality
encoded representation remains a challenge because the lengthy source text have
too much redundancy information [25]. Focusing on refining the encoded repre-
sentation on the task of multi-sentence summarization, in our work, we propose
an keywords-based auxiliary information network to generate the tailored rep-
resentation by incorporating the word representation with the key information
representation derived from the keywords.

Besides the work on improving the encoded representation, some research
also consider improving the decoding strategy [13,14]. In the decoding process,
there are some notable issues such as out-of-vocabulary (OOV) words prob-
lem, the repetition and the suboptimization problem of beam search method
[25]. To handle these issues, great efforts have been made recently. Based on
the pointer network [28], copy mechanism and pointer-generator network are
proposed to alleviate the OOV words problem [11,25]. Coverage mechanism and
intra-attention are utilized to solve the repetition problem [22,25]. Diverse beam
search method is leveraged to improve the diversity of the hypotheses [27]. These
studies demonstrate that optimizations in the decoding portion can improve the
quality of the summary text effectively. In our work, we introduce a novel selec-
tive beam search mechanism, which applies a hypotheses scorer that considers
not only the conditional probability but also the keywords and the redundancy
during decoding summary.

3 Our Model

An overview of our approach is illustrated in Fig. 1. Given a source text, we
first apply a sentence encoder to read the input words x = (x1, x2, ..., xn) and
build its representation (h1, h2, ..., hn). Then the keywords-based auxiliary infor-
mation network incorporate the auxiliary information with the word represen-
tation to produce the modified encoded representation (h∗

1, h
∗
2, . . . , h

∗
n), which

is used as input of the attentional-equipped decoder. At last, we use the selec-
tive beam search mechanism to score the candidate summaries and select the
highest-ranking hypothesis as final summary. In the following, we will introduce
our sentence encoder, the keywords-based auxiliary information network, atten-
tional summary decoder and the selective beam search mechanism respectively.
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Fig. 1. Overview of the keywords-based auxiliary information model.

3.1 Sentence Encoder

We employ a single-layer bidirectional LSTM as encoder, which reads the tokens
wi of the input text one-by-one to generate the bidirectional hidden states.

The BiLSTM consists of a forward LSTM and a backward LSTM. The for-
ward LSTM reads the word embeddings of the input text from left to right and
produces a sequence of hidden states (

−→
h 1,

−→
h 2, ...,

−→
h n). The backward LSTM

reads the input sequence in reverse order and produces another sequence of hid-
den states (

←−
h 1,

←−
h 2, ...,

←−
h n). The process can be defined by the Eqs. (1) and

(2): −→
h i = LSTM(xi,

−→
h i−1) (1)

←−
h i = LSTM(xi,

←−
h i+1) (2)

After that, the forward and backward hidden states are concatenated to produce
a sequence of encoded hidden states, i.e., hi = [

−→
h i;

←−
h i]. These basic encoded

hidden states are then used as the input of keywords-based auxiliary information
network to generate the modified encoded word presentation.

3.2 Keywords-Based Auxiliary Information Network

In multi-sentence summarization, covering the key points of the source text is
still a challenge. In order to accomplish this goal, we propose a keywords-based
auxiliary information network (KAIN) as shown in Fig. 2.

We use the extractive method to obtain keywords of the source text by Tex-
tRank algorithm [20] and then concatenate the keywords to obtain the key infor-
mation representation z. For each word xi, the auxiliary information network
generates a key vector ki by feeding the initial encoded state hi and key infor-
mation representation z through a linear layer with activation function. After
that, we incorporate each initial hidden state hi with the key vector ki to con-
struct the sequence of tailored representation (h∗

1, h
∗
2, . . . , h

∗
n).
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Fig. 2. Structure of encoder with the auxiliary information network

In detail, we apply the extractive method to get m keywords. To obtain the
key information representation, we firstly make a keywords mask, shown as Eq.
(3), to get the corresponding keywords’ hidden state hi by determining if the
word xi is a keyword.

Maski =
{

1 xi ∈ keywords
0 otherwise

(3)

After that, we concatenate the extracted keywords’ hidden states hi, ..., hm

to form a key information representation z as shown by Eq. (4), which can be
viewed as representing the key points of the text.

z =

⎡
⎣ h1

...
hm

⎤
⎦ (4)

To improve the representation ability of encoder, we construct a keywords-
based auxiliary information network, which mainly falls into two steps: firstly,
generating the key vector ki, and then building the modified encoded represen-
tation (h∗

1, h
∗
2, . . . , h

∗
n).

Concretely, this auxiliary network in our model takes two inputs, the encoder
hidden state hi and the key information representation z. The encoder hidden
state hi represents the semantic and context information of word xi. The rep-
resentation z can be regarded as containing the core information of source text.
For each timestep i, the network feed the key information representation z and
BiLSTM hidden state hi through a linear layer to compute the key vector ki,
shown as Eq. (5):

ki = ReLU(Whhi + Wzz + b) (5)

where Wh and Wz are weight matrices, b is the bias vector, we use ReLU as
activation function. The key vector ki can be seen as a feature-wise weight vector,
which can select the highlights and filter out the unnecessary information.
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Then we incorporate the corresponding key vector ki and the initial hidden
state hi to generate the tailored representation h∗

i , shown as Eq. (6):

h∗
i = hi � ki (6)

where � is the element-wise multiplication. The keywords-based auxiliary infor-
mation network refines the encoded representation by improving the connection
of the word representation with the key information of the source text so that
the model is capable of covering more key points. After the auxiliary information
network, we obtain another sequence of modified representation (h∗

1, h
∗
2, . . . , h

∗
n).

This new sequence is then used as the input for the decoder to generate the sum-
mary.

3.3 Attentional Summary Decoder

We employ a single-layer unidirectional LSTM as decoder. On each timestep t,
the decoder receives the previous word embedding yt−1 and the context vector
ct−1 to produce the decoder hidden state st. The context vector ct can be seen
as a fixed-size representation of the input content for this step, which can be
derived by the attention mechanism shown as Eqs. (7)–(9):

ei
t = vT tanh(Wh∗h∗

i + Wsst + Wvvi
t + battn) (7)

at = softmax(et) (8)

ct =
∑

i
at
ih

∗
i (9)

where Wh∗ , Ws, Wv and battn are learnable parameters, the attention distribu-
tion at can be viewed as a probability distribution over the input words, and the
coverage vector vt is the sum of attention distributions over all previous decoder
timesteps.

The vocabulary distribution Pw, shown as Eq. (10), is then calculated by
concatenating the context vector ct with the decoder state st and then passing
them through two linear layers and a softmax layer.

Pw(yt|y1, ..., yt−1) = softmax(f ′(f [st, ct])) (10)

The pointer mechanism in our model is used to copy words from the input
text, which can deal with the out-of-vocabulary words. The calculation of pgen
is presented by Eq. (11):

Pgen = σ(WT
c′ct + WT

s′st + WT
y′yt + bgen) (11)

where WT
c′ , WT

s′ , WT
y′ and bgen are trainable variables, yt is the decoder input,

pgen denotes a soft switch to choose between generating a word from the vocab-
ulary or copying a word from the input sequence. Hence, the final probability
distribution P (w), shown as Eq. (12), is computed as a convex combination.

P (w) = pgenPw + (1 − pgen)
∑

i:wi=w

at
i (12)
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During training, the loss for every timestep t is the negative log likelihood
of the target word y∗

t and the overall loss for the input text is described as Eq.
(13):

L = − 1
T

T∑
t=0

log P (y∗
t |y∗

1 , ..., y
∗
t−1, x, θ) (13)

where θ denotes the parameters of the model, x represents the source sequence.
At the generation process in our model, the selective beam search mechanism is
employed to decode the output summary, which considers both the conditional
probability and some additional factors.

3.4 Selective Beam Search Mechanism

Regular beam search method selects the candidate summaries for the next
timestep only based on conditional probability. At the start of timestep t, the
beam search mechanism held B hypotheses Yt−1 = {y1,t−1, ..., yB,t−1}, where B
is the beam width. Then beam search mechanism considers all possible single
token extensions of held hypotheses and selects the B most likely extensions,
described as Eq. (14):

Yt = arg max
y1,t,...,yB,t∈Vt

∑
b∈{1,2,...,B}

Θ(yb,t) s.t. yi,t �= yj,t (14)

where V is the vocabulary, Vt = Yt ×V is the set of all possible token extensions
and Θ(yi,t) is the log probability of a partial solution.

The beam search method has been observed to produce suboptimal results
in neural sequence generation [27] and whether or not the hypotheses contain
the key information of source text does not appear its importance [8]. To solve
this issue, we propose a novel selective beam search mechanism (SeBS).

Concretely, in selective beam search mechanism, we design a hypotheses scor-
ing function for beam search method to rerank and select the candidate sum-
maries based on auxiliary information including the number of keywords and
the redundant words. Specifically, this selective beam search mechanism is per-
formed every K timesteps during the summary decoding process, at other times
the selection is only based on the conditional probability. The hypotheses scoring
function Jscore for selective beam search is defined by Eq. (15):

Jscore(yi,t) = Θ(yi,t) + α · log(1 − countr(yi,t)
|yi,t| ) + β · countk(yi,t)

|yi,t| (15)

where α and β are the hyperparameters, yi,t is the i-th candidate summary text
for timestep t, countr is employed to calculate the number of the redundant word
that appears more than four times in the summary sequence, countk calculates
the number of keywords of the hypothesis. By employing this novel selective
beam search mechanism at decoding process, the hypothesis with less repetition
and covering more keywords from the source text are ranked higher. Finally, the
top-ranked hypothesis is selected as the generated summary.
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4 Experiments

4.1 Datasets and Settings

Datasets. We use the benchmark CNN/Daily Mail dataset, which contains
online news articles (781 tokens on average) paired with multi-sentence sum-
maries (3.75 sentences or 56 tokens on average). We use scripts to obtain the
version of data, which has 287,226 training pairs, 13,368 validation pairs and
11,490 test pairs [25]. We also test our model on the small-scale BBC dataset
[10], which consists of 2225 medium-length documents (258 tokens on average)
paired with the short-length abstracts (10 tokens on average).

Table 1. ROUGE F1 scores on the CNN/Daily Mail test set.

Model ROUGE-1 ROUGE-2 ROUGE-L

seq2seq+attn (50k vocab) 31.33 11.81 28.83

words-lvt2k-temp-att 35.46 13.30 32.65

pointer-generator 36.44 15.66 33.42

pointer-generator+coverage 39.53 17.28 36.38

KAIN, no coverage 37.45 16.06 34.01

KAIN+SeBS, no coverage 38.15 17.03 34.72

KAIN+SeBS 39.84 17.40 36.58

Experiment Settings. For our experiments, we used bidirectional LSTM for
encoder and uni-directional LSTM for decoder both with 256-dimensional hidden
states. We set the vocabulary with a size of 50k for both source and target.
Moreover, we used 128-dimensional word embedding without pre-training – they
are learned from scratch during training and set the batch size as 16. We trained
our model using Adagrad with learning rate 0.15. Besides, early stopping was
implemented using the loss on the validation set. In our keywords-based auxiliary
information fusion network, we choosed the top 10 keywords from the source
text using TextRank method [20]. At test time, we set the beam size of 4. In
our selective beam search mechanism, the hyperparameter α and β were in the
range of [0.5, 2.5] and we found it was an optimal choice to set the α as 1 and
the β as 1.5. Moreover, for the hyperparameter K, We set it of 8 for reranking
every K timesteps.

We implemented our experiments in TensorFlow on a single NVIDIA 1080Ti
GPU. We truncated the input tokens to 400 and we limit the length of the
decoded summary to 100 tokens at test time on CNN/Daily Mail dataset and
20 tokens on BBC dataset. The training took 3 days and 16 h requiring less
than 250000 iterations (about 13 epochs). Following the previous studies, we use
ROUGE metric [16] for evaluation. All our ROUGE scores have a 95% confidence
interval of at most 0.25 as reported by the official ROUGE script.
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4.2 Results and Discussions

We evaluated the effectiveness of our approach on CNN/Daily Mail dataset.
Apart from our own model, we also reported some compared abstractive models
carried out on the same dataset, including seq2seq+attn (50k vocab) [23], words-
lvt2k-temp-att [21], pointer-generator (PGNet) and the state-of-the-art model,
pointer-generator+coverage (PGNet+coverage) [25]. We exploited the pyrouge1

package to obtain the F1 scores for ROUGE-1, ROUGE-2, and ROUGE-L
respectively. The experimental results of these compared models are obtained
from their papers.

The results are presented on Table 1. Specifically, under the condition that
models does not use coverage mechanism, the scores of the model equipped
with KAIN exceeded the pointer-generator baseline model by (+1.0 ROUGE-
1, +0.4 ROUGE-2, +0.6 ROUGE-L). The scores of our KAIN+SeBS model
substantially exceeded the pointer-generator baseline model by (+1.7 ROUGE-
1, +1.4 ROUGE-2, +1.3 ROUGE-L). Results in these two cases demonstrated
that our model has better capability to generate high-quality summaries than
PGNet without using coverage as well.

Moreover, we compared our complete model with the PGNet+coverage. The
scores of our model exceeded the state-of-the-art abstractive model by (+0.3
ROUGE-1, +0.1 ROUGE-2, +0.2 ROUGE-L). The experimental results indi-
cated that both the auxiliary information network and the selective beam search
mechanism bring benefits to the abstractive model, which improve the perfor-
mance of generated summary with higher ROUGE scores. Moreover, our pro-
posed structures only increased about 10000 additional iterations during model
training.

Table 2. ROUGE F1 scores on the BBC test set.

Model R-1 R-2 R-L

seq2seq+attn 12.02 1.02 11.32

PGNet 14.02 1.21 13.53

PGNet+coverage 18.54 1.78 17.68

KAIN+SeBS 22.04 2.14 21.21

Except for the experiment on CNN/Daily Mail dataset, we tested our model
in the task of short text summarization with small-scale dataset. Table 2 shows
that the scores of our model exceed the baseline model by (+3.5 ROUGE-1,
+0.4 ROUGE-2, +3.5 ROUGE-L) on BBC dataset. The results revealed that
our model outperformed the baseline models and can generate summaries that
contain more key points of the source text even on small dataset.

Deeply, we explored the ROUGE-1 score of our model with different input
length on CNN/Daily Mail dataset. We selected input text of different length
1 https://github.com/bheinzerling/pyrouge.

https://github.com/bheinzerling/pyrouge
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Fig. 3. ROUGE-1 F1 score of our model and PGNet+coverage model on CNN/Daily
Mail dataset.

(the input length is less than 400 due to the truncation) from the dataset ran-
domly and use two models to generate summaries respectively. As seen in Fig. 3,
for the source text with different length, the ROUGE-1 scores of our model
had consistently been higher than PGNet+coverage with a certain range, which
shows that our model have the stable ability to capture the key information
accurately.

Case Study. Table 3 lists the summaries generated by PGNet+coverage model
and our model. We compared the generated summaries of two models with the

Table 3. An example of summaries generated by our model and baseline model. Bold
words are the key information of the source text.

Source (truncted): prince harry will tonight fly out of the uk to
australia without seeing his new niece or nephew. A disappointed prince
harry will tonight fly out of the uk to australia without seeing his new
niece or nephew. With the duchess of cambridge now overdue for the
birth of her second child, the prince will not be able to meet the new
royal baby until he returns to this country in mid may. Harry, who
will be bumped down to fifth in the line of succession by the new arrival,
had returned briefly at the weekend to hand out prizes at the london
marathon after undertaking several engagements in turkey to mark the
centenary of the gallipoli campaign

Reference: prince harry will fly out of uk tonight to continue placement
in australia. This means he will not be able to meet royal baby until
return in mid-may

PGNet+coverage: prince harry will tonight fly out of the uk to
australia. A disappointed prince harry will tonight fly out of the uk to
australia without seeing his new niece or nephew, the prince will not be
able to meet the new royal baby

KAIN+SeBS: prince harry will fly out of the uk to australia without
seeing his new niece or nephew. The prince will not be able to meet the
new royal baby until he returns to this country in mid may
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reference summary and we observed that the baseline model captures a part of
key information, however, the summary still misses some keywords and has a
certain degree of redundancy. On the other hand, our model covers the almost
all key information of the source text and there is no redundant sequence owing
to our keywords-based auxiliary information network and the selective beam
search mechanism. Obviously, the summary generated by our model condense
more important content and has better readability compared with the summary
generated by PGNet+coverage.

5 Conclusion

In this paper we propose an keywords-based auxiliary information model that
guides the summary generation. For encoding, the keywords-based auxiliary
information network is proposed to refine the encoded representation by incor-
porating the word representation with the key information of the source text.
In addition, the selective beam search mechanism is employed to control the
decoding process by applying a novel hypotheses scorer to rerank and select the
candidate summary. Experiments on benchmark dataset showed that our model
leads to significant improvements compared with the state-of-the-art abstrac-
tive model equipped with pointer mechanism. In the future work, we attempt
to apply this approach to other related sequence generation tasks and focus on
improving the attention mechanism for language processing.
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Abstract. Replacing the traditional cross-entropy loss with BLEU as
the optimization objective is a successful application of reinforcement
learning (RL) in neural machine translation (NMT). However, a con-
siderable weakness of the approach is that the monotonic optimization
of BLEU’s training algorithm ignores the semantic fluency of the trans-
lation. One phenomenon is an incomprehensible translation accompa-
nied by an ideal BLEU. In addition, sampling inefficiency as a common
shortcoming of RL is more prominent in NMT. In this study, we address
these issues in two ways. (1) We use the annealing schedule algorithm to
add semantic evaluation for reinforcement training as part of the train-
ing objective. (2) We further attach a value iteration network to RL
to transform the reward into a decision value, thereby making model
training highly targeted and efficient. We use our approach on three rep-
resentative language machine translation tasks, including low resource
Mongolian-Chinese, agglutinative Japanese-English, and common task
English-Chinese. Experiments show that our approach achieves signifi-
cant improvements over the strong baselines, besides, it also saves nearly
one-third of training time on different tasks.

Keywords: Neural machine translation · Reinforcement learning ·
Semantic fluency · Value iteration

1 Introduction

Neural machine translation (NMT) [5,17] is the process of end-to-end encoding
and decoding of parallel corpus by neural networks. These models which trained
by maximum likelihood estimation (MLE) algorithm, including recurrent neural
network (RNN), convolutional neural network (CNN), and Transformer [2,7,18],
are used to generate text suffer from two major drawbacks. First, the models are
trained to predict the next word given the ground truth words as input. However,
at inference, the resulting models are used to generate an entire sequence by
predicting one word at a time. The optimization strategy for these models is
training with cross-entropy loss (i.e., XENT), which is used to maximize the
probability of the next correct word [4,8]. Second, the loss function used to train
c© Springer Nature Switzerland AG 2019
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the models is based on the predicted words, namely, word level training. This
result is inconsistent with the final evaluation criteria.

Two novel methods can be used to solve the above problems. One is the
minimum risk training (MRT) [14] which leads to significant improvements over
MLE on a state-of-the-art NMT system. MRT introduces evaluation metrics
as loss functions and aims to minimize expected loss on the training data. The
approach allows arbitrary sentence-level loss functions, which are not necessarily
differentiable. The other is to directly optimize metrics such as BLEU, which is
an effective attempt for the problems. However, the non-differentiable nature
prevents the model from directly applying BLEU to the training process. An
effective solution is sequence level training with an RNN (i.e., MIXER) [10]. The
algorithm addresses the issues by training with reinforcement learning (RL) [12]
to optimize the BLEU. This approach is a successful attempt to apply RL to
machine translation with policy optimization on RNN. Reference [21] proposed a
new method to leverage RL to boost further the performance of the Transformer
that is trained with source/target monolingual data. We refer to this approach
as (Transformer+RL, TR).

These methods of directly optimizing the evaluation objective can improve
the final evaluation result to a certain extent. However, in the manual evaluation
of the aforementioned typical systems, the translation of the enhanced BLEU cor-
responds to an incomprehensible sentence, and the semantic fluency is seriously
deficient (results of the manual evaluation of the translation in Table 4 will be
explained). In addition, in some vocabulary-sparse translation tasks, the optimal
parameters updated by RL training can only be effective in short epochs. Then,
they return to the initial state of XENT, which will be explained in Sect. 4.2.
We attribute the reason to the inefficient training sampling methods, which is a
ubiquitous problem in RL. For decision-making tasks, progressive improvements
to the original RL, such as the Work proposed in [3], allow the model to ignore
some of the empirical parameters selectively for excellent results. However, for
NMT tasks aimed at obtaining empirical parameters, such an approach will
greatly diminish the advantages of RL. Related studies on the training efficiency
of RL in NMT are few, thereby motivating us to add value iteration network
(VIN) to RL.

In this study, we conduct the investigation on two aspects. First, we add
semantic evaluation as part of the training objective. Second, we use VIN to
solve the inefficiency of parameter updating and model training in RL. The
problem of excellence is to propose a training strategy based on VIN, which
transforms semantic evaluation and BLEU into a “decision value” in each batch
to make the model highly targeted and efficient.

We construct the model on long short-term memory (LSTM) because the
reward with temporal attributes is suitable for VIN input. By contrast, RNN
accurately captures limited semantics for some low-resource translation tasks
with sparse corpus. Experimental results demonstrate that the proposed app-
roach produces more accurate and lower consumption than the original LSTM,
RNN with MRT, Transformer, MIXER, and TR on three representative machine
translation tasks.
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2 Background

2.1 Training with Cross-Entropy

We review the methodology used for training translation models that optimize
the prediction of only one word or stem ahead of time. The method is the
simplest and the most well-known in RNN to optimize the cross-entropy loss at
every timestep. The usual practice [1,11,17] is to use beam search to explore
multiple alternative paths. The change in gradient depends on the calculation
of the loss between the model prediction and ground truth. This process can be
summarized through its structure (Fig. 1).

ground truth
y2 ,                , yt , yt+1

XENT

P(y y1,h(1)) P(y yt-1,h(t-1)) P(y yt,h(t))

h1 h2 ht ht+1

y1 yt-1 yt

...

Fig. 1. RNN unfolded based on time series t, which is used to illustrate that each step
of the XENT requires the participation of ground truth. This process differs from the
inference; prediction y’ only depends on the decoding output of the model one step
ahead

Here, the calculation of the predicted output p(y′|yt, ht) depends on the
ground truth yt and hidden layer state output ht, and the loss function can
be defined as minimizing

Loss = −
∑

t=1

p(yt|y1, ..., yt−1) (1)

2.2 Reinforce Algorithm

A reinforce algorithm is simply understood as a text-generating task. An agent
acts to change its state to gain rewards and interact with the environment in
a cyclical process [16,20]. This strategy depends on the current status (only
present matters) entirely, which is also a manifestation of its Markov nature.
The algorithm can be simply expressed as M = <S,A, P {s, a} , R>.

Specifically, sεS is a finite state set, where s represents a specific state; and
aεA is a limited action set, where a denotes a specific action. The transition
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model predicts the next state s′ based on the current state s and action a,
denoted as P

{
s

′ |s, a
}

. Reward R = R (s, a) represents an instant reward after
an agent takes an action. However, this process will cause unbiasedness and an
endless loop of states because the rewards are accumulated in an infinite time
series. Therefore, the variable of discount rate is used for reward calculation.
The reward that is fed back by the state of the subsequent sequence is multiplied
by this coefficient; thus, the current reward is more important than the future
feedback.

A policy generates an action based on the current state, which indicates the
probability of performing in a certain state.

2.3 Value Iteration (VI) Algorithm

We use the VI algorithm because its Markov characteristics fit perfectly into
RL. A standard model for sequential decision making [15] and planning can
be described as the process of encoding the probability of the next state s′

given the current state and action. Formally, the result value V (s) of VI is the
expectation of the sum of n sequence rewards when starting from the state s and
executing policy. The states evolve following the P

{
s

′ |s, a
}

. The optimal value
V ∗(s) ≈ Max Q(s, a) is the maximal long-term return possible from a state. We
can formulate VI as

Vn+1(s) = max Q(s, a), (2)

Q(s, a) = R(s, a) +
∑

p(s
′ |s; a)Vn(s

′
). (3)

The value of Vn in VI converges as V ∗(n → ∞), from which an optimal policy
may be derived as argmax Q∞(s, a).

3 Model

3.1 RL in Machine Translation

We case our problem in the reinforcement framework [9,19]. Specifically, the
training model can be viewed as an agent that interacts with the external envi-
ronment (the words and the context vector that are regarded as input at every
timestep). The parameters of this agent define a policy whose execution results
in the agent is selecting an action. In machine translation setting, an action
refers to predicting the next word in the sequence at each timestep. After taking
an action, the agent updates its internal state (i.e., the hidden units).

3.2 Model Description

We consider a standard training process of our model composed of four basic
components (Fig. 2).
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Fig. 2. Sequence-level training model based on VIN

(1) Sequence level training: (a) Optimal initial state. We train the model with
the cross-entropy loss to ensure that an optimal model result is directly
involved in training and take it as an initial value. This process also pro-
vides a good search space for greedy search. (b) RL algorithm. � Sample:
The input is a sample from the distribution over words produced at the
previous timestep. Different from XENT, the input here completely comes
from the sampling based on the model’s predictions without the ground
truth involved. � Prediction calculation: The sampled prediction is used as
the input of the hidden layer for the next timestep. Then, the hidden layer
output and prediction for the current timestep are produced, followed by a
round of sampling.

(2) Reward observation: Process (1-b) is looped once the end of the sentence
(or the maximum sequence length) is reached. The reward is then computed
(the full interpretation is presented in Sect. 3.3).

(3) VIN (Fig. 3): The reward is fed into a convolutional layer and a linear
activation function Q. This layer corresponds to a particular action. The
next iteration value function layer is then stacked with the reward and fed
back into the convolutional layer N times, where N depends on the length
of the sequence. Then, a long-term value is obtained by training a batch.
The model improves the training efficiency of the model based on this value-
based sampling strategy.

Vt-1         

reward R

Q
Vt

Sentence length recurrence

Vupdate

average

V1

Vbatchsize

Value Iteration Net

Fig. 3. VI algorithm represented by CNN
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(4) Reinforcement-based loss: The value of a batch is observed. The model gra-
dient propagation depends on its comparison with the optimal value. When
the value obtained from this comparison determines that the network must
be updated, the reward involves the calculation of loss function. Subse-
quently, reinforcement algorithm is used to backpropagate the gradients by
the sequence of samplers.

3.3 Reward Calculation

Once the agent has reached the end of a sequence, it observes a reward from
BLEU and semantic similarity calculation.

Here, the semantic similarity (denoted as sim) is applied to the calculation
of reward in each iteration, which compares the ground truth and prediction.
The reason for this approach is that the optimization of BLEU will ignore the
structure of the sentence pattern to a certain extent. As part of the reward, we
calculate the cosine angle between the two sentence vectors (y′ and y) on the
basis of (4) to use word embedding well. This process can effectively play the
role of reinforce algorithm.

Rsim = sim(y
′
, y) =

∑n
i=1(y

′
i × yi)√∑n

i=1(y
′
i)2 × √∑n

i=1(yi)2
(4)

where i denotes a word vector in a sentence with length of n. The reward asso-
ciated with BLEU can be expressed as

RBLEU = bp × exp(
n∑

n=1

wnlogpn) (5)

bp =
{

1 if c > l

e1− l
c if c ≤ l

. (6)

where pn represents the precision calculation term of the N-gram; wn is the cor-
responding weight; bp is a standard-length penalty term; c and l represent the
length of the translation to be evaluated and the reference translation, respec-
tively. Thus, the final reward can be described as

Reward = λRBLEU + (1 − λ)Rsim. (7)

The next idea is to introduce model predictions during training with an
annealing schedule in order to gradually teach the model to produce sta-
ble sequences. For every batch sequences we use the RBLEU reward for the
first (batchsize-�) sequences, and (RBLEU + Rsim) reward for the remain �
sequences. � is set to �(5% ∼ 10%) × batchsize	. Next we anneal the number
of sequences for which we use the XENT loss for every batch to (batchsize-2�)
and repeat the training for another epochs.

We use an annealing schedule on β to weigh the two part calculation of
the final reward, that is, rewards for BLEU RBLEU and for semantic similarity
Rsim, starting with β equal to the batchsize and finishing with β = 1. λ is a
hyperparameter.
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3.4 VIN

We use a novel interpretation of an approximate VI algorithm as a particular
form of a CNN. This approach allows us to treat the planning module conve-
niently as another NN. We can train the entire policy end-to-end on the basis of
its simplification by backpropagation. The VI module is simply an NN architec-
ture with the capability of performing an approximate VI computation. Never-
theless, VI in this form, which made learning the MDP parameters and reward
function natural by backpropagation through the network, which similar to a
standard CNN. Once a VIN design is selected, implementing the VIN is straight-
forward because it is simply a form of a CNN. The networks in the experiments
all require only several lines of Tensor code.

Selecting a kernel width of not less than 3 is reasonable and valid for three
vocabularies. The value of the output continues to use sparse storage to partic-
ipate in the next round of convolution operations.

Each iteration of VI algorithm may be seen as passing the previous value of
Vn and reward R by a convolution layer and mean pooling layer. In this anal-
ogy, the active function in the convolution layer corresponds to the Q function.
Convolution kernel weights correspond to the discounted transition probabilities
that are generated by the decoder model in machine translation. Thus, the value
of the sequence is produced by applying the convolution layer recurrently for N
times.

The value of the current iteration represents the cost of the current state
model decoding. The total value, which is obtained after batch training, repre-
sents the performance of the RL model. Therefore, on the basis of the total value
of each batch training, we infer whether the parameters of the model are opti-
mal; thus, we can decide the necessity of performing gradient propagation. This
process ensures that the optimal parameters participate in the decoding process
and enables the model to be highly targeted for samples with poor semantic
information and low BLEU.

3.5 Agent Update

The observed reward determines the cost of the prediction, which has the same
meaning as the loss function in the usual sense. Therefore, the loss function
based on the reinforce algorithm can be defined as

Loss = −
n∑

i=1

p(y
′
i)r(y

′
i), (8)

where p(y
′
i) represents the predicted probability of y

′
i, and y

′
i is the word selected

by the model at the i-th timestep. r is the reward associated with the generated
sequence. The goal of training is to find the parameters of the agent that can
maximize the expected reward. Thus, we quote the conclusion of [12,22], which
can be equated with the expectation of r.

Loss = −
∑

yi∼p

r(y
′
i), iε(1, 2, ..., n) (9)
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In other words, the expectation that can obtain a better reward in each time
decoding is expected. The partial derivatives and interpretation of the gradients
are:

∂Loss

∂ot
=

∂Loss(XENT )
∂ot

(r(y
′
i) − r̄t+1)

= (p(y
′
t+1|y

′
t, ht+1, ct) − y

′
t+1)(r(y

′
i) − r̄t+1), iε(1, 2, ..., n),

(10)

where r̄t+1 refers to the average reward of the result at timestep (t+1), which is
estimated by a linear regression. The regression uses the output of hidden states
at (t + 1) time as its input. Although high variance is not prominent in the
NMT, we continue to use r̄t+1 to decrease the variance of the gradient estimator
considering some sparse language. ot is inputted to Softmax. When the predicted
average result r̄t+1 is less than the actual reward r, it is updated in the positive
direction; otherwise, it is reversed in the negative direction. The parameters of
the regressor are trained by minimizing the mean square loss, ‖r̄t − r‖2. In our
implementation, this error is ignored when backpropagating because it will result
in feedback loops.

4 Experiments

4.1 Dataset and Model Configuration

We validate the effectiveness of our approach on three typical NMT
tasks, namely, low-resource Mongolian-Chinese (M-C), agglutinative language
Japanese-English (J-E), and common Chinese-English (C-E) tasks; we use data
from CWMT2017, Wikipedia Kyoto Articles, and WMT2017, for the three tasks,
respectively (Table 1). To avoid allocating excessive training time on long sen-
tences, all sentence pairs longer than 50 words either on the source or target side
are discarded.

Table 1. Statistical analysis of experimental corpus

Training Dev Test

M-C 201643 1001 1000

J-E 500580 1001 1000

E-C 923471 1001 1000

To solve the problem of excessive low-frequency words in the vocabulary, we
perform BPE processing on the three training sets to compare the proposed app-
roach’s adaptability of the corpus granularity. Furthermore, BPE can alleviate
the vocabulary sparse problem of low-resource language to a certain extent. We
reference the best empirical operands of in previous studies [6,13] and attempt
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several num-operations of BPE on three datasets. The final selected BPE opera-
tions number are M-C (Mongolian: 35000, Chinese: 15000), J-E (Japanese: 60000,
English: 30000), and E-C (English: 55000, Chinese: 25000).

The experiment mainly compares the performance of different language tasks
in each system. We use the seq2seq LSTM model (training by XENT), RNN with
MRT, MIXER (training by RL), Transformer, and TR as the baseline system.
To verify the influence of model innovation on experimental results, we have not
compared the monolingual experiments in TR with only RL-based Transformer
as the baseline.

For the RNN with MRT, LSTM and MIXER, following the base model of [10]
and [14], we set the dimension of word embedding as 512 and dropout rate as
0.1/0.1/0.3. We use a beam search with a beam size of 4 and length penalty
of 0.6. We also attempt a standard RNN as our generative model for this task.
However, this process does not improve the performance because the generated
sentences in M-C and J-E are relatively long.

For the Transformer [18] and TR [21], the original Transformer base config-
uration is an effective experience setting for our experiments.

For our approach, we set the hidden units for attentive encoders and decoders
as 256 on the basis of the study of [10]. The dimension of the word embedding
is also set as 512. During testing, we use a beam search with a beam size of 8;
the length penalty is not applied for all the three tasks.

4.2 Main Results and Analysis

We stop training when the model achieves no improvement (the accuracy is not
less than 0.8) for the evaluation on the development set. All models are trained
on up to single Titan-X GPU, and we count the convergence hours of each model
in the three tasks (Table 2).

Table 2. Convergence time when accuracy achieves 0.8 in three languages

M-C J-E E-C

Transformer 25 34 51

TR 32 40 47

RNN with MRT 37 55 82

LSTM 28 41 55

MIXER (LSTM+RL) 33 45 62

Our model 19 25 33

The additional VIN’s RL approach can effectively reduce the convergence
time of the model while achieving the higher BLEU score, and approximately
one-third of training time is saved.
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Fig. 4. Influences of training algorithms on different tasks. (Color figure online)

We observe the BLEU score for the three tasks in 50 epochs of initial train-
ing and 40 epochs of reinforce training (including 10 epochs of RL training and
30 epochs of RL+VIN training) to illustrate the effect of our approach on the
model (Fig. 4). The orange and blue short lines in Fig. 4 indicate the epochs
when RL algorithm and VIN begin to affect the model, respectively. When the
model obtains optimal results through cross-entropy training, the RL algorithm
can be further converged on its basis and the accuracy of prediction can be
improved. However, this state only maintains for few iterations with the decline
of the model’s predictive ability. Multiple iterations are needed to train the RL
model and readapt to the input. Notably, the VIN based model can maintain the
training process in an optimal state and continuously provide accurate predic-
tions. The optimal parameters make the model stay on the optimal parameters
and have a steady growth. In comparison with the baseline models, our approach
has achieved greater improvement in BLEU score and can converge to optimal
values faster. Table 3 shows the BLEU evaluation results.

All monotonous BLEU enhancements have no remarkable improvement on
M-C and J-E, even with a considerable decline in Transformer. Over-translation
occurs in the translation of Transformer because the self-attention mechanism
greatly improves the accuracy of prediction, and the simple reinforcement will
result in the over-fitting of the model. RL+VIN has an average of 3–4 BLEU
score improvement on all the three datasets whether at the word or sub-word
level. The approach has considerably improved on the M-C and J-E test set.

Furthermore, a single BLEU evaluation does not perfectly measure the
semantic fluency of a sentence. Therefore, we use the specification of manual
evaluation in the “Machine Translation Evaluation Outline”1 as a standard to
evaluate manually the translation results. Following the intelligibility, the sen-
tence scores range from 0 to 10 points, including two decimal places, and the
final score is the arithmetic mean of all scores.

1 http://www.liip.cn/wmt2013/.

http://www.liip.cn/wmt2013/
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Table 3. Performance of each training algorithm on BLEU-4

System Segmentation M-C J-E E-C

Transformer word 28.5 31 30.8

BPE 29.4 31.4 33

TR word 30.1 33.9 32.6

BPE 31.3 34.8 34.1

RNN with MRT word 25.5 29.4 31.8

BPE 27.3 29.7 34

LSTM word 24.2 27.7 28.1

BPE 28.7 28.2 28.9

MIXER (LSTM+RL) word 29.7 28.9 31.7

BPE 30.9 31.4 32.3

Our Model word 32.5 33.7 34.1

BPE 34.1 36.8 36.2

Table 4. Human evaluation of translations

M-C J-E E-C

Transformer 6.30 6.55 7.15

TR 5.85 6.50 7.40

RNN with MRT 5.30 6.06 7.17

LSTM 6.05 6.20 7.00

MIXER (LSTM+RL) 5.75 6.10 7.35

Our Model 7.65 7.15 7.7

Table 4 clearly illustrates the necessity of increasing semantic similarity as a
training objective. The BLEU enhancement for LSTM and Transformer is worse
than the original system semantics on M-C and J-E tasks.

We also extract a representational sentence in different languages to illustrate
the proposed approach on the translation, as shown in Fig. 5. The Italics indicate
mistranslation and paired quotation marks indicate omission. The bold words
in Target sentence are the key observation words which are prone to semantic
ambiguity.
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Fig. 5. Performance of translation under different model

5 Conclusion

In this study, we introduce an approach of attaching VIN to RL to solve the prob-
lem of monotonous optimization of BLEU and a lack of semantic information. We
use semantic similarity evaluation with BLEU as the optimization objective of
training to obtain joint reward information and regard such reward information
as the cost of model decoding. Our other contribution is the conversion of such
decoding costs into a simple value by the VIN, thereby determining whether the
current parameters need to be adjusted and making the model training highly
targeted. This approach outperforms several strong baseline systems in all three
typical machine translation tasks and saves an average of nearly one-third of
training time. We have found that similar problems exist in other NLP tasks
that apply RL, and in subsequent studies, we aim to apply our algorithms to
additional NLP tasks.
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Abstract. As one of the quintessence of Chinese traditional culture, couplet
compromises two syntactically symmetric clauses equal in length, namely, an
antecedent and subsequent clause. Moreover, corresponding characters and
phrases at the same position of the two clauses are paired with each other under
certain constraints of semantic and/or syntactic relatedness. Automatic couplet
generation is recognized as a challenging problem even in the Artificial Intel-
ligence field. In this paper, we comprehensively study on automatic generation
of acrostic couplet with the first characters defined by users. The complete
couplet generation is mainly divided into three stages, that is, antecedent clause
generation pipeline, subsequent clause generation pipeline and clause re-ranker.
To realize semantic and/or syntactic relatedness between two clauses, attention-
based Sequence-to-Sequence (S2S) neural network is employed. Moreover, to
provide diverse couplet candidates for re-ranking, a cluster-based beam search
approach is incorporated into the S2S network. Both BLEU metrics and human
judgments have demonstrated the effectiveness of our proposed method.
Eventually, a mini-program based on this generation system is developed and
deployed on Wechat for real users.

Keywords: Natural language generation � Couplet generation �
Sequence-to-Sequence � Language model � Attention

1 Introduction

Chinese antithetical couplet, (namely “对联”), which consists of two clauses, is an
important part of Chinese cultural heritage. As a part of Chinese people’s cultural life,
couplets have become a popular way to expressing personal emotion, political views,
or communicating blessing messages at festive occasions. As an important traditional
cultural game, given one antecedent clause, people are challenged to write the sub-
sequent clause. Additionally, couplets expressing blessing and happiness are written on
red banners on special days, such as the Chinese New Year, birthday and wedding
ceremonies. Literally, Chinese couplet must satisfy certain constraints on syntactic
and/or semantic relevance. For example, corresponding characters or phrases from the
same position in the two clauses must be paired with each other. For instance, as shown
in Fig. 1, the character ‘hundred’ is paired with ‘thousand’, ‘flower’ is antithetical to
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‘tree’, ‘good’ correspond to ‘new’ and ‘bloom’ is coupled with ‘boom’. Compared to
common proses such as news and fictions, couplet also exhibits poetic aestheticism,
e.g., rhyming and conciseness etc.

In this paper, we focus on automatic acrostic couplet generation with deep learning
methods. Especially at Spring Festival, couplet have been popularly used for
expressing blessing for the coming new year. Under the analysis of potential user
demand, we had planned to develop an online mini-program of automatic couplet
generation on Wechat. Contrary to the couplet game that people are challenged to write
subsequent clause given the antecedent one, our automatic acrostic couplet generation
can compose a complete clause pair with users’ intent defined in both clause heads,
which facilitates fluent user interaction. Obviously, as opposed to completing subse-
quent clause, automatic acrostic couplet generation is more challenging. Herein, we
formulate the acrostic couplet generation as a three-stage natural language generation
problem. In the first stage, the antecedent clause is generated by a pipeline of recurrent
neural network based language model (RNN-LM) given user’ intent as head characters.
Afterwards, the subsequent clause is generated by an attention-based S2S network by
taking in the antecedent one from the previous stage. Moreover, a cluster-based beam
search (CBS) method is incorporated to generate a candidate pool of diverse couplets.
Eventually, best couplet is selected from the candidate pool with a re-rank pipeline.

In order to creating interesting and excellent Spring Festival acrostic couplets for
online users, the re-ranking pipeline is based on the following criterions. For example,

Fig. 1. An acrostic couplet generated by our developed mini-program of couplet generation.
Each Chinese character is translated into English for reference. The abstract meaning of this
couplet is that many flowers blossom in spring making the spring scenery very beautiful
(antecedent clause, left); many trees competitively boom in spring which refresh the atmosphere
(subsequent clause, right).
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the length of single clause is in the range from 5 to 12 characters. In addition, corre-
sponding characters at the same positon of two clauses should have the same part of
speech (POS). Ending tone of both clauses must be opposed. For instance, if pronounce
tone of last character in the antecedent clause is level, the corresponding tone of last
character in the subsequent one must be oblique. The rest of this paper is organized as
follows. In Sect. 2, the related work of couplet generation is introduced. The detail of
our model is described in Sect. 3. Section 4 summarizes experimental results and our
study is concluded in Sect. 5.

2 Related Work

Natural language generation (NLG) (Mann 1982), also known as text generation, is one
of most important tasks in the field of natural language processing (Chowdhury 2003).
Compared to convolutional neural network (CNN) (Kalchbrenner et al. 2014), recurrent
neural network (RNN) (Mikolov 2010) is more suitable for NLG due to its sequential
prediction capability. Moreover, RNN with long-short term memory (LSTM) (Hochre-
ither and Schmidhuber 1997) or gated recurrent unit (GRU) (Cho et al. 2014) can capture
longer contextual information. Recently, Sequence-to-Sequence (S2S) (Sutskever et al.
2014) was proposed for heterogeneous data translation. Furthermore, Bahdanau et al.
(2015) proposed the attention mechanism to diffuse decoding weights into different parts
of input, which ensures semantic alignment between input and out sequences.

To some extent, couplet generation can be considered as a similar case of statistical
machine translation or poetry generation. There are two main methods for machine
translation: Statistical Machine Translation (SMT) (Koehn 2010) and Neural Machine
Translation (NLT) (Koehn 2017). For example, Koehn et al. (2003) proposed an
approach of Statistical phrase-based translation and Devlin et al. (2014) proposed
Neural Network Joint Model (NNJM) which was constructed using the context of both
source and target language. Recently, Ahmed et al. (2018) applied the state-of-the-art
transformer structure for machine translation. On the other hand, some researchers
proposed the methods based on rules or templates, e.g., phrase search approach (Wu
et al. 2009), template search approach (Oliveira 2012) and summarization approach
(Yan et al. 2013) for poetry generation. Furthermore, Zhang and Lapata (2014) pro-
posed a poetry generation model based on RNN which generates each line character by
character. In order to achieve semantic coherence, a novel two-stage poetry generating
method (Wang et al. 2016) was presented. In order to create flexible and creative
Chinese poetry, Zhang et al. (2017) extended the neural model with memory augment,
which balanced the requirements of linguistic accordance and aesthetic innovation.

Under most circumstance, the results generated by end-to-end (E2E) system are not
guaranteed to be always satisfied. To address this problem, few researchers re-rank
generated texts to select desired results. Jiang and Zhou (2008) used multiple features
including Mutual information score and MI-based structural similarity score to train a
SVM model for candidates re-ranking. Sordoni et al. (2015) applied the ranking
algorithms LambdaMART as supervised ranker.

To the best of our knowledge, nevertheless, few research work focused on the task
of couplet generation. Zhang and Sun (2009) proposed a couplet generation model
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based on statistics and rules. Jiang and Zhou (2008) regarded this task as a kind of
machine translation and reported a phrase-based statistical machine translation
(SMT) approach. Furthermore, Yan et al. (2016) proposed a novel polishing schema to
refine the generated couplets using additional information. However, our study is
different from all above methods. Most previous work tended to treat couplet gener-
ation as a special translation task and tried to generate subsequent clauses given
antecedent ones. However, a complete acrostic couplet can be generated by our method
only given few head characters defined by users. Moreover, contrary to previously
reported E2E approaches, three pipelines consisting of a RNN-LM, an attention-based
S2S and a re-ranker are combined for better couplet generation for real-time online
Wechat users. To provide a candidate pool of diverse couplets for selection, a CBS
method is incorporated into the S2S network. Furthermore, we believe that our propose
three-pipeline generation method can also be extended to other language generation
tasks, such as poetry and stories.

3 Model

In this paper, our proposed acrostic couplet generation method mainly consists of three
stages, namely, antecedent clause generation pipeline, subsequent clause generation
pipeline and the re-rank pipeline as shown in Fig. 2. Among an acrostic couplet, head
characters of both clauses are defined by users, denoting as K1 and K2. Thus, the two
clauses are denoted as: S1 ¼ fK1;C1;2;C1;3; . . .;C1;mg and S2 ¼ fK2;C2;2;C2;3;
. . .;C2;mg, where m represents the clause length minus 1. The antecedent clause S1 can
be automatically generated by the RNN-LM pipeline given the head K1. Based on the
generated clause S1, the subsequent clause S2 can be generated with an attention-based
S2S. Moreover, a CBS method is incorporated to realize a candidate pool of diverse
clauses. Eventually, a re-ranking pipeline is used to select the best couplet from the
candidate pool.

Fig. 2. The main framework of our model.
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3.1 Antecedent Clause Generator

Given the head characters, an RNN-LM model is used to generate antecedent clauses.
Neural language model (Bengio et al. 2003) was first proposed in 2003, then Mikolov
(2010) extended it with RNN. We use the vanilla RNN cell to calculate and store the
information of each character C1;2;C1;3; . . .;C1;m in the antecedent clause. Taking in the
word embedding of a character C1;i, and the previous state si�1, the RNN cell can
calculate a current hidden state si as follows:

si ¼ f wssi�1 þwcC1;i þ b
� � ð1Þ

where w and b are trainable parameters as weights and bias, and the parametrized non-
linear function f is based on hyperbolic tangent. As shown in Fig. 3, next character
C1;iþ 1 is predicted by the hidden state si. To generate antecedent sentence diversely
and effectively, a CBS method was applied in the decoder, which was proposed by
Tam et al. (2019) to overcome the shortcoming that beam search tends to output several
sentences with slight difference. As shown in Algorithm 1, CBS combines K-means
cluster and beam search to generate more meaningful response. In each decoding step
of beam search, CBS perform K-means cluster according to the average embedding of
candidates and remove half of candidates in each cluster.

Fig. 3. Schematic diagram of the antecedent clause generator.
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3.2 Subsequent Clause Generator

The basic idea of subsequent clause generator is to map the antecedent clause into a fix
dense vector and then decode the subsequent clause iteratively and sequentially.
Sequence-to-sequence (S2S) (Sutskever et al. 2014) is a popular framework for this
task. To enhance syntactic and/or semantic relatedness between antecedent and sub-
sequent clauses, attention mechanism is incorporated into the S2S generation model.
The generation model iteratively encodes the antecedent clause into a fix dense con-
textual vector si. Contrast to the conventional S2S which rely context vector on the last
input hidden state sm, attention mechanism considers contribution of each input
character into a new context vector as follows:

vt ¼
Xm

j¼1
atjsj ð2Þ

The atj is determined by the previous hidden state ht�1 and each hidden state of
encoder, i.e., {s1; s2; . . .; sm}. Therefore, the new context vector is a weighted sum of
hidden states of the encoder, which can adaptively pay attention to the corresponding
input character during decoding. As depicted in Fig. 4, the decoding of subsequent
clause with attention mechanism can be expressed as follows:

ht ¼ f wsht�1 þwcC2;t�1 þwvvt
� � ð3Þ
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3.3 Processing of Head Character

Based on our proposed three-stage model, the quality of generated complete acrostic
couplet heavily depends on the first antecedent clause. Due to its sequential and iter-
ative generation procedure, vanilla RNN based antecedent clause generator requires a
reasonable head character (i.e. start token) for high-quality generation. As a part of our
design of user interaction (UI), user input is constrained in 4 characters. As an optimal
method of improving user experience, Naive Bayes is employed for sampling two
characters from user input, which is expressed as:

P BjAð Þ ¼ PðBÞPðAjBÞ
PðAÞ ð4Þ

Where event A represents the appearance frequency of character C while event B
represents the frequency of character C appearing in antecedent sentence as head
character. Based on train corpus, this Naïve Bayes model can be trained with maximum
likelihood loss.

3.4 Re-ranking

According to the restrictions of Chinese acrostic couplets, a ranking score is calculated
for re-ranking, including length score sl, repeated score sr, tone score st and sentiment
score ss, which can be denoted as:

s ¼ wlsl þwrsr þwtst þwsss ð5Þ

Where weight parameters wl, wr, wt and ws are empirically set and optimized. Length
score means whether the two clauses of couplet have the same length. Repeated score
checks whether repeated characters exist in couplets. Tone score determines whether

Fig. 4. Illustration of the attention-based S2S model.
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the ending characters of two clauses exhibit opposed tone. The sentiment score is
calculated based on a SWM model, which is higher for positive couplets.

4 Experiments and Evaluations

In this section, dataset processing and experimental settings are described at detail.
Moreover, re-ranking method for clause candidate selection is introduced. In addition,
couplet generation based on LM as baseline models are used.

4.1 Dataset

Firstly, a large couplet corpus is collected to efficiently train the generation model,
which consists of approximately 602858 couplets. As a result, a primitive vocabulary
of 7318 characters was achieved. After omitting low frequency characters less than 10
times, the vocabulary size is decreased to 5647. Additionally, specific symbols are
added into the trained vocabulary, including ‘<unk>’ representing low frequency
characters and ‘<eos>’ donating the end of sentence. Moreover, 1000 and 2000 cou-
plets are randomly sampled for validation and testing.

4.2 Parameter Setting and Training

In this paper, word2vec is used for distributed representation of Chinese characters,
which is initially pre-trained with the random initialization (Mikolov et al. 2013).
Herein, each character are mapped into a low and dense dimensional vectors, where
256-dimensional word embedding is used. The LSTM cell in antecedent and subse-
quent sentence generator both have 1000 hidden units. The cell layer number of LM
and seq 2seq models is 2 and 4, respectively. To ensure generation diversity, group size
and width of beam search is set to 4 and 2, respectively. As a result, 16 candidates are
achieved according to the constraints of Spring Festival couplet.

All of the trainable parameters are randomly initialized within the range [−0.5, 0.5].
They are trained by stochastic gradient descent to minimize the cross-entropy loss with
the Adam optimizer (Kingma and Ba 2015). The mini-batch size of 128 is chose for
training. Moreover, to prevent gradient explosion, the gradient is clipped to the max-
imum of 5. The learning rate is initially set to 0.001 and adaptively decreased along
with training.

4.3 Evaluation Metrics

Automatic Evaluation
The Bilingual Evaluation Understudy (BLEU) (Papineni et al. 2002) score is widely
used for evaluation of machine translation. In this paper, BLEU metric is chosen as an
automatic evaluation approach for our couplet generation, where original couplets are
used as reference ground truth. Note that BLEU score can represent the similarity
between generated couplets and human-written ones. Moreover, some specifications
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related to Chinese couplets are taken into consideration, such as Length Matching,
Character Structure and Tone Pairing. Among them, Length Matching means that both
couplet sentence must have the same length. Character Structure ensures that both
sentences shouldn’t contain the same characters and/or phrases in the same positon.
Tone Pairing requires the last characters in the two sentences exhibit opposed tone.

Human Evaluation
Different from machine translation, BLEU score is not enough for couplet generation
evaluation due to its high diversity. Therefore, eight graduate students majored in
traditional Chinese are asked to review generated couplets. They are asked to score our
generated couplets with 1–5 scores in three aspects, including Structural Symmetry,
Semantic Coherence and Topic Relevance. In terms of Structural Symmetry, corre-
spondence of each character in the same position from two sentences in the aspect of
part of speech (POS) and semantics. Semantic Coherence means that antecedent and
subsequent clauses are semantically coherent but not repetitive. Fluency examines
whether both clauses of generated couplets are expressed fluently.

4.4 Experimental Results

Table 1 depicts automatic evaluation results of our proposed couplet generator com-
pared with the baseline. Apparently, both models can easily generate two same length
clauses. However, our proposed model performs better in Character Structure and Tone
pairing, which is owing to the encoder-decoder network structure and attention
mechanism. Note that both models perform comparatively in terms of BLEU score,
verifying the ineffectiveness of BLEU metric for literature creation. Human evaluation
results are shown in Table 2. Our proposed model performs better in all three aspects
than baseline. Other than attention mechanism, both pipelines including selection of
head character and re-ranking of candidate clauses contribute to improving the topic
relevance of the generated couplets.

Table 1. Automatic evaluation results.

Method Length matching Character structure Tone pairing BLEU

LM 1.0 0.60 0.86 0.2830
SPC generator 1.0 0.73 0.99 0.2831

Table 2. Human evaluation results.

Method Character correspondence Semantic coherence Topic relevance Average

LM 3.50 3.46 2.69 3.22
SPC generator 3.82 3.62 3.38 3.61
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5 Conclusions

In this paper, we propose a novel three-stage neural network pipeline method for
Chinese couplet generation. The antecedent generator consists of a LM model equipped
with a CBS method after statistical selection of head character using the Naïve Bayes.
Afterwards, an attention-based S2S model is trained to generate diverse subsequent
clauses which are submitted to the re-ranking pipeline for selection of better results.
Both automatic and human evaluations demonstrate better performance of our pro-
posed generation system. Moreover, a mini-program of acrostic couplet generation
based on our model has also been developed and deployed on Wechat for real users.

Acknowledgement. This work was supported by Ping An Technology (Shenzhen) Co., Ltd,
China.
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Abstract. General named entity recognition systems exclusively focus
on higher accuracy regardless of dirty data. However, raw source data
face serious challenges specially that are originated from automated
speech recognition systems’ results. In this paper, we propose Pinyin
(Pinyin is the official romanization system for Standard Chinese, each
Chinese character has its own pinyin sequence which is composed of Latin
alphabet) Hierarchical Attention Encoder-Decoder network and Charac-
ter Alternate Network to overcome Chinese homophones’ problems which
frequently frustrate researchers in consecutive Natural Language Under-
standing (NLU). Our models present a none word segmentation structure
to effectively avoid secondary data corruption and adequately extract
words’ internal features. Besides, corrupted sequences can be revised
by character-level network. Evaluation demonstrates that our proposed
method achieves 93.73% F1 scores which are higher than 90.97% F1
scores using baseline models in homophone-noisy dataset. Additional
experiments are conducted to show equivalent results in the universal
dataset.

Keywords: Named entity recognition · Homophone ·
Encoder-Decoder network · Autoencoder

1 Introduction

Automated speech recognition (ASR) is playing an essential part in information
extraction, manipulation and generation. Speeches are commonly used as sole
source data in ASR to improve user experience. Unfortunately, ASR system
deviates dramatically from the ground truth when homophones are involved in
source data. However, even in the state-of-art ASR system, homophones prob-
lems are still ignored due to noisy data. In addition, words segmentation in
several languages (e.g., Chinese) will severely affect the precision of ASR system
due to it is highly relies on understanding of source data. Recent research efforts,
[18] and [29], have developed the speech corrector technique, but the benefits of
afterward semantic extraction are limited. The homophones problem is hindering
ASR system and the latter semantic extraction after ASR. This paper focuses
on solving these problems.
c© Springer Nature Switzerland AG 2019
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Sequence tagging, which is the process following ASR in the whole NLP pro-
cess has been widely applied in text semantic extraction for a few decades. Recent
breakthrough in sequence tagging is eminently enhancing performance. [19]
provides CharWNN deep neural network to construct a language-independent
Name Entity Recognition (NER) systems. [10] proposes Bidirectional LSTM-
CRF based models for sequence tagging. Based on the rapid development of pre-
trained word embeddings, works [16] and [11,17] demonstrate a semi-supervised
method by adding pre-trained context embeddings to Bi-LSTM model. [2] dis-
tinguishes character-level and word-level embeddings, combining hierarchical Bi-
LSTM model, which achieves high performance. However, these efforts have been
devoted in sequence tagging regardless of noisy data arising from homophones.

In this paper, we focus on mitigating the effects of homophones from ASR
in sequence tagging. We argue that Pinyin, which is ignored in other work,
has capabilities to retain features of Chinese homophones which inspires us after
comprehensive investigations. Based on this idea, a homophones-insensitive Chi-
nese sequence tagging model by combining a variety of recurrent neural net-
work (RNN) based models is developed. These models include hierarchical Bi-
LSTM networks [2], attention mechanism [1,15], encoder-decoder framework [5],
autoencoder network [7]. To further improve accuracy of sequence tagging while
encountering homophones, we propose a character-level tagging method to avoid
word segmentation. Moreover, an auto-encoder based character alternate net-
work is clarified to search advisable characters. The contribution of this paper
can be summarized as follows:

1. To the best of our knowledge, this is the first work which employs Pinyin in
sequence tagging tasks. The character-level Chinese tagging network, named
Pinyin Hierarchical Attention Encoder-Decoder network (PHAED), is pro-
posed as the sequence tagging model.

2. Based on the proposed techniques, there is no need for word segmentation,
which greatly decreases error propagation from homophones.

3. Extensive character alternate network (CAN) is developed to search advisable
characters. CAN eliminates noise to enhance latter data analysis.

Evaluation shows that PHAED obtains equivalent F1 scores needless of
word segmentation in no-homophone dataset compared to the state-of-the-art
sequence tagging methods. PHAED also achieves 93.73% F1 scores, which is
better than 90.97% F1 scores in baseline models in homophone dataset.

The rest of this paper is organized as follows. Section 2 describes the based
sequence tagging models. In Sect. 3, two models PHAED and CAN are pro-
posed. The environment and training procedures of all experiments are given
in Sect. 4. Evaluation and analysis on the characteristics of proposed algorithms
are presented in Sect. 4. Section 5 concludes this paper.
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2 Base Model

2.1 Attention-Based Encoder-Decoder Network

Encoder-Decoder framework [5] with attention mechanism [1,15] is particularly
suitable for modeling sequential phenomena. In Fig. 1, at step i, an RNN cell
takes the input xi and the hidden state hi−1, and the next hidden state hi can
be obtained as follow:

⇀

hi =
⇀

R(xi,
⇀

hi−1; θ⇀
R

)
↼

hi =
↼

R(xi,
↼

hi−1; θ↼
R

)

hi = [
⇀

hi;
↼

hi]

(1)

Here, notations
⇀

hi and
↼

hi refer to forward and backward RNN network.
⇀

R

and
↼

R indicate either GRU cell [6] or LSTM cell [9].

Fig. 1. Encoder-Decoder architec-
ture with attention module.

y

h

x

y

h

x x

Fig. 2. Differences among autoencoders,
denoising autoencoders, stacked denoising
autoencoders.

Multiple layers of LSTMs [16] achieve competitive performance in an encoder-
decoder framework. Note that, we adopt 2 layers of LSTM cells in all exper-
iments. Attention mechanism is proved to be efficient in [15]. The attention
module calculates associated weights at step i can be presented as follows:

sij = bT tanh(Wazi−1 + Ua · hj) (2)

Then we get attention vectors:

αij =
exp(sij)

i−1∑

k=0

exp(sik)
(3)

Context vectors are finally calculated as follows,

ci =
i−1∑

j=0

αijzj (4)



328 Z. Liu and G. Wu

where zi−1 is the hidden state when decoding, while hj is the hidden state
when encoding. Wa , Ua are parameters that learned during training time. The
final layer uses a softmax function to predict a score for token from the tag
vocabulary V .

g(hi, vj , ci) = OT
vj

(Whhi + Wcci) (5)

P (ωi = vj |ω1, ω2, ω3, ...) =
exp(g(hi, vj , ci))∑

vk∈V

exp(g(hi, vj , ci))
(6)

where O ∈ R
d×V is a dense layer and Ovj

corresponding to tag token vj , ωi is
the character at position i in output sentence.

2.2 Stacked Denoising Autoencoder

An autoencoder [25] is a special neural network which is similar to encoder-
decoder framework. It is composed of two parts: (1) Encoder, a deterministic
mapping fE that transforms an input x ∈ R

dx into a hidden representation
h ∈ R

dh :
h = fE(x) = s(Wx + b) (7)

and (2) Decoder, a reconstructed layer fD that mapped back to y ∈ R
dy :

y = fD(h) = s(W′h + b′) (8)

The parameters W ∈ R
dx×dh , W′ ∈ R

dh×dy are weight matrices of encoder
and decoder; b ∈ R

dh and b′ ∈ R
dy are called encoder and decoder bias vec-

tors. In practice, W = W′ may often be used. Those parameters are learned
simultaneously on the task of minimizing an associated reconstruction error:

J(W,b,b′) = L(x,y) (9)

Where L can be the squared Euclidean distance L(x,y) = ||x − y||2 or

L(x,y) = −
dx∑

i=1

xi log yi + (1 − xi) log(1 − yi) which refers to cross entropy in

case that s is sigmod function and inputs are in [0, 1]dx .
The denoising autoencoder (DAE) is neural network aimed at reconstruct-

ing a clean input from a corrupted version of it. The raw input vectors x are
first corrupted by means of a stochastic mapping x̃ = qD(x̃|x). After completing
whole data corruption, the noisy data x̃ is mapped, as the same with autoen-
coder, to hidden representation h from which we reconstruct y, as illustrated in
Fig. 2. Parameters (W,b,b′) are trained to minimize the reconstruction error
L(x,y) rather than L(x̃,y). Multiple layers of DAE compose the stacked denois-
ing autoencoder. There are h layers of DAE that are trained by bottom-up and
layer-wise methods. Input corruption is only used for the initial input vector.
The hidden layer of the top autoencoder is the output of the stacked denoising
autoencoder, which can be further applied into other applications, such as SVM
for classification [25].
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3 Improved Model and Algorithms

The main architecture of our proposed model is illustrated in Fig. 3. In this
example, we split an input Chinese sentence into Chinese characters without
word segmentation. Then, we extract the Pinyin sequence into every character
from the given sequence. Utilizing the concentration of pre-trained character
embedding and Pinyin embedding, internal features which refers to named enti-
ties are discerned by RNN tagging model while revised sentences are generated
by CAN model during training. But for inference, input sequences are primarily
processed by CAN model and subsequently deposited into whole system.

3.1 Hierarchical Character Embedding

The employed hierarchical character embedding structure in PHAED follows
several studies [2,4,17,28]. Given a sentence, we consider each character ci , its
tokens ti and the Pinyin sequence of ci that comprise Pinyin: c1i , c

2
i , c

3
i , .... A char-

acter embedding xi for each character comprises three parts as shown in Fig. 4:
(1) a Pinyin based representation bi (2) a pre-trained character embedding ei

(3) a character token embedding wi.

bi = φ(c1i , c
2
i , c

3
i , ...; θb)

ei = Epre(ci) (10)
wi = E(ti; θw)
xi = [bi; ei;wi]

where θb, θw are parameters to be computed during training phase, φ(x) denotes
the character embedding which is either RNN [8] or CNN [12,20], Epre(x)
denotes pre-trained character embedding model [11,16] and E(x) is a token
lookup table which is initialized with random token embedding.

Fig. 3. Overview of the whole
NER model.

bi ei

wi

Fig. 4. Structures of Hierarchical charac-
ter embedding, ‘h’, ‘a’, ‘o’ is the Pinyin
sequence of Chinese character .

Unlike English sentence, there is no space between words in Chinese, which
indicates that word segmentation is essential for Chinese sentence. In the homo-
phone condition, word segmentation is more likely to generate mistaken word
embedding which introduces noisy data in pre-process procedure. To solve this,
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we employ hierarchical character embedding which can capture the pronuncia-
tion feature (homophones have similar pronunciation) by Pinyin representation
bi. Inspired by the idea that each Chinese character shows individual impli-
cation, we adopt character embedding instead of word embedding as inputs of
the tagging model. Similar approaches of character embedding, which has been
elaborated above, are also utilized in Pinyin representation.

3.2 PHAED

We combine a hierarchical character embedding and an attention-based Encoder-
Decoder network to form a PHAED model, which is shown in Algorithm 1.
Hierarchical character embedding can efficiently extract features of homophones
and characters. More meaningfully, our proposal skips the word segmentation
step so that precise character embedding is taken into the Encoder-Decoder
network. Attention-based Encoder-Decoder network has an attention vector as
weight parameters of characters in various position. With such mechanism, we
can skillfully predict the current tag using past and future tags. We consider the
matrix of scores fθ(x) are output by attention-based encoder-decoder network.
The element [fθ(x)]i,j of the matrix is the score output by previous network
with parameters θ, representing the probability that the i-th word in sentence
x belongs to the j-th tag in vocabulary V :

[fθ(x)]i,j = P (ωi = vj |ω1, ω2, ω3, ...) (11)

where P (ωi = vj |ω1, ω2, ω3, ...) is the output by attention-based encoder-decoder
network according to Eq. (6).

The cost function of a sentence x along with a path of true tags y is given by
the cross entropy between scores matrix fθ(x) and one-hot encoding matrix y:

g(x,y|θ) = −
T∑

i=1

|V |∑

j=1

yi.j log [fθ(x)]i,j (12)

An simple example of NER shown in Fig. 5 presents the running procedures
of PHAED. The vocabulary which contains all Chinese characters is applied
to transfer them into tokens. Combining tokens which generated by charac-
ters sequences via above vocabulary and Corresponding
Pinyin sequences “hao”, “ting”, “de”, “ge”, “qu”, entity types results are labeled
as “quality”, “quality”, “O”, “channel”, “channel”.

3.3 CAN

Similar to stacked denoising autoencoders, CAN adopts stacked encoders-
decoders framework (Fig. 2), but replaces encoders and decoders with Bi-LSTM
networks. The motivation of replacement is that standard DAE can’t handle
sequential data and one linear transformation layer lacks abilities to entirely
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Algorithm 1. PHAED(c, t,b,y, l)
Input: c, Pinyin sequences of input sentences; t, token sequences of input sentences;

y, tag sequences of output sentences; l, train steps; b, Pinyin based representation;
Output: θEncoder, θDecoder

1: θEncoder, θDecoder are randomly initialized
2: for each i ∈ [1 : l] do
3: x ←HCE(c, t,b) // HCE(), function to construct x in Eq (10)
4: x ← encoder(x, θEncoder) // Apply encoder following Eq (1)
5: x ← decoder(x, θDecoder) // Apply attention decoder following Eq (4), (5)
6: y′ ← full connected(x) // Calculate tokens using Eq (11)
7: cost ← cross entry(y,y′) // Calculate entry loss via Eq (12)
8: if cost is lower enough then
9: return θEncoder, θDecoder

10: else
11: θEncoder, θDecoder ←SGD(θEncoder, θDecoder) // minimize cost by stochastic

gradient descent
12: end if
13: end for
14: return θEncoder, θDecoder

Fig. 5. Architecture of PHAED, is split as five Chinese
characters inputs. “hao”, “ting”, “de”, “ge”, “qu” are correspond Pinyin of these char-
acters. “quality”, “O”, “channel” are entity types that some are beyond official entity
types.

express the whole feature set. Training procedures are identical in which multi-
ple layers of autoencoders are successively trained and no upper layers can be
trained unless all lower autoencoders’ parameters are frozen.

Under corruption steps, input Chinese sentences are initially polluted by
two corrupting operations which contain deletion and substitution with respec-
tive probability p1, p2. Substituted words strictly originate in Chinese Homo-
phones Dictionary [22]. Finishing corrupting, aforementioned hierarchical char-
acter embedding is employed to generate corrupted input vectors x̃ to extract
characters’ features. The detailed procedures of training a CAN model are listed
in Algorithm 2. In our implementation, we use cross-entropy loss function which
is identical to general NLP tasks.
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Algorithm 2. CAN(x, p1, p2, h)
Input: h, number of layers of autoencoder; x, training data; p1, deleting probability;

p2, substituting probability
Output: θE , θD
1: for each i ∈ [1 : h] do
2: x = substitution(x, p1) //randomly substitute words in x with p1 probability
3: x = deletion(x, p2) //randomly delete words in x with p2 probability
4: x ←HCE(x) //the inputs of HCE is the same as Algotithm 1, we use (x) for

simplicity
5: randomly initialize θi

E , θi
D

6: repeat:
7: x ← encoder(x, θE) x ← decoder(x, θD) θi

E , θi
D ←SGD(θi

E , θi
D)

8: until convergence
9: end for

10: return θE , θD

After the above-mentioned training algorithm is executed, CAN is employed
to check the probabilities of rectifying original characters into more suitable char-
acters. The characters, whose rectifying probabilities are higher than a certain
threshold T , will be substituted by advisable characters. While inference, inputs
of PHAED model are these revised sentences instead of original sentences. A
simple case in Table 1 provides you intuitive perception of CAN’s results.

Table 1. A simple case of CAN

4 Experiments

In this section, extensive simulations are conducted to show the advantages of
the proposed scheme. Although our research focuses on the homophones task, we
still evaluate it in the no-homophone task to verify universality. In both cases, we
employ the general F1 score to compare our scheme with baseline sequence tag-
ging model [17,28] and other previous tagging models [14]. In homophones task,
we employ character accuracy rate1 to measure the performance of searching
advisable characters.

1 Character accuracy rate= numbers of correct rectifying characters/numbers of
wrong characters.
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4.1 Datasets Description

The CoNLL-2003 NER task [24] and the CoNLL-2000 Chunking task [23] are
benchmarked sequence tagging task. Unfortunately, these datasets are strongly
cleaned with rare homophones and lack Chinese corpus. We crawled data from
Weibo (Chinese micro-blogging) with 100,000 sentences, named Weibo NER
Corpus. The whole dataset involves 35 entity types which are labeled man-
ually. According to the state-of-the-art speech recognition technique reported
by [3], word error rate (WER) reduces to 5.6%. We investigated that 95% of
the error samples are provoked by homophones. In Weibo NER Corpus, 5%
(5.6%× 95% ≈ 5%) words in Weibo NER Corpus are replaced by corresponding
homophones under Chinese Homophone Dictionary [22] to form Noising Weibo
NER Corpus which is applied to train PHAED and CAN. Considering Nois-
ing Weibo Corpus is just one synthetic dataset, we employ the state-of-the-art
ASR system [3] to generate Speech Text Corpus based on open source data set
THCHS30 [26] and ST-CMDS-20170001 1. Using real speech recognition text,
we confirm the ability of our scheme to overcome Homophone problems.

4.2 Pre-trained Character Embedding

The character embeddings we used in this work are trained on Chinese Wiki
Corpus with the duplicate parameters following [11]. Considering unnecessary
word segmentation, sentences in Chinese Wiki Corpus2 are split as indepen-
dent Chinese characters. Hence, the output word embedding is treated as Chi-
nese character embedding which extensively employed in hierarchical character
embedding.

4.3 Setup

All baseline models and PHAED use 30-dimensional character embeddings. [14]
uses two layers of 100-dimensional hidden states. 275-dimensional hidden states
with only 1 layer LSTM is adopted in [4]. [28] employs a CNN with 30 filters
of width 3 characters which is same as [4] and 2 layers of Bi-LSTMs with 200
hidden units and 50% dropout rate [21] while [17] employs two stacked LSTMs
with 8192 hidden units and 50% dropout rate which is considered as optimal
solution.

We use two layers of Bi-LSTMs in encoder and Pinyin embedding with
300 hidden units and 25-dimensional character embedding. Replicate Bi-LSTM
parameters are trained in CAN whose initial parameters could be shared by
trained PHAED model. Following [21], we add 50% dropout rate to the recur-
rent connections in both CAN and PHAED for regularization.

2 https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2.

https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2
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Table 2. F1 results on Speech Text Corpus

Module Setting Accuracy

CAN+PHAED -/- 93.73%

CAN+PHAED separated HCE 92.49%

PHAED No CAN 91.27%

CAN+PAEDa No HCE 87.46%

PAEDa No CAN and HCE 86.46%
aPAED: PHEAD without HCE

Table 3. F1 results on Weibo NER
Corpus

Model F1±std

Chiu et al. (2015) 90.92%±0.33

Lample et al. (2016) 91.95%±0.27

Yang et al. (2017) 92.57%±0.18

Peters et al. (2017) 94.82%±0.15

CAN+PHAED 94.85%±0.18

4.4 Training

Following [17], all experiments are trained by the Adam optimizer [13] with gra-
dient norms clipped at 5.0. As length of Pinyin in Chinese is inevitable no more
than 6, maximal Pinyin length is limited as 6. Moreover, the length of maximal
character in Hierarchical character embedding is decided as 30 to increase batch
size, since [27] proves that larger batch size can achieve higher performance. In all
experiments, we freeze all the pre-trained fasttext word embedding and initial-
ize the token embedding by standard Gaussian distribution. For the purpose of
explicit dropout regularization, early stopping is adopted to prevent over-fitting,
while adaptive learning rate is used to restrict high learning rate during the ulti-
mate training stage. We train with a time-based decay learning rate a = 0.002
on the training data and decrease 1% at every 200 epochs. Then, we monitor
the development set performance at each step and stop whole train process at
the epoch with the highest development performance.

Following [17] and [28], we train the final model with the same configurations
ten times in all experiments using different random seed; therefore the mean and
standard deviation of F1 can be checked. Estimating the variance of sequence
tagging performance is significant since variance of samples confirms truth but
a simple sample not.

4.5 Evaluation

In order to estimate CAN and HCE performance to tagging sequence, we adopt
several ablation experiments to analyze performance of PHAED and CAN on
Speech Text Corpus. The experiments’ results are shown in Table 2. We notice
that both PHAED and CAN employ hierarchical character embedding. There-
fore generating initial point of PHAED with CAN-shared trained hierarchical
character embedding makes it converge faster and improved performance. The
reason is that denoising features are simultaneously extracted in PHAED, thus
PHAED pays more attention to decode denoised data in training periods.

Table 3 demonstrates the final results on the test dataset of Weibo NER Cor-
pus. Our scheme performs equivalently compared to the state-of-the-art tagging
model on normal dataset. The results denote that word segmentation doesn’t
effectively contribute to deriving named entities from original dataset. PHAED,
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Table 4. F1 results on Speech Text
Corpus

Model F1±std

Chiu et al. (2015) 86.76%±0.46

Lample et al. (2016) 87.38%±0.47

Yang et al. (2017) 87.84%±0.27

Peters et al. (2017) 90.97%±0.25

CAN+PHAED 93.73%±0.21

Table 5. F1 results on Nosing Speech
Text Corpus

Model F1±std

Chiu et al. (2015) 37.22%±0.61

Lample et al. (2016) 38.01%±0.57

Yang et al. (2017) 39.10%±0.40

Peters et al. (2017) 55.72%±0.36

CAN+PHAED 79.35%±0.25

which employs original character sequences without noise introduced by previous
steps, captures implicit structures of words, which decreases error rates.

Next, we analyze the performance from the perspective of real speech recog-
nition text. When one word in sentences is mistakenly spilt, one of two adjacent
words are remarkably affected which may engender continuous inaccurate word
segmentation. As shown in Table 4, with the homophones words generated by
ASR system, PHAED presents surprising performance. Besides, our proposal
exhibits low degree of increase in experiments’ variance, while previous achieve-
ments lack adequate robustness which leads to high variance.

To further figure out the reason why PHAED and CAN outperforms on
noisy dataset. We ran additional experiments on Noisy Speech Text Corpus (all
selected sentences’ confidences generated by prementioned [3] are below a certain
threshold). Results presented in Table 5 illustrate that PHAED + CAN improves
noise immunity in tagging model. [28] and [17] encouter severe decline in extract-
ing appropriate information when reliable data doesn’t occupy overwhelming
majority.

5 Conclusions

In this paper, we developed PHAED based on Encoder-Decoder network for
sequence tagging. The model integrates pronunciation, attention mechanism and
Encoder-Decoder network into a single neural network, and it does not require
word segmentation. To improve performances, we investigate various methods
and optimization mechanisms. The proposed techniques outperform significantly
in homophone NER task, while obtains equivalent results on non-homophone
NER task. In experiments, we observe that word segmentation is crucial for
errors of sequence tagging under polluted data. Applying pronunciation fea-
tures, bad cases caused by homophones are highly reduced. Furthermore, we
have established a new CAN network to recover original sentences from noisy
corpus. This may be essential for NLU in which clear data is urgently needed.
The proposed method will be effective to be adopted in latter procedures in
automated speech recognition system.
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Abstract. In recent years, deep learning methods have achieved out-
standing performances in sentence classification. However, many sentence
classification models do not consider the out-of-vocabulary (OOV) prob-
lem, which generally appears in sentence classification tasks. Input units
smaller than words, such as characters or subword units, have been con-
sidered the basic unit for sentence classification to cope with the OOV
problem. Although this approach naturally solves the OOV problem, it
has obvious performance limitations because a character by itself has
no meaning, whereas a word has a definite meaning. In this paper, we
propose a neural sentence classification model that is robust to the OOV
problem, even though the proposed model utilizes words as the basic
unit. To this end, we introduce the unknown word prediction (UWP)
task as an auxiliary task to train the proposed model. Owing to joint
training of the proposed model with the objectives of classification and
UWP, the proposed model can represent the meanings of entire sen-
tences robustly even if a sentence includes a number of unseen words. To
demonstrate the effectiveness of the proposed model, a number of exper-
iments are conducted using several sentence classification benchmarks.
The proposed model consistently outperforms two baselines over all four
benchmark datasets in terms of the classification accuracy.

Keywords: Sentence classification · Out-of-vocabulary problem ·
Neural network · Multi-task learning

1 Introduction

Sentence classification is a fundamental task in natural language processing
(NLP), which is being studied extensively for sentiment analysis in social media
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and political ideology analysis, among other purposes [3,15]. Recently, deep
learning approaches that employ recurrent neural networks (RNNs), convolu-
tional neural networks (CNNs), and attention mechanisms have been shown
to be effective for sentence classification. Among them, BLSTM2DCNN [18]
employs a two-dimensional (2D) convolutional network on top of a bidirectional
LSTM for text classification. BLSTM2DCNN has been shown to perform well
on several text-classification tasks because the network can capture the depen-
dency among feature vector dimensions via 2D convolutions and the bidirec-
tional long-term contextual information via BLSTM. By contrast, DARLM [19]
is another recently developed neural network for sentence classification. This
model includes two attention subnets that attending different parts of a sen-
tence with each other. Then, an example discriminator assigns a label to the
given sentence by utilizing attention information from both subnets. The neu-
ral models proposed in these studies have network architectures and decision
mechanisms optimized for sentence classification.

Despite these advances in deep learning for sentence classification, many sen-
tence classifiers do not consider the out-of-vocabulary (OOV) problem, which
appears in almost all sentence classification tasks. During training, neural clas-
sifiers have access to complete information about a sentence to be classified.
By contrast, in practice, these classifiers may be applied to sentences contain-
ing multiple unseen words. This OOV problem interferes with the prediction of
neural classifiers, and the problem becomes severe when the unseen words in a
sentence deliver the key information that determines the class of the sentence.
One possible solution for the OOV problem is using characters or subwords [13]
as basic units for sentence classification instead of words [17]. Because characters
and subwords are smaller units than words, sentence classifiers based on such
small units can avoid the OOV problem naturally. However, the performance of
character-level sentence classifiers is inferior to that of word-level models, even
though character-level sentence classifiers have considerably deeper and more
complex network structures [7]. This is because a character by itself has no
meaning, whereas a word has a definite meaning.

In this paper, we propose a neural sentence classification model that is robust
to the OOV problem, even if the proposed model utilizes words as the basic unit
for classification. To this end, we introduce the unknown word prediction (UWP)
task as an auxiliary task to train the proposed model. The UWP task predicts
the would-be word when an unknown word is included in a sentence. To train
a network for this task, some proportion of the words in training sentences
are randomly selected and replaced with the 〈unk〉 token. Then, a network is
trained to predict the words to be substituted instead of the 〈unk〉 tokens by
considering all other words in a sentence. The objective of UWP is similar to that
of the masked language model (MLM) [2], which has been proved to be useful
for obtaining robust and contextual word representations of a given sentence.

The proposed neural network consists of three sub-networks, namely, a shared
sentence encoder, sentence classification network, and an UWP network. The
sentence encoder takes a sentence, that is, a sequence of words, as input and
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outputs a sequence of contextual word representations. Because the auxiliary
UWP task is executed to generate robust word representations that can be used
for sentence classification, the sentence encoder should be shared across both
the main and the auxiliary task-specific networks. The UWP network is placed
on top of the sentence encoder, and then the network predicts the word that
is the original word of a given 〈unk〉 token based on all other known words in
the sentence. Concurrently, the sentence classification network takes a sequence
of word representations from the sentence encoder and performs classification
based on the given sequence.

In multi-task learning, an auxiliary task can give the model useful hints,
which are difficult to learn in the main task [1]. By applying the UWP task to
a network as an auxiliary task for sentence classification, the proposed model
obtains such hints for solving the OOV problem from two perspectives. The first
perspective is that a neural classifier can be configured to predict the approxi-
mate meanings of unseen words. Thus, the UWP task provides a direct solution
for the OOV problem encountered in sentence classification. Another perspec-
tive is that word representations of known words become more contextual. As a
result, the meaning representation of the entire sentence becomes robust, even
if a sentence includes a number of unseen words.

To demonstrate the effectiveness of the proposed model, a number of exper-
iments are conducted on several sentence classification benchmarks including
SST-1, SST-2, TREC-6, and TREC-50. In a comparison with the baselines with-
out the UWP auxiliary task, the proposed model consistently outperforms the
baselines over all four benchmark datasets; especially, on the SST-1 benchmark,
the performance gain in terms of accuracy is up to 1.2% compared to that of the
baselines.

The rest of this paper is organized as follows. In Sect. 2, we briefly introduce
previous works on recent neural models for sentence classification. In Sects. 3
and 4, we describe the learning algorithm and the architecture of the proposed
model. The experimental setting and the results are given in Sects. 5 and 6.
Finally, we conclude the study in Sect. 7.

2 Related Work

In recent years, deep learning methods, including modern neural modules such as
recurrent units, convolutions, and attention mechanisms, have yielded notable
performance when applied to sentence classification. Even more recently, the
developers of most deep learning models have blended more than two of the
aforementioned modules to enhance performance. In BLSTM2DCNN [18], 2D
convolutions are introduced, and their filters are defined across the feature vec-
tor dimension as well as the word sequence. These 2D convolutions summarize
the contextual information generated by a bidirectional LSTM to classify a sen-
tence. The DARLM [19] combines all three of the aforementioned modules; it is
thus composed of a convolutional layer for text encoding, two different attention
mechanisms for feature selection, and two LSTM layers on top of each attention
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mechanism for aggregating the contextual information. These studies show the
importance of generating appropriate contextual representations and summariz-
ing them.

Breaking words down into smaller units is one of solutions to the OOV prob-
lem. A number of character-level [8,17] and subword-level [5,13] classification
models have been proposed. Essentially, these models seem to eliminate the
OOV problem from sentence classification. However, the smaller units rarely
convey meanings and increase the length of the input sequence. By contrast, the
proposed model uses a word as the basic unit and infers contextual meanings by
considering the surrounding words.

Multi-task learning is widely used to improve sentence classification perfor-
mance [12]. To facilitate multi-task learning, the tasks to be performed should
be related each other. When this condition is satisfied, an auxiliary task can
help improve the performance of the associated main task through the provi-
sion of additional hints that can only be obtained from the auxiliary task. For
instance, the execution of a word-level sentiment classification task can improve
the performance of the associated sentence level sentiment classification task [16].
This makes sense because the polarity of each word in a sentence is crucial for
determining the sentiment of the entire sentence. It is also intuitive that under-
standing the contextual meaning of each word in a sentence is very important
for predicting the class of the sentence. In addition, human beings understand a
sentence that contains words unknown to them by contextually approximating
the meaning of those words. Based on this intuition, we set UWP as the auxiliary
task for sentence classification.

The proposed UWP task was motivated by the masked language model
(MLM), which is used for training BERT [2]. In the training procedure of MLM,
a neural network is forced to predict the original words of masked words in a
sentence. With this training, the network produces more robust word represen-
tations, even when a word is masked. Unlike the MLM in BERT, which applied
to a very large-scale corpus to obtain robust word representations, we show that
with relatively small data, the UWP task is adequately effective as an auxiliary
task for sentence classification.

3 Sentence Classification with Auxiliary Word Predictor

Figure 1 describes the overall architecture of the proposed model. As shown in
this figure, the proposed model follows a general network structure for multi-task
learning, which comprises one shared sub-network and multiple task-specific sub-
networks [12]. In the proposed model, the shared network is a sentence encoder,
and two task-specific networks constitute a sentence classification network for
the main task and an UWP network for the auxiliary task. Let D = {(x,y)}
be the training dataset for sentence classification, where x = (w1, . . . , wL) is a
input sentence of length L, and y ∈ {0, 1}C is a one-hot vector for the class label
of a sentence x. Because D does not provide the training data for the auxiliary
task, we first generate a training dataset D′ = {(x′,y)} for both tasks. x′ is a
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Fig. 1. Architecture of proposed sentence classification network with an auxiliary word
predictor.

corrupted x obtained by replacing a few words with the unknown token 〈unk〉.
In this study, 15% of the words in x were randomly replaced with the 〈unk〉
token.

After D′ is prepared, x′ with U unknown words is input to the RNN-based
sentence encoder fenc to produce a sequence of word vectors H = (h1, . . . ,hL).
Then, the CNN-based sentence classification network fcls takes H and predicts
the probability distribution of the class label y of x. Thus, two parameter sets
θcls and θenc with respect to fenc and fcls are trained to minimize

∑

(x′,y)∈D′
Lcls(y, fcls(fenc(x′; θenc); θcls)), (1)

where Lcls is the cross-entropy loss.
The UWP network faux for the auxiliary task is a feed-forward neural net-

work, and it takes H as the input. Because more than one 〈unk〉 token can be
included in x′, faux predicts the original word for each 〈unk〉 token. Then, θaux,
a set of all parameters of the auxiliary word predictor, is jointly trained with
θenc to minimize

∑

(x′,i:wi=〈unk〉)∈D′
Laux(wi, faux(fenc(x′; θenc); θaux)), (2)

where wi is a one-hot vector for the i-th word in x, which is replaced by the
〈unk〉 token, and Laux is the cross-entropy loss.
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Algorithm 1. Training procedure of entire proposed model
input : Training set D = (x,y), hyperparameters α and λ
Parameters : Θ = (θenc, θcls, θaux)

initialize : All parameters Θ are randomly initialized.
1 repeat
2 Dbatch ← sample(D, b) // sample a minibatch of size b
3 D′

batch ← Ø // initialize the corrupted training set

4 for (x,y) ∈ Dbatch do
5 (x′,y) ←generate(Dbatch) // sample a corrupted tuple

6 D′
batch ← D′

batch ∪ {(x′,y)}
7 end

// joint training of entire networks

8 Train fenc and fcls by Eq. 1
9 Train fenc and faux by Eq. 2

10 until convergence;

The goal of the auxiliary task is to help the sentence encoder produce a
robust representation of x. Thus, fenc should be optimized to jointly minimize
both loss Lcls and Laux. As a result, the final loss of the proposed model is as
follows.

L = Lcls + αLaux + λ‖Θ‖2, (3)

where Θ = (θenc, θcls, θaux) denote all parameters of the proposed model, and
the hyperparameter α balances the main classification task and the auxiliary
word prediction task. λ is an l2 regularization hyperparameter.

Algorithm 1 describes the detailed procedure for training the proposed model.
The proposed model contains three parameter sets, namely, θenc, θcls, and θaux,
which come from fenc, fcls, and faux, respectively. All these parameters are ini-
tialized randomly before training. In each epoch of the algorithm, a small set of
tuples is sampled from the training set and corrupted with 〈unk〉 tokens. Once
a corrupted training set is prepared, the entire network is trained jointly with
the loss given in Eq. 3 by lines 8–9 until the training converges.

4 Network Implementation

The proposed model begins with a shared sentence encoder fenc. The shared
sentence encoder consists of an embedding layer and a Bi-LSTM layer. The
embedding layer converts an input sentence x of L words into a sequence of
word vectors in the form of the matrix X = [vT

1 , . . . ,vT
L ]. The Bi-LSTM layer

encodes X into a contextual representation H by reflecting the left and right
contexts against each d-dimensional embedding vector hi. That is,

hi =
−→
hi ⊕ ←−

hi, (4)



344 S.-S. Park et al.

where ⊕ is the element-wise sum. Thus, the output of the sentence encoder
is H = [hT

1 , . . . ,hT
L], where H ∈ R

L×d. This H is fed to both the sentence
classification network and the UWP network.

We employ a CNN as the sentence classification network fcls because the
performance of CNNs in sentence classification has been demonstrated [18].
Most CNNs used for sentence classification generally apply one-dimensional
(1d) convolution and 1d pooling operations [4]. However, Zhou et al. [18] intro-
duced 2d convolution and 2d pooling operations to sentence classification and
showed the effectiveness of the 2d operations in practice. Following the work
of Zhou et al., we use a 2d convolutional layer and a 2d max pooling layer for
fcls. The convolution operation of the convolutional layer involves a 2D filter
m ∈ R

k×dm , which is applied to a window of k words and dm feature dimen-
sions. After the convolution operation is applied to H, the convolutional layer
outputs a feature matrix Oconv ∈ R

(l−k+1)×(d−dm+1). The 2d max pooling oper-
ation is then applied to obtain a summarized feature map. With the pooling size
p ∈ R

p1×p2 , the operation is applied to Oconv for extracting the maximum value
features. By flattening the max-pooled feature map, a fixed-sized feature vector
o ∈ R

�(l−k+1)/p1�·�(d−dm+1)/p2� is obtained. Finally, o is fed to the classification
layer, and the target class label is determined by

y = softmax(Wy · o + by), (5)

where Wy and by denote a weight matrix and a bias vector of the classification
layer, respectively.

The UWP network faux consists of a fully-connected layer that serves as
a word prediction layer. faux takes H, the output of fenc, as its input. Then,
the network computes the probability distribution of the output words at each
position i by

[w1, . . . ,wL] = softmax(Waux · HT + baux), (6)

where Waux and baux are the weight matrix and the bias vector, respectively.
The output of the word prediction layer includes all L predicted words, but only
U words at the same positions as the 〈unk〉 tokens are words of interest for the
auxiliary task. To solve this problem, a one-hot masking vector mi ∈ R

L that
indicates the position of a 〈unk〉 token at the i-th position is used to generate
the final output of faux as follows.

wi = [w1, . . . ,wL] · mT
i . (7)

Note that this operation is executed for all U 〈unk〉 tokens.

5 Experiments

To demonstrate the effectiveness of the proposed model, we conducted a number
of experiments on four widely used benchmark datasets for sentence classifica-
tion.
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Table 1. Summary statistics of datasets. c: number of classes, l: average sentence
length, m: max sentence length, train/dev/test: train/development/test set size, vocab:
vocabulary size in training data, unk num: number of sentences that include at least 1
unknown word, and unk max: max number of unknown word in a sentence.

Data c l m train dev test vocab unk num unk max

SST-1 5 19 56 8544 1101 2210 16581 1240 9

SST-2 2 19 56 6920 872 1821 14830 1080 9

TREC-6 6 7 17 5452 - 500 8679 266 4

TREC-50 50 7 17 5452 - 500 8679 266 4

– SST-1: Stanford Sentiment Treebank was introduced by Socher et al. [14].
This dataset includes reviews with fine-grained labels (very negative, negative,
neutral, positive, very positive).

– SST-2: This dataset is a coarse-grained version of SST-1. Thus, this dataset
contains only the sentences with positive and negative labels from SST-1.

– TREC-6: A question classification dataset [9]. This dataset contains ques-
tions of six types, namely, abbreviation, description, entity, human, location,
and numeric value.

– TREC-50: Another question classification dataset [9]. This dataset was cre-
ated to classify a question into one of the fine-grained 50 question types.

Table 1 summarizes the statistics of the four benchmark datasets. As shown in
this table, over 50% of the test sentences contain unseen words during training
time. Thus, we can infer that the unseen words may significantly influence the
classification performance of the proposed model.

The classification performance of the proposed model is compared with that
of two baseline models. The first baseline model is a neural network with the
same architecture as that of the proposed model, except for the auxiliary word
predictor. Thus, this baseline did not encounter the 〈unk〉 token during train-
ing. Note that this baseline is a re-implemented version of BLSTM2DCNN [18],
which exhibits the state-of-the-art performances on several sentence classifica-
tion benchmarks. The second baseline model has the same architecture as the
first baseline model. However, this baseline model is trained with the corrupted
dataset D′. The injection of some noises into the training dataset has the effect
of network regularization, which often improves performance.

5.1 Training Details and Hyperparameters

In the experiments, the Word2Vec embeddings trained by [11] were utilized
as the pretrained word vectors. We initialized the vectors of the words that
appeared only in the benchmark training datasets through random sampling
from a uniform distribution in the range of [−0.1, 0.1]. The dimensions of the
word embedding vector vi and the contextual word vector hi from the sentence
encoder fenc were set to 300. We used 100 convolutional filters with the window
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Table 2. Classification results obtained with four sentence classification benchmarks.
BLSTM2DCNN: the performance reported in [18]. BLSTM2DCNN baseline: a
re-implemented version of BLSTM2DCNN. BLSTM2DCNN baseline w/ noise
injection: a re-implemented version of BLSTM2DCNN with 〈unk〉 tokens injected
into the training dataset.

Model SST-1 SST-2 TREC-6 TREC-50

BLSTM2DCNN [18] 52.4 89.5 96.1 -

BLSTM2DCNN baseline 47.2 86.6 95.0 86.6

BLSTM2DCNN baseline w/ noise injection 47.5 87.1 94.1 86.0

Proposed model 48.4 87.1 95.6 87.0

size of (3,3). The 2D pooling size was set to (2,2). We performed mini-batch
training with a batch size of 10. AdaDelta was used as an optimizer with the
default learning rate of 0.1. For regularization, we employed the dropout opera-
tion with a rate of 0.5 for word embeddings, 0.2 for the Bi-LSTM layer, and 0.4
for the output of the pooling layer. Moreover, we imposed the l2 penalty with
the coefficient 10−5 over all parameters.

6 Results and Analysis

Table 2 shows the classification results obtained with four benchmark datasets.
Unfortunately, we could not reproduce the exact performance of BLSTM2DCNN
because the accuracy of the BLSTM2DCNN baseline is 1%–5% lower on three
datasets than the corresponding performance reported in the original paper. As a
result, the proposed model failed to exceed the result reported in the work of [18].
However, the proposed model consistently outperformed two baseline models on
all four benchmark datasets. The proposed method achieved the best accuracies
of 48.4% on SST-1, 95.6% on TREC-6, and 84.0% on TREC-50 relative to the
baseline models.

It is known that training a neural network with noise-injected data regularizes
the network, which may improve network performance. In our experiments, this
was true for the tasks of SST-1 and SST-2 but not for the tasks of TREC-6
and TREC-50. More specifically, noise injection into the training data increased
the accuracy of the BLSTM2DCNN baseline by 0.3% on SST-1 and by 0.5%
on SST-2, while it decreased the accuracy of the BLSTM2DCNN baseline by
0.9% on TREC-6 and 0.6% on TREC-50. However, the proposed model yielded
additional performance gains by introducing UWP as an auxiliary training task.
This can be ascribed to the fact that the proposed auxiliary word predictor
ensures that the sentence encoder produces not only more robust contextualized
word representations but also well-approximated meaning representations for
〈unk〉 tokens.

We can understand the reason for performance improvement by observing the
sentence representations produced by different models. Figure 2 shows two visu-
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Fig. 2. Two visualizations of sentence representations by BLSTM2DCNN baseline
(left) and proposed model (right) on SST-1 test dataset. All sentences in this figure
contain 〈unk〉 tokens. (Color figure online)

Table 3. Performance comparison among the proposed model and BLSTM2DCNN
baselines with different basic units on the benchmark datasets. Note that none of the
models use any pretrained embeddings.

Model SST-1 SST-2 TREC-6 TREC-50

BLSTM2DCNN using
character

31.1 ± 0.5 63.7 ± 0.8 86.4 ± 0.5 76.4 ± 0.2

BLSTM2DCNN using
subword2000

36.8 ± 0.4 76.2 ± 0.6 91.2 ± 0.2 80.2 ± 0.4

BLSTM2DCNN using
subword4000

36.9 ± 1.1 76.0 ± 0.7 92.2 ± 0.6 81.9 ± 0.1

BLSTM2DCNN using
word

39.7 ± 1.3 79.5 ± 0.9 93.0 ± 0.1 82.6 ± 0.5

Proposed model 41.1 ± 0.7 81.3 ± 1.0 93.2 ± 0.2 83.7 ± 0.3

alizations of sentence representations projected using T-SNE [10]. The left visual-
ization in Fig. 2 shows sentence representations generated by the BLSTM2DCNN
baseline, while the right one shows those generated by the proposed model.
Because SST-1 is a difficult task, and the sentences in this figure contain more
than one 〈unk〉 tokens, the red circles (very positive sentences) and blue crosses
(very negative sentences) are jumbled in both figures. Nonetheless, in the right
figure, the two areas of positive (top-right) and negative sentences (bottom-left)
are more distinguishable than those in the left figure. These sentence representa-
tions were generated by summarizing hi’s in Eq. 4. Thus, the difference between
the left and the right figures can be ascribed to the contextual representation
power of the sentence encoder, which is jointly optimized for the UWP task.
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Table 4. Examples of sentence classifications and unknown word predictions. All
sentences are taken from SST-1 test dataset.

Sentence Every good actor needs to
do his or her own 〈unk〉

The film is surprisingly
well-directed by brett
〈unk〉, who keeps things
moving well – at least
until the problematic
third act

Baseline prediction Positive Negative

Proposed model prediction Neutral Positive

Original word of 〈unk〉 Hamlet Ratner

Top-5 most probable words
of 〈unk〉

Time . character way one Character comedy way
time director

Consequently, this different representation power inevitably contributes to the
superior sentence classification performance of the proposed model.

Table 3 summarizes the classification results of the BLSTM2DCNN baselines
with various basic units and those of the proposed model. The BLSTM2DCNNs
using characters and subword units [6] eliminated the OOV problem by break-
ing down words into smaller units so that the vocabulary opened up. For the
subword-level models, we limited the vocabulary size to 2,000 and 4,000. As can
be seen, the results obtained with the BLSTM2DCNNs with the smaller units
(character-level and two subword-level) are inferior to those achieved with the
word-level BLSTM2DCNN over all benchmarks. These results indicate that the
use of smaller units requires more complex and sophisticated architecture design.
Finally, the proposed model achieved the best performance on all benchmarks
because it replaced 〈unk〉 tokens with appropriate contextualized meaning rep-
resentations.

Lastly, in Table 4, we introduce two example sentences that were correctly
classified by the proposed model but misclassified by the baseline model. Each
sentence in this table includes a 〈unk〉 token and the table shows the originals
word of them as well as top-5 most likely words predicted by the proposed model.
For the first sentence, the unknown word is ‘hamlet’ which means a representative
character or acting methods. Thus words like ‘character’ and ‘way’ predicted by
the proposed model are quite appropriate for the 〈unk〉 token. Similarly, the
actual word of 〈unk〉 token in the second sentence is ‘ratner’ – the last name of
the film director. Again, the proposed model correctly predicted the unknown
word as the word ‘director.’ Although, unknown words in both sentences are
not very critical for classification, the proposed model was able to make right
decisions through appropriately contextualized word representations as well as
properly estimated 〈unk〉 tokens.
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7 Conclusion

In this paper, we propose a neural sentence classifier with an auxiliary UWP. To
improve the classification performance of the model during testing, the proposed
model was trained to predict not only the class label of the given sentences but
also unknown words by considering all other words as contextual information.
As a result, the proposed model generated robust representations of unknown
words. In addition, the proposed auxiliary task enhanced the robustness of the
entire sentence representation, which improved the classification performance
of the proposed model. In the experiments, the proposed model consistently
outperformed two baselines in terms of the sentence classification performance
on four benchmark datasets.
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Abstract. Easy-first parsing relies on subtree re-ranking to build the
complete parse tree. Whereas the intermediate state of parsing processing
is represented by various subtrees, whose internal structural information
is the key lead for later parsing action decisions, we explore a better
representation for such subtrees. In detail, this work introduces a bottom-
up subtree encoding method based on the child-sum tree-LSTM. Starting
from an easy-first dependency parser without other handcraft features,
we show that the effective subtree encoder does promote the parsing
process, and can make a greedy search easy-first parser achieve promising
results on benchmark treebanks compared to state-of-the-art baselines.
Furthermore, with the help of the current pre-training language model,
we further improve the state-of-the-art results of the easy-first approach.

Keywords: Easy-first algorithm · Dependency parsing ·
Effective representation

1 Introduction

Transition-based and graph-based parsers are two typical models used in depen-
dency parsing. The former [27] can adopt rich features in the parsing process
but are subject to limited searching space, while the latter [10,23,25] searches
the entire tree space but limits to local features with higher computational costs.
Besides, some other variants are proposed to overcome the shortcomings of both
graph and transition based approaches. Easy-first parsing approach [11] is intro-
duced by adopting ideas from the both models and is expected to benefit from
the nature of the both. Ensemble method [19] was also proposed, which employs
the parsing result of a parser to guide another in the parsing process.
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Most recent works promote the parsing process by feature refinement.
Instead, this work will explore the intermediate feature representation in the
incremental easy-first parsing process. Easy-first dependency parser formalizes
the parsing process as a sequence of attachments that build the dependency tree
bottom-up. Inspired by the fact that humans always parse a natural language
sentence starting from the easy and local attachment decisions and proceeding
to the harder part instead of working in fixed left-to-right order, the easy-first
parser learns its own notion of easy and hard, and defers the attachment deci-
sions it considers to be harder until sufficient information is available. In the
primitive easy-first parsing process, each attachment would simply delete the
child node and leave the parent node unmodified. However, as the partially built
dependency structures always carry rich information to guide the parsing pro-
cess, effectively encoding those structures at each attachment would hopefully
improve the performance of the parser (Fig. 1).

root/ROOT  The/DT  test/NN  may/MD  come/VB  today/NN  ./.

root

det tmod
nsubj

aux

punct

Fig. 1. A fully built dependency tree with part-of-speech (POS) tags and root token.

There exists a series of studies on encoding the tree structure created in
different natural language processing (NLP) tasks using either recurrent neu-
ral network or recursive neural network [12,30]. However, most works require
the encoded tree to have fixed maximum factors, and thus are unsuitable for
encoding dependency tree where each node could have an arbitrary number of
children. Other attempts allow arbitrary branching factors and have succeeded
in particular NLP tasks.

[31] introduces a child-sum tree-structured Long Short-Term Memory
(LSTM) to encode a completed dependency tree without limitation on branch-
ing factors, and shows that the proposed tree-LSTM is effective on seman-
tic relatedness task and sentiment classification task. [50] proposes a recur-
sive convolutional neural network (RCNN) architecture to capture syntactic and
compositional-semantic representations of phrases and words in a dependency
tree and then uses it to re-rank the k-best list of candidate dependency trees. [16]
employs two vanilla LSTMs to encode a partially built dependency tree during
parsing: one encodes the sequence of left-modifiers from the head outwards, and
the other encodes the sequence of right-modifiers in the same manner.

In this paper, we inspect into the bottom-up building process of the easy-first
parser and introduce pre-trained language model features and a subtree encoder
for more effective representation to promote the parsing process1. Unlike the
work in [16] that uses two standard LSTMs to encode the dependency subtree

1 Our code is available at https://github.com/bcmi220/erefdp.

https://github.com/bcmi220/erefdp
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in a sequential manner (which we will refer to as HT-LSTM later in the paper),
we employ a structural model that provides the flexibility to incorporate and
drop an individual child node of the subtree. Further, we introduce a multilayer
perceptron between depths of the subtree to encode other underlying structural
information like relation and distance between nodes.

From the evaluation results on the benchmark treebanks, the proposed model
gives results greatly better than the baseline parser and outperforms the neural
easy-first parser presented by [16]. Besides, our greedy bottom-up parser achieves
performance comparable to those parsers that use beam search or re-ranking
method [1,50].

2 Easy-First Parsing Algorithm

Easy-first parsing could be considered as a variation of transition-based parsing
method, which builds the dependency tree from easy to hard instead of working
in a fixed left-to-right order. The parsing process starts by making easy attach-
ment decisions to build several dependency structures, and then proceeds to the
harder and harder ones until a well-formed dependency tree is built. During
training, the parser learns its own notion of easy and hard, and learns to defer
specific kinds of decisions until more information is available [11].

The main data structure in the easy-first parser is a list of unattached nodes
called pending. The parser picks a series of actions from the allowed action set,
and applies them upon the elements in the pending list. The parsing process
stops until the pending solely contains the root node of the dependency tree.

At each step, the parser chooses a specific action â on position i using a
scoring function score(·), which assigns scores to each possible action on each
location based on the current state of the parser. Given an intermediate state
of parsing process with pending P = {p0, p1, · · · , pN}, the attachment action is
determined by

â = argmax
act∈A, 1≤i≤N

score(act(i)),

where A denotes the set of the allowed actions, i is the index of the node in the
pending. Besides distinguishing the correct attachments from the incorrect ones,
the scoring function is supposed to assign the “easiest” attachment with the
highest score, which in fact determines the parsing order of an input sentence.
[11] employs a linear model for the scorer:

score(act(i)) = w · φact(i),

where φact(i) is the feature vector of attachment act(i), and w is a parameter
that can be learned jointly with other components in the model.

There are exactly two types of actions in the allowed action set:
AttachLeft(i) and AttachRight(i) as shown in Fig. 2. Let pi refer to i-
th element in the pending, then the allowed actions can be formally defined as
follows:
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RIGHT(1)
root/ROOT  come/VB  today/NN  ./.

The/DT

may/MDtest/NN

root/ROOT  come/VB  ./.

The/DT

may/MDtest/NN today/NN

ATTACH

pending :

pending :

root/ROOT  test/NN  come/VB  today/NN  ./.

The/DT

pending :

may/MD

LEFT(1)

ATTACH

Fig. 2. Illustration of the pending
states before and after the two type of
attachment actions

y1

x1

y2

x2

y3

y4

x4

y6

x6x5

Fig. 3. Tree-LSTM neural network
with arbitrary number of child nodes

– AttachLeft(i): attaching pi+1 to pi which results in an arc (pi, pi+1) headed
by pi, and removing pi+1 from the pending.

– AttachRight(i): attaching pi to pi+1 which results in an arc (pi+1, pi)
headed by pi+1, and removing pi from the pending.

3 Parsing with Subtree Encoding

3.1 Dependency Subtree

Easy-first parser builds up a dependency tree incrementally, so in intermediate
state, the pending of the parser may contain two kinds of nodes:

– subtree root: the root of a partially built dependency tree;
– unprocessed node: the node that has not yet be attached to a parent or

assigned a child.

Note that each processed node should become a subtree root (attached as a
parent) or be removed from the pending (attached as a child). A subtree root
in the pending actually stands for a dependency structure whose internal nodes
are all processed, excluding the root itself. Therefore it is supposed to be more
informative than the unprocessed nodes to guide the latter attachment decisions.

In the easy-first parsing process, each pending node is attached to its parent
only after all its children have been collected. Thus, any structure produced in
the parsing process is guaranteed to be a dependency subtree that is consistent
with the above definition.

3.2 Recursive Subtree Encoding

In the primitive easy-first parsing process, the node that has been removed
does not affect the parsing process anymore. Thus the subtree structure in the
pending is simply represented by the root node. However, motivated by the
success of encoding the tree structure properly for other NLP tasks [16,18,31],
we employ the child-sum tree-LSTM to encode the dependency subtree in the
hope of further parsing performance improvement.
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Child-Sum Tree-LSTM. Child-sum tree-LSTM is an extension of standard
LSTM proposed by [31] (hereafter referred to tree-LSTM). Like the standard
LSTM unit [14], each tree-LSTM unit contains an input gate ij , an output gate
oj , a memory cell cj and a hidden state hj . The major difference between tree-
LSTM unit and the standard one is that the memory cell updating and the
calculation of gating vectors are depended on multiple child units. As shown
in Fig. 3, a tree-LSTM unit can be connected to numbers of child units and
contains one forget gate for each child. This provides tree-LSTM the flexibility
to incorporate or drop the information from each child unit.

Given a dependency tree, let C(j) denote the children set of node j, xj denote
the input of node j. Tree-LSTM can be formulated as follow [31]:

h̃j =
∑

k∈C(j)

hk, (1)

ij = σ(W (i)xj + U (i)h̃j + b(i)),

fjk = σ(W (f)xj + U (f)hk + b(f)), (2)

oj = σ(W (o)xj + U (o)h̃j + b(o)),

uj = tanh(W (u)xj + U (u)h̃j + b(u)),

cj = ij � uj +
∑

k∈C(j)

fjk � ck,

hj = oj � tanh(cj).

where k ∈ C(j), and hk is the hidden state of the k-th child node, cj is the
memory cell of the head node j, and hj is the hidden state of node j. Note that
in Eq. (2), a single forget gate fjk is computed for each hidden state hk.

Our subtree encoder uses tree-LSTM as the basic building block incorporated
with the distance and relation label.

Incorporating Distance and Relation Features. Distance embedding is a
usual way to encode the distance information. In our model, we use vector v

(d)
h,mk

to represent the relative distance of head word h and its k-th modifier mk:

dh,mk
= index(h) − index(mk),

v
(d)
h,mk

= Embed(d)(dh,mk
),

where index(·) is the index of the word in the original input sentence, and
Embed(d) represents the distance embeddings lookup table.

Similarly, the relation label v
(rel)
h,mk

between head-modifier pair (h,mk) is
encoded as a vector according to the relation embeddings lookup table Embed(r).
Both of the two embeddings lookup tables are randomly initialized and learned
jointly with other parameters in the neural network.

To incorporate the two features, our subtree encoder introduces an additional
feature encoding layer between every connected tree-LSTM unit. Specifically,
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the two feature embeddings are first concatenated to the hidden state of the
corresponding child node. Then we apply an affine transformation on the resulted
vector gk, and further pass the result through a tanh activation

gk = ϕ(hk ⊕ v
(d)
h,mk

⊕ v
(rel)
h,mk

),

ϕ(x) = tanh(W (ϕ)x + b(ϕ))

where W (ϕ) and b(ϕ) are learnable parameters. After getting gk, it is fed into the
next tree-LSTM unit. Therefore, the hidden state of child node hk in Eqs. (1)
and (2) is then replaced by gk.

3.3 The Bottom-Up Constructing Process

In our model, a dependency subtree is encoded by performing the tree-LSTM
transformation on its root node and computing the vector representation of
its children recursively until reaching the leaf nodes. More formally, given a
partially built dependency tree rooted at node h with children (modifiers):
h.m1, h.m2, h.m3, · · · , which may be roots of some smaller subtree.

Then the tree can be encoded like:

τh = f(ωh.m1 ,ωh.m2 ,ωh.m3 ,xj), (3)

ωh.mk
= ϕ(τh.mk

,v
(d)
h,mk

,v
(rel)
h,mk

), k ∈ {1, 2, 3, · · · }
where f is the tree-LSTM transformation, ϕ is the above-mentioned feature
encoder, τh.mk

refers to the vector representation of subtree rooted at node mk,
and xj denotes the embedding of the root node word h. In practice, xj is always
a combination of the word embedding and POS-tag embedding or the output of
a bidirectional LSTM. We can see clearly that the representation of a fully parse
tree can be computed via a recursive process.

When encountering the leaf nodes, the parser regards them as a subtree
without any children and thus sets the initial hidden state and memory cell to
a zeros vector respectively:

τ (leaf) = f(0, x(leaf)) (4)

In the easy-first parsing process, each dependency structure in the pending
is built incrementally. Namely, the parser builds several dependency subtrees
separately and then combines them into some larger subtrees. So, when the
parser builds a subtree rooted at h, all its children have been processed by
some previous steps. The subtree encoding process can be naturally incorporated
into the easy-first parsing process in a bottom-up manner using the dynamic
programming technique.

Specifically, in the initial step, each node wi in the input sentence is treated
like a subtree without any children. The parser initializes the pending with the
tree representation τ

(leaf)
wi of those input nodes using Eq. (4). For each node in

pending, the parser maintains an additional children set to hold their processed
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Table 1. Comparison with baseline easy-
first parser.

Dev (%) Test (%)

LAS UAS LAS UAS

BiLSTM parser 90.73 92.87 90.67 92.83

RCNN 91.05 93.25 91.01 93.21

HT-LSTM 91.23 93.23 91.36 93.27

tree-LSTM 92.32 94.27 92.33 94.31

tree-LSTM + ELMo 92.97 94.95 93.09 95.33

tree-LSTM + BERT 93.14 95.68 93.27 95.71

tree-LSTM + ELMo + BERT 93.44 95.87 93.49 95.87

Table 2. Results under the same set-
tings reported in [16].

Dev (%) Test (%)

LAS UAS LAS UAS

Baseline parser 78.83 82.97 78.43 82.55

+tree-LSTM 91.10 92.98 91.08 92.94

+Bi-LSTM 91.62 93.49 91.52 93.46

+pre-train 92.01 93.97 91.95 93.95

Baseline parser∗ 79.0 83.3 78.6 82.7

+HT-LSTM∗ 90.1 92.4 89.8 92.0

+Bi-LSTM∗ 90.5 93.0 90.2 92.6

+pre-train ∗ 90.8 93.3 90.9 93.0

children. Each time the parser performs an attachment on the nodes in the
pending, the selected modifier is removed from pending and then added to the
children set of the selected head. The vector representation of the subtree rooted
at the selected head is recomputed using Eq. (3). The number of times that the
easy-first parser performs updates on the subtree representations is equal to the
number of actions required to build a dependency tree, namely, N − 1, where N
is the input sentence length.

3.4 Incorporating HT-LSTM and RCNN

Both HT-LSTM and RCNN can be incorporated into our framework. However,
since the RCNN model employs POS tag dependent parameters, its primitive
form is incompatible with the incremental easy-first parser, for which we leave
a detail discussion in Sect. 4.4. To address this problem, we simplify and refor-
mulate the RCNN model by replacing the POS tag dependent parameters with
a global one. Specifically, for each head-modifier pair (h,mk), we first use a
convolutional hidden layer to compute the combination representation:

zk = tanh(W (global)pk), 0 < k ≤ K,

pk = xh ⊕ gk,

gk = ϕ(τk ⊕ v
(d)
h,mk

⊕ v
(rel)
h,mk

),

where K is the size of the children set C(h) of node h, W (global) is the global
composition matrix, τk is the subtree representation of the child node mk, which
can be recursively computed using the RCNN transformation. After convolution,
we stack all zk into a matrix Z(h). Then to get the subtree representation for h,
we apply a max pooling over Z(h) on rows:

τh = max
k

Z
(h)
j,k , 0 < j ≤ d, 0 < k ≤ K,

where d is the dimensionality of zk.
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4 Experiments and Results

We evaluate our parsing model on English Penn Treebank (PTB) and Chinese
Penn Treebank (CTB), using unlabeled attachment scores (UAS) and labeled
attachment scores (LAS) as the metrics. Punctuations are ignored as in previous
work [8,16]. Pre-trained word embeddings and language model have been shown
useful in a lot of tasks. Therefore, we also add the latest ELMo [28] and BERT
[7] pre-trained language model layer features to enhance our representation.

4.1 Treebanks

For English, we use the Stanford Dependency (SD 3.3.0) [6] conversion of the
Penn Treebank [24], and follow the standard splitting convention for PTB, using
sections 2–21 for training, Sect. 22 as development set and Sect. 23 as test set.
Stanford POS tagger [32] is to give predicted POS tags.

For Chinese, we adopt the splitting convention for CTB described in [9,39,
45,48]. The dependencies are converted with the Penn2Malt converter. Gold
segmentation and POS tags are used as in previous work [9].

4.2 Results

Improvement over Baseline Model. To explore the effectiveness of the pro-
posed subtree encoding model, we implement a baseline easy-first parser with-
out additional subtree encoders and conduct experiments on PTB. The baseline
model contains a BiLSTM encoder and uses pre-trained word embedding, which
we refer to BiLSTM parser. We also re-implement both HT-LSTM and RCNN
and incorporate them into our framework for subtree encoding. All the four mod-
els share the same hyper-parameters settings and the same neural components
except the subtree encoder.

The results in Table 1 show that our proposed tree-LSTM encoder model
outperforms the BiLSTM parser with a margin of 1.48% in UAS and 1.66% in
LAS on the test set. Though the RCNN model keeps simple by just using a
single global matrix W (global), it draws with the HT-LSTM model in UAS on
both the development set and the test set, and slightly underperforms the latter
one in LAS. Note that the HT-LSTM is more complicated, which contains two
LSTMs. Such results demonstrate that simply sequentializing the subtree fails
to effectively incorporate the structural information. A further error analysis of
the three models is given in the following section.

Besides, to make a fair comparison, we also run our model under the same
setting as those reported in [16], and report the results in Table 2. Experiment
results show that the performance of the tree-LSTM parser declines slightly
but still outperforms the HT-LSTM parser. The “+” symbol denotes a specific
extension over the previous line. The results with ∗ is reported in [16]. It is worth
noting that their weak baseline parser does not use Bi-LSTM and pre-trained
embeddings.
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Table 3. Comparison of results on the test sets. Acronyms used: (g) greedy, (b) beam
search, (re) re-ranking, (3rd) 3rd-order, (1st) 1st-order. Because ELMo does not have
a Chinese version, the “+ELMo” rows have no results.

System Method PTB-SD CTB

LAS (%) UAS (%) LAS (%) UAS (%)

Dyer et al. [9] Transition (g) 90.9 93.1 85.5 87.1

Kiperwasser and Goldberg [17] Transition (g) 91.9 93.9 86.1 87.6

Andor et al. [1] Transition (b) 92.79 94.61 – –

Zhu et al. [50] Transition (re) – 94.16 – 87.43

Zhang and McDonald [36] Graph (3rd) 90.64 93.01 86.34 87.96

Wang and Chang [33] Graph (1st) 91.82 94.08 86.23 87.55

Kiperwasser and Goldberg [17] Graph (1st) 90.9 93.0 84.9 86.5

Dozat and Manning [8] Graph (1st) 94.08 95.74 88.23 89.30

Wang et al. [34] Graph (1st) 94.54 95.66 – –

Wang et al. [34] + ELMo Graph (1st) 95.25 96.35 – –

Zhang et al. [37] Seq2seq (b) 91.60 93.71 85.40 87.41

Li et al. [20] Seq2seq (b) 92.08 94.11 86.23 88.78

Kiperwasser and Goldberg [16] EasyFirst (g) 90.9 93.0 85.5 87.1

This work EasyFirst (g) 92.33 94.31 86.37 88.65

This work + ELMo EasyFirst (g) 93.09 95.33 – –

This work + BERT EasyFirst (g) 93.27 95.71 87.44 89.52

This work + ELMo + BERT EasyFirst (g) 93.49 95.87 – –

Comparison with Previous Parsers. We now compare our model with some
other recently proposed parsers. The results are compared in Table 3. The work
in [16] (HT-LSTM) is similar to ours and achieves the best result among the
recently proposed easy-first parsers2. Our subtree encoding parser outperforms
their model on both PTB and CTB. Besides, the proposed model also outper-
forms the RCNN based re-ranking model in [50], which introduces an RCNN to
encode the dependency tree and re-ranks the k-best trees produced by the base
model. Note that although our model is based on the greedy easy-first parsing
algorithm, it is also competitive to the search-based parser in [1]. The model in
[8] outperforms ours, however, their parser is graph-based and thus can enjoy
the benefits of global optimization.

4.3 Error Analysis

To characterize the errors made by parsers and the performance enhancement
by importing the subtree encoder, we present some analysis on the error rate
with respect to the sentence length and POS tags. All analysis is conducted on
the unlabeled attachment results from the PTB development set.

Error Distribution over Dependency Distance. Figure 4 shows the error
rate of different subtree encoding methods with respect to sentence length. The
2 Here we directly refer to the original results reported in [16].
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Fig. 4. Line chart of error rate against
sentence length

Fig. 5. Error rate with respect to POS
tags

error rate curves of the three models share the same tendency: as the sentence
length grows, the error rate increases. In most of the cases, the curve of our
model lies below the other two curves, except the case that the sentence length
lies in 6-10 where the proposed model underperforms the other two with a margin
smaller than 1%. The curve of HT-LSTM and that of RCNN cross with each
other at several points. It is not surprising since the overall results of the two
models are very close. The curves further show that tree-LSTM is more suitable
for incorporating the structural information carried by the subtrees produced in
the easy-first parsing process.

Error Distribution over POS Tags. [26] distinguishes noun, verb, pronoun,
adjective, adverb, conjunction for POS tags to perform a linguistic factors anal-
ysis. To follow their works, we conduct a mapping on the PTB POS tags and
skip those which cannot be mapped into one of the six above-mentioned POS
tags. Then we evaluate the error rate with respected to the mapped POS tags
and compare the performance of the three parsers in Fig. 5.

The results seem to be contradicted with the previous ones at first sight
since the HT-LSTM model underperforms the RCNN one in most cases. This
interesting result is caused by the overwhelming number of noun. According to
statistics, the number of noun is roughly equal to the total number of verb,
adverb and conjunction.

Typically, the verb, conjunction and adverb tend to be closer to the root in
a parse tree, which leads to a longer-distance dependency and makes it more
difficult to parse. The figure shows that our model copes better with those kinds
of words than the other two models.

The other three categories of words are always attached lower in a parse
tree and theoretically should be easier to parse. In the result, the three models
perform similarly on adjective and pronoun. However, the RCNN model performs
worse than the other two models on noun, which can be attributed to too simple
RCNN model that is unable to cover different lengths of dependency.
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4.4 Related Work

Recently, neural networks have been adopted for a wide range of traditional
NLP tasks [41–44,46,47,49]. A recent line of studies including Chinese word
segmentation [2,3], syntactic parsing [20,22,39], semantic role labeling [4,13,21]
and other NLP applications [5,15,35,38,40] have drawn a lot of attention. Easy-
first parsing has a special position in dependency parsing system. As mentioned
above, to some extent, it is a kind of hybrid model that shares features with
both transition and graph based models, though quite a lot of researchers still
agree that it belongs to the transition-based type as it still builds parse tree step
by step. Since easy-first parser was first proposed in [11], the most progress on
this type of parsers is [16] who incorporated neural network for the first time.

Most of the RNNs are limited to a fixed maximum number of factors [29].
To release the constraint of the limitation of factors, [50] augments the RNN
with a convolutional layer, resulting in a recursive convolutional neural network
(RCNN). The RCNN is able to encode a tree structure with an arbitrary number
of factors, and is used in a re-ranking model for dependency parsing.

Child-sum tree-LSTM [31] is a variant of the standard LSTM which is capable
of getting rid of the arity restriction, and has been shown effective on semantic
relatedness and the sentiment classification tasks. We adopt the child-sum tree-
LSTM in our incremental easy-first parser to promote the parsing.

5 Conclusion

To enhance the easy-first dependency parsing, this paper proposes a tree encoder
and integrates pre-trained language model features for a better representation of
partially built dependency subtrees. Experiments on PTB and CTB verify the
effectiveness of the proposed model.
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Abstract. The high rate of churning users who abandon the Commu-
nity Question Answering forums (CQAs) may be one of the crucial issues
that hinder their development. More personalized question recommen-
dation to users might help to manage this problem better. In this paper,
we propose a new algorithm (we name HRCR) that recommends ques-
tions to users such to reduce their churning probability . We present our
algorithm in a two-fold structure: First, we use Hidden Markov Models
(HMMs) to uncover the users’ engagement states inside a CQA. Second,
we apply a Reinforcement Learning Model (RL) to recommend users the
questions that match better with their engagement mood and thus help
them get into a better engagement state (the one with the least churn-
ing probability). Experiments on a large-scale offline dataset from Stack
Overflow show a meaningful reduction in the churning probability of the
users who comply with HRCR’s question recommendations.

Keywords: Question answering forum · Churn · Flow theory ·
Computational user engagement · Reinforcement learning

1 Introduction

Community Question Answering forums (CQAs) like Stack Overflow1 facilitate
knowledge sharing online [23]. CQAs are dependent on continuous user participa-
tion to preserve their sustainability [10,16]. Especially, retention of contributing
users who provide answers to questions has priority and is challenging [13,15].
Related literature suggests personalizing tasks before crowdsourcing can grow
users’ willingness to make more and better quality contributions [21,25].

In this paper, we introduce a new question recommendation algorithm (we
name HRCR) that aims to reduce churning (see [11,16]) of the contributing
users through recommending more personalized questions. While literature is
1 https://stackoverflow.com/.
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Fig. 1. High-level illustration of the HRCR. HRCR assigns questions to users. If the
assigned questions lead users to a higher engagement state (i.e., Flow Zone), HRCR
receives a positive reinforcement (feedback); otherwise, the agent receives a negative
reinforcement. Through iterations, HRCR finds the best policy for assigning questions
to users.

rich in question recommendation algorithms (see [4,9,18]), HRCR is distinctive
in following aspects: First, HRCR considers churn tendency of contributing users
before recommending questions. Second, HRCR is inspired by the psychological
theory of Flow (see [8]) to increase user engagement.

HRCR, in essence, is a Markov Decision Process (MDP) based recommenda-
tion system. Although the idea of using MDP to build recommender systems is
not new (see [6,20]), we are first to use them for building a more personalized
question distributing algorithm. Figure 1 shows a high-level idea of how HRCR
is working. After HRCR assigns a question to a user, it receives a positive rein-
forcement (feedback) if the users’ engagement state is high (i.e., Flow Zone);
otherwise, it receives a negative reinforcement. Our goal is to fill the gap of the
existing question recommendation algorithms in term of considering churn.

More precisely, we first use Hidden Markov Models to uncover the stochastic
behavioral pattern behind user participation. We are particularly inspired by
the psychological theory of Flow to interpret the hidden states of our HMM.
We then use the resolved hidden states of our HMM to reinforce a standard
Markov Decision Process model. We make several simplifying assumptions to
avoid the otherwise prohibitive number of parameters in our HRCR formulation.
Through iterations on the MDP, HRCR finds the best recommendations for
users. Experiments on a real-world dataset from a well-known CQA forum shows
that HRCR can meaningfully help in churn reduction of the contributing users
while preserving its simplicity.

2 Users’ Action Choices

Users often have their own set of principles for deciding what questions they
answer. Although knowledgeability in the field comes as an important factor,
there are often more parameters involved. Table 1 provides a reference to such
parameters. We use Stack Overflow, to characterize the CQA users [16,18]. How-
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Table 1. Reference of possible action choices

Factors Action choices

Questioner’s reputation Low, moderate, high

Question’s recency Archaic, recent

Question’s score Low, high

State of having answers With or without a prior answer

State of acceptance With or without an accepted contribution

Familiarity with topic Familiar or unfamiliar with the asked topic

Bounty prize With or without a bounty prize

ever, the features should be similar on the CQAs like Yahoo! Answers and Quora.
In the rest, we elaborate on our list of factors.

Questioner’s Reputation (QR). A contributing user can be selective on
whose question she answers. For example, a contributing user who has got a
lower reputation score might not have the sufficient skill or knowledge to answer
to a question asked by a highly reputed user. We use, first and third quartiles
of the user reputation values to define low, moderate and highly reputed users.
Any user with a reputation between 26 and 1,580 is assumed to be a moderately
reputed user. Reputation scores below 26 and above 1,580 are labeled as low and
high reputation values respectively.

Question’s Recency (QRC). CQAs like Stack Overflow are designed in a way
to give a higher priority to the questions submitted most recently. Our dataset
shows that the average response time for a typical question in the CQA of Stack
Overflow is 6.23 days. In this paper, we name a question as “recent” if its time
gap from being asked to the time that a user wants to contribute to it does not
exceed seven days; otherwise, it is labeled as an “archaic” question.

Question Score (QS). It is routine for CQAs to ask users to express their
opinions about the quality of a post. The CQA of Stack Overflow provides a
voting system (up-votes or down-votes) to its users, to collect their opinions. A
question’s score is a measure which is found by the deduction of a question’s
number of down-votes from its number of up-votes. This measure helps a con-
tributor to skip poor quality questions. We label a question “low-scoring” if its
score is ≤1; otherwise, it is labeled a “high-scoring” question.

State of Having Answers (SA). Some of the CQA users waste a great deal
of time to contribute to the questions which are already answered. Prior answers
to a question are more likely to be appreciated (through receiving up-votes or
being selected as the accepted answers) by the questioner [2]. A CQA user should
select from contributing to a question with or without another answer.

State of Acceptance (SAC). It is an uneasy decision for many CQA users
to decide whether to contribute to an already answered question or not. Some



HRCR: Hidden Markov-Based Reinforcement to Reduce Churn 367

of the CQAs provide their questioners with a flag option to inform the others if
they do not need a further contribution to their questions. In the CQA of Stack
Overflow, if the questioner is satisfied by one of the answers received, she can
flag that answer as an “accepted answer” to inform the other contributors. By
considering this flag option, a user can decide to make a further contribution to
that question or not.

Familiarity with Topic (FT). In many of the CQAs, users are demanded
to choose related tags (or keywords) to summarize their post briefly. All of the
tags that a user has created or is related to are stored in the user’s profile. For
a contributing user, a question is labeled as “familiar” if there is at least one
common tag between the user’s profile and that question; otherwise, we label
that question as an “unfamiliar” question.

Bounty Prize (BP). A bounty is a special prize which is made up of the
reputation scores. In a CQA like Stack Overflow, a questioner can offer a share
of its reputation to the best answer contributor of a question. The questions
which have bounties are typically more challenging than ordinary questions.

3 HRCR Architecture

HRCR is a question recommendation algorithm with the focus on the churn
reduction of the contributing users. HRCR uses a two-fold structure to decide
which questions to recommend users first. HRCR first trains a Hidden Markov
Model (HMM) to elicit the engagement state of the users. The resolved engage-
ment states of the HMM comply generally with the notion of the Flow theory in
psychology. According to the Flow theory, users are highly engaged with their
experiences if the challenges they face are in-line with their level of skills [8].

Next, we use a Reinforcement Learning Model (RL) to recommend users the
action choices that increase the probability of getting into the Flow Zone with
respect to the trained probabilities of the HMM. This way, our HMM and RL
models complement each other: HMM by providing the engagement states of the
users, and RL by using the HMM predictions for each contribution to update the
value of the agent’s reward function. We show that the action choices that put
the users in the Flow Zone can meaningfully decline the churning probability of
the users.

4 Implementation Details

Data Statistics. We use the public access data dump of Stack Overflow in
Archive2 to build our target dataset. Our target data is enclosed within a range
from January 1st, 2014 to January 1st, 2017. The target data includes 12,390
contributing users. We have randomly excluded 3,810 users for testing purposes
and the remaining data (8,580 users) are applied for training purposes. Table 2
summarizes the important features of our dataset.
2 https://archive.org/details/stackexchange.

https://archive.org/details/stackexchange


368 R. H. Mogavi et al.

Table 2. Data statistics of the CQA of Stack Overflow

Measured statistics Value

Average contribution of a user 6.93

Variance of user contributions 2.13

Average reputation of a user 481.81

Variance of user reputations 17.52

Total number of users 12,390

Number of churned users 4,821

Observation period inspection period

180 days 180 days

Churned UserNon-churned User

Fig. 2. A user is labeled as churned if her average participation rate within the inspec-
tion period is less than 20% of her prior participation rate in the observation period.

Data Preprocessing. In order to study churning behavior of the contributing
users, we need a ground truth dataset of churned and non-churned users. Towards
this end, we define churned users similar to [11]. We assume that a user has
churned if her average rate of participation (of all measurable activities) in an
inspection period (which is the immediate 180 days following the observation
period) drops to less than 20% of her average participation rate in a prior time
that we call the observation period (which is the immediate 180 days after a user’s
first contribution). Figure 2 is an illustration of the observation and inspection
time periods.

Furthermore, we have carried out the following data preprocessing proce-
dures to eliminate the unwanted consequences of noise: (1) The majority of the
users of Stack Overflow are ephemeral users and thus churn the CQA before
making enough contributions [16]. We thus remove the users who make no con-
tributions and less than 5 posts in sum, from our study. (2) Users with a lower
reputation measure (below 10) are sifted out of this study to resolve the problem
of imbalanced class labels.

Methodologies. The major application of Hidden Markov Models (HMMs) is
to render the sequence of observations that have an underlying stochastic process
[17]. The HMM is formally defined with a tuple λ as follows:

λ = (SHMM , VHMM , E, F, π) (1)

SHMM = {s1, s2, ..., sN} is a set of N individual states which are hidden.
VHMM = {v1, v2, ..., vM} is a set comprised of M possible observations which
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are measured directly for a state. E is an N × N matrix to show the transition
probabilities of the states. Entries of matrix E are derived from the following
equation.

E = {eij}; eij = P (qt+1 = sj |qt = si) (2)

Equation 2 shows the transition probability between states i and j. The variables
of qt and qt+1 show the hidden states before and after a new contribution is made
respectively.

F is the emission probability of an observation k being generated from a
hidden state j. Observation likelihood, F , is formally defined as follows:

F = {fj(k)}; fj(k) = P (vk|sj) (3)

Finally, π is to show the probability of the initial states. In this research, we stick
to the assumption that all of the hidden states have the same probability at the
beginning. The HMM is learnt if only all of the parameters of λ are resolved.

Reinforcement Learning Models (RLs) are applied where an agent attempts
to learn the best action policy by interacting with and receiving feedback from its
stochastic environment [19]. First, the agent observes its state and then executes
an action (or series of actions) which lead to another subsequent state. After
getting to the next state, the agent assesses the value of its action according to a
reward function. The agent considers the punishments and gains it has incurred
over time to enhance its action policies iteratively [19]. The RL is formally defined
with a tuple υ as follows:

υ = (SRL, VRL, R) (4)

SRL refers to the state space of the model and VRL shows the set of all possible
actions an RL agent can perform [19]. The feedback function, R, is used to guide
an agent toward its goal. The goal of RL agents is to maximize their reward gains
within a certain time period. In this research, we use the engagement states
inspired by the Flow theory to define R and to recommend users the actions
that put them into the Flow Zone.

5 Extraction of User Engagement State

Setup. Inspired by the flow theory measures, we use the user’s skill and challenge
levels to find out the user’s engagement state. We modify a measure by [24],
called “Z-score” to determine user skills in the CQA of Stack Overflow.

Zmod =
α − β√
α + β

(5)

Equation 5 shows the modified Z-score. The variables of α and β represent the
total number of accepted answers, and the questions asked, respectively. The
feature of “competitiveness” by [16], provided us with a basis to develop the
measure of the perceived challenge of users through Eq. 6.

Challenge =
γ

∏γ
n=1 Rank(cn)

(6)
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Fig. 3. Marginal skill and challenge distribution of the churned and non-churned

The variables of γ and cn refer to the total number of answers and the nth
contribution of a user, respectively. Rank(.) is a function which returns the total
number of contributions received for a question divided by the user’s position
within the contributions (sorted by the answer score). Although more parameters
should be included to get a precise measurement of user skill and challenge, we
stick to the introduced parameters to avoid complexity. Besides, our skill and
challenge plots of churned and non-churned users comply with the psychological
implications of the Flow theory. Figures 3a and b show the skill and challenge
distributions of the churned and non-churned users respectively. As is shown,
users with higher levels of skill and challenge are less likely to churn. There also
exists a Pearson correlation of 0.163 with the significance of P = 0.01, between
the user skill and challenge measures. This implies that the users’ perceived level
of challenge increases as users’ level of skill increases.

We further conduct a Brown-Forsythe test [3] to find if there is a significant
difference between skill and challenge levels of the users with different churning
attitudes. The results show that the variations of user skill (P = 0.05) and
challenge (P = 0.05) are statistically significant for the churned and non-churned
users as we have hypothesized.

Inference of States. We train an HMM λ to infer the engagement state of the
users. We feed the input of HMM with the skill and challenge measures of users.
As true number of hidden states is typically determined by the Bayesian Infor-
mation Criterion (BIC) and Akaike Information Criterion (AIC) (see [1,5,12]),
we exhaustively search for the best AIC and BIC measures among two to four
hidden states. As Fig. 4a shows, the best number of hidden states returned is
four which complies with the simple quadrant framework of the Flow theory.
Thereby, we name the hidden states of HMM to be SHMM = {Apathy, Anx-
iety, Boredom, Flow Zone}. We use the Forward-Backward Algorithm by [17]
to resolve the entries of the matrices E and F . After running 100 iterations of
the algorithm with three different random starts, the Expectation Maximization
value converges in the 23rd iteration as Fig. 4b implies. We show the transition
probabilities between the hidden states in Fig. 4c. As is shown, the probabilities
of the self-loops in all of the states are below half; thus, the users are more likely
to change their states over time. However, among all of the hidden states, the
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state of Flow Zone has the largest self-loop value. This means that users are
more likely to stay in the Flow Zone once they are in it. We notice that the
users who are in the Apathy state are not as likely as the users in the Anxiety
and Boredom states to enter the Flow Zone. Furthermore, as Fig. 4d depicts, the
users who are in the Flow Zone are also less likely to churn the CQA. This makes
the Flow Zone a perfect destination to steer users’ behaviors to. We exploit this
knowledge to devise our Reward function of RL.

Contrary to the Flow Zone, the Apathy state has the largest probability of
churning. The Apathy state users are mostly new-comers to the CQA. The users
who are in this state are mainly susceptible to entering to the Anxiety state.

We show the emission distributions F, for the skill and challenge measures,
in Fig. 5. As is shown, the majority of the users have skills higher than zero, and
the perceived challenges are relatively higher in the Flow Zone and the Anxiety
state in comparison with the Apathy and Boredom states.

In the rest of this research, we use our built HMM to predict the engagement
state of the users after each contribution.
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Fig. 5. Continuous emission distribution of skill and challenge measures per each
engagement state

6 Recommending the Action Choices

Setup. From all possible combinations between the action choices of Table 1,
we can get 144 types of authentic actions for a user to choose from that form
our VRL set. We use 1-of-k coding to model the states of SRL [7]. Each state of
SRL is a 144-dimensional column vector that has only one of its entries equal
to 1 and the remaining entries are zeros. If we think of a user as an agent, the
long-term goal would be to chose among the action choices in such a way to
maximize its expected reward value over time. Equation 7 shows the discounted
reward function that we use to train the RL.

Reward =
∞∑

l=1

δPHMM (FlowZone|.) (7)

PHMM is the probability of getting into the Flow Zone (after making lth contri-
bution) given the user’s current satisfaction status. δ shows the discount factor
which is a number between zero and 1 that shows the difference of importance
between future and present rewards [19]. In this study, δ is set to 0.4. The
inspiration behind our reward function is that as users choose action choices
which increase the probability of getting into the Flow Zone, their probability
of churning should drop.

Best Action Policy. We assume that an agent κ chooses from the authentic
actions VRL in contribution t so as to get a higher payoff. We recommend this
choice of action with an RL as follows. We start with the Bellman’s optimality
equation [19], and initiate the Q-value of the agent κ (Qκ

t=0(vRL, sRL)) at t = 0
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to a positive constant Q0 for ∀vRL ∈ VRL and ∀sRL ∈ SRL. We update the value
of Qκ

t+1(vRL, sRL) at the end of each contribution through Eq. 8 if sRL is a new
action choice; or else, we stick with Qκ

t+1(vRL, sRL) = Qκ
t (vRL, sRL).

Qκ
t+1(vRL, sRL) = (1 − θ)Qκ

t (vRL, sRL) + θRt (8)

From Eq. 8, Rt is the Reward function which is attained through Eq. 7 at the end
of each contribution. θ indicates the learning rate which is a number between
zero and 1. In this research, we set θ = 0.2. In the beginning of each contribution,
the agent κ selects an action through argmaxs∈SRL

Qκ
t (vRL, sRL) and running

a majority vote over the possible actions. And if the results are tied, one action
is randomly selected. Throughout the learning procedure, the agent uses the
ε − greedy approach within each time step to explore the new types of actions.
In this study, the entries of the RL model (υ) are learnt with ε = 0.01. Since our
model applies a tabular version of Q-learning Algorithm (rather than the version
which applies an approximation function), the solution should deterministically
converge to an optimal policy [22]. We test ten random seeds, each with 5000
rounds of iterations to resolve the model parameters. It takes an average of 2230
iterations for each seed to converge.

7 Verification of Churn Reduction

The empirical evaluation of the personalized recommending systems appears to
be challenging for many researchers who study the popular CQAs that do not
provide direct control options. Hence, we use an off-line churn prediction model
as a baseline to see if following the HRCR’s recommended questions will help to
reduce the churning probability of the contributing users.

Baseline Churn Predictor. We build a probabilistic classification model (i.e.,
a Logistic Regression (LR)) to predict the churning probability of each user over
time as she contributes to answering the questions. We use the churn prediction
features of [16] as the evidential features for predicting churn. As Fig. 6a sum-
marizes, our baseline LR retrieves the Accuracy of 84% and the F1-score of 78%
when it is applied to the test data. We get the Area Under Curve (AUC) value
of 96%.

Comparison of the Churning Probabilities. Next we compare the average
churn probability of the users based on the average similarity of their actions
to the actions that are recommended by our HRCR algorithm over time. From
Table 1, we know that there are 7 varying factors that the users can decide
on before contributing to a question. At each contribution time, if the user
totally complies with the HRCR’s recommended action factors, the user gains
the similarity value of 7. If there are no common factors between the user’s action
factors and the ones that the HRCR recommends, the user gets the similarity
value of 0; thus, it is apparent that the similarity value should range between
0 and 7 based on the number of common activity factors between the HRCR’s
action recommendations and the user performance. Figure 6b shows the average
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Fig. 6. (a) Performance of the base churn predictor (b) Users’ churning probability for
different ranges of similarity with the HRCR’s recommended actions

similarity of actions along with the average churning probability of each user
over time. We observe a decreasing trend of the average churning probability of
the users over time as they comply with the HRCR’s action recommendations.

Hypothesis Testing. We also run a statistical Brown-Forsythe test to see the
effect of action similarities on the churning behavior of the users. The results
show that the users whose actions share more than a 50% similarity with the
HRCR’s recommended action choices over time, have a significantly different
churning probability (P = 0.05) from those who share less similarities. Thus the
hypothesis that the users who share more similarity with our proposed model
are less likely to churn is achieved.

8 Conclusion and Future Work

Takeaway Message. Flow theory implies that the users who get into the Flow
Zone might be less likely to churn [8]. Our results comply with the Flow theory.
HRCR also fills the gap of question recommendations to the contributing users
by considering their tendency for churning. We observe that the churning proba-
bility of the users in the engagement state of the Flow Zone is respectively 22.2%,
48.4%, and 6.7% less than the churning probability in the engagement states of
Anxiety, Apathy, and Boredom. We also observe that there exists approximately
42% difference between the average churning probability of those who do not
follow the HRCR’s recommendations at all and those who happen to contribute
to the CQA fully in accordance to what the HRCR recommends.

Limitations and Future Work. In this research we investigated the users
who have made at least more than or equal to 5 contributions and a reputa-
tion score above 10. Since these users are contributing more often to the CQA
forums, reducing their churning probability was of higher interest for us in com-
parison with the ephemeral users. Besides, the ephemeral users make the dataset
intensively imbalanced. Hence, our work is limited by the users we have studied.
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Although there exists various versions of the flow theory [14], we stick with
the quadrant framework of the flow theory for two main reasons: First, it matches
with the best number of hidden states we retrieve for our HMM. In addition, if
we increase the number of engagement states, the emission distributions of skills
and challenges would become very similar to one another, and the efficiency of
the predictions will drop. Our second reason is simplicity of the model and ease
of understanding. Nevertheless, exploring the other variations of the flow theory
remains as future work.

In this paper, we used the concept of Flow theory to recommend users better
questions. We introduced an innovative two-fold algorithm (we called HRCR)
using a Hidden Markov Model and a Reinforcement Learning Model to person-
alize the question recommendations on the CQAs. Experiment results on the
popular CQA of Stack Overflow proves HRCR helpful in reducing churn.
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Abstract. Conditional Variational Autoencoder (CVAE) has shown
promising performance in text generation. However, CVAE is inade-
quate to generate sentences that are highly coherent to its condition
due to error accumulation in decoding and KL-vanishing problem. In
this paper, we propose an Edit-CVAE (ECVAE) in which we attempt to
exploit information-related data to address the problem by (1) explicitly
editing the generated sentence. (2) enriching the latent representation.
While maintaining the diversity and information consistency. Experi-
ment results on dialogue and Chinese poetry generation show that our
method substantially increases generative coherence while maintaining
the diversity and information consistency.

Keywords: Natural language processing ·
Open-domain conversation system · Variational inference

1 Introduction

Traditional neural network models [29,34] have been applied in text generation
for a long while. Recently, Variational Autoencoder (VAE) manifests great per-
formance by introducing multivariate Gaussian or multi-way categorical latent
variable [10,12], which facilitates better generation in wording diversity and one-
to-many diversity [5,10]. CVAE, an extension of VAE, can generate sentences
under certain attributes while maintaining the merits of VAE [4,7–9]. How-
ever, despite its advantages, CVAE also presents some shortcomings. One salient
problem is generative incoherence which is the incoherence between a generated
sentence and its corresponding condition. Experimental results show that the
generative coherence of CVAE is weaker than basic text generation models. We
evaluate the generative coherence on both CVAE and Seq2Seq model with atten-
tion (AS2S) [29]. Our results shows that CVAE performs worse than AS2S on
a large scale, see Table 2. The results show that CVAE incompetently generates
coherence sentences.

Causes of this issue are two-fold: (1) errors in the generation can be accumu-
lated, and the latent information would diminish as decoding forward [16,31].
c© Springer Nature Switzerland AG 2019
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(2) CVAE tends to ignore the latent variable in order to reduce the optimization
loss (aka. KL-vanishing) [11,13]. In order to solve the problem of incoherence
generation, existing works attempt to enrich the capacity of the latent repre-
sentation [11,13], augment the ability to extract the latent information of the
decoder [14,15] and use new decoding process [16,33]. Although these methods
aren’t directly designed to solve the incoherence problem, they could alleviate it
to some degree. However, these methods rely heavily on single data point itself
which can be noisy and incapable. CVAE benefits from variational uncertainty,
but this uncertainty also hurts CVAE in turn by interfering data information by
the introduced bias. Under such circumstances, leveraging data itself may seem
insufficient to solve this dilemma. Also, implicitly modifying latent representa-
tion could be inefficient to mitigate the problem due to the uncontrollability and
unobservability.

Fig. 1. Overview of ECVAE. Recognition network computes posterior and Prior net-
work computes prior. Both networks utilize retrived data. Dashed lines represent infer-
ence.

To this end, we attempt to address the problem from different perspectives.
Intuitively, utilizing additional similar data provides more information than rely-
ing on current data itself [22,26]. Similar data provides more comprehensive
information of data distribution and data structure. To learn an abundant latent
representation, we expect that fusing extra information-related data with origi-
nal data should boost the generative coherence owing to enhancing similar infor-
mation and reducing the bias. Besides, considering implicitly using extra data to
enhance the latent representation may not enough in some cases, we propose to
explicitly edit the generated sentence based on the extra information-related data
to improve generative coherence, which effects together with implicitly modifi-
cation. It allows to alleviate error accumulation and rewrite the words when the
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generation diverges from the correct trajectory. To the best of our knowledge, we
are the first to combine editing strategy with variational inference model on text
generation to boost generation coherence. We conduct experiments on two chal-
lenging text generation tasks with different languages and requisitions (genres),
i.e., neural conversation generation and Chinese poetry generation, to evaluate
the performance of our proposed model. Specifically, two large open datasets,
STC and OpenSubtitle are used for training conversation systems, and a large
open Chinese poetry corpus is utilized for comparison. Experimental results
show that our proposed model mitigates the generation incoherence problem of
CVAE and improves the performance of conversation generation over several
baselines on both human evaluations and automatic metrics, such as RUBER,
and distinct scores. Also, our model achieves substantial improvements on Chi-
nese poetry generation on both quantitative and qualitative studies. Such results
hint that our proposed model can effectively improve the performance of varia-
tional inference models regarding generation coherence.

2 Preliminaries

2.1 VAE and CVAE

In general, VAE consists of an encoder and a decoder, which relate to the encod-
ing process where input x is mapped to a latent variable z, and the decoding
process where the latent variable z is reconstructed into the original x. For-
mally, the encoding process computes the posterior distribution qθ(z|x) while
the decoding process can be formulated as pθ(x|z) regarding as the condition
distribution of input x conditioned on z. In VAE, we set z to multivariate Gaus-
sian distribution i.e. pθ(z) ∼ N(μ, σ). Here θ denotes the parameters of encoder
and decoder. VAE supposes to maximize the distribution of the data x, i.e. pθ(x).
However, as represented in [1], consider large datasets and intractable integral of
marginal likelihood p(x), the true posterior qθ(z|x) is simulated by a variational
approximation qφ(z|x) in modeling the encoding process, where φ represents the
parameters for q.

The learning objective of VAE is transferred to maximize the log-likelihood
logpθ(x) over input x. Since intractability of the marginal distribution, to facili-
tate learning, one can target on pushing up the evidence lower bound of logpθ(x)
(ELBO):

ELBO(x; θ, φ) = Eqφ(z|x)[logpθ(x|z)] − KL(qφ(z|x)||pθ(z)] (1)

Alternatively, we maximize ELBO(x; θ, φ) instead of logpθ(x). In (1), the KL-
divergence term KL(·) regards as the regularization for stimulating the approxi-
mated posterior qφ(z|x) to be close to the prior pθ(z). The E[·] is the expectation
conditioned on the approximation prosterior qφ(z|x).

CVAE extends VAE with an extra condition c, which is for supervision of
the exact condition. In text generation, the condition c usually represents for
sentiment, persona, politeness, dialogue act, and sentence function, etc. The
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objective of CVAE is thus to maximize the reconstruction log-likelihood of the
input x under the condition of c. Thus, for CVAE, we have the ELBO formulated
as

ELBO(x, c; θ, φ) = Eqφ(z|x,c)[logpθ(x|z, c)] − KL(qφ(z|x, c)||pθ(z|c)] (2)

All items in ELBO of CVAE are conditioned on c. In testing mode, given
a condition c, we first sample z according to pθ(z|c), then use z to generate a
sentence by utilizing pθ(x|z).

2.2 Incoherent Generation in CVAE

CVAE tends to generate sentences which are incoherent to its condition, see
results in Table 2, where the generation consistence of CVAE is inferior to some
basic model (Seq2Seq with attention). It could be caused by two reasons:

KL Divergence Vanishing. During the training phase, the KL-divergence loss
collapses quickly to zero [11,12], which degenerates the CVAE to autoencoder.
This phenomenon incurs that the decoder would discard the latent variable and
generate by only utilizing the language model causing to generating incoherent
sentences.

Decoding Error Accumulation. When we use Recurrent Neural Net-
work (RNN) to decode, the generative error will accumulate as encoding pre-
viously predicted words in the vector representations. This issue is caused by
over-confidence problem in text generation as indicated in [16]. Information from
z will become weaker as the decoding step increases. Besides, the training objec-
tive leads to this issue as well [31] and the generation would deviate from the
correct trajectory if error accumulation occurs.

3 The Model

Suppose that we have a dataset D. Each d, d ∈ D, contains a variable-length
input sequence x = {x1, ..., xTx

} and its condition sequence c = {c1, ..., cTc
},

i.e. d = (x, c). The task of text generation is to predict x given its condition c. Our
proposed framework is illustrated in Fig. 1. It consists of two parts, contextual
combination and editing generation, where their details are elaborated in the
following subsections.

3.1 Contextual Combination

Given d = (x, c), we attempt to obtain M information-related data d̂ from the
same corpus according to word-overlap and rerank the retrieved data by BM25
score via Whoosh1. For a data (x, c), we retrieve data d̂ = (x̂, ĉ) whose x̂ has the
highest word-overlap with x. Then we compute the BM25 scores between x and
1 https://whoosh.readthedocs.io.

https://whoosh.readthedocs.io
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each x̂ and choose the highest M ones. These d̂ contain similar context, semantic
and syntactic information with d. To extract the information contains in a (x, c),
we use bidirectional Gated Recurrent Units (GRU) as our encoder. Specifically,
to encode x, for each word in x, the bidirectional GRU obtains forward hidden

state
→
hx

t and backward hidden state
←
hx

t , where
→
hx

t =
→

GRU (xt,
→

hx
t−1);

←
hx

t =
←

GRU

(xt,
←

hx
t−1). The semantic of the i-word is represented by hx

i = [
→
hx

i ;
←
hx

i ], where ; is
vector concatenation. We consider hx

Tx
as the representation of the input x. We

can utilize the same encoder to acquire sentence representation hc
Tc

for condition
sentence c. It is the same with ĉ where we acquire hĉi

Ti
for each ĉi, i = 1, ...,M ,

Ti is the length of ĉi.
Considering that the noise introduced by variational inference would interfere

the encoding information of c, more similar data would enhance the context
information and denoise if we ensemble these data channel of d̂. We achieve this
by concatenating:

hc = [hc
T ;hĉ1

T1
; ...;hĉM

TM
] (3)

We consider c as ensembled condition and regard hc as ensembled condition
representation. We denote this operation as contextual combination.

In order to compute the posterior distribution qφ(z|x, x̂, c), we assume
qφ(z|x, c) ∼ N(μq, σqI), μ and σ are the key parameters to be learned, and
they are computed by [

μq

log(σ2
q )

]
= MLPq([hx

Tx
;hc]) (4)

where MLPq is the fully-connected neural network for posterior. Similarly,
the prior pθ(z|c) is formulated as another multivariate Gaussian distribution
N(μp, σpI). μp, σp can be calculated by another multi-layer perception MLPp.

[
μp

log(σ2
p)

]
= MLPp(hc) (5)

After acquiring the prior and posterior distribution of latent variable z, we can
compute the KL-divergence in (6) as the following.

̂ELBO(x, c; θ, φ) = Eqφ(z|x,c)[logpθ(x|z, c)] − KL(qφ(z|x, c)||pθ(z|c)] (6)

3.2 Editing Generation

contextual combination process already have fused information-related data into
the encoding. However, this combination seems implicit, which hinders the simi-
lar data from effecting better and lacks interpretability. Based on that, we design
a novel reconstruction process to leverage on the same retrieved data more explic-
itly to enhance the generation consistence of CVAE, which effects together with
contextual combination. We now elaborate the reconstruction process with our
proposed editing mechanism.
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The decoder of ECVAE is also a GRU. During training, we sample z from
posterior qφ(z|x, x̂, c) and take it as the initial hidden state of the decoder. At
each step, the decoder computes the hidden state based on the last output and
last hidden: st = GRU(xt−1, st−1). CVAE generates a word xt according to
decoder’s language model(GRU) PL(xt|x1:t−1) = Softmax(sT

t WL + bL), where
WL ∈ Rds×V is the projection matrix, PL ∈ RV is the generation probability,
and ds is the dimension of the decoder hidden state and V is the total vocab
size. Softmax(x)i = expxi

Σ exp xj
for an arbitrary vector x.

Considering that (1) decoding error may accumulate in the common genera-
tion process (2) variational noise may still interfere with the encoding process in
some case even we use contextual combination. We wish to generate/copy a word
from the retrieved data when at each step of reconstruction step when it needs.
We design our model that can generate/copy a word from (x̂1, ..., x̂M , ĉ1, ..., ĉM )
at each decoding step as another way to leverage the retrieved data.

We first look up to vocabulary and pick the word embeddings of these words.
We concatenate all word embeddings of (x̂1, ..., x̂M , ĉ1, ..., ĉM ) and, w.l.o.g we
denote H = (w1, w2, ...wn), H ∈ Rdw×n, where n is the total number of items
in H, dw is the dimension of word embedding. H is the retrieval bank in which
stores the similar information with (x, c). Given st, we compute the response of
each item in H via a bilinear function and obtain the distribution according to
the response by softmax activation. Then we sum up all items in H according
to the distribution and get the contextual vector of H conditioned on st.

v = H · Softmax(HT WH
1 st + bH)

P̂H = vT WH
2 (7)

where W1 ∈ Rdw×ds and W2 ∈ Rdw×v is the projection matrix, P̂H ∈ RV . In
order to maintain the generation consistence with (x, c), we only copy words in
d = (x, c). We mask the probabilities of words that do not show up in d and use
the contextual vector to compute the copy probability:

maski =
{

0, wordi ∈ d
−∞, otherwise

PH(xt|H) = Softmax(P̂H + mask) (8)

After acquiring language model generating distribution PL(xt|x1:t−1) and copy-
ing distribution PH(xt|H), we compute the genuine generating P (xt|x1:t−1,H).
Similar to copy mechanism [24,25], we utilize a selective gate to determine the
ratio between two distributions, which depends on the history generation x1:t−1.
On the one hand, if history x1:t−1 matches well with condition c, it is reasonable
to use the language model to generate; otherwise, it should copy a word from H
to maintain the consistency with c.

We first look up the embedding table to get word embedding C =
[wc

1; ...;w
c
Tc

] ∈ Rdw×Tc and X1:t−1 = [wx
1 ; ...;wx

t−1] ∈ Rdw×(t−1), wc
i is the word

embedding of ci, Tc is the length of c. Then we compute semantic alignment
between x1:t−1 and c.
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Table 1. Statistics of STC, OST and Poetry dataset.

Train Valid Test Vocab

STC 500,000 5,000 5,000 30,000

OST 500,000 10,000 10,000 30,000

Poetry 97,367 1,000 1,000 8461

A = XT
1:t−1C (9)

Then we utilize a convolutional neural network (CNN) to learn the matching
score between x1:t−1 and c, where the score is interpreted as the degree of seman-
tic consistency.

F = Conv2d(A)
K = MaxPool(F )
g = MLP(flat(K)) (10)

Conv2d is 2-dimensional convolution operation to the input, MaxPool takes the
maximum value of the specific size of regions from the output of Conv2d, and
flat is flatten operation which converts a matrix to a vector by concatenate all
the columns. After acquiring flattened vector K, we compute the selective-gate
g via an MLP.

Finally we acquire the genuine generating distribution P (xt|x1:t−1,H) by:

P (xt|x1:t−1,H) = g × PL(xt|x1:t−1) + (1 − g) × PH(xt|H) (11)

4 Experiments

We conduct experiments on neural conversation and neural poetry generation.
In neural conversation, c and x represent query and response respectively, but
only condition c would be provided in the testing phase. For poetry generation,
in the first iteration, the title and the first line of the poetry represent c and x
respectively, and then the first and second line would be the c and x in the second
iteration and such on. In the testing phase, only the title c would be supplied.
We generate the first line given the title. And then generate the second sentence
conditioned on the previously generated one.

4.1 Datesets

For dialogue generation we use two datasets. STC dataset (short text conversa-
tion) [28] and OpenSubTitle denoted as OST2. The original STC dataset consists
of 4M dialogue pairs (query and response). We sample 0.5M, 5k, 5k of it for train-
ing validation and testing respectively. For OST dataset, we sample 0.5M, 10k,
10k for training, validation and testing.
2 OST is clollected from www.opensubtitles.org.

www.opensubtitles.org
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Table 2. Automatic evaluations on STC dialogue generation dataset. Bold number
represents the best result. We estimate the lower bound as the standard to measure
the absolute value on the specific dataset by randomly choose a response for each
query and calculate Embedding Similarity. The lower bound of each sub-metric:
avg: 0.518, ext: 0.285 and grd: 0.322.

RUBER Diversity Embedding similarity

Q-R min max avg.G avg.A dist.1 dist.2 avg ext grd

AS2S 0.623 0.573 0.879 0.726 0.676 0.078 0.253 0.531 0.334 0.385

ESM 0.631 0.594 0.698 0.746 0.698 0.076 0.256 0.544 0.345 0.384

CVAE 0.552 0.536 0.914 0.725 0.655 0.128 0.523 0.560 0.333 0.359

ECVAE† 0.580 0.556 0.893 0.724 0.670 0.123 0.516 0.567 0.343 0.367

ECVAE 0.643 0.615 0.918 0.766 0.717 0.127 0.553 0.564 0.343 0.366

Table 3. Automatic evaluations on OPS dialogue generation dataset. Bold number
represents best result. The lower bound of each metric is avg: 0.905, ext: 0.512 and
grd: 0.710

RUBER Diversity Embedding similarity

Q-R min max avg.G avg.A dist.1 dist.2 avg ext grd

AS2S 0.650 0.635 0.932 0.741 0.784 0.041 0.166 0.912 0.561 0.744

ESM 0.688 0.662 0.914 0.755 0.788 0.038 0.148 0.914 0.560 0.743

CVAE 0.570 0.545 0.872 0.658 0.709 0.054 0.291 0.915 0.539 0.731

ECVAE† 0.590 0.575 0.905 0.690 0.740 0.054 0.289 0.915 0.544 0.734

ECVAE 0.768 0.732 0.927 0.811 0.830 0.052 0.286 0.918 0.549 0.739

For poetry generation, we collect a corpus contains a collection of Tang
dynasty poetry and Song dynasty denoted as Poetry3. We filter out poetry that
does not obey the genres which are quatrain and eight-line with 5 or 7 characters
in each line. We randomly sample 1k for validation, 1k for testing and use rest
fro train which contains 97367 items. Table 1 contains detail statistic information
about all datasets including vocabulary size.

4.2 Baselines

We compare the proposed ECVAE with the following baseline models:
AS2S: Sequence-to-sequence model with attention [29] which is a prevailing

framework in text generation.
CVAE: Conditional Variational Autoencoder for generating responses [6]

which is our basic model. We use the same KL annealing strategy [10] and
bag-of-word loss [9] for both baseline CVAE and our model.

ESM: Ensemble model which utilizes both retrieval-based dialogue model
and generative dialogue model [26]. Similar to our model, ESM first retrieves

3 Poetry is from https://github.com/chinese-poetry/chinese-poetry.

https://github.com/chinese-poetry/chinese-poetry
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semantic-related query from the same training corpus and then generate the
response based on two queries. For a fair comparison, we use the same retrieve
engine for both our model and ESM, and we don’t conduct re-ranking strategy
in [26] since this approach takes effect for both models.

ECVAE†: Conditional Variational Autoencoder with our proposed editing
mechanism which is our overall model without the contextual combination.

4.3 Experimental Setting

We implement all the models in PyTorch 0.4.0 with following hyperparameters:
We use single layer bidirectional GRU as the encoder and its hidden state

sizes are set to 300. The decoder is GRU as well with the size of the hidden
state set to 400. The word embedding has size 200. For VAEs model, we set the
latent variable vector size to be 200. In all experiments, all the initial weights
are sampled from a uniform distribution [−0.08, 0.08]. We use Adam optimizer
with a learning rate of 0.001 and gradient clipping at 5. For selective-gate, we
use 2 × 2 window size, 1 strip and 15 channels in the convolution network and
2 × 2 window size, 2 strip in max pooling operation.

Table 4. Automatic evaluations on Poetry dataset. Bold number represents the best
result.

RUBER Diversity

Q-R dist.1 dist.2

AS2S 0.795 0.054 0.251

ESM 0.804 0.057 0.321

CVAE 0.748 0.085 0.651

ECVAE† 0.762 0.093 0.608

ECVAE 0.811 0.088 0.605

4.4 Evaluation Metrics

To comprehensively evaluate the quality of generation from the different per-
spective, we employ metrics (we don’t use well-known metric BLEU here since
Embedding Similarity already considers the word-overlap in vector level.):

RUBER: RUBER (Referenced metric and Unreferenced metric Blended Eval-
uation) is a metric for evaluating the generative coherence and embedding sim-
ilarity [30]4. To generally evaluate the response quality based on referenced
and unreferenced metrics mentioned above, RUBER provides four blended met-
rics: min and max calculates the minimum and maximum value; avg.A and

4 We use RUBER from https://github.com/liming-vie/RUBER.

https://github.com/liming-vie/RUBER
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(a) (b) (c)

Fig. 2. Quantitative Analysis. Both (a) (b) are on 10 retrieved ĉ in contextual combi-
nation. (a) contains 10 retrieved ĉ in H and varies in number of x̂ while (b) contains 10
retrieved x̂ in H and varies in number of ĉ. (c) contains 10 x̂ and 10 ĉ in H while varies
in number of ĉ in contextual combination. y axis in all figures are scores normalized in
[0, 1], x axis is the number of sentences.

avg.G computes arithmetic and geometric mean. Also, we denote Q-R as the
matching score to evaluate the relatedness between a generated response and its
query/condition, which comes from a trained neural model. All metrics range
from 0 to 1 demonstrate uncorrelated to correlated. This metric shows high
correlation with human annotation.

Diversity: Distinct is a widely used metric to evaluate the diversity of generated
sentence [31]. We use dist.1 and dist.2 to evaluate ability to generate distinct
response. Dist.1 and Dist.2 represent the proportion of unique uni-grams and
bi-grams in the generated result.

Embedding Similarity: Embedding similarity computes the cosine similarity
between the ground-truth and generated sentence embedding. avg calculates the
average of word embeddings in a sentence. ext takes the most extreme value
of each dimension in word embeddings. grd finds the most similar word in two
sentences using cosine similarity. We use Glove5 to train the word embedding on
corresponding datasets.

Human Evaluation: We invite three well-educated research students to rate
the generated response by each model. We sample 100 test data of STC and
poetry and use each model to generate the best responses. All generations are
presented to evaluators simultaneously. The evaluators are asked to rate accord-
ing to (1) coherence and relevance to query, (2) fluency and (3) informative. For
each case, we ask each evaluator to pick out models outperform in these three
aspects respectively. The picked out model would get 1 score in the that aspect.
So we would obtain scores of all model in each aspect from each evaluator. We
consider these three aspects are equally important, therefore, we average scores
of three aspects. We present the average score of all evaluators for each model.
The higher score means better performance.

5 https://github.com/stanfordnlp/GloVe.

https://github.com/stanfordnlp/GloVe
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Table 5. Human evaluation result on STC and Poetry.

STC Poetry

AS2S 0.224 0.206

ESM 0.213 0.224

CVAE 0.139 0.189

ECVAE† 0.176 0.120

ECVAE 0.245 0.258

5 Results

We report our neural conversation generation results STC in Table 2 and OPS
in Table 3, and neural poetry generation results in Table 4. In general, our pro-
posed model outperforms all baselines in all three tasks, but the result also
illustrates distinct distribution and characteristic of datasets. We conduct quan-
titative analysis to show the effectiveness of each component in our model and
qualitative analysis to analyze generated case by our model.

5.1 Quantitative Analysis

Coherence. From the results, our ECVAE† has better RUBER scores than
conventional CVAE especially in the Q-R score which indicates the effectiveness
of the editing process. Building upon it, the proposed ECVAE achieves highest
RUBER scores in all tasks as well, and it confirms our expectation that generat-
ing sentences with contextual combination and editing mechanism can improve
the generative coherence significantly.

Diversity. Our ECVAE† achieves comparable results in diversity against CVAE.
Interestingly, we note that ECVAE† excels the dist.1 of all models in OPS and
Poetry. One reason for that is the editing mechanism forcing the model to use
various words during the inference. Besides, ECVAE can generate sentences with
more unique bi-gram (Dist.2) words compared to baselines.

Consistency. We can see that our ECVAE performs better in the avg of Embed-
ding Similarity than baselines in both dialogue datasets, which is what we
emphasize the most since it reflects the similarity between the ground truth and
predicted sentence. It proofs that our model maintains generative consistency
comparing to all baselines.

Contextual Combination. We fix 10 x̂ and 10 ĉ in H while altering the
number of ĉ for contextual combination. Results in Fig. 2(c) show that around 9
ĉ for contextual combination are the best. More than 9 ĉ are detrimental owing
to the similarity of the retrieved data because excessive data that is unrelated
to c would bring more noise in the encoder.

Selective Gate. We fix 10 retrieved ĉ both in contextual combination and H
while varying the number of x̂ in H. From Fig. 2(a) we can see that 8 x̂ in H
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Table 6. Case study on STC and Poetry of each model. Underline denotes ECVAE
copies words from its condition to enhance coherence.

reaches the peak. Insufficient x̂ leads to a performance drop, which is probably
due to the inadequate x̂. It cannot provide enough supervision to train the gate
and H. On the other hand, excessive x̂ introduce noise to the model. Then, we
conduct the same experiments as above but changing the number of ĉ in H with
fixed 10 retrieved x̂, in which there are 10 retrieved ĉ in contextual combination
as well. It can be seen from the data in Fig. 2(b) that retrieved 10 ĉ in H giving
the best result. More or less ĉ would incur performance drop which is similar to
contextual combination.

Human Evaluate. Automatic evaluation metrics is not able to reflect the qual-
ity of the generation completely, so we need human expert to assess the perfor-
mance that cannot be measured by machine such as fluency or coherence. Table 5
reflects that our model can generate meaningful and fluent sentences while keep-
ing the generative coherent.

5.2 Qualitative Analysis

As shown in Table 6, we present some generated examples coming from each
model. We pick some examples from STC and Poetry dataset. As we can see,
in STC.1, ECVAE can copy the word “Heat” (partial name of an NBA team)
and then use it to keep the generating on track. Then the topic of the whole
sentence is about “Heat” team, and our model even generates “Lebron James”,
a player of “Heat”. In another example, STC.2, although ESM generates with
the meaning ‘eat,’ it can not detail the exact object. ECVAE copy the word
’grapefruit’ and then generate a well-stated sentence according to it. In poetry
generation, ECVAE can also utilize keyword in its condition and then generate
the next line that is highly related to the condition. All the results reveal the
effectiveness of contextual combination and editing mechanism in improving the
quality of generation.
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6 Related Work

CVAE in Text Generation. The VAE is introduced in [1,3], and variational
inference family has shown promising performance in text generation: [10] pro-
pose to employ VAE to generate sentences from latent space; [5] propose gen-
erating utterances from continuous latent space by using hierarchical structure;
[9] fuse external knowledge information to guide dialogue generation; [6] com-
bined CVAE and keywords to generate poetry. Existing works suffer from lacking
coherence between generation and its condition. This problem mainly comes from
two phenomena: KL-vanishing and error accumulation in decoding. When the
KL-vanishing happens, the decoder would discard the latent variable in training.

KL Vanishing and Decoding Incoherence. To alleviate the KL-vanishing,
most methods fall into two main categories. One is to improve posterior distri-
bution. [10] proposes the KL-annealing to increase KL divergence loss weight
slowly. [11] utilizes adversarial training to learn the latent variable distribution.
[17,18] combine information of future decoding step provided by a backward
RNN. [12,13] change the latent viable distribution to increase density modes.
Another group attempts to change decoder architecture to improve its ability
to obtain information from latent representation. [10] proposes word dropout to
weak decoder during training. [19] utilizes a diluted CNN to generate sentences.
[15] adds residual connections to avoid KL vanishing. To enhance decoding, [32]
argues that original attention only focuses on particular parts o input sentence
and propose multi-head attention for seq2seq. The main difference of our model
is that we attempt to mitigate in favor of extra synonymous data explicitly.

Retrieval Boosting. Our work is also related to retrieval boosting genera-
tion. [26,27] proposes to combine retrieval-based and generative-based dialogue
generation. [21,22] introduce a paradigm which generates sentences based on
prototypes.

7 Conclusions

We propose Edit-CVAE (ECVAE) in which we first combine information from
extra semantic-related data to enrich the latent representation. We utilize addi-
tional data to edit the generated sentence. We conduct experiments on neural
conversation generation and neural poetry generation, and then evaluate the
effectiveness of our model comprehensively. All experimental results show that
our model obtains improvement in generative consistence while maintaining gen-
erative diversity and semantic-consistency.
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Abstract. This study solves the problem of unknown(UNK) word in
machine translation of agglutinative language in two ways. (1) a multi-
granularity preprocessing based on morphological segmentation is used
for the input of generative adversarial net. (2) a filtering mechanism is
further used to identify the most suitable granularity for the current
input sequence. The experimental results show that our approach has
achieved significant improvement in the two representative agglutinative
language machine translation tasks, including Mongolian→Chinese and
Japanese→English.

Keywords: Agglutinative language machine translation · UNK ·
Generative adversarial network

1 Introduction

Neural machine translation (NMT) [2,3,8,9] systems have a major drawback in
handing rare words, which is more prominent in agglutinative language tasks,
due to the sparsity of the vocabulary. The varied morphology largely deceives
the translation model directly resulting in a large amount of an <unk> symbol.
This can be illustrated by the following sentences.

The word in the first sentence modifies the bject need add the
suffix . However, it modifies the same object with a different suffix .
This largely deceives the translation model directly resulting in a large amount
of out-of-vocabulary (OOV) in the restricted vocabulary, and then it is crudely
considered the same as an <unk> symbol. In addition, assume is a rare
word, if it is replaced by the <unk> symbol, the two sentences will be same.

For NLP tasks, Generative adversarial network (GAN) [14] is immature.
Some studies, such as [1,12], used GAN for semantic analysis and domain adap-
tation. [11,13] successfully applied GAN to sequence generation tasks, such as
poem generation, speech language generation and machine translation.

c© Springer Nature Switzerland AG 2019
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In this study, we propose a novel training approach based on value filtering
strategy. During training, corpus is divided into different granularity according
to morphology as input of the model, which is transformed into a corresponding
value by an additional value filter. Then the model selects the most suitable gran-
ularity for decoder according to this value. Experiments on Mongolian→Chinese
and Japanese→English translation tasks show that more than 4 and 2 points in
BLEU score can be gained with our approach over several strong baselines.

2 Filtering Mechanism for GAN

We consider a standard training process of our model composed of four basic
components (Fig. 1).

(1) training RL-based generator(G) by the XENT : The selection of G is individ-
ualized and targeted. We focus on long short term memory with attention
mechanism in this work, because the temporal structure enables it to cap-
ture dependency semantics in agglutinating language. We case our problem
in the reinforcement framework [4,7,10]. Training G by XENT can ensure
that an optimal initial state and provides a good search space for beam
search. Note that the input to each module is a sample from the distribu-
tion over words produced at the precious timestep.

(2) value generating and filtering. The reward R of each sequence is generated
by observing RL, then it feeds into a CNN implemented value iteration net.
The convolutional layer in CNN corresponds to a particular action Q. The
next-iteration value is then stacked with the reward and fed back into the
convolutional layer N times, where N depends on the length of the sequence.
Subsequently, a long-term value Vupdate is generated by decoding a sequence.

(3) value discriminating. The discriminator(D) is dedicated to distinguishing
the filtered results with the target ground truth, which provides the prob-
ability pD. The optimization target of D is to minimize the cross entropy
loss for binary classification between generation and ground truth.

(4) model optimization. Through the analysis of the above components, we can
formulate the optimization scheme of the model as follows:

Jθ = E(x,y)[logpD(x, y)] + E(x,y′ )[log(1 − pD(x, y
′
))], (1)

where (x, y) is the ground truth sentence pair, (x, y
′
) is the generated trans-

lation pair. pD(., .) represents a probability which proved by D. Jθ can be
regard as an opposite game process between maximum and minimum expec-
tations, which is the maximum expectation for the generation for G, and
the minimum expectation between generation and ground truth for D. We
use log(1 − pD(x, y

′
) obtained from D as a estimation of the reward, the

corresponding gradient of :

∂Loss

∂θ∼G
= Ey′ [log(1 − pD(x, y

′
))

∂

∂θ∼G
logG(y

′ |x)], (2)
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Fig. 1. A data flow presentation of model, in which different colors represent the train-
ing process of each component.

where ∂
∂θ∼G logG(y

′ |x) represents the gradients specified with parameters
of the RL-based model. Therefore, we can describe the gradient update of
model as:

θ∼G ← θ∼G + l
∂

∂θ∼G
, (3)

where l is the learning rate.

3 Experiment and Analysis

3.1 Dataset and Multi-granularity Preprocessing

We report the experimental results on two typical agglutinative language:
Mongolian→Chinese (Mo-Ch) and Japanese→English (Ja-En). We use the data
from CLDC & CWMT2017 (0.2M) and OPUS in LREC2016 (2.2M)1. In
order to obtain input samples with multi granularity in two languages, we
adopt independent-developed Mongolian affix segmenter and Japanese seman-
tic segmenter JUMAN++2. Finally, we divide the training data into four
categories:{Original, Original&Affixes, Original&Case, Original&Affixes&Case}.
The test set (800 sentences) is composed of a subset of CWMT2017 test set.

We use the MIXER [6], Transformer [9] and BR-CSGAN [13] as the baseline
system, and stop the pre-training of initial model until the accuracy of dev
achieves at δ which is set to 0.7 in the LSTM. We set the G to generate 500
negative examples per iteration. Selecting a D’s kernel width of not less than 3
is reasonable and valid for our vocabulary. All models are trained on up to single
Titan-X GPU.
1 https://object.pouta.csc.fi/OPUS-MultiUN/v1/moses/ar-en.txt.zip.
2 http://nlp.ist.i.kyoto-u.ac.jp.

https://object.pouta.csc.fi/OPUS-MultiUN/v1/moses/ar-en.txt.zip
http://nlp.ist.i.kyoto-u.ac.jp
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Table 1. BLEU score of systems under different noise modes

System Original Original&Affixes Original&Case Original&Affixes & Case

Mn-Ch Transformer [9] 28.5 30.2 29.8 30.5

MIXER [6] 29.7 30.4 28.6 31.3

BR-CAGAN [13] 29.9

(15+17)

31.7

(22+25)

31.1

(15+19)

32.3

(27+32)

Our 30.6

(15+11)

32.5

(22+19)

30.8

(15+15)

�35.4

(27+21)

Ja-En Transformer [9] 29.7 27.4 23.7 30.1

MIXER [6] 24.5 26.2 22.3 24.7

BR-CAGAN [13] 27.8

(38+30)

29.2

(47+41)

23.1

(43+39)

29.6

(66+52)

Our 28.8

(38+19)

29.2

(47+25)

24.4

(43+22)

�31.3

(66+28)
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Fig. 2. Number of <unk> symbols in the translations of different models in each epoch.

3.2 Analysis of Evaluation Metrics

We mainly analyze the experimental results in three aspects: BLEU score, train-
ing efficiency, unknown word tokens in translations.

BLEU and Training Efficiency. We use BLEU [5]3 score as an evalua-
tion metric to measure the similarity degree between the generation and the
human translation. Also, we compared the two GAN-based models by counting
the time of pre-training and adversarial training, (e.g., 15 + 17 indicates 15 h of
pre-training and 17 h of adversarial training). From the Table 1, we can clearly
observe that Adversarial-NMT obtains satisfactory BLEU score against baseline
systems. In particular, the results show that the GAN-based model is obviously
superior to baseline systems in any kind of noisy corpus.

A Discussion of Proposed Method for Redundant Tokens. Because of
the restrict liberation on granularity, the mixed noises will cause under-fitting

3 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-
bleu.perl.

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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or over-fitting, which motivates us to alleviate the confusion of decoder on gran-
ularity selection through VIN. A clear and credible evidence is the number of
unknown words (<unk>) in the translation. Figure 2 shows a comparison of the
number of word occurrences for each corpus and model.

4 Conclusion

The main contribution of this study is to show that NMT systems of aggluti-
native language are capable of generative adversarial translation by using mor-
phological noises of corpus. This is both simpler and more effective than using
a complex preprocessing method.
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Abstract. This paper proposes a self-corpus-based text augmentation
technique with clustering for concept mining in a discussion forum.
Sparseness in text data, which challenges the distance and density mea-
sures in determining the concepts in a corpus, is handled through self-
corpus-based document expansion via matrix factorization. Experiments
with a real-world dataset show that the proposed method is able to infer
useful concepts.

Keywords: Concept mining · Corpus-based augmentation · Clustering

1 Introduction

An online forum is a formal mechanism that community uses to exchange infor-
mation through posted messages that are organized into “threads” [5]. The
forums can reflect concepts, themes, and concerns of online societies in diverse
fields such as education, marketing and politics [5,6]. A handful of studies have
applied data and text mining methods to explore the predictive power of the
forum data [4,6]. In the education domain, discussion forums have been ana-
lyzed to assess interactivity over a period of time to predict early warnings for
students at-risk [6]. In marketing, online forum data is used to identify product
defects [5] with predictive models. However, these works neglect the natural text
content used in the online discussion. A few studies have applied text mining in
online forums for sentiment analysis [4] with supervised approaches to classify
forum threads. However, the unavailability of ground-truths in online forum data
creates the demand for conducting the analysis in unsupervised setting [4].

In this paper, we propose a concept mining method that can extract concepts
based on text discussions in the unsupervised setting. Concept mining of online
forums data faces the same challenges as traditional text mining methods [1].
Sparse nature of text vectors and a higher number of dimensions make distance
and density-based methods to perform poorly due to distance concentration [1].
Specifically, distance differences between far and near points become negligible in
higher dimensions [1]. In addition, density based methods are unable to identify

c© Springer Nature Switzerland AG 2019
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dense patches in sparse text data. Moreover, forum data is usually homoge-
neous where a minor variation in the distance/density measures will determine
groupings. Probabilistic and matrix factorization based approaches have been
introduced to handle higher dimensions in text [1]. However, information loss in
these dimensional reduction methods is evident.

Distinct from these works, we introduce a novel approach for content mining
in online forums using clustering and document expansion, named as ConMine
to understand the main concepts and themes present in user discussions. The
self-corpus based document expansion [8] in ConMine, via Non-negative Matrix
Factorization (NMF), learns virtual terms from the same corpus that semanti-
cally match the applied domain. A centroid-based clustering is then applied to
the expanded text to differentiate the concepts. ConMine automatically learns
the number of clusters to be produced within the augmentation process. Finally,
we synthesize meaningful concepts with the help of experts via word-cloud visu-
alization. ConMine approach is evaluated on real-world data taken from the
Queensland University of Technology (QUT), Australia. The empirical analysis
shows that ConMine is able to handle sparse and homogeneous nature of text in
discussion forums and identify concepts more accurately than the benchmarks.

2 Concept Mining with Self-corpus-Based Augmentation

The proposed three-step ConMine Algorithm is outlined in Fig. 1. Consider an
online forum corpora D = {D1,D2, ..Di, ...Ds} over a time period s where Di

represents the corpus at time i. Let Di be a collection of N distinct posts,
{P1, P2, ...PN}, that contain a total of M distinct terms {t1, t2, ...tM}.

Self-corpus-Based Augmentation with Matrix Factorization: In contrast
to using external knowledge bases [3], we conjecture that the self-corpus based
augmentation is well suited for augmenting text as it follow forums’ text patterns.
Let A be the M ×N matrix representation of Di. We decompose A using NMF
to have the lower rank matrices W and H which are non-negative and in the
size of M × k and k × N respectively with the low-order rank k set as the
number of topics. The k is learned using the intrinsic topic coherence measure.
The matrix factorization process iteratively approximates W and H such that
they can represent high-dimensional A with the least error as in Eq. 1.

min
W,H≥0

1
2
‖A − WH‖ =

M∑

i=1

N∑

j=1

(
Ai,j − (WH)i,j

)2

(1)

Topic membership of each post in Di is obtained considering the maximum
coefficient value in H for a post. This associated topic is used to identify the vir-
tual terms for each post using W . The coefficients in W are sorted in decreasing
order. The coefficients that yield higher value than mean+standard deviation of
the distribution become the terms to represent a topic as in [8]. Each text post of
Di is expanded using the most probable terms as virtual terms that correspond
to its topic vector and form D′

i.
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Fig. 1. Clustering algorithm for concept mining: ConMine

Augmented Text Clustering: The data matrix D′
i with augmented posts is

represented with a weighted term × post matrix to partition into k clusters. We
use the centroid-based clustering as it is reported to produce an accurate outcome
for the homogeneous data [2]. As the online forum data shows the homogeneous
nature, we partition the N posts into k clusters (obtained through the previous
step) using k-means. Initial k cluster centers are randomly chosen. Then each
post P ′

a ∈ D′
i is compared with each k center to decide on the closest to be

assigned. This process updates the respective cluster center in each iteration.

Knowledge Synthesis for meaningful Communities: Within this step, we
generate the m concepts that are meaningful to the domain in k clusters after
doing further post-processing and consultation with domain experts. We analyze
terms in each cluster through visualization and the highly occurring common
words are removed. This is an iterative quality checking process that includes
manual intervention. This process results in the m (≤k) meaningful concepts
discussed in a forum.
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3 Empirical Analysis

Datasets: The dataset is obtained from the online forum, Essential Supervisory
Practices (ESP), a 5-week training program for higher-degree research supervi-
sors at QUT between 2015 to 2017. The posts from all years have been com-
bined on a weekly basis, resulting in five datasets as in Table 1. We consider
each post, regardless of its type (i.e, original or reply), as a single document
after applying standard text pre-processing steps. After comparing the exper-
imental results with multiple weighting schemes, posts are organized in vector
space model (VSM) with the tf*idf weighting schema to derive the topics, while
the augmented posts are represented using tf for clustering.

Table 1. Summary of the datasets used in the experiments

Dataset Number

of posts

Number of

unique terms

Average post length (in terms)

Before augmentation After augmentation

W1 1664 7090 154 165

W2 1495 7385 177 194

W3 1416 7145 155 165

W4 1402 7057 161 174

W5 1568 6893 145 153

Benchmarks and Evaluation Measures: The proposed NMF based approach
for document expansion using topics in ConMine is evaluated against probabilis-
tic LDA (pLDA) [1] and Latent Semantic Indexing (LSI) [1]. The state-of-the-art
clustering methods of DBSCAN [8], LDA [1], LSI [1] and NMF [1] are used for
benchmarking the concepts of clustering in ConMine. Accuracy of topic vec-
tor formation and clustering process were evaluated with the intrinsic measures
topic coherence [7] and Silhouette score [7] respectively.

Accuracy: ConMine with NMF is found best in terms of topic coherence
(Fig. 2(a)). LSI, which approximates factors with both positive and negative
entries, is not able to provide stronger topic distribution in VSM which is rep-
resented with strictly positive entries. pLDA, which approximates topics using
the probability of terms considers only the term count and neglects the con-
text of the words and frequencies, has provided inferior results. We empirically
learn the number of topics as shown in Fig. 2(b) which produces highly cohe-
sive topics. This number is used in deriving topics for the post augmentation
as well as it is set as k in the clustering process. Figure 2(c) compared clus-
tering in ConMine with and without post augmentation. Increased tightness of
the clusters, indicated by a higher silhouette score after augmentation in each
method, confirms the benefit of augmentation by handling the sparseness in
high-dimensional text via added terms. ConMine shows the highest increase in
silhouette value compared to all the baselines. In the homogeneous data, the den-
sity concept (DBSCAN) creates contiguity-based clusters where very different
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Fig. 2. Results of the experiments

data items may end up in the same cluster giving the worst results. LDA which
uses term counts-based probability is unable to predict the correct cluster due
to the negligence of context of the terms. However, NMF as a clustering method
performs similar to ConMine with a marginal difference showing the importance
of mapping higher to lower-dimension space. The identified Concepts for each
week are given in Table 2.

Table 2. Concepts identified for datasets

Dataset Identified concepts by ConMine

W1 Research skill, Milestones, Supervisors, Meetings, Publications

W2 Experience in supervising, Relationship between student and supervisor

W3 Writing thesis, Writing literature review, Plagiarism and research issues

W4 Emotional issues, Completion, Strategy for unsatisfactory progress

W5 Examiner comments, Final submission and Seminar practice

4 Conclusion

We proposed and evaluated a concept mining method, ConMine, on a real-world
forum data for understanding the discussions that are held on online forums. To
handle the sparsity and high dimensionality in text, we use NMF (which approx-
imates topic vectors in a linear manner considering the context of terms) to
obtain virtual words for post-expansion. Leveraging the intrinsic measurements,
we learn the optimal number of k topics that are further used in centroid-based
clustering to obtain the clusters/concepts within the augmented text. Results
show that ConMine can deal with the sparse and homogeneous nature of online
forum data to obtain some useful concepts.



402 W. A. Mohotti et al.

References

1. Aggarwal, C.C., Zhai, C.: Mining Text Data. Springer, Boston (2012). https://doi.
org/10.1007/978-1-4614-3223-4

2. Dehuri, S., Mohapatra, C., Ghosh, A., Mall, R.: Comparative study of clustering
algorithms. Inf. Technol. J. 5, 551–559 (2006)

3. Jia, C., Carson, M.B., Wang, X., Yu, J.: Concept decompositions for short text
clustering by identifying word communities. Pattern Recogn. 76, 691–703 (2018)

4. Li, N., Wu, D.D.: Using text mining and sentiment analysis for online forums hotspot
detection and forecast. Decis. Support Syst. 48(2), 354–368 (2010)

5. Liu, Y., Jiang, C., Zhao, H.: Using contextual features and multi-view ensemble
learning in product defect identification from online discussion forums. Decis. Sup-
port Syst. 105, 1–12 (2018)

6. Macfadyen, L.P., Dawson, S.: Mining LMS data to develop an “early warning sys-
tem” for educators: a proof of concept. Comput. Educ. 54(2), 588–599 (2010)

7. Mehta, V., Caceres, R.S., Carter, K.M.: Evaluating topic quality using model clus-
tering. In: CIDM, pp. 178–185. IEEE (2014)

8. Mohotti, W.A., Nayak, R.: Corpus-based augmented media posts with density-based
clustering for community detection. In: ICTAI, pp. 379–386. IEEE (2018)

https://doi.org/10.1007/978-1-4614-3223-4
https://doi.org/10.1007/978-1-4614-3223-4


Knowledge Representation and
Reasoning



Rational Inference Patterns

Lars-Phillip Spiegel1, Gabriele Kern-Isberner1(B) , and Marco Ragni2

1 TU Dortmund, Dortmund, Germany
gabriele.kern-isberner@cs.tu-dortmund.de
2 University of Freiburg, Freiburg, Germany

Abstract. Understanding, formalizing and modelling human reasoning
is a core topic of artificial intelligence. In psychology, numerous falla-
cies and paradoxes have shown that classical logic is not a suitable logi-
cal framework for this. In a recent paper, Eichhorn, Kern-Isberner, and
Ragni have succeeded in resolving paradoxes and modelling human rea-
soning consistently in a non-monotonic resp. conditional logic environ-
ment with so-called inference patterns. For further studies using inference
patterns, however, it is mandatory to understand better how inference
patterns are triggered by the characteristics of specific examples used
in the empirical tests. The goal of this paper is to categorize empirical
tasks by formal inference patterns and then find crucial features of the
corresponding reasoning tasks in such a way that they can be used to
predict the reasoning of human subjects according to the task. To this
end a large amount of psychological studies dealing with human reason-
ing from the literature were investigated and classified according to the
observed inference patterns. From this classification, we learnt a decision
tree revealing which features of empirical tasks lead to which inference
pattern in most cases. These results provide insights into the reasoning
modes of humans which is important for choosing the right formal model,
and help setting up proper tasks for testing inference patterns.

Keywords: Nonmonotonic reasoning · Conditional reasoning ·
Rational human inference · Psychological experiments

1 Introduction

Human rational reasoning has been a leading paradigm for formal approaches to
knowledge representation and reasoning (see, e.g., [1,9]), and recently, interest
has increased to evaluate formal theories of reasoning by empirical evidence, or
the other way round, to find formal models of reasoning that are able to explain
human reasoning (see, e.g., [12]). However, as many psychological experiments
show, humans may systematically violate for a conditional (if A then C ) the
inference rules modus ponens (MP) (Given the conditional and A, infer C ) and
modus tollens (MT) (Given the conditional and ¬C, infer ¬A) that are valid
according to classical logic, while also using the logically invalid inference rules
affirmation of consequent (AC) (Given the conditional and C, infer A ) and
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denial of antecedent (DA) (Given the conditional and ¬A, infer ¬C). This has
often lead to the conclusion that human reasoning is from a classical logic per-
spective (hopelessly) irrational, but also more recently to the insight that classi-
cal logic may not be the right norm to judge human reasoning [4,10,11,14]. In the
paper [5], the authors showed that 3-valued conditional logic resp. basic seman-
tics of nonmonotonic reasoning provide a much more coherent formal model of
human reasoning that is not only apt to resolve prima facie irrationality but can
also be used to elaborate on hypotheses for hidden assumptions and plausible
knowledge that humans relied on when solving the reasoning tasks. The key idea
in that paper was to consider all inference rules (MP, MT, AC, DA) together as
so-called inference patterns and interpret them via formal conditionals.

In this paper which is based on the bachelor thesis [13], we continue this work
by elaborating on links between inference patterns and the setting of experimen-
tal tasks with respect to wording, familiarity with the topic, suggested alterna-
tives or disablers, and other features. The following small example illustrates
how significantly reasoning depends on such settings: If butter is heated, then
it melts. Does this also mean that butter is always heated when it melts? Not
necessarily because this statement describes prima facie the logical implication:
Butter is heated ⇒ Butter melts. In classical logic it is then a fallacy to say that
butter is always heated when it melts because the implication is only defined
to work one way. But how do you melt butter without heating it? In fact, usu-
ally the definition of melting is “Become fluid under the influence of heat”. In
the real world the conclusion that butter is heated when it melts is perfectly
correct according to this definition. Nevertheless, according to the definition of
implication it is logically incorrect. This statement about heated butter is taken
from a real psychological study [15]. In this study, the reasoning behavior of
subjects was examined and it was found that 95% of all subjects concluded from
the statement butter melts the statement it was heated. In another study, sub-
jects were given the statement if Rex is a terrier, then he likes apples, logically
corresponding to the implication Rex is a terrier ⇒ Rex likes apples [8]. In
this study, only 8% of the test subjects concluded from the statement Rex likes
apples the statement Rex is a terrier. So what’s the difference between these
two studies? Obviously, of course, the assumption is that in the real world not
anything that is called Rex and likes apples must also be a terrier. Although
this difference is very obvious, it is also difficult to be worked out from studies
because they often group several statements having the same logical structure
into one experiment. In order to use inference patterns as a formal model of
reasoning not only on an abstract, aggregated level, as it was done in [5], but
also to explain and predict reasoning behavior of a specific individual in a given
empirical task, characteristic features of such tasks must be taken into account.
This paper elaborates on such features by investigating tasks from well-known
empirical studies, and uses the most characteristic features for classifying infer-
ence behavior in the form of inference patterns. We describe inference patterns
by their most salient features, and present a decision tree that can help classify
empirical tasks by (expected) inference patterns. These results will pave the way
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to empirically validate formal inference patterns for individual reasoning, but
are also interesting for psychologists in general when designing empirical tasks.

The rest of this paper is organized as follows: In the next section we will
provide some formal preliminaries about conditionals and preferential models.
In Sect. 3, we explain inference patterns and identify main features of psycholog-
ical experiments. Moreover, we briefly discuss some features that we use in the
following analysis of the experiments and for classification. In Sect. 4 we will ana-
lyze which features show up in most frequently drawn inference patterns across
the experiments and present a decision tree based on three core features that
visualizes concisely why some inference patterns are drawn. A general discussion
in Sect. 5 concludes the paper.

2 Formal Preliminaries

We build upon a propositional logical language L defined over a set of atoms Σ
and making use of the classical connectors conjunction (∧), disjunction (∨), and
negation (¬); furthermore, A ⇒ B means ¬A ∨ B. For ease of reading, ¬A is
abbreviated by A, and the conjunction symbol is often omitted, i.e., AB means
A ∧ B. The set of interpretations or worlds, represented by conjunctions over
literals, is Ω. A formula A is true in a world ω if and only if ω |= A, ω is then
called a model of A. The set of all models of A is denoted by Mod(A). The
total set of logical consequences of a formula A is Cn(A) = {B|A |= B}. In the
following, we recall basics on conditionals and preferential semantics which are
both necessary for setting up the non-classical logical framework used in this
paper.

Conditionals (B|A) are suitable to express commonsense statements, or rules
with exceptions “If A then (usually) B”.

Definition 1 (Conditionals [3,5]). A conditional (B|A) consists of two for-
mulas A,B ∈ L, which are combined by the conditional operator |. A is called the
premise and B is the consequence of the conditional. There are three possible
evaluations of a conditional (B|A) ∈ (L|L) in a world ω ∈ Ω:

[[(B|A)]]ω =

⎧
⎪⎨

⎪⎩

true if ω |= AB

false if ω |= AB

undefined if ω |= A

The conditional (B|A) is verified by a world ω if the formula AB is satisfied in
the world ω. It is falsified by ω if the formula AB is satisfied in the world ω. If
A is true in the world ω then the conditional is called neutral regarding ω.

The set of all conditionals over L is denoted by (L|L). A conditional knowledge
base Δ is a (non-empty, finite) set of conditionals Δ = {(B1|A1), . . . , (Bn|An)} ⊆
(L|L). Semantics of conditionals and consistency of conditional knowledge bases
can be defined in terms of preferential models which provide a basic semantics
for nonmonotonic logics.
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Definition 2 (Preferential models [9]). A preferential model is a triple
(M,�, |=) consisting of a set of states M , a preference relation between these
states � ⊆ M × M , and a satisfiability relation between models and formulas
|= ⊂ M × L.

For a set of formulas A and a model m, m |= A iff m |= a for all a ∈ A.
For two states m1,m2, m1 ≈ m2 iff m1 � m2 and m2 � m1, and m1 ≺ m2 if
m1 � m2 and not m2 � m1. Furthermore, for a model m1 and a formula A, A is
preferentially satisfied by m1, (m1 |=≺ A), if m1 |= A, and there is no m2 with
m2 |= A and m2 ≺ m1. The preferential inference relation �∼≺ is defined via
A �∼≺ B iff m |=≺ A implies m |= B, i.e., iff all minimal models of A satisfy B.

For the context used in this paper, M = Ω is the set of worlds, and � is
a plausibility relation, i.e., a total preorder on worlds. That is, for two worlds
ω1, ω2, we say ω1 � ω2 if ω1 is at most as plausible as ω2. The satisfaction
relation |= is then simply defined as the normal satisfaction relation on worlds.
The plausibility relation can also be lifted to formulas: For two formulas A and
B, A � B means that for every model of B, there must be at least one model
of A that is at least as plausible [5]. Since � is assumed to be a total preorder,
this is equivalent to saying that all minimal models of A are as least as plausible
as all minimal models of B. Then, it is easy to show that A �∼≺ B iff AB ≺
AB [5]. A state of knowledge, or epistemic state Ψ can now be represented by
such a preferential model, more specifically, by such a plausibility relation � on
worlds (the rest is classical logic), and can provide semantics for conditionals
by interpreting the conditional operator via the nonmonotonic inference relation
�∼≺: Ψ accepts a conditional (B|A), Ψ |= (B|A), iff A �∼≺ B, iff AB ≺ AB.
We also make use of so-called weak conditionals �B|A� that are accepted by Ψ
iff Ψ does not accept (¬B|A), i.e., Ψ |= �B|A� iff A ��∼≺ B, iff AB � AB. The
most plausible beliefs Bel(Ψ) of Ψ being represented by a total preorder � are all
propositions which are implied by all most plausible (i.e., minimal wrt �) worlds.
A conditional knowledge base consisting of (weak) conditionals is consistent iff
there is a total preorder that accepts all conditionals.

3 Human Reasoning and Inference Patterns

This section describes methods we developed and applied to investigate human
reasoning patterns and covers some examples from a variety of psychological
studies in the literature. Moreover, we discuss and illustrate features of experi-
mental tasks, and show their relevance for inference patterns observed in empir-
ical studies.

3.1 Inference Rules and Logical Fallacies

In psychology, human reasoning is often evaluated by inference rules: the logically
valid rules of modus ponens (MP ) and modus tollens (MT ), and the logically
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invalid rules denial of antecedent (DA) and affirmation of consequent (AC).
Modus ponens assumes the premise to be true and deduces the consequence as
true, modus tollens assumes the consequence as false and concludes that the
premise must also be false. For denial of antecedent, the premise is assumed to
be false, and it is inferred that the consequence must also be false. Affirmation
of consequence perceives the consequence as true, and from that deduces the
truth of the premise.

Example 1. To illustrate these rules, we use a classical example from [2], where
the implication if Lisa has an essay to write, then she (always) studies late in
the library is used.

– According to MP, the statement Lisa has an essay to write properly concludes
the statement Lisa studies late in the library.

– According to MT, the statement Lisa does not study late in the library cor-
rectly concludes Lisa has no essay to write because otherwise she would study
in the library until late in the evening.

– According to DA, the statement Lisa has no essay to write concludes Lisa
does not study late in the library, but there may also be a lot of other reasons
why Lisa studies late in the library, e.g., when an examination is pending.

– According to AC, the statement Lisa studies late in the library concludes the
statement Lisa has an essay to write, but Lisa might not have to write an
essay, but prepare herself for an examination.

3.2 Inference Patterns

An inference pattern indicates for each inference rule, modus ponens MP , modus
tollens MT , affirmation of consequent AC, and denial of antecedent DA, whether
the agent uses this rule to infer something in an application context or not.

Definition 3 (Inference pattern [5]). An inference pattern � is a 4-tuple
which specifies for each inference rule MP,MT,AC,DA whether this inference
rule is used (e. g., MP ), or not (e. g., ¬MP ). The set of all 16 resulting inference
patterns is R.

In [5], we used the aggregated responses of all test persons for each task to
decide whether an inference rule was applied by a majority of test persons, or
not. This means, if the inference rule was applied by at least 50% of all test
persons, then the inference pattern shows a positive occurring of the respective
rule, otherwise, it shows a negative occurrence.

If we now use a total preorder � as a plausibility relation over all possible
worlds, as is the case, for example, with preferential models, using or not using
an inference rule induces an inference and thus an inequality, as shown in Table 1.

Thus, every inference pattern describes four inequalities. An inference pat-
tern is called rational if the system of inequalities can be represented by a total
preorder �. Since every inference rule corresponds to a conditional (e.g., MP
corresponds to (B|A)), this is equivalent to saying that the conditional knowledge
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Table 1. Inference rules and induced inequalities on the models.

base consisting of the (weak) conditionals corresponding to the (not-satisfied)
inference rules is consistent. This way, human rationality is formally character-
ized by consistence in a conditional logic.

Investigating the inequalities for all 16 inference patterns, it turns
out that only two inference patterns describe non-solvable inequalities and
are thus irrational. These are the patterns (MP,¬MT,¬AC,DA) and
(¬MP,MT,AC,¬DA) [5]. In practice, it turns out that these irrational infer-
ence patterns are drawn very rarely. In the studies analyzed in this work they
add up to just about 1% which reflects a very good overall rational reasoning
behavior and thwarts the frequent findings of irrationality based on classical
logic.

Moreover, the paper [5] also presented techniques to extract a suitable con-
ditional knowledge base Δ generating the respective preorder, and the most
plausible beliefs from the total preorder.

3.3 Features of Tasks in Empirical Studies

In this section, examples of some of the studies considered are presented, and
their features and results are discussed in some detail. These features build the
base for the later classification.

Alternatives and Disablers. In [2] the suppression of the logically valid and
invalid inference rules is seperately examined. For this purpose, in Experiment 1
the subjects were presented with alternatives or additional conditions (disablers)
together with the implication. For each inference rule, the subjects then received
an assumption, possibly including an alternative or additional condition, as well
as a choice of three conclusions. The subjects were instructed to accept the
assumption as true and to choose which of the three conclusions follows from
the given statements. Results of the experiment are shown in Table 2.

The Role of Negation. In [6] the effect of negation on reasoning tasks was
examined. It was based on a known experiment in which a statement was made
about the relationship between characters on the front and back of a card. These
statements like If there is (not) a P on one side of the card, then there is (not) a 1
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Table 2. Evaluation and inference pattern for Experiment 1, Table 1 in [2]

Argument type MP MT AC DA Inference pattern

Simple 96 92 71 46 (MP, MT, AC, ¬DA)

Alternative 96 96 13 4 (MP, MT, ¬AC, ¬DA)

Additional condition 38 33 54 63 (¬MP, ¬MT, AC, DA)

on the other side of the card are then varied in, among other things, the negated
part of the implication, and whether the negation was given either explicitly or
implicitly. Results of this experiment are shown in Table 3.

Table 3. Evaluation and inference pattern in [6] for explicit negation

Argument type MP MT AC DA Inference pattern

If p, then q 95 60 60 35 (MP, MT, AC, ¬DA)

If p, then not q 100 75 40 20 (MP, MT, ¬AC, ¬DA)

If not p, then q 100 50 85 50 (MP, MT, AC, DA)

If not p, then not q 100 35 60 30 (MP, ¬MT, AC, ¬DA)

Counterfactual Implications. In [7], causal counterfactual statements were
investigated. These are statements that speculate about a possibility of which it
is uncertain whether it has taken place or not. To evoke such an interpretation
in subjects, these statements are usually phrased in the subjunctive mood. In
Experiment 3a of [7], the subjects were tasked with a normal implication, a
counterfactual implication, and a fictional story. The stories dealt with different
events, but all involved a counterfactual conditional, and the subjects were asked
to speculate about a different outcome of the story by completing the sentence
“If only . . . ” at the end of the story. Results of the experiment are shown in
Table 4.

Table 4. Evaluation and inference pattern from Experiment 3a, Table 4 in [7]

Argument type MP MT AC DA Inference pattern

Normal 80 58 40 20 (MP, MT, ¬AC, ¬DA)

Counterfactual 86 81 46 46 (MP, MT, ¬AC, ¬DA)

Fict. story 49 45 53 59 (¬MP, ¬MT, AC, DA)

These examples show clearly which significant effect slight variations of exper-
imental tasks may have on the reasoning behavior of the test persons. Therefore,
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categorizing experimental tasks with the help of suitable features is crucial to
set up reasonable and justified hypotheses on the reasoning behavior of people.

3.4 Features for Classifying Experimental Tasks

For the classification, many possible features come to mind. The examples in
the previous subsection show how negation, the presence of alternatives, as well
as counterfactual phrasing or a fictionary story might influence the reasoning
behavior of test persons.

In Table 5, an overview of all used features and their values that we used for
classification can be found. Negation, Alternatives, and (Counter)Factual have
been illustrated in the previous subsection. Age Group and Task Type are self-
explanatory, the other features are explained below:

Meaning. Notwithstanding the type of tasks, each implication can be assigned a
degree of good reason. For instance, the degree of good reason of the implication
“terriers like apples” is lower than the degree of “terriers like meat”.

Wording. Some studies also deal with the wording of an implication. They dis-
tinguish between If . . . then and Only . . . if conditionals which makes a big
difference. Only . . . if conditionals can be understood to express the implication
“backwards”.

Abstraction. While some tasks describe everyday situations, others abstract to
the purely logical level with a p ⇒ q implication.

Strictness. Often, the simple question is what, if anything, follows?. However,
there are also studies that instruct the subjects, e.g., to draw only logical or only
absolutely necessary conclusions explicitly. There are also studies that emphasize
that the implication is true, while others do not mention it.

4 Describing Inference Patterns by Features

In the bachelor thesis [13], 22 studies with 35 experiments were investigated
with respect to the inference pattern they induce. The number of participants is
29.65 on average in the studies considered, with a minimum of 8 and a maximum
of 116. Only six inference patterns were ever drawn at a frequency of more
than 5%. The proportion of irrational patterns is only 1.1%. For this paper,
we reduced data and the number of investigated inference patterns in order to
be able to focus on the most interesting aspects of our findings. We selected
among the most frequent ones the following five inference patterns: (MP, MT,
AC, DA), (MP, MT, AC, ¬DA), (MP, ¬MT, AC, DA), (MP, ¬MT, AC, ¬DA),
and (MP, MT, ¬AC, ¬DA). For each considered inference pattern, the data
for some features is analyzed and discussed in some detail here. Moreover, for
each inference pattern and some features, Table 6 shows whether a feature has
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Table 5. List of used features and their values

been unusually frequent for this pattern. Regarding the single inferences, modus
ponens was drawn in 100% of all considered cases followed by modus tollens with
86.1% and affirmation of consequent with 70.4%. Denial of antecedent was the
least frequently drawn inference with only 52.8%.

Table 6. Inferential patterns and their number of occurrences in the considered dataset,
as well as some unusually frequent features. Patterns are abbreviated in such a way
that a T means a conclusion was drawn, and an F that is was not. The order is MP,
MT, AC, DA.

Pattern # occurr. Unusually frequent features

Type Negation Abstraction Familiarity Strict.

TTTT 52 Prevention, Spatial None Concrete Med., High Normal

TTTF 9 Arbitrary Cons., Both Abstract Low High

TTFF 32 Def., Causal Consequent - High Low

TFTF 10 Arbitrary Präm., Both Abstract Low High

TFTT 5 Arbitrary Prämise Abstract Low High

Moreover, as explained in Sect. 3.2, each of the inference patterns induce a
total preorder. Table 7 shows for each inference pattern a generating conditional
knowledge base and the most plausible beliefs of the appertaining total preorder.

For describing the inference patterns in the following, we put a focus on their
most salient features negation, alternatives, and abstraction.
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Table 7. Inference patterns with a generating conditional knowledge base and most
plausible beliefs of their appertaining total preorder

Inference pattern Δ example Bel(Δ)

(MP, MT, AC, DA) {(B|A), (A|B)} Cn(A ⇔ B)

(MP, ¬MT, AC, DA) {(B|A), (|A|B|), (B|A)} Cn(AB)

(MP, MT, AC, ¬DA) {(A|B), (A|B), (|B|A|)} Cn(AB)

(MP, ¬MT, AC, ¬DA) {(B|A), (|A|B|), (A|B)} Cn(AB)

(MP, MT, ¬AC, ¬DA) {(B|A)} Cn(A ⇒ B)

Most of the examined tasks yield the (MP, MT, AC, DA) pattern, namely
52. In this case, test persons drew all inferences which is not logically correct. It
is important to note that no experiments with Negation or Alternatives yielded
this pattern, and it was only rarely found in abstract cases. Therefore one may
assume that this pattern describes the “normal” commonsense reasoning behav-
ior for everyday reasoning tasks best, where people understand an implication
as a biconditional (which validates all four inference rules). Indeed, regarding
Table 7, the most plausible beliefs show a logical equivalence, and the generating
knowledge base contains the conditional in both ways.

There are only a few examples for the (MP, MT, AC, ¬DA) inference pat-
tern, with 9 (8.3%) in total. This pattern only occurs in abstract experiments
with no alternatives. It is also noteworthy that a negated consequence, possibly
accompanied by a negated premise, appears to underline this pattern. Addi-
tionally the Only if wording is a very good indicator for this pattern. As the
conditional knowledge base for this case reveals (see Table 7), people seem to
take the consequence as a requirement for the premise, which is consistent with
the idea that Only if wordings are effective “backwards”.

(MP, MT, ¬AC, ¬DA) is the logically correct inference pattern. It is the
second most frequently found one in the data set occurring in 32 reasoning tasks
in total. This means that although the subjects do not reason logically correct
in general, they still do so with a good share of almost 30%. All considered
experiments that contained either a given or an implied alternative yielded this
pattern. This is consistent with the findings in [2] that alternatives suppress
logical fallacies. Surprinsingly, a negated consequence also supports this pattern,
while negated premises do not appear at all here. The level of abstraction does
not seem to have any effect. These settings seem to prevent the biconditional
understanding, people are inclined to assign a clear direction to the conditional.
This is also reflected by the findings in Table 7, where the most plausible beliefs
in this case are given by a logical implication, and the conditional knowledge
base contains just a single conditional.
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Fig. 1. Decision tree based on three core features: negation, alternatives, abstraction

The (MP, ¬MT, AC, ¬DA) inference pattern is the third most frequently used
one. Almost all experiments that yielded this pattern were abstract and none
of them included any alternatives. Negated premises, usually accompanied by
negated consequences, support this pattern, while experiments with only negated
consequences do not. Both conditional knowledge base and most plausible beliefs
in Table 7 show a very strong connection between premise and conclusion which
are both deemed to be plausible.

(MP, ¬MT, AC, DA) is the inference pattern which is least frequently found,
in 5 tasks only. It is noteworthy, however, that all five of these experiments
have exactly the same characteristics. All experiments yielding this pattern
are abstract and do not contain any alternatives. Moreover, all of them have
a negated premise and most experiments that have a negated premise yield this
pattern. The conditional knowledge base for this pattern in Table 7 reveals that
the premise is seen as a necessary prerequisite for the conclusion, matching the
finding that no alternatives are indicated in the task.

A decision tree (see Fig. 1) using only the most salient features negation,
alternatives, and abstraction was created using the Rapidminer program1 by
using cross-validation and decision-tree operators, and tested by cross-validation.
Results can be seen in Table 8. This small decision tree achieved 81% accuracy
overall, but only with lower precision and recall for the rarer inference pat-
terns compared to larger trees with more features. Bigger trees with all ten
features increase the accuracy to 90.84%, mostly increasing the values of rarer
patterns [13].

1 https://rapidminer.com/.

https://rapidminer.com/
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Table 8. Results of cross-validation on minimal decision tree with three features.

Pred\True TTTF TFTF TTFF TTTT TFTT Class precision

TTTF 1 0 0 4 0 20.00%

TFTF 2 6 0 0 0 75.00%

TTFF 2 0 28 0 0 93.33%

TTTT 4 1 4 48 0 84.21%

TFTT 0 3 0 0 5 62.50%

Class recall 11.11% 60.00% 87.50% 92.31% 100%

5 General Discussion and Summary

The aim of this work was, based on the inference patterns presented in [5], to
investigate the relationships between observed inference behavior of human sub-
jects in psychological studies and characteristics of the corresponding empirical
tasks, and to understand and explain the significant differences in observed infer-
ence patterns caused by slight variations of the task by considering conditional
assumptions and most plausible beliefs that the inference patterns reveal. We
described the most frequently used inference patterns and classified them with
a decision tree by means of most salient features found in the tasks presented to
the subjects.

Prominent features for classification are negation, alternatives and abstrac-
tion. The results presented in [2] confirm that alternatives suppress the logically
invalid inferences. It was also noted that only one example in concrete tasks
showed neither the inference pattern (MP,MT,AC,DA) nor (MP,MT,¬AC,
¬DA). It can therefore be assumed that people in everyday life, where they
are often dealing with non-abstract and non-negated problems, mainly reason
in these two patterns. Likewise, these results suggest that inference behavior of
people may be influenced by deliberate application of negation and wording.

The results of this paper are valuable (at least) in two respects: From a for-
mal perspective, the shown relationships between inference patterns and char-
acteristics of the corresponding empirical tasks support a better commonsense
interpretation of the abstract inference patterns and provide insights into the
cognitive relevance of these patterns. From a psychological perspective, whether
inference patterns are used or not, the influence of seemingly slight variations
of test scenarios on inference behavior was revealed very clearly in this paper,
and hypotheses for explaining these crucial differences were proposed that may
trigger further empirical studies in the future.

Acknowledgements. This work was possible due to the DFG-projects KI1413/5-1 to
G. Kern-Isberner and RA1934/2-1 as part of the priority program “New Frameworks
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Abstract. The computer-mechanization of an ambitious explicit ethical
theory, Gewirth’s Principle of Generic Consistency, is used to showcase
an approach for representing and reasoning with ethical theories exhibit-
ing complex logical features like alethic and deontic modalities, index-
icals, higher-order quantification, among others. Harnessing the high
expressive power of Church’s type theory as a meta-logic to semanti-
cally embed a combination of quantified non-classical logics, our work
pushes existing boundaries in knowledge representation and reasoning.
We demonstrate that intuitive encodings of complex ethical theories and
their automation on the computer are no longer antipodes.

1 Introduction

Hybrid architectures for ethical autonomous agents that integrate both bottom-
up learning and top-down deliberation from upper principles are receiving
increased attention; cf. Dignum (2017, 2018); Scheutz (2017); Malle (2016); Den-
nis et al. (2016); Anderson and Anderson (2014); Wallach et al. (2008) and the
references therein. Irrespective of the preferred direction, it is becoming increas-
ingly evident that adequate explicit representations of ethical knowledge are ben-
eficial, if not mandatory, to obtain satisfactory solutions.Bottom-up approaches
may benefit from expressive languages to explicitly represent the learned ethical
knowledge in an scrutable, communicable and transferable manner. Top-down
approaches usually rely on expressive logic languages to enable an intuitive and
accurate representation and reasoning with ethical theories. Unfortunately, how-
ever, very few approaches are currently available that enable adequate and real-
istic, explicit formal encodings of non-trivialized ethical theories, and that at the
same time support intuitive interactive-automated reasoning with them.

In this paper we demonstrate a methodology and implementation of such an
ambitious ethical reasoning machinery. Our approach is based on classical higher-
order logic (HOL), aka Church’s type theory (Benzmüller and Andrews 2019),
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which we exploit as a meta-logic to encode combinations of non-classical logics
for normative reasoning as suited for a given application context. The methodol-
ogy and techniques we present, cf. also Benzmüller et al. (2019), can bring many
benefits to the design of ethically-critical systems aiming at scrutability, veri-
fiability, and the ability to provide justification for its decision-making. They
are particularly relevant to the design of explicit ethical agents (Moor 2009).
In particular, this area faces tough philosophical and practical challenges. No
consensus is currently in sight, if possible at all, concerning the choice of upper
moral values and principles that constitute a generally agreed normative ethics
for intelligent autonomous agents. For example, utilitarianism and deontology
have both been critically discussed in this context.

We exemplarily study another relevant and ambitious theory in normative
ethics: Alan Gewirth’s “Principle of Generic Consistency (PGC)” (Gewirth
1981; Beyleveld 1991), which has been proposed as an emendation of the Golden
Rule. Our aim is not to defend or assess Gewirth’s work in comparison to other
approaches. We instead present a methodology and technique enabling the intu-
itive and accurate representation of ambitious ethical theories, and for this we
take the PGC as a showcase and exemplarily assess its logical validity. Such an
ambitious ethical theory has never before been assessed on the computer at such
a level of detail (i.e. without trivializing it by abstraction).

Our method enables the reuse of modern interactive and automated higher-
order theorem proving technology, and in this sense it establishes a relevant
bridge between different research communities. On a practical level our work
also addresses what we consider one of the biggest challenges in the area: to
represent complex ethical theories in both a machine and human interpretable
manner and to carry out complex reasoning in real-time with incomplete and
inconsistent information. And finally, as a side-effect, we have revealed and fixed
some (minor) issues in Gewirth’s PGC.

Our choice of HOL at the meta-level is motivated by the goal of flexibly
combining expressive non-classical logics as required for the formal encoding of
complex ethical theories. Current theories in normative and machine ethics are,
quite understandably, formulated predominantly in natural language. While this
supports human deliberation and agreement about what kind of moral beings
we want future intelligent agents to be, it also hampers their implementation in
machines. Hence expressive formal languages are required, which enable flexible
combinations of different types of non-classical logics. This is because ethical the-
ories are usually challenged by complex linguistic expressions, including modali-
ties (alethic, epistemic, temporal, etc.), counterfactual conditionals, generalized
quantifiers, (un-)conditional obligations, among many others.

The meta-logical approach we exploit and demonstrate grounds on a tech-
nique known as (shallow) semantical embedding. The approach will be addressed
in Sect. 2, where we present an extended embedding of a dyadic deontic logic
(DDL) by Carmo and Jones (2002) in HOL and combine, among others, condi-
tional obligations with further modalities and quantifiers. The combined logic
is immune to known paradoxes in deontic logic, in particular, the so-called
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contrary-to-duty scenarios, in which a ‘secondary’ obligation must come into
effect when a ‘primary’ obligation is violated (contradicted). Moreover, condi-
tional (dyadic) obligations in DDL are of a defeasible and paraconsistent nature
and thus lend themselves to normative reasoning with incomplete and inconsis-
tent information. In Sects. 3 and 4 we will represent and formally assess Gewirth’s
PGC using this expressive logic combination. We also demonstrate how our tech-
nique has been utilized to reveal and fix some (minor) issues in Gewirth’s work.
Related work and short summary are presented in Sect. 5, and a formally-verified,
unabridged version of our formal encoding of Gewirth’s theory and argument is
provided in Fuenmayor and Benzmüller (2018).

2 Combining Expressive Logics in HOL

We utilize the shallow semantical embeddings (SSE) approach to combining log-
ics. SSE exploits HOL as a meta-logic in order to embed the syntax and seman-
tics of some target logics, thereby turning theorem proving systems for HOL into
universal reasoning engines (Benzmüller 2019). Moreover, an approach drawing
upon SSE has beenproposed as the foundation for a flexible deontic logic rea-
soning infrastructure (Benzmüller et al. 2019). We thus assess, in some sense,
the promises of this framework at hand of a non-trivial, concrete example.

In the following, we present an extract of the embedding of (extended) DDL
in HOL. Our work thereby extends previous work by Benzmüller et al. (2018):
Besides adding higher-order quantification, we also extend this embedding to a
two-dimensional semantics (Schroeter 2017) by additionally adding contextual
information; for this we use Kaplanian contexts of use, cf. Kaplan (1989a,b).
The system platform used to implement this ambitious logic combination is
the Isabelle proof assistant (Nipkow et al. 2002). In what follows, we are using
Isabelle/HOL syntax to render axioms, theorems and definitions (providing the
appropriate indications when needed).1

2.1 Definition of Types

The type w corresponds to the original type for possible worlds/situations in
DDL, cf. Benzmüller et al. (2018). We draw in this work upon David Kaplan’s
logic of indexicals/demonstratives as originally presented in Kaplan (1989a). In
Kaplan’s logical theory, entities of the aforementioned type w would correspond
to his so-called “circumstances of evaluation”. Moreover, Kaplan introduces an
additional dimension c, so-called “contexts of use”, which allow for the mod-
elling of particular context-dependent linguistic expressions, i.e. indexicals (see
Sect. 2.4). We additionally introduce some type aliases: wo for intensions (also
called “contents” or “propositions” in Kaplan’s work), which are identified with
their truth-sets i.e. the set of worlds at which the proposition is true, and cwo

1 The formal content of this paper has been generated directly by Isabelle from our
source files. A benefit is the prevention of typos. As a side contribution we showcase
the usability of modern proof assistants for the non-initiated in order to foster their
application.
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(aliased m) for sentence meanings (also called “characters” in Kaplan’s theory),
which are modelled as functions from contexts to intensions. Moreover, a type e
for individuals is introduced to e.g. enable quantification over individuals.

typedecl w — Type for possible worlds (Kaplan’s “circumstances of evaluation”)
typedecl c — Type for Kaplan’s “contexts of use”
typedecl e — Type for individuals
type-synonym wo = w⇒bool — Type for contents/propositions
type-synonym cwo = c⇒wo — Type for sentence meanings (Kaplan’s “characters”)

type-synonym m = cwo — Type alias ‘m’ for characters

2.2 Embedding of DDL Modal and Deontic Operators

The semantics of DDL draws on Kripke semantics for its (normal) alethic modal
operators and on a neighbourhood semantics2 for its (non-normal) deontic oper-
ators. In order to embed those, we need to introduce the operators av and pv
(which can be seen as accessibility relations between worlds), and ob (denoting
a neighborhood function operating on sets of worlds) at the meta-logical level.
Several axioms, not shown here, adequately constraint the interpretations of av,
pv and ob (e.g. av(w) is always a subset of pv(w)). See Carmo and Jones (2002)
and Benzmüller et al. (2018) for further details.

The following Isabelle/HOL commands illustrate the way logical operators in
the target logic (enhanced DDL) can be defined as metalogical predicates using
lambda expressions of the appropriate arity/type. The two definitions below,
introduced using Isabelle’s keyword “abbreviation”, realize the embedding of
the different modal box and diamond operators (shown here only for �a and
♦a). Each of them is embedded as a function from sentence meanings to sen-
tence meanings (type “m⇒m”), and they employ (restricted) quantification over
possible worlds, following a Kripke semantics.3

abbreviation cjboxa :: m⇒m (�a-) where �aϕ ≡ λc w. ∀ v. (av w) v −→ (ϕ c v)
abbreviation cjdiaa :: m⇒m (♦a-) where ♦aϕ ≡ λc w. ∃ v. (av w) v ∧ (ϕ c v)

The following definitions correspond to the semantical embedding of DDL deon-
tic operators in Isabelle/HOL. The first one represents conditional obligations
of the form “ϕ must be the case given σ” and is embedded as a dyadic relation
(type “m⇒m⇒m”). The second and third represent the so-called “actual” and
“ideal” obligations.

2 Neighbourhood semantics is a generalisation of Kripke semantics, developed inde-
pendently by Dana Scott and Richard Montague. Whereas a Kripke frame features
an accessibility relation R : W→2W indicating which worlds are alternatives to (or,

accessible from) others, a neighborhood frame N : W→22W (or, as in our case,

N : 2W→22W ) features a neighbourhood function assigning to each world (or set of
worlds) a set of sets of worlds.

3 Note that in addition to the ASCII name “cjboxa”, Isabelle/HOL supports graphical
notation “(�a-)”. This is essential for obtaining intuitive mathematical representa-
tions.
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abbreviation cjod :: m⇒m⇒m (O〈-|-〉) where O〈ϕ|σ〉 ≡ λc w. ob (σ c) (ϕ c)
abbreviation cjoa :: m⇒m (Oa-) where

Oaϕ ≡ λc w. (ob (av w)) (ϕ c) ∧ (∃ x. (av w) x ∧ ¬(ϕ c x))
abbreviation cjop :: m⇒m (Oi-) where

Oiϕ ≡ λc w. (ob (pv w)) (ϕ c) ∧ (∃ x. (pv w) x ∧ ¬(ϕ c x))

2.3 Logical Validity (Classical)

The SSE technique also allows us to embed different notions of logical validity:
context-dependent modal validity and general validity (modal validity in each
context).

abbreviation modvalidctx :: m⇒c⇒bool (
-�M ) where 
ϕ�M ≡ λc. ∀ w. ϕ c w
abbreviation modvalid :: m⇒bool (
-�) where 
ϕ� ≡ ∀ c. 
ϕ�M c

2.4 Kaplan’s Context Features

Kaplan’s theory, originally named “Logic of Demonstratives (LD)” (Kaplan
1989a,b), aims at modeling the behavior of certain context-sensitive linguistic
expressions like the pronouns ‘I’, ‘my’, ‘it’, the demonstrative pronouns ‘that’,
‘this’, the adverbs ‘here’, ‘now’, ‘tomorrow’, the adjectives ‘actual’, ‘present’, and
others. Such expressions are known as indexicals and so Kaplan’s logical system,
among others, is usually referred to as a “logic of indexicals”.

It is characteristic of an indexical that its content varies with context, i.e. they
have a context-sensitive character. Non-indexicals have a fixed character. LD
models context-sensitivity by representing contexts as quadruples of features:
〈Agent(c), Position(c), World(c), Time(c)〉. The agent and the position of con-
text c can be seen as the actual speaker and place of the utterance respectively,
while c’s world and time stand for the circumstances of evaluation of the expres-
sion’s content and allow for the interaction of indexicals with alethic and tense
modalities respectively. To keep things simple, we restrict ourselves to repre-
senting a context c as the pair: 〈Agent(c), World(c)〉 and model the functional
concepts “Agent” and “World” as uninterpreted logical constants. An extension
of our work to operate on Kaplan’s context quadruples is straightforward.

consts Agent::c⇒e — function retrieving the agent corresponding to context c
consts World::c⇒w — function retrieving the world corresponding to context c

2.5 Indexical Validity

Kaplan’s notion of (context-dependent) logical truth for a sentence corresponds
to its context-sensitive formula (of type “m”, i.e. “c⇒w⇒bool”) being true in the
given context and at its corresponding world. Kaplan’s notion of logical validity
for a sentence requires its truth in all contexts. This notion is also known as
indexical validity.

abbreviation ldtruectx::m⇒c⇒bool (
-�-) where 
ϕ�c ≡ ϕ c (World c)
abbreviation ldvalid::m⇒bool (
-�D) where 
ϕ�D ≡ ∀ c. 
ϕ�c

The following lemmas show that indexical validity is indeed weaker than its
classical modal counterpart (truth at all worlds for all contexts).
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lemma �A� =⇒ �A�D by simp — proven using Isabelle’s term-rewriting engine (simp)

lemma �A�D =⇒ �A� nitpick oops — countermodel

The countermodel computed by the model finder Nitpick (Blanchette and Nip-
kow 2010) for the latter lemma consists of one context c1 and two worlds w1
and w2; where World(c1) = w1 and where A holds for c1 and w1, but not for c1
and w2 (Nitpick returns further insightful details which we omit here). Below we
use Nitpick to show that the interplay between indexical validity and the DDL
modal and deontic operators does not result in modal collapse. Moreover, we
show that the necessitation rule does not work for indexical validity (in contrast
to classical modal validity as defined for DDL).

lemma �P→OaP�D nitpick oops — countermodel for deontic modal collapse found
lemma �P → �aP�D nitpick oops — countermodel for alethic modal collapse found

lemma �A�D =⇒ ��aA�D nitpick oops — countermodel for necessitation rule found

Below we introduce a kind of “a priori necessity” operator (to be contrasted to
the more traditional alethic necessity). This operator satisfies the necessitation
rule for indexical validity.4 In Kaplan’s framework, a sentence being logically (i.e.
indexically) valid means its being true a priori : It is guaranteed to be true in
every possible context in which it is uttered, even though it may express distinct
propositions (i.e. contents or intensions) in different contexts. This correlation
between indexical validity and a prioricity has also been claimed in other two-
dimensional semantic frameworks (Schroeter 2017).

abbreviation ldvalidbox :: m⇒m (�D-) where �Dϕ ≡ λc w. �ϕ�D
lemma NecLD: �A�D =⇒ ��DA�D by simp — necessitation rule proven (term-rewriting)

2.6 Quantification

By utilizing Isabelle/HOL’s parameterized types (rank-1 polymorphism), we can
easily enrich our logic with (first-order and higher-order) quantifiers.

abbreviation mforall::( ′t⇒m)⇒m (∀ ) where ∀ Φ ≡ λc w.∀ x. (Φ x c w)
abbreviation mexists::( ′t⇒m)⇒m (∃ ) where ∃ Φ ≡ λc w.∃ x. (Φ x c w)

This definition of embedded parametric quantifiers (which reuses λ-abstraction
to avoid the explicit introduction of a new binding mechanism) follows earlier
work (Benzmüller and Paulson 2013). However, it is defined here for Kaplan’s
sentence meanings and in this sense constitutes another relevant extension of
previous work.

3 Representing Gewirth’s Ethical Theory

In this section we encode and mechanize Gewirth’s (1981) ethical theory—
respectively, ethical argument—which aims at justifying an upper moral princi-
ple called the “Principle of Generic Consistency” (PGC). In a nutshell, according

4 Note that �D is not part of Kaplan’s original system. It has been added by us in
order to better highlight some semantic features of our formalization of Gewirth’s
theory in the next section and for enabling the use of the necessitation rule for
drawing inferences.
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to this principle, any intelligent agent (by virtue of its self-understanding as an
agent) is rationally committed to asserting that (i) it has rights to freedom and
well-being, and (ii) all other agents have those same rights. The argument used
by Gewirth to derive the PGC (presented in detail in Gewirth (1981); Beyleveld
(1991)) is by no means trivial and has stirred much controversy in legal and
moral philosophy during the last decades. It has also been discussed in political
philosophy as an argument for the a priori necessity of human rights (Beyleveld
2012). Perhaps more relevant for us, the PGC has lately been proposed as a
means to bound the impact of artificial general intelligence (AGI) by Kornai
(2014).

Kornai draws on Gewirth’s PGC as the paradigmatic principle which, assum-
ing it can reliably be represented in a machine, will enable the design of a
safety mechanism of a mathematical nature that ensures that an AGI will always
respect basic human’s rights over all other things. This is based on the assump-
tion that such an intelligent agent is able to recognize itself, as well as humans,
as agents acting voluntarily on self-chosen purposes, i.e. as what Gewirth calls:
prospective purposive agents (PPA). Every agent designed to follow the PGC
will thus be deductively committed, on pain of self-contradiction, to acting in
accord with the generic rights (i.e. to freedom and well-being) of all agents.5

3.1 Gewirth’s Ethical Theory

Gewirth’s meta-ethical position is known as moral (or ethical) rationalism.
According to it, moral principles are knowable a priori, by reason alone.
Immanuel Kant is the most famous figure who has defended such a position. He
argued for the existence of upper moral principles (e.g. his “categorical impera-
tive”) from which we can reason in a top-down fashion to deduce and evaluate
other more concrete maxims and actions. In contrast to Kant, Gewirth derives
such upper moral principles by starting from purely logical (i.e. non-moral) con-
siderations alone. The argument for the PGC employs what Gewirth calls “the
dialectically necessary method” within the “internal viewpoint” of an agent.
Although the logical inferences leading to the PGC are drawn relative to the
reasoning agent, Gewirth (1981) further argues that “the dialectically necessary

method propounds the contents of this relativity as necessary ones, since the state-

ments it presents reflect judgements all agents necessarily make on the basis of what

is necessarily involved in their actions . . . The statements the method attributes to the

agent are set forth as necessary ones in that they reflect what is conceptually necessary

5 Our work constitutes a most relevant first step for further assessment of Kornai’s
claim. E.g. we plan to embody our encoding of Gewirth’s theory in virtual agents and
devise and conduct respective empirical studies. The merits of the work presented
here are however not tied to the validity of Kornai’s claim. We illustrate that rep-
resentation and reasoning with complex ethical theories is meanwhile feasible to an
extent unmatched before; and this is highly relevant for implementing explicit ethi-
cal intelligent systems. In the following, we will present some commented extracts of
our formal encoding of Gewirth’s theory and of the computer-supported verification
of the argument leading to the PGC.
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to being an agent who voluntarily or freely acts for purposes he wants to attain.” In
other words, the “dialectical necessity” of the assertions and inferences made
in the argument comes from the definitional features (i.e. conceptual analysis)
of the involved notions of agency, purposeful action, obligation, rights, etc. In
order to adequately represent this informal notion of a priori dialectical/analytic
necessity, we resorted to the formal notion of indexical validity as developed in
David Kaplan’s logical framework LD (Kaplan 1989a,b).

The cogency of Gewirth’s theory will be put to the test in Sect. 4 by using
it to reconstruct his argument (with minor fixes) for the PGC as logically valid.
However, we first need to introduce the basic theory itself. To get some inspira-
tion we study the main steps of Gewirth’s argument (with original numbering
from Beyleveld (1991)):

(1) [Premise] I act voluntarily for some (freely chosen) purpose E—equivalent
by definition to: I am a prospective purposive agent (PPA).

(2) E is (subjectively) good—i.e. I value E proactively.
(3) My freedom and well-being (FWB) are generically necessary conditions of

my agency—i.e. I need them to achieve any purpose whatsoever.
(4) My FWB are necessary goods (at least for me).
(5) I have (maybe nobody else does) a claim right to my FWB.

(13) [Conclusion] Every PPA has a claim right to their FWB.

In his informal proof, Gewirth claims that the latter generalization step (from
“I” to all agents) is done on purely logical grounds and does not presuppose any
kind of universal moral principle, and his result is meant to hold with some kind
of necessity.6 In this respect, Deryck Beyleveld, author of an authoritative book
on Gewirth’s theory (1991), comments on its first page: “[Gewirth’s] argument

purports to establish the PGC as a rationally necessary proposition with an apodictic

status for any PPA equivalent to that enjoyed by the logical principle of noncontradiction

itself.”

In what follows, we provide some meaning postulates7 for the core ethical
concepts used to articulate both the PGC and the argument leading to it (as
outlined above). We illustrate how to exploit the expressivity of our embedded
object logic (DDL enhanced with quantifiers and contexts) to intuitively repre-
sent and mechanize such a complex ethical theory for the first time in a computer.
We also illustrate the utilization of interactive proof assistants (Isabelle/HOL)
to assess the argument and to reason with Gewirth’s theory.

3.2 Agency

Since Isabelle/HOL is a based on a Church’s functional type theory, we need to
assign all terms a type. We give “purposes” the same type as sentence meanings
6 We were indeed able to formally verify Gewirth’s claim, on condition of committing

to an alternative notion of (logical) necessity: Kaplan’s “indexical validity”.
7 Definitions and axiomatized conceptual interrelations framing the inferential role of

terms. We also refer to them as “explications”. Meaning postulates were introduced
in Carnap (1952).
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(type ‘c⇒w⇒bool’ aliased ‘m’), so that “acting on a purpose” is represented
analogously to having a certain propositional attitude (like “desiring that so and
so . . . ”). The terms “ActsOnPurpose” and “NeedsForPurpose” obtain functional
types, and thus expressions like “(ActsOnPurpose A E)” and “(NeedsForPurpose
A P E)” are read as “agent A acts on purpose E” and “agent A needs to have
property P in order to reach purpose E”. We also define a type alias p for
properties (functions mapping individuals to characters).

type-synonym p = e⇒m — function from individuals to sentence meanings (characters)
consts ActsOnPurpose:: e⇒m⇒m

consts NeedsForPurpose:: e⇒p⇒m⇒m

In Gewirth’s argument, an individual with agency (i.e. capable of purposive
action) is said to be a PPA (prospective purposive agent). This definition is
supplemented with a meaning postulate stating that being a PPA is an essential
(i.e. identity-constitutive) property of an individual. Quite interestingly, this
postulate entails a kind of ability for a PPA to recognize other PPAs.8 For
instance, if some individual holds itself as a PPA (seen from its own perspec-
tive/context‘d’) then this individual ‘Agent(d)’ is considered a PPA from any
other agent’s perspective/context ‘c’.

definition PPA:: p where — Definition of PPA
axiomatization where essentialPPA: 
∀ a. PPA a → �D(PPA a)�D
lemma recognizeOtherPPA: ∀ c d. 
PPA (Agent d)�d −→ 
PPA (Agent d)�c

using essentialPPA by blast — proven using Isabelle blast tactic (tableaux)

3.3 Goodness

Gewirth’s concept of (subjective) goodness applies to purposes and is relative
to some agent. It is thus modeled as a binary relation relating an individual (of
type ‘e’) with a purpose (of type ‘m’). The axioms below are meaning postulates
interrelating the concept of goodness with agency and are given as indexically
valid sentences (in Kaplan’s sense).9 In particular, we have noticed the need to
postulate a further axiom (explGoodness3 ), which represents the intuitive notion
of “seeking the good” by asserting that, from an agent’s perspective, necessarily
good purposes are not only action motivating, but also entail an instrumental
obligation to their realization (but only where possible).

consts Good::e⇒m⇒m
axiomatization where

explGoodness1: �∀ a P. ActsOnPurpose a P → Good a P�D
explGoodness2: �∀P M a. Good a P ∧ NeedsForPurpose a M P → Good a (M a)�D
explGoodness3: �∀ ϕ a. ♦pϕ → O〈ϕ | �DGood a ϕ〉�D

8 Lemma “recognizeOtherPPA” below is indeed inferred from axiom “essentialPPA”
using Isabelle’s blast tactic (a tableaux prover).

9 Their higher-order and modal nature well illustrates the need for expressive knowl-
edge representation and reasoning techniques.
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3.4 Freedom and Well-Being

According to Gewirth, enjoying freedom and well-being (which we take together
as the predicate “FWB”) is the contingent property which represents the “nec-
essary conditions” or “generic features” of agency (i.e. FWB is always required
in order to be able to act on any purpose whatsoever). As before, we take this
as an a priori characteristic of FWB and therefore axiomatize it as an index-
ically valid sentence. The last two axioms postulate that FWB is a contingent
property.

consts FWB::p — FWB is a property (has type e⇒m)
axiomatization where

explicationFWB1: 
∀ P a. NeedsForPurpose a FWB P�D
explicationFWB2: 
∀ a. ♦p FWB a�D
explicationFWB3: 
∀ a. ♦p ¬FWB a�D

3.5 Obligation and Interference

Kant’s Law (“ought implies can”) plays an important role in Gewirth’s argu-
ment.10 We have noticed the need to slightly amend it in order to render the
argument as logically valid. The new variant reads as: “ought implies ought
to can”. Our variation is indeed closer to Gewirth’s (1981, pp. 91–95) textual
description, that having an obligation to do X implies that “I ought (in the same

sense and the same criterion) to be free to do X, that I ought not to be prevented from

doing X, that my capacity to do X ought not to be interfered with.”11

lemma 
Oiϕ → ♦pϕ� using sem-5ab by simp
axiomatization where OIOAC: 
Oiϕ → Oi(♦aϕ)�D

Concerning the concept of interference, we have noticed the need to presume
that the existence of an individual b (successfully) interfering with some state
of affairs ϕ implies that ϕ cannot possibly be obtained in any of the actually
possible situations (and the other way round). This axiom implies that if someone
(successfully) interferes with agent a having FWB, then a can no longer possibly
enjoy its FWB (and the converse).

consts InterferesWith::e⇒m⇒m
axiomatization where explicationInterference: �(∃ b. InterferesWith b ϕ) ↔ ¬♦aϕ�
lemma InterferenceWithFWB: �∀ a. (∃ b. InterferesWith b (FWB a)) ↔ ¬♦a(FWB a)�

using explicationInterference by blast

3.6 Rights and Other-Directed Obligations

Gewirth (1981, p. 66) points out the existence of a correlation between an agent’s
own claim rights and other-referring obligations. A claim right is a right which
entails duties or obligations for other agents regarding the right-holder (so-called
10 This theorem is indeed derivable directly in DDL from the definition of obligations:

If ϕ oughts to obtain then ϕ is possible.
11 Below we use Isabelle’s simp tool to prove that Kant’s lemma follows from one of

the DDL semantic conditions (not shown here).
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Hohfeldian claim rights in legal theory). We model this concept of claim rights
in such a way that an individual a has a (claim) right to having some property
ϕ if and only if it is obligatory that every (other) individual b does not interfere
with the state of affairs (ϕ a). Since there is no particular individual to whom
this directive is addressed, this obligation has been referred to by Gewirth as
being “other-directed” (aka. “other-referring”) in contrast to “other-directing”
obligations which entail a moral obligation for some particular subject (Beyleveld
1991, p. 41, 51). This latter distinction is essential to Gewirth’s argument.

definition RightTo::e⇒(e⇒m)⇒m where RightTo a ϕ ≡ Oi(∀ b. ¬InterferesWith b (ϕ a))

Now that all axioms of the theory are in place, we need to show that they
are indeed logically consistent. For this we use Isabelle’s model finder Nitpick
to compute a corresponding model (not shown here) having one context, one
individual and two worlds.

lemma True nitpick[satisfy, card c = 1, card e = 1, card w = 2] oops — model found

4 Reasoning with Gewirth’s Ethical Theory

The PGC can be seen as a particular variant (or emendation) of the golden
rule: treating others as one’s self would wish to be treated. A self-acknowledged
agent (i.e. a PPA) would read the PGC as a moral commandment: “I ought
to act in accord with the generic rights of my recipients as well as of myself”
(Gewirth 1981, p. 153). Urging a fellow human being to obey such a principle
without having explained its deeper rationale will presumably at best elicit an
absent-minded, cursory acknowledgment. The difficulty here lies not only in the
lack of understanding or agreement of what the given words mean (what is a
“generic right”?), but also in the addressee’s lack of ‘immersion’ in the underlying
conceptual framework and the inferential practices behind such a principle (an
unaware addressee would not be able to infer a third-party obligation from a
right claim). In short, any moral principle qua sentence makes best sense in the
context of the background theory from which it is obtained as a well-founded
part; this has been argued e.g. by the philosopher Quine in his holistic view of
meaning (cf. 1960).

This situation is not much different for machines. In order to correctly inter-
pret and apply an ethical principle, we need to (i) determine the meaning of its
constituent concepts (action/agency, right, freedom and well-being, etc.); and (ii)
determine the meaning of other relevant concepts (goodness, necessity, interfer-
ence, obligation, etc.) playing a role in its articulation (and justification) within
the underlying theory. Talk of meanings can be obscure, so let us put it in model-
theoretical terms: The set of models of the logical theory has to be constrained
to properly fit the target conceptualization (i.e. to only entail intended models).
These constraints are set by meaning postulates, i.e. axioms and definitions.
Their adequacy can be assessed by studying the extent to which they enable
the validation (or invalidation) of candidate theorems (or non-theorems). As is
already known, the main theorem we aim at validating here is the PGC, suitably
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Fig. 1. Gewirth’s proof encoded in the Isabelle/HOL proof assistant.

paraphrased as: Every PPA has a claim right to its freedom and well-being. The
reconstructed proof in Isabelle/HOL of the theorem below is shown in Fig. 1.

theorem PGC: shows ∀ C. 
PPA (Agent C) → (RightTo (Agent C) FWB)�C
In Sects. 2 and 3, besides from formally articulating Gewirth’s theory, we have
used some of Isabelle’s proof methods (simp, blast, etc.) and the Nitpick model
finder to verify some relevant inferences and to guarantee consistency, thus the
theory’s adequacy has already partly been assessed. In addition, we have used
a combination of interactive and automated theorem proving to reconstruct
Gewirth’s argument for the PGC as logically valid by formally proving it within
the complex logical framework built so far. We thus contribute an exemplary
case study illustrating how to reason with highly-expressive formal represen-
tations of complex, natural-language ethical theories by harnessing the power
of higher-order theorem provers (drawing on the SSE approach). In the argu-
ment’s reconstruction as displayed in Fig. 1, some of the intermediate inference
steps leading to the main conclusion (PGC) have indeed been hinted at by auto-
mated tools; cf. Fuenmayor and Benzmüller (2019, 2018) for further details. In



430 D. Fuenmayor and C. Benzmüller

particular, some missing implicit premises (not considered in Gewirth’s origi-
nal argument) have been uncovered, namely the explications of the concepts of
goodness and interference and the amendment to Kant’s Law: “ought implies
ought to can”. Note that the mechanized argument matches the granularity-
level as can also be found in human constructed informal arguments, and all the
sub-arguments (sub-proofs) can automatically be found by automated theorem
proving technology. Moreover, the whole proof as presented can be automatically
verified using a standard laptop in under a second.

5 Related Work and Summary

We achieve several improvements over related work such as Bringsjord et al.
(2006) and Furbach and Schon (2015): (i) Due the use of enriched DDL (enabled
by our higher-order meta-logic) we are not suffering from contrary-to-duty issues;
(ii) we make use of truly higher-order encodings as required for the adequate
modeling of the PGC; (iii) we overcome unintuitive, machine-oriented formula
representations; and (iv) we do not stop with supporting proof automation, but
combine it with intuitive user interaction. Combinations of (i)–(iv) also apply
to more recent related work by Govindarajulu and Bringsjord (2017), Hooker
and Kim (2018) and Pereira and Saptawijaya (2016), which are not applicable
to complex theories like Gewirth’s PGC without considering significant simpli-
fications (accepting e.g. contrary-to-duty issues is potentially dangerous).

Utilizing a semantical embedding of a suitable combination of expressive non-
classical logics in meta-logic HOL, an ambitious ethical theory, Gewirth’s PGC,
has exemplarily been encoded and mechanized on the computer. Our methodol-
ogy supports both highly intuitive representation of and interactive-automated
reasoning with the encoded theory. Automated theorem provers have even helped
to reveal some hidden issues in Gewirth’s argument. The presented methodology
is motivating research in different, albeit related, directions: (i) for conducting
analogous formal assessments of further ambitious ethical theories, and (ii) for
progressing with the implantation of explicit ethical reasoning competencies in
future intelligent autonomous systems by adapting state-of-the-art theorem prov-
ing technology and by combining the expertise of different research communities.
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Abstract. We propose a generalisation of dynamic epistemic logic,
where propositions are aleatoric: that is, rather than having true/false
values, propositions have odds of being true. Agents in such a system sup-
pose a probability distribution of possible worlds, and based on obser-
vations are able to refine this probability distribution to match their
observations. We demonstrate this logic with respect to some games of
chance.

Keywords: Probabilsitic logic · Game playing ·
Dynamic epistemic logic

1 Introduction

Dynamic epistemic logic (DEL) has been widely applied for reasoning about
games and security [7,8]. In practical applications in these domains, agents’
belief models have an element of probability, and there has been considerable
work investigating probabilistic extensions to DEL [1,3,15]. Here, rather than
extending a propositional modal logic with the capability to represent and rea-
son about probabilities, we apply the recent development of the modal aleatoric
calculus [11] to revise all logical operators so that they are interpreted proba-
bilistically. This subtle difference takes us from reasoning about probabilities to
reasoning probabilistically, and is a core principal of Bayesian epistemiology [4].

The games we are interested in are games of chance and bluffing. Typically
these games have a hidden epistemic state, so that the knowledge of all agents is
not equal. There is also an element of chance, either coming through an initial
deal of cards, or some random element such as a dice or coin. Finally there
should be a strategic advantage to having knowledge, so players have an incentive
to discover what their opponent knows, and to hide their knowledge from an
opponent. Such games include traditional games such as Poker, and Bridge, and
more recent games such as Clue, Werewolf or Love Letter. Aleatoric comes from
the Latin word for dice and literally means “depending on the throw of dice”.
This describes both explicit elements of such games (card deals, dice rolls for
example) as well as the policies and strategies of players in the game (so a player
may bluff 10% of the time).
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Our aim is to provide a lightweight logic, aleatoric dynamic epistemic logic,
for formalising reasoning processes in games of chance. This has broader appli-
cations in reasoning in multi-agent systems with a degree of uncertainty. The
aleatoric dynamic epistemic logic allows agents to express strategies or theories
of how other agents will act. By observing the actions of other agents, the logic
uses Bayesian conditioning to update the agents’ belief models.

To demonstrate the logic, we will use the game, The Resistance, which is a
card game where players are required to sabotage one another without revealing
their true purpose, and the Dining Cryptographers Problem [5] which is a well
known puzzle in epistemic reasoning.

1.1 The Resistance

The Resistance1 by Don Eskridge, is a bluffing game for five to ten players and
is similar to the games Werewolf and Mafia. Approximately one third of the
players are allocated as being government spies, while the rest are true members
of the resistance. The spies know each others’ identity, but the true members
of the resistance do not know who is a spy. The game consists of a number of
rounds. Each round proceeds as follows:

1. A leader is allocated (randomly, or the person to the left of the previous
leader)

2. The leader proposes a group of players to go on a “mission”. The size of
the group is given (depending on the number of players and round), and the
leader may include themselves.

3. All players vote publicly on whether they support the choice. If a majority
support it the mission proceeds. Otherwise, the leadership moves to the left,
and the process starts again. If five missions are voted against in a row, the
spies are declared the winner.

4. The mission succeeds only if no one betrays the mission. Each player on
the mission plays a token (face down) to indicate whether they betray the
mission. These are shuffled and then revealed to everyone. If a betrayal token
was played, the spies win, otherwise the resistance wins.

The first group to win three rounds wins the game. The true members of the
resistance would like a majority of missions to succeed, whilst the spies would
like a majority to fail. As the spies are in a minority, they must do everything
they can to hide their true identity, and the identity of the other spies. However,
they also need to influence the debate and vote so that the spies are sent on
enough missions to achieve their goal.

This game actually has relatively little uncertainty in it. The only randomness
is in the initial assignment of spies, and the spies themselves have generally got
perfect information about the state of the game (the only exception is that the
decision to betray is taken simultaneously by all spies on a mission). However,
the limited uncertainty for the non-spies is enough to make a compelling game,
1 http://www.indieboardsandcards.com/resistance.php.

http://www.indieboardsandcards.com/resistance.php
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and the relatively simple sets of actions available to players makes the game ideal
to analyse. In fact all actions can be modelled as public announcements [16].

2 Related Work

Modal and epistemic logics have been applied for reasoning about uncertainty in
multi-agent systems [14], and more recent work on dynamic epistemic logic [8,16]
has looked at how agents incorporate new information into thier belief structures.
There are explicit probabilistic extensions of these logics, that maintain the
Boolean interpretation of formulas, but include probabilistic terms [9,10,15].

These logics use the many possible worlds interpretation of uncertainty,
with a probability distribution over the worlds. Then the modality becomes the
expected likelihood of a world satisfying the proposition, coupled with a compar-
ative operator (> or ≥), so we can express that the likelihood of a proposition
holding is greater than another. Such logics are able to reason about probabili-
ties, so an agent may reason “It is more likely to rain than it is likely to snow,
but both are less than 50%”. The consequence of this is that these logics can
not apply marginalisation on an observation, as all formulas are either true or
false). In these papers the dynamic component only removes impossible state
and normalizes the probabilities. Not being able to apply Bayesian conditioning
on observations makes them very weak for reasoning about games such as The
Resistance, where another players actions can reveal a lot about the likelihood
of the hidden state.

This is quite different to the many valued approach, where probabilities are
not explicit parts of a formula, but intrinsic in the semantics. Halpern’s book
[13] gives an excellent overview of these approaches, and the representation of
uncertainty in multi-agent systems based on Dempster-Shafer models of belief
[18]. Of particular note is the work of Kooi [15] and van Benthem [3] extending
dynamic epistemic logic with explicit probabilities. In these cases, the informa-
tive updates such as public announcements are realised as Bayesian conditioning.
Baltag and Smets [2] have provided similar extensions in the context of belief
revision.

Recently the paper [11] has presented a variation on modal logic, where vari-
ables and formulas are aleatoric, rather than Boolean. That is, they may be
modelled as independent random events, like to roll of dice. The paper also pre-
sented the modal aleatoric calculus for computing probability preserving trans-
formations.

3 Syntax and Semantics

Probabilistic uncertainty is difficult to model and hard to reason about, because
sets of events or variables have dependencies that are complex to represent. So
for an agent to reason about probabilities, we have the challenges of determining
what dependencies exists between variables, what the agent knows about these
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dependencies, and how observations effect what the agent knows about these
dependencies.

Following [11], we present Aleatoric Dynamic Epistemic Logic (ADEL), which
is a generalisation of dynamic epistemic logic to apply to aleatoric variables. The
difference with probabilistic dynamic epistemic logic (PDEL) [15] is subtle: In
PDEL it is possible to express that the statement “Alice thinks X has probability
0.5” is true; whereas the language here simply has a term “Alice’s expectation
of X” which may have a value that is greater than 0.5. We present a syntax for
constructing complex terms in this logic, and a semantics for assignment values
to terms, given a particular interpretation or model.

3.1 Syntax

The syntax is given for a set of random variables X, and a set of agents N . We
also have constants � and ⊥. The syntax of aleatoric dynamic epistemic logic,
ADEL, is as follows:

α :: = x | � | ⊥ | (α?α :α) | (α |α)i | [α]α

where x ∈ X is a random variable and i ∈ N is an agent. As usual, we let v(α)
refer to the set of variables that appear in α. We refer to � as always and ⊥ as
never. The if-then-else operator (α?β :γ) is read if α then β else γ and uses the
ternary conditional syntax of programming languages such as C. The marginal
expectation operator (α |β)i is agents i’s expectation of α given β (the marginal
probability i assigns to α given β). The global observation operator [α]β is the
expectation of β once α is observed by all agents. This corresponds to Bayesian
conditioning on a public announcement of α.

Some abbreviations we can define in ADEL are as follows:

α∧β = (α?β :⊥) α∨β = (α?� :β)
¬α = (α?⊥ :�) α→β = (α?β :�)
α

0
b = � α↔β = (α?β :¬β)

α
a
b = ⊥ if b < a 
= 0 Eiα = (α |�)i

α
a
b = (α?α

a−1
b−1 :α

a
b−1 ) if b ≥ a 
= 0 Biα = (⊥|¬α)i

where a and b are natural numbers. The boolean abbreviations are correspond
to fuzzy modal logic with the product norm [19] but α

a
b , Eiα and Biα are

new. The modality Eiα is agent i’s expectation of α being true, which is just
α conditioned on the uniformly true �. The operator Biα uses a property of
the conditional operator: it evaluates (α | β)i as vacuously true if and only if
there is no expectation that β can ever be true. Therefore, (⊥|¬α)i can only be
true if agent i always expects ¬α to be false, and thus agent i believes α. The
formula α

a
b (α a out of b) allows us to explicitly represent degrees of belief in

the language. It is interpreted as α is true at least a times out of b. Note that
this is not a statement saying what the frequency of α is. Rather it describes the
event of α being true a times out of b. Therefore, if α was unlikely (say true 5%
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of the time) then α
9
9 describes a very unlikely event. This allows us to encode

degrees of belief, which is seen most clearly in the context of the if-then-else
operator: (α

4
5 ?β : γ) represents “if α is very likely, then return the expectation

for β, otherwise give the expectation for γ”, where the α being “very likely” is
the expectation that α will be true in 4 out of 5 times.

3.2 Semantics

Aleatoric dynamic epistemic logic is interpreted over probability models similar to
the probability structures defined in [13], although they have aleatoric variables
in place of propositional assignments.

Definition 1. Given a set S, we use the notation PD(S) to notate the set of
probability distributions over S, where μ ∈ PD(S) implies: μ : S −→ [0, 1]; and
Σs∈Sμ(s) = 1.

Definition 2. Given a set of variables X and a set of agents N , a probability
model is specified by the tuple P = (W,π, f), where:

– W is a set of possible worlds.
– π : N −→ W −→ PD(W ) assigns for each agent, for each world w ∈ W ,

a probability distribution πi(w) over W such that for all i, for all u, v ∈
W πi(u, v) > 0 implies πi(u) = πi(v). We will write πi(w, v) in place of
π(i)(w)(v).

– f : W −→ X −→ [0, 1] is a probability assignment so for each world w, for
each variable x, fw(x) is the probability of x being true.

A pointed probability model, Pw = (W,π, f, w), specifies a world in the model
as the point of evaluation.

We note the condition on π enforces the property: ∀i ∈ N, ∀w, u, v ∈
W, πi(w, u) > 0 implies ∀v, πi(u, v) = πi(w, v), so if πi(w, u) > 0, πi(u, u) =
πi(w, u). However, it is still possible that πi(w,w) = 0. This aligns with the
modal logic KD45, which is transitive, Euclidean and serial, and is often applied
for reasoning about belief [6].

Given a pointed model Pw, the semantic interpretation of a ADEL formula
α is Pw(α) ∈ [0, 1] which is the expectation of the formula being supported
by a sampling of the model, where the sampling is done with respect to the
distributions specified by π and f .

Definition 3. The semantics of aleatoric dynamic epistemic logic take a pointed
probability model, fw, and a proposition defined in ADEL, α, and calculate the
expectation of α holding at Pw. Given an agent i, a world w and a ADEL
formula α, we define i’s expectation of α at w as

Ei
w(α) =

∑

u∈W

πi(w, u).Pu(α).
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Then the semantics of ADEL are as follows:

Pw(�) = 1 Pw(⊥) = 0 Pw(x) = fw(x)
Pw((α?β :γ)) = Pw(α).Pw(β) + (1 − Pw(α)).Pw(γ)

Pw((α |β)i) = Ei
w(α∧β)
Ei

w(β) if Ei
w(β) > 0 and 1 otherwise

Pw([α]β) = Pα
w (β)

where Pα is the model (W,π′, f) such that for all u, v ∈ W , π′
i(u, v) =

Pv(α).πi(u,v)
Ei

u(α) if Ei
u(α) > 0, and πi(u, v) otherwise.

These semantics deserve some discussion, but first we should show that they
are well formed. The interpretation of Pw([α]β) is given with respect to the
model Pα

w , so it is required that Pα
w is a probability model.

Lemma 1. Given a probability model P and some formula of ADEL, α, the
structure Pα is a probability model.

Proof. As Pα only varies from P in the definition of π′, it is sufficient to show
that for all w ∈ W and all i ∈ A, πα

i (w) is a probability distribution of W . In the
case that Ei

w(α) = 0, we have πα
i (w) = πi(w), so the result follows immediately.

When Ei
w(α) > 0, we must show:

1. For all v, πα
i (w, v) ∈ [0, 1]. This follows since we have πα

i (w, v) =
Pv(α).πi(w, v)/Ei

w(α) and also Ei
w(α) ≥ Pv(α).πi(w, v) ≥ 0.

2.
∑

u∈W πα
i (w, u) = 1. This follows since:

∑

u∈W

πα
i (w, u) =

∑

u∈W

Pu(α).πi(w, u)∑
v∈W Pv(α)πi(w, v)

= 1.

3. For all u, v ∈ W , πα
i (w, v) > 0 implies πα

i (w, u) = πα
i (v, u). Expanding these

definitions, we have

πα
i (w, u) =

Pu(α).πi(w, u)
Ei

w(α)
=

Pu(α).πi(v, u)
Ei

v(α)
= πα

i (v, u).

Therefore, Pα is a probability model.

The concept of sampling is intrinsic in the rationale of these semantics. The
word aleatory has its origins in the Latin for dice-player (aleator), and we suppose
that our agents are committed aleators, in that they use dice (or sample probabil-
ity distributions) for everything. We imagine these semantics being interpreted
by agents armed with a set of labelled coins. If we ask “is x true” the agent will
take the coin marked x, flip it and if it lands heads, reply “yes”. Every formula
is evaluated as a sampling process this way. To interpret (α?β : γ), the agent
will execute the sampling procedure for α and if it returns true, the agent will
proceed with the sampling procedure for β, otherwise the agent will continue to
sample γ.
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The marginal operator (α | β)i expresses agent i’s expectation of α
marginalised by β. The intuition for these semantics corresponds to a sampling
protocol. The agent i samples a world from their probability distribution and
sample β. If β is true, then i samples α at that world and returns the result. Oth-
erwise agent i resamples a world from their probability distribution, and repeats
the process. In the case that β is never true, we assign (α |β)i probability 1, as
being vacuously true.

The observation operation [α]β is the expectation of β after α is observed by
all agents (or publicly announced in the terminology of dynamic epistemic logic).
The interpretation of α is also stochastic, so we imagine that as before, the mental
model of the universe is sampled, and α is true in that sampling. Further, we
suppose that all agents are told that α was true in that sampling. Now every
agent updates their mental model of the universe, taking this new information
into account. The pointed model Pw is their prior expectation of the universe,
and we apply Bayesian conditioning to determine the new (posterior) model of
the universe. The Bayesian conditioning is applied only to π (the probability
distribution of different worlds) and not to f , (the probability distribution of
random variables in a single world). The reason for this is that in a single world,
all propositions are independent, so conditioning would have no effect. Finally,
note that if an agent assigns zero probability to α at a world, they do not modify
their probability distribution for that world. That is, the agent refuses to accept
new information that contradicts its current beliefs. However, the agent still
recognises that α was publicly announced, and other agents who do not consider
α impossible would have accepted the information and updated their beliefs
accordingly.

Finally, we note the distinction between the marginal operator and the obser-
vation operator. The marginal operator (α | β)i is modal and allows the agent
to speculate about the likelihood of α being sampled given that β was sampled.
This captures the concept of dependence: each sampling of an aleatoric variable
is an independent event, but it does depend on the possible world in which the
sampling is done.

The observation operator, on the other hand, models belief change. Rather
than an agent speculating about the relationship between two formula, it involves
the agent observing a sampling event, and using this observation to update their
distribution of worlds. Whilst both operators reflect the concept of dependence
between formulas, the marginal operator is passive, whilst the observation oper-
ation is not.

4 Example

Here we present a simple analysis of a small version of the game, The Resistance.
We suppose that there are four players, {1, 2, 3, 4}, and two of them are spies.
This gives six possible configurations at the start of the game The spies know
the identity of all the other spies, but the other players do not. The non-spies
only know that they are not spies, and therefore assign equal probability to the
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24 23

12 34

14 13

agent 1
agent 2
agent 3
agent 4

(a) The resistance common prior. The
worlds are labelled with the agents who are
spies, and each agent considers all linked
worlds equally likely.

24 23

12 34

14 13

0.4

0.4

0.2

0.5

0.5

0.0
0.0

0.5

0.5

0.4

0.4

0.2

agent 1
agent 2
agent 3
agent 4

(b) The probability model after one of
agents 2 and 3 betrays the mission (some
rounding has been applied).

Fig. 1. A model of agents’ knowledge before an after an action in the game, The
Resistance

three worlds in which they are not spies, and zero probability to the worlds
in which they are spies. Finally, we will suppose that all players have common
assumptions about how other players will behave. Particularly for every agent,
i ∈ {1, 2, 3, 4}, there is a variable xi, which is the probability of agent i betraying
a mission, if i is a spy on that mission. We will suppose that for all i, for all
worlds where i is a spy, xi has initial value 3

4 . There are also variables si to
dictate who is a spy, so s1 has probability 1 in worlds w12, w13 and w14 and
probability 0 in all other worlds. This gives the model depicted in Fig. 1a, which
is a common prior for all players if the game. The left-most world is underlined,
as that is the actual world, where agents 1 and 2 are spies.

Now suppose that 2 and 3 are sent on a mission, and 2 betrays the mission.
All agents are informed that exactly one agent betrayed the mission, which is
equivalent to the announcement (x2 ∧ ¬x3) ∨ (¬x2 ∧ x3). We can calculate this
event has 0 probability in the world (14), since neither 2 nor 3 are spies in that
world. The event has 3

4 probability in worlds (12), (13), (24) and (34), and
probability 87

256 in world (23).
Every agent can infer different information from this announcement. Agent

3 will know 2 is a spy, and assigns equal probability to 1 and 4 being spies.
Agent 4 does not know who is a spy, but the fact that only one agent betrayed
the mission makes it less likely that both agents 2 and 3 are spies, so agent 4’s
expectation that agent 1 is a spy actually increases. That is,

E4s1 =
2
3

and [(x2 ∧ ¬x3) ∨ (¬x2 ∧ x3)]E4s1 =
384
481

.

The ADEL allows us to express more complex policies for agents. In the
instance described above an agent simply flips a biased coin (with probability 3

4
of coming up betray). However, we could also specify a policy whereby agent 2
will betray, if both non-spies think 2 is a spy, or if both non-spies think 2 is not
a spy. That is, in world w12 of Fig. 1a agent 2’s likelihood of betraying a mission
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could be
Pw12(E2(E3s2 ∧ E4s2) ∨ E2(E3¬s2 ∧ E4¬s2)) =

46
81

. (1)

We note that this policy doesn’t use any aleatoric variables (there is no flipping
of coins) and the action depends entirely on the uncertainty of other agents.
More complex policies could combine aleatoric variable and agent uncertainty. If
another agent assumes that player 2 is using the policy represented by (1), then
after observing player 2’s actions the player could apply Bayesian conditioning
to the uncertainty functions. Thus the players’ policies and actions naturally
evolve and respond to the information inherent in the actions of other players.

5 Actions

In this section we generalise the concept of global observation, with the concept
of an action, which corresponds to a move in a game. In dynamic epistemic
logic, such change is achieved through action models [8], and the probabilistic
dynamic epistemic logic of Kooi [15] has been extended by Sack with action
models [17]. Here we give an account of a similar extension in the context of
Aleatoric Dynamic Epistemic Logic.

An action differs from a global observation in two ways: it can change the
likelihood of a random variable, and it can model effects that are not symmetric
for all agents. Actions are composed of possible events and for each agent i, we
include a null event, ℵi, to model consequence for agents who believe an event
is impossible.

Definition 4. An action is described by a tuple A = (E,∼i, pre, post), where

– E is a finite set of possible events, including the null events ℵi.
– ∼i⊆ E × E is the uncertainty relation for each agent i, such that

• ∼i is Euclidean, serial and transitive,
• ∀e ∈ E \ {ℵj | j 
= i}(ℵi, e) ∈∼i, and
• ∀e ∈ E, (e,ℵi) /∈∼i.

– pre : E −→ ADEL assigns a pre-condition to each event, where pre(ℵi) = �
– post : E −→ X ↪→ ADEL is a post condition that reassigns the likelihood for

some variables, where dom(post(ℵi)) = ∅.
A pointed action is Ae is a action with a specific event specified. Given an event
e ∈ E, we let [e]i be the set {e′ | e ∼i e′}.

For comparison we see that are very similar to the action models of [8],
but allowing for the unsuccessful announcements of [12], and ontic change. The
semantics for action execution are as follows:

Definition 5. Given a probability model P = (W,π, f) and an action A =
(E,∼i, pre, post), the execution of A on P is the probability model A ⊗ P =
(W ′, π′, f ′), where:
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– W ′ = {(e, w) ∈ E × W | Pw(pre(e)) > 0},
–

π′
i((e1, u), (e2, v)) =

⎧
⎪⎨

⎪⎩

0, if e2 /∈ [e1]i, and e2 �= ℵi
Pv(pre(e2)).πi(u,v)

Σe∈[e1]i
Pv(Eipre(e))

, if e2 ∈ [e1]i and Σe∈[e1]iPu(Eipre(e)) > 0

πi(u, v) if e2 = ℵi and Σe∈[e1]iPu(Eipre(e)) = 0

⎫
⎪⎬

⎪⎭

– if x ∈ dom(post(e)), then f ′
(e,w)(x) = Pw(post(e)(x)) and f ′

(e,w)(x) = fw(x)
otherwise.

If Pw is a pointed probability model and Ae is a pointed action, then (A⊗P )(e,w)

is the execution of Ae on Pw (also written Ae ⊗ Pw).

As with Lemma 1 we can show Ae⊗Pw is always a pointed probability model.
The null events ℵi model the effect of an agent witnessing an event that is incon-
sistent with their beliefs. For example, if an agent witnessed a coin land tails,
when they believed the coined to be double headed, belief revision is typically
required. Here we duck the issue, assuming that agents are presidentially reso-
lute in their beliefs, and if they witness a contradictory event they will refuse to
believe it. This is modelled by the agent believing the null event occurred, which
did not have any ontic effect, although it may have impacted the beliefs of other
agents.

An action is a generalisation of a global observation. Ignoring the post func-
tion or multiple agents, an action Ae can be thought of as stochastic global
observations of pre(e′) for each e′ ∈ [e]i, normalised by agents i’s expectation of
e′. In fact, every global observation is an action with a single event, and a trivial
post function, along with the corresponding null events for each agent.

It is also a little strange that we do not require any stochastic element for an
action, even though many games have stochastic actions (e.g. rolling a die, or
drawing a card from a deck). Instead of encoding this stochastic choice we model
it as an element of the probability model, so a fair coin would be modelled by
a random variable h, with value 0.5 in every world, and an event predicated on
the coin landing heads would have precondition h, and an event predicated on
tails would have precondition ¬h. This allows for stochastic elements of actions
to vary with worlds (e.g. if it is possible the coin is biased, or if we may have a
“hot deck” containing mostly high value cards).

We can include actions as a syntactic element in the same way that global
observations are include in ADEL.

Definition 6. The Aleatoric Action Model Logic consists of formulas

α :: = x | � | ⊥ | (α?α :α) | (α |β)i | [Ae]α

where x ∈ X, i ∈ N and Ae is a pointed action model. Given a pointed probability
model Pw, the semantics are as in Definition 3.2, with the additional clause:

Pw([Ae]α) = (Ae ⊗ Pw)(α) if Pw(preA(e)) > 0
and Pw([Ae]α) = 0 otherwise.
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6 Example

As a simple example we consider the dining cryptographers problem [5], a well
known example of epistemic reasoning. In this problem three cryptographers are
dining and their meal is anonymously paid for. They wish to know if one of them
paid for it without infringing the benefactor’s right to anonymity. The protocol is
that each pair flip a coin hidden from the third, and then they publicly announce
whether the coins they saw were the same, but they invert their response if they
were the one who paid for the meal. If an even number (possibly 0) claim that
the coins were the same, then no one inverted their response, so the meal must
have been paid for by an external party.

This problem has been extensively studied in the context of epistemic logics,
assuming the knowledge state created by the coin flips. With aleatoric action
model logic we are also able to model the coin flips as actions, as in Fig. 2. The
action to reveal whether the coins are the same is a standard public announce-
ment, as in Fig. 3. The probability model P , starts as four states a, b, c and
none (respectively, a paid, b paid, c paid and no one paid), with variables for
the coin c, whether some agent at the table paid p, and the observed coin flips
(all initialised to 0.0). The only uncertainty between the states is in whether the
meal was paid for by one of the agents. In this instance we will assume that
there are three agents a, b, and c.

Heads
pre : c
post : HY

X : 1.0

Tails
pre : ¬c
post : HY

X : 0.0

{X,Y }

Fig. 2. An action model capturing the coin flip of the dining cryptographers problem.
The action is specified for an arbitrary pair of agents X and Y , and has states Heads
and Tails with the pre-condition depending on an random variable c (the coin). The
random variable HY

X is set to 1.0 iff the coin flipped was heads. Any agent not in {X, Y }
will not know HY

X , but X and Y will. The null actions ℵi have been omitted.

The application of Flip[X, Y] for each pair of agents builds a probability
model, where a fragment of the first step is shown in Fig. 4b. The full protocol
requires a further 2 coin flips leading to a 32 state model which we will not show
here. The subsequent actions of Reveal eliminates either all but 6 states (in the
case one agent paid), or all but 2 states (in the case no agent paid).

This is a simple 3 agent instance of the dining cryptographers problem, but we
can see that the use of aleatoric reasoning allows us to investigate richer aspects
of the problem. In the original problem, the coin is simply used to initialise
uncertainty, and then non-probabilistic epistemic reasoning is applied. However,
if the coin was biased, and one of the agents (say a) knew the bias, aleatoric
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Announce
pre :¬BXp ↔

(H�(X)
X ↔ HX

r(X))
post :

Fig. 3. The action of a player, X, revealing if the coins were the same or different, where
�(X) is the agent to X’s left and r(X) is the agent to X’s right. The precondition is
predicated on whether X believes that the meal was paid for by someone at the table.

P

c
p : 1.0
c : 0.5

none
p : 0.0
c : 0.5

0.33 0.33a, b

a
p : 1.0
c : 0.5

b
p : 0.0
c : 0.50.33 0.33c

0.33

0.33

b

0.33

0.33

a, c

0.33

0.33

b, c

0.33

0.33

a

(a) The initial state of the model. It is as-
sumed that there is a fair coin (c) that maybe
sampled at any time. As none of the coins
have been flipped at this stage, their value
is not reported.

Flip[a, b] ⊗ P

c.H
p : 1.0
Hb

a : 1.0

none.H
p : 0.0
Hb

a : 1.0

0.33 0.33a, b

c.T
p : 1.0
Hb

a : 0.0

none.T
p : 0.0
Hb

a : 0.00.33 0.33a, b

0.5

0.5
c

0.5

0.5
c

(b) A fragment of the model after a and b
have observe a common coin flip, recorded
as Hb

a. We only include the states where ei-
ther c paid or no one paid.

Fig. 4. A sketch of a probabilsitic action in the dining cryptographers problem

action model logic would give the probability a assigns to each other agent
paying, diminishing the anonymity in the protocol.

7 Conclusion

This project aims to resolve the discrepancies between the reasoning capabilities
of dynamic epistemic logic, and the pragmatics of building game playing agents.
Aleatoric Dynamic Epistemic Logic is a true generalisation of public announce-
ment logic, but gives a much richer language that allows agents to weigh the
observations they make against past experience a converge on a set of beliefs
that accurately models the agents’ experience.
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Abstract. We investigate, as a special case of robust optimization, inte-
ger linear programs with variables being either existentially or univer-
sally quantified. They can be interpreted as two-person zero-sum games
between an existential and a universal player. In this setting the existen-
tial player must ensure the fulfillment of a system of linear constraints,
while the universal variables can range within given intervals, trying to
make the fulfillment impossible. We extend this approach by adding a
linear constraint system the universal player must obey. Consequently,
existential and universal variable assignments in early decision stages
now can restrain possible universal variable assignments later on and
vice versa resulting in a multistage optimization problem with deci-
sion dependent uncertainty. We present novel insights in structure and
complexity.

1 Introduction

Mixed-integer linear programming (MIP) [24] is the state-of-the art technique
for computer aided optimization of real world problems. Nowadays, commercial
top solvers are able to solve large MIPs of practical size, but companies observe
an increasing danger of disruptions, which prevent them from acting as planned.
Thus, there is a need for planning and deciding under uncertainty. Uncertainty,
however, often pushes the complexity of problems that are in the complexity
class P or NP, to PSPACE [7,21]. Prominent solution paradigms for optimiza-
tion under uncertainty are Stochastic Programming [5], Robust Optimization [3],
Dynamic Programming [2], Sampling [13] and others, e.g. approximation tech-
niques [17] and on-line optimization [8]. Relatively unexplored are the abilities
of linear programming extensions for PSPACE-complete problems. In the early
2000s the idea of universally quantified variables, as they are used in quanti-
fied constraint satisfaction problems [11], was picked up again [25] - coining the
term quantified integer program (QIP) - and further examined [10,19]. Quan-
tified integer programming gives the opportunity to combine traditional linear
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programming formulations with some uncertainty bits. Hence, a solution of a
QIP is a strategy for assigning existentially quantified variables such that some
linear constraint system is fulfilled. By adding a minmax objective function one
further must find the best strategy [10]. As not unusual in the context of opti-
mization under uncertainty [3,4] a polyhedral uncertainty set can be used [15].
Recently, we made our solver for quantified integer programs – which combines
techniques known from game tree search, linear programming and (quantified)
boolean formula – available as open source [9].

Results from optimization under uncertainty sometimes tend to be too pes-
simistic and the uncertainty must be implemented carefully. In robust optimiza-
tion uncertain parameters are bound within a given uncertainty set, often having
polyhedral, ellipsoidal or some other convex shape [4]. However, after specifying
the uncertainty set, this domain is fixed and no endogenous effects can be con-
sidered. Within the scope of the multistage optimization problem QIP, we will
introduce the possibility to influence the uncertainty set, making it dependent
on decisions made in previous stages. To the best of our knowledge only a few
results in the area of stochastic programming [1,12,14,16] and robust optimiza-
tion [18,20,23,26] can be found regarding such an influence on uncertainty. This
neglection is probably due to worries regarding even higher complexity.

We will introduce decision dependent uncertainty sets in quantified integer
programs, making the domains for both variable types interdependent. These
Quantified Integer Programs with Interdependent Domains (QIPID) have the
following properties:

1. even a local information whether a variable of a QIPID is allowed to be set
to a specific value demands the solution of an NP-complete problem. This is
very different to classic robust optimization and also different to games like
chess or go, where it is simple to check whether a certain move is legal.

2. despite the heavy intuitive differences between QIP and QIPID

(a) QIPID is still in PSPACE.
(b) QIP and QIPID are surprisingly close to each other: a polynomial time

reduction from QIPID to QIP (the other way is trivial) is presented.

The paper is organized as follows: In Sect. 2 basic definitions and notations
regarding QIPs are introduces. In Sect. 3 an extension of QIPs is presented allow-
ing the manipulation of the domain of uncertain variables and an extended min-
imax value is outlined. In Sect. 4 a parameterized polynomial reduction function
is presented mapping instances of the newly defined problem to QIP instances.

2 Basics of Quantified Integer Programming

Let n ∈ N be the number of variables and x = (x1, . . . , xn)� ∈ Z
n a vector1

of variables.2 For each variable xk its domain Lk with lk, uk ∈ Z, lk ≤ uk,

1 Henceforth, transposes are suppresses when they are clear from the context.
2
Z, N and Q are the set of integers, natural, and rational numbers, respectively.
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1 ≤ k ≤ n, is given by Lk = {y ∈ Z | lk ≤ y ≤ uk}. The domain of the entire
variable vector is described by L = {y ∈ Z

n | ∀k ∈ {1, . . . , n} : yk ∈ Lk}. Let
Q ∈ {∃,∀}n denote the vector of quantifiers. We call each maximal consecutive
subsequence in Q consisting of identical quantifiers a quantifier block and denote
the i-th block as Bi ⊆ {1, . . . , n} and the corresponding quantifier as Q(i) ∈
{∃,∀}. Let β ∈ N, β ≤ n, denote the number of blocks and thus β − 1 is the
number of quantifier changes. Let μ(i, k) =

∑i−1
j=1 |Bj | + k which maps the k-th

variable of block i to its original index. The variable vector of variable block Bi

will be referred to as x(i) and its range is given by L(i) = {y ∈ Z
|Bi| | yk ∈

Lμ(i,k)}. We call E = {i ∈ {1, . . . , β} | Q(i) = ∃} the set of existential variable
blocks and A = {i ∈ {1, . . . , β} | Q(i) = ∀} the set of universal variable blocks.

Definition 1 (Quantified Integer Linear Program (QIP)). Let A∃ ∈
Q

m∃×n and b∃ ∈ Q
m∃ for m∃ ∈ N and let L and Q be given as described

above. Let c ∈ Q
n be the vector of objective coefficients and let c(i) denote the

vector of coefficients belonging to block Bi. Let the term Q ◦ x ∈ L with the
component wise binding operator ◦ denote the quantification vector (Q(1)x(1) ∈
L(1), . . . , Q(β)x(β) ∈ L(β)) such that every quantifier Q(i) binds the variables x(i)

of block i to its domain L(i). We call

z = min
x(1)∈L(1)

(

c(1)x(1) + max
x(2)∈L(2)

(

c(2)x(2) + . . . min
x(β)∈L(β)

c(β)x(β)

))

s.t. Q ◦ x ∈ L : A∃x ≤ b∃ (�)

a QIP with objective function (for a minimizing existential player), given by
(A∃, b∃, c,L, Q).

A QIP instance can be interpreted as a two-person zero-sum game between
an existential player setting the existentially quantified variables and a universal
player setting the universally quantified variables with payoff z. The variables
are set in consecutive order according to the variable sequence. Consequently, we
say that a player makes the move xk = y if she fixes the variable xk to y ∈ Lk.
At each such move, the corresponding player knows the settings of x1, . . . , xk−1

before taking her decision xk. If the completely assigned vector x ∈ L satisfies
the linear constraint system A∃x ≤ b∃, the existential player pays z = c�x to
the universal player. If x does not satisfy A∃x ≤ b∃, we say the existential player
loses and the payoff will be +∞. This is a small deviation from conventional
zero-sum games but using3 ∞ + (−∞) = 0 also fits for zero-sum games. The
chronological order of the variable blocks given by Q can be represented using a
game tree consisting of existential, universal and leaf nodes.

Definition 2 (Game Tree). Let G = (V,E, c) be the edge-labeled finite directed
tree with a set of nodes V = V∃ ∪ V∀ ∪ VL, a set of edges E and a vector of edge
labels c ∈ Z

|E|. Each inner level either consists of only nodes from V∃ or only of
nodes from V∀, with the root node at level 0 being from V∃ and VL being the set
3 This is only a matter of interpretation and consequences are not discussed further.
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of leaves. The j-th variable is represented by the inner nodes at depth j − 1 and
outgoing edges from such a node represent moves from Lj. The corresponding
edge labels encode the variable assignments of the move.

Thus, a path from the root to a leaf represents a play of the QIP and the
sequence of edge labels encodes its moves, i.e. the corresponding variable assign-
ments. Solutions of a QIP are strategies [9]. A strategy is called a winning strategy
if all paths from the root node to a leaf represent a vector x such that A∃x ≤ b∃.
A QIP is called feasible if (�) is true (see Definition 1), i.e. if a winning strategy
exists. If there is more than one winning strategy, the objective function aims
for a certain (the “best”) one. The value of a strategy is given by its minimax
value which is the maximum value at its leaves [22]. Note that a leaf not fulfilling
A∃x ≤ b∃ can be represented by the value +∞. The objective value of a feasible
QIP is the minimax value at the root, i.e. the minimax value of the optimal
winning strategy, defined by the principal variation (PV) [6]: the sequence of
variable assignments being chosen during optimal play. For any v ∈ V we call
f(v) the outcome of optimal play by both players starting at v.

Example 1. Let us consider a QIP with n = 4 binary variables, Q = (∃,∀,∃,∀),
c = (2,−2,−3,−2) and let the constraint system A∃x ≤ b∃ given by

x1 + x2 + x3 ≤ 2
−x1 + x3 − x4 ≤ 0

− x2 + x3 − x4 ≤ 0
−x1 + x2 − x3 + x4 ≤ 1 .

The minimax value of the root node of the game tree is 2 and the principal
variation is given by x1 = 1, x2 = 0, x3 = 0 and x4 = 0. The inner node at level
1 resulting from setting x1 = 0 has the minimax value +∞, i.e. after setting
x1 = 0 there exists no winning strategy.

3 The Extension: QIP with Interdependent Domain

In a QIP the universally quantified variables are only restricted to the domain L,
whereas the existential variables also must aim at fulfilling the constraint system
A∃x ≤ b∃. This results in an asymmetry, as – even though the min-max semantic
is symmetric – only the existential player has to cope with a polytope influenced
by the opponent: the interdependence between existential and universal decisions
is only represented in one direction through the restriction A∃x ≤ b∃. Thus, in
this setting it is difficult to model most two-person games, since moves by any
player almost always depend on previous own and opponent decisions. But also
from the viewpoint of operations research this non-symmetric behavior can be
inadequate for certain problems, e.g. the maintenance of a machine could prevent
its failure – an active restriction of the anticipated uncertainty– at the expense
of the required maintenance time.

We introduce a second constraint system A∀x ≤ b∀, A∀ ∈ Q
m∀×n and

b∀ ∈ Q
m∀ , m∀ ∈ N, the universal player must satisfy. Both players have the
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superordinate goal to fulfill their system. In particular, if A∀x 
≤ b∀ and A∃x ≤ b∃

for a fixed variable vector x ∈ L the universal player loses and the payoff will be
−∞. The odd situation may now occur, that for a completely assigned variable
vector x ∈ L both systems are not met, i.e. A∃x 
≤ b∃ and A∀x 
≤ b∀. In such a
situation, however, one of the players must have been the first to make an illegal
move: this player loses immediately, just like in games like Chess or Go. Since
the superordinate goal for each player is to fulfill her own constraint system, the
set of legal variable allocations is defined as follows:

Definition 3 (Legal Variable Allocation). For variable block i ∈ {1, . . . , β}
the set of legal variable allocations F (i)(x̃(1), . . . , x̃(i−1)) depends on the assign-
ment of previous variable blocks x̃(1), . . . , x̃(i−1) and is given by

F (i) =
{

x̂(i) ∈ L(i)
∣
∣ ∃x = (x̃(1), . . . , x̃(i−1), x̂(i), x(i+1), . . . , x(β)) ∈ L : AQ(i)

x ≤ bQ(i)
}

i.e. after assigning the variables of block i there still must exist an assignment
of x such that the system of Q(i) ∈ {∃,∀} is fulfilled. The dependence on the
previous variables x̃(1), . . . , x̃(i−1) will be omitted when clear.

Hence, moves that will wipe out any chance of fulfilling the own constraint
system are forbidden explicitly. In particular, if F (i) = ∅ there is no move at
all such that the constraint system of the player responsible for block i can be
satisfied and since there are no legal moves left, the player in turn loses.

The subordinate goal for both players is still trying to optimize the objective
function: The existential player is trying to minimize and the universal player is
trying to maximize the objective value.

Definition 4 (QIP with Interdependent Domains (QIPID)). For given
A∀, A∃, b∀, b∃, c, L and Q we call

min
x(1)∈F(1)

(

c(1)x(1) + max
x(2)∈F(2)

(

c(2)x(2) + . . . max
x(β)∈F(β)

c(β)x(β)

))

s.t. ∃x(1) ∈ F (1) ∀x(2) ∈ F (2) . . . ∀x(β) ∈ F (β) : A∃x ≤ b∃ (��)

a Quantified Integer Program with Interdependent Domains (QIPID) given by
P = (A∀, A∃, b∀, b∃, c,L, Q). For the following considerations we require the first
variable block to consist of existential and the final variable block to consists of
universal variables, i.e. Q(1) = ∃ and Q(β) = ∀. Further, we demand {x ∈ L |
A∀x ≤ b∀} 
= ∅.
Using this definition the case of both systems being violated is bypassed: if both
systems are not satisfied there must have been an illegal variable allocation at
some early stage i with F (i) = ∅. If i ∈ E this results in the noncompliance of
(��) for this path in the game tree and hence a loss for the existential player.
If i ∈ A Constraint (��) is trivially satisfied for this path, since ∀x ∈ ∅ any
expression is true, and the objective value will be −∞, as maxx∈∅ f(x) = −∞
for any function f .
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In order to play optimally in each stage the player in turn not only has to
figure out the set of legal moves F (i), but also must ensure that a strategy exists
such that she can satisfy her constraint system. Determining, whether a move
is legal is equivalent to the question, whether a leaf in that part of the game
tree below this move exists, representing a fulfilling variable assignment: finding
such a path implies that the system of the player in turn is not “broken” yet.
This, however itself is an NP-complete problem. As you can see in Example 2
and in Fig. 1 the allocation x1 = 2 is legal, since a path (x2 = 1, x3 = 0) exists
fulfilling the existential system, whereas x1 = 3 is illegal, since all leaves in the
subtree below do not fulfill A∃x ≤ b∃. However, even though x1 = 2 is legal,
allocating x1 this way would be a poor decision, as no strategy exists to fulfill
the existential system.

Again, a game tree as in Definition 2 can be built for any QIPID instance.
However, both the term strategy and minimax value must be adjusted in order
to describe and find solutions of this problem type: A QIPID game might end
before all variables are allocated, since one player might have no legal move left.
Further, strategies for QIPID must not consider all possible moves from L(i) but
only all legal moves F (i).

Definition 5 (Truncated Existential Strategy). A truncated strategy (for
the allocation of existential variables) T = (V ′, E′, c′) is a subtree of a game tree
G = (V,E, c) of a QIPID. Each node v∃ ∈ V ′ ∩ V∃ has at most one child for
which at least one leaf in the underlying sub-tree of G exists with A∃x ≤ x∃,
i.e. the variable allocation represented by this child must be legal according to
Definition 3. Each node v∀ ∈ V ′ ∩ V∀ has all the children as in G for which at
least one leaf in their corresponding sub-tree in G exists with A∀x ≤ b∀ , i.e. as
many as there are in the corresponding domain F (i).

Definition 6 (Winning Truncated Existential Strategy). Let xv ∈ L
denote the variable assignment corresponding to a leaf node v ∈ VL defined by
the path from the root to v. A truncated existential strategy T = (V ′, E′, c′) is
called a winning truncated existential strategy, if for all nodes v̂ ∈ V ′ without
children (the leaves of the strategy; not necessarily v̂ ∈ VL) it holds

(v̂ ∈ VL ∧ A∃xv̂ ≤ b∃) ∨ v̂ ∈ V∀ ,

i.e. leaves either represents a fixed vector x ∈ L with A∃x ≤ b∃ or a partially
filled vector x(1), . . . , x(i−1) with i ∈ A and hence F (i)(x(1), . . . , x(i−1)) = ∅.

Since the outcome “universal player loses” can occur for QIPID the value −∞
is added as possible outcome. Further, if both constraint systems are violated
for a fixed variable vector x ∈ L, the corresponding leaf node does not hold
the information who made the first illegal move, i.e. who lost the game. The
symbolic value ±∞ is introduced for such nodes.

Definition 7 (Extended Minimax Value). Let G = (V,E, c) be a game tree
for a QIPID and let w(v) : VL → Q∪ {+∞,−∞,±∞} be the weighting function
of the leaf nodes v ∈ VL with
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w(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c�xv , A∃xv ≤ b∃ and A∀xv ≤ b∀

+∞ , A∃xv 
≤ b∃ and A∀xv ≤ b∀

−∞ , A∃xv ≤ b∃ and A∀xv 
≤ b∀

±∞ , A∃xv 
≤ b∃ and A∀xv 
≤ b∀ .

For any node v ∈ V the extended minimax value fe(v) is defined recur-
sively by

fe(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w(v) , v ∈ VL

min{fe(v′) | (v, v′) ∈ E, fe(v′) 
= ±∞} , v ∈ V∃ \ V±∞
max{fe(v′) | (v, v′) ∈ E, fe(v′) 
= ±∞} , v ∈ V∀ \ V±∞
±∞ , v ∈ V±∞ .

with V±∞ = {v ∈ V \ VL | ∀v′ ∈ V : (v, v′) ∈ E ⇒ fe(v′) = ±∞} being the set
of nodes for which any leaf in the part of the game tree below has the value ±∞.

Since we demanded {x ∈ L | A∀x ≤ b∀} 
= ∅, after using the extended minimax
value the root node lies within Q∪{+∞,−∞}. This can be interpreted as follows:

– Root node has extended minimax value z = c�x ∈ Q:
Both the universal as well as the existential player have a winning truncated
strategy to satisfy their system. The outcome if both players play optimal
is z.

– Root node has extended minimax value +∞:
The existential player has no winning truncated strategy to satisfy her system:
The universal player can enforce A∃x 
≤ b∃ and hence the QIPID is infeasible.

– Root node has extended minimax value −∞:
The universal player has no winning truncated strategy to satisfy her system:
The existential player can enforce A∀x 
≤ b∀.

Example 2. Let c = (−1,−1,−2)�, Q = (∃,∀,∀), L1 = {1, 2, 3} and L2 =
L3 = {0, 1} and the two constraint systems given as follows:

A∃x ≤ b∃ : x1 + x2 + x3 ≤ 3
A∀x ≤ b∀ : −x1 + 2x2 + x3 ≥ 02x1 − 3x2 ≤ 3

The game tree of this QIPID instance is give in Fig. 1. The values at the leaves
are assigned using the weighting function w(v) as described above. The values at
inner nodes are received by applying the extended minimax value. Hence, node
values show the value according to optimal play starting from this node. In the
first existential stage F (1) = {1, 2} and in particular 3 
∈ F (1) since the existential
system cannot be fulfilled for x3 = 3 (all leaves in the subtree beneath the decision
x3 = 3 have the property +∞ or ±∞). Note, that with x1 = 2 the universal
variable x2 cannot be set to 0, since a violation of the universal system would
become inevitable. The optimal course of play (the PV) is x1 = 1, x2 = 1, x3 = 0
with objective value −2.
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Fig. 1. Game tree for the given QIPID with rectangular leaves, circular universal nodes,
and pentagonial existential root node. Leaves have either the property that some con-
straint system is not fulfilled (+∞, −∞, ±∞) or, if both systems are met, the resulting
objective value. Illegal moves (not in F (i)) are indicated as dotted lines. The optimal
truncated strategy is indicated by thicker arrows. Values at inner nodes indicate the
outcome of optimal play.

Clearly QIP ≤p QIPID via polynomial-time reduction. Also, quite easily, QIPID

is in PSPACE: a depth first-search can compute the presented extended minimax
value, dealing with the crucial ±∞ nodes. However, PSPACE is a large class,
and we are even able to present the non-trivial direct reduction QIPID ≤p QIP:
we reveal their close relationship by presenting a beautiful polynomial reduction.
This gives us further structural insights into the nature of QIPID.

4 Parameterized Reduction Function

QIPID has one major difficulty compared to the QIP: In order to know whether a
variable allocation is legal one has to solve an NP-complete subproblem, i.e. one
has to check the feasibility of several integer programs in order to create the set
F (i)

(
x(1), . . . , x(i−1)

)
, instead of simply ensuring compliance with the variable

bounds. The resulting QIP from the reduction will ensure that setting one of
the original variables illegally (i.e. outside of the specific F-domain) would allow
the other player to receive a much better payoff. Hence it is in each player’s best
interest to make moves that stay within the feasible region F . The reduction
function roughly works as follows: The original variables x(i) are also used in the
arising QIP and in between some further variables are added in order to ensure
that illegal moves (not element of F (i)) are disadvantageous compared to legal
moves. For an existential variable block x(i) a verification vector v(i) is added
to check, whether the existential system still can be satisfied. If no allocation
of v(i) exists the constraint system of the QIP cannot be satisfied, which is
to the detriment of the existential player. Hence, a legal variable assignment
x(i) ∈ F (i) will be preferred for which a fulfilling allocation of v(i) will exist. A
similar approach is used for universal variable blocks: If there is no allocation of
the verification vector v(i) that fulfills the universal system, i.e. if x(i) 
∈ F (i), the
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objective value can be reduced massively and the constraint system of the QIP
is fulfilled trivially. Additional variables y(i), ti and p are used to detect, indicate
and penalize such illegal allocations. Hence, selecting the universal variable x(i)

from F (i) is preferable for the universal player.
The presented reduction function is parameterized, i.e. some coefficients can

range in certain intervals. Hence, this function maps a QIPID instance to a set
of QIPs. We will show in Lemma 1 that it is possible to compute one of those
QIP instances in polynomial time.

Definition 8 (Parameterized Reduction Function). The reduction func-
tion r maps any given QIPID P= (A∀, A∃, b∀, b∃, c,L, Q) to a QIP with the
following form:

min
x(1)∈L(1)

(

c(1)x(1) + . . . max
x(β)∈L(β)

(

c(β)x(β) − min
p∈{0,1}

M̃p

))

s.t. ∃x(1) ∈ L(1) ∃v(1) ∈ L(2) × . . . × L(β)

∀x(2) ∈ L(2) ∀v(2) ∈ L(3) × . . . × L(β)

∃y(2) ∈ {0, 1}m∀ ∃t2 ∈ {0, 1}
∃x(3) ∈ L(3) ∃v(3) ∈ L(4) × . . . × L(β)

∀x(4) ∈ L(4) ∀v(4) ∈ L(5) × . . . × L(β)

∃y(4) ∈ {0, 1}m∀ ∃t4 ∈ {0, 1}
. . .

∀x(β) ∈ L(β) ∃y(β) ∈ {0, 1}m∀

∃tβ ∈ {0, 1} ∃p ∈ {0, 1} :

A∃s(i) − Mti−1 ≤ b∃ ∀i ∈ E (1)

A∃x − Mp ≤ b∃ (2)

− A∀s(i) − (L − b∀ − RLCD)y(i) ≤ −L ∀i ∈ A (3)

p −
∑

i∈A
ti ≤ 0 (4)

ti − ti−2 −
m∀∑

k=1

y
(i)
k ≤ 0 ∀i ∈ A (5)

with s(i) being the abbreviation for the vector (x(1), . . . , x(i), v(i)). M , M̃ , L,
RLCD and t0 are parameters that must fulfill the following criteria: t0 = 0,
L ∈ Q

m∀ with4

Lk ≤ min
x∈L

A∀
k,∗x ∀k ∈ {1, . . . , m∀}, (6)

4 Ak,∗ denotes the k-th row of matrix A.
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being smaller than the smallest possible value of the left-hand side of line k of
the universal system resulting in A∀x ≥ L being valid for any x ∈ L. M ∈ Q

m∃

must fulfill
Mk ≥ max

x∈L
A∃

k,∗x − b∃
k ∀k ∈ {1, . . . , m∃}, (7)

being larger than the largest possible violation of line k of the existential system
resulting in A∃x ≤ b∃ + M being valid for all x ∈ L. M̃ ∈ Q is set such that

max
x∈L

c�x − M̃ < min
x∈L

c�x (8)

for example

M̃ ≥
∑

1≤i≤n
ci<0

ci · (li − ui) +
n∑

1≤i≤n
ci≥0

ci · (ui − li) + 1. (9)

RLCD ∈ Q
m∀ is a vector with positive entries smaller than or equal to the recip-

rocals of the lowest common denominators of the rows of A∀ and b∀, ensuring
for any line k ∈ {1, . . . , m∀} A∀

k,∗x 
≤ bk ⇔ A∀
k,∗x ≥ bk + RLCD

k . In particular
0 < RLCD

k ≤ 1, if all entries in row k are integer. Note, that for the entries of L

and RLCD only upper bounds are given, whereas for M and M̃ lower bounds are
specified. Therefore, the result of the reduction is not unique, since the param-
eters L, M , M̃ and RLCD only must satisfy the given bounds. Thus, r is a
parameterized reduction function and we call r(P ) the set of QIPs created by
the above mechanism.

The close relationship between a QIPID and the corresponding QIPs resulting
from the reduction function is given in the following theorem:

Theorem 1. The following equivalences hold for any QIPID instance P :

1. P is feasible with optimal objective value z ∈ Q

⇔ ∀R ∈ r(P ): The QIP instance R is feasible with optimal objective value z
2. P is feasible with optimal objective value z = −∞

⇔ ∀R ∈ r(P ): R is feasible with optimal objective value z̄ < min
x∈L

c�x

3. P is infeasible
⇔ ∀R ∈ r(P ): R is infeasible

In the following we present the proof idea of Theorem 1.

Proof Idea 1. Let us assume R ∈ r(P ) with fixed variables p̃, x̃(i), ṽ(i), ỹ(i)and
t̃i, i ∈ {1, . . . , β}. Assume x̃(1) 
∈ F (1), and hence this move should constitute
a loss for the (starting) existential player. For s(1) = (x̃(1), ṽ(1)) Constraint (1)
for i = 1 is violated, since - by definition of F (1) - no fulfilling ṽ(1) can exists.
Therefore, any illegal variable assignment of x̃(1) - in terms of P - results in
an immediate loss for the existential player in R, regardless of the assignment
of the remaining variables. In particular, if F (1) = ∅ the existential player will
lose, i.e. R is infeasible.
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Let us now assume x̃(1) ∈ F (1) and ṽ(1) is set such that A∃s(1) ≤ b∃, i.e. the
fulfillment of Constraint (1) for i = 1 is ensured. Assume the universal variables
x̃(2) and ṽ(2) are selected such that for some line k ∈ {1, . . . , m∀} A∀

k,∗s
(2) 
≤ b∀

k

and hence A∀
k,∗s

(2) ≥ b∀
k + RLCD

k . Constraint (3) is constructed such that y
(2)
k

can be set to 1 only if line k is violated and hence y
(2)
k is an indicator of such

a violation. With y
(2)
k = 1 we further see that t2 = 1 is valid for i = 2 in

Constraint (5). This allows ti = 1 for 2 < i ∈ A according to Constraint (5) and
after selection of M as in (7) Constraint (1) is trivially fulfilled for 2 < i ∈ E and
p = 1 is valid according to (4). Consequently, if the allocation of the universal
variables x(2) and v(2) do not satisfy A∀s(2) ≤ b∀ the existential variable t2 can
be set to 1 and the entire remaining constraint system (1)–(5) can be satisfied
easily. Additionally, since p = 1 and after the selection of M̃ according to (9)
the objective value will be smaller than minx∈L c�x. Hence, for x̃(2) 
∈ F (2)(x̃(1))
the objective value of optimal play will be smaller than minx∈L c�x, which is to
the detriment of the maximizing universal player and will be avoided if possible.
For x̃(2) ∈ F (2)(x̃(1)) there exists some ṽ(2) such that A∀s(2) ≤ b∀. Selecting
ṽ(2) otherwise once again is to the detriment of the maximizing universal player
and will be avoided. For ṽ(2) such that A∀s(2) ≤ b∀ the subsequent existential
variables must hold y(2) = 0 and t2 = 0. This argumentation can be continued
for the subsequent stages. Assuming that the variables up to stage i were selected
such that for each j < i it holds x(j) ∈ F (j), v(j) such that AQ(j)

s(j) ≤ bQ(j)
,

y(j) = 0 and tj = 0 the following holds:

– If i ∈ E selecting x(i) 
∈ F (i) immediately results in an existential player’s loss
as Constraint (1) is violated.

– If i ∈ A selecting x(i) 
∈ F (i) allows ti = 1 and hence the entire constraint sys-
tem of R can be fulfilled trivially with objective value smaller than minx∈L c�x.

– If i ∈ A and x(i) ∈ F (i) and v(i) such that A∀s(i) ≤ b∀ then the existential
variables y(i) and ti must be zero in order to fulfill Constraints (3) and (5).

Hence, illegal moves (not in F (i)) according to the QIPID P are punished in
R ∈ r(P ) and therefore are disadvantageous. Therefore, legal allocations (taken
from F (i)) for the x(i) variables are preferred, if possible.

In order to constitute a polynomial reduction function we further must show
the following:

Lemma 1. Let P = (A∀, A∃, b∀, b∃, c,L, Q) be a given QIPID. An element of
the set r(P ) can be computed in polynomial time with respect to the input size.

Proof. The size of the input P only depends on the number of variables n and
the number of constraints m∃ and m∀. Obviously, values for the vectors L and
M and the value for M̃ can be computed in polynomial time with respect to n,
m∃ and m∀ by computing the bounds given in (6), (7) and (9), respectively. For
the entries of RLCD it is not necessary to find the lowest common denominator:
it suffices to multiply the denominators of the non-zero entries of row k and
take its reciprocal for RLDC

k , which can be computed in polynomial time. The
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number of variables in the resulting QIP is in O(n + n2 + n · m∀): O(n) x and
t variables, O(n2) v variables, O(n · m∀) y variables and one p variable. The
number of constraints is O(n · m∃ + n · m∀): O(n · m∃) constraints in (1), m∃
constraints in (2), O(n · m∀) in (3) and 1 and O(n) constraints in (4) and (5),
respectively.

5 Conclusion

We examined the complex entanglements arising from allowing an exertion of
influence by the optimizer on the uncertainty set in a robust multistage optimiza-
tion problem. We focused on quantified integer programs, which itself cover a
nearly unlimited field of applications. We introduced the formal problem QIPID

where the modeling constraints of the optimizer and the uncertainty set interact:
the domain of universal variables is restricted through a second system of linear
constraints that can be affected by previous decisions. Solutions are truncated
strategies, which can be depicted as subgraphs of the corresponding game tree,
and an enhanced minimax algorithm can be used to find the best possible value
if the variables are assigned optimally. Intuitively QIPID is a much more difficult
problem than QIP since the complex subproblem of determining the action sets
at decision nodes is itself an NP-complete problem. Nevertheless, the QIPID and
the QIP are closely related, since the QIPID does not only stay in the same com-
plexity class PSPACE as the QIP, but how close they are coupled can be seen
with help of the presented parameterized reduction function, mapping QIPID

instances to QIPs (in polynomial time). A proof of concept or practicability is
still open, but in the past, technological progress has pushed the threshold of
applicability in other domains as well, e.g. the famous rise of mixed integer linear
programming.
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Abstract. Intentional forgetting means to deliberately give up infor-
mation and is a crucial part of change or consolidation processes, or to
make knowledge more compact. Two well-known forgetting operations
are contraction in the AGM theory of belief change, and various types
of variable elimination in logic programming. While previous work dealt
with postulates being inspired from logic programming, in this paper we
focus on evaluating forgetting in epistemic states according to postulates
coming from AGM belief change theory. We consider different forms of
contraction, marginalization, and conditionalization as major represen-
tatives of forgetting operators to be evaluated. We use Spohn’s ranking
functions as a common semantic base to show that all operations can
be realized in one logical framework, thereby exploring the richness of
forgetting operations in a comparable way.

1 Introduction

Reasoning tasks in knowledge representation usually focus on how inferences
are drawn (as in nonmonotonic logics), or changed (as in belief revision). Cru-
cial constraints of reasoning processes such as focussing on relevant details only,
leaving irrelevant aspects aside, are often left implicit. Hardly any example on
reasoning that can be found in the literature explicitly considers what happens
to the reasoning results if one, two, or a hundred irrelevant variables were added.
Likewise, assumptions related to a specific context are often left implicit which
means that reasoning results only hold in that specific context. Most people
would take statements like “water boils at 100 centigrades” for granted, but this
only holds in the context of the water being at sea level. Therefore, abstraction
and omitting details which are found to be irrelevant or self-evident are impor-
tant companions of reasoning the role of which, however, is often neglected; for
a recent publication that focusses on abstraction, cf. [15].

We address abstraction and similar operations by the term (intentional) for-
getting in this paper with the aim of making explicit and exploring formally
those parts of reasoning tasks that are due to aspects of forgetting. There are
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two major research fields for which formal properties of forgetting operations
have been presented: in logic programming, especially in the field of answer set
programming, forgetting atoms, literals, and sets of atoms or literals has been
well investigated (for a recent survey, see [7]), and postulates have been formal-
ized (see, in particular, [10]). The other field that explicitly deals with formal
properties of deliberately giving up information is AGM belief change theory [1]
that presents a formal framework of postulates for contraction operations that
can deal with the omission of propositional formulas; this has been generalized
to multiple contraction that allows for giving up sets of formulas [8]. Both fields
are principal reference points when formal frameworks of forgetting are to be
elaborated. While different types and operators of forgetting according to for-
mal standards inspired by logic programming are evaluated in [13], in this paper
we focus on investigating epistemic forgetting operations according to postulates
of AGM-like iterated contraction [4,13].

In order to evaluate forgetting operations from the point of view of iterated
AGM contraction, we re-interpret the postulates from [4,14] as postulates for
forgetting on epistemic states, and apply them to forgetting operations defined
for Spohn’s ranking functions [16,17] (aka ordinal conditional functions, OCF) as
representatives of epistemic states. We show how types of forgetting like variable
elimination (aka marginalization), AGM-like contraction, and others can be dis-
tinguished along the lines of postulates, and that the framework of forgetting is
richer than is suggested by the dichotomy of forgetting in logic programming, and
contraction in AGM theory. We also emphasize the duality between reasoning
and forgetting by re-interpreting conditionalization, an operation typically used
for reasoning and belief change, as a forgetting operation. Since the framework of
OCF provides established operations for marginalization and conditionalization,
it seems to be a perfect, unifying environment for illustrating and evaluating
different forgetting operations (cf. [2]).

In summary, the main contributions of this paper are a study of key for-
getting operations; the identification of a new subclass of c-changes, the min-
imal c-contractions; and formal investigations of marginalization and condi-
tionalization, c-contractions and their subclasses of c-ignoration and minimal
c-contractions, with respect to AGM-like contraction postulates.

2 Basics on Conditionals and Iterated Contraction

Let LΣ denote a finitely generated propositional language, with atoms Σ =
{a, b, c, . . .}, and with formulas A,B,C, . . .. For conciseness of notation, we will
omit the logical and -connector, writing AB instead of A ∧ B, and overlining
formulas will indicate negation, i.e., A means ¬A. Let ΩΣ denote the set of all
possible worlds (propositional interpretations) over Σ. As usual, ω |= A means
that the propositional formula A ∈ L holds in the possible world ω ∈ Ω, and
Mod(A) = {ω | ω |= A} denotes the set of all such possible worlds. By slight
abuse of notation, we will use ω both for the model and the corresponding
complete conjunction containing all atoms either in positive or negative form.
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For a total preorder � on Ω we denote the set of minimal models of A with
respect to � by min(�,Mod(A)). If A ∈ L is a formula, then the minimal set
of signature elements from Σ to represent a formula which is equivalent to A
is denoted by ΣA. For a subset of signature elements Σ′ ⊆ Σ and a world
ω ∈ ΩΣ we denote the Σ′-part of ω with ωΣ′ ∈ ΩΣ′ , mentioning exactly the
atoms from Σ′ such that ω |= ωΣ′

. For illustration, consider Σ = {a, b, c} with
ω1 = abc ∈ ΩΣ and Σ′ = {a, b}. The Σ′-part of ω1 is ωΣ′

1 = ab. For ω2 = abc
the Σ′-part would be the same. The marginalization of a propositional formula
A to a signature Σ′ ⊆ Σ is defined iteratively by variable elimination: For a
variable V ∈ Σ, the formula A|Σ−{V } = A+ ∨ A− arises from A by replacing
all occurrences of V by �, yielding A+, or by ⊥, yielding A−. Then, A|Σ′ is the
formula obtained from A by successively eliminating all variables in Σ − Σ′.

By introducing a new binary operator |, we obtain the set (L|L) = {(B|A) |
A,B ∈ L} of conditionals over L. (B|A) formalizes “if A then usually B” and
establishes a plausible connection between the antecedent A and the consequent
B. Conditionals with tautological antecedents are taken as plausible statements
about the world. Following De Finetti [5], a conditional (B|A) can be verified
(falsified) by a possible world ω iff ω |= AB (ω |= AB). If ω 	|= A, then we say the
conditional is not applicable to ω. Because conditionals go well beyond classical
logic, they require a richer setting for their semantics than classical logic.

Ordinal conditional functions (OCFs), (also called ranking functions) κ :
Ω → N ∪ {∞} with κ−1(0) 	= ∅, were introduced (in a more general form)
first by [16]. They express degrees of plausibility of propositional formulas A
by specifying degrees of disbelief of their negations A. More formally, we have
κ(A) := min{κ(ω) | ω |= A}, so that κ(A ∨ B) = min{κ(A), κ(B)}. Hence, due
to κ−1(0) 	= ∅, at least one of κ(A), κ(A) must be 0. Every OCF κ induces
a canonical total preorder �κ on Ω, where ω1 �κ ω2 iff κ(ω1) � κ(ω2). With
�κ� = {ω | κ(ω) = 0}, we denote the minimal models of κ, and Bel (κ) denotes
the theory of propositional formulas that hold in all ω ∈ �κ�. OCFs can serve
as representations of epistemic states providing semantics for conditionals: A
conditional (B|A) is accepted in the epistemic state represented by κ, written
as κ |= (B|A), iff κ(AB) < κ(AB), i.e., iff the verification AB of the conditional
is more plausible than its falsification AB. For a propositional formula A, we
have κ |= A iff κ |= (A|�) iff κ(A) < κ(A) iff κ(A) > 0, since at least one of
κ(A), κ(A) must be 0 due to κ−1(0) 	= ∅.

AGM theory [1] deals with belief revision in the context of belief sets, i.e.,
deductively closed sets of propositions. Chopra, Ghose, Meyer and Wong [4], and
later Caridroit, Konieczny, Marquis and Pino Pérez [3,14], argued that iterated
contraction should fulfill postulates beyond the classical AGM ones and therefore
adapted a set of AGM contraction postulates for epistemic states Ψ which are
equipped with a total preorder �Ψ . For such epistemic states, the most plausible
beliefs are denoted by Bel (Ψ), having the minimal models of �Ψ as their models.
Note that this generalizes the definition of Bel (κ) for OCFs from above. Using
the underlying propositional language, Bel (Ψ) can be represented by a single
formula ψ ∈ L which is unique up to equivalence. Any such formula is denoted by
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B(Ψ), and we have Bel (Ψ) = Cn(B(Ψ)). These notations also apply to epistemic
states which are represented by OCFs.

Let − be a contraction operator that assigns a posterior epistemic state Ψ −A
to a prior state Ψ and a proposition A. The epistemic postulates extending the
AGM contraction postulates for epistemic states are given as follows in [14]:

B(Ψ) |= B(Ψ − A) (AGMes-1)
If B(Ψ) 	|= A, then B(Ψ − A) |= B(Ψ) (AGMes-2)
If B(Ψ − A) |= A, then A ≡ � (AGMes-3)
B(Ψ − A) ∧ A |= B(Ψ) (AGMes-4)
If A ≡ C, then B(Ψ − A) ≡ B(Ψ − C) (AGMes-5)
B(Ψ − (A ∧ C)) |= B(Ψ − A) ∨ B(Ψ − C) (AGMes-6)
If B(Ψ − (A ∧ C)) 	|= A, then B(Ψ − A) |= B(Ψ − (A ∧ C)) (AGMes-7)

The translation of the AGM contraction postulates on belief sets for the
propositional case is explained in detail in [3].

3 Forgetting in Epistemic States

In this section, we describe the general framework in which we consider forgetting
in epistemic states, specify the forgetting operators to be considered in this
paper, and recall technical details for realizing forgetting operators in epistemic
states represented by OCFs.

Epistemic States and Forgetting Operators. The paper [2] discusses var-
ious kinds of forgetting and specifies characteristic properties for each of the
forgetting operations on epistemic states. In that paper, an abstract model of
epistemic states (also called belief states) is used in which each epistemic state
Ψ is presupposed to be make use of a logical language L over a signature Σ and
equipped with an inference relation |≈. The relation Ψ |≈ ϕ holds if an agent
with belief state Ψ infers/believes/accepts ϕ, where ϕ can be a statement from
L, or a conditional from (L|L). The connection between both types of infer-
ences is given by Ψ |≈ A iff Ψ |≈ (A|�) iff B(Ψ) |= A. Indeed, validation of
conditionals (or rules) is a crucial characteristic feature of epistemic states that
distinguishes them from flat belief sets, i.e., logical theories. One may even think
of an epistemic state as being (basically) specified by the conditionals that are
believed on its base; this view can be found in works on nonmonotonic reasoning
and belief revision [9], and logic programming [6]. Moreover, conditionals can be
easily related to total preorders which play an important role in belief revision
[11].

The set of all (conditional) inferences will be denoted by C(Ψ) with C(Ψ) =
{(B|A) ∈ (L | L) | Ψ |≈ (B|A)}. Using the conditional inference relation, we
define the entailment relation between belief states Ψ1, Ψ2 by Ψ1 |≈ Ψ2 iff C(Ψ2) ⊆
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C(Ψ1). Equivalence among epistemic states is defined by the entailment relation
|≈ on epistemic states with Ψ1

∼= Ψ2 iff Ψ1 |≈ Ψ2 and Ψ2 |≈ Ψ1.
We further assume in this paper that epistemic states can be marginalized

by restricting the signature Σ, and that they can be conditionalized by con-
sidering only models of a given proposition A. To be more precise, let Ψ |Σ′ be
the (unique) marginalized belief state for a subset Σ′ of signature elements with
Ψ |Σ′ |≈ (B|A) iff Ψ |≈ (B|A) and (B|A) ∈ (LΣ′ |LΣ′). For conditionalization
via the operator |, Ψ |A has the intended meaning that Ψ should be interpreted
under the assumption that A ∈ L holds; hence Ψ |A |≈ (C|B) iff Ψ |≈ (C|B) for
B |= A and C |= A. We further suppose that Ψ |A |≈ A holds for every A.

If Ψ is a prior state, then we denote with Ψ◦
A the posterior belief state of the

agent after forgetting A, or after applying the change operation ◦ to Ψ with input
A. In this context the object A that we want to forget can be a formula from
L, or a variable from Σ. We focus on the base case of forgetting a single logical
item, but the approaches and results presented in this paper can be extended to
deal with forgetting of several items.

The key idea of this paper is that different notions of forgetting can be
specified by the inferences an agent can or can no longer draw after forgetting
[2]. In the following, we focus on three major types of forgetting - contraction,
marginalization and conditionalization - and additionally on ignoration as this
is a special kind of contraction but covers a different aspect that is of interest
for various applications as well. These four forgetting operations are described
on a high level as follows:

Contraction : Ψ◦
A 	|≈ A

Ignoration : Ψ◦
A 	|≈ A and Ψ◦ 	|≈ A

Marginalization : Ψ◦
A = Ψ |Σ\ΣA

Conditionalization : Ψ◦
A = Ψ |A with a conditionalization operator | on Ψ

Contraction refers to the intention to directly give up information A, as it
is known from the AGM framework [1]. Ignoration is a special contraction that
enforces undecidedness between A and A, thus giving up the judgement on A.
Marginalization and conditionalization are well-established operators; they are
reinterpreted here for defining forgetting operators that take the information A to
be forgotten as their argument. For further discussion on these operators please
see [2]. In the rest of this section, we will instantiate this general framework with
ordinal conditional functions and specific forgetting operators based on them.

Instantiations of Forgetting with OCF. OCFs, or ranking functions κ over
Σ provide all technical features that we expect from epistemic states. The con-
ditional inference relation is defined as C(κ) = {(B|A) ∈ (L|L) | κ |≈ (B|A)}
and a conditional (B|A) is an inference of a ranking function κ, denoted by
κ |≈ (B|A), iff κ(AB) < κ(AB).

In the following, we recall the instantiations of the four forgetting operators
described above within the framework of OCFs from [2]. The object A which is
to be forgotten can be a formula from L, or a variable from Σ. Throughout this
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paper, we assume that in case that A is a formula, A is neither ⊥ nor � because
we are considering general strategies of forgetting here, leaving out limit cases
for the moment.

Definition 1 (c-contraction by a single proposition [2]). A change from
κ to κ◦ is called a c-contraction with A, if there exist integers γ+, γ− such that
the following equation holds

κ◦
A(ω) = −γ− − κ(A) + κ(ω) +

{
γ+ if ω |= A

γ− if ω |= A
(1)

and the following condition is satisfied:

γ− − γ+ � κ(A) − κ(A) (2)

The integers γ+, γ− are shifting factors the role of which is to make models of
A resp. A more or less plausible in a uniform way. Equation (2) ensures that
after the c-contraction κ◦

A 	|= A holds and it is κ◦
A(A) � κ◦

A(A), so especially
that κ◦

A(A) = 0 holds.
c-Contractions form a large family of diverse contraction operations which

deliberately go beyond AGM [13]. Therefore, we choose special instances of c-
contractions to elaborate on the potential of c-contractions for forgetting oper-
ations in more depth. In general, c-contractions are parametrized by γ+, γ−

satisfying (2). There are two obvious ways to choose the difference γ− −γ+ that
are directly related to information provided by the prior κ and ensure (2). First,
setting γ− −γ+ = −κ(A) guarantees the validity of (2) because κ(A) � 0 in any
case. This first choice provides minimal c-contraction with a minimal amount
of change among c-contractions because A-worlds are not shifted, and A-worlds
are shifted minimally (see Definition 2).

Definition 2 (minimal c-contraction by a single proposition). A change
from κ to κ◦ is called a minimal c-contraction with A, if there exist integers
γ+, γ− such that the following equation holds

κ◦
A(ω) = −γ− − κ(A) + κ(ω) +

{
γ+ if ω |= A

γ− if ω |= A
(3)

and the following condition is satisfied:

γ− − γ+ = −κ(A) (4)

Note that minimal c-contractions can be described compactly by

κ◦
A(ω) = κ(ω) +

{
0 if ω |= A

−κ(A) if ω |= A
, (5)

where (5) results from (3) and (4) by an easy calculation.
As a second obvious choice, setting γ− − γ+ = κ(A) − κ(A) guarantees

the validity of (2) for trivial reasons, yielding the class of c-ignorations (see
Definition 3).
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Definition 3 (c-ignoration by a single proposition [2]). A change from κ
to κ◦ is called a c-ignoration with A, if there exist integers γ+, γ− such that

κ◦
A(ω) = −γ− − κ(A) + κ(ω) +

{
γ+ if ω |= A

γ− if ω |= A
(6)

holds and the following condition is satisfied:

γ− − γ+ = κ(A) − κ(A) (7)

Equation (7) in Definition 3 ensures that κ◦
A 	|= A and κ◦

A 	|= A holds. It is
κ◦

A(A) = κ◦
A(A) = 0 after the change operation.

Proposition 1. For every c-ignoration, Mod(B(κ◦
A)) = min(�κ,Mod (A)) ∪

min(�κ,Mod (A)) holds.

Proof. The success condition of c-ignoration ensures that κ◦
A(A) = κ◦

A(A) = 0
holds. For models of A, ω |= A, the rank after the c-ignoration is computed by
−γ− − κ(A) + κ(ω) + γ+ = 0. With Eq. 7 we get the condition κ(ω) − κ(A) +
κ(A) − κ(A) = 0, leading to κ(ω) = κ(A). For ω′ |= A we have −γ− − κ(A) +
κ(ω′) + γ− = 0 which leads to κ(ω′) − κ(A) = 0 and κ(ω′) = κ(A). So we get
Mod(B(κ◦

A)) = min(�κ,Mod (A)) ∪ min(�κ,Mod (A)). ��
OCFs can be seen as qualitative abstractions of probabilities [9]. Therefore,

very similar to probabilities, they also allow for marginalization and condition-
alization while observing their specific arithmetic characteristics (cf. [16]):

Definition 4 (marginalization of κ to Σ′ [2]). Let κ be an OCF over Σ and
Σ′ ⊆ Σ. The marginalization of κ to Σ′, denoted by κ|Σ′ : ΩΣ′ → N, is given by

κ|Σ′(ω′) = min{κ(ω) | ω ∈ ΩΣ and ω |= ω′}. (8)

Applying this to implement marginalization as a forgetting operation, we obtain
the operation of forgetting by OCF-marginalization κ◦

A = κ|Σ\ΣA
.

Definition 5 (conditionalization of κ by A [16]). Let κ be a ranking function
and A a proposition, then the conditionalization of κ by A is the ranking function
κ|A : Mod(A) → N, defined on the models of A as follows:

κ|A(ω) = κ(ω) − κ(A) (9)

This yields the operation of forgetting by OCF-conditionalization κ◦
A = κ|A.

4 Evaluation of Different Kinds of Forgetting by AGMes

In this section, we evaluate the forgetting operators that we defined in Sect. 3
according to the AGM postulates for contraction in epistemic states shown in
Sect. 2. Table 1 gives an overview which postulates are fulfilled for each forgetting
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Table 1. Evaluation of AGMes postulates for the different forgetting operations

AGMes (-1) (-2) (-3) (-4) (-5) (-6) (-7)

C-Contraction × × � × � × ×
Minimal C-Contraction � � � � � � �
C-Ignoration � × � × � × ×
OCF-Marginalization � × � × � × �
OCF-Conditionalization × � � � � � �

operator. It is clearly seen that the epistemic AGM-postulates provide a useful
standard for the five forgetting operations because each operation satisfies at
least two postulates, but no two operations show the same pattern. Only minimal
c-contraction satisfies all seven postulates. Ignoration fulfills (AGMes-1) while
contraction does not. Another noticeable thing is that each operation fulfills the
same two postulates, namely (AGMes-3) and (AGMes-5). (AGMes-3) is basically
the success condition that each forgetting operator has to satisfy. (AGMes-5) is
fulfilled by the forgetting operators as well, since every operator based on models
ensures this condition. Therefore, we will omit proofs for these two postulates
in the following subsections. Moreover, the full AGMes-compliance of minimal
c-contractions is covered by the results of [13]. The remaining results for con-
traction, ignoration, marginalization and conditionalization will be discussed and
proved in the following subsections.

4.1 Contraction

We start with considering c-contraction which seems to be the closest to AGM
iterated contraction.

Proposition 2. c-Contraction in general as defined in Definition 1 does not ful-
fill (AGMes-1), (AGMes-2), (AGMes-4), (AGMes-6) and (AGMes-7), but fulfills
(AGMes-3) and (AGMes-5).

Proof. c-Contraction does not fulfill (AGMes-1), as the counterexample in Fig. 1a
shows. Let κ be a ranking function over the signature Σ = {a, b} with κ(ab) = 0,
κ(ab) = κ(a b) = 1, and κ(ab) = 2. By a c-contraction by a with γ+ = 1 and
γ− = −1 we get κ◦

a with κ◦
a(a b) = 0, κ◦

a(ab) = κ◦
a(ab) = 1, and κ◦

a(ab) = 2. We
had ab ≡ B(κ) before the contraction and a b ≡ B(κ◦

a) after the contraction.
Thus, ab 	|= ab shows that (AGMes-1) is not fulfilled.

For (AGMes-2) let κ be a ranking function with κ(a b) = 0, κ(ab) = κ(ab) =
1, and κ(ab) = 2 (see Fig. 1c). After a c-contraction of κ by a with γ+ = 0 and
γ− = 1 we get κ◦

a with κ◦
a(ab) = κ◦

a(a b) = 0 and κ◦
a(ab) = κ◦

a(ab) = 1. This
leads to B(κ◦

a) ≡ ab ∨ ab 	|= ab ≡ B(κ), showing that (AGMes-2) is not fulfilled.
Figure 1c is also a counterexample for (AGMes-4). We have B(κ) ≡ a b, but

with a c-Contraction it is just as possible as with a c-ignoration that afterwards
we believe neither a nor ¬a. In Fig. 1c we get B(κ◦

a) ≡ ab∨a b which means that
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2 ab ab
1 ab, a b ab, ab
0 ab a b

κ κ◦
a

(a) (AGMes-1)

2 a b a b a b a b
1 ab ab ab
0 ab, ab ab, ab ab, ab ab, ab, ab

κ κ◦
a κ◦

b κ◦
ab

(b) (AGMes-6)

2 ab
1 ab, ab ab, ab
0 a b ab, a b

κ κ◦
a

(c) (AGMes-2) and (AGMes-4)

3 ab
2 ab ab
1 a b a b a b, ab
0 ab ab, ab ab, ab

κ κ◦
ab κ◦

a

(d) (AGMes-7)

Fig. 1. Counterexamples for c-contraction

B(κ◦
a) 	|= a and by a conjunction with a we can infer a and cannot model all the

beliefs of the previous ranking function. We have B(κ) |= a but B(κ◦
a) ∧ a |= a

which leads to B(κ◦
a) ∧ a 	|= a.

c-Contraction does not fulfill (AGMes-6). Let κ be the ranking function over
the signature Σ = {a, b} with κ(ab) = κ(ab) = 0, κ(ab) = 1, and κ(a b) = 2
as shown in Fig. 1b. Because κ(a) = κ(a) = κ(b) = κ(b) = 0, a c-contraction
of κ with a or b, respectively, and by choosing γ+ = 0 and γ− = 0, does not
change the ranking function, leading to κ◦

a = κ and κ◦
b = κ. For κ, we have

B(κ) ≡ ab ∨ ab and the same for κ◦
a and also for κ◦

b , i.e., B(κ) ≡ B(κ◦
a) ≡

B(κ◦
b). A c-contraction of κ by ab and with γ+ = 0, γ− = 1 results in κ◦

ab with
κ◦

ab(ab) = κ◦
ab(ab) = κ◦

ab(ab) = 0 and κ◦
ab(a b) = 2. Hence, B(κ◦

ab) ≡ ab ∨ ab ∨ ab
and therefore ab ∈ Mod (B(κ◦

ab)) but ab 	∈ Mod (B(κ◦
a) ∨ B(κ◦

b)).
For (AGMes-7), let κ be the ranking function with κ(ab) = 0, κ(a b) = 1,

κ(ab) = 2, and κ(a b) = 3, cf. Fig. 1d. The belief of κ is B(κ) ≡ ab. By forgetting
a ∧ b with a c-contraction we have to choose γ−/γ+ according to Equation (2).
The second table in Fig. 1d shows the result of κ◦

ab with γ− = 3 and γ+ = 0.
The result κ◦

a of a c-contraction of κ by a and with γ− = 2, γ+ = 0 is shown
in Fig. 1d. We get B(κ◦

ab) ≡ ab ∨ ab and B(κ◦
a) ≡ ab ∨ ab which means that

B(κ◦
ab) 	|= a but B(κ◦

a) 	|= B(κ◦
ab). ��

The general concept of c-contractions allows for a broad range of contractions
that, in this generality, only fulfill (AGMes-3) and (AGMes-5). While every c-
contraction by A effectively forgets A, it is still possible to violate the AGMes
postulates which concern only the most plausible beliefs.

4.2 Ignoration and Minimal c-Contraction

Ignoration is similar to contraction except for postulating explicitly undecided-
ness between A and ¬A. In the framework of ranking functions, a c-ignoration
is a special kind of c-contraction [2] which makes at least one model of A and
one of ¬A maximally plausible so that afterwards we believe neither A nor ¬A.
This characteristic makes it possible to fulfill (AGMes-1).
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Proposition 3. c-Ignoration fulfills (AGMes-1), (AGMes-3), and (AGMes-5)
but does not fulfill (AGMes-2), (AGMes-4), (AGMes-6), and (AGMes-7).

Proof. c-Ignoration fulfills (AGMes-1) because we have γ− − γ+ = κ(A) − κ(A)
leading to κ◦

A(A) = κ◦
A(A) = 0. This means that for every ω ∈ Mod (B(κ)) we

have that ω ∈ Mod (B(κ◦
A))) holds as well, and therefore B(κ) |= B(κ◦

A). Because
every c-ignoration is a c-contration, by Proposition 2 the postulates (AGMes-
3) and (AGMes-5) are fulfilled. For the remaining postulates of (AGMes-2)
to (AGMes-7) the argumentation in the proof of Proposition 2 applies also
here, since every counter-example in the proof of Proposition 2 is not only a
c-contraction, but also a c-ignoration. ��

Another specific form of c-contractions are the new subclass of minimal c-
contractions (cf. Sect. 3), which satisfy all AGMes postulates.

Proposition 4. Minimal c-contractions fulfill (AGMes-1) to (AGMes-7).

The proof of Proposition 4 can be derived from the results given in [13, Theo-
rem8]. Minimal c-contractions shift worlds in a minimal way, thus fully comply-
ing with the minimal change paradigm of AGM.

4.3 Marginalization

Let us now turn to a substantially different forgetting operation. Forgetting by
OCF-marginalization has the goal to remove certain aspects of the language and
only take the remaining signature elements into account.

Proposition 5. Forgetting by OCF-marginalization fulfills (AGMes-1),
(AGMes-3), (AGMes-5), and (AGMes-7). Forgetting by OCF-marginalization
does not fulfill (AGMes-2), (AGMes-4), (AGMes-6).

Proof. We start by showing that (AGMes-1) is fulfilled for forgetting by OCF-
marginalization. The rank of the worlds with the reduced signature is computed
by κ|Σ′(ω′) = min{κ(ω) | ω ∈ ΩΣ and ω |= ω′}. Thus, for all ω ∈ Mod (B(κ))
there exists a ω′ ∈ Mod (B(κ◦

A)) with ω |= ω′, implying B(κ) |= B(κ◦
A).

Let κ be a ranking function over the signature Σ = {a, b, c} as shown on the
left side in Fig. 2a. For (AGMes-2), we only consider the second table of Fig. 2a,
representing the forgetting of a in κ, namely κ◦

a = κ|{b,c}. From B(κ) ≡ abc and
B(κ◦

a) ≡ bc but bc 	|= abc.
The example in Fig. 2a also shows that forgetting by OCF-marginalization

does not fulfill (AGMes-4). We have B(κ) ≡ abc and B(κ◦
a) ≡ bc, leading to

B(κ◦
a)∧a |= a. Therefore, B(κ◦

a)∧a |= B(κ) cannot be fulfilled because abc 	|= a.
For (AGMes-6), consider all ranking functions as shown in Fig. 2a. The two

tables in the middle show the forgetting of a in κ (second table), leading to
κ◦

a = κ|{b,c}, and κ◦
b = κ|{a,c} (third table) as the result of the forgetting of b.

We have B(κ◦
a) ≡ bc and B(κ◦

b) ≡ ac. The forgetting of ab in κ leads to the
ranking function κ◦

ab = κ|{c} over the reduced signature Σ′ = {c} as shown in
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3 abc, a bc, a b c
2 ab c, a bc b c a c
1 abc, abc bc, bc ac, ac c
0 abc bc ac c

κ κ◦
a κ◦

b κ◦
ab

=κ|{b,c} =κ|{a,c} =κ|{c}
(a) Counterexample for Marginalization for
(AGMes-2), (AGMes-4), (AGMes-6).

2 ab
1 ab, a b ab
0 ab a b

κ κ◦
a = κ|a

(b) Counterexample for Condition-
alization for (AMGes-1)

Fig. 2. Counterexamples for marginalization and conditionalization.

Fig. 2a on the right side. There we get B(κ◦
ab) ≡ c. Now c 	|= bc ∨ ac implies that

B(κ◦
ab) 	|= B(κ◦

a) ∨ B(κ◦
b) and therefore (AGMes-6) is not fulfilled.

Forgetting by OCF-marginalization fulfills (AGMes-7). The forgetting of a
ranking function κ by A leads to κ◦

A = κ|Σ1 with Σ1 = Σ \ ΣA and we get
κ◦

AB = κ|Σ′ with Σ′ = Σ\(ΣA∪ΣB) for the forgetting by AB. Because Σ′ ⊆ Σ1,
we can consider B(κ◦

A) and B(κ◦
AB) over L(Σ1). It is clear that B(κ◦

AB) |= A can
never hold. Because ω1 ∈ ModΣ1(B(κ◦

A)) iff κ◦
A(ω1) = 0, there exists a ω ∈ Ω

such that ω |= ω1 and κ(ω) = 0. This leads to κ(ω1) = 0. Accordingly, it is
the case that ω′ ∈ ModΣ′(B(κ◦

AB)) iff κ◦
AB(ω′) = 0 iff κ(ω′) = 0. Further it

is the case that ω1 |= B(κ◦
AB) iff ωΣ′

1 |= B(κ◦
AB) iff κ(ωΣ′

1 ) = 0. For (AGMes-
7) we now assume that ω1 |= B(κ◦

A) holds. This is the case iff κ◦
A(ω1) = 0 iff

κ(ω1) = 0. From this we can conclude that κ(ωΣ′
1 ) = 0 holds iff κ◦

AB(ωΣ′
1 ) = 0

iff ωΣ′
1 |= B(κ◦

AB) iff ω1 |= B(κ◦
AB). This means that B(κ◦

A) |= B(κ◦
AB) holds. ��

Forgetting by OCF-marginalization ensures that no new beliefs are added but
fails to recover the original beliefs when the negation of A was believed before.
This information is completely lost under forgetting by OCF-marginalization.
However, a bit surprisingly, forgetting by OCF-marginalization respects a kind
of coherence, as expressed by (AGMes-7), even without the explicit prerequisite
B(κ◦

AB) 	|= A.

4.4 Conditionalization

Another form of forgetting is forgetting by OCF-conditionalization which
restricts the models of a ranking function to a specific context, forgetting any
model outside of the context.

Proposition 6. Forgetting by OCF-conditionalization does not fulfill (AGMes-
1) but fulfills (AGMes-2), (AGMes-3), (AGMes-4), (AGMes-5), (AGMes-6),
and (AGMes-7).

Proof. For (AGMes-1) let κ be the OCF over Σ = {a, b} with κ(ab) = 0, κ(ab) =
κ(a b) = 1, and κ(ab) = 2 as shown in Fig. 2b. The forgetting of κ by a results
in κ◦

a = κ|a with κ◦
a(a b) = 0 and κ◦

a(ab) = 1 (cf. Fig. 2b). We get B(κ) ≡ ab but
B(κ◦

a) ≡ a b; hence, ab 	|= ab shows that (AGMes-1) is not fulfilled.
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Forgetting by OCF-conditionalization fulfills (AGMes-2). B(κ) 	|= A means
that κ(A) = 0. By forgetting A we conditionalize κ with A and each rank of
the new ranking function is computed by κ(ω) − κ(A) leading in this case to
κ|A(ω) = κ(ω) for all models of A. Thus, Mod (B(κ◦

A)) ⊆ Mod (B(κ)) holds and
therefore B(κ◦

A) |= B(κ), and (AGMes-2) is fulfilled.
(AGMes-4) is fulfilled because the forgetting of A by OCF-conditionalization

results in a ranking function over the models of A. So it is always the case that
B(κ◦

A) |= A holds. By this we get B(κ◦
A) ∧ A ≡ ⊥ and ⊥ |= B(κ) for all κ.

Forgetting by OCF-conditionalization fulfills (AGMes-6). It is the case that
κ◦

A∧B = κ|(A∨B) which means that the rank of all models of A∨B are reduced
by κ(A ∨ B) = min{κ(A), κ(B)}. Because every ω ∈ Mod (B(κ◦

A∧B)) is a belief
of κ◦

A or of κ◦
B , we observe that ω ∈ Mod (B(κ◦

A)) ∪ Mod (B(κ◦
B)) holds and

therefore B(κ◦
A∧B) |= B(κ◦

A) ∨ B(κ◦
B) holds.

For (AGMes-7) we conclude κ◦
A∧B(A) = 0 from B(κ◦

A∧B) 	|= A. With this
and the considerations from above we get κ(A) = min{κ(A), κ(B)}. Every
minimal model of κ◦

A is a minimal model of κ◦
A∧B. Therefore, Mod (B(κ◦

A)) ⊆
Mod (B(κ◦

A∧B)) and B(κ◦
A) |= B(κ◦

A∧B). Thus, (AGMes-7) is fulfilled. ��
Forgetting by OCF-conditionalization fulfills almost all AGMes postulates.

Only (AGMes-1) cannot be fulfilled because it is possible that some of the
most plausible beliefs do not refer to the context after forgetting and hence
are removed during forgetting by OCF-conditionalization.

5 Discussion, Conclusion, and Further Work

In this paper, we evaluated four key forgetting operators defined for ranking
functions according to the standards of AGM contraction. We analysed the large
class of c-contractions and their special subclass of c-ignorations [2] and the
new minimal c-contractions, investigated the classical marginalization operator,
and used conditionalization as a forgetting operator. Conditionalization fulfils
nearly all postulates except for the very first one, which is due to the fact that
conditionalization establishes belief in ¬A if A is to be forgotten. This seems
to be unintentionally strong, in particular when compared to c-ignoration that
demands for being undecided between A and ¬A after forgetting, but ensures
the best compatibility with AGM contraction theory otherwise.

The paper [12] evaluates the forgetting operators mentioned above, except
for c-ignoration and minimal c-contractions, from the point of view of forgetting
in answer set programming (ASP). In that paper, ASP postulates for forgetting
are generalized to epistemic states and their satisfaction for each forgetting oper-
ator is investigated. Together with the observations of [12], our results obtained
here show clearly the type difference between forgetting in logic programming
(which is basically marginalization) and forgetting through contraction in AGM
theory, but also reveals that this distinction is not exclusive: Both forgetting
by marginalization and by conditionalization satisfy postulates from both areas,
encouraging further studies of formal properties of forgetting as an operator that
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is interesting in itself. Next steps will be to generalize our studies to deal with for-
getting in epistemic states that are equipped just with total preorders. However,
while any total preorder can be considered as a ranking function by numbering
consecutively the layers of the total preorder, the full arithmetics allowing us to
realize forgetting in ranking functions by addition and subtraction conveniently
will not be available and also not justifiable any more in a total preorder setting.
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Abstract. Earlier work has proposed a notion of referring expressions
and types in first order knowledge bases as a way of more effectively
answering conjunctive queries in ontology based data access (OBDA).
We consider how PTIME description logics can be combined with refer-
ring expressions to provide a more effective virtual front-end to nested
relational data sources via OBDA. In particular, we consider replacing
the standard notion of an assertion box, or ABox, with a more general
notion of a concept box, or CBox, and show how this can serve as a
front-end to such data sources.

1 Introduction

In a query answer (a1, . . . , an) over structured data sources viewed as a first
order knowledge base K, the common assumption is that each ai will correspond
to some constant symbol occurring in K. A more general option has been pro-
posed in [1] in which each ai can now be a referring expression, in particular,
a well-formed formulae ψ that is free in one variable and that satisfies a num-
ber of additional conditions for any interpretation I of K. First, ψ should not
be vacuous: it should hold of at least one individual in �I . Second, ψ should
be singular : it should hold of at most one individual in �I . And third, the
singularity property of ψ should be ensured by the ontological component of K.

In this paper, we consider query answering in which the ontological compo-
nent of K consists of a TBox T expressed in terms of a description logic (DL),
and in which the remaining part of K consists of a CBox C instead of an ABox,
where C consists of a finite set of referring expressions in the form of concept
descriptions in the DL, and for which each must be singular and non-empty in
all models of K.

The DL we consider is partial−CFDI∀−
nc [4,9], a dialect of the PTIME

feature-based CFD family designed for capturing structured data sources, and
our main focus is on query answering over a knowledge base K consisting of a
TBox and CBox pair (T , C) expressed in terms of partial−CFDI∀−

nc . The main
technical difficulty is on mapping C to a combination of an ABox A and a way
of distinguishing the constant symbols occurring in A that “stand in place”
of referring expressions in C. This must be done in a way that ensures off-the-
shelf query answering over (T ,A) can be used to compute the certain answers to
c© Springer Nature Switzerland AG 2019
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queries over the original K = (T , C) by a simple substitution of the distinguished
constants by their referring expressions.

A core problem in deriving the ABox relates to identity issues when intro-
ducing new constants. Of particular significance is that fix-point computations
are necessary when such constants are introduced. Indeed, this can be necessary
when a TBox derives from relational data sources with tables that have unique-
ness constraints as well as primary keys, or for which primary keys themselves
are not minimal. In database parlance, one would say in this case that primary
keys are superkeys but not candidate keys. Such “key conversion” tables can
serve to map between alternative primary keys and thereby lead to additional
query answers.

While several approaches to integrating information in settings in which the
same individual can be identified in several (even syntactically incomparable)
ways have been considered in the past [2], we show how the integration can be
achieved naturally within partial−CFDI∀−

nc by reducing the problem to exist-
ing ABox completion procedures for query answering over partial−CFDI∀−

nc . In
particular, using concepts and procedures developed in [1] and [4], we define a
natural way of capturing (perhaps multiple) external identities of objects. Sub-
sequently, we show how query answering can be achieved in such a setting via
an embedding into standard partial−CFDI∀−

nc reasoning and query answering
problems. We also present examples that show how this technique can apply in
an OBDA setting to structured knowledge bases, both in the relational setting
and in the setting of nested relational or document databases such as MongoDB.

The remainder of the paper is organized as follows. We begin with the neces-
sary background material in Sect. 2 in which we introduce partial−CFDI∀−

nc con-
cepts, and “standard” knowledge bases consisting of a TBox of inclusion depen-
dencies over such concepts and an ABox of assertions. Our main results then
follow in Sect. 3 in which an ABox is replaced with a CBox of partial−CFDI∀−

nc

concepts called referring expressions. We then define a mapping of CBoxes to
ABoxes and show how each of the following can be resolved with the use of this
mapping: (1) diagnosing an admissibility condition for a CBox, (2) satisfiabil-
ity of knowledge bases with a CBox, and (3) query answering over knowledge
bases with a CBox. The admissibility condition requires that the TBox ensures
each referring expression occurring in the CBox is singular in the sense outlined
above. Throughout, we introduce examples to illustrate why CBoxes are useful
and how identification issues become far more complicated as a consequence. We
conclude with summary comments in Sect. 4.

2 Background

The description logic partial−CFDI∀−
nc is a member of the CFD family of DLs

which are fragments of FOL with underlying signatures based on disjoint sets of
unary predicate symbols called primitive concepts, constant symbols called indi-
viduals and unary function symbols called features. Note that features deviate
from the normal practice of admitting roles denoting binary predicate symbols.



Identity Resolution in OBDA to Structured Data Sources 475

Syntax Semantics: Defn of “(·)I”

C ::= A AI ⊆ � (primitive concept; A ∈ PC)
| ∀Pf .C {x | PfI(x) ∈ CI} (value restriction)
| ∃Pf {x | PfI(x) exists} (existential restriction)

| ¬C � \ CI (negation)
| ∃f−1 {fI(x) | x ∈ �} (inverse feature)
| C : Pf1, ...,Pfk → Pf0 (see text) (PFD)

| {a} {aI} (nominal)
| C1 � C2 CI

1 ∩ CI
2 (conjunction)

| ∃f−1.C {fI(x) | x ∈ CI} (qualified inverse feature)

Fig. 1. Syntax and semantics of concept descriptions.

However, features make it easier to incorporate concept constructors that are bet-
ter suited to the capture of (possibly nested) relational data sources, particularly
so when they include dependencies such as primary keys, uniqueness constraints,
functional dependencies and foreign keys. This is achieved by a straightforward
reification of n-ary predicates and by using a concept constructor peculiar to
the CFD family called a path functional dependency (PFD). Consider the case
of a role R. It can be reified as a primitive concept RC , two features R-dom and
R-ran and an inclusion dependency of the form

RC � RC : R-dom, R-ran → self

in partial−CFDI∀−
nc . By introducing a PFD on the right-hand-side, the depen-

dency ensures any combination of R-dom and R-ran values uniquely determine
an R 2-tuple. Note that an ALC inclusion dependency mentioning R of the
form “A � ∀R.B”, can also be captured in partial−CFDI∀−

nc as the inclusion
dependency

∀R-dom.A � ∀R-ran.B.

Concepts and TBoxes in partial−CFDI∀−
nc are defined as follows:

Definition 1 (partial−CFDI∀−
nc Concepts and TBoxes). Let F and PC be

sets of feature names and primitive concept names, respectively. A partial path
expression is defined by the grammar “Pf :: = f.Pf | self ” for f ∈ F. We define
derived concept descriptions by the grammar on the left-hand-side of Fig. 1. A
path functional dependency concept, or PFD, is obtained by using the sixth
production of this grammar.

An inclusion dependency C is an expression of the form C1 � C2. A terminol-
ogy (TBox) T consists of a finite set of inclusion dependencies. A posed question
Q is a single inclusion dependency.
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The semantics of expressions is defined with respect to a structure I =
(�, ·I), where � is a domain of “objects” and ·I an interpretation function that
fixes the interpretations of primitive concepts A to be subsets of � and primitive
features f to be partial functions fI : � → �. The interpretation is extended to
partial path expressions, self I = λx.x, (f.Pf)I = PfI ◦fI , in the natural way,
and derived concept descriptions C not including PFDs as defined in the centre
column of Fig. 1.

Note that partial−CFDI∀−
nc adopts the strict interpretation of undefined

values, which means that argument terms must be defined whenever equality
and set membership do hold. This implies, for any concept C, that (∀Pf .C)I

must be a subset of (∃Pf)I . This also suggests the following interpretation of
concepts that are PFDs:1

(C : Pf1, . . . ,Pfk → Pf0)I = {x | ∀y.(y ∈ CI ∧ x ∈ (∃Pf0)I ∧ y ∈ (∃Pf0)I ∧
∧k

i=1(x ∈ (∃Pfi)I ∧ y ∈ (∃Pfi)I ∧ PfIi (x) = PfIi (y))) → PfI0 (x) = PfI0 (y) }.

A partial−CFDI∀−
nc TBox T consists of a set of inclusion dependencies of the

form C1 � C2. An interpretation I satisfies an inclusion dependency if CI
1 ⊆ CI

2 ,
and is a model of T (I |= T ) if it satisfies all inclusion dependencies in T . The
logical implication problem asks if T |= Q holds, that is, if Q is satisfied in all
models of T . �

Since features are still functional there is no need for a qualified existential
restriction of the form “∃f.C”. Such restrictions can be equivalently written as
“∀f.C �∃f”. Hence, the use of qualified existential restrictions in the rest of the
paper should be considered to be syntactic sugar.

To ensure PTIME reasoning in partial−CFDI∀−
nc , we require that a TBox

T has a conservative extension T ′ in which the structure of concepts C and D
in each inclusion dependency C � D are given by the following grammars (for
more general TBoxes and normalization see [9]):

C ::= A | ∀f.A | ∃f
D ::= A | ¬A | ∀f.A | ∃f−1 | ∃f | A : Pf1, . . . ,Pfk → Pf

Observe how this effectively requires the left-hand-side of inclusion dependen-
cies to employ only the first three concept constructors in Fig. 1, and disallows
entirely the use of the last three concept constructors in Fig. 1 to occur at all
in a TBox. Indeed, allowing the use of qualified inverse features or nominals, or
the occurrence of a PFD on the left-hand-side leads to undecidability [5,6]. (We
have included these constructors in preparation for the introduction of referring
expressions introduced in the next section.)

A TBox must also satisfy two additional syntactic conditions. First, as a
consequence of inverse feature and value restriction interaction, whenever both
A � ∃f−1 and ∀f.A′ � B occur in T , then at least one of A � A′, A′ � A,

1 This constitutes a minimal condition for capturing when one violates an inclusion
dependency of the form “C1 � C2 : Pf1, . . . ,Pfk → Pf0 ′′ .



Identity Resolution in OBDA to Structured Data Sources 477

or A � ¬A′ also occurs in T . Relaxing this condition leads to intractability [8].
And finally, as a consequence of inverse feature and PFD interaction, any PFD
occurring in T must adhere to one of the following two forms to yet again avoid
undecidability [7]:

C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf or C : Pf1, . . . ,Pf .g, . . . ,Pfk → Pf .f.

Definition 2 (partial−CFDI∀−
nc Knowledge Bases). Let IN be a set of con-

stant symbols. A partial−CFDI∀−
nc ABox A consists of a set of assertions of the

form “A(a)”, “a = b”, “a �= b”, and “f(a) = b”, with the usual interpretation
mapping constant symbols to domain elements, and interpreting the assertions as
set membership and an equality/inequality between a constant and another con-
stant or a function application to a constant, respectively. A partial−CFDI∀−

nc

knowledge base K consists of a TBox T and ABox A. �

Proposition 3 (partial−CFDI∀−
nc KB Satisfiability [9]). Satisfiability of

partial−CFDI∀−
nc knowledge bases is complete for PTIME. �

Conjunctive queries are formed as usual from atomic queries (or atoms), cor-
responding to concept descriptions, and equalities between variables and applica-
tions of features to variables, using conjunction and existential quantification. To
simplify notation, we conflate conjunctive queries with the set of its constituent
atoms and a set of answer variables:

Definition 4 (Conjunctive Query). Let ϕ be a set of atoms (representing a
conjunction) A(xi) and f(xi1) = xi2 , where A is a primitive concept description,
f a feature (including self ), and x̄ a tuple of variables. We call the expression
{x̄ | ϕ} a conjunctive query (CQ). �

A conjunctive query {x̄ | ϕ} is therefore a notational variant of the formula
∃ȳ.

∧
ψ∈ϕ ψ in which ȳ contains all variables appearing in ϕ but not in x̄. The

usual definition of certain answers is given by the following:

Definition 5 (Certain Answer). Let K be a partial−CFDI∀−
nc KB and Q =

{x̄ | ϕ} a CQ. A certain answer to Q over K is a substitution of constant symbols
ā, [x̄ → ā], such that K |= ϕ[x̄ → ā]. �

Proposition 6 (partial−CFDI∀−
nc Query Answering [4]). Query answering

over partial−CFDI∀−
nc knowledge bases is complete for PTIME (data complex-

ity). �

The query answering algorithm presented in [4] requires both ABox com-
pletion and query reformulation. The former is needed to propagate concept
memberships along feature chains present in the data when implied by a TBox,
and the latter is needed to avoid the need for potentially exponentially many
witnesses of anonymous objects. Note that the ABox completion also deals with
equalities stipulated in the ABox and/or generated by PFD-based inclusion
dependencies in the knowledge base TBox.
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3 Referring Expressions and CBoxes

In this section, we introduce referring expressions: concept descriptions that will
serve as external identifiers of objects in partial−CFDI∀−

nc knowledge bases.
We will require that these concept descriptions behave the same way constant

symbols behave in the traditional setting: we expect their interpretations to be
singular in every model of a given knowledge base.

Definition 7 (Referring Expressions and Singularity). Let T be a TBox
and let C be a partial−CFDI∀−

nc concept description conforming to the grammar

C ::= A | C1 � C2 | ∃f.C | ∃f−1.C | {a},

where a is a constant symbol. We say that C is a referring expression, and say
in addition that C is singular with respect to T if |CI | ≤ 1 for all interpretations
I that are models of T . �

We use referring expressions to define the counterpart of assertions in tradi-
tional knowledge bases.

Example 8. Consider where the interpretation of primitive concept PERSON
is intended to be all people, and where each person is identified by ssn, a social
security number. The following referring expressions might be used to identity
two individuals:

PERSON � ∃ssn.{123}, and PERSON � ∃ssn.{456}.

The referring expressions would qualify as singular if the underlying TBox
ensured that ssn-values can indeed serve as a way of identifying people, e.g.,
by having the inclusion dependency

PERSON � PERSON : ssn → self .

The two concepts can replace the usual ABox assertions of the form PERSON(c1)
and PERSON(c2) (which require the introduction of additional constant symbols
for the two individuals). Moreover, ABox assertions of the form f(c1) = c2 can
also be captured by concepts, in our example:

PERSON � ∃ssn.{123} � ∃mother.(PERSON � ∃ssn.{456})

�

Note that such descriptions naturally arise when the assertion part of a
knowledge base is captured in various database back-ends, e.g., in relational
databases, via keys and foreign keys, or in nested relational or document
databases, such as MongoDB2, in which the structure of the referring expressions
correspond to JSON3.
2 https://www.mongodb.com/.
3 https://www.json.org/.

https://www.mongodb.com/
https://www.json.org/
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Example 9. To illustrate the flexibility of referring expressions in the nested
relational or document setting, consider where PERSON is the name of a JSON
collection that contains the following two documents:

{ "fname" : "John", "lname" : "Smith", "age" : 25,
"wife" : { "fname" : "Mary" },
"phone" : [

{"loc" : "home", "dnum" : "212 555-1234"}
] }

{ "fname" : "Mary", "lname" : "Smith", "age" : 27,
"husband" : { "fname" : "John" },
"phone" : [

{"loc" : "home", "dnum" : "212 555-1234"},
{"loc" : "work", "dnum" : "212 666-4567"}

] }

In our setting, the documents can be naturally and directly represented by the
following pair of referring expressions:4

PERSON � (∃fname.{“John”}) � (∃lname.{“Smith”}) � (∃age.{25})
� ∃wife.(∃fname.{“Mary”})
� ∃phone-dom−1.∃phone-ran.((∃loc.{“home”}) � (∃dnum.{“212 555-1234”}))

PERSON � (∃fname.{“Mary”}) � (∃lname.{“Smith”}) � (∃age.{27})
� ∃husband.(∃fname.{“John”})
� ∃phone-dom−1.∃phone-ran.((∃loc.{“home”}) � (∃dnum.{“212 555-1234”}))
� ∃phone-dom−1.∃phone-ran.((∃loc.{“work”}) � (∃dnum.{“212 666-4567”}))

Each would quality as a referring expression if, e.g., the underlying TBox were
to contain the inclusion dependency

PERSON � PERSON : fname, lname → self ,

that is, if the combination of an fname and an lname identifies a PERSON. �

Thus, identities of entities referenced in documents (and sub-documents) are
now captured using referring expressions. This potentially allows for join opera-
tions on document databases that are not typically supported by such systems.
Queries navigating JSON documents can now be expressed as conjunctive queries
over the partial−CFDI∀−

nc representation.
This development leads to a revision of the definition of partial−CFDI∀−

nc

knowledge bases in which the traditional ABox is replaced by what we call a
CBox, that is, by a set of concept descriptions that are referring expressions for
individuals the knowledge base knows about.

4 Here, we translate “phone” fields of documents as roles that are reified, in the sense
outline above, in order to enable different people to share phones.
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Definition 10 (CBoxes, Knowledge Bases, and Query Answers). Let T
be a partial−CFDI∀−

nc TBox and Q = {(x1, . . . , xk) | ϕ} a conjunctive query.
We define a CBox C to be a set of partial−CFDI∀−

nc concept descriptions. A
partial−CFDI∀−

nc knowledge base K is a pair (T , C). We say that the CBox C
is admissible for T if each C ∈ C is a referring expression that is singular with
respect to T , and that I is a model of K if I |= T and, for every C ∈ C, |CI | = 1.
Thus, K is consistent if such a model exists. Finally, we say that (C1, . . . , Ck) is
a certain answer to Q in K if

K |= ∃x1, . . . , xk.(ϕ ∧ C1(x1) ∧ . . . ∧ Ck(xk))

for {C1, . . . , Ck} ⊆ C. �

3.1 Identity Resolution

CBoxes inherently represent information about how objects in a knowledge base
are identified in which there are no restrictions on how such identification must
be captured. In particular, there are no uniformity conditions on identification
of objects that must hold, such as requiring each object to have a single global
identifier in all assertions in the knowledge base.

However, CBoxes allow one to capture various resolutions of the heterogene-
ity of identification, e.g., through translation tables or cross-links [2]. As the
following illustrates, these can be captured using TBox/CBox assertions:

Example 11. Consider the following partial−CFDI∀−
nc knowledge base:

T = { FRIEND � PERSON,
FRIEND � PERSON : fname → self ,
MATRIARCH � PERSON,
MATRIARCH � PERSON : lname → self ,
PERSON � PERSON : fname, lname → self , . . .}

C = { FRIEND � ∃fname.{“Mary”},
PERSON � (∃fname.{“Mary”}) � (∃lname.{“Smith”}),
MATRIARCH � ∃lname.{“Smith”}, . . .}

Observe that the three referring expressions in C are each singular with respect
to T . On co-reference, note that the first two inclusion dependencies in T imply
that the first referring expression and the second

PERSON � (∃fname.{“Mary”}) � (∃lname.{“Smith”})

must refer to the same object, and that the next two inclusion dependencies in
T imply the same for the second and the third referring expression. Thus, the
object referred to by

FRIEND � ∃fname.{“Mary”}
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should be a certain answer to the conjunctive query

{x | MATRIARCH(x)}.

The same happens for all pairs of referring expressions in C subsumed by
FRIEND and MATRIARCH, respectively, for which there is a PERSON cross-
link. �

3.2 On Minimal Referring Expressions

In relational databases the notion of candidate key, a key that has a minimal set
of attributes of a relation, is typically used as an external identifier of objects
stored in the database.

Our development of a referring expression strictly generalizes the notion of
a superkey in the relational setting: sets of attributes, not necessarily minimal,
that identifies an object or entity. We now present a procedure that (syntacti-
cally) minimizes a referring expression to obtain minimal co-referring referring
expressions that are counterparts to relational candidate keys.

Theorem 12 (Minimal Referring Expressions). Let T be a partial−
CFDI∀−

nc TBox and C a referring expression w.r.t. T . We say that subcon-
cepts of C of the form A, {a}, ∃f.�, ∃f−1.�, and � � � are leaves of C and
write C[L → �] for a description C in which a leaf L was replaced by �. Assum-
ing “first-leaf” and “next-leaf” denote functions that successively enumerate all
leaves of C, the procedure

1. L := first-leaf(C);
2. while C[L → �] is singular w.r.t. T do
3. C := C[L → �]; L := next-leaf(C);
4. done
5. return C;

computes a syntactically-minimal co-referring expression for C. (Note that
replacing a leaf by � may create additional leaves.)

Proof (sketch): Since the C[L → �] operation weakens the concept description
C, it preserves satisfiability. The algorithm tests for singularity at every step.
Hence the result is a minimal referring expression equivalent to C since no addi-
tional leaves can be removed. �

The algorithm finds a minimal referring expression in time linear in |C|.
Analogous to the relational setting, backtracking this algorithm facilitates the
discovery of alternative minimal referring expressions, and, also analogous to the
relational setting, there can be exponentially many of these.

3.3 Reasoning with CBoxes

Our technique crucially depends on mapping CBoxes to (standard) ABoxes as
follows. We begin by defining how individual concepts corresponding to referring
expressions are transformed:
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ToAbox(a : C1 � C2) → ToAbox(a : C1) ∪ ToAbox(a : C2)
ToAbox(a : ∃f.C) → {f(a) = b} ∪ ToAbox(b : C), b fresh

ToAbox(a : ∃f−1.C) → {f(b) = a} ∪ ToAbox(b : C), b fresh
ToAbox(a : {b}) → {a = b}
ToAbox(a : A) → {A(a)},A primitive

The ToAbox function converts a CBox assertion C to a set of ABox assertions
by introducing constant names for all necessary individuals, in particular a con-
stant aC for the (witness of satisfiability of) C itself. The mapping is then lifted
to CBoxes by applying it on all referring expressions in the CBox as follows:

ToAbox(C) =
⋃

C∈C
ToAbox(aC : C) ∪ {ai �= aj | ai, aj individuals in C, i �= j}

Note that we make nominals distinct since they correspond to values from a
structured data source, such as a relational database, for which the unique name
assumption (UNA) will usually apply. Also, one could reuse the textual repre-
sentation of the concepts to serve as the invented constant names.

Theorem 13 (CBox Admissibility). Let T be a partial−CFDI∀−
nc TBox and

C a concept description. Then C is a singular referring expression w.r.t. T if and
only if the knowledge base

(T ∪ {A � ¬B},ToAbox(a : C) ∪ ToAbox(b : C) ∪ {A(a), B(b)})

is inconsistent, where A and B are primitive concepts not occurring in T and C
and a and b are distinct constant symbols.

Proof (sketch): The ToAbox mapping expands complex concepts in a CBox to
sets of assertions in a corresponding ABox. By case analysis we can show that
a model of (T ∪ {A � ¬B},ToAbox(a : C) ∪ ToAbox(b : C) ∪ {A(a), B(b)})
provides a counterexample to C’s singularity (w.r.t. T ). Moreover, whenever
C is not singular, such a model can be constructed by appropriately naming
additional individuals in a counterexample to C’s singularity. �

It is easy to verify that the CBox in Example 11 is admissible w.r.t. the
given TBox since fname, lname, and the combination of fname and lname are
respective keys of FRIEND, MATRIARCH and PERSON.

Theorem 14 (Satisfiability of KBs with CBoxes). Let K = (T , C)
be a knowledge base with an admissible CBox C. Then K is consistent if
(T ,ToAbox(C)) is consistent.

Proof (sketch): Similar to the argument in the proof sketch in Theorem 13. �
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3.4 Query Answering over CBoxes

We now show how query answering over CBox-based knowledge bases can be
reduced to the standard case of ABoxes. We also show an example of the utility
of CBoxes in capturing distinct co-references to a particular object, and how
partial−CFDI∀−

nc based TBoxes can account for such co-references.

Theorem 15 (Query Answering). Let K = (T , C) be a consistent knowledge
base and Q = {(x1, . . . , xk) | ϕ} a conjunctive query over K. Then (C1, . . . , Ck)
is a certain answer to Q in K if and only if {C1, . . . , Ck} ⊆ C and (aC1 , . . . , aCk

)
is a certain answer to Q over (T ,ToAbox(C)).

Proof (sketch): Since C1, . . . , Ck are singular referring expressions, there must
be individuals o1, . . . , ok witnessing non-emptiness of C1, . . . , Ck, respectively,
that make the query true in every model of K. Case analysis shows that, in the
corresponding models of (T ,ToAbox(C)), these individuals will be the inter-
pretations of the constant symbols (aC1 , . . . , aCk

) (and vice versa). �
Note that ABox completion [4,9] will make constant symbols belonging to

co-referring referring expressions equal automatically. This, in turn, realizes all
reasoning needed to capture the effects of translation tables in a TBox/CBox:

Example 16. Consider again the partial−CFDI∀−
nc knowledge base (T , C) in

Example 11. An ABox A generated by ToAbox(C) would introduce three con-
stant symbols in generated assertions, as in the following:

A = { FRIEND(a1), fname(a1) = “Mary”,
PERSON(a2), fname(a2) = “Mary”, lname(a2) = “Smith”,
MATRIARCH(a3), lname(a3) = “Smith”, . . .}

The standard ABox completion [4,9] will then ultimately generate the equality
“a1 = a3” by virtue of the inclusion dependencies in T , including the facts that
both FRIEND and MATRIARCH are subsumed by PERSON. (Here, PERSON
might serve the role of a translation concept corresponding to a translation table
available in some structured data source.) �

On Query Answers. The definition of certain answers asks for all tuples of
constants—in our setting proxied by referring expressions—for which the query
is entailed by the knowledge base. Thus the selection of referring expressions in
the CBox determines components of query answers presented to the user. There
are two considerations:

1. Additional answers may be needed; these can be obtained by considering
additional referring expressions describing, e.g., sub-documents, to the CBox
(as long as the CBox remains admissible);

2. Simpler answers may be desired, i.e., simpler referring expressions denoting
the answers; these can be obtained by appropriate selection of minimal refer-
ring expressions (and removing all the more complex referring expressions
from answers).
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Both of these goals can be achieved by a simple housekeeping that determines
which referring expressions are eligible to appear in query answers. This step can
be easily combined with the CBox-to-ABox mapping by appropriately marking
the generated constant symbols. Indeed, similar marking is commonly used, e.g.,
when ABoxes are normalized in most OBDA settings.

4 Summary

We have considered how referring expressions corresponding to concepts in a
description logic can serve the role of constant symbols in both assertion boxes
and in query answering, and how doing so leads to a more effective and direct
way of achieving an integration of structured data sources via OBDA, as well as
more descriptive and meaningful answers to queries.

Admitting referring expressions leads naturally to a notion of a concept box
or CBox in place of an ABox in a knowledge base. This in turn raises a number
of technical issues: how to ensure referring expressions in a CBox refer to a single
individual, how to check for knowledge base consistency, and how to evaluate
conjunctive queries over the knowledge base. We have shown how all these issues
can be resolved by a mapping of CBoxes to ABoxes. The mapping enables off-the-
shelf procedures for TBox completion, for consistency checking, and for ABox
completion and query rewriting over standard knowledge bases consisting of a
TBox and ABox.

In [1], the notion of a referring expression type was also introduced. For
future work, we plan to explore how such a typing discipline can be used to push
parts of the mapping of CBoxes to ABoxes to backend database sources along
the lines outline in [3]. Our new ability of detecting co-reference to objects by
referring expressions can also lead to an ability to detect duplicate answers in
query results. Future work along this line can enable additional capabilities in
query formulation and answering, such as an ability for “limit k” operators in
queries.
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Abstract. Fixed-domain reasoning over OWL ontologies is adequate in
certain closed-world scenarios and has been shown to be both useful and
feasible in practice. However, the reasoning modes hitherto supported by
available tools do not include querying. We provide the formal founda-
tions of querying under the fixed domain semantics, based on the prin-
ciple of certain answers, and show how fixed-domain querying can be
incorporated in existing reasoning methods using answer set program-
ming (ASP).

1 Introduction

Semantic web technologies [13] are widely adopted for knowledge representation
on the Web or in other scenarios requiring intelligent data management. For
expressing sophisticated background knowledge, the ontology language OWL 2
and its profiles are the standard [17,30]. OWL 2 is based on expressive description
logics [4,21] and supported by optimized engines for reasoning and querying
[12,28,29].

The success of OWL 2 has led to its usage also in scenarios that actually go
against its standard semantics, which operates under the open-world assumption.
In many such scenarios, the involved elements (the “domain”) are actually known
upfront. In order to better account for such scenarios, an alternative, “fixed-
domain” semantics has been proposed and tools providing reasoning support
have been implemented on top of answer-set solvers [9,24,25].

While the existing reasoning support is helpful for standard reasoning tasks
such as satisfiability testing and also for non-standard ones such as model enu-
meration, sometimes more elaborate information needs must be addressed. For
sophisticated querying tasks in the Semantic Web setting, SPARQL has been
established as the query language of choice [31], originally designed as querying
formalism for RDF graphs [27]. The recent SPARQL 1.1 standard, however, sup-
ports queries over OWL ontologies by means of the so called entailment regimes
[5]. Given that querying OWL ontologies even under very basic queries is not
known to be decidable [23], the proposed approach constitutes a compromise,
implementing what is practically feasible under the open world semantics.

Under the fixed-domain semantics, however, a tighter integration of OWL
background knowledge and querying can be realized without risking decidability.
c© Springer Nature Switzerland AG 2019
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Table 1. Syntax and semantics of role and concept constructors in SROIQ, where
a1, . . . an denote individual names, s a role name, r a role expression and C and D
concept expressions.

Name Syntax Semantics

Inverse role s− {(x, y) ∈ ΔI × ΔI | (y, x) ∈ sI}
Universal role u ΔI × ΔI

Top � ΔI

Bottom ⊥ ∅
Negation ¬C ΔI \ CI

Conjunction C � D CI ∩ DI

Disjunction C � D CI ∪ DI

Nominals {a1, . . . , an} {aI
1 , . . . , a

I
n}

Univ. restriction ∀r.C {x | ∀y.(x, y) ∈ rI → y ∈ CI}
Exist. restriction ∃r.C {x | ∃y.(x, y) ∈ rI ∧ y ∈ CI}
Self concept ∃r.Self {x | (x, x) ∈ rI}
Qualified number �n r.C {x | #{y ∈ CI | (x, y) ∈ rI} ≤ n}
Restriction �n r.C {x | #{y ∈ CI | (x, y) ∈ rI} ≥ n}

Under these circumstances we can realize querying following the principle of
certain answers: each fixed-domain model of a given ontology can be conceived
as an RDF graph which can be SPARQL-queried in separation. Only if a query
answer is returned when querying each and every model, it qualifies as query
answer for the corresponding ontology.

Since model enumeration is a task readily provided by existing fixed-domain
reasoners, the above definition immediately gives rise to a brute-force algorithm
for fixed-domain ontological querying. However, the combinatorial explosion typ-
ically occurring in model-enumeration makes the feasibility of such an approach
appear highly doubtful. We therefore propose an alternative method based on
a tighter integration with existing reasoning technology, where SPARQL query
evaluation is encoded in the same answer set program that produces the models.
By means of this tight integration, we can leverage the structural similarity of
certain answers and skeptical consequences.

2 Description Logics

OWL 2 DL, the version of the Web Ontology Language we focus on, is based on
description logics (DLs, [4,21]). We briefly recap the description logic SROIQ
(for details see [14]). Let NI , NC , and NR be finite, disjoint sets called individual
names, concept names, and role names, respectively.1 These atomic entities can
be used to form complex ones as displayed in Table 1.
1 To ensure compatibility with their later usage in RDF and SPARQL, we silently

presume that all these vocabulary elements are Internationalized Resource Identifiers
(IRIs).
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Table 2. Syntax and semantics of SROIQ axioms.

Axiom α I |= α, if

r1 ◦ · · · ◦ rn � r rI
1 ◦ · · · ◦ rI

n ⊆ rI RBox R
Dis(s, r) sI ∩ rI = ∅
C � D CI ⊆ DI TBox T
C(a) aI ∈ CI ABox A
r(a, b) (aI , bI) ∈ rI

a
.
= b aI = bI

a � .= b aI �= bI

A SROIQ knowledge base K is a tuple (A, T ,R) where A is a SROIQ
ABox, T is a SROIQ TBox and R is a SROIQ RBox. Table 2 presents the
respective axiom types available in the three parts.2 We use NI(K), NC(K), and
NR(K) to denote the sets of individual names, concept names, and role names
occurring in K, respectively.

The semantics of SROIQ is defined via interpretations I = (ΔI , ·I) com-
posed of a non-empty set ΔI called the domain of I and a function ·I mapping
individual names to elements of ΔI , concept names to subsets of ΔI , and role
names to subsets of ΔI × ΔI . This mapping is extended to complex role and
concept expressions (cf. Table 1) and finally used to define satisfaction of axioms
(see Table 2). We say that I satisfies a knowledge base K = (A, T ,R) (or I is
a model of K, written: I |= K) if it satisfies all axioms of A, T , and R. We say
that a knowledge base K entails an axiom α (written K |= α) if all models of K
are models of α.

Example 1. Consider a knowledge base K = (A, T ,R). Let A contain the
assertions Aca(alice), Aca(bob), Aca(claire), Aca(david), Aca(eve), stat-
ing that the mentioned individuals are all academics and the assertions
supervises(alice, bob), supervises(bob, claire), and supervises(david,
eve) indicating supervision relationships and inProject(bob, projectX),
inProject(david, projectY), as well as inProject(eve, projectY) to indicate
research project affiliations.

Let T contain the axioms Aca � Masterstudent � PhDstudent �
Professor as well as Masterstudent � ¬PhDstudent, Masterstudent �
¬Professor, and PhDstudent � ¬Professor to indicate that every aca-
demic must be in exactly one of the three categories. Moreover, we

2 The original definition of SROIQ contained more RBox axioms (expressing tran-
sitivity, (a)symmetry, (ir)reflexivity of roles), but these can be shown to be syntac-
tic sugar. Moreover, the definition of SROIQ contains so-called global restrictions
which prevents certain axioms from occurring together. These complicated restric-
tions, while crucial for the decidability of classical reasoning in SROIQ are not
necessary for fixed-domain reasoning considered here, hence we omit them for the
sake of brevity.
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impose some constraints on supervision relationships: ∃supervises.� �
(Professor � PhDstudent) � ∀supervises.(Masterstudent � PhDstudent)
as well as ∃supervises.PhDstudent � Professor and PhDstudent �
∀supervises.Masterstudent.

It can be readily checked that K is satisfiable. It would, however, become
unsatisfiable upon adding the assertion supervises(finn, alice). Note also
that, e.g., K |= ¬Masterstudent(david).

3 Fixed-Domain Semantics

In DLs, models can be of arbitrary cardinality – for a satisfiability check, for
example, all what matters is the mere existence of a model. Yet, in many appli-
cations, the domain of interest is known to be finite. Restricting reasoning to
models of finite domain size (called finite model reasoning, a natural assumption
in database theory), has been intensively studied in DLs [7,16,20,22]. As opposed
to assuming the domain to be merely finite (but of arbitrary, unknown size), one
can consider the case where the domain has an a priori known cardinality and
use the term fixed domain [9].

Definition 1 (Fixed-Domain Semantics). Given a non-empty finite set Δ ⊆
NI , called fixed domain, an interpretation I =(ΔI , ·I) is said to be Δ-fixed (or
just fixed, if Δ is clear from the context), if ΔI = Δ and aI = a for all a ∈ Δ.
Accordingly, for a DL knowledge base K, we call an interpretation I a Δ-model
of K, if I is a Δ-fixed interpretation and I |= K. A knowledge base K is called
Δ-satisfiable if it has a Δ-model. We say K Δ-entails an axiom α (K |=Δ α) if
every Δ-model of K is also a model of α.

Example 2. Consider the knowledge base K from Example 1. Assume, we
let Δ = {alice, bob, claire, david, eve, projectX, projectY}. It is not hard
to see that K is Δ-satisfiable. Moreover, K Δ-entails the axiom ¬Aca �
{projectX, projectY}, whereas this axiom is not generally entailed.

4 RDF

We will now very briefly introduce RDF [8], and show how to represent a Δ-
fixed interpretation as RDF graph which in our setting will serve as essential
data structure over which SPARQL queries are evaluated. We will omit named
graphs from our presentation as they are not meaningful in our context.

Let I, B, L be countably infinite, pairwise disjoint sets, called IRIs, blank
nodes, and RDF literals, respectively. A tuple (v1, v2, v3) ∈ (I∪B)×I×(I∪B∪L)
is called an RDF triple, where v1 is called the subject, v2 the predicate, and v3

the object. An RDF graph G (or just graph) is a set of RDF triples, and we
use term(G) as the set of all elements from I ∪ B ∪ L occurring in G, and
blank(G) ⊆ B to denote the set blank nodes occurring in G. We will make later
use of Definition 2 that defines the construction of an RDF graph given a Δ-fixed
interpretation, promoting the interpretation as queryable artifact.
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Definition 2. Let I be a Δ-fixed interpretation. Then the RDF graph G(I)
induced by I consists of the triples (a, rdf:type, C) for all a ∈ CI , and (a, r, b)
for all (a, b) ∈ rI .

5 SPARQL

We will give a very compact introduction on the core elements of SPARQL [31],
similar to [3,19]. For reasons of space and relevance, we will focus on SELECT
queries and omit aggregates and solution modifiers.

Let V be a countably infinite set of available variables, where V ∩(I∪B∪L) =
∅. A tuple from (I ∪L∪V )× (I ∪L∪V )× (I ∪V ) is called triple pattern, and we
call a finite set of triple patterns a basic graph pattern. Complex graph patterns
are now inductively defined: (i) every basic graph pattern is a graph pattern,
(ii) for graph patterns P1 and P2, the expressions P1 AND P2, P1 UNION P2,
P1 MINUS P2, and P1 OPT P2 are graph patterns and (iii) for P a graph pattern
and C a filter constraint (defined below), P FILTER C is a graph pattern. The
set of variables occurring in a graph pattern P is denoted with var(P ). A filter
constraint is defined recursively as follows: (i) if ?X, ?Y ∈ V and u ∈ I ∪ L
then ?X = u, ?X =?Y , bound(?X), isIRI(?X), isLiteral(?X), and isBlank(?X)
are atomic filter constraints; (ii) if C1 and C2 are filter constraints then (¬C1),
(C1 ∧ C2), and (C1 ∨ C2) are complex filter constraints.

Finally, a SPARQL query q is a structure SELECT ?X1 . . .?Xn WHERE P
with ?X1, . . . , ?Xn variables and P a graph pattern. We use avar(q) =
{?X1, . . . , ?Xn} to denote the set of answer variables.

Example 3. In the following, a simple SPARQL query q1 asks for all projects in
which some PhD student is involved.

SELECT ?Y
WHERE { ?X rdf:type PhDStudent. ?X inProject ?Y }

The next SPARQL query q2 retrieves employees who are PhD students or pro-
fessors together with their projects.

SELECT ?X ?Y
WHERE { { ?X rdf:type PhDStudent. UNION ?X rdf:type Professor. }

AND ?X inProject ?Y. }

A mapping μ is a partial function μ : V → (I ∪ B ∪ L). The domain of μ,
dom(μ) ⊆ V , are the variables for which μ is defined. Two mappings μ1, μ2 are
compatible, written μ1 ∼ μ2, if for all ?X ∈ dom(μ1) ∩ dom(μ2), it holds that
μ1(?X) = μ2(?X). Given a triple pattern t, we let tμ denote the triple obtained
by replacing every variable ?X ∈ dom(μ) in t by μ(?X).
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Definition 3. Let t be a triple pattern, P, P1, P2 graph patterns, and G an RDF
graph, then the evaluation 〈〈·〉〉G is defined as:

〈〈{t1, ..., tk}〉〉G = {μ | dom(μ) =
⋃

1≤i≤k

var(ti) and {t1μ, ..., tkμ} ⊆ G}

〈〈P1 AND P2〉〉G = {μ1 ∪ μ2 | μ1 ∈ 〈〈P1〉〉G, μ2 ∈ 〈〈P2〉〉G, μ1 ∼ μ2}
〈〈P1 UNION P2〉〉G = 〈〈P1〉〉G ∪ 〈〈P2〉〉G
〈〈P1 MINUS P2〉〉G = 〈〈P1〉〉G \ 〈〈P2〉〉G

〈〈P1 OPT P2〉〉G = {μ1 ∪ μ2 | μ1 ∈ 〈〈P1〉〉G, μ2 ∈ 〈〈P2〉〉G, μ1 ∼ μ2}
∪ {μ1 | μ1 ∈ 〈〈P1〉〉G, ∀μ2 ∈ 〈〈P2〉〉G.μ1 �∼ μ2}

〈〈P FILTER C〉〉G = {μ ∈ 〈〈P 〉〉G | Cμ = �}
〈〈SELECT ?X1...?Xn WHERE P 〉〉G = {μ|{?X1,...,?Xn} | μ ∈ 〈〈P 〉〉G}

Let C,C1, C2 be filter constraints, ?X, ?Y ∈ V , a ∈ I ∪ B ∪ L. The valuation
of C on a mapping μ, written Cμ takes one of the three values {�,⊥, ε} and is
defined as follows. Cμ = ε, if:

C = isBlank(?X), C = isIRI(?X), C = isLiteral(?X), or (1)
C = (?X = a) with ?X �∈ dom(μ);
C = (?X =?Y ) with ?X �∈ dom(μ) or ?Y �∈ dom(μ); (2)
C = (¬C1) where C1μ = ε; (3)
C = (C1 ∨ C2) with � �∈ {C1μ,C2μ} and ε ∈ {C1μ,C2μ}; (4)
C = (C1 ∧ C2) with ⊥ �∈ {C1μ,C2μ} and ε ∈ {C1μ,C2μ}. (5)

Cμ = �, if:

C = bound(?X) with ?X ∈ dom(μ); (1)
C = isBlank(?X) with ?X ∈ dom(μ) and μ(?X) ∈ B; (2)
C = isIRI(?X) with ?X ∈ dom(μ) and μ(?X) ∈ I; (3)
C = isLiteral(?X) with ?X ∈ dom(μ) and μ(?X) ∈ L; (4)
C = (?X = a) with ?X ∈ dom(μ) and μ(?X) = a; (5)
C = (?X = ?Y ) with ?X, ?Y ∈ dom(μ) and μ(?X) = μ(?Y ); (6)
C = (¬C1) with C1μ = ⊥; (7)
C = (C1 ∨ C2) with C1μ = � or C2μ = �; (8)
C = (C1 ∧ C2) with C1μ = � and C2μ = �. (9)

Cμ = ⊥, otherwise.

6 SPARQL over Knowledge Bases Under Fixed Domain
Semantics

In database theory, as it is the case for SPARQL, a database instance is typ-
ically conceived to be complete in terms of knowledge, and thus queries are



492 S. Rudolph et al.

answered under the closed-world assumption (e.g. a person not listed in an
employee database is not an employee) [2]. In contrast, a DL knowledge base
represents incomplete knowledge, thus the mere absence of a fact does not allow
to assume its truth value to be false. Alike the notion of axiom entailment, this
has coined the notion of certain query answers [1], where (intuitively) a tuple is
considered to be an answer if it is the result of evaluating the query over every
model of the knowledge base. Thus, each interpretation I is seen as database
instance, over which the query is evaluated. For the evaluation of a SPARQL
query over some model I, we will therefore use the RDF graph G(I) induced by
I, as introduced in Sect. 4. To obtain the certain answers to a SPARQL query, we
collect only those answers that are returned upon executing the query over the
RDF graph G(I) of each and every model I of the queried knowledge base K.

Definition 4. The set of certain answers to a SPARQL query q over a DL
knowledge base K and a fixed domain Δ, is defined by certΔ(K, q) = {μ | μ ∈
〈〈q〉〉G(I) for all I |=Δ K}.

Example 4. Consider the knowledge base K from Example 1. Like in Exam-
ple 2 we let Δ = {alice, bob, claire, david, eve, projectX, projectY}. For
q1 from Example 3 we obtain certΔ(q1,K) = {?Y �→ projectX}. For q2 we
get certΔ(q2,K) = {(?X �→ bob, ?Y �→ projectX), (?X �→ david, ?Y �→
projectY)}.

7 Practical SPARQL Answering

Practical fixed-domain reasoning for DL knowledge bases has been realized via
a translation-based approach [9]. The given finite domain allows to translate DL
axioms into ASP rules, and thereby make use of modern solvers to evaluate the
resulting program in order to check satisfiability, as well as enumerating models
– which in turn correspond to answer sets.

In consequence, it is a straightforward idea to build on top of this translation
to answer SPARQL queries, in particular since translating SPARQL to datalog
rules has already been proposed [3,19]; in fact, it was shown that SPARQL is
equally expressive as non-recursive safe datalog with default negation.

We essentially combine both approaches (ASP-based model enumeration and
ASP-based query evaluation) and adapt them to make them compatible. After
providing a short introduction of answer set programming, we will sketch the
translation of DL knowledge bases into answer set programs [9]. In more detail,
the translation of SPARQL queries into a stratified answer set program is given
thereafter.

7.1 Answer Set Programming

We review the basic notions of answer set programming [18] under the stable-
model semantics [11], for further details we refer to [6,10].
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We fix a countable set U of (domain) elements, also called constants; and
presume a total order < over the domain elements. An atom is an expression
p(t1, . . . , tn), where p is a predicate of arity n ≥ 0 and each ti is either a variable
or an element from U . An atom is ground if it is free of variables. BU denotes
the set of all ground atoms over U . A (normal) rule ρ is of the form

a ← b1, . . . , bk, not bk+1, . . . , not bm.

with m ≥ k ≥ 0, where a is an atom or empty (in the latter case the rule is called
integrity constraint), b1, . . . , bm are atoms, and “not ” denotes default negation.
The head of ρ is the singleton set H(ρ) = {a} if a is an atom and H(ρ) = ∅
otherwise, and the body of ρ is B(ρ) = {b1, . . . , bk, not bk+1, . . . , not bm}. Fur-
thermore, B+(ρ) = {b1, . . . , bk} and B−(ρ) = {bk+1, . . . , bm}. A rule ρ is safe if
each variable in ρ occurs in B+(r). A rule ρ is ground if no variable occurs in ρ.
A fact is a ground rule with empty body. An (input) database is a set of facts. A
(normal) program is a finite set of normal rules. For a program Π and an input
database D, we often write Π(D) instead of D ∪ Π. For any program Π, let UΠ

be the set of all constants appearing in Π. Gr(Π) is the set of rules ρσ obtained
by applying, to each rule ρ ∈ Π, all possible substitutions σ from the variables
in ρ to elements of UΠ.

An interpretation I ⊆ BU satisfies a ground rule ρ iff H(ρ)∩ I �= ∅ whenever
B+(ρ) ⊆ I, B−(ρ) ∩ I = ∅. I satisfies a ground program Π, if each ρ ∈ Π
is satisfied by I. A non-ground rule ρ (resp., a program Π) is satisfied by an
interpretation I iff I satisfies all groundings of ρ (resp., Gr(Π)). I ⊆ BU is an
answer set (also called stable model) of Π iff it is the subset-minimal set satisfying
the Gelfond-Lifschitz reduct ΠI = {H(ρ) ← B+(ρ) | I ∩B−(ρ) = ∅, ρ ∈ Gr(Π)}.
For a program Π, we denote the set of its answer sets by S(Π).

Consequences. We rely on two notions of consequence: Given a program Π and
a ground atom α, we say that Π cautiously entails α, written Π |=∀ α, if α ∈ S
for every answer set S ∈ S(Π). Likewise, we say that Π bravely entails α, written
Π |=∃ α, if there exists an answer set S ∈ S(Π) with α ∈ S. The set of all cautious
consequences of Π is denoted Cn∀(Π) and the set of its brave consequences
Cn∃(Π).

7.2 Translating DL Knowledge Bases

An ASP translation of SROIQ knowledge bases has been proposed in [9,26].
Intuitively, given a fixed domain, one can guess an interpretation and verify
modelhood with appropriate constraints (resulting from the axioms). Thus, the
key idea of the translation is that every axiom is turned into an integrity con-
straint, and the only rules with nonempty head are so-called “guessing rules”
for the extensions of every concept and role. Following this guess and check
approach, the translation is rather direct, for example, a simple concept sub-
sumption A � B becomes a constraint of the form ←A(X), notB(X); i.e. ruling
out interpretations where X is an instance of A but not of B, and hence not
satisfying the subsumption.
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For a DL knowledge base K and fixed domain Δ, let Π(K,Δ) denote the
answer set program resulting from translating K with respect to Δ. It is shown
that every answer set S ∈ S(Π(K,Δ)), corresponds to a Δ-model of K, and
vice versa. Hence, it is possible to obtain the corresponding RDF graph G(I) of
every model via the answer sets and evaluate a SPARQL query on it. Since the
translation has been implemented and is available in the tool Wolpertinger
[25], which is able to enumerate Δ-models, SPARQL query evaluation could
be realized with only little implementation effort; i.e. retrieve all models and
evaluate the query on each of the induced graphs, and compute the intersection
of all answers – that would be taking Definition 4 literally. However, as the sets
of enumerated models tend to be very large due to combinatorial explosion, we
are certain that this approach would not be feasible. Therefore, we will propose
another translation-based approach.

In Π(K,Δ), predicate names directly correspond to concept and role
names in K. This translation can syntactically be lifted to a triple nota-
tion, such that, e.g. , translating A � B results in the constraint ←
triple(X, rdf:type, A), not triple(X, rdf:type, B). We let ΠRDF(K,Δ) denote this
lifted program. Now by letting RDF(S) = {(v1, v2, v3) | triple(v1, v2, v3) ∈ S},
we obtain the following correspondence.

Lemma 1. Let K be a DL knowledge base, Δ a fixed domain, and I a Δ-fixed
interpretation. Then I |=Δ K if and only if there exists some answer set S ∈
S(ΠRDF(K,Δ)) such that G(I) = RDF(S).

This correspondence now provides us with the right starting point for apply-
ing the SPARQL querying – again via a translation into ASP.

7.3 Translating SPARQL Queries

We let Π(q) denote the answer set program resulting from the translation of a
SPARQL query q, into rules, closely following [19]. Intuitively, the translation
follows the recursive definition of 〈〈q〉〉G (cf. Definition 3), evaluating the graph
pattern Pq of q inside out. For a set of variables V = {X1, . . . , Xn}, we denote
with V = (X1, . . . , Xn) the sequence of variables obtained relying on some lexi-
cographic ordering. Π(q) is then obtained with the initial call τ(avar(q), Pq, 1) of
the translation τ defined in the following. Thereby, the dedicated atom answer i
represents the result of evaluating the sub-graph pattern at position i in the
query graph pattern seen as binary tree; thus, alike the definition of 〈〈q〉〉G (cf.
Definition 3), the translation τ traverses the binary tree. For the translation of
filter expressions via the function Φ we refer the reader to [19].

τ(V, {T1, . . . , Tn}, i) = {answer i(V ) ← triple(T1), . . . , triple(Tn)}
where Ti = (vi, v

′
i, v

′′
i ) is a triple pattern. (1)

τ(V, P1 ANDP2, i) = {answer i(V ) ← answer2i(V ′
P1

), answer2i+1(V ′
P2

),
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join |SP1,2 |(S
′
P1,2

, S′′
P1,2

, SP1,2)}

∪ τ(var(P1), P1, 2i) ∪ τ(var(P2), P2, 2i + 1) ∪ Join(|SP1,2 |)
with V ′

P1 = var(P1)[SP1,2 → S′
P1,2 ]

and V ′
P2 = var(P2)[SP1,2 → S′′

P1,2 ] (2)

τ(V, P1 UNIONP2, i) = {answer i(V [(V \var(P1)) → null]) ← answer2i(var(P1)),

answer i(V [(V \var(P2)) → null]) ← answer2i+1(var(P2))}
∪ τ(var(P1), P1, 2i) ∪ τ(var(P2), P2, 2i + 1) (3)

τ(V, P1 MINUSP2, i) = {answer i(V [(V \var(P1)) → null]) ← answer2i(var(P1)),

not answer2i+1(var(P1) ∩ var(P2))}
∪ τ(var(P1), P1, 2i) ∪ τ(var(P2), P2, 2i + 1) (4)

τ(V, P1 OPTP2, i) = τ(V, P1 ANDP2, i) ∪ τ(V, P1 MINUSP2, i) (5)

τ(V, P FILTERC, i) = τ(var(P ), P, 2i) ∪ Φ(answer i(V ) ← answer2i(var(P )), C) (6)

The translation of AND (joins), realized in Rule (2) requires some more expla-
nation. First, the variables to join on are determined via SP1,2 = var(P1)∩var(P2)
(shared variables), and we denote with S′

P1,2
and S′′

P1,2
the renamed copies

of the shared variables SP1,2 . For example, S′
P1,2

= {X ′
1, . . . , X

′
n} for SP1,2 =

{X1, . . . , Xn}. Thus, in Rule (2), the shared variables in answer2i are replaced
by their singly primed version, and the shared variables in answer2i to their dou-
bly primed version, respectively. The non-primed version is bound by joinn(. . .),
which basically ensures that any value joins with null, for n shared variables. To
implement this, we define the rule set Join(n) as follows:

join (null, null, null)

join (X,X,X) ← term(X).

join (X, null, X) ← term(X). join (null, X,X) ← term(X).

join1(X
′
1, X

′′
1 , X1) ← join (X

′
1, X

′′
1 , X1)

join2(X
′
1, X

′
2, X

′′
1 , X

′′
2 , X1, X2) ← join1(X

′
1, X

′′
1 , X1), join (X

′
2, X

′′
2 , X2)

join3(X
′
1, X

′
2, X

′
3, X

′′
1 , X

′′
2 , X

′′
3 , X1, X2, X3) ← join2(X

′
1, X

′
2, X

′′
1 , X

′′
2 , X1, X2), join (X

′
3, X

′′
3 , X3)

.

.

.

joinn(X
′
1, . . . , X

′
m, . . . , X1, . . . , Xn) ← joinn−1(X

′
1, . . . , X

′
n−1, . . . , X1, . . . , Xn−1),

join (X
′
n, X

′′
n , Xn)

Example 5. The following rule is the result of applying τ({?Y }, Pq1 , 1) for the
query q1 in Example 3.

answer1(Y ) ← triple(X, rdf:type,PhDStudent), triple(X, inProject, Y ).
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For the query q2 we obtain the following result for the computation of
τ({?X, ?Y }, Pq1 , 1) (omitting the rules defining the join predicate).

answer1(X,Y ) ← answer2(X ′), answer3(X ′′, Y ), join1(X
′,X ′′,X).

answer2(X) ← answer4(X).
answer2(X) ← answer5(X).

answer3(X,Y ) ← triple(X, inProject, Y ).
answer4(X) ← triple(X, rdf:type,PhDStudent).
answer5(X) ← triple(X, rdf:type,Professor).

Note that Π(q) is stratified and hence can have only one answer set. Moreover,
observe that the answer set of Π(q) might contain instances of answer i with the
null constant, with the intuitive meaning that the corresponding answer variables
do not have a value assigned. In contrast the mapping μ is not defined to map
variables onto null. Therefore, for some V ⊇ dom(μ) let μV be the total function
with domain V such that μV (?X) = μ(?X) if ?X ∈ dom(μ) and μV (?X) = null
otherwise. Now, for an RDF graph G, let ASP(G) denote the translation of G
into a database of triple atoms. Then we obtain the following lemma.

Lemma 2. Let G be an RDF graph and let q be a SPARQL query with V =
avar(q). Then μ ∈ 〈〈q〉〉G if and only if μ : V → terms(G) and answer1(V μV ) is
an element of the one and only answer set of Π(q) ∪ ASP(G).

7.4 Combining Model Generation and Querying

It is straightforward to reformulate Lemma 2 for models of our knowledge base.

Lemma 3. Let I be a Δ-model for the DL knowledge base K and let q be a
SPARQL query with V = avar(q). Then μ ∈ 〈〈q〉〉G(I) if and only if μ : V →
terms(G) and answer1(V μV ) is an element of the one and only answer set of
Π(q) ∪ ASP(G(I)).

Now we are ready to “plug together” the results from Lemmas 1 and 3 to
obtain the correctness result for the described translation.

Theorem 1. For a DL knowledge base K over a fixed domain Δ, and a SPARQL
query q with V = avar(q), it holds that μ ∈ certΔ(K, q) if and only if μ : V →
terms(G) and answer1(V μV ) ∈ Cn∀(ΠRDF(K,Δ) ∪ Π(q)).

Proof (Sketch). First, we observe that no predicate from ΠRDF(K,Δ) occurs in
the head of any rule of Π(q). Hence, by an application of the well-known splitting
theorem [15], we can establish the following correspondence:

S is an answer set of ΠRDF(K,Δ) ∪ Π(q) if and only if S = S′ ∪ S′′ where S′

is an answer set of ΠRDF(K,Δ) and S′′ is an answer set of Π(q) ∪ S′. (†)
Now consider a mapping μ such that answer1(V μV ) ∈ Cn∀(ΠRDF(K,Δ) ∪

Π(q)). By the definition of cautious consequences, this means that
answer1(V μV ) ∈ S for every answer set S of ΠRDF(K,Δ) ∪ Π(q). By (†),
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this means that answer1(V μV ) ∈ S′′ for the one and only answer set S′′ of
Π(q) ∪ S′ for every answer set S′ of ΠRDF(K,Δ). Now, using Lemmas 1 and 3
we find that this is the case exactly if for every Δ-model I of K (represented by
S′ = ASP(G(I))), we find that μ ∈ 〈〈q〉〉G(I). Now, by the definition of certain
answers, the latter is the case exactly if μ ∈ certΔ(K, q). ��

8 Conclusion

In this paper, we introduced the formal underpinnings for answering SPARQL
queries over OWL ontologies under the fixed domain semantics. As usual for
query answering over expressive logics, we employ the principle of certain
answers. We also proposed a way to realize this task by means of cautious infer-
encing over answer set programs, allowing to employ existing, highly optimized
off-the-shelf machinery for that purpose.

As next steps in our research, we will evaluate the approach over synthetic
and real-world data sets in order to verify the (albeit very plausible) assumption
that our proposed approach is superior to the brute-force approach of enumer-
ating and querying all models.

Beyond that, our initial work raises many interesting conceptual questions.

Adequacy of the Certain Answer Principle. On the one hand it is natural to ask
for “guaranteed” results applying to all scenarios complying with the knowledge
base. On the other hand, fixed-domain reasoning is often employed in the search
for solutions to some sort of constraint satisfaction problem, and the enumerated
models represent the solutions to that problem. In such a setting, one might also
ask for possible answers, i.e., answers obtained from some model (rather than
all of them). We foresee that such a setting can be captured by our approach in
a straightforward way by considering brave consequences rather than cautious
ones.

On yet another note, an alternative approach would be to conceive the set
of models of a knowledge base as a collection of RDF graphs, stored together in
an RDF dataset using named graphs. SPARQL queries could then be executed
over this “super-model”.

Aggregates. For space reasons, we refrained from addressing aggregates. The
technically most straightforward (and readily implementable) way to define
answers for queries featuring aggregates would again be to fully execute the
query over each model separately and then intersect the result sets over all mod-
els. Such strategy might, however lead to unintuitive results. If we queried the
knowledge base from Example 1 asking for academics and the number of projects
each of them is in, we would get an empty result, since there exist models where
every person is working in each of the project, where in the “standard model”
one or no project would be assigned to every person. This observation suggests
that under certain circumstances we might perform other operations than just
intersection when accumulating certain answers.
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Abstract. In this paper we discuss how we can augment an existing
controlled natural language in a systematic way with temporal expres-
sions in order to write high-level temporal specifications which require
reasoning about action and change. We show that domain-dependent
axioms which are necessary to specify time-varying properties, deal with
the commonsense law of inertia, and with continuous change can be
expressed directly and in a transparent way on the level of the con-
trolled natural language. The resulting temporal specification including
the corresponding axioms and the required terminological knowledge can
be translated automatically into an executable answer set program and
then be used by a linguistically motivated version of the Event Calcu-
lus, implemented as an answer set program, for temporal reasoning and
question answering.

Keywords: Controlled natural language · Answer set programming ·
Event calculus

1 Introduction

Despite the impressive progress made in the domain of data-driven applications,
there is still a strong need for mechanisms that support the manual acquisition
and encoding of fine-grained commonsense and domain knowledge that can be
used for automated reasoning. Controlled natural languages offer such a mech-
anism that allows subject matter experts to specify knowledge in a human-
readable and machine-processable way [10,16]. Controlled natural languages are
simplified forms of natural languages; they are constructed by restricting the
size of the grammar and the vocabulary of a natural language in order to reduce
or eliminate ambiguity and complexity so that these languages can be auto-
matically translated into a formal target language. These characteristics are
interesting and make controlled natural languages useful as high-level interface
languages to knowledge systems; in particular, if the writing process of these
languages is supported by a suitable authoring tool that facilitates and guides
the construction of a textual specification [6,9].
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Most existing controlled natural languages deal with static knowledge. We
believe that there exist only two controlled languages: Computer Processable
English (CPL) [1] and PENG Light [17] that support reasoning with dynamic
commonsense knowledge. In the case of CPL, sentences are parsed and then
translated via intermediate logical forms into statements of the KM knowledge
representation language that relies on a situation calculus mechanism to process
the effects of actions and to update existing situations. In contrast to CPL, a
textual specification in PENG Light is translated during the parsing process into
discourse representation structures, the basic meaning-carrying units of discourse
representation theory [7], and then further into a Prolog-based version of the
simplified Event Calculus [8,20] in order to reason about events, fluents and
time points. From a linguistic point of view, discourse representation theory
is interesting, since it has been designed to handle anaphoric expressions in a
uniform way, but discourse representation theory is equivalent to first-order logic
and has therefore the same computational problems and limitations as knowledge
representation language as a first-order logic.

In this paper, we explore a different avenue for writing temporal specifications
that is based on Answer Set Programming (ASP) [3,4,13] as knowledge represen-
tation formalism and combine ASP with Event Calculus reasoning [8,14,15,20].
Previously, the author [18] showed that a bi-directional grammar can be used
to specify and verbalise ASP programs in controlled natural language and to
resolve anaphoric references in a similar way as in discourse representation the-
ory by enforcing structural constraints in the data structure of the grammar.
Taking this work as a starting point, we show how a temporal specification can
be written in controlled natural language and translated into an ASP program
that uses a linguistically motivated version of the Event Calculus for temporal
reasoning and question answering. We will illustrate that a temporal specifi-
cation can be written entirely in controlled natural language together with all
domain-dependent effect axioms and relevant terminological knowledge that are
necessary for temporal reasoning.

2 Answer Set Programming

Answer Set Programming (ASP) is a form of declarative programming and has
its roots in logic programming, disjunctive databases and non-monotonic reason-
ing [4,13]. ASP is an expressive formal language for knowledge representation
and automated reasoning and is based on the answer set semantics for logic pro-
grams [4]. In ASP, problems are represented in terms of finite logic theories and
are then solved by reducing these problems to finding answer sets which declar-
atively describe the solutions to these problems. An ASP program consists of a
set of rules of the form:

L1 ; ... ; Lk :- Lk+1, ..., Lm, not Lm+1, ..., not Ln.

where all Li are classical literals. A classical literal L is either an atom a or a
negated atom ¬a. A literal of the form not L stands for a negation as failure
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literal. The disjunction (;) is an epistemic disjunction [5]. The arrow (:-) that
points to the left stands for if; the part on the left of that arrow is the head of
the rule and the part on the right is its body. If the body is empty (n=0), then
we omit the arrow and end up with a fact. If the head is empty (k=0), then we
keep the arrow and end up with an integrity constraint. ASP is interesting as a
knowledge representation language, since it allows us to combine strong negation
and negation as failure to specify non-monotonic theories. Furthermore, ASP is
supported by powerful programming tools; for example, the clingo system [3]
combines a grounder and a solver, and integrates scripting languages.

3 Towards an ASP-Based Event Calculus

The basic notation of the Event Calculus distinguishes between events, fluents
and time points [8,15,20]. An event represents an action that may occur in a
particular domain and can be described on the linguistic level by an event verb;
a fluent represents a time-varying property in a domain and can be described
by an adjective or a stative verb, and a time point represents an instant of time
and can be described by a date/time. An event may happen at a particular time
point and initiate or terminate a fluent; a fluent has a truth value and may hold
or not hold at that time point. After an event occurs, the truth value of a fluent
may change and require an update. Using the Event Calculus, we can specify
commonsense knowledge about events that initiate fluents, terminate fluents or
release them from the commonsense law of inertia [15]. Additionally, we have
trajectory and anti-trajectory axioms that describe the behaviour of continuous
change. For example, the following are two core axioms of the simplified Event
Calculus [20] in logic programming notation:

holds_at(F, T2) :-

happens(E, T1), initiates(E, F, T1), T1 < T2, not clipped(T1, F, T2).

clipped(T1, F, T2) :-

happens(E, T), T1 < T, T < T2, terminates(E, F, T).

The first axiom states that a fluent F holds at time point T2, if an event E
happens at time point T1 and initiates the fluent at T1, and T1 is before T2, and
it is not provable that the fluent has been clipped between these two time points.
The second axiom states that a fluent F is clipped between the time points T1
and T2, if an event E happens at T and terminates the fluent at T and T is after
T1 and before T2. To illustrate our approach, we modify this version of the Event
Calculus in order to make it compatible with ASP and prepare it for the formal
output that is generated by the controlled natural language processor. As the
following two rules illustrate, we applied three main modifications:

holds_at(F, T2) :-

initiated_at(F, T1), time_point(T2), T1 < T2, not clipped(T1, F, T2).

clipped(T1, F, T2) :-

terminated_at(F, T), time_point(T1), time_point(T2), T1 <= T, T < T2.



Augmenting an Answer Set Based CNL with Temporal Expressions 503

(1) Many ASP solvers require a safety condition on rules: a rule is safe, if
every variable occurs in a positive body literal of the rule: therefore, we have
to add the literal time point(T2) to the body of the first rule and the literals
time point(T1) and time point(T2) to the body of the second rule to guaran-
tee rule safety. (2) The literal happens/2 is not necessary in the body of these
rules, since we can check if an event happens at a specific time point in the
body of the effect axioms and end up with the two literals: initiated at/2 and
terminated at/2 instead of initiates/3 and terminates/3. (3) Rather than
specifying that a fluent is clipped, if an event terminates that fluent after T1 and
before T2, we specify that the fluent was terminated at or after T1 and before
T2 (more about this in Sect. 5).

4 The Controlled Natural Language PENGASP

PENGASP is a controlled natural language designed to support subject mat-
ter experts who do not necessarily have a formal background in logic to write
high-level specifications [18]. The language processor of the PENGASP system
uses a chart parser that relies on a unification-based grammar and lexicon. The
language processor generates an internal representation of an ASP program,
resolves anaphoric expressions and generates lookahead information during the
parsing process. The lookahead information informs the author about how a
sentence can be completed and enforces the structure of the controlled natural
language on the user interface level [6]. The grammar of the PENGASP system is
bi-directional and parametrised so that it can be used for processing a specifica-
tion and translating the specification into an ASP program as well as generating
a semantically equivalent specification from an ASP program [18].

4.1 A Temporal Specification in PENGASP

The static version of the controlled natural language PENGASP did not support
the writing of temporal specifications that require reasoning about events, flu-
ents and time points. In this section, we present an extension of the controlled
natural language where the grammar is partitioned away from the existing static
grammar and where the extension can be used as required. The extension con-
sists of temporal modifiers that allow us to specify when an particular event
occurs or does not occur and when a fluent holds or does not hold. These mod-
ifiers include date and time expressions and references to time points. A date
is introduced by the preposition on and has the format YYYY-MM-DD, a time
is introduced by the preposition at and has the format HH:MM:SS or shorter
HH:MM. Once a date has been introduced all subsequent time points refer to
that date, until a new date is introduced, for example:

1. The train AV8504 is located at Roma Termini on 2019-02-20 at 06:30.
2. The train departs from Roma Termini at 06:45.
3. The train arrives at Firenze Campo di Marte at 08:03 and departs from

Firenze Campo di Marte at 08:10.
4. The train arrives at Bozen/Bolzano at 11:17.
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The first sentence (1) describes a fluent that holds at a given time point (on
2019-02-20 at 06:30). The next three sentences (2–4) describe four events that
occur at subsequent time points (06:45, 08:03, 08:10 and 11:17) on the same
day. However, note that this specification does not tell us, for example, that
the train is no longer at Roma Termini after 06:45 or that the train is located
at Bozen/Bolzano after 11:17. Our own commonsense knowledge fills in these
gaps, but this knowledge is not available by default for automated reasoning
and needs to be added to the specification in the form of positive and negative
effect axioms. Below are four effect axioms (5–8) that describe which fluents are
initiated and terminated as consequence of one or more events that occur (or do
not occur) at a particular time point.

5. If a vehicle departs from a location at a time point then the vehicle will no
longer be located at that location after that time point.

6. If a vehicle arrives at a location at a time point then the vehicle will be located
at that location after that time point.

7. If a vehicle departs from a location at a time point then the vehicle will be
in transit after that time point.

8. If a vehicle arrives at a location at a time point and the vehicle does not
provably make a stopover at that time point then the vehicle will no longer
be in transit after that time point.

These effect axioms add new linguistic constructions to the controlled lan-
guage PENGASP; for example, the construction will be in transit serves a trigger
to construct an initiating effect axiom and the construction will no longer be
located at servers as a trigger to construct a terminating effect axiom. Note that
the expression does not provably ... stands for weak negation in contrast to does
not ... which stands for strong negation in PENGASP. Note also that the above
effect axioms are quite general and speak about vehicle and location and could
therefore also be used for different scenarios. In our case, we have to connect the
terminology used in these effect axioms with the terminology in our temporal
specification. We can achieve this directly on the level of the controlled natural
language and make therefore the following ontological commitments:

9. Roma Termini is a railway station.
10. Firenze Campo di Marte is a railway station.
11. Bozen/Bolzano is a railway station.
12. Every railway station is a location.
13. Every train is a vehicle.
14. If a vehicle arrives at a location at a time point T1 and departs from that

location at a time point T2 and T1 is before T2 then the vehicle makes a
stopover between T1 and T2.

The sentences (9–11) assign an instance to a class and the sentences (12)
and (13) specify general class inclusion axioms. The sentence (14) defines a
composite event (makes a stopover at) that consists of two subevents (arrives at
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and departs from) and that occurs between two time points (T1 and T2). Given
this additional background knowledge, the ASP system clingo [3] can figure out
which fluents hold or do not hold at a given point in time; for example, that the
train 8504 is in transit at 07:30 since it is a vehicle, located at Firenze Campo
di Marte at 08:05 and in transit at the same time since Firenze Campo di Marte
is a location, but not located at the same railway station after 08:10.

4.2 Translating the Temporal Specification

The translation of the temporal specification results in the set of ASP atoms
displayed below which is based on a flat notation that uses a small number of
typed literals (e.g. class/2, named/2, fluent/3, event/3, data prop/3) which
are associated with linguistic categories (e.g. noun, verb, adjective, proper name,
date and time) in the lexicon, together with those literals (holds at/2 and
happens/2) which belong to the language of the Event Calculus.

class(1,train).

named(1, av8504).

holds_at(fluent(1, 2, located_at), 1550644200).

named(2, roma_termini).

data_prop(3, 1550644200, date_time).

happens(event(1, 2, depart_from), 1550645100).

data_prop(4, 1550645100, date_time).

happens(event(1, 5, arrive_at), 1550649780).

named(5, firenze_campo_di_marte).

data_prop(6, 1550649780, date_time).

happens(event(1, 5, depart_from), 1550650200).

data_prop(7, 1550650200, date_time).

happens(event(1, 8, arrive_at), 1550661420).

named(8, bozen_bolzano).

data_prop(9, 1550661420, date_time).

The numbers 1-9 are Skolem constants and the time points are represented
as integers and stand for Unix timestamps. Note that whenever the anaphora
resolution algorithm detects a time, for example 06:45 without an immediately
preceding date, then it looks for the closest date (2019-02-20) so that a suitable
Unix timestamp can be constructed (in our case: 1550645100). If no date is
available then the system date is taken as reference date.

4.3 Translating the Effect Axioms

The sentences (5–8) that specify effect axioms are translated into ASP rules
that contain the Event Calculus literals initiated at/2 and terminated at/2
as head. The first argument of these literals is a fluent type and the second
argument is a time point.
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terminated_at(fluent(A, B, located_at), T) :-

class(A, vehicle), happens(event(A, B, depart_from), T),

class(B, location), class(C, time_point), data_prop(C, T, date_time).

initiated_at(fluent(A, B, located_at), T) :-

class(A, vehicle), happens(event(A, B, arrive_at), T),

class(B, location), class(C, time_point), data_prop(C, T, date_time).

initiated_at(fluent(A, in_transit), T) :-

class(A, vehicle), happens(event(A, B, depart_from), T),

class(B, location), class(C, time_point), data_prop(C, T, date_time).

terminated_at(fluent(A, in_transit), T) :-

class(A, vehicle), happens(event(A, B, arrive_at), T),

class(B, location), class(C, time_point), data_prop(C, T, date_time),

not happens(event(A, make_stopover), T).

Note that the Event Calculus literal happens/2 that triggers the initiation
or termination of a fluent at a given time point occurs in the body of these
rules. This is a consequence of the linguistic structure of the effect axioms that
we used as a starting point and has an impact on the linguistically motivated
reconstruction of the Event Calculus (see Sect. 5).

4.4 Translating the Terminological Knowledge

The terminological knowledge that connects the temporal specification with the
effect axioms is translated into the following ASP facts and rules:

class(2, railway_station).

class(5, railway_station).

class(8, railway_station).

class(X, vehicle) :- class(X, train).

class(X, location) :- class(X, railway_station).

The definition that introduces a compound event (make stopover) via two
subevents (arrive at and depart from) results in the following ASP rule:

happens(event(A, make_stopover), T1, T2) :-

class(A, vehicle), happens(event(A, B, arrive_at), T1),

class(B, location), time_point(T1),

happens(event(A, B, depart_from), T2), time_point(T2), T1 < T2.

Note that the entire temporal specification can be verbalised again in con-
trolled natural language since our grammar is bi-directional, but verbalisation
requires sentence planning as discussed in [18].

5 A Linguistically Motivated ASP-Based Event Calculus

Recently, Lee and Palla [11] showed that the circumscriptive Event Calculus can
be reformulated in first-order stable model semantics [2], and represented as an
ASP program under the assumption that the domain is given and finite. The
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axioms of our linguistically motivated ASP-based version of the Event Calculus
trace back to those of the circumscriptive Event Calculus of Miller and Shana-
han [14] and to the work of Mueller [15]. Below we discuss our version of the
ASP representation of the 17 core axioms of the Event Calculus.

EC1. A fluent F is clipped between time points T1 and T2, if the fluent was
terminated at time point T, and T was at or after T1 and before T2:

clipped(T1, F, T2) :-

terminated_at(F, T), time_point(T1), time_point(T2), T1 <= T, T < T2.

EC2. A fluent F is declipped between time points T1 and T2, if the fluent was
initiated at time point T, and T was at or after T1 and before T2:

declipped(T1, F, T2) :-

initiated_at(F, T), time_point(T1), time_point(T2), T1 <= T, T < T2.

EC3. A fluent F is stopped between time points T1 and T2, if the fluent was
terminated at time point T, and T was after T1 and before T2:

stopped_in(T1, F, T2) :-

terminated_at(F, T), time_point(T1), time_point(T2), T1 < T, T < T2.

EC4. A fluent F is started between time points T1 and T2, if the fluent was
initiated at time point T, and T was after T1 and before T2:

started_in(T1, F, T2) :-

initiated_at(F, T), time_point(T1), time_point(T2), T1 < T, T < T2.

EC5. A fluent F2 holds at time point T2, if there is a trajectory defined where
a fluent F1 was initiated at time point T1 and the value of a fluent F2 becomes
true at time point T2 while the fluent F1 was not provably stopped between time
points T1 and T2:

holds_at(F2, T2) :-

trajectory(F1, T1, F2, T2), not stopped_in(T1, F1, T2).

EC6. A fluent F2 holds at time point T2, if there is an anti-trajectory defined
where a fluent F1 was terminated at time point T1 and the value of a fluent
F2 becomes true at time point T2 while the fluent F1 was not provably started
between time points T1 and T2:

holds_at(F2, T2) :-

anti_trajectory(F1, T1, F2, T2), not started_in(T1, F1, T2).

EC7. A fluent F is released from the commonsense law of inertia between time
points T1 and T2, if the fluent was released at time point T, and T was after T1
and before or at T2:
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released_at_between(T1, F, T2) :-

released_at(F, T), time_point(T1), time_point(T2), T1 < T, T <= T2.

EC8. A fluent F is released from the commonsense law of inertia between time
points T1 and T2, if the fluent was initially released at time point T, and T was
at or after T1 and before T2:

released_between(T1, F, T2) :-

init_released_at(F, T), time_point(T1), time_point(T2),

T1 <= T, T < T2.

EC9. A fluent F holds at time point T2, if the fluent did hold at time point T1
and was not provably released and not provably clipped between time point T1
and some later time point T2:

holds_at(F, T2) :-

holds_at(F, T1), time_point(T1), time_point(T2), T1 < T2,

not released_at_between(T1, F, T2), not clipped(T1, F, T2).

EC10. A fluent F does not hold at time point T2, if the fluent did not hold at
time point T1 and was not provably released and not provably declipped between
time point T1 and some later time point T2:

-holds_at(F, T2) :-

-holds_at(F, T1), time_point(T1), time_point(T2), T1 < T2,

not released_at_between(T1, F, T2), not declipped(T1, F, T2).

EC11. A fluent F is released from the commonsense law of inertia at time point
T2, if the fluent was released at time point T1 and was not provably clipped and
not provably declipped between time point T1 and some later time point T2:

released_at(F, T2) :-

released_at(F, T1), time_point(T2), T1 < T2,

not clipped(T1, F, T2), not declipped(T1, F, T2).

EC12. A fluent F is not released from the commonsense law of inertia at time
point T2, if the fluent was not released at time point T1 and was not provably
released between time point T1 and some later time point T2:

-released_at(F, T2) :-

-released_at(F, T1), time_point(T2), T1 < T2,

not released_between(T1, F, T2).

EC13. A fluent F is released between time points T1 and T2, if the fluent was
initially released at time point T and T is after T1 and before T2:
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released_in(T1, F, T2) :-

init_released_at(F, T), time_point(T1), time_point(T2),

T1 < T, T < T2.

EC14. A fluent F holds at time point T2, if the fluent was initiated at time point
T1 and was not provably stopped and not provably released between time point
T1 and some later time point T2:

holds_at(F, T2) :-

initiated_at(F, T1), time_point(T2), T1 < T2,

not stopped_in(T1, F, T2), not released_in(T1, F, T2).

EC15. A fluent F does not hold at time point T2, if the fluent was terminated at
time point T1 and was not provably started and not provably released between
time point T1 and some later time point T2:

-holds_at(F, T2) :-

terminated_at(F, T1), time_point(T2), T1 < T2,

not started_in(T1, F, T2), not released_in(T1, F, T2).

EC16. A fluent F is released from the commonsense law of inertia at time point
T2, if the fluent was initially released from that law at time point T1 and was
not provably stopped and not provably started between time point T1 and some
later time point T2:

released_at(F, T2) :-

init_released_at(F, T1), time_point(T2), T1 < T2,

not stopped_in(T1, F, T2), not started_in(T1, F, T2).

EC17. A fluent F is not released from the commonsense law of inertia at time
point T2, if the fluent was either initiated at time point T1 or terminated at time
point T1, and was not provably released between time point T1 and some later
time point T2:

-released_at(F, T2) :-

initiated_at(F, T1), time_point(T2), T1 < T2,

not released_in(T1, F, T2).

-released_at(F, T2) :-

terminated_at(F, T1), time_point(T2), T1 < T2,

not released_in(T1, F, T2).

In contrast to Mueller [15], our implementation of the core axioms is more
suitable for controlled natural language processing, since we do not need to
check whether an event happens in the following axioms: EC1-6, 8, 13-18. This
is done in a natural way in the effect axioms (see Sect. 4.3). Similarly, we do
not need to check in EC5 and EC6 whether an event initiated or terminated a
fluent, since the trajectory/anti-trajectory axiom takes care of this. In addition
to these core axioms of the Event Calculus, the PENGASP system uses a number
of bridging axioms to interface the domain-dependent axioms derived from the
textual specification with the core axioms.
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6 Releasing Fluents from Inertia

The commonsense law of inertia is a default assumption that objects tend to stay
at the same location unless they are affected by events [12]. A large number of
the core axioms of the Event Calculus deal with the commonsense law of inertia.
The axioms EC9 and EC10, for example, specify that at any given time point a
fluent is or is not subject to the commonsense law of inertia. The axioms EC14
and EC15 enforce the commonsense law of inertia after a fluent was initiated
or terminated. The axiom EC16 specifies when a fluent is released from inertia
and the axiom EC17 when inertia for a fluent is restored. Finally, the axioms
EC11 and EC12 specify when the truth value of the fluent does not change. We
can trigger the initial release of a fluent from the commonsense law of inertia
and specify the conditions on the level of the controlled natural language, for
example:

15. If a signal light is activated at a time point and a lightning strikes the train
network at that time point then the signal light may or may not be activated
after that time point.

When a fluent is released from inertia its truth value can fluctuate and may or
may not be the same as before. The sentence (15) is translated into the following
choice rule:

{ init_released_at(fluent(A, activated), T) } :-

class(A, signal_light), holds_at(fluent(A, activated), T),

class(B, time_point), data_prop(B, T, date_time),

class(C, lightning), happens(event(C, D, strike), T),

class(D, train_network).

Given additional effect axioms – here in controlled natural language – such as:

16. If a signal light is activated at a time point and the train passes the signal
light at that time point then the train will be safe after that time point.

17. If a signal light is not provably activated at a time point and the train passes
the signal light at that time point then the train will no longer be safe after
that time point.

and suitable events that trigger these axioms, we end up with two answer sets
after execution: one in which the train is safe and one in which the train is not
safe.

7 Working with Continuous Change

The controlled natural language PENGASP can also describe forms of continuous
change; continuous change is ubiquitous in commonsense domains. Let us assume
that a train is moving with an average speed of 120 km/h, then we can calculate
for each point in time how far the train is away from its starting point using
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the Event Calculus and clingo’s built-in support for arithmetic functions. We
can specify domain-specific axioms for continuous change directly in controlled
language, for example:

18. If a vehicle is X km away from a location at a time point T1 and the vehicle
will be moving after T1 and T1 is before a time point T2 and Y = X + (120
* (T2−T1)/3600) then the vehicle will be Y km away from that location at
T2.

Sentence (18) contains a formula that calculates the distance covered by a
vehicle and is translated into a trajectory axiom [19]. This trajectory axiom has
the form trajectory(F1, T1, F2, T2) and is used by the core axiom EC5 and
makes sure that if a fluent F1 was initiated at time point T1, then the fluent F2
becomes true at time point T2 (depending on a particular formula).

8 Evaluation

In order to evaluate our linguistically motivated version of the Event Calculus,
we add a number of additional time points (06:30, 07:30, 08:05, 11:15, and
11:18) to the temporal specification introduced in Sect. 4.1, translate it into
an ASP program, execute the Event Calculus/ASP program and observe the
following results:

holds_at(fluent(1, 2, located_at), 1550644200) % 06:30

holds_at(fluent(1, 2, located_at), 1550645100) % 06:45

holds_at(fluent(1, in_transit), 1550647800) % 07:30

holds_at(fluent(1, in_transit), 1550649780) % 08:03

holds_at(fluent(1, 5, located_at), 1550649900) % 08:05

holds_at(fluent(1, in_transit), 1550649900) % 08:05

holds_at(fluent(1, 5, located_at), 1550650200) % 08:10

holds_at(fluent(1, in_transit), 1550650200) % 08:10

holds_at(fluent(1, in_transit), 1550661300) % 11:15

holds_at(fluent(1, in_transit), 1550661420) % 11:17

holds_at(fluent(1, 8, located_at), 1550661480) % 11:18

-holds_at(fluent(1, 2, located_at), 1550647800) % 07:30

...

-holds_at(fluent(1, in_transit), 1550661480) % 11:18

These results tell us, for example, that the train is located at Roma Termini
at 06:45, in transit at 07:30 but not located anymore at Roma Termini at the
same time. Furthermore, the train is still in transit at 08:03 and located at
Fierenze Campo di Marte after that time point until 08:10. The train is not in
transit anymore at 11:18 after it arrived at Bozen/Bolzano and is located there
at the same time. Alternatively, we can interrogate the resulting answer set using
questions in controlled natural language, for example:

19. When is the train located at a railway station?
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20. Is the train in transit at 08:05?
21. How far away is the train from Roma Termini at 10:30?

These questions are translated in a similar way into ASP rules as discussed
in [18] and contain a specific answer literal in the rule head.

9 Conclusion

In this paper, we started from the controlled natural language PENGASP that
was designed as a high-level interface language to write specifications and ter-
minological knowledge that can be translated into and executed as ASP pro-
grams. We showed how this controlled natural language can be augmented with
temporal expressions and be used to write temporal specifications. The con-
trolled language PENGASP uses a small number of specific linguistic expressions
that trigger the construction of positive and negative effect axioms, axioms that
release fluents from the commonsense law of inertia, and axioms that deal with
continuous change. We showed that the form of these domain-dependent axioms
that are automatically derived from a controlled natural language specification
has an impact on the form of the axioms of the Event Calculus. This observa-
tion prompted the introduction of a linguistically motivated ASP-based version
of the Event Calculus. The resulting specifications are automatically translated
into an ASP program, and if temporal literals are detected, our linguistically
motivated version of the Event Calculus is used for temporal reasoning and
question answering.

References

1. Clark, P., Harrison, P., Jenkins, T., Thompson, J., Wojcik, R.: Acquiring and
using world knowledge using a restricted subset of English. The 18th International
FLAIRS Conference (FLAIRS 2005), pp. 506–511 (2005)

2. Ferraris, P., Joohyung Lee, J., Lifschitz, V.: Stable models and circumscription.
Artif. Intell. 175, 236–263 (2011)

3. Gebser, M., et al.: Potassco User Guide, Version 2.2.0 (2019). https://github.com/
potassco/guide/releases/

4. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the Fifth International Conference on Logic Programming (ICLP),
pp. 1070–1080 (1988)

5. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents, The Answer-Set Programming Approach. Cambridge University
Press, Cambridge (2014)

6. Guy, S., Schwitter, R.: The PENGASP system: architecture, language and author-
ing tool. J. Lang. Resour. Eval. Spec. Issue: Control. Nat. Lang. 51(1), 67–92
(2017)

7. Kamp, H., van Genabith, J., Reyle, U.: Discourse representation theory. In: Gab-
bay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 15, pp. 125–
394. Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-0485-5 3

https://github.com/potassco/guide/releases/
https://github.com/potassco/guide/releases/
https://doi.org/10.1007/978-94-007-0485-5_3


Augmenting an Answer Set Based CNL with Temporal Expressions 513

8. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput.
4, 67–94 (1986)

9. Kuhn, T., Schwitter, R.: Writing support for controlled natural languages. In:
Proceedings of ALTA, pp. 46–54 (2008)

10. Kuhn, T.: A survey and classification of controlled natural languages. Comput.
Linguist. 40(1), 121–170 (2014)

11. Lee, J., Palla, R.: Reformulating temporal action logics in answer set programming.
In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 786–
792 (2012)

12. Lifschitz, V.: Formal theories of action. the frame problem in artificial intelligence.
In: Proceedings of the 1987 Workshop, Los Altos, CA, pp. 35–57 (1987)

13. Lifschitz, V.: What is answer set programming? In: Proceedings of AAAI, pp.
1594–1597 (2008)

14. Miller, R., Shanahan, M.: Some alternative formulations of the event calculus.
In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and
Beyond. LNCS (LNAI), vol. 2408, pp. 452–490. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45632-5 17

15. Mueller, E.T.: Commonsense Reasoning: An Event Calculus Based Approach, 2nd
edn. Morgan Kaufmann, Burlington (2015)

16. Schwitter, R.: Controlled natural language for knowledge representation. In: Pro-
ceedings of COLING 2010, Stroudsburg, PA, USA, pp. 1113–1121. Association for
Computational Linguistics (2010)

17. Schwitter, R.: Specifying events and their effects in controlled natural language.
Comput. Linguist. Relat. Fields Procedia - Soc. Behav. Sci. 27, 12–21 (2011)

18. Schwitter, R.: Specifying and verbalising answer set programs in controlled natural
language. J. Theory Pract. Log. Program. 18(3–4), 691–705 (2018)

19. Shanahan, M.: Representing continuous change in the event calculus. In: Proceed-
ings of ECAI 1990, pp. 598–603 (1990)

20. Shanahan, M.: Solving the Frame Problem. MIT Press, Cambridge (1997)

https://doi.org/10.1007/3-540-45632-5_17


Predictive Systems: The Game
Rock-Paper-Scissors as an Example

Mathias Zink , Paulina Friemann , and Marco Ragni(B)

Cognitive Computation Lab, University of Freiburg, 79110 Freiburg, Germany
zinkmathias@web.de, {friemanp,ragni}@cs.uni-freiburg.de

Abstract. In simple-decision-making scenarios such as in repeated two-
person games human behavior is to some extend predictable. To inves-
tigate this research question, we focused on developing a system for the
Rock-Paper-Scissor (RPS) game. Our approach included three steps: (i)
To generate a large data-base of experimental data, (ii) to analyze the
data to detect systematic patterns and deviations from rational behav-
ior within the test persons, and (iii) to employ methods from machine
learning to identify patterns and predict the next throw of the opponent.
We identified as the best current approach a Gated-Reccurent-Unit using
User Statistics, which is able to predict the next throw and hence win in
about 50% of the cases, beating state-of-the-art approaches. Potentials
and limitations of our approach are discussed.

Keywords: Predictive systems · Two-person games · Cognitive AI

1 Introduction

The rise of AI systems and companion systems in our everyday life make a suc-
cessful interaction with humans a core focus. One important part is that such
systems can adapt themselves to the cognition of its human partner. This, how-
ever, requires to determine how humans makes decision. In this article, we com-
bine a simple cognitive experiment with techniques of machine learning. Stepping
into the footsteps of Shannon’s ‘mind-reading machine’ [23], we investigated the
applicability of standard Machine Learning techniques, namely Artificial Neural
Networks, Support-Vector Machines and Recommender systems, to the task of
predicting a human’s decision. Particularly, we use the well known and studied
game of Rock-Paper-Scissors (RPS). Due to its simplicity we are able to trans-
fer the players decisions almost exclusively onto underlying cognitive processes
and their perception of the opponent, making it an interesting game to study.
Sequence production has been studied and predicted for the canonical version
of RPS, Matching Pennies [5,16]. RPS, however, provides a more challenging
subject for prediction, because it encourages the use of strategies and theory of
mind, and due to its familiarity to a broad population, it simplified the acquisi-
tion of participants.
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We applied the different methods to find and predict patterns in human
decision making behavior in RPS and to conclude which features are the most
important to look out for. We first describe the theory of the game. Afterwards,
we introduce the conducted experiment and present the most important findings.
We then use the behavioral data to evaluate the different models.

Rock-Paper-Scissors. A formal description of the Rock-Paper-Scissors game fam-
ily was introduced by [18]. They established the format RPS(n,b,s,r), which
means that n players simultaneously show a move among b possible moves with
possible s winning regulations at each round out of r round matches in total.In
the basic variant RPS(2,3,1,r), the n = 2 players can choose from b = 3 different
actions: R (Rock), P (Paper) and S (Scissors), all depicted by a specific motion
of their hand. Depending on cultural background the players will count to three
(‘Ro-sham-bo’, ‘Rock-Paper-Scissors’, etc.) while swinging their fist simultane-
ously and revealing their chosen throw on three. Conditioned on the following
rules player one or two receives a point (or none if their chosen throws match):
Action ‘Rock’ beats action ‘Scissors’, which in turn beats ‘Paper’, which in turn
is better than ‘Rock’. It has been shown that from a game refinement point of
view our classical model should be played for r = 9 rounds, resulting in a very
balanced game refinement score [24]. This is the reason why in the following we
will use RPS(2,3,1,9).

Rock-Paper-Scissors in Psychology. It has been shown that human players
exhibit a significant cycling behavior in their throws of RPS, depending on the
player’s success or failure in the previous round of the game [27]. A winning
round increases the probability of subjects to use the same throw again, while
losing makes them more likely to swap. This corresponds to the well known win-
stay-lose-shift strategy. Users were matched against a random user after every
round, therefore they only have knowledge about their own last throw. [10] claims
that negative reinforced cycling has a much bigger impact than the positive one
and show that cycle behavior depends on the used throw as well as the outcome.
Additionally, they propose that the cycle’s direction tends to continue onto the
next turns. It is also suspected that the distribution at which the three possible
actions are chosen is not uniform: ‘Rock’ is chosen most frequently, obtaining a
pick rate around 35.5%, followed by ‘Paper’ and ‘Scissors’, with the latter one
being the least played (cf. [27,29]).

Computational RPS. Reported metrics in the literature are very diverse (e.g.,
[2,19]). Most works only focus on beating the human player at RPS. Win rates
are reported there as either

wins

wins + losses
or as

wins

wins + losses + draws

We only aimed at predicting the player. However, these different approaches
are still partially comparable, as in every round where the system can successfully
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predict the player, it is also able to beat them. This means that the win rate
would be at least as high as the prediction accuracy:

correct predictions

incorrect predictions + correct predictions
(1)

One of the first appearances of a strategy-guided RPS playing machine was in
the year 2000 by means of a genetic algorithm [2]. It achieved a win rate around
35.5%, i.e., in 35.5% of rounds did the algorithm win versus human players. A
more recent approach was presented by [20], using a machine learning algorithm
based on Gaussian mixture models. In contrast to the last approach, both, the
opponent’s and the robot’s turns were captured to train the algorithm. The
authors achieved a win rate of up to 36.6%. The most recent approaches used a
large data set to train their algorithms [4,19]. Both treated the game as Markov
Processes. The latest approach used up to 10-th order Markov chains with a win
rate of almost 40% [19].

Rationality. The study of reasoning and rationality in cognitive science is con-
cerned with the investigation of the relation between normative rationality
principles (e.g., formal logics) and inference processes in humans. It has been
observed for a long time that human reasoning deviates systematically from
normative approaches (e.g., [3]). In RPS, this can be observed by inspecting the
relative frequencies at which the actions are picked. A rational agent would pick
all actions at the same rate, since the payoffs are equal. Humans however tend
to prefer actions over one another, and are unable to create random sequences
[15,26]. Humans act rather irrationally, especially following negative or disap-
pointing events [11]. But they mostly still converge to the rational equilibrium in
the long run when facing the problem repeatedly, as they adjust their strategies
based on past experience [14]. Even though single decisions might be very differ-
ent to what game theory suggests, humans may ultimately learn from errors and
return to a more rational behavior again. If we learn more about the factors that
drive us to commit to specific patterns, we can gain insights into the workings
of the human mind. Learning algorithms should be able to pick up on those
behavioral peculiarities and predict a participant’s decisions above chance level.
Speaking in terms of game theory, we can gain information about a human’s
strategy, which allows us to exploit it to win at RPS.

2 Experiment

2.1 Method

Participants. For our first experiment we collected data of 185 different partici-
pants (145 male, 40 female) with a total of 2273 played games with 28841 turns.
Recruitment was done via a University mailing list. Users played on average
μ = 12.07 games (σ = 43.07).
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Materials and Procedure. We set up a web page where participants could play
the game of RPS online. The layout of the website is shown in Fig. 1. Participants
played exclusively against bots. Following every game of RPS we gave the users
a short questionnaire in which they could specify which strategy they used and
which strategy they thought their opponent to use. Options included for example
that there was no strategy involved, that users used gambits, i.e., having a
predefined patterns of three throws, or using an explicit strategy, such as reading
the opponent or using the throw that beats the user’s own last throw. During
data acquisition, we tried to give the user the impression of playing against a
human opponent, as this has been shown to influence playing experience [28]. For
this, we used features that would occur while playing against a human opponent,
i.e., a waiting period to find an opponent, and for them to get ready for the next
turn. We used a total of seven different bots to oppose our human players. The
bots get selected randomly:

– RandomBot: Chooses one of the three actions at random
– CounterOwnBot: Chooses the action that would have won against the Bot’s

last throw in 50% and the others in 25% respectively
– CounterLastBot: Chooses the action that counters the user’s last throw in

50% and the others in 25% respectively
– Sequence3/4/5Bot: Chooses the action of a generated random sequence of

3/4/5 throws and repeats it
– GameFrequencyBot: Chooses the action that counters the last throw of the

player

Fig. 1. Layout of the experiment-website

All bots also react to players who repeat a single action multiple times, counter-
ing it after three repeated occurrences. Based on previous studies in the literature
we can formulate two hypotheses: Hypotheses 1 (H1): The probablilities of the
three actions are not uniform. Hypotheses 2 (H2): Users tend to continue their
behavioral pattern after a win and change strategy after a loss.
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2.2 Results and Discussions

Throw distribution. As in most other studies action ‘Rock’ was chosen most,
while ‘Scissors’ was chosen the least. All statistical evaluations were done using
a one-sample z-Test. The null hypothesis, that the distribution is uniformly
distributed can be rejected (Rock: μ = 34.91, z = 3.49, p < .001; Paper: μ =
33.02, z = .70, p = .48; Scissors: μ = 32.07, z = 2.82, p = .0048).
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Fig. 2. Cycling behavior of the participants after winning, losing or drawing. Uniform
distribution marked in red. (Color figure online)

Cycling behavior. Figure 2 depicts the cycling behavior during the experiment.
Clockwise rotation in this case means R → S → P → R, i.e., choosing the
action that would have lost against their own last action. Participants chose
the clockwise cycling behavior well above random chance level. Contrary to
the literature, users tend to change their actions significantly more often than
expected (Stay: z = 16.9, p < .001), notably even more after winning the last
throw. This might be caused by the players fear of making themselves predictable
by repeating their action and also the fact that humans tend to change their
selection too often when trying to produce unpredictable sequences.

Both these factors imply that participants tried to counter the win-stay-lose-
shift strategy. Probabilities for the remaining options (clockwise and counter-
clockwise after a win, stay and counter-clockwise after a loss) do not differ deci-
sively, which further supports the claim. The increased probability of the users
to cycle clockwise after a draw shows that the players expect their opponent to
shift action when there was no winner in the last round. Some of the tendencies
could be explained by the selection of bots. The bots cycling behavior shows a
bias in the bots’ behavior towards counter-clockwise cycling. Furthermore, the
high percentage of the ‘Stay’ behavior in the case of a win could be learned by
the user and thus be countered with a clockwise cycle. The comparison showed
that the cycling behavior of the human participants was influenced by our choice
of bots. Therefore it is difficult to draw conclusions on human cycle preferences
in the general case.
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Continued cycling. When considering the cycling behavior for another turn,
as [10] proposed, we obtain the proportions visualized in Fig. 3. This revealed a
significant trend towards maintaining a strategy once started (38.40%, z = 16.96,
p < .001). This coincides well with the findings reported in [10].
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Fig. 3. Continued cycling two rounds after the initial win, lose or draw, expected uni-
form distribution marked in red. ‘Maintain’ denotes a continuation of the same strategy,
‘Downgrade’ a clockwise switch, i.e., staying in the first round and cycle clockwise in
the second, cycling clockwise and then counter-clockwise, or cycling counter-clockwise
and then staying. ‘Update’ denotes the contrary. (Color figure online)

Strategy and Strategy Detection. Evaluation of the questionnaires revealed that
participants claimed in 52.4% of all games that they tried to read their oppo-
nent’s strategy. In around 37.3% of the cases on the other hand they claimed to
have ignored their opponents actions. In the remaining cases the users opted for a
strategy in between. This relates to the just mentioned dependencies in the cycle
selection. The detection accuracy of the opposing bot’s strategy is noted down in
Table 1. We found that only the Sequence Bots (Seq3, Seq4 & Seq5), correspond-
ing to the ’Fixed Pattern’ answer, and the GameFrequency Bots were detected
correctly above chance level (14.3%). The increased proportion for the Sequence
Bots is not surprising, as a static repeating pattern is easier to detect than ran-
dom movement or specific cycling behavior. Moreover, the Sequence3/4/5 bots
have a fairly high probability of 77.8%, 55.5% and 38.3%, respectively, to not
even use all three available throws, which makes them even more predictable.
The good detection for the ’GameFrequency Bot’, however, is due to the corre-
sponding answer ’ReadOpponent’ being the most used answer overall (27.8%).
Overall we can say that the specific strategies were not reliably identified by our
participants.

3 Prediction of Throwing Behavior

The analysis of the experimental data shows that there exist clear tendencies in
throwing behavior. This means that a prediction above chance level should be
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Table 1. Proportions of correctly identified strategies for the various Bots.

Counter Counter Game
Bot Random Seq3 Seq4 Seq5 Last Own Freq Overall

daeRretnuoCretnuoCgnidnopserroC
Answer Random Fixed Pattern Last Own Opponent

Correct Answers 7.4% 30.3% 19.6% 21.4%

21.0%

2.3% 10.2% 28.0% 15.1%

possible. The cycling behavior implies that a model to represent the data must
have a form of memory, i.e., encode sequences of longer length.

3.1 Artificial Neural Networks

Firstly we examined Artificial Neural Networks [30] (ANNs) as means of predict-
ing the throw of the human player in the next round based on their past behavior.
Inputs for the ANNs were the last throws by the two players. In all our networks
we used a fully connected layer with three output neurons, representing the pos-
sible actions, and a softmax activation function as last layer before the output
to map the output to the range [0,1]. All networks were trained using Keras [8].
It builds upon Google’s open-source software Tensorflow [1]. For faster learning,
we use Nvidia’s CUDA [17] architecture. We compared the different network
types described a standard recurrent network (RNN) [22], an implementation
of a Long-Short-Term-Memory network (LSTM) [13] and an RNN with gated
recurrent units (GRU) [7].1 The training process was implemented using the
holdout method, i.e., we randomly split our data set in a training set with 80%
of the data, and a validation set containing the remaining 20%. We encoded
the actions of ‘Rock’, ‘Paper’ and ‘Scissors’ using a one-hot encoding to prevent
unwanted dependencies. The same method is used for the user ids added during
the input variation later in this section. To find the best set of initial parameters
for the model, we used a genetic algorithm [12]. We optimized the parameters
on the LSTM and adopted them for all network types. Tested parameter com-
binations can be found in Table 2, whereas chosen settings are printed in bold.
We optimized for prediction accuracy as well as simplicity of the model.

Results and Discussion. Results can be found in Table 4. It is evident that the
LSTM and the GRU outperform the simple recurrent network. This also demon-
strates the additional dependencies that can be picked up during a game of
Rock-Paper-Scissors. The better learning times led to the usage of GRU as our
continuation network type, as they converged faster than standard RNN and the
LSTM, and yielded slightly better results.

1 Originally, we tried prediction using a standard Feed Forward network, however, this
did not converge.
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Table 2. Tested configurations, best combination marked in bold.

Parameter Selections

Neurons 2, 4, 8, 16, 32, 64, 96, 128, 256

Layers 1, 2, 3, 4, 5

Activation function Linear, ReLU, Tanh, Sigmoid

Optimizer RMSprop, Adam, AdaMax, Nadam

Loss Categorical cross-entropy, Mean squared error

Sequence Learning. In this approach we increased the size of a single input
interval by using a variable amount of history steps n. Figure 4 shows the accu-
racy means for a fixed GRU network with 96 neurons in 1 layer for n = 1,...,8.

Fig. 4. Accuracy means and standard deviations for varying sequence length, averaged
over five random seeds.

Results and Discussion. Accuracy improved for n > 1, with the best results for
n = 3. If training on sequence lengths longer than n = 3, then the accuracy starts
to drop. This may be due to a larger heterogeneity in the sequences. Another
point that could have played into this result, is the fact that most humans are
not capable to include information that lies more than two steps back (see e.g.,
the N-Back Task [9]).

After we found a suitable network structure for our problem, we started
to evaluate input information configurations. Due to the randomization during
learning, we lost many of the discovered peculiarities in the data. By varying
the input features of our networks, we were able to partially prevent this and
improve the results considerably. Firstly we changed the length of the input
sequence we fed into the network. Adding these sequential dependencies, allowed
the network to learn on more, and less contradictory, information. The network
performance peaked for n = 3 at around 47%. This implied, that history more
than 3 turns away did not add more behavioral dependencies, which means that
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human behavior in a game of RPS, that lies back more than three turns, does
not influence the current decision considerably anymore.

Input Variation. Finally, we evaluated different networks by varying their
input features. For this purpose we again fixed the network parameters, using
a GRU with 96 neurons in 1 layer, as this structure showed to be the most
effective, especially considering learning times. We then changed the input from
the standard A(t), B(t) to those listed in Table 3 and compare the maximum
accuracy reached with this feature combination.

Table 3. Variation of features used as input for the neural networks. A(t) denotes the
throw of the human player at time t. B(t) is the throw of the Bot at time t.

Input Abbreviation Accuracy (%)

A(t), B(t) AB 42.17 ± 0.66

A(t) A 42.15 ± 0.80

B(t) B 35.97 ± 0.27

A(t), B(t), Gender ABG 42.90 ± 0.30

A(t), B(t), UserIdA IdA 47.75 ± 0.30

A(t), B(t), UserIdB IdB 42.28 ± 0.46

A(t), B(t), UserStatsA StatsA 49.57 ± 0.46

Results and Discussion. The input of the human player’s action alone led to a
similar accuracy as providing the input of the human player as well as the Bot’s.
If only providing the action of the Bot, accuracy drops down to almost chance
level. This indicates that the opponent’s actions have almost no influence on the
choice of actions if you consider all participants at once. The large improvement
of the results by adding the unique ID of the user, or other stats, i.e., the user’s
throw distribution as well as their cycling tendencies, implies that there is a non-
negligible difference between users. It allows us to reach a prediction accuracy
of almost 50%, marking the highest value for this data set for all used methods
and inputs. Results can again be found in Table 4.

3.2 Recommender Systems

We used an adapted version of Recommender Systems (RS) [21], in which we
mapped the last n throws for both players to the items to rate. Additionally we
had to take into account that the same user can rate the same sequence multiple
times with different outputs, because they occurred multiple times in his games
and he reacted differently. As there exist exactly 32 · n different sequences, and
similar sequences represent totally different behavior in the game, item-based
filtering approaches do not offer valuable results. This left us with user-based
collaborative filtering concepts to represent the Recommender methods.
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Sequence-Based Approach. In the first approach, we ignored the fact for
which user a given sequence occurred, but counted the times a specific output
followed this sequence. The one with the most votes was then chosen as predicted
next throw. In case of two- or three-way ties, we added this sequence two to
three times with the different outputs. Afterwards we verified for each sequence
if the predicted result coincided with the actually observed ones, leaving us with
a prediction accuracy similar to the ones issued by the neural networks. This
technically is still a user-based approach, as we compare how other players react
in the same situation. Since it is heavily centered around the given sequence
however, we will refer to it as sequence-based in the continuation of this work.

User-Based Approach. In our second approach we addressed the single user
more, giving every user exactly one vote. The main difference is that in the
sequence-based approach, users who played a large amount of games strongly
influenced the voting. This is not the case for this approach. It is important to
note that for both recommender approaches we did not use the holdout method
to validate the model, as this is not needed for this type.
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Fig. 5. Performance of recommender systems for varying input length

Results and Discussion. Both recommender approaches (see Fig. 5) achieved a
surprisingly good prediction accuracy of around 45% using a single sequence
input, indicating that many users react very similar in comparable situations.
The sequence-based approach expectedly outperformed the user-based approach
in all scenarios. This is not surprising as the amount of votes is significantly
higher (thousands compared to exactly 185-1), reducing outliers and improving
the inferred prediction accuracy all together. Since the users only voted on other
peoples’ behavior, this also means that reoccurring sequences in a single user are
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not taken into account. The drop in accuracy from sequence length 1 to 2 implies
that secondary behavior, meaning reactions that do not occur as direct response,
are less comparable for different users. This may coincide with the secondary
cycling behavior we examined in 2.2, where the cycling probabilities did not
show strong tendencies considering the whole group of participants. The even
higher drop in the user-based case demonstrates that the same individual seems
to repeat behavior while different users show only little affinity. This is somewhat
balanced out again for n ≥ 3, which implies that the secondary cycling behavior
is particularly diverse for the different users. The overall descending accuracy for
growing input length can again be attributed to the linearly decreasing amount
of data, paired with an increase of input combinations by a factor of 2n. This
consequentially leads to a lack of sequence matches.

3.3 Support Vector Machines

We trained a Support Vector Machine (SVM) [25] using LIBSVM [6]. By using
grid search and cross validation techniques we compared different parameter
combinations. The best results were yielded by a radial basis function kernel.
Results can again compared against the other approaches in Table 4. The SVM
achieved a prediction accuracy of 42.27%.

Table 4. Comparison of prediction accuracy.

System Method Accuracy (%)

Chance Level 33.3

ANN Recurrent 41.9

ANN Long-Short-Term Memory 42.1

ANN Gated Recurrent Units (GRU) 42.2

Support Vector Machine 42.3

Recommender User-based 44.7

Recommender Sequence-based 45.2

ANN GRU with Sequence length 3 47.0

ANN GRU with User ID 47.8

ANN GRU with User Statistics 49.6

4 Discussion and Conclusion

This article focuses on analyzing, if human behavior in games can be predicted
using computational tools. In order to examine this, we conducted experimen-
tal studies. On the basis of 28841 rounds of RPS versus probabilistic bots, we
were able to predict the players’ decision-making at an accuracy that surpasses
state-of-the-art approaches. Evaluating the data, we were able to detect signifi-
cant deviations from rational behavior within our test persons. We were able to
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replicate characteristics found in prior studies, such as the biased choice of throw
and the primary and secondary cycling behavior of humans. During evaluation of
the primary cycle behavior we noticed a bias in the cycling behavior of the bots.
We managed to show that many of our users were able to detect this deviation
from rationality and counter it accordingly, or even sometimes overcompensated
this behavior. We then used different machine learning methods on the task of
predicting the players – neural networks, support vector machines and collabo-
rative filtering approaches. Formalizing RPS as a supervised learning problem
held several difficulties. Mainly, the input feature count is relatively small due
to the simple structure of the game. This can lead to contradictory mappings
which limit the prediction accuracy which the different methods can achieve.

We were able to support the claim that the average player did not identify
the opposing bot’s strategy in their games by adding said information to the
network inputs. This also implied that the opponent’s choice of action did not
have as big of an impact on a player’s decision making as expected. The overall
best accuracy was achieved by adding the unique ID of the user (47.7%), or
when adding additional stats about the players, such as their throw preferences
or cycling behavior (49.5%). Compared to the win rates of the state of the art,
which do not exceed 40%, a RPS playing system equipped with these models
could well beat a human player in over 50% of games. The experiment showed
that single users exhibit strong reoccurring patterns. It is therefore necessary to
tailor machine learning approaches to handle small data on single users.
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Abstract. We consider fair division problems where indivisible items
arrive one by one in an online fashion and are allocated immediately to
agents who have additive utilities over these items. Many existing offline
mechanisms do not work in this online setting. In addition, many exist-
ing axiomatic results often do not transfer from the offline to the online
setting. For this reason, we propose here three new online mechanisms,
as well as consider the axiomatic properties of three previously proposed
online mechanisms. In this paper, we use these mechanisms and charac-
terize classes of online mechanisms that are strategy-proof, and return
envy-free and Pareto efficient allocations, as well as combinations of these
properties. Finally, we identify an important impossibility result.

Keywords: Online fair division · Strategy-proofness · Envy-freeness ·
Pareto efficiency · Additive utilities

1 Introduction

Fair division is an important problem facing our society today as increasing
economical, environmental, and other pressures require us to try to do more with
limited resources. An especially challenging form of fair division is when we are
allocating available resources in an online fashion with only partial knowledge
of the future resources and agent’s preferences for these resources. There are
many applications of online fair division for social good. For example, when a
kidney is donated, it must be allocated to a patient within a few hours. As a
second example, food items arrive at a food bank and must be allocated and
distributed to charities promptly. As a third example, when allocating charging
slots to electric cars, we may not know when or where cars will arrive for charging.
As a fourth example, when managing a river, we might start allocating irrigation
water to farmers today, not knowing how much it will rain the next month. As
a fifth example, when allocating memory to cloud services, we may not know
what and how many services are requested in the next moment.
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The online nature of such fair division problems changes the mechanisms
available to allocate items. For example, with the well-known (offline) sequential
allocation mechanism, agents pick their most preferred remaining items in turns.
In an online setting, an agent’s most preferred item may not be currently (or
even ever) available. To tackle this, we propose three new - Online Serial Dic-
tator, Online Random Priority and Pareto Like - as well as study three
existing - Like, Balanced Like and Maximum Like- online mechanisms. The
online nature also means we may need to consider new axiomatic properties.
For example, in deciding if agents have any incentive to misreport preferences in
an online setting, we may consider the past fixed but the future unknown. This
leads to a new and weaker form of online strategy-proofness (OSP). Therefore,
it might be easier to achieve strategy-proofness in an online than in an offline
setting. Also, we give a new and stronger form of envy-freeness, called shared
envy-freeness (SEF), in which agents might be envious of each other but only
over the items that they like in common. For example, in the paper assignment
problem, reviewers tend to bid for papers in their field of expertise and not
for papers outside this field [13]. In this context, SEF guarantees envy-freeness
across the different fields.

We provide characterization results for strategy-proofness (SP), envy-freeness
(EF) and Pareto efficiency (PE). For example, we characterize completely the
class of online mechanisms that are SP, and the class of online mechanisms that
are PE ex post. We also characterize the class of SP and EF mechanisms. Thus,
a mechanism for online fair division is SP and EF ex ante iff it returns the same
random assignment as Like. The same holds for SEF ex ante mechanisms. Also,
we prove that a mechanism is SP, PE ex post and EF ex ante iff it returns the
same probability distribution of allocations as Online Random Priority. We
further give an important impossibility result. In offline fair division, stochastic
Pareto efficiency and envy-freeness are always possible simultaneously (e.g. the
probabilistic serial mechanism [5]). However, we prove that no online mechanism
can be both Pareto efficient ex ante and envy-free ex ante.

2 Related Work

We consider the model of online fair division from [17] in which items are indivis-
ible and arrive one-by-one over time. We primarily contrast our characterization
results with similar results in (offline) fair division. For example, we prove that no
online mechanism can be both PE and EF ex ante. By comparison, the (offline)
probabilistic serial mechanism satisfies both stochastic PE and EF [5]. In fact,
it follows from our results that there could be an unbounded number of mecha-
nisms that are just PE ex ante or EF ex ante. We can show that other (offline)
characterizations (e.g. [6,14]) break in the online setting as well. By comparison,
as online mechanisms can be applied to offline problems by picking a sequence
of the items, our results can be mapped into such settings. For example, our Pa-
reto Like mechanism returns all possible PE ex post allocations in the offline
problem. As a result, this mechanism characterizes the set of offline such mech-
anisms. As another example, we prove that Online Random Priority is SP
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and PE ex post, but not PE ex ante. With this mechanism, agents with the same
cardinal utilities receive the same expected utilities (i.e. it is symmetric). This
is in-line with the impossibility result that no (offline or online) mechanism for
offline matching is SP, PE ex ante and symmetric [19]. Yet more related results
are shown in many other fair division (e.g. [7,10,12,16]), voting (e.g. [11,18])
and kidney exchange (e.g. [8,9]) settings. Our results can also be mapped to
such settings.

3 Online and Additive Fair Division

An online fair division instance consists of a set of agents N = {1, . . . , n}, and
an ordered set of indivisible items O = {o1, . . . , om}. We suppose that item
oj arrives at round j when each agent i ∈ N becomes aware of their sincere
utility uij ∈ R≥0 and places a possibly strategic bid vij ∈ R≥0 for oj . We
suppose at least one agent has positive utility for every item as, otherwise, we can
simply discard the item. We use online mechanisms that allocate oj immediately,
supposing the allocation of o1 to oj−1 is fixed and there is no information of oj+1

to om. We consider only non-wasteful mechanisms that share the probability of
1 for oj only among agents that bid positively for it if there is at least one such
agent and, otherwise, discard oj .

An allocation πj of o1 to oj gives a bundle of items πji to each agent i ∈ N
such that

⋃
i∈N πji = {o1, . . . , oj} and πji ∩ πjk = ∅ for each i �= k. We write

uik(πj) for the utility of agent i ∈ N for πjk. We write ui(πj) for uii(πj). A
mechanism induces a probability distribution over the set Πj of all allocations
of items o1 to oj . We write uik(Πj) for the expected utility of agent i ∈ N for
the expected allocation of agent k ∈ N and pik(Πj) for the probability of agent
i ∈ N for item ok in this distribution. We write ui(Πj) for uii(Πj) and pi(Πj)
for pij(Πj). We suppose additive utilities and expected utilities.

uik(πj) =
∑

oh∈πjk

uih uik(Πj) =
j∑

h=1

pkh(Πj) · uih

We consider three common properties of mechanisms: strategy-proofness,
envy-freeness and Pareto efficiency.

Definition 1. (SP) A mechanism is strategy-proof (SP) if, for each instance
with m ∈ N items, no agent i ∈ N can strictly increase ui(Πm) by reporting
any sequence vi1, . . . , vim other than ui1, . . . , uim, supposing all other agents bid
sincerely for items o1 to om.

Definition 2. (EF) A mechanism is envy-free ex post (EFP) iff, for each
instance with m ∈ N items and allocation πm ∈ Πm returned by the mech-
anism with positive probability, ∀i, k ∈ N : uii(πm) ≥ uik(πm). A mecha-
nism is envy-free ex ante (EFA) iff, for each instance with m ∈ N items,
∀i, k ∈ N : uii(Πm) ≥ uik(Πm).
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Definition 3. (PE) A mechanism is Pareto efficient ex post (PEP) iff, for each
instance with m ∈ N items and allocation πm ∈ Πm returned by the mechanism
with positive probability, no π′

m ∈ Πm is such that ∀i ∈ N : ui(π′
m) ≥ ui(πm)

and ∃k ∈ N : uk(π′
m) > uk(πm). Also, it is Pareto efficient ex ante (PEA) iff,

no mechanism gives at least ui(Πm) to each i ∈ N and more than uk(Πm) to
some k ∈ N .

To characterize SP, EF and PE mechanisms, we will use two equivalence
relations between outcomes of mechanisms. We say that two mechanisms are
ex ante equivalent iff, for each instance of m ∈ N items, agent i ∈ N and item
oj ∈ O, the probabilities of i for oj under both mechanisms are equal, whilst
these mechanisms are ex post equivalent iff, for each instance of m ∈ N items and
allocation πm ∈ Πm, the probabilities of πm under both mechanisms are equal
(i.e. each of the two mechanisms returns an identical distribution of allocations).

4 Six Cardinal Mechanisms

Many offline mechanisms cannot be used in the online setting because only one
item is available at any time. For this reason, we propose three new as well
as study three existing online mechanisms. For every arriving item oj , each
mechanism first computes a set of agents feasible for oj given an allocation
πj−1 ∈ Πj−1. An agent that is feasible for oj then receives it with conditional
probability that is uniform with respect to the other agents that are feasible for
oj . Thus, for the first j items, each mechanism returns a probability distribution
over Πj and an actual allocation with some positive probability that is obtained
as a product of j conditional randomizations.

– Online Serial Dictator: it has a strict priority order σ of the agents prior
to round one, and the unique feasible agent for oj is the first agent in σ that
bids positively for oj .

– Online Random Priority: it draws uniformly at random a strict priority
order σ of the agents prior to round one, and runs Online Serial Dictator
with it.

– Pareto Like: agent i ∈ N is feasible for oj if extending πj−1 by allocating
oj to i is Pareto efficient ex post.

– Like: agent i ∈ N is feasible for oj if vij > 0 [2].
– Balanced Like: agent i ∈ N is feasible for oj if vij > 0 and i has the fewest

items in πj−1 among those with positive bids for oj [2].
– Maximum Like: agent i ∈ N is feasible for oj if vij = maxk∈N vkj [3].

In Example 1, we demonstrate that these mechanisms may return distribu-
tions of allocations that are different from each other.

Example 1. Let us consider an instance with N = {1, 2} and O = {o1, o2}. The
utilities of agents for items are given in the below table.



Online Fair Division with Additive Utilities 531

item o1 item o2

agent 1 1 2

agent 2 2 1

In this instance, supposing sincere bidding, there are 4 possible allocations:
π1 = ({o1, o2}, ∅), π2 = (∅, {o1, o2}), π3 = ({o1}, {o2}), and π4 = ({o2}, {o1}).
Online Serial Dictator with fixed σ = (1, 2) returns π1 with probability 1,
Online Random Priority returns π1 and π2 with probabilities 1/2, Pareto
Like returns π1 with probability 1/2, π2 and π4 with probabilities 1/4, Like
returns π1 to π4 with probabilities 1/4, Balanced Like returns π3 and π4 with
probabilities 1/2, and Maximum Like returns π4 with probability 1. 	


We note that the Online Serial Dictator mechanism is similar to the
(offline) serial dictatorship mechanism [15]. However, agents have no quota on
the number of items they receive with Online Serial Dictator, and only take
items for which they declare non-zero utility. The Online Random Priority
mechanism is also similar to the (offline) random priority mechanism [1]. Finally,
the Like mechanism can be seen as the online analog of the (offline) probabilistic
serial mechanism (see [5]) with agents “eating” each next item which they like.

5 Strategy-Proofness

We begin by considering strategic behavior of agents. We provide a simple char-
acterization of mechanisms that are strategy-proof. For i ∈ N , we say that
pi(Πj) is a step function iff it is 0 if vij = 0 and it admits the same value for any
bid vij > 0 supposing the bids of the other agents for o1 to oj , and the bids of
agent i for o1 to oj−1 are fixed. A mechanism is a step mechanism iff, for each
instance with m ∈ N items, i ∈ N and oj ∈ O, pi(Πj) is a step function. For
i ∈ N , we say that pi(Πj) is a memoryless function iff it takes the same value
for all possible bids vi1 to vi(j−1) of agent i for items o1 to oj−1 given fixed bid
vij of agent i for item oj and fixed bids of the other agents for items o1 to oj . A
mechanism is a memoryless mechanism iff, for each instance with m ∈ N items,
i ∈ N and oj ∈ O, pi(Πj) is a memoryless function.

With a step mechanism, pi(Πj) does not depend on the size of an agent’s non-
zero bid for item oj but it may depend on the allocation history. By comparison,
with a memoryless mechanism, pi(Πj) may depend on the size of their non-
zero bid for item oj but not on the allocation history. As a consequence, with
a memoryless step mechanism, pi(Πj) depends only on the combination of the
non-zero bids for item oj .

Theorem 1. A non-wasteful mechanism for online fair division is strategy-proof
iff it is a memoryless step mechanism.

Proof. Pick i ∈ N in an instance. Let us view ui(Πj) and pi(Πj) as func-
tions of vi1 to vij . That is, we write ui(Πj) = ui(vi1, . . . , vij) and pi(Πj) =
pi(vi1, . . . , vij). Consider a memoryless step mechanism. Suppose now that all
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agents bid sincerely. Then, ui(ui1, . . . , uim) =
∑m

j=1 pi(ui1, . . . , uij) · uij . Sup-
pose next that only i bids strategically vi1 to vim. Then, ui(vi1, . . . , vim) =∑m

j=1 pi(vi1, . . . , vij) · uij . For each oj with vij = uij , pi(vi1, . . . , vij) · uij =
pi(ui1, . . . , uij) · uij as the mechanism is a memoryless step. For each oj with
vij > 0 and uij = 0, pi(vi1, . . . , vij) · uij = pi(ui1, . . . , uij) · uij = 0. For each oj

with vij = 0 and uij > 0, pi(vi1, . . . , vij) ·uij = 0 and pi(ui1, . . . , uij) ·uij ≥ 0 as
the mechanism is non-wasteful. Consequently, the mechanism is strategy-proof.

Consider a strategy-proof mechanism. First, assume that it is not a step
and pi(ui1, . . . , ui(j−1), vij) admits different values for different positive values
of vij supposing that the bids of other agents for items o1 to oj are fixed.
WLOG, we can suppose that item oj is the last item to arrive. We can also
suppose uij > 0 as the case uij = 0 is trivial. Agent i has an incentive to
report vij > uij (or vij < uij) and, thus, strictly increase pi(ui1, . . . , ui(j−1), uij)
and ui(ui1, . . . , ui(j−1), uij). Second, assume that the mechanism is a step but
not memoryless. Suppose that agent i gets different probabilities for item oj for
alternative bids vik compared to their sincere bids uik with k < j. WLOG, for
each ok with k < j, we suppose that pi(vi1, . . . , vik) = pi(ui1, . . . , uik). Other-
wise, we truncate the problem to the first such round j. WLOG, we also suppose
that pi(vi1, . . . , vi(j−1), uij) > pi(ui1, . . . , ui(j−1), uij). Otherwise, we swap vik for
uik for k < j. We let agent i have utility 1 for all items except oj and utility j
for oj . Thus, the bids vik increase the expected utility of agent i compared to
the bids uik. We reached contradictions under both assumptions. 	


The Like mechanism is a memoryless step and so is strategy-proof. We
observe that the Online Serial Dictator and Online Random Priority
mechanisms are also memoryless steps and, hence, are also both strategy-proof.
On the other hand, the Balanced Like mechanism is just a step mechanism
and is neither memoryless nor strategy-proof. Furthermore, the Maximum Like
mechanism is only memoryless and the Pareto Like mechanism is neither a
step nor a memoryless mechanism. Consequently, these two mechanisms are not
strategy-proof.

Thus far, we have made the strong assumption that an agent has complete
knowledge of any future items. In practice, agents may have limited or even
no knowledge about the future. We next capture this formally in terms of a
definition of a weaker form of strategy-proofness.

Definition 4. (OSP) A mechanism is online strategy-proof (OSP) if, for each
instance with m ∈ N items and j ∈ {1, . . . , m}, no agent i ∈ N can strictly
increase ui(Πj) by reporting any bid vij other than uij, supposing agent i bids
sincerely for o1 to oj−1 and all other agents bid sincerely for items o1 to oj.

Indeed, it is harder for an agent to benefit from a strategic bidding with
only partial information of the future. For this reason, many mechanisms that
are not strategy-proof are online strategy-proof. For example, the Balanced
Like mechanism is online strategy-proof with no knowledge of future items, but
stops being strategy-proof with complete knowledge of these future items even
if all utilities are just 0 or 1 [2]. In the other direction, it is easy to show that
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a mechanism that is strategy-proof is also online strategy-proof. The reason for
this is simple. If an agent cannot increase their expected utility by misreporting
their utilities for any subset of items, then they cannot do it by misreporting
their utility for any individual item, including the last one. We give a simple
characterization of mechanisms that are online strategy-proof.

Theorem 2. A non-wasteful mechanism for online fair division is online
strategy-proof iff it is a step mechanism.

Proof. We show the “if” direction. Suppose the mechanism is a step. Consider
an instance, an agent i ∈ N and an item oj . The allocation of this item does not
have an impact on the allocation of earlier items as this is now fixed. If uij > 0,
then agent i has no incentive to report 0 for it as their expected utility can only
decrease, and also has no incentive to report any positive value vij �= uij as
their probability for item oj is a step function. If uij = 0, then agent i has no
incentive to report vij > 0 as their expected utility cannot increase. Hence, i
cannot increase ui(Πj). The mechanism is online strategy-proof. We next sketch
the “only if” direction. Suppose the mechanism is not a step. The result follows
by the second part of the proof of Theorem1. 	


It follows immediately that the Online Serial Dictator, Online Rand-
om Priority, Like and Balanced Like mechanisms are all online strategy-
proof. In contrast, the Maximum Like and Pareto Like mechanisms are not
as they are not steps and agents have an incentive to report a larger bid for an
item.

To sum up, we might use the Online Serial Dictator, Online Random
Priority, or Like mechanism for strategy-proofness with complete information.
However, for online strategy-proofness with no information about future items,
we can also use the Balanced Like mechanism.

6 Envy-Freeness

We continue with envy-freeness. We suppose agents bid sincerely. This might
be because we use a mechanism that is strategy-proof or online strategy-proof.
There is no envy-free ex post mechanism [2]. We, therefore, mainly focus on
fairness in expectation. Uncertainty about the future means that envy-freeness
ex ante is now harder to achieve than in the offline setting. Nevertheless, it is
always possible as the Like mechanism is envy-free ex ante.

By Example 1, the Online Random Priority and Like mechanisms can
return different ex post allocations. Nevertheless, they are ex ante equivalent
and, therefore, envy-free ex ante. Unfortunately, ex ante equivalence to the Li-
ke mechanism only provides a partial characterization as there is an unbounded
number of envy-free ex ante mechanisms that are not ex ante equivalent to it.
We show this in Example 2.

Example 2. Let us consider the fair division of items o1 and o2 to agents 1 and 2
with utilities as follows: u11 = 1, u12 = 1, u21 = 0 and u22 = 1. Further, consider
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the mechanism that works as Like on each instance except on this one in which
it gives item o2 to agent 2 with some probability in (1/2, 1]. This mechanism is
envy-free ex ante but it is not ex ante equivalent to Like. 	


In Example 2, the mechanism is neither memoryless, nor a step. Therefore,
by Theorem 1, it is not strategy-proof. However, we can give a complete charac-
terization of all strategy-proof and envy-free ex ante mechanisms.

Theorem 3. A non-wasteful mechanism for online fair division is strategy-proof
and envy-free ex ante iff it is ex ante equivalent to the Like mechanism.

Proof. If a mechanism is ex ante equivalent to Like, then it is envy-free ex ante
and a memoryless step by the definition of Like. By Theorem 2, the mechanism
is strategy-proof. If a mechanism is envy-free ex ante and strategy-proof, then it
is a memoryless step. We show that it is ex ante equivalent to Like by induction
on the round number j. In the base case, the mechanism is clearly ex ante
equivalent to Like. In the step case, suppose that the mechanism is ex ante
equivalent to Like for items o1 to oj−1 (i.e. hypothesis) but not for item oj . That
is, there are two agents i, k ∈ N that like item oj with pi(Πj) < pk(Πj). As the
mechanism is envy-free ex ante up to round (j − 1), we have that uii(Πj−1) ≥
uik(Πj−1). As the mechanism is memoryless step, we can suppose that uij =
1 − (uik(Πj−1) − uii(Πj−1))/(pk(Πj) − pi(Πj)) > 0. We, hence, obtain that
uik(Πj−1) − uii(Πj−1) + (pk(Πj) − pi(Πj)) · uij > 0, or i envies ex ante k for o1
to oj . This contradicts the fact that the mechanism is envy-free ex ante up to
round j. Consequently, pi(Πj) = pk(Πj). The result follows. 	


We can give similar results if we weaken strategy-proof mechanisms to mem-
oryless or step mechanisms. We omit these proofs for reasons of space.

Proposition 1. A step mechanism for online fair division is envy-free ex ante
iff it is ex ante equivalent to the Like mechanism.

Proposition 2. A memoryless mechanism for online fair division is envy-free
ex ante iff it is ex ante equivalent to the Like mechanism.

On a restricted preference domain, the Like mechanism characterizes
all envy-free ex ante mechanisms, even without the assumption of strategy-
proofness. The following result applies to common domains of positive cardi-
nal, identical cardinal, identical ordinal, Borda (e.g. 1, 2, . . . ,m) or lexicographic
(e.g. 20, 21, . . . , 2m) utilities. This result holds for wasteful (i.e. not non-wasteful)
mechanisms as well.

Theorem 4. With non-zero cardinal utilities, a mechanism for online fair divi-
sion is envy-free ex ante iff it is ex ante equivalent to the Like mechanism.

Proof. We first show the “if” direction. If a mechanism is ex ante equivalent to
Like, then it is envy-free ex ante as Like. We next show the “only if” direction.
The proof is by induction as in Theorem3. In the step case, we consider i, k ∈ N
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that like oj . We have that uii(Πj−1) = uik(Πj−1) and ukk(Πj−1) = uki(Πj−1)
as the cardinal utilities are non-zero and the mechanism is ex ante equivalent to
Like for o1 to oj−1 by the hypothesis. Hence, pi(Πj) = pk(Πj) as the mechanism
is envy-free ex ante up to round j. 	


We can also completely characterize a stronger notion of envy-freeness even
with general utilities. Shared envy-freeness requires that each pair of agents are
envy-free of each other only over the items that both agents in the pair like in
common. We write uSEFP

ik (πj) for the utility of agent i ∈ N over the items in πji

that both agents i and k ∈ N like. We write uSEFA
ik (Πj) for the expected utility

of agent i ∈ N over the items o1 to oj that both agents i and k ∈ N like.

uSEFP
ik (πj) =

∑

oh∈πji

ukh>0

uih uSEFA
ik (Πj) =

j∑

h=1
ukh>0

pih(Πj) · uih

We note uSEFP
ik (πj) ≤ uii(πj) and uSEFA

ik (Πj) ≤ uii(Πj). A mechanism is
shared envy-free ex post (SEFP) iff, for each instance with m ∈ N items and
allocation πm ∈ Πm returned by the mechanism with positive probability, ∀i, k ∈
N : uSEFP

ik (πm) ≥ uik(πm). A mechanism is shared envy-free ex ante (SEFA) iff,
for each instance of m ∈ N items, ∀i, k ∈ N : uSEFA

ik (Πm) ≥ uik(Πm). Shared
envy-freeness coincides with envy-freeness with non-zero cardinal utilities. For
this reason, shared envy-freeness is only possible in expectation.

Theorem 5. A non-wasteful mechanism for online fair division is shared envy-
free ex ante iff it is ex ante equivalent to the Like mechanism.

Proof. If a mechanism is ex ante equivalent to Like, then it is envy-free ex
ante. Every pair of agents receive each of their commonly liked item with the
same probability. The mechanism is, therefore, shared envy-free ex ante. If a
mechanism is shared envy-free ex ante, then the proof resembles the one of
Theorem 3. In the step case, we consider round j and agents i, k that like item
oj . WLOG, assume that the mechanism is not ex ante equivalent to Like for
item oj and pi(Πj) < pk(Πj). By the hypothesis, the mechanism is ex ante
equivalent to Like up to round (j − 1). Hence, uik(Πj−1) = uSEFA

ik (Πj−1) and
uki(Πj−1) = uSEFA

ki (Πj−1). As the mechanism is shared envy-free ex ante up to
round j, pi(Πj) = pk(Πj). This contradicts our assumption. 	


If we limit ourselves to 0/1 utilities, we say that a mechanism is bounded envy-
free ex post with 1 (BEFP) iff, for each instance of m ∈ N items and πm ∈ Πm

returned by the mechanism with positive probability, ∀i, k ∈ N : uii(πm) + 1 ≥
uik(πm). For example, the Balanced Like mechanism is bounded envy-free
ex post with 1 [2]. In fact, we can immediately conclude the following partial
characterization.

Corollary 1. With 0/1 cardinal utilities, a non-wasteful mechanism for online
fair division is bounded envy-free ex post with 1 if it returns a subset of the
allocations returned by the Balanced Like mechanism.
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Benade et al. [4] showed that the random assignment of each next item (i.e.
Like) is asymptotically optimal in the ex post sense, with a bound of the (maxi-
mum) envy that increases as the number of rounds increases. Unfortunately, this
means that we cannot put any trivial bound on the envy ex post in general.

To sum up, we can use the Like or Online Random Priority mechanism
if we want envy-freeness ex ante. With 0/1 utilities, we can bound the ex post
envy between agents to at most one unit of utility with the Balanced Like
mechanism which also happens to be envy-free ex ante in this domain [2].

7 Pareto Efficiency

We consider lastly Pareto efficiency supposing agents act sincerely. With 0/1
utilities, each mechanism is Pareto efficient as the sum of agents’ utilities in
each returned allocation is m. This is not true in general. We start with Pareto
efficiency ex post. The Online Serial Dictator, Online Random Priori-
ty and Maximum Like mechanisms are all Pareto efficient ex post. We might
hope that a given Pareto efficient ex post mechanism returns some of the alloca-
tions returned by these three mechanisms. However, this does not hold as they
may return only some of the Pareto efficient allocations. We illustrate this in
Example 3.

Example 3. Let us consider the fair division of items o1 and o2 to agents 1 and
2 with utilities as in the below table.

item o1 item o2

agent 1 1 4

agent 2 2 3

The allocation that gives o1 to 1 and o2 to 2 is Pareto efficient ex post. None
of Online Serial Dictator, Online Random Priority or Maximum Like
returns this allocation. Note that Pareto Like does return it. 	


By Example 3, we conclude that we cannot characterize all Pareto efficient ex
post mechanisms in terms of allocations returned by the Online Serial Dicta-
tor, Online Random Priority and Maximum Like mechanisms. However,
we can use the Pareto Like mechanism for this purpose.

Theorem 6. The Pareto Like mechanism returns only and all Pareto effi-
cient ex post allocations.

Proof. By definition, the mechanism returns only PE ex post allocations. For
this reason, we next only show that it returns all such allocations. Consider such
an allocation πm. Assume πm is not returned by it. Run the mechanism and
follow πm until the first round j ∈ (1,m] when some agent i ∈ N gets oj in πm

but i is not feasible for oj given the sub-allocation πj−1 of πm of o1 to oj−1.
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Such a round exists as πm is not returned by the mechanism. Further, πj−1 is
Pareto efficient ex post for o1 to oj−1. Otherwise, the mechanism would not get
to round j by following πm. Also, the allocation extending πj−1 by allocating oj

to i is Pareto efficient ex post. Otherwise, this allocation can be Pareto improved
for o1 to oj and together with the allocations of oj+1 to om in πm can Pareto
improve πm. This contradicts the Pareto efficiency of πm. Hence, the allocation
extending πj−1 is Pareto efficient ex post. By the definition of the mechanism,
it then follows that i is feasible for oj which contradicts our assumption. Hence,
πm is returned by the mechanism with positive probability. 	


By Theorem 6, we conclude that a non-wasteful mechanism for online fair
division is Pareto efficient ex post iff it returns a subset of the allocations of
the Pareto Like mechanism. Such a mechanism may not be strategy-proof.
However, we can characterize all mechanisms that are strategy-proof and Pareto
efficient ex post.

Theorem 7. A non-wasteful mechanism for online fair division is strategy-proof
and Pareto efficient ex post iff it is ex post equivalent to a probability distribution
of the Online Serial Dictator mechanisms.

Proof. We start with the “if” direction. If a mechanism is ex post equivalent to
a probability distribution of Online Serial Dictators, then it is strategy-
proof and Pareto efficient ex post as each Online Serial Dictator. We next
prove the “only if” direction. Consider a strategy-proof and Pareto efficient ex
post mechanism and assume that it is not ex post equivalent to any probability
distribution of Online Serial Dictators. Hence, there is an instance, an
allocation and j ∈ [1,m] such that the mechanism and Online Serial Dicta-
tor with some priority ordering σ agree on o1 to oj−1 but the mechanism and
any such Online Serial Dictator disagree on oj . WLOG, let the mechanism
give oj to 1 and Online Serial Dictator with σ give oj to 2 such that 2 is
immediately before 1 in σ. Both agents like item oj . We can show that there
is ok with k < j such that 1 and 2 like ok, and that ok is allocated to agent 2
with both mechanisms. By Theorem 1, with the mechanism, the probabilities of
2 for ok and 1 for oj do not change for any positive bids of these agents for these
items. WLOG, let then u1j = 1, u1k = 2, u2j = 2, u2k = 1. Hence, the allocation
that extends πj−1 by allocating oj to agent 1 is not Pareto efficient ex post. 	


Let us next add the ex ante properties. There is an unbounded number
of Pareto efficient ex post and envy-free ex ante (or Pareto efficient ex ante)
mechanisms that are not strategy-proof. To see this, consider the mechanism for
the instance in Example 2, that runs the Online Random Priority (or Ma-
ximum Like) mechanism on each other instance. Nevertheless, by Theorems 3
and 7, the only strategy-proof such mechanism is the Online Random Prio-
rity mechanism.

Corollary 2. A non-wasteful mechanism for online fair division is strategy-
proof, Pareto efficient ex post and envy-free ex ante iff it is ex post equivalent to
the Online Random Priority mechanism.
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A mechanism that is Pareto efficient ex post might not be Pareto efficient
ex ante. For example, the Online Random Priority mechanism is Pareto
efficient ex post but not ex ante. To see this, consider the instance in Example 1.
The reverse direction may also not hold. That is, a mechanism that is Pareto
efficient ex ante may not necessarily be Pareto efficient ex post. We show this in
Example 4.

Example 4. Consider the mechanism that runs Maximum Like on each instance
except on the instance from Example 1. In this instance, the mechanism works
as follows: agent 1 gets o1 and o2 with probabilities 1 and 1 − ε, and agent 2
gets these items with probabilities 0 and ε where ε > 0. With this mechanism,
agent 1 gets expected utility 3 − 2ε, whilst agent 2 gets expected utility ε. This
outcome is Pareto efficient ex ante for any ε < 1/2. But, there is one returned
allocation that gives o1 to agent 1 and o2 to agent 2. This outcome is not Pareto
efficient ex post. 	


It is easy to see that the mechanism in Example 4 is not strategy-proof.
Interestingly, we can give a complete characterization of mechanisms that are
strategy-proof, Pareto efficient ex post and Pareto efficient ex ante.

Theorem 8. A non-wasteful mechanism for online fair division is strategy-
proof, Pareto efficient ex post and ex ante iff it is ex post equivalent to the
Online Serial Dictator mechanism.

Proof. We show the “if” direction. The mechanism returns the same allocation
as Online Serial Dictator. Hence, it is strategy-proof, Pareto efficient ex
post and Pareto efficient ex ante. We next show the “only if” direction. By
Theorem 7, the mechanism is a probability distribution of Online Serial Di-
ctators. Suppose that there are at least two different allocations which are
the result of different Online Serial Dictators in this distribution. WLOG,
assume that agent 1 have the highest priority with probability p1 ∈ (0, 1), agent
2 with p2 ∈ (0, 1−p1] and agent k ∈ N \{1, 2} with pk ∈ [0, 1−p1−p2]. Suppose
that agent i ∈ {1, 2} likes all items with 1 except oi which they like with u, and
agent k ∈ N \{1, 2} likes items positively. The expected utility of agent i ∈ {1, 2}
is pi · (n − 1 + u) and the one of agent k ∈ N \ {1, 2} is pk multiplied by the
sum of their utilities. Consider now another distribution of allocations, in which
agent i ∈ {1, 2} gets pi for each item they like with 1 except items o1, o2, p1 +p2
for item oi and 0 for o ∈ {o1, o2} \ {oi} whereas agent k ∈ N \ {1, 2} gets pk

for each item. This allocation Pareto improves the allocation of the mechanism
for u > max{(p1/p2), (p2/p1)}. Hence, the mechanism is not Pareto efficient ex
ante. Therefore, p1 and p2 cannot be both positive and, for this reason, each
mechanism in the distribution gives the highest priority to the same agent. We
can inductively show this for each priority. 	


We next observe one last difference to the offline setting where stochastic
Pareto efficiency and envy-freeness are always possible [5]. In online fair divi-
sion, no mechanism (even wasteful) satisfies Pareto efficiency ex ante and envy-
freeness ex ante unless we consider simple 0/1 utilities (e.g. the Balanced Like
mechanism).
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Theorem 9. With general cardinal utilities, no mechanism for online fair divi-
sion is envy-free ex ante and Pareto efficient ex ante.

Proof. Consider an envy-free ex ante mechanism and the instance with non-zero
utilities in Example 1. By Theorem 4, to ensure envy-freeness ex ante for o1, the
mechanism should give it to each agent with 1/2. By Theorem4, to ensure envy-
freeness for both o1 and o2, the mechanism then should give o2 to each agent
with 1/2. The expected utility of each agent is 3/2. This expected allocation is
Pareto dominated by the allocation in which each agent gets the item they value
with 2. Hence, the mechanism is not Pareto efficient ex ante. 	


To sum up, we might use the Online Random Priority or Pareto Like
mechanism for Pareto efficiency ex post, or the Maximum Like or Online Se-
rial Dictator mechanism for Pareto efficiency ex ante. With 0/1 utilities, we
may also use the Like or Balanced Like mechanism.

8 Conclusions

We summarize all results in Table 1 and Fig. 1. For completeness, we add some
simple results for the case of identical utilities when the Pareto Like and Ma-
ximum Like mechanisms become ex post equivalent to the Like mechanism, the
Balanced Like mechanism becomes ex ante equivalent to the Like mechanism,
and each of these becomes Pareto efficient as the sum of agents’ utilities is a
constant in each allocation.

Table 1. Axiomatic results. Key: � - the result follows from [Aleksandrov et al. 2015].

Mechanism SP OSP EFA SEFA EFP SEFP BEFP PEA PEP

General cardinal utilities

Online RP � � � � × × × × �
Online SD � � × × × × × � �
Maximum Like × × × × × × × � �
Pareto Like × × × × × × × × �
Like �� � �� � ×� × ×� × ×
Balanced Like ×� � ×� × ×� × ×� × ×

Identical cardinal utilities

Like �� � �� � ×� × × � �
Balanced Like × � � � ×� × × � �

Binary cardinal utilities

Like �� � �� � ×� × ×� � �
Balanced Like ×� � �� × ×� × �� � �
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Fig. 1. General characterization results. Key: ∅ - no mechanisms, ∞ - inf. many mech-
anisms.

In future work, we will add quotas to our setting. And, we will extend our
results to approximations of envy-freeness and general monotone utilities.

References

1. Abdulkadiroglu, A., Sönmez, T.: Random serial dictatorship and the core from
random endowments in house allocation problems. Econometrica 66(3), 689–702
(1998)

2. Aleksandrov, M., Aziz, H., Gaspers, S., Walsh, T.: Online fair division: analysing
a food bank problem. In: Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, Argentina, 25–
31 July 2015, pp. 2540–2546 (2015)

3. Aleksandrov, M., Walsh, T.: Most competitive mechanisms in online fair division.
In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.) KI 2017. LNCS (LNAI),
vol. 10505, pp. 44–57. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67190-1 4

4. Benade, G., Kazachkov, A.M., Procaccia, A.D., Psomas, C.A.: How to make envy
vanish over time. In: Proceedings of the 2018 ACM Conference on Economics and
Computation, EC 2018, pp. 593–610. ACM, New York (2018)

5. Bogomolnaia, A., Moulin, H.: A new solution to the random assignment problem.
J. Econ. Theory 100(2), 295–328 (2001)

6. Brams, S.J., King, D.L.: Efficient fair division: help the worst off or avoid envy?
Rat. Soc. 17(4), 387–421 (2005)

7. Chevaleyre, Y., Endriss, U., Estivie, S., Maudet, N.: Multiagent resource allocation
in k-additive domains: preference representation and complexity. Ann. Oper. Res.
163(1), 49–62 (2008)

8. Dickerson, J.P., Procaccia, A.D., Sandholm, T.: Dynamic matching via weighted
myopia with application to kidney exchange. In: Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence (2012)

9. Dickerson, J.P., Sandholm, T.: Futurematch: combining human value judgments
and machine learning to match in dynamic environments. In: Proceedings of the
Twenty-Ninth AAAI Conference, pp. 622–628 (2015)

https://doi.org/10.1007/978-3-319-67190-1_4
https://doi.org/10.1007/978-3-319-67190-1_4


Online Fair Division with Additive Utilities 541

10. Freeman, R., Zahedi, S.M., Conitzer, V., Lee, B.C.: Dynamic proportional shar-
ing: a game-theoretic approach. In: Proceedings of the ACM on Measurement and
Analysis of Computing Systems - SIGMETRICS, vol. 2, no. 1, pp. 3:1–3:36, April
2018

11. Gibbard, A.: Manipulation of voting schemes: a general result. Econometrica 41(4),
587–601 (1973)

12. Kash, I.A., Procaccia, A.D., Shah, N.: No agent left behind: dynamic fair division
of multiple resources. JAIR 51, 579–603 (2014). https://doi.org/10.1613/jair.4405

13. Lian, J.W., Mattei, N., Noble, R., Walsh, T.: The conference paper assignment
problem: using order weighted averages to assign indivisible goods. In: Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), New
Orleans, Louisiana, USA, 2–7 February 2018, pp. 1138–1145 (2018)

14. Manea, M.: Serial dictatorship and pareto optimality. Games Econ. Behav. 61(2),
316–330 (2007). https://doi.org/10.1016/j.geb.2007.01.003

15. Svensson, L.G.: Strategy-proof allocation of indivisible goods. Soc. Choice Welf.
16(4), 557–567 (1999)

16. Walsh, T.: Online cake cutting. In: Brafman, R.I., Roberts, F.S., Tsoukiàs, A.
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Abstract. We propose Knowledge Enhanced Neural Networks
(KENN), an architecture for injecting prior knowledge, codified by a
set of logical clauses, into a neural network.

In KENN clauses are directly incorporated in the structure of the
neural network as a new layer that includes a set of additional learnable
parameters, called clause weights. As a consequence, KENN can learn the
level of satisfiability to impose in the final classification. When training
data contradicts a constraint, KENN learns to ignore it, making the sys-
tem robust to the presence of wrong knowledge. Moreover, the method
returns learned clause weights, which gives us informations about the
influence of each constraint in the final predictions, increasing the inter-
pretability of the model. We evaluated KENN on two standard datasets
for multi-label classification, showing that the injection of clauses auto-
matically extracted from the training data sensibly improves the perfor-
mances. Furthermore, we apply KENN to solve the problem of finding
relationship between detected objects in images by adopting manually
curated clauses. The evaluation shows that KENN outperforms the state
of the art methods on this task.

Keywords: Neural-symbolic integration · Neural networks ·
Fuzzy logic · Visual Relationship Detection

1 Introduction

In the last decades, there have been an increased interest on Neural-Symbolic
systems, i.e., systems that integrates neural networks and symbolic reason-
ing (Besold et al. 2017). In this paper, we propose Knowledge Enhanced Neu-
ral Network (KENN), a neural network model that exploits prior knowledge
about the domain of interest. Such knowledge is expressed by a set of log-
ical rules (or clauses). For instance, in an image classification task the rule
∀(Dog(x) → Animal(x)), stating that dogs are animals, is used by KENN to
predict the two labels Dog and Animal.
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Suppose we have a neural network (NN) for some relational classification task,
that we call basic NN. KENN enhances the prediction done by the basic NN by
injecting the background knowledge. This is obtained by adding a final layer in
the basic NN. This additional layer is designed to increase the satisfaction of the
clauses by modifying the predictions. It uses clause weights parameters that rep-
resent the influence of each clause on the final predictions. Differently from other
neuro-symbolic integration approaches, clauses weights are not given, but they
are learned. By changing the weight of clause, KENN can ignore clauses in the
prior knowledge that are not fully satisfied inside training data. Although KENN
can be used in principle for relational data, in this paper we focus our attention
on multi-label classification problems. Notice however that motivations, general
framework and theoretical results hold for relational data as well.

We evaluate KENN on two aspects. First we evaluate the ability of KENN
to learn clause weights, which make KENN robust to less reliable knowledge
bases. For this reasons, we made some experiments using automatically generated
knowledge bases. We tested KENN on Yeast dataset (Elisseeff and Weston 2001)
and Emotions dataset (Trohidis et al. 2008) using clauses generated directly
from their training data. Results showed that KENN can make efficient usage
of this kind of rules. In a second experiment we evaluate KENN on Predicate
Detection task of Visual Relationship Detection Dataset (VRD Dataset) (Lu
et al. 2016) using a manually curated prior knowledge proposed by Donadello
(2018). KENN outperformed state of the art methods, with best results on the
Zero Shot Learning variant of the task. This last experiment confirms the fact
that background knowledge plays a key role in machine learning when there is
a scarcity of training data.

2 Related Work

Many previous works attempt to combine learning models with logical knowl-
edge. Among them, there are (Hybrid) Markov Logic Networks (Wang and
Domingos 2008; Richardson and Domingos 2006) and Probabilistic Soft Logic
(PSL) (Bach et al. 2017). However, in each of these systems the functions that
bind logic rules with predictions are very simple while in KENN could be a
general Neural Network. Moreover, they can not deal with real valued features.

A different line of research, called Neural-Symbolic systems, has focused on
combining neural networks models with logical knowledge (Besold et al. 2017).
Early proposals, like KBANN (Towell and Shavlik 1994, were restricted on
propositional logic. More recently, systems working with First Order Logic were
developed. In this category there are Logic Tensor Network (LTN) (Serafini and
d’Avila Garcez 2016) and Semantic Based Regularization (SBR) (Diligenti et
al. 2017). The two methods have a similar approach: they deals with logical
constraints by maximize their satisfaction during training. In (Demeester et al.
2016), rules are used to constraint the learnt embeddings. However, they restrict
the type of rules to implications with a singular literal in the body. Another
approach consists on using a distillation mechanism for injecting logic (Hu et al.
2016).
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The main difference between KENN and its major competitors lies on the
way logic formulas are used: in KENN they become part of the classifier instead
of being enforced during training. More precisely, methods like LTN and SBR
force the constraints satisfaction during training making the assumption that
the knowledge is in general correct. Instead, we assume there is a relationship
between clauses and correct results, but this relationship is not known. The
logical constraints are seen as a prior belief rather than prior knowledge. More in
details, KENN has internal learnable parameters associated to the logic formulas.
To the best of our knowledge, there are no previous methods that can inject
logical constraints into a neural network while being able to learn clause weights.
This make KENN suitable for scenarios where the given knowledge contains
errors or when rules are softly satisfied in the real world but it is not known the
extent on which they are correct.

Current implementation of KENN can deal with multi-label classification
problems. Although the theory is more general, so far we performed evaluations
only on those kind of problems. Multi-label classification is a supervised learn-
ing task relevant in many disciplines, e.g., bioinformatics (Elisseeff and Weston
2001), scene classification (Boutell et al. 2004) and text categorization (Loza
Menćıa and Fürnkranz 2010). In multi-label classification we are interested in
mapping specific observations to subsets of all the possible labels (Tsoumakas
and Katakis 2007; Park and Fürnkranz 2008). It differs from binary classifica-
tion and, more in general, from multi-class classification, because the classes
are not mutually exclusive, i.e. multiple labels can be associated to a single
instance. Formally, it is given a set of labels L = {λi|i = 1...m} and a training
set T = {(xi, yi)|i = 1...n}, where xi denotes features of the ith observation and
the classification yi ∈ 2L is a subset of labels associated to such observation.
We want to find a classifier φ : X → 2L which, given features x of an observa-
tion, returns the associated set of labels. KENN is extremely suited to formulate
multi-label classification with constraints. Indeed KENN uses vectorial represen-
tation for both features and corresponding classification, with yi,j equal to one
if λj is associated to observation i, zero otherwise. While it is possible to train
many different binary classifiers for each label, such method does not take into
account relationships among them. Indeed, in real-world applications, labels are
often not independent. For this reason, it could be useful to exploit knowledge
about labels relationships provided by some human expert. More formally, it
is given a prior knowledge KC,R composed of a set of clauses. Each clause is a
disjunction of (positive or negated) literals, each of which is a class (i.e., a label)
of the multi-label classification problem. For instance, a possible clause could
be λ1 ∨ ¬λ3 ∨ λ4. Such clause tells the system that at least one of the specified
literal should be true.

3 KENN: Overview of the Model

Let NN be a neural network (called base NN) that takes in input the feature
vectors x1, . . . ,xN of N objects and returns an initial output y = (yC ,yR)
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that contains the predictions about the classes of these objects, i.e., yC , and the
predictions about their relations yR (in this work we restrict to binary relations).
The predictions y of the base NN are revised by a function, called Knowledge
Enhancer (KE), to force the satisfaction of the logical constraints on the classes
C and relations R that are contained in the knowledge base KC,R.

KE must be differentiable and it can be seen as a new final layer for the base
NN that encodes the background knowledge. The entire network is still differen-
tiable end-to-end, making it possible to train the model with back-propagation
algorithm. KE contains additional parameters that can be learned as well. In
particular clause weights wc determine the strength of each clause c ∈ KC,R.
Figure 1 shows a high level overview of the model.

Fig. 1. KENN model: features are given as input to a neural network (NN) and predic-
tions on predicates values are returned. Knowledge Enhancer modifies the predictions
based on logical constraints (KC,R)

For each clause c ∈ KC,R, KE internally produces the change to be applied
to the predictions y of the base NN in order to increase c satisfaction. It then
calculates the final predictions y′ by adding to the NN outputs the weighted sum
of such changes using as weights parameters wc. In order to increase satisfaction
of a clause, we first need to define what satisfaction mean. We rely on fuzzy logic,
where the satisfaction of a disjunction of literals is represented with a t-conorm
function.

Definition 1. A t-conorm ⊥ : [0, 1] × [0, 1] → [0, 1] is a binary function which
satisfies the following properties:

1. ⊥(a, b) = ⊥(b, a)
2. ⊥(a, b) ≤ ⊥(c, d) if a ≤ c and b ≤ d
3. ⊥(a,⊥(b, c)) = ⊥(⊥(a, b), c)
4. ⊥(a, 0) = a

We represent a t-conorm as a unary function over vectors (t = 〈t1, t2...tn〉):

⊥(t) = ⊥(t1,⊥(t2,⊥(t3...⊥(tn−1, tn))))
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4 Boost Functions

The KE should implement a function that changes the values of the predictions
y of the basic NN into y′ in order to increase the truth value of each clause c
contained in the knowledge base KC,R.

Given a clause c composed of n literals, if the ith component of t is the truth
value of the ith literal of c, then ⊥(t) is the truth value of c. Intuitively, the KE
should implement a function δ : [0, 1]n → [0, 1]n that increases the value of ⊥(t).

4.1 T-Conorm Boost Functions

Let us first define the class of functions that increases the values of a t-conorm,
called t-conorm boost functions.

Definition 2. A function δ : [0, 1]n → [0, 1]n is a t-conorm boost function
(TBF) iff:

∀n ∈ N ∀t ∈ [0, 1]n 0 ≤ ti + δ(t)i ≤ 1

Let Δ denote the set of all TBFs.

Proposition 1. For every t-conorm ⊥ and every TBF δ, ⊥(t) ≤ ⊥(t + δ(t))

Proof. By definition of TBF, ∀i ∈ [1, n], ti ≤ ti + δ(t)i; the conclusion directly
follows from the Property 2. of t-conorm.

TBFs are used in the KE to update the initial predictions y done by the
base NN. We want to keep this change as minimal as possible. Therefore we look
at TBF’s that improve the t-conorm value in a minimal way, so that it is not
possible to obtain a higher improvement with smaller modifications on literals
values. We define the concept of minimality for a TBFs.

Definition 3. A function δ ∈ Δ is minimal with respect to a norm ‖ · ‖ and a
t-conorm ⊥ iff:

∀δ′ ∈ Δ ∀n ∈ N ∀t ∈ [0, 1]n (1)
‖δ′(t)‖ < ‖δ(t)‖ → ⊥(t + δ′(t)) < ⊥(t + δ(t))

For any function f : Rn → R we define δf : Rn → R
n as

δf (t)i =
{

f(t) if i = argmaxn
j=1 tj

0 otherwise (2)

Theorem 1. If we choose function f such that 0 ≤ f(t) ≤ 1 − maxn
j=1 tj, then

δf functions are minimal TBFs for the Gödel t-conorm and lp-norm.
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Proof. Gödel t-conorm ⊥(·) is defined as ⊥(t) = maxn
i=1(ti); and lp-norm is

defined as ‖t‖p = (
∑n

k=1 |tk|p)1/p. Suppose that δ ∈ Δ is such that

‖δ(t)‖p < ‖δf (t)‖p

If j = argmaxn
k=1(tk + δ(t)k), we can derive:

⊥(t + δ(t)) = tj + δ(t)j

and, if i = argmaxn
k=1 tk, we have that

⊥(t + δf (t)) = ti + f(t)

Since ti ≥ tj , we just need to demonstrate that δ(t)j < f(t). Notice that:

δ(t)j = (|δ(t)j |p)1/p ≤
(

n∑
k=1

|δ(t)k|p
)1/p

= ‖δ(t)‖p < ‖δf (t)‖p

Since δf (t) changes only the value of the ith component of t we have that
‖δf (t)‖p = f(t).

4.2 Boosting Preactivations

Applying directly a TBF to the final prediction y of the base NN could be
problematic since we have to respect the constraint that the improved value
should remain in [0, 1]. This implies that f cannot be a linear function. Notice
that the outputs y of NN are calculated by applying the sigmoid activation
function over the preactivations z generated in the last layer. I.e.:

yi = σ(zi) =
1

1 + e−zi

where yi is the activation of the ith predicate and zi the corresponding preacti-
vation. In Sect. 4.1 we showed that if we increase only the value of the highest
literal (highest activation), such a change is minimal for Gödel t-conorm. We
can apply the same strategy to preactivations and still have a minimal change
that increase the t-conorm. In other words, we can increase zi instead of yi,
when i = argmaxn

j=1 zj and the previously proven properties still hold. Apply-
ing changes on preactivations has the advantage of guaranteeing to be in [0, 1].

Proposition 2. For any function f : Rn → R
+, the function

δg(y) = σ(z + δf (z)) − σ(z) (3)

with σ(z) = y, is a minimal TBF.

Proof. Notice that y+ δg(y) = σ(z+ δf (z)) which is in [0, 1]n. Furthermore, for
every i �= argmaxn

j=1 yj , δg(y)i = 0. Theorem 1 guarantees that δg is a TBF.
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The function δg is not directly used by KENN; it is implicitly induced by the
application of δf on z. Therefore, by showing that it is a minimal TBF, we prove
that applying δf on z is indeed equivalent to apply a minimal TBF on the NN
predictions. We allow a distinct fc function for every clause c. This is motivated
by the fact that we want a δfc that is proportional to clause weight wc (learnable
parameter) that expresses the strengths of the clause. The simplest function that
conforms to this property is the constant function wc (with wc ∈ [0,∞]). The
function applied to z to increase c satisfaction is therefore δwc defined as in 2.

4.3 Soft Approximation of δwc

Although δwc respects our minimality property, there are two problems when
using it inside a neural network: first, it is not differentiable; second, it is too
strict when multiple literals have close values. In those cases, it increases just one
of the values even if the difference is minimal. To obviate these problems, in our
implementation we substitute δwc with the softmax function (sm(·)) multiplied
by wc, that can be seen as a soft differentiable approximation of δwc :

δwc
s (z)i = wc · sm(z)i = wc · ezi∑n

j=1 ezj

Intuitively, the idea is that, in order to satisfy a clause, at least one of its lit-
eral must be true. The softmax function act as a selector for the most promising
true literal, that is the one with highest supporting evidences (biggest preacti-
vation).

5 KENN Architecture

Figure 2 shows in details the architecture of KENN’s last layer. KE is a func-
tion that takes as input the preactivations z of the base NN and produces the
final activations y′. Internally, for each clause c ∈ KC,R, it has a submodule
called Clause Enhancer (CE), which returns the adjustment to apply on preac-
tivations to enforce c satisfaction. The CEs outputs are then combined linearly
using clauses weights and summed to the initial preactivations. Lastly, the final
predictions are calculated by applying the logistic function:

y′
i = σ

(
zi +

∑
c∈KC,R

i∈c

pc,i · δwc
s (pc � zc)i

)
(4)

where i ∈ c means that the clause c contains a positive or negative literal corre-
sponding to the preactivations zi, zc are all the preactivations corresponding to
the literals in c, � is the element-wise multiplication, and pc is a polarity vector
of 1 and −1, with pi = 1 if the ith literal of the clause is positive and pi = −1
if it is negative. The term wc is a positive weight associated to clause c; it is a
parameter of the model, which is learned during training. Notice that setting wc

to zero make clause c irrelevant for the final predictions, making it possible for
KENN to learn to ignore clauses.
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Fig. 2. KENN: (a) Knowledge enhancer, (b) Clause enhancer

6 Experimental Evaluation

We tested KENN on three datasets: Yeast (Elisseeff and Weston 2001), Emo-
tions (Trohidis et al. 2008) and VRD Dataset (Lu et al. 2016). Table 1 reports
some figures of the three datasets. Please note that for VRD the features are
two bounding boxes of an image together with the class of the contained object
(there are 100 possible classes and we used as features the one hot encoding of
them plus the 4 coordinates of each bounding box).

Table 1. Datasets statistics

Dataset Features Labels Train Test

Yeast 103 14 1500 917

Emotions 72 6 392 202

VRD 208 70 4000 1000

We implemented KENN using TensorFlow and used RMSProp (Tijmen and
Hinton 2012) as learning algorithm. For all the experiments we used as NN a
neural network with zero hidden layers, i.e., a logistic regression (LR). We tried
two learning strategies: in the end-to-end strategy, we trained KENN (base
NN + KE) end-to-end using the entire training set; with greedy strategy we
split the training set into two subset. With the first one we trained the base NN,
with the second the KE (freezing the NN parameters).
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When showing results we will use KENNe and KENNg to distinguish between
the two.

6.1 Yeast and Emotions Datasets

In our experiments we used automatically extracted association rules for Yeast
and Emotions datasets.

Association rules learning is the task of extracting association rules from
a database of transactions (Agrawal et al. 1993). Given a set of items I =
I1, I2...In, a transaction consists of an itemset T ⊆ I and an association rule is
an implication of the form λ1 ∧ ... ∧ λn → λj that must hold in the dataset with
a certain confidence.

The idea is to use as prior knowledge for KENN the association rules
extracted from labels of training set.

For extracting association rules we used Apriori algorithm (Agrawal et al.
1996). As in (Park and Fürnkranz 2008), we generated each transaction from a
sample using both positive and negative labels. More precisely, given a sample
(xi, yi), the transaction is calculated as:{

λj |yi,j = 1
} ⋃{

¬λj |yi,j = 0
}

where λj is the name of jth predicate.
To select the best values of support and confidence for the Apriori algorithm

we tried different combinations of values. We generated the rules and trained
KENN using 2/3 of the Training and evaluate the model on the remain samples.
We finally kept the values with highest accuracy. Then we used the optimal value
for extracting rules from the entire Training Set and trained KENN on it. It is
worth noticing that, when using greedy approach of learning, for every configu-
ration tried for Apriori parameters the accuracy of KENN was greater or equal
than the one of the corresponding neural network, confirming the robustness of
our method to poorly written knowledge bases. The found values for support
and confidence are respectively 0.2 and 0.99 for Yeast Dataset and 0.2 and 0.7
for Emotions.

Table 2. Results with and without prior knowledge on yeast and emotions datasets.
The table shows hamming loss and accuracy.

Yeast Emotions

HL Acc HL Acc

LR 22.38 37.52 27.89 33.70

KENNe 22.24 46.43 34.57 25.74

KENNg 20.86 48.56 24.59 38.78

In Table 2 the final comparison between the logistic regression and KENN: the
usage of prior knowledge improved both HL and accuracy when using the greedy
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approach of learning, while the end-to-end one results in smaller improvements
in Yeast dataset and a degradation in Emotions.

In principle, we could expect better results training jointly the NN and KE,
because there could be some combinations of parameters for the entire model
such that the NN performs poorly while the entire system gives good results. This
type of configurations cannot be learned by the greedy approach. In other words,
when training with greedy approach, some solutions in the hypothesis space can
not be reached. For this reason, greedy approach has a smaller ability to fit the
data. However, this could also imply an increased risk of overfitting. Therefore,
we can expect better results of the end-to-end version when the amount of data
is big enough to overcome overfitting. Indeed, the problem with the end-to-end
version is visible in particular on Emotions dataset, which has less than 400
samples for its training.

6.2 Predicate Detection

Visual Relationship Detection (VRD) is the task of finding objects in an image
and capture their interactions (Donadello 2018; Lu et al. 2016; Zhang et al. 2017).
It is composed of three subtask: Relationship Detection, Phrase Detection and
Predicate Detection (Lu et al. 2016). The VRD Dataset contains a total amount
of 6672 triplets types. Among them 1877 can be find only in the Test Set and
predicting them is the goal of the Zero Shot Learning variant of the task.

We trained both LR and KENN using RMSProp (Tijmen and Hinton 2012)
and cross entropy as loss function. For evaluating the results we used the
Recall@n (n ∈ {50, 100}) metric proposed by Lu et al. (2016) that is the
percentage of times a correct relationship is found on the n predictions with
highest score. We evaluated KENN on the Predicate Detection task using the
manually curated knowledge base described in (Donadello 2018). This knowl-
edge base contains 206 clauses divided in three groups, namely: domain (resp.
range) clauses, that restrict the domain (range) of a binary relation (e.g.,
¬ParkOn(x, y) ∨ Street(y) ∨ Road(y) ∨ Grass(y)); mutual exclusivity clauses
(e.g. ¬Behind(x, y)∨¬SitOn(x, y)); and subrelation clauses, that state the con-
tainment between relations (e.g., ¬Ride(x, y) ∨ On(x, y)).
Results on Predicate Detection task are shown in Table 3. KENN outperformed
other methods on all the metrics except for Recall@100 of the standard variant
of the task where it is surpassed by Yu et al. (2017). Moreover, the best results of
KENN can be seen on Zero Shot Learning version where the difference between
KENN and the second best system is more than 10%. In Zero Shot Learning
the aim is to predict previously unseen triplets, therefore it is rather difficult to
learn to predict them from the Training Set. This confirms the ability of KENN
to use the Knowledge Base.

Another interesting result is the value obtained by KENN compared to
LTN (Donadello 2018). In particular considering that the two works used the
same Prior Knowledge. A possible explanation is given by the ability of KENN
to learn clause weights. Indeed, many weights results to be zero after learning.
An example of a zero weighted clause is: ¬Ride(x, y) ∨ On(x, y).
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Table 3. Results on VRD Predicate Detection task

Standard Zero Shot

R@50 R@100 R@50 R@100

Lu et al. (2016) 47.87 47.87 8.45 8.45

Dai et al. (2017) 80.78 81.90 – –

Yu et al. (2017) 85.64 94.65 54.20 74.65

Donadello (2018) 78.63 91.88 46.28 70.15

LR 54.58 60.55 33.88 44.91

KENNg 59.87 71.42 43.88 63.99

KENNe 86.02 91.91 68.95 83.83

Although the rule seems correct it is not in general satisfied on training and
test set. This is because labels have been added manually, therefore there are
plenty of missing relations. Our hypothesis is that people have a tendency to
add the most informative labels making some of the clauses unsatisfied.

Additionally, as in previous experiments, we increased the results of LR, the
basic NN used by KENN. This time, although greedy version brought great
improvements over the logistic regression, the best results are achieved by the
end-to-end approach. This provide an additional support for the overfitting
hypothesis made in Sect. 6.1, since VRD has a much bigger training set than
Emotions and Yeast. Moreover, in previous experiments, prior knowledge was
automatically extracted from the training data. Clauses could be satisfied in the
training set just by chance. In such cases, Apriori algorithm extracts misleading
rules that are not satisfied at test time. This implies a further increase in the
chances of overfitting.

7 Conclusions and Future Work

With its results on the three analyzed datasets, KENN showed to be able to
efficiently exploit prior knowledge improving performances of the base neural
network. Moreover, experiments on VRD dataset showed that KENN is com-
petitive against other approaches, in particular tanks to its ability to effectively
learn clauses weights.

In future work, investigating alternatives to Gödel t-conorm might be useful.
In addition, we would like to perform experiments with more complex neural
networks rather than adding rules to a simple logistic regression. Moreover, we
are interested in extend KENN implementation for relational data. Finally, fur-
ther investigations could prove helpful to fully understand the different scenarios
in which the two learning approaches (greedy and end-to-end) are more suited.
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Abstract. We propose a general approach for encoding epistemic strate-
gies for playing incomplete information games. A game strategy involves
selecting actions in order to maximise an outcome (e.g., winning the
game). In an epistemic strategy the selection of actions is based on rea-
soning about the knowledge of other players. We show how epistemic
strategies can be encoded by supplementing a GDL-II game description
with a set of epistemic rules to produce a GDL-III game that an appro-
priate reasoner can use to play the original GDL-II game. We prove the
formal correctness of this approach and provide a practical evaluation to
show its efficacy for playing the co-operative multi-player game of Han-
abi. It was found that the encoded epistemic rules were able to provide
players with a strategy that allowed them to play Hanabi near optimally.

1 Introduction

General Game Playing (GGP) is a sub-field within AI aimed at creating systems
that can learn to play a variety of strategy games when given only the game rules
at runtime [11]. Unlike specialised systems, a general game player cannot rely on
game specific algorithms that have been designed in advance. Instead it requires a
form of general intelligence that enables the player to autonomously adapt to new
games. This is exemplified by the annual international GGP competition [13].

A feature of GGP is the Game Description Language (GDL) used to specify
complete information games [11], and subsequently extended to deal with imper-
fect information games (GDL-II) [18]. However, while GDL-II can be used to
specify the rules of imperfect information games, it lacks the expressive power
to describe the strategy a player should follow to actually play such a game. In
particular, a multi-agent, imperfect information game typically requires players
to reason about the knowledge, or epistemic state, of other players in order to
play effectively [1]. Such a player is said to be following an epistemic strategy.

While epistemic strategies cannot be encoded in GDL-II, a more recent lan-
guage extension, GDL-III, does allow for the specification of epistemic goals and
rules (GDL-III; for GDL with imperfect information and introspection) [22].
While intended as a language for describing epistemic games, it has also been
used to model epistemic puzzles, such as the ‘Muddy Children’ puzzle, where the
goal of each child is to know whether or not she has mud on her forehead [21].
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In this paper we introduce a further application of GDL-III; as a language
for representing epistemic strategies. In particular, we provide a framework for
encoding epistemic strategies for GDL-II games within the GDL-III language.
Any GDL-III reasoner (i.e., a logical reasoner that can track the state of a GDL-
III game) can then be co-opted into being an effective GDL-II game player.

To motivate the use of epistemic strategies, and to study the potential efficacy
of our approach, we consider the game of Hanabi1. Hanabi has been the subject
of recent interest [4,7,9,10,17,20,24], and has been proposed as a new frontier for
AI research in a similar league to games such as poker and Go [5]. Hanabi is well-
suited for our purposes, as the game rules require no epistemic properties (i.e.
it is GDL-II representable), yet it is a multi-player, imperfect information game
that requires players to reason about the knowledge of other players in order to
play effectively. Existing AI players are specialised [9,10,17,20] with epistemic
strategies that can be abstracted from the underlying search algorithms. We
investigate the application of two of these strategies encoded in GDL-III.

The rest of the paper proceeds as follows: Sect. 2 provides background to GGP
and Hanabi, Sect. 3 formalises the encoding of epistemic strategies in GDL-III,
Sect. 4 outlines the modeling of strategies for Hanabi, and Sect. 5 provides an
experimental evaluation of these strategies.

2 Background

The Game Description Language (GDL) [12], and its extension GDL-II for
imperfect-information games [19], is a formal language for specifying the rules
of strategy games to a general game-playing system. GDL uses a prefix-variant
of the syntax of logic programs along with the following special keywords:

(role ?r) ?r is a player
(init ?f) feature ?f holds in the initial position
(true ?f) feature ?f holds in the current position
(legal ?r ?m) ?r has move M in the current position
(does ?r ?m) player ?r does move M
(next ?f) feature ?f holds in the next position
terminal the current position is terminal
(goal ?r ?v) player ?r gets payoff ?v

(sees ?r ?p) player ?r observes ?p in the next position
random the random player (aka. Nature)

GDL-II can be used to describe a variety of commonly played imperfect-
information games (see http://ggpserver.general-game-playing.de).

Example. Hanabi is a fully cooperative, incomplete information game where a
team of two to five players work together to play cards from a deck in order to
complete up to five stacks of sequentially numbered cards. Crucially, each player
1 https://en.wikipedia.org/wiki/Hanabi_(card_game).

http://ggpserver.general-game-playing.de
https://en.wikipedia.org/wiki/Hanabi_(card_game)
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only sees the cards of the other players’ and must therefore rely on those other
players to inform them about cards in their own hand in order to play correctly.

The game uses a special deck of 50 cards consisting of five colours where each
colour has 10 ranked cards from 1 to 5. Each player begins with a randomly dealt
hand of four or five cards where a player’s hand is held with the cards facing away
such that only the other players can see their colour and rank. Play proceeds
with players taking turns to select one of three types of actions:

– Play: Select any one of the player’s own cards to reveal; and add it to a stack
of the same colour if its number is the next in sequence for that stack.

– Discard: Select any one of the player’s own cards to discard from the game.
– Hint: Select another player and declare the positions of all cards in their

hand that share the same colour or rank.

The game also features two types of tokens, information and life tokens.
Information tokens restrict the number of hint actions that can be made and can
only be regained when a discard action is taken. Life tokens limit the number of
unsuccessful play actions where all players lose if the last life token is lost.

An example set of rules for a Hanabi version with just 2 players, colours and
ranks and a hand size with 1 card position is shown below2:

(role random) (role player1) (role player2)

(cardCol ukn) (cardCol red) (cardCol grn)
(cardNum ukn) (cardNum 1) (cardNum 2)
(position 1) (succ 0 1) (succ 1 2)

(<= (card ?colour ?number)
(cardCol ?colour) (cardNum ?number))

(<= (legal ?r (play ?pos))
(true (control ?r))
(true (hand ?r ?pos (card ?col ?num))))

(<= (legal ?r noop)
(role ?r) (not (true (control ?r))))

(<= (sees ?r1 (does ?r2
(play ?pos (card ?col ?num))))

(role ?r1) (does ?r2 (play ?pos))
(true (hand ?r2 ?pos (card ?col ?num))))

(<= (next (stacksize ?col ?x))
(does ?r (play ?pos (card ?col ?num)))
(correct_play ?r ?pos))

(<= (correct_play ?r ?pos)

2 For the full Hanabi GDL-II encoding see: https://git.io/fhbVz.

https://git.io/fhbVz


558 S. Manuel et al.

(true (hand ?r ?pos (card ?col ?num)))
(true (stacksize ?col ?prev))
(succ ?prev ?num))

Semantics. A game description Σ that obeys GDL syntactic restrictions [16]
determines a state transition system as follows. A move m is legal for role r

in state s = {f1...fn} if (legal r m) follows from Σ and the facts strue =
{(true f1)...(true fn)}. Given a state s and a joint move M (i.e. a legal
move m for every player r), the updated state u(M, s) consists of all f for which
(next f) follows from Σ and the facts strue = {(true f1)...(true fn)}
and Mdoes = {(does r1 m1)...(does rk mk)}. The observations for player r

after joint move M in state s are given by the derivable instances of (sees r p)

in the same way. For example, consider s ={(hand player1 1 (card red 2)),
(control player1), (stacksize red 1)}. Then the move (play 1) is legal
for player1 and noop is legal for both player2 and random. The state resulting
from this legal move is {(stacksize red 2)}, where both players will observe
(does player1 (play 1 (card red 2))).

Definition 1 ([19]). The semantics of a valid GDL-II game description G is
given by

– R = {r : G |= (role r)}
– s0 = {f : G |= (init f)}
– t = {S : G ∪ strue |= terminal}
– l = {(r,m, S) : G ∪ strue |= (legal r m)}
– u(M,S) = {f : G ∪ Mdoes ∪ strue |= (next f)}
– I = {(r,M, S, p) : G ∪ Mdoes ∪ strue |= (sees r p)}
– g = {(r, v, S) : G ∪ strue |= (goal r v)}
Legal play sequences are sequences of joint moves, beginning in the initial state,
in which all players always select a legal move. Legal play sequences δ and δ′

are indistinguishable by player r (i.e., are in the same information set), written
δ ∼r δ′, iff r’s moves and observations are identical in δ and δ′.

GDL-III. Hanabi can be sufficiently described as a GDL-II game with incomplete
information where the value of the colour and number of cards in each position in
a player’s hand is hidden until they play or discard it. However, playing optimally
requires players to maintain a knowledge base for each player of the known facts
about each card in their hand to determine which cards are correct plays and
what information other players need to identify correct plays. This provides an
opportunity to use an epistemic strategy encoded in a recent extension of GDL
to reason about a player’s knowledge when selecting an action. GDL-III [22]
introduces the following keywords in order to support the axiomatisation of
game rules that depend on the knowledge of players:

(knows ?r ?p) player ?r knows ?p in the current state
(knows ?p) ?p is common knowledge in the current state
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ΣESGΣG

Fig. 1. Epistemic strategy game ΣESG is a sub-game of an existing GDL-II game ΣG.

The semantics for GDL-III is more involved since the transition system is
now also shaped by what players know: Let (s,K) be an arbitrary knowledge
state, where s is a state and K a set of ground knows-instances. Move m for
role r is legal in (s,K) if (legal r m) can be derived from Σ ∪ strue ∪ K. The
resulting state when joint move M is executed in (s,K) consists of all f such that
(next f) can be derived from Σ∪strue∪K∪Mdoes. Player r observes p when M
is executed in (s,K) iff (sees r p) can be derived from G∪ strue ∪K ∪Mdoes.
By definition, the initial state is common knowledge among the agents. A legal
play sequence is a sequence of joint moves, beginning in the initial knowledge
state, in which all players always select a legal action. Legal play sequences δ and
δ′ are indistinguishable by r, written δ ∼r δ′, iff r’s moves and observations are
the same in δ and δ′. Player r knows a property φ after a legal play sequence δ
iff φ is true in all δ′ that r cannot distinguish from δ. Finally, φ is common
knowledge after δ if it holds after all δ′ in the transitive closure ∼C of

⋃
r∈R ∼r.

3 A Framework for Epistemic Strategies

In this section we formally introduce the framework for representing epistemic
strategies as GDL-III games. We provide a general method to transform an
arbitrary GDL-II game into a GDL-III game through the addition of legal move
definitions based on the knowledge of players. We then prove a number of prop-
erties; starting with the correctness of the framework, through to establishing
that the framework defines a computationally interesting GDL-III fragment.

3.1 Defining the Transformation

The general approach of enriching a given “source” game with a set of epistemic
strategy rules is illustrated in Fig. 1. A game can be viewed as a state transition
system, with the joint moves defining the transition between states. Adding a set
of epistemic strategy rules limits the available moves to only those that follow
the strategy; effectively pruning the state space and defining a sub-game.

We define the GDL axiomatisation of this process in two stages. We first
define a transformation function for arbitrary GDL-II games and then define
how this transformation is applied to create a GDL-III game.

Definition 2. Let ΣG be a GDL axiomatisation of a GDL-II game. The set of
rules τ(ΣG) is obtained from ΣG as follows:
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– if ep_legal or src_legal are predicates defined in ΣG, replace them with
unique names not occurring in ΣG,

– replace every occurrence of (legal r a) with (src_legal r a), for arbi-
trary r and a; and

– add the following rules:

(<= (legal ?r ?a) (ep_legal ?r ?a))
(<= (ep_legal ?r) (ep_legal ?r ?a))
(<= (legal ?r ?a)

(not (ep_legal ?r)) (src_legal ?r ?a))

Definition 2 provides a purely syntactic transformation of a GDL-II game. It
should also be noted that the resulting transformation is itself a legal GDL-II
game. Furthermore, because (ep_legal ?r ?a) is used but not defined in the
game τ(ΣG), the non-monotonicity of default negation in the third additional
rule ensures logical equivalent to the original game.

However, the default negation of the third rule can also be used to provide
a mechanism for incorporating an epistemic strategy, which we outline now. For
the following definition we rely on the notion of the dependency graph of a logic
program and the related concepts of a logic program being stratified [3] and safe
(or allowed) [15]. It should be noted that the GDL specification requires that all
game descriptions are stratified and safe [16].

Definition 3 (Epistemic Enrichment). For a GDL-II game ΣG and a trans-
formation function τ satisfying Definition 2, let ΣESG be the GDL-III game:

ΣESG = τ(ΣG) ∪ Σstrategy ,where

Σstrategy is a set of GDL-III rules satisfying the following requirements:

– Σstrategy must be both stratified and safe,
– rule heads cannot include the GDL keyword predicates (e.g., next, true),
– rule heads cannot include auxiliary predicates that have been defined in ΣG,
– any rule containing (ep_legal r a) in the head, for arbitrary r and a, must

also include (src_legal r a) as a positive dependency in the dependency
graph for Σstrategy.

Definition 3 turns a GDL-II game into a GDL-III game by enriching the
original game with a set of rules where the knows predicate can occur in the
body of the rule. This new GDL-III game can be used by a GDL-III reasoner to
play the original game; where it chooses actions if there is an epistemic strategy
for the given state or simply plays a legal move otherwise. The effectiveness of
the resulting player will be dependent on the extent to which the epistemic rules
are able to encode a winning strategy.
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3.2 Properties

In this section we establish some basic properties of our framework. In partic-
ularly, we show that, despite the difference in semantics between GDL-II and
GDL-III, there is a clear link between the GDL-III game constructed through
the method defined in Definition 3 and the original GDL-II game.

Proposition 1. For any syntactically correct GDL-II game ΣG and set of epis-
temic strategy rules Σstrategy, the resulting epistemically enriched game ΣESG is
a syntactically correct GDL-III game.

Proof. ΣG satisfies GDL keyword restrictions, is safe and stratified (see [16]).
These properties are preserved by τ(ΣG). The restriction on Σstrategy also satis-
fies these properties such that τ(ΣG) ∪ Σstrategy is also stratified and safe. ��

In order to establish further properties we use the notion of legal play
sequences, where a sequence of moves M1, . . . , Mn corresponds to legal moves
from a starting state s0, such that si = u(Mi, si−1), for state update function u.
In particular, we establish that the game ΣESG is a restriction over the game ΣG.

Proposition 2. Given any GDL-II game ΣG and set of epistemic strategy rules
Σstrategy, then for the resulting GDL-III game ΣESG, and legal play sequence of
ΣESG, M1, . . . , Mn with corresponding states s0, s1, . . . , sn it holds that:

– the sequence M1, . . . , Mn is a legal play sequence of ΣG with corresponding
states s′

0, s
′
1, . . . , s

′
n.

– if sn is a terminal state of ΣESG then s′
n is a terminal state of ΣG.

– for each player r the goal value g(r, sn) of ΣESG in state sn will be the same
as the goal value g(r, s′

n) in game ΣG and corresponding state s′
n.

Proof. By induction on the states in the play sequence. The initial state of a
game in GDL-II/III corresponds to the fluents defined by init. Since τ(ΣG)
and Σstrategy do not introduce any new fluents or modify init therefore the
objective fluents of the initial state of ΣG will be identical to ΣESG; furthermore
τ(ΣG) does not change goal values or how terminal is determined.

Consider the first move M1 and an arbitrary role r of ΣESG; M1(r) = a
is a legal action for r in s0 for game ΣESG. Hence either (ep_legal r a) or
(src_legal r a) is true in s0 (Definition 2). But if (ep_legal r a) is true
then (src_legal r a) must also be true (by the dependency restriction in
Definition 3). But (src_legal r a) is simply the rewrite of (legal r a) from
the original game, hence (legal r a) must also be a legal move for role r in s′

0

for game ΣG. Hence M1 is also a legal move in ΣG and so the transition from
s′
0 by M1 will also be a state s′

1 of ΣG. Furthermore if s′
1 is terminal in ΣESG it

will also be a terminal state of ΣG with identical goal values for each player.
The same argument holds for the induction step; where assuming M1, . . . , Mi

(i < n) is also a legal sequence of ΣG with states s′
0, . . . , s

′
i, then s′

i+1 is also a
state of ΣG with the correct termination and goal values. ��
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Now, Proposition 2 establishes that ΣESG represents a restriction over ΣG
and allows this restriction to be determined by a player’s knowledge or the com-
mon knowledge of all players. However, in general GDL-III is a strictly more
expressive language than GDL-II, since, determining if a game terminates in
GDL-III is in general undecidable, even when subject to the usual syntactic
restrictions that ensure the finiteness of the state space in GDL-II [22]. Conse-
quently, the syntactic restrictions of Definition 3 result in the identification of an
interesting fragment of GDL-III.

Proposition 3. Given any GDL-II game ΣG and set of epistemic strategy rules
Σstrategy, then for the resulting epistemically enriched game ΣESG determining
if ΣESG terminates is decidable.

Proof. A direct consequence of Proposition 2. Any legal play sequence of ΣESG,
M1, . . . , Mn with corresponding states s0, s1, . . . , sn where sn is a terminal state,
is also a legal play sequence of ΣG and corresponding state s′

n is also a terminal
state of ΣG. But ΣG is a GDL-II game so determining termination is decidable,
hence determining termination of ΣESG is also decidable. ��

The key to the decidability of ΣESG is that the syntactic restrictions ensures
that the truth of fluents in a state or the termination of a state is independent
of the knowledge of players. This is not true of GDL-III in general.

Hence not only does the proposed framework allow for the encoding of epis-
temic strategies for playing specific games, but it does so in a manner that
preserves the decidability of the original game. This means that the encoding of
epistemic strategies in GDL-III is both of theoretical and potentially of practical
interest. In the following section we apply this theory to encoding strategies for
the game of Hanabi and show the efficacy of the approach.

4 Encoding Epistemic Strategies in Hanabi

This section outlines the GDL-III encoding of two epistemic rule-based strategies
that can be used to extend the original GDL-II Hanabi source game to allow
players to reason about game knowledge when selecting a move.

The two strategies considered are the information strategy and the implicit
strategy. The information strategy takes a conservative approach to playing Han-
abi. Hint moves are given to inform other players of card numbers or colours that
are unknown to them, and cards are only played if its holder knows that it is
playable based on knowing both its colour and number. This represents an indi-
vidualistic strategy since it is agnostic to the strategies of other players.

In contrast, the implicit strategy represents a more optimistic approach to
playing Hanabi. It selects moves based on players’ knowledge, but with the addi-
tional implicit assumption that all players are following the same, or at least a
pre-agreed, strategy. Hence, this strategy resembles that of an experienced group
of players with an agreed convention on how to play the game.
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4.1 The Information Strategy

This strategy models the use of hint moves to convey information of card prop-
erties that are not known to other players. It is adapted from the Outer-State
strategy presented in Osawa’s original paper on solving Hanabi [17], where play-
ers inform each other of properties that have not yet been stated. A player
uses this strategy by selecting the first rule whose antecedent is satisfied from a
list of epistemic rules. We provide a description of these rules, but also show a
sample of the GDL encodings to illustrate the correspondence between the rule
explanations and their GDL-III instantiations3:

1. If a known playable card is in our hand, play that card.

(<=(ep_legal ?r (play ?pos))
(src_legal ?r (play ?pos))
(knows ?r (correct_play ?r ?pos)))

2. If a known dead card is in our hand and there are clue tokens to be gained,
discard that card.

(<=(ep_legal ?r (discard ?pos))
(src_legal ?r (discard ?pos))
(not (has_legal_play ?r))
(knows ?r (has_dead_card ?r ?pos)))

3. If no known playable cards is in any hand, discard the card with the highest
known number.

(<=(ep_legal ?r (discard ?pos))
(src_legal ?r (discard ?pos))
(not (has_legal_play ?r))
(not (has_legal_discard ?r))
(not (has_legal_hint_num ?r))
(not (has_unknown_card ?r))
(knows_highest_card ?r ?pos ?num))

4. If there are clue tokens, and a player has a playable card, hint its number if
not known.

(<=(ep_legal ?r (hint ?r1 ?num))
(src_legal ?r (hint ?r1 ?num))
(not (has_legal_play ?r))
(not (has_legal_discard ?r))
(true (hand ?r1 ?pos (card ?col ?num)))
(correct_play ?r1 ?pos)
(not (knows ?r1 (hand ?r1 ?pos (cardNum ?num)))))

5. If there are clue tokens, and a player has a playable card, hint its colour if
not known.

6. If there are clue tokens, hint a random card’s number that is not known.
7. If there are clue tokens, hint a random card’s colour.
8. If no clue tokens available, discard the highest known number card in hand.
3 For the complete GDL-III information strategy encoding see: https://git.io/fhbVo.

https://git.io/fhbVo
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4.2 The Implicit Strategy

This strategy aims to encode additional facts in certain moves which other play-
ers following the same strategy can infer when they observe those moves. This
differs from the information strategy to use the hint moves to imply playability
of a card based on the property hinted for that card. In the implicit strategy, the
number property of a card is hinted if the card is playable otherwise the colour
is hinted instead. The resulting strategy rules are as follows4:

1. If a known playable card is in our hand, play that card.
2. If a known dead card is in our hand and clue tokens to be gained, discard

that card.
3. If no known playable cards are in any hand, then discard the card with the

highest known number.
4. If there are clue tokens, and a player has a playable card, hint its number.
5. If there are clue tokens, and no known playable cards in any hands, hint a

random card’s colour.
6. If no clue tokens available, discard a random card.

5 Evaluation

Four experiments were conducted to evaluate the increased performance of the
GDL-II game Hanabi extended with a GDL-III epistemic strategy. The first
experiment investigated the practical lower bound of playing Hanabi without
any strategy, where players select (legal) actions randomly. The second and third
experiments evaluated the performance of the information and the implicit strat-
egy respectively. Finally, the fourth experiment provided a crude upper bound
by modelling the case of playing Hanabi where the cards in every players’ hand
is common knowledge, with the only unknowns being the cards in the deck.

Each experiment was run for 50 games each with six configurations of number
of players and cards per player and a play clock of 10 s. Table 1 below shows the

Table 1. Outline of Hanabi game configurations

Id nPl Colours Numbers nHand MaxScore

1 2 R,G 1,2 1 4
2 2 R,G 1,2,3 2 6
3 2 R,G 1,1,2,3 2 6
4 3 R,G,B 1,2 1 6
5 3 R,G,B 1,2,3 2 9
6 4 R,G,B,Y 1,2 1 8

4 For the complete GDL-III implicit strategy encoding see: https://git.io/fhbVK.

https://git.io/fhbVK
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details of each configuration of number of players, nPl, with hand size nHand
and number card counts for each colour. The Colours and Numbers column
indicate the colour and number values used to build the deck.

The experiments were run on a 2.5GHz MacOS laptop with 16GB memory. A
GDL-III knowledge reasoner was implemented in ASP according to the formula
in [21] to calculate knowledge at each timestep. This reasoner was adapted for
time-restrained GGP matches to incorporate a timeout equal to the play clock
that only returns an approximation of the knowledge state. As a result, games
were played within a reasonable amount of time ranging from 5 s for games with
a decksize of 4 to 4min at the maximum decksize of 9.

Figure 2 below displays the comparison of the average scores for each experi-
ment from the above table grouped by each of the six configurations. There is a
clear increase in the performance of the players following an epistemic strategy
to select moves based on their own knowledge and that of other players. For the
random players without a strategy, multiple games were lost due to too many
incorrect plays resulting in an average score almost always less than 2. On the
other hand, the information and implicit strategies provided a similar increase
in performance. The information strategy was seen to achieve a more consistent
score, where legal play moves tend to follow from a sequence of two hint moves.
While this strategy is less variable, it is also highly dependent on clue tokens
for increasing its scalability to larger game configurations. The implicit strategy
experiences more variance in achievable scores but is able to scale to games with
more players due its ability to signal playability of a card with a single hint move.
It is also worth noting that for configurations 5 and 6, the knowledge calculation
for most time steps exceeded the timeout and resulted in players relying on an
incomplete set of knowledge facts. Despite this, games using epistemic strategies
were still able to outperform those with players playing randomly.
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Fig. 2. Comparison of endgame results

6 Conclusion

We developed a framework for modelling epistemic games in GGP allowing play-
ers to reason about their knowledge of the game state using epistemic strategies.
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We presented a formal approach to represent these strategies for GDL-II games
as specialised GDL-III games. This approach was evaluated for the game of Han-
abi where two epistemic strategies, the information and implicit strategies, were
used to select player actions. From the evaluation, it was observed that the exper-
imental upper bound for reasoning with complete knowledge was able to achieve
a perfect score most of the time, although not guaranteed for all configurations.
We then found that the information strategy achieved a more consistent score in
contrast to the implicit strategy which achieved a higher maximum score. This
was done by encoding an implicit recommendation to play a card if a player was
hinted its number, which resulted in more effective use of limited hint actions.
Yet this advantage was lost when multiple hints were given for a combination of
both playable and unplayable cards.

In terms of related work, a number of logical frameworks exist for reason-
ing about the strategic abilities of players in games [8,14,23], mostly based on
Alternating-time Temporal Logic [2]. However, these logics are based on modal-
ities for the existence of strategies and do not provide means for specifying
them [6]. An exception is a recent special-purpose modal logic for reasoning about
strategies [25]. The main differences to our framework are that their strategies
can only be conditioned on state properties and not on players’ knowledge, and
that using their logic would first require the development of a special-purpose
automated theorem prover.

As future work, probabilistic reasoning could be incorporated within the
implicit strategy to allow the same action to indicate either playable or non-
playable cards with an associated probability, which could also be used to con-
dition hint moves in some cases. Another avenue would consider optimal action
selection using epistemic strategies combined with game independent strategies
such as Monte-Carlo Tree Search to reduce the reliance on game specific strategy
rules.
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Abstract. Computational advertising has been studied to design effi-
cient marketing strategies that maximize the number of acquired cus-
tomers. In an increased competitive market, however, a market leader (a
leader) requires the acquisition of new customers as well as the reten-
tion of her loyal customers because there often exists a competitor (a
follower) who tries to attract customers away from the market leader.
In this paper, we formalize a new model called the Stackelberg budget
allocation game with a bipartite influence model by extending a bud-
get allocation problem over a bipartite graph to a Stackelberg game. To
find a strong Stackelberg equilibrium, a solution concept of the Stackel-
berg game, we propose two algorithms: an approximation algorithm with
provable guarantees and an efficient heuristic algorithm. In addition, for a
special case where customers are disjoint, we propose an exact algorithm
based on linear programming. Our experiments using real-world datasets
demonstrate that our algorithms outperform a baseline algorithm even
when the follower is a powerful competitor.

Keywords: Stackelberg game · Budget allocation problem ·
Submodular

1 Introduction

An aim of computational advertising is to find the best advertisement that can
help build customers loyalty. More specifically, the purpose of advertisers is to
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devise an optimum allocation of budgets to media, such as newspapers, radio
stations, TV, and websites, in order to maximize the number of activated cus-
tomers. Recently, Alon et al. [1] proposed a model to deal with a simple case
of the problem, called a bipartite influence model. In this study, we shall extend
the model by integrating a game-theoretic framework, called the non-zero-sum
Stackelberg game framework. Let us explain the model more precisely below.

In the bipartite influence model, we consider a bipartite graph where one
side is a set of media, the other is a set of customers, and each edge is associ-
ated with a probability. Intuitively, each edge between a medium and a customer
indicates that the customer is influenced by the medium with some given prob-
ability that depends on the budget allocated to the medium. We aim to allocate
budgets on media so that the expected number of activated customers is maxi-
mized. The problem can be formulated as a combinatorial optimization problem.
Constant-factor approximation algorithms for the problem have been developed
in a framework of submodularity [1,11,12].

In this paper, we shall try to extend the above-mentioned model to deal with
a situation of a duopoly where a market leader has occupied the market of a
certain product for a long time and a competitor tries to break into the market.
The competitor tries to grab the share of the market by aggressively marketing
its product. On the other hand, the market leader wants to gain customers
and retain her loyal customers simultaneously. This implies that the leader’s
gain does not necessarily result in the competitor’s loss. In order to capture the
dynamics of this market, we exploit a Stackelberg game [13] framework to model
the interactions between the market leader and the competitor. The Stackelberg
game is a two-player two-period game, in which one player (a leader) can commit
to an action before the other player (a follower) plays an action. A standard
solution concept of this game is the strong Stackelberg equilibrium, which is an
optimal solution maximizing the leader’s utility under the constraint that the
follower plays a best response to the leader’s action (i.e., intended to maximize
the follower’s utility).

The Stackelberg game matches to model our problem setting because the
leader wants to increase the number of activated customers, and at the same
time, prevent the outflow of her customers, which is achieved by finding a strong
Stackelberg equilibrium. In a strong Stackelberg equilibrium, the leader plays a
mixed strategy and the follower plays a pure strategy, where pure strategy and
mixed strategy correspond to a budget allocation and a probability distribution
over the pure strategies, respectively.

In this paper, we propose a new model called the Stackelberg budget allocation
game with a bipartite influence model, which is an extension of the budget allo-
cation problem presented in [1]. The difficulties of our game lie in the leader’s
utility function. Our game belongs to a non-zero-sum game, and the utility
function is a submodular (nonlinear) function even when the follower’s action is
fixed. It is hard to construct an approximation algorithms by the following rea-
sons: (i) the cumbersome constraint that the follower optimally responds and (ii)
the leader’s utility may be non-linearly changed by a follower’s strategy. Thus,
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existing techniques for submodular functions cannot be directly applied to our
problem. Furthermore, the leader’s utility function is not necessarily monotone,
that is, the utility does not always increase in the number of allocated budgets.
This entails the increment of the number of pure strategies. To design an efficient
algorithm is an arduous task.

In this paper, we propose three efficient algorithms:

– We design an approximation algorithm with theoretical guarantee. The key
idea to construct an approximation algorithm is to create a zero-sum game
close to the original non-zero-sum game, and to find an approximate minimax
strategy of the zero-sum game with the aid of submodularity.

– We give an efficient heuristic algorithm that repeatedly finds a leader’s pure
strategy greedily and uniformly picks from the pure strategies. The running
time is polynomial in the leader’s budget. This heuristic can deal with a
situation that the leader should not spend up her whole budget due to the
non-monotonicity of the utility function. We also evaluate its performance by
numerical experiments.

– If the customers are disjoint, we prove that a strong Stackelberg equilibrium
can be found efficiently even when the leader has exponentially many pure
strategies by using the multiple linear programming (LP for short) formula-
tions. The point in the disjoint case is that we can aggregate a leader’s mixed
strategy to a fractional budget allocation. At the same time we can recover a
mixed strategy in a compact representation without loss of the leader’s util-
ity. This enables us to save memories to keep a mixed strategy and reduce
the size of LP instances.

The rest of the paper is organized as follows: We describe related work in
Sect. 2 and define notations in Sect. 3. We formalize our model and analyze its
(mathematical) properties in Sect. 4. We then provide an approximation and a
heuristic algorithms in Sect. 5, and provide an exact algorithm for the disjoint
customers in Sect. 6. In Sect. 7, we empirically show the performance of our
algorithm, and finally we conclude the study in Sect. 8.

2 Related Work

Our problem setting can be viewed as a non-monotone non-zero-sum Stackelberg
game with submodular functions. Vanek et al. [16] modeled a non-zero-sum
Stackelberg game with submodular functions where the defender (the leader)
cares about minimizing the loss of her utility. In our game, the leader maximizes
her utility incorporating her loss against the follower’s action. Thus, the goal
of the leader is different. Moreover, direct application of their technique to find
a Stackelberg equilibrium does not seem to work well in our setting. Recently,
Wilder et al. [17] extended a bipartite influence model to a zero-sum Stackelberg
game, which is closely related to our problem setting. They proved that the
problem is APX-hard, while it has FPTAS for some special cases.
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In combinatorial optimization and machine learning, approximation algo-
rithms for maximizing submodular functions under certain constraints have been
extensively studied [9]. Our problem can be viewed as a submodular maximiza-
tion under a best-response constraint, which is more cumbersome than typical
constraints in the submodular maximization literature (e.g., cardinality con-
straint and knapsack constraint).

The budget allocation problem with the bipartite influence model has been
extended in [6,10,11,15]. In particular, some formulations have incorporated the
view of the multi-agent system. Maehara et al. [10] extended a budget allocation
in the bipartite influence model to a strategic form game, called the budget
allocation game with a bipartite influence model. Hatano et al. [6] extended the
budget allocation problem to the problem with two participants; advertiser and
match maker. In the problem, there exist multiple advertisers who cooperatively
maximize the influence on customers and single match maker who allocates slots
of media to advertisers.

3 Preliminary

Let Z+ be the set of non-negative integers. For an integer k ∈ Z+, let [k] be the
set {1, 2, . . . , k}. In this section, we describe the budget allocation problem with
a bipartite influence model and the Stackelberg game.

3.1 Bipartite Influence Model

Let G = (U, V ;E) be a bipartite graph, where (U, V ) is a bipartition and E ⊆
U × V is a set of edges. Each vertex u ∈ U corresponds to a medium and v ∈ V
corresponds to a customer. Let n and m be the sizes of U and V , respectively.
Each edge uv ∈ E is associated with a probability puv ∈ [0, 1], which means that
allocating a budget to medium u ∈ U activates customer v ∈ V with probability
puv. We assume that the activation events are independent. The advertiser has
a total available budget of k ∈ Z+, and each medium u ∈ U has a slot to
which the advertiser can allocate her budget. The goal is to find the optimal
budget allocation z ∈ {0, 1}U with

∑
u∈U zu ≤ k that maximizes the number of

activated customers. Throughout this paper, we identify a set S of media with
its characteristic vector zS ∈ {0, 1}U . A probability that a customer v ∈ V is
activated by the advertiser’s trial from media in U is given by

Pv(z) = 1 − ∏
u∈Nv : zu=1(1 − puv), (1)

where Nv = {u | uv ∈ E} is the set of the neighbors of v. The expected number
of customers activated through the budget allocation z is given by

∑
v∈V Pv(z).

The objective of the budget allocation problem with a bipartite influence model
is to find z that maximizes

∑
v∈V Pv(z) subject to

∑
u∈U zu ≤ k.

The function Pv(z) is shown to be a monotone submodular function [14].
Here, a function f : {0, 1}n → R is submodular if it satisfies f(x) + f(y) ≥
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f(x ∨ y) + f(x ∧ y) for all x, y ∈ {0, 1}n, where x∨ y and x∧ y denote the vector
of component-wise maxima and minima, respectively, i.e., (x∨y)i = max{xi, yi}
and (x ∧ y)i = min{xi, yi}. A function f is monotone if it satisfies f(x) ≤ f(y)
for all x ≤ y, i.e., xi ≤ yi for all i ∈ [n]. Thus the budget allocation problem
is a special case of the submodular maximization problem with a cardinality
constraint, and it is well-known that the problem is NP-hard [3] and has a
(1 − 1/e)-approximation algorithm [12].

3.2 Stackelberg Game

The Stackelberg game is played between two players: the leader and the follower.
Both players can play a mixed strategy, but it is sufficient to consider that the
follower plays a pure strategy. Let SL and DF be the sets of pure strategies of
the leader and the follower, respectively. We denote the set of mixed strategies of
the leader by DL = {x ∈ [0, 1]SL | ∑

s∈SL
xs = 1}, each of which is a probability

distribution on pure strategies in SL. We define f : DL × DF → R and g : DL ×
DF → R as utility functions of the leader and the follower, respectively. We define
an instance of the game as G = (DL,DF , f, g). Let BR(x) = arg maxy∈DF

g(x, y)
be the set of best responses of the follower against x. In this game, the leader will
commit to play a mixed strategy before the follower plays his strategy. Thus the
leader needs to find a mixed strategy x maximizing f(x, y) under the constraint
that the follower would choose a best-response pure strategy y ∈ BR(x). More
precisely, the goal of this game is to find a leader’s mixed strategy that forms a
strong Stackelberg equilibrium, as indicated below.

Definition 1. A strong Stackelberg equilibrium of G is a pair (x∗, y∗) that sat-
isfies f(x∗, y∗) ≥ f(x, y) for all x ∈ DL, y ∈ BR(x), and y∗ ∈ BR(x∗).

4 Stackelberg Budget Allocation Game

In this section, we extend the budget allocation problem with a bipartite influ-
ence model to a Stackelberg game. For any set SL and s ∈ SL, we denote
by χs a characteristic vector in {0, 1}SL such that (χs)s′ = 1 for s′ = s and
(χs)s′ = 0 for s′ 	= s (s′ ∈ SL). For a mixed strategy x ∈ DL, the support of x is
the set of pure strategies that is played with non-zero probability under x, i.e.,
supp(x) = {s ∈ SL | xs > 0}.

4.1 Definition

Let G = (U, V ;E) be a bipartite graph consisting of a set U of n media, a set V of
m customers, and a set E of edges between them. For each uv ∈ E, we denote by
puv a probability that a customer v is activated through a medium u by a leader’s
or a follower’s trial, and by pF,uv a probability that a medium u activates a cus-
tomer v who has been already activated by the leader. Two probabilities intu-
itively mean that puv is a basic activation probability in the market, and pF,uv is
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a probability that the follower recaptures customers who were activated by the
leader. Let kL and kF be the budgets of the leader and the follower, respectively.
An instance of the Stackelberg budget allocation game with a bipartite influence
model is parameterized by φ = (G = (U, V ;E), {puv}uv∈E , {pF,uv}uv∈E , kL, kF ).

We construct a Stackelberg game G from an instance φ as follows. A pure
strategy for the leader (respectively the follower) is a set of at most kL media
(respectively kF media). DL and DF of the game G are defined by setting SL =
{z ∈ {0, 1}U | ∑

u∈U zu ≤ kL} (or equivalently SL = {S ⊆ U | |S| ≤ kL}) and
DF = {y ∈ {0, 1}U | ∑

u∈U yu ≤ kF }.
Let v ∈ V be any customer. Let z and y be a leader’s and a follower’s pure

strategies, respectively. The probability that the leader activates v is given by
the Eq. (1). If v is not activated by the leader, then the activation probability for
the follower is given by the same basic probability, that is Pv(y). If v is activated
by the leader, then the probability that the follower attracts a customer v ∈ V
away from the leader is PF,v(y) = 1 − ∏

u∈Nv :yu=1(1 − pF,uv).

Example 1. We explain the difference between puv and pF,uv. Consider a game
instance illustrated in Fig. 1. There are three media u1, u2, u3 and four customers
v1, v2, v3, v4. For an arbitrary edge uv, puv = 0.8 and pF,uv = 0.5. The budget
for the leader and the follower is kL = 2 and kF = 1, respectively. At first,
the leader plays a mixed strategy x that chooses {u1, u2} w.p. 1. Suppose the
situation in Fig. 1(a) where {u1, u2} is chosen and v1, v2, and v3 are activated
w.p. 0.8, who are shown in gray. After that, the follower plays a pure strategy
that chooses {u3}. In Fig. 1(b), the customer v2 switches to the follower w.p.
0.5 if v2 is activated by the leader, and otherwise v2 is activated w.p. 0.8. Thus,
the probability to activate v2 is 0.96 · 0.5 + 0.04 · 0.8 = 0.512. In addition, v4 is
activated w.p. 0.8 because v4 is non-activated.

u1

u2

u3

v1

v2

v3

v4

(a) The leader’s turn

u1

u2

u3

v1

v2

v3

v4

(b) The follower’s turn

Fig. 1. The difference between puv and pF,uv.

The utility functions f and g are given as follows. The expected number of
customers that are activated by the leader but do not shift to the follower is
given by

f(z, y) =
∑

v∈V Pv(z)(1 − PF,v(y)).
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The expected number of activated customers for the follower is given by

g(z, y) =
∑

v∈V

(
Pv(z)PF,v(y) + (1 − Pv(z))Pv(y)

)
.

When the leader uses a mixed strategy x, we abuse the notation and write
Pv(x) = Ez∼x[Pv(z)]. Here, for a probability distribution x over a domain
D, z ∼ x means that we sample z ∈ D from the distribution x. Similarly,
we write f(x, y) = Ez∼x[f(z, y)] =

∑
v∈V Pv(x)(1 − PF,v(y)), and g(x, y) =

Ez∼x[g(z, y)] =
∑

v∈V

(
Pv(x)PF,v(y) + (1 − Pv(x))Pv(y)

)
.

The goal of the Stackelberg budget allocation game with a bipartite influence
model is to find a leader’s mixed strategy x in a strong Stackelberg equilibrium
of the game G. We define a function fBR that receives a mixed strategy x ∈ DL

and returns the leader’s utility when the follower takes a best response, i.e.,

fBR(x) = max {f(x, y) | y ∈ BR(x)} .

We aim to solve

max fBR(x) s.t. x ∈ DL. (2)

Note that x is an optimal solution to (2) if and only if (x, y) is a strong Stackel-
berg equilibrium, where y is a best response against x. We can evaluate fBR(x)
for x ∈ SL in O(|DF | · |E| · |supp(x)|) time by evaluating f(x, y) |DF | times.
To obtain the value of f(x, y), we evaluate f(z, y) for z ∈ supp(x), which takes
O(|E|) time.

We now see that the leader’s optimal strategy may not be a pure strategy.

Example 2. Consider an instance depicted in Fig. 2(a) with kL = kF = 1.
In this case, an optimal strategy for the leader is x∗ = 0.5χ{u1} + 0.5χ{u2}
and fBR(x∗) = 1.1 where the best response of the follower is {u1}. However,
fBR(χ{u1}) = fBR(χ{u2}) = 0.6 and fBR(χ{u3}) = 0.599.

We next see that the leader may not use the whole budget in her optimal
strategy.

Example 3. Consider an instance depicted in Fig. 2(b) with kL = 3 and kF = 1.
Then fBR(χU ) = 0 while fBR(χ{u1}) = fBR(χ{u3}) = 1.

There also exists an instance without a pure Stackelberg equilibrium (see
Example 4.4 in the upcoming full version).

4.2 Hardness

In this subsection, we show hardness results. We observe that finding a leader’s
optimal pure strategy when kF = 0 is equivalent to the optimal budget allocation
problem. Thus, it is NP-hard to find the leader’s mixed strategy that forms a
Stackelberg equilibrium even if kF = 0, since our problem (2) when kF = 0
always has the leader’s optimal strategy that is pure. It is also known that
the approximation ratio 1 − 1/e is best possible for the maximum coverage
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(0.1, 0
)
(1, 0.5)

(1, 0.5
)

(0.1, 0)

(0.599, 0)

u1

u2

u3

v1

v2

v3

v4

(a) An instance without leader’s pure op-
timal strategies

(1, 0)

(0, 1)
(0, 1)

(1, 0
)

u1

u2

u3

v1

v2

(b) An instance where the leader
should not spend whole her budget

Fig. 2. Examples of the Stackelberg budget allocation game, where the pair of numbers
on each edge uv represents the activation probabilities puv and pF,uv.

problem under the assumption that P 	= NP [4]. Hence, our problem (2) is also
inapproximable within ratio 1 − 1/e unless P = NP.

Moreover, when kF is not a fixed constant, it is even NP-hard to evaluate
fBR(x) for a given x ∈ DL. The proof is reducing from the maximum coverage
problem, which is shown to be NP-hard (see e.g., [7]). Given an integer k and
a collection of sets S = {S1, S2, . . . , Sn}, the maximum coverage problem is to
find a subset S ′ ⊆ S of at most k sets such that the number of covered elements∣
∣⋃

Si∈S′ Si

∣
∣ is maximized. See the upcoming full version for the proof.

Theorem 1. It is NP-hard to compute fBR(x) for x ∈ DL.

5 Algorithms for Non-disjoint Customers

In this section, for the non-disjoint customers setting, which has no assump-
tion about the graph structure, we propose two types of algorithms for
(2). Let G be a game instance created from an instance φ = (G =
(U, V ;E), {puv}uv∈E , {pF,uv}uv∈E , kL, kF ) and let Λ be its data size. Due to the
hardness result (Theorem 1), in this section we assume that kF is a constant.

5.1 Approximation Algorithm via Zero-Sum Game

We shall approximately solve a game G by solving a zero-sum game close to G.
The core idea of constructing such a zero-sum game is to keep the same set of
best-responses of the follower for any strategy of the leader as G. Let us focus
on the structure of f and g, which include the term −∑

v∈V Pv(x)PF,v(y) and
its negation, respectively. We define a utility function for the leader as

Φ(x, y) = −g(x, y) +
∑

v∈V Pv(x)
=

∑
v∈V [Pv(x)(1 − PF,v(y)) − Pv(y)(1 − Pv(x))].
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Note that C:= maxy∈DF

∑
v∈V Pv(y) ≥ −Φ(x, y) and we can compute C in

polynomial time since |DF | is polynomially bounded. Let GΦ be a zero-sum
game (DL,DF , Φ,−Φ).

For reals α ∈ [0, 1] and ε ≥ 0, we call an algorithm (α, ε)-approximation for
G (resp. GΦ) if it provides a strategy profile (x′, y′) such that y′ ∈ BR(x′) and
f(x′, y′) ≥ α ·maxx∈DL

fBR(x)−ε (resp. Φ(x′, y′) ≥ α ·maxx∈DL,y∈BR(x) Φ(x, y)−
ε). Such (x′, y′) is called an (α, ε)-approximate solution.

Lemma 1. Let (x′, y′) be an (α, ε)-approximate solution of a zero-sum game GΦ,
and let (x∗, y∗) be a strong Stackelberg equilibrium of the original game G. Let
ε1:=

∑
v∈V (1 − Pv(x′))Pv(y′) and ε2:=

∑
v∈V (1 − Pv(x∗))Pv(y∗). Then (x′, y′)

is an (α, αε2 − ε1 + ε)-approximate solution for the game G.
Proof. We remark that f(x, y) can be rewritten by Φ(x, y) as f(x, y) = Φ(x, y)+∑

v∈V (1 − Pv(x))Pv(y). Let (x̃, ỹ) be the minimax strategy of GΦ. We have

f(x′, y′) = Φ(x′, y′) + ε1 ≥ αΦ(x̃, ỹ) − ε + ε1

≥ αΦ(x∗, y∗) − ε + ε1 = αf(x∗, y∗) − (αε2 − ε1 + ε),

where the second inequality holds by Φ(x̃, ỹ) = maxx∈DL,y∈BR(x) Φ(x, y) ≥
Φ(x∗, y∗).

To find an approximate strong Stackelberg equilibrium, it suffices to find an
approximate minimax strategy for GΦ. Note that since |SL| is an exponential
size, finding a minimax strategy for GΦ is still intractable.

To this end, we use the multiplicative weight update method [2]. Based on this
method, Kawase and Sumita [8] showed that, for any nonnegative monotone sub-
modular functions h1, . . . , hν : {0, 1}n → R+ and ε > 0, there exists an algorithm
that finds a (1 − 1/e − ε)-approximate solution of maxx∈DL

mini∈[ν] Es∼x[hi(s)]
in polynomial time in n, ν and 1/ε. We set hy(z) = Φ(z, y) + C for all pure
strategies z ∈ SL and y ∈ DF . By the definition, hy is nonnegative monotone
submodular for any y ∈ DF . Thus, we see that we can compute a (1 − 1/e − ε)-
approximate solution for maxx∈DL

miny∈DF
(Φ(x, y)+C) in polynomial time in Λ

and 1/ε. This solution is
(
1−1/e−ε, (1/e+ε)C

)
-approximate for GΦ. Therefore,

by Lemma 1, we observe the following result.

Theorem 2. For any ε > 0, there exists a (1 − 1/e − ε, β)-approximation algo-
rithm where β = (1−1/e)ε2−ε1+(1/e+ε)C and the running time is polynomial
with respect to Λ and 1/ε.

5.2 Heuristic Algorithm

In this subsection, we propose a heuristic algorithm. Intuitively, in the algo-
rithm, the players fictitiously play a game 
 times. Here 
 is a parameter. Let
us assume that the leader would know that the follower estimates the leader’s
mixed strategy by observing the past budget allocations. In every phase, the
leader needs to allocate her budgets so that the mixed strategy estimated by the
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Algorithm 1. Proposed heuristic
input: a parameter � ∈ Z+ output: a mixed strategy

1 x, x∗ ← χ∅;
2 for i = 1 to � do
3 S ← ∅;
4 for j = 1 to kL do
5 xu ← i−1

i
x + 1

i
χS∪{u} (u ∈ U);

6 r ∈ arg maxu∈U\S fBR(x
u);

7 if fBR(x
r) ≥ fBR(x) then S ← S ∪ {r} ;

8 else break;

9 x ← i−1
i

x + 1
i
χS ;

10 if fBR(x
∗) < fBR(x) then x∗ ← x ;

11 return x∗;

follower maximizes the leader’s utility. The algorithm outputs a mixed strategy
by repeating this phase 
 times.

We describe informally our algorithm, which is summarized in Algorithm1.
The algorithm repeatedly computes 
 pure strategies χS1 , . . . , χS�

∈ DL, and
outputs the best mixed strategy among 1

i (χS1 + · · ·+χSi
) (i = 1, . . . , 
). At first

round, χS1 is chosen to maximize fBR(x). Each χSi
is computed greedily (lines

4–9).
In each round i, we evaluate fBR O(n · kL) times, and each evaluation of fBR

takes O(|DF | · |E| · i) time. Thus the total running time is O(|DF | · |E| ·n ·kL ·
2).

6 Algorithm for Disjoint Customers

In this section, we focus on the disjoint customers setting where each customer is
interested in only one medium, i.e., |Nv| = 1 for all v ∈ V . This means that the
utility functions f, g are bilinear. In this special case, we propose an LP-based
algorithm, and modify it so that it runs fast when |DF | is small. We denote by
Λ the data size of an input game instance (G, {puv}uv∈E , {pF,uv}uv∈E , kL, kF ).
The following proposition is the main result in this section.

Proposition 1. When |Nv| = 1 for all v ∈ V , we can find a strong Stackelberg
equilibrium (x, y) in polynomial time with respect to |DF | and Λ.

As we will see in Sect. 6.1, it is easy to compute a strong Stackelberg equilib-
rium by a multiple LP formulation. The running time is polynomial with respect
to λ, |SL|, and |DF |. However, this is not sufficient since |SL| could be expo-
nentially large with respect to λ and |DF |. To remove the dependency on |SL|,
we reduce the size of each LP in Sect. 6.2. The idea is a projection of a leader’s
mixed strategy x ∈ [0, 1]SL onto a fractional budget allocation r ∈ [0, 1]U .
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6.1 Multiple LP Formulation

We first describe a simple exact algorithm to solve (2). The problem (2) is
rewritten as

max f(x, y)
s.t. x ∈ DL,

g(x, y) ≥ g(x, y′) ∀y′ ∈ DF .
(3)

When we fix y = y∗, LP (3) is equivalent to the following LP:

max
∑

z∈SL
f(z, y∗)xz

s.t.
∑

z∈SL
(g(z, y∗) − g(z, y′))xz ≥ 0 ∀y′ ∈ DF ,∑

z∈SL
xz = 1,

xz ≥ 0 ∀z ∈ SL.

(4)

The simple algorithm solves (3) exactly by solving (4) for each y∗ ∈ DF . Each
LP (4) is solvable in polynomial time with respect to Λ, |SL| and |DF |, and
the algorithm produces |DF | instances of LP (4). Thus this algorithm runs in
polynomial time with respect to Λ, |SL|, and |DF |.

6.2 Reduced Formulation

Let A be a matrix in {0, 1}U×SL whose rows are all pure strategies. For notational
convenience, we denote p′

uv = puv − pF,uv for each uv ∈ E. We denote by a
fractional budget allocation r ∈ [0, 1]U with

∑
u∈U ru ≤ kL. We remark that a

fractional budget allocation is a different notion from a mixed strategy x ∈ DL;
the former is uniquely defined from the latter as ru =

∑
S:u∈S xS (u ∈ U), but

the converse may not hold.
We first observe that A projects a mixed strategy x to a fractional budget

allocation Ax ∈ [0, 1]U . Let Q = {r ∈ [0, 1]U | r = Ax, x ∈ DL}. See the
upcoming full version for the proof.

Lemma 2. For any vector z, it holds that z ∈ Q if and only if

0 ≤ z ≤ 1,
∑

u∈U zu ≤ kL. (5)

We can rewrite Pv and PF,v as Pv(z) = puvzu and PF,v(y) = pF,uvyu, where
u is the only neighbor of v. Then f and g are simplified as

f(x, y) =
∑

u∈U

∑
v∈Nu

puv(Ax)u(1 − pF,uvyu),

g(x, y) =
∑

u∈U

∑
v∈Nu

puvyu (1 − p′
uv(Ax)u) .

The utility functions f(x, y) and g(x, y) are bilinear. Moreover, they depend on
a fractional budget allocation Ax ∈ [0, 1]U rather than x.

Lemma 3. Assume that |Nv| = 1 for all v ∈ V . For each x ∈ DL and y ∈ DF ,
it holds that f(x, y) = f(x′, y) and g(x, y) = g(x′, y) for any x ∈ DL such that
Ax = Ax′.
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This lemma gives us an intuition that we solve (4) for a fractional budget
allocation r and recover a mixed strategy x. We claim that LP (4) is polynomially
equivalent to

max
∑

u∈U

∑
v∈Nu

puv(1 − pF,uvy∗
u)ru

s.t.
∑

u∈U

∑
v∈Nu

puvy′
ur′

u ≥ 0,
y′

u = y∗
u − yu ∀u ∈ U, y ∈ DF ,

r′
u = 1 − p′

uvru ∀u ∈ U,∑
u∈U ru ≤ kL,

ru ∈ [0, 1] ∀u ∈ U.

(6)

Indeed, if (x, y) is an optimal solution for (4), then we obtain an optimal solution
(r, y) for (6) by setting r = Ax. Conversely, let (r, y) be any optimal solution for
(6). We observe that r ∈ Q by Lemma 2. If we can construct a mixed strategy
x ∈ DL such that r = Ax, then we see that (x, y) is an optimal solution for (4)
by Lemma 3. In the following, we show that we can recover x ∈ DL such that
r = Ax in polynomial time with respect to Λ. See the upcoming full version for
the proof.

Lemma 4. For any r∗ ∈ Q, there exists a polynomial-time algorithm that finds
a mixed strategy x ∈ DL such that |supp(x)| ≤ n + 1 and r∗ =

∑
z∈supp(x) xzz.

Note that the mixed strategy x in the statement always exists by Carathéodory’s
theorem. Lemma 4 holds even if some |Nv| is not necessarily equal to one. A
leader’s strategy in a Stackelberg equilibrium may have the support of a large
size.

Therefore, we can solve (3) by solving (6) and recovering a mixed strategy
x ∈ DL for each y∗ ∈ DF . This algorithm generates |DF | instances of LP (6)
and each instance can be solved in polynomial time in Λ and |DF |. Note that the
data size of the LP (6) is bounded by polynomial in Λ and |DF |. The recovered
mixed strategy x has polynomial size in Λ. By summarizing the above arguments,
Proposition 1 is proved.

7 Experiments

In this section, we evaluate the performance of the proposed approximation algo-
rithm and the heuristic algorithm on real-world datasets. We execute the approx-
imation algorithm Approx (the algorithm based on MWU described in Sect. 5.1
with 100 iterations and ε = 0.5), and the heuristic algorithm Prop. (Algorithm 1
with 
 = 10). We compare the above algorithms with a baseline algorithm Greedy,
which greedily chooses kL media to maximize

∑
v∈V Pv(z). We conduct a series

of experiments on Movielens [5] and Yahoo! webscope [18] datasets to examine
the leader’s utility. The dataset MovieLens is constructed from MovieLens 100K
Dataset1 with 100,000 ratings (1 to 5) to 1,700 movies by 1,000 users. From

1 http://grouplens.org/datasets/movielens/100k/.

http://grouplens.org/datasets/movielens/100k/
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the dataset, we select top n frequently rated movies and constructed a bipar-
tite graph G with n = 20 media (movies) and m = 844 customers (users) with
|E| = 3506 edges. The dataset Yahoo! Webscope is constructed from Yahoo!
Search Marketing Advertiser Bidding Data2, which contains a bipartite graph
between 1,000 search keywords and 10,475 accounts, where each edge represents
one bid to advertisement on the keyword with the bid price. From the dataset,
we select top n frequently bidden keywords and constructed a bipartite graph
G, which has n = 50 media (keywords) and m = 447 customers (accounts) with
|E| = 871 edges. U(a, b) denotes an uniform distribution with maximum and min-
imum values a and b. For the above bipartite graphs, we set each basic activation
probability as puv ∈ U(0, 0.2) for uv ∈ E as in Wilder and Vorobeychik [17]. We
generate two types of instances; for each edge uv ∈ E, the activation probability
pF,uv is drawn from a distribution DF = U(0, 0.2) in the first type of instances,
whereas that is drawn from a distribution DF = U(0.1, 0.9) in the second type
of instances that models a scenario where the follower aims to take customers
away from the leader. We set the leader’s budget as kL = 1, 2, 4, whereas the
follower’s budget is set to be kF = 2. The results reported in Table 1 indicate
that our algorithms clearly outperform Greedy especially when the follower is
eager to strip the leader of her customers; that is, when DF = U(0.1, 0.9).

Table 1. Results averaged over 30 instances for real-world datasets.

MovieLens ((n,m, |E|) = (20, 844, 3506))

DF (kL, kF ) Greedy Approx Prop.

U( 0, 0.2) (1, 2) 37.05 37.05 37.05
U( 0, 0.2) (2, 2) 65.10 65.10 65.24
U( 0, 0.2) (4, 2) 114.22 114.22 114.22
U(0.1, 0.9) (1, 2) 14.34 14.55 17.22
U(0.1, 0.9) (2, 2) 24.22 29.97 31.87
U(0.1, 0.9) (4, 2) 54.46 54.46 56.12

Yahoo! Webscope ((n,m, |E|) = (50, 447, 871))

DF (kL, kF ) Greedy Approx Prop.

U( 0, 0.2) (1, 2) 5.42 5.42 5.46
U( 0, 0.2) (2, 2) 10.68 10.68 10.72
U( 0, 0.2) (4, 2) 19.56 19.56 19.55
U(0.1, 0.9) (1, 2) 2.20 3.00 3.67
U(0.1, 0.9) (2, 2) 5.03 6.36 7.05
U(0.1, 0.9) (4, 2) 11.72 12.68 13.31

8 Conclusion

We formalized a new model called the Stackelberg budget allocation game with
a bipartite influence model. For the general case of our model, we proposed two
algorithms: an approximation algorithm which has provable guarantee and a
heuristic algorithm empirically outputs a better solution. We remark that, to
the best of our knowledge, our approximation algorithm is the first algorithm
with a provable guarantee for the non-zero sum submodular Stackelberg game.
When the utility functions are bilinear, we proposed our LP-based algorithm
and showed that it runs in polynomial time when the follower’s budget is con-
stant. We remark that in this case, we can generalize the budget constraint to a
2 https://webscope.sandbox.yahoo.com/catalog.php?datatype=a.

https://webscope.sandbox.yahoo.com/catalog.php?datatype=a
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matroid constraint and show a similar result. Finally, experimental results indi-
cate that our approximation and heuristic algorithms empirically output good
quality solutions especially in the setting that the follower is a powerful com-
petitor.
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Abstract. This paper investigates the equivalence between games rep-
resented by state transition models and its applications. We first define
a notion of bisimulation equivalence between state transition models and
prove that it can be logically characterized by Game Description Lan-
guage (GDL). Then we introduce a concept of quotient state transition
model. As the minimum equivalent of the original model, it allows us to
improve the efficiency of model checking for GDL. Finally, we demon-
strate with real games that bisimulation equivalence can be generalized
to characterize more general game equivalence.

Keywords: Game equivalence · Bisimulation equivalence ·
General Game Playing

1 Introduction

General Game Playing (GGP) is concerned with creating intelligent agents that
understand the rules of previously unknown games and learn to play these games
without human intervention [9]. To represent the rules of arbitrary games, a
formal game description language (GDL) was introduced as an official language
for GGP in 2005. GDL is originally a machine-processable, logic programming
language [14]. Most recently, it has been adapted as a logical language for game
specification and strategic reasoning [24]. Moreover, its epistemic and dynamic
extensions have also been developed [13,23].

As a logical language for representing game rules and specifying game prop-
erties, the logical properties, especially the expressive power of GDL have not
been fully investigated yet. For instance, which game properties are definable
in GDL? When two GDL game descriptions are equivalent? How to distinguish
two GDL-defined games? In this paper, we will address these questions through
a bisimulation approach.

The notion of bisimulation plays a pivotal role to identify the expressive
power of a logic. It was independently defined and developed in the areas of
c© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11670, pp. 583–596, 2019.
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theoretical computer science [12,16] and the model theory of modal logic [3,4].
Since bisimulation-equivalent structures can simulate each other in a stepwise
manner, they cannot be distinguished by the concerned logic. An appropriate
notion of bisimulation for a logic allows us to study the expressive power of that
logic in terms of structural invariance and language indistinguishability [11].

Besides identifying the expressivity of a logic, bisimulation equivalence also
allows us to obtain the minimum equivalent of the original model, called the
quotient model, which can be used to improve the efficiency of model checking [2].
Moreover, in terms of GDL, bisimulation equivalence tells us when two game
structures are essentially the same, and thus gives us a natural criterion on the
equivalence between games. Exploiting game equivalence may provide a bridge
for knowledge transfer between a new game and a well-studied game in GGP. In
particular, Zhang et al. considered that two games are equivalent exactly if the
state machines described them are identical (isomorphic) [25]. Such definition
might be too strong, as it would rule out many non-identical but essentially
equivalent games, such as bisimulation-equivalent games.

Based on the above considerations, we will use in this paper a concept of
bisimulation as a tool to investigate the expressive power of GDL and capture
the equivalence between games represented by state transition models. We first
define a concept of bisimulation equivalence between state transition models and
prove that it coincides with the invariance of GDL-formulas on state transition
models. This justifies that the notion of bisimulation equivalence is appropriate
for GDL. Then we introduce a concept of quotient state transition model and
show that it is bisimulation-equivalent to its original model. Considering its
smaller size, this provides a way to improve the efficiency of model checking.
Finally we demonstrate with real games that bisimulation equivalence can be
generalized to capture a wider range of game equivalence.

The rest of this paper is structured as follows: Sect. 2 introduces the frame-
work for game description. Section 3 defines the concept of bisimulation equiva-
lence and introduces the notion of quotient model. Section 4 generalizes bisim-
ulation equivalence to characterize more general game equivalence. Finally, we
conclude with related work and future work.

2 The Framework

Let us now introduce the GDL-based framework from [24]. All games are
assumed to be played in multi-agent environments. Each game is associated
with a game signature. A game signature S is a triple (N,A, Φ), where

• N = {1, 2, · · · ,m} is a non-empty finite set of agents,
• A is a non-empty finite set of actions such that it contains noop, an action

without any effect , and
• Φ = {p, q, · · · } is a finite set of propositional atoms for specifying individual

features of a game state.

Through the rest of the paper, we will consider a fixed game signature S,
and all concepts are based on the game signature unless otherwise specified.
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2.1 State Transition Models

This paper focuses on synchronous games where all players move simultaneously.
These games can be specified by state transition models defined as follows:

Definition 1. A state transition (ST) model M is a tuple (W,w0, T, L, U, g, π),
where

– W is a non-empty finite set of possible states.
– w0 ∈ W , representing the unique initial state.
– T ⊆ W , representing a set of terminal states.
– L ⊆ W × N × A is a legality relation, specifying legal actions for each agent

at game states. Let Lr(w) = {a ∈ A : (w, r, a) ∈ L} be the set of all legal
actions for agent r at state w. To make a game playable, we assume that (i)
each agent has at least one available action at each state, i.e., Lr(w) �= ∅
for any r ∈ N and w ∈ W , and (ii) each agent can only do action noop at
terminal states, i.e., Lr(w) = {noop} for any r ∈ N and w ∈ T .

– U : W×A|N | → W\{w0} is an update function, specifying the state transition
for each state and legal joint action, such that U(w, 〈noopr〉r∈N ) = w for any
w ∈ W\{w0}.

– g : N → 2W is a goal function, specifying the winning states of each agent.
– π : W → 2Φ is a standard valuation function.

Note that to make the framework as general as possible, we use the concurrent
game structure and the turn-based game structure involved in [24] is a special
case by allowing a player only to do “noop” when it is not her turn. For conve-
nience, let D denote the set of all joint actions A|N |. Given d ∈ D, we use d(r)
to specify the action taken by agent r.

The following notion specifies all possible ways in which a game can develop.

Definition 2. Let M = (W,w0, T, L, U, g, π) be an ST-model. A path δ is an

infinite sequence of states and joint actions w0
d1→ w1

d2→ · · · dj→ · · · such that for
any j ≥ 1 and r ∈ N ,

1. wj �= w0 (that is, only the first state is initial.);
2. dj(r) ∈ Lr(wj−1) (that is, any action that is taken by each agent must be

legal.)
3. wj = U(wj−1, dj) (state update)
4. if wj−1 ∈ T , then wj−1 = wj (self-loop after reaching a terminal state.)

Let P(M) denote the set of all paths in M . For δ ∈ P(M) and a stage j ≥ 0,
we use δ[j] to denote the j-th state of δ and θr(δ, j) to denote the action taken
by agent r at stage j of δ.
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2.2 The Language

Let us now introduce the GDL-based language from [24] for game specification.

Definition 3. The language L for game description is generated by the following
BNF:

ϕ :: = p | initial | terminal | legal(r, a) | wins(r) | does(r, a) | ¬ϕ | ϕ∧ψ | ©ϕ

where p ∈ Φ, r ∈ N and a ∈ A.

Other connectives ∨, →, ↔, �, ⊥ are defined by ¬ and ∧ in the standard way.
Intuitively, initial and terminal specify the initial state and the terminal states
of a game, respectively; does(r, a) asserts that agent r takes action a at the
current state; legal(r, a) asserts that agent r is allowed to take action a at the
current state, and wins(r) asserts that agent r wins at the current state. Finally,
the formula ©ϕ means that ϕ holds in the next state.

We use the following abbreviations in the rest of paper. For d = 〈ar〉r∈N ,
does(d) =def

∧
r∈N does(r, ar), and ©kϕ =def © · · · ©

︸ ︷︷ ︸
k

ϕ. Note that our lan-

guage is slightly different from [24] by introducing the agent parameter in legal(·)
and does(·). To help the reader capture the intuition of the language, let us con-
sider the following example.

Example 1 (Number Scrabble). Two players take turns to select numbers from 1
to 9 without repeating any numbers previously used. The first player who selects
three numbers that add up to 15 wins.

The game signature SNS is given as follows: NNS = {b,w} denoting two
game players; ANS = {α(n) | 1 ≤ n ≤ 9}∪{noop}, where α(n) denotes selecting
number n, and ΦNS = {s(r, n), turn(r) | r ∈ {b,w} and 1 ≤ n ≤ 9}, where
s(r, n) represents the fact that number n is selected by player r, and turn(r)
says that player r has the turn now. The rules of Number Scrabble can be
naturally formulated by GDL-formulas as shown in Fig. 1 (where r ∈ {b,w} and
−r represents r’s opponent).

The formulas are intuitive. Formula 1 says at the initial state, player b has the
first turn and all numbers are not selected. The next two formulas specify winning
states of each player and the terminal states, respectively. The preconditions of
each action (legality) are specified by Formula 4 and Formula 5. Formula 6 is the
combination of the frame axioms and the effect axioms [19]. The last formula
specifies the turn-taking.

2.3 The Semantics

The semantics of this language is based on ST-models with respect to a path
and a stage of the path.

Definition 4. Let M = (W,w0, T, L, U, g, π) be an ST-model. Given a path δ of
M , a stage j ≥ 0 and a formula ϕ ∈ L, we say ϕ is true (or satisfied) at j of δ
under M , denoted M, δ, j |= ϕ, according to the following definition:
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1. initial ↔ turn(b) ∧ ¬turn(w) ∧
9∧

i=1

¬(s(b, i) ∨ s(w, i))

2. wins(r) ↔ ∨3
i=2(s(r, i)∧ s(r, 4)∧ s(r, 11− i))∨ ∨2

i=1(s(r, i)∧ s(r, 6)∧ s(r, 9− i))∨
∨4

l=1(s(r, 5 − l) ∧ s(r, 5)∧s(r, 5 + l))
)

3. teminal ↔ wins(b) ∨ wins(w) ∨
9∧

i=1

(s(b, i) ∨ s(w, i))

4. legal(r, α(n)) ↔ ¬(s(b, n) ∨ s(w, n)) ∧ turn(r) ∧ ¬terminal
5. legal(r, noop) ↔ turn(−r) ∨ terminal
6. ©s(r, n) ↔ s(r, n) ∨ (¬(s(b, n) ∨ s(w, n)) ∧ does(r, α(n)))
7. turn(r) ∧ ¬terminal → ©¬turn(r) ∧ ©turn(−r)

Fig. 1. A GDL description of Number Scrabble.

M, δ, j |= p iff p ∈ π(δ[j])
M, δ, j |= ¬ϕ iff M, δ, j �|= ϕ
M, δ, j |= ϕ1 ∧ ϕ2 iff M, δ, j |= ϕ1 and M, δ, j |= ϕ2

M, δ, j |= initial iff δ[j] = w0

M, δ, j |= terminal iff δ[j] ∈ T
M, δ, j |= wins(r) iff δ[j] ∈ g(r)
M, δ, j |= legal(r, a) iff a ∈ Lr(δ[j])
M, δ, j |= does(r, a) iff θr(δ, j) = a
M, δ, j |= ©ϕ iff M, δ, j + 1 |= ϕ

A formula ϕ is valid in an ST-model M , written M |= ϕ, if M, δ, j |= ϕ for any
δ ∈ P(M) and j ≥ 0. A formula ϕ is called satisfied at a state w in M , written
M,w |= ϕ, if it is true for all paths going through w, i.e., M, δ, j |= ϕ for any
δ ∈ P(M) and any j ≥ 0 with δ[j] = w. It follows that M,w0 |= ϕ iff M, δ, 0 |= ϕ
for all δ ∈ P(M).

3 Bisimulation Equivalence

In this section, we define the concept of bisimulation equivalence over state
transition models and show it coincides with the invariance of GDL-formulas.
We also introduce the quotient state transition model in terms of such relation.

3.1 Bisimulation and Invariance

Inspired by the notion of bisimulation in [7], we define the concept of bisimulation
equivalence between ST-models as follows:

Definition 5. Let M = (W,w0, T, L, U, g, π) and M ′ = (W ′, w′
0, T

′, L′, U ′, g′,
π′) be two ST-models. We say M and M ′ are bisimulation-equivalent, (bisimilar,
for short), written M ≈ M ′, if there is a binary relation Z ⊆ W × W ′ such
that w0Zw′

0, and for all states w ∈ W and w′ ∈ W ′ with wZw′, the following
conditions hold:
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1. π(w) = π′(w′);
2. w = w0 iff w′ = w′

0;
3. w ∈ T iff w′ ∈ T ′;
4. a ∈ Lr(w) iff a ∈ L′

r(w
′) for any r ∈ N and a ∈ A;

5. w ∈ g(r) iff w′ ∈ g′(r) for any r ∈ N ;
6. If U(w, d) = u, then there is u′ ∈ W ′ s.t. U ′(w′, d) = u′ and uZu′;
7. If U ′(w′, d) = u′, then there is u ∈ W s.t. U(w, d) = u and uZu′.

Note that ≈ is an equivalence relation over ST-models. When Z is a bisimulation
linking two states w in M and w′ in M ′, we say that w and w′ are bisimilar,
written M,w � M ′, w′. In particular, if M ≈ M ′, then their initial states are
bisimilar, i.e., M,w0 � M ′, w′

0.
Another way to understand bisimulation equivalence is to observe that M is

bisimilar to M ′iff each path that can be developed in one model can also be
induced in the other. To formalize this idea, we need generalize the notion of
bisimilar over states to paths as follows:

Definition 6. Consider two ST-models M and M ′. Given two paths δ := w0
d1→

w1
d2→ · · · in M and δ′ := w′

0

d′
1→ w′

1

d′
2→ · · · in M ′, we say δ and δ′ are bisimilar,

written M, δ � M ′, δ′, iff for every j ≥ 0 and r ∈ N , M, δ[j] � M ′, δ′[j] and
θr(δ, j) = θr(δ′, j).

That is, two paths are bisimilar if (i) all the corresponding states are bisimilar,
and (ii) each agent takes the same action at every stage. With this, the above
idea is restated as follows:

Lemma 1. Given two ST-models M and M ′, M ≈ M ′ iff for every δ ∈ P(M),
there is δ′ ∈ P(M ′) such that M, δ � M ′, δ′, and vice versa.

Proof. (⇒) This direction holds directly by Condition 6 & 7 of Definition 5.
(⇐) Let Z = {(w,w′) | there are δ ∈ P(M), δ′ ∈ P(M ′) and j ≥ 0 such

that δ[j] = w, δ′[j] = w′, the local properties Condition 1–5 in Definition 5 hold
for δ[j] and δ′[j], and θr(δ, j) = θr(δ′, j)}. Such a relation Z exists due to the
assumption. It is easy to show that Z is a bisimulation between M and M ′. (�)

Let us now turn to the logical characterization of bisimulation equivalence.
We begin with the invariance of GDL-formulas under path-bisimulation.

Proposition 1. Let M , M ′ be two ST-models. For every δ ∈ P(M) and δ′ ∈
P(M ′), if M, δ � M ′, δ′, then (M, δ, j |= ϕ iff M ′, δ′, j |= ϕ) for any j ≥ 0 and
ϕ ∈ L.

It is routine to prove this by induction on ϕ. This result asserts that two bisimilar
paths preserve GDL-formulas at each stage. Note that the other direction does
not hold. Here is a simple counter-example. Let M and M ′ be two ST-model
depicted in Fig. 2, where N = {r} and Φ = ∅. Now consider two paths δ = w0

a→
w1

b→ · · · in M and δ′ = w′
0

a→ w′
1

b→ · · · in M ′. As w3 �∈ T and w′
3 ∈ T ′,

then M,w3 �� M ′, w′
3, i.e., the successors of w1 and w′

1 are not bisimilar, so
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Fig. 2. δ and δ′ are not bisimilar. Fig. 3. M and M ′ are not
bisimulation-equivalent.

M,w1 �� M ′, w′
1. Thus, δ and δ′ are not bisimilar, i.e., M, δ �� M ′, δ′. But it is

easy to check that at each stage, δ and δ′ satisfy the same GDL-formulas.
To prove the characterization result, we need one additional notion. For each

path δ := w0
d1→ w1

d2→ · · · dj→ · · · in M , we induce a trace V (δ) = V (w0) ·
does(d1) · V (w1) · · · does(dj−1) · V (wj) · · · , where V (w) = {p ∈ Φ | p ∈ π(w)} ∪
{initial | w = w0} ∪ {terminal | w ∈ T} ∪ {wins(r) | w ∈ g(r) for r ∈ N} ∪
{legal(r, a) | a ∈ Lr(w) for r ∈ N, a ∈ A}. Let trace(M) denote the set of all
traces in M , i.e., trace(M) = {V (δ) | δ ∈ P(M)}. Then it holds that

Lemma 2. For two ST-models M and M ′, M ≈ M ′ iff trace(M) = trace(M ′).

We now provide the logical characterization of bisimulation equivalence.

Theorem 1. Let M and M ′ be any two ST-models. Then M ≈ M ′ iff they
satisfy the same GDL-formulas.

Proof. Assume M ≈ M ′. For symmetry, it suffices to prove one case. For every
ϕ ∈ L, assume ϕ is satisfied in M . then there is δ ∈ P(M) and stage j ≥ 0
such that M, δ, j |= ϕ. By the assumption and Lemma 1, there is δ′ ∈ P(M ′)
such that M, δ � M ′, δ′. And by Proposition 1, we have M ′, δ′, j |= ϕ. Thus, ϕ
is satisfied in M ′.

Now assume M �≈ M ′, then by Lemma 2 there is δ ∈ P(M) for all δ′ ∈ P(M ′)
V (δ) �= V (δ′). It follows that for each δ′ ∈ P(M) there is k ≥ 0 such that either
does(dk+1) �= does(d′

k+1) or V (δ[k]) �= V (δ′[k]). From the former, we obtain a
formula does(r, ak+1) (for r ∈ N and ak+1 ∈ A) such that M, δ, k |= does(r, ak+1)
and M ′, δ′, k �|= does(r, ak+1). From the latter, we obtain a formula χ ∈ Atm
such that either (i) M, δ, k |= χ and M ′, δ′, k �|= χ, or (ii) M, δ, k |= ¬χ and
M ′, δ′, k �|= ¬χ. Let ϕδ′ be the formula of the form ©kdoes(r, ak+1), ©kχ or
©k¬χ to distinguish δ from δ′. It follows by the construction that M, δ, 0 |= ϕδ′

and M ′, δ′, 0 �|= ϕδ′ . Let Δ be the conjunctions of all such obtained formulas for
all paths in M ′, i.e., Δ :=

∧
δ′∈P(M ′) ϕδ′ . Note that Δ is well-formed due to the

fact that M ′ is finite-branching. Let us now consider formula initial∧Δ. Then it
is satisfied in M , i.e., M, δ, 0 |= initial∧Δ. But it is unsatisfied in M ′. Otherwise,
there are some δ′ ∈ P(M ′) and j ≥ 0 such that M ′, δ′, j |= initial ∧ Δ, then
M ′, δ′, 0 |= Δ, so M ′, δ′, 0 |= ϕδ′ , contradicting with M ′, δ′, 0 �|= ϕδ′ . Thus, M
and M ′ fail to satisfy the same set of GDL-formulas. (�)
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This theorem asserts that bisimulation equivalence and the invariance of
GDL-formulas match on ST-models. On the one hand, this result justifies that
the notion of bisimulation equivalence is natural and appropriate for GDL; On
the other hand, it allows us to show the failure of bisimulation-equivalence easily.
Two ST-models are not bisimulation-equivalent if there is a GDL-formula that
holds in one model and fails in the other. For instance, let us consider two ST-
models depicted in Fig. 3, where N = {r} and Φ = ∅. One can find formula
initial ∧ ©2(does(r, c) ∧ ©terminal) that holds in M , but fails in M ′. This
leads to M �≈ M ′. Thus, two ST-models are bisimulation-equivalent if and only
if they enjoy exactly the same properties. Alternatively, two ST-models are not
bisimulation-equivalent if one has a property that the other does not have.

3.2 Bisimulation Quotient

In this subsection, we provide an alternative perspective to consider bisimulation
as a relation between states within a single ST-model. Then we introduce the
quotient ST-model under such relation.

Definition 7. Let M = (W,w0, T, L, U, g, π) be an ST-models. A bisimulation
is a binary relation Z ⊆ W × W s.t. for all states w1, w2 ∈ W with w1Zw2,

1. π(w1) = π(w2);
2. w1 = w0 iff w2 = w0;
3. w1 ∈ T iff w2 ∈ T ;
4. a ∈ Lr(w1) iff a ∈ Lr(w2) for any r ∈ N and a ∈ A;
5. w1 ∈ g(r) iff w2 ∈ g(r) for any r ∈ N ;
6. If U(w1, d) = u1, then there is u2 ∈ W s.t. U(w2, d) = u2 and u1Zu2;
7. If U(w2, d) = u2, then there is u1 ∈ W s.t. U(w1, d) = u1 and u1Zu2.

States w1 and w2 are bisimulation-equivalent, denoted by w1 ∼M w2, if there is
a bisimulation Z for M with w1Zw2.

It follows that a bisimulation over states for ST-model M is a bisimulation
over ST-models for the pair (M,M). Clearly, ∼M is an equivalence relation on
W . For w ∈ W , let [w]∼M

be the equivalence class of state w under ∼M , i.e.,
[w]∼M

= {w′ ∈ W | w ∼M w′}. We next define the quotient ST-model under
such bisimulation equivalence.

Definition 8. For an ST-model M = (W,w0, T, L, U, g, π) and a bisimulation
equivalence ∼M , the quotient ST-model M/ ∼M= (W ′, w′

0, T
′, L′, U ′, g′, π′) is

defined as follows:

– W ′ = {[w]∼M
| w ∈ W} is the set of all ∼M -equivalence classes;

– w′
0 = [w0]∼M

;
– T ′ = {[w]∼M

| w ∈ T};
– a ∈ L′

r([w]∼M
) iff a ∈ Lr(w) for any r ∈ N and a ∈ A;

– U ′([w]∼M
, d) = [u]∼M

iff U(w, d) = u′ for some u′ ∈ [u]∼M
;

– [w]∼M
∈ g′(r) iff w ∈ g(r) for any r ∈ N ;

– p ∈ π′([w]∼M
) iff p ∈ π(w) for any p ∈ Φ.
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Note that the defined quotient ST-model is indeed a state transition model, and
it is minimum as ∼M is the coarsest bisimulation for M . Moreover, an ST-model
and its quotient ST-model are bisimulation-equivalent.

Proposition 2. For any ST-model M , M ≈ M/∼M .

This follows from the fact that Z = {(w, [w]∼M
) | w ∈ W} is a bisimulation

between M and M/∼M . Combining this result and Theorem1 allows us to
perform model checking on the bisimulation-equivalent quotient ST-model. A
GDL-formula holds for the quotient if and only if it also holds for the original
ST-model. This provides a way to improve the efficiency of model checking for
GDL in [13,20]. Note that an adaption of bisimulation-quotienting algorithms for
a finite transition system in [2] can be used to compute the quotient ST-model.

4 Bisimulation and Game Equivalence

State transition models may be viewed as representations of games, and bisim-
ulation equivalence tells us when two state transition models are essentially the
same. Thus, bisimulation equivalence provides a criterion on the equivalence
between games, i.e., two games are equivalent if their state transition models are
bisimulation-equivalent. In this section, we generalize this concept to capture
more general game equivalence.

Let us first consider the following two games: Number Scrabble in Example 1
and Tic-Tac-Toe specified as follows:

Example 2 (Tic-Tac-Toe). Two players take turns in marking either a cross ‘x’or
a nought ‘o’ on a 3× 3 board. The player who first gets three consecutive marks
of her own symbol in a row wins this game.

The game signature for Tic-Tac-Toe, written STT , is given as follows: NTT =
{x, o} denoting the two game players; ATT = {ai,j | 1 ≤ i, j ≤ 3} ∪ {noop},
where ai,j denotes filling cell (i, j), and ΦTT = {pr

i,j , turn(r) | r ∈ {x, o} and
1 ≤ i, j ≤ 3}, where pr

i,j represents the fact that cell (i, j) is filled by player r.
The rules of this game is given in Fig. 4.

The initial state, each player’s winning states, the terminal states and the
turn-taking are given by formulas 1-3 and 7, respectively. The preconditions of
each action (legality) are specified by Formula 4 and 5. Formula 6 specifies the
state transitions.

Although the two games appear different in their game descriptions, they are
actually equivalent (isomorphic) [15,18]. Unfortunately, bisimulation equivalence
is not able to capture such game equivalence as they are based on different game
signatures. Then we generalize the notion of bisimulation equivalence as follows:

Definition 9. Consider two ST-models MS = (W,w0, T, L, U, g, π) with S =
(N,A, Φ) and M ′

S′ = (W ′, w′
0, T

′, L′, U ′, g′, π′) with S ′ = (N ′,A′, Φ′). MS and
M ′

S′ are structure-equivalent, written MS ∼ M ′
S′ , if there are bijections f1 : N �→

N ′, f2 : A �→ A′, f3 : Φ �→ Φ′, and a relation Z ⊆ W ×W ′ such that w0Zw′
0 and

for all states w ∈ W and w′ ∈ W ′ with wZw′, the following conditions hold:
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1. initial ↔ turn(x) ∧ ¬turn(o) ∧
3∧

i,j=1

¬(px
i,j ∨ po

i,j)

2. wins(r) ↔
3∨

i=1

2∧

l=0

pr
i,1+l ∨

3∨

j=1

2∧

l=0

pr
1+l,j ∨

2∧

l=0

pr
1+l,1+l ∨

2∧

l=0

pr
1+l,3−l

3. teminal ↔ wins(x) ∨ wins(o) ∨
3∧

i,j=1

(px
i,j ∨ po

i,j)

4. legal(r, ai,j) ↔ ¬(px
i,j ∨ po

i,j) ∧ turn(r) ∧ ¬terminal
5. legal(r, noop) ↔ turn(−r) ∨ terminal
6. ©pr

i,j ↔ pr
i,j ∨ (does(r, ai,j) ∧ ¬(px

i,j ∨ po
i,j))

7. turn(r) ∧ ¬terminal → ©¬turn(r) ∧ ©turn(−r)

Fig. 4. A GDL description of Tic-Tac-Toe.

1. p ∈ π(w) iff f3(p) ∈ π′(w′);
2. w = w0 iff w′ = w′

0;
3. w ∈ T iff w′ ∈ T ′;
4. a ∈ Lr(w) iff f2(a) ∈ L′

f1(r)
(w′) for any r ∈ N and a ∈ A;

5. w ∈ g(r) iff w′ ∈ g′(f1(r)) for any r ∈ N ;
6. If U(w, d) = u, then there is u′ ∈ W ′ s.t. U ′(w′, 〈f2(d(r))〉r∈N ) = u′ and

uZu′;
7. If U ′(w′, d′) = u′, then there is u ∈ W s.t. U(w, 〈f−1

2 (d′(r′))〉r′∈N ′) = u and
uZu′.

Note that ∼ is an equivalence relation over ST-models (with different game
signatures). Clearly, ≈ is a special case of ∼ when S = S ′. We say that two
games are equivalent if their ST-models are structure-equivalent.

Let us back to the examples. As we expected, the equivalence between Num-
ber Scrabble and Tic-Tac-Toe can be captured by the structure equivalence. The
mapping between their state transition models is demonstrated in Table 1. The
basic idea is that filling a cell corresponds to selecting the number in the cell,
and the fact that a cell is filled amounts to the fact that the corresponding num-
ber is selected. For instance, filling the left-bottom cell corresponds to selecting
number 4, i.e., f2(a1,1) = α(4), and the fact that the center is filled by player
x maps the fact that number 5 is selected by player b, i.e., f3(px2,2) = s(b, 5).
And the structure-bisimulation relation starts from their initial states and can
be constructed step by step according to the mapping. For example, the states
depicted in Table 2 and Fig. 5 are structure-bisimilar.

Table 1. The mapping.

2 7 6
9 5 1
4 3 8

Table 2. Filling the center.

X

{1,2,3,4,5,6,7,8,9}
b

Fig. 5. Selecting number 5.
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Similarly, we say that w and w′ are structure-bisimilar, written MS , w �s

M ′
S′ , w′, if Z links two states w in MS and w′ in M ′

S′ . In particular, for two paths

δ := w0
d1→ w1

d2→ · · · dj→ · · · in MS and δ′ := w′
0

d′
1→ w′

1

d′
2→ · · · d′

f→ · · · in M ′
S′ , we

say that δ and δ′ are structure-bisimilar, written MS , δ �s M ′
S′ , δ′, iff for every

j ≥ 0 and r ∈ N , MS , δ[j] �s M ′
S′ , δ′[j] and f2(θr(δ, j)) = θf1(r)(δ

′, j). Similar
to Bisimulation Equivalence, the following result displays that two ST-models
are structure-equivalent iff each path that can be developed in one model can
be also simulated in the other.

Lemma 3. Given two ST-models MS and M ′
S′ , MS ∼ M ′

S′ iff for every δ ∈
P(MS), there is δ′ ∈ P(M ′

S′) such that MS , δ �s M ′
S′ , δ′, and vice versa.

Let us turn to the logical characterization of structure equivalence. To this
end, we begin with the transformation of GDL-formulas. The translation between
languages is defined as follows:

Definition 10. Consider two game signatures S = (N,A, Φ) and S ′ = (N ′,A′,
Φ′) with the same bijections f1 : N �→ N ′, f2 : A �→ A′ and f3 : Φ �→ Φ′ of
Definition 9. A translation tr is a bijective mapping from LS onto LS′ such that
for p ∈ Φ, r ∈ N and a ∈ A,

tr(p) = f3(p) tr(initial) = initial
tr(terminal) = terminal tr(wins(r)) = wins(f1(r))
tr(legal(r, a)) = legal(f1(r), f2(a)) tr(does(r, a)) = does(f1(r), f2(a))
tr(¬ϕ) = ¬tr(ϕ) tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ)
tr(©ϕ) = ©tr(ϕ)

Note that such a translation exists as there is a bijective mapping between the
game signatures. The following result holds that if two paths are structure-
bisimilar, then they preserve the corresponding GDL-formulas at each stage.

Lemma 4. Let MS , M ′
S′ be two ST-models. For every δ ∈ P(MS) and δ′ ∈

P(M ′
S′), if MS , δ �s M ′

S′ , δ′, then MS , δ, j |= ϕ iff M ′
S′ , δ′, j |= tr(ϕ) for any

ϕ ∈ LS and j ≥ 0.

Note that the converse to this proposition does not hold. Please refer to Fig. 2 for
a counter-example. We now provide the following logical characterization result
that structure equivalence and the invariance of the corresponding GDL-formulas
coincide on ST-models.

Proposition 3. Let MS , M ′
S′ be two ST-models. The following are equivalent.

1. MS ∼ M ′
S′

2. for every ϕ ∈ LS , ϕ is satisfied in MS iff tr(ϕ) is satisfied in M ′
S′ .

Proof. The direction from Clause 1 to Clause 2 follows from Lemmas 3 and 4.
To prove the other direction, we need the following notion.

Consider two ST-models MS = (W,w0, T, L, U, g, π) with S = (N,A, Φ)
and M ′

S′ = (W ′, w′
0, T

′, L′, U ′, g′, π′) with S ′ = (N ′,A′, Φ′). Given bijections
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f1 : N �→ N ′, f2 : A �→ A′ and f3 : Φ �→ Φ′, let tr be a transla-
tion defined in Definition 10. A translation Tr is a bijection from trace(M) to
trace(M ′). For every V (δ) ∈ trace(M), Tr(V (δ)) = tr(V (w0)) · tr(does(d1)) ·
tr(V (w1)) · · · tr(does(de−1)) · tr(V (we)) where tr(V (wj)) = {tr(ϕ) ∈ LS′ : ϕ ∈
V (wj)} for any 0 ≤ j ≤ e, and tr(does(dj)) =

∧
r∈N tr(does(r, dj(r))) for any

1 ≤ j ≤ e. Let Tr(trace(M)) = {Tr(V (δ)) | V (δ) ∈ trace(M)}. Then we have
that the fact holds that MS ∼ M ′

S′ iff Tr(trace(M)) = trace(M ′). With this,
the proof of the direction from Clause 2 to Clause 1 is similar to Theorem1.(�)

We end this section with the interesting observation that the GDL-
descriptions of Tic-Tac-Toe and Number Scrabble are logically equivalent in
terms of the translation.

Observation 1. Let ΣTT and ΣNS denote the GDL-descriptions of Tic-Tac-
Toe (Fig. 4) and Number Scrabble (Fig. 1), respectively. Then |= ∧

tr(ΣTT ) ↔∧
ΣNS, where tr(ΣTT ) = {tr(ϕ) ∈ LNS | ϕ ∈ ΣTT}.

5 Conclusion

We have defined the notion of bisimulation for GDL and showed that it coincides
with the invariance of GDL-formulas. We have also introduced the quotient
model to improve the efficiency of model checking for GDL. Moreover, we have
generalized the notion of bisimulation to capture more general game equivalence.

Although various game equivalence have been proposed in economics, math-
ematics and logic [1,5,8,22], few work has been done in the domain of GGP. To
the best of our knowledge, Zhang et al. investigated game equivalence for knowl-
edge transfer in GGP. They consider two games are equivalent if their state
transition models are isomorphic [25]. While our notion of game equivalence is
more general as it is based on bisimulation relation.

Directions of future research are manifold. We intend to explore the van
Benthem Characterization Theorem for GDL [4]. More recently, GDL has been
extended to GDL-II and epistemic GDL for representing and reasoning about
imperfect information games [13,21]. We plan to study the expressiveness of these
extended languages. Besides structure equivalence, it would be also interesting
to investigate different types of game equivalence in GGP, such as strategic
equivalence, subgame equivalence [6,10,17].
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Abstract. Bisimulations are a key notion to study the expressive power
of a modal language. This paper studies the expressiveness of Game
Description Language (GDL) and its epistemic extension EGDL through
a bisimulations approach. We first define a notion of bisimulation for
GDL and prove that it coincides with the indistinguishability of GDL-
formulas. Based on it, we establish a characterization of the definability
of GDL in terms of k-bisimulations. Then we define a novel notion of
bisimulation for EGDL, and obtain a characterization of the expressive
power of EGDL. In particular, we show that a special case of the bisim-
ulation for EGDL can be used to characterize the expressivity of GDL.
These characterizations not only justify the notions of bisimulation are
appropriate for game description languages, but also provide a powerful
tool to identify their expressive power.
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1 Introduction

General Game Playing (GGP) is concerned with creating intelligent agents that
understand the rules of previously unknown games and learn to play these games
without human intervention [8]. To represent the rules of arbitrary games, a for-
mal game description language (GDL) was introduced as an official language for
GGP in 2005. GDL is originally a machine-processable, logic programming lan-
guage [14]. Most recently, it has been adapted as a minimal logical language for
game specification and strategic reasoning [21]. The epistemic extension EGDL
has been also developed to incorporate imperfect information games [12].

Although GDL and EGDL are logical languages for representing game rules
and specifying game properties, their logical properties, especially their expres-
sive power have not been fully investigated yet. For instance, which game prop-
erties are definable or non-definable in GDL and EGDL? How to show a game
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property is not definable in GDL and EGDL? When two game descriptions are
equivalent? The existing work about the expressiveness of game description lan-
guages is rare, mostly investigating the relationships of these languages with
other strategic logics. In particular, Ruan et al. study the relationship between
GDL and Alternating-time Temporal Logic (ATL) by transferring a GDL game
specification into an ATL specification [18]. Lorini and Schwarzentruber investi-
gate the relation between GDL and Seeing-to-it-that Logics (STITs) by provid-
ing a polynomial embedding of GDL into STIT [13]. In this paper, we propose
a different approach to address these questions via bisimulation.

The notion of bisimulation plays a pivotal role to identify the expressive
power of a logic. It was independently defined and developed in the areas of
theoretical computer science [11,15] and the model theory of modal logic [2,3].
Since bisimulation-equivalent structures can simulate each other in a stepwise
manner, they cannot be distinguished by the concerned logic. An appropriate
notion of bisimulation for a logic allows us to study the expressive power of that
logic in terms of structural invariance and language indistinguishability [10].

On the basis of the above consideration, we use in this paper a bisimulation
approach to investigate the expressive power of GDL and EGDL. To this end,
we first define a notion of bisimulation equivalence for GDL and prove that it
preserves the invariance of GDL-formulas. Based on this, we provide a charac-
terization for the definability of GDL, and show that a class of state transition
models is definable in GDL iff they are closed under k-bisimulations. This allows
us to establish the non-definability of a property in GDL. For instance, we show
that GDL does not allow to express the property that a player has a winning
strategy. More importantly, to characterize the expressivity of EGDL, we define
a novel notion of bisimulation, called (m,n)-bisimulation. We not only prove that
(m,n)-bisimulation can be logically characterized by EGDL, but also establish
a characterization of the definability of EGDL. These characterizations not only
justify that the notions of bisimulation are appropriate for GDL and EGDL, but
also provide a powerful tool to identify their expressive power. To the best of our
knowledge, this work is the first to conduct a systematic study on the expressive
power of Game Description Languages. This would help us to identify the roles
of Game Description Languages compared to other existing strategic logics, such
as ATL, STIT, and choose the right language for the intended application.

The rest of this paper is structured as follows: Sect. 2 introduces the frame-
work of GDL. Section 3 defines the notion of bisimulation equivalence for GDL
and characterizes its definability. Section 4 defines the notion of bisimulation for
EGDL and characterizes its expressivity. Finally, we conclude with future work.

2 The GDL-Based Framework

Let us now introduce the GDL-based framework from [21]. Each game is asso-
ciated with a game signature. A game signature S is a triple (N,A, Φ), where

– N = {1, 2, · · · ,m} is a non-empty finite set of agents,
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– A is a non-empty finite set of actions such that it contains noop, an action
without any effect, and

– Φ = {p, q, · · · } is a finite set of propositional atoms for specifying individual
features of a game state.

Through the rest of the paper, we will consider a fixed game signature S, and
all concepts are based on the game signature unless otherwise specified.

2.1 State Transition Models

The structure for modelling games is defined as follows:

Definition 1. A state transition (ST) model M is a tuple (W,w0, T, L, U, g, π),
where

– W is a non-empty finite set of possible states.
– w0 ∈ W , representing the unique initial state.
– T ⊆ W , representing a set of terminal states.
– L ⊆ W × N × A is a legality relation, specifying legal actions for each agent

at game states. Let Lr(w) = {a ∈ A : (w, r, a) ∈ L} be the set of all legal
actions for agent r at state w. To make a game playable, it is assumed that
(i) Lr(w) �= ∅ for any r ∈ N and w ∈ W , and (ii) Lr(w) = {noop} for any
r ∈ N and w ∈ T .

– U : W × A|N | ↪→ W\{w0} is a partial update function, specifying the state
transition for each state and legal joint action, such that U(w, 〈noopr〉r∈N ) =
w for any w ∈ W \ {w0}.

– g : N → 2W is a goal function, specifying the winning states of each agent.
– π : W → 2Φ is a standard valuation function.

Note that to make the framework as general as possible, here we consider syn-
chronous games and as demonstrated by Example 1, turn-based games involved
in [21] are special cases by allowing a player only to do “noop” when it is not
her turn. For convenience, let D denote the set of all joint actions A|N |. Given
d ∈ D, we use d(r) to specify the action taken by agent r.

The following notion specifies all possible ways in which a game can develop.

Definition 2. Let M = (W,w0, T, L, U, g, π) be an ST-model. A path δ is an

infinite sequence of states and joint actions w0
d1→ w1

d2→ · · · dj→ · · · s.t. for any
j ≥ 1 and r ∈ N ,

1. wj �= w0 (that is, only the first state is initial.)
2. dj(r) ∈ Lr(wj−1) (that is, any action taken by each agent must be legal.)
3. wj = U(wj−1, dj) (state update)
4. if wj−1 ∈ T , then wj−1 = wj (self-loop after reaching a terminal state.)

Let P(M) denote the set of all paths in M . For δ ∈ P(M) and a stage j ≥ 0,
we use δ[j] to denote the j-th state on δ, and θr(δ, j) the action taken by agent
r at stage j of δ.
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2.2 The Language

The language for game specification is given as follows:

Definition 3. The language LGDL for game description is generated by the fol-
lowing BNF:

ϕ ::= p | initial | terminal | legal(r, a) | wins(r) | does(r, a) | ¬ϕ | ϕ∧ψ | ©ϕ

where p ∈ Φ, r ∈ N and a ∈ A.

Other connectives ∨, →, ↔, �, ⊥ are defined by ¬ and ∧ in the standard
way. Intuitively, initial and terminal specify the initial state and the terminal
states of a game, respectively; does(r, a) asserts that agent r takes action a
at the current state; legal(r, a) asserts that agent r is allowed to take action
a at the current state, and wins(r) asserts that agent r wins at the current
state. Finally, the formula ©ϕ means that ϕ holds in the next state. We use
the following abbreviations in the rest of paper. For d = 〈ar〉r∈N , does(d) =def∧

r∈N does(r, ar), and ©kϕ =def © · · · ©
︸ ︷︷ ︸

k

ϕ.

Note that our language is slightly different from [21] by introducing the agent
parameter in legal(·) and does(·). To help the reader capture the intuition of the
language, let us consider the following example.

Example 1 (Tic-Tac-Toe). Two players take turns in marking either a cross ‘x’or
a nought ‘o’ on an 3×3 board. The player who first gets three consecutive marks
of her own symbol in a row wins this game.

The game signature for Tic-Tac-Toe, written STT , is given as follows: NTT =
{x, o} denoting the two game players; ATT = {ai,j | 1 ≤ i, j ≤ 3} ∪ {noop},
where ai,j denotes filling cell (i, j), and ΦTT = {pr

i,j , turn(r) | r ∈ {x, o} and
1 ≤ i, j ≤ 3}, where pr

i,j represents the fact that cell (i, j) is filled by player r.
The rules of this game is given in Fig. 1.

1. initial ↔ turn(x) ∧ ¬turn(o) ∧
3∧

i,j=1

¬(pxi,j ∨ poi,j)

2. wins(r) ↔
3∨

i=1

2∧

j=0

pri,1+j ∨
3∨

j=1

2∧

i=0

pr1+i,j ∨
2∧

i=0

pr1+i,1+i ∨
2∧

i=0

pr1+i,3−i

3. teminal ↔ wins(x) ∨ wins(o) ∨
3∧

i,j=1

(pxi,j ∨ poi,j)

4. legal(r, ai,j) ↔ ¬(pxi,j ∨ poi,j) ∧ turn(r) ∧ ¬terminal
5. legal(r, noop) ↔ turn(−r) ∨ terminal
6. ©pri,j ↔ pri,j ∨ (does(r, ai,j) ∧ ¬(pxi,j ∨ poi,j))
7. turn(r) ∧ ¬terminal → ©¬turn(r) ∧ ©turn(−r)

Fig. 1. A GDL description of Tic-Tac-Toe.
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The initial state, each player’s winning states, the terminal states and the
turn-taking are given by formulas 1–3 and 7, respectively. The preconditions
of each action (legality) are specified by Formula 4 and 5. Formula 6 is the
combination of the frame axioms and the effect axioms [17].

2.3 The Semantics

The semantics of this language is specified as follows:

Definition 4. Let M = (W,w0, T, L, U, g, π) be an ST-model. Given a path δ of
M , a stage j ∈ N and a formula ϕ ∈ LGDL, we say ϕ is true (or satisfied) at j
of δ under M , denoted M, δ, j |= ϕ, according to the following definition:

M, δ, j |= p iff p ∈ π(δ[j])
M, δ, j |= ¬ϕ iff M, δ, j �|= ϕ
M, δ, j |= ϕ1 ∧ ϕ2 iff M, δ, j |= ϕ1 and M, δ, j |= ϕ2

M, δ, j |= initial iff δ[j] = w0 and j = 0
M, δ, j |= terminal iff δ[j] ∈ T
M, δ, j |= wins(r) iff δ[j] ∈ g(r)
M, δ, j |= legal(r, a) iff a ∈ Lr(δ[j])
M, δ, j |= does(r, a) iff θr(δ, j) = a
M, δ, j |= ©ϕ iff M, δ, j + 1 |= ϕ

An ST-model M satisfies a formula ϕ if there are a path δ ∈ P(M) and a
stage j ∈ N such that M, δ, j |= ϕ. We say a formula ϕ is satisfied at the initial
state w0 in M , written M,w0 |= ϕ, if M, δ, 0 |= ϕ for all δ ∈ P(M).

3 Bisimulation and Definability of GDL

In this section, we first define the notion of bisimulation equivalence for GDL, and
prove the invariance result of GDL-formulas. Then we present a characterization
of the definability of GDL in terms of k-bisimulation.

3.1 Bisimulation and Invariance for GDL

We consider two types of bisimulation for ST-models. The first one is inspired
by the notion of bisimulation in [5,6] defined as follows:

Definition 5. Let M = (W,w0, T, L, U, g, π) and M ′ = (W ′, w′
0, T

′, L′, U ′,
g′, π′) be two ST-models (based on the same game signature). We say M and M ′

are bisimulation-equivalent (bisimilar, for short), written M � M ′, if there is a
binary relation Z ⊆ W × W ′ s.t. w0Zw′

0, and for all states w ∈ W and w′ ∈ W ′

with wZw′, we have

1. All the following hold:
(a) π(w) = π′(w′);
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(b) w = w0 iff w′ = w′
0;

(c) w ∈ T iff w′ ∈ T ′;
(d) Lr(w) = L′

r(w
′) for any r ∈ N ;

(e) w ∈ g(r) iff w′ ∈ g′(r) for any r ∈ N .
2. For every d ∈ D and u ∈ W , if U(w, d) = u, then there is u′ ∈ W ′ s.t.

U ′(w′, d) = u′ and uZu′;
3. For every d ∈ D and u′ ∈ W ′, if U ′(w′, d) = u′, then there is u ∈ W s.t.

U(w, d) = u and uZu′.

When Z is a bisimulation linking two states w in M and w′ in M ′, we say
that w and w′ are bisimilar, written M,w � M ′, w′. In particular, if M � M ′,
then their initial states are bisimilar, i.e., M,w0 � M ′, w′

0. In the following, for
convenience we denote Condition (a)-(e) in Definition 5 as the local properties
of a state.

With path-based semantics, we define the second type of bisimulation, called
path bisimulation as follows:

Definition 6. Consider two ST-models M = (W,w0, T, L, U, g, π) and M ′ =
(W ′, w′

0, T ′, L′, U ′, g′, π′). Let δ ∈ P(M) and δ′ ∈ P(M ′), we say δ and δ′ are
bisimilar, written M, δ � M ′, δ′, iff for every j ≥ 0 and r ∈ N , the local
properties hold for δ[j] and δ′[j], and θr(δ, j) = θr(δ′, j).

This asserts that two paths are bisimilar if all the corresponding states satisfy
the same local properties, and each agent takes the same action at every stage.

It turns out that with the deterministic property, the two types of bisimula-
tion are equivalent. Formally, we have the following result.

Lemma 1. Given two ST-models M and M ′, M � M ′ iff

1. for every δ ∈ P(M), there is δ′ ∈ P(M ′) such that M, δ � M ′, δ′, and
2. for every δ′ ∈ P(M ′), there is δ ∈ P(M) such that M, δ � M ′, δ′.

That is, M is bisimilar to M’ iff each path that can be developed in one model
can also be induced in the other.

Let us now turn to the logical characterization of bisimulation equivalence.
We have the invariance result of GDL-formulas under path-bisimulation.

Proposition 1. Let M and M ′ be two ST-models. For every δ ∈ P(M) and
δ′ ∈ P(M ′), the following are equivalent.

1. M, δ � M ′, δ′
2. (M, δ, j |= ϕ iff M ′, δ′, j |= ϕ) for any j ∈ N and ϕ ∈ LGDL.

This result asserts that bisimulation equivalence and the invariance of GDL-
formulas match on ST-models. On the one hand, this result justifies that the
notion of bisimulation equivalence is natural and appropriate for GDL. On the
other hand, two bisimilar ST-models cannot be distinguished by GDL language.
This allows us to show the failure of bisimulation-equivalence easily. That is, two
ST-models are not bisimulation-equivalent if there is a GDL-formula that holds in
one model and fails in the other. For instance, let us consider the two ST-models
depicted in Fig. 2, where N = {r} and Φ = ∅. Formula initial ∧ ©2does(r, c) is
satisfied in M , but unsatisfied in M ′. This leads to M �� M ′.
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Fig. 2. M and M ′ are not bisimulation-equivalent.

3.2 k-Bisimulation and Definability of GDL

To show that a property of ST-models is definable in GDL, it suffices to find a
defining formula. However, showing that a property is not definable in GDL is
not so straightforward. It is well known that the expressive power of basic modal
logic with respect to Kripke semantics can be completely characterized in terms
of k-bisimulation [6]. In this section, we provide an analogous characterization
result for GDL.

Here we consider the definability of properties that are satisfied at the initial
state of an ST-model. For ϕ ∈ LGDL, let ‖ϕ‖ be the set of all ST-models that
satisfy ϕ at the initial state. i.e., ‖ϕ‖ := {M | M,w0 |= ϕ}. The concept of the
definability is specified as follows:

Definition 7. A class M of ST-models is GDL-definable, if there is a formula
ϕ ∈ LGDL s.t. M = ‖ϕ‖.

Similar to [6], we define the concept of k-bisimulation as follows:

Definition 8. Let M = (W,w0, T, L, U, g, π) and M ′ = (W ′, w′
0, T

′, L′, U ′,
g′, π′) be two ST-models. We say M and M ′ are k-bisimilar, written M �k M ′,
if there exists a sequence of binary relations Zk ⊆ Zk−1 · · · ⊆ Z0 s.t. for any
w ∈ W , w′ ∈ W ′ and i ∈ {0, · · · , k − 1},
1. w0Zkw′

0

2. If wZ0w
′, then the local properties hold for w and w′;

3. If wZi+1w
′ and U(w, d) = u, then there is u′ ∈ W ′ s.t. U ′(w′, d) = u′ and

uZiu
′;

4. If wZi+1w
′ and U ′(w′, d) = u′, then there is u ∈ W s.t. U(w, d) = u and

uZiu
′.

The intuition is that if two ST-models are k-bisimilar, then their initial states
w0 and w′

0 bisimulate up to depth k. Clearly, if M � M ′, then M �k M ′ for all
k ∈ N. We say a class M of ST-models is closed under k-bisimulations if for all
ST-models M and M ′, if M ∈ M and M �k M ′ then M ′ ∈ M.

Before providing the characterization of the definability of GDL, we need
some additional notions and results. The depth of next operators for a formula
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ϕ ∈ LGDL, written degN (ϕ), is inductively defined as follows:

degN (ϕ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, for ϕ is © −free

degN (ψ), for ϕ = ¬ψ

Max{degN (ϕ1), degN (ϕ2)}, for ϕ = ϕ1 ∧ ϕ2

degN (ψ) + 1, for ϕ = ©ψ

Definition 9. Let M , M ′ be two ST-models and k ∈ N. We say M and M ′

are k-equivalent, written M ≡k M ′, if at the initial states, they satisfy the same
GDL-formulas of degree at most k, i.e., {ϕ ∈ LGDL | deg(ϕ) ≤ k and M,w0 |=
ϕ} = {ψ ∈ LGDL | deg(ψ) ≤ k and M ′, w′

0 |= ψ}.
We use the fact that for every ST-model M and every k ∈ N there is a formula
that completely characterizes M up to k-equivalence. With action operator and
path-based semantics, the way to construct the k-th characteristic formula of an
ST-model is non-standard. We need take the following steps.

1. Redefine the set of atomic propositions, written Atm, as follows:
Atm =Φ∪{initial, terminal} ∪ {wins(r), legal(r, a) | r ∈ N, a ∈ A}.

2. Encode the atomic propositions through a valuation V rather than through
separate relations or functions. For every w ∈ W , let V (w) = {p ∈ Φ | p ∈
π(w)} ∪ {initial | w = w0} ∪ {terminal | w ∈ T} ∪ {wins(r) | w ∈ g(r)} ∪
{legal(r, a) | a ∈ Lr(w)}. Note V (w) is finite since N , A and Φ are all finite.

3. For each path δ := w0
d1→ w1

d2→ · · · dj→ · · · in M , induce a trace V (δ) =
V (w0)·does(d1)·V (w1) · · · does(dj)·V (wj) · · · . Let ϕk

δ be the syntactical repre-
sentation of δ up to depth k, i.e., ϕk

δ := (
∧

V (δ[0])∧does(d1))∧©(
∧

V (δ[1])∧
does(d2)) ∧ · · · ∧ ©k(

∧
V (δ[k]) ∧ does(dk+1)).

4. Define the k-th characteristic formula Γ k
M of M as the disjunctions of all the

syntactical representations of paths in M up to depth k, i.e.,

Γ k
M :=

∨

δ∈P(M)
ϕk

δ .

Note that Γ k
M is well-formed as M is finite-branching and all paths are bounded

to depth k. It is easy to check that deg(Γ k
M) = k and M,w0 |= Γ k

M .
To illustrate this idea, let us consider the ST-model M depicted in Fig. 3,

where N = {r}, Φ = ∅, T = {w22, w23} and g(r) = {w23}. Then the 2-th char-
acteristic formula of M is Γ 2

M = ϕ2
δ1

∨ ϕ2
δ2

∨ ϕ2
δ3

, where
ϕ2

δ1
= initial∧∧2

i=1 legal(r, ai)∧does(r, a1)∧©(
∧2

i=1 legal(r, bi)∧does(r, b1))∧
©2(legal(r, c) ∧ does(r, c)),
ϕ2

δ2
= initial∧∧2

i=1 legal(r, ai)∧does(r, a1)∧©(
∧2

i=1 legal(r, bi)∧does(r, b2))∧
©2(terminal ∧ legal (r, noop) ∧ does(r, noop)), and
ϕ2

δ3
= initial ∧ ∧2

i=1 legal(r, ai) ∧ does(r, a2) ∧ ©(legal(r, b3) ∧ does(r, b3)) ∧ ©2

(wins(r) ∧ terminal∧ legal(r, noop) ∧ does(r, noop)).
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Fig. 3. Characteristic formula Γ 2
M . Fig. 4. A non-definable property.

The following lemma shows that the characteristic formula Γ k
M captures the

essence of k-bisimulation.

Lemma 2. Let M , M ′ be two ST-models, and k ∈ N. The following are equiv-
alent.

1. M �k M ′

2. M ≡k M ′

3. M ′, w′
0 |= Γ k

M

This result asserts that (i) k-bisimulation coincides with k-equivalence on ST-
models, and (ii) two ST-models are k-bisimilar if and only if for any path devel-
oped in one model, its k-th prefix can also be developed in the other.

We are now in the position to provide a characterization for the definability
of GDL with respect to k-bisimulation.

Theorem 1. A class M of ST-models is GDL-definable iff there is k ∈ N s.t.
M is closed under k-bisimulations.

This theorem indicates that exactly the properties of ST-models that are closed
under k-bisimulation for some k ∈ N are definable in GDL. This provides a
feasible approach to test the non-definability of GDL. We can show, for instance,
that GDL can express that a player r will win in i steps, i.e., ©iwins(r), but
it cannot express that a player has a winning strategy in general. Indeed for
an arbitrary k ∈ N, we can always construct two ST-models depicted in Fig. 4,
where N = {r}, Φ = ∅, wk+1 ∈ g(r) and si �∈ g′(r) for all i ∈ {0, · · · , k + 1}. It
is easy to check that M �k M ′, but player r has a winning strategy in M while
she does not have in M ′. By a slight change of M and M ′ with wk+1 ∈ T and
sk+1 �∈ T ′, we obtain another GDL-undefinable property that a game will always
reach a terminal state. It is worth noting that GDL is a lightweight language
for describing game rules and specifying game properties, compared to other
strategic logics such as ATL [1] and Strategy Logic [7] which can express those
properties. This is the price paid for the low complexity of GDL.
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4 Bisimulation and Definability of EGDL

In this section, we first define a notion of bisimulation especially designed for
EGDL, and then prove that it can be logically characterized by EGDL. We
finally provide a characterization of the definability of EGDL.

Let us first introduce the language and semantics of EGDL in [12]. The
language of EGDL is obtained by extending GDL with the standard epistemic
operators. A formula ϕ ∈ LEGDL is defined by the following BNF:

ϕ ::= p | initial | terminal | legal(r, a) | wins(r) |

does(r, a) | ¬ϕ | ϕ ∧ ψ | ©ϕ | Krϕ | Cϕ

where p ∈ Φ, r ∈ N and a ∈ A.
Besides the GDL-components, the formula Krϕ is read as “agent r knows

ϕ”, and Cϕ as “ϕ is common knowledge among all the agents in N”.
The semantics of EGDL is based on epistemic state transition models. An

epistemic state transition (ET) model is obtained by associating the state transi-
tion model with an equivalence relation Rr ⊆ W ×W for each agent r, indicating
the states that are indistinguishable for r. To interpret epistemic formulas, the
equivalence relation over states is generalized to paths: two paths δ, λ ∈ P(M) are
imperfect recall equivalent for agent r at stage j ∈ N, written δ ≈j

r λ, iffδ[j]Rrλ[j].
The semantics of EGDL is obtained by adding the following interpretation

clauses to Definition 4:

M, δ, j |= Krϕ iff for all λ ≈j
r δ, M,λ, j |= ϕ

M, δ, j |= Cϕ iff for all λ ≈j
N δ, M,λ, j |= ϕ

where ≈j
N is the transitive closure of

⋃
r∈N ≈j

r.

4.1 Bisimulation Equivalence for ET-models

Different from ST-models, there are two dimensions in ET-models: the temporal
and the epistemic dimension. The epistemic relation is actually determined by
the stage-path pair, since path equivalence requires not only the corresponding
states are undistinguishable, but also the states are reached at the same stage.
The state-based bisimulation for GDL fails to capture the latter. Based on above
analysis, we define a new notion of path-based bisimulation between ET-models.

Definition 10. Let M = (W,w0, T, {Rr}r∈N , L, U, g, π), M ′ = (W ′, w′
0, T

′,
{R′

r}r∈N , L′, U ′, g′, π′) be two ET-models, δ ∈ P(M), δ′ ∈ P(M ′) and j ∈ N.
We say M, δ, j and M ′, δ′, j are (m,n)-bisimilar, written M, δ, j �

n
m M ′, δ′, j, if

we have

1. The base case
(a) the local properties hold for δ[j] and δ′[j].
(b) θr(δ, j) = θr(δ′, j) for any r ∈ N .
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2. If m > 0, M, δ, j + 1 �
n
m−1 M ′, δ′, j + 1.

3. If n > 0, then for all o ∈ N ∪ {N},
(a) for any λ ∈ P(M), δ ≈j

o λ, then there is λ′ ∈ P(M ′) s.t. δ′ ≈j
o λ′ and

M,λ, j �
n−1
m M ′, λ′, j;

(b) for any λ′ ∈ P(M ′), δ′ ≈j
o λ′, then there is λ ∈ P(M) s.t. δ ≈j

o λ and
M,λ, j �

n−1
m M ′, λ′, j.

This recursively asserts that two paths from ET-models are (m,n)-bisimilar
iff (i) at the current stage, they can not be distinguished, i.e., the same local
properties hold and each agent takes the same action (Condition 1), and (ii)
at the next stage, they also bisimulate each other from both the temporal and
epistemic perspectives. This is specified by Condition (2) and Condition (3).
Specifically, Condition (2) takes care of the temporal dimension: the depth m
of path bisimulation is reduced stage by stage until 0, and Condition (3) deals
with the epistemic dimension: for each path indistinguishable from δ, there is a
path indistinguishable from δ′ that bisimulates it. The number of such bisimilar
pairs at stage j is specified by the parameter n.

With this, we define the concept of (m,n)-bisimulation over ET-models as
follows:

Definition 11. Let M and M ′ be two ET-models. We say M is globally (m,n)-
similar to M ′, written M ∝n

m M ′, if for every δ ∈ P(M), there is δ′ ∈ P(M ′)
such that M, δ, 0 �

n
m M ′, δ′, 0.

We say M and M ′ are (m,n)-bisimilar, written M �
n
m M ′, if M ∝n

m M ′ and
M ′ ∝n

m M .

This asserts that two ET-models are (m,n)-bisimilar iff for every path in one
model there is a path in the other such that their initial states are (m,n)-
bisimilar. In particular, we say two ET-models M , M ′ are path-based bisimilar,
written M � M ′, if M �

n
m M ′ for all m,n ∈ N. Finally, a class M of ET-

models is closed under global (m,n)-simulations if for all ET-models M and M ′,
if M ∝n

m M ′ and M ′ ∈ M then M ∈ M.
To obtain the characterization results, we need some additional notions. For

any EGDL-formula ϕ ∈ LEGDL, the depth of next operators, written degN (ϕ),
is defined as for GDL-formulas except for ϕ ∈ {Krψ,Cψ}, degN (ϕ) = degN (ψ).
The depth of epistemic operators, written degE(ϕ), is inductively defined as
follows:

degE(ϕ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, for ϕ is Kr,C − free

degE(ψ), for ϕ ∈ {¬ψ, ©ψ}
Max{degE(ϕ1), degE(ϕ2)}, for ϕ = ϕ1 ∧ ϕ2

degE(ψ) + 1, for ϕ ∈ {Krψ,Cψ}

Let EGDL(m,n) denote the set of all formulas with the depth of next opera-
tors and epistemic operators at most m, n, respectively, i.e, EGDL(m,n)={ϕ ∈
LEGDL | degN (ϕ) ≤ m and degE(ϕ) ≤ n}. Then we have the following logical
characterization result for (m,n)-bisimilar paths.
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Proposition 2. Let M , M ′ be two ET-models. For every δ ∈ P(M), δ′ ∈
P(M ′) and j ∈ N, the following are equivalent.

1. M, δ, j �
n
m M ′, δ′, j

2. (M, δ, j |= ϕ iff M ′, δ′, j |= ϕ) for all ϕ ∈EGDL(m,n)

This result asserts that (m,n)-bisimulation coincides with the indistinguisha-
bility of EGDL-formulas for paths. In particular, this also holds for the initial
states.

Similarly, we say two ET-models M and M ′ are (m,n)-equivalent, written
M ≡n

m M ′, if at the initial states, they satisfies the same EGDL(m,n)-formulas,
i.e., {ϕ ∈ LEGDL(m,n) | M,w0 |= ϕ} = {ψ ∈ LEGDL(m,n) | M ′, w′

0 |= ψ}.
Then the following shows that (m,n)-bisimulation is logically characterized by
EGDL(m,n).

Theorem 2. Let M and M ′ be two ET-models. Then M �
n
m M ′ iff M ≡n

m M ′.

This asserts (m,n)-bisimulation equivalence and the invariance of
EGDL(m,n)-formulas coincides over ET-models. This result not only justifies
that the notion of (m,n)-bisimulation is appropriate for EGDL, but also provides
a feasible way to verify the failure of (m,n)-bisimulation. For instance, consider
two ET-models M1, M2 depicted in Fig. 5, where N = {r}, Φ = ∅. The dotted
line denotes the indistinguishability relation of agent r. Notice that the reflexive
loops are omitted. Formula ©Kr(does(r, b) → ¬©2 terminal) is not satisfied at
w0 of M1, but holds at s0 of M2. Then M1 �≡1

3 M2. This leads to M1 ��1
3 M2.

Fig. 5. M1 and M2 are not (3, 1)−bisimilar.

In particular, we have the following result about the characterization of bisim-
ilar ET-models in terms of EGDL. Recall that M � M ′ if M �

n
m M ′ for all

m,n ∈ N.

Proposition 3. Let M and M ′ be two ET-models. Then M � M ′ iff they satisfy
the same EGDL-formulas.

4.2 Logical Characterization of Definability of EGDL

Let us present the characterization of the definability of EGDL in terms of global
(m,n)-simulations. Note that the notion of the definability of EGDL is defined
the same as GDL in Definition 7.
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Theorem 3. A class M of ET-models is EGDL-definable iff there are m,n ∈ N

such that M is closed under global (m,n)-simulations.

This theorem asserts that exactly the properties of ET-models that are closed
under global (m,n)-simulations for some m,n ∈ N are definable in EGDL. Sim-
ilar to Theorem 1, this provides a feasible way to verify the non-definability
of EGDL. For instance, we can show that EGDL cannot express that a player
knows that she has a winning strategy.

We end this section with the following results that the expressivity of GDL
is characterized by a special case of (m,n)-bisimulation with n = 0.

Proposition 4. Let M and M ′ be two ET-models. Then the following are equiv-
alent.

1. M �
0
m M ′ for any m ∈ N

2. they satisfy the same GDL formulas.

Proposition 5. A class M of ET-models is GDL-definable iff there is m ∈ N

s.t. M is closed under global (m, 0)-simulations.

These results indicates that path-based bisimulation provide a different way
to characterize the expressivity of GDL. The first result shows that (m, 0)-
bisimulation and the invariance of GDL-formulas match over ET-models, and
the last characterizes the definability of GDL under (m, 0)-bisimulations. This
indicates that without considering bisimulation for epistemic relations, (m, 0)-
bisimulation actually boils down to m-bisimulation for ST-models.

5 Conclusion

In this paper, we have used a bisimulation approach to investigate the expressive
power of GDL and EGDL. Specifically, we have defined notions of bisimulations
for GDL and EGDL, and obtained the logical characterizations, respectively. We
have also shown that a special case of path-based bisimulation can be used to
characterize the expressivity of GDL. These results provide a feasible tool to
identify the expressive power of game description languages. Finally, it is worth
mentioning that bisimulation is a generic approach to identify the expressivity of
a logic. Yet it is also sensitive to the logic it applies. Special techniques have to
be developed for specific logics. With action operator and path-based semantics,
the notions of bisimulation for GDL and EGDL are actually not a trivial and
standard generalization of that for modal logic.

Directions of future research are manifold. We intend to explore the van Ben-
them Characterization Theorem for GDL and EGDL [3]. More recently, GDL
has been extended to GDL-II and GDL-III for representing and reasoning about
imperfect information games in GGP [19,20]. We plan to study the expressivity
of these languages and compare them with EGDL. Last but not least, bisimu-
lation equivalence provides a natural yet overly strict criterion on game equiva-
lence. It would be interesting to investigate different types of game equivalence
in GGP [4,9,16,22].
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Abstract. Ad reservation market is an important part of the Internet
advertising industry. Advertisers expect to reserve ad slots in advance,
while auctioneers need a mechanism for allocating ad slots and maximiz-
ing profits. We propose SMAR, which is a Strategy-proof Model-based
online Auction for ad Reservation, to meet their needs. SMAR allows
the cancelation policy. It means auctioneers can revoke the reservation
and resell ad slots to advertisers with higher bids. SMAR achieves both
incentive compatibility and individual rationality. We implement SMAR
and compare it with offline VCG and other related works. The results
show SMAR has a better performance in both social welfare and revenue.

Keywords: Ad reservation · Auction theory · Strategy proofness ·
Game theory · Mechanism design

1 Introduction

More and more advertisers (agents or bidders) prefer to use Internet systems
to buy advertising display. Many Internet-based ads are sold via instantaneous
offline auction, such as the GSP auction (e.g., Google). For traditional offline
ads, to bring satisfying advertising effect, advertisers often expect to reserve ad
slots in advance, while auctioneers are willing to sell out goods in advance due
to the uncertainty and unpredictability of the market. Both of them need an
effective mechanism to help them make deals for the ad reservation trades.

In this paper, we present SMAR, which is a strategy-proof model-based online
auction for ad reservation with a cancellation policy. It means auctioneers can
revoke the previous reservation and resell ad slots to bidders with higher bids.
We model the arrival pattern and the bid valuation distribution of bidders,
and assume auctioneers can reliably know the above information about bidders.
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Accepted bidders need to pay for entrance fees based on their survival probabil-
ities. It can prevent malicious bidders from bidding and earning compensations.
We achieve a strategy-proof mechanism based on the sealed-bid secondary price
auction [4]. We implement SMAR and compare it with offline Vickrey-Clarke-
Groves (VCG) and COMP [1]. The results show SMAR has a better performance
in both social welfare and revenue than others.

2 Preliminaries

2.1 Auction Model

Given an online auction with a trusted auctioneer and potential agents N =
{1, 2, · · · , n}. We divide time into |T | time slots with equal length time spans,
i.e. T = {1, 2, · · · , T}. There are g ad slots at T . Each agent bids for at most
one unit of slots. θi = (ai, vi) is agent i’s type. ai ∈ T is her arrival time and
vi is her value for the slot. θ′

i = (a′
i, v

′
i) is her reported type. Agents will cheat

on their true types. Based on the heart-beat scheme [3], agents only cheat the
arrival time by a late report, i.e., a′

i ∈ [ai, T ]. Let N
t = {i ∈ N |a′

i ≤ t} be the set
of agents who have reported arrivals by time t. Clearly, N

0 = ∅. N
T is the set of

agents who have attended the auction. N
t−1 ⊆ N

t ⊆ N,∀t ∈ T. ΔN
t = N

t \ N
t−1

is the set of agents whose reported time is exactly t. Once the agent reports her
type, the auctioneer needs to give an immediate response: reject or accept.

During the auction, we maintain a temporary winner set W
t ⊆ N

t (W0 = ∅).
Each agent needs at most one ad slots, i.e., |Wt| ≤ g. Due to the cancellation
policy, W

t does not always contain W
t−1. Let A

t =
⋃t

k=1 W
k be the set of agents

who have been accepted till time t. Clearly, W
t ⊆ A

t ⊆ N
t,∀t ∈ T.

Definition 1. For an agent i with type θ′
i = (a′

i, v
′
i), there are four possible

states: (1) accepted iff i ∈ W
a′

i ; (2) rejected iff i /∈ W
a′

i ; (3) survive iff i ∈ W
T ;

(4) cancelled iff i ∈ A
T \W

T .

If agent i is accepted, we charge her for an entrance fee penti . It can prevent mali-
cious agents from earning compensations. The accepted agent may be cancelled
due to the arrival of agents with higher bids, and get a compensation pcomp

i .
Lastly, at time T , surviving agents will charge a final price pi and get ad slots.

Let θ′ = (θ′
i, θ

′
−i) be the bid profile of agents in N

T . The utility of agent i is:

ui(θi, θ′) =

⎧
⎪⎨

⎪⎩

pcomp
i − penti , i is cancelled,

vi − pi − penti , i survives,
0, otherwise.

(1)

Prsvi = Prsvi (θ′
i, θ

′
−i) is the survival probability of i. It is related to a′

i, θ′
i and

other bidders’ bid profile θ′
−i. The expected utility of an accepted agent i is:

E(ui(θi, θ
′
i, θ

′
−i)) =

(
1 − Prsvi (θ′

i, θ
′
−i)

) × pcomp
i + Prsvi (θ′

i, θ
′
−i) × (vi − pi) − pent

i (2)

Here, agents hope to maximize their utilities or expected utilities, while the
auctioneer wants to maximize the social welfare.
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Definition 2 (Social Welfare). The social welfare in our auction model is the
summation of the valuations of the whole survivors, i.e., SW =

∑i∈W
T

vi.

Due to the existence of entrance fees and compensations, the auctioneer’s
revenue R and expected revenue E(R) are respectively defined as:

R =
i∈W

T
∑

i

pi +
j∈A

T

∑

j

pentj −
k∈A

T \WT

∑

k

pcomp
k (3)

E(R) =
i∈A

T
∑

i

(penti − (1 − Prsvi )pcomp
i + Prsvi pi) (4)

Algorithm 1. RunOneTime
Input: current time t, T , g, model parameters: λ, μ, σ, arriving agent set ΔN

t,
previous winner set W

t−1, previous revenue rev;
Output: Current winner set W

t, current revenue rev;
1 W

t = W
t−1;

2 for ∀i ∈ ΔN
t do

3 j∗ = argmin
i∈Wt

(getBidV alue(i));

4 if |Wt| < g then
5 W

t = W
t ∪ {i};

6 else if v′
i > v′

j∗ then
7 W

t = (Wt \ {j∗}) ∪ {i};

8 for ∀i ∈ W
t \ W

t−1 do
9 Prsvi = CalculateSurvivalProb; rev = rev + pent

i ;

10 for ∀i ∈ W
t−1 \ W

t do
11 rev = rev − pcomp

i ;

12 return W
t, rev;

2.2 Model-Based Assumptions

SMAR is designed via a model-based approach [3], assuming the auctioneer can
establish accurate models of bidders’ arrival pattern and bid distribution. A
poisson distribution is used to model the arrival pattern. The number of new
agents during each time follows a poisson distribution with the average rate
λ, i.e., Nt ∼ P (λ), Nt = |ΔN

t|. A normal distribution is used to model the
distribution of agent’s bid, i.e., vi ∼ N ′(μ, σ2),∀i ∈ N. Assume all bids are
different. The bid value is positive and the minimum gap between two value is
one. So, the normal distribution should be rounded to transform a consecutive
manner into a discrete one, i.e., N ′(μ, σ2). The rounding is y′ = �y + 0.5�, e.g.,
the 3.4 is rounded to 3 and 3.6 is rounded to 4.
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3 Auction Design

We try to design a strategy-proof direct revelation mechanism for ad reservation.
Agents can report their types without cheating and the utility is non-negative.

Definition 3 (Strategy-Proof Direct Revelation Mechanism [2]). A
direct revelation mechanism is strategy-proof, iff it satisfies incentive-
compatibility and individual-rationality.

We utilize the above probability models to compute the survival probability
of agents and allocate slots. If an agent is accepted, she pays for an entrance fee.

penti = pcomp
i (1 − Prsvi ). (5)

If an accepted bidder is cancelled, the individual rationality also should be
guaranteed. Thus, according to Eq. 2, her utility uc

j can be

uc
j = pcomp

j − pentj = Prsvi × pcomp
j > 0 (6)

Algorithm 2. Mechanism Overview
Input: Length of the auction T , inventory size g, model parameters: λ, μ and σ;
Output: Final winner set W

T , revenue rev;
1 W = ∅; N = ∅; rev = 0;
2 for t ← 1 to T do
3 ΔN = CollectArrivingBidder; N = N ∪ ΔN; W, rev = RunOneTime;

4 W
T = W; N

T = N; pc = max{v′
i|i ∈ N

T \ W
T };

5 for ∀i ∈ W do
6 rev = rev + pc;

7 return W
T , rev;

Next, to achieve incentive compatibility and individual rationality, we pro-
pose a policy Probabilities as Fees (PolicyF ) to define pcomp

i , penti , and pi .

penti = 1 − Prsvi ; pcomp
i = 1; pi = pc, (7)

Due to the limitation of space, the the strategy-proof of PolicyF is omitted.

3.1 Mechanism Overview

We propose two algorithms in the mechanism. The allocation is inspired by
the sealed-bid secondary price auction [4]. Algorithm 1 is used to determine the
temporary winners and revenue in each period, while Algorithm2 is used to
determine the final winners and revenue. The main idea is that we simulate
a “secondary price” auction in an incremental manner. In Algorithm2, during
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each time span, it collects the new bidders by CollectArrivingBidder and puts
bidders set into Algorithm 1. After T time, it calculates pc and further charges
all winners. pc is critical payment that means if the agent wants to win, she has
to bid above pc.

pc = max{v′
i|i ∈ N

T \ W
T } (8)

3.2 Probability Calculation

The survival probability Prsvi is used to determine i’s entrance fee by PolicyF.
Given an accepted agent with bid θ′

i = (a′
i, v

′
i), we have Ei = {j ∈ N|a′

j >
a′
i ∧ v′

j > v′
i} and Ei = |Ei|. Ei is the number of future bidders who bid above i.

ri is the rank of i in current winner set W
a′

i , i.e., ri =
∣
∣{j ∈ W

a′
i |v′

j < v′
i}

∣
∣.

Theorem 1. For a′
i ∈ T and v′

i > 0, denote

pri =
1

σ
√

2π

∫ +∞

v′
i+0.5

e− (x−μ)2

2σ2 dx and λi = (T − a′
i)priλ. (9)

The Ei follows the Poisson Distribution of average rate λi, i.e., Ei ∼ P (λi). So,

Prsvi =
ri−1∑

n=0

Pr[Ei = n]. (10)

3.3 Revenue

Our mechanism achieves the same expected revenue as the offline VCG under
PolicyF. Based on Eqs. 4 and 7, it is E(R) =

∑i∈A
T

i Prsvi pc. Since pc is the
critical payment, the expected revenue here has the same form as the expected
revenue of the offline VCG. Thus, we achieve the optimal expected revenue.

Fig. 1. Social welfare Fig. 2. Revenue compari-
son

Fig. 3. Refund comparison
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4 Evaluation

We compare SMAR with the offline VCG (called OPT) and COMP [1]. T is
from 20 to 200. Given λ = 2, μ = 1000, σ = 400, and generate bidders via the
model-based approach. The ad slots g are 20 and 40. For COMP, we config it
with α = 0.1 and γ = max(α+

√
α2 + α, α/(1−α)) ≈ 0.43. α ∈ [0, 1] controls the

compensation rate. COMP is not truthful, but we assume bidders bid truthfully.
We compare mechanisms from the social welfare, revenue and refunds.

Figure 1 shows the results of social welfare. It increases over the auction time.
Because more bidders attend the auction, the auctioneer has more chance to
capture bidders with high bids. The social welfare in g = 40 is less than twice
of that in g = 20, e.g., in T = 200. Because a larger g allows the auctioneer to
accept the relatively low bid, which causes the reduction of the average social
welfare.

Figure 2 shows the results of revenue. When T is short, a large g may have
a low revenue, which is because pc is close to zero. With the increase of T ,
the larger g generates the higher revenue. SMAR is with a higher revenue than
COMP. Because we pay less compensation to canceled bidders and capture all
high bids, while COMP will reject some high bids to guarantee its competitive
ration.

Figure 3 shows the results of the refund. Refunds measure the total compen-
sations that the auctioneer pays cancelled bidders. Here, it increases with T .
COMP pays more compensations to canceled bidders. Even if SMAR has the
same refund as COMP, the revenue of COMP is still less than SMAR. Because
SMAR can get entrance fees from accepted bidders and capture all high bids.

5 Conclusion

We have proposed SMAR. It can achieve the optimal social welfare and average
revenue. We have implemented it through the simulation. The results have shown
SMAR performs better than others in the social welfare, revenue, and refunds.
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Abstract. In real-time systems where tasks have timing requirements,
once the workload exceeds the system’s capacity, missed deadlines may
incur system overload. Finding optimal scheduling in overloaded real-
time systems is critical in both theory and practice. To this end, existing
works have encoded scheduling problems as a set of first-order formu-
las that might be tackled by the Satisfiability Modulo Theory (SMT)
solver. In this paper, we move one step forward by formulating the
scheduling dilemma in overloaded real-time systems as a Maximum Sat-
isfiability (MaxSAT) problem. In the MaxSAT formulation, scheduling
features are encoded as hard constraints and the task deadlines are con-
sidered soft ones. An off-the-shelf MaxSAT solver is employed to satisfy
as many deadlines as possible, provided that all the hard constraints are
met. Our experimental results show that our proposed MaxSAT-based
method found optimal scheduling significantly more efficiently than pre-
vious works.

Keywords: Scheduling problem · MaxSAT encoding ·
Real-time system · Overloaded system

1 Introduction

Real-time systems, which are designed to handle tasks with completion dead-
lines, play an important role in a variety of modern applications, such as robotics
[2], pacemakers [14], chemical plants [33], telecommunications [6], and multime-
dia systems [1]. Under ideal circumstances, a real-time system completes all of its
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tasks before their deadlines expire. However, in reality, unanticipated emergency
conditions may occur causing the workload to exceed the system’s capacity,
leading to missed deadlines [5]. Such a phenomenon is called overload. When
overload happens, real-time systems may be dramatically degraded, and catas-
trophes might occur. Therefore, designing a suitable scheduling strategy that is
resistant to system overload is critical to maintain a system’s stability.

To date, numerous works have devoted to dynamically detecting and mitigat-
ing possible overload in real-time systems. Typical methods involve modulating
either the task attributes [30] or system workload [26], exploiting the congestion
and feedback mechanisms [7,8,17]. These works, in which the scheduler receives
tasks that arrive over time, and must schedule tasks without any knowledge of
the future, fall under the rubric of online scheduling [23]. Another line of research
is to design off-line scheduling algorithms to optimally solve the problem, pro-
vided that all data are known beforehand1. Optimization algorithms can, on
one hand, benefit real-time systems where the scheduled application is executed
many times [25], on the other hand, serve as a testbed for suboptimal algorithms
[3]. The first optimal algorithm for minimizing the number of late jobs on a sin-
gle machine was presented by Moore [29], working on a special case where the
ready times of tasks were the same and no precedence relation was specified.
Later, Graham et al. [15] classified the scheduling problems according to the
machine environment, job characteristics and optimality criteria. Based on the
elaborate specification on the scheduling properties, immense amounts of works
boomed. A classic way of finding the optimal scheduling is the exploration of
dynamic programming algorithms [4,22], following which a direct combinatorial
algorithm was put forward to reduce the time complexity [31]. Another way is
to formalize the scheduling problems as a class of generalized problems, such as
the mixed integer linear programming [32], constraint programming [20], Satis-
fiability Modulo Theory (SMT) [9–11,21,25], and Boolean Satisfiability (SAT)
problem [3,12,18,24,27]. Motivated by the significant progress in solving these
generalized problems, the formalized scheduling problem could be addressed effi-
ciently with the corresponding solving algorithms.

As a pioneering work in satisfiability formalization, Crawford et al. [12] first
encoded scheduling problems into a SAT problem, paving the way for subsequent
works. Based on Crawford encoding, Koshimura et al. [18] solved six types of
open job-shop scheduling problems. Liu et al. [24] presented a SAT-based opti-
mization framework to address the task graph scheduling on multiprocessor sys-
tems. These works, in which tasks are not constrained with any specific deadlines,
are infeasible for real-time systems, let alone the overloaded situation in real-time
systems. To achieve optimal scheduling in overloaded real-time systems, Cheng
et al. [9] modeled the overloaded scheduling problem as a set of SMT problems
to maximize the total number of completed tasks that can be completed by their
deadlines. Subsequently, they extended the model by achieving other objectives

1 Note that an off-line algorithm does not contradict with a real-time system. An off-
line scheduling allows a scheduler to make decision based on the total knowledge of
the problem, while a real-time system assigns each task with a specific deadline.
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[10]. SMT-based scheduling was sufficiently flexible because it handled various
objectives with very few changes in the adaption procedure. However, their SMT
method suffers from redundant constraints and successive calls to the solver that
negatively impact its problem solving’s efficiency.

In this paper, we seek to achieve optimal scheduling for real-time systems
by presenting a Maximum Satisfiability (MaxSAT) formulation, which is an
extended version of SAT. Motivated by the MaxSAT feature that satisfies as
many constraints as possible by eliminating the unsatisfied ones, we recast the
overloaded scheduling problem as a partial MaxSAT problem and solve it with
a state-of-the-art MaxSAT solver. In the MaxSAT formulation, task deadlines
are treated as soft constraints, and scheduling features are encoded as hard
ones. Then an off-the-shelf MaxSAT solver is employed to meet as many soft
constraints as possible, provided that all the hard constraints are met. Instead
of repeatedly summoning the solver, our MaxSAT-based scheduling finds the
optimal solution by just running the MaxSAT solver once. We experimentally
demonstrate the superiority of the MaxSAT formulation and show that regard-
less of the degree of overload changes, the MaxSAT-based method always out-
performs SMT both in terms of execution time and percentage of completed
problem instances.

2 Scheduling Model

We adhere to the definition of scheduling problems in previous works [9,10]. For
convenience, the notations used in the model are summarized in Table 1.

Table 1. Notations and descriptions in scheduling model

Notation Description

Γ Finite set of real-time tasks

τl Task in Γ , where l is its index

τk ≺ τl τl relies on τk

rl Ready time of τl

ci Execution time of τl

dl Deadline of τl

f l
i ith fragment of τl

ql Index of last fragment of τl

cli Execution time of f l
i

sli Start execution time of f l
i

A real-time system is comprised of a finite set of real-time tasks {τ1, . . . , τn}
that are waiting to be executed. The set is denoted by Γ , i.e., Γ = {τ1, . . . , τn}.
All the tasks request a uniprocessor for execution when they arrive in the system.
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Each task τl can be represented by a 3-tuple τl = (rl, cl, dl), where l is a task’s
index, rl is the ready time, i.e., the earliest time at which τl can start, cl is the
required execution time, and dl is the deadline, i.e., the time by which τl must
be completed. Naturally, rl + cl ≤ dl. A successfully scheduled task is expected
to be finished before its deadline; otherwise, it is worthless to the system. We
adopt this so-called firm-deadline model [16,26].

In practical systems, tasks usually have dependency relations. For example,
since task τl may require the computed result of τk, τl cannot start until τk is
finished. Such a dependency relation between tasks is written as τk ≺ τl. To
allow preemption, which indicates that a running task may be interrupted and
resumed at a later time, each task τl ∈ Γ is defined as a sequence of indivisible
fragments 〈f l

1, . . . , f
l
ql

〉. Symbol cli denotes the required execution time of f l
i .

Clearly,
∑ql

i=1 cli = cl. For 1 ≤ i ≤ ql, f l
i+1 can start to run only after f l

i is
completed. Let sli be the starting execution time of f l

i , and sli ≥ rl and sli+1 ≥
sli + cli.

A system is defined as overloaded if no scheduling algorithm can meet the
deadlines of all the tasks that have been submitted to it. This paper focuses
on designing an offline method to tackle scheduling problems in an overloaded
real-time system with a uniprocessor. The scheduling objective is to maximize
the total number of tasks executed to completion before their deadlines.

3 MaxSAT Formulation for Task Scheduling

In this section, we provide the first ever MaxSAT formulation for solving the task
scheduling problem in overloaded real-time systems. A MaxSAT instance consists
of a number of constraints that need to be managed by the MaxSAT solver. To
formulate all the necessary constraints that characterize the scheduling model,
we introduce the following three boolean variables, which are derived from a
previous work [18]:

– sal
i,t, which is true if f l

i starts at time t or later;
– ebli,t, which is true if f l

i ends by time t or before;
– prl,ki,j , which is true if f l

i precedes fk
j .

Each fragment f l
i is associated with the following four kinds of time points:

– Earliest Start Time (EST) of f l
i is denoted by EST l

i , where EST l
i = rl +

∑i−1
u=1 clu. Any fragment f l

i should start at or after EST l
i , indicating that f l

i

cannot be started before all its previous fragments are finished.
– Latest Start Time (LST) of f l

i is denoted by LST l
i , where LST l

i = dl −∑ql
u=i c

l
u. If f l

i fails to start before LST l
i , τl cannot end by its deadline dl,

and so this task becomes worthless to the system.
– Earliest Completion Time (ECT) of f l

i is denoted by ECT l
i , where ECT l

i =
rl +

∑i
u=1 clu. No fragment f l

i can be completed before ECT l
i . Particularly,

ECT l
i = EST l

i + cli.
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– Latest Completion Time (LCT) of f l
i is denoted by LCT l

i , where LCT l
i =

dl − ∑ql
u=i+1 clu. If f l

i fails to end by LCT l
i , τl cannot end by its deadline dl,

and the whole task becomes worthless to the system. Particularly, LCT l
i =

LST l
i + cli.

3.1 Encoding Scheduling Features as Hard Clauses

This subsection introduces several constraints with which to characterize the
scheduling model, including task features and fragment features. Logical impli-
cation a → b is equivalent to ¬a ∨ b in classical logic. The set of all the clauses
are identified as a conjunction of the following clauses:

(C1) ∀τl ∈ Γ , f l
i ∈ τl, f l

i starts at or after EST l
i :

sal
i,EST l

i
; (1)

(C2) ∀τl ∈ Γ , ∀f l
i , f

l
i+1 ∈ τl, f l

i precedes f l
i+1:

prl,li,i+1; (2)

(C3) ∀τk, τl ∈ Γ , ∀fk
i ∈ τk, ∀f l

j ∈ τl, if k �= l, τk /≺τl, τl /≺τk, EST k
i < LCT l

j and
EST l

j < LCT k
i , and then fk

i and f l
j may require the processor at the same

time. In this condition, fk
i precedes f l

j or f l
j precedes fk

i :

prk,li,j ∨ prl,kj,i ; (3)

(C4) ∀τk, τl ∈ Γ , if τk ≺ τl, and then the last fragment of τk must precede the
first fragment of τl. That is, if τk ≺ τl, then fk

qk
precedes f l

1:

prk,lqk,1
; (4)

Further, if τk fails to be completed by its deadline, τl cannot even start at
LST l

1:
¬ebkqk,dk

→ sal
1,LST l

1+1; (5)

(C5) ∀τl ∈ Γ , ∀f l
i ∈ τl, if τl is completed by its deadline, then each fragment fk

i

of τl should finish by LCT l
i :

eblql,dl
→ ebli,LCT l

i
; (6)

(C6) ∀τl ∈ Γ , ∀f l
i ∈ τl, if f l

i starts at or after time t, then it starts at or after
time t − 1, where t varies in [EST l

i + 1, LST l
i + 1]:

sal
i,t → sal

i,t−1

(
EST l

i + 1 ≤ t ≤ LST l
i + 1

)
; (7)

(C7) ∀τl ∈ Γ , ∀f l
i ∈ τl, if f l

i ends by t, then it ends by time t + 1, where t varies
in [ECT l

i − 1, LCT l
i − 1]:

ebli,t → ebli,t+1

(
ECT l

i − 1 ≤ t ≤ LCT l
i − 1

)
; (8)
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(C8) ∀τl ∈ Γ , ∀f l
i ∈ τl, if f l

i starts at or after time t, then it cannot end before
time t + cli − 1, where t varies in [EST l

i , LST l
i + 1]:

sal
i,t → ¬ebli,t+cli−1

(
EST l

i ≤ t ≤ LST l
i + 1

)
; (9)

(C9) ∀τk, τl ∈ Γ , ∀fk
i ∈ τk, ∀f l

j ∈ τl, if fk
i starts at or after time t and f l

j follows
fk
i , then f l

j cannot start until fk
i is finished. That is, for each prk,li,j asserted

by (C2)–(C4), one clause is generated:

sak
i,t ∧ prk,li,j → sal

j,t′ ; (10)

where t varies in [EST k
i , LST k

i + 1] and

t′ =

⎧
⎨

⎩

LST l
j + 1 if t + cki > LST l

j ,
EST l

j if t + cki < EST l
j ,

t + cki Otherwise.

This formula reveals the following facts. First, if fk
i ends after LST l

j (i.e.,
t + cki > LST l

j), then f l
j cannot start at or before LST l

j . Second, if fk
i

finishes before EST l
j (i.e., t+ cki < EST l

j), then f l
j starts at or after EST l

j .
Otherwise, f l

j must start at or after time fk
i finishes, i.e., t + cki .

Up to this point, we have encoded the scheduling features as propositional
boolean formulas that can be converted to a set of clauses. Since the scheduling
features are intrinsic properties inherent in the tasks and their fragments, such
clauses are specified as hard, indicating that all of them must absolutely be
satisfied. For convenience, we refer to the set of hard clauses introduced in (C1)–
(C9) as C.

3.2 Encoding Scheduling Objectives as Soft Clauses

A task is said to be successfully executed if and only if all of its fragments are
completed before its deadline. Since all the fragments of a task run sequentially,
this constraint can be defined as the task’s last fragment that must be com-
pleted before its deadline. Correspondingly, the basic scheduling objective, i.e.,
maximizing the total number of tasks that are completed by their deadlines, is
directly encoded as the following clause:

(O) The last fragment of task τl must be completed by its deadline:

eblql,dl
(1 ≤ l ≤ n) . (11)

The clause introduced in (O) is referred to as O. After encoding, the scheduling
objective turns to satisfying as many clauses in O as possible. Such clauses
are labeled soft. Conjuncted with C, the problem is then {C,O}. This leads to
a partial MaxSAT problem, which tries to find an assignment of variables to
satisfy all the hard clauses in C and the maximum number of soft clauses in O.
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3.3 A Pedagogical Example

Consider a simple scheduling problem to describe how the MaxSAT formulation
works. Assume a set of real-time tasks Γ = {τ1, τ2, τ3}. Their ready times, execu-
tion times, and deadlines are respectively defined as τ1 = (0, 2, 3), τ2 = (0, 1, 1),
τ3 = (1, 1, 2). Suppose that τ1 has two fragments,

〈
f1
1 , f1

2

〉
, and τ2 and τ3 each

have one, denoted by f2
1 and f3

1 . The execution time of each fragment is 1. The
four critical time points of each fragment are summarized in Table 2.

Table 2. Critical time points of each fragment in three tasks

Task Fragment EST LST ECT LCT

τ1 f1
1 0 1 1 2

f1
2 1 2 2 3

τ2 f2
1 0 0 1 1

τ3 f3
1 1 1 2 2

(C1) sa1
1,0

∧ sa1
2,1

∧ sa2
1,0

∧ sa3
1,1

∧
(C2) pr1,11,2

∧
(C3) pr1,21,1 ∨ pr2,11,1

∧ pr1,31,1 ∨ pr3,11,1

∧ pr1,32,1 ∨ pr3,11,2

∧
(C4)
∧
(C5) ¬eb12,3 ∨ eb11,2
∧
(C6) ¬sa1

1,1 ∨ sa1
1,0

∧ ¬sa1
1,2 ∨ sa1

1,1

∧ ¬sa1
2,2 ∨ sa1

2,1

∧ ¬sa1
2,3 ∨ sa1

2,2

∧ ¬sa2
1,1 ∨ sa2

1,0

∧ ¬sa3
1,2 ∨ sa3

1,1

∧
(C7) ¬eb11,0 ∨ eb11,1
∧ ¬eb11,1 ∨ eb11,2
∧ ¬eb12,1 ∨ eb12,2
∧ ¬eb12,2 ∨ eb12,3
∧ ¬eb21,0 ∨ eb21,1
∧ ¬eb31,1 ∨ eb31,2
∧
(C8) ¬sa1

1,0 ∨ ¬eb11,0
∧ ¬sa1

1,1 ∨ ¬eb11,1
∧ ¬sa1

1,2 ∨ ¬eb11,2
∧ ¬sa1

2,1 ∨ ¬eb12,1
∧ ¬sa1

2,2 ∨ ¬eb12,2
∧ ¬sa1

2,3 ∨ ¬eb12,3
∧ ¬sa2

1,0 ∨ ¬eb21,0
∧ ¬sa2

1,1 ∨ ¬eb21,1
∧ ¬sa3

1,1 ∨ ¬eb31,1
∧ ¬sa3

1,2 ∨ ¬eb31,2
∧
(C9) ¬sa1

1,0 ∨ ¬pr1,11,2 ∨ sa1
2,1

∧ ¬sa1
1,1 ∨ ¬pr1,11,2 ∨ sa1

2,2

∧ ¬sa1
1,0 ∨ ¬pr1,21,1 ∨ sa2

1,1

∧ ¬sa1
1,1 ∨ ¬pr1,21,1 ∨ sa2

1,1

∧ ¬sa1
1,2 ∨ ¬pr1,21,1 ∨ sa2

1,1

∧ ¬sa1
1,0 ∨ ¬pr1,31,1 ∨ sa3

1,1

∧ ¬sa1
1,1 ∨ ¬pr1,31,1 ∨ sa3

1,2

∧ ¬sa1
1,2 ∨ ¬pr1,31,1 ∨ sa3

1,2

∧ ¬sa1
2,1 ∨ ¬pr1,32,1 ∨ sa3

1,2

∧ ¬sa1
2,2 ∨ ¬pr1,32,1 ∨ sa3

1,2

∧ ¬sa1
2,3 ∨ ¬pr1,32,1 ∨ sa3

1,2

∧ ¬sa2
1,0 ∨ ¬pr2,11,1 ∨ sa1

1,1

∧ ¬sa2
1,1 ∨ ¬pr2,11,1 ∨ sa1

1,2

∧ ¬sa3
1,1 ∨ ¬pr3,11,1 ∨ sa1

1,2

∧ ¬sa3
1,2 ∨ ¬pr3,11,1 ∨ sa1

1,2

∧ ¬sa3
1,1 ∨ ¬pr3,11,2 ∨ sa1

2,2

∧ ¬sa3
1,2 ∨ ¬pr3,11,2 ∨ sa1

2,3

∧
(O) eb12,3
∧ eb21,1
∧ eb31,2

Fig. 1. MaxSAT formulation for exemplified problem

The MaxSAT formulation applied to the scheduling problem is shown in
Fig. 1. Constraint (C1) states that each fragment starts at or after its EST. If
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we consider τ1 that consists of two fragments, f1
1 and f1

2 , then sa1
1,0 and sa1

2,1

should both be assigned as true, indicating that f1
1 starts at or after time 0

and f1
2 starts at or after time 1. Constraints (C2) and (C3) work together to

specify the execution sequences of the fragments. (C2) forces all the fragments
in a single task to be executed sequentially, and (C3) guarantees no overlap of
the execution times of any two fragments in different tasks. In the three tasks,
only τ1 has more than one fragment, and hence constraint (C2) only applies to
τ1, ensuring that f1

1 precedes f1
2 . Constraint (C3) applies to pairs of fragments

fk
i and f l

j (k �= l) that satisfy EST k
i < LCT l

j and EST l
j < LCT k

i . If both
conditions are met, then fk

i and f l
j may simultaneously occupy the processor,

thus we need to decide in what order to execute them. Constraint (C3) solves this
ordering dilemma, which states that either one can precede the other. Consider
f1
1 and f2

1 . As seen in Table 2, EST 1
1 < LCT 2

1 and EST 2
1 < LCT 1

1 . Hence we
must explicitly specify that f1

1 precedes f2
1 or f2

1 precedes f1
1 ; otherwise, the

execution time of these two fragments may overlap. Note that constraint (C3)
does not apply to all the fragment pairs. Take f2

1 and f3
1 as an example. It is

clear that EST 2
1 < LCT 3

1 , and EST 3
1 = LCT 2

1 . This means that f3
1 always starts

no earlier than f2
1 . Therefore, no clauses need to be asserted. Constraint (C4)

applies to a situation where tasks have dependency relations.
Now consider τ1, which consists of two fragments f1

1 and f1
2 . If f1

2 ends by
the deadline of τ1, then naturally f1

1 should end by its LST . This is guaranteed
by (C5). Constraints (C6)–(C9) are a collection of coherence conditions [12] on
the introduced variables for all the fragments of all the tasks. Finally, constraint
(O) gives the problem’s objective, i.e., completing the last fragment of each task
by its deadline.

All of these constraints are conjuncted with ∧ to form a partial MaxSAT
problem in CNF, where clauses (C1)–(C9) are declared hard and those in (O)
are soft. Then the CNF formula is input to a MaxSAT solver. The solver’s
output includes the maximum number of satisfied soft clauses as well as the
corresponding assignment of all the boolean variables from which the optimal
scheduling table can be obtained.

4 SMT Formulation and Variants

To evaluate the performance of our MaxSAT formulation, we compared it with
the previous SMT formulation [9,10] and summarize it in Fig. 2. The logical
implication operator is indicated as ⇒. Implication A ⇒ B is equivalent to
¬A ∨ B.

The constraints in (C1)–(C5) are explained as follows. Constraint (C1)
ensures that each task starts at or after its ready time. Constraint (C2) guaran-
tees that the series of fragments in a task are executed sequentially. Constraint
(C3) guarantees no overlap of the execution times of any two fragments. Con-
straint (C4) states that if τl relies on the computed results of τk, then τl must
start after τk has been completed. Finally, constraint (C5) defines the firm-
deadline model, i.e., each task must be completed by its deadline. All the con-
straints need to be satisfied by the SMT solver. Clearly, in the case of a system
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Fig. 2. Previously proposed SMT formulation [9,10]

overload, since not all the tasks can be completed by their deadlines, not all the
constraints in (C5) can be satisfied when |Γ ′| = |Γ |. In previous work [9,10],
the SMT formulation was solved iteratively to find optimal |Γ ′| for the schedul-
ing problem, where |Γ ′| was determined through a binary search for satisfaction
between [0, |Γ |]. Optimal |Γ ′| satisfies both the following conditions:

(1) The SMT solver returns a non-empty model with |Γ ′|.
(2) The SMT solver returns an empty model with |Γ ′| + 1.

To avoid repeatedly calling the SMT solver, we update the encoding [9,10]
by claiming that completing a task before its deadline is a soft constraint. That
is, we make Γ ′ = Γ in Fig. 2 and declare the constraints in (C5) to be soft. In
this way, the solver can satisfy as many constraints as possible, given that all
the constraints in (C1)–(C4) are met. The optimization problem can be tackled
by a high-performance theorem prover named Z3. In Z3, the soft constraints are
specifically claimed by the following prefix expression:

∀τl ∈ Γ, (assert−soft (≤ (+ sql cql) dl)) ,

where sql is the start time of f l
ql

, cql is the execution time of f l
ql

, and dl is the
deadline of f l

ql
. Thus, the multiple calls of the SMT solver are eliminated. A

tutorial for Z3 optimization is available [28].
Furthermore, redundant constraints exist in (C3) of the SMT formulation

(Fig. 2). For example, consider a problem with Γ = {τ1, τ2}, where τ1 = (0, 1, 2)
and τ2 = (2, 1, 4). According to (C3), the following constraint is asserted:(
s11 ≥ s21 + 1

) ∨ (
s21 ≥ s11 + 1

)
, expressing that f1

1 starts after f2
1 or f2

1 starts
after f1

1 . However, note that f1
1 never starts after f2

1 since τ1’s deadline is no
later than the ready time of τ2. Therefore, the constraints asserted in (C3) are
redundant. In addition, if the dependency relations of the two tasks are speci-
fied, (C3) should never be imposed on them. Considering such redundancy, we
modified the assertion in (C3) by adding more conditions:

(C3*) ∀τk, τl ∈ Γ ′, k �= l, ∀fk
i ∈ τk,

∀f l
j ∈ τl, τk /≺τl, τl /≺τk,

(
ski ≥ slj + clj

) ∨ (
slj ≥ ski + cki

)
.

EST k
i < LCT l

j , EST l
j < LCT k

i

In summary, in the updated SMT formulation, we added more conditions
to the constraints in (C3) and declared the constraints in (C5) to be soft.
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Other encodings were kept the same as those described in Fig. 2. By applying
more refined constraints and eliminating multiple calls to the solver, SMT-based
scheduling can achieve higher efficiency than the previous one. The updated SMT
and MaxSAT formulations will be investigated in the experiments described in
the next section.

5 Experiments

This section compares the performances of the proposed MaxSAT and the
updated SMT formulation [9,10]. The main metrics used for evaluation are the
scheduling time spent generating optimal scheduling tables.

We follow a previous method of creating scheduling problems [10] and sum-
marizes it as follows. We created tasks based on uniform distribution with arriv-
ing rate λ, which represents the number of tasks that arrive per 100 time units.
Clearly, a larger λ indicates that more tasks are arriving in the system during a
specific period of time, thus causing more serious overload. In our experiments,
λ is assigned 1, 5, 10, 15, and 20 to represent various degrees of system over-
load. For each λ, a set of scheduling problems is generated, where #tasks ranges
from 50 to 500. For each task τl, execution time cl ranges from 1 to 13, and
the number of fragments in τl, denoted by nfl, ranges from 1 to 3. The value of
deadline dl is calculated by formula dl = rl + sfl ∗ cl, where sfi is a slack factor
that reflects the deadline’s tightness. We assume that for each task τl, sfl ranges
from 1 to 4. For each fixed λ and #tasks, 100 problem instances are generated.
For convenience, the parameter settings are listed in Table 3.

Table 3. Parameter settings in experiments

Parameter Description Value settings

λ Arriving rate {1, 5, 10, 15, 20}
#tasks Number of tasks in an instance [50, 500]

cl Execution time of τl [1, 13]

nfl Number of fragments in τl [1, 3]

sfl Slack factor of τl [1, 4]

dl Deadline of τl dl = rl + sfl ∗ cl

In the following, we conducted tests on a 3.4-GHz Intel E3-1230 processor
with 8-GB RAM and experimentally evaluated the performance of the SMT
and MaxSAT-based scheduling methods. The selected solver for MaxSAT was
QMaxSAT [19], which is a satisfiability-based solver that uses the CNF encodings
of cardinality constraints. By contrast, the solver for SMT was Z3 [13], which is
a high-performance theorem prover chosen by a previous work [10].

To reveal the degree of overload with various λ, we examined the percent-
age of tasks that were successfully executed by their deadlines under optimal
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scheduling. The statistics are shown in Table 4. As λ rises, more tasks arrive in
the system per 100 time units, and thus the degree of overload becomes more
severe. When λ = 1, the percentage of successfully completed tasks reaches
99.96%. In comparison, when λ = 20, the percentage decreases to 66.46%, sug-
gesting that the overloaded situation becomes so serious that only 66.46% tasks
were completed by their deadlines.

Table 4. Percentage of completed tasks under optimal scheduling

λ 1 5 10 15 20

Percentage (%) 99.96 95.88 87.52 76.66 66.46

Next we investigated the performances of the SMT and MaxSAT-based meth-
ods with various λ. Figure 3 depicts the average computation times for generating
optimum scheduling by these two methods. For each instance and solver, we set
a time limit of 300 s. Each data point is the average computation time of the
solved problem instances. A number with an arrow in the figures denotes the
percentage of instances that were successfully solved within the time limit by
the corresponding solver, and it is omitted if the solver managed to solve all 100
instances. When the percentage of the solved instances drops to zero, the cor-
responding curve is omitted because the average computation time has become
unpredictable. Clearly, as seen from Fig. 3, with the increase of λ, both SMT
and MaxSAT consumed longer time to solve the scheduling problems to opti-
mality. For each λ, the MaxSAT-based method significantly outperformed SMT
in terms of both execution time and percentage of successfully solved instances.
When λ = 1 (Fig. 3(a)), the MaxSAT-based method is around five times more
efficient than SMT, and when λ = 5 (Fig. 3(b)), the superiority of MaxSAT
becomes even more remarkable since it requires merely one tenth of the time
taken by SMT. MaxSAT’s advantage continues to expand when λ gets larger.
For example, when λ = 10 and #tasks = 400, MaxSAT completed all the
instances within an average of 0.2 s, but there is one instance that SMT failed
to solve within the time limit and the rest were completed within around six
seconds. As λ and #tasks increase, the percentage of instances that were suc-
cessfully solved by SMT continued to decrease. Figures 3(d) and (e) represent
such significantly fluctuating declines. In particular, when λ = 15, as #tasks
rose from 50 to 500, the percentage of successfully solved instances by SMT fell
from 97% to 63%, and the average solving time increased from 2 to 120 seconds.
When λ = 20 and #tasks reached 400, none of the 100 instances were solved
by SMT. In contrast, the MaxSAT-based method always solved every instance
within the time limit with just moderate average computation time increases.

All our results point to the fact that MaxSAT is a better solution for schedul-
ing tasks in overloaded real-time systems than the SMT formulation.
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Fig. 3. Average computation times with varied λ

6 Conclusion

This paper presented a novel optimal scheduling approach in overloaded real-
time systems that is based on a compact MaxSAT formulation of scheduling
problems. In the MaxSAT formulation, scheduling features are encoded as a set
of hard clauses, and the scheduling objective is encoded as a set of soft clauses. In
this way, the optimal scheduling problem turns to a partial MaxSAT problem,
which can be readily solved by an off-the-shelf MaxSAT solver. To evaluate
MaxSAT formulation’s performance, we performed an extensive experimental
evaluation and compared the MaxSAT-based method with the best known SMT
formulation for the scheduling problem. Our experimental results concluded that,
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no matter how the degree of overload and the number of tasks varied, MaxSAT
always significantly outperformed SMT in all cases.

References

1. Abeni, L., Buttazzo, G., Superiore, S., Anna, S.: Integrating multimedia applica-
tions in hard real-time systems. In: IEEE Real-time Systems Symposium (1998)

2. Aguero, C.E., et al.: Inside the virtual robotics challenge: simulating real-time
robotic disaster response. IEEE Trans. Autom. Sci. Eng. 12(2), 494–506 (2015)

3. Gorbenko, A., Popov, V.: Task-resource scheduling problem. Int. J. Autom. Com-
put. 9(4), 429–441 (2012)

4. Baptiste, P.: An O (n4) algorithm for preemptive scheduling of a single machine
to minimize the number of late jobs. Oper. Res. Lett. 24(4), 175–180 (1999)

5. Baruah, S., Haritsa, J.: Scheduling for overload in real-time systems. IEEE Trans.
Comput. 46(9), 1034–1039 (1997)

6. Baulier, G.D., et al.: Real-time event processing system for telecommunications
and other applications (2002)

7. Cheng, Z., Zhang, H., Tan, Y., Lim, A.O.: DPSC: a novel scheduling strategy for
overloaded real-time systems. In: IEEE International Conference on Computational
Science and Engineering, pp. 1017–1023 (2014)

8. Cheng, Z., Zhang, H., Tan, Y., Lim, A.O.: Greedy scheduling with feedback con-
trol for overloaded real-time systems. In: IFIP/IEEE International Symposium on
Integrated Network Management, pp. 934–937 (2015)

9. Cheng, Z., Zhang, H., Tan, Y., Lim, Y.: Scheduling overload for real-time systems
using SMT solver. In: IEEE/ACIS International Conference on Software Engineer-
ing, Artificial Intelligence, Networking and Parallel/distributed Computing, pp.
189–194 (2016)

10. Cheng, Z., Zhang, H.: SMT-based scheduling for overloaded real-time systems.
IEICE Trans. Inf. Syst. E100–D(5), 1055–1066 (2017)

11. Cheng, Z., Zhang, H., Tan, Y., Lim, Y.: SMT-based scheduling for multiproces-
sor real-time systems. In: IEEE/ACIS International Conference on Computer and
Information Science, pp. 1–7 (2016)

12. Crawford, J.M., Baker, A.B.: Experimental results on the application of satisfia-
bility algorithms to scheduling problems. In: Twelfth AAAI National Conference
on Artificial Intelligence, pp. 1092–1097 (1994)

13. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

14. Er, S.B., Smith, R.E.: Method and apparatus for monitoring and displaying lead
impedance in real-time for an implantable medical device (1999)

15. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discret.
Math. 5(1), 287–326 (1979)

16. Haritsa, J., Carey, M., Livny, M.: On being optimistic about real-time constraints.
In: ACM Principles of Database Systems Symposium, pp. 331–343. ACM (1990)

17. Khalilzad, N.M., Nolte, T., Behnam, M.: Towards adaptive hierarchical scheduling
of overloaded real-time systems. In: IEEE International Symposium on Industrial
Embedded Systems, pp. 39–42 (2011)

https://doi.org/10.1007/978-3-540-78800-3_24


Maximum Satisfiability Formulation for Optimal Scheduling 631

18. Koshimura, M., Nabeshima, H., Fujita, H., Hasegawa, R.: Solving open job-shop
scheduling problems by SAT encoding. IEICE Trans. Inf. Syst. E93–D(8), 2316–
2318 (2010)

19. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial Max-
SAT solver. J. Satisf. Boolean Model. Comput. 8, 95–100 (2012)

20. Kuchcinski, K.: Constraints-driven scheduling and resource assignment. ACM
Trans. Des. Autom. Electron. Syst. 8(3), 355–383 (2003)

21. Kumar, P., Chokshi, D.B., Thiele, L.: A satisfiability approach to speed assignment
for distributed real-time systems. In: Design, Automation and Test in Europe Con-
ference and Exhibition, pp. 749–754 (2013)

22. Lawler, E.L.: A dynamic programming algorithm for preemptive scheduling of a
single machine to minimize the number of late jobs. Ann. Oper. Res. 26(1), 125–133
(1990)

23. Leung, J.Y.T.: Online scheduling. In: Handbook of Scheduling, pp. 328–371. Chap-
man and Hall/CRC (2004)

24. Liu, W., Gu, Z., Xu, J., Wu, X., Ye, Y.: Satisfiability modulo graph theory for task
mapping and scheduling on multiprocessor systems. IEEE Trans. Parallel Distrib.
Syst. 22(8), 1382–1389 (2011)

25. Malik, A., Walker, C., O’Sullivan, M., Sinnen, O.: Satisfiability modulo theory
(SMT) formulation for optimal scheduling of task graphs with communication
delay. Comput. Oper. Res. 89, 113–126 (2018)

26. Marchand, M., Chetto, M.: Dynamic scheduling of periodic skippable tasks in an
overloaded real-time system. In: IEEE/ACS International Conference on Computer
Systems and Applications, pp. 456–464. IEEE (2008)

27. Metzner, A., Herde, C.: RTSAT- an optimal and efficient approach to the task
allocation problem in distributed architectures. In: IEEE International Real-Time
Systems Symposium, pp. 147–158 (2006)

28. Microsoft, R.: Z3-optimization (2018). https://www.rise4fun.com/Z3/tutorial/
optimization

29. Moore, J.M.: An n job, one machine sequencing algorithm for minimizing the
number of late jobs. Manag. Sci. 15(1), 102–109 (1968)

30. Tres, C., Becker, L.B., Nett, E.: Real-time tasks scheduling with value control
to predict timing faults during overload. In: IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing, pp. 354–358
(2007)

31. Vakhania, N.: Scheduling jobs with release times preemptively on a single machine
to minimize the number of late jobs. Oper. Res. Lett. 37(6), 405–410 (2009)

32. Venugopalan, S., Sinnen, O.: ILP formulations for optimal task scheduling with
communication delays on parallel systems. IEEE Trans. Parallel Distrib. Syst.
26(1), 142–151 (2014)

33. Xenos, D.P., Cicciotti, M., Kopanos, G.M., Bouaswaig, A.E.F., Kahrs, O.,
Martinez-Botas, R., Thornhill, N.F.: Optimization of a network of compressors
in parallel: real time optimization (RTO) of compressors in chemical plants - an
industrial case study. Appl. Energy 144(5), 51–63 (2015)

https://www.rise4fun.com/Z3/tutorial/optimization
https://www.rise4fun.com/Z3/tutorial/optimization


A Cognitive Model of Human Bias
in Matching

Rakefet Ackerman1, Avigdor Gal1, Tomer Sagi2, and Roee Shraga1(B)

1 Technion – Israel Institute of Technology, Haifa, Israel
ackerman@ie.technion.ac.il, avigal@technion.ac.il,

shraga89@campus.technion.ac.il
2 University of Haifa, Haifa, Israel

tsagi@is.haifa.ac.il

Abstract. The schema matching problem is at the basis of integrat-
ing structured and semi-structured data. Being investigated in the fields
of databases, AI, semantic Web and data mining for many years, the
core challenge still remains the ability to create quality matchers, auto-
matic tools for identifying correspondences among data concepts (e.g.,
database attributes). In this work, we investigate human matchers behav-
ior using a new concept termed match consistency and introduce a novel
use of cognitive models to explain human matcher performance. Using
empirical evidence, we further show that human matching suffers from
predictable biases when matching schemata, which prevent them from
providing consistent matching.

Keywords: Schema matching · Data integration · Human-in-the-loop

1 Introduction

Schema matching is at the basis of integrating structured and semi-structured
data. The schema matching task revolves around providing correspondences
between concepts describing the meaning of data in various heterogeneous, dis-
tributed data sources, such as SQL and XML schemata, entity-relationship dia-
grams, ontology descriptions, interface definitions, and forms format [28].

Schema matching research originated in the database community [28] and
has been a focus for other disciplines as well, from artificial intelligence [10,20],
to semantic web [17] to data mining [18]. Schema matching research has been
going on for more than 30 years now, focusing on designing high quality match-
ers, automatic tools for identifying correspondences among database attributes.
Initial heuristic attempts (e.g., COMA [11]) were followed by theoretical ground-
ing (e.g., see [5,16]).

Recently, the information explosion (a.k.a Big Data) has provided many novel
sources for data and with them the need for efficient and effective integration.
Crowd-sourcing has allowed pay-as-you-go frameworks for data integration (e.g.,
[21,35]), to make flexible use of human input in the matching process.
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A basic tenet of the matching process, present from its inception, is that an
algorithmic matcher provides a set of definite (true or false) correspondences to
be then validated by a human expert. Human validation of algorithmic results
assumes the superiority of human matchers over algorithms, which may be näıve,
partially because different human matchers may have different opinions and
may differ in the way they match schemata [31]. The emergence of crowd-based
solutions has not changed this assumption, but merely extended the validation
phase to include additional individuals.

A popular contemporary trend involves developing human-level AI. We
believe it is equally important to understand human’s strengths and predictable
biases when determining the appropriate sharing of responsibility with the
machine. Hence, in this work we focus on analyzing human’s performance in
matching. The central new concept in this work is match consistency, which we
use, aided by cognitive principles, to show that human behavior in matching vary
along consistency dimensions, namely temporal, consensuality, and control (as
defined in this work). Given a set of human matchers, we assess their abilities,
much like traditional models do for algorithms. Additionally, however, human
matchers have biases that we can detected and accounted for when making use
of human matching.

We present theoretical analyses, using cognitive models, of human matchers
strengths and biases (Sect. 3) as well as empirical results on match consistency
(Sect. 4) to support our framework. Additionally, Sect. 2 presents background on
matching and metacognition. We review of related work in Sect. 5 and conclude
in Sect. 6.

2 Background

We next present a formal matching model (Sect. 2.1) and models for human
involvement in matching (Sect. 2.2).

2.1 Schema Matching Model

Let S, S′ be two schemata with attributes {a1, a2, . . . , an} and {b1, b2, . . . , bm},
respectively. A matching process matches S and S′ by aligning their attributes
using matchers that utilize matching cues such as attribute names, instance data,
and schema structure (see surveys e.g., [6] and books e.g., [16]). A matcher’s
output is conceptualized as a similarity matrix M(S, S′) (M for short), having
entry mi,j (typically a real number in [0, 1]) represent a degree of similarity
between ai ∈ S and bj ∈ S′. A match, denoted σ, between S and S′ is a subset
of M ’s entries.

Matching is a stepped process of applying algorithms, rules, and con-
straints. Matchers can be separated into first-line matchers – 1LMs, which are
applied directly to the problem, returning a similarity matrix, and second-line
matchers – 2LMs, which are applied to the outcome of matchers, receiving sim-
ilarity matrices and returning a similarity matrix.
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Table 1. A similarity matrix example

S1 1 2 3 4
S2

1 0.84 0.32 0.32 0.30
2 0.29 1.00 0.33 0.30
3 0.34 0.33 0.35 0.64

Example 1 (Matchers). To illustrate the variety of available matchers, consider
three 1LMs. Term [16] compares attribute names to identify syntactically sim-
ilar attributes (e.g., using edit distance and soundex). WordNet uses abbrevia-
tion expansion and tokenization methods to generate a set of related words for
matching attribute names. Token Path [27] integrates node-wise similarity with
structural information by comparing the syntactic similarity of full paths from
root to a node.

Example 2 (Similarity Matrices). Table 1 provides an example of an outcome
of a matching process between fragments of two reservation systems’ schemata,
one (S1) with four attributes and the other (S2) with three attributes, con-
ceptualized in a similarity matrix. S1 consists a CardNum attribute with long
data-type and a city attribute, which contains some example instances (city
names). Attributes may be independent of other attributes or composable, cre-
ating compound attributes. E.g., ArrivalDay and CheckInTime attributes can be
composed to a compound arrival day/time attribute. S2 has clientNum, city, and
checkInDay attributes.

2.2 Human Involvement in Matching Models

Human schema matching is a complex decision making process, which involves a
series of interrelated tasks. Each attribute in one schema is examined to decide
whether and which attributes from the other schema correspond. Humans either
validate an algorithmic result or locate a candidate attribute unassisted. Human
matchers may choose to rely upon superficial information such as string simi-
larity of attribute names (e.g., qty is similar to quantity) or explore additional
information such as data-types, instances, and position within the schema hier-
archy. The decision whether to explore additional information relies upon self-
monitoring of confidence.

Most of the works in schema matching over the years assume that an algo-
rithmic matching system provides a set of definite (true or false) correspondences
to be then validated by a human expert who can provide the ultimate match-
ing. Human validation is typically prohibitively large. High matching costs and
limited expert availability spawned research into crowd sourcing usage by break-
ing the matching task into small-sized tasks, suitable for unskilled workers with
minimal compensation (pay-as-you-go approach) [23]. McCann et al. proposed
methods to validate algorithmic matchers, ranging from direct match validation
(e.g., does ccost match pcost?) to constraint validation (e.g., does bDate < 2007
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always hold?) [26]. Zhang et al. provided tools for validation task selection [35],
Bozovic and Vassalos used feedback to tune matcher weights [8], and Hung et al.
suggested methods to select conflicting matches in a network of schemata [22].
Sagi and Gal proposed the Expert Sourcing model [29], which we follow in this
work, in which knowledgeable humans examine substantial parts of the matching
task or the entire task (e.g., for small-medium scaled schemata).

3 Match Consistency

Historically, humans (relative) strong matching abilities put them as final deci-
sion makers, disregarding biases that affect their ability to provide accurate
matches. To capture the impact of human biases on matching, we present a for-
mal notion of a consistent matcher, and use cognitive models to explore human
matcher variability.

3.1 Consistent Match Definition

Matchers are typically measured using a global matching evaluation measure,
e.g., precision and recall. Such a measure evaluates the similarity matrix a
matcher generated against some reference matrix. Given a similarity matrix M
of n × m entries and an evaluation measure E, we define matcher consistency
with respect to a consistency dimension D = {d1, d2, . . . , dk} using a dimension
function FD : {mi,j | mi,j ∈ M} −→ D that maps each entry in M into a
value in D. In Sect. 3.3 we present a classification of dimensions and give four
examples.

Given a similarity matrix M of n × m entries, a dimension D =
{d1, d2, . . . , dk} induces a partition M1,M2, . . . ,Mk over M such that Ml =
{mi,j ∈ M | FD(mi,j) = dl}. We apply the evaluation measure E over each par-
tition E(M1), E(M2), . . . , E(Mk) and define match consistency using coefficient
of variation as follows:

Definition 1 (Match Consistency). Let M be an n×m similarity matrix and
D = {d1, . . . , dk} a consistency dimension. Let E ∈ [0, 1] be a random variable,
with an expected value of μ(E) and a standard deviation of sd(E), representing
an evaluation of partitions M1, . . . ,Mk over M . MC is a match consistency
measure of M wrt D, computed as follows:

MC(M,D,E) = 1 − sd(E)
μ(E)

(1)

A higher MC value should correlate with increasingly consistent match per-
formance across the partitions induced by D. Coefficient of variation, which was
chosen as a best practice measure of data consistency (see [33]), achieves this cor-
relation through its standard deviation component. A higher standard deviation
increases the coefficient of variation and reduces the value of MC. This is in line
with our understanding of consistency, where a lower standard deviation means
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a more consistent match. The second parameter is the average performance of
the different partitions. Here, we take into account not only consistency but also
our desire to achieve a good match, which entails an overall high evaluation
measure.

3.2 Self Monitoring of Performance

Cognitive psychology has been examining factors impacting humans when per-
forming knowledge intensive tasks [4]. The metacognitive approach, traditionally
applied for learning and answering knowledge questions [7], highlights the role
of subjective confidence in regulating efforts while performing challenging tasks.

Metacognition research was recently applied to reasoning and decision mak-
ing tasks [2]. It suggests that online monitoring of subjective confidence regulates
the cognitive effort invested in each task (e.g., identifying a correspondence). The
Discrepancy Reduction Theoretical Framework (DRTF) explains learning effort
investment by suggesting that people set a target knowledge level as a stopping
criterion. They continue to invest time and effort, while subjectively monitoring
their confidence level, until meeting the stopping criterion [7].

Metacognitive models use three basic components of effort regulation mea-
sures, which we use for the matching task:

(1) Subjective confidence: Human matchers report matching confidence as
their performance monitoring.

(2) Invested time: Elapsed time from selection of a term to the final match-
ing decision is used as an objective measure that presumably reflects the
metacognitive control decision to either continue or terminate a task, based
on the ongoing monitoring of the chance of success.

(3) Objective performance evaluation: We use the well accepted precision
and recall to evaluate performance.

Fig. 1. Correctness by confidence, partitioned into buckets of 0.1
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By way of motivation, we provide an illustration (Fig. 1) of the relationship
between human confidence in matching and correctness (in terms of precision)
based on our experiments (see Sect. 4). It is clear that human subjective confi-
dence cannot serve as a good predictor to matching correctness. In this work we
show how human biases affect confidence levels via consistency dimensions.

3.3 Consistency Dimensions

Consistency dimensions can be classified as continuous or discrete and may be
performed using individual or collective matchers, as illustrated in Fig. 2. We
introduce four consistency dimensions, namely (local and global) temporal, con-
sensuality, and control, as examples to the full set of dimension possibilities.

Continuous

Discrete

CollectiveIndividual
Temporal
(Global)

Temporal
(Local)

Control Consensuality

Fig. 2. Consistency dimensions

Fig. 3. DCM with hypothetical confidence ratings for four items and a self-imposed
time limit (adapted from [1]).

(Local and Global) Temporal Dimension: This dimension is continuous
(can be discretized into buckets to fit Definition 1) with both individual and
collective variations.

The motivation to analyze the temporal dimension for human biases is
rooted in the Diminishing Criterion Model (DCM) [1], a DRTF-based model
(see Sect. 3.2) that models a common bias in human confidence judgment. DCM
stipulates that the stopping criterion of a DRTF model is relaxed over time.
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Thus, a human matcher is more willing to accept a low confidence level after
investing some time and effort on finding a correspondence.

Figure 3 illustrates hypothetical confidence ratings while performing a schema
matching task. Each dot in the figure represents a possible solution to a matching
decision (e.g., attributes ai and bj correspond), and its associated confidence,
which changes over time. The search for a solution starts at time t = 0 and
the first dot for each of the four examples represents the first solution a human
matcher reaches.

As time passes, human matchers continuously evaluate their confidence. In
case A, the matcher has a sufficiently high confidence after a short investigation,
thus decides to accept it right away. In case B, a candidate correspondence is
found quickly but fails to meet the sufficient confidence level. As time passes,
together with more comprehensive examination, the confidence level (for the
same or a different solution) becomes satisfactory (although the confidence value
itself does not change much) and thus it is accepted. In Case C, no immediate
candidate stands out, and even when found, its confidence is too low to pass
the confidence threshold. Therefore, a slow exploration is performed until the
confidence level is sufficiently high. In Case D, an unsatisfactory correspondence
is found after a long search process, which fails to meet the stopping criterion
before the individual deadline passes. Thus, the human matcher decides to reject
the correspondence. When fitting a model based on the temporal dimension
we can address human matchers individually, fitting a model for each human
matcher separately (Local temporal), or collectively by fitting a general DCM
model based on a group of human matchers (Global temporal).

Consensuality Dimension: This dimension models agreement among match-
ers. Metacognitive studies suggest that the frequency in which a particular
answer is given by a group of people predicts confidence strongly [24].

The consensuality principal serves as a strong motivation to use crowd sourc-
ing for matching, and was indeed proposed, e.g., [35]. Although consensuality
does not ensure accuracy [25], in this study we examine whether the number of
people who chose a particular match can be used as a predictor of its chance
to be correct. This can also support using majority voting based solutions as
indication of correctness [3].

Consensuality requires multiple opinions to measure matchers agreement and
a repetition of choices. We therefore classify this dimension as collective and
discrete.

Control Dimension: Control analyzes the consistency of human matchers
when assisted by a result of an algorithmic solution. This dimension is discrete
(binary, in fact). In this work we consider control as an individual dimension,
although it can be easily extended, using a general model for assisted/non-
assisted matchers, to be collective.

Metacognitive control decisions are the regulatory decisions people take,
given a self-assessment of their chance for success [7]. In the context of this
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study, the use of algorithmic output for helping the matcher in her task is taken
as a control decision.

Variability in this dimension may be attributed to the predicted tendency of
humans who do not use system suggestions to be more engaged in the task and
recruit more mental effort than those who use suggestions as a way to ease their
cognitive load (see [32]). Shraga et al. showed that human matchers who rely on
algorithmic support are likely to follow the algorithm suggested [31].

4 Empirical Evaluation

The experiments analyze match consistency along consistency dimensions.
Results indicate variability along consistency dimensions with varying trends
of correctness.

4.1 Experiment Setup

Dataset and evaluation measures are presented next.

Human Matching Dataset: The dataset contains match results of 106 human
matchers, all Industrial Engineering undergraduates who studied logistics and
database management courses. Participants were briefed in schema matching
prior to the task. Four pilot participants completed the task prior to the study
to ensure its coherence and instruction legibility. Participants were trained on a
pair of small schemata (9–12 attributes) from the Thalia dataset1 prior to the
main task.

The main schema matching task was chosen from the Purchase Order
dataset [11]. The schemata used are medium size, with 142 and 46 attributes,
and with high information content (labels, data types, and instance examples).
Correspondences are of differing difficulty levels, with both easy matches and
complex relationships, which may yield low precision and recall, even when using
the strongest of matchers. Potentially, a maximum number of 6,532 correspon-
dences are possible per human matcher, by (impossibly) evaluating each and
every pair of attributes. In reality, each matcher chose to evaluate 51 correspon-
dences on average, creating a dataset of ∼5,600 human matcher’s correspon-
dences (1,229 distinct correspondences). A reference match for evaluation was
compiled by domain experts over the years in which this dataset has been used
for testing.

A side-by-side view of the two schemata and a dynamic match table were
provided. The system records the time it takes for a matcher to determine on a
correspondence. Match confidence was inserted by participants directly into the
match table as a value between 0 and 1, displayed as a percentage.

Participants were randomly assigned to one of four conditions, differing by
the algorithmic support provided. No suggestions (0), where participants per-
form the task with no algorithmic assistance; limited suggestions (1a), where
1 www.cise.ufl.edu/research/dbintegrate/thalia/howto.html.

www.cise.ufl.edu/research/dbintegrate/thalia/howto.html
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participants are allowed a limited (8 clicks) use of a lifesaver button. A counter of
the suggestions used vs. remaining is presented; unlimited suggestions (1b),
where participants are allowed an unlimited use of a lifesaver button; and val-
idate algorithmic result (2), where algorithmic suggestions are pre-entered,
letting participants validate, override, or complete them. The latter represents
the classic “humans as validators” approach. The algorithmic matcher we used
to create suggestions was Term (see Example 1) with typical performance (F1 ≈
0.5) for automatic schema matchers on difficult instances.

To analyze the control dimension, we further separated participants into
two groups. The first contains those participants who did not have suggestions
(condition 0) or did not use the suggestion (from conditions 1a and 1b). The
second contains those who actively requested suggestions from conditions 1a
and 1b, in addition to the participants from condition 2.

Duplicate ratings for the same correspondence were removed, taking the lat-
est. Out of the 106 participants, 6 were discarded due to technical faults, leaving
100 valid results. Elapsed time outliers (over 2 standard deviations from the
mean of each participant) were removed due to the sensitivity of our measures
to outliers, which may occur due to methodical pauses, unrelated to the matching
task.

We created a group of the top 10% performing human matchers, considered
as performance idealization of humans as validators, to show that even they
suffer from biases and therefore are non-distinguishable from others a-priori.

Evaluation Measures: Let Me be a reference matrix, such that mi,j = 1
whenever the correspondence (ai, bj) is part of the reference match and mi,j = 0
otherwise. The precision (P) and recall (R) evaluation measures are defined as
follows:

P (σ) =
| σ ∩ Me+ |

| σ | , R(σ) =
| σ ∩ Me+ |

| Me+ | (2)

where Me+ represent non-zero entries of Me and recalling that σ is a subset of
M ’s entries. The F1 measure, F (σ), is calculated as the harmonic mean of P (σ)
and R(σ).

Given a consistency dimension D = {d1, d2, . . . , dk}, precision and recall can
be defined similarly per value di, by replacing σ with σ ∩ Mi (see Sect. 3.1). To
compute match consistency we use Eq. 1 by estimating μ as the sampled average
and sd as the sampled standard deviation over the evaluation measure of choice
(e.g., precision).

To analyze human matcher confidence we use metacognitive measures of
calibration and resolution, based upon performance monitoring.

Calibration(σ) = σ − P (σ), Resolution(σ) = γ(σ,Me+) (3)
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Table 2. Resolution, (P)recision, (R)ecall, and (F)1 of matchers.

Matcher Resolution Sig. (p-value) P R F

Term 0.63 0.045 0.35 0.80 0.48

TokenPath 0.72 0.140 0.25 0.86 0.33

WordNet 0.94 0.035 0.31 0.87 0.44

Human matchers 0.16 (SD=0.46) 0.001 0.63 0.36 0.45

Top-10 human matchers 0.58 (SD=0.57) 0.104 0.91 0.60 0.71

where σ is a user average confidence and γ(·, ·) is GK-Gamma correlation [19].
Positive calibration is interpreted as overconfidence and negative calibration

as under-confidence. Resolution measures the extent to which confidence dis-
criminates between correct and incorrect correspondences. GK-Gamma ranges
in [−1, 1] where scores of 1 and −1 indicate perfect resolution and 0 indicates no
resolution. Negative resolution scores are interpreted as identifying good results
as bad and vice-versa.

4.2 Results

We present a confidence analysis and empirical evaluation along consistency
dimensions as evidence for human matching biases. Experiments show that
human matchers are, in general, overconfident with low ability to distinguish cor-
rect from incorrect correspondences. In terms of consistency, results demonstrate
significance variability along all dimensions with varying trends of correctness.

Confidence Analysis: We begin with a metacognitive evaluation, examining
calibration and resolution (Sect. 4.1) in a schema matching setting. Average cal-
ibration (over participants) for match decisions was .26. 45 participants had
over .3 calibration and 8 had negative calibration. Overall, the calibration levels
demonstrate a right skewed distribution, interpreted as overconfidence, which
was reported in the literature as a well-established human tendency [13].

Resolution results are given in Table 2. To compute matches, a 0.5 threshold
was applied over the results. Human matchers, as a group, have significant, but
low positive resolution (.16) with high variance. Only 25 (31%) had significant
resolution (.68 average resolution within the group). Of those, 23 had significant
positive resolution (average positive resolution was .79) and 2 had significant
negative resolution (average negative resolution was −.57).

Note that performing the same calculation with algorithmic matchers yields
much better resolution (see Table 2). Comparing human and algorithmic match-
ing, overall the former has better precision, while the latter has better recall.
However, even matching algorithms with comparatively fair F1 scores such as
TokenPath, demonstrate high resolution. This serves as empirical evidence that
the traditional view of “humans as validators”, may not be suitable for matching.
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(a) Temporal Dimension (b) Consensuality Dimension (c) Control Dimension

Fig. 4. Confidence (Blue) and correctness (Red) by dimension (Color figure online)

(Local and Global) Temporal Dimension: We validate that the DCM
(Sect. 3.3) reflects human matchers behavior by showing the predicted associ-
ation between elapsed time and reported confidence. We show evidence of tem-
poral bias and our ability to use elapsed time as a predictor of human matching
performance. Support for this model would manifest itself via negative correla-
tion between elapsed time and confidence per participant (local) and all partic-
ipants (global).

Experimental results support the DCM model both locally and globally.
A collective negative mean slope of −.23 suggests that on average, confidence
decreases with time, which supports global temporal dimension. Zooming in on
individual confidence reports, mean slope varied in [−.274,−.213] with 40% indi-
vidual matchers having significant (negative) correlations. A single-sample t-test
was used to reject the null hypothesis of the slopes being random-noise. Also, a
one-way ANOVA test was used to reject the null hypothesis of all participants
sharing the same confidence mean (F1,80 = 23.6, p-value < 10−5) emphasizing
the need for a local model. To support the DCM self-imposed time limit, we
followed [34] and found a significant curvilinear relation between time and con-
fidence, reflecting the combination of two stopping criteria, which are unique to
the DCM [1].

With correlated confidence and elapsed time, we now validate the use of
DCM in matching, by examining the accuracy of human matchers as predicted
by elapsed time. We tested the correlation between elapsed time and participant
chance of providing correct matches. We partitioned the elapsed time into buck-
ets, each of 5 s (0–5, 6–10, etc.) and examined an aggregative temporal behavior
of human matchers. With MC = 0.42, the temporal dimension exhibits high
variability among the dimension buckets. Correctness was computed as the pre-
cision within the bracket’s time frame (Sect. 4.1). Mean slope was found to be
−.54 (statistically significant with pval < 10−5). This serves as evidence that
time spent is predictive of matching (in)correctness.

Figure 4a compares correctness with confidence, by showing precision (red)
and mean of confidence across all human matchers (blue), partitioned according
to elapsed time. For each measure we also include a linear trend-line and error
bars for each time bucket. As discussed before, as time passes, less decisions
made by humans are correct and there is a decline in human confidence. We
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also note that confidence consistently receives higher values than correctness
proportion, which reflects the overall overconfidence, as reported above. The
difference between the two becomes more prominent as time elapses, which is a
classic finding in metacognitive literature, called hard-easy effect [9]. Note that
error bars show variance in the way confidence is determined.

Offline examination of the top 10 human matchers reveals a slight (statisti-
cally insignificant) improvement in consistency. Accuracy is not available in real-
life scenarios and therefore cannot be used to identify the best human matchers
a-priori.

Consensuality Dimension: Next, we validate that the agreement level among
matchers is correlated with self-reported confidence, and show evidence to its
impact on human matching performance (Sect. 3.3).

We partitioned the number of votes for correspondence into increasing agree-
ment levels (0–5, 6–10, etc.). For each level we computed the average confidence
of correspondences and proportion of correctly matched correspondences out
of all correspondences that were determined within the level. Figure 4b (simi-
larly to Fig. 4a) presents confidence (blue) and correctness (red), partitioned by
agreement level (number of votes). For each measure we also include a linear
trend-line and error bars.

Overconfidence is demonstrated in lower agreement levels, while for higher
levels the human matchers underestimate correctness. The error bars illustrate
a significant variance in lower agreement levels and becomes negligible at higher
levels, possibly as a result of correspondences that are easier to detect in levels
where consensus is higher.

We also tested the correlation between level of agreement among partic-
ipants and participant chance of providing correct matches. Although recent
studies suggest that consensuality does not ensure accuracy [25], mean slopes
for accuracy was found to be .13 (statistically significant with a p-value < 10−5),
showing that consensus among matchers is predictive of matching correctness.
Consistency was measured at MC = 0.36, which is indicative of high variabil-
ity. Here we see an improvement among the top 10 human matchers probably
because they agree more among themselves on correct matches (evaluated only
95 correspondences compared to 1,229 overall).

Control Dimension: Finally, we show the impact of availability of algorithmic
correspondences on human matching performance. To evaluate the performance
of human matchers we compare the self-reported confidence and objective per-
formance of participants by the control condition.

Figure 4c presents a comparison between participants who used (actively or
passively) suggestions (left side) and those who did not (right side). A statis-
tically significant (Pearson) correlation (p-value < 10−5) was found between a
binary variable indicating the use of a suggestion given a correspondence and a
binary variable indicating whether this correspondence is a part of the reference
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match. Clearly, the human matcher is overconfident, regardless of the algorith-
mic assistance. Yet, results show better performance of participants who did not
use the system’s suggestions versus those who did. This can be explained by
the fact that human matchers with machine support are more likely to behave
as suggested [31], because of shallower processing than without this opportu-
nity (see [32]). It is worth noting that with MC = 0.85, the control dimension
demonstrates a more consistent pattern than the other two dimensions. Offline
examination shows that the top 10 human matchers exhibit better consistency
but show larger difference in confidence levels. The matchers assisted among the
top 10 are much more confident (.81 compared to non assisted confidence of .69)
but also live up to the expectations, achieving high accuracy levels (.86).

5 Related Work

Section 2.2 outlined the main effort in human involvement in matching. We now
focus on demonstrating the contribution of this work on the background of state-
of-the-art.

Using humans to answer schema matching validation questions was first pro-
posed in [26]. This work was later extended [21,35] by using crowd sourcing to
reduce uncertainty. Sarasua et al. suggested mechanical turks to validate match-
ing by providing context information [30]. A recent work [35] also acknowledged
the fact that the crowd is not always correct, associating probabilities to answers
based on the question hardness (hard-easy effect as addressed in this paper) and
worker’s trustworthiness, which are estimated empirically, based on [15]. We take
the observation that humans are not perfect a step further, analyzing cognitive
biases that make human evaluation error prone.

Schema matching and ontology alignment [14] are closely related research
areas, both aiming at finding matches between concepts. The two vary in their
matching objects (schemata vs. ontologies), matching refinement (equivalence
vs. richer semantics such as inclusion), and the underlying mathematical tools
(e.g., similarity matrix analysis vs. logic). To date, little work was devoted to the
role of human matchers in either research areas. Nevertheless, a recent work in
ontology alignment have acknowledged the fact that humans (users) can make
mistakes [12]. Although it addresses cognitive oriented issues, e.g., cognitive load,
their aim is to avoid them. Further, they propose to collect confidence as a future
work, which we collected and showed it may be unreliable (overconfidence). Our
research insights can be readily applied to ontology alignment.

6 Conclusions and Future Work

This work introduces match consistency as a measure of human matching vari-
ability along potential bias dimensions. We view match consistency as a powerful
tool to analyze human matching behavior. In future work we intend to identify
additional dimensions, beyond the dimensions identified in this work, namely
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temporal, consensuality, and control. Our empirical evaluations serve as proof-
of-concept that validate the important roles of humans as participants in the
matching process, and less so as validators. Therefore, future work will involve
collaboration models, supporting both human and algorithmic matchers, jointly
performing schema matching considering humans biases.
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Abstract. Most recommendation systems are designed for seeking
users’ demands and preferences, whereas impotent to affect users’ deci-
sions for realizing the system-level objective. In this light, we intend
to propose a generic concept named ‘proactive recommendation’, which
focuses on not only maintaining users’ satisfaction but also realizing
system-level objectives. In this paper, we claim the proactive recom-
mendation is crucial for the scenario where the system objectives are
required to realize. To realize proactive recommendation, we intend to
affect users’ decision-making by providing incentives and utilizing social
influence between users. We design an approach for discovering the influ-
ential users in an unknown network, and a dynamic game-based mech-
anism that allocates incentives to users dynamically. The preliminary
experimental results show the effectiveness of the proposed approach.

Keywords: Proactive recommendation · Incentives allocation ·
Agent-based modeling · Unknown network

1 Introduction

In recent years, recommendation systems have become increasingly popular and
been widely applied in different domains [15]. Although most recommendation
approaches are able to discover users’ demands and recommend proper items to
users [1,6], these approaches are too passive to realize system-level objectives.
For example, a traditional recommendation system may be unable to persuade
people to take public transportation for commuting if they prefer driving. In
this case, it is necessary to propose a new approach, which aims to not only
maintain users’ satisfaction but also realize system-level objectives, i.e., proac-
tive recommendation. Different from traditional recommendation approaches, in
the proactive recommendation, each user is considered as a ‘participator’ to be
coordinated for realizing the system goals.

In scenarios where proactive recommendation systems are required, it is pos-
sible that items which are beneficial to the system cannot attract users [20].
c© Springer Nature Switzerland AG 2019
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To relieve such conflicts between users and the system, the system needs to
embed with effective methods for increasing users’ preference towards the ben-
eficial item. In some areas, researchers have proved that providing incentives
is an effective strategy for affecting users’ behaviors to realize certain system
objectives [14,16]. However, the limitations of these approaches still cannot be
ignored. First, a naive incentive allocation strategy may not be effective. Since
benefits brought from users are variable towards the status of the whole environ-
ment, the process of incentives allocation needs to be adaptive as well. Second,
incentives provided to users are restricted by the budget amount, so that the
number of successfully affected users is also limited. To increase the number
of affected users, we consider utilizing a factor which existed between users for
affecting more users, i.e., social influence.

In general, users can be influenced by their neighbors or other influential
users in the same social network [2]. Namely, by leveraging the power of social
influence, it is possible to affect users in selecting system-beneficial items by
providing fewer incentives. However, the influence between two users may differ
corresponding to diverse items or topics. For instance, a famous blogger who
focuses on commenting movies may cause higher influence on his fans’ choices
of movies for watching, but hardly generates affect in music selection. Hence,
regarding a specific topic, the topology of the network should be unknown, and
it is necessary to discover the influential users via a series of learning processes
rather than directly utilizing some existing knowledge (e.g., the followers of a
blogger) to assess their influential ability.

In this paper, we systematically elaborate and formulate the proactive rec-
ommendation, which tries to engage users by incentives in selecting system-
beneficial items and affecting other users’ decisions. Meanwhile, we propose an
Agent-based Decisions Making (ADM) model. In the ADM, users are modeled
as autonomous agents, and each user would select the item with the highest pref-
erence as the final decision. Furthermore, we present the Influence Probability
Estimation (IPE) algorithm for estimating the influential relationship between
users, and the Dynamic Game-based Incentive Allocation (DGIA) algorithm for
calculating the values of incentives providing to users. The experimental results
demonstrate that: (1) the IPE algorithm is effective in discovering influential
users; and (2) the combination of IPE and DGIA algorithms outperforms other
incentive allocation algorithms since it can affect more users given a same budget
and time span.

The rest of the paper is organized as follows: Sect. 2 reviews literature related
to this research work. Section 3 introduces the formal definitions and problem
description. Section 4 presents the proposed model and algorithms. In Sect. 5, the
experimental results are presented to evaluate the performance of the proposed
model. The conclusion and future work of this paper are presented in Sect. 6.

2 Related Work

Recommendation systems have been deployed widely in many applications
over the decades [4,13]. Among these systems, the Collaborative Filtering and
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Content-based Filtering approaches [5,12] are widely used and perform effec-
tively in mining users’ demands and satisfying their requirements [1,4]. In gen-
eral, the main objective of these approaches is to predict the user’s preference
and improve the utilization of data, which results that these approaches can
only passively satisfy users’ demands, and almost unable to affect users to select
items for realizing the system-level objective. By contrast, the main objective
of the proactive recommendation is to not only maintain users’ satisfaction but
also realize the system-level objective.

Individuals tend to take the action when they recognize that they would be
rewarded from the action [8]. Inspired by this, to realize the specific system-level
objective, some approaches that allocate incentives to users for affecting their
decision-making have been proposed. Sengvong and Bai propose an approach
trying to affect users’ decisions on transportation modes during commute [14].
Their approach determines the value of incentives based on the utility difference
between users and the system. Singla et al. attempt to solve the balance problem
of sharing-bike by incentivizing users [16]. In addition, some researchers model
this incentive allocation problem as a Multi-Armed Bandit (MAB) problem, and
propose strategies for solving it by considering a limited budget [3,17–19]. How-
ever, the effectiveness of these approaches is limited when the budget is insuf-
ficient, as they attempt to incentivize users’ directly and the budget would be
run out shortly. By contrast, besides providing incentives, the proposed approach
considers utilizing social influence between users to affect users’ decision-making.

3 Problem Formulation

3.1 Proactive Recommendation

The main challenge of realizing proactive recommendation is how to effectively
affect users’ decisions, and encourage them to take system-beneficial items or
actions. Hence, it is necessary to explore factors altering users’ decisions making.
In many fields, preference plays a crucial role in affecting users’ decision-making
process. A phenomenon frequently occurs is that a user would choose A rather
B if he has a preference for A over B. Furthermore, a user’s preference towards
the same item may vary due to the external reason [11]. Inspired by this, in the
proactive recommendation, we consider utilizing social influence and incentives
to affect users’ decisions.

Figure 1 compares the proposed model with existing incentive-based
approaches. Figure 1(a) shows the model which is used in most existing incentive-
based systems, where green nodes imply to affected users and the red node
denotes the user fails to be affected. These systems tend to provide incentives
to all users simultaneously, and are capable to affect most users when the bud-
get is sufficient. However, once the budget is insufficient or the number of users
becomes too large, the performance would fall down as the allocated incentive
to each user may be insufficient to affect the user anymore. Figure 1(b) describes
our model which considers social influence between users, where each directed
link implies to one influential relationship, e.g. v1 is able to affect v2 and v3.
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Fig. 1. Comparison of two incentive models

The proposed strategy prefers to provide influential users with more incentives,
and allocate fewer incentives to the other users. Users are more possible to affect
due to the simultaneous impact of incentives and social influence for other users.
Furthermore, adopting such a strategy can save budget to an extent degree for
further allocation.

3.2 Formal Definitions

Before introducing the proposed approach, we first give formal definitions and
notations which would be frequently mentioned in this paper.

Definition 1. An action, am ∈ A, denotes an available option that users can
choose, where A = {a1, ..., am} is a set of finite action options. We regard a∗ as
the action that the system expects users to choose.

Definition 2. A user (user agent), vi, is defined as a vertex in a directed
social network G = (V,E), where V = {v1, ..., vn} represents a set of user agents,
and E = {eij |{vi, vj} ⊆ V } denotes a set of edges. Each directed edge eij rep-
resents the influence from vi to vj, and the weight wij of each edge denotes
the influence value. Concurrently, towards each am, vi has a preference degree
uvi,am

, where uvi,am
∈ [0, 1]. At each time step t, vi would choose an action πvi,t,

where πvi,t ∈ A. In this paper, we consider that vi is activated at time step t if
πvi,t = a∗.

The neighbors of vi can be classified into two groups, i.e., N(vi)in and
N(vi)out. N(vi)in denotes users who affect vi, i.e., N(vi)in = {vj |eji ∈ E}.
N(vi)out = {vj |eij ∈ E} denotes users who are affected by vi. At each time
step t, vi may receive an influence kvi,am,t from N(vi)in, where am denotes a
particular action option. We regard idgvi

as the influential degree of vi, which
indicates the vi’s influential ability to whole network. Furthermore, each vi can
obtain the information regarding πvj ,t−1 of his neighbors.

Definition 3. Incentive, rvi,t denotes the reward that the system provides to vi

for incentivizing him to choose a∗ at time step t. The value of rvi,t is constrained
by the remaining budget Bt. vi only obtains the incentive after he performing a∗,
and the value of the incentive would be deducted from the Bt.
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Definition 4. The influence probability matrix, X, indicates a matrix
describing the influence relationship between users of the social network, where
the size of X is depended on the number of users, i.e., |V | × |V |. Each xij ∈ X
represents an estimated influence probability that vi successfully affects vj, where
xij ∈ [0, 1]. If xij = 0, it implies vi impossibly affects vj, conversely, vi neces-
sarily affect vj if xij = 1.

Definition 5. The estimated probability, pvi,t, describes the probability that
vi accepts an incentive at a time step t, where pvi,t ∈ [0, 1]. pvi,t is determined by
user’s action πvi,t and ωvi

, where ωvi
is the probability that vi takes a∗ without

receiving incentives and social influence.

3.3 Problem Description

Given a limited time span t ∈ [0, n] and a finite budget B at each time step,
the major objective of this study is to find out a strategy to incentivize users
as many as possible. The Global Activated Users Percentage (GAUP) at time
step t is represented as μt, which indicates the percentage of the number of
activated users in the social network, i.e., πvi,t = a∗. In other words, GAUP can
reflect the completion degree of the system objective. The effectiveness trend of
allocation approach can be reflected by GAUP at each time step as well. μt can
be determined by using Eq. (1).

μt =
|{vi|πvi,t = a∗, vi ∈ V }|

|V | (1)

The objective of our approach is to maximize μt eventually. Furthermore,
the Global Influenced Activation Coverage (GIAC) is taken into consideration
as well. The GIAC is represented by using notion ϕt, indicating the ratio of
activated users who are driven by the social influence. In most existing models,
a user is incentivized successfully when the value of the incentive exceeds the
user’s preference difference. Namely, we can consider vi is affected due to the
social influence if the value of the incentive is less than his preference difference.
Suppose a′ = arg max

am∈A
uvi,am

denotes vi’s highest preference, then the preference

difference σvi
can be formulated by using Eq. (2).

σvi
= uvi,a′ − uvi,a∗ (2)

Subsequently, the GIAC ϕt can be formulated by using Eq. (3).

ϕt =
|{vi|πvi,t = a∗, rvi,t < σvi

, vi ∈ V }|
|V | (3)

4 Proactive Recommendation Model

4.1 The Agent-Based Decisions Making (ADM) Model

The ADM model is a decentralized decision-making model which inherits the
advantages of Agent-based Modeling. As mentioned previously, each user agent
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makes a decision not only based on his preference towards the action but also the
influence from others and the offered incentive. However, each user agent may
have a different position in a networked society, and cause different influence on
other agents. It implies that a influential node can play a more pivotal role in
affecting others’ decisions in society.

Inspired by the Linear threshold model proposed by Granoveteer [7], the
total influence generated by neighbors of a focal user has a restriction, i.e.∑

vj∈N(vi)in
wji ≤ 1. Moreover, towards a particular action am, we assume that

the total influence kvi,am,t exerted on the focal user vi at time step t is aggre-
gated by the influence caused by users of N(vi)in who choose am at time step
t − 1. kvi,am,t can then be formulated by Eq. (4),

kvi,am,t =
∑

vj∈N(vi)in

W (wji, am) (4)

where W (wji, am) is a judgment function, formulated by Eq. (5).

W (wji, am) =
{

wji, πvj ,t−1 = am

0, πvj ,t−1 �= am
(5)

Different from the linear threshold model, users make decisions not only
based on the influence they receive but also their preferences. It implies that
setting a random ‘threshold’ as a constant for users is insufficient to describe
the scenario we are tackling. Hence, we assume that vi needs to reconsider his
decision at every time step and always chooses the action with the highest final
user preference, as described in the Eq. (6), where u∗

vi,am,t denotes the final user
preference towards am.

πvi,t = arg max
am∈A

u∗
vi,am,t (6)

u∗
vi,am,t can be calculated by using Eq. (7), where uvi,am

denotes vi’s preference
towards am, kvi,am,t denotes the influence that focal user vi received from N(vi)in

at time t, and rvi,t denotes the incentive allocating to vi for selecting action a∗.

u∗
vi,am,t =

{
uvi,am

+ kvi,am,t + rvi,t, am = a∗

uvi,am
+ kvi,am,t, am �= a∗ (7)

4.2 The Influence Probability Estimation (IPE) Algorithm

Users’ behaviors and the influence between users can be captured in the proposed
ADM. Stands on the perspective of the system agent, the optimal incentive allo-
cation implies to affecting more users with less budget. To achieve this objec-
tive, it is more important to engage influential users. Since only users’ actions
and preferences can be observed by the system, and the influential relationships
between users are unknown, we adopt a behavior-based learning approach to
estimate and learn the influence relationship between users. The proposed app-
roach determines whether two users have an influential relationship based on
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Algorithm 1. The IPE Algorithm
Input: V , X, t
Output: idgvi , ∀vi ∈ V

1 for each user agent vi at time step t(vi ∈ V ) do
2 Waiting for vi taking action;
3 for each user agent vj (vj ∈ V \{vi}) do
4 Update xji using Eq. (8);

5 for each user agent vi (vi ∈ V ) do
6 sum := 0;
7 for each user agent vj (vj ∈ V ) do
8 sum = sum + xij ;
9 Calculate idgvi using Eq. (9);

their actions at time step t and t − 1, i.e., πvj ,t and πvi,t−1. In the estimation,
we consider user vj is influenced by user vi if vi takes an action at time t−1 and
vj takes the same action at time t. The estimation of the relationship is possibly
not accurate unless experiencing a long-term learning. For example, if ten users
all take a1 at time t − 1, and then vi takes action a1 at time step t as well, then
we can only assume ai is affected by these ten users. With the continuous process
of learning, the estimated influential relationship would become accurate.

We utilize the influential probability matrix X to record the influence proba-
bilities among users. The initial values of each element in X are set to 0, implying
that the influential relationship between users in the network is unknown to the
system. According to the fact in real society, if a neighbor’s action is always con-
sistent with a user’s own action at last time, then we can consider the neighbor
is easier affected by the user [21]. Hence, the value of xij can be determined by
using Eq. (8), where β denotes a coefficient which adjusts the variety speed of
xij . If πvj ,t = πvi,t−1, then xij would increase; otherwise, xij would decrease.
Namely, xij will be very close to 1 if vi is always successfully affected by vj ; sim-
ilarly, xij will be close to 0 if vj cannot be affected by vi. Moreover, xij should
be 1 or 0 if xij exceeds 1 or is less than 0 after updating.

xij =
{

xij + β · (e(xij−1) − β), πvj ,t = πvi,t−1

xij − β · (e(−xij) − β), πvj ,t �= πvi,t−1
, xij ∈ [0, 1] (8)

The influential degree idgvi
reflects the ability of vi affecting global users in

the network, which can be determined by using Eq. (9), where |V | denotes the
number of total users in the system.

idgvi
=

∑

vj∈N(vi)out

xij

|V | (9)

The sketch of the IPE algorithm is described in Algorithm1. The inputs
include the user agents set V , the influence probability matrix X and the par-
ticular time step t; the output is the influential degree of all user agents, i.e.,
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idgvi
, where ∀vi ∈ V . Lines 1–2 replicate all users in the society take actions

simultaneously at time t. Once vi takes action, the system would calculate xji

in lines 3–4. Lines 5–9 aim to calculate the influential degree of all users. As the
process requires to iterate all users, the complexity is O(n2), where n denotes
the number of users in the system.

4.3 Dynamic Game-Based Incentive Allocation (DGIA) Algorithm

To effectively allocate incentives to users, we design a Dynamic Game-based
Incentive Allocation (DGIA) algorithm, which considers affecting easily affected
users in priority. The DGIA consists of two parts, the Probability Learning
Phase, and the Incentives Allocation Phase. The former phase aims to learn the
probability pvi,t that vi taking the action a∗, and the latter phase is to allocate
the incentives to users.

Probability learning phase aims to learn the probability of a user accept-
ing the incentive at each time step. In the dynamic games with incomplete
information, as the decision maker cannot grasp the probability of one event,
he would make a decision according to his beliefs in general. Such beliefs actu-
ally are probability distribution supported by the decision maker’s knowledge or
experience, and the beliefs would be updated by considering relevant evidence
or background (i.e. the result of the event). In the proactive recommendation,
the system cannot make a correct allocation of incentives with the incomplete
knowledge about users. Thus, inspired by Bayes theorem [9], the probability
that vi accepts the incentive at each time step can be updated corresponding to
πvi,t. For convenient explanation, we regard ωvi

as the probability of vi taking
a∗ based on uvi,a∗ , and pvi,t−1 and pvi,t as the prior and posterior probability,
respectively. As described in Eq. (10), the calculation of pvi,t is determined by
πvi,t, where γ is the attenuation coefficient. ωvi

can calculated by using Eq. (11).

pvi,t =

{
pvi,t−1

pvi,t−1+ωi·(1−pvi,t−1)
, πvi,t = a∗

γ · pvi,t−1, πvi,t �= a∗ (10)

ωi =
uvi,a∗

∑

am∈A

uvi,am

(11)

Incentives allocating phase aims to provide proper incentives to users.
To guarantee the completion of the system objective, the value of an incentive
towards a particular user should be adjustable according to the user’s feature
and the status of environment. Hence, the value rvi,t should be adjustable by
the GAUP μt, influential degree idgvi

, the probability pvi,t−1 and the preference
difference σvi

, as described in Equation Eq. (12).

rvi,t = (1 − pvi,t−1) · ((σvi
)μt−1 + (idgvi

)μt−1) (12)

Overall, it can be seen that the value of an incentive is determined by fol-
lowing these rules: (1) The user who has large dissatisfaction to a∗ may gains



Adaptive Incentive Allocation for Proactive Recommendation 657

Algorithm 2. The DGIA Algorithm
Input: V , B, μt−1, t
Output: μt

1 Initialize Bt = B;
2 for each user agent vi at time step t(vi ∈ V ) do
3 rvi,t := 0;
4 Calculate rvi,t using Eq. (12);
5 if Bt < rvi,t then
6 rvi,t = Bt;
7 Allocate rvi,t to vi and observe πvi,t;
8 if πvi,t == a∗ then
9 Bt = Bt − rvi,t;

10 Calculate pvi,t using Eq. (10) according to πvi,t;

11 sum := 0;
12 for each user agent vi (vi ∈ V ) do
13 if πvi,t == a∗ then
14 sum = sum + 1;

15 μt := sum/|V |;
16 Sort V in descending order of the sum of pvi,t and idgvi ;

more incentives; (2) The user who has strong influential ability to others may
receive more incentives; (3) The user who is easily activated would receive fewer
incentives; (4) Users would receive fewer incentives when the completion degree
of system objective is higher. In addition to these four rules, to maximize the
efficiency of the use of budget, the system prioritizes to provide incentives to
users who are easily accepting a∗ and has a strong influential ability.

The DGIA algorithm is shown by Algorithm 2. The inputs include user agents
set V , the budget amount per time step B, the last time GAUP μt−1, and current
time steps t; the output is current GAUP μt. Line 1 initializes Bt for allocation
in time step t. Lines 3–7 calculate the value of an incentive and allocate the
incentive to vi. Lines 8–9 update Bt based on vi’s behaviors. Line 10 updates
the probability that vi accepts incentives. After all users making decisions, the
GAUP of current time step would be calculated in Lines 11–15. Line 16 sorts the
order of vi. Note if DGIA is deployed without IPE, this sort function would be
executed only based on pvi,t. As the worst-case time complexity of Algorithm 2
is mainly determined by the loops started from Line 2 and Line 12, respectively.
Therefore, the complexity is only O(n).

5 Experimental Studies

5.1 Experimental Settings

To evaluate the performance of the proposed approach, we conducted experi-
ments in comparison with other incentive allocation approaches. In the experi-
ments, we create a number of user agents to represent users, and each of them
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has own neighbors and preferences to actions. Only user agents’ preference and
their decisions at each time steps are capable captured by the system. We uti-
lize Ego-Facebook1 [10] dataset to establish a social network, which contains
10 anonymized ego-networks, 4039 users and 88234 edges. The average num-
ber of edges between users is 21.6. As the public dataset only contains nodes
and edges, we assign a random weight for each edge before the experiment,
and the sum of weights of edges from vj ∈ N(vi)in to vi cannot exceed 1, i.e.,∑

vj∈N(vi)in
wji ≤ 1. Each user agent has to make a decision at every time step,

and his preference towards each action is assigned a random value from 0 and 1
as well.

To evaluate the performance of the proposed approach, we set the time span
is 150, the coefficient β = 0.1, and the attenuation coefficient γ = 0.8. We also
set the number of action options is 2, i.e., select a∗ or not. Furthermore, xi,j

and μ0 are both initialized as 0, and pvi,0 of each vi is initialized as 0.5 at
the beginning. Concurrently, two major metrics are utilized for the evaluation
process, i.e., GAUP and GIAC. The GAUP has been formulated in Eq. (1), and
the GIAC has been formulated in Eq. (3), respectively. We compare the proposed
DGIA-IPE approach with following approaches:

– Uniform Allocation provides fixed and uniform incentives to all users. The
value of an incentive is determined by the budget amount and the number
of users.

– ε-first is an approach based on budgeted Multi-Armed Bandit approach,
which splits the budget into two parts, for exploration and exploitation,
respectively [17]. They used a uniform pull policy for exploration, i.e., the
number of times for incentivizing each user is the same, and the reward-
cost ratio ordered greedy algorithm for exploitation. In this experiment, we
utilized the same settings for ε-first MAB.

– DBP-UCB is proposed for engaging users in the system to participate
in the bike re-positioning process [16]. DBP-UCB is a dynamic pricing
mechanism, which can determine the incentives from a finite price list.
Hence, according to the features of ADM model, we set the price list as
{0, 0.25, 0.5, 0.75, 1, 1.25, 1.5}.

– DGIA is a part of the proposed approach, which allocates incentives without
considering the influential degree of users.

5.2 Experimental Results

We conducted a series of experiments under different budget constraints to eval-
uate the performance of the proposed approach, and demonstrate two represen-
tative experimental results when B ∈ {80, 240}. The budget would be reloaded
at the beginning of each time step. Figure 2 compares the GAUP of approaches
under different budget constraints. When B = 80, DGIA outperforms other
approaches obviously, whereas DGIA-IPE performs worse at the beginning and

1 https://snap.stanford.edu/data/ego-Facebook.html.

https://snap.stanford.edu/data/ego-Facebook.html
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(a) B = 80 (b) B = 240

Fig. 2. Comparison of GAUP under different budget constraints

(a) B = 80 (b) B = 240

Fig. 3. Comparison of GIAC under different budget constraints

becomes better than other three approaches gradually. The possible reason is
that insufficient budget affects the performance of the influence estimation as well
as incentive allocation, since DGIA-IPE obviously outperforms other approaches
and the GAUP of which reaches around 0.8 when B = 240. By contrast, applying
uniform allocation can affect limited users’ behaviors and performs worse than
other approaches. The performance of ε-first is same as DBP-UCB when B = 80.
However, ε-first performs as good as DGIA when the budget is sufficient, and
outperforms DBP-UCB.

Then, we also compare the GIAC of approaches under the same budget con-
straints, which reflects the percentage of activated users who are driven by social
influence. As described in Fig. 3, though the GIAC of DGIA-IPE is not good as
that of DGIA approach with the insufficient budget, it performs obviously better
than other approaches when the budget is sufficient. By contrast, DBP-UCB and
ε-first affect users mainly based on incentives since their trends of the GIAC are
stable at a very low stage. However, to our surprise, the GIAC of ε-first is similar
as that of DGIA and better than DBP-UCB when the budget is sufficient. Akin
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to the comparison of GAUP, uniform allocation performs worst due to its naive
strategy.

6 Conclusion and Further Work

In this paper, we formally defined the proactive recommendation problem, i.e.,
affect users’ behavior for realizing system objectives. To tackle this problem, we
first proposed the ADM model to describe users’ decision-making process under
the incentives and social influence. Furthermore, we also proposed a novel social
influence relationship discovering algorithm, i.e., IPE, and a game-theory based
incentive allocation algorithm, i.e., DGIA. The experimental results demonstrate
that the DGIA-IPE outperforms than other traditional approaches when the
budget is sufficient, whereas the DGIA is the most effective approach when
the budget is insufficient. Furthermore, the GIAC of DGIA-IPE proves that
the proposed approach is capable of discovering influential users and providing
proper incentives to engage them, and social influence makes sense on affecting
users’ behaviors. In the future, we will continue to explore other possible factors
for tackling the proactive recommendation problem, and continue to investigate
the mechanism for more effective incentive allocation.
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Abstract. In recent years, more and more systems have been designed
to affect users’ decisions for realizing certain system goals. However,
most of these systems only focus on affecting users’ short-term or one-off
behaviors, while ignoring the maintenance of users’ long-term engage-
ment. In this light, we intend to design a novel approach which focuses
on incentivizing users’ long-term engagement. In this paper, inspired
by the use of Markov Decision Process (MDP), we first formally model
the process of a user’s decision-making under long-term incentives. Sub-
sequently, we propose the MDP-based Incentive Estimation (MDP-IE)
approach for determining the value of an incentive and the require-
ment of obtaining that incentive. Experimental results demonstrate that
the proposed approach can effectively sustain users’ long-term engage-
ment. Furthermore, the experiments also demonstrate that incentivizing
users’ long-term engagement is more beneficial than one-off or short-term
approaches.

Keywords: Incentive allocation · Long-term engagement ·
Agent-based modeling · Markov Decision Process

1 Introduction

In recent years, an increasing number of systems have been developed to affect
users’ behaviors to realize certain system objectives [3,16,18]. Leveraging the
power of incentives, such systems show great performance in affecting users’
behaviors and achieving desired system objectives. However, these approaches
only focus on affecting users’ short-term or one-off behaviors [10,12,19]. In gen-
eral, incentivizing users’ long-term engagement is typically more beneficial. From
a business perspective, though affecting users’ short-term behaviors can bring
sudden profits, relatively, the cost of maintaining such effects long-term could
be prohibitive. For example, it is common that shopping malls would hold large
discount events on special days for attracting customers, but such events cannot
be sustained for a long time due to their cost. By contrast, incentivizing users’
long-term engagement is dominant in maintaining the choices of customers as it
c© Springer Nature Switzerland AG 2019
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emphasizes long-term effect and sustainable business goals [7]. More specifically,
promoting users’ long-term engagement is helpful in cultivating users’ habits and
increasing brand awareness then continually produces profits; whereas purely
applying short-term strategies only generates ephemeral successes which cannot
last [9]. Motivated by this background, in this paper, we aim to design a novel
incentive allocation strategy, for incentivizing users’ long-term engagement.

To successfully incentivize users’ long-term engagement, some problems must
be considered and tackled. A major problem is how to design a proper pricing
policy to maximize the benefits to both users and the system. Overpricing would
lead to the inefficient use of the budget, whereas underpricing may hardly attract
users’ attention [11]. The second problem is how to determine the requirement
that a user is able to obtain the incentive. A simple strategy is to provide users
a long-term incentive, i.e., the user can obtain the incentive when he continu-
ally engages and meets a specific requirement [8]. However, such strategies are
insufficient to attract users who only pay attention to the short-term benefits.
In other words, from the users’ perspective, their long-term behaviors would be
affected by not only the value of an incentive but also their attitude towards
the long-term incentive. Most existing approaches provide a short-term or one-
off incentive and determine the values of incentive only based on the status of
users and the system [3,10–12,17]. Obviously, these approaches are insufficient
for supporting to incentivize users’ long-term engagement, and it is necessary to
design a novel strategy for this purpose.

Different from these approaches, in this study, we take users’ preferences
as well as their attitude towards long-term incentives into consideration when
designing the strategy of allocating incentives. To better investigate this prob-
lem, we adopt Agent-based Modeling (ABM) [2] to model users, where each
user is modeled as an anonymous agent and chooses behaviors following their
own preferences. Meanwhile, inspired by the Markov Decision Process (MDP)
[1], we propose an Agent-based Long-term Decisions Making (ALDM) model
which describes the process of users’ decision-making under long-term incentives.
Furthermore, we also introduce the MDP-based Incentive Estimation (MDP-
IE) algorithm for determining the value of an incentive and the requirement
of obtaining that. The experimental results demonstrate that: (1) incentivizing
users’ long-term engagement is more beneficial than using one-off incentives; and
(2) the proposed approach outperforms other incentive allocation approaches
under the same budget constraints and time span. To summarize, the contribu-
tions of this study are as follows:

– We formally modeled the process of a user’s decision-making under long-term
incentives while taking the user’s attitude towards the long-term incentive
into consideration, which is significantly different from traditional incentive-
based models.

– We proposed a novel approach which can explore the minimum value of an
incentive, and effectively incentivize users’ long-term engagement.

The remainder of this paper is organized as follows. Section 2 reviews the
literature related to this study. Section 3 introduces the problem description and
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formal definitions. Section 4 presents the proposed approach for incentivizing
users’ long-term engagement. We demonstrate the experimental results for eval-
uating the performance of the proposed approach in Sect. 5 and conclude this
paper in Sect. 6.

2 Related Work

Providing incentives is an effective strategy in affecting users’ decision-making
in many fields, since users tend to take an action when they recognize that
they would be rewarded from such an action [4]. Inspired by this, a number of
research works related to the incentive problem have been conducted in recent
years. Some researchers propose diverse pricing mechanisms for providing effec-
tive incentives [3,11,18]. Sengvong and Bai [10] consider affecting users’ decisions
on selections of transportation modes by providing reward based on the utility
difference between the system and users. To affect more users’ decision-making
under a budget restriction, Wu et al. [17] take the social influence into con-
sideration when determining the value of incentives. Singla et al. [12] attempt
to solve the balance problem of sharing-bike by incentivizing users. They deter-
mine whether to incentivize a user according to the user’s location and the status
of nearby bike stations, and their proposed approach DBP-UCB can effectively
solve this problem. On the other hand, the cost of incentivizing a user is unknown
in advance, and It requires exploration to determine an effective incentive. To
address this problem, some researchers regard such a pricing problem as a Multi-
Armed Bandit (MAB) problem. They model each price option as a lever, and find
out the optimal lever via a series of exploration and exploitation [12,16]. How-
ever, these approaches only focus on affecting users’ one-off behaviors, whereas
our objective is to incentivize users’ long-term engagement.

To obtain a long-term incentive, the user needs to choose a specific action
continually to satisfy the condition of incentives. Such a process of user’ decision-
making can be modeled by using Markov Decision Process (MDP) [1], which pro-
vides a mathematical framework and has been utilized for solving the optimiza-
tion problem in many fields [5,6,13]. Besides, users’ attitude towards long-term
incentives is essential to determine the incentive, since a user who only focuses
on short-term profit is difficult to be incentivized due to a long-term incentive.
Hence, to determine the condition that a user may obtain the incentive, we also
need to explore users’ attitude towards long-term incentives.

3 Preliminaries

3.1 Problem Description

The main goal of this research is to design an effective incentive allocation strat-
egy for incentivizing users’ long-term engagement. This strategy can be adopted
in scenarios where the system expects users to take a specific behavior continu-
ally, e.g, encourage users to take a bus daily. Suppose we are going to incentivize
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(a) (b)

Fig. 1. The process of a user obtaining the incentive. (Color figure online)

a user to take the bus for the commute, the process of the user’s decision mak-
ing can be described by Fig. 1, where each link denotes an action option (e.g.,
driving or taking a bus), and each yellow node represents a state that the user
at (e.g., s2 denotes the user has continually taken a bus two times). As we can
see from Fig. 1(a), the user can obtain an immediate incentive when he takes the
bus if we want to incentivize his one-off behaviors. Whereas if we provide the
user with a long-term incentive, as shown in Fig. 1(b), the user only obtains an
incentive when he continually takes three times bus, otherwise, he would obtain
nothing.

Apparently, the process of a user’s decision-making in Fig. 1(b) can be mod-
eled as a MDP. The user may hardly to be incentivized when the condition is too
difficult since the user cannot obtain incentives in the middle unless the system
provides very attractive incentives. Meanwhile, the value of an incentive cannot
be infinite due to the constraint of the budget. Hence, the value of an incentive
provided to each user should have an upper bound and a lower bound, where
the upper bound denotes the maximum incentive that the system can provide,
and the lower bound denotes the minimum incentive to successfully incentivize
the user. Furthermore, in addition to the value of incentives, the condition of
a user obtaining the incentive also needs to be considered carefully. We will
introduce the proposed approach in Sect. 4.

3.2 Formal Definition

Before introducing the proposed approach, we first give formal definitions and
notations which would be frequently mentioned in this paper.

Definition 1. An action, am ∈ A, denotes an available option that the system
provides to users for choosing, where A = {a1, ..., am} is a finite set of all action
options. Each am has a binary state bam

, i.e., bam
∈ {0, 1}, where 1 implies

am is a beneficial action to the system, and 0 implies conversely. For easier
explanation, we use a∗ to represent the action that the system expects users to
choose.
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Definition 2. A user agent, ui ∈ U , denotes a member in an agent society,
where U = {u1, ..., un} is a set of user agents. pui,am

denotes ui’s preference
degree towards am, and at each time step t, ui’s behavior can be represented as
πui,t. γui

∈ [0, 1] denotes ui’s attitude towards long-term incentives, where a
larger γui

implies that ui would be highly affected by long-term incentives, and a
smaller γui

implies that ui focuses more on short-term benefits.

Definition 3. ui’s engagement degree, μui,t, reflects ui’s loyalty towards
choosing a∗, where μui,t ∈ [0, 1]. If ui continuously chooses a∗, μui,t would
become close to 1, otherwise, μui,t would approach to 0. The average engage-
ment degree, μt, the overall engagement degree of all users in the system at time
step t.

μui,t is formulated by using Eq. (1), where μui,t−1 denotes ui’s engagement
degree at last time step, bπui,t

implies to the state of πui,t, and β is a fixed
coefficient for adjusting the engagement degree.

μui,t = μui,t−1 + β · (bπui,t
− μui,t−1) (1)

Subsequently, average engagement degree of all users μt can be calculated by
using Eq. (2), where |U | denotes the number of user agents in the system.

μt =

∑

ui∈U

μui,t

|U | (2)

Definition 4. An incentive, R(dui
), is used to promote ui to choose a∗,

where dui
denotes the number of times that ui needs to choose a∗ continu-

ally. cui
denotes the number of times that ui has already chose a∗ continually,

and ui can only obtain the incentive when cui
= dui

. R(dui
) is restricted by

the current remaining budget B, i.e., R(dui
) ≤ B. The upper bound and the

lower bound of R(dui
) can be represented as Rupper(dui

) and Rlower(dui
), and

R(dui
) ∈ [Rlower(dui

), Rupper(dui
)].

Definition 5. The influence of an incentive towards ui can be represented
as I(cui

, dui
, R(dui

)). It varies according to the difference between cui
and dui

.

Inspired by MDP, I(cui
, dui

, R(dui
)) can be calculated by using Eq. (3). The

influence of an incentive would be minimum when ui has not chose a∗ yet (i.e.,
cui

= 0), and becomes larger with the decreasing difference between cui
and dui

.
For example, when cui

= 2 and dui
= 3, the influence of the incentive becomes

the largest, since ui would obtain that incentive after choosing a∗.

I(cui
, dui

, R(dui
)) = γ

(dui
−cui

−1)
ui · R(dui

) (3)

3.3 Agent-Based Long-Term Decisions Making (ALDM) Model

The ALDM model describes the process of a user’ decision-making under long-
term incentives. In this model, benefited from ABM, each user is modeled as
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Algorithm 1. The process of a user’s decision-making under the ALDM
Initialize: cui := 0;

1 for each time step t (t = 1, ..., T ) do
2 if cui == 0 then
3 Receive an offer of incentive R(du1);
4 temp := pui,a∗ ;
5 Calculate I(cui , dui , R(du1)) using Eq. (3);
6 Update pui,a∗ using Eq. (5);
7 πui,t := arg max

am∈A
pui,am ;

8 pui,a∗ = temp;
9 if πui,t == a∗ then

10 cui + +;
11 if cui == dui then
12 cui = 0;
13 Receive the incentive;

14 else
15 cui = 0;

an autonomous agent, which behaves based on own preference and the influence
of the incentive. In the real world, a user would choose a more preferable item
among several provided items. Hence, we assume that ui would take am with
the highest pui,am

, as described in Eq. (4), where πui,t denotes the action that
ui takes at time step t.

πui,t = arg max
am∈A

pui,am
(4)

Meanwhile, pui,a∗ can be reinforced by an incentive, which is described in Eq. (5),
where I(cui

, dui
, R(dui

)) denotes the influence of R(dui
).

pui,a∗ = pui,a∗ + I(cui
, dui

, R(dui
)) (5)

The process of each ui’s decision-making can be described in Algorithm 1.
Suppose each ui would take an action at each time step t ∈ [1, T ]. In the begin-
ning, cui

is first initialized as 0, representing ui has not taken a∗ yet. Lines 2–3
provide an offer of R(dui

) to ui when cui
= 0. The approach for determining

R(dui
) and dui

would be introduced in the next section. Lines 4–8 update pui,a∗

with considering the influence of the incentive I(cui
, dui

, R(dui
)). Among them,

Line 7 updates ui’s behavior πui,t, and line 8 restores pui,a∗ . Lines 9–15 update
cui

according to πui,t.

4 Incentive Estimation Approach

4.1 The Bounds for the Incentive

To incentivize users’ long-term engagement effectively, the value of an incentive
must be appropriate determined to ensure, since overpricing would lead to the
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inefficient use of the budget and underpricing may cause failure of attracting
users [11]. To avoid happening of these two situations, we formulate a range for
the value of incentives, aiming to ensure the budget would not be spent infinitely,
and prevent the system to provide the user an insufficient incentive.

We first set the upper bound for an incentive, which is determined by two
factors, i.e., the average engagement degree ut−1 and the required number dui

.
The system would provide more incentives for attracting more users’ engagement
when ut−1 is small, and conversely when it becomes higher. Meanwhile, the user
who needs to take long-term beneficial behaviors would receive more incentives.
Hence, the upper bound for an incentive is formulated in Eq. (6), where dui

denotes the number of times that ui needs to choose a∗ continually for obtaining
the incentive, and ln(dui

) denotes an extra bonus.

Rupper(dui
) = (1 − ut−1) · (dui

+ ln(dui
)) (6)

According to Eq. (4), ui would choose an action with the highest pui,am
at

each time step. Suppose a′ = arg maxam∈A pui,am
. To ensure that ui can be

successfully incentivized, the influence of R(dui
) must exceed the preference

gap, i.e., the difference between pui,a′ and pui,a∗ . The preference gap gui
can be

formulated in Eq. (7).
gui

= pui,a′ − pui,a∗ (7)

Subsequently, based on Eq. (3), the lower bound for an incentive can be cal-
culated by using Eq. (8), where γui

denotes ui’s attitude towards a long-term
incentive and dui

denotes the required number of a∗ that ui needs to take con-
tinually for obtaining this incentive.

Rlower(dui
) =

gui

γ
(dui

−1)
ui

(8)

However, since gui
and γui

of each user are unknown in advance, we have
to explore and estimate the value of these two variables via a series of explo-
rations. In this case, we propose the MDP-based Incentive Estimation (MDP-IE)
algorithm, which would be introduced in the next subsection.

4.2 The MDP-Based Incentive Estimation (MDP-IE) Algorithm

The objective of the MDP-IE approach is to incentivize ui with exploring
the minimum of Rui

as well as the optimal dui
. As we mentioned in Eq. (8),

R(dui
)lower is determined by gui

and γui
. Hence, to explore values of these two

unknown variables, we first attempt to incentivize ui’ one-off behaviors for a
period, i.e., dui

= 1. We can utilize Bisection method to determine R(1), and
then estimate the bounds for gui

based on ui’ behavior, i.e., the upper bound g+ui

and lower bound g−
ui

, and gui
satisfies that gui

∈ (g−
ui

, g+ui
]. After this period of

exploration, we can obtain a relatively accurate g+ui
which is close to gui

. Then,
we can explore the estimated γ′

ui
by providing R(dui

)(dui
> 1), and adjust γ′

ui
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Algorithm 2. The MDP-IE Algorithm
Initialize : Budget B; exploration time texp;

average engagement degree μ0 := 0; adjusting rate ω;
for each ui ∈ U do

dui := 1; R(dui) := 0.0; cui := 0; μui,0 := 0.0;
g+
ui

:= 1.0; g−
ui

:= 0.0 γ′
ui

:= 0.5;

1 for each time step t ∈ [1, T ] do
2 for each request by ui ∈ U at time step t do
3 if cui == 0 and B > 0 then
4 if t > texp and dui �= 1 then

5 if γ′
ui

< dui
−1
√

1
dui

then

6 dui − −;

7 else if γ′
ui

>
dui

dui
+1

then

8 dui + +;

9 else
10 dui = 1;
11 Calculate Rupper(dui) using Eq. (6);
12 Calculate R(dui) using Eq. (9);
13 R(dui) = min(Rupper(dui), R(dui));

Output: Offer ui the incentive R(dui);
Feedback: Observe ui’s behavior πui,t;

14 if πui,t == a∗ then
15 if cui == dui then
16 dui++;
17 if dui > 1 then
18 γ′

ui
= min(γ′

ui
· (1 + ω), 1.0);

19 else
20 g+

ui
= min(g+

ui
, R(dui));

21 B− = R(dui);

22 else
23 if dui > 1 then
24 γ′

ui
= max(γ′

ui
· (1 − ω), 0.0);

25 else
26 g−

ui
= max(g−

ui
, R(dui));

27 Update μui,t using Eq. (1);

28 Update μt using Eq. (2);

based on ui’s behavior. The value of R(dui
) can be formulated by using Eq. (9).

R(dui
) =

⎧
⎨

⎩

0.5 · (g+ui
+ g−

ui
), dui

= 1
g+
ui

(γ′
ui

)(dui
−1) , dui

> 1 (9)

The procedure of MDP-IE approach is described in Algorithm2. In the begin-
ning, we first initialize the overall budget B, the exploring time texp for incen-
tivizing users’ one-off behaviors, and the adjusting rate ω for adjusting γ′

ui
.



670 S. Wu and Q. Bai

Meanwhile, the variables of each user should be initialized as well. In this algo-
rithm, min(·) and max(·) denote functions returning the minimum and maximum
of arguments, respectively. At each time step t, each user agent would interact
with the system and then choose an action to behave; while the system pro-
vides each ui an incentive R(dui

) according to the knowledge about the user,
and then updates the corresponding variables based on ui’s behavior. Lines 4–10
determine dui

. Lines 11–13 calculate the incentive by comparing Rupper(dui
) and

R(dui
). Then lines 14–21 update the corresponding variables when ui chooses a∗

and cui
= dui

, and lines 22–26 update the variables when ui fails to choose a∗

continually. Finally, line 27 calculates ui’s engagement degree, and line 28 cal-
culates the average engagement degree. The computational complexity is O(n).

The reasons we determine dui
and adjust γ′

ui
are presented as follows:

Lemma 1. Given a known gui
and a known γui

, and suppose dui
= n, (n > 1).

When R(dui
)upper > R(dui

)lower, incentivizing ui’s long-term engagement is
more economic than incentivizing his one-off behavior n times if γui

> 0.5.

proof. Since gui
and γui

are known, we can incentivize ui’s long-term engagement
with Rlower(dui

), and one-off behavior with gui
, respectively. Then the inequal-

ity can be presented by using Eq. (10). Obviously, n−1

√
1
n is a monotonically

increasing function. Let n = 2, the lemma is proofed.

gui

γ
(n−1)
ui

< n · gui
⇒ 1

γ
(n−1)
ui

< n ⇒ n−1

√
1
n

< γui
(10)

Lemma 2. Suppose gui
and γui

are known. If Rupper(dui
) > Rlower(dui

), set
dui

= n + 1 is more economic than dui
= n when γui

> n
n+1 , (n > 1).

proof. When n > 2, this lemma can be easily proofed by using Eq. (11).
Then combined with Lemma 1, we can determine dui

based on γ′
ui

when γui

is unknown, i.e., n−1

√
1
n ≤ γ′

ui
< n

n+1 .

gui

n · γ
(n−1)
ui

>
gui

(n + 1) · γn
ui

⇒ γui
>

n

n + 1 (11)

Lemma 3. Suppose we have explored a g+ui
and a γ′

ui
, and it always satisfies that

R(dui
) < Rupper(dui

). If R(dui
) can incentivize ui whereas R(dui

+ 1) cannot,
then γui

< γ′
ui

.

proof. Since R(dui
) can incentivize ui whereas R(dui

+ 1) cannot, we can obtain
the inequality as described in Eq. (12). Then the lemma is proofed.

gui

γ
(dui

−1)
ui

≤ g+ui

(γ′
ui

)(dui
−1)

≤ g+ui

(γ′
ui

)(dui
)

<
gui

γ
(dui

)
ui

⇒ 1
γui

>
1

γ′
ui

⇒ γui
< γ′

ui
(12)

Hence, we increase γ′
ui

for reducing the value of the next incentive when ui

obtains R(dui
); and reduce γ′

ui
when he fails to be awarded.
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5 Experimental Results

5.1 Experiment Setup

Before we start demonstrating the experimental results, the detailed setup would
be introduced. In the experiments, we adopt 200 user agents to represent the
users in the real world. pui,am

and γui
of each user are randomly generated

from 0 to 1. Each user agent has to choose an action at every time step and is
not allowed to acquire any information about others. We also set β is 0.1 for
adjusting ui’s engagement degree μui,t. In this study, unless stated otherwise,
the total number of time steps is 500, the default budget amount B is 7000, the
number of all available action options is 8, and the number of a∗ is 1. For the
MDP-IE approach, we set the exploring time texp is 10 and the adjusting rate ω
is 0.1. Besides, we also restrict that dui

cannot exceed 10.
To better evaluate the performance of the proposed approach, we compare

the proposed approach with following approaches:

– Optimal: this approach can always provide a minimum incentive Rlower(dui
)

with the optimal dui
to users as the information about users is known to the

system. Namely, the performance of this approach is the most optimal.
– One-off incentive: the one-off incentive strategy implies that the system

aims to incentivize users’ one-time behaviors. Similar to the optimal app-
roach, we assume this approach can obtain information about gui

in advance
as well.

– fKUBE+DBP-UCB: fKUBE [15] and DBP-UCB [12] are two UCB-based
algorithms for solving the budgeted Multi-Armed Bandit problem. Since
these two approaches cannot individually determine R(dui

) and dui
at the

same time, we utilize the fKUBE for determining dui
, and the DBP-UCB for

pricing, respectively. For the DBP-UCB, we use the arithmetic progression
to set the pricing options from 0.5 to 5.0, where the difference is 0.5.

– ε-first+DBP-UCB: ε-first [14] would split the budget into two parts for
exploration and explication, respectively. In this experiment, we set ε = 0.1
and use uniform policy for exploration. Akin to the combination of fKUBE
and DBP-UCB, we utilize ε-first for choosing the requirement and DBP-UCB
for pricing. We use the same pricing options for DBP-UCB as the combination
of fKUBE and DBP-UCB.

5.2 Performance Evaluation

As we can observe from Fig. 2, MDP-IE can outperform other approaches even
if the budget is not sufficient. Meanwhile, the maximum average engagement
degree and the effective time of MDP-IE are close to the optimal result. It
implies that the MDP-IE is effective in exploring the minimum R(dui

) as well as
appropriate dui

for incentivizing user’s long-time engagement. By contrast, while
two combined MAB approaches both give a pretty close performance compar-
ing with the MDP-IE under insufficient budget, the MDP-IE obviously superior
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(a) Insufficient budget (b) Sufficient budget

Fig. 2. Comparison of average engagement degree under different budget constraints.

Fig. 3. Comparison of the number of engaged users at each time step, where B = 7000.

to MAB-based approaches when the budget is sufficient. Meanwhile, the effec-
tiveness of MDP-IE lasts longer. This is due to the reason that MAB-based
approaches incentivize users with too many incentives, and the budget runs out
in advance. On the other hand, the one-off incentive approach can incentivize
users shortly, but the effect cannot last. Furthermore, it also reflects that some
users cannot be attracted by the one-off incentive as the other three approaches
can all obtain a higher average engagement degree. A possible reason is that the
extra bonus provided in long-term incentives attract users while one-off incen-
tives are insufficient to incentivize them.

Then we also evaluate the performance of approaches by comparing the num-
ber of engaged users at each time step when the budget is sufficient. As described
in Fig. 3, the proposed MDP-IE can successfully incentivize users longer times
than the other three approaches. In addition, the proposed approach can incen-
tivize more users in the initial phase. The possible reason leading to that is
the system would spend more budget on exploring the bounds for gui

during
that period. Furthermore, the proposed approach incentivizes around 120 users
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at each time step, whereas MAB-based approaches perform worse than the pro-
posed approach. Meanwhile, under the same budget constraints, the effectiveness
of MAB-based approaches end faster, which implies that MAB-based approaches
fail to use of budget efficiently. Concurrently, the comparison between the pro-
posed approach and one-off strategy indicates that some users who cannot be
incentivized by one-off incentives are able to be incentivized by long-term incen-
tives.

6 Conclusions and Future Works

In this paper, we proposed a novel strategy of incentivizing users’ long-term
engagement, which targets to keep users’ long-term engagement as much as pos-
sible with a limited budget. The long-term decisions making model, i.e., the
ALDM, presented in this paper can describe the change of users’ preference due
to the long-term incentives, and model users’ behavior patterns as well. Fur-
thermore, based on the Markov Decision Process, we also proposed the MDP-IE
approach which is capable of exploring users’ maximum preference difference
and attitude towards long-term incentives. Then, to incentivize users effectively
and efficiently, we determine the minimum value of incentives as well as require-
ments of obtaining those incentives. To evaluate the performance of MDP-IE,
we compared it with four approaches. Given the same budget and time span, the
MDP-IE can perform almost as good as the optimal result and outperform the
other three approaches. The experimental results also prove that incentivizing
users’ long-term engagement is more beneficial than incentivizing users’ one-off
behaviors.

In future work, we will continue to enrich the details of the ALDM model
by adding more external factors. Concurrently, we will attempt more forms of
requirements, e.g., establish a kind of sequential requirement which requires users
to take diverse actions. Furthermore, we will keep investigating the algorithms
which are more effective for incentivizing users’ long-term engagement.
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Abstract. This paper presents a compromising strategy based on con-
straint relaxation for automated negotiating agents. Automated nego-
tiating agents have been studied widely and are one of the key tech-
nologies for the future society where multiple heterogeneous agents are
collaborately and competitively acting in order to help humans perform
daily activities. For example, driver-less cars will be common in the near
future. Such autonomous cars will need to cooperate and also compete
with each other in traffic situations. A lot of studies including inter-
national competitions have been made on negotiating agents. A prin-
cipal issue is that most of the proposed negotiating agents employ an
ad-hoc conceding process, where basically they are adjusting a thresh-
old to accept their opponents’ offers. Because merely a threshold is
adjusted, it is very difficult to show how and what the agent conceded
even after agreement has been reached. To address this issue, we describe
an explainable concession process we propose using a constraint relax-
ation process. In the process, an agent changes its belief that it should
not believe a certain constraint so that it can accept its opponent’s offer.
We also describe three types of compromising strategies we propose.
Experimental results demonstrate that these strategies are efficient.

Keywords: Automated negotiating agents · Compromise · Agreement

1 Introduction

Automated negotiating agents have been studied widely in the area of multia-
gent systems [4,7,8,12–16,19]. Heterogeneous, intelligent and autonomous sys-
tems (agents) like self-driving cars have been achieved in actual societies. In such
societies, conflicts may occur among multiple agents. Thus it is required to have
a social mechanism that forces such agents to reach an agreement to resolve
such conflicts through automated negotiation. Many researchers are working on
automated negotiating agents in the field of multiagent systems. In particular,
international workshops and international competitions have been held since
around 2010. Multi-agent systems are one of the most important technological
advancements that have been made to address the needs of the next generation.
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The automated negotiation competition ANAC (Automated Negotiating Agents
Competition) has been held since 2010 as a testbed for automatic negotiation
agent research. ANAC adopts a multi-issue utility model and an alternating-
offer protocol. A lot of negotiating agents have been proposed because ANAC
changes and extends the rules of negotiations every year. However, there are
several drawbacks and problems that the ANAC competition could not focus
on. One of them is how to explain the compromise process. In negotiations,
agents cannot reach an agreement if they consider only their own profits and
interests. Therefore, the compromise strategy is essential to reach an agreement.
Most of the existing automated negotiating agents adopt ad-hoc compromising
processes that only adjust their thresholds to accept the opponent’s offer. This
has made it difficult to explain how the compromise was achieved in the negoti-
ation. It is important for automated negotiating agents to interact with actual
human beings in real society because they need to explain how and why they
compromised. For example, if your self-driving car stopped suddenly in the mid-
dle of congested traffic, you would want to know why it did so. To address this
problem, we propose a compromise process based on constraint relaxation. A
constraint is a basic unit of utility. In other words, we define the utility space of
an agent as a set of constraints that satisfy the issue values and the argument
for them. When a constraint is satisfied, the agent gets a utility value for this
constraint. For example, the issues involved in buying a car include the car’s
color, price, and type. These issues are linked by certain constraints. Thus, there
could be a constraint that says if the type is sports car, then the color should be
red. Also, if the type is sedan, then color is white. Constraints generate values
if they are satisfied, but do not generate any values if they are not satisfied.
In the work we report here, we assumed shared issues and individual issues. In
other words, we can say that agents agreed if they have the same issue value for
shared issues. For individual issues, each agent can choose issue values to make
their utility as high as possible. An agent faces a tradeoff between maximizing
its own utility by satisfying the constraint as much as possible while keeping
the share value to be the same value as that of the opponent agent. In order to
solve this tradeoff, agents perform to compromise. In the compromise process for
the strategy we propose, the agent removes constraints one by one from the set
of its own constraints. Then, it tries to change the constraints’ most preferable
issue-value of the shared issue. If the agent can change the issue-value to one
that is the same as the opponent’s, then they can reach an agreement. Remov-
ing constraints is called “constraint relaxation.” Specifically, we assume that the
agent has a believed constraint set (IN) and an unbelieved (OUT) constraint
set. In the initial state, it is assumed that all constraints are IN, and that in
the constraint relaxation process, agents move certain constraints from IN to
OUT. Various strategies are enabled when the agent moves constraints from IN
to OUT. The four methods we propose are:

(1) Relaxation of constraints based on value,
(2) Random constraint relaxation,
(3) Constraint relaxation based on distance,
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(4) Constraint relaxation based on value and distance.

Experimental results we obtained demonstrate that methods (1), (3) and
(4) are able to obtain social surpluses significantly higher than the (2) random
constraint relaxation. The remainder of this paper is organized as follows. In
Sect. 2, we describe the automatic negotiation agent and negotiation protocol.
In Sect. 3, we describe a compromise algorithm we propose that is based on
the newly proposed constraint relaxation. In Sect. 4, we describe and discuss
experimental results. In Sect. 5, we clarify the difference between our methods
and related research work. Finally, we summarize our paper in Sect. 6.

2 Automated Negotiating Agents

2.1 Utility Hyper-graph

An agent has a complex utility space [11]. A variety of representations have
been proposed for complex utility spaces [1,20,21]. In the work we report in this
paper, we used hypergraph-based representations [9,10] to focus upon depen-
dency between issues (nodes). A hypergraph is a mathematical representation
in which an edge can join multiple nodes. We call a utility space using a hyper-
graph a “utility hyper-graph,” in which nodes are issues and edges are con-
straints. The utility space Ui of agent i is represented by hypergraph (I, C),
wherein Ii ∈ I is an issues set (node), and C is a constraint set (edge). Each
Ii issue has an issues value (Issue Value) within a predetermined range Di. For
example, one issue (color) when purchasing a car has an issue value within
a range of “red,” “blue,” and “green.” Constraint Cj ∈ C is represented by
(vCj

, φCj
, δCj

), where vCj
represents the value of constraint Cj and φCj

is a set
of issues wherein constraint Cj is joined. Consequently, δCj

is a set of ranges
whereδCj

= {rangeCJ
(Ii) : Ii ∈ ΦCj

}. The conditions under which constraint
Cj is satisfied are as follows. The value assumed by issues Ii is xIi . If Cj is
satisfied, then an agent having Cj obtains the value thereof vCj

.

Cj =

{
satisfy if xIi ∈ rangeCj

(Ii) ∀Ii ∈ φCj

unsatisfy otherwise

Figure 1 shows an example of an agent’s utility graph and issues shared.
Here, two agents who have their own utility graph share three issues. Each

of the agents has constraints that link issues. The issue takes an issue value.
A constraint is satisfied if the issues linked by this constraint have issue values
within the predefined ranges. When a constraint is satisfied, the agent obtains a
value from this satisfied constraint.

Assumption 1. A constraint that is difficult to satisfy has a higher value.

We made the following assumptions in accordance with Assumption 1:
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Fig. 1. Sharing issue and utility graph.

– Constraints with a wider issue-value range (rangeCj
) are easier to satisfy and

the values are lower. On the other hand, constraints having a narrower value
range are more difficult to satisfy and the values are higher.

– Agreement has higher priority, so constraints related to the shared issues have
more value than individual constraints.

2.2 Negotiation Protocol

In order to focus only on the compromise algorithms, we propose a simple nego-
tiation protocol. We propose a simultaneous repeated offer protocol. In this
protocol, each agent proposes its own offer to the opponent. If both agents can
accept the offers, then they reach an agreement. If not, both agents revise their
offers by compromising, and then propose again. This repeats until one of the
agents cannot compromise anymore.

The Algorithm 1 is the concrete definition.

Algorithm 1. Simultaneous repeated offer protocol.
1: repeat
2: Each agent finds an optimal issue value assignment that maximizes its own utility
3: Each agent simultaneously proposes the issue value for the shared issue as an

offer
4: Judging agreement:
5: if Both agents offer the same issue value for the shared issues then
6: then they reached an agreement
7: else
8: Each agent performs the compromise process (refer to the next section).
9: end if

10: until one of the agents cannot continue, i.e., no constraint can be relaxed or when
the prescribed number of iterations is reached.
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By performing the compromise process, the agent modifies and revises its
utility space so that the agent can compromise with the opponent to reach
agreement.

In this protocol, in each round, each agent makes an optimal proposal based
on its own utility space. In the field of automated negotiations, the alternating of
offered protocols [22] is well known and has been employed very much. However,
an agent’s strategy changes depending on which agent will give the first proposal.
Therefore, we adopted a simple simultaneous repeated offer protocol. Extending
it to alternating offer protocols is a subject for future work.

3 Explainable Compromise Process Based on Constraint
Relaxation

3.1 Explainable Compromise Process

In this section, we show the compromise process based on constraint relaxation.
Constraint relaxation is reducing the sum of allowable utilities (value) by reduc-
ing the number of satisfiable constraints.

Fig. 2. Example of agreement based on constraint relaxation 1: Initialization.

In the existing research, no explanation has been provided regarding how
the agreement is achieved with these values when making a compromise by ad-
hoc threshold adjustment. In this research, unsatisfiable constraints are relaxed,
i.e., removed, for compromising. Because we can ascertain which constraints are
removed in the compromising process, we can understand how the agent com-
promised and which constraints were relaxed for agreement. In order to achieve
this explainable compromising process, we classified the constraints into believed
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Fig. 3. Example of agreement based on constraint relaxation 2: Agreement by relax-
ation.

(IN) constraints and non-believed (OUT) constraints. Initially, all constraints are
set to IN, while the relaxed constraints are set to OUT.

Figures 2 and 3 show simple examples of the compromise process we propose.
Agent 1 has Issue I1 and Issue Is as shown in Fig. 2. Issue Is is the shared issue.
Agent 2 has Issue I2 and Issue Is. Each issue has issue values of 1, 2 or 3.
Agent 1 has constraints C1 and C2. Since the utility is higher when both issues
are satisfied, the initial optimal solution is 1 for I1 and 2 for Is. Agent 2 has
constraints C3, C4, and C5. The optimal solution is 3 for Issue Is and 2 for
I2. In the Fig. 2 case, the agents have different issue values for the shared issue
Is, which means they have not reached an agreement. Therefore, each agent
performs a compromise process by removing one constraint. For example, in this
case Agent 1 sets constraint C1 to OUT and Agent 2 sets constraint C5 to OUT.
Consequently, Agent 1’s Is issue value stays at 2 while Agent 2’s Is issue value
also becomes 2. As a result, Agent 1 and Agent 2 reach an agreement. Since it
is known which constraints were set to OUT (not believed) in the compromise,
it becomes possible to explain which constraints were left out and why. This is
different from existing studies in which agents simply adjust the threshold of
acceptance.

3.2 Compromising Strategies

We propose the following four strategies. All initial constraints are IN and all
initial relaxed constraints are OUT.

Random: One of the constraints in IN is randomly selected and pushed into
OUT.

min: The lowest value constraint is selected from IN constraints and pushed into
OUT.
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distance: The constraint that has the longest distance from the shared issue
is selected in IN and pushed into OUT. Here, the distance is the number of
connected constraints from the shared issue.

min + distance: The constraint with the least value among the constraints
most distant from the shared issue is selected from IN and pushed into OUT.

4 Experiment

4.1 Experiment Setting

We performed an experiment to compare the performances of the proposed com-
promising strategies. Our experimental setting included the following parame-
ters:

– There are two agents.
– One issue can take up to 10 values.
– There is a single shared issue.
– Each agent has x issues.
– Each constraint includes at least one issue.

In other words, each issue is always included in one or more constraints.
The number of constraints that include an issue is y. We employed a multi-
start local search approach as a search method to find the optimal solution.
Graph structures based on constraints and issues are assigned randomly. Our
experimental setting implies a situation where there are a lot of issues and all of
them are subject to a number of constraints. However, the number of constraints
is small.

4.2 Preliminary Results and Discussion

In this preliminary experiment, we obtained results for several settings. The
results obtained for three settings are shown in Figs. 4, 5 and 6. The graphs
in the three figures compare the social welfares for min, random, distance, and
distance+min.

In Fig. 4, each agent has 10 issues (x = 10) and there is one constraint that
includes each of them (y = 1). In Fig. 5, each agent has 10 issues (x = 10) and
there are two constraints that include each of them (y = 2). In these two cases, a
Tukey-Kramer HSD showed that the social welfare results for the min, distance,
and distance+min categories were significantly higher than those for the random
category.

In Fig. 6, each agent has 20 issues (x = 20) and there are two constraints
that include each of them (y = 2). In this case, in this particular experiment,
the social welfare results for the min and distance+min categories were higher
than those for the random category. However, these results are not statistically
significant.
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Fig. 4. Experimental results for x = 10 and y = 1

When there were more than 20 issues per agent, we were unable to get stable
experiment results. Namely, it was difficult to obtain results showing a significant
difference in the drawing method. This is because there are more than 20 points
per agent, the number of solutions exceeds 1020 and considerable calculation is
required to search the optimal solution. Developing a scalable method will be one
of the most important subjects for future work. Also, the graph structure cur-
rently given to the agent is randomly given. Developing an optimization strategy
based on the structure of the graph will also be a subject for future work.

5 Related Work

In this section, we describe the differences between our study and related work.
In the field of automated negotiation research, the compromise process was first
proposed by Klein et al. [18]. His main argument is that it is reasonable for the
agent to gradually compromise at the Pareto front in simple negotiations where
the issues are independent and the utility space is linear in each issue. However,
if the issues are interdependent, the process is not simple because utility space
is complicated, which makes the agent unable to find the Pareto front easily.
To address this problem, Klein et al. proposed an SA-based agreement point
search protocol (implicitly assuming compromising). In addition, Faratin et al.
[5] analyzed various compromise functions.

The ANAC Competition [3] has been held annually since 2010. It is common
for ANAC agents to adopt a method for estimating and presenting proposals
that can be statistically accepted from the opponent’s offers and accepting the
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Fig. 5. Experimental results for x = 10 and y = 2

proposal by adjusting the threshold considering the time discount utility. For
example, AgentK [17], the winning agent of ANAC 2010, estimates the oppo-
nent utility space and the attitude (hostile or compromising) towards agreement
from the opponent’s offer history. If the partner seems to be a compromiser,
concession is made, and if the partner is hostile, it will not concede more than
a certain threshold. The above is the strategy that pioneered ANAC’s basic
concession strategy. Fawkes [2], the winning agent of ANAC 2013, estimates
optimal concessions using discrete wavelet prediction based on an opponent’s
offer history. Most existing studies have focused on how to adjust the threshold
so that the opponent’s offer can be accepted. The threshold is a kind of upper
limitation utility with which the agent can accept the opponent’s offer. However,
these studies give no explanation about how to achieve the threshold value. Thus,
they do not explain why the agent compromises. This is a real problem because
if your self-driving car compromises, you will not be able to obtain any expla-
nation about the compromise. Also, as far as the authors know, no research has
been done that assesses how compromising can be explained for an automated
negotiation agent that assumes multi-argument utility functions.

Sycara has published a series of studies [24–26] that proposed negotiation
and compromising processes that are explainable because they use case-based
reasoning. The point is that they defined compromise and persuasion in the
form of logical arguments within the framework of case-based reasoning. Sycara’s
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Fig. 6. Experimental results for x = 20 and y = 2

series of studies is also related to argumentation theory [23,27] and has developed
into mathematical argumentation theory. On the other hand, the viewpoint of
this research is focusing on how to construct an explainable compromise process
based on the utility function that can be handled numerically.

The Distributed Constraint Satisfaction/Optimization Problem (DCSP/
DCOP) [28] has been one of the major topics in multiagent research. Because our
model is based on constraints, it is closely related to DCSP/DCOP. The main
difference is that our model focuses on negotiation situations where agents are
basically trying to maximize their own individual utilities, but they compromise
because they need to make an agreement. This is because if they cannot reach
an agreement, there is no utility. In DCSP/DCOP, however, agents basically
do not consider their own individual utilities. The main focus is on constraint
satisfaction or optimization with distributed cooperative agents.

Wakaki et al. [27] published a paper about a DTMS (Distributed Truth
Maintenance System) in which they proposed a classification of consistency in
multiagent environments. They classified the distributed consistency concept
into Inconsistent, Local-Consistency, Local-and-Shared-Consistency, and Global
Consistency categories. In this study, an agreement means that each agent has
its internal consistency while they have a consistent shared issue-value, which
is the Local-and-Shared-Consistency. The compromising method we propose is
one of the methods for obtaining Local-and-Shared-Consistency. However, the
constraint graph we use represents utility space. On the other hand, a DTMS
does not express preferences.
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6 Conclusion

We have developed and in this paper propose an explainable compromise process
for automatic negotiation agents. Most existing automatic negotiation compro-
mising processes are ad-hoc adjustments of a threshold to accept an opponent’s
offers. However, our proposed method enables an explanation to be obtained by
eliminating constraints one by one.

The following are our contributions: (1) The novel explainable compromise
process we developed is based on a utility graph structured with constraints and
issues. (2) For automatic multi-issue negotiation, we developed a new model that
distinguishes between shared issues and personal issues. (3) For the compromise
process, we developed a constraint relaxation process based on distance and
value and demonstrated its effectiveness.

As a subject for future work, we should attempt to develop a more sophisti-
cated compromising process. For example, it should be possible to create a pro-
cess that can find possible combinations of the fewest constraints to be relaxed
so that agents can change their alternatives.
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Abstract. There are online forums such as changemyview where a user
may submit his/her views on a subject matter, against which other users
argue to try to change the opinions of his/hers. To measure the quality
of such discussion, one useful criterion is how influential a given topic
is to participating users’ opinion changes, as may be measured by the
change (if any) in the proportion of supporting-objecting-mixed opinions
by users. In this work, we incorporate the notion of agency into a pre-
viously proposed argumentation framework for issue-based information
systems, QuAD, and formulate semantics of opinion transitions by newly
considering agent-wise evaluation of QuAD initial scores.

1 Introduction

Consider the following argumentation example modelled off a thread1 in change-
myview, which is an online forum allowing a user to submit his/her views on a
certain subject matter, against which other users may argue to try to change
the opinions of his/hers.

1. Proposition argument P : There should exist a system to ensure politicians
admit to their blatant lies.

2. User e1 supporting P : Agreed. It should be a community that will decide if
a politicians lies are blatant or serious enough to warrant retraction. If they
find such a lie, politicians are legally required to take back their false claims
or they will be removed from office.

3. User e2 objecting e1: We already have a system to hold politicians account-
able for their lies: voting. Also, I think this would be a very problematic
system to implement. Politicians would just make vague statements that can
not be proven one way or the other. Saying, “Border crossings are a threat
to national security” or “Medicare for all would be bad for America” is a
personal opinion statement and can not be true or false.

4. User e1 concurring with e2 in part: True, vague statements might be a
problem. As for voting, I feel that it is too slow to call them out on their lies.

1 “CMV: There should exist a system to ensure politicians admit to their blatant lies”
on reddit.com.
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5. User e3 objecting e2 in part: I don’t think voting is actually a good enough
deterrent. Like, how can a voter know that Trump is lying to them when they
only watch Fox News? Fox isn’t going to report that. Basically, voting to oust
liars only works if the voters believe they’re liars.

Assume the following arguments:

P : There should exist a system to ensure that politicians admit to their blatant
lies.

a1: Agreed. It should be a community that will decide if a politician’s lies are
blatant or serious enough to warrant retraction.

a2: Politicians will be legally required to take back their serious false claims, or
he/she will be removed from office.

a3: We already have a system to hold politicians accountable for their lies:
voting.

a4: It is hard to implement the proposed system because politicians would just
make vague statements which cannot be proven to be either true or false.

a5: It is true that vague statements might be a problem.
a6: As for voting, I feel it is too slow to call them out on their lies.
a7: I do not think voting is a good enough deterrent. Voting to oust liars only

works if the voters believe they are liars.

A shows the attack/support relations among them, and also which non-
proposition arguments belong to which agent (user).

P is the proposition argument for this discussion, to which e1 provides two
supportive opinions a1 and a2. Later on in the discussion, e1 revises his view on
a2, concurring by a5 that vague statements which may be neither true nor false
is problematic to the idea embedded in a2. Thus, comparing one of e1’s initial
opinions about P , i.e. a2, and his/her later opinion a5 in response to e2’s a4, we
see that an opinion transition, as far as a2 is concerned, has occurred for e1 with
respect to P .

Interestingly, this discussion initiated by e1 is not just about e1’s opinions.
e2 by his/her argument has expressed his views against P , and e3 has likewise
expressed his/her views on P , if indirectly, through objection to one of e2’s coun-
terarguments, namely a3. Indeed, a view of any participants to this discussion
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can be supporting or objecting P , and just as e1, their opinions on P can also
transition.

Concerning the condition of an opinion change, it is worth noting that an
agent’s opinion change does not entail from his/her opinion merely getting
attacked by another agent, such as e2’s a3 in A attacked by e1’s a6 and e3’s a7,
since e2 may have simply dismissed the counter-arguments as nothing important
to give a thought to. This can be contrasted to e1 acknowledging a4 with a5,
where it is obvious that e1 actually supports a4 against his/her former opinion a2.

1.1 Semantics of Agents’ Opinion Transitions

Given the purport of changemyview being that agents mutually act upon their
opinions of proposition arguments, one useful criterion to judge the discus-
sion quality is whether a proposition argument has been sufficiently influential
for altering agents’ initial opinions of the proposition arguments. This can be
measured for example by the change (if any) in the proportion of supporting-
objecting-mixed opinions of a proposition argument, or, if it matters which spe-
cific agents have changed their opinions, by the change in the number of agents
who altered their opinions of a proposition argument. By setting forth some
threshold value n, we can then accept those proposition arguments with the
change greater than n.

For the acceptability of arguments, a Dung-like bipolar argumentation the-
ory [12] allows inference of acceptable arguments from attack/support relations
among them [11]. There are studies that incorporate numerical information to
argumentation theory, e.g. [6,14,16,21], in which finer grading of acceptability
semantics is achieved.

However, while a Dung-like acceptability semantics [13] looks at one argu-
mentation graph for outputting a set of sets of nodes as acceptable arguments,
the above-described semantics of opinion transitions require us to firstly (A)
know both their initial opinions and their final opinions, and secondly to (B)
juxtapose the two, which is not exactly in the realm of Dung acceptability seman-
tics. In fact, while a3 (and a4) in A are initial opinions of e2’s of P , in which
sense they are relevant to the semantics of opinion transitions we envisage, a3 is
not relevant to a Dung acceptability semantics in the sense that it is not going
to be an acceptable argument.

Towards the direction of dealing with quantitative judgement of arguments’
strengths in a forum argumentation with an acyclic argumentation structure,
there is a line of study [9,27] that incorporates ideas in argumentation theory
into issue-based information systems [20], with an emphasis put on inference of
final scores on arguments from initial scores given to them. However, currently,
the theory QuAD proposed in [9] does not presume the notion of agency and
agent-wise inference, which does not allow us to simply make use of the theory
for our purpose of obtaining opinion changes per agent.

To fill the technical gap, we propose a multi-agent forum argumentation
as a multi-agent-aware QuAD, and characterise the novel semantics of opinion
transitions within.
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1.2 Related Work

Change of Opinions. Change of belief is a key topic in belief revision [1,19].
A belief is a logical expression, and so a clear distinction of whether a belief
opposes previously held beliefs is naturally obtained. Similar is true of logic-
based argumentation expressing arguments as logical expressions [3,15,25], in
which an attack relation between arguments is inferrable from logical contradic-
tion between the two expressions. In the setting, it is in fact possible to apply
belief revision techniques [5]. However, in general, an attack is not limited to
strictly logical contradiction. Particularly in rhetoric argumentation, if one so
chooses, he/she may attack any argument with any argument irrespective of
logical (ir)relevance. What constitutes an opinion change in argumentation is
indeed a question that must be answered. Nevertheless, since an opinion must
be of something, if, say, an agent supports a proposition argument initially, like
e1 supporting P with a2 in A , and if the same agent later on supports a counter-
argument to a2, like e1 supporting a4 (a counter-argument to a2) with a5, then
we see that e1 has changed his/her view as regards P . Similarly, when an agent
who has expressed an opinion supportive of a proposition argument, and later
on attacks another agent’s opinion supportive of his/her opinion, we again see
that the agent’s opinion has changed.

Abstract Multi-Agent Argumentation and Forum Argumentation.
There are several theories of abstract multiagent argumentation [4,7,10,28],
some dedicated to agent argumentation under incomplete information. While
they study acceptability statuses of a given argumentation graph treating all
nodes equally, in this work we assume proposition arguments as are distinct
from other arguments to be put forward to attack or support them, directly or
indirectly. The differentiation is from classifications of issue-based information
systems (IBIS) [20], which, in addition to proposition arguments (called positions
in IBIS) and other arguments (called arguments in IBIS), also has issues. QuAD
[9,27] is an argumentation theory that takes into account the distinction. The
aim of QuAD is to derive, through argumentation theoretic recursive aggrega-
tion, final scores of given arguments as indications of the strength of support
from the initial scores given to them. In comparison, our goal is to infer from
the initial and final opinions of agents’ (and from some threshold values) which
proposition arguments are sufficiently influential in altering agents’ views. Since
the inference considers the relation between two different states and since we
also consider multi-agent local scopes with agent-wise opinion change, the the-
ory of QuAD is not immediately applicable. QuAD with voting from users [26]
embeds a set of users as a parameter. However, a user in their framework is not
for defining agents’ local scopes, while ours is. For theoretical generalisations of
QuAD and related argumentation formalisms such as social argumentation [21],
there is a study [24] that measures both quality and acceptability of an opinion
through aggregation of votes and numerical values for a chosen set of criteria.
Still, our focus differs in that we deal with the influence of a proposition argu-
ment primarily through participating agents’ opinion changes. There are other
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studies [2,8] that detail which properties QuAD and other related formalisms
with numerical judgements satisfy.

In the rest, we will: go through Dung abstract argumentation, its preferred
set characterisation and QuAD (in Sect. 2); and develop a multi-agent forum
argumentation model as a multi-agent adaptation of QuAD, illustrate our score
inference and opinion change semantics in examples, and also study how the
score inference may be characterised by Dung-like preferred sets (in Sect. 3),
before drawing conclusions.

2 Technical Preliminaries

Let A be a class of abstract entities that we understand as arguments, whose
member is referred to by a or p with or without a subscript and a superscript,
and whose subset is referred to by A with or without a subscript and with or
without a superscript.

2.1 Dung Abstract Argumentation

Dung abstract argumentation considers an argumentation as a graph, with nodes
as arguments and edges as attacks. The purpose of Dung theory is to judge
which set(s) of arguments are acceptable in the graph. The semantics is called
acceptability semantics.

Specifically, a Dung argumentation is defined to be a tuple (A,R) with R ⊆
A×A. a1 ∈ A is said to attack a2 ∈ A if and only if, or iff, (a1, a2) ∈ R. A1 ⊆ A
is said to defend ax ∈ A iff every ay ∈ A attacking ax is attacked by at least
one member of A1. A1 is said to be: conflict-free iff no member of A1 attacks a
member of A1; admissible iff it is conflict-free and defends all the members of
A1; complete iff A1 is admissible and includes every argument defended by A1;
and preferred iff A1 is a maximal complete set. The set of all preferred sets of
(A,R) is called the preferred semantics of (A,R).

Later studies based on this Dung theory extend it one way or another, such
as by considering more than one binary relation and by considering several types
of arguments, as does QuaD below.

2.2 QuAD: Quantitative Argumentation Debates

Let Ap,Aa,As be a class of proposition arguments, that of non-proposition
attacking arguments and that of non-proposition supporting arguments. They
are such that A = Ap ∪ Aa ∪ As, and that they are disjoint. We refer to: a
finite subset of Ap by Ap; that of Aa by Aa; and that of As by As, each with or
without a subscript.

A QuAD framework is a tuple (Ap, Aa, As, R, f) with: R ⊆ (Aa ∪As)× (Ap ∪
Aa ∪ As); and f : (Ap ∪ Aa ∪ As) → [0, 1]. (Ap ∪ Aa ∪ As, R) is assumed acyclic,
i.e. there exists no a ∈ (Ap ∪ Aa ∪ As) such that (a, a) ∈ R+. Here R+ is the
transitive closure of R. Also, if (a1, a2), (a1, a3) ∈ R, then a2 is a3. f associates
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some numerical value, called initial score, to Ap∪Aa∪As for certain quantitative
judgement. a1 ∈ (Ap ∪Aa ∪As) is said to be connected to a2 ∈ (Ap ∪Aa ∪As) iff
either a1 is a2, or (a1, a2) ∈ R+, or else (a2, a1) ∈ R+. For every a ∈ (Aa ∪ As),
there exists some ax ∈ Ap such that a is connected to ax. In this paper, we
further assume that Ap �= ∅ because our semantics of opinion transitions are
with respect to member(s) of Ap.

The following characterisation of attack and support derives from [11], with
a slight difference that we include the Dung-attack as a special case of (in)direct-
attack instead of supported-attack. Assume a1, a2 ∈ (Ap ∪ Aa ∪ As). a1 is said
to:

– support a2 iff (a1, a2) ∈ R and a1 ∈ As.2

– (in)direct-attack a2 iff either both (a1, a2) ∈ R and a1 ∈ Aa, or else there
exists some a3 ∈ (Ap ∪ Aa ∪ As) such that a1 (in)direct-attack a3 and that
a3 supports a2. a1 may be simply said to attack a2 when (a1, a2) ∈ R and
a1 ∈ Aa both hold.

– supported-attack a2 iff there exists some sequence a3, . . . , ak+3 ∈ (Ap ∪ Aa ∪
As) such that a1 supports a3, that ak+3 attacks a2, and that ai+3 supports
ai+4 for all 0 ≤ i ≤ k − 1.

A1 ⊆ (Ap ∪ Aa ∪ As) is said to be conflict-free [11] iff, for no a1, a2 ∈ A1,
a1 (in)direct-attack or supported-attack a2. Characterisation of defence in this
paper differs from that in [11], the definition of which we will therefore postpone
until Sect. 3.

3 Multi-Agent Forum Argumentation Frameworks and
Opinion Transition Semantics

As per our introduction, we focus on formulation of the semantics that judge
which sets of proposition arguments have sufficiently influenced agents opinion
changes. To this end, we extend QuAD into: (Ap, Aa, As, R, f, E, fE) where E is
a finite set of abstract entities we understand as agents and fE is a surjective
function: Aa ∪ As → E. Intuitively, when fE(a) = e, a is in the scope of e,
i.e. e expresses a non-proposition argument a. We call such a tuple MQuAD
(Multi-agent QuAD).

3.1 Initial and Last Opinions by an Agent

Since we are interested in formulating semantics of opinion transitions for a ∈ Ap

based on agents’ initial and last opinions of a, we define what constitutes ini-
tial or last opinions. Intuitively, since the graph (Ap ∪ Aa ∪ As, R) is acyclic
by definition, for every a ∈ Ap, we have sequence(s) a, a1, a2, . . . such that

2 “and” instead of “and” is used in this paper when the context in which it appears
strongly indicates truth-value comparisons. It follows the semantics of classical logic
conjunction.



694 R. Arisaka and T. Ito

(a1, a), (a2, a1), . . . ∈ R. Thus, any non-proposition argument ak that appears
first as a non-proposition argument by e in those sequences should be consid-
ered e’s initial opinion of a; and, similarly, any non-proposition argument ak that
appears for the last time as a non-proposition argument by e in those sequences
should be considered e’s last opinion of a. Let us make this intuition formal, and
obtain the set of all initial and last opinions by an agent.

Definition 1 (Forward and backward connected sets). Let C(A) denote
the set of all a ∈ (Ap ∪ As ∪ Aa) connected to some member of A, and let
δ : 2(A

p∪Aa∪As) → 2(A
p∪Aa∪As) be such that δ(A1) = A1 ∪ {a ∈ (Ap ∪ Aa ∪

As) | ∃ax ∈ A1.(ax, a) ∈ R+}. For any A ⊆ (Ap ∪ Aa ∪ As), we say that δ(A) is
A’s forward connected set, and that C(A)\δ(A) is A’s backward connected set.

Definition 2 (Agent’s initial and last opinion sets). We say that A ⊆
(Aa ∪ As) is e’s initial opinion set for a1 ∈ Ap iff A ⊆ C({a1}) and for every
a ∈ A and for every ax ∈ δ({a}), fE(ax) = e iff a is ax. We say in particular
that A ⊆ (Aa ∪ As) is e’s maximal initial opinion set for a1 ∈ Ap iff there exists
no e’s initial opinion set that is strictly larger than A.

We say that A ⊆ (Aa∪As) is e’s last opinion set for a1 ∈ Ap iff A ⊆ C({a1})
and fE(a) = e for every a ∈ A and fE(a) �= e for every a ∈ (C(A)\δ(A)). We
say in particular that A ⊆ (Aa ∪ As) is e’s maximal last opinion set for a1 ∈ Ap

iff there exists no e’s last opinion set that is strictly larger than A.

Example 1 (Initial and last opinion sets). (Ap, Aa, As, R, f, E, fE) for A is such
that:

Ap ≡ {p}. Aa ≡ {a3, a4, a6, a7}. As ≡ {a1, a2, a5}.
R ≡ {(a1, p), (a2, p), (a3, a1), (a4, a2), (a5, a4), (a6, a3), (a7, a3)}.
E ≡ {e1, e2, e3}. fE(a1,2,5,6) = e1, fE(a3,4) = e2, fE(a7) = e3.

At this point, assume some f .
e1’s maximal initial opinion set for p is {a1, a2}. To see that it is an initial

opinion set for p, it suffices to verify the conditions given in Definition 2. First
of all, clearly, {a1, a2} ⊆ C({p}) ≡ {p, a1,...,7}. Secondly, δ({a1}) = {p, a1} and
δ({a2}) = {p, a2}. We have fE(a1,2) = e but fE(p) �= e, as required. To verify
that it is maximal, suppose we add either of a5 and a6 into the set, then we see
that δ({a5}) (similarly for δ({a6})) is {a5, a4, a2, p}, and fE(a2) = e as well as
fE(a5) = e, which does not satisfy the second condition. Such a set is not e1’s
initial opinion set for p. Suppose we add either of a3, a4 and a7 into the set,
then it is immediate that fE(a3,4,5) �= e, and the second condition is again not
satisfied. Such a set is not e1’s initial opinion set for p.

e1’s maximal last opinion set for p, on the other hand, is {a5, a6}. To see
that it is e1’s last opinion set for p, it suffices to verify the conditions given in
Definition 2. Firstly, we have {a5, a6} ⊆ C({p}). Secondly, we have fE(a5,6) = e1.
For the third condition, note we have C({a5, a6}) = {p, a1,2,3,4,5,6}, and also:
δ({a5, a6}) = C({a5, a6}) in this example. Therefore, C({a5, a6})\δ({a5, a6}) =
∅. Thus, vacuously, fE(a) �= e for every a ∈ ∅. Verification that it is maximal is
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done in a similar manner to the verification that {a1, a2} is e’s maximal initial
opinion set for p.

Similarly, {a3, a4} is e2’s maximal initial and last opinion sets for p. Unlike
for e1, here C({a3, a4})\δ({a3, a4}) = {a7} which is not empty. However, clearly
fE(a7) �= e2, satisfying the third condition for {a3, a4} being e2’s maximal last
opinion set for p.

As a matter of fact, we have:

Proposition 1 (Uniqueness). For every e ∈ E, there exists only one maximal
initial and last opinion set for any p ∈ Ap, as given by a set union of all e’s
initial or last opinion sets for p.

Proof. Suppose two initial (last) sets A1, A2 by e ∈ E of p ∈ Ap. Suppose, by
way of showing contradiction, that A1 ∪ A2 is not an initial (last) set by e of p,
then there exists at least one ax ∈ A1∪A2 that appears in δ(A1∪A2)\(A1∪A2).
Refer both to Definitions 2 and 1 to detect contradiction. ��

3.2 Evaluation of Opinion Sets

Now that we can tell which sets are maximal initial and last opinion sets of each
agent for each proposition argument, we set about learning whether e ∈ E is
supporting, objecting, or having a mixed opinion of a given p ∈ Ap. For this
purpose, we define that f satisfy the following simple initial scoring classifying
a single argument into either a supportive or objecting opinion of a proposition
argument. By default, each proposition argument is considered supportive of
itself. We note that the initial scores are often regarded as given beforehand
of discussion in the relevant literature; however, derivation of a truly objective
score out of the context of the discussion is not feasible, thus we understand the
initial scores as numerical values that will be used for inference.

Definition 3 (Supportive/objecting initial scoring). We define f to be
such that:

1. f(a1) = 1 iff either of the following holds.
(a) a1 ∈ Ap.
(b) there is some a ∈ (Ap ∪ Aa ∪ As) such that (a1, a) ∈ R, and that either

of the following holds.
i. a1 ∈ As and f(a) = 1.
ii. a1 ∈ Aa and f(a) = 0.

2. f(a1) = 0 iff there is some a ∈ (Ap ∪Aa ∪As) such that (a1, a) ∈ R, and that
either of the following holds.
(a) a1 ∈ As and f(a) = 0.
(b) a1 ∈ Aa and f(a) = 1.
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f(a) = 1 means that a is directly or indirectly supporting p ∈ Ap that it is con-
nected to. Meanwhile, f(a) = 0 means that a is directly or indirectly objecting
p ∈ Ap that it is connected to.

For the evaluation of an agent’s maximal initial and last opinion sets, if each
initial opinion a ∈ (Aa ∪ As) of p ∈ Ap by e ∈ E is supportive of p, i.e. f(a) = 1
for all such a, then it is clear that e is initially supportive of p. Similarly, if each
one of them is objecting p, i.e. f(a) = 0, then clearly e is initially objecting
p. In case some of e’s initial opinions of p are supportive, while the others are
objecting, then we judge that e’s opinion of p is mixed. We reflect the three-
valued judgement in the following definition. We emphasise that the judgement
is per agent, since every agent that expresses any opinion of p ∈ Ap has its own
set of initial and last opinion sets.

Definition 4 (Opinion set evaluation). Let eval : 2(A
p∪Aa∪As) × E → [0, 1]

be such that:

1. eval(A1, e1) is undefined if either A1 is empty or else A1 is not e1’s initial or
last opinion set.

2. Otherwise, we have:
(a) eval(A1, e1) = 1 if, for every a ∈ A1, f(a) = 1.
(b) eval(A1, e1) = 0 if, for every a ∈ A1, f(a) = 0.
(c) eval(A1, e1) = 0.5, otherwise.

Thus, for every e ∈ E, we can apply eval to e’s maximal initial and last opinion
sets to see whether e is supportive or objecting p, or neither.

Example 2 (Opinion set evaluation). (Continued from Example 1) For our exam-
ple A , we assume that f is as has been defined in Definition 3. Any a ∈
(Ap ∪ Aa ∪ As) with f(a) = 1 is shown with a border around the circle in
B , while any a ∈ (Ap ∪ Aa ∪ As) with f(a) = 0 is shown without any border

in B .

For the evaluation of e1’s maximal initial and last opinion sets of p,
eval({a1, a2}, e1) = 1, and also eval({a5, a6}, e1) = 0.5, so e1 initially was
supportive of p, but progression of the forum argumentation let him ques-
tion some supportive premises of p, namely of a2, by the end. Meanwhile,
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eval({a3, a4}, e2) = 0, and eval({a7}, e3) = 1, and so initially e2 is supportive
of, and e3 is objecting, p. However, because {a3, a4} and {a7} are at the same
time the maximal last opinion sets of e2, and respectively of e3, we see that opin-
ions by the two agents did not change throughout the forum argumentation.

3.3 Opinion Set Evaluation Characterisation with Dung-like
Preferred Sets

While the semantics of QuAD-based argumentation theory is intended to be
more quantitative than Dung-like acceptability semantics, it is still of interest
to identify the relation between the evaluation we have defined and Dung-based
characterisation. Here, we show that eval in Definition 4 can be equivalently
expressed with preferred sets.

Let us define the notion of defence to begin with:

Definition 5 (Defence). Let σ : Ap ∪ Aa ∪ As → 2(A
p∪Aa∪As) be such that

σ(a) is the least set that satisfies all the following.

– a ∈ σ(a).
– a1 ∈ σ(a) if a1 ∈ As and there exists some a2 ∈ σ(a) such that (a1, a2) ∈ R.

We say that A1 ⊆ (Ap ∪ Aa ∪ As) defends a ∈ (Ap ∪ Aa ∪ As) iff, for every
ax ∈ (Aa ∪ As) (in)direct-attacking a, there exists some ay ∈ A1 such that ay

supported-attacks or (in)direct-attacks some az ∈ σ(ax).

Next, we define a new concept of up-to-preferred set which is such that pre-
ferredness, i.e. (1) conflict-freeness, (2) defendedness, (3) containedness of all
that are defended, and (4) maximality among all those sets that satisfy (1) +
(2) + (3) (See Sect. 2), holds under some subset of (Ap ∪Aa ∪As), that is, up to
the subset:

Definition 6 (Up-to-preferred sets). We say that A1 ⊆ (Ap ∪ Aa ∪ As) is
complete up to A2 ⊆ (Ap ∪ Aa ∪ As) iff A1 ⊆ A2 and A1 is both conflict-
free and including every a ∈ (Ap ∪ Aa ∪ As) ∩ A2 that it defends in another
MQuAD:(Ap ∩ A2, A

a ∩ A2, A
s ∩ A2, R ∩ (A2 × A2), f ′, E′, f ′

E) where:

– f ′ is ((Ap ∪ Aa ∪ As) ∩ A2) → [0, 1] satisfying Definition 3.
– E′ = {e ∈ E | ∃a ∈ ((Aa ∪ As) ∩ A2).fE(a) = e}.
– f ′

E is ((Aa ∪ As) ∩ A2) → E′ such that if f ′
E(a) = e then fE(a) = e.

We say that A1 ⊆ (Ap ∪ Aa ∪ As) is preferred up to A2 ⊆ (Ap ∪ Aa ∪ As) iff A1

is a maximal complete set up to A2.

The motivation of an up-to-preferred set is to group together arguments that
get 1 via f , and group together those that get 0 via f when A1 ⊆ (Ap ∪Aa ∪As)
is preferred up to δ(Ax) where Ax is some maximal initial or last opinion set of
some agent of some p ∈ Ap.
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Example 3 (Defence and up-to-preferred sets). Consider the MQuAD in C . As
preferredness of a set requires that it includes all that it defends, the defence in
Definition 5 should allow us to have (or not have) all that get the same value
via f .

Let us begin with e1’s opinion sets. e1’s maximal initial opinion set for p is
{a1}, clearly. Hence, we should be able to obtain that {p, a1} is preferred up to
δ({a1}), to judge that a1, belonging to the same set with p, is supportive of p.
But, indeed, {p, a1} is preferred up to δ({a1}) = {p, a1}, as {p, a1} involves no
member of Aa. For e1’s maximal last opinion set for p, which is {a3}, we have
that δ({a3}) = {a3, a2, a1, p}. There is only one subset of δ({a3}), i.e. {a2, a3}
which is preferred up to δ({a3}). Now, because the set does not contain p, we
like to conclude that both a2 and, in particular, a3 ∈ {a3} are objecting p, which
is indeed the case, for f(a2) = f(a3) = 0 in C .

Let us now look at the opinion sets of e2 and e3, to see why defence is
as defined in Definition 5. e2’s maximal initial (and last) opinion set for p is
{a4, a5}. We have δ({a4, a5}) = {a4, a5, a2, a1, p}. There are two preferred sets
up to δ({a4, a5}), one is {a4}, the other is {a5, a1, p}. We would like to conclude
from the first set that a4 is objecting p because it does not contain p, which is
indeed the case. From the second set, we would like to conclude in particular
that a5 is supportive of p, which is indeed the case. Similarly for e3, we obtain
that {a6, a1, p} is the (only one) preferred set up to δ({a6}), and as we expect,
a6 is supportive of p.

Now, were the definition of defence as given in [11]: A1 ⊆ (Ap ∪ Aa ∪ As)
defends a ∈ (Ap ∪ Aa ∪ As) iff, for every ax ∈ (Aa ∪ As) (in)direct-attacking
or supported-attacking a, there exists some ay ∈ A1 such that ay supported-
attacks or (in)direct-attacks ax, we would obtain for e3 that {a6} is the only
one preferred set up to δ({a6}), as, {p, a1, a6} would defend neither a1 nor p,
for none of them attacks a2 which is (in)direct-attacking a1 ∈ {p, a1, a6}. This
motivated Definition 5. In passing, we note that our support interpretation does
not fall into any of the 3 typical support interpretations (deductive, necessary,
evidential) given in [12]. Given, however, it is not our intent to advertise a new
interpretation of support, we refer an interested reader to [12] for the technical
detail.

For the equivalence proof, the following two observations come in handy.

Lemma 1. Suppose A1 ⊆ Ap ∪ Aa ∪ As, if A1 is not a subset of any preferred
set up to δ(A1), then at least one of the following holds true. (1) A1 is not a
subset of δ(A1). (2) A1 is not conflict-free. (3) A1 does not defend some member
of A1.

Lemma 2. Let h : Ap ∪ Aa ∪ As → 2(A
p∪Aa∪As) be such that, for any a1, a2 ∈

Ap ∪ Aa ∪ As, if a1 ∈ σ(a2) or a2 ∈ σ(a1), then h(a1) = h(a2), and vice versa.
For any F ≡ (Ap, Aa, As, R, f, E, fE), let H(F ) denote a Dung argumentation
(A′, R′) where A′ ≡ ⋃

a∈Ap∪Aa∪As{h(a)}, and where R′ ⊆ A′ × A′ is such that
(h(a1), h(a2)) ∈ R′ iff some ax ∈ h(a1) attacks some ay ∈ h(a2). Then, all the
following hold good.
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1. For every a′ ∈ A′, there exists some n ∈ {0, 1} such that, for every a ∈
Ap ∪ Aa ∪ As, if h(a) = a′, then f(a) = n.

2. A′
1 ⊆ A′ is conflict-free in H(F )(≡ (A′, R′)) iff {a ∈ Ap∪Aa∪As | h(a) ∈ A′

1}
is conflict-free in F .

Theorem 1 (Equivalence). For e ∈ E, suppose that A1 is e’s maximal initial
or last opinion set for p ∈ Ap. We have: (1) eval(A1, e) = 1 iff A1 ∪ {p} is a
subset of a preferred set up to δ(A1); (2) eval(A1, e) = 0 iff A1 is a subset of a
preferred set A2 up to δ(A1) with p �∈ A2; (3) eval(A1, e) = 0.5 iff otherwise.

Proof. For one direction, assume firstly that eval(A1, e) = 1. We show that
A1 ∪ {p} is a subset of a preferred set A2 up to δ(A1). Suppose, by way of
showing contradiction, that there exists no preferred set up to δ(A1) such that
A1 ∪ {p} is its subset. Then, by Lemma 1, (1) A1 ∪ {p} �⊆ δ(A1), (2) A1 ∪ {p}
is not conflict-free, or (3) A1 ∪ {p} does not defend at least one member of
A1 ∪ {p}. (1) is clearly not the case. Suppose (2) holds true, then there exist
some a1, a2 ∈ A1 ∪ {p} such that a1 (in)direct-attacks or supported-attacks a2.
Then, by Lemma 2, f(a1) �= f(a2), and therefore, eval(A1, e) �= 1, contradiction.
Finally for (3), suppose that A1 ∪{p} does not defend ax ∈ A1 ∪{p}. Then there
exists some ay ∈ δ(A1) such that ay attacks ax. However, no a ∈ Ap ∪ Aa ∪ As

such that (a, ax) ∈ R is in δ(A1) by Definition 1, contradiction. All the other
cases are proved likewise through Lemmas 1 and 2. ��

3.4 Semantics of Opinion Transitions

We define two semantics for opinion transitions that occur among agents in
multi-agent forum argumentation. For one of them that we term Ap-centred
opinion transition semantics, only the change in the proportion of supporting-
objecting-mixed-opinionated agents matters, while for the other that we term
E-centred opinion transition semantics, the number of agents who have changed
their opinions is relevant.

Let G denote the class of functions Ap → N.

Definition 7 (E-centred opinion transition semantics). Let init(e, p) and
last(e, p) denote e’s maximal initial opinion set and respectively e’s maxi-
mal last opinion set for p. Let � : Ap → N be such that �(p) = |{e ∈
E | eval(init(e, p), e) is defined and eval(init(e, p), e) �= eval(last(e, p), e))}|.

Let α : G → 2A
p

be such that α(g) = {p ∈ Ap | g(p) < �(p)}. For any g ∈ G,
we say that α(g) is E-centred opinion transition semantics with respect to g.

Definition 8 (Ap-centred opinion transition semantics).
Let ss, os,ms : Ap × {init, last} → N be such that:

– ss(p, init) = |{e ∈ E | eval(init(e, p), e) = 1}|.
– os(p, init) = |{e ∈ E | eval(init(e, p), e) = 0}|.
– ms(p, init) = |{e ∈ E | eval(init(e, p), e) = 0.5}|.
– ss(p, last) = |{e ∈ E | eval(last(e, p), e) = 1}|.
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– os(p, last) = |{e ∈ E | eval(last(e, p), e) = 0}|.
– ms(p, last) = |{e ∈ E | eval(last(e, p), e) = 0.5}|.
Let β : G → 2A

p

be such that β(g) = {p ∈ Ap | g(p) < (max(0, ss(p, init) −
ss(p, last))+max(0, os(p, init)−os(p, last))+max(0,ms(p, init)−ms(p, last)))}.
For g ∈ G, we say β(g) is Ap-centred opinion transition semantics with respect
to g.

We illustrate the difference in detail:

Example 4 (Opinion transition semantics). Let us first illustrate with D that
the two opinion transition semantics are not identical. Assume g ∈ G is such
that g(p) = 1.

Since eval(init(e1, p), e1) �= eval(last(e1, p), e1) and eval(init(e2, p), e2) �=
eval(last(e2, p), e2) and eval(init(e3, p), e3) = eval(last(e3, p), e3), we have that
�(p) = 2. Therefore, α(g) = {p}. On the other hand, ss(p, init) − ss(p, last) = 0
and os(p, init)−os(p, last) = 0 and ms(p, init)−ms(p, last) = 0. Hence, β(g) = ∅.

That is, while both e1 and e2 change their opinions, whose changes are
reflected in E-centred opinion transition semantics, when we count the numbers
of initially supporting/objecting/mixed-opinionated agents for p, and compare
them with the numbers of supporting/objecting/mixed-opinionated agents for p
at the end, we see no change in the proportion. So Ap-centred opinion transition
semantics which considers only the proportion does not include p.

Meanwhile, for our running example A , when g ∈ G is such that g(p) = 0,
we obtain that α(g) = β(g) = {p}, since only e1 changes its opinions, and the
proposition also changes by 1 agent.

Clearly:

Proposition 2 (Subsumption). For any g ∈ G, we have β(g) ⊆ α(g), but not
necessarily α(g) ⊆ β(g).

4 Conclusion

We considered multi-agent-aware QuAD, and formulated two semantics of opin-
ion transitions. They judge which proposition arguments are influential in



Semantics of Opinion Transitions in Multi-Agent Forum Argumentation 701

changing agents’ opinions, one by monitoring the change in the proportion of
supporting-objecting-mixed-opinionated agents towards them, and another by
monitoring the change in the number of agents whose opinions have altered.
The threshold values can be determined from required percentage changes. In
Theorem 1, we showed that evaluation of agents’ initial and last opinion sets (via
eval) can be equivalently characterised by up-to-preferred sets, identifying a link
to Dung notations.

By keeping track of agents’ opinion changes in a forum argumentation, we
can learn which proposition arguments are most persuasive. The knowledge is
beneficial for better understanding ‘critical’ topics in a forum argumentation.

With the rising popularity of online argumentation, it has become important
that we be able to handle large-scale forum argumentations involving hundreds
of agents who may generate thousands of comments [17,18,22]. For those, the
overhead to conduct annotations and to determine precise initial scores of opin-
ions in the continuous scale of [0, 1] is rather steep. More discrete initial scoring
and agent-wise inferences such as considered in this work seem to make a less
expensive, and yet - given the improving performance of argumentation mining
techniques to detect support and attack links, e.g. [23] - still effective alterna-
tive for analysing online forum argumentations. There are many representative
large-scale consensus support systems around, into one of which we are currently
implementing our method for empirically evaluating its scalability.
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Abstract. In Abstract Argumentation, given the same AA framework
rational agents accept the same arguments unless they reason by different
AA semantics. Real agents may not do so in such situations, and in this
paper we assume that this is because they have different preferences
over the confronted arguments. Hence by reconstructing their reasoning
processes, we can learn their hidden preferences, which then allow us to
predict what else they must accept. Concretely we formalize and develop
algorithms for such problems as learning the hidden preference relation
of an agent from his expressed opinion, by which we mean a subset of
arguments or attacks he accepted; and learning the collective preferences
of a group from a dataset of individual opinions. A major challenge we
addressed in this endeavor is to represent and reason with “answer sets”
of preference relations which are generally exponential or even infinite.

1 Introduction

Argumentation is a form of reasoning unifying other forms such as non-
monotonic and defeasible reasoning. Much of its recent development rests on
Dung’s Abstract Argumentation framework (AAF) [11] defined simply as a pair
(Arg,Att) of a set of arguments Arg and a binary attack relation Att. For an
illustration, Fig. 1 shows an AAF from the following story line1.

President Trump nominated Judge Kavanaugh to supreme court on July 9, 2018
[18], arguing that: Judge Kavanaugh should be confirmed because has an excellent judi-
cial record and temperament...(Argument T in Fig. 1).

The Senate Judiciary Committee then began Judge Kavanaugh’s confirmation hear-
ing. At the end of the hearing, Judge Kavanaugh was accused of sexually assaulting Dr
Ford thirty-six years prior at a party. Dr Ford testified that:

F : ...I was pushed ...100% certain that it was Kavanaugh who attacked me...2

Judge Kavanaugh had two lines of defense. The first uses argument K rebutting F .
K : ...I’m not questioning that Dr. Ford may have been sexually assaulted by some

person in some place at some time, but I have never done this to her or to anyone...

1 This AAF is used in all running examples throughout the paper.
2 The unexpressed conclusion of this argument is that Judge Kavanaugh is not quali-

fied to be a Justice. Hence F attacks T .

c© Springer Nature Switzerland AG 2019
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The second line uses argument B, which is supported by a FBI supplemental inves-
tigation afterwards:

B : ...No one can corroborate Dr Ford’s testimony...eyewitnesses named by Dr Ford

denied any memory of the party whatsoever...

Fig. 1. AAF depicted by graph

An intuitive but powerful concept in AAF is the acceptability of an argu-
ment, namely that an argument A is acceptable wrt a set of arguments S iff
any argument attacking A is attacked by S. Semantics of AA are defined by
extending this concept, and widely viewed as representing reasoning standards
possibly adopted by rational agents. Hence an underlying assumption of this
view is that given the same AAF, rational agents accept the same arguments
unless they reason by different AA semantics. However, real agents may not
do so in such situations. Illustratively, in Judge Kavanaugh’s confirmation, the
US senate voted almost along party lines: 48 democrats voted NO, 49 repub-
licans and 1 democrat voted YES, and 2 republicans abstained. Note that at
least in the eyes of the public, these senators arrived at their decisions by the
same reasoning standard, from the same knowledge (arguably) represented by
the AAF in Fig. 1 for which all semantics produce the same set of acceptable
arguments: {T,B,K}. In this paper we assume that different audiences may
arrive at different acceptable arguments because they have different preferences
over the confronted arguments, even though they reason by the same reasoning
standard3. So a senator who voted NO might have preferred F to both B and
K, and hence rejected attacks (B,F ) and (K,F ). Since preferences are the only
thing that individuates different audiences, differences in opinions have to be
traceable to differences in preferences. Thus, an agent’s hidden preferences can
be learned by reconstructing how the agent reasoned to arrive at his opinion.

It is worth noting that argument preferences have been used in Preference-
based Argumentation frameworks (PAFs) [2,3,5,6], however the interest there is
to reason from (argument) preferences to (argument) acceptances. Concretely, a
PAF (Arg,Att, >P ) assumes an input preference relation >P , and uses this to
remove such an attack (A,B) ∈ Att that B >P A (B is preferred to A according
to P ) to arrive at a standard AAF from which arguments are evaluated by AA
semantics. Our interest is to reason from acceptances to preferences. In partic-
ular, the problem of individual preference learning takes as input an incomplete
PAF (Arg,Att, ) and a set O ⊆ Arg ∪ Att of arguments and attacks accepted

3 We focus on the grounded semantics but our approach can be extended to others.
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by an agent, and returns an “answer set” Q(O) consisting of all such preference
relations >P that wrt PAF (Arg,Att, >P ), the elements of O are all accept-
able. From an answer set Q(O), we can then predict whether the agent must
also accept another set A ⊆ Arg ∪ Att, by checking whether the elements of A
are all acceptable in PAF (Arg,Att, >P ) for any >P in Q(O). A major chal-
lenge in this endeavor is to represent and reason with answer sets ranging from
empty set (e.g. Q({F,K}) = ∅), to the whole set of all preference relations over
Arg (e.g. Q({B})), and so exponential or even infinite. A direction one might
pursue is to assume that arguments are characterized by attributes with val-
ues from certain domains and translate Q(O) into a set of preference relations
over those values, hoping that there are not too many relations of this kind.
Unfortunately, since we are working on AA which ignores any internal struc-
tures of arguments, this direction is not possible. So in this paper we start with
the development of a compact representation for answer sets based on so called
preference states. Learning individual preferences is reduced to the derivation of
a finite set of preference states QO that compactly represents a possibly infi-
nite answer set Q(O). Our computational structure developed for this purpose
is aptly called preference derivations which, as suggested in the previous para-
graph, infer the agent’s preferences by reconstructing how he reasoned to arrive
at his opinion. Group preference learning generalizes individual preference learn-
ing. In particular, group preference learning takes as input an opinion dataset
D = {Oc1

1 , . . . ,Ocn
n } (where Oi ⊆ Arg ∪ Att and ci ≥ 1 the count of Oi) instead

of an individual opinion. For example, the above senate vote can be represented
by D1 = {{F, (F, T )}48, {T}50, {}2}, where {F, (F, T )} consisting of argument
F and attack (F, T ) to represent a NO vote, and {T} representing a YES vote,
while {} representing an abstention. The opinion counts could reflect the opin-
ion percentages, as those in dataset D2 = {{F}52, {K}38, {}10} representing a
public poll by CNN during at the senate voting time: when asked who to believe
on the sexual accusation, 52% believes Ford, 38% believes Kavanaugh and 10%
has no opinion [1]. Group preference learning computes the collective preferences
of the whole group, and certainly needs to fuse the answer sets for individual
opinions in the dataset appropriately. It turns out that there are different ways
this fusion can be defined, resulting in different types of answers. In this paper,
we define and compute two types called ideal and optimal answers.

Preferences draw much attention from many AI areas: recommender sys-
tems, automatic planning, social choice, etc (see [16] for a review). However
most relevant to our work are studies of preferences in AA. Adding preferences
over arguments allows for more expressivity, for example to express that some
arguments promote more important values [6], or some are constructed from
more prioritized beliefs [7]. Instead of having a binary preference relation >P ,
one may consider the case in which arguments can express preferences between
other arguments as in [4,10,13,15]. In essence, we can say that this line of work
focuses on the semantics of argumentation with preferences. Learning or eliciting
preferences over arguments has been largely unexplored except [14] which tackles
a special case of the individual preference learning addressed in this paper. In
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particular, their algorithm can learn from only a conflict-free set of arguments
in a finite framework. Additionally, their algorithm aims to explicitly enumer-
ate all preference relations (transitivity is not guaranteed), and this is precisely
what we want to avoid. Note that in AA we must not assume any internal struc-
ture of arguments and this contrasts our work with others that work on specific
models of structured arguments, e.g. assumption-based arguments [12], or learn
preferences of different kinds, e.g. preferences between defaults [8,9]. The rest
of this paper is structured as follows. Section 2 presents the background, then
preference-based dispute derivations, which can compute the grounded semantics
of PAF. However their main purpose is to facilitate the development of preference
derivations in Sect. 3, which deals with the learning of individual preferences.
Section 4 generalizes this problem to the learning of group preferences, defining
and computing so called ideal and optimal answers. Finally Sect. 5 concludes the
paper (Due to the lack of space, proofs are given sketchily or even omitted).

2 Background

2.1 Argumentation Frameworks

Abstract Argumentation framework (AAF) is a pair F = (Arg,Att) of a set
Arg of arguments and an attack relation Att ⊆ Arg × Arg. S ⊆ Arg attacks
A ∈ Arg iff (B,A) ∈ Att for some B ∈ S. A ∈ Arg is acceptable wrt to
S iff S attacks every argument attacking A. S is conflict-free iff S does not
attack itself; admissible extension iff S is conflict-free and each argument in S
is acceptable wrt S; complete extension iff S is admissible and contains every
arguments acceptable wrt S; grounded extension iff S is the least complete set.
A is acceptable under semantics sem (e.g. gr stands for the grounded), denoted
F �sem A, if A is in a sem extension. F is said to be finitary if for any A ∈ Arg,
the set of arguments with directed paths to A (in the graph of Att) is finite.

Preference-based Argumentation framework (PAF) is a triple (Arg,Att, >P )
where (Arg,Att) is an AAF and >P⊆ Arg × Arg is transitive and asymmetric
with A >P B meaning that A is (strictly) preferred to B. The AA reduction
of PAF P is AAF P↓ = (Arg,Att↓) where Att↓ = Att \ {(B,A) | A >P B}.
S ⊆ Arg is an extension of P under sem if S is an extension of AAF P↓ under
sem. For an argument A, P �sem A iff P↓ �sem A. In this paper, we restrict
ourselves to PAFs containing finitary AAFs (for short, finitary PAFs).

2.2 Computing AAF and PAF Semantics

A proof that F �sem A can be represented by a dispute between two antagonis-
tic parties, Proponent and Opponent. Proponent starts the dispute by putting
forwards A then two parties alternate in attacking each other’s previous argu-
ments. For example, in [17], a dispute is constructed by a so called simple dispute
derivation defined as a finite sequence of tuples the form 〈Pi, Oi〉 with: Pi ⊆ Arg
contains arguments presented by Proponent but not yet attacked by Opponent;
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Oi ⊆ Arg contains arguments presented by Opponent but not yet counter-
attacked by Proponent. To ensure that the constructed dispute is a sound proof
under the grounded semantics, the ground dispute derivation [17] enforces the
acyclicity of graph Gi ⊆ Att made from the attacks actually used by the parties.
Readers are referred to [17] for further details, however the above basics suffice
for our development of preference-based dispute derivations below.

To check if PAF P �sem A, one can first reduce P to AAF P↓ then check
if P↓ �sem A by AAF proof procedures. For efficiency the reduction should
be done just enough to answer a given query P �sem A. Concretely, sup-
pose that at some step i of a dispute derivation, Proponent selects an attack
(B,A) ∈ Oi of Opponent. If A is preferred to B, then the reduction is triggered
to remove the attack (B,A). Otherwise, Proponent should select some attack
(C,B) to attack argument B and in this case B must not be preferred to C.
So a preference-based dispute derivation is defined as a sequence of tuples of the
form 〈Pi, Oi, SPi, SOi, Gi〉 with: Pi, Gi are defined exactly as in the ground dis-
pute derivation of [17]; Oi ⊆ Att now contains attacks presented by Opponent
but not yet counter-attacked by Proponent; and SPi is the set of arguments pre-
sented by Proponent up to step i (so Pi ⊆ SPi), while SOi is the set of attacks
presented by Opponent and already counter-attacked by Proponent.

Definition 1. Given a selection function, a preference-based dispute
derivation is a sequence 〈P0, O0, SP0, SO0, G0〉 . . . 〈Pi, Oi, SPi, SOi, Gi〉 . . .
where

1. Pi, SPi ⊆ Arg; Oi, SOi ⊆ Att; and Gi ⊆ Arg × Arg is a graph over Arg.
2. At each step i, an element X is selected from Pi or Oi.

(a) If X is an argument selected from Pi, then: Pi+1 = Pi \{X}; Oi+1 = Oi∪
{(Y,X) | (Y,X) ∈ Att}; SPi+1 = SPi; SOi+1 = SOi; and Gi+1 = Gi.

(b) If X is an attack (B,A) selected from Oi, then:
i. If A is preferred to B, then: Pi+1 = Pi; Oi+1 = Oi \ {X}; SPi+1 =

SPi; SOi+1 = SOi; and Gi+1 = Gi.
ii. Otherwise, B 
∈ SPi and there exists some attack (C,B) ∈ Att \

(SOi ∪Oi) such that B is not preferred to C, and: Pi+1 = Pi ∪{C} if
C 
∈ SPi, otherwise Pi+1 = Pi; Oi+1 = Oi \{X}; SPi+1 = SPi∪{C};
SOi+1 = SOi ∪ {X}; and Gi+1 = Gi ∪ {(C,B), (B,A)} is acyclic.

A preference-based dispute derivation for a set arguments S ⊆ Arg
begins with a tuple 〈S, ∅,S, ∅, ∅〉. It is successful if it ends with a tuple
〈∅, ∅, SPn, SOn, Gn〉. Theorem 1, which can viewed as restarting Theorems 2
and 8 of [17] and hence borrows the proofs thereof, says that preference-based
dispute derivations represent a sound, complete, and terminating PAF proof
procedure.

Theorem 1. Let S be a finite set of arguments in a finitary PAF P =
(Arg,Att, P ).

1. If there is a successful preference-based dispute derivation for S, then P �gr A
for each A ∈ S.
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2. If P �gr A for each A ∈ S, then for any selection function there is a successful
preference-based dispute derivation for S.

3. There are no infinite preference-based dispute derivations for S.

3 Learning Individual Preferences

Individual preference learning takes as input an incomplete PAF framework
(Arg,Att, ) and a set O ⊆ Arg ∪ Att of arguments and attacks accepted by a
rational agent (see the table below for illustrations), and returns an “answer set”
Q(O) consisting of all such preference relations >P that wrt the complete PAF
(Arg,Att, >P ), the elements of O are all acceptable. Answers are restricted to
transitive and asymmetric relations, instead of any binary relations over Arg.

Opinion O Reading

{T} Approve Kavanaugh’s confirmation (YES vote)

{F, (F, T )} Disapprove Kavanaugh’s confirmation (NO vote)

{K} Believe Kavanaugh’s testimony

{F} Believe Ford’s testimony

3.1 Preference States

Our compact representation for answer set is based on preference states.

Definition 2. 1. A preference statement is either a positive one of the form
(A > B) stating that A is preferred to B, or a negative one of the form
¬(A > B) stating that A is not preferred to B, where A,B ∈ Arg.

2. A preference state Q = Q+ ∪ Q− contains a set Q+ (resp. Q−) of positive
(resp. negative) preference statements satisfying two constraints:
(a) Q+ defines a transitive, asymmetric relation over Arg: if (A > B), (B >

C) ∈ Q+ then (A > C) ∈ Q+; if (A > B) ∈ Q+ then (B > A) 
∈ Q+.
(b) Q+ and Q− are consistent: If (A > B) ∈ Q+ then ¬(A > B) 
∈ Q−.

The set of all preference states is denoted by Q.

Definition 3. For Q,Q1, Q2 ∈ Q, we write Q = Q1 � Q2 if Q+ coincides with
the transitive closure of Q+

1 ∪ Q+
2 and Q− = Q−

1 ∪ Q−
2 .

Obviously for any pair Q1, Q2 ∈ Q, there exists at most one state Q that
Q1 � Q2 = Q. In cases such Q does not exist, we write Q1 � Q2 = null.

Definition 4. Let Q be a preference state. The PAF generated by Q is PQ =
(Arg,Att, >Q) where A >Q B iff (A > B) ∈ Q. An argument is acceptable by
Q iff it is acceptable in PAF PQ. An attack is acceptable by Q iff it belongs to
the AA reduction of PAF PQ.
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Now let’s restate the individual preference learning problem.

Definition 5. For O ⊆ Arg ∪ Att, an answer of PreferenceDerivation(O)
problem is such a preference state Q that the elements of O are all acceptable
by Q. The set of all these answers is denoted by Q(O).

Several answer sets Q(O) are shown below.

Opinion O Answer set Q(O)

{B}, {} Q (the set of all preference states)

{K} {Q ∈ Q | (F > B) �∈ Q or (K > F ) ∈ Q}
{T} {Q ∈ Q | (T > F ) ∈ Q or (F > B) �∈ Q or (K > F ) ∈ Q}
{F} {Q ∈ Q | (F > K), (F > B) ∈ Q}
{F, (F, T )} {Q ∈ Q | (F > K), (F > B) ∈ Q and (T > F ) �∈ Q}
{K,F} {}

We shall show that any (possibly infinite) answer set Q(O) has a finite core
part QO ⊆ Q(O) that can be “completed” to obtain Q(O). Function Compl(.)
defined in Definition 7 serves this purpose. Intuitively, the completion of QO is
obtained by “lifting” each preference state Q ∈ QO to a set of preference states
�Q.

Definition 6. For a preference state Q, �Q � {Q′ ∈ Q | Q′
↑ ⊇ Q} where

Q′
↑ � Q′+ ∪ {¬(A > B) | (A > B) 
∈ Q′+}.

That is, �Q contains Q′ just in case the “Clark completion” Q′
↑ of Q′ implies

Q. It is worth noting that Q = ∅ then �Q = Q.

Definition 7. For a set of preference states R ⊆ Q, the completion of R,
denoted Compl(R), is the set

⋃
{�Q | Q ∈ R}.

3.2 Preference Derivations

Intuitively, a preference derivation for an agent’s expressed opinion O ⊆ Arg ∪
Att simulates a dispute in which Proponent impersonates the agent to defend the
elements of O from attacks by Opponent, and a neutral observer examines the
moves of Proponent to determine the preferences of the agent. Like in preference-
based dispute derivations, Opponent can keep bringing up all possible counter-
arguments to whatever presented by Proponent. However while preference-based
dispute derivations use preferences to constraint Proponent’s moves, preference
derivation derive preferences from Proponent’s moves. Suppose that Proponent
needs to counter an attack (B,A) by Opponent against an argument A presented
previously by Proponent. There are several avenues for Proponent, as captured
by cases of Definition 9.
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– Case 2.a: If Proponent has preferred A to B (i.e. (A > B) ∈ Qi), then the
attack (B,A) is simply disregarded.

– Case 2.b.i: Otherwise, Proponent has an option to state that (A > B) pro-
vided that this statement does not contradict with his currently revealed
preferences, i.e. Qi � {(A > B)} does not yield a null value.

– Case 2.b.ii: If Proponent does not state that (A > B), then he needs to select
an argument C to attack B, such that (C,B) is not used by Opponent before,
i.e. (C,B) ∈ Att\(SOi∪Oi). The selection of C reveals a piece of Proponent’s
preferences, ¬(B > C), because otherwise C does not really attack B. Hence
¬(B > C) is added into Qi to obtain Qi+1.

Definition 8. 1. A preference derivation using a selection function sl is a
sequence of pairs (T0, Q0), . . . , (Ti, Qi), (Ti+1, Qi+1) . . . where for each i ≥ 0,
two conditions below holds:
(a) Ti is a tuple of the form 〈Pi, Oi, SPi, SOi, Gi〉 as defined in Definition 1

and Qi is a preference state as defined in Definition 2.
(b) (Ti+1, Qi+1) ∈ Follow(Ti, Qi, sl) where Follow is a ternary function

defined by Definition 94.
2. A preference derivation for O ⊆ Arg∪Att is a finite preference derivation

starting with (T0, Q0) = (〈O ∩ Arg, ∅,O ∩ Arg, ∅, ∅〉, {¬(B > A) | (A,B) ∈
O ∩ Att}) and ending with (Tn, Qn) of the form (〈∅, ∅, , , 〉, )

Definition 9. Given a tuple Ti = 〈Pi, Oi, SPi, SOi, Gi〉 and a selection function
sl that selects an element X from either: (1) Pi component of Ti, or (2) Oi

component of Ti; Follow(Ti, Qi, sl) is defined respectively as follows.

1. If X is an argument selected from Pi, then Follow(Ti, Qi, sl) consists of
only one pair (Ti+1, Qi+1) where Ti+1 = 〈Pi+1, Oi+1, SPi+1, SOi+1, Gi+1〉 is
obtained from Ti as in step 2.a of Definition 1, and Qi+1 = Qi.

2. If X is an attack (B,A) selected from Oi, then there are two cases.
(a) If (A > B) ∈ Qi, then Follow(Ti, Qi, sl) consists of only one pair

(Ti+1, Qi+1) where Ti+1 = 〈Pi, Oi \ {X}, SPi, SOi, Gi〉 and Qi+1 = Qi.
(b) If (A > B) 
∈ Qi, then Follow(Ti, Qi, sl) consists of such pairs

(Ti+1, Qi+1) with Qi+1 
= null that satisfy either conditions below.
i. Qi+1 = Qi � {(A > B)} and Ti+1 = 〈Pi, Oi \ {X}, SPi, SOi, Gi〉.
ii. Qi+1 = Qi�{¬(B > C)} where (C,B) ∈ Att\(SOi∪Oi) and B 
∈ SPi;

and Ti+1 is obtained from Ti as in step 2.b.ii of Definition 1.

Theorem 2. For any finite set O ⊆ Arg ∪ Att and any selection function sl,

1. There are finitely many preference derivations for O, and they are all finite.
2. If (T0, Q0) . . . (Tn, Qn) is a preference derivation for O, then �Qn ⊆ Q(O).
3. For any Q ∈ Q(O), there exists a preference derivation (T0, Q0) . . . (Tn, Qn)

(using sl) for O such that Q↑ ⊇ Qn.

4 An algorithmic form of function Follow can be easily worked out but we skip this.
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Proof. Only Property (1) is proved here because the proof helps further reading.
First let’s visualize each preference derivation using a selection function sl for a
set O ⊆ Arg ∪ Att as a branch of a so called preference derivation tree whose
nodes are labeled by pairs of the form (Ti, Qi). The root is labeled by the pair
(T0, Q0) specified in case 2 of Definition 8 (so Q0 is finite since O is finite)
and the leafs are labeled by pairs (Tn, Qn) of the form (〈∅, ∅, , , 〉, ). The sets
of pairs labeling the children of an internal node with label (Ti, Oi) is exactly
Follow(Ti, Oi, sl). For an illustration, Fig. 2 shows a preference derivation tree
for O = {T}. Note that Follow(Ti, Oi, sl) is a singleton set in cases 1 and
2.a (Definition 9). In case 2.b, Follow(Ti, Oi, sl) contains one pair (Ti+1, Qi+1)
constructed by 2.b.i, and possibly many pairs constructed by 2.b.ii. Since we
assume that AAF (Arg,Att) is finitary, the set Att \ (SOi ∪ Oi) mentioned in
2.b.ii is finite, and hence Follow(Ti, Oi, sl) must be a finite set. In other words,
the preference derivation tree is finite in breath. It also follows from the finitary
assumption of AAF (Arg,Att) that each branch of the preference derivation tree
is finite.

Opponent
attacking T

Proponent
stating (T>F)

Proponent
selecting B to 

counter F

Opponent
attacking B

Proponent
selecting K to 

counter F

Opponent
attacking K

Proponent
stating (K>F)

Fig. 2. A preference derivation tree.

It follows immediately from Property (1) of Theorem 2 that:

Lemma 1. For any finite set O ⊆ Arg ∪ Att and selection function sl, the set
of all preference states Qn occurring in the last pair (Tn, Qn) of a preference
derivation for O using sl, denoted Qsl

O, is finite.

An algorithm computing Qsl
O is shown in Algorithm 1. It works by construct-

ing the preference derivation tree for O in a top-down manner. Line 4 consists
of two destructive assignments initializing “variables” T and Qsl

O. Variable T
is the set of frontiers of the preference derivation tree under construction. So
initially T contains only the root of the tree. The tree is then expanded by
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selecting some frontier (T,Q) in T (line 6) and adding its children. A child
(T ′, Q′) with T ′ having the form 〈∅, ∅, , , 〉 is a leaf node and hence Q′ is added
into Qsl

O. Otherwise (T ′, Q′) is added to the set of frontiers waiting for further
expansions. Different strategies of selecting a frontier at line 6 shall lead to
different ways to construct the same tree, ranging from depth-first construc-
tion to breath-first construction. Since the final tree is finite both in depth
and breath, the algorithm always terminates and returns Qsl

O. For example,
ComputeQ({T}, sl) constructs the preference derivation tree shown in Fig. 2.
Regardless of selection strategies at line 6, ComputeQ({T}, sl) always returns
Qsl

{T} = {{(T > F )}, {¬(F > B)}, {¬(F > K), (K > F )}}.

Algorithm 1. ComputeQ(O, sl)
1: Input: A set O ⊆ Arg ∪ Att; a selection function sl
2: Output: Qsl

O - the set of all preference states Qn occurring in the last pair (Tn, Qn)
of a preference derivation for O using sl.

3: T0 = 〈O ∩ Arg, ∅,O ∩ Arg, ∅, ∅〉; Q0 = {¬(B > A) | (A,B) ∈ O ∩ Att}
4: T := {(T0, Q0)}; Qsl

O := {}
5: while T �= ∅ do
6: select any pair (T,Q) from T
7: for each (T ′, Q′) ∈ Follow(T,Q, sl) do
8: if T ′ is of the form 〈∅, ∅, , , 〉 then
9: Qsl

O := QO ∪ {Q′}
10: else
11: T := T ∪ {(T ′, Q′)}
12: end if
13: end for
14: end while
15: return Qsl

O

Theorem 3 below says that Qsl
O is also a compact representation of Q(O)

that we are looking for. Since for any selection function sl, Qsl
O would satisfy our

purpose, we can omit sl for readability.

Theorem 3. For any finite set O ⊆ Arg ∪ Att and any selection function sl,
Compl(Qsl

O) = Q(O).

Proof. For each Qn ∈ Qsl
O, �Qn ⊆ Q(O) (Theorem 2) and hence Compl(Qsl

O) =⋃
{�Qn | Qn ∈ Qsl

O} ⊆ Q(O). Now consider Q ∈ Q(O). Property 3 of Theorem 2
says that there exists Qn ∈ Qsl

O such that Qn ⊆ Q↑. By Definition 6, Q ∈ �Qn
and hence Q ∈ Compl(Qsl

O). In other words, Compl(Qsl
O) ⊇ Q(O).

4 Learning Group Preferences

Learning in this section takes as input an opinion dataset D = {Oc1
1 , . . . ,Ocn

n }
where Oi ⊆ Arg ∪ Att and ci ≥ 1 the count of Oi, and returns preference states
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that fuse the preferences of all agents. It turns out that there are different ways
this fusion can be defined, resulting in different types of answers.

Definition 10. Let D = {Oc1
1 , . . . ,Ocn

n } be a dataset. An ideal answer of
PreferenceLearning(D) problem is such a preference state Q that Q ∈ Q(Oi)
for any Oci

i ∈ D. The set of all ideal answers is Qid(D) � Q(O1) ∩ · · · ∩ Q(On).

Lemma 2 below says that the ideal answer set Qid(D) can be computed easily
by the algorithms developed in the previous section.

Lemma 2. For any dataset D = {Oc1
1 , . . . ,Ocn

n }, Qid(D) = Q(O1 ∪ · · · ∪ On).

Unfortunately ideal answers do not always exist, e.g. for our sample datasets in
the introduction: Qid(D1) = Qid(D2) = ∅. In such cases we want to satisfy as
many individual opinions as possible, by considering so called optimal answers.

Definition 11. An optimal answer of PreferenceLearning(D) problem is
such a preference state Q̂ that maximizes objective function fD(Q) = sum{c |
Oc ∈ D and Q ∈ Q(O)}. The set of all optimal answers is denoted by Qop(D).

Let’s revisit our sample datasets. Obviously Qop(D1) = Q({T}); and each
Q ∈ Qop(D1) belongs to Q({T}) and Q({}), but not Q({F, (F, T )}), i.e.
fD1(Q) = sum{50, 2}. Similarly Qop(D2) = Q({F}). Each Q ∈ Qop(D2) belongs
to Q({F}) and Q({}), but not Q({K}), i.e. fD2(Q) = sum{52, 10}. Lemma 3
says that an ideal answer is also optimal. The reverse also holds if there exists
an ideal answer.

Lemma 3. For any PreferenceLearning(D) problem, Qid(D) ⊆ Qop(D). Fur-
ther if Qid(D) 
= ∅ then Qop(D) = Qid(D).

Computing optimal answers is by definition an optimization problem but we
can either harness existing optimization algorithms or develop tailored ones. For
lack of space let us follow the first approach using an implementation of objective
function fD(Q) in Algorithm 2, whose correctness is ensured by Theorem 4.

Theorem 4. If ComputeQ(.) maps D = {Oc1
1 , . . . ,Ocn

n } to PD =
{Qc1

O1
, . . . ,Qcn

On
}, then fD(Q) = sum{c | Q ∈ Compl(QO) for some Qc

O ∈ PD}.

Algorithm 2. fD(Q)
1: Context: A dataset D = {Oc1

1 , . . . ,Ocn
n } and its mapping PD = {Qc1

O1
, . . . ,Qcn

On
}

by function ComputeQ(.)
2: Input: A preference state Q.
3: Output: Value of fD(Q)
4: sum : = 0
5: for each Qc

O ∈ PD do
6: if Member(Q,QO) == True then
7: sum := sum + c
8: end if
9: end for

10: return sum
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Note that Algorithm 2 requires an implementation of function Member/2,
which is called in Line 6. This function receives as input two parameters: a
preference state Q ∈ Q and a set R ⊆ Q, then check whether Q ∈ Compl(R).
It is important to do the check without computing the completion of R and
the implementation shown in Algorithm 3 satisfies this requirement. It works as
follows: Q ∈ Compl(R) iff there exist Q′ ∈ R such that Q ∈ �Q′ or equivalently
Q′ ⊆ Q↑. To check if Q′ ⊆ Q↑, we first check if Q′+ ⊆ Q+ (line 5) then verify
whether for each ¬(B > A) ∈ Q′−, (B > A) 
∈ Q+ (lines 7–12). This verification
is equivalent to verifying that Q′− ⊆ Q−

↑ = {¬(B > A) | (B > A) 
∈ Q+}, but it
does not requires an explicit construction of the set Q−

↑ .

Algorithm 3. Member(Q,R)
1: Input: Q ∈ Q and R ⊆ Q
2: Output: True if Q ∈ Compl(R); False otherwise.
3: for each Q′ ∈ R do
4: /* check if Q′ ⊆ Q↑ */
5: if Q′+ ⊆ Q+ then
6: foundQ’ := True
7: for each ¬(B > A) ∈ Q′− do
8: if (B > A) ∈ Q+ then
9: foundQ’ := False

10: break
11: end if
12: end for
13: if foundQ’ then
14: return True
15: end if
16: end if
17: end for
18: return False

5 Conclusions

In this paper we formalize and develop algorithms for learning the hidden pref-
erences over arguments of rational agents. We address both the learning of indi-
vidual preferences and of group preferences. A major challenge in this endeavor
is to represent and reason with “answer sets” of preference relations which are
in general exponential or even infinite. Hence at the heart of our work are a rep-
resentation called preference states and a computational structure called prefer-
ence derivations which derive preference states by reconstructing how the agents
reasoned to arrive at their opinions. Learning or eliciting preferences over argu-
ments has been largely unexplored in the current literature except the work
of [14], which tackles a special case of the individual preference learning prob-
lem addressed in this paper. In particular, their algorithm can learn from only a
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conflict-free set of arguments in a finite framework. Additionally, their algorithm
aims to explicitly enumerate all answers (transitivity is not guaranteed), and this
is precisely what we want to avoid. The authors also do not address group prefer-
ence learning. Our contributions can be extended in several directions. First, one
may want to drop the assumption that preferences over arguments are the only
thing that individuates different audiences. Second, one may want to consider
agents that reason by other semantics. In group preference learning, one might
want to define other types of answers, or develop special optimization algorithms
rather harnessing the available ones. It is also interesting to explore applications
of the developed algorithms, for example, in public opinion analyses.
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Abstract. The paper introduces the notion of an epistemic argumenta-
tion framework (EAF) as a means to integrate the beliefs of a reasoner
with argumentation. Intuitively, an EAF encodes the beliefs of an agent
who reasons about arguments. Formally, an EAF is a pair of an argu-
mentation framework and an epistemic constraint. The semantics of the
EAF is defined by the notion of an ω-epistemic labelling set, where ω is
complete, stable, grounded, or preferred, which is a set of ω-labellings
that collectively satisfies the epistemic constraint of the EAF. The paper
shows how EAF can represent different views of reasoners on the same
argumentation framework. It also includes representing preferences in
EAF and multi-agent argumentation. Finally, the paper discusses the
complexity of the problem of determining whether or not an ω-epistemic
labelling set exists.

Keywords: Argumentation framework · Epistemic information ·
Multiple agents · Preferences

1 Introduction

Rational agents often claim that they make their decision based on their knowl-
edge and beliefs when facing alternative and conflicting choices. Consider two
examples:

• On January 15, 2019, British Prime Minister’s Theresa May suffered a humili-
ating defeat in the vote on the Brexit deal; 432 Members of Parliament (MPs)
voted against the deal while 202 were for it.1 The MPs who voted against the
deal believe that the deal is bad for Britain. Those who voted for the deal
believe that the deal is the best that Britain can get.

• In the US presidential election, a voter selects one candidate from a set of
candidates (often only two candidates). Everyone claims that he/she has made
the “right choice”.

1 “Brexit vote”, Jan. 15th, 2019. washingtonpost.com.
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In each scenario above, an agent (an MP or a voter) listens to various arguments,
which either support or reject a potential decision, and then opts for one among
the possibilities, which he/she believes is the right choice. In each situation,
the arguments supporting/against a choice, their counter-arguments, etc. can be
easily encoded in an abstract argumentation framework (AF) introduced in [12].
For instance, AF = ({(a)ccept, (r)eject}, {(a, r), (r, a)}), having two arguments
mutually attacking each other, represents (in its most condensed form) the AF
that the MPs have for making their choice about the Brexit’s deal. Given argu-
ments made by each agent in each scenario, an argumentation semantics of the
corresponding AF provides the result of rational reasoning. The stable semantics
of the above AF supports two alternative choices, while the ground semantics of
the AF supports “no decision”. As such, it would likely result in the unanimous
choice by all agents who participate in argumentation and claim that they are
rational.

The above discussion raises the question “how to express an agent’s opinion
for supporting an argument among conflicting arguments in the outcome of
an AF?” Arguably, there are two possibilities: the agent modifies the AF so
that the new AF supports his/her choice or the agent is simply biased towards
his/her conclusion. In the first case, nothing other than the agent’s beliefs could
influence his/her choice of arguments and/or attacks that lead to the new AF,
which ultimately leads to his/her conclusion. In this approach, a modified AF
represents objective evidences and subjective beliefs indistinguishably. If one
merges objective evidences (normally invariant) and subjective beliefs (possibly
variant) in a single AF, however, it must be revised whenever an agent changes
its own belief. Moreover, it would become hard to distinguish subjective beliefs
from objective evidences in a personally customized AF. In this respect, it is
desirable to have a mechanism that can distinguishably represent subjective
beliefs (or biases) of agents as well as objective evidences as an AF.

In the second case, biases, reflecting beliefs of agents, could be viewed as
agents’ preferences. Furthermore, there is a huge amount of literature in AF on
dealing with preferences in argumentation. It is therefore instructive to consider
whether previously developed approaches to dealing with preferences would be
sufficient to capture biases. In most approaches in abstract AF, the key idea is to
extend an AF with a syntactic component that records the preferences such as
a preference relation among arguments or an attack relation between arguments
and attacks, and then define a new semantics for this extended AF (detailed
discussion is in Sect. 4). Approaches to dealing with preferences have thus far
only considered biases/preferences between arguments (e.g., prefer an argument
over another one) or preferences between arguments and attacks. However, it
is difficult to apply those approaches to represent preferences in a complicated
situation. Suppose the following scenario: a person, who goes to a restaurant,
has a preference on the combination of food and drink: white wine for fish and
red wine for meat. However, the person wants no red wine other than French
one, so he/she will take white wine for meat if French red wine is unavailable. It
is hard to specify such conditional preference using preference relations among



720 C. Sakama and T. C. Son

individual arguments. Then we represent preferences as a formula over epistemic
literals.

In this paper, we propose an approach to incorporate agents’ beliefs into an
argumentation framework (AF). Specifically, we propose an extension of AF,
called epistemic argumentation framework (EAF). EAF introduces the third
component to an AF, an epistemic constraint, that represents the belief of an
agent given an AF. We study formal properties of EAF and show that it can
be used in representing preferences and decision making in multiagent environ-
ments. We also investigate computational complexity and discuss related issues.
The rest of the paper is organized as follows. Section 2 reviews basic notions
of argumentation frameworks used in this paper. Section 3 introduces epistemic
argumentation frameworks and addresses its applications. Section 4 discusses
related issues and Sect. 5 concludes the paper. Due to space limit, we omit proofs
of propositions, which will be provided in the full paper.

2 Argumentation Framework

This paper uses (abstract) argumentation frameworks introduced by [12].
An argumentation framework (AF) is a pair (Ar, att) where Ar is a (finite) set

of arguments and att ⊆ Ar×Ar. We write a → b (say, a attacks b) iff (a, b) ∈ att.
We say that a indirectly attacks b if there is a finite sequence x0, ..., x2n+1 (n ≥ 1)
such that a = x0 and b = x2n+1 and for each 0 ≤ i ≤ 2n, (xi, xi+1) ∈ att.

For the semantics of AFs, we use the labelling-based semantics [10]. A
labelling of (Ar, att) is a (total) function L : Ar → { in, out, und }. When
L(a) = in (resp. L(a) = out or L(a) = und) for an argument a ∈ Ar, it is
written as in(a) (resp. out(a) or und(a)). In this case, the argument a is said
to be accepted (resp. rejected or undecided) in L. Given AF = (Ar, att) and a
labelling L, define in(L) = {x | L(x) = in for x ∈ Ar }, out(L) = {x | L(x) =
out for x ∈ Ar }, and und(L) = {x | L(x) = und for x ∈ Ar }. A labelling L of
(Ar, att) is also represented as a set S(L) = {λ(x) | L(x) = λ for x ∈ Ar }. We
say that λ(x) represents the justification state of x ∈ Ar.

A labelling L of AF = (Ar, att) is a complete labelling if for each argument
a ∈ Ar, it holds that:

• L(a) = in iff L(b) = out for every b ∈ Ar such that (b, a) ∈ att.
• L(a) = out iff L(b) = in for at least one b ∈ Ar such that (b, a) ∈ att.
• L(a) = und, otherwise.

Let L be a complete labelling of AF . Then,

• L is a stable labelling iff und(L) = ∅.
• L is a grounded labelling iff in(L) ⊆ in(L′) for any complete labelling L′ of

AF .
• L is a preferred labelling iff there is no complete labelling L′ of AF such that

in(L) ⊂ in(L′).

We often abbreviate complete, stable, grounded, and preferred labelling as co,
st, gr, and pr, respectively.
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3 Epistemic Argumentation Framework

3.1 Epistemic Labelling Set

Given AF = (Ar, att), define AAF = { in(a), out(a), und(a) | a ∈ Ar }. An
epistemic atom over AF is of the form K ϕ or M ϕ where ϕ is a propositional
formula over AAF . An epistemic literal is an epistemic atom or its negation.
An epistemic formula (over AAF ) is a propositional formula constructed over
epistemic literals together with 	 (true) and ⊥ (false). Intuitively, K ϕ (resp.
Mϕ) states that the agent believes that ϕ is true (resp. possibly true).2 We will
use epistemic formulas to represent the epistemic side of an agent given an AF.

Let ϕ be a propositional formula over AAF and L be a labelling over AF .
Then S(L) is considered an interpretation of ϕ. We say that ϕ is true in L,
denoted by L |= ϕ, if ϕ is interpreted to be true under S(L).

Definition 1 (satisfaction). A set SL of labellings satisfies an epistemic for-
mula ϕ, denoted by SL |= ϕ, if one of the following conditions holds:

(i) ϕ = 	,
(ii) ϕ = K ψ and L |= ψ for every L ∈ SL,
(iii) ϕ = M ψ and L |= ψ for some L ∈ SL,
(iv) ϕ = ¬ψ and SL �|= ψ,
(v) ϕ = ϕ1 ∧ ϕ2 and (SL |= ϕ1 and SL |= ϕ2),
(vi) ϕ = ϕ1 ∨ ϕ2 and (SL |= ϕ1 or SL |= ϕ2).

An epistemic formula ϕ is consistent if there exists a (non-empty) set SL of
labellings such that SL |= ϕ; otherwise, ϕ is inconsistent. Some basic properties
are addressed.

Proposition 1. Let SL be a set of labellings. For any propositional formula ϕ
and ψ over AAF ,

(i) SL |= ¬M ϕ iff SL |= K ¬ϕ,
(ii) SL |= ¬K ϕ iff SL |= M ¬ϕ,
(iii) SL |= M (ϕ ∨ ψ) iff SL |= M ϕ ∨ M ψ,
(iv) SL |= K (ϕ ∧ ψ) iff SL |= K ϕ ∧ K ψ.

Definition 2 (epistemic argumentation framework). An epistemic argu-
mentation framework (EAF) is a triple (Ar, att, ϕ) where AF = (Ar, att) is an
argumentation framework and ϕ is an epistemic formula (called an epistemic
constraint).

2 By the meaning, it might be better to write Bϕ rather than K ϕ, but we use K
because we implement it using epistemic logic programs in which K and M are
used (see Sect. 5).
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Intuitively, an EAF (Ar, att, ϕ) represents the view of an agent who, given AF =
(Ar, att), believes that ϕ is true. So, an EAF consists of two different types of
information: an objective evidence AF and a subjective belief ϕ of an agent. We
also refer to an EAF by (AF,ϕ) whenever it is clear from the context what AF
refers to.

Example 1. In the introductory example, consider an AF with the set of argu-
ments { (f)ish, (m)eat, (w)hite, (r)ed, (u)navailable } and the set of attacks
{(f,m), (m, f), (w, r), (r, w), (r, u), (u, r) }.

��• •
f m �� ��• • •

w r u

Then, some EAFs are defined as follows:

• EAF1 = (AF, Min(r)) represents the view of an agent who believes that r
is possibly accepted.

• EAF2 = (AF, Kin(w)∨Kin(r)) represents the view of an agent who believes
that either w or r should be accepted.

• EAF3=(AF, K (in(m) ∧ ¬in(u) → in(r)) ∧ K (in(f)→ in(w))) represents
the view of an agent whose belief is given by the statement: “if m is accepted
and u is unaccepted, then r should be accepted; and if f is accepted then w
should be accepted.”

Next we define the semantics of an EAF.

Definition 3 (epistemic labelling set). Let EAF = (AF,ϕ) and ω ∈
{co, st, gr, pr}. A set SL of labellings is an ω-epistemic labelling set of (AF,ϕ)
if (i) each L ∈ SL is an ω-labelling of AF , and (ii) SL is a ⊆-maximal set of
ω-labellings of AF that satisfies ϕ. An EAF possibly has multiple ω-epistemic
labelling sets.

Intuitively, an ω-epistemic labelling set is a collection of ω-labellings that
reflects the belief of an agent. In particular, EAF = (AF,	) has the unique ω-
epistemic labelling set that coincides with the set of ω-labellings of AF . In what
follows, we assume ω ∈ {co, st, gr, pr} unless stated otherwise. By definition,
EAF always has an ω-epistemic labelling set (possibly as an empty set).

Proposition 2. EAF = (AF,⊥) has the ω-epistemic labelling set ∅.
Our primary interest is an EAF that has non-empty ω-epistemic labelling

sets.

Example 2. Consider the EAFs of Example 1 under the stable semantics. First,
AF in the EAFs has four stable labellings:

L1 = { in(f), out(m), out(w), in(r), out(u) },

L2 = { out(f), in(m), out(w), in(r), out(u) },

L3 = { in(f), out(m), in(w), out(r), in(u) },
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L4 = { out(f), in(m), in(w), out(r), in(u) }.

This implies EAF1 has a unique stable epistemic labelling set {L1, L2, L3, L4};
EAF2 has two stable epistemic labelling sets {L1, L2} and {L3, L4}; and EAF3

has a unique stable epistemic labelling set {L2, L3, L4}. Suppose that it turns
that French red wine is unavailable. The situation is represented by

EAF4 = (AF, K(in(m) ∧ ¬in(u)→in(r)) ∧ K(in(f)→in(w)) ∧ Kin(u) ).

Then EAF4 has a unique stable epistemic labelling set {L3, L4}.

As shown in the above example, EAF can represent belief change of an agent
by revising an epistemic constraint without modifying AF. The revised EAF
then produces new epistemic labelling sets that reflect new belief states of an
agent. In Example 2, EAF4 introduces an additional constraint Kin(u) to EAF3,
which results in eliminating L2 from the stable epistemic labelling set of EAF3.
For two epistemic formulas ϕ1 and ϕ2, we say that ϕ1 is stronger than ϕ2 if
ϕ1 |= ϕ2 (in the sense of classical logic). Introducing a stronger constraint to
EAF eliminates elements of SL in general.

Proposition 3. Let EAF1 = (AF,ϕ1) and EAF2 = (AF,ϕ2) be two EAFs
such that ϕ1 is stronger than ϕ2. Then, for each ω-epistemic labelling set SL1

of EAF1 there exists some ω-epistemic labelling set SL2 of EAF2 such that
SL1 ⊆ SL2.

In argumentation frameworks, stable, grounded, or preferred labellings are
complete labellings. In epistemic argumentation frameworks, a similar result
holds.

Proposition 4. Let (AF,ϕ) be an EAF. If a non-empty set SL of labellings is
a stable, grounded, or preferred epistemic labelling set of (AF,ϕ), then L ∈ SL
is an element of a complete epistemic labelling set of (AF,ϕ).

We next consider a sufficient condition for the uniqueness of ω-epistemic
labelling sets.

Lemma 5. Let ϕ be a conjunction of epistemic literals over AAF . If two sets
of labellings SL1 and SL2 satisfy ϕ (i.e., SL1 |= ϕ and SL2 |= ϕ), then SL1 ∪
SL2 |= ϕ.

Using the lemma, we can prove the next result.

Proposition 6. Let (AF,ϕ) be an EAF such that ϕ is a conjunction of epis-
temic literals. Then (AF,ϕ) has a unique ω-epistemic labelling set.

Assume that ϕ is a DNF in which each disjunct is a conjunction of epistemic
literals. Due to Proposition 1, we can assume that each disjunct in ϕ is of the
form Kψ0 ∧Mψ1 ∧ · · · ∧Mψn

3 where ψi (0 ≤ i ≤ n) is a propositional formula
over AAF , which will be denoted by EC(ψ0;ψ1, . . . , ψn). We can prove:
3 ¬Mψ (resp. ¬Kψ) is converted to K¬ψ (resp. M¬ψ), and Kψ1 ∧Kψ2 is converted

to K (ψ1 ∧ ψ2).
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Lemma 7. Let SL be a set of labellings such that SL |= EC(ψ0;ψ1, . . . , ψn).
Then, for each i = 1, . . . , n, there exists some L ∈ SL such that L |= ψ0 ∧ ψi.

Proposition 8. Let ϕ =
∨k

j=1 EC(ψj ;ψ
j
1, . . . , ψ

j
nj

) (k ≥ 1) be an epistemic
formula. Then, EAF=(AF,ϕ) has a non-empty ω-epistemic labelling set if there
exists an integer j (1 ≤ j ≤ k) such that for each 1 ≤ i ≤ nj, AF has an ω-
labelling L and L |= ψj ∧ ψj

i .

Each AF semantics imposes some specific condition on every argument, e.g.,
the stable semantics allows no argument to be undecided, while the grounded
semantics keeps controversial arguments undecided. EAF is useful for selecting
intended labellings from the set of all possible labellings.

Example 3. Consider the AF in Example 1. Since the availability of French red
wine is unknown before visiting a restaurant, an agent wants to keep the argu-
ment u undecided. The situation is specified as the epistemic constraint ϕ =
Kund(u). Then (AF,ϕ) has the single preferred epistemic labelling set {{in(f),
out(m), und(w), und(r), und(u)}, {out(f), in(m), und(w), und(r), und(u)}}.

3.2 Representing Preference

Preference among arguments can be specified in EAF as follows. Let � be a pre-
order (i.e., reflexive and transitive) relation over Ar × Ar such that (x, y) ∈�
implies that x indirectly attacks y or vice versa. x � y means that an argument
x is at least as preferred as y. We write x � y if x � y and y �� x.

Definition 4 (preference over arguments). Given AF = (Ar, att) and a
preorder relation �⊆ Ar × Ar, define EAF = (AF,ϕA) where

ϕA =
∧

x�y

K(in(y) ⊃ in(x)).

Intuitively speaking, ϕA represents that an argument x should be accepted
whenever another argument y of lower preference is accepted. Note that the
preference is specified as x � y but not as x � y in ϕA. When both x � y and
y � x exist, there is no reason to prefer one of them. In this case, the conjunct
involved x and y in ϕA is 	.

Proposition 9. Let EAF = (AF,ϕA) be an EAF defined as above. Then, for
any ω-epistemic labelling set SL of EAF , there is no L ∈ SL such that in(x) �∈ L
and in(y) ∈ L for any x � y.

Example 4. Consider AF = ({a, r}, {(a, r), (r, a)}) with r � a. Then EAF =
(AF,ϕA) with ϕA = K(in(a) ⊃ in(r)) has the unique stable epistemic
labelling set {{in(r), out(a)}}, and the unique complete epistemic labelling set
{{in(r), out(a)}, {und(r), und(a)}}.
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In Example 4, the complete epistemic labelling set contains {und(r), und(a)}.
This can be eliminated by introducing the constraint ϕA = K(in(a) ∨ und(a) ⊃
in(r)).

Preference over arguments is generalized to preference over justification
states of arguments as follows. A pre-order relation � over justification states
of arguments is a collection of elements of the form λ(x) � μ(y) where
λ, μ ∈ {in, out, und}, meaning that λ(x) is at least as preferred as μ(y) for
arguments x and y. We write λ(x) � μ(y) if λ(x) � μ(y) and μ(y) �� λ(x).

Definition 5 (preference over justification states). Given AF = (Ar, att)
and a preorder relation �⊆ AAF × AAF , define EAF = (AF,ϕJ ) where

ϕJ =
∧

λ(x)� μ(y)

K (μ(y) ⊃ λ(x)).

ϕJ states that if the justification state λ(x) is preferred to μ(y) for x, y ∈ Ar,
then L |= μ(x) implies L |= λ(x) for any L ∈ SL where SL is any ω-epistemic
labelling set of EAF .

By definition, Definition 4 is considered a special case of Definition 5 with
μ = λ = in.

Proposition 10. Let EAF = (AF,ϕJ ) be an EAF defined as above. Then, for
any ω-epistemic labelling set SL of EAF , there is no L ∈ SL such that λ(x) �∈ L
and μ(y) ∈ L for any λ(x) � μ(y). In particular, μ(y) �∈ L for any L ∈ SL if
x = y.

Example 5. Suppose that in Example 4, an MP prefers keeping the decision
undecided if possible. This is represented by �= {(und(x), in(x)), (und(x),
out(x)) | x ∈ {a, r}} which is translated to ϕJ =

∧
x∈{a,r} K (in(x) ⊃ und(x))∧

K(out(x) ⊃ und(x)). Then EAF = (AF,ϕJ ) has the unique complete epistemic
labelling set {{und(r), und(a)}}. Furthermore, ∅ is the stable epistemic labelling
set, since there is no choice to make a and r undecided.

In this way, EAF enables us to specify preference over not only arguments
but also justification states of arguments. Furthermore, it could also be useful
to introduce preferences among epistemic formulas. For instance, we could write
K λ(x) > K μ(x) for some argument x to indicate that we prefer SL1 over
SL2 whenever SL1 |= K λ(x) and SL2 |= K μ(x) for two arbitrary ω-epistemic
labelling sets SL1 and SL2. We leave such extensions for future work.

3.3 Multiple Agents

Suppose that two agents share AF = ({a, r}, {(a, r), (r, a)}). If they have the
same belief represented by the epistemic constraint ϕ = Kin(a), the EAF
(AF,ϕ) has the single epistemic complete labelling set {{in(a), out(r)}} and
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the agents agree on accepting a. On the other hand, if two agents have conflict-
ing beliefs ϕ1 = Kin(a) and ϕ2 = ¬Kin(a) respectively, then they do not agree
on accepting a or r. In this section, we assume multiple agents who share the
same AF while having different beliefs in general. The situation is represented
by the collection of EAFs (AF,ϕi) (1 ≤ i ≤ n). First, we define two different
types of agreements.

Definition 6 (agreement). Let AF = (Ar, att) and EAF1 = (AF,ϕ1), . . . ,
EAFn = (AF,ϕn) (n ≥ 1). Then EAF1, . . . , EAFn credulously agree on λ(a)
for a ∈ Ar where λ ∈ {in, out, und } under ω-epistemic labelling if each EAFi

(i = 1, . . . , n) has an ω-epistemic labelling set SLi such that SLi |= Mλ(a). In
contrast, EAF1, . . . , EAFn skeptically agree on λ(a) under ω-epistemic labelling
if for any ω-epistemic labelling set SLi of EAFi (i = 1, . . . , n) SLi |= Kλ(a).

The above definition characterizes two different situations (credulous or skep-
tical) in which agents reach an agreement on λ(a). For simplicity reasons, Def-
inition 6 assumes that different agents employ the same ω-epistemic labelling,
but the definition is easily extended to a case in which agents employ different
ω-labellings.

Proposition 11. Let AF = (Ar, att) and EAF1 = (AF,ϕ1), . . . , EAFn =
(AF,ϕn) (n ≥ 1). Then, EAF1, . . . , EAFn skeptically agree on λ(a) for a ∈
Ar under ω-epistemic labelling iff EAFi and EAF ′

i = (AF,ϕi ∧ K λ(a)) (i =
1, . . . , n) have the same ω-epistemic labelling sets.

Proposition 12. Let AF = (Ar, att) and EAF1 = (AF,ϕ1), . . . , EAFn =
(AF,ϕn) (n ≥ 1). If EAF1, . . . , EAFn credulously agree on λ(a) for a ∈ Ar
under ω-epistemic labelling, then (AF,ϕ1∨· · ·∨ϕn) has an ω-epistemic labelling
set SL such that SL |= Mλ(a). Conversely, if (AF,ϕ1 ∧ · · · ∧ ϕn) has an ω-
epistemic labelling set SL such that SL |= Mλ(a), then EAF1, . . . , EAFn cred-
ulously agree on λ(a) under ω-epistemic labelling.

We next show that EAF can be used for formalizing majority voting. In the
presence of EAFi = (AF,ϕi) (1 ≤ i ≤ n), define:

Mω
ψ = { i | EAFi has an ω-epistemic labelling set SL s.t. SL |= M ψ },

Nω
ψ = { i | for each ω-epistemic labelling set SL of EAFi, SL |= K ψ }.

Definition 7 (majority voting). Let AF=(Ar, att) and EAFi = (AF,ϕi) for
(1 ≤ i ≤ n). For a ∈ Ar, λ(a) is credulously (resp. skeptically) adopted by
majority voting under ω-epistemic labelling iff the cardinality of the set Mω

λ(a)

(resp. Nω
λ(a)) is greater than the cardinality of the set Mω

μ(a) (resp. Nω
μ(a)) where

λ, μ ∈ {in, out, und} and λ �= μ.

When |Mω
λ(a)|=n (resp. |Nω

λ(a)|=n) in Definition 7, EAF1, . . ., EAFn credu-
lously (resp. skeptically) agree on λ(a).
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Algorithm 1. Existence(EAF,ω)
Input: ω, EAF = (AF, ϕ).
Output: true if EAF has a (non-empty) ω-epistemic labelling set; false

otherwise.
1 Convert to DNF: ϕ = ∨k

j=1EC(ψj ; ψ
j
1, . . . , ψ

j
nj

)

2 where EC(ψ; ψ1, . . . , ψk) = Kψ ∧ ∧k
i=1 Mψi

3 for j = 1 to k do
4 num labelling := 0
5 for i = 1 to nj do

6 if D(ω, AF, ψj ∧ ψj
i ) = true then

7 num labelling := num labelling + 1

8 if num labelling = nj then return true

9 return false

Example 6. Consider AF = ({a, r}, {(a, r), (r, a)}) and three EAFs: EAF1 =
(AF, K in(a)), EAF2 = (AF, ¬M und(a)), and EAF3 = (AF, K und(a)). Then
in(a) is credulously adopted by majority voting under the complete epistemic
labelling, while it is not skeptically adopted.

3.4 Complexity

We assume that the readers are familiar with the well-known notations in com-
putational complexity (e.g., P-c, NP-c, coNP-c, etc.). Let ω ∈ {gr, st, co, pr}
and EAF = (AF,ϕ). Due to Proposition 8, we can check for the existence of a
non-empty ω-epistemic labelling set using Algorithm 1, assuming the existence
of a procedure D(ω,AF, ψ) that determines the existence of an ω-labelling L of
AF such that L |= ψ.

In essence, Algorithm 1 shows that checking whether EAF has a non-empty
ω-epistemic labelling set can be reduced to checking whether a labelling L of
AF satisfies a formula over AAF . In line 1 we assume that ϕ has at most k
disjuncts, and each contains at most p conjuncts, where p and k are polynomial
in the size of the AF and refer to ϕ as a (k, p)-DNF.4 Under this assumption,
Algorithm 1 will call D(ω,AF, ψ) at most k × p times. Consider the following
decision problem:

Exists
(k,p)
ω : Given an AF = (Ar, att) and a (k, p)-DNF epistemic formula

ϕ over AAF , does (AF,ϕ) have a non-empty ω-epistemic labelling set?

The above discussion gives us the next result.

Proposition 13. Exists
(k,p)
ω is P-c for ω = gr and NP-c for ω ∈ {co, st, pr}.

4 The DNF of a formula ϕ might have exponential number of disjuncts in general,
however, it would be a rare case that belief of an agent is expressed by an exponential
formula.
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The proof of the above results relies on the following facts: (i) the grounded
labelling of AF can be computed in polynomial time and is unique; and given a
labelling L and a propositional formula ψ over AAF , (ii) checking whether there
exists an ω-labelling satisfying a formula is NP-c for ω ∈ {st, co, pr} (by the
result Credσ in [13, Table 1] or in [14]); (iii) checking whether a given labelling
L satisfies a propositional formula over AAF is polynomial.

4 Related Work

EAF could be viewed as an approach to limiting the set of extensions (or
labellings) of an argumentation framework for semantical consideration and this
is similar, at least in the spirit, to argumentation with preferences and prob-
abilistic argumentation. By introducing epistemic constraints, it is similar to
works focusing on a reasoner’s belief. The key difference between EAF and the
other approaches can be summarized as follows.

Constrained argumentation frameworks (CAF) proposed in [11] are syntacti-
cally similar to EAF. Both are of the form 〈A,R,C 〉 where (A,R) is an AF and
C is a propositional formula (over A) in a CAF whilst it is an epistemic formula
(over AAF ) in an EAF. The key distinction between CAF and EAF lies in the
use of the constraint. In CAF, C is imposed on extensions of the AF leading to
a new set of extensions of the original AF. In contrast, ϕ does not change the
labellings of the original AF in an EAF (AF,ϕ). Another extension of Dung’s
AF is abstract dialectical framework (ADF) [9] where each argument has an
associated acceptance condition expressed by a propositional formula over the
existing arguments. In EAF individual arguments do not have acceptance con-
ditions, while epistemic constraints specify beliefs concerning which arguments
are to be (un)accepted in the final outcome.

Probabilistic argumentation as proposed in [16,17] focuses on the uncertainty
of arguments rather than reasoners’ beliefs. This approach represents the beliefs
of agents by a probability assignment to arguments [16] or an epistemic labelling
[17]. It provides methods for computing epistemic extensions of an AF which
contain arguments with probability greater than a certain threshold or assigning
labels to arguments in accordance to the probability of the labelling, i.e., it
merges an objective evidence and subjective beliefs in a single framework, which
is in contrast to our approach. Moreover, it differs from EAFs significantly as its
extensions might not correspond to any type of extensions of the original AF. On
the other hand, there would be a connection between probabilistic argumentation
and EAF. For instance, we consider that for each EAF = (AF,ϕ) and ω, there
would exist a probabilistic distribution P with respect to AF with the property
that x is believed wrt P (P (x) > 0.5)) then in(x) is skeptically entailed by every
ω-labelling set of EAF . We believe that the inverse could be true as well. We
leave the precise formulation and proof of this interesting problem for future
work. Recent work in this direction has introduced epistemic attack semantics
that considers extended probability distribution, which assigns degrees of belief
to arguments and attacks [22] which is then further investigated in dynamic
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setting [18]. Whether formulas in EAF could sufficiently model this type of
extension is an open question that we intend to pursuit as well.

Argumentation with preferences or priorities has been studied extensively in
recent years. Preference over arguments is introduced as a preorder relation over
arguments in [2–4,19], while a new attack relation that ranges from arguments
to attacks is used in [20]. Our representation of preferences is close to the app-
roach employing a preorder but there are differences from them. For instance,
given AF = ({a, b}, {(a, b)}) with the preference a � b, Kaci and van der Torre
[19] provide its semantics by extensions of AF1 = ({a, b}, {}), and Amgoud
and Vesic [3] convert AF to AF2 = ({a, b}, {(b, a)}). As such, the structure of
the original argumentation graph is changed, and as a result, extensions of the
preference-based AF are not extensions selected from those of AF. Wakaki [23]
introduces preference-based AF (PAF) which, as we do, selects extensions based
on preference relation over arguments. Our representation of preference in EAF
is different from PAF in the sense that EAF can represent preference over not
only arguments but justification states. Value-based argumentation framework
(VAF) [6] represents preference in AF by assigning values to arguments. In VAF
acceptable arguments may change depending on the order of values. Arguments
acceptable irrespective of any value order are called objectively acceptable and
those acceptable for some order are called subjectively acceptable. In EAF justi-
fication states of arguments change depending on epistemic constraints, so the
effect of epistemic constraints in EAF is similar to the effect of value in VAF. On
the other hand, VAF may produce extensions that are not those of the original
AF, while EAF produces labellings that are also labellings of the original AF.
Airiau et al. [1] consider the problem such that given a profile of argumentation
frameworks (AF1, . . . , AFn), one for each agent, can this profile be explained
in terms of a single master argumentation framework, an association of argu-
ments with values, and a profile of preference orders over values (�1, . . . ,�n),
one for each agent? Their approach represents individual views of a common
AF by preference orders over values, which is in contrast with our approach
in which individual views are encoded by epistemic formulas over arguments.
Visser et al. [24] introduce an epistemic argumentation framework for reason-
ing about preferences with uncertain information. They provide languages and
inference schemes for instantiated AFs, which is in contrast with our framework
for abstract argumentation.

Schwarzentruber et al. [21] introduce a logical framework for reasoning about
arguments owned by agents and their knowledge about other agents’ arguments.
They introduce epistemic logics to represent belief state of agents in dialogues
and define Kripke semantics. For instance, they represent that “an agent 1
believes that there exists an argument about global warming (gw) owned by
an agent 2” by the formula: B1(〈U 〉(gw ∧ ownedby(2))). Our approach is dif-
ferent from theirs in two ways: first EAF is an extension of AF and we do not
use modal logic based on Kripke structures. Second, our primary interest in this
paper is to represent an agent’s own beliefs, and we do not consider reasoning
about beliefs of other agents. Finally, we note that an EAF realizes meta-level
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reasoning about arguments in abstract argumentation frameworks. In this sense,
it could be viewed as a kind of meta-level arguments discussed in [7].

5 Conclusion and Future Work

An epistemic argumentation framework introduces belief of agents to argumen-
tation frameworks. A unique feature of EAF is that it can represent arguments
and attacks as objective evidence in AF, while at the same time, it can encode
subjective beliefs of individual agents by epistemic constraints over the outcome.
By separating objective knowledge and subjective beliefs, individual agents could
produce different conclusions based on their biases toward a common AF. Such a
situation happens, for instance, in a court case where jurors share the same open
AF while could reach different conclusions based on their biases. Moreover, the
separation has an advantage that an individual agent can easily revise his/her
belief without changing the structure of an AF.

This paper addresses declarative aspects of EAFs. From the procedural view-
point, a system for computing epistemic labelling sets is built on top of answer
set solvers [8]. More precisely, suppose an EAF (AF,ϕ) where ϕ is a CNF
ϕ = ψ1 ∧ · · · ∧ ψn in which ψi (1 ≤ i ≤ n) is a disjunction of simple epistemic
literals of the form Eλ(x) or E¬λ(x) where E ∈ {M,K} and λ∈{in, out, und}.
In this case, the EAF is transformed to an epistemic logic program [15] Π and
ω-epistemic labelling sets are computed by world views of Π. We will address
the issue in the full paper.

In this paper, we focus on representing an agent’s own belief in EAFs. On the
other hand, EAF could be extended to reasoning about beliefs of other agents
and representing an agent’s own belief based on beliefs of other agents. This
type of belief contains a constraint such that “K1in(a) ⊃ M2in(a)” (if an agent
1 supports the acceptance of an argument a then an agent 2 would not argue
against it). EAF is used for characterizing several problems in argumentation.
For instance, the enforcement [5] of an argument a in AF is captured as finding
an EAF (AF ′,M in(a)) having a non-empty ω-epistemic labelling set where
AF ′ is an expansion of AF . We introduce EAF for complete, stable, grounded,
or preferred semantics, but the framework is extended to other semantics such
as semi-stable, stage, ideal, etc. Those issues are left for future work.
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Abstract. Convention emergence studies how global convention arises
from local interactions among agents. Traditionally, the studies on con-
vention emergence are conducted by means of agent-based simulations,
whereas very few studies are based on model-based approaches. In this
paper, we employ model-based approach to study the convention emer-
gence by observation with memorization in a large population under
social learning. In particular, we derive the recurrence equations of the
population dynamic, which is the evolution of action distribution over
time, under the external majority (EM) strategy. The recurrence equa-
tions precisely predict the behaviour of the multi-agent system at any
time point, which is verified with the agent-based simulations. Based on
the recurrence equations, We prove the converge behavior under various
situations and work out the optimal memory length under different num-
ber of actions. Finally, we show that the EM strategy outperforms other
popular strategies such as Q-learning and Highest Cumulative Reward
(HCR) in convergence speed under social learning, even in very large
convention space.

Keywords: Multiagent system · Convention emergence ·
Model-based approach

1 Introduction

Social convention or norm is a common action chosen among the whole popula-
tion. A typical example is to decide to drive on the left side or right side of the
road. Usually it does not matter which action is taken, as long as the action is
coordinated by everyone in society. Convention is an effective way to facilitate
coordination among agents, which can reduce the potential for conflict and help
ensure agents to achieve their goal in an efficient manner [13,22].

The research into convention emergence studies how global convention arises
from local interactions among agents, where local interaction is usually treated
as an pairwise interaction in a society [6,19,21,23]. The study of convention
emergence has started a few decades ago [6,21,23]. One of the research topics is
to design a mechanism to facilitate the efficient and stable emergence of norm,
which improves coordination in an agent society. There have been a large number
c© Springer Nature Switzerland AG 2019
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of studies on norm emergence concerning different agent interaction models,
agent learning strategies and network topologies [2].

One of the seminal works of studying convention emergence problem is done
by Shoham and Tennenholtz [21]. They propose the external majority (EM)
approach and show that it is an effective agents’ strategy for convention emer-
gence under sequential pairwise interaction, where only one pair of agents are
interacting with each other at a time. The idea of EM is to choose the majority
action in the memory, where the memory stores the opponents’ actions that the
agent has encountered in the past.

The study is conducted through agent-based simulation. As mentioned in
the paper [21], it is desirable if we can develop a mathematical theory to explain
and predict the result. As opposed to the agent-based simulations, the model-
based approaches aim to derive recurrence/differential equations to describe the
population dynamics. The major advantage of the model-based approach is that
it enables the researchers to explain the dynamical system by a mathemati-
cal/statistical process, and thus provides an insight on how the system is evolved
in a mathematical description. Another advantage of the model-based approach
is that it enables us to provide a proof of convergence through the derived equa-
tions [2,17].

More recently, Sen and Airiau study the convention emergence problem under
the social learning framework [19]. Their experimental results show that Q-
learning is the most effective strategy among various strategies they have com-
pared. Since then, the reinforcement learning-based approach has been widely
adopted in the research in convention emergence [1,16,27,28,31].

Note that there has not been a research applying the EM strategy onto
social learning, yet we identify that the observation with memorization type
strategy such as EM is indeed very effective under social learning, it seems the
EM strategy has been overlooked by others.

Motivated by the above issues, we decide to develop a model to describe the
population dynamics of the EM strategy under social learning in large popula-
tion. We also study the convergence behavior of the EM strategy under finite
and infinite population, and provide the converging conditions on the memory
length. We then work out the optimal memory length based on the equations
under different number of actions. Finally, we show that the EM strategy out-
performs other popular strategies such as Q-learning and Highest Cumulative
Reward (HCR) in convergence speed under social learning, which is confirmed
in very large convention space.

The rest of this paper is organized as follows. The related work of our study
will be introduced in Sect. 2. In Sect. 3, we illustrate and model the population
dynamics for the EM strategies under social learning. In Sect. 4, we compare
the convergence speed of above strategies with other strategies which are widely
used in the literature. Finally, conclusion will be given in Sect. 5.
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2 Related Research

In 1992, Shoham and Tennenholtz study the convention emergence problem and
propose the EM strategy [21]. For an agent using EM as its strategy, the agent
maintains a memory to store the opponent actions it has encountered. For each
interaction it has participated, the agent observes and remember the opponent
action, and then the agent updates its strategy according to the majority action
in the memory. Two years later, the same authors model the agent interaction
as a 2-player coordination game and propose the Highest Cumulative Reward
(HCR) strategy [22], and the HCR strategy is later shown to be equivalent to
EM in the case of 2 actions [23].

The above works has motivated large number of subsequent studies in conven-
tion emergence. Walker et al. study the effect on convention emergence different
variation of EM [29]. Kittock, Delgado et al. study the population dynamics
using EM and HCR under different network topologies [6,7,13]. Epstein et al.
study the majority rule with a variable observation radius under a ring network
[8]. Urbano et al. study the optimal memory length of EM on different networks
[25].

In 2007, Sen and Airiau propose the social learning framework [19], which
is a new kind of agent interaction model. In social learning, for each round of
iteration, every agents are paired up to play games and update their strategies
simultaneously.

Afterward, lots of works are proposed under the setting of social learning.
Mukherjee, Villatoro et al. study the effect on convention emergence in the exis-
tance of network topology [16,26]. Villatoro et al. study the effect on convergence
time under various factors, such as the neighbourhood size and the memory size
of past rewards [27,28]. Chen et al. study a hybird approach of observation and
Q-learning under the social learning framework [3].

On the other hand, Urbano et al. propose another agent strategy based
on force [24] and Mihaylov et al. propose the Win-Stay-Lose-probability-Shift
(WSLpS) strategy for the convention emergence [14]. Yu et al. propose the col-
lective learning framework [31]. Shibusawa and Hao et al. further improve the
efficiency of emergence under collective learning framework [10,20].

We note that all the above works are studied via agent-based simulations.
In 2009, Parunak develops an equation based model [17] to study the conver-

gence under a simplified version of the collective cognitive convergence (CCC)
model in [18]. They derive the recurrence equation of the dynamics on the pro-
portion of agents interested in certain topics. Later, Brooks et al. come up with
a model-based approach based on the bias revision strategy under sequential
pairwise interaction [2]. They derive the recurrence equation on the dynamics of
the action distribution, and calculate the converged value and time to converge.

We also note that there are number of studies [4,9,11,15] which relate to
majority/probabilistic pooling on graph. In their setting, every agents will look at
their neighbors’ actions and update their actions based on majority/probabilistic
rule in every iteration.
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3 External Majority Under Social Learning

We adopt the social learning framework [19]. Consider a population consisting
of N agents, where N tends to infinity. Each agent is able to perform d actions
(a1, ..., ad). Let p(t) = (p(t)1 , ..., p

(t)
d ) be the action distribution at time t, which

is the probability distribution of actions in the population at time t. The agents
interact among themselves repeatedly. For each iteration, every agents are ran-
domly paired up to interact simultaneously. In each interaction, both agents will
select their actions to perform based on their strategies. The goal of an agent is
to select the same action as their opponent, without communication in advance.
Based on the outcome of the interaction, the agents will update their choices
according to their strategies, the updated action distribution becomes p(t+1).
The process continues until the same action is chosen by whole population. We
note that the population dynamics we discuss is referred to the trajectory of
action distribution p(t) over time.

Consider all agents will adopt the same External Majority (EM) strategy
[21], with a slight modification. For an agent using EM, it will choose to perform
the most frequent action that it has encountered in previous M rounds, where M
is the memory length. In case of tie, the agent will randomly choose one action
among the most frequent actions. We note that in the original paper [21], the
agent will stick to the current action in case of tie, however, it will cause some
confusion when the number of action is larger than 2.1

3.1 Dynamics of Action Distribution

As all agents are homogeneous, we can focus on one single agent, and then apply
to the whole population. At time t, the agent is randomly assigned an opponent.
It then observes the opponent’s action. When N is large, such process could be
described as drawing a sample from the multinoulli distribution with parameter
p(t). Let aj be the observed action at time t, we write X(t) = ej = (0, ..., 1, ..., 0)
be the observed sample. ej is the basis vector in R

d, where the jth entry of
ej is equal to 1, otherwise 0. We have X(t) ∈ {e1, ...,ed} ∼ Multinoulli(p(t)).
Let Y (t) =

∑M−1
i=0 X(t−i) = (Y (t)

1 , ..., Y
(t)
d ) be the sum of all samples in the

memory, where Y (t) is the sum of independent but not identical multinoulli
random variable, which follows the poisson multinomial distribution (PMD) [5].
Let ξk = Pr(Y (t) = k) be the probability mass function (pmf) of Y (t), where

1 Consider the following example. Let the number of action be 3 and memory length be
5. Consider an agent with following observation sequence (a1, a1, a1, a2, a2, a3, a3).
We can see that the action a1 changes from majority to minority over time. However,
the “stick to the current action” strategy will choose a1 even it is a minority action,
since a2, a3 are in the tie. However, it is not a reasonable choice. In general, when
an action is changing from majority to minority, and other actions become majority
and in a tie at the same time, then the “stick to the current action” strategy will
choose a minority action. Therefore we make the modification in the case of tie to
yield a reasonable outcome.
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k is a d-dimensional vector with non-negative elements sum to M , that is k ∈
[0, ...,M ]d such that

∑
j kj = M , kj ≥ 0. The pmf has no explicit form, but

the probability can be calculated by the method of enumeration. However, the
computation complexity grows exponentially when M is large, as we have to
consider dM combinations for all possible k. To deal with this issue, we generalize
the algorithm proposed by Hong [12]. The result is summarized by Theorem 1.

Theorem 1. Let Y (t) =
∑M−1

i=0 X(t−i) as Y =
∑M

i=1 Xi, and p(t), ...,p(t−M+1)

as p1, ...,pM , then we have

ξk = Pr(Y = k)

=
1

(M + 1)d

M∑

l1=0

...

M∑

ld=0

e−i 2π
M+1 (l1k1+...+l1kd)xl (1)

where xl =
∏M

i=1[
∑d

j=1 pije
i 2π

M+1 lj ], l ∈ [0, ...,M ]d.

The idea of the proof is to apply a d-dimensional Fourier transform to the char-
acteristic function of the PMD and obtain the pmf.

To update its strategy, the agent will randomly choose an action among the
majority actions in the memory AEM = {aj : j ∈ argmaxj′{Y

(t)
j′ }}. For an

agent, the probability of choosing action aj at time t + 1 is

p
(t+1)
j =

d∑

b=1

1

b
Pr(j ∈ AEM ∧ |AEM | = b) (2)

where |AEM | is the number of majority actions in the memory, and j = 1, ..., d. The
explicit form of Eq. (2) depends on the memory length M . For example, for M = 3,
Eq. (2) becomes

p
(t+1)
j =Pr(Y

(t)
j = 3) + Pr(Y

(t)
j = 2) +

1

3
Pr(Y

(t)
j = 1, Y

(t)
k ≤ 1 ∀k �= j)

=[ p
(t−0)
j p

(t−1)
j p

(t−2)
j ] + [ p

(t−0)
j p

(t−1)
j (1 − p

(t−2)
j ) + p

(t−0)
j p

(t−2)
j (1 − p

(t−1)
j )

+ p
(t−1)
j p

(t−2)
j (1 − p

(t−0)
j ) ] +

1

3
[ p

(t−0)
j

∑

k �=j

∑

l�=k,j

p
(t−1)
k p

(t−2)
l

+ p
(t−1)
j

∑

k �=j

∑

l�=k,j

p
(t−0)
k p

(t−2)
l + p

(t−2)
j

∑

k �=j

∑

l�=k,j

p
(t−0)
k p

(t−1)
l ]

= ...

=
1

3
(p

(t−0)
j + p

(t−1)
j + p

(t−2)
j ) +

1

3
( p

(t−0)
j p

(t−1)
j + p

(t−0)
j p

(t−2)
j + p

(t−1)
j p

(t−2)
j )

− 1

3
( p

(t−0)
j

∑

k

p
(t−1)
k p

(t−2)
k + p

(t−1)
j

∑

k

p
(t−0)
k p

(t−2)
k + p

(t−2)
j

∑

k

p
(t−0)
k p

(t−1)
k )

(3)

for t ≥ 3. The derivation requires us to expand each term directly.
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For larger M , the explicit form requires tedious calculation. In general, for
any M , the action distribution p(t+1) = (p(t+1)

1 , ..., p
(t+1)
d ) can be calculated

numerically by Algorithm 1. The idea is to consider every possible observations
and aggregate the probabilities in a bottom up manner.

Algorithm 1. Calculate p(t+1) under EM

Input: p(t), ...,p(t−M+1)

Output: p(t+1)

1: initialize p
(t+1)
j = 0 for all j

2: for each observation k in the set of possible observations Y (t), {k ∈ [0, ..., M ]d :∑
j kj = M , kj ≥ 0} do

3: obtain the pmf ξk from equation (1)
4: find the set of majority actions in k, AEM = {aj : j ∈ argmaxj′{kj′}}
5: find the number of majority actions b = |AEM |
6: for every action aj ∈ AEM do

7: p
(t+1)
j + = 1

b
ξk

8: end for
9: end for

As all agents are homogeneous, the recurrence Eq. (2) is applied to every
agent in the population, hence the whole population. Therefore Eq. (2) is a recur-
rence equation to describe the population dynamics of the convention emergence.
The trajectory of action distribution can be calculated numerically using Algo-
rithm 1, given the initial distribution p(0).

(a) 2 actions, M = 5
p(0) = (0.55, 0.45)

(b) 3 actions, M = 7
p(0) = (0.4, 0.35, 0.25)

(c) 4 actions, M = 7
p(0) = (0.3, 0.27, 0.23, 0.2)

Fig. 1. Population dynamics using EM: model-based vs agent-based

Figure 1 presents a comparison of the population dynamics obtained using
model-based approach versus agent-based simulations. The population dynamics
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under different number of actions (d), initial distributions (p(0)) and memory
sizes (M) are plotted. The dotted line is obtained by Algorithm 1, and the dash
line is obtained from agent-based simulations. For the agent-based simulations,
the results are averaged over 100 simulations using 10,000 agents per simulation.
We can see that the majority action in p(0) always become the final convention.
We also note that the results from our model almost match the results from
agent-based simulations, confirming that the model can explain the population
dynamics well.

3.2 Emergence Behaviour with Finite and Infinite Number
of Agents

The model we formulate in Sect. 3.1 is based on the assumption that N tends to
infinity. In agent-based simulations, we usually simulate using a large number of
agents in the society but the number cannot be infinity. We expect the emergence
behavior will be the same as N is large, except some particular situations. One
obvious example is the case where the initial action distribution p(0) is uniformly
distributed. In agent-based simulations, we can observe that convention will
emerge if the number of iterations is large enough. This is due to the randomness
on the agents pairing processing and actions selecting processing injected to the
system, which causes the action distribution becoming slightly non-uniform over
time. As N → ∞, the randomness is averaged out and the action distribution
will keep uniformly distributed over time.

Following the discussion, we study the convergence behaviour of convention
emergence in the cases when N < ∞ and N → ∞. The following theorems
concludes our findings.

Theorem 2. For N < ∞ but sufficiently large (N > 4, N > d), convention will
emerge iff M ≥ 2.

The idea of the proof is similar to the proof of convention emergence in previous
papers [2,14]. We consider each possible action profile of agents (α1, ..., αN ) as
a state in a Markov Chain, and then we show that there is non-zero probability
for any non-absorbing states reaching the absorbing states (states of convention
emergence).

As N → ∞, the above idea will not work as the number of states is infinite.
We have to consider the explicit form of the recurrence Eq. (2) to draw the
conclusion.

Theorem 3. As N → ∞, M ≤ 2, convention will not emerge.

We expend p(t) directly and show p
(t)
j = p

(t−1)
j ∀t to conclude the result.

Theorem 4. As N → ∞, M = 3, convention will emerge iff the initial distri-
bution has single mode.

The idea of the proof is to consider Eq. (3) and show the probability of choosing
a majority action is increasing in general. We have not yet obtain a general proof
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for M > 3, but we hypothesize that the more the agents can remember, the more
likely the convention can emerge.

Theorem 5. For M = 3, the uniformly distributed action distribution is not
stable.

The idea of the proof is to consider x = [p(t−1)�,p(t−2)�,p(t−3)�]� as a dynami-
cal system. By showing the uniformly distributed situation is an operating point,
we can consider the linearized state space model and show that the system matrix
has at least one positive eigenvalue.

From the above theorems, we can summarize two major differences on the
emergence behaviour between N < ∞ and N → ∞. The first difference is when
N < ∞, convention will emerge if M ≥ 2, whereas for N → ∞, convention
will not emerge when M = 2. This is due to the randomness of agents pair-
ing processing and actions selecting processing of the system. In fact, we have
performed an agent-based simulations with M = 2 over 1000 iterations and
observe that the action distribution over time will vary around the initial dis-
tribution without exhibiting any emerging behaviour. However, as time goes to
infinity, by Theorem 2, there must be a time point that the action distribution
converges to a single action (absorbing state) and stays afterward. The second
difference is examplified by the example we discuss at the begining of Sect. 3.2,
when N < ∞, convention will emerge if we have multiple majorities in the ini-
tial action distribution (including the uniformly distributed case), whereas for
N → ∞, convention will not emerge in such cases. We show in Theorem 5 that
the uniformly distributed situation is not stable. When N < ∞, due to ran-
domness, the action distribution for the majority actions must become slightly
uneven, and the action distribution never return to the stationary point.

3.3 Identification of Optimal Memory Length

(a) 2 actions,
p(0) = (0.5 + ε, 0.5− ε)

(b) 3 actions, p(0) =
(0.3333 + ε, 0.3333, 0.3333)

(c) 4 actions, p(0) = (0.25+
ε, 0.25, 0.25, 0.25− ε)

Fig. 2. Optimal memory length using EM

The recurrence Eq. (2) allows us to study the optimal memory length from
a theoretical perspective. We consider the randomness in agent-based simula-
tions and make the initial distribution to be slightly uneven by adding and
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subtracting a small ε. We then study the time to converge under different mem-
ory lengths (from 3 to 50). The time to converge is defined as the first time
when the proportion of agents choosing majority action has passed a threshold
L (t = mint′{max{p

(t′)
j } > L}). Figure 2 presents the results of our finding. We

set L = 0.9999, and ε = 0.0001, the circles indicate optimal points for the speed
of convergence. Generally, the curve is in a “V” shape. It is because the accuracy
of identifying the majority action increases as the agent considers more samples.
However, when the memory length further increases, the old samples start to
deteriorate the estimation, as the action distribution keeps changing over time.
In case of 2, 3 and 4 actions, the corresponding optimal memory lengths are 5,
7 and 7 respectively. We can expect that as the number of actions increase, the
optimal memory lengths will increase accordingly, as we more samples in order
to identify the majority action.

In the case of 2 actions, we can see that the time to converge is oscillating
between odd and even memory lengths. It is because the speed of convergence is
slowed down as agents have to deal with the tie situation when memory length
is even. When number of actions increases, the pattern disappears as the tie
situation may happen even when memory length is odd.

4 Experiment on Convergence Speed

(a) 2 actions,
p(0) = (0.5, 0.5)

(b) 3 actions,
p(0) = (1/3, 1/3, 1/3)

(c) 4 actions, p(0) =
(0.25, 0.25, 0.25, 0.25)

Fig. 3. Comparison on speed of convergence

One major concern in convention emergence is the speed of convergence. In
this section we compare the EM strategy with various popular methods, includ-
ing Q-Learning [30], HCR [22] and WSLpS [23], under social learning. We con-
duct the experiments using agent-based simulations. For Q-Learning and HCR,
as payoff is required for the learning, the standard (1, −1) coordination game is
considered, agents receive +1 payoff if they choose same action, and −1 payoff
if their actions does not match. Let the convergence rate at time t be the pro-
portion of agents choosing the majority action at time t (ratet = maxj{p

(t)
j }).



742 C. Leung et al.

For every strategies, we conduct 100 simulations using 10,000 agents. The initial
action is uniformly distributed. In the first experiment, we conduct the simula-
tions for the cases of 2, 3, and 4 actions, the maximum number of iterations are
100, 200, 300 respectively. The convergence rate at each time step is recorded,
and the average convergence rate is calculated. The strategies and their settings
are described as below:

EM: The memory length L is set to be 5 in the case of 2 actions, and 7 in the
case of 3 and 4 actions, which are the optimal memory lengths obtained in
Sect. 3.3.

EM-inf: EM with unlimited memory length.
Q-Learning: The learning rates vary from 0.1 to 0.25, and the exploration rate

ε is set to 0.2, which is the common setting.2

HCR: We use the same memory length as we used in EM3, note that in case of
2 actions, HCR is shown to be equivalent to EM.

WSLpS: The shift probability α is set to 0.5, as suggested in the paper [14].

The results for 2, 3 and 4 actions are presented in Fig. 3. Overall, the EM
gives the best performance. It can establish conventions within 50 iterations
in all cases. It confirms our intuition that observation with memorization is
a very effective way to identify the majority, which is the key to the quick
convergence. The EM-inf and Q-Learning methods give moderate performance:
their convergence speed are close in the case of 2 actions, but when the number of
action increases, EM-inf is significantly better than Q-Learning. For Q-Learning,
the speed of convergence is not affected by different learning rates. The WSLpS
give the worst performance. The simulation does not converge in all cases. We
note that in the original paper [14], the agent interaction model they used is
sequential pairwise interaction, whereas our experiments are based on social
learning. The strategy does not perform well for synchronous interaction. We
have tried to vary the shift probability from 0 to 1, but convention does not
emerge in all settings. For HCR, the performance is as good as EM in the case
of 2 actions, which is not surprising as they are equivalent in the case of 2
actions. However, as the number of action is increased to 3 and 4, HCR quickly
deteriorate and does not converge in the case of 4 actions.

To illustrate the advantage of EM over other strategies, we further study the
convention emergence in very large convention space. We increase the number
of actions to 10, 100, 1000 and repeat the same experiments. As other strategies
do not converge even in the case of 4 actions, we only compare the performance
of EM with Q-learning. For EM, we first keep the memory length to be 7. As we
have mentioned in Sect. 3.3, the optimal memory length is increasing when the
number of action increase, therefore we also conduct the experiments with larger
memory size. Starting from 10, we add the memory length by 5 and conduct the

2 We measure the convergence rate based on agents’ policy, as the actual actions are
affected by exploration.

3 In case of tie, the agent will randomly choose one action among the actions with
highest cumulative reward. The changes is made for the same reason as in Sect. 3.
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(a) 10 actions, p(0) uni-
formly distributed

(b) 100 actions, p(0) uni-
formly distributed

(c) 1000 actions, p(0) uni-
formly distributed

Fig. 4. Convention convergence in large convention space

simulation, and we stop increasing the memory length once the performance has
started to deteriorate. For Q-learning, as we have mentioned before, the learning
rates do not affect the performance by a lot, we fix the learning rates to be 0.1. As
before, we conduct 100 simulations using 10,000 agents, and report the average
convergence rate.

The simulations results are presented in Fig. 4. We can see that the perfor-
mance of EM is very good in all the cases. When the memory length is 7, the
convention emerged within 100 iterations in the setting of 10 and 100 actions.
Even when the number of action is up to 1000, the convention can emerge within
200 iterations. For Q-learning, we can see that the convergence speed has deteri-
orated to around 800 iterations in the case of 10 actions, and the convention does
not emerged in the case of 100 actions, even we have conducted the simulations
up to 1000 iterations. We do not perform the experiment for Q-learning under
1000 actions, since it fails to converged in the setting of 100 actions.

Focus back on EM, we can see that the performance is indeed better for larger
memory length as the number of action increases. The best memory lengths are
7, 15, 25 in the case of 10, 100, 1000 actions. The performance difference are
hard to notice in the plot, but we can compare with the actual result. For
example in the setting of 10 actions, EM with memory length 7 out-perform EM
with memory length 10 by 1 iteration. We can see that with the best memory
lengths, the convention can emerged within 100 iteration even when the number
of actions has went up to 1000. The second set of experiments confirm that EM
is very effective in social learning, and the time to converge is very robust against
increase in convention space.

5 Conclusion

We develop a model to describe the population dynamics (action distribution
over time) of EM strategy under social learning in large population. In particular,
we derive the recurrence equations for the population dynamics and an algorithm
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to solve the equations. The results match well with the agent-based simulations.
On the other hand, we study the condition of emergence behaviour under the
case where N → ∞ and N < ∞. In addition, we work out the optimal memory
lengths in the case of 2 to 4 actions under the model we have developed. Finally,
through the agent-based simulations, we show that EM is the fastest strategy
among the strategies that we have compared in terms of convergence speed,
even in very large convention space. This confirm that idea of observation with
memorization is indeed very effective in social learning.

The model-based approach provides another way of studying the convention
emergence problem apart from agent-based simulations. It provides the descrip-
tion on how the population dynamics evolves over time and allow us to study the
emergence behavior in the limiting case (N → ∞). Moreover, the result from
model-based approach does not suffered from simulation error. As for future
work, we would like to develop a model-based approach for other strategies under
social learning, such as Q-Learning, so that the comparison of convergence speed
can be done in theoretical manner.
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Abstract. Although multi-agent reinforcement learning (MARL) is a promis-
ing method for learning a collaborative action policy that will enable each agent
to accomplish specific tasks, the state-action space increased exponentially.
Coordinating Q-learning (CQ-learning) effectively reduces the state-action space
by having each agent determine when it should consider the states of other
agents on the basis of a comparison between the immediate rewards in a single-
agent environment and those in a multi-agent environment. One way to improve
the performance of CQ-learning is to have agents greedily select actions and
switch between Q-value update equations in accordance with the state of each
agent in the next step. Although this “GPCQ-learning” usually outperforms CQ-
learning, a deadlock can occur if there is no difference in the immediate rewards
between a single-agent environment and a multi-agent environment. A method
has been developed to break such a deadlock by detecting its occurrence and
augmenting the state of a deadlocked agent to include the state of the other
agent. Evaluation of the method using pursuit games demonstrated that it
improves the performance of GPCQ-learning.

Keywords: Reinforcement learning � Multi-agent � Sparse interaction �
Fully cooperative � Deadlock

1 Introduction

Multi-agent reinforcement learning (MARL) is a promising method for learning a
collaborative action policy that will enable each agent to accomplish specific tasks
(Bloembergen et al. 2015; Vlassis 2007). Each agent tries to learn an optimal action
policy, one that maximizes the expected cumulative rewards, while sharing the envi-
ronment with other agents. Agents that learn their action policy by considering the
states and actions of other agents are called joint-action learners. Those that learn it
independently are called independent learners (Claus and Boutilier 1998).

If each agent shares the same reward for a task, i.e., a fully cooperative task,
independent learners can sometimes learn a collaborative action policy without con-
sidering the states and actions of other agents because a random exploration strategy
may enable them to learn collaborative actions coincidently (Lauer and Riedmiller
2000; Sen et al. 1994). While joint-action learners may perform better because they
take information about other agents into account, they suffer an exponential increase in
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the state-action space for learning, thereby reducing the learning speed and increasing
the cost of communication and the cost of estimating information about other agents
(Tan 1993).

In many real-world tasks, agents behave independently most of the time and
sometimes must behave cooperatively. For example, consider a task involving multiple
robots working together to move a heavy box to a specific position. A rational approach
is for them to independently approach the box and then cooperatively move it in the
same direction to the final position. Each should decide its actions taking other agents’
positions and actions into account only when the robots are close to each other. The
basic idea of MARL with sparse interaction is to reduce the state-action space by
considering information about other agents only when necessary because a smaller
state-action space makes the learning process more efficient. This means that identi-
fying when cooperative actions are required is a key function in MARL with sparse
interaction. Melo and Veloso (2009) reported a method in which a pseudo-action,
COORDINATE, is added to the action space of each agent. The agents learn when they
should consider other agents by estimating the Q-value for the COORDINATE action
for each state. Hauwere et al. (2010, 2011) proposed the coordinating Q-learning (CQ-
learning) concept. Each agent determines when it should consider the state of other
agents by comparing the immediate rewards in a single-agent environment with those
in a multi-agent environment. In CQ-learning, the state-action space is partially aug-
mented when an agent detects a difference in the immediate rewards using Student’s t-
test. Kujirai and Yokota (2018, 2019) reported three methods for improving the per-
formance of CQ-learning: greedily selecting actions (GCQ-learning), switching
between Q-value updating equations on the basis of the state of each agent in the next
step (PCQ-learning), and their combination (GPCQ-learning). Evaluation using several
maze games validated their effectiveness, especially that of GPCQ-learning.

We previously observed that agents using GPCQ-learning sometimes fall into a
deadlock if there is no difference in the immediate rewards between a single-agent
environment and a multi-agent environment. We have now developed a method for
breaking the deadlock by detecting its occurrence and augmenting the state of a
deadlocked agent to include the state of the other agent. Evaluation using pursuit games
demonstrated that it improves the performance of GPCQ-learning.

The reminder of this paper is organized as follows. Section 2 gives an overview of
MARL and discusses related work. Section 3 discusses MARL with sparse interaction
and the deadlock caused by GPCQ-learning. Section 4 presents our method for
breaking the deadlock. Section 5 describes our evaluation and compares the perfor-
mance of our proposed method with those of existing methods including GPCQ-
learning. Section 6 concludes this paper with a summary of the key points.

2 Multi-agent Reinforcement Learning

2.1 MDP and Reinforcement Learning

A Markov decision process (MDP) is formalized as a problem in which an agent
optimizes its action policy by maximizing the expected cumulative reward resulting
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from the actions it takes in its environment. The MDP is defined as a tuple (S, T, R, p),
where S stands for the state space of the agent, T(= p(s′|s, a)) and R(= r(s, a, s′)) stand
for the transition probability matrix and immediate reward matrix for the combinations
of state s, action a, and next state s′, and p(= p(a|s)) stands for the action policy of the
agent. An optimal policy, i.e., one that maximizes the expected cumulative reward, is
described as p*.

Reinforcement learning is one method for iteratively estimating p*. Q-learning
(Watkins 1989, 1992) is a typical reinforcement learning method. Instead of estimating
p*, Q-learning estimates the optimal Q-value Q* by updating the Q-value using (1),
wherein at indicates the learning rate and c indicates the discount rate.

Q s; að Þ  1� atð ÞQ s; að Þþ at½r s; að Þþ cmaxa0Q s; að Þ� ð1Þ

2.2 Extended Multi-agent Systems

As shown in Table 1, an MDP can be extended for multi-agent systems in at least four
ways. A natural extension is multi-agent MDP (MMDP), in which agents share all the
system states (full observability) and rewards. The agents share all their states and
actions and obtain the same rewards from the environment as a result of their joint
actions (Boutilier 1996).

Another extension is decentralized MDP (DEC-MDP), in which each agent can
observe only its own states, and the agents obtain the same rewards (Melo and Veloso
2011). If they can know the complete state of the environment by sharing their
observations, the agents are said to have full joint observability.

These two extensions are called fully cooperative games because the agents obtain
the same rewards.

In contrast, in a Markov game (MG) and a decentralized Markov game (DEC-MG),
each agent has an independent reward function. This results in a competitive situation
(Aras 2004).

2.3 Related Work

The focus here is on fully cooperative games, which have at least one optimal action
policy for each agent. The agents can serendipitously learn a cooperative behavior
without having any information about the other agents. This is because coincidental
actions that lead to high cumulative reward are reinforced (Sen et al. 1994).

Table 1. Extended multi-agent systems.

Full observability Full joint observability

Shared rewards MMDP DEC-MDP
Independent rewards MG DEC-MG
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For example, assume that an agent randomly selects an action at a certain position
in a maze game, and the action results in the agent obtaining a high cumulative reward
because the action coincidentally prevents the agent from colliding with another agent.
The agent may thereby learn a cooperative action policy without having any infor-
mation about the other agents. An agent learns a more precise cooperative action policy
if it has knowledge of not only its own state-action combinations but also those of other
agents. However, the resulting exponential increase in the state-action space and
communication cost between agents slows down the learning process.

Figure 1 shows two example maze games in which each agent i tries to find an
optimal path from start position Si to goal Gi. In both games, the goal for each agent is
the start position of another agent. They collide if each one simply takes the shortest
path. The optimal solution is for one of the agents to take a detour immediately a
collision. However, finding this solution requires extensive exploration of potential
detours because there are a number of unsuitable detour routes.

Figure 2 shows the average number of steps needed to complete the two games for
every 100 episodes using three different learning methods. These methods are
straightforward extensions of Q-learning for a multi-agent environment. The first
method is independent learning, which is Q-learning itself. Each agent learns its own
action policy without having any information about the other agents. The second one is
joint-state learning (JSQ-learning), in which each agent always knows the states of the
other agents and decides its actions independently on the basis of its own policy. The
third is joint-state-action learning (JSAQ-learning), in which one super-agent observes
all the states and decides the joint actions for all agents.

As shown in Fig. 2, even the agents using independent learning learned how to
avoid collisions and reach their goals unimpeded. In the ISR game, which has a small
state-action space, the agents using independent learning converged the fastest although
the average number of steps to the goal was the highest because they did not explicitly
consider the other agents. In the CMU game, which has a larger state-action space, the
agents trained using independent learning had superior performance because 10,000
episodes were not enough for the other methods to learn an optimal policy in the large
state-action space.

Fig. 1. Example maze games.
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Policy convergence was slower for the agents trained using JSQ-learning, and the
average number of steps to the goal was less than that for the agents trained using
independent-learning in the ISR game because these agents consider the other agents
when selecting their actions. In the CMU game, the convergence of their policies was
slower than that of the agents trained using independent learning because they had a
larger state-action space: 43 � 43 � 4 = 7396 in the ISR game and 133 � 133 � 4
= 70,756 in the CMU game for each agent.

The agents trained using JSAQ-learning learned a better policy than the agents
trained using the other two methods in the ISR game because the combined state-action
space was small enough for each agent to learn an optimal joint-action policy. All the
agents had difficulty learning an optimal policy in the CMU game because the com-
bined state-action space was too large (133 � 133 � 4 � 4 = 283,024) for the agents
to sufficiently explore all the state-action pairs in the limited number of episodes.

3 Multi-agent Reinforcement Learning with Sparse
Interaction

3.1 Existing Methods of MARL with Sparse Interaction

In some fully cooperative games, agents can decide their actions without considering
any information about the other agents for most states. That is, an independent optimal
action policy might be optimal for most states. In the other states, each agent needs
information about the other agents to learn an optimal action policy. Therefore,
exponential increases in the state-action space and in the communicational cost can be
avoided by having each agent consider information about the other agents only when
necessary. This type of framework is called decentralized sparse interaction MDP
(DEC-SIMDP) (Melo and Veloso 2011) and is a special case of DEC-MDP. Several
methods have been proposed for agents to learn their action policy for DEC-SIMDP.

As mentioned in the introduction, Melo and Veloso (2009) reported a method in
which a pseudo-action, COORDINATE, is added to the action space of each agent.
When COORDINATE is selected as an action by an agent, the agent obtains infor-
mation about the other agents and behaves in accordance with that information while
suffering the penalty of communication cost. Because the Q-value for selecting
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Fig. 2. Learning curves for two maze games.
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COORDINATE can be obtained with Q-learning, the agent can decide when it should
consider the other agents. Setting the cost of COORDINATE for a specific task is a
difficult issue because, if the cost is too low, the agents will always choose COOR-
DINATE, and, if the cost is too high, the agents will seldom choose it.

Hauwere et al. (2010, 2011) proposed a method in which the state of an agent is
augmented to include the state of another agent if the two agents are likely to interfere
with each other. Each agent behaves in accordance with Q-values learned in advance in
a single-agent environment. Each agent can identify potential interference with other
agents by comparing the distribution of a state’s immediate rewards to those for a
single-agent environment. Once the state of an agent is augmented, the agent selects an
action on the basis of Q-values corresponding to the augmented joint state when the
agent and another agent are in an augmented joint state (Fig. 3).

This method is called cooperating Q-learning (CQ-learning). To be more specific,
CQ-learning augments the state of agent k sk, creating augmented joint state sk

!¼
ðsk; slÞ that considers the state of agent l. Its Q-values are represented as Qaug

k ðsk!; akÞ
when Student’s t-test rejects the hypothesis that the distribution of immediate rewards
in the state comes from that of a single-agent environment. This partial augmentation of
joint states dramatically reduces the state-action space in sparse interaction tasks
compared with JSQ-learning and JSAQ-learning and thereby improves the efficiency
and optimality of the learned action policy.

Fig. 3. Illustrated CQ-learning algorithm.
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Kujirai and Yokota (2018, 2019) pointed out two issues on CQ-learning and
proposed an improved method of CQ-learning, called GPCQ-learning. The first issue
on CQ-learning is its unnecessary exploration. An agent using CQ-learning selects its
action ε-greedily even it is not in an interfered state. This causes unnecessary explo-
ration and interferences in a multi-agent environment. In addition to that, taking a
random action might coincidently prevent interference with another agent, resulting in
a lost opportunity for the agent to identify the difference between a single-agent
environment and multi-agent environment (Fig. 4)

The second issue is that CQ-learning optimistically updates the Q-values of an
augmented joint state based on the Q-values learned in the single-agent environment as
shown in Eq. (2). This updating assumes that after taking the selected action, the agent
can behave based on independent Q-values without subsequent interference.

This assumption is too optimistic because when an agent is in an interference states
with another agent the probability of being in another interference states for the agent
can not be neglectable. In Fig. 5 a red agent avoid collision by selecting its action based
on its augmented Q-values. CQ-learning assumes that the agent can independently
select its action because it has already avoided the collision. However, it is likely that
the agent may collide with the same agent because another agent is still in the near
location.

Fig. 4. Unnecessary exploration by CQ-learning.

Fig. 5. Example subsequent interferences. (Color figure online)
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GPCQ-learning greedily selects an action when an agent is not in an interfered state
to avoid unnecessary exploration, and it changes the equation for updating the Q-value
of the augmented joint state depending on whether the agent is in an interfered state in
the next step in order to avoid optimistic evaluation of the optimal Q-value of the
augmented joint state. GPCQ-learning was demonstrated to outperform CQ-learning in
several maze games.

3.2 Deadlock Resulting from GPCQ-Learning

In pursuit games, agents (depicted by numbers in Fig. 6) try to move next to a target
(depicted by T) in a square field, and the game finishes when all the agents are next to
the target. In this paper, the target does not move from the initial position. A state of
each agent is represented by a difference in positions between the agent and the target,
i.e. (�6� dx� 6;�6� dy� 6). Actions are Up, Down, Left, and Right to move.
Rewards are designed as −1 for a movement, −10 for a collision with another agent,
and 0 for a movement next to the target and a finish.

First, an agent is trained to learn how to move in order to touch the target in a
single-agent environment. The initial positions of the target and the agent are randomly
selected in every episode. Then, multiple agents try to find an optimal policy for
moving in order to touch the target at the same time in a multi-agent environment. The
initial positions of the target and the agents were fixed in seven patterns for evaluation,
as shown in Fig. 7. For patterns 1–3, the agents can touch the target by greedily
selecting their actions without interference with the other agents. For patterns 4–7, an
agent collides with another agent if it greedily selects its action on the basis of Q-values
learned in a single-agent environment.

Fig. 6. Example pursuit game.
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For patterns 1–3, the agents using GPCQ-learning find optimal paths resulting in
the minimum number of steps to finish while agents using CQ-learning take more steps
because they e-greedily select their actions, resulting in unnecessary exploration. For
pattern 4, the agents using GPCQ-learning perform better because they avoid unnec-
essary augmentation of joint states. For patterns 5–7, the agents using CQ-learning
perform much better. For patterns 6–7, in particular, the agents using GPCQ-learning
rarely finish the games (depicted as – in Table 2). This is because a repetitive pattern of
action-states does not create a difference in the immediate rewards.

Looking at Fig. 8, we see that agent 1 first greedily selects an action of upward in
accordance with the prelearned Q-value and detects a difference in immediate rewards
because it collides with agent 2 (Fig. 8(a)). It then augments its state with the state of
agent 2. For this augmented joint state, agent 1, using GPCQ-learning, decides its

Fig. 7. Seven initial agent/target-position patterns used for evaluation.

Table 2. Comparison of CQ and GPCQ-learning for pursuit games

Patterns Interference No. of agents Min No. of steps CQ GPCQ
Mean Std dev. Mean Std dev.

1 No 2 4 5.17 1.89 4.00 0.00
2 No 2 4 6.23 8.12 4.00 0.00
3 No 3 4 5.61 13.7 4.00 0.00
4 No 2 4 5.88 1.51 5.14 0.53
5 Yes 2 4 8.53 12.4 274.00 1620.00
6 Yes 2 4 117 219 – –

7 Yes 3 4 39.5 45.8 – –
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action e-greedily and may select an action Left (Fig. 8(b)). After it moves to the left,
because it is no longer in an augmented joint state, it greedily selects action Right to
move back to the previous position in accordance with the prelearned Q-value (Fig. 8
(c)). The reward of selecting action Right in a multi-agent environment is the same (i.e.
−1) as that in a single-agent environment. Agent 2 also gains the same reward (i.e. 0) as
in a single-agent environment because rewards for a touch and finish are the same.
Because both rewards are the same as in a single-agent environment, the state of agent
1 is not augmented. Even if agent 1 selects an action of Right or Down, it may return to
the same position because of the same reason. Because any state of the agent is no
longer augmented in the situation, it becomes trapped in repetitive movements (i.e.
deadlock).

4 Proposed Method

In Algorithm 1, the hatched portions show the differences between CQ-learning and
GPCQ-learning and the underlined portion shows the difference between GPCQ-
learning and our proposed method. GPCQ-learning selects its action greedily in an
unaugmented state (line 13) and changes updating equations based on whether the
agent is still in an interfered state in the next step (line 28–29). The proposed method
detects repetitive movements between an augmented joint state and a non-augmented
state on the basis of states’ log and then augments the state of a deadlocked agent to
include the state of the other agent, which enables the agent to learn how to avoid the
deadlock by updating Q-values.

Although the proposed algorithm can only detect two steps cycle deadlocks, a
longer cycle deadlock can be neglectable thanks to the assumption of the sparse
interaction.

Fig. 8. Mechanism of deadlock resulting from GPCQ-learning.
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5 Evaluation

We evaluated our proposed learning method in comparison with existing methods:
independent learning, JSQ-learning, JSAQ-learning, CQ-learning, and GPCQ-learning.
The number of episodes was set to 20,000 for independent learning, JSQ-learning, and
JSAQ-learning and 10,000 for CQ-, GPCQ-, and improved GPCQ-learning because
CQ-learning and its extensions require prelearning (in this case, 10,000 episodes) in a
single-agent environment. In the prelearning, the initial positions of the agents and the
target are randomly selected, and e was set to 0.3 to ensure that the agents could
sufficiently explore the environment.

The seven initial agent/target-position patterns shown in Fig. 7 were used for our
evaluation. For CQ-, GPCQ-, and improved GPCQ-learning, the length of the window
used to calculate the distribution of immediate rewards was set to 20. The threshold of
the Student’s t-test, pth, was set to 0.01, as was done by Hauwere et al. (2010, 2011).

State-action space of an agent is 13 � 13 � 4 = 676 for an agent using indepen-
dent learning. If the number of agents is two, the space is 13 � 13 � 13 � 13 �
4 = 114,244 for the agents using JSQ-learning, 13 � 13 � 13 � 13 � 4 � 4 =
456,976 for the agents using JSAQ-learning. If the number of agents is three, the space
is 13 � 13 � 13 � 13 � 13 � 13 � 4 = 19,307,236 for the agents using JSQ-
learning and 13 � 13 � 13 � 13 � 13 � 13 � 4 � 4 � 4 = 308,915,776 for the
agents using JSAQ-learning.

Table 3 shows the number of steps to finish and the standard deviation. For patterns
3 and 7 in which there are three agents, the increase of the state-action space by JSQ-
learning and JSAQ-learning clearly reduces the efficiency of finding an optimal action
policy. For patterns 1–3, the proposed method, as well as GPCQ-learning, found the
optimal paths because there were no interferences between the agents if the agents
greedily selected their actions. A slight improvement was obtained for pattern 4. The
proposed method substantially outperformed GPCQ-learning for patterns 5–7 while the
performance of GPCQ-learning was worst because of deadlocks. For pattern 7, the path
found using GPCQ-learning was far from being optimal because there were frequent
collisions between the agents in this setting, which is inconsistent with the assumption
of sparse interaction. In this case, independent learning, which coincidentally found
better paths, performed the best.
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6 Conclusion

We previously observed that agents using GPCQ-learning sometimes fall into a
deadlock if there is no difference in the immediate rewards between a single-agent
environment and a multi-agent environment.

Our proposed method breaks such a deadlock by detecting them and augmenting
the state of a deadlocked agent to include the state of the other agent.

Evaluation against existing five methods, including GPCQ-learning, using seven
initial agent/target-position patterns demonstrated that the proposed method outper-
forms existing methods for most patterns.
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