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Filtering Based on Skin-Potential
Variation Monitoring
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41.1 Introduction

Cardiovascular diseases have become more and more important in recent years. In
the field of clinical and medical research, a standard commercial Ag/AgCl electrode
is used to record ECG signal. This electrode contains an electrolyte gel, which
can irritate the human skin, and the signal quality degrades over time due to the
dehydration of the gel [1, 2]. For this reason, Ag/AgCl electrodes are not suitable
for wearable health care devices which are intended for long-term continuous
monitoring. Therefore, textile-based dry electrodes are alternatively used owing to
their stable electrical properties. Textile electrodes are dry, free from gel, and can be
readily converted into wearable medical garments, which make them preferable for
long-term monitoring [3].

However, the biggest challenge of the fabric dry electrodes is that the collected
ECG signals are greatly disturbed by motion artifacts. Most of the noise can be
filtered out using common filtering techniques, but motion artifacts are difficult
to filter out since they have the same frequency range as ECG signals. Accurate
detection of a person’s biopotential signals in movement state is always difficult
and challenging [4]. SPV is a major composition of the motion artifacts [5].

The performance of adaptive filtering in noise suppression depends largely on
the level of correlation between the reference signal and the ECG noise source
[6]. The reference signal measures motion artifacts by means of various sensors
(pressure sensors, accelerometers, and optical displacement sensors) [7–10]. A
low correlation with motion artifacts were shown in indirectly measured reference
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signals, because they yield inaccurate estimates of the electrical characteristics of
the skin/electrode interface. Ko et al. [11] designed an acquisition structure to
measure the half-cell potential by using sol-gel foams wet electrodes, The half-cell
potential signal was used to estimate motion artifacts, but wet electrodes were not
suitable for long-term use. In general, these research works can effectively reduce
motion artifacts by using adaptive filtering. However, the ECG signal collected by
the textile electrodes and the motion artifact induced by skin-potential variation
(SPV) were not taken into consideration.

In this chapter, a simple method was demonstrated to measure skin-potential
variation (SPV). SPV signals were used as reference signals to reduce ECG motion
artifacts with the adaptive filtering technique. To measure SPV signal, two additional
textile electrodes were positioned adjacent to the ECG sensing electrodes and
connected with a resistance. The skin deformation causes a potential difference
between the two electrodes, and a voltage drop is generated across the resistance.
This voltage drop signal is adaptively filtered as a reference signal input. This
method can eliminate the need for placing different sensors on the body, and obtain
SPV signal which is high similar with ECG signal by using two more textile
electrodes to estimate motion artifacts with adaptive filtering.

41.2 Methodology and Measurement

The proposed method using textile electrodes acquired two types of physiological
signals, ECG signals and SPV signals. Then formula derivation, circuit simulation,
and experiments were carried on to demonstrate that motion artifacts can be
effectively removed by the SPV signal.

Electrical Circuit Model

The equivalent circuit model for ECG signal is shown in Fig. 41.1a, b shows the
equivalent circuit model for SPV signal [11]. Zsi is the impedance of skin, Zei is
the impedance of skin–electrodes interface, Zr is the resistance which connects two
electrodes, and Zin is the input impedance of the front-end.

In Fig. 41.1a:

ECG = V +
1 × Zin

Zs1 + Ze1 + Zin
− V −

1 × Zin

Zs2 + Ze2 + Zin
(41.1)

From Eq. (41.1), when the input impedance Zin is large relatively to the
interface impedance (Zs1 + Ze1, Zs2 + Ze2) and the impedance between the two
lead electrodes is approximately equal (Zs1 + Ze1, Zs2 + Ze2), the equation is
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Fig. 41.1 Equivalent circuit model for (a) ECG signal; (b) SPV signal

approximately equal to ECG = V +
1 − V −

1 . In conclusion, when the front-end input
impedance is large relative to the interface impedance, the motion artifacts caused
by the impedance change have little effect on the ECG.

In Fig. 41.1b:

C − D = (
V +

1 − V −
1

) × Zr

Ss1 + Zs2 + Zr

∼= if
Zr

Zs1 + Zs2

∼= 0 (41.2)

In Eq. (41.2), when the impedance Zr is smaller than the interface impedance
Zs1 + Zs2, the equation is close to 0.

SPV = C − D = Zin × C − D

Ze1 + Ze2 + Zin + Zr
=

(
1

1 + Ze1+Ze2+Zr
Zin

)

× (C − D)

(41.3)

In formula (41.3), C and D represent skin potentials which are in contact with

the electrodes. When

(
1

1+ Ze1+Ze2+Zr
Zin

)

approaches to 1, the SPV is approximate to

C – D.

Circuit Simulation

First, by using a circuit simulation Software Multisim13.0, the ECG signal acqui-
sition equivalent circuit model and SPV signal acquisition equivalent circuit model
were built. Then the influence of impedance change was simulated. The R and the
C component values used in the circuit were obtained from previous experiments.
The feasibility of the proposed method was evaluated by changing the value of Zr.
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Fig. 41.2 Wearable chest
strap

Fig. 41.3 Signal acquisition
process

Experiment

The wearable chest strap is shown in Fig. 41.2; two pairs of textile electrodes are
integrated on a wearable chest strap, one for ECG signal acquisition, and the other
for SPV signal acquisition. Resistance (1, 22, 47, 100 k�) connects two textile
electrodes which are used to obtain SPV signal connection. The experiment required
six male volunteers (A–F) aged 20–25 years old to wear the wearable chest strap
under the pressure of 2 N/cm2, which was fixed at about 1 cm below the chest. The
subjects performed stoop motions in an environment of 25 ◦. ECG signal and SPV
signal were measured by BIOPAC data acquisition system (Model: MP36, BIOPAC
Systems Inc., USA) with a sample rate of 2000 Hz and 10 s for each recording with
the change of the resistance. Biological signals are finally analyzed and processed
by a computer. The signal acquisition process is shown in Fig. 41.3.

41.3 Result and Discussion

Circuit Simulation Result

The simulation results are shown in Fig. 41.4 (red: ECG signal, green: SPV
signal). As the resistance Zr decreases, the amplitude of the SPV signal decreases.
Obviously, the value of Zr is very important. When Zr is smaller than the interface
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Fig. 41.4 Circuit simulation to evaluate the influence of Zr. (a) Zr = 0 �, (b) Zr = 47 k�,
(c) Zr = 500 M�

Table 41.1 The correlation of SPV signal and ECG signal in different resistance values of six
males

Resistance
value (k�)

Correlation
of A

Correlation
of B

Correlation
of C

Correlation
of D

Correlation
of E

Correlation
of F

1 0.3916 0.2665 0.0874 0.0915 0.0862 0.1282
22 0.5170 0.3483 0.2075 0.3291 0.1970 0.2366
47 0.5709 0.7563 0.8626 0.3890 0.2767 0.3684
100 0.4519 0.7088 0.8181 0.1431 0.1622 0.1164

impedance of Zs1 + Zs2 and Zr/Zs1 + Zs2 is approximate to 0, so the SPV signal
is close to 0. The effect is shown in Fig. 41.4a, b is the waveform diagram of the
ECG signal and the SPV signal when Zr is 47 k�. The SPV signal is superimposed
with a weak ECG signal and needs to be removed by preprocessing. As shown in
Fig. 41.4c, when Zr is too large, the path is equivalent to broken circuit and the SPV
signal approaches to the ECG signal.

Experimental Result

In the dynamic situation, Table 41.1 shows six volunteers’ correlations between the
SPV signal and the ECG signal in different value of resistance. When the value of
resistance is equal to 47 k�, the SPV signal and the ECG signal have a highest
correlation.

Adaptive filtering was conducted using a basic LMS (least mean square) error
cancellation algorithm, and the SPV signal measured in four resistances are
respectively input as adaptive filtering reference signal. The output of adaptive
interference cancellation is shown in Fig. 41.5. It can be seen that the ECG signal
and SPV signal in the 47 k� resistance have a high correlation, and the wave
fluctuation of two signals is consistent. Table 41.2 shows the changes of SNR before
and after the interference cancellation. As shown in Fig. 41.5 and Table 41.1, when
the SPV signal measured in 47 k� resistance is used as a reference signal, the
filtered QRS waveform is obvious and the SNR is improved.
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Fig. 41.5 ECG waveforms before and after adaptive filtering in different resistances

Table 41.2 The SNR changes of ECG signals with SPV interference in different resistance values

Resistance value (k�) Before filtering SNR (dB) After filtering SNR (dB) SNRI (dB)

1 5.7453 5.8274 0.0821
22 5.7947 8.7272 2.9325
47 6.0317 11.7578 5.7261
100 5.5763 10.4293 4.8530

Independent component analysis is one of the recently developed techniques for
the blind source separation (BSS). It is used to identify original signals from the
observed linear combinations of the original signals. We deal with the ECG signals
by using adaptive filtering algorithm and ICA algorithm, and the adaptive filtering
reference signal is the SPV signal in 47 k� resistance. The output of filtering is
shown in Fig. 41.6. Table 41.3 shows that adaptive filtering has higher SNR values
and better noise suppression than ICA filtering.

The results demonstrate the feasibility of the method by using textile electrodes
to measure the SPV signal as an adaptive filtering reference signal, and the
results show the ability of adaptive filtering in suppression of motion artifacts in
electrocardiograms recorded with textile electrodes.
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Fig. 41.6 ECG waveforms
after adaptive filtering of
different resistances

 

Table 41.3 The SNR changes of adaptive filtering and ICA filtering

Algorithm name Before filtering SNR (dB) After filtering SNR (dB) SNRI (dB)

Adaptive filtering 6.0317 11.7578 5.7261
ICA filtering 6.0317 7.1343 1.1026

41.4 Conclusion

In this chapter, the SPV signal acquisition structure can effectively measure the skin-
potential variation. The SPV signal is measured by textile electrodes and served as
a reference signal for adaptive filtering. In this way, it can effectively remove the
motion artifact caused by the skin-potential variation. Since two electrode pairs are
distributed on the same substrate and the acquisition position of two signals is close,
the motion artifact can be measured more accurately, ensuring the high correlation
between ECG and SPV signals. Besides, using the electrode to collect the SPV
signal doesn’t require extra sensor components and improves the accuracy of the
later diagnosis.

It can be found in the experiments that the correlation between the SPV signal and
the ECG signal is deteriorated when large movements, such as running and jumping,
are performed, which leads to insignificant signal characteristics after filtering. In
the future, researchers should focus on removing motion artifacts under large-scale
motions.
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