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Preface

We are delighted to introduce the proceedings of the first edition of the 2018
European Alliance for Innovation (EAI) International Conference on Body Area
Networks (BODYNETS). This conference has brought researchers, developers
and practitioners around the world who are leveraging and developing WBAN
technology for wearable communications and personal health management. The
theme of BODYNETS 2018 was “Technologies providing information from inside
a body as well as on- and off-body devices.”

The technical program of BODYNETS 2018 consisted of 39 full papers. The
conference had a main track and four special tracks. The special tracks were
Track 1—Ultra Wide Band for Body Area Networks (UWBAN); Track 2—Smart
Body Area Networks (SmartBAN); and Track 3—Antenna/Propagation and WiBEC
project (APWiBEC). Aside from the high-quality technical paper presentations,
the technical program also featured two keynote speeches, three invited speeches,
and one panel. The two keynote speeches were given by Prof. Emil Jovanov
from the University of Alabama, USA, and Prof. William Scanlon from Queen’s
University Belfast, United Kingdom. The invited speeches were presented by Prof.
DK Arvind from the University of Edinburgh, United Kingdom, Prof. Ryuji Kohno
from Yokohama National University, Japan, and Dr. John Farserotu from CSEM,
Switzerland. The title of the panel was “Technological Trends and Challenges for
Future Healthcare.” The panel aimed to enrich our understanding of future trends
the healthcare procedures are nowadays going to, and give insights into their key
challenges.

Coordination with the steering chair, Imrich Chlamtac, and the general chair,
Matti Hämäläinen, was essential for the success of the conference. We sincerely
appreciate their constant support and guidance. It was also a great pleasure to work
with such an excellent organizing committee for their hard work in organizing and
supporting the conference: in particular, the Technical Program Committee, led by
our TPC Co-Chairs, Prof. Jari Iinatti, Prof. Lorenzo Mucchi, Prof. Carlos Pomalaza-
Raez, and Prof. Daisuke Anzai who have completed the peer-review process of
technical papers. We are also grateful to the conference manager, Radka Pincakova,
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vi Preface

for her support and all the authors who submitted their papers to the BODYNETS
2018 conference and workshops.

We strongly believe that the BODYNETS conference provides a good forum
for all researchers, developers, and practitioners to discuss all science and tech-
nology aspects that are relevant to Wireless BAN. We also expect that the future
BODYNETS conference will be as successful and stimulating as indicated by the
contributions presented in this volume.

Yokohama, Japan Chika Sugimoto
Stockholm, Sweden Hamed Farhadi
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Chapter 1
Ultra-Wide Band Positioning in Sport:
How the On-Body Tag Location Affects
the System Performance

Alessio Martinelli, Marco Dolfi, Simone Morosi, Lorenzo Mucchi,
Matteo Paoli, and Andrea Agili

1.1 Introduction

The increasing spread of location-based services (LBSs) [7] has encouraged the
collaboration between academics and industry to define innovative positioning
and navigation solutions. The pedestrian position-based services rely on those
technologies which primarily implement two positioning techniques: position fixing
and pedestrian dead reckoning [4]. In a remote positioning configuration, position
fixing aims to determine the pedestrian position exploiting the ranging signals
transmitted by a wearable device and received by an external infrastructure;
alternatively, pedestrian dead reckoning relies only on wearable sensors to measure
the distance and direction traveled from a previous position, in order to determine
the current one [9].

LBSs mainly involve sectors like military, emergency, and commercial [7]. The
latter, in particular, includes many specific contexts such as wellness and sport
[8, 13], in which the pedestrian position-based services have become very popular.
Tens of applications for smartphones or wearable devices hit the market with the aim
of providing position tracking information, mostly in outdoor environment through
satellite positioning technologies. Many professional sport teams have adopted
positioning system to carry out, e.g., analysis of physiological factors such as the
physical overload of the players or analysis of technical-tactical behaviors [11].
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However, the positioning technologies that are currently used in sports are primarily
based on the Global Positioning System (GPS) [6, 12]. The latter provides a reliable
position solution only in the presence of open-sky environment and low human
motion dynamics, i.e., when the line-of-sight to the satellite is not obstructed and
the player is not performing short, high-speed straight line running and fast change
of directions [5].

Ultra-wide band (UWB) positioning can be considered a valid solution for
position tracking in sports. It can support high human dynamics being able to
determine the target position with centimeter-level positioning accuracy [1]. A
UWB positioning system relies on an external infrastructure, which can be arranged
either indoor or outdoor, and it aims to determine the position of wearable
tags. Since the UWB communication link between the tag and the positioning
infrastructure can be affected by the on-body tag location, the latter becomes a
crucial aspect for achieving the best positioning performance.

This paper introduces an UWB positioning system [14] whose proposal is subject
to patenting and that is based on the architecture illustrated in Fig. 1.1. This system
has been considered in a particular sport such as five-a-side football. Four static
UWB receivers are placed at the corners of a five-a-side pitch, while a mobile player
is equipped with four UWB transmitters arranged on different body locations: left
arm, right arm, upper back, and lower back, as shown in Fig. 1.2. The objective of
this work is to evaluate how different on-body sensor locations may affect the system
performance. The player’s body influences the UWB communication link defined
between the on-body transmitter and the receiver located on the sideline. The line-
of-sight (LOS) and non-light-of-sight (NLOS) propagation conditions, depending
on the location of the body-worn transmitter and the orientation of the player’s body
with respect to the receivers, affect the system performance. In order to assess the
performance of the positioning system, on-field tests have been performed with a

Fig. 1.1 The UWB positioning system architecture
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Fig. 1.2 On-body locations of the tags: left arm, right arm, lower back, and upper back

(M)6A3F(S)6BF9

(S)DC81 (S)D84A

GO

STOP

Fig. 1.3 The five-a-side football pitch with the size of 39.30 m × 17.95 m. The black dashed line
represents the experimental test path, which has been traveled by the player in both directions. The
black cones represent the static UWB receivers: the master anchor and the three slave ones

player. The latter was asked to run at a variable speed while traveling a predefined
path inside pitch, as depicted in Fig. 1.3. The path has been devised to better
represent a prospective motion that a player might perform during a real five-a-
side football match. Three metrics have been considered to compare the system
performance for the different on-body transmitter locations: the position accuracy of
each UWB transmitter, the percentage of packets lost by the receivers with respect to
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the transmitted packets, and the percentage of packets transmitted and, respectively,
received by one, two, three, or four receivers.

The remainder of this paper is organized as follows: Sect. 1.2 describes the
positioning system architecture, while Sect. 1.3 explains the positioning process
which includes the procedures of time synchronization and time differential of
arrival (TDOA) positioning; Sect. 1.4 characterizes the experimental setup and
Sect. 1.5 reports the experimental results. Finally, Sect. 1.6 presents the conclusions
of the work.

1.2 The Positioning System Architecture

The proposed system architecture consists of three components: a mobile
tablet/smartphone, tags, and anchors [14], as illustrated in Fig. 1.1. The tags are
mobile devices which transmit UWB signals to the anchors. The anchors are static
UWB receivers positioned on the sides of the reference scenario. They represent
the positioning system infrastructure, coordinated by the master anchor, which
transmits UWB signals to the other slave anchors and establishes the local Wi-Fi
network used to share the positioning process data among the anchors and the
connected tablet/smartphone [14].

The positioning system that is described in Sect. 1.4 has been implemented over
this architecture, which can be considered multi-context and scalable: as a matter
of facts a larger number of anchors may increase the coverage of the positioning
service.

1.3 The Positioning Process

In the system that is described in this paper, the positioning process involves two
primary procedures: time synchronization and TDOA positioning, as depicted in
Fig. 1.4.

Fig. 1.4 The positioning process
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Fig. 1.5 Representation of
the time synchronization
routine between the clock of
the master anchor Am and the
clock of the slave anchor As :
the master anchor sends a
synchronization signal at
transmitting time T TAm to the
slave anchor, which receives
the signal at the time of
arrival T OAAs

Clock Synchronization

The TDOA positioning algorithm (described in Sect. 1.3) is based on the time of
flight, i.e., the time the signal takes to travel from the tag to the anchors. In order
to apply a positioning algorithm based on the time of flight, the anchors must be
synchronized among them [4, 10]. As depicted in Fig. 1.5, the master anchor Am

transmits a synchronization UWB signal at the time T TAm ; then, the slave anchor
As receives the signal at the time of arrival T OAAs . The times T TAm and T OAAs

refer to different time scales, which, respectively, correspond to the master clock
and the slave one. The time offset between the two clocks is defined as follows:

ΔT = T OAAs − T TAm − T OF
Am

As
, (1.1)

where T OF
Am

As
is the time of flight the signal takes to travel from the master anchor

to the slave one. The T OAAs can be synchronized to the master clock as follows:

T OAAs = T OAAs − ΔT. (1.2)

Once the time synchronization procedure has been carried out, the TOAs received
by all anchors will refer to the time scale of the master clock.

TDOA Positioning

The TDOA positioning algorithm [6, 15] aims to determine the tag position given
two pieces of information as inputs (Fig. 1.4): the first one is a vector which includes
the positions of the anchors:
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PA = [PAm, PAs1
, PAs2

, . . . , PAsN
]T , (1.3)

where PAm is the position of the master anchor Am and PAsi
is the position of the i-

th slave anchor Asi , with i=1, 2, . . . , N and N the total number of the slave anchors;
the second one is a vector of the TOAs:

T OA
Bk

A
= [T OA

Bk

Am
, T OA

Bk

As1
, T OA

Bk

As2
, . . . , T OA

Bk

AsN
]T , (1.4)

where T OA
Bk

Am
is the TOA of the signal transmitted by the tag Bk and received by

the master anchor, and T OA
Bk

Asi
is the TOA received by the i-th slave anchor.

Assuming the master anchor as the first one hit by the transmitted signal, the
vector of the time difference of arrivals is defined as follows:

T DOA
Bk

A
=

⎡
⎢⎢⎢⎢⎢⎣

T DOA
Am

As1

T DOA
Am

As2
...

T DOA
Am

AsN

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

T OA
Bk

As1
− T OA

Bk

Am

T OA
Bk

As2
− T OA

Bk

Am

...

T OA
Bk

AsN
− T OA

Bk

Am

⎤
⎥⎥⎥⎥⎥⎦

, (1.5)

where T DOA
Am

Asi
is the TDOA between the master anchor and the i-th slave anchor.

In a 2D scenario, the i-th range difference can be defined as follows:

Ri,m = c T DOA
Am

Asi
= Ri − Rm

=
√

(Xi − x)2 + (Yi − y)2 −
√

(Xm − x)2 + (Ym − y)2, (1.6)

where (Xi, Yi) is the i-th slave anchor position, (Xm, Ym) is the position of the
master anchor, c is the speed of light in vacuum, and (x, y) is the unknown position
solution of the tag.

The 2D tag position can be precisely determined by solving for a system of
equations which contain at least two equations expressed in (1.6); therefore, at least
three anchors must receive the signal transmitted by the tag. The Newton–Raphson
method for non-linear least squares problems has been used to solve for a system
of equations which comprises the range difference measurements described in (1.6).
This is an iterative approach which linearizes the set of equations and begins with an
initial position guess and then improves the estimate at each iteration by determining
the local linear least-square (LS) solution. Starting with an initial guess (x0, y0) of
the tag position, the iterative method computes the deviations vector [Δx,Δy]T of
the position estimation:

[
Δx

Δy

]
= (GT

t Gt )
−1GT

t ht , (1.7)
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where

ht =

⎡
⎢⎢⎢⎣

R1,m − (R1 − Rm)

R2,m − (R2 − Rm)
...

RN,m − (RN − Rm)

⎤
⎥⎥⎥⎦ , (1.8)

Gt =

⎡
⎢⎢⎢⎣

[(Xm − x)/Rm] − [(X1 − x)/R1] [(Ym − x)/Rm] − [(Y1 − x)/R1]
[(Xm − x)/Rm] − [(X2 − x)/R2] [(Ym − x)/Rm] − [(Y2 − x)/R2]

...

[(Xm − x)/Rm] − [(XN − x)/RN ] [(Ym − x)/Rm] − [(YN − x)/RN ]

⎤
⎥⎥⎥⎦ ,

(1.9)

where Ri,m is the range difference between the master anchor and the i-th slave
anchor, with i = 1, 2, . . . , N ; Rm is the range between the tag and the master anchor
referred to the previous estimation of the tag position; and Ri is the range between
the tag and the i-th slave anchor. In the next iteration, x0 and y0 are updated to
x0+Δx and y0+Δy. The whole process is repeated until Δx and Δy are sufficiently
small: in our case, until the following condition is satisfied:

√
Δx2 + Δy2 < 0.01 m. (1.10)

The Newton–Raphson method achieves a precise position estimate at reasonable
noise level; however, it requires a close initial guess (x0, y0) to guarantee conver-
gence.

1.4 Experiment Setup

In this paper, the proposed UWB positioning system [14] has been considered in a
particular sport such as five-a-side football. Referring to the architecture illustrated
in Fig. 1.1, the static UWB receivers (anchors) were positioned at the four corners
of the field illustrated in Fig. 1.3, while a mobile player is equipped with four UWB
transmitters arranged on different body locations: left arm, right arm, upper back,
and lower back, as shown in Fig. 1.2. Note that the vertical arrangement of the
DWM1000 on the player’s body (Fig. 1.2) leads to a quasi-omnidirectional radiation
pattern of the UWB antenna in the azimuth plane [2]. In this way, the orientation
changes of the player along the football pitch do not significantly affect the radiation
pattern of the antenna.

Both the anchors and the tag are provided with a Decawave DWM1000 UWB
transceiver [2] and are powered by a Li-Po battery. The anchors are also equipped
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Fig. 1.6 Hardware devices used in the on-field experimental tests: (a) anchor; (b) tag

with a Wi-Fi module [3], as depicted in Fig. 1.6. The Decawave DWM1000 is
a UWB transceiver compliant with the IEEE 802.15.4-2011 standard and allows
very accurate proximity detection using two-way ranging time-of-flight (TOF)
measurements. It spans 6 RF bands from 3.5 to 6.5 GHz, with a bandwidth of
500 or 900 MHz. The accuracy of the ranging measurements goes down to a few
centimeters in LOS conditions, thanks to the high temporal resolution required
to perform UWB communication. Because of its high bandwidth and spectrum
usage, to avoid inter-system interference the transmit power density of the UWB
transceivers is limited to −41.3 dBm/MHz. Due to this restriction, the operational
range of the UWB transceivers is limited up to 300 m in LOS and 40 m in NLOS
conditions [2]. In this work, the configuration of DWM1000 UWB transceivers is
designed to operate on channel 4 (bandwidth of 900 MHz with a center frequency
of 3993.6 MHz), with a data rate of 850 kbps and a preamble length of 2048
symbols. Both the tag and the anchors are supplied with a Decawave DWM1000
UWB transceiver [2] and a Li-Po battery-powered, whereas the anchors include
also a Wi-Fi module [3], as illustrated in Fig. 1.6. The DWM1000 transceiver
can transmit pulses that are few nanoseconds long with a bandwidth of 500 or
900 MHz and a frequency center that spans from 3.5 to 6.5 GHz. The high temporal
resolution required to perform UWB communication allows an accuracy of the
ranging measurements down to a few centimeters in LOS conditions. In this work,
the DWM1000 UWB transceivers are configured to operate on channel 4 (900 MHz
bandwidth with a center frequency of 3993.6 MHz), with a preamble length of 2048
symbols and a data rate of 850 kbps.

The objective of this work is to evaluate how different on-body sensor locations
may affect the positioning system performance in the game. The player’s body
influences the UWB communication link defined between the on-body transmitter
and the receiver located on the sideline. The LOS and NLOS propagation conditions,
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depending on the location of the body-worn transmitter and on the orientation of the
player’s body with respect to the receivers, affect the positioning performance.

In order to evaluate the performance of the positioning system, a player was
asked to perform a test which consisted in traveling the path illustrated in Fig. 1.3,
in both directions and by running at variable speed. The black cones represent
the location of the anchor nodes on the field test, while the black dashed line
represents the path performed by the player. During the test, the anchors have been
located at the height of 60 cm off the ground and the tag transmission rate has
been set equal to 2 packets/s. To keep the complexity of the localization process
low, the tag’s height is not computed by the localization algorithm. The main goal
of considering symmetric trajectories on the field is to assess how different body
locations of the tag affect the performance of the positioning system, evaluated in
a dynamic scenario with device-related consequences and impairments (e.g., clock
drift, antenna placement, and radiation pattern) and body effects.

1.5 Experiment Results

In this section, the performance of the UWB positioning system for the different on-
body tag locations is evaluated and discussed. Table 1.1 represents the percentage
of packets lost by each anchor with respect to the packets transmitted by each
tag. It can be observed that the lower back location suffers the greater loss of
packets compared to the other tag locations, with on average more than half of the
transmitted packets lost by the anchors. As expected, given the symmetry with the
bust, left arm and right arm locations determine similar results, while the upper back
location guarantees the best result, with an average of 40% of the transmitted packets
lost by the anchors. The number of packets lost by an anchor may be influenced
by the asymmetry of the pitch with respect to the diagonal. Since the anchors are
placed at the corner of the pitch and the pair of anchors arranged in a diagonal is
not symmetric with respect to the other diagonal, different anchors may experience
different packet loss for the same tag arrangement. In terms of packet loss, it can

Table 1.1 Percentage of packets lost by the anchors with respect to the packets transmitted by
each tag

Anchor ID Left arm Right arm Lower back Upper back

(M)6A3F 69% 60% 68% 53%

(S)6BF9 35% 35% 48% 40%

(S)D84A 32% 33% 50% 28%

(S)DC81 42% 45% 59% 38%
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Table 1.2 Percentage of packets transmitted by the tag and received by one, two, three, or four
anchors (%)

Received by Left arm Right arm Lower back Upper back

1 Anchor 19% 15% 29% 11%

2 Anchors 41% 45% 47% 44%

3 Anchors 27% 26% 12% 28%

4 Anchors 8% 8% 2% 14%

be basically observed that the performance of the anchors (M)6A3F and (S)DC81,
organized in a particular diagonal, is worse with respect to the other pair of anchors,
i.e., the (S)6BF9 and the (S)D84A.

As stated above, in order to estimate the actual position of the player during
the dynamic test, the proposed positioning algorithm needs at least three anchors
to determine the tag position solution. In Table 1.2, the percentage of packets
transmitted by the tag and received by one, two, three, or four anchors is presented.
Once again, the best results are guaranteed by the upper back-worn tag. As
a consequence, this positive behavior determines a greater number of position
estimates with respect to the other body locations, as shown in Figs. 1.7 and 1.8.
From the analysis of both pictures, it is possible to confirm the best performance
of the upper back tag location, when compared with the other body locations. In
particular, the 42% of the packets that are transmitted by the upper back tag reach at
least three anchors: to be more specific 28% is received by three anchors, while 14%
by four, as shown in Table 1.2. Another interesting observation is the concentration
at the center of the field of the missing position estimates, both for arms and lower
back locations. The lateral position of the arm-worn tags may explain the poor rate
of packets received by at least three anchors, especially during the crossing of the
midfield line performed by the player. Regarding the lower back tag location, the
number of position estimates further degrades. This behavior could be explained
by the different height of the worn tag, which suffers more from NLOS condition
caused by the human body influence during the dynamic test.

Finally, the root mean square error (RMSE) of the accuracy performance of the
positioning system with different on-body tag locations is compared; the RMSE
metric allows computing the positioning error in the Cartesian coordinates of the
system in Figs. 1.7 and 1.8: it represents the mean difference between the true
position and the estimated position of the tag. This metric is generally measured
as the average of the Euclidean distance between the estimated position and the true
position, as defined by the following equation:

RMSE =
√√√√ N∑

k=1

(xk − xactual)
2 + (yk − yactual)

2

N
(1.11)
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Fig. 1.7 Experiment results: (a) position solutions of the left arm-worn tag; (b) position solutions
of the right arm-worn tag

where (xk, yk) are the k-th Cartesian coordinates estimated by the localization
algorithm, (xactual, yactual) are the true Cartesian coordinates and N is the number
of the position estimates. The true position (xactual, yactual) is defined as the
point (x, y) which is closest to the estimated position (xk, yk) and belongs to the
experimental path. Table 1.3 represents the accuracy performance of the tag position
estimates in terms of RMSE. The upper back location performs better than the other
tag locations, with a RMSE equal to 0.70 m. Moreover, the gain in accuracy is more
evident for the central body locations (upper and lower back) compared to the lateral
ones (right and left arm). This different accuracy performance could be explained by
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Fig. 1.8 Experiment results: (a) position solutions of the lower back-worn tag; (b) position
solutions of the upper back-worn tag

Table 1.3 Root mean square
error (RMSE) of the tag
position solutions

Body tag RMSE [m]

Left arm 0.83

Right arm 1.00

Lower back 0.71

Upper back 0.70

the distance of the arm-worn tag from the central axis of the body, while the player
travels along the planned path at variable speed.

It is important to note that although the lower back tag location has experienced
the greatest loss of packets between all tags, this behavior does not affect the



1 Ultra-Wide Band Positioning in Sport: How the On-Body Tag Location. . . 15

accuracy performance, and, what is even more important, the reliability of the
positioning algorithm. This means that the packet loss and the tag position accuracy
are not directly related to each other.

1.6 Conclusion

In this paper, the results of a measurement campaign of a UWB positioning system
for monitoring of sport players have been reported and discussed. The positioning
system based on the architecture illustrated in Fig. 1.1 [1, 14] has been considered in
a five-a-side football scenario. Four static UWB receivers are placed at the corners of
a five-a-side pitch, while a mobile player is equipped with four UWB transmitters
arranged on different body locations: left arm, right arm, upper back, and lower
back, as shown in Fig. 1.2. The objective of this work is to evaluate how different
on-body sensor locations may affect the system performance. In order to evaluate
the performance of the positioning system, the player was asked to perform a
test which consisted in traveling the path illustrated in Fig. 1.3, in both directions
and by running at variable speed. Three metrics have been considered to compare
the system performance for the different on-body tag locations: the RMSE of the
position solutions for each tag, the packet lost by the anchors with respect to the
packet transmitted by each tag, the percentage of packets transmitted by each tag
and, respectively, received by one, two, three, or four anchors.

The experimental results show the upper back as the on-body tag location that
presents the best results: the lowest position RMSE equal to 0.70 m, an average of
40% of the transmitted packets lost by the anchors, and the 42% of the transmitted
packets that reach at least 3 anchors (28% received by three anchors, while 14%
received by four anchors). With the aim to expand the statistical results, the influence
of the anchor antenna height on the system performance and the involvement of
several players in the test will be considered in future works.
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Chapter 2
Human Body Effect on Static UWB
WBAN Off-Body Radio Channels

Timo Kumpuniemi, Juha-Pekka Mäkelä, Matti Hämäläinen , Kamya Yekeh
Yazdandoost, and Jari Iinatti

2.1 Introduction

The development in computing power of electronic devices together with their
decreasing sizes and energy efficiency has enabled the birth of new application areas
to wireless appliances. Currently, one key focal area in wireless communications is
the fifth-generation (5G) systems and its implementation into reality. One vertical in
5G systems is the concept of Internet of Things (IoT) where the number of different
kind of sensors utilized in new environments is expected to explode. If the sensors
are operating wirelessly, one or several of them are usually planned to be in contact
to an access point. IoT sensors can be installed into, e.g., vehicles, buildings, house
appliances, industrial plants, and machines. Furthermore, IoT sensors can be utilized
with humans, thus forming a wireless body area network (WBAN). With persons,
WBANs can be constructed by applying sensors on human bodies (on-body), in the
close vicinity of them (off-body), or even inside the bodies (in-body). In body-to-
body communications, the sensors are exchanging information between two or more
individuals [1].

WBANs can be applied in various applications. They can be used in sports
to monitor the body parameters providing information on the effectiveness of the
exercise. In the well-being sector, the daily activity can be monitored as well as, e.g.,
the quality of the sleep. Authorities, as fire and police departments or the military,
can utilize WBANs in their daily work to increase their own safety.

One of the most enhancing and promising areas is however the medical field. A
practical reason to this is the constant aging of population in many nations around
the world forcing to search for new more effective and economical solutions to pro-
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vide healthcare services to the growing number of patients. Different technological
solutions are one answer to this question, among them belonging also WBANs.
The wireless characteristics of WBANs enable better working comfortability and
effectiveness for the medical staff. The patients will have a more pleasant treatment
experience as they can move freely. They may even live their lives during the
recovery phase at homes through remote monitoring the vital parameters from the
hospital or other medical unit.

The ultra-wideband (UWB) technology is a very suitable solution for wireless
communications to use in the WBANs for many reasons. The wide bandwidth of the
UWB signals facilitates an accurate positioning and provides a good performance
in difficult radio channel conditions with a large number of multipath components.
The transmission power of UWB signals is low minimizing the interference caused
to other systems. In practice, the UWB transmission power spectral densities often
remain below the existing noise power density. On the other hand, UWB is robust
against interferences from other transmissions originating nearby. The transceiver
structures are simple providing a low unit price, a small size, and a low power
consumption providing excellent battery life [2, 3].

The adoption of UWB technology in WBANs has been under investigation for
over a decade [4]. Most of published articles in the field of radio channels are
related to on-body communications [5–7] both in static and dynamic cases. Off-
body WBANs are often covered in narrowband cases [8, 9], but for UWB signals,
references are found as well [10–13].

This paper reports static UWB off-body radio channel measurements with
the focus on the effect of the human body on the channels. The measurements
are conducted in an anechoic chamber to exclude the radio channel responses
originating beyond the human body. A vector network analyzer (VNA) is applied in
the frequency sweeping mode to examine the 2–8 GHz frequency band. The results
extend the knowledge on the off-body UWB channels beyond the ones reported
in [13] to the direction of static UWB channels. The work is a part of a larger
measurement campaign reported, e.g., in [6, 7, 14, 15].

The structure of the paper is the following. In Sect. 2.2, the measurement setup is
explained. Section 2.3 describes the measurement scenario with antenna locations
and practical arrangements of the measurements. Section 2.4 explains the data
processing methods together with the presentation of the results. Conclusions and
future work plans are covered in Sect. 2.5.

2.2 Measurement Setup

Test Person and Anechoic Chamber

A 183 cm tall male test person with a 95 kg body weight was standing still in an
anechoic chamber facing toward the off-body antenna pole. The chamber had a floor
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size of 245 cm by 365 cm, and it was assembled by using movable absorber blocks.
The test person was wearing a cotton T-shirt and jeans. All metal-containing items
and shoes were absent during the measurements.

Equipment

A four-port VNA (Rohde & Schwarz ZVA-8, upper frequency limit 8 GHz) was
located outside the anechoic chamber, and four 8 m long measurement cables were
led into the chamber. The VNA was sweeping the 2–8 GHz frequency band 100
times with 1601 points within the band in each measurement. A more detailed list
of the VNA settings can be found in [14].

Two planar prototype antenna types were utilized in the measurements: dipole
and double loop. The maximum total free space gain of the antennas is 6 dBi. The
operational frequency band for the antennas is 2–12 GHz. The detailed description
of the structures and the performance of the antennas, as well as the measured free
space radiation patterns, are found in [16–18].

2.3 Measurement Scenario

Thirteen antenna locations were selected in different parts of the human body: the
locations represent either existing or very probable sites for the on-body sensors.
The off-body antenna was located on a pole at the height of 2 m. The measurements
were repeated with the human-pole distances of 1 and 2 m and with both antenna
types, respectively.

As depicted in Fig. 2.1, three antenna spots (1–3) are situated at the head, six
at the limbs (6, 7, 9, 11–13), and four on the torso (4, 5, 8, 10). The antennas
were attached three at a time on the body—due to the four-port VNA—by using
elastic bands and paper tape, while the fourth one remained at the pole. A 20 mm
piece of ROHACELL HF31 material was inserted to keep the antenna-body distance
constant between the antennas and the body. In [17], this distance was noted to be
a proper choice providing good antenna matching and channel gain characteristics
close to the free space performance of the antennas.
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Fig. 2.1 The antenna
locations used in the
measurements. The case is
measured with two
human-pole distances: 1 and
2 m

2.4 Results

Data Processing

The results are extracted from the channel impulse responses (CIRs) in the time
domain. By this manner, the possible reflection components due to the un-idealities
of the anechoic chambers can be filtered out. The CIRs are obtained from the
frequency domain measurement data by applying the inverse fast Fourier transform.
No windowing is applied in the transform. From the CIRs, the first arriving paths
(FAPs) are considered in the calculations, i.e., considering the first multipath
component. In the measurement scenario, it was noted that other multipaths are
weak compared to FAP originating mainly from reflections from the body. As
an anechoic chamber is used, the reflections from other sources than the body
were also noted to be minor. However, utilizing more multipaths in a RAKE-
type receiver would be beneficial in real-life situations, where FAP may not be
necessarily the strongest CIR component. The FAPs are found out by detecting all
arriving multipath components above a threshold and selecting the first component.
The threshold is set to be 10 dB lower than the strongest signal component, since
this value was noted to be a suitable choice to block the noise and rising edge spikes
of the CIRs.

The full band of the measurements was selected for the data processing, as the
division for high and low bands in the standard IEEE 802.15.6 [19] was not feasible
due to the frequency band limitation of the applied VNA.
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Path Loss Models Between the Antenna Sites

At first, the path losses (PLs) are compared between the different antenna sites. The
PL can be expressed as

PL(d) = PL (d0) + 10n log10 (d/d0) + S (2.1)

where PL(d) is the path loss in decibels at the distance of d, PL(d0) is the path loss
at the used reference distance d0 (50 mm), n is the path loss exponent, and S is a
random scattering term. In the measurements in the paper, the effect of S is minor
as the case is a static one measured in an anechoic chamber. The path distances
d are solved from the CIRs based on the arrival time of the FAPs. The signal
propagation speed in the antennas and the physical dimensions of the antennas cause
delay bringing out inaccurate distance values. The explanation is as follows. After
calibrating the VNA, it is assumed that the zero-delay plane is at the open ends
of the measurement cables, i.e., if the cables are connected together, they show a
zero delay in the time domain. When antennas are applied, two phenomena occur.
Firstly, the distance between the cable ends and the phase center of the antennas
causes delay, both in transmit and receive side. Secondly, the electrical parameters
of the antenna parameters have an effect on the signal propagation speed v. In a
lossless case, it can be stated with the well-known classical equation as

v = c/
√

εr (2.2)

where c is the propagation of light in vacuum and εr is the relative permittivity of
the media, i.e., in this case, the substrate material of the antenna structures. Also this
effect takes place both in transmit and receive antennas.

Therefore, a correction factor is needed for this reason: the correction factors
of 90 and 109 mm in distance are applied for the dipole and double loop cases,
respectively. They were obtained by inserting the antennas to a carefully measured
fixed distance, and the measured distance error in six relative positions to each other,
for both antenna types. The correction factors are the mean values of the noted error
distances in the measured positions. The effect is described in more detail in [14].

Table 2.1 presents the numerical values of n and PL(d0) based on the first-order
least squares data fitting. The results are shown for the antenna sites separately and
for both antenna types. The case “all” depicts the general case with all antenna
locations considered jointly in the analysis. The path loss exponent is on the average
1.7 for the dipole antenna varying between the values −0.7 . . . 4.7. For the double
loops, the path loss exponent reaches the value 1.4 on the average. The range of
variation is −4.2 . . . 1.6. The negative values originate from firstly the shadowing
effect caused by the human body. In different measurements, the test person may
be situated slightly differently with respect to the off-body antenna on the pole.
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Table 2.1 Path loss model
values of the antenna sites

Dipole Double loop
Site n PL(d0) [dB] n PL(d0) [dB]

1 1.65 32.8 0.9 50.3
2 2.5 16.7 1.6 29.6
3 1.4 40.4 1.4 34.5
4 2.0 25.9 1.5 30.4
5 2.3 27.8 1.4 30.4
6 1.6 28.8 0.8 38.9
7 4.7 −16.3 0.9 39.1
8 −0.7 66.9 −0.7 67.1
9 1.5 40.8 −0.9 68.9
10 1.7 29.5 0.5 45.6
11 2.9 17.5 −2.4 101.4
12 −0.4 66.8 −4.2 138.0
13 2.8 10.6 −2.4 97.0
All 1.7 32.4 1.4 35.3

Therefore, the path loss is more dependent on the degree of shadowing instead of the
distance. Secondly, the antennas have been reported to have up to 30 dB variation in
gain depending on the direction of radiation and the frequency [18] having a strong
impact on the received signal power with only a minor change of antenna position.
The effect of body shadowing and antenna radiation pattern on the classical path
loss model (1) is noted earlier in [6]. The suitability of classical path loss model in
WBAN cases is questioned also in [20].

Path loss exponent values between 1.28 and 3.90 have been reported in [12] for
an off-body UWB case in an echoic surroundings. Therefore, the average results
in Table 2.1 are in line with the ones in [12]. The path loss exponent values below
two are due to the human body acting as a directing element for the electromagnetic
radiation.

Absolute Path Loss

Next, the absolute path loss values are examined. Table 2.2 gathers together the
obtained results for all antenna locations, both antenna types and for both measured
distances. The values are extracted by averaging measured sweeps for each mea-
surement separately. The PLs range between 50.6 . . . 66.5 dB and 49.9 . . . 68.2 dB
for the dipole and double loop antenna cases, respectively. When comparing the 13
antenna location cases and both measured distances between the antennas, in 17
cases out of 26, the double loop antenna results in lower PL than the dipole. At the
locations 3, 4, 5, 6, 7, 9, and 10, the double loop performs better at both distances.
At the sites 1, 8, and 12, the dipole antenna shows lower PL values. Based on the
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Table 2.2 Absolute
measured path losses [dB]

Dipole Double loop
Site 1 m 2 m 1 m 2 m

1 54.9 59.5 61.3 64.5
2 50.6 57.2 51.8 56.1
3 59.7 63.4 53.9 57.6
4 54.7 59.3 51.4 54.9
5 60.0 65.4 49.9 53.3
6 52.2 55.7 49.9 51.7
7 54.7 62.0 53.1 54.8
8 57.0 55.7 57.1 55.9
9 63.1 66.5 56.3 54.7
10 54.8 57.7 53.4 54.4
11 62.5 66.2 64.3 61.1
12 60.5 60.0 68.2 63.5
13 53.4 57.7 60.6 56.8

Table 2.3 Mean and
standard deviations of the
path losses [dB]

μ σ

Dipole 1 m 57.6 4.0
2 m 61.3 3.9
Both distances 59.6 4.3

Double loop 1 m 58.2 4.8
2 m 57.8 3.9
Both distances 58.0 4.8

Both antennas 1 m 57.9 4.9
2 m 59.7 4.2
Both distances 58.9 4.6

comparison, it can be stated that the double loop antenna outperforms statistically
in most cases the dipole.

Table 2.3 reports the mean (μ) values of the PLs and their standard deviation (σ )
in decibels. The results are shown for both antennas and distances. Also the cases
where both distances are joined and both antenna data are joined are presented. The
mean value is calculated from the data in Table 2.2 by averaging the PLs in linear
scale and converting the result in dB. The standard deviations are obtained from the
decibel-valued PLs.

The mean values lie between 57.6 and 61.3 dB. The standard deviations vary
approximately between 4 and 5 dB. When both distances are examined, the double
loop performs slightly better confirming the observation noted from Table 2.2. The
PL for the double loop is lower at 2 m compared with the 1 m case, which is due to
the dominating body shadowing and antenna radiation patter effect over the distance
dependence as discussed in the subsection “Path Loss Models Between the Antenna
Sites.”
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2.5 Conclusion and Future Work

The human body effects on the UWB WBAN off-body radio channels are discussed.
The work is based on static measurements with a VNA set to the frequency sweeping
mode at 2–8 GHz. To limit the examination on the effects originating from the
human body, the measurements are conducted in an anechoic chamber. Thirteen
antenna locations are selected on the body while the off-body antenna is attached to
a pole at 1 or 2 m distances. The experiment is repeated with prototype dipole and
double loop antennas.

By applying the classical path loss model, the average path loss exponent is found
to be 1.7 (dipole) and 1.4 (double loop). The obtained path loss exponents are noted
to vary largely depending on the antenna site under study. The negative exponents
in some cases are a result of the dominance of the body shadowing together with
the antenna pattern variation over the distance. The classical path loss model is
thus found to be not always unconditionally suitable in the WBAN cases where
the channel model may be rather shadowing and radiation pattern dependent than
distance dependent.

The absolute path losses reach numerical values between 50.6 . . . 66.5 dB
(dipole) and 49.9 . . . 68.2 dB (double loop). In the majority of cases, when examin-
ing individually the antenna spots and distances, the double loop performs slightly
better than the dipole. When examining the antenna sites jointly, and/or the different
distances and antenna types together, the mean values of the path losses are found to
be between 57.6 and 61.3 dB and the standard deviation approximately 4 . . . 5 dB.

As a future work, it would be interesting to extend the measurements into echoic
environments as well as to increase the number of measured distances and antenna
sites in order to obtain more data for the data analysis. The frequency range could be
extended to cover the full frequency range defined by the IEEE 802.15.6 standard
for UWB by adopting a VNA with higher upper frequency limit. Furthermore, a
larger set of test persons could be applied in order to investigate, e.g., the effect of
the test person age, gender, and the different body parameters.
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Chapter 3
Reliable and High-Speed Implant
Ultra-Wideband Communications with
Transmit–Receive Diversity

Daisuke Anzai , Ilangko Balasingham, Georg Fischer ,
and Jainqing Wang

3.1 Introduction

Nowadays, implant communications have gathered much attention in medical and
healthcare applications [1]. As an example of implant communication applied
applications, capsule endoscopy transmits high-quality image data from inside of
a human body to outside receivers [2].

Although the data rate of the current narrow band implant communications at
400 MHz MICS and 2.4 GHz ISM bands is limited, an ultra-wideband (UWB)
technology allows us to realize high-speed and reliable implant communications [3].
However, due to large attenuation of the UWB signal inside the human body,
the communication performance may be significantly degraded in the case of
implant transmission. For example, in the related work [4], it is reported that
a communication distance of 12 cm at maximum with a data rate of 1 Mbps
is achieved by UWB impulse radio (UWB-IR) transmission. However, further
communication performance improvement is required to realize high-resolution
image data transmission for a capsule endoscope [5].

First we develop a polarization diversity transmit antenna for implant com-
munications. This paper then carries out a performance evaluation experiment
where the developed antenna is put inside a living animal in order to investigate
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a feasibility of implant side transmit diversity experimentally. Consequently, this
paper evaluates the improvement of the communication performance with the living
animal experiment results.

3.2 Antenna Development for Implant Side Polarization
Diversity

This paper assumes a polarization diversity at an implant transmitter as a diversity
technique. In order to accomplish the polarization diversity at the implant transmit-
ter, two planar loop antennas were combined to develop an implant-side diversity
antenna [6]. Additionally, low reflection coefficient and low coupling effect between
each antenna element are required to realize the polarization diversity in the UWB
low band. Fig. 3.1a shows one antenna element of the developed antenna, where we
used a dielectric substrate with a thickness of 1.6 mm and a relative permittivity of
4.0. Also, Fig. 3.1b demonstrates the bird’s-eye view of the dual-polarized implant
antenna. For the elliptical loop shown in Fig. 3.1a, the major and minor axes were
set to 4.8 and 3.4 mm, respectively. Copper with a thickness of 0.1 mm was used
for the loop antenna. We can see from Fig. 3.1b that one loop is arranged along a
horizontal direction (on x–y plane) and the other one is arranged along a vertical
direction (on y–z plane) without touching each other.

Feeding 
Point

4.8 mm

3.2 mm
y

xz

(a) (b) 

Fig. 3.1 Developed diversity antenna for implant UWB communication. (a) Planar elliptical loop
antenna. (b) Bird’s-eye view of the dual-polarized diversity antenna
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3.3 Experimental Evaluation with a Living Animal

The developed diversity antenna was evaluated in a living animal experiment in
terms of fundamental performance including the path loss characteristics. We set
up the environment of the living animal environment as shown in Fig. 3.2. As
shown in the cross-sectional overview of the living animal experiment in Fig. 3.2,
the developed diversity antenna was implanted to the animal body, and the receive
antenna was put on the surface of the body. Laparotomy surgery was done to
allow implantation of the implant-side diversity antenna at various depths within
the abdominal cavity. It is important to avoid the antenna coupling through creeping
waves, so we used ferrite cores on the cable entering the pig and also the point
of insert was covered with electromagnetic insulator. The distance between the
transmit and receive antennas was measured by using an electromagnetic tracking
system, which can estimate the distance with the accuracy of 0.7 mm. To measure
the path loss and coupling characteristics between the transmit and receive antennas,
a vector network analyzer (Rohde & Schwarz TM ZVA67) was employed, whose
ports were connected to both antennas with shielded coaxial cables. For avoiding
touching with abdominal fluids and the skin of the pig, both transmit and receive
antennas were covered with a layer of nitrile butadiene rubber.

Let us show the distance dependency of the average path loss characteristics at
UWB low band (from 3.4 to 4.8 GHz) measured in the living animal experiment in
Fig. 3.3. Figure 3.3 shows the path loss characteristics in two cases of excitation at
either port one or two shown in Fig. 3.1b. The path loss characteristics on the dis-
tance between the transmit and receive antennas PLdB(d) can be calculated by [7]

PLdB(d) = PL0,dB + 10n log10

(
d

d0

)
+ SdB (3.1)

where PL0,dB, n, and SdB are the path loss at a reference distance, the path loss
exponent, and the shadow fading component in dB domain, respectively. Also, d and
d0 express the communication distance and the reference communication distance,
respectively. In (3.1), the former two terms represent the average characteristics

Fig. 3.2 Overview of
experimental environment
with a living animal

Distance between
Tx and Rx ant.

Tx ant.

Rx ant.

Pig’s body

Network analyzer

Port 1 Port 2 Port 3
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Fig. 3.3 Measured path loss
performance in the
experiment with the living
animal
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Table 3.1 Path loss characteristics obtained in the living animal experiment

Port 1 Port 2

n (path loss exponent) 6.8 4.6

PL0,dB (path loss at the reference distance) 52.5 dB 63.2 dB

d0 (reference distance) 0.05 m 0.05 m

on the path loss, on the other hand, the latter term denotes the variation of the
average path loss, which is affected by different internal organs inside the body.
Figure 3.3 shows the measurement results of the parameters of PL0,dB and n.
Table 3.1 summarizes the fitted parameters in (3.1). It should be noted that we
achieved an acceptable level of the path loss performance because the channel
parameters obtained in the living animal experiment are almost the same as the
simulation results in the existing literature [7].

Improvement of Communication Performance

Then, the improvement of the communication performance by the implant side
diversity system was evaluated. In this paper, the communication performance was
discussed in a viewpoint of signal-to-noise power ratio (SNR). In order to perform
the performance evaluation, we assume not only a case of transmit diversity with
maximum ratio combining (MRC) model but also a case of single transmit antenna
(namely a case without transmit diversity). In the evaluation, it was assumed that two
transmit antennas were alternately used for signal transmission. For investigating the
communication performance with the transmit diversity, it is important to take into
consideration correlation coefficient between the two channel from each transmit
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Table 3.2 Parameters of
communication performance
evaluation

Number of trials 1,000,000

Shadow fading model log-normal distribution

σ 1.80 [7]

(parameter of shadow fading)

n (path loss exponent) 6.8

PL0,dB 52.5 dB

(path loss at the reference distance)

d0 (reference distance) 0.05 m

ρ (correlation coefficient) 0, 0.51

Threshold for outage rate −90 dBm

Transmit diversity scheme MRC with two branches

Fig. 3.4 Cumulative
distribution function of the
SNR characteristics
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antenna to the receive antenna. Here, we set the correlation coefficient ρ to 0.51
based on the measurement in the living animal experiment at 3.4–3.6 GHz UWB
low band. Finally, Table 3.2 summarizes the simulation parameters.

The cumulative distribution function (c.d.f) on the SNR characteristics at the
receiver side is demonstrated in Fig. 3.4. From the results in Fig. 3.4, the transmit
diversity with the developed antenna improved the SNR by around 4 dB as compared
with the single antenna case when the cumulative probability is 0.8. Furthermore,
we accomplished similar SNR improvement in the two cases for the correlated and
perfectly uncorrelated cases, which means that the correlation coefficient obtained
in the developed transmit antenna is acceptable for the polarization diversity.

Finally, we discuss SNR performance improvement with transmit–receive diver-
sity technique. In the case of the receive diversity, the SNR improvement of 3 dB
was reported in the literature [8]. In addition, the transmit–receive diversity can
independently accomplish the diversity gains of the transmit and receive diversities.
Hence, if we introduce the receive diversity technique to the implant side transmit
polarization diversity with the developed antenna, the total improvement of the SNR
performance should be achieved to around 7 dB.
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3.4 Conclusions

In this paper, for realizing the implant side diversity, we have developed a dual-
polarization antenna for implant communications. Also, an experiment with a living
animal experiment has been carried out to evaluate the performance improvement
with the transmit–receive diversity system. We have evaluated the improvement of
the communication performance with the dual-polarization diversity based on the
correlation coefficient obtained from the experiment. Consequently, the transmit–
receive diversity has accomplished 7 dB improvement in the SNR characteristics
from the case with a single antenna.
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Chapter 4
A Finite Integration Technique-Based
Simulation Study on the Impact
of the Sternotomy Wires on the UWB
Channel Characteristics

Mariella Särestöniemi, Carlos Pomalaza-Raez, Timo Kumpuniemi,
Matti Hämäläinen , and Jari Iinatti

4.1 Introduction

Recently, in-body, or also called intra-body, communication has become an inten-
sively studied topic in the field on wireless body area networks (WBAN). Numerous
channel models have been presented to describe the in-body channel characteristics
[1–4]. Implant communication has also raised interest recently. Studies relating to
the channel between the on-body antenna and the implant or between the implants
have been under the scope [5, 6]. However, the impact of the medical implants on
the radio channel characteristics is scarcely studied topic. A study on the impact of
the aortic valve implant on the channel characteristics was a pioneering work in this
field, as shown in [7], which was later continued in [8–10].

Furthermore, medical wires, staples, and bands, which are used for the closure
after the operation [11], can have significant impact since usually they are located
close to the skin and hence close to the on-body antennas and sensor nodes. Besides,
they usually contain titanium, steel, and other highly conductive material.

The impact of sternotomy wires on the UWB on-body channel characteristics
was studied first time in [10] using measurement data-based evaluations. It was
shown that the sternotomy wires may cause additional peaks in the impulse response
since the wires form like loops which store and release energy to different directions.
Besides, the signal may propagate faster via the wires.

The main contribution of this paper is to present, for the first time, a simulation-
based study on the impact of the sternotomy wires on the UWB radio channel
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characteristics and verify the simulation results with the measurement data and
propagation calculations. The simulator is based on the finite integration technique
(FIT), which is known to be among the best techniques in the propagation prediction
in the vicinity of the human body [12, 13]. After we can verify that the simulation
is possible and model is satisfactory, it is possible to develop and investigate the
transceiver’s structures for in-body communications.

This paper is organized as follows: Sect. 4.2 describes the study case. Section 4.3
summarizes the calculated propagation paths. Section 4.4 presents the numerical
results. The summary and conclusion are given in Sect. 4.5.

4.2 Study Case

Sternotomy Wires

Sternotomy wiring is the most commonly used technique in the sternum closing
after the operation that requires opening the sternum. The sternotomy wires are
1 mm wide, made from steel, and they are wrapped around the sternum, as shown in
Fig. 4.1. The distance between the sternotomy wires is approximately 2.5 cm, but it
depends on the area of the sternum where the wires are located [11].

Figure 4.1 illustrates also the location of the on-body antennas in this study.
The transmitter antenna, Tx, is located in the left side of the sternum, whereas the
receiver antenna, Rx, is located in the middle of the sternum. The distance between
the antennas is 15 cm. The distance between the antenna and the skin surface is
4 mm.

Fig. 4.1 Location of the
sternotomy wires in the
sternum



4 A Finite Integration Technique-Based Simulation Study on the Impact. . . 35

Simulation Model

In this study, a simplified layered human body tissue model has been used to
evaluate the radio propagation in the vicinity and inside the human body. The layer
model, presented in Fig. 4.2, consists of the following tissues: skin, fat, muscle,
bone, cartilage (cart.), heart, blood vessel, lung, and anterior mediastinum (ant.
med). Due to simplicity, tissues are modeled as rectangular blocks. The dimensions
of the tissues are designed according to [4], as well as according to the X-ray
figure of the implanted volunteer assisted in this study. The dielectric properties
for different tissues were found in [16].

Furthermore, the sternotomy are modeled in the layer model. The layer model
without the sternotomy wires is used as a reference study case. Dipole antennas,
which were presented for on- and off-body communication in [14], were used in this
study. The details of the antenna structure and radiation patterns are found in [14].

Simulations were conducted using the CST MicrowaveStudio (MWS) simulation
software (CST) [15] for frequency bandwidth 0–10 GHz. The number of the
samples within the simulated bandwidth was 2134. In this case, TX antenna is
noted as Antenna 1 and RX antenna as Antenna 2. The simulator provides reflection
coefficients S1,1 and S2,2, as well as channel responses S2,1 and S1,2 as an output.
These results are then compared in the wire and non-wire cases, as well as verified
with the measurement data.

Measurement Data

The aim of this study is to verify simulation results with measurement data presented
in [10]. The details of the measurement scenario are explained in [10], and thus this
section only briefly summarizes the measurement setup.

The measurements were taken in an anechoic chamber with two volunteers. One
of them has sternotomy wires in his sternum. Besides, this volunteer has a titanium-
based aortic valve implant, which also has an impact on the channel characteristics
as shown in [7, 10]. However, the time window, in which the impact of the aortic
valve implant is visible (>5 ns), is out of the scope of this study, and we merely
focus on the time window where impact of the sternotomy wires is visible.

The measurements were conducted with Vector Network Analyzer (VNA)
8720ES in frequency domain to obtain channel frequency response (S21) and
reflection coefficients S11 and S22. Frequency bandwidth used in the measurements
was 3.1–10.6 GHz. Number of frequency points per sweep was set to 1601. Radio
channel frequency response was then later transformed into time domain in Matlab
using inverse fast Fourier transform (IFFT) to get impulse response.
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Fig. 4.2 Tissue layer models without (a) and with (b) the sternotomy wires
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4.3 Propagation Paths

In this section, different propagation path options are presented. The path options
are calculated similar to [10] taking account the frequency, dielectric properties of
the tissue, and the distance travelled through the tissue. First, the velocity of the
propagation signal in the ith tissue is calculated as

vi,f = c√
εi,f

, (4.1)

where εi, f is the relative permittivity of a tissue at frequency f. This value, and also
other dielectric properties of different tissues, can be found, e.g., in [16]. Table 4.1
summarizes εi, f for the tissues used in the model. Once we know the velocity, we
can easily calculate the propagation time in each of the tissues having a length of di
using

ti,f = di

vi,f

, (4.2)

which are then summed up to obtain overall propagation time.
The propagation distance di may vary for tissues depending if it goes along the

tissue or through the tissue. Propagation distance di:s is marked in the brackets for
each propagation path options when it differs from the previous path’s case.

In the presence of the wires, part of the signal may travel through wires which
makes the propagation much faster. Besides, due their loop form, the wires absorb
the energy and then release it afterward in several directions. As explained in
[10], this can be seen as additional or stronger peaks in the impulse responses.
Furthermore, the sternotomy wires, which are located above or below the antenna,
can have some impact as well since the propagating signal can be diffracted from
the above-/below-located wires toward the Rx antenna. Besides, the signal travels

Table 4.1 Relative permittivity for the tissues used in the layer model [16]

Tissue 2 GHz 4 GHz 6 GHz 8 GHz 10 GHz

Skin 38.6 36.6 34.9 33.2 37.5
Fat 5.32 5.12 4.94 4.76 4.6
Muscle 53.3 50.8 48.4 45.5 42.8
Lung 31.2 32.3 30.95 29.0 27.4
Anterior mediastinum 57.87 54.91 51.72 48.42 45.15
Blood vessel 59.0 55.7 52.5 48.61 45.11
Bone 19.6 16.95 15.2 13.83 12.61
Heart 58.8 52.0 52.2 45.37 42.24
Cartilage 39.8 35.6 31.8 28.47 25.63
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easily through the wires and their twisted ends so there will be summed up more
signal energy than in the reference case.

The expected propagation paths within the tissue layer model are presented in
Table 4.2. Since the idea of calculating the propagation paths is presented in [10],
this paper just summarizes the path options.

Denotation bone/wire means that the signal travels through the bone and ster-
notomy wires in the simulation layer model with sternotomy wires. In the reference
case, the signal travels through the bone. The calculated propagation times are
summarized in Table 4.3. Denotations Path 2 and Path 2w refer to the propagation
path 2 in the reference case without sternotomy wires and with sternotomy wires,
respectively.

Table 4.2 Propagation path options

Path Tissues and their dimensions within the path

Path 1a Skin (15 cm)
Path 1b Skin (0.2 cm)-fat (15 cm)-skin(0.2 cm)
Path 2 Skin (0.2 cm)–fat (0.1 cm)–muscle (0.6 cm)–bone (rib, 10.5 cm)–cartilage

(2 cm)–bone (sternum,1.5 cm)/wire–fat (0.1 cm)–skin (0.2 cm)
Path 3 Skin–fat–muscle–bone (rib,1 cm)–blood (13.5 cm)–bone (sternum,

1.5 cm)/wire–fat–skin
Path 4 Skin–fat–muscle (13.5 cm)–bone sternum (1.5 cm)wire–fat–skin
Path 5 Skin–fat–muscle (11.5 cm)–cartilage (2 cm)–sternum bone/wire–fat–skin
Path 6 Skin–fat–muscle–bone–lung (13.5 cm)–anterior mediastinum (2 cm)–bone

(sternum)/wire–fat–skin
Path 7 Skin–fat–muscle–bone–lung (13.7 cm)–heart (2 cm)–anterior mediastinum–bone

(sternum)/wire–fat–skin

Table 4.3 Propagation times for propagation paths

Path/frequency 2 GHz 4 GHz 6 GHz 8 GHz 10 GHz

Path 1a 3.14 ns 3.06 ns 2.99 ns 2.94 ns 2.94 ns
Path 1b 1.18 ns 1.21 ns 1.14 ns 1.10 ns 1.08 ns
Path 2 2.81 ns 2.73 ns 2.71 ns 2.54 ns 2.48 ns
Path 2w 2.64 ns 2.55 ns 2.51 ns 2.38 ns 2.31 ns
Path 3 3.30 ns 3.20 ns 3.20 ns 3.02 ns 2.94 ns
Path 3w 3.20 ns 3.12 ns 3.17 ns 2.95 ns 2.86 ns
Path 4 3.527 ns 3.45 ns 3.507 ns 3.294 ns 3.22 ns
Path 4w 3.411 ns 3.34 ns 3.34 ns 3.184 ns 3.11 ns
Path 5 3.462 ns 3.34 ns 3.424 ns 3.205 ns 3.12 ns
Path 5w 3.346 ns 3.26 ns 3.311 ns 3.095 ns 3.01 ns
Path 6 3.501 ns 3.40 ns 3.458 ns 3.235 ns 3.15 ns
Path 6w 3.385 ns 3.29 ns 3.345 ns 3.126 ns 3.04 ns
Path 7 4.0 ns 3.84 ns 3.88 ns 3.64 ns 3.55 ns
Path 7w 3.8 ns 3.68 ns 3.73 ns 3.5 ns 3.51 ns

Path 2 = reference, Path 2w = wire case, etc.
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4.4 Numerical Results

In this section, the simulation results are examined by comparing the wired and
non-wired simulation model cases. The results are reflected to the propagation path
options presented in the previous section. Furthermore, the results are verified with
the measurement data.

At first, we compare the results in frequency domain. Figure 4.3a, b presents
reflection coefficients S1,1 for antenna 1 (on the left side of the chest) and S2,2 for

Fig. 4.3 (a) Simulated reflection coefficients for antenna 1 with sternotomy wires (S1,1) and
without the sternotomy wires (S1,1_1) and (b) for antenna 2 with sternotomy wires (S2,2) and
without the sternotomy wires (S2,2_1)
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antenna 2 (in the middle of the sternum), respectively. The results obtained with the
simulation model with sternotomy wires are marked as S1,1 or S2,2, and they are
plotted as black curves. The reference case, i.e., the results obtained with the layer
model without the sternotomy wires, is denoted as S1,1_1 and S2,2_1 and plotted
as blue curves.

As it can be noticed from Fig. 4.3a, there is no difference between the reflection
coefficients S1,1 and S1,1_1, since the sternotomy wires are enough far away from
the antenna 1 to have any impact on the reflection coefficient. Thus, the S1,1
and S1,1_1 curves are equal, and they are completely overlapping. Instead, in the
reflection coefficients of antenna 2, which is exactly above the sternotomy wires,
one can notice a difference clearly, especially at frequency range 3–6 GHz.

Figure 4.4 presents the channel response for the wired (S2,1) and non-wired cases
(S2,1_1). There is only some small differences in the lower part of the frequency
range. However, despite of small changes in frequency domain, we can see more
differences in time domain results presented in Figs. 4.5, 4.6, and 4.7. Figures 4.5
and 4.6 present the impulse response obtained by performing IFFT for the whole
frequency bandwidth 0–10 GHz, up to 5 ns and up to 16 ns, respectively. Figure
4.7 presents the impulse response obtained by performing IFFT for the bandwidth
3.1–10.6 GHz, which corresponds to the bandwidth used in the measurements.

When comparing the impulse responses in Fig. 4.5, we can notice that the main
peaks are at the same level, but there are changes in the following side peaks. The

Fig. 4.4 Simulated channel parameter with sternotomy wires (S2,1) and without the sternotomy
wires (S2,1_1)
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Fig. 4.5 Simulated impulse responses for wired and non-wired cases as the IFFT is performed for
0–10 GHz, presented up to 5 ns

Fig. 4.6 Simulated impulse responses for wired and non-wired cases as the IFFT is performed for
0–10 GHz bandwidth, presented up to 16 ns
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Fig. 4.7 Simulated impulse responses for wired and non-wired cases as the IFFT is performed for
3–10 GHz bandwidth

location of the peaks match well with the propagation path calculations presented
in Table 4.2. According to the calculations, the impact of the wires should be seen
at time instants 1.0–1.2 ns (Path 1b), 2.5–2.8 ns (Path 2), and 3.5–4.0 ns (rest of the
paths). In the impulse responses, the difference between the wired and non-wired
cases appears slightly earlier than expected from the propagation path calculations,
starting before 1 ns. Besides, at this early time instant the impulse response of the
wired case is at lower level than that of the non-wired case. This can be due to
the wires’ tendency to store energy and later release it like a solenoid as explained
earlier. We can note an additional peak at the time instant 1.4 ns in the IR of the
wired case. This additional peak occurs 0.2 ns later than the peak of the propagation
path through the fat layer (Path 1b, 1.2 ns). The additional peak is due to signal
reflected from the sternotomy wires located 2.5 cm above and below the Rx antenna.
After the reflection, the signal further travels through the fat layer to the Rx antenna.
Propagation time for the signal travelling the distance of 2.5 cm in the fat tissue is
approximately 0.2 ns, resulting in 1.4 ns overall propagation time for the reflected
signal.

The time window 3.5–4.0 ns, which corresponds to Path option 7, is interesting:
we can notice that there is a clear peak at this time range, much stronger than in the
wired model case. Normally the peaks are stronger when the wires are influencing.
This may be due to the fact that the signal propagating through the lungs until the
heart and then to anterior mediastinum is already strongly attenuated when reaching
the wires. There might not be enough energy they could accumulate to release it
afterward, like in the Path 2’s case. As explained earlier, the wired loops absorb
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Fig. 4.8 Measured impulse
responses (a) with and (b)
without the wires [10]
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the energy and then release it afterward in several directions. In the case of Path 7,
the released energy that is in the direction of the antenna might be too weak to be
recognized in the channel response. Figure 4.6 presents the impulse responses for
the larger time range, up to 16 ns. There we can see the oscillating effect due to the
wires at the lower dB levels.

Next, we compare the results with the measurement data. The impulse responses
obtained from the measurements are presented in Fig. 4.8a, b, for wire case and
non-wire case, respectively. These two measured impulse response figures have
already been presented in [10], but they are repeated in this paper to enable smooth
comparison between the measurement and simulation results. One should note
that the measurement data is obtained with the volunteer having also an aortic
valve implant besides of the sternotomy wires. However, based on the propagation
calculations presented in [10], we know the time window at which aortic valve effect
appears, and thus we focus only on the time window up to the aortic valve effect.
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When comparing simulated IRs in Fig. 4.5 to measured IRs in Figs. 4.8a, b, one
can note the clear similarity in the shapes of the simulated and measured impulse
responses since the locations of the side peaks with respect to the main peak are
similar. However, the delays due to the unidealities in the measurements, such as
the delays due to the antennas, etc. [17], should be taken into account. Instead, there
are clear differences in the level of the peaks, especially in the main peaks. In the
simulated impulse responses, the main peak level is approximately at 55 dB, and
there is no difference between the wired and non-wired case. With the measurement
data, the level with wired model is around −62 dB and non-wired model −72 dB.
The level difference is surprisingly high. Level differences may be due to different
body shapes, different antenna attachments, different clothing, unidealities in the
antenna prototyping, etc.

As explained in the Sect. 4.2, the measurement was conducted for the frequency
band 3.1–10.6 GHz. Thus, it is relevant to compare measured impulse responses
with Fig. 4.7, in which IFFT was performed for the simulated channel response
within the frequency range 3.1–10.6 GHz. We notice that in this case, the shapes of
the simulated and measured impulse responses are even more similar but only until
2 ns, after which the simulated impulse responses fade completely. Apparently, the
resolution of the 7.5 GHz bandwidth with the selected simulation settings is not
enough to show the peaks after 2 ns.

4.5 Summary and Discussion

In this paper, we have presented FIT-based simulation study on the impact of
the sternotomy wires on the UWB on-body channel characteristics. The results
are verified with the measurement data and propagation path calculations. In the
simulations, we used human tissue layer model, whose dimensions were designed
taking into account the volunteer’s body size. It was found that there is a clear
correspondence between simulated and measurement results. Besides, the location
of the peaks in the simulated impulse response matches well with the propagation
path calculations.

The benefit of using a human tissue layer model in this kind of study is that
we can design the layer model according to the dimensions of the volunteer. The
implanted volunteer who assisted in our measurements is lean; hence his fat tissue
is very thin. Since the propagation loss in the fat tissue is high, the impact of the
sternotomy wires is assumed to be clearer in the cases of lean people. Our next
target is to study the impact of the body structure on sternotomy wire effect.

The knowledge about the impact of sternotomy wires on the channel characteris-
tics is important because the additional peaks or stronger side peaks may cause some
interference on the monitoring devices. It should be noted that in this study, we used
antennas designed for on- and off-body communication. With antennas designed for
in-body communication (used, for instance, in the capsule endoscopy localization),
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the impact of the sternotomy wires is presumably even more significant, which
belongs to our next research plan as well.
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Part II
Smart Body Area Networks



Chapter 5
Joint Throughput and Channel Aware
MAC Scheduling for SmartBAN

Rida Khan and Muhammad Mahtab Alam

5.1 Introduction

Wireless body area networks (WBANs) are becoming self-evident and a well-
known research discipline due to numerous potential applications in future, ranging
from health-care environments to mission critical operations [1]. A typical WBAN
consists of various sensor nodes for measuring diverse set of biomedical data and a
coordinator or hub node to monitor and regulate those sensor nodes. Standardized
protocols are required to ensure proper functionality at the desired quality level
in WBANs as well. Among several standards dedicated to WBANs, such as IEEE
802.15.4 [2, 3], was the first officially recognized standard to provide guidelines
about WBAN operation [4]. However, European Telecommunications Standards
Institute (ETSI) introduced another WBAN specific standard termed as Smart
Body Area Network (SmartBAN) [5] with a comparatively simplified and efficient
physical (PHY) and medium access control (MAC) structure [6].

SmartBAN supports a significantly high symbol rate of 1 MSymbols/s [7] with
many different options for payload sizes that are pre-defined in control channel
beacon by hub [8]. However, the packet reception rate (PRR) performance starts
degrading for transmission power levels below −5 dBm and increased packet sizes
as the WBAN links are shadowed by human body [9]. In order to provide PHY-
MAC performance gain, the provision of data packet repetition is supported at the
SmartBAN PHY layer [7]. The importance of this repetition is highlighted in [10]
in which data repetition is deemed necessary to get the acceptable 1% frame error
rate under high interference scenario.
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One of the most common MAC approach in WBAN is scheduled access
mechanism in which every sensor node is assigned a dedicated time slot for data
transmission to the BAN coordinator. But, for any given application, every sensor
node requires different data transmission rate [11]; therefore, the slot allocation
to WBAN sensor nodes should be adapted according to their prescribed data
transmission intervals. Moreover, an average difference of 10 dBs is reported in the
pathloss measurements of a space-time varying WBAN communication link [12],
leading to the conclusion that variations in radio link quality can have a considerable
effect on PRR performance. These phenomena motivate the research on dynamic
slot scheduling to enhance the effective throughput, energy efficiency, and PHY-
MAC performance. Many noteworthy research contributions have been made in
this domain but most of them focus on either minimizing energy consumption
while keeping higher PRR or proposing channel estimation techniques to enhance
PRR under dynamic environments. Addressing the throughput, energy efficiency,
and PRR performance requirements of emerging wearable applications, a joint
throughput and channel aware dynamic scheduling algorithm was proposed in [13]
in compliance with the IEEE 802.15.6 scheduled access mechanism. The algorithm
was demonstrated to be successful in providing better PRR performance keeping
the transmission power, and hence the energy consumption levels substantially low.
Our initial simulation results on SmartBAN indicated that even the repetition was
not able to achieve above 90 % PRR at lower transmission power, which is often
favored in WBAN communications for energy efficiency and reduced interference
for multiple co-located BANs. Therefore this study is dedicated to the performance
analysis of SmartBAN in the context of required throughput and channel aware
scheduling for prospective WBAN applications.

This paper addresses the effective throughput, energy consumption, and reliabil-
ity concern of potential WBAN applications under dynamic and realistic conditions
in SmartBAN. A joint throughput and channel aware dynamic MAC scheduling
algorithm is presented incorporating the SmartBAN proposed scheduled access
technique. Various mobility patterns, including walking, sitting, standing, and
running, are generated using bio-mechanical mobility modeling to analyze the per-
formance at different channel conditions for several sensor-hub links. The primary
contributions of this paper are: (1) Enhancing the throughput and channel aware
MAC scheduling algorithm for SmartBAN complaint scheduled access method. (2)
Evaluating the reference SmartBAN MAC scheduled access mechanism with and
without repetitions for performance comparison. (3) Providing performance gain in
terms of PRR and energy consumption, with possible effects on latency.

The remainder of this paper is organized in the following way: Sect. 5.2
provides an overview of the mobility and radio link modeling, while Sect. 5.3
explains SmartBAN MAC superframe format considered in simulations. Section 5.4
elaborates the reference SmartBAN MAC scheduling with and without repetitions as
well as throughput and channel aware MAC scheduling for SmartBAN. In Sect. 5.5,
performance results are presented and discussed comprehensively, whereas Sect. 5.6
concludes this paper.
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5.2 Mobility and Radio Link Modeling

The underlying mobility and radio link modeling for PHY-MAC performance
analysis is presented in this section.

Channel Model

We use IEEE 802.15.6 proposed CM3-B channel model in order to compute
pathloss values for space-time varying distances and link types, as shown

PLdB = −10log10(P0e
−m0d + P1) + σP nP [dB], (5.1)

where P0 = −25.8 dB, m0 = 2.0 dB/cm, P1 = −71.3 dB, σP = 3.6 dB, nP is the
Gaussian random variable with zero mean and unity variance, d is the distance in
cm, and PLdB is the pathloss in dBs [14].

Mobility Modeling

Bio-mechanical mobility modeling, as proposed in [15], is used to generate dynamic
distances and link types for various on-body links between sensor nodes and
coordinator. The dynamic distances serve as input distances in the CM3-B model
to provide pathlosses for dynamic mobility scenarios. Furthermore, the space-time
varying link types are used to characterize the given link as line of sight (LOS) or
non-line of sight (NLOS). In case of NLOS link status, an additional NLOS factor
of 13% is added to the calculated pathloss [16]; otherwise, the pathloss remains the
same.

Radio Link Modeling

The precise mobility and channel modeling of dynamic links is followed by accurate
radio link modeling. This modeling consists of SNR, bit error rate (BER), and packet
error rate (PER) computations. We utilize the similar approach as performed in [15]
for radio link modeling with few modifications in BER calculations for SmartBAN.
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BER with No Repetition

SmartBAN standard proposes Gaussian frequency shift keying (GFSK) modulation
technique at the physical layer with the bandwidth-bit period product BT and
modulation index h of 0.5 [7]. According to [17], for h = 0.5 frequency shift
keying modulation becomes minimum shift keying modulation, and therefore, the
corresponding BER expression becomes

Pe

(
Eb

N0

)
= Q

(√
2ε

Eb

N0

)
, (5.2)

where Eb

N0
is the signal-to-noise ratio for a bit, ε is a constant [18] and for BT of 0.5,

is equal to 0.79 [19]. The detailed calculation of Eb

N0
using pathloss and SNR values

can be found in [15].

BER with Repetition

BER for this case is computed using the similar BER expression as provided in the
previous subsection but SNR calculations are made in accordance with the diversity
technique used for evaluating the repetition gain. Since maximal ratio combining
(MRC) provides the best performance over all diversity combining techniques, we
assume MRC diversity scheme for evaluating the best case scenario performance
that SmartBAN can provide with repetition. In MRC with statistically independent
transmission channels, the output SNR is equal to the addition of instantaneous
SNRs at the individual links [17].

5.3 SmartBAN MAC Superframe Format

This section provides a detailed explanation about the SmartBAN MAC superframe
format that is considered for MAC scheduling in this paper, as illustrated in Fig. 5.1.
The transmissions between node and hub take place on data channels and the data
channel used for transmission is partitioned into inter-beacon intervals or super-
frame durations. The beginning of each superframe is marked by a data channel
beacon (D-Beacon), followed by scheduled access period for data transmissions
by sensor nodes and corresponding acknowledgements. Control and management
period is used for management and control signaling by hub and/or sensor nodes
and the entire superframe duration ends with an inactive period [8]. Each scheduled
access slot is made of physical-layer protocol data unit (PPDU) transmissions
and PPDU acknowledgements separated by interframe spacing (IFS). The actual
payload is found in MAC frame body that along with MAC header and frame parity
constitutes a MAC protocol data unit (MPDU). Since, we assume uncoded MPDU
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Fig. 5.1 SmartBAN MAC superframe format

in our case, the resultant MPDU becomes physical-layer service data unit (PSDU).
PSDU, after the addition of physical-layer convergence protocol (PLCP) header and
preamble, creates a complete PPDU [7], as depicted in Fig. 5.1.

For superframe duration computation, it is necessary to first calculate the beacon
duration, time slot duration and the number of time slots in scheduled access period,
time slot duration and the number of time slots in control and management period,
and the duration of inactive period. D-beacon duration is found as

TBeacon = NBeacon

RSym

, (5.3)

where NBeacon is the number of bits in D-beacon and RSym is the symbol rate. The
duration of each time slot in scheduled access period is found according to a pre-
defined parameter LSLOT [8], as under

TSLOT = Tmin × LSLOT , (5.4)
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where Tmin is the minimum duration for any scheduled access slot. We do not
assume any inactive period in our simulations, while the calculations for control and
management period will be provided in the later sections for each case of SmartBAN
MAC scheduling.

Within a single time slot during scheduled access period, there is acknowl-
edgement and IFS duration as well. IFS duration is fixed and the duration for
acknowledgement is written as

TACK = Npreamble + NPLCPheader + Nparity + NMACheader

RSym

, (5.5)

where Npreamble, NPLCPheader , Nparity , and NMACheader are the number of bits
in physical-layer preamble, PLCP header, MAC frame parity, and MAC frame
header, respectively. After the computation of TACK , the effective duration for
PPDU transmission is given as

TT X = TSLOT − TACK − 2 × TIFS

REP
, (5.6)

where REP is the number of PPDU repetitions. The calculation of TT X is followed
by the computation of maximum allowed MAC frame body size for uncoded
MPDU, as under

Payload = TT X × RSym − Npreamble − NPLCPheader − Nparity − NMACheader .

(5.7)

5.4 MAC Scheduling with m-Periodicity

This section discusses SmartBAN MAC scheduling with m-periodic slot assignment
for reference MAC with and without repetition as well for traffic and channel aware
MAC.

SmartBAN MAC Scheduling without Repetition

For applications with sensor nodes having a variety of data generation rates, it
becomes unnecessary to allocate a fixed time slot for every node inside MAC
superframe. Therefore, the time slots inside the scheduled access period are assigned
based on their data generation rates. The m-periodic slot assignment considered in
this case is depicted in Fig. 5.2. In the given scheme, the priority node P, based
on high data generation rate and/or emergency traffic, is assigned time slot in
consecutive superframes, while the other low traffic nodes periodically wake up
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Fig. 5.2 m-Periodic MAC scheduling and scheduled access slot without repetition for SmartBAN

to send their data after a fixed number of m superframes, defined by their required
data rate. As shown in Fig. 5.2, we assume only scheduled access period along with
data beacons in superframe duration, unless stated otherwise, in order to evaluate the
performance for transmitted data packets only. It should be noted that all the sensor
nodes are assumed to have their respective time slots pre-assigned by coordinator
based on the packet generation rates. Therefore, under reference SmartBAN m-
periodic MAC scheduling without repetitions, each time slot consists of PPDU
transmission followed by PPDU acknowledgement and both separated by IFS. Each
inter-beacon duration comprises of time slots assigned on the basis of m-periodicity
principle.

Scheduled Access Slot with Repetition for SmartBAN

In this scenario, the transmitted PPDU is repeated within the assigned time slot
for each node, so the effective payload size for a given slot length is reduced.
Consequently, for sending the same amount of data, sensor nodes would be required
to assign time slots more often with reduced payload sizes. At reception, the
repeated PPDUs are combined using MRC technique. Figure 5.3 illustrates the
scheduled access time slot structure with repetition for SmartBAN. The remaining
m-periodic scheduled access method is the same as described in section “SmartBAN
MAC Scheduling Without Repetition.”
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PPDU Repeated
PPDU IFS PPDU Ack. IFS

Scheduled Access Slot with Repetition

Fig. 5.3 Scheduled access slot with 2 repetitions for SmartBAN

Throughput and Channel Aware MAC Scheduling for
SmartBAN

This scheduled access mechanism has slightly different superframe structure from
the previous scheduling strategies since the time slots are dynamically assigned
based on the SNR level and the availability of data packet. As indicated in
Fig. 5.4, superframe now includes control and management period as well in which
hub dynamically assigns time slots to sensor nodes for data transmission during
scheduled access period in the next superframe. Every sensor node periodically
wakes up during the control and management period which contains the slot re-
assignments for every node. The slot goes to sleep mode for energy conservation
if it is not assigned any slot; otherwise, the node remains in low power mode and
wakes up for data transmission just before the start of the slot. The flow chart of the
algorithm for slot assignment is given in Fig. 5.5. During the first step, each time
slot is checked for the SNR conditions of every node-hub link and a set of sensor
nodes is defined for which the link SNR is greater than a pre-defined threshold value.
In the second step, the set of sensor nodes with good links is checked for priority
node. If priority node is among the candidate sensor nodes and it has data packet
to send, it is assigned the time slot, else other low priority nodes are assigned the
given slot based on their data packet status. In order to define the SNR threshold for
the first phase, a PER value of 0.1 is considered to obtain the PRR above 90% and
reverse radio link computations are performed to acquire the corresponding SNR
threshold. The required PER value of 0.1 gives the resultant BER value using the

relation PER = 1 −
(

1 − Pe

(
Eb

N0

))N

, where N is the packet size in bits, which in

turn provides Eb

N0
after evaluation in (2). The required SNR can be obtained using

the equation Eb

N0
[dB] = SNR[dB] + 10 × log10

(
BW
R

)
, where BW is the channel

bandwidth which is 2 MHz and R is the information rate which is 1MSymbols/s for
SmartBAN. The appropriate SNR threshold found for SmartBAN standard using
this method is 7 dB or higher to get a resulting PRR above 90%.
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5.5 Performance Evaluation

This section analyzes the performance results of the reference SmartBAN MAC
scheduling with and without repetition and the presented throughput and channel
aware MAC scheduling in terms of PRR, energy consumption, and latency.
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Simulation Setup

For the performance assessment of the above mentioned scheduled access mecha-
nisms, we consider a rescue and emergency management application scenario [20]
with six sensors and a coordinator node located on chest. Each sensor collects
information about different parameters which include body temperature, pulse
rate, GPS coordinates, blood pressure, user mobility, and voice commands, with
their corresponding data rate requirements of 2.4 bps, 48 bps, 96 bps, 1.2 kbps,
4.8 kbps, and 100 kbps [16]. These sensors are, respectively, placed on the right
wrist, left wrist, right knee, left elbow, left knee, and right shoulder, as shown in
Fig. 5.6. In order to have better energy efficiency and reduced interference over
the surrounding WBANs, we consider rather low transmission power levels of
−10.9 dBm, defined for RN4020 Bluetooth low energy (BLE) devices [21]. Three
mobility patterns (walking, sit-stand, and running) are assumed in all simulations
and LSLOT = 4 is taken to define TSLOT . According to the calculations made in
Sect. 5.3, TSLOT is found to be equal to 2.5 ms, while TBeacon is 128 μs. Since the
reference SmartBAN MAC scheme is not assumed to have control and management
period, 66 superframes can be transmitted every second while for throughput and
channel aware SmartBAN MAC scheduling scheme, 65 superframes are sent every
second. Table 5.1 summarizes all the major simulation setup parameters. The voice
communication node is given priority status because of its higher data generation
rate and assigned time slot in every consecutive superframe for all scheduling
scenarios. For reference SmartBAN MAC, body temperature, pulse rate, blood
pressure, and GPS sensor nodes are allocated time slot after every 65 superframes,
while the motion sensor node is provided time slot after every 21 superframes.
For reference SmartBAN MAC scheduling with 2 repetitions (REP = 2), the
maximum allowed payload size is reduced and body temperature, pulse rate, and
GPS sensor nodes send their packets after every 65 superframes. Blood pressure
node is allocated time slot after every 32 superframes, whereas the motion sensor
node is assigned a time slot after every 10 superframes. For reference SmartBAN
MAC with 4 repetitions (REP = 4), body temperature, pulse rate, and GPS sensor
nodes are given time slots after every 65 superframes, blood pressure sensor node
is assigned a time slot after every 15 superframes, and motion sensor node can
send data after every 4 superframes. Finally, for throughput and channel aware
SmartBAN MAC, body temperature, pulse rate, blood pressure, and GPS sensor
nodes have slot allocation after every 64 superframes, while the motion sensor node
sends data after every 20 superframes.
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Fig. 5.6 Coordinator and
sensor nodes placements

Table 5.1 Simulation setup
parameters

RF parameters

Transmitter power (dBm) −10.9

Receiver sensitivity (dBm) −92.5

Current consumption Tx (mA) 15

Current consumption Rx (mA) 16

Bandwidth per channel (MHz) 2

PHY/MAC parameters

Minimum slot length (Tmin) 625 μs

Slot duration (TSLOT ) 2.5 ms

Beacon duration (TBeacon) 128 μs

Interframe spacing (IFS) 150 μs

Symbol rate (RSym) 106

Simulation Results

Packet Reception Rate (PRR)

Figure 5.7 summarizes the PRR results for each link between different sensor nodes
and the coordinator node, under walking, sit-stand, and running mobility scenarios.
In this scenario, links corresponding to the voice communication, pulse rate, body
temperature, motion detection, positioning, and blood pressure are, respectively,
identified as Link1, Link2, Link3, Link4, Link5, and Link6. It can be observed
that throughput and channel aware MAC scheduling in SmartBAN outperforms the
reference SmartBAN MAC schemes with and without repetition due to appropriate
slot assignment. Despite using packet repetitions with MRC technique, a significant
improvement in performance is not observed because of data transmission under
poor channel conditions. Moreover, SmartBAN reference MAC scheduling gives
severely degraded PRR performance for some links under certain mobility patterns
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Fig. 5.7 Packet Reception Rate (PRR) in % under: walking, sit-stand, and running mobility
profiles

primarily because of shadowing by body posture. For example, Link4 and Link5
in which sensor nodes are placed on left and right knees experience the worst
performance in sit-stand posture as they are shadowed by human torso most of
the time. Also, in running scenario, the links corresponding to wrists and knees
have lower PRR for reference SmartBAN MAC without any repetition and with 2
repetitions because of the higher pathloss associated with higher mobility.

Energy Consumption

The energy consumption in joules for each transmitted packet by a sensor node is
given as

EJ = TT X × 3V olts × ImA, (5.8)

where ImA is the current consumption in mA. Figure 5.8 illustrates the energy
consumption profile for various links under the given mobility scenarios. These
results are computed for the total number of packets transmitted in a given duration
for all links, mobility profiles, and the previously discussed MAC-layer scheduling
schemes, as given in Table 5.2. The energy consumption is generally the highest for
priority node-hub link since this node sends data packet the most often; however,
the implementation of throughput and channel aware scheduling leads to better
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Fig. 5.8 Energy Consumption in joules under: walking, sit-stand, and running mobility profiles

energy efficiency because of opportunistic data transmission over good links. The
energy consumption observations for reference SmartBAN MAC with and without
repetition do not have any noticeable dissimilarities, except for Link1 which has an
average energy consumption difference of 1.2J between reference MAC without
repetition and reference MAC with 4 repetitions scheduling schemes. Also, the
energy consumption with repetitions is slightly increased for the links having higher
data rates as their related nodes send data more frequently.

Latency

The packet latency is found as the time difference between the generated and the
received data packet. Figure 5.9 provides latency results for each link considering
the given MAC scheduling schemes. Link1 has the lowest latency in all mobility
profiles since it is associated with the priority node which sends data in consecutive
superframes. In addition, the links having lower data generation rates generally seem
to have higher latencies in all mobility scenarios. Latency is also dependent on
the link quality as the links having poor SNR usually do not lead to successful
packet receptions, resulting in higher latencies. Therefore, the links with lower
PRRs for reference SmartBAN MAC schemes are observed to have higher latencies
as well. For example, Link3 has the worst PRR performance in running posture
which is reflected in its associated latency result as well. The latency for throughput
and channel aware SmartBAN MAC is also noticeably higher for Link2, Link3,
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Table 5.2 Number of
packets transmitted

Walking Sit-stand Running

SmartBAN reference MAC without repetition

Link1 37,312 37,250 37,464

Link2 575 574 1235

Link3 575 574 1235

Link4 1777 1774 2453

Link5 575 574 1235

Link6 575 574 1235

SmartBAN reference MAC with 2 repetitions

Link1 37,312 37,250 37,464

Link2 575 574 577

Link3 575 574 577

Link4 3732 3726 3747

Link5 575 574 577

Link6 1167 1165 1171

SmartBAN reference MAC with 4 repetitions

Link1 37,312 37,250 37,464

Link2 575 574 577

Link3 575 574 577

Link4 9328 9313 9366

Link5 575 574 577

Link6 2488 2484 2498

Throughput and channel aware SmartBAN MAC

Link1 14,256 5960 14,718

Link2 583 583 586

Link3 583 582 586

Link4 1548 1565 1606

Link5 583 415 586

Link6 583 582 586

Link5, and Link6 in sit-stand mobility scenario which can be traced back to their
corresponding lower PRR values and lower data generation rates.

5.6 Conclusion

This paper provides an overview about the effectiveness of different SmartBAN
MAC scheduling strategies considering PRR, energy consumption, and latency
as criteria. The conventional SmartBAN scheduled access MAC schemes with
and without repetition as well as a throughput and channel aware dynamic MAC
scheduling scheme are evaluated in this context for multiple on-body links. The
simulation results in terms of PRR and energy consumption certainly recommend
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Fig. 5.9 Latency in seconds under: walking, sit-stand, and running mobility profiles

the dynamic scheduling, based on channel and data packet availability, for reliable
and energy efficient data transmission.
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Chapter 6
Neighbour Wireless Body Area Network
Discovery Mechanism for ETSI
SmartBAN

Tuomas Paso and Jussi Haapola

6.1 Introduction

The Institute of Electrical and Electronics Engineers (IEEE) standard 802.15.6
[1] and the European Telecommunications Standards Institute (ETSI) technical
committee SmartBAN [2, 3] define physical (PHY) and medium access control
(MAC) specifications for packet-based short-range communications in wireless
body area networks (WBANs). WBANs target, e.g. medical and healthcare mon-
itoring systems in the vicinity of, or inside a human body.

The discovery of neighbour WBAN networks is the first step in enabling
inter-WBAN communications. However, the aforementioned IEEE and the ETSI
standards provide only hooks to implement provider-specific means for detection
of existence and coexistence with other neighbour networks but do not specify
mechanisms for discovery using the same standard specifications in near vicinity.
Wireless sensor network research has identified over the years various mechanisms
for neighbour network discovery. Such mechanisms can roughly be classified in
four underlying principles: randomness, over-half occupation, rotation-resistant
intersection, and coprime cycles [4]. For Bluetooth Low Energy devices, a precision
mechanism has been proposed in [5, 6], in which the devices can operate in three
different modes, i.e. advertising, scanning and initiating. However, the proposed
mechanisms focus on the case where a new device initialises and attempts to
discover an existing network.

The contribution of this paper is the proposal of a mechanism for the case
where a WBAN is already operational and attempts to discover another operational
WBAN without interrupting either WBAN operations already being carried out. The
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mechanism is SmartBAN compliant, and currently it is under consideration to be
included in the ongoing revision of the SmartBAN MAC specifications. In addition,
the discovery mechanism is further applicable to other similar types of networks for
the discovery of their corresponding neighbour networks.

The rest of the paper is organised as follows. Section 6.2 provides a short
introduction to the SmartBAN network and details the description on the system
model for the proposed neighbour WBAN discovery mechanism. In Sect. 6.3,
neighbour WBAN discovery probability and discovery time are analytically derived.
Results are presented in Sect. 6.4, and Sect. 6.5 concludes the paper.

6.2 System Model

Firstly, the ETSI SmartBAN network is introduced in this section. Secondly, we
provide a detailed description of the proposed neighbour wireless body area network
discovery mechanism.

ETSI SmartBAN Network

A SmartBAN network operates in two physical channels: a control channel (CCH)
and a data channel (DCH). The frequency of operation falls within 2401–2481 MHz
in the industrial, scientific and medical (ISM) band. Using 2 MHz channels, the
system has 3 CCHs and 37 DCHs, from which the utilised channels can be selected
based on interference and other possible restrictions.

The CCH is only utilised for network initialisation and transmitting periodic
control channel beacons (C-Beacons) by the coordinator of a SmartBAN, called
Hub. Data transmissions are carried out in the DCH, where the Hub transmits a
periodic data channel beacon (D-Beacon). The period between two consecutive D-
Beacons is termed as Inter-Beacon Interval (IBI), which is conceptually divided
into three parts: Scheduled Access Period, Control and Management Period, and
Inactive Period. Each of the periods is further divided into time slots (Ts) of equal
duration, as depicted in Fig. 6.1. The Scheduled Access Period and the Control and
Management Period together form the Active Period, during which devices other
than the Hub of the SmartBAN network are allowed to transmit.

Detailed specifications of the SmartBAN network are defined in [2, 3]. An
overview of the SmartBAN PHY and MAC specifications are provided in [7, 8],
respectively, and an overview of the SmartBAN standardisation activities is carried
out in [9].
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Fig. 6.1 Inter-Beacon Interval structure of the SmartBAN

Neighbour Wireless Sensor Network Discovery Mechanism

The operation of the neighbour WBAN discovery mechanism is based on channel
scan performed by the Hub. The scan is executed during the Inactive Periods of
the discovering SmartBAN, and the aim of the scan is to capture a C-Beacon of a
neighbouring SmartBAN. A key factor in the proposed mechanism is the alternation
of the Inactive Period durations of the SmartBAN conducting the discovery.

A flowchart of the proposed neighbour wireless body area network discovery
mechanism is proposed in Fig. 6.2. The flowchart includes the following steps in
the discovery process.

1. A Hub initiates the discovery mechanism by a higher layer protocol entity
issuing hub-to-hub (H2H) discovery start. A Hub actively supporting H2H
communications increases its C-Beacon rate to at least the rate of D-beacon
interval (TD)/2.

2. The Hub begins issuing an alternating Inactive Period duration in every forth-
coming IBI. Note that TD alternates correspondingly in every IBI.

3. During the first Inactive Period following commencement of the neighbour
discovery mechanism, the Hub initiates a timer. While the timer has not expired,
the Hub scans for C-Beacons of other networks during the Inactive Periods. If the
timer has expired after the end of Inactive Period j, the Hub resets the timer and
starts scanning C-Beacons on the next CCH of the applicable CCH list. Once the
CCH list has been exhausted, the Hub stops scanning for C-Beacons and reports
the list of neighbour C-Beacons found to the higher layer. If the list is empty, the
report indicates a failure.

4. If a C-Beacon or C-Beacons are successfully received during an Inactive Period
j, the Hub appends those beacons to the neighbour Hub list. Once such an event
occurs, the Hub may terminate the neighbour network discovery mechanism
early (e.g. if all predefined C-Beacons have been found) and report the list to
the higher layer.

An example on the effect of alternating the Inactive Period and the TD on C-
Beacon discovery is illustrated in Fig. 6.3. C-Beacon scans in constant length
Inactive Periods may not be able to receive transmitted C-Beacons since a neighbour
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Fig. 6.2 Flowchart of neighbour wireless body area network discovery mechanism

SmartBAN C-Beacon period is unknown to the Hub before discovery. Alternating
the Inactive Period improves the probability of receiving any periodic C-Beacon
transmissions as the varying length of the TD disrupts the constant cyclic transmis-
sion of D-Beacons and shifts the relative occurrence of the Inactive Period scans
with respect to the constant cyclical C-Beacon transmissions.

It should also be noted that the proposed model provides a mechanism for
the discovery of other neighbouring networks without interrupting the ongoing
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Fig. 6.3 Example of the effect of alternating Inactive Period and TD duration for C-Beacon
discovery

operations of either the wireless network carrying out the discovery or the wireless
networks to be discovered. Current methods either do not provide for such a
mechanism or they require the shutdown of the existing discovering network and its
re-establishment as a child network of another wireless network after such network’s
discovery and association to it. The discovery mechanism is originally presented
in [10].

6.3 Analysis

This section proposes a mathematical analysis for the proposed neighbour WBAN
discovery mechanism. The analysis is carried out in terms of probability of
discovery and discovery time for both the non-alternating and the alternating
Inactive Periods.

Probability of Discovery

Firstly, we define the probability of discovery in a case where non-alternating
Inactive Period durations are utilised, i.e. Inter-Beacon Interval remains constant.
Secondly, the probability of discovery is defined for the proposed mechanism having
alternating Inactive Period durations.

Non-alternating Inter-Beacon Interval

We define a maximum time, TScan, for the CCH scan. Based on TScan, the number
of Inter-Beacon Intervals during the maximum CCH scan time is
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NIBI =
⌊

TScan

TD

⌋
. (6.1)

The probability of a C-Beacon transmission of a neighbouring SmartBAN during
a single time slot is

PCB|TS = TS

TC
, (6.2)

where TS is time slot duration and TC is the C-Beacon interval. Correspondingly,
the probability of not having a C-Beacon transmission during a single time slot is

PNoCB|TS = 1 − TS

TC
. (6.3)

The probability of being in an Inactive Period of the discovering SmartBAN is

PI = NSlotIBI − NSlotA − 1

NslotIBI

, (6.4)

where NSlot_IBI is the number of slots in the IBI, NSlot_A is the number of slots in
the Active Period, and −1 represents the Beacon slot. Based on (6.3) and (6.4),
the probability of not having at least a single C-Beacon during a single Inactive
Period is

PNoCB|I =
(

1 − TS

TC

)NSlotIBI−NSlotA−1

. (6.5)

Therefore, the probability of having at least a single C-Beacon during the Inactive
Period is

PCB|I = 1 −
(

1 − TS

TC

)NSlotIBI−NSlotA−1

. (6.6)

Finally, the probability of having a C-Beacon during one of the Inactive Periods
during the maximum CCH scan time is

PC = 1 − (1 − PIPCB|I
)NIBI . (6.7)

Alternating Inter-Beacon Interval

The probability of discovery for the proposed mechanism using alternating Inactive
Period durations is calculated similarly. The number of alternating tuple Inter-
Beacon Intervals during the maximum CCH scan time is



6 Neighbour Wireless Body Area Network Discovery Mechanism for ETSI. . . 71

NIBI_Alt =
⌊

TScan

TD + TD2

⌋
, (6.8)

where TD2 is the length of the increased Inter-Beacon Interval, IBI2. The number of
either normal or increased IBIs during the maximum CCH scan time is

NIBI_Comb =
⌊

TScan
TD

TD+TD2
TD + TD2

TD+TD2
TD2

⌋
. (6.9)

The probability of being in an increased Inactive Period during IBI2 of the
discovering SmartBAN is

PI2 = NSlotIBI2 − NSlotA − 1

NslotIBI2

, (6.10)

where NSlot_IBI2 is the number of slots in IBI2. The probability of having a C-Beacon
during the increased Inactive Period is

PCB|I2 =
(

1 − TS

TC

)NSlot_IBI2−NSlotA−1

. (6.11)

Based on (6.7)–(6.11), the probability of having a C-Beacon during one of the
Inactive Periods (normal or increased) during the maximum CCH scan time is

PC2 = 1 −
(

1 − TD

TD + TD2
PIPCB|I + TD2

TD + TD2
PI2PCB|I2

)NIBI_Comb

. (6.12)

Discovery Time

Non-alternating Inter-Beacon Interval

The C-Beacon discovery time for non-alternating Inter-Beacon Interval scan is
derived from Fig. 6.4, where TA and TI are the durations of Active Period and
Inactive Period, respectively. TC_Offset is the offset between a D-Beacon of the
discovering SmartBAN and a C-Beacon of the target SmartBAN. The C-Beacon
is discovered if the inequality

nT A + (n − 1) TI ≤ TCOffset + kT C < nT D, ∀n ∈ 1, 2, 3 . . . , ∀k ∈ 0, 1, 2 . . .

(6.13)

holds, where the maximum value of n = NIBI and k is an integer with a maximum
value of
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Fig. 6.4 C-Beacon discovery time for non-alternating Inter-Beacon Interval

Fig. 6.5 C-Beacon discovery time for alternating Inter-Beacon Interval

k =
⌈

TScan

TC

⌉
. (6.14)

Alternating Inter-Beacon Interval

The C-Beacon discovery time for alternating Inter-Beacon Interval scan is derived
from Fig. 6.5, where TI2 is the duration of the Increased Inactive Period. The C-
Beacon is discovered if either of the inequalities

nT A + (n − 1) (TI + TI2) ≤ TCOffset + kT C < n (TA + TI)

+ (n − 1) (TA + TI2) , ∀n ∈ 1, 2, 3 . . . , ∀k ∈ 0, 1, 2 . . .
(6.15)

or

n (2TA + TI) + (n − 1) TI2 ≤ TCOffset + kT C

< n (2TA + TI + TI2) , ∀n1, 2, 3 . . . , ∀k ∈ 0, 1, 2 . . .
(6.16)

hold, where the maximum value of n = NIBI_Alt.
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6.4 Results

The most relevant SmartBAN network parameters utilised in the performance
analysis are presented in Table 6.1.

Control Channel Beacon discovery probability as a function of Data Channel
Inter-Beacon Interval and Control Channel Inter-Beacon Interval is presented in
Fig. 6.6. The proposed discovery mechanism utilising alternating Inter-Beacon
Interval durations outperforms the reference mechanism using non-alternating Inter-

Table 6.1 SmartBAN network parameters

Parameter Value

Time slot length (TS) 0.00125 s
D-Beacon Interval (TD) 0.1, 0.2, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0 s
C-Beacon Interval (TC) 0.01, 0.1, 0.2, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0 s
Control Channel Beacon offset as fraction of
TC (CCHOffset)

0, 0.2TC, 0.5TC, 0.8TC

Inactive Period increase factor 2
Maximum scan time (TScan) 5.0 s

Fig. 6.6 Control Channel Beacon discovery probability as a function of Data Channel Inter-
Beacon Interval and Control Channel Inter-Beacon Interval
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Beacon Interval durations in almost all cases. The discovery probability is 1 for the
proposed mechanism when Data Channel Inter-Beacon Interval is 0.5 s or less and
Control Channel Inter-Beacon Interval is 0.2 s or less. Since the current SmartBAN
specifications support up to 16 nodes in a SmartBAN network, the above-mentioned
limit for the Data Channel Inter-Beacon Interval can be considered feasible. With
the utilised 0.00125 s time slot length, and 50% duty cycle of the network, one time
slot can be allocated to 16 nodes in every Inter-Beacon Interval, and still nine time
slots remain to be used by the Control and Management Period of the Inter-Beacon
Interval.

When averaged over the entire data set, the alternating mechanism provides,
on average, 18% higher C-Beacon discovery probability as compared to the
non-alternating mechanism. At best, alternating mechanism provides 61% higher
discovery probability (Data Channel Inter-Beacon Interval = 5 s, Control Channel
Inter-Beacon Interval = 2 s). In addition, in 89% of the cases, the alternating
mechanism provides better discovery probability as compared to the non-alternating
version and in 3% of the cases equal probability.

When the Data Channel Inter-Beacon Interval and/or the Control Channel Inter-
Beacon Interval increases, the discovery probability decreases. The results are
expected, since in those cases there are less Inactive Periods (i.e. less individual

Fig. 6.7 Control Channel Beacon discovery time as a function of Data Channel Inter-Beacon
Interval and Control Channel Inter-Beacon Interval. Control Channel Beacon offset = 0. A value
of 5.5 s indicates failure to discover a C-Beacon
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scans) and less Control Channel Beacon transmissions. Therefore, the discovery
probability becomes heavily dependent on the timings of the neighbouring net-
works. In a worst-case scenario, the Data Channel Inter-Beacon Interval duration
of the discovering network and the Control Channel Inter-Beacon Interval duration
of the neighbouring network are the same, and beacon transmissions occur at the
same time. In this case, the discovery probability would be zero with the reference
mechanism.

The Control Channel Beacon discovery time as a function of Data Channel Inter-
Beacon Interval and Control Channel Inter-Beacon Interval with Control Channel
Beacon offset = 0, 0.2, 0.5, and 0.8 is presented in Figs. 6.7, 6.8, 6.9, and 6.10,
respectively. In the figures a value of 5.5 s on the discovery time indicates the
Control Channel Beacon could not be found during the maximum scan time. Based
on the figures, it can be stated that the proposed discovery mechanism utilising
alternating Inter-Beacon Interval durations outperforms the reference mechanism
using non-alternating Inter-Beacon Interval durations in almost all cases in terms of
discovery time as well. When considering Data Channel Inter-Beacon Interval and
Control Channel Inter-Beacon Interval durations of 0.5 s or less, and Control Chan-

Fig. 6.8 Control Channel Beacon discovery time as a function of Data Channel Inter-Beacon
Interval and Control Channel Inter-Beacon Interval. Control Channel Beacon offset = 0.2. A value
of 5.5 s indicates failure to discover a C-Beacon
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Fig. 6.9 Control Channel Beacon discovery time as a function of Data Channel Inter-Beacon
Interval and Control Channel Inter-Beacon Interval. Control Channel Beacon offset = 0.5. A value
of 5.5 s indicates failure to discover a C-Beacon

nel Beacon offset 0, the proposed mechanism captures Control Channel Beacon
approximately in 0.2 s, whereas the reference mechanism captures it approximately
in 0.4 s. The effect of Control Channel Beacon offset on the discovery is clearly
visible, when utilising the reference discovery mechanism. Even with short Data
Channel Inter-Beacon Interval and Control Channel Inter-Beacon Interval durations,
there are cases in which the Control Channel Beacon cannot be discovered. Since the
relative occurrence of the Inactive Period, i.e. the scan, remains constant in this case,
the result is expected. When utilising the proposed mechanism, the aforementioned
phenomenon is mostly avoided.

6.5 Conclusion

In this paper, we introduced a novel neighbour network discovery mechanism for
WBANs. The mechanism is based on the utilisation of the Inactive Periods of
the discovering WBAN by alternating the Inactive Period durations for scanning
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Fig. 6.10 Control Channel Beacon discovery time as a function of Data Channel Inter-Beacon
Interval and Control Channel Inter-Beacon Interval. Control Channel Beacon offset = 0.8. A value
of 5.5 s indicates failure to discover a C-Beacon

neighbouring WBANs. The key advantage of the mechanism is that it is defined for
the case where a WBAN is already operational and attempts to discover another
operational WBAN without interrupting either WBAN operations already being
carried out. Furthermore, the mechanism is SmartBAN compliant, and currently
it is under consideration to be included in the ongoing revision of SmartBAN MAC
specifications.

We have analytically derived the performance of the proposed mechanism in
terms of discovery probability and discovery time. Based on the results, it can be
concluded that the proposed mechanism outperforms a reference mechanism using
non-alternating Inactive Period durations for the discovery in almost all cases. The
main reason for better performance is that alternating the Inactive Period improves
the probability of receiving any periodic C-Beacon transmissions, since the varying
length of the Inter-Beacon Interval disrupts the constant cyclic transmission of D-
Beacons. Therefore, it shifts the relative occurrence of the Inactive Period scans
with respect to the constant cyclical C-Beacon transmissions.
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Based on the results, it can also be stated that in certain special cases, neighbour
network cannot be discovered. However, these cases can be solved by provider-
specific implementation in defining network parameters.
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Chapter 7
Evaluation of Preamble Detection
in ETSI SmartBAN PHY

Kento Takabayashi, Hirokazu Tanaka, and Katsumi Sakakibara

7.1 Introduction

In recent years, a medical and healthcare IoT (Internet of Things) system has
attracted attention as a means of building home medical care or remote medical
care system using wearable wireless vital sign sensors or medical robots [1–6].
For example, IEEE 802.15.6 which is one of the standards of wireless body
area networks (WBAN) known as one of the systems was issued in 2012 [7].
Then, system specifications for a physical layer (PHY) and a media access control
layer (MAC) in smart body area networks (SmartBAN), which is a standard for
medical and health care advanced by the European Telecommunications Standards
Organization (ETSI), were issued in April 2015 [8, 9].

Our previous work provided performance evaluations of an error control scheme
in ETSI SmartBAN PHY under several conditions [10]. In particular, we evaluated
the performance in case that Bose–Chaudhuri–Hocquenghem (BCH) codes with
almost the same redundancy as the packet repetition was applied, and then compared
with the standard scheme. In addition, the performance when retransmission was
performed was also evaluated. Numerical results showed that retransmission greatly
improved the packet error ratio and energy efficiency under the IEEE model
CM3 [11].
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In this research, preamble detection in ETSI SmartBAN PHY was evaluated. This
is because other researches about ETSI SmartBAN PHY including our previous
work did not consider that [10, 12, 13]. In the SmartBAN PHY, the packet structure
has a two-octet preamble used for timing synchronization and so on. However, the
preamble detection cannot be sufficiently performed except in a very good channel
condition because the preamble structure is too simple. Hence, there is concern
that reliable communication for medical use can only be performed under such
conditions. For that reason, we proposed a preamble structure which added a Start
Frame Delimiter (SFD) in order to correctly detect the position of the header. Several
SFD candidates were selected and their preamble detection performances were
evaluated by computer simulations. As a result of them, the best performance was
obtained when an orthogonal M-sequence was used as the SFD under the additive
white Gaussian noise (AWGN) channel and IEEE model CM3.

7.2 Summary of SmartBAN PHY

Frequency Spectrum

In the SmartBAN, a frequency band within 2401 MHz to 2481 MHz is used, and
each channel has a bandwidth of 2 MHz. In addition, each center frequency is
defined as the following equation:

fc = 2402 + 2n MHz, for n = 0 to 39. (7.1)

Here, n is the channel number.

Packet Structure

Figure 7.1 shows a structure of a packet in the physical layer (PPDU: Physical-Layer
Protocol Data Unit). PPDU has a sixteen-bit preamble “1010101010101010” used
for frequency synchronization, timing synchronization, and automatic gain control.
The Physical Layer Convergence Protocol (PLCP) header consists of the packet
length, PHY scheme, and so on. The Physical-Layer Service Data Unit (PSDU) is
either an encoded or uncoded MAC Protocol Data Unit (MPDU) [8, 9].
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2 octets

Preamble PLCP Header PSDU

Preamble PLCP Header PSDU
Modified packet
structureSFD

SmartBAN

40 bits LPSDU

LPSDU2 octets 1~4 octets 40 bits

Fig. 7.1 Proposed packet structure. The above one is the packet structure of SmartBAN. The
proposed one is below

Modulation and Error Controlling

In the SmartBAN PHY, Gaussian Frequency Shift Keying (GFSK) with a
bandwidth-bit period product BT = 0.5 and modulation index h = 0.5 is applied as
a modulation scheme. On the other hand, as an error controlling in the SmartBAN
PHY, we can use two schemes. The first one is a scheme of repeatedly transmitting
PPDUs. It is possible to set with the number of repetitions NR = 2, 4. Another one
is a scheme of encoding the MPDU by using the (127, 113) BCH code.

7.3 Proposed Preamble Structure

We propose to modify the preamble structure in ETSI SmartBAN. The reason is that
the current preamble structure is too simple, and the preamble detection cannot be
sufficiently performed except in a very good channel condition. To correctly detect
the position of the PLCP header, in particular, a SFD is added between the two-
octet preamble and the PLCP header as shown in Fig. 7.1. When detecting the
position of the header, cross-correlation is performed on the known modulated SFD
symbol. The advantage of this proposal is that it can be realized without changing
the standards drastically. Hence, the part of two-octet preamble can also play a
conventional role.

7.4 Result of Computer Simulation

In this section, we describe the performance evaluation by computer simulations
on the preamble detection in the SmartBAN PHY and our proposed method.
Table 7.1 shows the simulation parameters. The computer simulator was built by
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MATLAB. Then, the comm.PreambleDetector System object in MATLAB was used
for preamble detection, and the detection threshold was set to the length of each
SFD minus one (LSFD − 1). In the only case of SmartBAN, all of the two-octet
preambles were correlated, and the threshold was set to the length of the preamble
minus one (Lpreamble − 1). In this computer simulation, the AWGN channel and
IEEE model CM3 which is one of the channel models of wearable WBAN were
used [11]. Similarly, IEEE model CM3 was applied to the path loss model. Table
7.2 summarizes SFD used in the computer simulations. The reason for choosing
these sequences is that they can be handled in units of octets.

Figures 7.2 and 7.3 show performances of failure detection ratio under the
AWGN channel and IEEE model CM3 respectively as function of energy per

Table 7.1 Simulation parameters

Channel model AWGN and IEEE model CM3
Pass loss model IEEE model CM3
Frequency Spectrum 2401–2481 MHz
Bandwidth (BW) 2 MHz
Modulation GFSK
Bandwidth-Time product (BT) 0.5
Modulation index (h) 0.5
Transmission power (Ptr) 0 dBm ≥ Ptr

Thermal noise density (N0) −174 dBm/Hz
Implementation losses (I) 5 dB
Receiver noise figure (NF) 10 dB
Information bit length (Linfo) 150 bits
Symbol rate 1.0 Msps

Table 7.2 SFD used in computer simulations

Type of sequence Bit sequence (Hexadecimal)

Additional SFD 1 “01010101” (0x55)
Additional SFD 2 “10101011” (0xAB)
Hadamard seq. [14] 1 octet “11001100” (0xCC)

2 octets “1100001111000011” (0xC3C3)
4 octets “11000011110000111100001111000011”

(0xC3C3C3C3)
Orthogonal M-seq. [15] 1 octet “11101000” (0xE8)

2 octets “1111010110010000” (0xF590)
4 octets “11111001101001000010101110110000”

(0xF9A42BB0)
Manchester- coded Orthogonal
M-seq. [15]

1 octet “10100101” (0xA5)

2 octets “1010100101100101” (0xA965)
4 octets “10101010011001101001011001010101”

(0xAA669655)
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Fig. 7.2 Failure detection ratio under the AWGN channel as function of Es/N0

Fig. 7.3 Failure detection ratio under IEEE model CM3 as function of Es/N0

symbol to noise power spectral density (Es/N0). In addition, Fig. 7.4 shows
that under IEEE model CM3 as function of communication distance between a
transmitter and a receiver. Here, “failure detection” includes false detection and not
detection. False detection is to detect the erroneous position as the correct PLCP
header position. On the other hand, not detection is to miss detection of peaks by
cross-correlation. As shown in these figures, the preamble of SmartBAN had good
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Fig. 7.4 Failure detection ratio under IEEE model CM3 as a function of communication distance

performance only under the AWGN channel and very good channel conditions. On
other words, its performance was very bad in other conditions. Additional SFDs
were not able to detect correctly each preamble because they were very similar to
part of the two-octet preamble. Of the other sequences, orthogonal M-sequences
obtained better performances than others. Particularly, the four-octet orthogonal M-
sequence gained good results even in very poor channel conditions. The reason for
that is considered to be that the autocorrelation characteristic is higher than other
sequences.

7.5 Conclusion

In this research, we have evaluated preamble detection in ETSI SmartBAN PHY
and proposed to modify the preamble structure. Specifically, a SFD has been added
between the two-octet preamble and the PLCP header. Computer simulations have
shown that the preamble with SFD consisting of the four-octet orthogonal M-
sequence has better detection performance than that of SmartBAN and so on, in
particular, under poor channel conditions of IEEE model CM3.

As for the future work, we need to consider changing the preamble itself.
In addition, performance evaluation of the PHY should also be performed in
consideration of preamble detection performance. At that time, it is necessary to
consider the influence of overhead caused by adding SFD.
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Chapter 8
Security in Body Networks:
Watermark-Based Communications on
Air-Gap Acoustic Channel

Simone Soderi

8.1 Introduction

We live in a hyper-connected society where communications infiltrated our lives.
This technological evolution changed positively the daily life making several things
easier. On the other hand, the wide utilization of communications imposed the
development of security engineering as a multidisciplinary field ranging from
cryptography and computer science to hardware and embedded systems [1]. Cyber-
security is now a fundamental fact of global life. It impacts political, economic,
and military affairs. The rapid evolution of the information communications and
technology (ICT) industry has disadvantages, for example, sometimes ICT players
are not responsive to new security issues. On the other hand, each country elaborates
strategies to mitigate security threats that could affect the national security. In United
States (US), the National Defense University (NDU) defined the cyberspace as
an operational domain framed by the use of electronics and the electromagnetic
spectrum to create, store, modify, exchange, and exploit information via intercon-
nected information systems and their associated infrastructures. The structure of the
cyberspace changes with the technology evolution. Today, its structure consists of
sub-domains represented as follows [12]:

Communication infrastructures: networks, protocols/packets in accordance
with the open systems’ interconnection (OSI), and transmission control
protocol/Internet protocol (TCP/IP) models;

Contents and applications: software that exploits hierarchical file systems and
relational databases to process data;
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People and social: on-line communities such as mailing list, blog, social net-
works, health-care oriented communities, etc.

Wireless body area networks (WBANs) are part of the cyberspace supporting
people in many daily activities and collecting humans’ information. Nowadays, we
should consider that the global transformation of the industry to a renewed digital
industry has given rise to unexpected consequences. Many people, such as terrorist,
hacktivist, and hackers are making life more dangerous the life for those uses digital
products such as body sensors.

One of the field with the greater impact of this situation is undoubtedly the
health-care system. For many years, the adoption of electronic medical record
(EMR) and the wide utilization of highly interconnected medical devices created
a large database of health data. With growing reports of ransomware and other
hacking-related incidents, the cybersecurity in health-care systems has become a
priority [18]. In this study, the author provides a method for the security hardening
in WBAN scenarios. The rest of this paper is organized as follows: Section 8.2
overviews the related work and the motivation behind this study. Section 8.3
describes the physical layer security system model applied to audio communication
scenario. Then, this paper continues with the results achieved in the test-bed. Finally,
the conclusions are presented in Sect. 8.5.

8.2 Related Work

WBANs collect humans’ information through low energy sensors nodes. Bluetooth
Low Energy (BLE) is the dominant technology to convey efficiently data in body
networks. Other wireless short-range technologies available on the market, such
as ZigBee and IEEE802.15.6, implement WBANs. In addition, the European
Telecommunications Standards Institute (ETSI) under the Technical Committee
SmartBAN is also developing its own standard for smart body area networks
(SmartBAN) [6]. In particular, this new standard is developed to support health-care
applications.

In accordance with the tier model, WBAN and more in general wearable wireless
networks (WWNs) include three levels of communication [2, 16]. Wearable sensors
collect data within the tier 1 and convey this information to tier 2 for aggregation
purposes and data processing. Finally, data are transmitted to tier 3 making them
available for remote access. As shown in Fig. 8.1, the classical WBAN can be
classified as on-body communications. Instead, all the communications that occur
in tier 2 are off-body [2].

In this transmission chain, the security is one of the major concerns because
an adversary, i.e., Eve in Fig. 8.1 can perform several attacks. The wireless link
between nodes in the WBAN can be attacked. The severity of these attacks changes
with the application scenario. For instance, in health-care WWNs we could have a
high risk for patient’s safety [17]. Usually, WWNs operate in a public environment,
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Fig. 8.1 Architecture of the
WBAN: tiers model and
on-body/off-body
communications

e.g., hospitals, in which people, including an attacker, has access without restriction.
Moreover, the utilization of wireless technology makes the data prone to being
eavesdropped, modified, and injected. This raises concerns about the privacy of the
information managed in WBANs. On the other hand, the security hardening of the
wireless nodes within WBAN is challenging. These nodes have limited resources
and require the security mechanisms to be as lightweight as possible [14].

Motivation

The design of security solutions for WBANs shall overcome the resources limita-
tions in each wireless device. The balance between security, usability, and efficiency
are aspects that shall be taken into account. IEEE802.15.6 defines different levels
of security throughout encryption and authentication of the data [10]. Moreover,
ETSI takes into account the security in the SmartBAN standard [21]. So far,
although there are security solutions, in several applications security is implemented
through cryptography at upper layers in the open system interconnection (OSI)
model [1]. However, in the past few years, several techniques based on signal
processing have been utilized to secure communications at the physical layer, and
they have been shown to be promising methods where standalone security solution
is needed. Undoubtedly, nodes of a WBAN fall in this case. Since 1949, when
Shannon developed the metric for the information theory for secrecy systems [20].
In the literature, there are several contributions that deal with the physical layer
security in which secure communications are developed exploiting wireless channel
imperfections, multipath, and even interference. In 1973, Lampson defined the
covert channel as a communication channel that is not intended for information
transfer at all [13]. Recently, the utilization of covert channels is proposed to
circumvent network security policies by establishing new communication paths [7].
In this paper, the author extends to acoustical communications, the watermark-
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based blind physical layer security (WBPLSec) protocol that utilizes a jamming
receiver in conjunction with spread-spectrum (SS) watermarking technique [23]. At
the time of writing, there was no literature describing a similar technique in which
the watermark-based communication exploits acoustical emanations to secure a
wireless communication in WBANs.

8.3 Scenario

Acoustic Covert Channel

Two electronic devices in the same room, without any physical connection, between
them, are separated by an air-gap. This scenario cannot guarantee the isolation
between two computers [5]. Acoustical emanations produced by electronic devices
can bridge the air-gap. The idea proposed in this paper addresses countermeasures
against confidentiality and integrity attacks exploiting acoustic covert channel.
WBANs have high dynamics by their nature. Nodes join and leave the network
continuously. In that scenario, WBANs are subject to threats from network dynam-
ics. Building new sensors with physical layer capability to secure a wireless
communication through acoustic channel makes the entire WWN stronger.

Humans can perceive sound frequencies within the range of 20 Hz to 20 kHz,
whereas ultrasounds are defined as those frequencies above 20 kHz. Sound-based
covert channels can stealthily bypass many information flow control mechanisms.
In literature, there are contributions in which covert mesh networks are implemented
over the air [7]. Ultrasonic communications are feasible with good accuracy utilizing
standard microphones and loudspeakers [4, 9].

On the other hand, from the security point of view, ultrasonic sound does not
require a permission and a computer can emit sounds to anything that can hear them
bypassing network security policies restriction. This mechanism was exploited by
malware to infect other devices [5, 9]. Only military devices mitigate this kind of
security issue disabling the sound-card driver when it is not needed.

WBPLSec System Model in Acoustical Communications

This paper proposes the application of the WBPLSec over an acoustic channel by
utilizing the near ultrasonic frequency range. WBPLSec transmits the information
through two independent paths implementing data decomposition policy. The
information is sent via a narrow-band signal and through the SS watermarked signal.
The narrow-band signal is partially jammed by Bob, but the watermark into the
SS signal is utilized to re-compose the entire symbol [23]. Figure 8.2 illustrates
the main idea underlying the WBPLSec when it is applied to the acoustic air-gap
channel.
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Fig. 8.2 Spectrum of the WBPLSec in acoustic air-gap channel

In accordance with the framework presented by Cox et al. [3], transmitter
combines the original modulated signal with an SS watermark, with an embedding
rule defined as

x′
S(i) = xS(i) + μw(i), (8.1)

where xS(i) is the i-th sample of the frequency shift keying (FSK) transmitted
signal, μ is the scaling parameter, and w(i) is the SS watermark. The direct
sequence spread spectrum (DSSS) technique is selected for the signal watermarking
implementation.

The host FSK modulated signal xS can be expressed as

xS(i) =

⎧⎪⎪⎨
⎪⎪⎩

Aa

√
2

Ths

· cos(2π(fc + �f )i), for0 ≤ i ≤ Ths(binary1),

Aa

√
2

Ths

· cos(2π(fc − �f )i), for0 ≤ i ≤ Ths(binary0),

(8.2)

where Aa is the amplitude, Ths is the symbol time, fc is the carrier frequency of the
modulated signal, and the �f is the frequency offset needed to transmit two binary
digits.

The DSSS watermark signal can be expressed as

w(i) =
+∞∑

k=−∞

Nc−1∑
j=0

g(i − kTb − jTc)(cW (i))j (xW (i))k, (8.3)

where (xW (i))k is the k-th data bit of the watermark signal. (cW (i))j represents the
j -th chip of the orthogonal pseudo-noise (PN) sequence. g(i) is the pulse waveform,
Tc is the chip length, and Tb = NcTc is the bit length. Then, w modulates a carrier
frequency close to the range of the fc utilized by FSK.
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Fig. 8.3 WBPLSec system model in air-gap acoustic channel

Figure 8.3 shows the embedding stage of the watermark into the FSK, in which
the information xW is spread and then added in the host signal. In order to maintain
the versatility, the watermarked signal x′

S is encoded into a waveform audio file
format (WAV). Alice transmits the x′

S to Bob playing the WAV file through her
loudspeaker. While Bob is recording, i.e., receiving, the message he jams it playing
the jamming signal encoded into another WAV file. In this scheme, only the
legitimate receiver, i.e., Bob, knows which part of the WAV file he jammed. Later,
Bob is able to get a clean signal by replacing corrupted samples with the information
conveyed by the SS watermark that it is immune to jamming interference. In
contrast, the eavesdropper cannot remove the interference because he does not have
any information on the jamming characteristics.

The physical layer security mechanism implemented by the WBPLSec consists
of steps shown in Algorithm 1. In this model each sensor is equipped with a
microphone and a loudspeaker; therefore, nodes in the WBAN convey humans’
vital signal over the acoustic air-gap covert channel. Figure 8.1 shows the operating
scenario of the WBPLSec inside the three network tiers model, in which the
proposed solution can mitigate threats, such as man-in-the-middle (MitM) and
eavesdropping, within off-body communications.

8.4 Experiments and Measurements

Experiment Setup

Experiments have been performed on a real test-bed to investigate the performance
of the WBPLSec over the acoustic air-gap channel. The test-bed consisted of an
Apple MacBook Pro and a JBL Flip Bluetooth speaker as shown in Fig. 8.4. The
wireless speaker was necessary to vary the relative distance D1 between Alice and
Bob. The MacBook Pro is utilized as the main processing unit. Alice is emulated
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Algorithm 1 WBPLSec protocol in acoustic air-gap channel
1: procedure PHYSICAL LAYER SECURITY

2: SS Watermarking (ALICE):
A message is first modulated with DSSS and
then embedded into the host FSK signal.
The FSK watermarked message is encoded in a WAV file,
then is played, i.e. transmitted, through the loudspeaker.

3: Jamming Receiver (BOB):
The receiver jams NW samples for each symbol transmitted
by Alice.
The jamming signal is encoded into a WAV file and played
through BOB’s loudspeaker while he is recording ALICE’s
message with his microphone.

4: Watermark Extraction (BOB):
The receiver extracts the watermark utilizing a code
matched filter.

5: Symbol Rebuild (BOB):
Knowing which samples are jammed the receiver,
i.e. Bob, is able to rebuild a clean symbol using
information contained into the watermark.

6: end procedure

Fig. 8.4 Test-bed setup

with the Bluetooth speaker which plays only the right audio channel. Instead, Bob is
emulated by the MacBook Pro and it plays only the left audio channel. The decision
to play WAV files as a mono channel, i.e., only right for Alice and only left to jam,
is due to the opportunity to split the communication and utilize one main processing
unit, i.e., the MacBook Pro.

As output devices, MacBook Pro and JBL Flip have a frequency response that
spans from 20 Hz to 20 kHz. Moreover, the internal speakers support a stereo data
stream at bit depths of 16 bits per sample and at sample rates of 44.1 kHz. By the
Nyquist–Shannon Sampling theorem [19], this means that the highest frequency
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Table 8.1 Experiment scenario parameters

Parameter Value

D1 0.3 m, 0.5 m

FSK frequencies 17.5 kHz, 18.5 kHz

DSSS carrier frequency 19.5 kHz

Jamming frequency 17.5 kHz

FSK bit-ratea 8 bps

Number of bits FSK payload (N ) 128

Number of bits FSK preambleb 256

Number of jammed bits (M) 40

Number of bits to create the watermark (NW ) 40

Watermarking scaling parameter (μ) 0.3, 0.5

DSSS Processing Gain (Gp)c 128, 256

Alice’s WAV filed Mono—right channel

Bob’s jamming WAV filed Mono—left channel

WAV file depth 16 bit

Input/output sampling frequency (Fs ) 44.1 kHz

Input/output frequency response 20 Hz–20 kHz
aThe low bit-rate is due to the oversampling. 5120 samples for each bit
bIt consists of the preamble and a synchronization sequence
cUsing Hadamard PN code
dAuthor assumed perfect synchronization between Alice and Bob

signal that can be perfectly reconstructed without aliasing is a little over 22 kHz.
On the other hand, as input device, the internal microphone of the MacBook Pro
supports recording at bit depths of 16 bits per sample and at sample rates of 44.1 kHz
(Fs). Table 8.1 lists the parameters used for experiments in the test-bed.

Experiments Over the Acoustic Air-Gap Channel

The FSK transmitter is a Matlab function that encodes binary 1’s and 0’s as two
frequencies in the near range of ultrasound as shown in Fig. 8.2. The first part of
the Alice’s message consists of a preamble plus a synchronization sequence. The
message payload consists of 128 bits. From this payload, only 40 bits (i.e., xW ) are
utilized to create the SS watermark. The script creates a mono WAV right channel
file (the left channel is silent) ready to be transmitted through the Bluetooth speaker.
The amplitude of the watermarked signal is scaled up in order to maximize the
volume of a 16 bit audio signal. The script creates also a continuous wave (CW)
jamming signal. This signal uses a set amount of time to jam 40 bits over one
frequency utilized by FSK. A second mono WAV left channel file is created with
jamming information. The author assumed a perfect synchronization of these two
WAV files.
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Bob records the jammed WAV file through the MacBook Pro internal microphone
as shown in Fig. 8.4. In accordance with the WBPLSec Algorithm 1, the receiver
demodulates the FSK and extracts the watermark to rebuild the original message.
The watermark extraction is performed with the use of a code matched filter (CMF).
The watermark extraction is performed by computing the normalized statistics
as [15, 23]

r � 〈yM , cW 〉
〈cW , cW 〉 , (8.4)

where the yM is the received signal by Bob as shown in Fig. 8.3, cW represents
the PN sequence. The author assumed 〈cW , cW 〉 = 1, i.e., PN sequences have
unit energy. To speed up the process the author utilized the chip level post-
detection integration (CLPDI) [11, 22]. CLPDI combines multiple outputs of the
CMF reducing the time needed for the SS code synchronization. After the code
synchronization, the receiver despreads the signal and then extracts the watermark.

The detector is the same introduced with the traditional spread spectrum
watermarking [15, 23] and the estimation of the embedded bit is given by

x̂W = sign(r). (8.5)

The transition between frequencies in the close range of ultrasound produces
highly audible clicking noise. To mitigate this effect the Matlab script applies a
fade-in and fade-out for each tone [4, 9]. One drawback of the usage of this medium
is the low bit-rate achievable. Actually, the receiver needs a sufficient number of
samples per symbol to detect the signal power. The oversampling of each symbol
reduces the bit-rate but improves the communication reliability.

Results

The experiment described in the previous section was carried out arranging the test-
bed in a room. The main objective was to verify the reliability of the WBPLSec
over an acoustic air-gap channel. The acoustic communication between Alice and
Bob was evaluated using the bit error rate (BER) as metric. The laptop (i.e.,
MacBook Pro) and the wireless loudspeaker (i.e., JBL Flip) were placed face to
face at different distances up to 0.5 m. Due to hardware and firmware limitations,
experiments showed that at wider distances BER increases, and hence, the wireless
communication might not be feasible in those cases. The author assumed that the
maximum distance is comparable with WBAN layout. Figure 8.5 illustrates the
transmitted signal in the acoustic air-gap covert channel, i.e., the watermarked FSK
signal and the CW jamming as well.

Bob and the adversary, i.e., Eve, receive the acoustic signal through the micro-
phone. The microphone records signal up to 20 kHz. In that frequency range, it is
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Fig. 8.5 Signals transmitted in the acoustic air-gap channel

a linear system that utilizes an automatic gain control (AGC) to adjust the signal
amplitude and use the internal analog to digital converter (ADC) in its whole range.
In this architecture, Bob selected a 17.5 kHz CW jamming to suppress up to 40
bits of the payload transmitted by Alice. The jamming effectiveness depends on
the distance between Alice and Bob. The idea utilized for the jamming was to
increase its intensity by altering the dynamic of the microphone and weakening part
of the wanted Alice’s signal. Figure 8.6 shows the signal recorded by the legitimate
receiver in which a segment of the payload is jammed. Only Bob knows which bits
are jammed.

During the experiments, the ambient noise reduction feature was turned off on
the laptop and the energy saving on the external loudspeaker as well. These features
might alter the transmitted and received acoustic signals. In acoustic communica-
tions, ambient noise and distance are the greatest limitations. Environmental noise
usually creates audio clipping because the microphone is driven to its maximum
excitation [9]. The results confirmed these limitations, and therefore, experiments
occurred in a quiet room. In order to have a reliable wireless communication over the
air-gap acoustic channel, Bob needs enough samples per bit. The trade-off between
the bit oversampling and the communication reliability sets the bit-rate in the range
defined in Table 8.1. Currently, this implementation supports only low bit-rate, e.g.,
8 bps.
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Fig. 8.6 Signal received by the legitimate receiver, i.e., Bob

Figure 8.7 shows as using the CLPDI technique, the receiver reduces the
uncertainty region by a factor of 16, i.e., m, improving the performance of the
watermark code detection.

Figure 8.8 illustrates the BER of the payload (i.e., 128 bits) at the legitimate
receiver. During the measurement campaign, the author modified the distance
between Alice and Bob, the DSSS processing gain (Gp), and the intensity of the
watermark μ as defined in (8.1). Varying the distance between Alice and Bob, the
higher is the Gp, the lower is the BER that yields to increase the performance of
the proposed protocol. The SS watermark was not affected by the jamming as its bit
error rate (BERWM ) was 0 for each communication.

The WBPLSec is a promising technique for low-power sensor network. This
algorithm secures the wireless communication utilizing lower energy than other
jamming techniques [23]. Table 8.2 shows the evaluation of energy cost for each
packet transmitted by Alice and jammed by Bob. The implementation of WBPLSec
requires more energy but the author expects to save computation when compared to
encryption [8]. Furthermore, the extra energy might be tuned changing the length of
the watermark, i.e., NW , and the number of jammed bits, i.e., M .
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Table 8.2 Energy cost for each packet

ALICE energy Tx BOB energy Tx WBPLSec total
energy

N = 128, NW = 40,M = 40

Epkt

(
1 + NW

N

)
3
2 Epkt Epkt

(
1 + NW

N
+ M

N

)
1.625 · Epkt

a

aEpkt is the energy for each packet

8.5 Conclusions

Due to their nature WBANs are vulnerable to eavesdropping attacks. Furthermore,
WBANs are subject to security threats from network dynamics. The idea proposed
in this paper shall support the design of new sensors with physical layer capability to
secure a wireless communication through acoustic channel gets stronger the whole
WWN.

The watermark-based communication with a jamming receiver needs multiple
wireless interfaces. Today, wireless sensors are equipped with several air interfaces,
e.g., audio inputs/outputs, BLE, and Wi-Fi. The author successfully demonstrated
that the WBPLSec algorithm is applicable to acoustic air-gap covert channels to
exchange a secret shared key. The results demonstrated that this method is a valuable
technique for deploying physical layer security by creating a secure region around
the receiver up to 50 cm.

The utilization of consumer electronics during experiments showed some draw-
backs of this medium. This medium has some limitations in the communication
range on how even the maximum achievable bit-rate is. It does not mean that
acoustic communications are useless. The WBAN use case, in which wireless few
nodes are in proximity can benefit from the WBPLSec over an acoustic channel to
exchange secret shared keys. Hence, there are scenarios which might be convenient
for exploiting existing low power air interface instead to re-design the whole
wireless sensors. This study supports such strategy.

References

1. Anderson, R.J.: Security Engineering - A Guide to Building Dependable Distributed Systems,
2nd edn. Wiley, New York (2008)

2. Arbia, D.B., Alam, M.M., Moullec, Y.L., Hamida, E.B.: Communication challenges in on-body
and body-to-body wearable wireless networks — a connectivity perspective 5 (7 2017). https://
doi.org/10.3390/technologies5030043

3. Cox, I.J., Kilian, J., Leighton, F., Shamoon, T.: Secure spread spectrum watermarking for
multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997). https://doi.org/10.1109/
83.650120

4. Deshotels, L.: Inaudible sound as a covert channel in mobile devices. In: 8th USENIX
Workshop on Offensive Technologies (WOOT 14). USENIX Association, San Diego (2014).
https://www.usenix.org/conference/woot14/workshop-program/presentation/deshotels

https://doi.org/10.3390/technologies5030043
https://doi.org/10.3390/technologies5030043
https://doi.org/10.1109/83.650120
https://doi.org/10.1109/83.650120
https://www.usenix.org/conference/woot14/workshop-program/presentation/deshotels


102 S. Soderi

5. Guri, M., Solewicz, Y.A., Daidakulov, A., Elovici, Y.: MOSQUITO: covert ultrasonic trans-
missions between two air-gapped computers using speaker-to-speaker communication. CoRR
abs/1803.03422 (2018). http://arxiv.org/abs/1803.03422

6. Hämäläinen, M., Li, X.: Recent advances in body area network technology and applications.
Int. J. Wirel. Inf. Netw. 24, 63–64 (2017)

7. Hanspach, M., Goetz, M.: On covert acoustical mesh networks in air. CoRR abs/1406.1213
(2014). http://arxiv.org/abs/1406.1213

8. Harrison, W., Almeida, J., Bloch, M., McLaughlin, S., Barros, J.: Coding for secrecy: an
overview of error-control coding techniques for physical-layer security. IEEE Signal Process.
Mag. 30(5), 41–50 (2013). https://doi.org/10.1109/MSP.2013.2265141

9. Harvest, Z., Bonnie, E.: SqueakyChat: ultrasonic communication using commercial notebook
computers (2014). https://github.com/bonniee/ultrasonic/blob/master/SqueakyChat.pdf

10. IEEE Standard for Local and metropolitan area networks - Part 15.6: Wireless Body Area
Networks (Feb 2012). https://doi.org/10.1109/IEEESTD.2012.6161600

11. Iinatti, J., Latva-aho, M.: A modified CLPDI for code acquisition in multipath channel. In:
12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.
PIMRC 2001. Proceedings (Cat. No.01TH8598), vol. 2, pp. F–6–F–10 vol.2 (Sep 2001).
https://doi.org/10.1109/PIMRC.2001.965284

12. Kramer, F., Starr, S., Wentz, L., National Defense University Press for Technology, National
Security Policy: Cyberpower and National Security. Potomac Books, Washington (2009)

13. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–615 (1973).
http://doi.acm.org/10.1145/362375.362389

14. Li, M., Lou, W., Ren, K.: Data security and privacy in wireless body area networks. Wirel.
Commun. 17(1), 51–58 (2010). https://doi.org/10.1109/MWC.2010.5416350

15. Malvar, H., Florencio, D.: Improved spread spectrum: a new modulation technique for robust
watermarking. IEEE Transactions on Signal Processing 51(4), 898–905 (2003). https://doi.org/
10.1109/TSP.2003.809385
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Chapter 9
Secrecy Capacity of Diffusion-Based
Molecular Communication Systems

Lorenzo Mucchi, Alessio Martinelli, Stefano Caputo, Sara Jayousi,
and Massimiliano Pierobon

9.1 Introduction

Molecular communication (MC) is a recent inter-disciplinary research topic
between telecommunications, computer science, and biology [1]. The basic concept
under this research area is that in biological systems, which include the human body,
the transmitters and receivers communicate each other by using chemical signals
or molecules. Molecular communication is seen by telecommunication engineers
as a new paradigm where the information flows through chemical reactions and
molecules transportation, as opposed to radio or optical signals. For biologists, MC
is an abstraction of how biological cells and their components communicate. During
the last decade, researchers devoted a lot of efforts in investigating and developing
MC-based nano-(bio)-devices and nano-(bio)-networks, and MC is now considered
a future (potentially disruptive) communication technology. Communications at
molecular/nano-scale level have very different rules and objectives compared to the
traditional radio communications.

Healthcare is one of the most promising application fields of MC [2]. In
particular, MC for health studies how biological and artificial components (nano-
sensors, nano-reactors) communicate with each other using molecules. The impacts
of this research study could enable a wide number of future applications such
as lab-on-a-chip, drug/DNA delivery systems, and human body monitoring using
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implanted biochemical sensors [3]. Recently biological cells have been proposed
to be as programmable computing systems, and the interaction between cells as
a biological computer network. This new vision of biological cells as a network
led to use information theory tools to define the performance of an MC system
composed of biological or engineered cells [4]. Although much effort has been
already devoted to the study of MC systems, most of the research has been focused
on the information theoretical foundation.

Security has always been an important feature of every communication systems,
in particular where information is privacy-sensitive, such as human health data.
Molecular communications are expected to be particularly sensitive to security.
Security issues related to this novel communication paradigm have been only
partially considered. Existing papers focus basically on providing some first insights
about security aspects of MC systems, by highlighting the open issues and directions
of potential solutions [5]. It is important that security in this new communication
paradigm is investigated from the very beginning of its practical development
(security by design). Adding security features when the MC systems are ready to be
deployed could be a serious problem, which could lead to a decrease in the interest
for this promising technology.

This paper focuses on the theoretical derivation of the information leakage and
secrecy capacity [6, 7] of a diffusion-based MC system. In particular, a closed-form
mathematical expression of the secrecy capacity of a diffusion-based MC system is
derived. This metric is useful to define how secure is a communication link, when
information flows by molecules diffusion. The numerical results show the secrecy
capacity as a function of the distance between transmitter–receiver (Alice–Bob) and
transmitter–eavesdropper (Alice–Eve). The MC secrecy capacity is also drawn as a
function of the transmitter bandwidth, the average thermodynamic power, and the
receiver radius, which are important parameters to be considered when designing an
MC system.

The rest of this paper is organized as follows: In Sects. 9.2 and 9.3 we review
the main processes, components, and information-theoretical results at the basis
of a diffusion-based MC system, respectively. In Sect. 9.4 we detail our main
contribution in terms of closed-form expressions for the information leakage and
secrecy capacity of such a system, while in Sect. 9.5 we present a study on the MC
secrecy with numerical results based on these expressions. Finally, in Sect. 9.6 we
conclude this paper.

9.2 Diffusion-Based Molecular Communication System

The processes of molecule emission, diffusion, and reception can be abstracted
to be the transmitter, the channel, and the receiver of a molecular communication
system, respectively. These components are located in the physical system, which
is the space volume where the communication takes place, as shown in Fig. 9.1.
The physical system follows laws and is influenced by parameters that depend on
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Fig. 9.1 Information-theoretical diagram of a diffusion-based MC system

Fig. 9.2 Physical scheme of the diffusion-based MC system

how these components are physically realized. For example, in a drug delivery
application inside the human body, once the reception of a specific concentration of
molecules is detected by the destination, it can start chemical reactions to synthesize
drug molecules.

The physical system considered in this paper is reported in Fig. 9.2 and it is based
on the following assumptions:

– The diffusion-based MC channel extends infinitely in all three dimensions
(x, y, z). A fluid with viscosity μ fills the space. The fluid is assumed not to have
flow currents or turbulence, i.e., the propagation is solely due to the Brownian
motion;

– The transmitter emits indistinguishable molecules, equivalent to spherical parti-
cles of radius r and mass m;

– The transmitter is considered point-wise and located in (0, 0, 0);
– Each particle, once emitted, follows a movement that is independent from the

others and according to its Brownian motion in the fluid. The Brownian motion
of a molecule in a fluid is a random motion according to the Langevin equation
[8];
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– The (legitimate) receiver, located at distance d from the transmitter, aims to detect
a signal proportional to the concentration of the incoming particles.

As depicted in Fig. 9.2, the transmitter receives the messages from the source and
produces a signal suitable for the transmission over the channel. The transmitted
signal X is represented by the number of particles nT (t) emitted into the fluid over
the time t .

Molecules diffusion process is the channel that propagates the signal from the
transmitter to the receiver. Diffusion is the result of the collective Brownian motion
of many particles from a more dense area to an area with lower density. Brownian
motion represents the propagation of the particles emitted by the transmitter in the
3D space and it can be expressed as the translation of the (x, y, z) coordinates from
the location of the transmitter to a general location at time t . This location can be
computed by applying the well-known Langevin equation [8] to each particle:

m
∂2P[n](t)

∂t2 = −6πμr
∂P[n](t)

∂t
+ F(t), (9.1)

where P[n] = (P
[n]
x , P

[n]
y , P

[n]
z ) is the position of the particle in the 3D space, m is

the mass, and r is the radius of the particle. μ is the viscosity of the fluid and F(t)

is a random process whose probability density function is Gaussian with

E{Fi(t), Fj (t
′)} = 12πμrKbT δ(i − j)δ(t − t ′),

where Kb is the Boltzmann constant, T is the absolute temperature of the fluid, and
δ(·) is the Dirac function [9].

The message is reconstructed by the receiver from the observed signal Y that
is proportional to the concentration of the incoming particles. The received signal
is represented by the time-varying number of particles that are located inside a
spherical volume VR centered at the receiver location. The following statement
should hold: rR � d, where rR is the radius of the receiver and d is the distance
between the transmitter and the receiver. The above statement makes the results not
dependent on a specific technique for the reception. Thus, the received signal Y can
be defined as the number of particles emitted by the transmitter in the time interval
(0, t) whose position P[n](t) at time t is inside the volume VR .

9.3 Capacity of a Molecular Communication System

The information capacity of a communication system is defined by the well-known
equation by Claude Shannon [7]. The Shannon capacity formula

C = max
fX(x)

I (X;Y ) = max
fX(x)

{H(X) − H(X|Y )} (9.2)
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Fig. 9.3 Scheme of the diffusion-based MC system: the channel is divided into two effects: Fick’s
diffusion and particle location displacement

defines the information capacity C as the maximum (over all possible signals
emitted by the source) difference between the entropy H(X) of the signal X in
input to the channel and the equivocation rate H(X|Y ). The equivocation rate
represents the entropy of X conditioned to the observation signal Y at destination.
The difference between the entropy H(X) and the equivocation H(X|Y ) is called
mutual information I (X;Y ).

Taking in mind the physical system defined in Sect. 9.2, two effects have to be
characterized to derive the mutual information I (X;Y ): the channel memory and
the molecular noise. In [4] the computation of the mutual information is divided into
two processes: the Fick’s diffusion and the particle location displacement (Fig. 9.3).
The former takes into account solely the effects of the channel memory, while the
latter the effects of the molecular noise.

The mutual information of a diffusion-based MC system is analytically derived
in [4]

I (x; y) = 2WH(nT ) − log2

[
(πdD)2

]
− 4d

3 ln 2

√
πW

D
− 2Wη

− 2W ln(Wτp) − 2W ln(Γ (η)) − 2W(1 − η)ψ(η), (9.3)

where

η = 2E[nT ]RVR

3Wd
,

E[nT ] = P H

3WKbT
,

H(nT ) = 1 + log2 E[nT ],
and

– W is the bandwidth of the transmitted signal X,

– τp = r2
R

D
is the time interval in which we consider a quasi-constant particle

distribution,
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– Γ (.) is the gamma function and ψ(.) is the digamma function,
– D = KbT

6πμr
is the diffusion coefficient,

– d is the distance between the transmitter and the receiver,
– rR is the radius of the spherical receiver volume,
– P H is the average thermodynamic power,
– nT is the discrete-time version of the particle concentration nT (t).

From (9.2) and (9.3), the capacity C of the diffusion-based MC system can be
derived [4]

C = 2W

(
1 + log2

P H

3WKbT

)
− log2

[
(πdD)2

]
− 4d

3 ln 2

√
πW

D

− 2Wη − 2W ln

(
W

r2
R

D

)
− 2W ln(Γ (η)) − 2W(1 − η)ψ(η). (9.4)

9.4 Information Leakage and Secrecy Capacity

The information-theoretical security computes exactly the amount of information
that an eavesdropper (Eve) can get by observing the channel while the legitimate
communication is on. The generic reference scheme for evaluating the information-
theoretical security of an MC system is reported in Fig. 9.4. Alice is the cell that
transmits the particles, Bob is the intended legitimate receiver-cell, and Eve is the
eavesdropping receiver-cell.

The amount of information that is exchanged by Alice and Bob is given by (9.3),
while the amount of information “stolen” by Eve is called information leakage.

Fig. 9.4 Scheme for the
evaluation of the
information-theoretical
security of a diffusion-based
MC system
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In information-theoretical security, the information leakage can be written as [6]

I (X;Z) = H(X) − H(X|Z), (9.5)

where Z is the signal observed by Eve. The eavesdropper receiving particle is
supposed to be at distance dE from the transmitter.

The secrecy capacity of the diffusion-based channel can be derived as the
difference between the mutual information of the legitimate communication link
and the information leakage [6]. It is important to note that the secrecy capacity has
to be intended as an upper bound of the security performance of a diffusion-based
MC system.

Cs = max
fX(x)

{I (X;Y ) − I (X;Z)} ≥ max{I (X;Y )} − max{I (X;Z)} = CB − CE,

(9.6)

where CB is the capacity of the legitimate channel and CE is the capacity of Eve’s
channel. Since the secrecy capacity cannot be less than zero, (9.6) is usually written
as

Cs = max{0, CB − CE}. (9.7)

Both CB and CE can be computed by using (9.4). The secrecy capacity in (9.7)
represents the amount of information that can be securely exchanged between two
legitimate particles (transmitter and receiver) while an eavesdropping particle is
“overhearing” the channel.

The capacity of the legitimate receiver (Bob) is

CB = 2W

(
1 + log2

P H

3WKbT

)
− log2

[
(πdBD)2

]
− 4dB

3 ln 2

√
πW

D

− 2WηB − 2W ln

(
W

r2
RB

D

)
− 2W ln(Γ (ηB)) − 2W(1 − ηB)ψ(ηB),

(9.8)

where

ηB = 2P H rRB

9W 2KbT dB

. (9.9)

The capacity of Eve’s receiver can be computed by substituting dB and rRB
with dE

and rRE
, respectively, into (9.8) and (9.9).
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The secrecy capacity of an MC diffusion-based system is

Cs = log2

[(
dE

dB

)2
]

+ 4

3 ln 2

√
πW

D
(dE − dB) + 2W(ηE − ηB)

+ 2W ln

[(
rRE

rRB

)2
]

+ 2W ln

[
Γ (ηE)

Γ (ηB)

]
+ 2W [(1 − ηE)ψ(ηE)

− (1 − ηB)ψ(ηB)] . (9.10)

9.5 Numerical Results

In this section, a numerical evaluation of the closed-form mathematical expression
of the secrecy capacity of the diffusion-based MC system is provided. A common
set of parameters have been used for the numerical evaluation:

– the radius of the receiver volume, assumed to be spherical, is rRB
= rRE

=
10 × 10−9 m [10];

– the temperature of the system is set to a standard room temperature T =
298.15 ◦K;

– the diffusion coefficient D = 10−9 m2/s [10];
– the Boltzmann constant Kb = 1.380650424 × 10−23 J/K.

Figure 9.5 shows the secrecy capacity as a function of Eve’s distance for different
values of the bandwidth of the transmitted signal. The distance of the legitimate
receiver is 150 μm. While the distance of the Eve is lower than the distance of Bob,
the Cs is zero. As the distance of Eve increases, the secrecy capacity grows. The
slope of the Cs is lower for high values of the bandwidth.

Figure 9.6 shows the secrecy capacity as a function of the bandwidth, for different
distances of the eavesdropper. The distance of the legitimate receiver is 150 μm.
While the distance of the Eve is lower than the distance of Bob, the Cs is zero,
for any value of bandwidth. As the distance of Eve increases, the Cs grows up to
B = 30 Hz and then it starts decreasing. For high bandwidth B = 60 Hz, a greater
distance of Eve does not yield a much larger secrecy capacity.

The bandwidth has been limited to the interval B ∈ [20, 60] Hz. A natural
diffusion-based MC system is the communication between human brain neurons.
According to [11], 20 Hz and 60 Hz are the frequencies of diffusion of molecules
between the synapses of the human brain neurons for the processing of general
information and for visual images, respectively.

Figure 9.7 shows the 2D map of the secrecy capacity. The secrecy map is
calculated by assuming Eve located in a generic point (x, y) of the surface and
computing the Cs [12]. The transmitter (Alice) is positioned in (0, 0), while the
legitimate receiver (Bob) is located in (100, 100)μm. For the sake of clarity, we
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Fig. 9.5 Secrecy capacity as a function of the distance of the eavesdropper, for several values of
the bandwidth. The distance of the legitimate receiver (Bob) is 150 μm

Fig. 9.6 Secrecy capacity as a function of the bandwidth of the transmitter, for several values of
the eavesdropper’s distance. The distance of the legitimate receiver (Bob) is 150 μm
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Fig. 9.7 2D map of the secrecy capacity. The transmitter (Alice) is positioned in (0, 0), while
the legitimate receiver (Bob) is located in (100, 100) μm (red point). (a) Secrecy map with: B =
20 Hz, P H = 1 × 10−12 W, rRB

= rRE
= 10 × 10−9 m. (b) Secrecy map with: B = 40 Hz,

P H = 1 × 10−12 W, rRB
= rRE

= 10 × 10−9 m. (c) Secrecy map with: B = 20 Hz, P H =
2 × 10−12 W, rRB

= rRE
= 10 × 10−9 m. (d) Secrecy map with: B = 20 Hz, P H = 1 × 10−12 W,

rRB
= 20 × 10−9 m, rRE

= 10 × 10−9 m

decided to show only the first quadrant, but the Cs is spherical. In other words,
the expression of the secrecy capacity considers (and it is valid for) a 3D spherical
system; the 2D representation has been selected only for easier display of the results.
The four secrecy maps in Fig. 9.7 have been selected to highlight the dependence of
the Cs on the transmit bandwidth, on the average thermodynamic power, and on the
receiver radius. Analyzing Fig. 9.7a and b we can appreciate the effect of doubling
the bandwidth. As expected, a greater bandwidth at the transmitter results into a
larger portion of space where the secrecy capacity is zero. In general, doubling the
bandwidth makes the “strips” of the secrecy map larger.

The same effect is provided if the average thermodynamic power is increased. In
fact, by observing Fig. 9.7a and c we can conclude that increasing P H yields larger
“strips” in the secrecy capacity map. In other words, a higher transmitting power
produces lower secrecy capacity, since Eve can be located in more points of the
surface where it can receive information.

Observing Fig. 9.7a and d we can appreciate the effect of doubling the radius of
Bob’s receiver. This produces a drastic decrease of the Cs , since the ligand–receptor
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binding noise increases with the receiver’s radius [13]. The ligand–receptor binding
noise is a model which allows to simulate the random perturbations in the chemical
processes of the reception.

9.6 Conclusion

In this paper we derived the closed-form mathematical expressions for the infor-
mation leakage and the secrecy capacity of an MC system based on molecules
diffusion. These metrics are useful to define how much secure is a communication
link, when the information flows by molecules diffusion. The secrecy capacity
depends on several physical parameters, such as the medium diffusion coefficient,
the system temperature, and, in particular, the distance Alice–Bob and Alice–Eve.
The MC secrecy capacity is also function of the bandwidth, average thermodynamic
power, and receiver radius. Numerical results presented in this paper show the
dependencies of the MC secrecy capacity with respect to all these parameters. In
addition, a secrecy map has been also drawn to graphically show where the secure–
unsecure areas are located around the transmitter and receiver.

According to results, a secrecy rate of 60 bit/s can be reached if Eve’s distance is
twice the distance of the legitimate transmitter–receiver, for an average transmitted
power of 1 pW and a bandwidth of 20 Hz. The numerical results have to be intended
as an upper bound to the security performance of a diffusion-based MC system.
Further investigations will be carried out in the future, e.g., on evaluating the effect
of a secure coding scheme at the transmitter.
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Chapter 10
Towards Efficient and Real-Time Human
Activity Recognition Using Wearable
Sensors: A Shapelet-Based Pattern
Matching Approach

Delaram Yazdansepas, Nitin Saroha, Lakshmish Ramaswamy,
and Khaled Rasheed

10.1 Introduction

Mobile phones, activity trackers, and many other current mobile devices incorporate
various sensors such as GPS, accelerometer, and gyroscope. These sensors can be
used to study and analyze human physical activities. In recent years, there is growing
research interest in Human Activity Recognition. HAR has many applications par-
ticularly in health care, city planning, sport coaching, fitness assessment, and smart
homes domains [3–5, 14]. Many of these domains demand an online robust HAR
system that can distinguish various human activities in real-time. Most approaches
on human activity recognition are offline or in batch-processing mode. Offline HAR
systems have significant limitations with certain applications such as continuously
monitoring patients with physical or mental difficulties for their safety and recovery
and elder fall detection [2]. HAR systems are effective in such applications when
they can recognize and detect human activities in a reasonable time. Many offline
HAR systems are based on employing machine learning techniques on motion data
on powerful servers. This requires the system to record data and send it to a server
for analyzing and detecting the subjects’ activities, and thus cannot be achieved
in real-time. Furthermore, most current research in this field focuses on extracting
complex features to achieve high classification accuracy. HAR systems based on
complex feature extraction cannot be deployed in real-time scenarios because of the
high time complexity of feature extraction and feature selection algorithms.

Towards designing an effective real-time HAR system, this paper explores a
waveform pattern matching approach. Our framework extracts a representative
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waveform pattern called “Activity Shapelet” (“A-Shapelet,” for short) for each
activity. Incoming data from the accelerometer sensor is classified in real-time by
matching against a library of A-Shapelets. In designing our framework we make the
following novel contributions:

– We propose a unique technique to compute the A-Shapelet that best represents
each activity. Our technique extracts repetitive patterns from waveforms and
computes the distance between the extracted pattern and the original accelerome-
ter waveforms. Furthermore, we use dynamic time warping (DTW) to ameliorate
the sensitivity of the distance metric towards misalignment in between the
waveforms.

– We generate a personalized library of A-Shapelet with each shapelet representing
a distinct activity. Using the A-Shapelets in the personalized library, we build
decision tree models which are used for efficient matching and classification of
incoming accelerometer data stream.

– We perform detailed evaluation of the proposed framework on a heterogeneous
dataset consisting of subjects performing daily activities. Our evaluations show
that our framework results in the same accuracy of activity classification
regardless of the kind or model of the wearable accelerometer sensors or it’s
orientation and placement. We also observe that some ambulatory activities are
classified with higher accuracy due to their distinguishable waveform patterns.

In this paper, we present background and motivation for Human Activity
Recognition Systems (Sect. 10.2), provide an overview of our online HAR system
(Sect. 10.3), demonstrate how time series are matched to shapelets (Sect. 10.4),
describe the framework’s implementation details (Sect. 10.5), and demonstrate the
experimental study and detailed empirical evaluations if our system (Sect. 10.6)
followed by a conclusion (Sect. 10.7).

10.2 Background

Most existing wearable sensor-based HAR systems work in an offline or batch-
processing mode. Typically, these systems extract statistical features from
accelerometer data such as mean, maximum, minimum values, standard deviations,
median crossings, and the 10th, 25th, 50th, 75th, 90th percentiles [8]. Machine
learning methods such as SVM, K-Nearest Neighbor, and Clustering are trained
on the extracted features from training data batches. The trained models are then
used to classify the test data batches. In a previous experimental study on offline
HAR systems, we applied different machine learning algorithms on a heterogeneous
dataset consisting activity data for 77 subjects. A total of 176 features were extracted
from the combination of time and frequency domain and the most effective features
for discriminating different activities were selected. It was found that a combination
of time domain and frequency domain features yields the highest accuracy on most
classifiers [15]. One reason that HAR systems are generally offline is because they
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are based on extracting features from the dataset and the training process becomes
computationally expensive. There is a limited number of studies on Online HAR
systems which can classify activities on wearable devices in real-time compared to
offline HAR systems.

In offline HAR systems data is transmitted to a server where the activities are
classified. Offline HAR systems are not suitable for various applications such as
those that require immediate feedback. Contrary to offline systems, online HAR
systems classify activities in real-time mostly locally on the device. In designing
online HAR systems there are a number of challenges which need to be addressed.
First, in real-time systems it is crucial that activities be classified in a short time
frame, usually within 3 s of the activity happening. This requires that the system not
be dependent on heavy computations and complex features. Second, online HAR
systems should classify activities based on a short period of data readings; therefore,
the system should rely on a small set of data readings to classify the activity.

10.3 Overview

Our method is based on extracting representative patterns from accelerometer
data. The extracted waveforms are used to classify the activities time series. The
representative patterns are called “A-Shapelets” short for activity shapelets, and
each A-Shapelet is a representation of each activity class. By using several distance
metrics we compare the time series to the A-Shapelets, each time series that exhibits
similar patterns to the shapelet will be labeled as same class. The ultimate purpose
of our proposed method is to classify activities using raw data; therefore, there is
no need to define or extract features that separate different activities. Using raw
data makes the method more general for applying to other sets of activities. This
method raises a number of questions as follows: (1) how to compute the waveforms
in activity time series? (2) How to find the best A-Shapelet representing an activity
class? (3) What method should be used efficiently to match A-Shapelets with
activities? And (4) which metric can be used to efficiently calculate the distance
between the activity time series and the A-Shapelet?

The main component of our proposed method is extracting and selecting A-
Shapelets from activity time series. Ideally, each shapelet is a representation of
each activity class capturing the dominant pattern of the activity. We evaluate
all sub-patterns in the time series and select those of which are representative
of the activity. Finding the best of such patterns requires examining every single
sub-pattern of a particular size. With the recent improvements in CPU time and
parallelization techniques the proposed algorithm for discovering time series sub-
patterns is achievable in a reasonable time. We then select the activity class shapelets
by finding the most representative shapelet for each activity which captures the
dominant pattern in that activity time series. We then classify time series based on
distance or similarity to the shapelet of each class (Fig. 10.1).
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Fig. 10.1 Online HAR system overview

We generate a personalized shapelet library database driven from subjects’
activity time series for a shapelet-based online implementation of human activity
classification. This database is small regarding the size and can be stored on
mobile phones and wearable devices. To build this library, in the training phase
each individual’s activity time series goes through the different components in our
method defined below:

– Average Peak Distance. Given a time series, P is the average number of data
points between two consecutive local peaks. We find the local upper and lower
peaks and denote the average distance of the upper peaks with Pupper and the
lower peak distance with Plower.

– Shapelet Extraction. We extract all shapelets of a certain length łsh using a
sliding window. The size of the sliding window is set based on the Plower and
Pupper of the activity times series. We call the set of all shapelets of a time series
the candidate shapelets. The total number of possible candidate shapelets for all
the time series in the dataset are

∑
TSi∈D

(ni − li + 1)

where ni is the length of TSi , D is the set of all time series, and l is the length of
the shapelets for the ith time series.
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– Distance Metric. The distance between each time series and a shapelet is
represented with dist. The distance function takes TS and Shapelet as inputs and
returns a total distance value. In this study, we measure distance using Euclidean
distance and DTW.

– Class Shapelet Representative. Given a set of candidate shapelets, we find the
single best shapelet which is representative of the activity class from the set of
candidate shapelets. There are several methods used to select the single best
shapelet that would represent an activity class, and we discuss this further in
Sect. 10.4.

We propose a procedure to find the best shapelet which represents an activity
class based on time series distance metrics and DTW. For demonstration, we use
real human activity data and show our system is independent of the sensor device.

We refer to time series T S = t1t2t3, . . . , tn as an ordered set of accelerometer
sensor recordings measured in meters per second squared (m/s2). Each value tk in
the time series represents the rate of change of the velocity of the subject wearing the
sensor. Given an activity time series TS a shapelet is a partition of the time series. A
shapelet is a continuous set of sensor readings that are spaced at the same rate of the
time series. Data points in activity time series are arranged in temporal order spaced
at equal time intervals 1/r .

10.4 Shapelet Library Creation

In this step, we will define the necessary steps to create a library of “A-Shapelets.”
Creating the A-Shapelet library is done offline, and the system builds a personalized
library of A-Shapelets for each subject. A-Shapelets are representative patterns that
are repeatedly observed in each activity time series. A-Shapelets are extracted from
subject’s activity time series in the training phase, and a personalized shapelet
library is built by finding such shapelets. In the remainder of this section, we
describe the steps involved in the creation of the shapelet library.

Time Series Normalization
Normalizing activity time series is a necessary step in extracting and selecting A-
Shapelets. In selecting A-Shapelets, we need to measure the distance of the extracted
shapelets and the time series. Normalizing time series eliminates differences in
the overall magnitude of two time series. Therefore, with normalization, we can
correctly measure the true similarity of a shapelet and a segment of an activity time
series that may be similar in shape but have different offsets along the accelerometer
axis. There are various methods of normalization techniques. Our method is based
on simple moving average smoothing (SMA) technique. SMA avoids noise and
smoothens the pattern in the times series. The formula is shown below.
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SMAt =
t∑

i=t−N+1

xi

N

SMAt is the simple moving average for the t th data point, xi is the ith time series
data point, and N is the length of the moving average window.

Peak Detection
The nature of human motion is based on repetition of movement phases [6]. This
is an essential feature of human motion data which helps us analyze and classify
activities. The data point values that are recorded by the accelerometer signal in
every point of time may change in each cycle, but the general shape of the pattern
in the time series stays the same. For example, when a person is walking, each
leg goes through a stance phase, a swing phase, and then returns to the stance phase
again [13]. When a person is performing a non-ambulatory activity, such as brushing
teeth, the repetition phase in the time series data is less visible. Usually, in non-
ambulatory activities, repetition is connected with respiration phases [6]. We can
find the repetition pattern in activity time series signals and based on the average
length of these patterns we measure repetition periods. We denote the average
number of data points in the repetition period with P . Repetition period is a segment
of time series, measured during one cycle of motion [6], such as a step. Figure 10.2
shows that finding peaks can help us segment the time series into individual steps
or pattern repetitions. Every peak in the accelerometer time series denotes that there
has been a sudden increase in acceleration, followed by a sudden drop. In every
step when the lower limb goes through a swing phase we can see a sudden rise
in the accelerometer value. We can, therefore, use such peaks to determine the
step size (number of data points in each step). In our method, we use a common
peak detection algorithm to detect the peaks. We use Python1 PeakUtils [7] package
to identify peaks and find their indexes as illustrated in Fig. 10.2. Once we have

Fig. 10.2 Detecting peaks on “walking” time series

1https://www.python.org/.

https://www.python.org/
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detected all peaks, we find the median number of data points between every two
consecutive peaks in the time series. Using median instead of average enables us
to eliminate any outlier peak distances. We apply peak detection algorithm to the
data for finding positive peaks, called upper peaks, and negative peaks, called lower
peaks. Pupper and Plower denote the median of the number of data points in between
upper and lower peaks, respectively.

Shapelet Extraction
Given a time series T S with a median peak distance of P , we extract candidate
shapelets from the time series. Candidate shapelets are the set of all overlapping
time series subsequences. Candidate shapelet sizes are the same length of P . We
start from the first data point of the time series and select the first P data points as our
first candidate shapelet, we move to the next data point and select the next P points.
These steps are repeatedly continued to the (||T S|| − P)th data point of the time
series, every time moving to the next data point. All these time series subsequences
will be stored in an unordered list called the Candidate Shapelets Dataset. We then
select the best shapelet among the candidate shapelets.

Shapelet Selection
In this section, we present our proposed algorithm to select a single shapelet that
has the closest pattern to the time series from the list of candidate shapelets. In other
words, we select the shapelet that is most similar to the dominant pattern in the times
series. The proposed algorithm compares each shapelet against the entire time series
using a sliding window and computes a similarity value. We use this similarity value
as a metric to select the shapelet that is most similar to the fundamental or dominant
pattern in the time series. This brute force algorithm along with the sliding window
guarantees that every single segment of the time series will be compared to the
candidate shapelet and its similarity measure is accumulated. This value denotes
the similarity of a particular shapelet and the activity time series. However, the
brute force method takes a long time and is a computationally expensive operation.
Therefore, we parallelized the algorithm using PySpark2 which is the Python API
for Apache Spark [16]. Parallelizing the brute force method enables us to run the
main function and execute various parallel operations on a cluster. We reduced the
run time of the brute force shapelet selection method by 75%.

10.5 Matching Time Series with Shapelets

An essential task in time series analysis is the estimation of similarity among
different time series [1]. In activity time series the similarity measure is a relation
between a shapelet and a time series. The algorithm requires comparing the time
series to each candidate shapelet by evaluating the distance function and keeping

2http://spark.apache.org/docs/latest/api/python/pyspark.html

http://spark.apache.org/docs/latest/api/python/pyspark.html
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track of the shapelet with the lowest distance to the time series. Shapelet matching
requires that the shapelet SH be placed at every possible offset within the time
series. In the next section, we describe two experimented methods in this study to
estimate the similarity between a shapelet and a time series.

Euclidean Distance
A common way to compare time series data involves the concept of distance
measures. Let two time series x and y be the length of n, and xi and yi the ith
values of x and y, respectively. Euclidean Distance of the two time series is the sum
of the point-to-point distances along all the time series data points.

||x̄ − ȳ||2 =
√√√√

n∑
i=1

|xi − yi |2

Shapelets have smaller lengths compared to time series; therefore, when we
compare a shapelet to a time series, we use a sliding window in the time series that is
the same length of the shapelet. We compute the Euclidean distance of the shapelet
to the time series within the sliding window, store the distance in a variable, and shift
the sliding window to the next data point. As the sliding window goes through all the
data points in the time series, the total distance gets accumulated each time. The total
Euclidean distance is a single value representing the distance between the shapelet
and the entire time series. Once every candidate shapelet is compared to the activity
time series, and a total Euclidean distance is computed for each shapelet, we will
select a single or a set of shapelets as our final representatives for each activity class.
We experiment two approaches to select a final shapelet. In the first approach, we
choose a single shapelet based on the least Euclidean distance measure. The shapelet
which has a corresponding Euclidean distance of the median of the first decile is
selected. The median of the first decile of Euclidean distances is selected instead
of the shapelet with the least Euclidean distance because after performing many
experiments we observed that the shapelets with the least Euclidean distances were
not expressing any visible pattern. Usually, such shapelets resembled vertical lines
with no trend or pattern, which are not a realistic representation of the time series.
In light of these findings, we explored another approach for selecting a shapelet.
This approach selects a set of 10 shapelets instead of a single shapelet, aligns and
averages the shapelets to generate a new shapelet. This approach also returns a single
shapelet, but the shapelet is built upon ten shapelets that had minimum Euclidean
distance with the time series. Figure 10.3 presents our second approach to select a
shapelet. We perform simple averaging on the shapelets to create the new shapelet.

Euclidean distance is a simple and commonly used method for finding the
similarity of time series. However, it has several drawbacks. Activity time series
may be similar in pattern, but they may not be aligned in the time phase. This will
cause the Euclidean distance to measure the similarity incorrectly. To reduce the
error associated with the Euclidean distance metric, we study another similarity
measure explained in the next section.
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Fig. 10.3 Aligning and averaging multiple shapelets to generate a new shapelet representing an
activity class. Blue shapelet is the result of aligning and averaging the green and orange shapelets

Dynamic Time Warping
As mentioned in the previous section one of the disadvantages of Euclidean distance
is that if two time series are identical, but one is slightly shifted along the time axis,
then their Euclidean distance will show them being different or distant from each
other. Most algorithms used to compare time series use the Euclidean distance or
some variation of this technique. However, since Euclidean distance is sensitive to
distortion [10] we need another method for calculating the distance between time
series that would ignore the shifts in the time dimensions of the time series. Dynamic
Time Warping (DTW) is a widely used algorithm for computing the distance and
alignment of time series [12]. DTW is less sensitive to time series shiftings, thus
allows us to measure the similarity of time series even if they are out of phase in
time. Although DTW has a time complexity of O(n2), it is still the best solution
known for time series problems in a variety of domains [11]. This method is more
robust compared to other similarity measures such as Euclidean distance. It finds
the best alignment between time series by finding the path through the grid that
minimizes the total distance between them. Our evaluations show that DTW yields
the most precise similarity between activity time series and shapelets.

10.6 Implementation Details

Training Phase
In this phase we extract shapelets from activity time series of each subject, using
methods described in Sect. 10.4 and select the A-Shapelet which is the most
representative shapelet of the subject’s activity among all other candidate shapelets
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Fig. 10.4 Euclidean distances of “jogging on treadmill” time series and different shapelets of the
same subject. Comparing the time series to “jogging on treadmill” shapelet (blue line) results in
lower Euclidean distances

based on similarity measure metrics. Each activity shapelet will be stored in a
local database for a specific subject. Figure 10.4 shows a graph of Euclidean
distances when comparing different A-Shapelets of a particular subject to treadmill
jogging time series of the same subject. When the activity time series is compared
to a shapelet of the same activity—in this example jogging on a treadmill—the
Euclidean distances are relatively lower than distances of time series compared to
shapelets of other activities. This is a critical component for classifying the time
series class.

Activity time series are compared against each A-Shapelet, while the distances
are recorded. For each shapelet, we have a set of Euclidean distance values for
which we find the five number summary statistics in addition to variance and
standard deviation. These statistic summaries provide the baseline to compare how
the time series are being matched to each shapelet. When comparing an activity time
series to the shapelet of the same activity, the summary statistics are significantly
distinguishable from other shapelets. Based on these summary statistics we train
a decision tree to classify the time series. We create a model for each shapelet to
predict the class of a time series by learning simple decision rules inferred from
the statistic summaries. The Decision Tree Classifier is implemented using the
well-known Python machine learning library, scikit-Learn [9]. After fitting the tree,
the model is used to classify the class of activities of time series which are not
labeled yet. We use decision tree model because they have features which make
them favorable over other classifiers. First, because the trees do not require much
of data preparation. Second, because the cost of using the tree is logarithmic in the
number of data points used to train the tree.
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Labeling New Activities
As a subject is performing an activity, the accelerometer sensor data is buffered in
chunks of 300 data points (3 s). We set chunk sizes to three seconds because after
studying daily human activities time series we observed that normally activities are
performed at least 3 s, or have a recurring pattern length less than 3 s. After two
chunks of the activity time series are buffered in the system, they will be compared
to all the shapelets in the shapelet library of that subject. As the sliding window goes
over the time series and gets compared to a shapelet Euclidean distance statistics
are created. These statistics include the minimum, maximum, median, standard
deviation, variance, the first and third percentile of the Euclidean distances. The
statistics for each shapelet along with the shapelet decision tree models predict the
class of each chunk of the time series. The system will behave similar to a binary
classifier on each model, outputting a label of yes or no for each shapelet. Since
there are multiple classes of activities, we need a multi-classifier to detect and label
activities. We decompose the multi-classification problem to n binary classification
problems where n is the number of activity classes. When an activity time series
chunk is presented to each one of the binary classifiers, the classifier which gives a
positive output (“yes”) indicates the output class. If more than one of the classifiers
outputs a positive label for a chunk of activity a tie-breaking technique is required
to decide on the activity label. In such cases, we use the common approach of
maximum confidence. The classifier determines the output class with the largest
confidence score.

10.7 Experimental Evaluation

Dataset

Participants and Procedures Participants were selected from a broad age range
of 18–64 years old and are all free of any contraindications for exercise. Participants
were fitted with a single hip-worn accelerometer and completed a series of activities
for 3 min in duration. Time stamps for the beginning and end of activities were
captured using a custom-built Android application which was synced to the same
server as the activity monitor. We use a subset of ambulatory activities performed
by subjects in this study (see Table 10.1). We select activities that are similar but
are performed in different environments to show that shapelets can capture the
differences in activities that may appear similar. For instance, walking on a treadmill
may seem to have a similar pattern of walking on a normal surface. However, we
show the shapelets that represent each activity class have different patterns.

Activity Monitor Device Participants were fitted with the ActiGraph GT3X+
(ActiGraph, LLC, Pensacola, FL) activity monitor positioned along the anterior
axillary line of the non-dominant hip. For more details about the procedure and
device, please refer to [15].
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Table 10.1 Summary of activities

Activity description No. of subjects Duration/distance

Treadmill at 1 mph @ 0% grade 29 3 min

Treadmill at 3 mph @ 0% grade 28 3 min

Treadmill at 6 mph @ 0% grade 34 3 min

Hard surface walking w/sneakers 76 400 m

Walking up stairs (5 floors) 77 5 floors × 2 times

Walking down stairs (5 floors) 77 5 floors × 2 times

Fig. 10.5 Performance
comparison of online and
offline systems
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Results
Once activities are classified by the system, we evaluate the results using an
automated program. The program checks each chunk and its label against the ground
truth and provides performance metrics.

Comparison with Offline HAR We compare the results of the online HAR system
to an offline system that is based on feature extraction, feature selection, and
Machine Learning Classifiers. The same dataset is used in the offline system. It
can be observed by Fig. 10.5 that in most activities the offline system has slightly
better accuracy. However, the improvement in accuracy is about 5% and is negligible
because an online system has many more applications and uses fewer resources.

Effect of Training Dataset Figure 10.6 provides the summary of classification per-
formance metrics per activity when the system is trained on one chunk, four chunks,
and eight chunks. Activities such as Treadmill jogging have better classification
performance metrics compared to other activities. This is because such activities,
which involve several singular moving components, have a defined pattern which
is much more visible and dominant than other patterns in the time series. Compare
jogging to an activity that does not have many moving components, such as brushing
teeth; it would be a far more difficult task to extract patterns from such an activity,
and therefore extracted shapelets would not contain valuable information about the
pattern of the activity. Shapelets of non-ambulatory activities resemble a horizontal
line. These shapelets would not be effective in finding a common pattern in the time
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Fig. 10.6 Performance
comparison of activities
trained on different chunk
sizes
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series; therefore, our proposed system has low accuracy rates when recognizing
non-ambulatory activities. We also observe that there is a very slight difference in
accuracy when the system is trained on more data chunks. This means we can train
the data on a small number of chunks and still obtain a comparable accuracy. This is
in contrast to generic Machine Learning based HAR techniques which require large
amounts of training data for providing reasonable performance.

Effect of Test Duration We test our Online HAR system on stream sensor data in
different durations to show that the accuracy stays consistent as the duration of the
test increases. The steady accuracy rates in Fig. 10.7 prove the fact that the system’s
accuracy is not dependent on the amount of data or duration it is being tested on.

Subject-Based Analysis Table 10.2 summarizes the performance metrics of our
system for each subject. These metrics are the result of the average performance
metrics over all the activities performed by the subject. For each subject, we have
noted gender and age (e.g., subject 1 is a 40 year old female). The results in
Table 10.2 present that the accuracy of the system can be variable between different
subjects. Subjects who have higher accuracy in activity detection have shapelets that
are more representative of an activity class. The system can improve by retraining
shapelets for a subject who has low accuracy. Different real-life situations may affect
the subjects time series and shapelet. As an example, a subject may be wearing
uncomfortable shoes when training data was being collected. This will change
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their normal movement patterns, and shapelets would not be representative of their
normal movement signature. Therefore an essential step in the system would be to
repeat the training phase for subjects who show low accuracy rates.

Sensor Independency We show our method is sensor-type independent, by testing
the system on data collected from different accelerometer sensor types. We have
used an iPhone 6s and Samsung Galaxy S8+ to gather motion data. We observe
comparable performance rates when we use a new dataset, which indicates that our
framework can perform very good regardless of the sensor type used to collect or
sense the data.

10.8 Conclusion

We propose a real-time HAR framework to detect human activities based on a
waveform pattern matching approach. Our scheme extracts the most distinctive
A-Shapelet for each activity from waveforms and uses Dynamic Time Warping
(DTW) for overcoming the misalignment problem when comparing the distance
of waveforms. We build personalized decision tree models using the library of
A-Shapelets for each subject. Our framework can detect and classify incoming
activity accelerometer data in real-time with a low-overhead pattern matching
algorithm. Our results validate the effectiveness of our framework for recognizing
human activity in real-time with a high performance rate. The results obtained
were promising for the following reasons. Firstly, they represent a baseline for
practical real-time activity recognition using a device with a single accelerometer
sensor. Secondly, our empirical evaluations demonstrate that the performance of
our framework is comparable with offline HAR systems. And thirdly, the results
suggest that we can train the data on a small number of data chunks and still
obtain a comparable accuracy to other HAR systems. This is in contrast with
generic ML-based HAR techniques which require large amounts of training data
to provide acceptable performance. We also observed that some activities have
better performance rates than others; in general, better performance rates are
associated with the more distinct A-Shapelet of the activities with more definite
patterns. Finally, we were able to replicate our results using more than one type
of sensor, indicating that our framework is sensor-type independent. Our proposed
human activity recognition framework using A-Shapelets overcomes some of the
challenges of online HAR systems, and is especially promising for applications
where fast and efficient human activity recognition is necessary.
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Chapter 11
Opportunistic IoT Service to Support
Safety Driving from Heterogeneous Data
Sources

Giancarlo Fortino , Raffaele Gravina , Qimeng Li ,
and Claudio Savaglio

11.1 Introduction

The Internet of Things (IoT) represents an ecosystem where different systems
(e.g., Smart Buildings, Smart Grids, Body Area Networks) and their heterogeneous
components (e.g., PCs, smartphones, wearable devices, smart meters) seamlessly
interoperate, sharing the same environment and resources [9]. In such a way,
through contextualized and dynamic interactions, advanced cyberphysical IoT
services can be provided, thus opening a broad range of novel opportunities in any
application scenario, like healthcare, logistics, and smart automotive. Among the
factors currently hindering the provision of IoT services, the marked heterogeneity
featuring IoT technology (802.15.4, Bluetooth, Wi-Fi, NFC, etc.), communication
protocols (CoAP, MQTT, IPv6, etc.), and data formats (including structured,
semi-structured, and unstructured data) is one of the major. However, while
gateway-based solutions are widely adopted to support both multi-technology and
multi-protocol interaction [1], the integration of cyberphysical services of different
providers, described through heterogeneous data models, remains an open issue.
Indeed, if gateways basically perform the syntactical translation and forwarding of
the messages received on their several interfaces, realizing an integrated IoT service
is a complex task which consists in combining IoT devices’ functionalities and
available data, abstracting from their specific format and focusing on their high-
level description and opportunistic exploitation.

In this paper, the IoT domain and Opportunistic IoT Service models presented
in [3, 8, 9] are reported and applied in the context of safety driving assistance. In
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particular, heterogeneous Smart Objects (SOs, i.e., Smart Bracelet, Smartphone,
Raspberry-based Smart Safety Unit, Smart Cushion) interact within the vehicle
to retrieve information about driver psycho-physical status and alert if dangerous
conditions (boredom, fatigue, drowsiness, stress, agitation) are detected. In addition
to distraction, fatigue, and drowsiness, studies have shown that emotional driver’s
status (e.g., stress, impatience) may also endanger driving safety [17, 20]. High
stress level or aggressive behavior can reduce self-confidence, attention and, as
a consequence, driver concentration. In terms of relevant physiological signals,
while facial expressions and eye movements can effectively support distraction
and drowsiness detection, it has been found that heart rate indicators are strongly
correlated with driver stress level [14].

The outlined “Driving Assistance Service” is expected to perform (1) data
retrieving from the aforementioned heterogeneous SOs, not purposely designed for
implementing such service nor for interoperating; (2) data fusion, for example, by
combining Smart Cushion and Smart Bracelet data to detect driver’s posture and
gesture; (3) inference, by correlating information about driver’s eye blinks, postural
and gestural behavior with related psycho-physical conditions; (4) risk evaluation,
by outlining a risk index according to both driver’s psycho-physical conditions and
factors such as the driving time or road type; (5) actuation, by means of notifications
sent to driver’s smartphone if risky conditions are detected. The goal of this work,
indeed, is to show that the implementation of such an integrated IoT service is
facilitated by the proposed metamodel-based approach, focused on those important
features and data which enable the accurate IoT service description, automatic
discovery, provision, and composition.

The reminder of this paper is structured as follows: Section 11.2 surveys some
related work on driving assistance services and Sect. 11.3 presents the proposed sys-
tem architecture. Section 11.4 reports the IoT domain model and the Opportunistic
IoT service model, while their exemplification on the driving assistance case study
finds place in Sect. 11.5. Final remarks conclude this paper.

11.2 Related Work

There is established literature on advanced driver assistance systems (ADASs)
which focus on diversified aspects of driving. Collision avoidance systems involve
active technology such as automatic emergency brake (include pedestrian and
obstacle detection), safety distance control, and unintended lane crossing avoidance.
Other assistive systems provide visual, passive feedbacks based on the detection
of road signs (e.g., speed limit), road conditions, approaching corners, and traffic
lights. This paper, in particular, focuses on a specific category of ADAS for
driver conditions monitoring. In this specific context, most of the literature studies
focused on detecting attention/distraction, activity/behavior drowsiness, fatigue,
stress, and aggressiveness level of the driver, which are conditions with high
correlation and influence on car accidents [7]. In [22] the authors propose a system
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for detecting driver distraction based on image data from an inward dashboard-
mounted facing camera and inertial data from a mobile device. Driver behavior
is categorized in terms of activities (Normal Driving, Talking, Texting Image,
Eating/Drinking Image, Hair and Makeup, Reaching objects) which are classified
using Convolutional Neural Networks (CNN) and Support Vector Machines (SVM).
The authors in [5] focused on both attention and drowsiness detection using Viola–
Jones algorithm associated with SVM. Facial images are used to recognize mouth
yawning and eye movements for drowsiness detection and head movements and
pupil detection for distraction. In [19], a system with similar goal is proposed. The
authors monitor the attention of the driver using a camera for head posture and
eye tracking. Binary classifiers and iconic data reduction based on Sanger neural
networks are used to analyze head pose for drowsiness and visual distraction, while
eyes blink are used as a measure related to fatigue. Facial and eye features are
also used in [11, 21] to detect driver drowsiness with a trained classifier based on
local Haar features and dynamic global Haar features (PPD +DGHaar). In [6, 23],
the authors propose sensor fusion approaches to take into account, in addition
to eye-related indicators, vehicle-based signals including vehicle speed, braking,
and acceleration, lateral position, and steering wheel angle. A different driver
monitoring approach is proposed in [4] based on the concept of scoring function
to obtain driver behavior profiling. Multiple sensors (magnetometer, gravity sensor,
accelerometer, GPS) of the driver’s smartphone are used for event detection and
feature level fusion is applied to combine them with weather information and
time of day (day/night). Facial expression analysis based on inward near-infrared
(NIR) camera is used in [12] with the different aim of detecting emotional states—
stress in particular—of the driver. Although most state-of-the-art driver monitoring
systems are based on cameras facing driver’s face, interesting research efforts
analyze specific physiological signals to detect drowsiness, fatigue, and stress level.
A smartwatch-enabled Bluetooth Electroencephalogram (EEG)-headband proposed
in [16] uses SVM-based posterior probabilistic model to estimate the severity
of drowsy driving. A similar EEG-based [24] driver fatigue detection method
uses wavelet entropy and pulse coupled neural network (PCNN). An interesting
study [15] suggests the use of Heart Rate Variability (HRV) signal as an indicator
of autonomous nervous system activation for normal, fatigued, and drowsy states
by embedding an ECG sensor on the steering wheel. Truly wearable sensing is
proposed by the authors of [10] to detect driver fatigue. EEG, Electromyogram
(EMG), and respiration signals were simultaneously recorded and sent to a notebook
via Bluetooth.

11.3 System Architecture

The proposed system includes a Smart Cushion (deployed on the driver’s seat), a
Smart Bracelet (worn at the driver’s wrist), a Smart Safety Unit (based on Raspberry
Pi connecting a Camera, a Temperature module, and a Global Positioning System
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SMART BRACELET 
SMART SAFETY UNIT

SMART CUSHION
SMARTPHONE

Fig. 11.1 System deployment of driver assistance system

GPS), and a Smartphone, as shown in Fig. 11.1. System components and related
functionalities are explained in the following:

Smart Cushion—the smart cushion developed in our previous research [13, 18]
is composed of a pressure sensor array, a processing unit, and a communication
module:

– six Force Sensing Resistors 406 (FSR-406), arranged as a sensor array, measure
pressure changes due to driver’s posture transitions;

– processing unit (i.e., Arduino Mini Pro) collects pressure analog signals to
recognize five different sitting postures (Proper Sitting, Leaning Left, Leaning
Right, Leaning Forward, and Leaning Backward) through an embedded J-48
decision tree classifier; sensor data were acquired at a sampling frequency of
100 Hz;

– Bluetooth-based communication module transmits raw data and the recognized
postures to the Smart Safety Unit.

Smart Bracelet—the XIAOMI mi Band 2 smart bracelet collects wrist accelera-
tion and heartbeat. The wrist acceleration can be used to identify driver’s gestures,
while heartbeat to detect driver’s stress.

Smart Safety Unit—a Raspberry Pi 3.0 is equipped with the following augmen-
tation devices:
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– Camera, to detect eye blinking;
– Temperature sensor, to measure vehicle cabin temperature;
– GPS, to retrieve vehicle position and actual time.

Smart Safety Unit is used as a base station to receive, send, and process
data. All types of data will be synchronized with global timestamps as shown in
previous research [13]. In particular, it performs data fusion and contextualization
(i.e., combining recognized driver’s posture and gesture and correlating them with
information about driver’s eye blink, time of day, weather info), and estimates a risk
index according to factors such as the driving time or road type. A compelling index
risk is associated with situations in which risky conditions are detected at high-
speed or night time, on highways or in adverse weather conditions. A severe index
risk refers to risky conditions detected when driving in urban contexts at reduced
speed or at diurnal hours, or during a long driving time. Finally, moderate index risk
refers to risky conditions detected when vehicle is not moving, e.g., driver stuck
in traffic. Once estimated the index risk, the related alert command is sent to the
driver’s smartphone.

Smartphone—the smartphone receives alerts command from the Smart Safety
Unit, triggers multimodal alerts to the driver, and provides a graphical interface of
the ADAS. In the case of both compelling and severe alerts, the smartphone plays
an audio message to avoid further distraction. Conversely, in the case of moderate
alerts, a message is displayed on driver’s smartphones.

As shown in Fig. 11.2, data will flow (through both wired and wireless connec-
tions) from the sensing elements of the SOs to the Smart Safety Unit; the latter in
turns communicates using Bluetooth with the driver’s smartphone.

11.4 IoT Domain and Opportunistic Service Metamodeling

Although missing a formal definition, there is a wide consensus on describing
IoT Services as accessible interfaces to IoT devices’ functionality [3]. Therefore,
in the direction of the maximum interoperability, shareability, and usability, it
makes sense providing a functional and non-functional IoT Service description
through a metadata-based approach, thus exploiting metamodels that are completely
application context-, implementation technology-, and communication protocol-
agnostic. These considerations motivated us in designing a domain model purposely
targeted at the IoT scenario and its services opportunistic features [8]. Indeed, the
proposed metamodeling approach allows:

– providing a high-level description of the different entities involved in the service
provision;

– presenting essential data for the service provision into a uniform data model to
foster their jointly exploitation;

– considering by design the key Opportunistic properties of emergent IoT services,
especially context-awareness, co-location, and dynamicity.
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Fig. 11.2 Data Flow of the proposed driver assistance system. Data from several devices
connected through different communication technologies are elaborated by the Smart Safety Unit
for interacting with the driver’s smartphone

IoT Domain Model is presented in section “IoT Domain Model,” while Oppor-
tunistic IoT Service model in section “Opportunistic IoT Service Model.” Due to
their generality, they have been already exploited in the context of a Smart City [3]
and a Smart Workshop [9].

IoT Domain Model
IoT domain model of Fig. 11.3a relies on four building blocks, namely IoT Entities,
IoT Services, IoT Environment, and Context. An IoT Entity represents any human,
SO, or computing system which provides/consumes IoT Services according to
both its features (namely static and dynamic attributes) and functionalities (namely
cyberphysical capabilities subject to specific conditions or constraints). IoT Entities
are co-located within and synergistically interacting with the IoT Environment,
namely the physical and non-augmented space (a room, a beach, a wood) where the
IoT Service takes place. Dependencies among IoT Services and both IoT Entities
and IoT Environment constitute the Context, which contemplates any implicit or
explicit information that may be of some benefit for the IoT Service provision.
Indeed, any IoT Service is featured by a Service Profile specifying what it does
and a Service Model detailing how it works, detailed in the following.
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Fig. 11.3 (a) IoT domain model, describing main system’s building blocks; (b) IoT service model,
describing main features of an IoT service and its operations

Opportunistic IoT Service Model
To foster its accurate description, automatic discovery, provision, and composing,
an IoT Service is featured by a Service Profile, containing information about the
IoT Service itself and its Context, and by a Service Model, which describes each
operation concretely implementing the service itself. Opportunistic IoT Service
model is depicted in Fig. 11.3b. A Service Profile is constituted by the set of
attributes reported hereinafter:

– Service Name: the identifier of the IoT Service;
– Service Description: a description of the IoT Service;
– Service Category: an entry in some IoT Service ontology or taxonomy (e.g.,

monitoring and payment);
– Service Parameter: quality parameters featuring the provided IoT Service (e.g.,

accuracy and precision);
– Service Input: information required for the IoT Service execution;
– Service Output: information generated as output of the IoT Service execution;
– Service Precondition and Service Context Precondition: functional and IoT

Entity-related conditions required for a valid IoT Service execution;
– Service Effect and Service Context Effect: events involving IoT Entities, which

result from the IoT Service execution;
– Service Provision Constraint: IoT Entity’s constraints that are relevant to the IoT

Service execution (e.g., the maximum allowed SO working temperature).

A Service Model, instead, details the operations realizing the IoT Service through
the following IOPE (Input, Output, Precondition, Effect1) attributes:

– Process Id: process identifier;

1OWL-S: Semantic Markup for Web Services—W3C.



138 G. Fortino et al.

– Process Input: information required for the Process execution;
– Process Output: information generated from the Process execution;
– Process Precondition: condition(s) under which the Process can take place;
– Process Effect: event(s) or change(s) to the state of IoT Entities, which result(s)

from the Process execution.

11.5 Case study: Driving Assistance Service

The outlined Driving Assistance Service is an Opportunistic IoT Service since it is
enabled by highly contextualized interactions of cyberphysical SOs deployed and
co-located within a physical environment (a vehicle cabin) with the final goal of
dynamically alerting the driver if risky driving conditions are detected.

Models Instantiations
Figure 11.4 shows the Driving Assistance Domain Model. In particular, it reports
the IoT Entities and the IoT Environment involved in the Driving Assistance
Service and their contextual relationships, accordingly to the system architecture of
Sect. 11.3. Please note that (1) car cabin is modeled as IoT Environment since it is
considered without any augmentation; conversely, if we consider the whole car with
its augmentation embedded devices, e.g., sensors, computer, it should be considered

IoT Entity IoT Environment

Driving Assistance
Service

Driving Assistance
Service Profile

Driving Assistance
Service Model

im
pactsproducesm

on
ito

rs

tem
perature,

vehicle speed,
road type,
driving tim
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notify

Driver
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Smartphone

Smart
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Smart Safety
Unit

Smart
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consumes
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alerts

Legend

Fig. 11.4 Driving assistance domain model, reporting the IoT Entities and the IoT Environment
involved in the driving assistance service and their contextual relationships
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as an IoT Entity; (2) Context consists in information about Driver’s age and gender
(which are needed to set specific parameters for evaluating pulse), about cabin
temperature, vehicle speed, driving time, type of taken road, weather information,
time of day, which are purposely used for the provision of the opportunistic Driving
Assistance Service; (3) at a higher degree of granularity, it could be possible to
represent aggregated SOs such as the Smart Cushion in terms of its sub-features
(pressure sensors, Arduino board, battery, etc.) and sub-functionalities (pressure
data retrieving, data filtering and elaboration, etc.); however, since in this paper we
focus on the final Driving Assistance Service, we will consider aggregates SO and
their functionalities instead of their single sub-features and sub-functionalities.

Driving Assistance Service Model consists in ten operations, which all together
concretely constitute the Driving Assistance Service and are listed hereinafter:

1. Road Type Acquisition: exploits Smart Safety Unit GPS information of current
car location to acquire the type of road (highway, urban street, etc.) on which
Driver is traveling;

2. Pulse Acquisition: driver pulse is retrieved from the Smart Bracelet;
3. Speed Acquisition: exploits Smart Safety Unit GPS information to determine

the current car speed;
4. Temperature Acquisition: exploits Smart Safety Unit temperature sensor to

determine the current car’s cabin temperature;
5. Blink Acquisition: exploits Smart Safety Unit camera to estimate the Driver’s

blink rate;
6. Posture Recognition: exploits pressure data provided by the Smart Cushion to

determine Driver posture;
7. Gesture Recognition: exploits Smart Bracelet’s accelerometer and gyroscope to

determine Driver gesture;
8. Emotion Inference: exploits information about Driver’s posture, gesture, blink

rate, and pulse that, correlated with cabins’ temperature, allow estimating
Driver’s current psycho-physical status (boredom, tiredness, stress, agitation);

9. Risk Index Estimation: exploits information about road type, car speed, and
Driver’s psycho-physical status to estimate (moderate-severe-compelling) risk
index;

10. Notification: exploits Smartphone to notify the Driver through a text or vocal
message, according to the calculated risk index, suggesting action to be
performed (open car windows, take a break, etc.).

The information flow outlined by the execution of these operations is the same
already reported in Sect. 11.3. The first seven operations can be roughly classified
as “retrieving operation,” the eighth and ninth as “processing operation,” and the
last one as “actuation operation” accordingly to the kind of task they perform.
For the sake of space, the Driving Assistance Service Model shown in Fig. 11.5
extensively reports (in terms of IOPE features) only one operation per class, i.e.,
Posture Recognition as “retrieving operation,” Emotion Inference as “processing
operation,” and Notification as “actuation operation.” As previously specified for
the IoT Entities modeling, also Operations could be further detailed in terms of



140 G. Fortino et al.

Fig. 11.5 Driving assistance service and profile models

Table 11.1 Already developed ADAS building blocks

Devices Tested On-going

GPS X

Temperature sensor X

Smart cushion with smart bracelet (motion) X

Camera with smart bracelet (physiology) X

micro-operations (e.g., Emotion Inference operation could be further specified in
terms of several atomic micro-operations such as Driver’s posture/gesture/blink
rate/pulse information retrieving, inference rules retrieving, inference rules match-
ing and evaluation).

Status of Development
While we have provided a comprehensive, modular architecture of the system, in
its current status of development, the following building blocks have been already
realized and successfully tested, as also summarized in Table 11.1:

– GPS—we are able to obtain the vehicle position, to track the route, and to pick
the actual time (for recording driving duration);

– Temperature Sensor—we can measure the temperature of vehicle cabin;
– Smart Cushion with Smart Bracelet (Motion)—we exploit six pressure sensors on

a seat and, differently from our previous research [18] in which two Shimmer2R
motion sensors2 were attached to the wrists, in this work we use a Xiaomi Mi
Band 2 Smart Bracelet to obtain wrist inertial data.

2Shimmer, http://shimmersensing.com, last accessed June 2018.

http://shimmersensing.com
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– Camera with Smart Bracelet (Physiology)—we can monitor driver’s stress
level [2] using the Smart Bracelet’ heart rate sensor. In addition, we are able
to collect images of the driver’s face from the inward camera of the Smart Safety
Unit; however, eye blinking/movement recognition and facial expression analysis
algorithms have not been integrated yet.

11.6 Conclusion

It is well known that distraction, drowsiness, high stress level, and aggressive
behaviors can reduce concentration to the driving, endanger safety, and therefore
increase the risk of accidents. Therefore, ADASs are gaining consensus, although
they typically rely on monolithic systems comprising embedded devices (e.g.,
infrared camera above the steering wheel), thus resulting costly and closed.
Conversely, in this paper we presented a novel and open ADAS, called “Driving
Assistance Service,” based on the jointly exploitation of both specific-purpose
(Smart Cushion, Smart Safety Unit) and commercial devices (Smartphone, Xiaomi
Mi Band 2). These SOs, adopting different communication protocols and standards
and thus representing heterogeneous data sources, have been located within the
vehicle to retrieve information about driver’s psycho-physical status, contextualize
it with respect to environmental factors such as time of day and road type, and
alert the driver if risky conditions are detected. The integrated “Driving Assistance
Service” had been designed based on the Opportunistic IoT Service Metamodel,
which captures the opportunistic characteristics of IoT services (context-awareness,
dynamicity, co-location, transience) and focuses on those important information
fundamental for the accurate IoT service analysis, automatic discovery, provision,
and composition. Indeed, aiming at interoperability, shareability, and usability,
the metamodel-based approach provided a functional and non-functional Oppor-
tunistic IoT Service description, resulting completely neutral with respect to the
application context, implementation technology, communication protocol, and data
standard. Differently from other literature works, we proposed an integrated,
composite ADAS that takes into account heterogeneous data sources, spanning from
psycho-physical driver’s indicators, to vehicle-related parameters and environmen-
tal/contextual factors.

As already reported in this paper, some building blocks of the system have
been already and successfully tested, while it is an ongoing work to complete
the development of the system with the integration of the necessary algorithms to
recognize driver’s drowsiness from eyes blinking and to detect distraction from eyes
gaze. Upon completing its development, we plan to perform an accurate field-trial
of the system to obtain performance evaluation data in terms of effectiveness and
precision in assessing imminent risks mining driving safety.
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Chapter 12
Performance Evaluation of Bluetooth
Low Energy Technology Under
Interference

Heikki Karvonen, Konstantin Mikhaylov, Dinesh Acharya,
and Md. Moklesur Rahman

12.1 Introduction

The use of wireless sensor devices has been continuously increasing during
recent years thanks to rising success of Internet of Things (IoT) applications.
Sensor devices can be used in various scenarios, e.g., smart factories and homes,
environmental monitoring, autonomous traffic, medical and healthcare applications.
Wireless body area networks (WBANs) are designed for the smart healthcare
applications, operating in hospitals or homes, as well as for versatile sport and fitness
activities. WBAN sensors can be also connected to Internet, being a one specific IoT
use case which is gaining an increasing business interest [1, 2].

IoT applications require low-power wireless communication solutions since
most of the use cases imply long lifetime for the sensor nodes without battery
replacement, or even using only the energy scavenged from the operation envi-
ronment. There are various low-power communication technologies that have been
proposed for wireless sensor nodes. The most well-known ones are Bluetooth Low
Energy (BLE) [3] and IEEE Std. 802.15.4 [4] (ZigBee [5]). Specifically for WBAN
purposes has been defined IEEE Std. 802.15.6 [6] and ETSI SmartBAN [7]. In
[8] it was found that BLE is the most popular in commercially available products
in healthcare and medical applications. Above mentioned technologies operate in
the industrial, scientific, and medical (ISM) 2.4 GHz band, which is defined to
be available worldwide for unlicensed usage. IEEE Std. 802.15.6 defines solutions
also to sub-GigaHertz bands as well as for ultra wideband (UWB) up to 10.6 GHz.
Today, the 2.4 GHz band is becoming congested since several wireless technologies,
e.g., IEEE Std. 802.11 (Wi-Fi) and the unlicensed Long-Term Evolution (LTE-U)
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solutions [9] operate in that frequency band. Therefore, coexistence issues may arise
as the number of devices operating at that band increases rapidly.

It is important to evaluate the wireless communication performance in the
congested scenario at 2.4 GHz ISM band especially for applications which require
reliable communication as is the case in many healthcare and medical scenarios.
In [10] authors studied analytically, the packet error rate (PER) of BLE under
interference of ZigBee, Wi-Fi, and BLE 5 in hospital scenario. Here will be used
experimental measurements to verify the analytical model findings in case of BLE
under ZigBee interference. We have conducted our measurements for BLE 4, as
well as for recently published BLE 5 coded (S = 8) mode.

The structure of the rest of the chapter is following. Section 12.2 briefly
introduces the features of the BLE technology. Analytical model for PER calculation
is introduced ion Sect. 12.3. Measurement devices and setup are described in Sect.
12.4. Section 12.5 introduces the analytical and experimental results. Conclusions
are given in Sect. 12.6.

12.2 Features of the BLE Technology

The low energy consuming version of Bluetooth, BLE 4, can nowadays be found in
almost every smartphone, tablet, and laptop as well as in a large set of other wireless
devices. The specification of most recent version, Bluetooth 5, was published in
December 2016 [11] and the first development kits came to the market in early
2017. The long-range and mesh features have made the recent version of BLE very
suitable for versatile IoT scenarios. The ambiguous target of BLE 5 specification
was to increase the range up to four times, and data rate up to two times, when
compared with BLE 4.2 [12]. Next we will introduce the most important updates of
BLE 5 in comparison to BLE 4.2.

The communications range and the maximum throughput improvement has been
enabled by specifying three new physical layer (PHY) options for BLE 5. The
1 Mbit/s Gaussian frequency shift keying (GFSK) PHY option of BLE 4 is named
in Bluetooth v 5.0 core specification to be LE 1M. The new PHY layer options
specified for Bluetooth 5 are: (1) GFSK PHY with 2 Mbit/s, named LE 2M; (2)
Coded PHY option (LE Coded, S = 2) with payload coded at 500 kbit/s; (3) Coded
PHY option (LE Coded, S = 8) with payload coded at 125 kbit/s. LE 2M is targeted
for short range high-speed transmission by doubling the data rate in comparison to
BLE 4.2. The LE coded versions target to improve the communication range. The
LE Coded PHYs are using GFSK at 1 Msym/s rate and the payload data is coded in
two stages as follows: (1) forward error correction (FEC) convolutional encoder and
(2) spread by the pattern mapper. That procedure enables to improve the theoretical
link budget of a coded transmission in comparison to LE 1M by 5 dB in case of LE
Coded at 500 kbit/s, and by 12 dB in case of LE Coded at 125 kbit/s. However, note
that only the LE 1M PHY support is mandatory.
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The communication range improvement is supported in Bluetooth 5 specification
also by increasing the maximum transmit power of a BLE from 10 mW (10 dBm) to
100 mW (20 dBm). However, higher transmit power cannot be used in some regions
(namely, EU, Japan, and Korea) due to frequency regulations and since it does not
provide any benefit in those areas. In order to improve the coexistence with other
devices operating in the 2.4 GHz band, BLE 5 specification introduced a special
interface for signaling and messaging mechanisms between collocated Bluetooth
and other wireless devices.

The functionality of the broadcasting channels in BLE 5 has also been substan-
tially enriched by introducing an optional extended advertising feature. At first, the
specification introduces a concept of the secondary advertising channels which are
co-allocated with the BLE data channels. The advertising packets’ format used in
the secondary channels has been adjusted by enabling them to carry up to 255 octets
of PDU (instead of 37 octets in case of BLE 4) and also fragmentation is supported.
BLE 5 specification supports also periodic advertisements. A periodic advertiser
broadcasts the packets by hopping between the secondary channels in a predefined
pseudo-random sequence at regular time intervals ranging from 7.5 ms to almost
82 s. Important improvement is that a scanner device may synchronize with one
or even several non-overlapping (in time) periodic advertisers and receives the data
from all of them. Therefore, BLE 5 version is more efficient and reliable solution
for data broadcast in comparison to BLE 4.

The BLE 5 is backward-compatible with the earlier versions of BLE since all
the discussed features are optional and does not need to be supported. However,
it can be easily seen that the new features can enable substantially to increase the
communications range or throughput or enable new modes of operation. Based on
that fact, in the marketing materials of Bluetooth SIG [12], the BLE 5 is claimed
to provide double data rate, up to four times higher range and up to eight times
broadcasting capacity compared to BLE 4.2. However, it is important to notice that
the improved data rate and communication range cannot be achieved at the same
time because they are enabled by different PHY options.

12.3 Analytical Model

Here will be introduced an analytical model that can be used to compute the PER
of BLE uncoded mode under interference. The developed model takes into account
interference of multiple nodes by aggregating the signal power coming from them.

Several path loss models (2.4 GHz) have been proposed for indoor environments.
For line-of-sight (LOS) scenarios the path loss equation is typically defined, as a
function of distance d, as

PL (d) = PL0 + 10nlog10

(
d

dh0

)
, (12.1)
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where n is the path loss exponent and dh0 is the reference distance at which the
reference path loss PL0 is measured. In [13], measurements were conducted and
a path loss model was specifically developed for a hospital indoor environment.
Authors found in [13] that for a LOS hospital room case n = 1.2, which we are
using in our calculations in the rest of the chapter.

The signal to interference ratio (SIR) at the affected receiver under multiple
radios interference can be computed as [10].

SIR [dB] =
(
Ps − PL(L) −

N∑
i=1

(
WD,IPi − PL (di)

)
, (12.2)

where the desired signal’s power is PS and Pi is the power of the i:th interferer (in
dB). The distance to the desired signal’s transmitter is L, and di is the distance to the
i:th interferer. WD, I is a coefficient that limits the interfering power to the bandwidth
occupied by the technology being interfered with. It is defined in [14] as follows:

WD,I =
{

1, if BI ≤ BDS

BDS/BI , if BI > BDS
, (12.3)

where BI is the bandwidth of the interferer signal and BDS is the bandwidth of
the target node receiver filter. For this study the BLE is assumed to use GFSK
modulation with bandwidth 1 MHz, bit rate Rb = 1 Mbit/s, BT = 0.5 and modulation
index h = 0.5. For non-coherent demodulation, the symbol error rate (SER) is
calculated as [10, 14].

SER = 1

2
e−Es/2N0 = 1

2
e−SIR/2, (12.4)

where Es is the energy per symbol, N0 is the noise power spectral density per Hz. In
Eq. 12.4, Es/ N0 = Eb/N0 = BDS/Rb * SNR, where Eb is the energy per bit and SNR
is the signal-to-noise ratio. When replacing the noise power with the interference
power after the receiver filter, SNR is equivalent to SIR [14], which has been inserted
to Eq. (12.4).

Here we assume a worst-case scenario where full collision of interfering packets
and the useful packet occurs, therefore SER can be assumed to be same for each
transmitted symbol of the BLE packet. The PER for the affected BLE link can be
calculated as

PER = 1 − (1 − ε)K, (12.5)

where K is the length of the packet of the desired signal and ε is the SER that can
be calculated using Eq. 12.4.
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12.4 Measurement Devices

In our measurements, a commercial chipset, nRF52840 [15] from Nordic Semicon-
ductor, was used. The nRF52840 was one of the first commercial chipset to support
BLE 5.0. It is a system on chip (SoC) which integrates a multiprotocol 2.4 GHz
transceiver with an ARM Cortex-M4F based microcontroller unit. A precompiled
and linked binary software, S140 SoftDevice v6.0.0, implementing BLE protocol
developed by Nordic Semiconductor was used in chipset.

Figure 12.1 illustrates the nRF52840 Preview DK development kit which was
used in our experimental measurements. The firmware of the development kits was
developed in this work based on the ATT_MTU Throughput Example of the nRF5
software development kit (SDK) v15.0.0. One of the boards was programmed to act
as an advertiser, and the other one as scanner. The BLE physical layer to be used by
the boards (i.e., LE 1M, LE 2M, or LE Coded) can be selected during the startup
using the control buttons.

The methodology of our experiments was as follows. After placing the BLE
boards in the specified locations, the scanner board was connected to a computer
via serial over USB interface, configured to operate using the required PHY
layer option, and forced to continuously scan a single advertisement channel.
Approximately every second the scanner reported via serial interface the number
of the received advertisements from the advertiser board, as well as the received
signal strength indicator (RSSI) and the sequence identifier of the last advertisement
it has received. Once the scanner board was activated, the advertiser was powered
up and its PHY layer was configured. The advertiser started periodically sending the
advertisements, each of which contained a unique sequence number. At the end of
the experiment the PER was calculated from the total number of the packets received
by the scanner and the sequence number of the last received packet.

Fig. 12.1 nRF52840 Preview DK device used for measurements
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Fig. 12.2 CWC-MOD-POW platforms

In order to introduce the ZigBee interference to BLE communication, we used in
our measurements the CWC-MOD-POW platforms (version two) [16, 17] illustrated
in Fig. 12.2. These boards are built around Texas Instruments’ CC2650 multi-
standard system-on-chip [18]. The core middleware is based on CWC CC2650 IEEE
Std. 802.15.4 proprietary driver and firmware, developed in TI CCS 7.4.0.00015
IDE. ZigBee nodes are equipped with an external antenna, Taoglas FXP70 [19].
The nodes were configured to start spamming the ZigBee packets with maximum
possible payload without using any form of listen before talk at the same channel
where BLE devices operate immediately after power up. The time between two
sequential packets (due to radio re-configuration and uploading of the new packet)
was well below 1 ms. In order to ensure continuity of the interferences multiple
ZigBee interferers were used in our experiments.

In our measurement the BLE boards were set at the same height (1 m) so that
antennas were pointing each other creating a LOS link. Three interfering ZigBee
nodes were set around the BLE receiver, all at the same distance (Case1 = 4 m
and Case2 = 6 m) to BLE receiver antenna. Different BLE link lengths were used
(4–11 m) and number of transmitted and received packets was recorded for 10 min
period (resulting in at least 10,000 BLE packets being sent).

Measurement environment was a restaurant at the University of Oulu during a
time when there were not customers. This environment appeared to provide similar
path loss as the hospital room LOS model introduced in [14] with path loss exponent
n = 1.2. Therefore, this was a good environment to obtain results that can be applied
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also to hospital case. Spectrum sniffers were used to find out that there was not
interference from Wi-Fi or Bluetooth at the same band were our measurements were
conducted.

12.5 Results

The developed analytical model was implemented to Matlab and measurements
were conducted to evaluate BLE PER under ZigBee interference. Table 12.1 shows
the parameters used in analytical and experimental performance evaluation of BLE
4. In addition, measurement were done for BLE 5 coded (S = 8) mode with the
same parameter settings to find out the gain provided by forward error correction.

Figure 12.3 shows PER results for the scenario where three ZigBee nodes are
interfering LOS BLE link which length was varied. ZigBee nodes were set at 4
meters distance from BLE receiver to create LOS interference. From Fig. 12.3,
it can be observed that the effect of interference becomes visible in PER results
when the BLE 4 link distance is longer than 5 m. PER increases very rapidly when
the BLE link distance is increased and reaches its maximum value when BLE link
length is 10 meters. After that point, almost all packets are lost since interference is
too strong in comparison to BLE 4 signal strength. As a reference result, in cases
without interference, the PER of BLE link remained below 15% for a link distance
of 80 m. Further it can be seen that the measurement results are well aligned with the
analytical results of BLE 4. It must be noted that in analytical calculations we used

Table 12.1 Parameters for analytical and experimental performance evaluation

Parameter Value

Number of interfering nodes 3
Distance to interferers Case1 = 4 m; Case2 = 6 m
Desired BLE link length 4–11 m
Frequency 2.480 GHz (BLE CH#39, ZigBee CH#26)
BLE bandwidth, BDS 1 MHz
ZigBee bandwidth, BI 2 MHz
Transmit power, BLE 0 dBm
Transmit power, ZigBee 0 dBm
Path loss exponent, n 1.2
RSSI at 1 m, BLE −15 dBm
ZigBee Tx to BLE Rx loss −9 dBm
Payload length, BLE 12 octets
Payload length, ZigBee 116 octets
Packet rate BLE node One packet every 50 ms
Packet rate ZigBee node One packet every 5 ms
Data rate (BLE) 1 mbps
Data rate (ZigBee) 250 kbps
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Fig. 12.3 BLE PER under interference of three ZigBee nodes at 4 m distance

−9 dBm loss for ZigBee to BLE receiver. The rationale for this negative gain is
different antenna types and their orientations used in the ZigBee and BLE nodes,
which are assumed to decrease the strength of experienced interference at BLE
receiver. BLE 5 coded case measurement results of Fig. 12.3 show that the error
correction enables to maintain low PER until the link distance increases to longer
than 9 m, enabling 3 m (50%) higher communication range. After that point the PER
increases rapidly also in the coded mode, i.e., the coding cannot correct the errors
created by interference.

Figure 12.4 shows the PER for the case where ZigBee nodes were set at 6 m
distance from BLE receiver. As expected, it can be observed that BLE 4 link can
be longer in this case before the PER starts to increase due to interference. Also
in this case it can be observed that the PER starts to increase rapidly when the
BLE link length is increased beyond 6 meters. This result verifies that the analytical
results are matching well with the measurement results even though there is a bit
more variation in the results in comparison to Fig. 12.3 case. BLE 5 coded mode
measurement results show similar behavior to that in Fig. 12.3, the coding gain
being (2–3 m) in terms of increased BLE link length.
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Fig. 12.4 BLE PER under interference of three ZigBee nodes at 6 m distance

12.6 Conclusions

This chapter reports the results of an experimental and analytical packet error rate
evaluation of BLE under ZigBee interference. Analytical results were derived for
the BLE 4 mode while measurements were conducted not only for BLE 4 but also
for BLE 5 coded mode. Measurement results verified the analytical model results.
Analytical model can be used to derive results also for other scenarios and as well
as for other type of interferers.

Our results show that the worst-case interference is very harmful for BLE
communication even when using the BLE 5 coded mode. Here the worst-case
interference means that the interferers are at the same channel with the useful signal
and full packet collisions occur. In terms of BLE link distance, the error correction
coding gain was found to be only 2–3 m, i.e., approximately one-third of the used
communication ranges. Results highlight that it is very important to pay attention
to different technologies coexistence since the amount of IoT devices is increasing
rapidly creating interference to each other.

Resilience toward interference is especially important in applications which
require high reliability communications. Erroneous packet receptions will also
decrease the energy efficiency which is highly important in IoT applications. Results
of this chapter show that the BLE communication performance will decrease
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drastically if there are interfering ZigBee nodes in a close vicinity (<6 m) at the same
frequency channel. In future studies, we are going to evaluate different coexistence
scenarios using analytical modeling and experimental measurements.
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Chapter 13
A Hybrid Optical-Radio Wireless
Network Concept for the Hospital
of the Future

Iqrar Ahmed, Timo Kumpuniemi, and Marcos Katz

13.1 Introduction

There is currently a growing interest in developing concepts for the hospital of the
future [1–3]. This is a multi-disciplinary development, including not only tech-
nology aspects but also medical and nursing sciences, architecture, management,
etc. The role of technology in this concept is essential, as it makes possible and
actively supports advanced healthcare methods, efficient use of hospital resources,
exploitation of data, efficient management, automation, etc. In turn, most of these
desired characteristics for tomorrow’s hospital rely on the concept of connected
hospital, a notion allowing connectivity between all key stakeholders of the hospital,
e.g., patients, healthcare personnel, equipment, data centers, other hospitals, and
IoT nodes. In most of the cases, wireless connections are preferred, for the several
well-known advantages of wireless networks. The key to the future hospital is to
provide quality healthcare to all, regardless of the limited resources and increasing
healthcare requirements and costs. The future hospital paradigms may include
self and remote monitoring, mobility, hazard-free monitoring, data protection,
and anonymity. In the future, different types of wireless networks will be deeply
integrated in hospitals and healthcare centers.

Radio-technology has been the dominant approach to provide wireless connectiv-
ity in virtually any possible scenario. However, spectrum congestion, interference,
security, privacy and safety issues, energy efficiency, and others are still challenges
of radio-based systems. In recent years, optical wireless communication technology
has emerged as a viable way to transmit information wirelessly. Visible light
communications exploit the lighting infrastructure of solid-state light sources (e.g.,
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white light-emitting diodes) to provide light-based wireless connectivity. Light-
based wireless systems complement effectively radio technologies, as the key
advantages of the former can counteract the most important drawbacks of the latter,
particularly the aforementioned spectrum shortage, security, safety, security, and
interference. Recently, hybrid optical-radio networks have been proposed aiming at
exploiting the flexibility and performance of both network approaches [4, 5]. This
hybrid network is particularly attractive for sensitive environments such as hospitals,
as the combined radio-optical network can be flexibly configured to adapt to partic-
ular scenarios and fulfill their associated requirements. A hospital equipped with
hybrid optical-radio wireless networks will fulfill the most demanding requirements
for performance, security, and safety. In this chapter, we discuss this concept in more
detail.

This chapter is organized as follows. In Sect. 13.2, we discuss the possible
wireless communication networks for future hospital. Section 13.3 introduces the
proposed hybrid optical-radio network, operating scenarios, and applications within
the hospital. Finally, in Sect. 13.4 we discussed the challenges associated with the
proposed system and in Sect. 13.5 we concluded our study.

13.2 Wireless Networks for Tomorrow’s Hospitals

In this section, we briefly describe the most important types of wireless networks
exploited by hospitals and health centers, namely Wireless Body Area Network
(WBAN), Wireless Local Area Networks (WLAN), and Wireless Wide Area Net-
works (WWAN). Figure 13.1 illustrates these networks from the hospital standpoint.
In this chapter, particular attention will be paid to the short-range networks (i.e.,
local coverage) and their relationship to hospitals.

Wireless Wide Area Networks (WWAN)

Wireless wide area networks refer to wide coverage cellular networks. From a
hospital perspective, large cells, e.g., macro- and micro-cells, cover large areas

Fig. 13.1 Key wireless networks supporting the operation of a modern hospital: wireless body
area networks (WBAN), wireless local area networks (WLAN), and wireless wide area network
(WWAN)
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(well outside the hospital itself), supporting also mobility. This is needed to support
remote healthcare and healthcare on the move. Pico- and femto-cells can be also
deployed inside hospitals to increase capacity and enhance service.

Wireless Local Area Networks (WLAN)

Wireless local area networks can provide cost-efficient high-performance local
access to most of the typical hospital scenarios. These standardized general-purpose
wireless networks have and will have an important role in hospitals, as they provide
reliable, low-cost and locally controllable access to a variety of hospital scenarios,
bridging healthcare equipment, people, computers, mobile devices, IoT nodes, and
others.

Wireless Body Area Networks (WBAN)

During the past years, we have witnessed a rapid increase in the adoption of
internet of things (IoT) technology. IoT sensors can be installed on a variety of
objects and devices, such as body-worn devices, home appliances, environmental
stations, buildings, and vehicles, to wirelessly monitor and control these elements
through the internet infrastructure. Currently, huge global efforts are being made
in the development and implementation of the fifth generation (5G) technologies,
which will expand the number of IoT sensors into a totally new level, also
allowing interoperation across different wireless networks. A WBAN is a close-
range wireless network of nodes deployed on and in the human body. Nodes can
include sensing and processing units, transceivers, and other functionalities. In
a WBAN, one or more nodes can serve as access points or gateways, allowing
exchange of data between the WBAN nodes and external devices. WBANs can be
classified in on-body networks where the nodes are installed on the surface of the
human bodies. In off-body cases, nodes are located in close vicinity of the humans
(e.g., pockets, bags) while in an in-body cases nodes are placed inside the human
bodies (e.g., implants). In body-to-body WBANs, nodes can exchange data between
two or several individuals [6]. As population is ageing, the adoption of WBANs
can provide a cost-effective solution to ease up the problem of monitoring health
conditions, reducing costs and increasing the work efficiency of medical staff.

In fact, local networks enable to monitor the health of the patients in hospital
wards, waiting rooms, and other premises of the hospitals and health centers
without the constant presence of the medical staff. Cellular networks extend these
capabilities when patients are outside the hospital, so remote monitoring can take
place on the move, at home, etc. WBANs can also find applications in sports
and training field, providing readily information on the effectiveness of training,
for example. Moreover, WBANs can be used to monitor wellbeing, for instance
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gathering information on sleep and day activity. Today, a number of different
wireless technologies exist to be applied in medical scenarios, as discussed in [7].
They can be used to transmit body functions and parameters constantly through
numerous sensors already commercially available [7]. However, these systems
are based on radio frequency (RF) communications. Several systems operating at
the same location might create interference as well as the body movement can
increase the propagation channel interference that can eventually disrupt the data
transmission [8].

Visible Light Communications (VLC)

Visible light communications is a relatively new wireless communication technol-
ogy that exploits solid-state lighting infrastructure to create light-based wireless
links. In recent years, a great deal of research and development on VLC was carried
out, and VLC was shown to be an attractive wireless communication approach for
indoor, outdoor, vehicular, and underwater scenarios. The principal advantages of
VLC are the large and unregulated available bandwidth, the inherent security and
privacy of optical systems, and due to the zero-radio emission, the suitability of
VLC to both interference-sensitive environments and no radio exposure use cases.
Figure 13.2 illustrates the basic structure of VLC transceivers using visible light for
downlink and infrared light for uplink.

Fig. 13.2 Basic realization
of uplink and downlink VLC
transceivers
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The use of VLC systems in medical environments has been proposed by several
authors. Cahyadi et al. [9] demonstrated a system where the clinical data from
three biosensors can be transmitted via VLC uplink. Predefined headers were added
to each sensor to differentiate their signals at the receiver end. Authors reported
minor interference in received signal caused by the flux of ceiling. The clinically
interesting frequency range of mostly biosignals starts from DC and can be up
to tens of Hertz; the biosignals might see several artifacts such as interference
due to multiple sensors working at the same time when transmitted on RF. VLC
presents an alternative solution for transmitting biosignals where these are less
susceptible to artifacts. Dhatchayeny et al. [10] presented a study in which an
EEG signal can be transmitted efficiently on VLC without any loss, as might be
the case in radio transmissions. EEG signal comprises of multiple frequencies
describing the ongoing activities in different parts of brain, thus transmitting each
frequency separately is critical for proper diagnosis. Authors proposed a solution of
duplicate parallel optical stream of EEG signal on RGB spectrum, and the received
biosignals are identical when compared. Using three separate light wavelengths
ensures zero interference in transmission. In [11], a concept of combining VLC
and power line communications (PLC) in hospital for numerous purposes has been
presented. PLC exploits the power lines to modulate the existing light resources for
communications. Authors addressed the benefits VLC and PLC as a backbone of
hospitals for transmitting the medical data. Following the evolution of e-health, the
use of electronic patient records has been in common practice around the globe,
where patients’ clinical data is stored in a cloud. This is hugely advantageous to
patients and hospitals, as patient data can be accessed from anywhere. However,
due to the huge amount of data, high link capacity is crucial for efficient operation.
Moreover, privacy and security are required for this type of communications. VLC
can be used as an optimal solution in these applications. Authors demonstrated
a 48 Mbit/s data link supporting data transmission, and connecting both patients
and clinicians, as in the connected healthcare paradigm. Other proposed application
scenarios could be operating smart devices and e-conferencing, and it could also
help clinicians to give light therapy to patients suffering depression disorders.
Similar studies, i.e., on VLC for transmitting biosignals, can also be found in [12].

Hybrid Networks

For more than a century, radio-technology has been the dominant approach to
provide wireless connectivity in virtually any possible scenario. However, spectrum
congestion, interference, security, privacy and safety issues, energy efficiency, and
others are still challenges of radio-based systems. In recent years, optical wireless
communication technology has emerged as a viable way to transmit information
wirelessly. Light-based wireless systems, such as VLC, complement effectively
radio technologies, as the key advantages of the former can counteract the most
important drawbacks of the latter, particularly the aforementioned spectrum short-
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Fig. 13.3 Connected hospital of the future: exploiting radio and optical wireless networks

age, security, safety, security, and interference. In recent years, hybrid optical-radio
networks have been proposed aiming at exploiting the flexibility and performance
of both network approaches [4, 5]. Hybrid networks are particularly attractive for
sensitive environments such as hospitals, as the combined radio-optical network can
be flexibly configured to adapt to particular operation scenarios and their associated
requirements. Figure 13.3 illustrates the key stakeholders of tomorrow’s hospital,
connected by both local radio and optical wireless networks. Patients, medical staff,
equipment, computers, mobile devices, distributed sensors, and actuators will all
be wirelessly networked in the hospital of the future. The highly complementary
component networks bring redundancy to the system, which can be exploited
in different manners. Indeed, an optical-radio network will guarantee flexibility,
reliability, high performance, and efficient utilization of resources.

13.3 A Reconfigurable Optical-Radio Wireless Network for
the Hospital of the Future

In this section, we present an optical-radio wireless network for future hospitals.
Although the concept of the future hospitals has been discussed in many studies,
the use of optical and radio links for medical data transmission has not been
considered from this forward-looking perspective. Based on the hybrid optical-
radio wireless network principle discussed in the previous section, we define a
reconfigurable hybrid wireless network aimed for the hospital of the future. The
network consists of (a) one or more reconfigurable hybrid access points and (b) one
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or more reconfigurable wireless body area networks. The term reconfigurable refers
here to the capability of the network to dynamically change the transmit and receive
modes. More particularly, reconfiguration allows to select optical and radio modes
for sending information between transmitting and receiving ends. Different mode
selections will be defined later in this chapter.

Reconfigurable Optical-Radio Access Points

A reconfigurable optical-radio access point consists of hybrid transceiver with
different operating modes. Downlink (DL) and uplink (UL) can be independently
selected to transmit and receive using in each case either optical or radio links.
This gives rise to four operating modes, namely (a) DL optical, UL optical; (b)
DL optical, UL radio; (c) DL radio, UL optical; and (d) DL radio, UL radio. In
addition, the system can be configured to exploit diversity, that is both transceivers
are simultaneously used. A reconfiguration algorithm selects the most appropriate
operating mode based on a number of inputs, such as optical/radio channel
conditions, type of scenarios, service requirements, service provider/user decisions,
and local policies. Note that reconfiguration is dynamic, and changes could occur
over short-term periods (e.g., in response to sudden channel blockage) and also
controlled over long-term periods, as such dictated by the operating scenarios and
local policies, for instance. Figure 13.4 illustrates the concept of reconfigurable
optical-radio wireless networks, particularly devised for tomorrow’s hospitals.

Fig. 13.4 Wireless communication networks for the hospital of the future: Reconfigurable
Optical-Radio Access Points and Reconfigurable Optical-Radio WBANs
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Reconfigurable Optical-Radio Wireless Body Area Network
(RORWBAN)

We extend the conventional WBAN concept to consider a more generic network
where some or all network nodes can be independently reconfigured in the same
fashion as discussed for access points. That is, a generic node of the WBAN
can be controlled to operate in different possible modes, exploiting optical and
radio links. This defines a reconfigurable optical-radio wireless body area network,
RORWBAN. In general, a RORWBAN has N nodes, out of which M are hybrid
(optical/radio) and the remaining (N–M) nodes are single-technology (either radio
or optical). Eventually, all the nodes can be hybrid N = M (fully hybrid WBAN).
Figure 13.4 depicts a RORWBAN where N = M = 4. Note that if N = 1, the
RORWBAN is reduced to a simple single-node case, as analyzed in our previous
work [4, 5].

The RORWBAN can be configured dynamically (on the fly) according to
the prevailing instantaneous conditions as well as some general environmen-
tal/context/policy situation (typically but not necessarily fixed), in the same way
as discussed for the hybrid access points. Note that power consumption could also
be used as a mode selection criterion. The reconfiguration algorithm selects the
appropriate operating mode for the WBAN, action done jointly with the access point
mode selection. Implementation of a hybrid node could be optimized to support
simplicity and cost reduction. In such a case the node should use as much as
possible common communicational blocks, only transmitting/receiving ends could
be changed according to the selected optical/radio mode. Nodes could also be
implemented as different parallel optical and radio branches, and the selection will
then focus on the complete branch.

Operating Scenarios/Applications

Unique VLC features, such as high data rate support, inherent security, less
interference to biosignals and to sensitive equipment, hazard-free transmission, and
cost-effective implementation (existing PLC and light resources infrastructure can
be reused), make VLC an attractive solution for hospital wireless connectivity.
Added to this is the flexibility, simplicity, and performance of radio networks.
Combining both technologies as suggested here will help to fulfill the communi-
cation requirements of the hospital of the future. Key objectives of future hospitals
include enhancing the healthcare quality, management, i.e., self and remote, data
security, and anonymity. We consider next two attractive operating scenarios for
future hospitals.

Reconfigurable Optical-Radio Wireless Networks Within the Hospital We
consider first the use of the hybrid wireless networks in different hospital scenarios,
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and for a variety of requirements. By maximizing the use of optical links, the
proposed architecture provides an efficient mean of reducing (a) radio exposure
and (b) generated interference. In other words, whenever possible the traffic is sent
through optical wireless communications. Some potential applications of proposed
RORWBAN within a future hospital are discussed.

RF-restricted areas/coexistence The use of RF devices is prohibited in specific
hospital areas, e.g., radiology and CT labs, since radio can interfere with other
devices. This is also the case in heavily guarded facilities such as in oncology and
catheterization labs, where radio interference is also an issue. In such situations,
the wireless network can be configured a fully optical, so sensors data can be
safely transmitted despite radio restrictions. In highly sensitive environments, e.g.,
operation rooms or premises with high fidelity medical measuring and treatment
equipment, radio communications may be an unwanted technology as such. Optical
links offer a simple solution, as well as protection against data leakage through
eavesdropping. At homes, this is a convenient way to create a controllable, data
transmission safe environment.

Off-loading While performing tests in the aforementioned labs, a large number of
sensors is used to monitor the physiological state of the subject which is essential
for proper diagnosis. Transferring this information using conventional radio could
easily consume prohibitive amounts of bandwidth. Data could be here partitioned
and transmitted in optical and radio links, and eventually only optical links could be
utilized.

Support of mobility and localization Another potential advantage is indoor posi-
tioning, exploiting both optical and radio infrastructure for more accurate results.
The ubiquity of optical and radio networks allows the data transmission while the
subject is displaced from ward or moving. This could also help clinical robots to
be remotely positioned and controlled when performing different tasks in highly
hazardous areas. In other words, a hazard-free environment can be possible in future
hospitals.

Data security Optical communications provide inherently secure communications
as the signal is spatially confined in the area of operation. This feature could help
to secure the data since the light waves cannot breach the walls or windows, so
it secures the data to be hacked from outside. However, a hybrid network allows
protection to a higher degree. We proposed a novel way of data encryption. Using
the proposed hybrid network, we can divide and transmit the data in two domains,
radio and optical. In order to decode the received data, both parts need to be
present. Clearly the optical component is very local, whereas the radio part could be
transmitted either by local or wire area (cellular) networks.

Energy efficiency/saving The hybrid network can be configured in a low-power
mode, where the selection will depend on the power consumption profile of the
optical and radio implementations, among others.
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High reliability, high data throughput The multiplicity of nodes (RORWBAN) and
possible links (optical/radio) creates a number of diversity branches that can be
readily exploited to enhance reliability of the communications. The same principle
can be applied to achieve high data rates, by using a number of parallel data pipes
to transfer information.

Reconfigurable Optical-Radio Wireless Networks outside Hospital (Remote
Hospital) An important scenario of the future hospital is that healthcare services
are not confined exclusively to hospital territory. Remote and self-care in healthcare
sector have strengthen this scenario; our proposed system allows homes to be turned
into hospitals. This could help to reduce pressure on healthcare personnel, reduce
costs, and improve wellbeing of patients, without compromising the healthcare
quality. The considered hybrid network can be used for monitoring the subjects
from home. WBAN sensors using both optical and radio links can accommodate
the data loss in case either link fails, as a vertical handover mechanism (VHO)
switches the links whenever a fail occurs. Since a remote location working as a
hospital extension is not regulated (e.g., a hospital is a controlled environment),
a conventional radio-based WBAN is more likely to be interfered (or create
interference to near-by equipment). Again, optical systems or a combination of radio
and optical approaches can eliminate or drastically reduce possible interference
problems with surrounding equipment.

Operating Modes

In past recent years, hybrid optical-radio networks have been demonstrated aiming
at exploiting the flexibility and performance of both network approaches [4, 5].
These hybrid networks utilize potential vertical handover (VHO) techniques for
allocating network at predefined rules. Based on those studies our proposed hybrid
network can also switch between five different operating modes. These modes are:

• Mode 1, fully optical. Both uplink and downlink are visible light channels in this
case; the data is transmitted through LED driven by modulated signals.

• Mode 2, fully radio. In this case, RF uplink and downlink are utilized to transmit
the data between the source and the sink.

• Mode 3, hybrid 1. In Hybrid 1 mode the uplink is established using optical
channel, whereas all the downlink data can be transmitted through RF link.

• Mode 4, hybrid 2. Hybrid 2 mode is the opposite of Hybrid 1 where the uplink
is established using RF channel and all the downlink data can be transmitted
through optical link.

• Mode 5, co-operative. In co-operative mode, both RF and optical channels can be
used as complementary to each other, and also simultaneously. VHO techniques
allow networks to switch between both modes in case of failure of either link.



13 A Hybrid Optical-Radio Wireless Network Concept for the Hospital of the Future 167

Hybrid modes 1 or 2 can be used when there is a large traffic imbalance
between uplink and downlink, in off-loading situations, and due to uneven resources
availability.

The considered system can select any mode based on the local policies defined
by operator or user according to the ground situations as well as some predefined
rules such as VHO strategies could also make selections among different operating
modes discussed above.

13.4 Challenges

Since VLC is relatively new compared to well-established radio communications,
numerous challenges need to be addressed, and current research in WBAN using
radio could help to design and enhance the capabilities of RORWBAN.

Sensor The sensor package should match or fit the human body and each sensor
should be kept small. Since our proposed system uses both radio and optical
transmitter and the overall size also determines the weight carried, novel IC
packaging is crucial for RORWBAN.

Throughput Though very high data rate of up to 1 Gbit/s has been achieved with
OWC [13], the SNR could deteriorate progressively in non-LOS communications
or when obstructed partially.

Reconfiguring mechanism/Complexity Devising a fast and flexible, yet robust
control algorithm to reconfigure both access points and RORWBAN could be
challenging task, as the number of input parameters could be significantly large,
and their interrelationship complex. The use of machine learning and AI could help
to design an effective decision-making mechanism.

Energy harvesting To be practically attractive, the expected power consumption
of nodes is expected to be less than 1 mW [14]. In practice, however, the battery-
powered WBAN sensor consumption should be as minimum as possible, and the
overall size of sensor and circuitry play an important role in battery life. For our
proposed system, energy harvesting could be a solution to enable sensor to work for
longer durations. Note that light could not only power up the sensor but also convey
data information as in VLC.

Security Data security is another key challenge; we proposed partial parallel radio-
optical transmission of data. In that case, the data from either links is not meaningful
unless the receiver obtains the other part of data. Coding for parallel radio-optical
transmission is a challenging task.

Integrity and Intelligence The integrity of received signal is of utmost importance;
any missed or falsely transmitted signal could risk a human life. Thus, the readout
and sensing errors need to be addressed briefly. The intelligence for a complex
system as RORWBAN is critical not only to handle network links and to pre-process
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the biosignals before transmission. The proposed system could work in different
operating modes as mentioned above; it requires an embedded intelligence to
switch the links in case of failure. Also, the pre-processing intelligence of biosignal
before transmitting is to remove artifacts embedded into them which could result in
background noise or low SNR.

13.5 Conclusions

In this chapter, we proposed a novel architecture for wireless communication net-
works particularly focused for operating scenarios of future hospitals. Our proposed
system exploits the relatively new VLC and conventional radio communicational
techniques to build a flexible, secure and radiation/interference safe network which
can satisfy the communication requirement of the hospital of the future. One
of the most attractive features of VLC is its inherent interference-free operation
with respect to radio, which means that both RF and VLC can coexist without
any problem. This is because the VLC does not produce any electromagnetic
interference to radio systems, so a coexisting optical-radio network could act
as information backbone for future hospitals. We discussed the architecture and
possible applications of coexisting radio-optical hybrid communication network.
To build an efficient hybrid network apparently huge infrastructure changes might
be required, but there are some studies that have demonstrated that VLC can
be implemented with existing resources. Studies have shown that power line
communication (PLC) can be used for VLC. The data signal modulating the light of
the white LEDs in the ceiling and creating the downlink optical channel is sent to
that optical source through the existing power lines, exploiting PLC technology.
This is a simple, proven and inexpensive technology. Conversely, in the uplink
direction, PLC is used to transmit the signal received by the photodetectors installed
in the ceiling to the corresponding processing units. The presence of already
existing power and light resources makes VLC favorable to implement as a low-
cost communication backbone for future hospitals.

The proposed VLC network fulfills the architecture defined by IEEE 802.15.7,
where the data can be transmitted either using peer-to-peer P2P or star topologies.
The data transmission could be challenging when dealing with multiple users; IEEE
802.15.7 provides solution for handling multiple users in a VLC network. The
channel contention terminology is introduced and the users contend for the channel,
whoever get the free channel sends data on that. Using PLC for VLC will be very
useful when broadcasting the information within the hospital premises and could
save the new layout for communications.

Due to the fact that systems do not interfere each other, the coexistence of
radio and optical communications could reduce the outage probability. Network
adaptation in future hospitals is key for secure, private and high-performance
operation. IEEE 802.15.7 describes the link adaptation process when receiving a
dimming request from a given user, in such case the data communication is kept
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at lower data rate instead of breaking the network link. Similarly the network
adaptation in a coexisting optical-radio network can be made by the network
controller, i.e., switching the optical to radio or vice versa or by some predefined
rules, i.e., fuzzy logic can be used to decide the link adaptation by computing the
probabilities of link failure and link restoration.

The reconfigurable nature of the system could provide a platform to implement
and test novel resource allocation strategies for further enhancement of system
intelligence. Operating scenarios and modes are discussed in detail and could help
in self and remote healthcare diagnostics. The proposed system utilizes the existing
solid-state-lighting-based structure for VLC and thus it can be adopted and could act
as a backbone for data traffic connecting the hospital on a single highway. Several
challenges are to be overcome to build and embed the proposed system into the
hospital environment, but the flexibility, security, and user safety features make the
proposed system an integral part of the future hospitals.
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Chapter 14
Signal Transmission with Intra-Body and
Inter-Body Communications:
Simulation-Based Models

Doaa Ahmed , Jens Kirchner, and Georg Fischer

14.1 Introduction

Nowadays, many wireless electronic devices could be used to exchange data
between different points on, inside, or at the proximity of the human body. Data
could be medical related, e.g., electrocardiogram (ECG), electroencephalogram
(EEG), electromyogram (EMG), etc., or consumer lifestyle related, e.g., photos,
videos, messages, etc. Nevertheless, airborne transmission using antennas typically
is a very energy intensive process implying large batteries. Therefore, low power
consumption with high quality transmission techniques are highly needed. Human
body communication (HBC) is one transmission technique defined for low power
consumption in wireless body area networks (WBANs). Different ways can be
used to establish BAN communication networks [1]. In this paper, we focus on
HBC based on galvanic coupling approach. Here, the human body is considered
as the transmission medium for data signals. Therefore, the signals are confined
to the body, which ensures high security and less interference with neighboring
transceivers during signal transmission. Moreover, HBC is a promising technique
for low power consumption transmission, which helps the batteries of wearable or
implantable devices to be reliable and longer lasting. In addition, harvesting energy
from the human body could be used to continuously recharge HBC-enabled devices
without the need for external power supplies [2].

HBC transmitter (TX) and receiver (RX) are each connected to a coupler
that is composed of two electrodes, i.e., signal electrode and ground. In the
galvanic coupling, digital information is exchanged by inducing weak AC currents
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Fig. 14.1 Potential
application scenario for
human body communication:
vital data from several sensors
are transmitted to a central
hub and processing unit
(intra-body communication);
relevant data is then sent to
the treating physician
(inter-body communication)

galvanically into the human body. Both TX and RX electrodes are hence attached
directly to the body.

For applications of HBC, two possible communication connections can be
established. In intra-body communication, data is transferred between sensors
distributed across the same human body, which enables data fusion, e.g., for
monitoring of health condition. In contrast, in inter-body communication, data is
transferred between sensors distributed across different bodies that are in touch.
This will allow users to be able to exchange data among several wearable devices
just by touching each other [3]. One application is shown in Fig. 14.1: Different
sensors are distributed across the human body of a patient, which collect his vital
signs, e.g., EMG, ECG, (electrooculogram) EOG, etc., then send this data to a
central processing unit (CPU) to be combined, encoded and further resent to an
HBC-enabled device worn by a doctor for data decoding and displaying.
Several studies have been previously done to investigate transmission characteristics
of intra-body communication either with experimental studies or with simulations
[4–12]. In [4], an experimental study was done to send data through the tissues
from an implanted telemetry device to be detected by surface electrodes. In vivo
experiments were conducted in [5] to analyze the human data channel. The authors
in [6] have developed a wearable ECG for vital signals transmission based on
impulse radio type HBC. In addition, numerical simulations and experiments
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were conducted in [7] to understand the influences from the electrode size, joints
between TX and RX, and electrode positions on signal attenuation. In [8], the
authors proposed a transfer function to represent the galvanic coupling in intra-
body communication, moreover, some in vivo measurements were conducted. Also,
a simulated-based model of the whole human body was introduced to measure
the signal attenuation at different positions on the body. In [9], several types
of electrodes are compared and signal attenuation between different positions on
the human body was investigated via in vivo measurements. In [10], the authors
proposed a 3D FEM multilayered cylindrical model of a human arm to simulate the
current density and electric field through different tissues as a function of frequency
for different channel lengths and inter-electrode distances. In [11, 12], we have tried
to understand the transmission mechanism in intra-body communication based on
a simulated model of the arm, the electric potential difference at TX and RX at
different applied frequencies, the current density, inter-electrode distances, and the
signal attenuation on the surface of the body, and inside tissues were investigated.

In this paper, the data transmission mechanism in the human tissues for both
intra-body and inter-body communication is investigated, which to the best of
the authors’ knowledge, has not been enough covered in the HBC literature. Two
different simulation-based models are implemented using COMSOL Multiphysics
5.3a software. In a model of a human arm consisting of different types of tissues,
the transmission mechanism in intra-body communication in a straight simulated-
based arm model is studied, in addition, some bending is introduced to the model
to investigate its effect on signal attenuation. On the other hand, with the model
of two contiguous human arms, signal transmission in inter-body communication
while changing the area of contact between the arms is investigated.

This paper is organized as follows. In Sect. 14.2, we derived dielectric properties
of the human tissues used in our simulation; in addition, some theoretical framework
and approximations are given. In Sect. 14.3, the simulation setup and results are
given. Finally, Sect. 14.4 concludes our work.

14.2 Dielectric Properties of Human Tissues
and Approximations

The dielectric properties of body tissues at various frequencies are represented in
graphical plots using a model based on the summation of 4-Cole–Cole expressions,
which describes the complex relative permittivity as follows [13]:

εr(ω) = ε∞ +
4∑

m=1

Δεm

1 + (jωτm)1−αm
+ σi

jωε0
(14.1)

where εr(ω) represents the frequency-dependent complex relative permittivity, ε∞
is the material permittivity at very high frequencies, Δεm, τm, and αm are material
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Table 14.1 Parameters for the derivation of dielectric properties of different human tissues
(adapted from [14])

Tissue Skin (dry) Fat Muscle Cortical Cancellous

ε∞ 4.00 2.50 4.00 2.50 2.50

Δε1 32 9 50 10 18

τ1 (ps) 7.234 7.958 7.234 13.263 13.263

α1 0.000 0.200 0.100 0.200 0.220

Δε2 1100 35 7000 180 300

τ2 (ns) 32.481 15.915 353.678 79.577 79.577

α2 0.200 0.100 0.100 0.200 0.250

σi 0.000 0.035 0.200 0.020 0.070

Δε3 0.00E+0 3.30E+4 1.20E+6 5.00E+3 2.00E+4

τ3(μs) 159.155 159.155 318.310 159.155 159.155

α3 0.200 0.050 0.100 0.200 0.200

Δε4 0.00E+0 1.00E+7 2.50E+7 1.00E+5 2.00E+7

τ4 (ms) 15.915 15.915 2.274 15.915 15.915

α4 0.200 0.010 0.000 0.000 0.000

parameters, σi is the ionic conductivity, j denotes the imaginary unit
√−1, ω is

the angular frequency, and ε0 the permittivity of free space. Table 14.1 shows the
parameters needed to find the complex relative permittivity of the human tissues
used in our models [14]. From Eq. (14.1) with Table 14.1, we derived the required
dielectric properties for our simulation.

Due to [15], quasi-static approximation can be applied if the dimensions of the
system are small compared to the wavelength of the applied signal. In our study,
we used electrical signals with frequencies up to 1 MHz, which means that the
operating wavelength is large enough compared to the dimension of the human body.
Therefore, the electro-quasi-static approximation can be applied and Maxwell’s
equation can be simplified to the Laplace equation

− ∇ ·
((

ε + σ

jω

)
∇V

)
= 0 (14.2)

where σ is the conductivity and V represents the scalar electric potential.

14.3 Simulation-Based Human Arm Models

Simulation Setup

Two finite element method (FEM) models were implemented using COMSOL
Multiphysics 5.3a. In order to investigate intra-body communication, the complex
structure of the human arm was approximated by a five-layers concentric cylinder of
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radius 3.5 cm and length 60 cm. The layers are skin, fat, muscle, cortical bone, and
cancellous bone of thicknesses 0.126, 0.58, 1.55, 0.6, and 0.644 cm, respectively.
These values were chosen to be within the anatomical range [16–19]. For inter-
body communication, on the other hand, a second contiguous similar cylinder was
added, where the cylinders represent two human arms that touch each other. For
simplicity, the single arm model connected to the TX was termed ”Arm1” and the
second contiguous arm was called “Arm2.” The dielectric properties of the human
tissues used in our models at different frequencies were derived as described in
Sect. 14.2 and applied in COMSOL using interpolation functions. The tissues were
defined as homogeneous frequency dependent materials. Extra-fine mesh size was
applied to the geometry. The domain around the geometry was chosen to be air
that extends to infinity. The two TX and two RX electrodes are in direct contact
to the human body. In our work, the electrodes were assumed to be circular and
made of copper with radius 1 cm and thickness 0.2 cm. The electrical parameters
of the copper material are already defined in COMSOL. An inner-distance of li =
4.5 cm was taken between TX or RX electrodes. A current controlled waveform
with different amplitudes, i.e., 1 and 4 mA, was applied that meet the safety
standardization according to [20]. The current amplitudes are galvanically coupled
into the arm model through the TX signal electrode with a frequency sweep from
10 kHz up to 1 MHz. This frequency range was chosen to be above the frequencies
of the biological signals and still fulfills the quasi-static approximation. The main
parameters used in the simulation are summarized in Table 14.2.

Model for Intra-Body Communication

Model Geometry and Setup In the intra-body communication model, two studies
have been conducted. In one study, a straight arm model, i.e., Arm1, has been used.

Table 14.2 Parameters for the simulation-based model

Parameters Value

Frequency range “f ” [Hz] 104 – 106

Length of the Arm [cm] 60

Skin layer thickness [cm] 0.126

Fat layer thickness [cm] 0.58

Muscle layer thickness [cm] 1.55

Cortical bone thickness [cm] 0.6

Cancellous bone thickness [cm] 0.644

Current amplitude “I” [mA] 1, 4

Radius of copper electrodes [cm] 1

Thickness of copper electrodes [cm] 0.2

Distance between TX and RX “ltr” [cm] 20, 30, 40, 50

Inner-distance between TX or RX electrodes “li” [cm] 4.5
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Fig. 14.2 Simulation-based model of a single human arm: (a) 3D straight model, (b) cross-
sectional view, (c) 3D model with 90◦ bending, (d) side view of the bended model

In a second study, a 90◦ bending has been introduced to the model to imitate the
elbow bending and investigate its effect on the received signal. Transmitting and
receiving electrodes were placed symmetrically around the curvature of the bended
arm as seen in Fig. 14.2.

Results and Discussion Figure 14.3a shows the electrical potential distribution
for a cross sectional area of the arm model at TX at an induced current of 1 mA,
and applied frequency 10 kHz. The same setup but at applied frequency of 1 MHz
is shown in Fig. 14.3b. In Fig. 14.3c, we changed the induced current to 4 mA
with 10 kHz applied frequency. In Fig. 14.3d, 4 mA induced current with frequency
of 1 MHz was applied. Regardless of the induced current, the electric potential
decreases with the increase of the applied frequency. At the lower frequency, i.e.,
10 kHz, the relative permittivity of the human tissues is high and conductivity is
low. Therefore, penetration of the signal into the tissue is high. As seen, the electric
potential is mainly confined to the skin and fat layers, while less potential exists
in the muscle and bones layers. At the higher frequency, i.e., 1 MHz, in contrast,
when the relative permittivity is low and conductivity is high, signal transmission is
limited to the surface of the body. However, increasing the amplitude of the induced
current at a fixed applied frequency has a significant effect on the generated signal.
Nevertheless, we should follow the human safety standardization for not harming
the biological tissues.

In Fig. 14.4a, we studied the effect of increasing the surface distance between TX
and RX, i.e., ltr , when keeping constant current of 1 mA, while in Fig. 14.4b,
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Fig. 14.3 Electric potential distribution for cross sectional area of the straight arm model at TX
when: (a) I = 1 mA, f = 10 kHz, (b) I = 1 mA, f = 1 MHz, (c) I = 4 mA , f = 10 kHz, and (d) I =
4 mA , f = 1 MHz

the signal attenuation is shown. The attenuation factor between TX and RX was
calculated according to [7]

Attenuation [dB] = 20 · log10
ΔVRX

ΔVTX
(14.3)

where ΔVRX and ΔVTX denote the potential difference at the receiver and trans-
mitter electrodes, respectively. At low frequencies, the increase of ltr has a weak
effect on the received signal. This gives a good opportunity to use intra-body
communication at low frequencies, e.g., up to 50 kHz, for sending data between
distant locations on the body. However, frequencies above the biological signals
frequencies should be used to avoid interference. On the other hand, a significant
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Fig. 14.4 (a) Electrical potential difference at TX and RX at I = 1 mA, when ltr = 20 cm, ltr =
30 cm, ltr = 40 cm, and ltr = 50 cm. (b) Signal attenuation [dB] at RX for different channel lengths

effect can be seen at higher frequencies, where the signal loss inside the tissues is
high. Therefore, the attenuation increases, which agrees with the results in [7].
In another study, to investigate the effect of 90◦ bending of the arm model and
compare it to the straight model, we calculated the electric potential difference at
RX for both cases when the induced current is 1 mA for different ltr . As seen in
Fig. 14.5, the electric potential difference at RX of the bended model is higher than
that of the straight model. The reason is the actual channel length or the shortest
distance between TX and RX. In the straight model, the channel length equals the
direct horizontal distance from TX to RX. In the bended model, the actual channel
length, shown as dashed yellow line in Fig. 14.2, is shorter than the surface length
we considered. At short distances between TX and RX, the relative discrepancy
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Fig. 14.5 Electrical potential difference at RX for both bended and straight models at I = 1 mA

between the actual channel length in the straight model and the bended model is
large. On the other hand, for longer models and distant transceivers around the arm
curvature, the relative discrepancy becomes small and both models tend to behave
in a close manner, see Fig. 14.5 when ltr = 40 and 50 cm.

Model for Inter-Body Communication

Model Geometry and Setup In the inter-body communication model, the second
contiguous similar cylinder “Arm2” was added, as shown in Fig. 14.6. Different
common lengths lc = 5, 10, and 20 cm between Arm1 and Arm2 were assumed. A
contact plate of width 2 cm and length lc was added between the two arms to increase
their contact area and defined in COMSOL as skin material, shown in Fig. 14.6
inside dotted blue ellipsoids.

Results and Discussion Figure 14.7 shows the electric potential difference at RX
for a horizontal distance ltr = 20 cm between TX and RX and common length lc =
20 cm at two different induced current amplitudes, i.e., 1 and 4 mA. As expected,
the electric potential is directly proportional to the amplitude of the induced current.
Maximum value is achieved at 10 kHz, then the signal decreases rapidly with
frequency.
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Fig. 14.6 Simulation-based model of two contiguous human arms. (a) 3D model, (b) cross
sectional view, (c) side view

Fig. 14.7 Electric potential difference at RX for lc = 20 cm and ltr = 20 cm with two different
induced current amplitudes

For a comparison between inter-body and intra-body communication transmission
mechanisms, we have created Fig. 14.8a at three different common lengths, i.e., lc
= 5, 10, and 20 cm, between Arm1 and Arm2 when the current amplitude is 1 mA
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Fig. 14.8 (a) Electric potential difference at RX for both intra-body and inter-body communi-
cations with three different lc values at an induced current of 1 mA and ttr = 20 cm. (b) Signal
attenuation [dB] at RX

and ltr = 20 cm, while the signal attenuation from (14.3) is depicted in Fig. 14.8b.
We can see the same behavior with frequency as in intra-body communication, the
potential difference decreases with the frequency increment. In addition, increasing
the length of contact, i.e., lc, and hence the contact area between the two arms
has a significant effect on the detected signal. By increasing the contact area
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between the two arms, the detected signal increases. As seen at frequencies above
200 kHz when lc = ltr = 20 cm, intra-body and inter-body communication give
close values. Such that the two arms together can be considered as one geometry
that uses intra-body communication. For shorter lc, high signal degradation is
detected at the RX at Arm2. Hence, one factor to improve the received signal in
inter-body communication is to avoid gaps and increase the contact area between
the two bodies. However, inter-body communication might be power consuming
communication technique and hence adaptive HBC-enabled devices are needed.

14.4 Conclusion

Galvanic coupling is one of the approaches used for coupling in human body
communication (HBC), which enables electronic devices in or on the human body
to interconnect with each other and exchange information at very low power
consumption. In this paper, we have studied the transmission mechanism on the
human body for intra-body and inter-body communication based on galvanic
coupling. Two FEM simulations representing a single human arm and two human
arms in contact to each other have been proposed. Both models took into account
the different types of tissue that the arm consists of. The influence of different
HBC key parameters including applied frequency, distance between TX and RX
(i. e., transmission length), bending, contact area between two bodies, and induced
current was investigated. The results show that the transmission loss increases
with the increase of the transmission length and operating frequency. The electric
potential is mainly confined to the skin and fat layers at lower frequencies, as
the relative permittivity of the human tissues is high and conductivity is low. At
high frequencies, when the relative permittivity is low and conductivity is high,
the transmitted signal is limited to the surface of the body. Furthermore, increasing
the transmission length has a significant effect on the signal degradation at high
frequencies, hence it is more appropriate to use low frequencies, i.e., up to 50 kHz,
for transmission over long distances on the body. Bended models improve the
received signal in the cases of short distance between TX and RX around the
bending. For distant transceivers, both straight and bended models tend to behave in
a close manner.

Concerning inter-body communication, we found that the received signal is
directly proportional to the induced current and inversely proportional to the applied
frequency. Due to the dielectric properties of the human tissues and the increase of
the actual transmission distance between TX and RX (in order for the signal to
leave one arm and enters the other), the signal degradation is considerably higher
compared to intra-body communication at the same horizontal distance between
TX and RX. At higher frequencies, i.e., >200 kHz, both inter-body and intra-body
communication give close values when the contact area between the arms covers
the distance between TX and RX electrodes. Increasing the contact area between
the models helps to improve the detected signal.
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In conclusion, the results demonstrate the feasibility of HBC for establishing
wireless communication between distributed sensor nodes in or on the human body
as well as the exchange of information between different individuals. The approach
hence promises diverse ways application, e.g., in healthcare and telecommunica-
tions.
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Chapter 15
Indoor Energy Harvesting for WE-Safe
Wearable IoT Sensor Nodes

Fan Wu, Jean-Michel Redouté, and Mehmet Rasit Yuce

15.1 Introduction

With the emergence of Internet of Things (IoT), many wearable devices are
required and deployed in both personal and commercial applications. However,
the power supply still remains a challenge for them because many devices are still
battery-powered and required regularly battery replacement or recharging which is
inconvenient [1].

Wearable sensor nodes are traditionally attached to human body forming wireless
body area networks (WBAN) to monitor the physiological signals of the human
body [2–4]. In addition to physiological signals, wearable sensors are also used
to monitor the environmental data around the subject’s body, for example, in
environmental applications [5, 6] or safety applications [7].

A wearable wireless sensor network system for urban environmental monitoring
application is proposed in [5]. The wearable sensor node consists of 7 different
environmental sensors with a rechargeable battery that can last for 7 days. A
wearable sensor network system for safety monitoring application is proposed in
work [7]. The system can detect some hazardous environmental conditions for
exposed workers, such as temperature, relative humidity, and carbon dioxide (CO2).
A 800 mAh rechargeable lithium battery supplies the power for the wearable sensor
node. A wearable sensor network for environmental monitoring is reported in work
[6]. A rechargeable lithium battery also supplies the power to the sensor node.
However, all of these sensor nodes require regular battery recharging, which is
inconvenient.
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It is necessary to design a powerful and reliable energy harvesting system that
can improve the above drawbacks. Thermoelectric energy, solar energy, electro-
magnetic, and piezoelectric can be possible energy sources for energy harvesting
system[8, 9]. Among all those sources, solar cell has the highest power density
(15 mW/cm3) outdoors. However, it provides only 100 μW/cm3 indoors. Thermo-
electric provides 40 μW/cm3 at 5 ◦C gradient. Vibrations such as piezoelectric can
provide up to 330 μW/cm3 power density.

Some works already utilize these energy sources, for example, solar energy,
thermoelectric, and piezoelectric are utilized in works [2, 10] and [11], respectively.
The work [2] presents a solar-powered WBAN system to measure body temperature,
heartbeat, and detect falls. Providing that the subject is staying outdoors for 30–
60 min under sunlight per day, the sensor node is able to operate 24 h autonomously.
Reference [11] presents a hybrid wearable energy harvester using piezoelectric and
electromagnetic. The work [10] presents a wearable thermoelectric generators that
can harvest body heat and can output sufficient power for an accelerometer, ozone
sensor, and electrocardiogram (EKG) sensor.

In this paper, an indoor energy harvesting module for a wearable IoT sensor
network is presented. This is a part of WE-Safe project conducted at Monash Uni-
versity targeting IoT sensors for safety related applications. The energy harvesting
module is able to harvest light energy from ambient light at low illumination and
its maximum power point, and store the energy into a 12.5 F super-capacitor. The
module can provide sufficient power for sensing and data transmission via a LoRa
IoT network as shown in Fig. 15.1 [12] and enable autonomous wearable sensing.
In addition, the wearable node can automatically change the sleep time based on the
present light intensity and voltage level. The remainder of this paper is organized
as follows: Sect. 15.2 outlines the system implementation; Sect. 15.3 discusses the
experimental results, and a brief conclusion is given in Sect. 15.4.

Fig. 15.1 WE-Safe project
system architecture
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Fig. 15.2 Energy harvesting module

Fig. 15.3 The block diagram of the WE-Safe node

15.2 Energy Harvesting for WE-Safe

Energy Harvesting Module Hardware Implementation

The energy harvesting module consists of a solar panel (55.0 × 67.5 × 3.2 mm from
Shenzhen Chuanningsheng Electronics), an ultra-low power maximum power point
tracking (MPPT) boost regulator, and a super-capacitor. The printed circuit board
(PCB) of the energy harvesting module is shown in Fig. 15.2. The block diagram
for the sensor node is shown in Fig. 15.3.

ADP5090 from analog devices can convert DC power from solar cells to a
constant voltage [13]. The device has an MPPT function that can harvest power
at the solar cell’s maximum power point. The MPPT controller first senses the solar
panel’s open circuit voltage (OCV) every 19 s and then operates at a programmable
MPPT ratio for approximately 19 s. The IC consumes minimum 260 nA quiescent
current and can start to operate from 80 mV input voltage. All of these features
make it a suitable boost regulator for wearable design.
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The super-capacitor is selected as the energy storage unit because it does
not involve chemical reactions while charging or discharging, has high charge–
discharge efficiency and almost unlimited life-cycles, and does not degrade over
time. It has higher power density but lower energy density compared to batteries.
Because super-capacitors are normally restricted to low voltages for a higher
capacity, two 25 F super-capacitors (2.7 V each) are connected in series to provide
12.5 F (5.4 V) and act as the energy storage unit.

WE-Safe IoT Sensor Node

The sensor node utilized in this work consists of a microcontroller (MCU) (ATmega-
328p from Atmel), a LoRa module (RFM95 from HOPE Microelectronics), an
ultra-low quiescent current voltage regulator (MCP1810 from Microchip), a low
power load switch with quick output discharge function (QOD) and low on
resistance (TPS22908 from Texas Instruments), and two sensors (BME680 from
Bosch and ADXL345 from Analog Devices). It can be configured to achieve
minimal power operation.

Power Requirements The sensor node has four different modes in each duty cycle:
(1) sense mode, (2) transmit mode, (3) idle mode, and (4) sleep mode.

In sense mode, the sensor node is active and measures environmental parameters.
It consumes 4.2 mA while lasting 0.2 s. After gathering the environmental data,
the sensor node will enter transmit mode and transmit the data to the gateway. It
consumes 48 mA and lasts 0.05 s. The sensor node will enter idle mode when the
data is transmitted. In idle mode, all the sensors enter sleep mode. The MCU is
still active to measure the remaining voltage level and adjust the sleep time for the
next duty cycle. In idle mode, the sensor node consumes 14 mA for 0.05 s. Here,
the average current consumption can be calculated using (4.2 mA * 0.2 s+48 mA *
0.05 s +14 mA * 0.05 s)/0.3 s = 3.94 / 0.3 ≈ 13.13 mA.

The sensor node is programmed to sleep most of the time in order to reduce the
power consumption. The MCU itself consumes 4.4 µA current, the LoRa module
consumes 0.2 µA, the voltage regulator consumes 20 nA, and the load switch
consumes 1 µA. In total, approximately 5.6 µA is consumed in the sleep mode.

Duty-Cycle Adjustment A current waveform of the sensor node is shown in
Fig. 15.5. The power consumption based on different sleep time is presented in
Eq. (15.1). In the equation, the sleep time can be adjusted by the MCU based on
the voltage level and light intensity. The power consumption vs sleep time using
Eq. (15.1) is shown in Fig. 15.4. Equation (15.2) presents the sleep time required in
order to achieve energy neutral and is derived from Eq. (15.1).
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Fig. 15.4 Power consumption of the WE-Safe IoT sensor node vs sleep time (s)

Fig. 15.5 WE-Safe wearable
IoT sensor node’s current
waveform with energy
harvesting module

P = V ∗ I = 3.3 V ∗ (3.94 + 0.0056 ∗ T ) / (T + 0.3) mA (mW) (15.1)

T = (13 − 0.3 ∗ P) / (P − 0.0185) (15.2)

The MCU measures the solar cell’s voltage every duty cycle using an analog-
to-digital converter (ADC). When the voltage is measured at 1.2 V, according to
Fig. 15.6, it indicates that the solar panel is working under 600 lux light intensity
with 0.7 mW power. By substituting 0.7 mW into Eq. (15.2), the sleep time can be
calculated as 19 s. Therefore, the MCU will change the sleep time for the coming
duty cycle to be greater than 19 s so that the harvested energy is greater than the
power consumed.
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Indoor PV and IV curve at different light instensity
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Fig. 15.6 Solar panel’s characteristic on indoor ambient light conditions (IV: solid lines; PV:
dashed lines)

15.3 Experimental Results

Solar Panels’ Characteristic

The solar panel’s PV curve and IV curve under different light intensity are presented
in Fig. 15.6. As you can see from the figure, the solar cell’s maximum power is
0.13 mW at 0.85 V with OCV equal to 1.3 V under 200 lux. The MPPT ratio under
200 lux can be calculated as 0.85 V/1.3 V ≈ 66%. Similarly, the MPPT ratio under
600 lux is equal to 1.24 V/1.8 V ≈ 70%. The outdoor illuminance can be up to
120,000 lux under direct sunlight. Therefore, 200–600 lux can be considered as low
light intensity compared to the outdoor condition.

Current Waveforms

The current waveform of the sensor node is shown in Fig. 15.5. As can be seen in the
figure, the charging current to the super-capacitor in sleep mode is 91.71 µA when
the light intensity is 400 lux. The sleep current of the sensor node is 5.6 µA. This
means the energy harvesting unit is able to charge the super-capacitor.
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Fig. 15.7 Energy harvesting module charging a 0.33 F super-capacitor

Energy Harvester Module Test

The charging characteristics when the energy harvesting is charging a 0.33 F
super-capacitor are shown in Fig. 15.7. As can be seen in the figure, the blue line
indicates the continuous monitoring of the super-capacitor voltage. The red line
indicates the continuous monitoring of the solar cells voltage. The initial voltage
for the super-capacitor is approximately 1.6 V. The light is turned on at first. The
charging rate is very low (0.0631 V/h) because the super-capacitor voltage is under
1.93 V that is the cold-startup voltage threshold. The solar panel is working at cold-
start mode at approximately 0.5 V. After the super-capacitor’s voltage increased to
1.93 V, the solar panels’ voltage increases and it starts to work at its MPPT point
which is around 0.8 V. During this period, the charging rate is relatively fast at
0.2382 V/h. When the light is off, the super-capacitor’s voltage decreases slightly
due to insufficient light. After the super-capacitor is fully charged, there are some
small dips and small increases showing on the graph from the blue line. At the same
time, the red line is oscillating between its open circuit voltage and maximum power
point. This is due to the self-leakage current of the super-capacitor. Once the super-
capacitor’s voltage decreases to a certain level, the energy harvesting module starts
to work again at its maximum power point.
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15.4 Conclusion

This paper presents an indoor energy harvesting unit for the WE-Safe project
to establish a wearable IoT sensor platform for indoor applications. The energy
harvesting unit is able to harvest light energy from low light intensity and convert
the solar energy into an energy storage unit. The module can then provide adequate
power for sensing and data transmission via a LoRa network. In addition, the
wearable node can automatically modify the sleep time based on the current energy
level and light intensity in order to reach an energy neutral state.
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Chapter 16
Learning and Recognition with Neural
Network of Heart Beats Sensed by
WBAN for Patient Stress Estimate for
Rehabilitation

Yukihiro Kinjo, Yoshitomo Sakuma, and Ryuji Kohno

16.1 Introduction

In rehabilitation, not only the categorical approach based on patient’s disability
but also the individual approach that takes patient’s personality into account is
important in order to apply high quality rehabilitation to patients and aim for early
recovery[1]. However, unlike the categorical approach, the individual approach does
not have clear criteria to determine it, and in many cases it is based on experiences
of experienced physiotherapists. In recent years, with the declining birth rate and
ageing population, the proportion of elderly people has increased; the number
of physiotherapists is insufficient for the number of patients, and it is becoming
difficult for inexperienced physiotherapists to devise individual approaches for each
patient[2].

Therefore, it is necessary to set criteria of individual approaches, so that all
physiotherapists perform appropriate individual approaches and can apply equal
quality rehabilitation to all patients. In order to determine this criteria, we estimate
stress of the patient by applying machine learning analysis by neural network(NN)
to R-R interval (RRI) of the patient’s heart beat obtained by Wireless Body Area
Network (WBAN)[3, 4].

However, machine learning processing needs big data and a large amount of
computational complexity and sending heart rate data via cloud network to AI server
computer like Watson for machine learning processing which costs much and causes
network delay. So we propose how to reduce computational complexity to enable to
calculate by limited processing power in embedded processor of BAN coordinator.
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Specifically, we aim to reduce it to use NN with preprocessing by wavelet transform
and extraction of coefficient of variance of RRI, i.e. CVRR. We evaluated the
learning speed, the discrimination rate of the presence or absence of stress, and the
computational complexity of proposal system by computer simulation and indicated
that the learning efficiency of the NN was increased by preprocessing.

16.2 Proposal System

System Model

In this research, we estimate two classes whether or not the patient feels stress.
Figure 16.1 shows the system model of stress estimate by NN with preprocessing.
This system is composed of two preprocessing based on medical knowledge, Pre-
Learning and Main Learning. Details of each process are described in the following
section.

Preprocessing

It is known that RRI in heartbeat correlates with stress, and it is known that when the
patient feels stress, the value of RRI and the magnitude of the variation are smaller
than usual. Therefore, CVRR which is the variation coefficient of RRI is derived
from the formula[5] as Preprocessing 1. If this value is small, it can be estimated
that the patient feels stress.

CVRR = SDRR ∗ 100

mRR
(16.1)

mRR and SDRR denote mean RRI and standard deviation of RRI respectively.

Fig. 16.1 System model of stress estimate
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In Preprocessing 2, we extract frequency components that can be divided into
High Frequency(HF) from 0.15 to 0.40 Hz and Low Frequency(LF) from 0.04 to
0.15 Hz. The effects of parasympathetic and sympathetic nerves are reflected in
HF and LF, respectively. Furthermore, it is known that respiration is related to HF
and blood pressure fluctuation is correlated with LF. In this research, we extract
frequency component by performing wavelet transform using Morlet wavelet[6].

Pre-Learning

Pre-Learning is performed with three-layer NN that inputs CVRR to the input layer
and performs two class estimation of “relax” or “stress” in the output layer. After
learning of this NN, stress features of CVRR can be extracted in the hidden layer
and we use the obtained weight and bias parameters in the Main Learning.

Main Learning

In Main Learning, we use three-layer NN that inputs CVRR and frequency
components of RRI and performs two class estimation in the output layer. Stress
features from only CVRR are extracted in the first group, and stress features from
both of CVRR and frequency components are extracted in the other group. Features
from only CVRR are extracted in Pre-Learning, so weight of nodes between neurons
to which CVRR is input and neurons with features from only CVRR (red nodes of
Main Learning NN in Fig. 16.1) are not updated. In Main Learning, NN learns to
extract features from both of CVRR between input layers and hidden layer and
frequency components and estimate stress from these features between hidden layer
and output layer.

16.3 Performance Evaluation

In this research, we performed following two computer simulations and evaluated
performance of accuracy, learning speed, and computational complexity of proposal
system. The computational complexity was evaluated by the number of multiplica-
tions.

– Comparison of performance of NN of stress estimate by type of preprocessing
– Comparison of performance of NN with or without Pre-Learning on CVRR
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Table 16.1 Simulation
parameters

Number of input neurons 56

Number of hidden neurons 30

Number of output neurons 2

Batch size 20

Number of epoch 1200

η : learning rate 0.01

RRI signal size 100

Number of training data 200

Number of test data 10,000

Activation function (hidden layer) ReLU

Activation function (output layer) Softmax

Loss function Crossentropy

Optimizer SGD

Simulation Model and Parameters

Table 16.1 shows parameters of NN of Main Learning used in simulation. Artificial
data of RRI generated using normal distribution was used to guarantee reproducibil-
ity.

In first simulation, we compared performance of NN by type of preprocess-
ing. The types of preprocessing compared are without preprocessing (input RRI
data),with only Preprocessing 1, with only Preprocessing 2, and both of Preprocess-
ing 1 and 2 (Proposal). Pre-Learning is not performed in this simulation.

In second simulation, we compared performance of NN with or without Pre-
Learning on CVRR. In the case without Pre-Learning, the NN same to first
simulation with preprocessing both of extraction of CVRR and frequency compo-
nents is used. In the case with Pre-Learning, the NN of Pre-Learning has 20 input
neurons for CVRR, 10 hidden neurons, and other parameters same to the NN of
Main Learning without Pre-Learning. The NN of Main Learning with Pre-Learning
has same parameters without Pre-Learning. Preprocessing same to the case without
Pre-Learning is performed. However, ten of the hidden layer neurons are connected
only with neurons of the input layer to which CVRR is input. Also, the bias of
these neurons and weights between these hidden neurons and input neurons are not
updated.

Results

Figure 16.2 shows learning curves for comparison of learning speed. Table 16.2
shows accuracy by type of preprocessing in first simulation. From these results,
preprocessing of extraction of CVRR and frequency components improve learning
efficiency. However, in the case with preprocessing of only extraction of frequency
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Fig. 16.2 Comparison of
learning speed by type of
preprocessing

Table 16.2 Comparison of accuracy by type of preprocessing

RRI CVRR Frequancy Proposal

Accuracy [%] 81.131 89.664 68.5805 93.41

Table 16.3 Comparison of number of multiplication by type of preprocessing

Number of multiplication RRI CVRR Frequency Proposal

Preprocessing 0 36,000 180,007,200 180,043,200

Learning 2,595,360,000 232,320,000 197,280,000 892,320,000

Total 2,595,360,000 232,356,000 377,287,200 1,072,363,200

components, the performance is worse than in the case without preprocessing. This
indicates that both of CVRR and frequency components can be used as a feature of
stress but CVRR is more important feature than frequency component. Table 16.3
shows number of multiplication for comparison of computational complexity. From
this table, preprocessing, especially wavelet transform requires a lot of calculation.
However, calculation complexity of learning reduces because the dimension of the
data input to the NN becomes smaller and the number of parameters to be updated
decreases by preprocessing. Therefore, the calculation complexity of this system
with preprocessing is less complex than that of this system without processing.

Figure 16.3, Tables 16.4, and 16.5 shows learning curve, accuracy, amount of
multiplication in second simulation, respectively. From Fig. 16.3, it turns out that
the initial value of cross entropy is reduced and learning speed improved by Pre-
Learning from Table 16.5. Although the amount of calculation by preliminary
learning is required, since the parameters to be updated in the Main Learning are
reduced, the amount of calculation in this learning has been reduced. However,
Table 16.4 shows accuracy with Pre-Learning is lower than the other. It is considered
that overfitting on learning data declined accuracy.

From these two simulations, the effectiveness of preprocessing and Pre-Learning
was shown for calculation complexity.
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Fig. 16.3 Comparison of
learning speed with or
without Pre-Learning

Table 16.4 Comparison of accuracy with or without Pre-Learning

Without Pre-Learning With Pre-Learning

Accuracy [%] 93.41 90.77

Table 16.5 Comparison of number of multiplication with or without Pre-Learning

Number of multiplication Without Pre-Learning With Pre-Learning

Pre-learning – 232,320,000

Main learning 892,320,000 538,080,000

Total 892,320,000 770,400,000

16.4 Conclusion

In this research, we proposed the method reduced calculation complexity of stress
estimate and enable to calculate by embedded processor of WBAN coordinator.
We confirmed preprocessing based on medical knowledge and Pre-Learning can
improve performance of NN of stress estimate at the point of calculation complexity
and learning speed. However, the accuracy with Pre-Learning declined compared
to the accuracy without Pre-Learning. So we will try to improve accuracy while
maintaining low calculation complexity. Moreover, we will consider multi-class
stress classification model in the future.
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Chapter 17
A Machine Learning Based Method for
Coexistence State Prediction in Multiple
Wireless Body Area Networks

Yongmei Sun, Tingshuo Chen, Jingxian Wang, and Yuefeng Ji

17.1 Introduction

A wireless body area network (WBAN) is a human-centered wearable wireless
network with sensor nodes deployed in/on/around a human body which have
features of low power, small size, and intelligence [1]. With the development of
sensor workmanship, WBAN is more and more widely applied in people’s daily
life.

Due to limitation of available bandwidth, interference appears when more than
one WBAN in a limited space occupy the same channel simultaneously. This is
called coexistence problem of WBAN. It is expected to know the multi-WBAN
environment in the next period of time by predicting coexistence state of WBAN.
Then, interference management method, e.g., power control in [2], can be executed
in time to improve the performance.

The coexistence issue in other wireless technologies has been researched actively,
but it is still insufficient in the field of WBAN. In [3], a pilot-assisted scheme was
proposed to align interference and schedule radio resource in multicell wireless
interference networks. A method to detect interference prior to transmission at the
physical (PHY) layer based on wireless local area network (WLAN) technologies
was proposed in [4], but it is not good for WBAN which requires low power
consumption. A method using signal to interference plus noise ratio (SINR) to detect
interference was proposed in [5]. However, the instantaneous SINR estimation
is inaccurate because the wireless environment changes frequently with users’
physical and postural movements. In some studies, received signal strength indicator

Y. Sun (�) · T. Chen · J. Wang · Y. Ji
The State Key Laboratory of Information Photonics and Optical Communications, Beijing
University of Posts and Telecommunications, Beijing, China
e-mail: ymsun@bupt.edu.cn

© Springer Nature Switzerland AG 2020
C. Sugimoto et al. (eds.), 13th EAI International Conference on Body
Area Networks, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-29897-5_17

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29897-5_17&domain=pdf
mailto:ymsun@bupt.edu.cn
https://doi.org/10.1007/978-3-030-29897-5_17


204 Y. Sun et al.

(RSSI) is used as criterion for detecting interference at PHY layer [6] while packet
error rate (PER) at medium access control (MAC) layer [7]. However, it is not
reliable to predict the coexistence state based on a single parameter. There are other
studies on measuring the performance degradation of WBAN [8, 9] and relationship
between interference and distances [10] in the multi-WBAN environment, but
they didn’t provide efficient detection or prediction schemes. On the other hand,
machine learning is getting more and more attention in WBAN, e.g., the radio
signal strength of WBAN is input into neural network to identify human movement
[11], reinforcement learning is used for dynamic power control in WBAN [12, 13],
decision tree and genetic algorithm are used for optimizing predictive classification
and scheduling E-Health traffic [14], and support vector machine (SVM) is used for
posture detection [15]. Therefore, it is useful to introduce machine learning in the
study of the coexistence state of WBANs, e.g., a novel algorithm was proposed to
predict the coexistence state using SINR, packet reception ratio (PRR) and previous-
state via naive Bayes classifier in [16], but it consumes too much time.

To overcome limitations in above methods, this chapter proposes a machine
learning based method to improve the accuracy and timeliness of coexistence
state prediction in the multi-WBAN environment. The main contributions are
summarized as follows:

• By adopting decision tree (DT) and naive Bayes classifier (NBC), and utiliz-
ing PER and 11 features extracted from SINR, which reflect human relative
movement and interference strength, the coexistence states are predicted and
classified into four types: None, Static, Semi-dynamic, and Dynamic. Based on
this method, the coexistence problem can be detected and handled in time.

• Based on the above prediction method and data collected by CC2530 2.4-GHz
low-power transceivers for training and testing, a set of models are compared
and the best one is selected for state prediction. Experimental results show that
the decision tree at the head node, which uses 100 of continuous SINRs and the
combination of PER, SINR Square Integral (SSI) and Level Change (LC), can
reach up the highest accuracy of 96.67%. In addition, this chapter quantitatively
defines the multi-WBAN coexistence states by experimental results.

• Compared with the existing machine learning based method that uses SINR,
PRR, and NBC [16], simulation results show that the proposed method achieves
better performance in terms of accuracy and timeliness.

The rest of the chapter is organized as follows. Section 17.2 briefly introduces
decision tree and naive Bayes classifier. Section 17.3 illustrates system model in
detail, including problem description, feature extraction, and prediction algorithm.
Section 17.4 discusses the performance evaluation by experimental results and
simulation results. Finally, Sect. 17.5 concludes the chapter.
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17.2 Decision Tree (DT) and Naive Bayes Classifier (NBC)

DT and NBC are supervised learning methods considered in this chapter, because
they have lower computational complexity and higher interpretability than other
supervised learning methods, and can be easily applied in sensor devices.

Decision Tree

DT is a popular classification and prediction method with top-down construction
process [17]. The key to create a decision tree is to choose a feature to divide samples
on each node to achieve the optimal performance. The most popular algorithms for
creating decision tree are ID3, classification and regression tree (CART) and C4.5,
which is adopted in this chapter. This C4.5 algorithm is based on information gain
ratio to choose the best division feature. The information entropy of sample set D is
defined as follows:

Ent(D) = −
|Y |∑
k=1

pklog2pk, (17.1)

where pk(k = 1, 2, . . . , |Y|) indicates the percentage of the kthDa class occupying in
D, and Y indicates the class space. The value of Ent(D) is smaller, the purity of is
higher.

Supposed that feature a has V possible values {α1, α2, . . . , αV}, and if a is used to
divide sample set D, there will be V branch nodes. The vth node contains all samples
of D whose value is av on feature, and the set is denoted by Dv. The algorithm puts
weight |Dv|/|D| to each node to ensure that the node with more samples can have
more obvious influence. Then, the information gain ratio of D divided by feature a
is calculated as follows:

Gain_ratio (D, a) =
Ent(D) −

V∑
v=1

|Dv |
D

Ent (Dv)

IV (a)
, (17.2)

IV(a) = −
V∑

v=1

|Dv|
D

log2
|Dv|
D

, (17.3)

where IV(a) indicates intrinsic value (IV) of feature a. The C4.5 algorithm uses
a heuristic method. In detail, it chooses a feature with the highest information gain
ratio from those features whose information entropy is higher than the average value.
Therefore, the information gain ratio becomes an evidence for choosing feature as
follows:
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a∗ = arg max
a∈A

Gain_ratio (D, a) . (17.4)

Creating decision tree is a recursive process. There are three conditions that make
recursion return: (1) if the samples on the current node belong to the same class,
there is no need to divide them; (2) if the current feature set is empty or all samples
have same values on all features, mark the current node as leaf node and set the
class as the one containing most samples; (3) if the sample set is empty on the
current node, mark the node as leaf node and set the class as the one containing
most samples on the father node.

Naive Bayes Classifier

NBC is based on Bayes’ theorem and conditional independence assumption [18].
Given all related probabilities are known, Bayesian decision theory considers how
to use these probabilities and misclassification loss to choose the best class. For
every sample X, the classifier chooses the class with the biggest posterior probability
P(c| x):

h∗ (x) = arg max
c∈Y

P (c|x), (17.5)

where h∗ (x) represents the optimal Bayes classifier, and c is one of N possible
classes in the class space Y = {c1, c2, . . . cN}.

Based on the Bayes’ theorem, P(c| x) is written as follows:

P (c|x) = P (x, c)

P (x)
= P(c)P (x|c)

P (x)
. (17.6)

Because P(c| x) is the joint probability for all features of sample X, it is difficult
to be evaluated directly by occurrence frequency of samples. Alternatively, NBC
adopts conditional independence assumption: for a known class, assume all features
of it are independent of each other. Thus Eq. (17.6) can be rewritten as follows:

P (c|x) = P(c)P (x|c)
P (x)

= P(c)

P (x)

d∏
i=1

P (xi |c), (17.7)

where d indicates the number of features and xi represents the value of the ith feature
of X. P(x) is same for all classes, the Bayes decision rule based on Eq. (17.5) is:

hnb (x) = arg max
c∈Y

P (c)

d∏
i=1

P (xi |c) . (17.8)

This is the expression of NBC.
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17.3 System Model

Problem Description

IEEE Std. 802.15.6 defines three mobility levels: static, semi-dynamic, and dynamic
just in a qualitative way [19]. Based on this, [16] used the time duration of
interference TSINR, PRR and previous-state to quantitatively define four coexistence
states which are None, Static, Semi-dynamic, and Dynamic as shown in Fig. 17.1.
Here, TSINR indicates the duration of time when SINR value is lower than or equal
to a threshold value SINRth. Although the prediction algorithm proposed in [16]
achieved high accuracy, the two threshold values of TSINR, i.e., α and β, are 3 s and
19 s respectively, which are too long for WBANs for medical applications which
require strictly real-time and reliable performance because a long prediction time
will cause interference not to be processed. Therefore, this chapter redefines more
appropriate multi-WBAN coexistence states as follows:

• None (N) state indicates that there is no interference.
• Static (S) state indicates that there is a constant interference which causes high

PER and low SINR.
• Semi-dynamic (SD) state indicates that there is an intermittent interference which

causes PER and SINR waving.
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Fig. 17.1 Multi-WBAN coexistence states
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• Dynamic (D) state indicates that there is a temporary interference which causes
high PER and low SINR instantaneously.

The exact values used for classifying the states are given by experimental results
in Sect. 17.4.2. The purpose of this chapter is to find the model with the highest
accuracy for state prediction.

Feature Extraction

The multi-WBAN coexistence states change with human relative movement. This
chapter chooses and improves 11 time-domain features which have less compu-
tational cost [11, 20]. They are integrated SINR Level (ISL), mean value (MV),
modified mean value 1 (MMV1), modified mean value 2 (MMV2), SINR square
integral (SSI), variance (VAR), root mean square (RMS), level change (LC), level
crossing (LCR), slope change (SC), and Willison amplitude (WAMP) as follows:

ISL =
N∑

n=1

|xn|, (17.9)

MV = 1

N

N∑
n=1

|xn|, (17.10)

MMV1 = 1
N

N∑
n=1

wn |xn|

wn =
{

1
0.5

if 0.25N ≤ x ≤ 0.75N

otherwise

, (17.11)

MMV2 = 1
N

N∑
n=1

wn |xn|

wn =
⎧⎨
⎩

1
4n/N

4 (N − n) /N

if 0.25N ≤ x ≤ 0.75N

if 0.25N > n

if 0.75N < n

, (17.12)

SSI =
N∑

n=1

|xn|2, (17.13)

VAR = 1

N

N∑
n=1

(xn − μ)2, (17.14)
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RMS =
√√√√ 1

N

N∑
n=1

(xn − μ)2, (17.15)

LC =
N−1∑
n=1

|xn+1 − xn|, (17.16)

LCR =
N∑

n=2

[f (xn × xn−1) ∩ f (|xn − xn−1|)], (17.17)

SC =
N∑

n=3

[f (|xn−1 − xn−2| × |xn − xn−1|)], (17.18)

WAMP =
N∑

n=2

f (|xn − xn−1|), (17.19)

where N is the number of continuous SINRs for calculating features, f (x) is the
threshold function that returns 1 when x is greater or equal to the defined threshold
value, otherwise it returns 0. At this moment, threshold values of xn × xn − 1,
|xn − xn − 1| and |xn − 1 − xn − 2| × |xn − xn − 1| of all data have been calculated. The
median value of the last round of calculation is selected as the threshold in this round
of calculation. Note that, the PER is added to the feature set as a common criterion
for detecting interference. Thus, there are totally 12 features in the candidate feature
set for training models.

Prediction Algorithm

Figure 17.2 shows pseudocode of the proposed prediction algorithm. Firstly, 12
candidate features are extracted from a sequence of received SINRs and PERs over

Fig. 17.2 Pseudocode for
overall flow of the proposed
prediction algorithm

input: Continuous SINRs and PERs
output: State

1. Extract ISL, MV, MMV1, MMV2, SSI, VAR, RMS, LC, LCR, SC and WAMP 
from N continuous SINRs, and PER is the average of N continuous PERs.

2. Create TSSL.
3. for each node in all nodes
4. features = FeatureSelection (ISL, MV, MMV1, MMV2, SSI, VAR, RMS, LC,

LCR, SC, WAMP, PER),
5. state = DT or NBC (features),
6. Add state to TSSL.
7. State = DecisionFunction(TSSL).
8. return State.

i

i
i
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one time period. The parameter N needs to be determined by the best DT model
or the best NBC model obtained by experiment. Then, a temporarily storing state
list (TSSL) is created to temporarily store state set. For each sensor node, feature
selection is to select the most suitable feature subset for the current node and the
value of N, the results are different for different machine learning methods. After
that, these features are input into the model to predict a state and store it. Finally,
the coordinator node uses the decision function defined in Sect. 17.4.2 to determine
the state.

This chapter adopts stability selection as feature selection method, which is based
on sub-sampling and selection algorithm that can be random logistic regression
(LRC), SVM, or other similar algorithms [21], here LRC is adopted. The main idea
is to repeat running the algorithm on different data subsets and feature subsets to
collect the results at last.

In the learning procedure of DT and NBC, the performance is evaluated by the
accuracy defined as follows:

Accuracy = number of correct prediction

total number of prediction
× 100% (17.20)

17.4 Performance Evaluation

Experimental Setup

A multi-WBAN experiment was carried out in an 8 m × 6 m indoor office
environment, and CC2530 2.4 GHz Chipcon low-power transceivers, which is based
on narrowband PHY of IEEE Std. 802.15.4, were used to collect data (Note: Here
we used Chipcon CC2530 because no IEEE 802.15.6 chip is available until now.).
In the experiment, a WBAN consisting of three sensor nodes and one coordinator
node was interfered by sensor nodes belonging to the other WBANs. The sensor
nodes used a fixed transmitting power of 0 dBm, and each sensor node sent a 16-
byte packet to its coordinator node every 10 ms. Referring to [22], chest was chosen
for placing the coordinator node on, and head, left arm, and waist were chosen for
placing the sensor nodes on.

The experiment collected data of four coexistence states in four cases of interfer-
ence environment. In the first case for evaluating N state, there is no interference.
In the second case for evaluating S state, there are multiple fixed interfering nodes,
which are 0.5 to 1.5 m away from the measured WBAN, that affect the measured
WBAN’s communication. In the third case for evaluating SD state, the interfering
nodes move around the WBAN with a speed of 0.5 m/s (slow). In the fourth case
for evaluating D state, the interfering nodes pass the WBAN with a speed of 1.5 m/s
(fast). Each case was performed for 30 s. The coordinator node calculates SINR
based on measurements taken from the sensor nodes using the equation below.
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SINR = 10 log10
10RSS/10-10n/10

10RIS/10 (17.21)

where RSS is the received signal strength from the sensor nodes, RIS is the
received interference signal strength from the other WBANs, and n is the noise
level measured at the coordinator node.

The labeled data is divided into training data and testing data at a proportion of
7:3. The training data are used to train prediction models while the testing data are
used to evaluate the accuracy of these models.

Experimental Results

Choosing different number of continuous SINRs or features can influence the
performance of the models significantly. For example, Fig. 17.3 illustrates that the
accuracy of DT changes sharply with the different number of continuous SINRs,
when the model uses all 12 features. The highest accuracy is 96.30% when the
model uses 110 continuous SINRs. Figure 17.4 illustrates that the highest accuracy
of DT at the head node is 96.67%, when the model uses three features and 100
continuous SINRs. The combination of the different number of features is chosen
by the scores calculated by feature selection method. The scores from high to low
are PER (0.97), SSI (0.51), LC (0.50), ISL (0.49), MMV2 (0.43), MV (0.41),
VAR (0.39), MMV1 (0.35), and RMS (0.28), respectively. The best combination
is composed of PER, SSI, and LC.

Due to the uncertain trend, the experiment tried all suitable combinations of
the different number of continuous SINRs and features. The line chart of the best
prediction models is shown in Fig. 17.5, in which each line belongs to a certain
node using DT or NBC, and each point represents the model with the highest
prediction accuracy using the best combination of features and the current number
of continuous SINRs.

Fig. 17.3 The accuracy of
DT using different number of
continuous SINRs and all 12
features (head node)
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Fig. 17.4 The accuracy of
DT using different number of
features and 100 continuous
SINRs (head node)
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Fig. 17.5 The accuracy of
the best prediction model
using the best combination of
features and different number
of continuous SINRs (all
nodes)

Table 17.1 The best prediction models

Model Location Continuous SINRs Combination of features Accuracy (%)

DT Head 100 PER, SSI, LC 96.67
Left arm 70 PER, SSI, LC, MV, ISL, MMV1 92.86
Waist 110 MMV1, PER, LC, SSI, ISL, MMV2,

MV, RMS
92.59

NBC Head 115 PER, SSI, VAR, LC 92.31
Left arm 110 PER, SSI, LC, MMV2, ISL 81.48
Waist 80 SSI, LC 73.68

The best prediction models in Table 17.1 are acquired from Fig. 17.5. The
accuracy of the DT on each location is higher than that of NBC. They are all above
90%, and the highest one is 96.67% at the head node. Therefore, this chapter chooses
DT for machine learning. The decision function has two implementation ways, only
using the prediction result of DT at the head node or making the decision by voting
decision function shown in Fig. 17.6.

Because the states input into the decision function need to be synchronized, 100
is chosen as the number of continuous SINRs on considering the performance of
DT. The computing time is 1 s. In comparison, Table 17.2 compares the accuracy
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Fig. 17.6 Pseudocode of the
voting decision function

input: The temporarily stored states from the head node, the left arm node and the 
waist node using DT

output: State
1. if some state appears more than twice then
2. State = this state,
3. else
4. State = the state predicted from the head node model,
5. return State.

Table 17.2 Performance results of different methods

Proposed method (%) SINR (%) PER (%)

Head 96.67 77.17 76.20
Left arm 90.00 92.33 53.63
Waist 73.33 71.93 45.83
Voting decision 93.33 86.87 62.93

using feature extraction and the methods using only SINR or PER. The proposed
method is better than the others, and decision only by the head node is better than
that by the voting decision function.

Therefore, the four coexistence states can be quantitatively defined by the
classification information of DT at the head node. Among them, PER illustrates
the stability of the communication, SSI illustrates the overall absolute level of
continuous SINRs and LC illustrates the fluctuation velocity of continuous SINRs.
Note that, because of the bifurcation operation in DT and considering the fitting
degree, they have some overlaps.

• N state: Average PER is less than 0.05%, SSI of 100 continuous SINRs is bigger
than 122,528, and LC is less than 330.

• S state: Average PER is bigger than 36.38%, SSI of 100 continuous SINRs is
bigger than 16,638, and LC is less than 459.

• SD state: Average PER is between 10.37% and 38.27%, SSI of 100 continuous
SINRs is between 825 and 32,512, and LC is between 272 and 519.

• D state: Average PER is between 0.05% and 28.54%, SSI of 100 continuous
SINRs is less than 11,391, and LC is bigger than 325.

Simulation Results

Furthermore, the performance of the proposed method is compared with NBC model
generated in [16] by simulation. Figure 17.7 shows a simulation area of 15 m × 15 m
with 16 WBANs. There are four indoor regions of 5 m × 5 m, except region R5.
Regions R1 and R3 are low interference area, and regions R2 and R4 are high
interference area. The biggest region R5 has only 1 passing by WBAN which may
suffer from no interference or low interference. All interference sources move at
random speeds of at most 1 m/s in random directions. The measured subject WBAN,
i.e., M-WBAN, starts from the position of the red person and moves along the path
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Fig. 17.7 Simulation area
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R3R1
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Fig. 17.8 The accuracy of
two methods at different
moving speeds

at speeds of 0.5 m/s, 1.0 m/s, 1.5 m/s, and 2.0 m/s for 5 minutes, respectively.
The setup of every WBAN’s sensor nodes and coordinator node is the same as
the experimental setup. When the subject M-WBAN moves, the coordinator node
collects data of PER and SINR, and predicts current coexistence state.

Figure 17.8 shows the accuracy of two methods at different moving speeds.
Because the simulation environment is different from the experimental environment,
the accuracy of the proposed method is lower than that in the experimental
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Fig. 17.9 The computing
time of two methods at
different moving speeds

environment. But it is still higher than 80% and above 10% higher than that of
the NBC method in [16]. The simulation environment has more random factors
and comes closer to reality, that is why the NBC method of [16] did not perform
well. The accuracy of two methods increases with speed, which indicates that low
interference states are easier to be detected than high interference states.

Figure 17.9 shows the computing time of two methods at different moving
speeds. The computing time of the NBC method of [16] is higher than the constant
value of 1 s of the proposed method because of the big threshold values as mentioned
in Sect. 17.3.1.

17.5 Conclusion

This chapter proposed a machine learning method for predicting coexistence state in
the multi-WBAN environment. Decision tree and naive Bayes classifier methods are
adopted for learning, and PER and 11 features extracted from SINR are utilized as
features. The coexistence states are quantitatively classified into four types: None,
Static, Semi-dynamic, and Dynamic. Experimental results showed that, DT at the
head node that uses 100 of continuous SINRs and the combination of PER, SSI, and
LC can reach the highest accuracy of 96.67%. Compared with NBC based method,
the simulation results show that the proposed method has better performance in
terms of accuracy and timeliness. The major reason is attributed to the selected
feature set and position of sensor node.
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Chapter 18
Private Audio-Based Cough Sensing for
In-Home Pulmonary Assessment Using
Mobile Devices

Ebrahim Nemati, Md. Mahbubur Rahman, Viswam Nathan,
and Jilong Kuang

18.1 Introduction

Pulmonary illnesses are among the most common chronic diseases affecting the
general population. Chronic obstructive pulmonary disease (COPD) is the third
leading cause of death in the United States [1]. Asthma is another prevalent
chronic condition which affects approximately 24.6 million Americans, including
8.3% of all children [2]. Both of these conditions are characterized by breathing
difficulties which affect the quality of life and can lead to severe complications
if left unchecked. Thus, it is of high importance to effectively track and manage
these illnesses. Specifically, continuous sensing and monitoring of these patients,
using mobile devices, offers a number of advantages. Measurements can be made
in the natural context of the user’s activities of daily living, long-term monitoring is
feasible, and the sensors can be unobtrusive and convenient for the user [3, 4]. More
importantly, continuous collection of a large amount of data can better inform any
clinical decisions, and in conjunction with machine learning techniques can lead
to accurate tracking and prediction of disease trajectories. This can be critical for
anticipating extreme adverse events and taking the necessary steps to prevent them.

Diagnosis and tracking of these pulmonary illnesses begins with the detection
of symptoms, which can include shortness of breath, tightness of chest, and
coughing [5]. Of the many symptoms, cough is particularly important as studies
have established that it is predictive of exacerbation events in COPD patients
[6, 7], which can very often result in expensive hospitalizations for acute cases.
Cough is also an important diagnostic symptom for asthma as it is a possible
predictor of future asthmatic episodes and in some variants of asthma, cough is the
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predominant or sole symptom [8]. When it comes to mobile monitoring, leveraging
the existing microphones on smartphones and smartwatches to acoustically detect
coughs represents a feasible and efficient solution. Some acoustic features have
already been associated with coughs [9] include: cough frequency, cough intensity
and cough pattern. In this work, we propose a hierarchical cough detection algorithm
with three stages to accurately segment the cough incidents. This ultimately enables
deriving of the aforementioned cough features. The contributions of this work are
the design of the algorithm framework to be time and energy-efficient, while also
preserving the privacy of the user, so that it can be applicable to daily monitoring in
the field with existing mobile devices. In the next Section, we go over some of the
relevant audio-based cough detection systems. Section 18.4 provides the details of
the sensing algorithm together with the results. Eventually highlights and limitation
of the work will be given in the conclusion and future work Section.

18.2 Related Works

Due to the importance of cough as a diagnostic feature of pulmonary diseases,
and the widespread prevalence of mobile devices with audio recording capabilities,
cough detection using audio features has attracted interest from several other
researchers.

One of the key challenges for a system trained to detect coughs is variations in the
environment of the user, and the associated changes in the soundscape. For instance,
a system solely trained to detect coughs in a quiet home environment may suffer
from several false negatives in detection of coughs when the user is walking through
streets with a high amount of traffic. Conversely, the risk of false positives can also
be high due to the occurrence of other confounding sounds associated with throat
clearing, speech, sneezing, laughing as well as other environmental sources [10]. It
is not a feasible solution to solely rely on training a machine learning system for all
the various scenarios for these false positives and negatives, since it is practically
impossible and computationally inefficient to account for all the different possible
environments as well as confounding sources of sound in a training dataset. The
personal aspects of the individual user must also be taken into consideration. A
system trained for one user may not work for another due to differences in cough
profiles among individuals. Moreover, it is also important throughout this process
to keep in mind the individual’s right to privacy; the audio recordings must be
processed in a way to preserve privacy.

Cough detection has been done using different algorithms and sensor placements.
Vitalojak et al. employed a contact-based microphone on the throat and achieved
91% sensitivity and 94% specificity for in-lab collected data [11]. Amoh et al.
and Matos et al. used chest contact microphones and showed similarly promising
results using different algorithms [10, 12]. While contact microphones can provide
better detection of internally generated body sounds and a more powerful rejection
of surrounding noise, they are not the most effective and convenient solutions,
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especially for long-term monitoring. Birring et al. collected cough data using a free-
field necklace microphone from 15 patients with different chronic lung diseases, for
6 h each [13]. The algorithm had two stages: Hidden Markov Model (HMM) was
used as the first stage. After rejecting some of the sound events detected by the first
stage using, a keyword-spotting algorithm was used to generate a statistical model.
Although the dataset includes a variety of different lung disease patients, the final
dataset is limited to only 2 h per subject, from which a big portion of sound events
have already been rejected by the previous stage. While the work claims 91% and
99% for sensitivity and specificity, the dataset itself is not as diverse as claimed in
terms of sound events.

With recent prominence of deep learning, it is no surprise to see cough detection
algorithms based on neural networks. One of the very early deep-learning-based
cough detection efforts was the work by Barry et al. in which spectral and temporal
features were fed to a probabilistic neural net achieving a sensitivity and specificity
of 80% and 96% [14]. However, validation is done only through comparing the
number of detected coughs in the period of data collection and the ground truth.
Swarnkar et al. took a similar neural-net-based approach but performed a more fine-
grained algorithm verification, reporting 93% and 94% for sensitivity and specificity
[15]. However, the number of subjects in this study were limited to just three.

With the dominance of smartphones and smartwatches in the past decade, many
researchers have tried to investigate the feasibility of cough detection using these
platforms. SymDetector, assessed the capability of the smartphone in detecting
sound-related respiratory symptoms including cough, sneeze, sniffle, and throat
clearing by using a hierarchical structure and a mix of decision tree and SVM
classifiers [16]. They were able to detect more than 82% of the symptoms. Lane et al.
similarly used smartphone data but engaged a deep neural net algorithm to generally
detect audio events [17]. While the focus was not on pulmonary symptoms, they
achieved 82.5% accuracy in detection of audio events in a noisy environment by
incorporating different environment profiles into the data using a mixed condition
approach. Although these works enable convenient sensing using the microphone
of the smartphone, the detection accuracy still seems too low for a robust cough
sensing module. In addition, a big concern in continuous audio recording is privacy
preservation, and this is not addressed in these works, making them less suitable for
secure, private long-term monitoring of patients.

The main focus of this work is to provide an accurate, ambulatory, and private
solution for cough detection based on a mobile platform. For that reason, smart-
watch and smartphone devices are used for data collection. In order to achieve high
sensitivity and specificity in the field, and to tackle the audio sensing challenges
(mentioned in the beginning of this section), we propose a 3-layer cough detection
algorithm to minimize the false positive and negative rates.
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18.3 Proposed Cough Detection Algorithm

In order to be able to detect cough patterns and model them, we need to first observe
the cough waveform and visualize its frequency components. A great way to observe
cough manifestation from an audio stream is using a spectrogram. Spectrogram is
the visual representation of the spectrum of frequencies of a sound as they vary
with time. Figure 18.1 depicts the waveforms of audio and the spectrogram of both
speech and cough samples. The speech sample has a 10-s duration and the cough
sample consists of 2 cough events and is chosen to have a 1-s duration for better
visualization of cough phases. Although there can be variations across different
individuals and disease states, the cough reflex consists of four main phases in
general [18]:

1. An initial large inhalation and glottis closure.
2. Diaphragm and external intercostal muscles contract against the closed glottis.
3. The vocal cords reflex and an explosive burst of air exits the lungs.
4. A voiced sound as the exhalation continues.

Figure 18.1 clearly shows that the burst and the voiced part of the cough can
be identified in the audio signal and therefore can be automatically detected. The
accumulated duration of these two parts is different across individuals and varies
between 300 and 500 ms [18]. In addition to the duration, coughs have other unique
characteristics such as loud intensity and a specific frequency range. This can be
observed in the spectrogram of the cough as well. It is evident that the loudness
and the frequency components of the cough are very different than those of normal
speech. In order to be able to detect these unique features, we are proposing a
hierarchical structure. Figure 18.2 shows the architecture of the cough detection
algorithm we propose. Both raw audio and the obfuscated version of the audio can
be fed to the algorithm for cough detection. After pre-processing and segmentation
of the input audio, segments with significant audio events will be found using
the first stage. Then classification of “Cough” vs. “Speech” vs. “None” will be

Fig. 18.1 Speech waveform and spectrogram (left) vs. Cough waveform and spectrogram (right)
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Fig. 18.2 General architecture of the proposed cough detection algorithm

performed, and eventually a majority voting algorithm will choose the final label
based on the results of the classification of each frame in the processed time window.

The benefit of the three-stage structure is that a large portion of the audio will
be discarded after passing the first stage. This leaves only a small portion to be
further processed in the second and third stages (which consume more processing
power and energy). Overall, this helps the whole cough detection algorithm be less
power-hungry and time consuming, making it suitable for implementing on mobile
devices. This will be further discussed as we describe the different stages of the
cough detector.

Sound Event Detector

A large portion of the collected audio on a daily-basis can carry information that
is not of interest. This can include environmental outdoor noise, TV sounds, and
the sounds of people having conversations around the device. The objective of the
“sound event detector” is to filter out these parts of the audio to be able to reduce
the burden on the following stages. On the other hand, no sound events of interest
should be rejected in the process. Coughs, speech, and similar events of interest
usually carry higher energy and sudden change of amplitude. Whereas, for instance,
a fan running in the background carries lower energy and a flatter signal amplitude.
While some of the previous works used only energy or standard deviation (STD)
within a time frame to filter out these parts [10, 13, 14], it is important to realize that
the energy of the frame by itself is not sufficient to detect a sound event. A fan can
be running very close to the recording device, making the amplitude of the signal
and its energy high. Although this should not be considered an event, Figure 18.3
shows the STD and energy of the audio from a cough session in a noisy environment
vs. a quite environment.

Evidently, the same energy threshold cannot be used to filter out the noninterest-
ing parts of the audio file. Instead we propose using the relative energy and STD
(Eq. 18.1).
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Fig. 18.3 Standard deviation and energy of cough: In quiet (left) and noisy environment (right)
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where ai represents a sample in the wave vector and a is the mean of the vector
for the selected time window. N and M are two parameters incorporated to fulfil
this relative notion (N being the number samples in a time window and M being
the number of samples in the surrounding of the time window with size of multiple
time windows). N is selected to be the number of samples in 1 s, which represents
the maximum duration of a sound event. M is selected to be 10 s; wide enough to
represent the general energy level and STD of the environment that the user is in,
while not so wide as to be irrelevant to the corresponding sound event. If a time
window is tagged with an event, 1 window (500 ms) before and 1 window after that
are also considered to be events to make sure not to miss any important piece of
information. Using this method, the quiet part of the audio will be removed in the
first stage, along with the parts with low-enough energy (environmental noise) to be
considered “nonevents.” Table 18.1 shows the results of the proposed event detector
algorithm applied to an audio sample containing speech in a quiet environment and
a noisy environment. For comparison, we reported the results from nonrelative STD
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Table 18.1 Sound event detection based on thresholding on standard deviation and energy level
for 2-min recording (mixture of cough, speech, and noise) in quiet and noisy environments

Thresholding Relative thresholding
Environment
type

STD (%
error)

Energy
(% error)

STD + Energy
(% error)

STD + Energy
(% error)

Actual number of
eventful seconds

Quiet
environment

71 (9%) 65
(16.6%)

73 (6.4%) 77 (1.3%) 78

Noisy
environment

91 (9.6%) 88 (6%) 87 (4.8%) 85 (2.4%) 83

and energy thresholding as well. It is apparent that relative thresholding provides a
much more robust and sensitive filtering of the nonevents.

Cough Classifier

Once events are recognized by the sound event detector, they need to be analyzed
as potential cough events. Supervised machine learning can be used for this. As the
target of this work is mainly indoor cough detection, we assume the main sources
of sound, other than the environmental noninteresting part, is cough (or similar to
cough symptoms such as sneeze) and speech. Therefore, we propose a classification
task between cough, speech, and none (neither of the two) classes.

Study Design and Data Collection. We have conducted an in-lab data collection
from 21 subjects (including 4 females) performing multiple tasks including speech
and simulated voluntary coughs. The age range of the subjects was 20–40 years.
Demographics included Caucasian, Pacific Islander, Middle Eastern, and Asian. The
subject cohort consisted of healthy individuals with no reported breathing disorders
for this initial proof-of-concept study.

Audio was recorded from both a smartphone and smartwatch, and the audio
sampling rate was 44.1 kHz for both devices. Participants wore a Zephyr chest band
[19] under their clothing as one source of ground-truth signal, and wear a Samsung
Gear S3 smartwatch on their left hand. They held the smartphone (Samsung Galaxy
Note 5) on the left side of the chest and held the smartwatch on the abdomen. In this
way, we capture breathing movement both from the chest and the abdomen using
the two devices. The experiment protocol included the following sessions for 1 min
each:

1. Sit-Silent: Stay seated while remaining silent.
2. Sup-Silent: Lie down in a supine position while remaining silent.
3. Sit-ReadLoud: Reading neutral sentences [20] while remaining seated. The

sentences are carefully chosen to avoid provoking an emotional response.
4. Sup-SpontSpeech: Speaking spontaneously (monologue) while lying down in a

supine position.
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5. Sit-Dirrhythmic: First half (30s) in one simulated breathing pace (e.g., fast) and
the second half in another simulated breathing pace (e.g., slow).

6. Sit-BreathHold: Within 1 min, the participant is requested to hold their breath for
a number of times.

7. Sit-Cough: Simulate few coughs while seated.
8. Sit-Silent-Phone-Watch: Both phone and the watch are held on the chest while

the participant is sitting silently.

Some of the choices of activity may seem esoteric in this context, but this data
collection was part of a larger-scale study also including speech and respiratory
rate monitoring for pulmonary disease assessment. The data collection is a mix
of both in-room (quiet environment) and out-of-room (with environmental noise).
However, all of the data collection is done in an enclosed environment. This means
that the amount of environmental noise is not comparable to that of a noisy outdoor
environment. Sessions 3 and 4 of the data collection were used as a source of
speech after removing of the nonspeech parts using the algorithm proposed in
3.1, generating the class “Speech.” Similarly, coughs were segmented and used
from session 7 recordings, generating class “Cough.” Further manual listening and
adjusting of the start and stop times of each cough was done to make sure cough
instances are purely coughs. The rest of the recordings, including quiet segments
and environmental sound segments are used to generate the class “None.”

Pre-Processing and Feature Extraction. The cough, speech, and none wave
sources are denoised using a high-pass filter with corner frequency of 200 Hz (to
address frequency range of cough and speech). Then the data is segmented using
a sliding window algorithm with 500 ms window size (the maximum duration of
a cough event) and 50 ms jump size and Hamming window function. This is done
using a very common toolbox for speech processing called OpenSmile [21]. The
same toolbox is used for feature generation. A total of 61 features including 42 Mel-
Frequency Cepstral Coefficients (MFCC) features, total energy, zero crossing, and
some other spectral features such as spectral variance, kurtosis, and skewness are
generated using OpenSmile. These features are then normalized and fed to machine
learning algorithms.

Classification. Tenfold cross-validation is used to test the classification algo-
rithm. For our classification purpose, we have tried four different algorithms
including Logistic Regression, SVM, Random Forest, and MultiLayer Perceptron
(chosen based on a survey of the literature of cough detection). The classification
result is calculated using the mean and standard deviation over 50 iterations of
Monte Carlo cross-validation. Table 18.2 shows the classification results for these
different algorithms. It can be seen that the random forest classifier outperforms the
other classifiers.
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Table 18.2 Cough/speech/none classification results using different algorithms

Algorithm Precision (%) Recall (%) F-Measure (%) ROC Area (%)

Logistic regression 95.1 95.1 95 91.3
SVM 94.7 94.7 94.7 90.6
Multilayer perceptron 95.8 95.8 95.7 92.6
Random forest 96.1 96.1 96.1 93

Majority Voter

To recap the flow of the previous stages: In the first layer (sound event detector),
the possibility of each 1-s window to contain sound events is assessed. The 1-s
windows with sound events are fed to the classification algorithm in the second
layer. After segmentation in the second layer, each 1-s window contains ten 500-ms
frames. Each of the frames is labeled using the classification in the second layer.
The purpose of the majority voting stage is to determine if the 1-s window is cough,
speech, or none, based on the individual classes of the constituent phrase. This stage
applies a smoothing function on the often-discrepant outcome sequence of classifier.
As an example, the classification results (which have resolution of 50 ms) might
have 6 cough labels in 1-s window time. This does not mean that there has been 6
coughs in that 1 s.

Privacy Preservation

The setup for the privacy preservation algorithm used here is fully discussed in
our previous work [22]. Recorded data is filtered using the proposed algorithm and
then uploaded to a remote server for storage and analysis. The filtering algorithm
operates on 30 ms audio frames with a 10 ms step size. For each audio frame Linear
Predictive Coding (LPC) coefficients, gain and whether or not the frame was voiced
are calculated. For frames that are voiced, the LPC coefficients are replaced with
a randomly chosen set of coefficients for prerecorded vowel sounds. Therefore,
the speech is obfuscated and becomes unintelligible. In this work we investigated
whether the speech obfuscation had an adverse effect on our cough/speech/none
classification. Figure 18.4 represents the confusion matrix for both non-obfuscated
and obfuscated audio data.

It can be observed that the obfuscation method does not significantly affect classi-
fication performance, and represents a feasible block of the proposed framework for
privacy preserving cough detection. The average accuracy of classification declines
from 91% to 80% which is an 11% reduction which indicates that the result is still
promising, even after obfuscation. In terms of intra-class deterioration, it should
be noted that “Speech” and “Cough” are not as affected as “None” class (only
about 8%). This is encouraging due to the fact that eventually a lot of “None” class
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Fig. 18.4 Confusion matrix for cough/speech/none classification using random forest for both
non-obfuscated (left) and obfuscated (right) audio data

segments will be filtered out by the “sound event detector” anyway, before getting
to the obfuscation and classification modules.

18.4 Conclusion and Future Works

Cough frequency/pattern detection and cough/voice classification are two signifi-
cant sources of information that can help determine pulmonary disease severity and
predict exacerbation events for these patients. This work proposes an ambulatory
system with the ultimate goal of unobtrusive recording of speech and cough from
patients in a private manner. Since the ultimate goal is to shift a lot of the processing
to the device (for mobility and privacy reasons), the proposed algorithm is designed
to minimize the machine learning burden by implementing a three-staged cough
detection algorithm. Sound event detection, as the first stage, correctly detected the
events of interest and filtered out the noninteresting parts with a 2.4% error rate in
an indoor environment with minimal noise. The classification result showed 96.1%
accuracy for cough and speech detection using a random forest classifier. A privacy
preserving algorithm, based on LPC coefficient manipulation, ensures the private
collection of data while not deteriorating the classification significantly (only 11%
reduction of classification accuracy).

The promising results achieved in this initial study encourage testing on real
patients in the field as a next step. Data collected in the field contains a variety
of sound events that can mislead the classification. Investigating the effect of
obfuscation on speech pattern recognition and cough type and intensity detection
are other future effort potentials. Since location of the device (such as smartphone
or smartwatch) with respect to the user may affect the signal quality, considering
those practicalities in the natural settings will further enrich the model in future [23,
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24]. Finally, robust detection of all the different pulmonary symptoms privately and
accurately in an ambulatory, noninvasive manner is the ultimate goal for which this
work tries to build the foundation for.
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Chapter 19
Using an Indoor Localization System for
Activity Recognition
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19.1 Introduction and Related Work

Automatic recognition of user’s activity is useful in numerous application domains.
In e-health, activity recognition can be used to understand if the user is characterized
by a sedentary lifestyle or to automatically assess his/her training sessions [13]. In
home automation, services and applications can be customized according to what
the user is doing [4]. In industrial environments, automatic recognition of activities
can be useful to implement smart control systems or to put advanced safety policies
in place [22]. From a more general perspective, activity recognition is considered a
key element of context-aware computing, as it provides relevant information about
the user and the surrounding environment [11].

Given its relevance, research on activity recognition has been rather prolific dur-
ing the last years, both from the point of view of adopted technologies and inference
methods. In particular, a wide range of sensing mechanisms has been explored to
collect information about the user, from 3D cameras to smart textile [2, 7]. However,
the vast majority of proposed approaches rely on wearable devices equipped with
inertial sensors like accelerometers and gyroscopes [6]. Sensors attached to users’
limbs are used to collect information about their raw movements and then, at a
higher level, to determine which activity is currently performed [18].

In a seminal paper, Bao and Intille used five biaxial accelerometers to recognize
physical activities [3]. Devices were worn at the right wrist, right hip, left arm, left
tight, and right ankle, whereas classification was carried out using the following
methods: decision table, k-Nearest Neighbors, C4.5 decision tree, and Naive Bayes.
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The methods that provided the best results were decision trees and k-Nearest
Neighbors.

In [15], a single triaxial accelerometer positioned on the belt was used to
recognize some activities of daily living. Classification was carried out using two
methods: Naive Bayes and k-Nearest Neighbors. A leave-one-person-out strategy
was adopted for validation: two users were involved in the training phase, and
five other users were recruited for the evaluation. The set of considered activities
included: jumping, running, walking, sitting, and the transitions from sitting to
standing and from standing to kneeling (and vice versa).

A comparison of different architectural solutions in activity recognition and the
effects of some parameters of operation are presented in [14]. Solutions based on
both a single sensor and multiple sensors were evaluated. As far as classification
methods are concerned, Neural Network achieved the best accuracy results. How-
ever, if also the training costs are considered, decision trees were identified as one
the best methods for the reference scenario. Additional experiments showed that
solutions based on multiple sensors are able to achieve better recognition accuracy,
even when using light-weight algorithms. Also the effects of sampling rate on
recognition accuracy were analyzed. Results showed that sampling rates greater than
20 Hz may provide limited benefits.

Fusion of data originating from multiple accelerometers is discussed in [8].
Using data from two accelerometers significantly improves the accuracy of activity
recognition with respect to the use of a single device. Using three or more sensors,
on the contrary, seems to bring only limited benefits. When two accelerometers are
used, ankle and wrist were identified as particularly favorable positions.

Given their popularity, smartphones and smartwatches have been frequently
considered as suitable sensing devices for recognizing human activities. In addition,
smartphones and smartwatches are characterized by reduced invasiveness and thus
they provide the opportunity to make recognition systems more acceptable for the
end users [5, 17]. Smartphones, for instance, proved to be effective to distinguish
falls from other activities of daily living [1]. A wrist-worn accelerometer can be
extremely useful in detecting gait segments, especially when used in combination
with a model tailored to the user [10]. Also the strength of the Wi-Fi signal received
by a smartphone can be used as a means for activity recognition [21].

This paper contributes to existing literature by showing that an indoor localiza-
tion system characterized by high resolution can be used for activity recognition.
Differently from the vast majority of known methods, the proposed approach does
not rely on inertial sensors. The accurate position of a set of devices worn by the user
is first estimated and then used to extract some characterizing features. Experimental
results show that, for the considered set of users and activities, average accuracy
values as high as ∼95% can be obtained. For some users the method is able to
obtain perfect, or close to perfect, results. A prototypical implementation of the
method based on IEEE 802.15.4-2011 ultra-wideband (UWB) is also described.
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19.2 Method

The proposed activity recognition method is based on the idea of observing the
user’s movements by means of a fine-grained indoor localization system. A number
of UWB-enabled devices with known position, called anchors, are placed in the
environment. Anchors are able to determine the distances between themselves and
tags, devices that are free to move in the considered space. Distances between tags
and anchors are used to determine the tags’ position, e.g., using a multi-lateration
algorithm. We suppose that the user carries (wears) a number of tags, which could
represent smart devices like fitness tracking wristbands, smartshoes, smartwaches,
smartglasses, or a simple smartphone carried in a pocket. The basic idea is that
the position of these devices (tags) in the environment can be used to infer the
activity currently performed by the user. In particular this is achieved by means
of three steps: first, the position of tags in the environment1 is used to compute a
set of metrics that do not depend on the absolute position of the user; second, a
set of features is extracted from these metrics; third, a previously trained machine
learning algorithm is fed with feature values to determine which activity is currently
performed. The three steps are detailed in the following.

From Global Positions to Local Metrics

Let us call A1, A2, . . . , An the n anchors, and T1, T2, . . . , Tm the m active tags
worn by the user. Anchors periodically estimate the distances between themselves
and all the tags via UWB. The n distances between A1, . . . , An and the ith tag
are used to derive the position of the latter in the global reference system. The
position of the ith tag in the global reference system at time t and its components
are indicated as gi(t) = {gX

i (t), gY
i (t), gZ

i (t)}. Global positions are not directly
used to infer the activity of the user, as they would make the activity recognition
process dependent on the specific environment. To make the recognition process as
general as possible, the position of tags in the global space is converted in a set of
metrics that do not depend on the absolute coordinates of the devices. First, a set
of differences between position vectors are calculated: dij (t) = gj (t) − gi(t) =
{gX

j (t) − gX
i (t), gY

j (t) − gY
i (t), gZ

j (t) − gZ
i (t)} with i, j ∈ 1 . . . m, j �= i. Then the

following Position Independent Metrics (PIMs) are calculated:

Lij (t) = |dij (t)| with i, j ∈ 1 . . . m, j > i

1We will also use the term global to indicate the environment-based reference system, as it is
common to all users.
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Fig. 19.1 The global reference system and the set of computed distances

and

�ijk = arccos

(
dji(t) · djk(t)

|dji(t)||djk(t)|
)

with i, j, k ∈ 1 . . . m, i �= j, k �= j, k > i.

Hereafter, the two sets of PIMs will be indicated as L-PIMs and �-PIMs
respectively. Figure 19.1 shows an exemplificative scenario with four anchors and
four tags. The dashed lines represent the distances between one of the tags and the
anchors placed in the environment (for the sake of image clarity only the distances
between the head-mounted device and the anchors are shown). These distances
are used by the indoor localization system to estimate the position of the tags in
the global reference system. The four tags define a general tetrahedron, with the
tags placed at the vertices. L-PIMs correspond to the length of the edges of the
tetrahedron (the six continuous lines in the example), whereas �-PIMs are equal
to the angles on the faces of the tetrahedron. The total number of angles is equal to
twelve, but the space of all shapes, for tetrahedra, is five-dimensional [19]. Thus, the
set of �-PIMs is not completely independent. Similar considerations may be made
when the number of tags is smaller/greater than four.

Feature Extraction

The set of PIMs is first preprocessed using a low-pass Butterworth filter. Processed
signals are then segmented using a window with fixed duration R. Let us indicate
the kth window concerning Lij as Wij (k) (i.e., Lij (t) with t ∈ ((k − 1)R, kR)).
A set of functions is used to extract F characteristic indicators from Wij (k), for
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Fig. 19.2 Overview of the method

every k. In summary, a vector vL(k), the feature vector, is produced with period R.
The same is done with �-PIMs, thus generating an analogous v�(k) feature vector.

Inferring Activities

The vector of feature values (vL(k), v�(k), or both) is given as input to a previously
trained machine learning classifier. For the training phase we explored two possible
solutions, one based on a single model for all users and the other based on a
personalized model. Both solutions have advantages and drawbacks: the first is
characterized by a simpler training phase, as it does not require user-dependent
customization; the second relies on a training phase that is user specific, but it is
expected to provide better results.

An overview of the method is provided in Fig. 19.2.

19.3 Prototype and Data Collection

A prototype of the system has been implemented using a Decawave MDEK1001
kit [12]. The kit is composed by a set of Decawave DWM1001-DEV boards,
and a real-time localization application. Each DWM1001-DEV board is equipped
with a DW1000 IEEE 802.15.4-2011 UWB transceiver and a Nordic nRF52832
BLE microcontroller (based on ARM Cortex M4). The Bluetooth connection was
used only to define a network and to set the parameters of operation. Four boards
were used as anchors and attached to the walls at the corners of a square area of
3.60 × 3.60 m (corresponding to a ∼13m2 room). Anchors were placed 2 m above
the ground. Four other boards were used as tags and attached at the head, right
wrist, left pocket, and right ankle of the user. Figure 19.3 shows a volunteer wearing
the prototype. Another board operating as a listener was attached to a common PC,
where the position of tags was logged. The position of tags was estimated with 10 Hz
frequency, the maximum allowed by the current version of the kit.

Ten volunteers participated in the data collection phase. Their main characteris-
tics are listed in Table 19.1. Each volunteer was asked to perform the following
activities: standing, sitting, walking in circle, lying on the floor, and crouching.
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Fig. 19.3 Volunteer wearing
four tags (head, right wrist,
left pocket, right ankle)

Table 19.1 Ten users participated in the data collection phase

User ID Age (yr) Weight (kg) Height (m) Gender (M/F)

1 24 79 1.72 M

2 24 55 1.66 F

3 25 76 1.87 M

4 33 74 1.72 M

5 24 80 1.80 M

6 25 80 1.80 M

7 25 77 1.82 M

8 26 45 1.43 F

9 24 80 1.82 M

10 23 66 1.75 M

Each activity was performed for 60 s. The activities of all volunteers were video
recorded. This was done to simplify the subsequent manual labeling of acquired
traces and to document the whole process in case of unexpected results. Figure 19.4
shows a 3D representation of the walking activity of one of the users (approximately
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Fig. 19.4 3D trajectories of
the four worn devices when
the volunteer is walking in
circle
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12 s, corresponding to an almost-complete circle). The trajectory of the ankle-worn
device is not always visible because of positioning errors producing negative values
on the Z axis.

All traces were segmented using 3 s windows (R = 3 s). Traces were then
manually annotated assigning one of the following labels to each window: standing,
sitting, walking, lying, crouching, transition, and invalid. The first five labels were
used as ground truth during the training and evaluation phases. The transition label
was used to identify the time windows containing multiple activities (e.g., when the
user stops walking and starts lying on the floor). The last label was used to mark a
limited number of segments containing data to be discarded (in few occasions, one
of the tags suffered from short disconnections).

Labeled traces are publicly available at the following address: http://vecchio.iet.
unipi.it/vecchio/other/data/

19.4 Results

The following set of statistical and signal processing functions was considered
for the feature extraction phase: mean, max-min, min, Average Absolute Variation
(AAV), Standard Deviation (SD), Root Mean Square (RMS), Mean Crossing Rate
(MCR), max, Mean Absolute Deviation (MAD). AAV is a function successfully
used in similar contexts [9], and it is defined as follows:

AAV = 1

N − 1

N−1∑
i=1

|ai+1 − ai |

where ai is the ith observed value and N is the number of values in the considered
window.

http://vecchio.iet.unipi.it/vecchio/other/data/
http://vecchio.iet.unipi.it/vecchio/other/data/
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Table 19.2 Selected features

Mean Max-min Min AAV SD RMS MCR Max MAD

L12 � � �
L13 � � � � � �
L14 � � � � �
L23 � � �
L24 � � � � � �
L34 � � � � � � �

Table 19.3 Results obtained
by some well-known
classifiers

Classification method Accuracy (%)

ENS 93.0

SVM 92.6

KNN 92.0

First, we evaluated the performance of the method using only the set of L-PIMs.
With m = 4, a vector vL with 54 features was produced every R seconds (the size
of vL is equal to the number of functions multiplied by the number of different L-
PIMs). The number of features was then reduced to 30 using the RELIEFF method
[16]. The final set of features is shown in Table 19.2.

Transitions between different activities are not considered in this study, as we
are interested in understanding which is the performance of the method in steady
conditions. However, an approach like the one proposed in [20] can be possibly
incorporated.

The reduced set of features was given as input to a number of machine learning
methods (those available in the MATLAB classification learner toolbox). Evaluation
was carried out according to tenfold cross validation. The dataset was divided into
ten disjoint subsets. Nine subsets were used to train the machine learning method,
and the left out subset was used to evaluate the method on previously unseen data.
The process was repeated ten times using all the different subsets for the evaluation
phase and then averaging the results. Table 19.3 shows the obtained accuracy values
for the top three performing methods: Ensemble Subspace KNN (ENS), Support
Vector Machine (SVM), k-Nearest Neighbors (KNN). The three classifiers provided
very close results with 92–93% accuracy. The confusion matrix for the set of
considered activities is shown in Fig. 19.5.

Such results were obtained using the data of all users for training the system.
This approach corresponds to building a global model of users’ activities. We then
evaluated the possible benefits introduced by a personalized model. To this aim we
performed the feature selection, training, and evaluation phases again, using the
data of a single user at a time. Also in this case tenfold cross validation was used
to avoid overfitting. Results are reported in Table 19.4. When using a personalized
model, accuracy values are generally better than the ones obtained by the global
model. On average, the personalized approach is able to obtain accuracy values that
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Fig. 19.5 Confusion matrix

Table 19.4 Accuracy for the
different users when using a
personalized model

Accuracy (%)

User ID ENS SVM KNN

1 98.8 97.7 98.8

2 96.7 97.8 97.8

3 86.2 87.5 83.7

4 96.7 94.4 95.6

5 97.9 97.9 97.9

6 93.7 95.0 95.0

7 85.6 87.8 84.4

8 95.7 96.8 96.8

9 96.8 95.7 95.7

10 100.0 97.7 98.9

Mean 94.8 94.8 94.4

are close to ∼95%. For some users, accuracy values are equal, or very close, to
100%. In summary, the use of a personalized model has a positive impact on the
proposed method.

We then repeated the same analysis using the set of �-PIMS. In particular, six
different � values were computed and given as input to the same classification
algorithms (the number of degrees of freedom, as mentioned, is equal to five,
but we decided to include one more value to mitigate the effects of measurement
errors). The number of features was again limited to 30 using RELIEFF. The set
of selected features is similar to the one produced for L-PIMs, with mean, min,
RMS, max, and AAV the most popular functions (selected 6, 6, 6, 5, and 3 times
respectively). Also in this case we considered both the approach based on the
definition of a global model and the one based on a personalized model. With the
global model, the following accuracy values were obtained by ENS, SVM, and KNN
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respectively: 91.3, 91.2, and 91.9%. With the personalized model, the obtained
accuracy values were equal to 94.4, 93.9, and 94.0%. Results obtained with �-
PIMs are thus approximately equal to the ones obtained with L-PIMs. Finally, the
same analysis was carried out using both L- and �-PIMs (but still limiting the set
of features to the best 30). With the global model, the following accuracy values
were obtained by ENS, SVM, and KNN respectively: 92.4, 93.4, and 93.8%. With
the personalized model, the obtained accuracy values were equal to 94.6, 95.5, and
94.9%, thus achieving slightly better final results.

19.5 Conclusion

Recent advancements in communication technologies, e.g., IEEE 802.15.4-2011
UWB, not only make fine-grained localization of devices and people possible, but
also provide the opportunity to devise new applications or to improve existing ones.
This paper shows that an indoor localization system can be successfully used for
automatic activity recognition. To be as general as possible, the proposed approach
relies on a set of metrics and features that are not dependent on the position of the
user in the environment. Experimental results show that excellent accuracy values
can be achieved, especially when using a model tailored to the user. Obviously, it is
also possible to combine PIMs with the user’s position in the environment (already
provided by the indoor localization system), to further improve the recognition
process. For instance, if the user is in the kitchen the set of possible activities could
be expanded/reduced with respect to the one used in this paper (e.g., adding cooking
and removing lying).
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Chapter 20
Indoor-Outdoor Detection Using
Head-Mounted Lightweight Sensors

Tommaso Martire, Payam Nazemzadeh, Alberto Sanna, and Diana Trojaniello

20.1 Introduction

The growth of technology has led to radical changes in everyday life [1]. An
increasing number of people spend their workdays indoors under fluorescent lights
or in front of computers and digital screens, while less time is devoted to outdoor
activities. However, several factors such as the increased production of vitamin D
[2], the improvement of mood and self-esteem [3, 4] as well as the reduction of
the risk of developing myopia in children [5] and the increased level of physical
activities associated to outdoor time [6] lead to the importance of spending more
time outdoors. Therefore, monitoring the amount of time spent indoors and outdoors
could inform about the health status of people. With the development of wearable
technologies, the information of time spent indoors and outdoors may be easy
to extract. In recent years, several mobile apps for indoor-outdoor (IO) detection
have been developed using smartphones sensors data, i.e., ambient light, GPS,
magnetometer, and accelerometer [7, 8]. Mobile apps utilize the recognized IO
condition to automatically adjust volume and screen brightness, or trigger other
services like GPS or Wi-Fi, and help the navigation system technology [7]. One
of the major applications for the IO detection regards the seamless IO navigation
and localization area [9]. However, the use of common lightweight smartphone
sensors (e.g., ambient light, GPS, magnetometer) for the IO detection showed some
limitations [10]: the ambient light intensity usually employed for IO detection [7–
10] may not be always available (e.g., sensor is covered by pocket, clothes, etc.);
the GPS signal power changes according to the environment, wall material, and
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weather condition; the magnetometer noise can be similar in indoor places and
outdoor places near to the buildings.

The use of head-mounted smart wearable devices, such as glasses, virtual reality,
and augmented reality devices and headphones, as well as the availability of new
generation of light sensors (able to analyze separate components of light, i.e.,
RGB and XYZ light components) can overcome such limitations. Recently, a new
head-mounted color light sensor (i.e., able to discriminate among the X, Y, and
blue light components) has been proposed for IO detection [11]. In that study, the
authors compared the performances of five different supervised machine learning
algorithms (decision tree, logistic regression, k-NN, naïve Bayes, and random
forest) in detecting IO condition using only the color light sensor. Although a good
accuracy in IO detection (86.2%) has been found with one of the tested algorithms
(i.e., random forest), the small sample number (five subjects) employed as test set
as well as the low accuracy in presence of critical environments, i.e., semi-indoor
and semi-outdoor, represent limitations.

Therefore, the aims of the present study are (a) to enlarge the test set by including
the data acquired on 28 subjects; (b) to include the data acquired with additional
lightweight sensors such as ultraviolet (UV) light, pressure, accelerometer, and
gyroscope to increase both the overall and the critical environment-related accuracy;
and (c) to compare the performances of the previously tested algorithms in IO
detection. Two additional supervised machine learning algorithms (i.e., bagged trees
and linear regression) have been included in the comparison.

20.2 Materials and Methods

Discriminating IO environments is essentially a classification problem in machine
learning. In the present study, relevant features to discriminate between indoor and
outdoor contexts derive from a combination of color light channels according to
[12], features from UV sensor, pressure sensor, accelerometer, and gyroscope. In
the following, the data acquisition system (see section “System Overview”) along
with the data acquisition protocol (see section “Data Acquisition”) and the data
analysis procedure (see section “Data Analysis”) has been reported.

System Overview

Data have been acquired using four lightweight sensors mounted on the forehead:
color light “CL” sensor (AMS AS7264A), “UV” sensor (ALPS HSUDDD003A),
an inertial measurement unit “IMU” featuring a triaxial accelerometer, and a triaxial
gyroscope (ST LSM6DSL) and a pressure “P” sensor (TE MS5837). The CL sensor
is a tristimulus sensor, which provides measurements of colors that closely match
the human eye’s response to the visible light spectrum. The sensor also accurately



20 Indoor-Outdoor Detection Using Head-Mounted Lightweight Sensors 247

measures blue light wavelengths, which has been linked to important health effects
such as disruption or management of the circadian rhythm, accelerated eye aging,
and eye strain [13, 14]. The UV sensor is able to distinguish the UVA and UVB
wavelengths of ultraviolet portion of the electromagnetic spectrum. The data have
been acquired with different sampling frequency (sf) and acquisition settings (e.g.,
gain), according to the manufacturer specifications: CL sensor data have been
acquired with sf = 2 Hz, integration time = 500 ms, and gain = 3.6; UV sensor
data have been acquired with sf = 5 Hz and gain = 1; IMU and P sensors data have
been acquired with sf = 50 Hz and sf = 10 Hz, respectively.

A tagging system (Sensor Log App), synchronized with the sensors data
acquisition, has been used to provide the true classes (I/O).

Data Acquisition

Training Dataset The training dataset (train-set) consisted of 3 h and 30 min of
data acquired by the researchers in different places, weather conditions, and daytime
hours around the city of Milan (Italy). Data acquired in different environments,
e.g., metro, supermarket, outdoor market, garden, playground, offices, city center
etc., have been included. Each sample of each sensor has been labeled as indoor or
outdoor with the tagging system.

Testing Dataset Data from 28 different subjects have been acquired and used
as test dataset (Test Set). Subjects (19 males and 9 females, 24 ± 3 years old)
have been asked to follow a predesigned flow of activities in various environments
(i.e., defined route) while wearing the sensors on the head. Acquisitions have been
performed in different hours (from 09:00 to 16:30) and different weather conditions
(sunny, cloudy, and variable). Researchers followed the subjects during the data
acquisition and ensured the correct I/O tagging. The route traveled by the subjects
(Fig. 20.1) was designed in order to cover different kinds of environments, i.e.,
indoor, outdoor, semi-indoor (i.e., environment with huge windows and massive
exposed to outdoors sources of light), and semi-outdoor (i.e., environment close
to or semi-opened building). The last two environments were defined according to
[10]. Semi-indoor and semi-outdoor environments represent, respectively, indoor
and outdoor “border” conditions (i.e., interesting for the classifiers performances
evaluation). The total acquisition time of test set was more than 11 h.

Data Analysis

Six different classifiers (decision tree DecTr, bagged trees BagTr, logistic regression
LogRg, linear regression LinRg, naïve Bayes NaiBa, and random forest RanFo) have
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Fig. 20.1 Route traveled by
the 28 subjects around the
San Raffaele Hospital

been implemented. In the following, the feature extraction process and the classifier
performances evaluation have been explained.

Feature Extraction In order to train and test the six chosen classifiers, train-set data
were arranged in windows of 5 s, for a total of 2575 windows. The feature extraction
procedure was based on [12] for the CL sensor and consisted in extracting virtual
channels combining CL channel raw data, i.e., a total of nine virtual channels were
then available. For the other sensors involved, only raw data were windowed. For
each window, seven statistical parameters (i.e., mean, standard deviation, variance,
root mean square, min, max, and range) have been computed. Therefore, the total
number of features extracted was equal to 63 for the CL sensor, 14 for the UV
sensor, 42 for the IMU (i.e., 21 for Acc, 21 for Gyr), and 7 for the P sensor. Then
the features have been ranked according to the employed classifier and available
sensor data using sorting methods (filter or ensemble [15]).

Classifier Performance After selecting the related number of features, each clas-
sifier has been trained with the entire train-set (2575 windows, 1372 indoor, and
1203 outdoor) and tested with the test set (8451 windows, 3162 indoor, and 5289
outdoor).

For each classifier, the number of features (optimal features set) allowing to
reach the 99% of the maximum accuracy on test set has been computed considering
only the data from CL sensor (CL_test). Then, using the optimal features set,
each classifier has been trained and tested first involving data of CL sensor
and UV (CL|UV_test) and then including the data from IMU and P sensors
(CL|UV|IMU|P_test), considering only the first ranked number of features.

The confusion matrices of the best performing classifiers (containing all the raw
information about the predictions done by a classification model on a given dataset
[16]) have been computed.
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20.3 Results

The optimal feature set size using only the CL sensor data was obtained considering
the lowest amount of features that return 99% of maximum accuracy reached on test
set. The number of features changed according to the classifier: 8 for DecTr, 15 for
BagTr, 21 for LogRg, 50 for LinRg, 10 for NaïBa, and 14 for RanFo.

Table 20.1 shows the accuracy obtained on the overall test set (ALL: indoor,
outdoor, semi-indoor, and semi-outdoor) and accuracies obtained in the critical
environments (semi-indoor, S-I; and semi-outdoor, S-O) in the three tested configu-
rations: (1) CL_test, (2) CL|UV_test, and (3) CL|UV|IMU|P_test. Results showed
an increased accuracy in IO detection for all the classifiers, with the only exception
of LinRg, by adding UV sensor data (CL|UV_test). Regarding the S-I and S-O
environments, the inclusion of additional sensors (i.e., UV) decreases the accuracy
in S-I and S-O detection. In particular, accuracy in detecting S-I environment
decreases for four classifiers (BagTr, LogRg, LinRg, NaiBa) while accuracy in
detecting S-O environment decreases for three classifiers (DecTr, BagTr, RanFo).

On the contrary, the inclusion of IMU and P sensors data seems to have no
influence on the accuracy of none of the tested classifiers, as shown in Fig. 20.2.

The best classifiers in terms of overall accuracy are the NaïBa and BagTr
that reached, respectively, 88.9% and 87.3% in CL|UV_test and CL|UV|IMU|P
configurations. Confusion matrices for the CL|UV_test (i.e., the configuration
including the less number of sensors) of the two classifiers are reported in Tables
20.2 and 20.3.

Table 20.1 Overall (ALL), semi-indoor (S-I), and semi-outdoor (S-O) accuracies characterizing
different classifiers (class) in different test conditions (test): CL (including only CL sensor data),
CL|UV (including CL and UV sensors data), and CL|UV|IMU|P (including CL, UV, IMU, P
sensors data)

Test
CL CL|UV CL|UV|IMU|P

Class
ALL
[%]

S-I
[%]

S-O
[%]

ALL
[%]

S-I
[%]

S-O
[%]

ALL
[%]

S-I
[%]

S-O
[%]

DecTr 85.6 84.4 6.8 86.0 88.4 4.9 86.0 88.4 4.9
BagTr 82.1 83.7 5.5 87.3 83.4 3.6 87.3 83.4 3.6
LogRg 67.2 66.5 8.3 78.2 27.7 99.2 78.2 27.7 99.2
LinRg 82.6 78.4 7.0 74.8 5.8 16.1 74.8 5.8 16.1
NaïBa 82.7 65.2 41.4 88.9 42.6 87.8 88.9 42.6 87.8
RanFo 84.4 83.2 7.0 86.1 83.6 4.7 86.1 83.6 4.7
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Fig. 20.2 Accuracy trend characterizing different classifiers in different test conditions

Table 20.2 Naïve Bayes
confusion matrix applied on
CL|UV test set

NaïBa (CL|UV) Predicted indoor Predicted outdoor

True indoor 3039 123
True outdoor 813 4476

Table 20.3 Bagged trees
confusion matrix applied on
CL|UV test set

BagTr (CL|UV) Predicted indoor Predicted outdoor

True indoor 2958 204
True outdoor 725 4564

20.4 Discussion

In this study, the performances of six different classifiers in detecting IO environ-
ments using lightweight sensors mounted on the head have been evaluated.

The importance of detecting IO condition relies on a number of factors including
the possibility to monitor the health status of people (e.g., the amount of vitamin D
absorbed during the day, when the subject is outdoor) and the possibility to trigger
other important functions in smart devices (i.e., IO navigation in GPS-inhibited
areas, when the subject is indoor). In this study, various environmental conditions
have been included, i.e., indoor, outdoor, S-I, and S-O environments. In fact, similar
environmental conditions characterize S-I/O and S-O/I environments. However, the
erroneous detection of S-I (S-O) environment as O (I) environment affects the
overall estimation of O (I) time spent during the day. Depending on the specific
application, a greater accuracy in detecting S-I and S-O environments is requested,
e.g., a greater accuracy in S-I detection for those applications requiring a most
accurate O detection (e.g., preventing health conditions) and a greater accuracy in S-
O detection for those ones requiring a most accurate I detection (e.g., IO navigation).
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Overall, the results obtained in this study confirm those obtained in [11]: in fact,
the random forest classifier showed an acceptable accuracy (84.4%) in the overall
conditions with respect to other classifiers using only the CL sensors data (CL_test).
However, the accuracy in S-O environments detection has been found not acceptable
(7%). The main reason is that the visible light and, therefore, the CL measurements,
characterizing S-O and indoor environments, are quite similar.

The UV sensor data added valuable information to the I/O detection, thus
improving the accuracy of all the algorithms (with the exception of the linear
regression one). This result is expected since the presence of UV light, especially
during the day, strongly characterizes outdoor environments while is quite absent in
indoor environments (i.e., windows shield the UV light) and S-O environments (i.e.,
the UV light is shielded from the roof), thus allowing a more reliable estimation of
the IO condition. On the contrary, both IMU and P sensors did not increase the IO
detection accuracy in none of the tested classifiers. This result is quite unexpected
since the amount of dynamic activity (and thus the related signals as registered
by IMU and P sensors) is expected to be greater outdoor (i.e., where the people
generally walk, run, etc.) with respect to indoor (i.e., where the people generally sit,
work, etc.). However, this result could be explained with the fact that the training
dataset included a similar amount of activities (static and dynamic) performed both
indoors and outdoors, and, therefore, the ranking of features didn’t take into account
data coming from IMU and P sensor (i.e., similar for both I/O).

In particular, by adding UV sensor data, as reported in Table 20.1, the bagged
trees and the naïve Bayes showed very good performances in terms of IO detection
accuracy, 87.3% and 88.9%, respectively (CL|UV_test). The accuracies obtained
are in line with those obtained in other studies (71–92%) for similar applications [7–
10]. However, in those studies, a higher number of sensors (i.e., all the smartphone
sensors and GPS) have been employed.

Considering only the S-I and S-O environments, naïve Bayes outperformed
other classifiers showing an acceptable level of accuracy for both S-I and S-O
environments. On the contrary, bagged trees showed a very low accuracy (3.6%)
in detecting S-O environments. Although a slight increase in the IO accuracy
overall is shown by adding the UV sensors data (still less than the naïve Bayes
accuracy), the random forest is still characterized by an unacceptable accuracy in
S-O environments detection.

Therefore, considering also the low computational cost (i.e., required in wearable
applications) characterizing the naïve Bayes, according to this study, the naïve
Bayes could be considered as the best performing one in detecting IO environments
(and critical environments) for wearable applications including both CL and UV
sensors data.
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20.5 Conclusion and Future Works

Understanding and monitoring the user’s daily life context provide useful informa-
tion about the user health status. The development of wearable technologies has led
to the possibility to understand the context of the user. The present study consisted
of a preliminary evaluation of the feasibility of using a single sensor (CL sensor)
or a combination of sensors (CL, UV, IMU, and P sensors) for discriminating IO
environments by applying an appropriate classifier.

The performances of six different supervised machine learning algorithms have
been compared.

The highest accuracy (88.9%) was obtained with the naïve Bayes classifier
trained with ten features considering both CL and UV sensors and thus identified
as the most suitable solution for wearable applications.

Moreover, the problem concerning S-I and S-O spaces has been deepened. In
fact, the accurate detection and monitoring of time spent in outdoor environments
(including S-O spaces) is of great importance since it informs about aspects (i.e.,
reducing myopia risk, producing the correct amount of vitamin D, increase the level
of physical activities) influencing the subject’s health status.

In the future, more data in different seasons, times, and weather conditions are
needed in order to ensure the reliability and robustness of the classifier.
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Chapter 21
Analysis of Walking Body Using Kinect2
and Application of Integer Code to
WBAN

Hirohisa Kitahara , Hiroyoshi Morita , and Akiko Manada

21.1 Introduction

A wireless body area network (WBAN), standardized by IEEE 802.15.16 or
SmartBAN [3, 5], is a short-range human body communication technology proposed
mainly for health-care or exercise. A WBAN is a kind of Wireless Sensor Networks
(WSNs) in which the devices are placed in or on human bodies [11].

In typical WBAN applications, sensors in or on a human body transmit biological
information (e.g., pulse, blood pressure, heart rate) to near medical equipment so
that patients’ conditions are constantly monitored. However, since the devices must
be light and portable, they need to be driven by small batteries.

For designing WBANs, it is strongly demanded to consider communication
schemes and devices suitable for power-saving and communication paths in the
vicinity of human bodies. Moreover, the effects of human motions should be
counted for practical analysis. Indeed, in the study of WBANs, there are many
perspectives approaching these issues [11].

In this paper, we will clarify the influence of the temporal change of the body
under the communication condition. To do so, we use Kinect2, which is a motion
capture device, to measure walking motions. To design a WBAN system, we need
to know changes in propagation characteristics caused by motions in daily life.
However, the use of markers by a user for motion capture is not suitable for
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measuring such a motion. On the other hand, Kinect 2 does not require markers,
which can be a great advantage compared with other existing studies. Furthermore,
although we deal only with walking motions in this work, it is easy to extend the
idea for other body motions because we only have to install the Kinect2 camera.
Indeed, even though there are some examples of the construction of several posture
models [4], such examples are not fully utilized despite of advantages of Kinect2.
Thus, it will be a new approach of applications of Kinect2.

Based on the results derived from Kinect2, we also propose a use of integer
codes as an appropriate error correcting code for WBANs. Integer codes are defined
over the ring of integers modulo A, where A is a positive integer. Comparing
with other linear codes including BCH codes, integer codes possess a remarkable
advantage such that integer codes are suitable to correct nearest neighbor errors
on various constellations, such as 8-PSK or m-QAM [8, 13]. In IEEE 802.15.6,
BCH codes are adopted as error correcting codes for Differential Phase-Shift Keying
(DPSK) such as D8PSK, but there is no sufficient discussion regarding why BCH
codes are adopted. However, as for integer codes, a look-up table can be used for
decoding due to their simplicity, and it is also possible to improve error correction
performance by soft decoding. We therefore compare the Bit Error Rate (BER) of
an integer code with that of an adopted BCH code to see an effectiveness of the
integer code for WBANs.

The rest of the paper is organized as follows: In Sect. 21.2, we recall basic
background regarding coding theory, especially integer codes. In Sect. 21.3, we
extract a cycle of walking motions by Kinect2, and an electromagnetic field
simulation model with time variation is created using the coordinates of each joint
based on the measurement results. We then analyze this time-sequentially changing
model to capture the temporal change of those transmission coefficients in a cycle of
walking motions. After the review of encoding and simulation schemes in Sect. 21.4,
we execute BER simulations in Sect. 21.5 in order to propose adoption of integer
codes with WBANs, where BER simulations are performed based on the derived
transmission coefficients. We terminate this paper with conclusions and future
works in Sect. 21.6.

21.2 Basic Background on Coding Theory

Linear Codes

Let � be a finite alphabet. Suppose that � = Fq ; that is, a finite field of q elements.
An (n, k, d) linear code C over Fq is a linear subspace of Fn

q with dimension k and
minimum distance d = minc,c′∈C d(c, c′), where d(c, c′) is the distance between c

and c′. Each (n, k, d) linear code C can be characterized by an (n − k) × n parity-
check matrix H (of full-rank) in the form that

C = {c ∈ F
n
q : cHT = 0},
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where HT is the transpose of H and 0 is the all-0 vector.
Suppose that a codeword c ∈ C is transmitted and r = c + e (with some additive

error e) is received. One way to decode r is to compute the syndrome

s = rHT = (c + e)HT = eHT ,

and find the simplest error e′ (a coset leader) satisfying s = e′HT . Then

ĉ = r − e′

is obtained as an estimated codeword.
A typical example of linear codes is BCH codes that can be defined by generator

polynomials G(X) (see, for example, [9]). Given a primitive element α of Fqm ,
consider the minimal polynomials Mi(X) of αi . Then the generator polynomial of
an (n, k, d) BCH code (where n ≤ pm − 1) is given by

G(X) = l.c.m.(M1(X),M2(X), . . . ,Md−1(X)).

Integer Codes

An integer code is a code defined over the ring of integer modulo A, denoted by
ZA [13]. More precisely, an integer code C(H, d) ⊂ Z

n
A of length n, characterized

by a parity-check matrix H ∈ Z
m×n
A and d ∈ Z

m
A , is defined as

C(H, d) = {c ∈ Z
n
A | cHT = d mod A}. (21.1)

When r is received, integer codes can decode by searching the syndrome rHT

and corresponding coset leader from a look-up table, so integer codes can reduce
computational complexity. Because of the simple decoding of integer codes, integer
codes have been applied in such as 8-PSK, 16-QAM , 64-QAM, or 256-QAM
constellation. In addition, receiver devices are able to use soft decoding to improve
performance. In this paper, we focus on the 8-PSK constellation which will be
discussed in the later sections.

21.3 Electromagnetic Simulation of Walking Motion

Measuring of Walking Motion Using Kinect2

Two Kinect2s are connected to two PCs, where a pair of a Kinect2 and a PC is
called “Master” and the other pair is called “Slave,” and the results measured by
the “Slave” node is transmitted via LAN and integrated in the “Master” node. The
positional relation of Kinect2s is shown in Fig. 21.1.
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Fig. 21.1 Positional relation
of two Kinect2s

Fig. 21.2 Example of
simulation model

Integrated data from Kinect2s is recorded using “iPi Recorder” by iPi Soft [7].
Recoded video data is then transformed into the coordinates of joints using “iPi
MOCSP STUDIO” by iPi Soft [7].

Electromagnetic Simulation

The performance simulation is conducted using OpenFDTD, the Finite Difference
Time-Domain (FDTD) method simulator released by EEM [2]. Simulated frequency
is set to be 2.4 GHz of ISM band which is used for medical equipment. As for
antenna analysis, given the wavelength λ, then it is recommended to set the side of
one cellto be less than (1/10)λ mm [10]. We therefore define 8 mm cubic cells since
λ = 125 mm at 2.4 GHz.

An example of simulation model is depicted in Fig. 21.2 in which sensor nodes
are installed on the left wrist, the left knee, and the left shoulder, and the coordinator
node is installed on the chest. To simulate the motions of the model that are
decomposed in time series, we use a time series of the 25 joint coordinates captured
by Kinect2. Since the frame rate of the Kinect2 is 30 fps, we thin the obtained
coordinate by a quarter of the time, so that our simulation model can be captured
every 4/30 s. In this model, the relative permittivity ε and the permeability μ of
human body are set to be 35.194 and 1.13667 S/m, respectively, and these values
are 2/3 of human muscles at 2.4 GHz [6].
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Fig. 21.3 Properties of patch antenna. (a) Antenna dimension. (b) Return loss characteristics

The size of the patch antenna is shown in Fig. 21.3a. The relative permittivity
of the dielectric is 1.92 and Perfect Electric Conductor (PEC) is used for the patch
antenna. Using this antenna model, we calculate the return loss RL of this patch
antenna, which is defined to be

RL = 20 log(V1/V0). (21.2)

Thus, the return loss RL represents the ratio of reflected voltage V1 to incident
voltage V0.

The return loss characteristics are shown in Fig. 21.3b. Since the return loss has
the lowest value at 2.4 GHz, it is confirmed that this antenna can be used at 2.4 GHz.

Based on the electric field intensity E at each reception point in Fig. 21.2,
the transmission coefficient S21is derived. Here, we assume that half wavelength
dipole antennae are placed at reception points. The electric field intensity E is
transformed into the power flux-density [1], and then we can obtain the available
power Pr [12, 14]. Since the feeding voltage Vt is an input to the transmission
antenna, we transform Pr into the received voltage Vr as

Vr = √50Pr , (21.3)

where characteristic impedance is 50 �. Therefore, S21 is given by

S21 = 20 log(Vr/Vt ). (21.4)
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21.4 Encoding Scheme and Simulation of Communication

In IEEE 802.15.6, double error correcting (63, 51) BCH code is proposed as an error
correcting code. The generator polynomial G(X) of the BCH code defined in IEEE
802.15.6 is given by

G(X) = 1 + X3 + X4 + X5 + X8 + X10 + X12. (21.5)

Recall from Sect. 21.2 that integer codes are codes defined over finite rings of
integers, and look-up tables can be used for decoding. Therefore, we aim to consider
integer codes as an appropriate coding scheme for power-saving WBAN systems,
and compare the results of integer codes with the results of BCH codes. In our
simulations, a (±1) single error correcting integer code [8] of length n = 3 over
Z8 whose parity-check matrix is H = (1, 2, 3) is used for comparison. The code is
originally used for 8PSK but we use it for D8PSK in this paper. Moreover, we used
soft decoding to increase the error correction capability.

Figure 21.4 shows the block diagram for the BER simulation. First, an input
random binary sequence is encoded by the BCH code or the integer code, and
modulated into a complex signal. The complex signal is affected by the S21
calculated in previous section and noise. The resulting (noisy) complex signal is
demodulated and decoded to a received sequence. Finally, the received sequence is
compared with the input random sequence, and the number of positions at which
errors occur is counted. The BER is calculated as

BER =
∑�

i=1 Ni

� × k
, (21.6)

where � is the number of simulations, Ni is the number of error positions in a
received sequence at the i-th simulation, and k is the message bits size. In our

simulation, � = � 108

51 � for the BCH code and � = � 108

6 � for the integer code, so
that the number of transmission bits is greater than or equal to 108.

Fig. 21.4 Block diagram of BER simulation
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21.5 Simulation Results

Figure 21.5a shows the electric field distribution (x-z plane) of the center of the
body at t = 1.2 s. As is in the figure, the electric field is strongly radiated in front
of the body and very weak in the back of the body. Figure 21.5b shows the S21
characteristics of three reception points during the walking motion. In the case of
the left wrist, S21 takes the maximum value at 1.2 and 2.7 s. Then, the left arm is
positioned in front of the body. That is, the left wrist is in the strong electric field as
in the Fig. 21.5a. On the other hand, S21 takes the minimum value at around 2.0 s.
Then, the left arm is positioned in the back of the body, where the electric field
behind the body is very weak. In IEEE 802.15.6, a transmitter shall be capable
of transmitting at most −10 dBm Effective Isotropic Radiated Power (EIRP) at
2.4 GHz. Furthermore, a receiver shall achieve receiver sensitivities from −92 to
−83 dBm depending on the information data rate [5]. Therefore, in the case of
the left wrist, the received signal level becomes lower than the reference value,
momentarily.

Table 21.1 shows the maximum values, the minimum values, and the average
values of each position. From Fig. 21.5b and Table 21.1, the value of the left
shoulder is more stable than the others. There is the largest change in the S21 of
the left wrist. The average of S21 of the left knee is same as the one of the left
wrist. However, the change of the left knee is smaller than the left wrist due to the
condition of the farthest and no interruption.

Fig. 21.5 The electromagnetic simulation result. (a) The electric field distribution (the center of
the body, t = 1.2 s). (b) The transmission coefficient characteristics during walking

Table 21.1 Maximum,
minimum and average value
of S21 (unit: dB)

Position Minimum Maximum Average

Left wrist −82.1 −34.5 −42.7

Left knee −67.5 −49.6 −54.1

Left shoulder −32.6 −24.9 −28.7
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Fig. 21.6 The BER characteristics using D8PSK. (a) The left wrist. (b) The left knee. (c) The left
shoulder

Next, we execute the BER simulation based on the attenuation in the Table 21.1
using D8PSK. The results of the BER simulation are depicted in Fig. 21.6a, b, and
c. From these figures, we can observe that when the BER is 10−4, the integer code
produces about 2.2 dB of gain in SNR compared to the BCH code. In addition, it
can also be confirmed that the integer code influences the BER performance at the
smaller value of EB/No compared to BCH code. For example, for Max. in the left
wrist, the BCH code starts to influence the BER performance from around 45 dB,
whereas the integer code does from around 37 dB.

21.6 Conclusion

In this paper, we analyzed the walking motion using two Kinect2s capturing the
motion from the front and the back. We then obtained the transmission coefficients
S21 for the walking model by the electromagnetic simulation using FDTD method.
Using the obtained S21 as an attenuation, we next executed simulations on BERs
for the (63, 51) BCH code and the integer code (n = 3,H = (1, 2, 3),Z8) for
comparison. We confirmed that the integer code produces gains in SNR compared
to the BCH code, which supports the efficiency of the index code.

As a future work, we will evaluate the cost difference of the index code by
calculating the power consumption from the computational complexity, such as
encoding methods and codeword lengths. We also aim to further evaluate the
performance of the index code for a practical perspective by comparing with other
effective error correcting codes, such as LDPC codes.
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Chapter 22
InstantRR: Instantaneous Respiratory
Rate Estimation on Context-Aware
Mobile Devices

Md. Mahbubur Rahman, Ebrahim Nemati, Viswam Nathan,
and Jilong Kuang

22.1 Introduction

Chronic obstructive pulmonary disease (COPD) refers to a class of lung ailments
that cause difficulty in breathing which progressively leads to serious complications,
and it is the third leading cause of death in the USA [1]. According to the American
Lung Association, more than 35 million people are living with chronic pulmonary
diseases. The cost of pulmonary diseases in the USA is as high as $154 billion
per year with a 6% increase every year [2]. Early detection of lung worsening for
chronic pulmonary patients would greatly reduce hospital readmissions, improve
patient outcomes and their quality of life. Acute exacerbation is a severe pulmonary
attack for a COPD patient which can lead to hospital readmission and elongated
hospital stays up to 30 consecutive days [3]. This acute event can be predicted
as early as 5 days before the attack [3], and taking the necessary medications and
precautions could prevent it altogether.

The current mode of treating acute COPD exacerbation is predominantly reac-
tive, with remedial steps being taken only after a serious adverse event. Sensing
and monitoring using mobile devices such as smartphones and smartwatches in
users’ natural environment and applying machine learning techniques to predict
exacerbation can transform the current paradigm from being reactive to proactive.

This work is motivated by the fact that respiratory rate is an important predictor
for acute COPD exacerbation [3] and can reliably be measured in-home using
ubiquitous consumer devices such as smartphones and smartwatches. By analyzing
respiratory rate trends over several days, along with the blood oxygen saturation
(SpO2, which is also available on Samsung Galaxy smartphones [4]) can help
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predict and prevent acute exacerbation. Previous research has shown the feasibility
of estimating respiratory rate using low-cost accelerometers embedded in mobile
devices [5, 6]. However, those approaches are not focused to handle chronic
pulmonary patient conditions and are less resilient to varying contexts in a patient’s
natural environment such as conversation, coughing, and stressful conditions.

Currently chestbands are used for reliable respiratory measurements. However,
the chestbands are uncomfortable and cumbersome [7], particularly for the COPD
patients who are more likely to be among the elderly population [8], and are not
as accessible as smartphones. Recent works have shown the promise of utilizing
sensors such as accelerometer, gyroscope, photoplethysmograph (PPG) embedded
in smartphones and smartwatches to extract physiological parameters such as heart
rate [4]. Such examples include BioWatch [6], BioPhone [9], HeartSense [10],
and SleepMonitor [11]. HeartSense [10] instantly measures heart rate using a
smartphone held against the user’s chest. Inspired by them, we present here a
context-aware framework to instantly check respiratory rate, which is another
important vital parameter for COPD patients, on the spot using commodity mobile
devices. Our work enhances the patient’s ability to measure respiratory rate using
their smartphones or smartwatches anytime, anywhere.

In this paper, we present an approach which takes various patient conditions into
account and finds the optimal trade-offs across sensing, analytical algorithms, and
user contexts to estimate respiratory rate. We designed a study protocol focusing
on pulmonary patient conditions in-home settings and collected carefully labeled
inertial sensor data from 23 subjects using smartphones and smartwatches. We
developed an automated device placement detection algorithm which can detect
whether the device is placed on the chest or the abdomen with 97% accuracy
using tenfold cross validation with a bagged decision tree model. Utilizing the
device placement context and the other available context information, our approach
represents a novel method for the optimal fusion among sensors and related
algorithms to reliably estimate respiratory rate. We show that mean estimation
error can be as low as 0.85 breaths per minute by applying a simple zero-crossing
algorithm in the time domain on the Gyroscope X-axis data stream when the system
automatically determines that the user placed the device against their abdomen in a
supine position. Therefore, we can avoid using computationally intensive frequency
domain algorithms for the same estimation. We further show that additional, more
sophisticated processing steps such as using a Kalman filter can improve the average
estimation accuracy by 21.31%.

22.2 Related Works

In this section we summarize some of the related works that have attempted to
estimate respiratory parameters using mobile or wearable devices. One of the
earliest notable works to use accelerometer data to estimate respiration rate did
so by attaching the motion sensor to the chest [12]. This work provided valuable
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results in terms of the feasibility of this approach, but was validated only for the sole
scenario of a patient at rest in a supine position. BioWatch [6] and BioPhone [9]
built on these efforts by estimating respiratory rate using a smartwatch worn on
the wrist, and a smartphone placed in a pocket/bag respectively. These represent
more convenient and feasible form factors for continuous sensing in daily life
scenarios. While the algorithms from those works were tested for three different
postures, there was no formal definition of a framework for context-aware sensing
to handle any of the many possible variations such as speech activity and breathing
pattern changes. Another work called SleepMonitor [11] also used a smartwatch
worn on the wrist to calculate respiration rate using the motion sensors, but again
this was optimized and validated exclusively for the scenario where the user is
sleeping. Previous research has shown the potential of including context-awareness
to improve activity recognition. For example, Nemati et al. utilized knowledge of the
location of the device inside a house and knowledge of the user’s current posture to
improve accuracy of detection and reduce battery consumption [13, 14]. However,
the contexts related to breathing measurement are different; these can include the
placement of the device on the user’s body, signal dampening due to heavy clothing
or fat mass, motion artifacts, and the user’s existing pulmonary conditions such as
asthma or COPD to name a few.

The contribution of this work is a presentation of a framework that is purpose-
built to handle the myriad of variations in device placement, user posture, user
activity, user health condition, and so on in daily life scenarios in the real world
to measure breathing rate using mobile devices. Previous works have shown the
feasibility of using low-cost motion sensors already present in mobile devices to
estimate respiratory rate, and in this work we formulate a framework to improve the
robustness of these estimates by detecting and optimizing for variations in context.

22.3 Study Design and Data Collection

Study Description

To collect carefully labeled training data, we designed and conducted a pilot
study with 23 healthy subjects. Participants were instructed to wear a Zephyr
chestband [15] under their clothing (Fig. 22.1b) as a source of ground-truth signal,
and wear a Samsung Gear S3 smartwatch on their left hand. They held a smartphone
(Samsung Galaxy Note 5) on the left side of the chest and held the smartwatch
on the abdomen as shown in the Fig. 22.1a. In that way, we capture breathing
movement both from the chest and the abdomen. Moreover, each sample from the
phone, watch, and the zephyr device were associated with Unix timestamp to aid
subsequent synchronization.
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Sensor Data

Raw sensor data includes 3-axis accelerometer (200 Hz), 3-axis gyroscope (200 Hz),
3-axis magnetometer (200 Hz), PPG (100 Hz), and audio (44.1 KHz). Derived
sensor data includes oxygen saturation (SpO2), 3-axis rotation, 3-axis orientation,
and heart rate. In this paper, we focus on accelerometer and gyroscope data, with the
incorporation of other sensing modalities for other applications left for future work.

Study Protocol

Our study protocol includes eight 1 min tasks, with the study coordinator marking
the start and end of each activity session (Fig. 22.1c) using another smartphone.
It must be noted that all the devices including the smartwatch and the chestband
are synchronized before collecting data from each subject. The study coordinator
explained the task to the participants before each task. Including instructions, the
whole data collection duration ranges from 15 to 20 min.

1. Sit-Silent: breathing at a normal, regular pace while seated.
2. Supine-Silent: lying on the back, breathing at regular pace.
3. Sit-Read Out Loud: reading neutral sentences [16] for 1 min. These sentences are

carefully chosen to avoid emotional stimuli inherent in the texts for this task.
4. Supine-Deliver Speech: perform free, undirected speech for 1 min on any non-

private topic. The participants were given around 1 min for preparation and 1 min
for the delivery. This session creates more cognitive load than the reading task,

Fig. 22.1 Data collection setup. (a) Device placement. (b) Zephyr Bioharness3. (c) Data annota-
tion
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since it engages the memory and requires speech planning. Moreover, public
speaking is a known stressor [17].

5. Sit-Dirhythmic Breath: Dirhythmic breathing is one of the important breathing
characteristics of COPD patients. In our dataset, our subjects are instructed to
simulate the first half (30 s) in one breathing pace (e.g., fast) and the second half
in another breathing pace (e.g., slow).

6. Sit-Breath Hold: Within 1 min, the participant is requested to hold their breath
for a few times.

7. Sit-Cough: Simulate at least three coughing episodes within a 1 min session.
8. Sit-Silent-Phone-Watch: Both phone and the watch are held on the chest, and

data is collected while the participant is sitting in silence.

We included the sitting and supine postures since these are the most likely
postures for COPD patients. The study coordinator annotated each session on a time
synchronized smartphone. Task 6 and Task 8 are not collected for respiratory rate
analysis, and will be reported in separate manuscript. Therefore, in this paper, we
report the results on the remaining six tasks.

Data Collected

We have collected data from 23 healthy subjects including four females. The age
range of the subjects is 20–40 years. Demographics include Caucasian, Pacific
Islander, Middle Eastern, and Asian. The subject cohort did not include any
individuals with reported breathing disorders for this initial pilot study.

22.4 Methods

System Overview

The overview of the context-aware respiratory rate estimation framework (Fig. 22.2)
shows how the patient is taking the measurement and our approach finds the optimal
fusion among contexts, sensors, and algorithms. Contexts can include user contexts
such as health condition, posture and motion; device contexts such as placement
whether it is on the chest, abdomen or somewhere else, and its orientation; social
context such as conversation, and data context such as signal quality. Algorithms
can include a set of data analytic steps with varying computation processing
requirements. For example, frequency domain analysis can be more computationally
intensive than time domain analysis. In this approach, if the current context indicates
that applying simple time domain analysis on a single axis of accelerometer data
is sufficient for reliable estimation, our approach will select that combination



272 Md. M. Rahman et al.

Fig. 22.2 Overview of the context-aware estimation framework for respiratory rate

and reduce the power consumption and processing cycles, while maintaining high
estimation accuracy.

Given a set of algorithms A = {A1, A2, . . . , Am}, sensors S = {S1, S2, . . . , Sn}
and contexts C = {C1, C2, . . . , Cp}, we optimize the following equation based on
training data:

(Af , Sf ) = argmin
Ai∈A,Si∈S

ε(Ai, Si) | Cd

Where, (Af , Sf ) is the final selection of algorithm and sensor pair, ε(Ai, Si)

is the expected error w.r.t the ground truth estimate for algorithm and sensor pair
(Ai, Si) which is obtained from the training data, and Cd is the detected context
among the set of contexts C.

Data Analysis Pipeline

Data Preprocessing

In order to extract respiratory rate from a specific stream of sensor data (e.g.,
20 s of accelerometer, or gyroscope, or their combinations), we perform several
preprocessing steps. First, all the data streams are down-sampled to 100 Hz (to
make it comparable with BioWatch [6]). We then compute the magnitude as√

a2
x + a2

y + a2
z . Since the magnitude data is independent of device orientation [7],

we consider the magnitude as another source of data stream for analysis. We then
detect the segments of the signal affected by the motion artifacts. Although our
data collection setup includes only sitting and supine activities where movement
is expected to be minimal, some spurious movement of the body parts (e.g.,
moving hands, or upper body) could create motion artifacts and affect data quality.
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Therefore, we remove the motion artifacts for each session by discarding the
samples outside of the range [Q1 − 1.5 × IQR, Q3 + 1.5 × IQR], where IQR

is the inter-quartile range, Q1 is the first quartile, and Q3 is the third quartile [18].
Removing the motion artifacts creates gaps in the data. If the gap is more than 50%
of the time window, we discard the window. Otherwise, we use an auto-regressive
time-series model to interpolate and fill the gaps while following the underlying
pattern in the time-series signal.

Context Identification

Context information can include device placement (e.g., ribcage vs abdomen),
user health condition (e.g., coughing), user posture (e.g., sitting), user social
interaction (e.g., speech) among others. In this subsection, we describe how we
can automatically detect device placement on user’s body using machine learning
algorithms. Here, we detect and distinguish device placements on the ribcage
(chest) and the abdomen as a novel context for respiratory rate estimation. Other
contexts such as speech detection, cough, posture can either be identified by other
models (e.g., social interaction from [19] and cough from [20] or be derived from
a smartphone’s default health applications (e.g., posture information from Samsung
Health app [4]).

• On-body device placement: To detect the device placement on the user’s
body, we used supervised classification techniques. We collected additional
accelerometer and gyroscope data when the device is off-body (e.g., smartphone
on-table which is the most likely placement of the device at home and at
office [21, 22]). To measure reliable respiratory rate, the most suitable device
placement is to place the device against the ribcage or the abdomen. Therefore,
we develop a three-class classifier for ribcage, abdomen, and on-table (off-body)
placement. Carefully labeled training data for ribcage and abdominal placement
is used from the study described in Sect. 22.3. For this classification task, we use
3-axis accelerometer and 3-axis gyroscope data.

First, the sensor signals are filtered using a band-pass filter of the range from
0.13 to 2.5 Hz to include both the breathing motion and the heart motion as an
indicator of on-body placement. This is because, when the device is placed on the
ribcage, both the heart motion and breathing motion will be present. On the other
hand, when the device is placed against the abdominal wall, breathing motion
is more likely to be dominant because of heart motion dampening as the signal
moves towards the abdomen. After signal normalization using z-score, we extract
features from each session of the labeled data as described in 22.3.

To extract features, sensor data from each session is segmented into 5 s win-
dow with 50% overlap. We extracted features that are found to be discriminative
for device placement detection on the user’s body. For example, Incel [22] found
that mean, variance, zero-crossing-rate, absolute difference in time domain, and
the first 5-FFT coefficients and spectral energy in frequency domain, were the
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most discriminative features for device position detection. Fujunami [23] found
that the distribution of the frequency components, and correlations among axes
are very useful to detect phone on-body. Moreover, since we are mostly interested
in detecting ribcage and abdominal positions where the heart motion and lung
motion are particularly important, we extracted bin features from the frequency
component, by finding the sum of the frequency component in lower [0.1–
0.66 Hz] and higher frequency bins [0.66–2.5 Hz]. In total, we extracted 75
features from both accelerometer and gyroscope data. One example scatter-plot
for two of those features is shown in Fig. 22.3a.

We performed 3-class classification of the dataset using the MATLAB
Machine Learning Toolbox [24]. Bagged Decision Tree model gives the best
performance (97.2%) accuracy followed by Boosted Tree (94%), Linear Support
Vector Machine (89.3%), and Weighted k-Nearest Neighbors (KNN) (88.4%)
with tenfold cross validation. The confusion matrix for Bagged Decision Tree is
shown in Fig. 22.3b.

• Other Contexts: Similarly, other contexts such as speech, cough, posture, patient
condition can also be determined from the same set of sensors in use here. For
example, we are identifying breathing motion from the motion artifacts Fig. 22.4a
and detecting peaks and troughs of the breathing motion. Breathing motion can
be used to detect speech and conversation [19]. The ratio between inhalation
(temporal distance from trough to peak) and exhalation (temporal distance from
peak to trough) is found to be one of the most discriminative features for speech
cycle identification. Once the cycle is identified as speech, the current context
can be determined as a social interaction. Cough can be detected using the
microphone samples collected on the mobile device (e.g., smartphone) [20].
Posture and activity contexts are commonly available on a smartphone’s wellness
monitoring ecosystems (e.g., Samsung Health [4]).

Fig. 22.3 Device placement detection. (a) Scatterplot for abdominal and ribcage placement. (b)
Confusion matrix for Bagged Decision Tree
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Fig. 22.4 Set of algorithms. (a) Peak detection method. (b) Zero-crossing method. (c) FFT-based
method

Set of Respiratory Rate Estimation Algorithms

There can be several algorithms with varying computational requirements. For
example, a zero-crossing based time domain algorithm can be much lighter than
a Fast Fourier transform (FFT) based frequency domain approach. Moreover, if the
sensor stream is unreliable, we may need more expensive filters (e.g., Total Variation
Filter [11]) to extract the underlying signal from noisy sensor data. Therefore, for
the purposes of this paper, we refer to an algorithm as a set of computation steps
that can estimate the respiratory rate from sensor data. In the following, we describe
three such algorithms to show that our approach can perform satisfactorily even
with relatively basic algorithms. More sophisticated customization of the processing
steps (e.g., adding Kalman filter as a post-processing step) inside those algorithms
can further improve the performance of our approach. For instance, all of the tested
algorithms show relatively higher mean absolute error (MAE) in the presence of
Dirhythmic breathing and breath-holds; this can be improved by developing more
sophisticated algorithms customized for those breathing patterns, and utilizing them
when the corresponding context is detected.

Algorithm#1—Peak Detection Based Estimation in Time Domain One example
of a time domain algorithm is shown in Fig. 22.4a. First the signal affected by
movement artifacts (highlighted first 2 s) is removed, then the signal is normalized
using z-score, segmented into 20 s windows with 50% overlap, and filtered using
a band-pass filter of range 0.133 to 0.66 Hz corresponding to a respiratory rate
ranging from 8 to 40 breaths per minute. Since breathing is a semi-voluntary
physiological phenomena, the subject can hold breath at any time inside a breathing
cycle, and there can be several candidate peaks that are not removed by the band-
pass filter. Therefore, the signal is further smoothed using a 0.5 s time window to
avoid spurious peaks in the breathing waveform. Finally, we use the rConverse [19]
algorithm to detect respiratory peaks and compute the respiratory rate from the
median peak-to-peak distances within each time window.

Algorithm#2—Zero-Crossing Based Estimation in Time Domain In a breathing
cycle, inhalation is shorter in duration and a sharply upward-going signal compared
to that of exhalation. Therefore, identifying the zero-crossing points of inhalation
signal within a breathing cycle can be a robust way to estimate respiratory rate in
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the time domain. Similar to Algorithm#1, we filter and smooth the signal. Then, we
subtract the mean and identified zero-crossing points of the inhalation signal that
crosses the zero line (Fig. 22.4b). Finally, we compute the respiratory rate from the
median of temporal distances between zero-crossing points.

Algorithm#3—FFT-Based Estimation in Frequency Domain We first applied an
averaging filter to each of the data streams (e.g., x-axis from accelerometer)
independently. The size of the window was set to be the duration of a respiration
cycle at a predefined maximum breathing rate of 40 breaths per minute, which
enables removing the higher frequency cardiac motions. We then selected the
component with the most periodic signal to become the final respiratory wave. In
this case, the periodicity level was defined as the maximum amplitude observed
within 0.13 and 0.66 Hz in the frequency domain (corresponding to 8 and 40 breaths
per minute, respectively). Figure 22.4c shows one example of a maximum amplitude
component under the highlighted box that determines the respiration rate for that
period.

Respiratory Rate Estimation from Context-Aware Fusion

Our approach will first automatically detect current device context (e.g., device
placement on the chest or the abdomen), then compute the optimal combination
of the algorithms and sensor data streams to measure respiratory rate. In the training
phase, our approach will apply all the available algorithms on all the relevant sensor
data streams. Then, using the equation described in Sect. 22.4, it determines the best
combination of sensor data and the algorithm that gives the least estimation error in
the given context. Our current framework creates a mapping table (see Table 22.1)
of algorithms and sensors data streams for each context. In the testing phase, our
approach will first determine the context, and then perform a look-up of the mapping
table to process a particular data stream and use the associated algorithm and sensor
to estimate respiratory rate, rather than exhaustively computing all algorithms on
all sensor data streams. For example, if the current context is that the device is on
the chest and the user is sitting and having intermittent coughs, then, our approach
will process only the accelerometer magnitude data stream and apply only the zero-
crossing algorithm to estimate respiratory rate since this combination is expected to
have the lowest estimation error according to the training data.

Kalman Filter for Enhanced Robustness

The availability of computational resources, the required latency for an estimate,
and the required accuracy level of an estimate can all vary depending on the
application scenario. In the event that there is room for offline analysis using
more computational resources, the proposed framework can still accommodate more
sophisticated algorithms to improve the robustness of the estimates. For instance,



22 Context-Aware Instantaneous Respiratory Rate Estimation 277

Table 22.1 Fusion mapping table for algorithm and sensor fusion in various contexts

Placement Posture User contexts Sensor data Algorithm MAE

Chest Sitting Silent Accelerometer Y-axis FFT-based 0.93

Chest Supine Silent Gyroscope magnitude FFT-based 1.53

Chest Sitting Speech Gyroscope magnitude FFT-based 2.47

Chest Supine Speech Accelerometer magnitude FFT-based 2.91

Chest Sitting Dirhythmic breaths Accelerometer magnitude FFT-based 4.82

Chest Sitting Coughing Accelerometer magnitude Zero-crossing 2.50

Abdomen Sitting Silent Gyroscope X-axis Zero-crossing 0.85

Abdomen Supine Silent Accelerometer magnitude Zero-crossing 1.59

Abdomen Sitting Speech Gyroscope magnitude FFT-based 3.98

Abdomen Supine Speech Gyroscope X-axis FFT-based 2.90

Abdomen Sitting Dirhythmic breaths Gyroscope Z-axis FFT-based 3.99

Abdomen Sitting Coughing Gyroscope magnitude FFT-based 1.67

This table shows what sensors and which algorithms are optimal for the given contexts. Here,
FFT-based algorithm refers to Algorithm#3, and Zero-crossing algorithm indicates Algorithm#2
described in Sect. 22.4. Accelerometer and Gyroscope magnitude data is calculated from the
combination of their three axes respectively. MAE refers to the mean absolute error with respect
to the Zephyr ground-truth signal

we demonstrated that the use of a Kalman filter on top of the direct estimates of
respiration rate from the accelerometer data can further reduce the estimation error.
The prediction and update equations for the Kalman filter were defined as follows:

Prediction:

R′
t = Rt−1

P ′
t = Pt−1 + Q

Update:

k = P ′
t

P ′
t + M

Rt = R′
t + k(Zt − R′

t )

Pt = (1 − k)P ′
t

Where, Rt is the estimate of respiration rate at time t, Pt is the estimation error
variance at time t, Q is the model error variance (set to be 4 BPM in this work), M is
the measurement error variance (set to be 5 BPM in this work), k is the Kalman gain
and Zt is the measured respiration rate according to the sensor at time t. The fixed
error variance values were chosen somewhat empirically based on observations of
the dataset; however, there is room to increase sophistication here as well by learning
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these values from training data and making them context-aware by modifying the
expected error variance based on the current conditions; this is left for future work
as it is not the focus of this initial presentation of the context-aware framework.

We found that the Kalman filter always improves the respiration rate estimation
performance, with an average improvement of 21.31% across all tasks and subjects.
A one-sided t-test showed this is a statistically significant improvement with p-
value < 0.005 across all activities. This demonstrates another avenue for modularity,
wherein the sophistication of the algorithm can be chosen based on the detected
resources and requirements.

22.5 Results

We compare our approach with respect to the Zephyr ground-truth and an existing
approach called BioWatch [6] as a baseline model. It must be noted that the
BioWatch is a frequency domain analysis of sensor streams from 3-axis accelerom-
eter and 3-axis gyroscope. Therefore, it involves processing all of the data streams
to find the best accuracy. Whereas our approach will select only a few of them to
estimate the respiratory rate and will use a less intensive time domain approach
whenever appropriate. For example, Fig. 22.5 shows that the zero-crossing based
time domain algorithm can outperform the more complex state-of-the-art BioWatch
algorithm in more than 41% of the possible combinations in our dataset. It implies
that deploying the zero-crossing algorithm in those cases will give more reliable
estimates while it is more likely to reduce the CPU usage and battery consumption.
This shows how context-awareness can help recognize situations wherein more
efficient algorithms can be applied while still maintaining or even improving the
accuracy of the estimates.

We observe that ‘Sit-silent’ has the best reliability for respiratory rate estimation
across frequency and time domain algorithms for both the chest and abdominal
placement (Fig. 22.6). ZCR algorithm (MAE = 0.85) performs better than the FFT
algorithm (MAE = 0.93) on the Gyroscope X-axis sensor stream, illustrating the

Fig. 22.5 Error distribution
comparison with BioWatch
and with respect to the
ground truth
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Fig. 22.6 Error variation across contexts for FFT algorithm with a male participant’s data. Each
column indicates one sensor data stream and each row indicates one context. A deeper red hue
indicates higher error

need for different algorithm and sensor combinations for different contexts. The
presence of speech, cough, and Dirhythmic breathing in the other activities lead
to increased error rates and warrant more sophisticated and customized algorithms
than the ones explored in this initial study. However, the context-aware framework
presented here can accommodate these additional algorithms or processing steps
and utilize them when those challenging contexts are detected.

22.6 Discussion and Limitations

Although we presented a limited number of algorithms and a limited number
of contexts in this paper, our framework can accommodate a myriad of other
contexts and algorithms. Several of the contexts can be automatically determined.
For example, we presented on-body device placement context detection using
accelerometer and gyroscope. Self-reporting via user-prompt on a smartphone can
be leveraged to determine unknown, undetermined contexts. For example, male and
female users can have different sets of optimal algorithm and sensor combinations
because of differences in body-shape. We can incorporate the information from self-
reports and find the optimal fusion for each gender.

There are several advantages for context-aware estimation. First, the system
becomes more reliable and can handle varying situations in real-life. Second, by
smartly switching among the algorithms or computational steps, it can save pro-
cessing power (CPU) and battery consumption for hand-held mobile devices where
power and CPU cycles are in constant demand for other apps and communication.
The system can deploy light-weight computational processing steps (e.g., time
domain) on less power hungry sensors (e.g., accelerometer) when the contexts are
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relatively easier and conducive for high quality estimation. Third, the user burden is
alleviated by reducing the need for readjustment and re-measurement.

One limitation of the current study is the limited amount of data with a limited
number of contexts. However, using post-processing steps such as Kalman filter can
add enhanced robustness and give more reliable estimates in other unknown and
more challenging situations. Moreover, in this paper, we tested the framework using
three algorithms. More algorithms and their customizations could improve overall
estimation accuracy further.

Another limitation of the current study is that we collected data from a limited
number of healthy subjects who simulated the pulmonary symptoms such as cough,
Dirhythmic breathing in a controlled experiment setting. In the future, we will
recruit COPD patients with varying levels of severity and collect data in more
natural settings to validate our approach.

22.7 Conclusion and Future Works

We present a novel approach of estimating respiratory rate using inertial sensor data
from consumer mobile devices by finding the optimal combination of sensors and
algorithms for each underlying context which can also be automatically detected
by the same sensor data. For automatic context identification, we used a Bagged
Decision Tree on accelerometer and gyroscope data to determine whether the device
is placed on the chest or the abdomen with 97% accuracy using tenfold cross
validation. We show that mean estimation error can be as low as 0.85 breaths per
minute by applying a simple zero-crossing algorithm in time domain on Gyroscope
X-axis data when the system determines that the user has placed the device against
the abdomen in the supine posture. Therefore, we can avoid computationally
intensive frequency domain algorithms and unnecessary analysis of other sensor
data. We further show that additional sophisticated processing steps such as using
a Kalman filter can improve average estimation accuracy by 21.31% on average.
Although we developed our context-aware approach focusing on respiratory rate
estimation, it can further be extended for other physiological parameter estimation
in future, such as heart rate, which also varies across contexts.
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Chapter 23
Pre-Ejection Period (PEP) Estimation
Based on R-Wave in ECG and On-Body
Continuous Wave Radar Signal During
Daily Activities

Malikeh Pour Ebrahim, Fatemeh Heydari, Jean-Michel Redouté,
and Mehmet Rasit Yuce

23.1 Introduction

The pre-ejection period (PEP) (a systolic time interval) is one of the important
parameters to monitor cardiac activities noninvasively. The PEP is the time interval
between the Q-wave of electrocardiogram (ECG) (ventricular depolarization onset)
and the initial point of ejection of blood from the left ventricle (the opening
of the aortic valve). The PEP illustrates an electrical-mechanical delay from the
commencement of depolarization and the beginning of ventricular contraction. The
PEP represents the duration of electrical and mechanical activities duration prior to
ejection [1].

A common way to obtain the PEP is measuring the latency between the B-point
of the impedance cardiogram (ICG) (reflects the opening of the aortic valve) and
the Q-wave onset of the ECG. An accurate calculation for the PEP can also be
done by measuring the time interval between the R-wave peak of the ECG signal
and the minimum point of dZ/dt of the ICG signal. This time interval which is
the initial systolic time interval (ISTI), is a remarkable predictor for the real PEP.
As a result, the PEP is calculated as a fixed QR interval added to the estimated
ISTI [2, 3]. [2, 3] demonstrated that the QR interval is fixed for both laboratory and
ambulatory conditions. A new detection method was also discussed in [4] to improve
the dZ/dt B-point measurement. A major limitation of the existing techniques is the
high sensitivity to noise and artifacts.
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A comparison between measurements of the PEP obtained from pulsed Doppler
echocardiography and ICG is presented in [5]. A comparison was done between
beat-to-beat ICG-based calculation of PEP and monitoring the ascending aorta using
echocardiography for two different positions, supine and tilting. The PEP from
echocardiography was noticeably lower than the ICG-based PEP for both positions.
The variance of ICG-based PEP for the supine position was higher than the one
from echocardiography [5].

The work [6] presents a method to record the electrical and mechanical activity
of the human heart simultaneously using ECG and ultra-wideband (UWB) radar
technology. The study demonstrates that the sharp edge of the UWB signal,
which represents the starting of ventricular ejection phase, happens after complete
ventricles electrical excitation.

A radiofrequency (RF) continuous wave radar (CWR) using body-contact anten-
nas has been used to monitor the diastolic and systolic activities of heart. In our
previous work [7], the combination of the antenna location on body and phase
recovery methods have been investigated to indicate the most reproducible CWR
signal. It was detected that best placement for antennas is at the sternum. In [8], by
placing radar antennas at the sternum, it was discovered that the features in CWR
signals, i.e., the foot of signal will be the closest to the ICG B-point.

Postural effects on the PEP have been examined in few studies. In [9]a combina-
tion of postural changes (supine, sitting, and standing) with paced breathing at three
different frequencies, is presented to validate ICG as a means to measure the PEP.
In [3], the validity of the PEP computed for different laboratory and ambulatory
experiments were evaluated. The experiments included a variety of posture and
physical activities.

In the current study, we evaluate our CWR sensors to measure the PEP in
various experiments, including different postures and exercise activities. Normal
daily activities have been considered, and the study validates that CWR sensors can
track the PEP changes in ambulatory situations.

23.2 Methods and Materials

Monitoring Setup

The used CWR system (see Fig. 23.1) includes two transmitter and receiver parts
to record the mechanical activities of the heart. The transmitter part sends a radio
frequency signal Tcw(t) described by (23.1) through the body using a transmitter
antenna as on-body sensor. The received signal Rcw(t) as described by (23.2) which
passes the receiver antenna, contains the distance d and organ movement m(t)
information in its phase. A mixer is used to derive the information from the received
signal and a demodulator is adopted to convert them to in-phase (I) and quadrature
(Q) components as Eqs. (23.3) and (23.4).
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Fig. 23.1 The CWR system and the location of the sensor. (Source: taringa.net)

Tcw(t) = ET cos (ωt + ϕ) (23.1)

Rcw(t) = ER cos (ωt − ω0 (d + m(t)) + θ) (23.2)

I (t) ≈ sin (ω0m(t) + θ0) (23.3)

Q(t) ≈ cos (ω0m(t) + θ0) (23.4)

In the equations, ϕ is the phase noise of the system, θ is mix of system, and
environment noise and θ0 is a combination of all the noises.

Our previous study [7] shows that the radar signal is most reproducible at the
sternum; therefore, the aortic arch was selected as the approximate location for the
antennas (see Fig. 23.1). The foot of CWR signal, comparing to the ICG B-point, is
validated to correspond to the opening of the aortic valve [8].

Experimental Protocol

Forty-three healthy volunteers aged 40 ± 15 years old, 168 ±10 cm height, and
60 ± 16 kg weight, 52% male and 48% female, participated in the experiments.
None of them reported any cardiovascular problems. The data collection was
done at the Cabrini Hospital, Melbourne, Australia, and an emergency physician
accompanied the subjects during the tests. ECG and CWR signals were measured
simultaneously, and the data from 40 participants was considered.1 The experiments

1The CWR data from three subjects was corrupted during signal recording and was omitted for
this work.

http://taringa.net
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were done in two sessions. For session one, all volunteers participated, and 23
subjects among them were selected randomly to take part in session two. All
subjects were asked to breathe normally during tests.

Session one contained measuring all signals for three different postures, 6 min
of sitting, 6 min of standing, and 6 min in the supine position. Session two was as
follows:

1. Holding handgrip for 2 min following by 1 min rest
2. Cycling with fixed speed in three different bike-resistant settings as light,

moderate, and heavy, each one for 2 min followed by 1 min rest
3. Two recovery stages after the cycling tasks, which the subjects sit on the bike

without any activity, signals were recorded for 3 min for each one

Signal Processing and Data Analyzing

The ECG and CWR signals of all participants were recorded. At first, high-pass and
low-pass filters (Chebyshev type II) were applied to eliminate the 50 Hz components
and other unknown noise and artifacts. The cut-off frequencies of the filters were
selected to remove respiration components as well. The cut-off frequencies of
the filters were chosen subject to derive their accurate heart rate; therefore, each
subject’s cut-off frequency is different.

After filtering, the location of the ECG R-peak was recognized, and the bound-
aries of each heartbeat were measured. As mentioned previously, the foot of CWR
signal, comparing to the ICG B-point, is validated to correspond to the opening of
the aortic valve, which can be used to measure the PEP. Therefore, the location
of the CWR signal’s foot was detected as PEP using the minimum of the second
derivation for each corresponding beat.

Since there were two signals (I and Q) as the outputs of the radar sensor, the
polarity of these signals was detected, and then their feet were calculated. The
foot of arctangent of Q/I as Eq. (23.5) was also calculated. At last, a comparison
was done between the detected radar signals to select the best result. Figure 23.2
illustrates the block diagram of the signal processing protocol.

Fig. 23.2 Signal processing block diagram
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ϕ(t) = tan−1Q(t)/I (t) = ω0m(t) + θ0 (23.5)

In [2, 3], it was shown that a fixed value for the QR intervals can be assumed. This
fixed interval was 39 ms in their stationary conditions and 42 ms in the ambulatory
study.

Figure 23.3a shows a sample beat of the ECG and CWR signals and also the QR
interval for ECG. Since the QRs are assumed fixed, we initially calculate PEP just
as the interval between ECG R-Peak and CWR foot. Then, we add the fixed value
of QR interval. An example of ECG, I, and Q signals is shown in Fig. 23.3b. The
foot of the CWR signal is indicated as point t.

Fig. 23.3 An example of collected signals, (a) one sample heartbeat and related QR interval, (b)
sample of ECG, I, and Q signals. The R-peak and t points (foot) of CWR signals were shown for
one beat
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23.3 Results

Two box plots are illustrated in Fig. 23.4 showing the median values of the PEP
in our study for two different sessions of tests based on the measurements of each
session’s related population.

The bar charts of mean values and standard deviations (SD) for three different
positions are shown in Fig. 23.5. The results show that the lowest PEP value (mean
47.24 ms) is obtained in supine posture and the highest PEP (mean 66.22 ms) is
obtained in the standing situation. The PEP for sitting position (mean 64.8 ms) is
between these two measurements; however, it is closer to standing.

Figure 23.6 indicates the bar charts of mean values and SDs for six different
exercise tasks. The mean values of exercise tasks are as follows: handgrip 60.94,
light exercise 55.56, moderate exercise 52.37, heavy exercise 47.96, recovery 1
59.42, and recovery 2 53.8. Comparing the results of three different stages of cycling

Fig. 23.4 Box plots of PEP median values for all participants, (a) three different positions: sitting,
standing, and supine, (b) six different tasks of exercise session included handgrip, light cycling,
moderate cycling, heavy cycling, and two recoveries
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Fig. 23.5 The mean values and SDs measured for all population for three different positions:
sitting, standing, and supine

Fig. 23.6 The mean values and SDs measured for 23 subjects for six different exercise tasks:
handgrip, light, medium and heavy cycling, and recovery 1 and 2

exercise shows a negative trend between the strength of activities and measured
PEPs.

The means and SDs for the PEP for different postures and exercise conditions are
presented in Table 23.1. The table also gives a comparison between the measured
PEP from CWR signals and the results of using ICG B-point based on [3]. It should
be considered that the experiments’ conditions are not exactly the same as [3].
Accordingly, the measured PEPs are different; similar trends are expected related
to postures and exercise tasks.
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Table 23.1 The means and SDs for PEP measured for different experimental conditions

Experimental
conditions

PEP (ICG_R-peak—CWR_foot)
Mean (SD) (ms)

PEP [3], included QR mean
(SD) (ms)

Sitting 64.80 (21.63) 108 (18)
Standing 66.22 (27.72) 117 (16)
Supine 47.24 (24.56) 95 (19)
Handgrip 60.94 (30.67) 112 (17)
Light cycling 55.56 (30.00) 115 (17)
Moderate cycling 52.37 (21.27) 77 (20)
Heavy cycling 47.96 (15.10) 66 (17)
Recovery 1 59.42 (18.40) 90 (25)
Recovery 2 53.80 (20.75) NA

23.4 Discussion and Conclusions

A comparison between PEP measurements obtained for different daily activities has
been studied in this work. The results show that not only changes in position but also
different body activities influence the PEP measurement. The calculated means and
SDs follow the trends which ICG results show in previous studies. The measured
PEPs based on R-peak to CWR foot intervals which do not include the QR intervals
demonstrate reasonable values when compared with the derived PEPs from Q onset
to B-point of ICG signals.

The values of PEPs in recovery sessions show that although the body position
and subject activity are the same for both, there is a change in the measured PEP.
This leads to the fact that the PEP is not related just to the body position or activities
but, there are other factors such as heart rate affecting this time interval.

Since there is a difference between measured PEP from CWR signals and the
ones obtained with ICG, a future validation of CWR signals with echocardiography
with the gold standard is required to have an accurate and reliable measurement for
CWR-based PEP to be utilized in medical applications.
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Chapter 24
Wearable Continuous Blood Pressure
Estimation with Photoplethysmography
Sensors Array on the Arm

Chunkai Qiu, Taiyang Wu, Jean-Michel Redouté, and Mehmet Rasit Yuce

24.1 Introduction

High-normal blood pressure (BP), or hypertension, has been a global public health
issue leading to cardiovascular diseases (CVD), such as heart attacks, strokes,
and heart failure [1–3]. About one billion people are affected by hypertension
globally and the complications of hypertension account for 16.7% of all deaths
worldwide every year [2]. The early detection of hypertension relies on monitoring
BP continuously. The traditional cuff-based BP monitoring method is unsuitable
for a long-term BP monitoring, due to its occlusiveness and limited frequency of
measurement [4]. Pulse transit time (PTT) is defined as the transit time of the arterial
pulse wave (PW) at two consecutive sites along an arterial within the same cardiac
cycle. Therefore, pulse wave velocity (PWV) can be calculated using PTT [5, 6].
The correlation between PWV and BP has been proved in previous literature [7–9].

In [10], it shows there is a strong correlation between BP and the mean
value of the 1 min peripheral pulse transit time (PPTT) based on a dual-channel
photoplethysmography (PPG) sensor placed on the forearm and wrist. In this paper,
a 4-channel PPG array for continuous beat-to-beat BP monitoring is presented,
BP changes can be captured more effectively with the proposed setup. Through
the 4-channel PPG array, PW can be obtained from four positions along the
arm simultaneously, and local PWV segments along the arm can be calculated.
Therefore, more details about how the PW transits along the arm can be examined,
which has a potential to achieve a better model for cuff-less BP monitoring in the
future.
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24.2 Method

System Overview

The proposed system is illustrated in Fig. 24.1. Four reflectance-mode PPG sensors
are employed in the system. Each PPG sensor utilities a green LED (Kingbright®,
AM2520ZGC09, 525 nm) to illuminate blood vessel as the green LED is found
to be more suitable for detecting the PW than a red or a blue LED [11, 12]. The
light reflected from the blood vessel is then collected by a photosensor (Broadcom
Limited®, APDS-9008-020).

In order to align the 4-channel PPG signals in the same cardiac cycle, elec-
trocardiogram (ECG) signal is recorded as a reference of the cardiac cycle. The
signal collected by the ECG sensor and the 4-channel PPG array are sampled at
2 kHz by a 5-channel sequential Analog-to-Digital Converter (ADC). The sampled
data is transmitted to the output buffer of a universal asynchronous receiver-
transmitter (UART) module by a Direct-Memory-Access (DMA) module, then the
UART module transmits data to MATLAB® through a USB cable in real time.
MATLAB® receives and stores the data in memory, and also displays the signal
waveforms on the computer screen in real time. After the experiment, beat-to-beat
PTT values are calculated from various combinations of the signals obtained from
the 4-channel PPG array.

PTT Determination

In [4, 6, 13], pulse delay derived from the ECG ‘R-peak’ and PPG is the pulse
arrival time (PAT), because it includes a pre-ejection period, which can affect the
PTT significantly. In [4, 6, 13], PTT is defined as the time between two pulse
signals within the same cardiac cycle. The proposed method has the advantage of

Fig. 24.1 System overview
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excluding the pre-ejection period naturally. In this work, as illustrated in Fig. 24.2,
three PTT values (PTT2-4, PTT1-3, and PTT1-4) derived from PPG-to-PPG sensors
in the array along the left arm have been considered, and the PTT values derived
from the ECG ‘R-peak’ to the maximum inclination point of PPG signal (PTTref1,
PTTref2, PTTref3, and PTTref4) have been used as a reference for result comparison
purpose. The maximum inclination point of a PPG signal is found by computing the
first derivative on the PPG signal, the peak of the first derivative plot indicates the
maximum inclination point in the PPG signal.

After getting PTT values, PWV can be calculated as [10, 14]

PWV =
�

L

PTT
, (24.1)

where
�

L is the pulse propagation distance, which is the distance between two
sensors.

Fig. 24.2 PTT derived from different combinations of PPG sensors
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Experimental Setup

To evaluate the feasibility of the system, the experiment has been conducted on
5 healthy male subjects, with age 26 ± 2 years. The subject is required to sit in a
comfortable ergonomic chair, with both arms place on the desk. A 4-channel PPG
array is placed on the left arm, targeting axillary artery, brachial artery, radial artery
(elbow), and radial artery (wrist) respectively to obtain PW. The position of each
PPG sensors is illustrated in Fig. 24.1. An ECG sensor is located at the chest to
record ECG signal as a reference of cardiac cycle.

The Finapres® NOVA is employed to measure BP continuously as a reference.
The non-invasive beat-to-beat finger arterial BP pulse is measured on the middle
finger of the subject’s right hand through a finger-cuff. Using this unit, the BP
pulse waveform is shown as a yellow line plot in Fig. 24.3. At the beginning of
the measurement, an arm-cuff calibration module on the subject’s right arm is
used to calibrate the BP value measured by the finger-cuff. After the calibration,
a reliable beat-to-beat continuous BP waveform can be measured by the finger-cuff,
the reconstructed systolic BP waveform is shown as a red line plot in Fig. 24.3, while
the reconstructed diastolic BP waveform is shown in green in the figure.

In order to obtain the changes in BP, the subject is required to perform a squat
posture 3 times during the experiment. The time duration for each experiment trial is
12 min. For the first 3 min, the subject is sitting comfortably, as shown in Fig. 24.4a.
After that, the subject stands up slowly and performs squat posture for 1 min as
shown in Fig. 24.4b, and then sit down to rest for 2 min. The same process is
repeated 3 times for each trial.

Fig. 24.3 Screenshot of Finapres® NOVA system
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Fig. 24.4 Two postures during experiment to intervene BP. (a) Sit down and rest; (b) perform
squat posture for 1 min to increase BP

24.3 Results

The collected data is processed and analyzed by MATLAB®. To examine the
feasibility of the PWV derived from PPG-to-PPG sensor, the PWV derived from
the ECG ‘R-peak’ and PPG sensor is also calculated. Figure 24.5a, b show the
comparison between the PWV calculated from PTTref1 and PTTref4 and systolic
blood pressure (SBP) respectively for subject_1. As shown in the plot, when the
subject starts to perform squat posture, BP and PWV are increasing and then
decreasing when the subject starts to rest. Figure 24.5c shows the comparison
between the PWV calculated from PTT1-4 and SBP of subject_1, and Fig. 24.5d
shows the correlation between PWV calculated from PTT1-4 of subject_1 and
measure SBP, the correlation is 0.81 with a p-value (p) < 0.01.

The correlations (r) between PWV derived from PTT1-3, PTT2-4, and PTT1-
4 and measured SBP for each of the 5 subjects are calculated and summarized in
Table 24.1. The correlations for PWV and measured diastolic blood pressure (DBP)
are shown in Table 24.2.

A correlation is an effect size, and using a guide provided in [15], the absolute
value of r:

• 0 ≤ r ≤ 0.19 : very weak
• 0.20 ≤ r ≤ 0.39 : weak
• 0.40 ≤ r ≤ 0.59 : moderate
• 0.60 ≤ r ≤ 0.79 : strong
• 0.80 ≤ r ≤ 1.00 : very strong

From Tables 24.1 and 24.2, it can be observed that there is a strong or very strong
positive correlation between the beat-to-beat PWV derived from PPG-to-PPG and
the measured SBP and DBP respectively, except the PWV calculated from PTT1-
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Fig. 24.5 Comparison between PWV and blood pressure for subject_1. (a) Comparison between
the PWV derived from PTTref1 and SBP; (b) comparison between the PWV derived from PTTref4
and SBP; (c) comparison between the PWV derived from PTT1-4 and SBP; (d) the correlation
between the PWV derived from PTT1-4 and SBP

Table 24.1 Correlations between PWV and SBP

Sensors combination Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

PPG1–PPG3 0.7079 0.9163 0.4989 0.6070 0.7735
PPG2–PPG4 0.7766 0.7181 0.6215 0.7943 0.6260
PPG1–PPG4 0.8193 0.8764 0.8797 0.7353 0.9080

Bold values represents strong to very strong correlation. Italic value represents moderate correlation

Table 24.2 Correlations between PWV and DBP

Sensors combination Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

PPG1–PPG3 0.6635 0.8873 0.5539 0.7172 0.7204
PPG2–PPG4 0.7599 0.7645 0.7284 0.8472 0.6819
PPG1–PPG4 0.7936 0.8096 0.9378 0.8027 0.8981

Bold values represents strong to very strong correlation. Italic value represents moderate correlation
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3 for subject_3 shows a moderate correlation to both SBP and DBP. The result
confirms that when BP increases, PWV will increase and vice versa. It also shows
PWV derived from PPG-to-PPG sensors can be used to estimate beat-to-beat BP
values.

24.4 Conclusion

In this paper, a wearable continuous BP monitoring system based on PPG sensors
array is presented. The system places four PPG sensors along the left arm, and an
ECG sensor located at the chest is used as a reference of the cardiac cycle for signal
aligning. The PWV values derived from the combinations of these sensors (e.g.,
PTT1-3, PTT2-4, and PTT1-4) have been examined on 5 healthy male subjects. The
result shows that there is a strong correlation between PWVs and BP. More detailed
PWV along the arm can be derived from such PPG sensors array with multiple
combinations of the PPG sensors. A more accurate BP estimation model can be
achieved based on these PWV values. An algorithm will be developed in future
work for a wearable continuous beat-to-beat BP estimation model.

Acknowledgements M. R. Yuce’s work is supported by Australian Research Council Future
Fellowships Grant FT130100430.
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Chapter 25
Cuffless Blood Pressure Estimation Based
on Pulse Arrival Time Using
Bio-impedance During Different Postures
and Physical Exercises

Fatemeh Heydari, Malikeh Pour Ebrahim, Taiyang Wu, Katie Walker,
Keith Joe, Jean-Michel Redouté, and Mehmet Rasit Yuce

25.1 Introduction

Non-invasive cuffless BP monitoring is based on measuring the time delay occurring
when a given blood volume travels from heart to other organs. The propagation
characteristic is normally obtained as pulse arrival time (PAT) or pulse transition
time (PTT) [1–4], which requires at least two vitals signs such as an electro-
cardiograph (ECG) and pulse wave. PAT refers to a time delay between ECG’s
R-peak and characteristic points on the rising slope of the pulse wave such as the
maximum, the foot, the maximum of its first derivative, maximum of its second
derivative, maximum of its second derivative, and foot of pulse as determined
by the intersecting tangent method [5]. There are significant numbers of methods
and studies that have been used to obtain the relation between PAT and BP using
photoplethysmography (PPG) signal [6].

In [7], BP pulse wave is obtained with bio-impedance (BImp) across the shoulder
in order to calculate PAT from carotid and subclavian arteries.

This method is more beneficial since it measures the PAT over the central elastic
arteries instead of the peripheral arteries. Electrical impedance or BImp is a response
of a human body (generally any tissue) to an external electrical current, which
changes relatively by blood flow and is often used for measuring cardiac output
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(or especially diagnostics of the cardiovascular system) and blood flow (without
Doppler sonography).

In this study, the relation between systolic blood pressure (SBP) and PATs
extracted from BImp is investigated under different experimental conditions includ-
ing physical exercise or different postures (sitting, standing, and supine) in order to
provide different BP trends. Furthermore, for each point, a mathematical model is
used in order to estimate SBP and the accuracy of the SBP is compared to using a
cuff device.

25.2 Methodology

Subjects

Healthy adult volunteers attended Cabrini Hospital, Melbourne, Australia for data
collection (Oct. to Nov. 2017) and emergency physicians monitored their health
during the data recording. The data was obtained from 43 healthy adults aged
40 ± 15 years old, being 168 ± 10 cm tall and with weight of 60 ± 16 kg (52%
male). All the volunteers were chosen randomly and recordings were started during
subjects’ normal state.

Procedure

In order to verify different trends of BP, the following steps were administrated
during data collection.

Firstly, all 43 subjects undertook one task, lasting 3 min, six consecutive times,
while simultaneously wearing a calibrated cuffed sphygmomanometer, the ECG and
BImp electrode dotes. The placement of sensors and the sphygmomanometer cuff is

Fig. 25.1 Placement of
sensors and cuffed
sphygmomanometer on the
body



25 Cuffless Blood Pressure Estimation Based on Pulse Arrival Time Using. . . 303

shown in Fig. 25.1. The sphygmomanometer cuff was used to extract mathematical
model parameters required for BP estimation with PATs. Each one of 43 participants
was asked to stay two times in the following 3-min posture tasks respectively, sitting,
standing, and supine. The first 2 min of each task allowed the subject to settle. At
120 s, the control cuffed oscillating sphygmomanometer commenced measurement
and returned a reading value after 60 s.

Secondly, among all participants (43 participants), 26 of them (57% male) were
seated on an exercise bike and cycled for intervals of 2 min followed by a 1 min rest.
They cycled at a target of 20–25 km/h with light, moderate, and heavy resistance
bike settings, undertaking the 2 min cycling for each resistance level. Cuff BP
readings were commenced at the start of each rest period.

For both posture and exercise testing protocols, ECG and BImp signals were
recorded 30 s before and after the cuff measurement commencement.

Signal Processing

The block diagram of the signal processing part is shown in Fig. 25.2. Recorded
signals are filtered by a bandpass filter (BPF) which sets the pass and stop
frequencies for each signal based on the heart rate frequency (HRF) range. The
frequency range is calculated by applying fast Fourier transform (FFT) on the ECG
signal to extract HRF and putting the maximum and minimum frequency limitations
around HRF.

Then, a Chebyshev type II BPF designed using Matlab was generated based on
the frequency range and applied to all signals. In Fig. 25.3, two samples (sitting and
heavy exercise) of system processing outputs (ECG and BImp) are shown.

There are various PAT extraction methods that measure the required time delay
between the ECG’s R-peak and different landmarks on the pulse wave [2, 6, 8].

In this chapter, PAT is calculated as the time interval between the R-Peak of ECG
signal and four “landmarks” in the BImp wave using the following methods:

1. Foot value (PATft), the maximum value in second derivative of pulse wave.
2. Intersecting tangents value (PATInt. Tan.), the intersection point of the tangent to

maximum gradient and tangent of the foot.

Fig. 25.2 Signal processing
block diagram
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Fig. 25.3 Filtered ECG and BImp signals samples captured during first sitting posture and heavy
exercise

Fig. 25.4 PAT feature selection

3. First derivative maximum value (PATD1), the maximum value in first derivative
of pulse wave.

4. Maximum value (PATMax), the maximum value in pulse wave.

PAT selection characteristics are shown in Fig. 25.4.

25.3 Results and Discussion

The PAT values are extracted by zero-crossing detection of BImp signal with first
and second derivatives. Then, the results are analyzed to omit any out of range
values by putting minimum and maximum thresholds. The final PAT values are
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Table 25.1 BP estimation
accuracy percentage for
≥8 mmHg and ≥10 mmHg

Cumulative accuracy percentage
Postures (%) Exercises (%)

≥8 mmHg
PATMax 91.21 90.77
PATft 78.21 87.50
PATD1 93.31 90.77
PATInt. Tan. 92.89 87.69
≥10 mmHg
PATMax 95.40 90.77
PATft 80.34 91.67
PATD1 95.82 93.85
PATInt. Tan. 94.98 92.31

averaged after passing through a moving average filter with a length of five samples
for posture and ten samples for exercise.

Under normal circumstances, the SBP should not vary more than ±10 mmHg
in two consecutive measurements: a greater than ±15 mmHg variation in BP may
indicate anatomical abnormalities [9]. The accuracy of cuffed sphygmomanometer
in this study was ±3 mmHg [10]. So, the cuff values with higher than 20 mmHg
(>15 + 3 mmHg) between both previous and next measurements with their
respected recorded signals have been removed from the data as this was an
indication of measurement errors. In practice, 24 out of 258 records have been
removed (0.09%).

In Table 25.1, the accuracy percentage of PAT-based SBP estimation using a
PAT +

b equation, compared to that of measured with cuff, for two different categories
(≥8 mmHg and ≥10 mmHg), is presented, in both postures and exercises data.
The a and b coefficients are calculated using the Matlab curve fitting techniques.
It is clear that the SBP estimation using PATD1) (or the maximum value in first
derivative of BImp pulse array) overall has the highest accuracy rate compared to
other PATs with 95.82% accuracy in postures data and 93.85% in exercises data. The
difference of calculated SBP using a

PAT +b equation with corresponding cuff values
is presented in Figs. 25.5 and 25.6 for postures and exercises, respectively. Based
on these results, our future work will include testing a larger number of subjects and
beat-to-beat BP calculations.

25.4 Conclusion

In this chapter, we investigated cuffless systolic blood pressure estimation based on
different PAT extraction methods using the bio-impedance signal, calculated from
the maximum value, foot value, first derivative maximum value, and intersecting
tangents value of the bio-impedance pulse signal. Two experiments (43 healthy
participants alternated between sitting, standing, and supine positions, and 26 were
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Fig. 25.5 Scatter plot of difference between estimated SBP and measured SBP with cuff device
for four PAT reading methods in posture experiment

Fig. 25.6 Scatter plot of difference between estimated SBP and measured SBP with cuff device
for four PAT reading methods in exercise experiment

cycling) were performed. We assessed systolic blood pressure estimation by using
a

PAT + b mathematical model for each experiment and compared all the results
for each PAT. Overall, the results of systolic blood pressure estimation using
the maximum value of first derivative which represents the inflection point are
considerably more accurate compared to other PATs reading points. As can be seen
from this study, bio-impedance signal recording is easier and more comfortable than
other pulse wave representative signals. Clearly, there is a considerable merit in
using bio-impedance signal for BP estimation systems. For our future work, we
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will study larger samples and continuous (beat to beat) BP estimation using bio-
impedance-based pulse wave.
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Chapter 26
Estimation Method of Abdominal Fat
Thickness by Microwave

Nobuaki Tanaka and Takahiro Aoyagi

26.1 Introduction

In aging society, workload of medical workers is a big problem. Preventive medicine
to reduce their workload is very important. This study focuses on metabolic
syndrome that causes lifestyle diseases. To prevent this, the Ministry of Health,
Labor and Welfare of Japan has been conducting abdominal girth measurements
at annual health examinations since 2008. The diagnostic criteria are that the
abdominal circumference is less than 85 cm for men and less than 90 cm for
women [1]. However, the visceral fat mass is not accurately reflected even when
only measuring the abdominal girth. Some instruments, such as CT scan and MRI,
accurately measure the amount of visceral fat, but expensive costs are necessary for
patients.

To overcome this issue, a measurement method for estimating abdominal
fat amount at low cost by electrical impedance tomography (EIT method) was
proposed [2]. There is also a study to measure lung density in the measurement
example using the EIT method [2]. However, in the EIT method, it is necessary
to attach the electrode to the skin, and the state of the electrode largely affects
measurement results. In order to improve the disadvantages of these measurement
methods, a non-contact and inexpensive measurement method is required.

Meanwhile, electromagnetic waves are frequently used as a non-contact mea-
surement method. A dielectric constant estimation method using a waveguide,
waveguide penetration method, has been proposed [3]. Muscle and fat and other
body tissues have been shown to have different dielectric constants [4]. From the
above, the author’s group supposed that the dielectric constant of human tissue can
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be estimated by microwave measurement and have proposed a measurement method
of abdominal fat [5].

In the ref. [5], overview of novel measurement to estimate abdominal fat amount
method and possibility of estimation was shown. However, specific fat amount
estimation algorithm is not shown. Therefore, in this study, as an early challenge
to measure fat mass using microwaves, a method of estimating subcutaneous fat
was examined. In this paper, a novel method to estimate fat thickness from the
relationship between fat thickness and resonance position at each frequency is
proposed. Since the shape of the abdomen of the human body is not a clean cylinder,
it is difficult to estimate by the method of finding the amount of fat from analytical
solutions such as waveguide penetration method. So as an initial study of the
nonparametric estimation method, a fat thickness estimation model using a neural
network was created.

This paper is organized as follows: Section 26.2 briefly describes the outline of
the measurement assumed in this research and the idea of the estimation method.
Section 26.3 shows the conditions and results of the analysis conducted to show the
effectiveness of proposed method. Also, since the estimation model uses a neural
network, its estimation accuracy is also shown. Section 26.4 gives the summary of
this paper and future possibilities are discussed.

26.2 Outline of the Measurement Method

Figure 26.1 shows the outline of the measurement method. Both ends of the
waveguide covering the abdomen of the human body are connected to a vector
network analyzer (VNA) having two ports using a coaxial cable. The S parameters,

Fig. 26.1 Concept of the
proposed subcutaneous fat
estimation method
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reflection and transmission coefficient, in the waveguide into which the abdomen of
the human body is inserted are measured by VNA.

Since the electrical constants of fat and muscle of the human body constituting
the abdomen are different, it is considered that the S parameter obtained depending
on the fat thickness varies from frequency to frequency. In this method, a cavity
resonator having a circle of a size through which the abdomen of the human body
passes is configured, and ports are provided at both ends of the cavity. The next
section shows analysis models, considerations, and analysis results.

26.3 Conditions and Results of Numerical Simulation

Estimation of Fat Thickness by Proposed Method

Figure 26.2 shows a simulation model of the measurement method proposed in this
research. Figure 26.2a is the side view and Fig. 26.2b is the top view. In this paper,
XFdtd is used for calculation of the simulation model [6]. In order to simplify

Fig. 26.2 Analysis model of
the measurement. (a) Side
view. (b) Top view
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Table 26.1 Electric constant
of human tissue and
waveguide at 2.45 GHz

Relative (S/m)
Material permittivity Conductivity (S/m)

Waveguide of constant 1 5.98 × 107

Relatively of muscle 53.96 1.19

Relatively of fat 5.38 0.068

Fig. 26.3 S11–fat thickness
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numerical calculation, a T E10 propagation mode of the rectangular waveguide is
used. The size of the cavity of the waveguide is 0.52 × 0.07 × 0.5 m and the
thickness of the waveguide wall is 1 cm. At the center of the waveguide, a hole with
a radius of 0.15 m is provided so that a model of the abdomen can be inserted.

To reduce reflections, PML is employed as a boundary condition. The frequen-
cies (1.5, 1.8, 2.1, and 2.45 GHz) are used, the fat thickness x cm varies from
1 cm to 3 cm, and the S parameters (S11 and S21) are measured every 1 mm. As
a consideration of the fat thickness estimation algorithm, the model of the abdomen
of the human body is a cylindrical dielectric composed of two layers with fat and
muscle electrical constants. A muscle layer is placed inside the cylindrical dielectric
and a fat layer is placed on the outside.

Table 26.1 shows the electrical constants of the waveguide and human body
composition [7] used for analysis at 2.45 GHz. As shown in Table 26.1, the dielectric
constant of muscle is about 10 times fat and the conductivity of muscle is about 17
times fat. In this study, the electric constant of pure copper is given to the electric
constant of the waveguide in consideration of the fabrication of the waveguide. Since
the electric constant of the human body composition varies with the frequency, as
the frequency used for analysis changes, the electric constant also changes.

Figure 26.3 shows the relationship between S11 and fat thickness. From the
results, it was found that the resonance position varies depending on the fat
thickness. In other words, it is considered that there is a possibility of estimating
the fat thickness from the resonance position by using a plurality of frequencies.

Figure 26.4 shows the relationship between S21 and fat thickness. From the result
of S21 at each frequency is −25 dB or more at the desired minimum resonance
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Fig. 26.4 S21–fat thickness
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position, it can be considered that it can actually be measured. In the next section
we will describe the fat thickness estimation model designed using the analysis data
of S11 and S21.

The Fat Thickness Estimation Model by a Neural Network

Possibility of estimating the dielectric constant of the abdomen of the human body
analytically from S11 and S21 obtained by measurement was shown in [5]. The shape
of the abdomen of the human body is complicated, it is difficult to estimate the
visceral fat mass analytically. Accordingly, it is considered that an estimation model
from data is necessary in the future. In this paper, as an initial consideration, the fat
thickness estimation model created using neural network is shown. The S11 and S21
obtained by numerical simulation results are used as learning data, and each data
amount is 4 elements × 21 samples. The four elements mean frequencies (1.5, 1.8,
2.1 and 2.45 GHz) and the 21 samples mean the result of S11 or S21 having a fat
thickness of 1 cm to 3 cm (1 mm interval). After letting the neural network learn the
data, the estimation accuracy when data was read again was confirmed. There are
three types of input data: S11 only, S21 only, both S11 and S21. As a result of learning
of 3 patterns, the highest estimation accuracy was shown when only S21 was input.
This result is shown in Fig. 26.5.

Figure 26.5 shows four results of the modeling process. 12 of 21 samples are
used for the training. The upper-left figure shows the training result. The horizontal
axis shows actual abdominal fat thicknesses and the vertical axis shows estimated
thicknesses. The six samples are used for the test and the three samples are used for
the validation. The upper-right figure and the lower-left figure show the validation
and the test results respectively. The lower-right figure shows overall result that
three phase of the modeling is superimposed together. As shown in the test result,
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Fig. 26.5 The fat mass estimation model in which the input data is only S21

the regression coefficient R is 0.99 which is very high value to estimate the fat
thickness. Despite the small number of samples in current study, this result indicates
the possibility that estimation of fat thickness can be performed when the number
of specimens in S21 increases.

26.4 Conclusion

In this paper, novel fat thickness estimation method using microwaves is proposed.
The principle and outline used for the measuring method are explained. From the
results of numerical calculation, it is considered that a method for actual human
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body measurement was established. The fat thickness estimation model using
analysis data is shown, indicating that the estimation accuracy is high. In the future,
in order to estimate the fat thickness more accurately by actual measurement, the
following investigation is carried out.

• Change the cylindrical analysis model of the two layers to the shape of the actual
human abdomen (ellipse, others).

• Change analysis model to numeric human body model.
• Increase the number of data to improve the accuracy of the estimation model.
• Design an equivalent circuit model.

Acknowledgement This work was supported by JSPS KAKENHI Grant Number 15K06054.

References

1. Ministry of Health, Laborand Welfare. https://www.e-healthnet.mhlw.go.jp/information/
metabolic/m--01--004.html. Accessed 13 June 2017

2. Nebuya, S., Mills, G.H., Miles, P., Brown, B.H.: In-direct measurement of lung density and
air volume from electrical impedance tomography (EIT) data. Physiol. Meas. 32, 1953–1967
(2011)

3. Hamaji, T., Kik, A., Aoyagi, T., Nishikata, A., Watanabe, S.: In-vivo measurement of
equivalent complex permittivity of fingers using the waveguide-penetration method. IEICE
Trans. B EJ94–B(11), 1503–1507 (2011) (in Japanese)

4. Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: III.
Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41, 2271–2293
(1996)

5. Aoyagi, T.: Fundamental study on measurement of dielectric constant of human abdomen by
waveguide-penetration method. In: Proceedings 10th International Conference on Communi-
cations, Electromagnetics and Medical Applications (CEMA’15), pp. 95–98 (2015)

6. Remcom: XFdtd 3D Electromagnetic Simulation Software. Website at https://www.remcom.
com/xfdtd-3d-em-simulation-software/. Accessed 20 April 2018

7. Andreuccetti, D., Fossi, R., Petrucci, C.: Internet resource for the calculation of the Dielectric
Properties of Body Tissues in the frequency range 10 Hz – 100 GHz. IFAC–CNR, Florence
(Italy) (1997). Based on data published by C. Gabriel et al. in 1996. http://niremf.ifac.cnr.it/
tissprop/. Accessed 08 Mar 2018

https://www.e-healthnet.mhlw.go.jp/information/metabolic/m--01--004.html
https://www.e-healthnet.mhlw.go.jp/information/metabolic/m--01--004.html
https://www.remcom.com/xfdtd-3d-em-simulation-software/
https://www.remcom.com/xfdtd-3d-em-simulation-software/
http://niremf.ifac.cnr.it/tissprop/
http://niremf.ifac.cnr.it/tissprop/


Chapter 27
Exposure to RF EMF from 5G Handheld
Devices

Kamya Yekeh Yazdandoost and Ilkka Laakso

27.1 Introduction

Wireless connectivity is providing substantial functionalities in daily life. Hence-
forth, demands to have higher data rates at very high speed are increasing day by
day. The fifth generation (5G) of wireless communication is promising to meet
the requirements of future wireless communications with many possibilities and
potentials that have not yet provided with any previous generations [1].

The 5G will operate at millimeter wave frequency bands, and as a result, there
will be a number of technical challenges, because this new generation of wireless
communication comes with a new concept that will have an effect on antenna and
electromagnetic field radiation. The Federal Communication Commission (FCC)
adopted a new rule for wireless broadband operations in frequencies above 24 GHz.
The new frequency bands are 27.5–28.35 GHz, 37–38.6 GHz, 38.6–40 GHz, and
64–71 GHz [2]. This new rule opens up 10.85 GHz of high-frequency spectrum.
Therefore, with this new frequency spectrum, mobile communications is shifting
from microwave frequency band to the millimeter wave frequency band. The use
of millimeter wave frequencies will affect current mobile antenna configurations,
along with a number of other antenna-associated challenges [3].

The quality of communications and link coverage of mobile devices are related
to the maximum output power of handheld devices. However, maximum available
output power has direct impact on the radiofrequency (RF) electromagnetic field
(EMF) exposure, absorbed by human body tissues. Hence, for safety reason of
human body to the RF radiation, the EMF radiation is restricted to certain level.
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The limits imposed by the international organizations, i.e., International Com-
mission on Non-Ionizing Radiation Protection (ICNIRP) [4], Federal Communica-
tion Commission (FCC) [5], and the IEEE [6] for the current generation of mobile
and wireless devices, are based on Specific Absorption Rate (SAR). The SAR shows
the amount of the RF energy absorbed in biological tissues and is expressed in
W/kg. However, at frequencies higher than 3–10 GHz, with respect to different
standards, restrictions on RF EMF exposure are shifting from SAR to the incident
power density (PD) and are expressed in W/m2.

This paper presents the EMF exposure study to the head tissue model from a
single printed antenna on the allocated frequency bands for 5G by FCC, i.e., 27.5–
28.35 GHz, 37–38.6 GHz, 38.6–40 GHz, and 64–71 GHz.

The structure of this paper is as follows. In Sect. 27.2, antenna is discussed.
Section 27.3 explains the tissue model. In Sect. 27.4, results and analysis are
presented. Finally, conclusion is given in Sect. 27.5.

27.2 Antenna

Frequency allocation for 5G devices makes it very sensitive to the environment,
as signal attenuation and path loss are higher at millimeter wave frequency band.
One of the design keys could be to maximize radiated power while keeping the
antenna size enough small to fit in the limited space allocated for the antenna in
the handheld devices. Therefore, refined antenna designs are required for millimeter
wave communication systems with satisfactory gain and low losses to overcome
the severe attenuation and path loss between the transmitters and receivers. Due to
the importance and impact of antenna in the mobile networks, there are a number
of antenna designs for sub-6 GHz frequency band and some of them are found in
[7–10]. However, for millimeter wave 5G mobile handsets, it is remained short, and
further works are needed.

The planar monopole antenna has a capability to provide a wide impedance
bandwidth. Moreover, printed monopole antennas have simple design and easy
integration with the RF circuit. Figure 27.1 shows the configuration of the antenna
that is used in this study. The antenna was made on FR4 Epoxy substrate with
0.5 mm thickness that has electrical properties of εr = 4.4 and tanδ = 0.02. The

Fig. 27.1 Antenna
configuration and size (mm)
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Fig. 27.2 Tissue model for
the RF EMF exposure setup

copper cladding on both sides has 0.018 mm thickness. The antenna has 50 � port
impedance with 1 V of input voltage to the antenna port. The overall size of antenna
is 15.5 × 14.5 × 0.536 mm3.

27.3 Head Modeling

Devices emitting RF EMF need to comply with relevant regulatory requirements
and limits on the human exposure to the electromagnetic field. These guidelines
represented by the SAR for the frequencies are used by second- to fourth-generation
mobile communications and can be used to minimize local tissue heating and related
thermal hazards for sub-6 GHz band mobile devices [4–6]. The exposure limits
change from SAR to PD, at frequencies above 3 GHz (IEEE), 6 GHz (FCC), and
10 GHz (ICNIRP).

To investigate the effect of millimeter wave 5G antenna handheld devices, a tissue
model with electrical properties, i.e., conductivity S/m, relative permittivity, and loss
tangent, of muscle is used (Fig. 27.2). The investigation on the tissue model is based
on the tissue electrical properties from [11]. To evaluate the effect of head tissue on
the antenna characteristics and effect of RF EMF distribution in the human head
at 5G frequency bands, an antenna is placed in close proximity to the tissue at a
distance of 10 mm.

27.4 Results and Analysis

Numerical analysis and optimization of the antenna have been performed using
ANSYS High Frequency Structure Simulator (HFSS) software [12]. Figure 27.3
shows the simulated antenna S11 function of frequency, in the free space and close
to the tissue. The 10 dB impedance bandwidth of the antenna is achieved for all
the frequency bands, i.e., 27.5–28.35 GHz, 37–38.6 GHz, 38.6–40 GHz, and 64–
71 GHz. It is verified that the antenna input impedance is well matched to the
reference impedance, and it is confirmed that there is no frequency shift on the
antenna characteristics due to the effect of tissue electrical properties.



320 K. Yekeh Yazdandoost and I. Laakso

Fig. 27.3 Antenna return loss in free space (blue) and at distance of 10 mm from tissue (red)

Fig. 27.4 Antenna 3D total realized gain pattern at 27.5 GHz and 71 GHz, in free space and with
10 mm distance to the tissue

Antenna 3D total realized gain pattern at the low-frequency band, i.e., 27.5 GHz,
and high-frequency band, i.e., 71 GHz, in the free space and at distance of 10 mm to
the tissue is shown in Fig. 27.4. It can be seen that the realized gain pattern is several
dB higher at higher frequency for the both free space and with tissue environments,



27 Exposure to RF EMF from 5G Handheld Devices 321

Fig. 27.5 Maximum value of
power density on the tissue
surface at distance of 1 cm
from radiation source
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because the antenna is more directive at the higher frequency. It also shows that gain
is not uniform in all the directions.

Figure 27.5 shows the maximum value of power density on the tissue surface at
distance of 1 cm from antenna with input voltage of 1 V to the antenna port. It shows
that it is much below the limit, imposed by international regulations, i.e., ICNIRP,
10 W/m2 for the average area (Av) of 20 cm2 and 200 mW/m2 for the Av of 1 cm2 in
frequency range of 10–300 GHZ; FCC, 10 W/m2 for the Av of 1 cm2 in frequency
range of 6–100 GHZ; and IEEE, 10 W/m2 for the Av of 100 λ2 in the frequency
range of 3–30 GHz and 10 W/m2 for the Av of 100 cm2 in the frequency range of
30–100 GHz.

27.5 Conclusion

In this paper, radiofrequency electromagnetic filed exposure assessment of 5G
antenna for handheld devices is presented. The study is based on the numerical
simulation, and results are found to be in the range limit of safety for the RF
radiation, with 1 V of input voltage to the antenna port.

The RF EMF exposure will vary at each frequency band; hence, the maximum
input power of devices intended to be used in the close vicinity of the body should
be selected based on the frequency band of use.

As mentioned earlier, three different regulatory approaches are used worldwide,
and they have different restrictions on the level of power density and surface area;
hence, it will cause further technical challenges.
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Chapter 28
Driving Operation Recognition Using
Smart Cushion Based on Deep Neural
Network

Xiong Li, Meng Yu, Wenfeng Li, Congcong Ma, Raffaele Gravina ,
and Giancarlo Fortino

28.1 Introduction

With the increasing numbers of car, our life has become more and more convenient
but several issues raised at the same time. The traffic safety problems attract many
researches, and intelligent transportation could better support their solution along
with the increasing number of vehicles and drivers.

According to the statistical analysis data shown in Fig. 28.1, most accidents are
caused by driver’s behavior and personal factors [1, 2]. Therefore, it is of great
significance to study and analyze the driver’s driving operation to improve the level
of traffic safety management.

Various literature studies have introduced driving operations recognition methods
based on computer vision, multi-sensor fusion, etc. Škrjanc et al. presented an
evolving cloud-based algorithm for the recognition of drivers’ actions [3]. The
general idea is to detect different maneuvers by processing the standard signals
that are usually measured in a car, such as the speed, the angle of the steering
wheel, and the position of the pedals without additional intelligent sensors. Deng
et al. presented a driving style recognition method using braking characteristics
based on hidden Markov model [4]. Chen et al. proposed a driving behavior
analysis method based on the vehicle on board diagnostic (OBD) information and
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Fig. 28.1 Distribution of
traffic accidents statistics [1,
2]
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AdaBoost algorithms [5]. Tran et al. proposed a vision-based framework where
Hidden Markov Model (HMM) was used to analyze the driver’s foot behavior [6].

Smart cushion was also used for activity and sitting posture recognition. Huang
et al. proposed the sensor array-based smart-chair to recognize sitting postures [7];
artificial neural network (ANN) was applied to classify eight different postures. Ma
et al. proposed a cushion-based posture recognition system [8, 9]; they developed
several applications such as wheelchair user’s posture recognition, fatigue detection
[10], also by combining cloud platforms to develop a wheelchair assist system to
help the caregivers monitor the wheelchair user’s status [11].

According to the above literature, current major research directions of driving
operations recognition include driving data collection and modeling algorithms.
Driving data collection includes automotive video capture, car-mounted sensors,
and the on board diagnostic (OBD). In terms of driving operations modeling
algorithms, there are HMM, support vector machine (SVM), and decision trees,
among other methods. This chapter proposes a novel driving operations recognition
method based on smart cushion and deep neural network (DNN) algorithms. The
proposed method collected pressure data when the driver is seated on the car
seat equipped with four pressure sensors. After preprocessing and reducing the
dimensions using principal component analysis (PCA) for the data, this chapter
constructs a driving operations classification model to finally recognize driving
operations with a DNN algorithm including normal driving, stepping on the brakes,
stepping on the accelerator, stepping on the clutch, and rotating the steering wheel.
The experimental result shows that the proposed driving operations recognition
method can achieve an average recognition accuracy rate of about 97%.

The remaining sections of this chapter are organized as follows. The detail of
the proposed driving operations recognition method is presented in Sect. 28.2. The
experiments and results are detailed in Sect. 28.3. Finally, Sect. 28.4 concludes the
chapter.
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28.2 Methods

The proposed driving operations identification consists of hardware design, data
processing and constructing classification model. The hardware design is used to
collect driving operations data. The driving operations data will be divided into a
training set and a test set by 8 to 2 ratio. The data processing module includes signal
filtering, sliding time window extracted signal, and PCA dimension reduction. The
data processing applies to both the training set and the test set. The trained classifier
passes the test sample to the driving operations recognition model based on the DNN
algorithm to classify the test sample class. The number of correct or misclassified
samples divided by the number of total samples in the test set is the classification
accuracy or error rate, respectively.

The proposed method first collects pressure data for five different driving
operations. Then, such data is divided into training set and test set. Data is filtered,
extracted features by sliding time window and processed by PCA dimension
reduction. Each processed sample slice can be considered as a representation of the
driving operations. This chapter uses the training set to establish a driving operations
classification model based on DNN algorithm, and then uses the test set to judge the
accuracy of the model. Finally, the feasibility of this method is analyzed and the
advantages and disadvantages of using this method to classify driving operations
are illustrated. Figure 28.2 shows a workflow of the entire proposed method.

Hardware Design

Cushion and Pressure Sensors

The smart cushion used in this experiment consists of a cushion, four pressure
sensors, a Bluetooth module, a micro control unit, and a battery.

The cushion is a common 3 cm thick sponge cushion, which is neither thick
enough to degrade the accuracy of the sensor nor affect the normal operation of the
driver.

The pressure sensor is the FSR406 produced by Interlink Electronics. Its sensing
value changes according to the weight exerted onto the pressure sensor. Table 28.1
reports the main parameters of the FSR406 sensor.

Fig. 28.2 The overall workflow of the proposed method
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Table 28.1 The main
parameters of FSR406
pressure sensor

Parameter name Value

Sensor size 4.5 × 4.5 [cm]
Pressure sensing range <100 [g] to >10 [kg]
Number of sensors 4 (2 × 2)
Sensing area 4.45 × 3.8 cm

Fig. 28.3 (a) Body–seat interface of human body; (b) pressure sensor deployment

Distribution of the Sensors

In order to collect pressure sensor data more accurately, efficiently, and reduce the
cost of the cushion, this chapter provides a sensor distribution method considering
the human anatomy. The pressure distribution of the body–seat interface could be
converted to image data [12]. Some researches found that the body–seat interface
could divide into two ischial tuberosity (IT) [13–15] regions and two thigh regions
as shown in Fig. 28.3a. When sitting posture changes, the movement of the trunk
or leg will cause the ischial tuberosity area or thigh area pressure values to change.
These four areas are highly sensitive to the body movement. On the basis of these
observations, we developed a smart cushion with the sensor distribution as shown
in Fig. 28.3b.

Data Processing Method

Finite Impulse Response Filter Method

The raw data are typically affected by noise, e.g., caused by the driver’s body
movement or electrical signal noise from the smart cushion itself. In order to reduce
the impact of noise on the experimental results, the original signal needs to be
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preprocessed before analysis. This chapter selects the Finite Impulse Response
(FIR) [16, 17] filter to reduce the noise of the original signal.

The FIR filter is defined as Eq. (28.1).

y(n) =
N−1∑
m=0

h(m)x (n − m) = h(n) ⊗ x(n) (28.1)

where N is the length of the filter, h(m) is the specific pulse of filter system, and x(n)
and y(n) are the input and output. The filtering system is shown in Eq. (28.2).

h(n) = wn(n)hd(n) (28.2)

where hd(n) is ideal filter and wN(n) is form function. We use Hamming window
function as shown in Eq. (28.3).

wN(n) =
{

0.5 − 0.5 cos 2πn
N−1 0 ≤ n ≤ N − 1

0
(28.3)

Sliding Time Window

The driving operation is a time series signal. In addition, in order to remove the
interference caused by abrupt motion, bumpy signals, and other invalid actions, and
to ensure that the extracted signal can reflect real-time and near-term behavior before
establishing the recognition model, in this chapter we select the sliding time window
to extract the real-time effectiveness of the driver information. The sample taken by
the sliding window is then used as a training sample set.

As shown in Fig. 28.4, W1 is the sliding time window, the time window length
is T1, and the sampling frequency of the information is F1. The length of the
time window should not be too long nor too short. If it is too long, the real-time
performance will be affected. If it is too short, it will affect the recognition accuracy.
After many experiments, we selected a rectangular window with a time window
length T1 = 25, and the data sampling frequency F1 = 10 Hz.

Fig. 28.4 Sliding time
window schematic
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In order to improve the efficiency of model construction and programming, we
merge the pressure signals of four pressure sensors that are processed by filtering
and sliding time windows, that is, time window signals on four pressure sensors in
series.

Principal Component Analysis Dimensionality Reduction

The merged data set is with a very high dimension and has high similarity between
samples. If it is directly introduced into the training of the DNN network model,
the final accuracy of the model will be affected. In addition, training in ultra-
high-dimensional data will require increasing neural network model depth, reducing
model training speed and wasting computer memory.

Therefore, this chapter uses PCA dimension reduction after merging data and
reduces the dimension so that fewer dimensions can represent more data informa-
tion, which can increase the efficiency of model construction and improve the final
accuracy of the model. We found that the relationship between the accuracy of the
model and the retention dimension was parabolic through multiple experiments, and
the information retained after PCA dimensionality reduction accounted as shown in
Table 28.2.

Considering the model accuracy and the ratio of retention information compre-
hensively, this chapter finally chooses to reduce the high-dimensional sample data
to 5 dimensions, which can retain more original data information and ensure the
accuracy of the final model identification.

Classification Model Construction

The data processed by the PCA will be directly input into the DNN model for
training and testing. Since the current DNN still belongs to the black box model, the
selection of some hyperparameters in the DNN model is still in an empirical stage.
This chapter experimentally compares the model accuracy and training time to select
a better DNN model structure and its hyperparameters. The final hyperparameters
in the model are shown in Table 28.3.

Table 28.2 Information
retention ratio after PCA
dimension reduction

Reserved dimensions Reserved information retention ratio

3 0.9057
5 0.9567
10 0.9857
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Table 28.3 DNN model structure hyperparameters

Hyperparameters Value

The number of input layer nodes 5
The number of nodes in hidden layers 1, 2, and 3 5, 5, 5
Output layer node number 5
Batch size 32
Activation function Relu
Optimization method Adam
Loss function Cross entropy
Number of iterations 300

Fig. 28.5 The flowchart of
driving operations
recognition experiment

28.3 Experiment and Result

The specific process of the experiment is shown in Fig. 28.5. First, the pressure
data of the smart cushion is collected; then the data is preprocessed. Data is further
divided into a training set and a test set, and the classification model is constructed
and trained through the training set. Finally, the trained classification model is
verified through the test set.

Data Collection

In our experiments, we used a vehicle driving simulator instead of a real vehicle
to collect pressure data. Vehicle driving simulator, shown in Fig. 28.6, contains the
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Fig. 28.6 Vehicle driving simulator

same operating components as the real vehicle: steering wheel, clutch, throttle, and
brake.

The purpose of the experiment is to verify that the previous model can effectively
identify the driver’s single driving operations. Therefore, in this chapter we selected
five basic single driving operations for recognition classification. The description of
these driving operations is as follows:

• Rotating the steering wheel: rotating the steering wheel to the left or the right.
• Step on Brakes: Contact brake pedal—brake pedal pressed to the end.
• Step on the accelerator: Contact accelerator pedal—accelerator pedal pressed to

the end.
• Step on clutch: Contact clutch pedal—clutch pedal pressed to the end.
• Normal: Keep normal driving behavior.

Considering that individual differences of the test subjects (e.g., height, weight,
gender) may affect the seat pressure distribution, to obtain more general experi-
mental results, when determining the experimental subjects, we recruited 5 healthy
workers (4 males (A, B, C, D) and 1 female (E)) with driving experience with a
weight of 50–75 kg and a height of 150–180 cm. The personal characteristics of the
participants to the experiments are shown in Table 28.4.

We correctly installed the cushion on the seat of the vehicle driving simulator.
The subjects sat in a comfortable position on the seat and operated the steering
wheel, accelerator, brake, and other operating components to become familiar with
the simulated driving operations platform.
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Table 28.4 Personal characteristics of the participants

Personnel number Sex Age Height Body weight (kg)

A Male 25 171 65
B Male 24 180 75
C Male 25 172 68
D Male 26 176 55
E Female 29 155 50

After the participants are ready, we request to start the driving operations through
the computer in front of the driving simulator. The five types of driving operations
are performed separately. After one type of operation is completed, the following
one is performed. Each type of driving operation is carried out 20 times (each
execution is separated from the previous one by 10 s); before starting a new type
of driving operation, the subject rests for 30 s. The five participants completed the
described protocol once. In order to prevent increasing the identification error due to
the imbalance of the samples in each type of operations, the number of valid samples
of the various types of operations finally acquired must be basically the same. Each
participant performs 20 operations of each type, each execution takes 0.5 s, and the
sampling frequency of the four pressure sensors is 10 Hz. So the size of the original
sample data set is 500 × 4.

Data Preprocessing

Due to individual differences of the driver’s body, noise signals generated by
small movements not related to driving operations, and disturbing electrical signals
caused by voltage instability or other factors, in order to ensure the accuracy of the
processed data, filter preprocessing must be applied to the original signal before
analyzing it. In this chapter, FIR filter is used to smooth the original signal. During
the filtering process, the sampling frequency of the pressure sensor is 10 Hz. The
detection period is determined according to the specific content of the experiment.
Each set of data has 500 points and the filter form length is N = 100.

In order to transfer the pressure signal to the classification model and identify the
signal over a period of time, this experiment uses the sliding time window with a
sliding step of 1 to extract the first 25 sample data points each time as part of the
new sample data, and merge the features of the new sample data of 4 sensors as a
complete sample data point.

The data preprocessing workflow for one type of driving operations is shown in
Fig. 28.7. Among them, S1, S2, S3, and S4 are the data of four pressure sensors in
sequence, and each data has 500 sampling points. The data size of each sensor is
500 × 1. First, it is filtered with FIR and its data size is unchanged. Then, by sliding
the time window to extract features, the size relation between the data before and
after the feature is extracted from the sliding time window is as follows:
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Fig. 28.7 Data processing workflow for a type of driving operations

r2 = r1 − (T × S) + 1 (28.4)

c2 = T (28.5)

where r1, r2 are the number of rows before and after the sliding time window is
extracted, and T is the window size of the sliding time window. T is set to 25 in
this chapter. S is the step size of the sliding time window. In this chapter, we select
S equal to 1. C2 is the number of columns of data after the sliding time window is
extracted. Therefore, the size of each sensor’s data after extracting features through
the sliding time window is 476 × 25. The data features of the four sensors are then
combined into a matrix of size 476 × 100. Finally, this experiment combines the
data of the five types of driving operations into a feature matrix of size 2380 × 100
for subsequent analysis.

In order to verify whether the collected data can identify five types of single
driving operations after preprocessing, this chapter visualizes the data after prepro-
cessing. In this chapter, the high-dimensional feature matrix is firstly reduced to a
3-dimensional data matrix by PCA, as shown with scatter plots in Fig. 28.8.

In particular, Fig. 28.8b is an enlarged side view of the data on the brakes and
the accelerator in Fig. 28.8a. After reducing the high-dimensional feature matrix to 3
dimensions and visualization, it can be found that normal driving, operating steering
wheel, and pressing clutch are clearly separable. Although there are confusion
points between brake and throttle, the classification boundary still exists.

Model Construction

As mentioned in the method, this article uses experiments to synthesize the accuracy
and efficiency, selects the DNN model that is used to reduce the 100-dimensional
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feature data to 5 dimensions, and uses the DNN model parameters determined in
Table 28.3 to train a high precision classifier.

We firstly train the DNN model with the prepared training set and then we obtain
the appropriate parameters through back propagation and gradient descent, which
increases the model accuracy for the data set (including the training set and the test
set). The accuracy of the training set is shown in Fig. 28.9.

As shown in Fig. 28.9, the average accuracy of the training set increases with
the number of iterations, and after 210 rounds of iterations, the accuracy rate rises
slowly reaching 97%. Therefore, this chapter chooses the iteration number as 300,
and then apply the trained DNN model to the test set.
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Table 28.5 Confusion matrix of classification results

Recognized operation

Actual operation
Step on
accelerator Step on clutch Brake

Rotating the
steering wheel Normal

Step on accelerator 79 0 26 0 0
Step on clutch 0 96 0 0 0
Brake 1 0 91 0 0
Rotating the
steering wheel

0 0 0 90 0

Normal 0 0 0 0 95

Table 28.6 Performance of
the classification model

Driving operations Accuracy Precision Recall

Step on accelerator 0.9435 0.9875 0.7524
Step on clutch 1 1 1
Brake 0.9435 0.7778 0.9891
Rotating the steering wheel 1 1 1
Normal 1 1 1
Average 0.9774 0.953 0.9483

Recognition Results

Table 28.5 shows the confusion matrix for the classification results, and Table 28.6
shows the performance of the classifier for different driving operations. The results
in Tables 28.5 and 28.6 show that the accuracy of the classification model for brake
and stepping on the accelerator were 94.35%. The rest of the driving operations
was almost 100%, and the average accuracy was 94.5%. The results show that
stepping on clutch, rotating the steering wheel, and normal driving all have their
own distinct behavioral characteristics, so the recognition accuracy is very high.
However, the results show that the recall rate of stepping on the accelerator and the
precision of the brakes are low, and the stepping on the accelerator is particularly
easy to be mistakenly recognized as brake. Through the review of the details of the
experiment, it was found that since both the step on the brake and the step on the
accelerator are right-footed, the actions are very similar, and it is easy to misclassify.
Therefore, the next step will be to identify the driving operations in combination
with multiple sensors to enrich the identified driving operations and improve the
recognition accuracy.

28.4 Conclusions

For the purpose of recognizing driving operations, a DNN-based classification
algorithm and model are proposed. In this system, our aim is to recognize five
kinds of driving operations like stepping on the accelerator, stepping on the brake,
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stepping on the clutch, rotating the steering wheel, and normal driving. The sensors
deployed according to the physiological characteristics of the human anatomy. In
order to reduce noise, the data collected from the sensors was preprocessed by FIR
filtering. Then, in order to identify the time segment signal, the signal is subjected to
a sliding time window and feature fusion processing [18]. Finally, the merged data
is passed to the model training classifier, and five kinds of single driving operations
can be recognized.

Recognition of driving operations remains an open research challenge, and in
our vision, the use of smart cushion can provide a new perspective for solving this
problem. As a smart object in a car, the driver’s convenience and alarm function
are of great significance in the field of traffic safety. Although our results are still
preliminary, this smart, convenient and non-invasive method can provide a reference
for future research. In particular, we will focus on enriching operations; for this
purpose, more experiments are needed. Finally, in the light of the fact that the
pressure cushion alone is not able to provide reliable data for the detection of
complex activities, in the future we will add more kinds of sensors to enrich the
functions of the proposed system.
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Chapter 29
A Wearable Device for Brain–Machine
Interaction with Augmented Reality
Head-Mounted Display

Mattia Salvaro , Simone Benatti , Victor Kartsch ,
Marco Guermandi , and Luca Benini

29.1 Introduction

Global market analyses forecast that wearable device business will break the five
billion dollars barrier by 2020 [1], with recent advancements in microelectronics and
wireless communication pushing devices more and more towards low-power, minia-
turized, lightweight implementations, with wireless communication capabilities. A
plethora of new devices belonging to the so-called Wireless Body Area Networks
(WBANs) [2] is emerging, whose potential can be exploited in several domains,
including healthcare, industry, fitness, and infotainment. More specifically, WBANs
are widely used for biosignal and activity monitoring [3–6], ambient assistance as
well as for human– machine interactions (HMI).

Among the available methods and devices to allow effective interactions between
humans and machines, the possibility to build interfaces directly exploiting brain
signals (EEG) represents a fascinating challenge. This type of interaction, called
brain–computer interfaces (BCIs), was initially developed at the end of the 1980s
to enable external world communication for people with severe disabilities, such as
locked-in syndrome or amyotrophic lateral sclerosis [7]. Once relegated to medical-
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oriented application targeting small groups of users with very specific needs, they
have recently spread to non-medical application fields by virtue of their promising
and fascinating features.

Wireless BCI systems have been proposed in recent years to overcome traditional
HMI paradigms based on touch-screen or gesture and voice recognition [8]. Several
non-medical BCI applications are already commercially available, mostly in the
field of gaming and entertainment: MindMaze Mask [9], Neurosky MindWave [10],
and Emotiv Insight and EPOC+ [11], just to name a few. All these systems feature
a head-mounted device for biosignals acquisition, but they differ in the number and
position of sensors, and the types of biosignal they process (EEG, EMG, or EOG).
Other commercial BCI systems include OpenBCI [12], a general purpose wearable
acquisition and processing platform, and g.tec Intendix [13], a desktop based BCI
speller.

One of the major hindrances to the diffusion of non-medical BCIs among
able-bodied users is the so-called BCI deficiency, i.e., the inability of BCIs to
detect the intentions of a vast portion of users accurately enough to allow them
to control applications. BCI deficiency is lessened in BCI systems based on external
stimulation such as event-related potential (ERP) or steady state visual evoked
potential (SSVEP) [8]. ERP consists in cerebral responses to specific events or
sensory stimuli that can be detected in the acquired EEG signal [14]. In ERP-
based BCIs, several trials are averaged to reduce background noise and derive the
ERP response, typically searched around 300 ms after the stimulus onset (P300).
SSVEP potential is elicited in the primary visual cortex, as well, but this time by
a periodic external visual stimulus, and results in a response which is locked in
frequency and phase with the stimulus. SSVEP-based BCIs process the EEG signal
to identify which stimulus (i.e., at which frequency and, possibly, phase) evoked it.
Recent works [15] have shown that SSVEP-based BCIs can outperform those based
on P300 in terms of information transfer rate (ITR). In addition, if we disregard
the phase information, SSVEP-based BCIs do not need synchronization with the
stimulus onset. For these reasons, SSVEP is a promising paradigm for designing
wearable, low-power and high-speed BCI.

Despite BCIs moving towards being embedded in wearable devices, visual
stimuli are still mostly presented on large LCD monitors, limiting their application
to fixed locations of the environment (e. g., [16]). By combining BCIs with AR
tools such as smart glasses, microprojectors, or head-mounted displays (HMD), the
system flexibility can be dramatically increased. As an example, visual stimuli can
be triggered adaptively according to the user’s position or action. So, if the user
approaches a specific object, a BCI starts to interact with that object through the
HMD.

An example of the integration of a P300 based BCI system used to enable HMI
is reported in [17], where an EEG acquisition system is coupled with an AR system
to enable the control of a smart home. The system is tested on three subjects for
tasks of domotic control (i.e., TV channel switching, opening and closing doors.).
The subjects were firstly trained in numbers and characters spelling based on their
P300 response. The final needed time for recognition task is typically around 30s
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with accuracy ranging from 83 to 100%. This system reaches high accuracy but it
is intended for users with severe disabilities, based on a full coverage EEG cap and
not suitable for a wearable consumer application.

The work of [18] presents a wearable interface which combines an eye-tracker
with a BCI trigger to detect the response to visual stimulation using a binary
classifier. Basically, the eye-tracker detects where the user is looking, and enables
the SSVEP stimuli mapped on the intended object, enabling the user to choose how
to interact with the object. The system is based on a modified version of the Emotiv
NeuroHeadset, using wet saline electrodes which acquire the EEG signal at 128 Hz.
Samples are sent wirelessly to an Odroid board, powered by a high-end processor
(i.e., Samsung Exynos4412 Prime chip operating with 1.7 GHz ARM Cortex-A9
Quad Cores). The average classification accuracy is 73.5% while the time needed to
perform a recognition task is higher than 4 s.

Another solution, presented in [19], relies on a simpler approach, since it uses
a QR code recognition to enable the interaction with the selected object and a
commercial smart glasses system [20] to present the SSVEP stimuli. The embedded
camera of the eyeglasses executes a QR-code recognition when the user is looking in
the direction of the intended object, and enables the SSVEP stimulation accordingly.
The EEG data are acquired with an Emotiv EEG neuroheadset and processed by
a bench top host PC. This system was tested on 7 subjects reaching an average
accuracy of 85.7% with a recognition latency that ranges from 3 to 6 s. The
aforementioned solutions are inspiring attempts to enable a natural, hand and voice
free control strategy, but they are based on bulky setups, where the EEG interface
requires skin preparation and the digital computing platforms are power-hungry and
cumbersome, hence not suitable to be integrated into an unobtrusive wearable form
factor.

In this paper, we propose an embedded fully-wearable BCI composed of a low-
power EEG acquisition system connected with commercial smart glasses (Moverio
BT-200), which provides the visual stimuli exploiting AR techniques. The stimuli
presentation is performed on the see-through display of the eyeglasses and it is
synchronized via Bluetooth to the embedded processing node, which executes
the canonical correlation analysis (CCA) based algorithm to recognize the user
command. The system has been tested on five subjects, reaching an average
accuracy of 80% with a recognition latency of 3 s, suitable for a fast and reliable
BCI. EEG is acquired on a minimum number of electrodes (three) with active
dry sensors which do not require skin preparation, granting a high level of users’
acceptability. Power consumption of the device is less than 32.12 mW, guaranteeing
more than 100 h of operation on a standard 1000 mAh battery.

This paper is organized as follows. In Sect. 29.2 we describe the different
components of the complete BCI; in Sect. 29.3 we validate the system by illustrating
experiments carried out on five subjects and analyze the results. Finally, in Sect. 29.4
we draw conclusions and compare our system to the state-of-the-art.
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29.2 System Description

The proposed system is the body sensor network (BSN) depicted in Fig. 29.1. An
active EEG sensor array is interfaced with a custom node which mounts a dedicated
AFE and a low-power microcontroller with a DSP extended instruction set. The
node is connected via Bluetooth to a commercial smart glasses platform [20],
equipped with an optical see-through head-mounted display (HMD) that provides
visual stimuli presentation.

Acquisition and Processing Platform

To maximize ease-of-use, the system adopts three zero-preparation dry electrodes
for interfacing with the subject. To cope with the high contact impedance typical
of non-prepared skin-electrode interfaces, we used active sensors, which leverage
an amplification stage placed right on the electrodes. The operational amplifier is
connected in an unity-gain voltage follower configuration, and it buffers the EEG
signals to the acquisition and processing platform, which is based on a low-power
ARM Cortex M4 microcontroller (MCU, STM32F407) coupled with a multichannel
commercial analog front end (AFE, T.I. ADS1298). In view of future developments,
we adopted an 8-channel AFE, although we could have adopted a 4-channel IC
of the same family (ADS1294). The positive inputs of the analog channels are
connected to the active EEG sensors. Ground potential from the subject is on

Fig. 29.1 Architectural diagram of the proposed system
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linked mastoid electrodes (i.e., a widely used re-referencing technique [21]), and is
connected to the negative inputs of the AFE. The MCU can operate up to 168 MHz
and features 192 kB of RAM and 1 MB of Flash memory. Particular attention was
dedicated to the design of the 6-layers PCB for the system. The solid ground plane
minimizes the current return paths, while the power planes are kept separated,
minimizing the high-frequency noise on the analog components. The power supplies
are provided by separate LDO regulators for analog and digital blocks, as shown
in Fig. 29.1. The communication interface is provided by an integrated Bluetooth
module, connected via USART to the MCU.

AR Stimuli Presentation

EPSON Moverio BT-200 is a commercial smart glasses running Android 4.0.4 on a
dual-core ARM Cortex A9. The device allows for WiFi and Bluetooth connectivity.
The display is a TFT active matrix with LCD size of 0.42 inches, 16:9 aspect
ratio, and 60 Hz refresh rate. The viewer, a binocular see-through that renders a
screen of 80 inch virtual size at a virtual distance of 5 m, makes Moverio BT-200
particularly suitable for 3D AR applications. The processor and battery are enclosed
in a handheld trackpad for standard interaction. Once the BCI app is launched, there
is no need to control it via trackpad, enabling a complete hand-free interaction.

In normal condition, the display is set to maximum transparency and nothing
is shown. Using the integrated camera and Vuforia SDK for digital eyewear [22],
we developed a BCI App which detects whenever the user is staring at tags which
can be freely applied to objects in the environment, and informs the BCI wearable
node that the user wants to interact with a certain object. Different tags can trigger
different numbers of stimuli but, remarkably, different tags can trigger stimuli using
the same set of frequencies, overcoming the bottleneck problem of pushing as many
target frequencies as possible in a small bandwidth between 5 and 10 Hz, where the
SSVEP response is maximized. Each stimulus consists of a PNG image representing
an 8 × 8 black and white square checkerboard, with a gray diagonal cross to guide
user’s gaze. The frequency of the stimulus is rendered by modulating the image
opacity from 0 to 1 with a sine waveform. The app can dynamically arrange up to
six different checkerboards at the same time, however in this work we focus on a
four checkerboard setup. Each checkerboard is controlled by its own ValueAnimator
object, initialized for linearly animating float values from 0 to 2, representing
the coefficient of π in the sine wave equation. The duration of the animation
reflects the stimulus frequency, and it is computed from the frequency attribute,
which can be set directly in the XML layout file. An AnimatorUpdateListener
object is used to intercept the updates of the ValueAnimator animation, and set the
opacity of the image accordingly. The animation is then repeated for a number of
times calculated on the predefined stimulation length, and then the checkerboard
disappears. Figure 29.2 shows an example of the application usage from the user’s
perspective: when the user looks at a tag, four flickering checkerboards appear on
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Fig. 29.2 Example of the application usage from the user’s perspective

the HMD, representing four possible actuations on the corresponding item. The app
notifies via Bluetooth the BCI wearable node when stimulation begins and ends,
allowing the MCU to execute the classification algorithm only when SSVEP can be
detected, significantly reducing power consumption.

Processing Algorithm: CCA

CCA is a well-known, state-of-the-art signal processing algorithm for SSVEP-
based BCIs [23]. This method quantifies the linear dependency between two
multidimensional variables by finding a couple of linear combinations, one for each
multidimensional variable, that maximizes their correlation. CCA retrieves a set
of maximized correlations, called canonical coefficients, each one resulting from
a couple of linear combination belonging to subspaces that are orthogonal to each
other. A single execution of the CCA algorithm returns a set of size d = min(n,m)

of canonical correlation coefficients that quantifies the correlation between the EEG
signal window and one specific stimulus. To calculate an output, the application
executes CCA with different reference signals for each possible stimulus. We
acquire EEG signals from the three dry electrodes (n = 3), and we keep reference
signals up to the first harmonic (m = 4), therefore the CCA will output d = 3
canonical coefficients, on which we apply the Euclidean norm to have one final
correlation value. The classification of the BCI output is done by thresholding the
four correlation values computed for each frequency.
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Fig. 29.3 Signal processing scheme for SSVEP Signal classification using CCA. Raw data is
buffered into the matrix X (2000 samples × 3 channels). Reference signals are stored in the Y
matrix. Subsequently, QR decomposition is applied on both matrices allowing the extraction of
the diagonal S matrix from Qx and Qy after singular value decomposition. The diagonal elements
of this matrix (called canonical coefficients) are finally used to calculate the feature of the signal
(Euclidean norm). This process is repeated for each target frequency

Our implementation of the CCA is based on the Golub algorithm [24], which
relies on the computation of two QR decompositions of the input and the reference
signals, followed by a SVD factorization of the product between the two orthogonal
matrices. The block scheme of the Golub algorithm is depicted in Fig. 29.3.
We applied three levels of optimization: (1) usage of CMSIS DSP optimization
functions whenever possible [25], (2) precomputation and storage in Flash memory
of the orthogonal matrices resulting from the QR decomposition of all the reference
signals, and (3) input filtering and downsampling. This approaches allow us to
compute a stimulus classification on an input window of 2 s in 5 ms. To maximize
accuracy, input preprocessing is necessary, especially when signals are acquired
with dry electrodes, to remove power line interference (PLI) and out-of-band noise.
Since we are using stimulus frequencies in the 5–10 Hz band and we are interested
in the first two harmonics of the signal, we apply a decimation filter to downsample
the signal by a factor 10. The filter is based on a 120-tap low-pass FIR filter with
25 Hz cutoff frequency. After decimation, a fourth order IIR high pass filter removes
frequency content below 4 Hz. The Golub algorithm computes at each iteration the
QR decomposition of the reference signal, which is a constant matrix. Therefore,
we can store the orthogonal matrix of the decomposition for each set of reference
signals in the MCU Flash memory, skipping this operation and computing directly
the QT

x Qy product. Total speedup is in excess of 13X, as will be shown in Sect. 29.3.

29.3 Experimental Results

Our BCI system was validated on five healthy subjects (aged 25–43), with normal or
corrected-to-normal vision. All participants reported no history of neurological or
psychiatric disorders and provided written consent to participate in the experiments.
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Fig. 29.4 Frequency response of stimuli generated on the AR glasses and captured by a photo-
resistor. The deviation from the target frequency is < 0.1 Hz

The tests have been carried out in an lab environment, which is particularly harsh in
terms of electrical and electromagnetic noise.

The first test is intended to validate the stimulus presentation described in
Sect. 29.2. To this end, we connected a photo-resistor to one input of the system, to
capture light variations generated by the projection of the flickering checkerboards
on the glasses. Figure 29.4 shows the power spectral density (PSD) of the resulting
signal, indicating that the maximum deviation from the original target frequency is
confined below 0.1 Hz. Such variations do not affect the final accuracy of the system
for time windows up to a few seconds.

SSVEP-Based BCI Performance

SSVEP signals are elicited employing four black and white checkerboards as
described in Sect. 29.2, arranged in a 2×2 pattern, located at the corners of the visual
field of the smart glasses display. Four equally spaced frequency-coded stimuli (5.0,
6.2, 7.4, and 8.6 Hz) are used as targets. During the tests, the subjects will fix the
eyesight at a target indicated with a red cue before the onset of the stimulation. Later,
all the stimuli will remain active for 10 s, followed by 5 s of pause to reduce visual
fatigue. This process is repeated four times to cover all checkerboards, and the trial
is repeated three times for each subject (Fig. 29.5).

Concurrently, EEG data is acquired using the hardware presented in Sect. 29.2
from three electrodes placed at the occipital lobe (P5, POZ, and P6), with reference
and ground located at A1 and A2, respectively. An example of the complete setup
is presented at Fig. 29.6.

Before each test with the smart glasses, we performed a control test using a
regular 24-inch LED (60fps) display. The results obtained are later used to evaluate
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Fig. 29.5 CCA correlation

Fig. 29.6 Front and back view of the complete setup during a test. The HDMI cable attached to
the board is used only for testing purpose, and it is not required during normal operation of the
system. Similarly, the current size and weight of the PCB allow an easy debugging. Nevertheless,
the entire hardware dimensions can be reduced to a half

the performance of the AR projections with respect to the classical technique
for SSVEP stimulation [26]. Table 29.1 reports detailed results for all subjects.
To account for some occasional variabilities regarding the acquisition setup each
subject has repeated the test three times. Of the five subjects, only S5 has performed
poorly, possibly due to attention issues. Nevertheless, the average results show that
the system is reliable (average accuracy 80%) and responsive (average latency of
about 3 s), with an average ITR with four targets of 0.42 b/s.

The results demonstrate that our embedded implementation outperforms systems
based on AR eyeglasses while being also aligned with the SoA traditional SSVEP
systems. Moreover, we show that online and real-time processing is achievable
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Table 29.1 Experimental
results

Subject Latency (s) Accuracy ITR (b/s)

S1 2.57 1.00 0.78

4.50 1.00 0.44

3.08 1.00 0.65

S2 2.95 0.67 0.19

3.85 0.91 0.37

2.25 1.00 0.89

S3 3.03 0.63 0.15

3.78 0.68 0.16

2.00 0.87 0.62

S4 1.70 0.91 0.83

3.13 0.85 0.37

1.58 0.82 0.65

S5 5.63 0.69 0.11

3.00 0.50 0.07

2.50 0.50 0.08

Average 3.04 0.80 0.42

For each subject results of three trials are reported

through a low-intrusivity setup, which is a significant step forward with respect to
the current offline and bulky systems.

Power Consumption

Execution of advanced signal processing on a microcontroller requires particular
attention due to the limitations on MCU resources and power availability. Executing
the CCA in real time is computationally intensive, hence we applied code optimiza-
tions to reduce the computational cost of the application. Specifically, we noticed
that downsampling the current evaluation window (2K samples) by a factor of 10
would provide lighter processing without accuracy degradation.

We have also exploited the static nature of some parameters of the CCA. The
orthogonal matrix Qy , resulting from the QR decomposition of the reference
signals, does not have to be recalculated unless new frequency targets are added
to the system. Since set of stimulation frequencies is fixed, the Qy matrices have
been precalculated and stored as static values on the final firmware, reducing the
computational load of the MCU. All these changes finally led to a 13.77X speed up
of the system from a non-optimized code using only CMSIS DSP libraries.

The results of each optimization step are presented in Fig. 29.7. As a result,
the CCA execution time is less than 5 ms, allowing to trade-off the percentage of
window overlap to compute successive feature points. While a substantial overlap
would provide better granularity and reduction of the classification delay (i.e.,
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Fig. 29.7 Reduction of the
CPU cycles after the
optimization steps

increasing the ITR) it comes at a higher power cost. Empirical results suggest that
100 ms (95% overlap) can reduce the power consumption of the system to 32.12 mW
while guaranteeing an average ITR of 0.42 b/s.

Therefore, this demonstrates the ability of our system to provide a real-time user
experience, aligned with SoA performance. We go a step further combining a deeply
embedded platform with dry electrodes, which enhanced the contribution of this
work with regards of current system based on cumbersome processing platforms and
wet electrodes. Coupling this with the use of an AR environment delivers a realistic
BCI, promising a more intuitive and accessible approach for brain communication
in consumer applications.

29.4 Conclusions

In this paper, we proposed a fully-wearable BCI composed of a low-power EEG
acquisition system for SSVEP detection connected to a pair of commercial smart
glasses for stimuli presentation. We go a step further combining a deeply embedded
platform with dry electrodes, which highlights the contribution of this work with
regards of current system based on cumbersome processing platforms and wet
electrodes. Coupling this with the use of an AR environment delivers a realistic
BCI, promising a more intuitive way of brain communication. Our wearable BCI
offers the performance of the current SoA systems while also providing a real-time
EEG signal classification through a non-intrusive, embedded processing platform
featuring dry electrodes. The system has been validated on five subjects, achieving
an average ITR of 0.42 b/s and an average output latency of 3.0 s. This performance
substantially improves those of SoA wearable systems employing AR and smart
glasses in terms of both accuracy and delay [18, 19]. Firmware optimization of
the algorithm has been shown helpful in keeping power consumption as low
as 32.12 mW, essential for providing extended hours of operation. The usage
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bottleneck of the system is therefore constituted by the battery duration of the
commercial HMD device.

This work aims at spreading the usage of BCI systems by devising a wearable
easy-to-use online system ready to be deployed in fields where reliability constraints
are stronger, such as smart environments like industry 4.0. The ability of our system
to provide a real-time user experience highlights the contribution of this work
towards a more realistic and useful BCI.

Future work includes efforts for increasing the robustness of the system and the
ITR by incorporating more advanced signal processing methods (PCA, ICA) and
classification techniques (such as neural networks and support vector machine) that
will allow us to recognize a more significant number of targets while reducing the
classification delay.
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Chapter 30
A Cost-Effective Embedded Platform for
Scalable Multichannel Biopotential
Acquisition

Simone Benatti , Marco Guermandi , and Luca Benini

30.1 Introduction

Recent years have witnessed an explosive growth in the diffusion of systems for
decoding neural signals. They allow to monitor physiological events from the human
body and use them to enable direct interaction between a subject and machines,
allowing the design of HMI suitable for healthcare and rehabilitation applications,
especially based on electroencephalography (EEG) and electromyography (EMG)
by virtue of their cost-effectiveness and unobtrusiveness.

Although most commercially available devices and many research works in the
field rely on platforms with a limited number of channels (ranging from 2 to 8)
[1], recent studies demonstrate that medium to high density sensor arrays and more
advanced processing techniques have the potential to significantly improve perfor-
mance both for EEG and EMG applications. For instance, in EEG applications, it
has been shown that increasing sensor density can provide higher-resolution neural
information in several domains, such as steady state evoked potentials (SSVEP)
decoding [2], epilepsy detection [3], or sleep analysis [4]. As for EMG, most
of the applications are in the field of advanced HMI for prosthetic controls or
rehabilitation, and recent results demonstrate that a fine-grain coverage of the
muscle surface increases control performance both in terms of accuracy [5] and
robustness [6].
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Several studies present dedicated integrated solution based on research ASICs
[7–9] which benefit from a large number of channels in a reduced form factor.
Unfortunately, most of them are prototypes not directly accessible to those who were
not involved in their design. Moreover, such solutions are not clinically validated
and compliant to CE/FDA regulation and most of the research projects cannot
sustain the huge validation costs in terms of time and resources.

Commercially available Analog Front-Ends (AFEs) for biomedical applications
traditionally feature a limited number of channels (up to 8) [1]. Recently, a few
integrated solutions with higher channel count in a single chip solution have
been presented [10, 11]. Such systems are modular, providing the possibility to
reach hundreds of channels in the form factor of cm2 and they are commercially
available. Unfortunately, solutions based on such ICs are quite expensive, since
the single chip is available at several hundreds of dollars with a cost per channel
of approximately 10 USD. Moreover, being developed mostly for implantable
applications, their input-referred noise performance can hardly satisfy requirements
for several applications (e.g., EEG, ERPs, VEPs, etc.).

This work proposes a cost-effective modular multichannel system for EMG
acquisition with 32/64 channels, entirely based on Commercial Off-The-Shelf
(COTS) components. The system is based on a 24-bit COTS AFE [1], connected
to a network of analog multiplexers (MUXs) which scales up the channel count.
Our solution is suitable for embedded implementation in a reduced form factor,
with bandwidth and noise figures of merit suitable for medical-grade biopotential
acquisition and processing [12]. To evaluate the cost per channel of our solution we
consider the commercial ADC, whose cost is 7.15 USD and the 8 analog MUXs,
which are available for 1.31 USD in a 4 × 1 or 8 × 1 configuration. Furthermore,
since our platform is digitally controlled we can also add the cost of the Cortex
M4 microcontroller which is 7.3 USD. Using eight 4 × 1 MUX for a 32 channels
configuration leads to a 0.77 USD per channel, while if we consider a 64 channels
configuration (with the 8 × 1 MUXs) the cost per channel decreases to 0.38 USD.

A key challenge also addressed in this work is that the Sigma-Delta architecture
of the ADC in the AFE would lead to a reduction of the sample rate, caused by the
need to wait for the internal decimation sinc filter to settle after each multiplexer
switching to avoid crosstalk between channels. To overcome this limitation, we
devised a method to process the digital output stream from the AFE through a
custom digital FIR filter, which compensates the decimation filter behavior. We
prove that this method reduces crosstalk by a factor of more than 25, allowing the
system to both satisfy specifications for high-quality EEG signal acquisition and
be effectively used in a common EMG application without degrading performance.
For a sampling frequency of 1 ksps, this approach allows to reduce input-referred
noise by a factor 1.6, leading to 0.75 μVRMS integrated noise in the [0.5–100] Hz
band and 1.15 μVRMS in the [20–250] Hz with 24-bit resolution, which favorably
compares to the multichannel systems presented in [10, 13] (2.4–3.1 μVRMS with
16-bit accuracy) and with specifications for EEG and EMG signal acquisition [14].

To experimentally validate our solution within and end-to-end application con-
text, we tested the system in a typical EMG-based pattern recognition application,
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using 32 electrodes to acquire 4 hand gestures and classify them with a SVM
algorithm [8]. Recognition accuracy ranges from 93.5 to 95.2% showing results
aligned with current SoA wearable systems [6, 15].

30.2 System Overview

The high-level block diagram of the proposed system is shown in Fig. 30.1. It
includes a custom flex PCB strip with 16 passive electrodes, a rigid PCB for signal
acquisition and processing, and two wireless modules for Wi-Fi and Bluetooth
connectivity. On the rigid board, the 24-bits �� ADC [1] is interfaced with a Cortex
M4 microcontroller, responsible for controlling the overall functionality of the board
and managing acquisition and communication. The PCB layout has been carefully
designed to minimize electrical noise, by separating digital and analog sections in
order to reduce the digital high-frequency noise injected in the analog signals. The
board has been fabricated on a 4-layer PCB with a split-plane that distributes the
power supplies and a solid ground plane, to minimize current return paths.

To enable the communication with an external gateway, the board is connected
to both a Wi-Fi module and to a Bluetooth transceiver. The Wi-Fi interface is used
to stream out the data at full-bandwidth, while the Bluetooth interface can be used
for configuration or debug purposes where the data stream is less demanding. For
instance, streaming 32 channels at 24-bit with a bandwidth of 1 kHz requires 6 Mb/s,
which is by far out of range for a Bluetooth transmission, while 700 kHz bandwidth
of the WT12 Bluetooth module is suitable for debug purposes. The Wi-Fi module

Fig. 30.1 High level diagram of the proposed system highlighting the hardware architecture and
photo of the proposed PCB board and strip
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is the ATWINC1500 by Microchip [16], a single-band 2.4 GHz b/g/n, connected
to the microcontroller via 40 MHz SPI interface, while the Bluetooth connection is
enabled by the Bluegiga WT12 module [17].

Finally, a Driving Right Leg (DgRL) circuit is implemented [18], which increases
the system CMRR of up to 70 dB, mitigating the effect of common mode inter-
ferences which can pose major problems in devices designed to operate outside
clinical environments, as they can easily present less-than-perfect contact quality
and operate in noisy environment.

The power budget of the system is dominated by the digital platform, since
the Cortex M4 microcontroller consumes 100 mW, while the ADS1299 consumes
40 mW. Leveraging power optimization techniques and accurate component selec-
tion it is possible to dramatically reduce the current consumption of the whole
system even though power optimization is out of the purpose of this work.

Signal Acquisition
Traditional passive electrodes, like [19], are not adequate for placing a high number
of sensors in a reduced area, hence we designed a custom polyimide 2-layers flex
PCB strip with 5 mm gold-plated round electrodes. To enable a better contact,
the skin-to-electrode interface is provided by semi-rigid adhesive hydrogel patches
which add mechanical stability as well electrical connection. The electrodes are
connected to a network of analog MUXs, which scale up the channel count of
the ADC from 8 to 32 or 64, depending on the MUX configuration. In this first
prototype, the board is designed to support 32 channels by using ADG709 4-to-1
MUXs. The MUX switching is managed by the microcontroller, according to the
acquisition frequency. In normal operating condition, as the decimation filter of the
ADC has a settling time of 3 samples, it is necessary to wait at least 3 sampling
periods for a stable ADC read after every switching of the MUX. Hence, to calculate
the effective sampling rate of the ADC (ESRksps) we can use the following formula:

ESRksps = Nsettling_samples · MUXpositions

DSRksps
(30.1)

where DSRksps is the desired sampling rate, Nsettling_samples is the number of samples
to settle the internal oversampling of the ADC (typically 3 + 1 to allow some
extra time for the MUX transient), and MUXpositions is the number of possible
configuration of the MUX. For instance, if we want a sampling rate of 1 ksps
(DSRksps) by switching the MUX 4 times and considering the standard setting time
of 4 samples, we need to set ADC sampling frequency at 16 ksps.

Inverse Filter Signal Reconstruction
As the limitation set by Eq. (30.1) is due to the settling time of the digital decimation
filter and we know its exact characteristics from the ADS131E08 datasheet (sinc3

filter with decimation factor 1.024 · 103/DSRksps), we can remove this limitation by
processing the output of the AFE through a suitably designed filter. Assuming that
the signal at the input of the decimation filter will present fast transitions when the
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Fig. 30.2 The input signal of the filter can be approximated as piecewise constant (top) and is
convolved with a sinc3 filter (bottom). The decimation filter can be represented as a 3-tap FIR filter
(h−1, h0 and h1) operating at the output frequency. The area of dark gray regions is equal to h−1
and h1 (1/6), light gray to h0 (2/3)

MUX switches and then be slowly varying in a sample interval, we can approximate
the signal as piecewise constant (see Fig. 30.2). As a result, the decimation filter
can be represented as a 3-tap FIR filter operating at the output frequency. The
taps value can be easily computed as the areas of the 3 gray regions in Fig. 30.2
(2/3 for the central light gray region and 1/6 for the lateral ones). We can then
numerically compute the inverse of such a filter. As the inverse filter will present
an infinite impulse response, we decided to truncate the tap number at 32, as the
sum of the absolute values of the neglected taps is less than 109 times the central
tap. The AFE shows a fixed delay between the time instant when an acquisition
ends (and the following one starts) and the edge of the DRDY (data-ready) signal
which we estimated to be approximately 5 μs. We therefore aligned the instant at
which the multiplexer switches to the correct time at which the new acquisition starts
by anticipating it with respect to the DRDY signal by 5 μs. Additional non-ideal
behaviors (e.g., finite transition times in MUXs and analog conditioning circuits,
high-frequency content in the input signal, limited synchronization between ADC
and MUX) will reduce the accuracy of the reconstruction. However, we will prove
in the next section that the approximation does not significantly affect performance
both with respect to common electrical specifications for EEG/EMG acquisition
systems and in real case scenarios such as gesture recognition while allowing to
increase signal bandwidth for a given AFE sampling frequency (Fig. 30.3).

30.3 Experimental Results

Evaluation of the acquisition performance is a key element for a biopotential
recording system, both from the electrical and functional standpoints. As the main
drawbacks of our architectures can be considered to be increased noise and crosstalk
between channels due to input signal multiplexing, we mostly focus on these
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Fig. 30.3 EMG acquired signal. In the bold boxes: a single contraction (above) and the FFT
calculated on one channel (below)

two figures of merit. Secondly, we evaluate the performance of a typical pattern
recognition application, based on the “de facto” standard algorithm and compare it
with literature golden standard. We show how, even though multiplexing results
in a partial superposition of adjacent channels which can be reduced but not
canceled by our approach, it does not significantly affect the performance of the
classifier algorithm, demonstrating how it is possible to optimize system parameters
depending on the specific application.
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Table 30.1 Input-referred noise integrated in the typical EEG and EMG bands for different
configurations and sample rates

Integrated noise 1 ksps

[μVRMS] waiting 4 Tsample 1 ksps 2 ksps 4 ksps

EEG band [0.5–100] Hz 1.19 0.75 0.86 1.08

EMG band [20–250] Hz 1.79 1.15 1.2 1.67

Electrical Characterization
One of the most critical parameter to evaluate the performance of a signal
acquisition system is the input-referred noise, measured by shorting inputs to a fixed
potential.
Table 30.1 shows input-referred noise integrated in typical EEG and EMG bands
([0.5–100] Hz and [20–250] Hz, respectively). Using the same sampling frequency,
noise is reduced by a factor 1.6 in the implementation with the AFE running at
4 ksps and using the inverted sinc filter to reconstruct the signal, with respect to the
standard implementation which waits 4 Tsample for the filter to settle. This is due
to the reduction of noise performance of the AFE at increased sample rates. The
value of 0.75 μVRMS is slightly higher than what prescribed by IFCN (0.5 μVRMS)
[14] but is still considered widely acceptable for high-quality EEG acquisition [20].
Moreover, the requirement can be easily satisfied by replacing the AFE with an
ADS1299, specifically designed for EEG signal acquisition, at the cost of increase
in price and power consumption. As a comparison, the datasheet of Intan chip
RHD2132 [10] declares an input-referred noise of 2.4 μVRMS, while the system
presented in [13] shows a noise performance of 3.1 μVRMS.

As described in section “Inverse Filter Signal Reconstruction,” non-idealities will
affect the capability of the inverse sinc filter to reduce crosstalk between channels
due to the multiplexing of signals on the same AFE channel. Figure 30.4 shows
performance for different sampling rates at varying frequency, as compared to
specification set by IFCN recommendations for high-quality EEG signal acquisition

frequency signal, 100 mV peak-to-peak amplitude. All other inputs are shorted and
crosstalk is measured as the ratio between the amplitude of the signal leaking
on adjacent channels at the output of the system and the input signal amplitude.
To simulate the effect of the interface between skin and electrode, we inserted
a standard model of contact impedance (series between a 1 K� resistor and the
parallel between a 51 K� resistor and a 47 nF capacitor). We observe how the
specification is satisfied for all sampling rates in the EEG band (up to 100 Hz). As a
proof of the effectiveness of our approach, crosstalk before post-processing is 25%
on adjacent channels.

The flexibility of the system allows to tailor the trade-off between bandwidth,
noise, and crosstalk to satisfyingly address different applications. If we consider
EEG applications, our approach allows to acquire up to 32 channels sampled at
1 ksps with a good noise level. At the same time, we could extend the channel

(1% of 40 dB) [14]. Measurement is performed by connecting one input to a variable
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Fig. 30.4 Crosstalk between adjacent channels. For all sampling rates, we satisfy specifications
prescribed by IFCN recommendations for high quality acquisition of EEG signals

number to 64 (using 8:1 MUXs), with a noise degradation of approximately 25%. If
the application allows for additional increase in noise level (such as for most EMG
signals), we could even consider 16:1 multiplexing, extending channel number up
to 128 with a single AFE. This would not be possible if we had to wait for the
decimation filter to settle. Moreover, for 32-channel solutions, our approach allows
to increase sampling rate by a factor 4, up to 4 ksps. As crosstalk decreases for
increased sample rate, we observe that higher sampling rates can be beneficial for
signals with higher bandwidth but relaxed requirements on input-referred noise,
such as EMG.

Application to EMG Gesture Recognition
In this experiment, we tested the system by applying the EMG flexible strip on
the forearm of one able-bodied subject without previous history of neuromuscular
diseases. The first test is performed using the acquisition system without the
digital reconstruction (i.e., waiting for the 3 + 1 sampling periods, as explained
in section “Signal Acquisition”). The system acquired the 32 EMG channels at
1 ksps (DSRksps) on a set of 4 gestures: power grip, precision grasp, open hand, and
rest position. The subject executed each gesture 4 times, holding contractions for
3 s and separating the repetitions with 3 s of hand relaxation (rest position). Figure
30.3 showcases a trace of the EMG signal acquired with the multiplexed ADC. It is
noticeable that the FFT does not present peaks caused by the MUX switching and,
thanks to the DgRL circuit [18], which increases the CMRR of 70 dB, the Power
Line Interference (PLI) on the traces is negligible.

We evaluate the performance of our approach on a typical gesture recognition
application, using the processing scheme depicted in Fig. 30.5, based on the Discrete
Wavelet Transform (DWT) and on SVM algorithm to classify the acquired samples.
The DWT based preprocessing is a well-accepted feature extraction technique
which gives time–frequency domain information on the acquired sample. In this
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Fig. 30.5 Computational scheme

experiment we used as feature vectors, the Detail Coefficients (decomposition level
4), calculated on the HAAR Mother Wavelet.

During the training phase, performed offline on a PC platform, we acquire the
EMG data to train the SVM model (i.e., an array of Support Vectors), using 10% of
the data acquired in one single session. During the classification, performed online,
we calculate the output of the SVM over the continuous stream of acquired gestures.
The accuracy, measured as the difference between the gesture labels annotated by
hand and the SVM output values, reaches 95.56% with a model of 710 Support
Vectors, resulting aligned with values presented in literature and suitable for the
implementation of a real-time gesture recognition system [15, 21].

In the last experiment we tested the aforementioned pattern recognition applica-
tion, leveraging the developed method to suppress crosstalk. We acquire EMG data
by setting the ADC at 8 ksps and switching the MUX input at every new sample
(i.e., without waiting for the 4 settling samples, as described in section “Inverse
Filter Signal Reconstruction”). The resulting sampling rate of the EMG channels is
8 ksps/4MUXposition , i.e., 2 ksps.

Figure 30.6 shows the difference between a single muscular contraction acquired
in normal operating conditions (AFE sampling rate set to 16 ksps and waiting 4
Tsample for the filter to settle, Fig. 30.6-top) and the signal obtained running the
AFE at 4 ksps and post-processing data to remove crosstalk (Fig. 30.6-bottom). The
muscular contraction is clearly detectable in both configurations.

Testing the SVM hand gesture recognition application with the reconstructed
signal, we obtain that the SVM algorithm calculates 819 vectors, and reaches an
average accuracy of 93.54% over the 4 hand position, again aligned with SoA
literature [15].
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Fig. 30.6 Difference between EMG signal acquired with standard 4-samples settling (above) and
digital reconstruction (below)

This experiment shows how, thanks to our approach, we can safely increase
sample rate without degrading performance of the system. On the other hand,
although this was not possible in this work as the interface has a limited number
of electrodes, we can exploit the trade-off between channel number and bandwidth
to use our system in configurations requiring extended number of channels. This is
of the uttermost importance as recent results have demonstrated that a fine-grain
coverage of the muscle surface increases control performance both in terms of
accuracy [5] and robustness [6].

30.4 Conclusions and Future Work

This paper presents a cost-effective scalable multichannel system for acquiring
medium-density arrays of biopotentials. The presented framework allows to acquire
up to 64 channels maintaining the cost below 1 USD per channel with electrical



30 A Cost-Effective Embedded Platform for Scalable Multichannel. . . 363

performance aligned with those of SoA systems. To overcome physical limitations
of the Sigma-Delta ADCs and increase the sampling rate of the multiplexed signal
(or the number of channels for a given sample rate), we presented a method to
process the digital output stream from the AFE through a custom digital FIR filter,
which compensates the decimation filter behavior. We proved this method to be
able to reduce crosstalk by a factor of more than 25, allowing the system to both
satisfy specifications for high-quality EEG and EMG signal acquisition. For a
sampling frequency of 1 ksps, this approach allows to reduce input-referred noise
to 0.75 μVRMS integrated noise in the [0.5–100] Hz band and 1.15 μVRMS in the
[20–250] Hz with 24-bit resolution, which favorably compares to the multichannel
systems presented in [10, 13] (2.4–3.1 μVRMS with 16-bit accuracy) and with
specifications for EEG and EMG signal acquisition. Moreover, we tested the system
on a typical pattern recognition application and we verified that it achieves accuracy
value above 95% in line with the literature.

Thanks to the modular design and to the simple backend interface of the
ADC, this solution is particularly suitable for designing embedded interfaces
based on low-power microcontrollers. Future work targets the system optimization,
minimizing the PCB layout with more aggressive place&routing, Vias-in-Pads, and
smaller component packages. Furthermore, we will explore techniques to maximize
performance of the system in terms of number of channels, bandwidth, noise as well
as we will test the system on a wider range of signals and applications.
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Chapter 31
A Pilot Study on Electrode–Skin
Impedance Analysis of Embroidered
EMG Electrodes

Bilge Guvenc Tuna , Gozde Goncu Berk , Nese Topcuoglu,
and Umit Ozorhan

31.1 Introduction

Surface electromyography is a method of retrieving the changes in the physio-
logical state of muscle fiber membranes as voltage noninvasively from the skin.
Electromyography (EMG) analysis is widely used to track sports performance in
addition to diagnosis of neural and muscular diseases in medical sciences. While
some surface EMG equipment could be a large size system composed of a PC,
printer, keyboard, screen, and electrodes, wireless EMG devices also exist. In
surface EMG applications for sports performance analysis, it is vital to conduct
wireless EMG to not to interfere with the movement of the athlete. Measuring
EMG data wirelessly in a wearable form, through electronic textile (e-textile)
based electrodes integrated within the clothing could provide several advantages
compared with the conventional silver/silver chloride (Ag/AgCl) electrodes. E-
textile electrodes are unobtrusive since they are flexible and do not contain the
hydrogel pads that require skin preparation and that can cause skin irritation in
the long-term use. Unlike the conventional, hydrogel Ag/AgCl electrodes whose
performance degrades over time as the gel dries, e-textile electrodes are reusable
and washable and can come in different compositions, sizes, and shapes.
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One of the most important problems of surface EMG is masking of EMG signals
by unwanted electrical activity or noise. The masking of signal by noise is caused
by the relatively low signal-to-noise ratios (SNRdB). Especially in EMG diagnosis
where muscle activity is low, SNRdB should also be very low. A significant
potential noise source with respect to surface EMG is the electrode–skin interaction.
This source of noise is composed of voltage and current noise, and the current
noise is higher when the electrode–skin impedance is high [1]. The electrode–
skin impedance is an important feature since it affects the captured EMG signal
quality. Since e-textile electrodes are dry unlike self-adhesive hydrogel Ag/AgCl
electrodes, they are subject to higher levels of noise caused by motion and loosening
of the contact between skin and the electrode [2]. In this study, we aim to develop
dry, e-textile EMG electrodes using computer-aided embroidery method and test
the effect of embroidery parameters using two different silver conductive threads
on electrode–skin impedance and SNRdB values in comparison with conventional
Ag/AgCl electrodes.

Based on the literature review, there exits research on clothing with integrated
e-textile electroencephalography (EEG), electrocardiography (EKG), and EMG
electrodes. E-textile electrodes have typically been produced by one of the several
methods. Knitting or weaving of conductive threads and screen printing of con-
ductive ink into electrodes have been used commonly as manufacturing methods.
Catarino et al. [3] used the weft knitting method to develop EMG electrodes using
knit, tuck, and float structure variations with steel and silver conductive threads.
Results showed that the float and knit loop structures in producing the EMG
electrodes provided high-quality EMG signals comparable to Ag/AgCl electrodes.
Paul et al. [4] developed screen-printed electrodes using conductive rubber and
conductive tracks using silver paste insulated with a top layer of polyurethane
paste. The screen-printed electrodes were evaluated for bio-potential monitoring
applications of EKG and EMG. The study concluded that the screen-printed
electrodes are useful in EMG diagnosis, however represent baseline drift in EKG
applications. Oliviera et al. [2] studied the electrode–skin impedance and the signal-
to-noise ratio of EMG signals from embroidered textile electrodes with no hydrogel
over time. The study concluded that the pressure provided by garment plays an
important role in decreasing the noise caused by movement and assuring a good
electrical and mechanical contact between the electrodes.

CAD embroidery has been an important manufacturing technique for e-textiles
since it provides repeatable results, rapid integration of electrodes, sensors, and
conductive tracks together with electrical components in a single step as an
embedded system [5]. However, current literature does not provide knowledge on
embroidery parameters and their effect on electrical characteristics of embroidered
EMG electrodes. This research represents a preliminary study on the effect of
embroidery stitch type using conductive thread on electrode–skin impedance and
SNRdB values of embroidered EMG electrodes.
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31.2 Materials and Methods

Polyamide silver-plated Madeira HC12 (<300 �/m) and HC40 (<100 �/m) threads
are used to manufacture EMG electrodes with a ZSK Sprint XL CAD embroidery
machine. Hundred percent polyester knit fabric is used to prototype arm bands with
embroidered EMG electrodes. A total of eight samples, each having five sets of
embroidered electrodes for muscle stimulation and EMG analysis, were prototyped
(Fig. 31.1).

Five different embroidery stitch types of satin, fill, star, zigzag, and chain,
which all provide different surface textures, were employed in designing the EMG
electrodes using the Tajima DG 15 by Pulse embroidery software (Table 31.1).
Different stitch types were used to create different surface textures and determine the
best stitch type for high-quality EMG signal. Embroidered electrodes were covered
with an additional fabric layer for insulation purpose on the outer surface. Metal
snaps were installed on the electrodes to connect them with the EMG sensors.

Two volunteers participated in the experiments at this stage and two sets of
data were retrieved from each participant using eight different e-textile electrode

EMG Electrode
Ground

Velcro

Velcro

Velcro

Velcro

EMG Electrode
Anode

EMG Electrode
Cathode

Electrode for
Muscle Stimulation

Electrode for
Muscle Stimulation

Fig. 31.1 A visual illustration of sleeve band prototype with embroidered electrodes

Table 31.1 Embroidered
e-textile electrode samples

Sample Embroidery stitch type

Fill stitch

Satin stitch

Star stitch

Zigzag stitch
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Fig. 31.2 Experimental setup

types. A four-channel wireless eMotion EMG device was used for the retrieval
of signals from the participants via the embroidered electrodes and conventional
electrodes. Sampling frequency of eMotion EMG device was 1000 Hz. The
electrode–skin impedance was first measured using four-electrode configuration
(Fig. 31.2). Sinusoid signal at frequencies of 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 200,
300, 400, and 500 Hz was applied by a function generator. The function generator
was used to stimulate the biceps muscle of the participants. One EMG channel
was connected to the embroidered electrode function generator probe connection to
retrieve the stimulating signal input. A second EMG channel was connected to the
three embroidered EMG electrodes to retrieve the EMG output data from the biceps
muscle. DC component of the signal was removed by subtracting its mean value.
Magnitude and phase angle between signals due to range of frequencies between 1
and 500 Hz were calculated by fast Fourier transform (FFT) in MATLAB R2018.

In addition, two sets of electrode–skin impedance data were retrieved from
three volunteers at higher frequencies compared to the first set of experiments.
Each participant used eight different e-textiles electrode types. The electrode–skin
impedance of embroidered electrodes and conventional electrodes was measured
using a spectrum analyzer (HP 4396B). The measurements were performed using
two-electrode configuration (Fig. 31.2 (connected 1 and 2)) at frequencies of 1000,
5000, and 10,000 kHz.

Signal-to-noise ratio (SNRdB) was calculated to compare sensing performance
of all e-textile electrode alternatives versus the conventional Ag-AgCl electrodes.
SNRdB was calculated using Eq. (31.1) where Srms represents the RMS of the
signal amplitude during 10 Hz stimulation with function generator and Nrms
represents the RMS of the noise during rest.

SNRdB = 20 log10

(
Srms

Nrms

)
(31.1)

31.3 Results and Discussion

Results showed that all types of embroidered e-textile electrodes showed compa-
rable or better results than the conventional Ag/AgCl electrodes in surface EMG
applications. SNRdB values of embroidered e-textiles electrodes (Table 31.2) all
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Table 31.2 Signal-to-noise
ratios of conventional and
textile electrodes

Electrodes SNRdB

Conventional 60.63
Fill with HC40 61.19
Fill with HC12 61.22
Satin with HC40 70.83
Satin with HC12 70.74
Star with HC40 61.45
Star with HC12 62.43
Zigzag with HC40 60.84
Zigzag with HC12 70.52

Fig. 31.3 A comparative
display of impedance phase
angle of conventional and
embroidered electrodes with
satin stitch
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Impedance Phase Angle

showed better results compared to the conventional Ag/AgCl electrodes. Among
embroidery stitch types, satin stitch showed the highest SNRdB value, followed by
zigzag stitch and chain stitch types. The conductive thread types HC12 (<300 �/m)
and HC40 (<100 �/m) did not show significant difference for SNRdB values except
for zigzag stitch pattern. Electrodes manufactured using the zigzag embroidery
stitch displayed higher SNRdB values with HC40 (<100 �/m) conductive thread.
Although, conductive thread types with higher resistance were expected to have
higher SNRdB, it can be suggested that other parameters such as contact area or
fiber properties has more influence on SNRdB.

The analysis of electrode–skin impedance showed that conventional electrodes
and embroidered e-textile electrodes do not show significant difference in terms of
phase angle (Fig. 31.3). E-textile electrodes with satin stitch show higher impedance
magnitude in comparison with the conventional electrode between frequencies 1 and
100 Hz (Fig. 31.4). Although the SNRdB was higher in satin stitch, measured high
magnitude compared to conventional electrodes might be due to varieties among
the volunteers at low frequency range. Values of impedance (phase and magnitude)
were variable among the volunteers. Contact pressure is reported to be one of the
main reasons for this variability, and it is an additional parameter to consider [6].

However, two-electrode configuration impedance measurements at higher fre-
quencies (1000, 5000, and 10,000 kHz) showed less variance between volunteers.
In these experiments, e-textile electrodes with satin stitch with HC40 showed
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Fig. 31.4 A comparative
display of impedance
magnitude of conventional
and embroidered electrodes
with satin stitch at low
frequencies
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Fig. 31.5 A comparative
display of impedance of
conventional and
embroidered electrodes with
satin stitch at high
frequencies
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significantly lower impedance at 5000 and 10,000 kHz in comparison with the
conventional electrode (Fig. 31.5). The impedance of satin stitch with HC12 was
significantly lower than the conventional electrode at 10,000 kHz. In future mea-
surements, these experiments will be carried on with higher number of volunteers
and under optimum pressure conditions.

This pilot study is aimed to characterize embroidered e-textile electrodes and
compare them to conventional Ag/AgCl electrodes. This characterization can be
used to determine the properties of e-textile electrodes, which can detect high-
quality EMG signal comparable to Ag/AgCl electrodes. Impedance of e-textile
materials is highly influenced by contact area formed with the skin. Contact area
is reported to be variable due to fiber properties, thickness of the fibers, fiber
density, the number of fibers per cross-section, and hairiness [7]. There might be
an influence between better SNRdB and impedance of electrode–skin interface;
however, the number of the volunteers was not enough to determine this relation.
The relation between performance of ECG electrodes and impedance was reported
for textile electrodes such as cotton, Lycra, or cotton-polyester [8]. As a future work,
optimization of the pressure and increase in the number of volunteers are necessary.
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31.4 Conclusion

E-textile, embroidered electrodes demonstrate superior results and advantages
compared to conventional Ag/AgCl electrodes. E-textile electrodes for surface EMG
applications could be embedded in clothing offering reusability and wearability
advantages. The results of this showed that e-textile EMG electrodes could provide
higher signal quality compared to conventional electrodes. E-textile electrodes
demonstrate comparable results to conventional electrodes in term of electrode–
skin impedance performance. This research analyzed electrode–skin impedance by
externally stimulating the muscles via a function generator when the body limb is
at rest. Future research could further analyze electrode–skin impedance for e-textile
electrodes during physical muscle activity when the body limbs are in motion. It is
expected that the friction between skin and the e-textile electrode during movement,
the pressure applied by the clothing with embedded e-textile electrode to the skin,
and sweating will affect the electrical characteristics of e-textile electrodes.
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Chapter 32
Toward a Wearable Epileptic Seizure
Monitoring: A Case Study

Javad Birjandtalab, Diana Cogan, Mehrdad Nourani, and Jay Harvey

32.1 Introduction

Motivation and Prior Works

With the advances in information technology, health-care monitoring and alert
systems have become attractive topics of research and development [24]. Seizure
prediction is very important since it gives a patient the chance to at least find a safe
position and environment and thus minimize the impact of an imminent seizure.
Realistically, using the available technology, accurate prediction is an elusive
objective. Seizure detection is also a challenging problem but more achievable goal
and offers two advantages. First, an alert can be sent to caregivers which can prevent
serious harms to patients such as SUDEP (sudden unexpected death in epilepsy).
Second, an annotated diary of seizure episodes can be generated, which would
be considered very beneficial for clinicians [17] in making treatment decisions.
Although electroencephlography (EEG) is considered as the gold standard for
seizure detection, it is not practical for daily life monitoring since it needs the use
of full (e.g., 23-channel) EEG setup or implantable sensors in the brain.
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The first serious effort for predicting seizures was made in 1970 [15]. The authors
used scalp electrodes for this purpose. Although the proposed system provided high
sensitivity, it suffered from a large number of false positives. The series of public
forums such as International Workshop on Seizure Prediction (IWSP) played an
important role on developing new techniques for seizure prediction [13].

Researchers have used various biosignals that can be recorded using wrist worn
devices, which have potential to predict the seizure. These biosignals include
heart rate (HR), arterial oxygenation (SpO2), accelerometry (ACC), electrodermal
activity (EDA), and temperature (Temp). High HR changes at the beginning of some
types of seizures are reported in the literature [14]. In [22], ECG and PPG, obtained
from wrist worn devices, were used in a clinical setting to automatically detect
epileptic seizures. Researchers have also found patterns that seizures may change
the level of SpO2 [12]. They validated their findings by showing that seizures can
disrupt the patient respiration [19]. Movement measured by ACC and changes in
EDA have been found to effectively find the beginning of convulsive seizures [18].
Although Temp is considered as an indicator of febrile seizures, it has the potential
to be used in detecting other type of seizures [23].

Contribution

We have previously investigated patterns in HR, SpO2, and EDA biosignals during
seizures in patients suffered from epilepsy. These patterns are not commonly
observed during non-seizure events. In [10], we implemented a new method which
finds features of biosignals in time domain and used these features to distinguish
seizure from non-seizure events. In another work, we reported that a limited-channel
EEG (1 to 3 scalp electrodes carefully chosen for each patient) will be sufficient to
detect seizures with high accuracy [5]. We used a public-domain (MIT) database
[6] to show the feasibility of designing a wearable seizure monitoring system and
achieving high accuracy for automatic seizure detection.

To validate the basic concept and feasibility, we conducted a clinical study and
applied the previous techniques for analysis of seizures captured from ten patients.
The main purpose is investigating the efficacy of a multi-modal system for automatic
seizure detection. This hybrid system utilizes both a wrist worn non-EEG device as
well as 1–3 EEG nodes. This clinical study shows that such hybrid platform will be
capable of providing accurate seizure diary/detection in daily life of patients. Non-
EEG monitoring was sufficient for six out of ten patients. For the remaining four
cases, limited EEG monitoring was needed to avoid false positives. Once integrated
within an alert platform, the proposed hybrid platform will help patients and care
givers to manage the uncontrolled seizures.
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32.2 Background

Non-EEG-Based Seizure Detection

We selected two wrist worn devices capable of capturing five biosignals—HR,
SpO2, EDA, skin temperature (Temp—needed to properly interpret the EDA signal),
and motion by use of three-dimensional accelerometry (Acc). The two devices
are the Nonin WristOx2, which captures HR and SpO2 [21] and the Affectiva Q
Curve, which captures EDA, Temp, and Acc [2]. Because a seizure is a severe
neurological stress on the affected person, we designed an experiment to determine
the effectiveness of our selected biosignals for distinguishing among four stress
states people encounter in normal life experiences (Fig. 32.1).

We executed the experiment in our laboratory under UT Dallas IRB Protocol
No. 12–29. Use of neural networks and the nearest neighbor algorithm on the
resulting data produced accuracy of over 90% in distinguishing among the four
stress states. Figure 32.2 shows the raw data collected from one of our volunteers.
We used these biosignals and machine learning techniques to distinguish the seizure
episodes. Our experimental procedure and results were presented in detail in [9].

EEG-Based Seizure Detection

Several researchers used EEG data to monitor seizures among epileptic patients.
A neural network model is trained for seizure detection using features extracted
from wavelet transform [11]. A hybrid EEG-based classifier for seizure detection is
presented in [1]. Authors in [20] extracted a combination of temporal and spectral
features and used principal component analysis (PCA) as visualization technique by
reducing the original dimensions of data.

Fig. 32.1 (a) The wrist worn Affectiva records EDA, Acc, and Temp; (b) the Nonin 3150 Wireless
WristOx2 records HR and SpO2
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Fig. 32.2 The HR↑⇒ SpO2 ↓⇒ EDA↑ pattern produced by two seizures suffered by one patient
[7]

Fig. 32.3 The overall view of EEG-based seizure detection [4]

Our research group has explored several aspects of EEG signal analysis. We
reported a 21-channel EEG-based seizure detector which uses a nonlinear dimension
reduction technique in [4]. The data flow for this method is illustrated in Fig. 32.3.
Figure 32.4 illustrates a window of seizure and non-seizure EEG signals analyzed
by our detector. Our proposed nonlinear technique provides higher accuracy than
conventional dimension reduction approaches. We used spectral domain features
for unsupervised clustering of seizure and non-seizure events. We have also
demonstrated that spectral domain features can be used to identify among the EEG
patterns of different subjects in MIT database [6].

32.3 Case Study and Experimental Results

Setup and Data Collection

We recorded biosignals from patients, after IRB approval, at an Epilepsy Monitoring
Unit in Dallas, Texas. Our medical collaborators have annotated the seizure events
using EEG data [16]. Two commercial devices are used to collect data from patients
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Fig. 32.4 A sample window
of EEG signal in time domain
showing the seizure and
non-seizure

Table 32.1 Non-EEG seizure detection effectiveness per patient [8]

Patient Seizure type Seizures False
ID Duration and numbers Seizure focus detected alarms

4 11 h, 50 min 1—CPS Left temporal 1 0

5 43 h, 15 min 2—Secondary GTCS Left temporal 2 0

9 31 h, 13 min 3—CPS Left temporal 0 1

10 54 h, 3 min 4—CPS Right temporal 4 0

11 25 h, 21 min 1—CPS Right temporal 1 0

12 35 h, 24 min 2—CPS Frontal 0 1

16 28 h, 27 min 1—CPS Right temporal 1 0

18 30 h, 20 min 1—CPS Right temporal 0 1

19 39 h, 52 min 11—CPS rt and lt temporal 0 0

20 40 h, 2 min 1—Primary GTCS Non-focal 1 1

CPS Complex Partial Seizure, GTCS Generalized Tonic Clonic Seizure

at the same time that EEG data was collected: (1) collecting HR and SpO2 using a
Nonin WristOx 3150 device [21] and (2) monitoring EDA, Temp, and ACC using
Affectiva Q Curve wrist worn device [2]. We synced the wrist worn devices to the
EEG recording platform. This setting and protocol were used to accurately identify
the same seizure onset and offset timing for all biosignals.

Our dataset includes biosignals from ten patients who experienced total of 27
seizure episodes. As Table 32.1 shows, the six patients who experienced pattern
of the HR↑⇒ SpO2 ↓⇒ EDA↑ (patients 4, 5, 10, 11, 16, 20) had 2 secondarily
generalized, 1 primary generalized, and 7 complex partial seizure events. We used
MATLAB to perform the biosignal data analysis of 108 h of data.

Limitations of Non-EEG Seizure Detection

Non-EEG seizure detection is limited by the fact that different people have different
physiological responses to seizures. For example, HR changes commonly occur in
close temporal proximity to seizure onset as determined by EEG. Typically, the
change is a large, abrupt increase (tachycardia) [17]. Cyberonics has developed a
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closed-loop system for its aspire vagus nerve stimulator (VNS) that uses tachycardia
to detect seizure onset. When a seizure is detected, the vagus nerve is stimulated to
try to prevent or shorten the seizure.

Respiratory changes (and resulting SpO2 changes) are associated with seizures
that affect the temporal lobes, but not all seizures affect this part of the brain.
EDA increases, caused by changes in the sympathetic nervous system, are typically
caused by seizures, but our prior work indicates that this response may be attenuated
by some antiepileptic drugs (AED) [7]. Surface electromyography (sEMG) has been
used to detect the tonic (stiffening) phase of convulsive seizures, and monitoring of
motion has been widely used to detect the convulsive motion associated with these
seizures; but neither sEMG nor motion sensors have been shown to be effective in
detecting nonconvulsive seizures [23].

Seizure detection by non-EEG metrics requires a personalized system and will
likely not be useful for all patients; however, for those patients whose non-EEG
physiological response to seizure follows a specific pattern that can be captured
by wearable devices, there is a very real promise of accurate detection using a
noninvasive and nonstigmatizing system. Table 32.1 shows the results of non-
EEG seizure detection by patient. Notice that our algorithm detects all seizures
experienced by six of the patients and none of the seizures suffered by the other
four. This result underscores the consistency (in most cases) of an individual’s
physiological response to seizure, as well as the limitation of non-EEG detection.

Effectiveness of Limited-Channel EEG

Selecting limited number of EEG channels is reported in the literature for various
applications including automatic sleep analysis [3] and brain–computer interface.
Here, the goal is to achieve high accuracy while making the devices practically
wearable in daily living. We do this by developing a seizure detection platform that
relies on a limited number of EEG channels instead of having the full channel EEG
setup. We investigated this possibility on four patients from our preliminary study
whose seizures were not detected (patients 9, 12, 18, and 19) using non-EEG signals.
The results are tabulated in Table 32.2 showing that the accuracy of limited-channel
EEG is very close to that of the full-channel EEG. These patients all experienced
CPSs, without having any particular sign of automatism. Expectedly, ACC signals
do not reveal any pattern for these patients. We selected possible seizure times based
on non-EEG signal activity, then further analyzed the selected times using the three
channels of EEG that our filtering and classification process had chosen.
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Table 32.2 Full channel vs. limited-channel EEG comparison for four patients for whom our non-
EEG analysis did not work [8]

Patient ID Seizure Focus EEG Channels Specificity Sensitivity Accuracy

9 Left temporal
lobe

All 21 1.00 0.97 0.97

T5, C4, P3 1.00 0.98 0.98

12 Frontal lobe All 21 0.99 0.97 0.97

Pz, O2, Cz 0.99 0.98 0.98

18 Right
temporal lobe

All 21 1.00 0.96 0.96

F8, F7, A2 1.00 0.97 0.97

19 Right and left
temporal lobe

All 21 0.99 0.98 0.98

A1, F7, Fz 0.98 0.96 0.96

32.4 Conclusions

Based on a clinical study and the corresponding data analysis, we propose the
integration of (1) non-EEG monitoring by means of a wrist worn device with (2)
limited-channel EEG monitoring by means of 1–3 single-channel EEG sensors to
create a wearable multi-modal seizure monitoring system. We believe such hybrid
system will be capable of providing accurate seizure detection in daily life for
most patients. Such assistive wearable technologies for monitoring patients with
uncontrolled seizures hold the possibility of impacting hundreds of thousands of
people’s quality of life. Accurate detection will allow for feedback to the patient
and an alert to his/her caregiver. The system will also record patient biosignals on
a long term basis, thereby allowing physicians to monitor disease progression and
SUDEP risk.
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Chapter 33
Virtual Machine Execution for Wearables
Based on WebAssembly

Martin Jacobsson and Jonas Willén

33.1 Introduction

A complete wearable system consists of the wearable device, but also gateway
nodes, back-end servers, and client applications. Consequently, there will be many
different programming languages involved in creating an end-to-end system for IoT
applications. On the wearable sensor node itself, it is embedded programming in C.
On the gateway, it may be a high-level language, such as Python. In the cloud, it may
be Java, and finally on the web client, it is HTML and JavaScript. On smartphones
and tablets, yet other languages may be used. Needless to say, this diversity of
programming languages is a challenge even for experienced programmers. Instead,
we want to create a system where domain experts, rather than the very best
embedded programmers, should be able to create the application logic and, at the
same time, allow for easy tailoring of the systems to the application and user needs.
The idea is to use standardized hardware and be able to tailor it to the need at hand.
For instance, an inertial measurement unit (IMU) can both be used for activity
tracking throughout a day, but also in detecting dangerous working positions in
ergonomics depending only on the software it runs.

To enable reconfigurable wearables and one single language everywhere, we
propose to use a simple virtual machine (VM). We propose to use WebAssembly
for this, which is a new VM designed for fast execution of code on the web [13].
Despite its design target, WebAssembly is also suitable for resource-constrained
devices, including wearables, as it requires much less code size and other resources
compared to other alternatives, such as Java VM or a JavaScript interpreter. Cur-
rently, WebAssembly is gaining significant attention, for example, there is already
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support in all major web browsers today, and this promises wide adoption in the
future. Several compilers, linkers, and other tools already exist. Since WebAssembly
is based on compilation, you can use existing code to generate WebAssembly
byte code. Nevertheless, to the best of our knowledge, no one has actually run
WebAssembly on embedded devices.

In this paper, we implement a WebAssembly interpreter on embedded systems,
such as wearables, with support for over-the-air programming based on Bluetooth
low energy (BLE) Generic Attribute (GATT) services. Using WebAssembly is the
first step in allowing the same code to run everywhere in a complete wearable system
as WebAssembly already is supported in web browsers and on servers. Furthermore,
since our system uses BLE, it can be used together with common smartphones and
laptops without the need for special hardware.

33.2 Related Work

There are many alternatives to WebAssembly. First, it is possible to do over-the-air
programming with native code and dynamic linking. For instance, Dunkels et al. [5]
demonstrated this on Contiki-OS. Similar support is available for other sensor node
operating systems. However, every platform requires their own native binary code.
While you can support over-the-air reprogramming, you cannot run the same code
everywhere with these techniques.

Other alternatives are JavaScript engines and Java Virtual Machines (JVMs) for
embedded devices. Some attempts have been made to port JVMs to embedded
devices, such as TakaTuka [1] and Darjeeling [3]. Neither of these is active today.
One reason is that it is difficult to fit a complete JVM with full library support
on resource-constrained devices, and this means that these solutions have to make
sacrifices, which means that standard Java programs may not run on these JVMs.
The same problem also holds for JavaScript engines. Nevertheless, several options
exist for running JavaScript code on embedded devices. One popular example is
Espruino [9], which also comes with web-based tools for development and testing.
However, there are many more, such as Duktape, MuJS, Tiny-JS, JerryScript,
and Mongoose OS. Recently, Baccelli et al. [2] implemented a JavaScript engine
for embedded wireless sensor nodes based on CoAP [11]. However, complete
implementations of JavaScript engines are usually still very large. For instance,
Duktape [4] is one of the smallest and still requires 160 kB flash and 64 kB RAM,
and even then, it only supports the JavaScript versions ECMAScript E5.1 and not
the entire ECMAScript E6 or E7.

Even though WebAssembly has already been around for some time, the amount
of research is limited and mainly concerns programming language design and
semantics (e.g., [6, 12]). We have not been able to identify any research work about
running WebAssembly on embedded systems.
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33.3 Implementation

We have developed a prototype system that is able to program wearable sensor
nodes over-the-air using WebAssembly modules. The focus has been on Bluetooth
Low Energy (BLE), since this allows direct communication with standard devices,
such as smartphones and laptops without special hardware. We implemented a
WebAssembly interpreter that runs on resource-constrained embedded devices. In
this section, we highlight how we did this. Our implementation uses the Texas
Instruments development platform CC26x2R LaunchPad and their BLE stack
SimpleLink. The code is based on the Simple Peripheral example script provided
by TI. However, our WebAssembly implementation is platform agnostic and we
also have it working on Contiki-OS as well.

WebAssembly, WAC, and libwabt.js

WebAssembly is a structured stack machine with strict typing [13]. Hence, both
compilers and interpreters are easy to implement. WebAssembly uses byte code
for efficient representation of compiled code, which is known as a WebAssembly
module (wasm) and contains functions for modularization of code and linking.
There is also a textual representation. The small size of wasm modules enables
redeployment of the code between sensor nodes, gateways, cloud servers, and web
clients efficiently, automatically, and over-the-air. Despite being designed for high-
performance code execution for web applications, it is a simple and efficient VM
that is also suitable for embedded systems.

Currently, there are two C/C++ compilers that can generate WebAssembly byte
code, where one is based on the extendable compiler infrastructure project LLVM.
Both compilers have support for more programming languages, such as Rust. It is
not hard to imagine and implement simpler to use compiler front-ends based on
low-code concepts [10], such as Google Blockly or MIT Scratch.

In addition to compilers, many tools have been developed for WebAssembly.
One set of tools is the WebAssembly Binary Toolkit (WABT), which implements
several useful tools for the handling of WebAssembly binaries, including converting
between the binary representation (wasm) and the textual representation. WABT
also includes a WebAssembly interpreter in C++. Furthermore, this project has
also been compiled to a JavaScript library called libwabt.js that can be used to
do what WABT does in web browsers. This library allows for online writing of
WebAssembly code and the creation of binary wasm modules.

WebAssembly in C (WAC) [7] is a WebAssembly VM engine written in C. This
code is small, but still a complete implementation of a WebAssembly interpreter. As
we need to write code in C for our embedded system, we base our implementation
on WAC.
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WebAssembly on Embedded Systems

Our implementation of WebAssembly on embedded systems can be divided into
three parts: the WebAssembly module loader, the interpreter, and the BLE applica-
tion with the API to the rest of the embedded operating system (OS).

The module loader accepts the binary wasm module from the BLE application.
It allocates heap space for the execution of the module and places the wasm binary
in the first part of the heap space as shown in the left part of Fig. 33.1. Our
implementation has a fixed-sized struct for the management of the module, which is
placed right after the wasm module on the heap space. A handle to this struct shown
with the blue hollow arrow is passed around by the application. The struct points out
where everything else is located on the heap. The struct also includes run-time data,
such as the program pointer (PC), operand stack pointer, and the call stack pointer,
all three shown as bold arrows in the figure.

Then, the module loader places additional data on the heap in the order shown
in Fig. 33.1. In the first parts, we place data that has a fixed length or will never
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Fig. 33.1 The proof-of-concept implementation. The wasm module heap space (left), hardware
setup (top right), and an example input signal from the pulse sensor (bottom right)
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grow after load time. In the end, we place data that may need to grow, i.e., the linear
memory and the stacks. First, we place the global variables on the heap. The global
variables may change, but the number of variables will never change. Then we place
the function declarations, followed by the branch optimization, which is used to
speed up the execution of branching in the code. For instance, when executing an if-
opcode, we can look up the start location of the else-branch when we should branch
there, instead of searching for it in the function code.

Tables and linear memory are constructs specified by the WebAssembly specifi-
cation. Tables can be used by indirect function calling and will have a fixed length
determined by the module at load time. The linear memory acts as heap storage
for the module itself. A module can reserve zero or more memory pages at load
time, but can also grow the allocated memory at run-time by reserving additional
memory pages. This means that this part of the space may need to grow. Finally,
we have space for the stacks. Our implementation, being based on WAC, uses two
stacks, one for operands and one for function calls and blocks, such as if-then-else-
end-blocks or loop blocks. They grow in opposite directions to make the maximum
use of the available space. When they meet, we will have a stack overflow, which
will terminate the WebAssembly execution. Future versions may instead extend the
allocated memory if possible.

Gray areas in Fig. 33.1 indicate the run-time state that needs to be migrated if
a running wasm module needs to move from one node to another. White areas can
always be reloaded from the binary wasm module.

The interpreter part is a classic while-loop with a large switch statement
implementing all the 192 opcodes defined by WebAssembly. Some of the opcodes
implement functions using 64-bits integers and floating-point data types (both single
and double precision). Since the ARM Cortex M4F microcontroller in CC2652R,
used by our LaunchPad sensor node, does not have native support for all these data
types, some are implemented in software by the compiler.

Bluetooth Low Energy Implementation

The WebAssembly module is executed by a dedicated task in the BLE stack. In
our current implementation, the operating system and the BLE stack have most of
the control and only the application logic is done by the wasm module. In future
implementations, we imagine that wasm modules will have much more control
of the stack and the operating system, such as creating own GATT services or
implementing standardized BLE profiles.

Our current BLE application implements three functions that can be used by the
wasm module, namely millis(), analogRead(), and notify(). The first
one returns the number of milliseconds since the device started, the second function
reads one of the analog-to-digital converter (ADC) pins, and the last one emits a 32-
bit integer over a BLE characteristic, which will be sent over-the-air to subscribed
clients, such as a smartphone app.
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The wasm module must export two functions: interval() and periodic().
The first function is called only once after the module is loaded and must return
a time interval in milliseconds. Then, periodic() is called regularly by an OS
timer according to the interval. A single low priority OS task executes all this
and this means that concurrent calls to periodic() are impossible, even if the
interval is very short or the execution of periodic() is prolonged.

To program and interact with the wasm module application, our BLE imple-
mentation implements a custom-made GATT service with three characteristics
(attributes that can be read or written). The first is ModuleValue and allows for
notifications, which means that BLE clients can subscribe to it and receive values
when the attribute changes. The characteristic ModuleStatus is for management
and tells whether the module is loaded, running, resetted, or terminated with an
error. The third characteristic is ModuleUpload and this one is for uploading the
wasm module binary over-the-air to the device. The binary is divided into 20-bytes
segments and sequentially written to this characteristic to upload the module. When
finished, the module is loaded and initialized with a special command.

33.4 A Proof-of-Concept Evaluation

To demonstrate the usage of our WebAssembly system in a BLE device, we
developed software for extracting the heart rate from a photoplethysmogram (PPG)
sensor connected to a BLE node. We use the TI Launchpad CC26x2 as sensor node
and connects a PPG sensor (Pulse sensor [14]) to one of the analog pins on the
node. The top right part of Fig. 33.1 shows the hardware setup. By sampling the pin
with an analog-to-digital converter (ADC) when the pulse sensor is attached to a
fingertip, we can obtain the pulse curve shown in the bottom right part of the figure.

Our proof-of-concept wasm module implements a simple signal processing
application of the raw sensor data (blue curve in Fig. 33.1) into the heart rate. The
heart rate will be sent via the ModuleValue characteristic to all BLE subscribers.
It is based on finding the average value of the curve with a simple exponentially
weighted moving average and an offset (red curve). The program calculates the
time between the events when the blue curve crosses the red curve from below (the
green time intervals) and calculates the beats per minutes (BPM) from this.

In order to test the BLE over-the-air programming of the sensor node, we
developed a simple HTML/JavaScript web application. The Google Chrome web
browser supports the Web Bluetooth API and can be used to interact with BLE
devices. Figure 33.2 shows our web application running in Chrome from a standard
laptop. From it, we can connect to and control the sensor node and upload compiled
wasm modules. Through the same web application, we can receive the output from
the wasm module once it starts running. In Fig. 33.2, we show a use-case where
we first connect to the sensor node, load a saved wasm module, upload it to the
sensor node, and then start to receive the heart rate in BPM. The received values are
indicated with the red boxes in the figure. Since a lot happens in the background, we
show the JavaScript log console from Chrome to the right, where we log the actions



33 Virtual Machine Execution for Wearables Based on WebAssembly 387

Fig. 33.2 Screenshot of the BLE Gateway tool running in Chrome on a laptop and connected with
the device over BLE. The red boxes are the reported BPM values from the wasm module running
on the device. To the right is the JavaScript console log

performed by the web application. Using the libwabt.js library, the web application
also disassembles the wasm module and displays what is being uploaded in the text
box to the left. A simpler version of the web application was developed and tested
on Android tablet PC as well as on an iPhone. For the iPhone, you have to use the
experimental web browser WebBLE as Safari does not yet have Web Bluetooth API
support.

Size Overhead

Our small proof-of-concept evaluation script compiles to a mere 209 bytes binary
wasm module. This size can be compared to a native binary code (ELF) of around
900 bytes or 185 bytes for a minimal equivalent JavaScript, and 1263 bytes for
Java (.jar). Our WebAssembly interpreter and module loader implementation only
require 13 kB flash memory (including support for 64-bit integer and floating-
point arithmetic) and 1.1 kB SRAM (both heap and stack). On top of this, the
example script requires 526 bytes for the run-time states and optimization. This
can be compared to Baccelli et al. [2], which reports a 12 kB RAM usage and
160 kB flash memory usage for their JavaScript Engine alone. Hence, WebAssembly
is significantly more space efficient compared to JavaScript. There are smaller
JavaScript implementations, but they tend to support even less features from the
JavaScript standard. The Mongoose [8] JavaScript engine, mJS, which claims only
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50 kB flash memory, is a good example. When it comes to Java VM, TakaTuka [1]
reports around 55 kB flash for a near complete implementation of the Java VM on
Atmel’s 8-bit AVR microcontroller.

Discussions

For most parts, there are very few problems with running WebAssembly on
embedded systems. However, one feature is a problem on today’s embedded
microcontroller platforms and that is the linear memory feature. It is designed for
more capable devices and therefore works with memory pages of 64 KiB. Many of
the latest embedded systems cannot reserve even a full single page. Hence, another
mechanism is needed to reduce the use of real memory for a WebAssembly module
that uses the linear memory feature. A solution is perhaps a mechanism that allocates
real memory only on demand, i.e., when a certain part of the memory page is being
used.

33.5 Conclusions and Future Work

In this paper, we have demonstrated how a WebAssembly interpreter can be imple-
mented on resource-constrained wearable sensor nodes. Due to the effectiveness
of WebAssembly, we thereby have enabled the possibility to run exactly the same
code anywhere in a complete wearable sensor system. This will finally allow us to
use one single programming language and environment to program all parts of a
complete wearable sensor system, from sensor nodes, to back-end servers, to client
applications if we want to. We will now continue this work by designing a suitable
distributed run-time environment for such systems and design suitable front-ends
for the WebAssembly compilers based on low-code concepts. We believe that this
will lead to faster and less demanding development of wearable sensor systems in
the future.
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Chapter 34
Biometallic Orthopedic Implant
with Printed Antenna

Ildiko Peter and Ladislau Matekovits

34.1 Introduction

Mechanical behavior, biocompatibility in body environment, and chemical stability
are the most important requirements for the effective use of any implant materials
in the human body and in particular for internal support and biological tissue
replacement [1, 2]. Metallic materials are continuously employed in the fields of
orthopedics and dentistry [3, 4]. One of the most important engineering approaches
when using metallic alloys is to guarantee as much as possible minor biological
stress to the human system. Simultaneously, to maintain as much as possible the
whole integrity and functionality of the human being, where the elastic modulus
is very important; it should be as close as possible to that of cortical bones [5] in
order to avoid essentially the “stress shielding.” β-type Ti alloys can be considered
appropriate candidates for such purpose; additionally, their elastic modulus can be
reduced following cold working [6]. Biometals, like Ti-based alloys, are widely
employed thanks to their structural functions that show better mechanical resistance
than some polymeric or ceramic ones, and due to their particular behavior, they can
be considered in a significant position among other biometals and alloys [7]. Over
the years the extension of metal made implants has been enlarged and recently there
is a higher tendency to their use in non-conventional treatments too, replacing differ-
ent human organs and tissues. Even if Ti6Al4V alloy shows exceptional mechanical
resistance, high biocompatibility leading to a good implant-bone integration, during
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the time some faults have been observed. In the years, efforts have been made to
overcome these weaknesses, and for example a special class of β-type Ti alloys,
developed in Japan, show remarkable possibilities in medical applications because
they combine a particularly low elastic modulus (closer to the elastic modulus of
cortical bones) with good mechanical strength [8]. Accordingly, in this chapter
a complex medical device, based on TiNb biometallic alloy, exhibiting properties
close to the bone ones, avoiding for example stress shielding, and characterized by
the added-value of being also appropriate for communication purposes, is proposed.

Real-time monitoring or transmitting data from inside the body towards an
external receiver requires the presence of an appropriate implanted system. Every
such system includes an antenna, the shapes and dimensions of which are strongly
influenced by different parameters, as for example the position inside the body.
Managing space constraint is a challenging issue in the design. The shape of the
antenna, in turn, determines its electric performances and operational bandwidth.
Due to the presence of high water content, a body is a dispersive, lossy medium and
the power density decays vary rapidly. Because of the different tissues present in the
body, an accurate modelling of them is mandatory to avoid loss of communication
and to increase the power supply operational time.

The extended shape of hip implants can be used as ground plane for an implanted,
conformal, printed antenna, representing an intrinsically reduced space solution.
Printed antennas have classical space saving configurations, but they require a
relatively large (in terms of wavelength) ground plane, and here the large extension
of the hip is used for such purpose.

The configuration proposed in this paper is placed inside an accurate body-like
environment and it is numerically characterized by electromagnetic perspective.
The results confirm that the proposed solution can be efficiently used for data
transmission, for example monitoring some human vital functions, from inside the
body to the external environment, where the signal can be captured.

In fact, in literature, the main attention is oriented to the necessary impedance
matching realization in the body environment and considers only some features
related to the communication channel between the inside-outside body environ-
ments [9]. At the best of the author knowledge, the biocompatibility of the material
used for the manufacturing of the antenna or of the shielding screen to fulfill
electromagnetic interference reduction is only marginally considered with no clear
definition of the materials used and of their properties.

34.2 Materials’ Characteristics

Numerical electromagnetic simulations have been carried out using a commercial
available software package, namely Microwave Studio (MS) from CST [10], to
investigate the performances of the structure when implanted in a multilayer body-
like model.
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Table 34.1 Electric parameters of the different tissues and materials at the central frequency of
the considered 2.4–2.5 GHz ISM band

Tissue Relative dielectric constant Electrical conductivity [S/m] Thickness [mm]

TiNb – 1e7 30 (2·RTiNb)
Muscle 57.1 0.79 70
Fat 5.6 0.04 4
Skin 46.7 0.69 2
PDMS 2.667 0.037 2 + 2 = 4

The patch antenna and the feeding line are made of the same TiNb material of
0.5 mm thickness. They are bended around the metallic cylinder and supported by
the biocompatible polydimethylsiloxane (PDMS) layer of total thickness of 4 mm.
The antenna is embedded in the polymer that totally covers the cylinder’s perimeter
to ease the manufacturing.

The radius of the central TiNb is RTiNb = 15 mm. The different tissues have been
modeled according to dielectric data available in the literature, and available in MS.
The considered values and their radial dimensions are reported in Table 34.1.

34.3 Results and Discussion: Electromagnetic
Characterization of the Implanted Antenna

Figure 34.1 (top left) reports the CAD model used for the numerical analysis.
The 1.5 mm width of the feeding line has been obtained by genetic algorithm

optimization (available in CST MS) enforcing the standard 50 � line characteristic
impedance in the operating conditions, i.e., considering the curvature and multilayer
substrate-superstrate scenario. The radiating element is a rectangular patch of
dimensions 9.86 × 20 mm2, that guarantees a matching of S11 = −35 dB, see
Fig. 34.1 (center), at the central frequency fc = 2.45 GHz of the 2.4–2.5 GHz
Industrial Scientific and Medical (ISM) frequency band [11] available worldwide.
The two identical slots, each of 4.35 × 1 mm2 dimension, on the two sides of the
feeding line have the role of increasing the impedance matching. The 20 mm length
of the antenna is well below the length of the hip of an adult. The feeding line
is longer than in the case of an actual system when the antenna could be directly
connected to the sensor node. Because of the high loss in the tissues, the boundaries
of the cylindrical geometries do not influence the considered performances—
matching and radiation pattern—since the reflected field from the open end is very
low. However, in the simulations an Ecosorb type material has been used at the two
ends of the truncated structure to reduce the reflection.

The 3D radiation pattern at the central frequency, reported in Fig. 34.1 (bottom),
of the considered configuration exhibits a wide-angle ±120◦ coverage with a
ripple of less than 3 dB. Unavoidably, the main radiation is in the direction
almost orthogonal to the antenna (xz-plane). The small tilt is due to the radiation



396 I. Peter and L. Matekovits

Fig. 34.1 The proposed
antenna inside the multilayer
model and its electromagnetic
performances: (top) CAD
model—antenna with the
surrounding tissues. The top
and bottom layers are
electromagnetic absorbers,
used in the numerical
simulations; (center) the
scattering parameter S11: the
ISM band and the −10 dB
bandwidth limits are clearly
indicated; (bottom)
Directivity at the central
frequency of the ISM band

from the surface waves propagating parallel to the cylinder and from the feeding
line. As already mentioned above, in the actual scenario, the length of this line
which in turn will also reduce the losses and the tilt angle can be strongly
reduced. Furthermore, the radiation pattern presents two other lobes in the backward
direction, symmetrically positioned with respect to the antenna. They are due to the
surface waves propagating along the metal–PDMS interface around the metallic
cylinder. While usually the presence of different lobes is not desired, because for
example of the reduced gain or reduced bit rate, in some applications their presence
allows free movement of the incorporating body; the continuous link between
the body and the external receiver is guaranteed by the more omnidirectional-like
pattern.

34.4 Conclusions

Electromagnetic performances of an implanted conformal printed antenna have been
described. The numerically investigated biometallic cylindrical model, correspond-
ing to an implant, equipped with a printed antenna exhibits good matching and
radiation properties for body centered communication applications.
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Chapter 35
EM Imaging-Based Capsule Endoscope
Localization with Peak-Formed Incident
Electric Fields

Hisato Kobayashi, Daisuke Anzai , and Jainqing Wang

35.1 Introduction

Recent years, along with rapid development of wireless body area networks (BANs),
medical treatments have been greatly advanced [1]. One of the most important
medical devices using implant BANs is wireless capsule endoscopy (WCE). A
typical wired endoscope has a critical disadvantage that patients should suffer from
a serious pain due to its too long cable. Furthermore, the wired endoscope is not
applied to diagnosis in small intestine. On the other hand, WCE gives patients fewer
stress and pain since only swallowing the small-sized capsule makes it possible
to diagnose all digestive organs including small intestine, so that WCE has so far
attracted a lot of attention as an advanced medical device. The technical problems
on WCE include the battery life time and accurate motion control from outside
the human body. To solve these problems, it is important to obtain the location
information of the capsule endoscope inside the body [2]. For the reasons, various
kinds of localization methods have been discussed such as received signal strength
indicator (RSSI)-based method and time of arrival (TOA)-based methods [3], both
of which utilize radio frequency (RF) signals transmitted by WCE. However, we
need the wireless channel model inside the human body, and hence large-scale
measurement phase (such as CT or MRI) is beforehand needed in order to obtain
the internal structure of human body.

Compared with the RF methods, an electromagnetic (EM) imaging method can
avoid such a preliminary measurement. Several conventional EM imaging methods
assume a plane wave as an incident source; however, it is pointed out that the
conventional methods are more difficult to accomplish precise localization accuracy
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when the frequency band is getting higher as in 2.4 GHz. In order to improve the
estimation accuracy at high frequency, we pay attention to peak-formed incident
electric fields by overlaying the plane waves. By sweeping the position of the peak,
we can obtain more information on scattered electric fields than the conventional
methods, which result in accurate location estimation at high frequency band. In
this chapter, we evaluate the estimation accuracy of the proposed method through
computer simulations to demonstrate the superiority of the proposed method over
the conventional EM imaging methods.

35.2 Mathematical Formulation of Scattered
Electromagnetic Fields

A human body is composed of various kinds of tissues, and each tissue has its
own electrical constants such as permittivity and conductivity [4, 5]. When the
electromagnetic wave irradiates the human body, we observe scatter electric fields
represented by following equations under 2-dimensional transversal magnetic (TM)
condition [6]:

Es (x, y) = −jk2

4

∫∫
S

∼
εr
(
x′, y′)μ (x′, y′)Etotal (x′, y′)H(2)

0 (kρ) dx′dy′

(35.1)

where (x, y) and (x′, y′) are the coordinates of the observation point outside the body
and the source point inside the body, respectively. H

(2)
0 is the second kind Hankel’s

function with the order of zero, k is the wave number, and ρ is the distance between
the observation point and the source point. Figure 35.1 shows the definitions of the
variables in Eq. (35.1). The total electric fields can be expressed as the sum of the
incident electric field and the scattered fields. Taking the method of method (MoM)
into consideration, we obtain the matrix equations as [6]:

Etotal = (Aεμ + I)−1Ei (35.2)

Es = BEtotalεμ (35.3)

where I is the unit matrix, A and B are the matrices whose elements are determined
by the geometric arrangement of the human body model. In order to perform the
implant device localization, we can directly measure the scattered electric fields
outside the human body.
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Fig. 35.1 Electromagnetic
scattering environment by
heterogeneous object

Fig. 35.2 Model of
irradiation with multiple
incident electric fields

35.3 Estimation Algorithm Using Peak-Formed Electric
Fields

Peak-Formed Electromagnetic Fields

The position of the peak can be adjusted by changing the phase of each incident
electric fields irradiated from each wave source. We show the model of irradiation
with multiple wave sources in Fig. 35.2.

In this chapter, a peak-forming of incident electric field intensity at a specific
location is realized by using L overlaid multiple plane waves as

Ei (r, θ) =
L∑

l=1

E0 exp [−jk0 {r cos (θl − θ) − rl}] (35.4)

where E0 is the incident electric field intensity, and (rl, θl) is the polar coordinate
of the lth wave source position. In the proposed localization system, the implant
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Fig. 35.3 System model of
EM-imaging using
peak-formed incident electric
fields

device location can be estimated based on the measured scattered electrical fields
Es

measured (r, θ) as

(r̂, θ̂ ) = argmaxr,θ

∣∣Es
measured (r, θ) − Es

init (r, θ)
∣∣ (35.5)

where (r̂, θ̂ ) is the estimated location of the implant device, and Es
init (r, θ) denotes

the scattered electric fields observed before the implantable device is implanted into
the body. In (35.5), note that the coordinates indicate the peak location of the peak-
formed electromagnetic fields. Figure 35.3 shows the system model and overview
of the proposed peak-forming EM imaging method.

35.4 Performance Evaluation

Simulation Environment

Figure 35.4 shows the human body model employed in the computer simulation,
where the electric constants of the tissues at 2.4 GHz were assumed. Among
the cells shown in Fig. 35.4, we randomly selected one cell and replaced it with
the capsule endoscope that was assumed as a perfect conductor. For generating
peak-formed incident electric field distribution, we used 100 wave sources placed
around the human body, and 102 points of measuring points were set at the points
1 cm away from the human body surface. The simulation parameters are shown
in Table 35.1. In addition, additive Gaussian noise caused by thermal noise at the
receivers was superposed on the observed scattering electric fields. Here the SNR
can be calculated by

SNR = |Vmeasured|2
PN

(35.6)

where Vmeasured is the received voltage measured at the each receiver, and PN
represents the noise power.
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Fig. 35.4 Simulation model of heterogeneous human body

Table 35.1 Simulation
parameters

Parameters Values

Number of cells 391
Number of measuring points 102
Number of wave sources 100
Number of trials 391
Cell length 1 cm
Relative permittivity around the body εrm 24.9
Conductivity around the body σ 0.99 S/m
Frequency of incident electric field 2.4 GHz

Estimation Accuracy

Figure 35.5 shows an example result of an evaluation function in each cell of the
human body model when a capsule endoscope is located at (10, 7). Here, we define
the evaluation function as

f (x, y) = ∣∣Es
measured (x, y) − Es

init (x, y)
∣∣ (35.7)

where x and y denote the peak location of the incident fields. It is found that the
evaluation value is maximized at which the capsule endoscope locates, which means
that the proposed method is able to estimate the capsule endoscope correctly in this
example.

For comparison purpose, we also evaluated the performance of the conventional
method which uses only one plane wave [7]. From Fig. 35.6 proposed method, when
noise is not superimposed, achieved to estimate the location of capsule endoscope
with a probability of 90% with a tolerance of 1 cm. From these results, the proposed
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Fig. 35.5 Distribution of the evaluation function

Fig. 35.6 Cumulative distribution of location estimation error

method can achieve a remarkable improvement in accuracy compared with the
conventional method, and even in the environment where noise is superimposed,
we achieved the improvement of the estimation accuracy.
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35.5 Conclusion

We have proposed a peak-forming-enhanced EM imaging method and demonstrated
that the proposed method achieves much better estimation accuracy than the
conventional method, so that it can contribute high-quality medical treatment
offered by implantable devices with highly accurate estimated positions. According
to the evaluation results, the estimation accuracy is achieved to 1 cm ensuring the
cumulative probability of 80% even if additive Gaussian noise is assumed at the
observed scatter electric fields.
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Chapter 36
Information Theoretic Analysis for
Securing Next Generation Leadless
Cardiac Pacemaker

Muhammad Faheem Awan, Kimmo Kansanen, and Deepak Palaksha

36.1 Introduction

The technological advancements in personal health systems result in number of
wearable and implantable medical devices. These devices help in the automatic
diagnosis and treatment of several medical ailments, thus improving the life quality.

Implantable medical devices (IMDs) are designed to monitor and treat regularly
several physiological conditions of the body. The most significant among them are
cardiac pacemakers and implantable cardioverter defibrillators (ICDs). Pacemakers
and ICDs are used to treat cardiac arrhythmia. These devices are equipped with
sensors that sense the pathological conditions and deliver proper actuation, e.g., by
retaining the cardiac rhythm.

Cardiac pacemakers are designed to maintain the regular heart rhythms. The cur-
rent generation of these pacemakers consist of a subcutaneous implant, implanted in
the pectoral pocket under the shoulder which is connected to the wired electrodes in
the heart chambers through the subclavian vein. The traditional cardiac pacemakers
are anticipated to be wireless in near future. These implanted devices transmit
patient data (offline and real-time) along with other critical device information
and indicators. In addition, the transmitted indicators may contain information
about diagnosed ailments along with performed therapies. In order to maintain
the proper configuration of a pacemaker along with regular patient monitoring,
the data transmissions play a critical role. The physician is also continuously
updated regarding the current status of a patient and alarms if the critical condition
is detected. The frequency of data transmissions varies depending upon different
configurations. The most common configuration follows the retrieval of data while
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Fig. 36.1 Pacemaker
scenario with an
eavesdropper

visiting a physician. In some cases, a bed side external device is also provided,
in which the data is logged automatically on everyday basis. However, the future
leadless cardiac pacemaker is shown in Fig. 36.1, with a capsule inside the heart
chamber and a subcutaneous implant will transmit the data on each heartbeat.

The wireless communication in next generation IMDs could be a substantial
source of security risks. It increases the visibility of IMD and can help eavesdropper
to overhear the communication [1]. Thus, in case of an insecure communication
channel, the eavesdropper can easily execute attacks on implants, as like they
are performed in other communication networks and devices. If the eavesdropper
succeeds in gaining access to the implanted device, she can fetch the patient data
(medical or non-medical) or can forge or alter the information. Furthermore, the
eavesdropper can modify the device configuration without knowledge of physician
or a patient.

The security analysis of IMDs was first provided by Halperin et al. [2], in which
it has been shown that the insecure link between IMDs can be compromised. This
work was succeeded by various research activities that mainly emphasize on various
encryption mechanisms for confidentiality between authentic nodes [3–6].

In traditional wireless networks, the security of a communication network is
viewed as an independent task with no or limited association with other features of
a network. This leads to the development of state-of-the-art algorithms for privacy
and security of these networks. But IMDs majorly focus on device application
rather than features like security, due to which wireless IMDs have weak security
algorithms and are more prone to privacy and security threats.

Security and privacy in conventional wireless networks is studied and imple-
mented via various traditional cryptographic algorithms that include AES, RSA,
DES, etc. Cryptographic algorithms ensure confidentiality by encrypting data using
secret keys. These keys help, encrypt, and decrypt the information at sender and
receiver, which can be achieved by keys distribution among them. They work on an
assumption that eavesdropper has limited computational resources. But sometimes
it is difficult to implement these techniques in low power devices because of keys
management issues and computational complexity. Another approach to secure data



36 Information Theoretic Analysis for Securing Next Generation Leadless. . . 409

is using physical layer security, which relies on concepts of information theory.
Security with information theoretic measures can be cryptanalytically unbreak-
able regardless of eavesdropper unlimited computational resources. Physical layer
security is based on information theoretic measures which ensures that third party
or eavesdropper is not able to eavesdrop communication. It can be additionally
provided together with cryptographic methods.

The key idea of information theoretic security (ITS) is to utilize properties of
the eavesdropper and legitimate receiver channels. The idea of ITS was pioneered
by Shannon in [7]. Wyner in [8] further extended the concept by introducing a
wiretap channel. It was shown in [8] that secrecy can be provided by wireless
channel itself without depending on secret keys and can degrade the ability of
eavesdropper to collect information. Notable mechanisms among them exploit
channel attenuation, interference, and fading in a communication channel. He added
that perfect secrecy can be achieved, if the channel capacity of a link between
source and legitimate receiver is greater than the channel capacity of link between
source and eavesdropper. In Wyner model, eavesdropper is considered to have
unlimited computational resources. Using the assumption, that an eavesdropper
channel is a degraded version of the main channel, Wyner proved the existence
of positive secrecy capacity. This work was extended by [9] for broadcast channels
where nondegraded version of eavesdropper channel was considered. These studies
provide an important performance metric of secrecy capacity. Secrecy capacity is the
maximum communication rate with which the legitimate nodes can communicate
securely without leakage of information to the eavesdropper.

This work explores the potential of physical layer security methods for securing
future leadless cardiac pacemaker (LCP). We utilize the strategy of sending
information over the Gaussian broadcast channel in order to ensure secrecy. This
can be achieved by manipulating transmission rates for different broadcast receivers.
As the name suggests, broadcast scenario involves simultaneously transmission of
information to multiple receivers, thus securing information involving Gaussian
broadcast channel requires sending of information to two distant receivers in a
way that one message X1 is intended for receiver one and second message X2 is
intended for receiver two. Receiver one which can be regarded as legitimate receiver
can decode both messages, if his signal-to-noise ratio is greater than receiver two,
whereas receiver two can only decode second message X2 with an inferior signal-to-
noise ratio. Signal-to-noise ratio of both receivers varies due to channel attenuation
(|h|2). Receiver one’s higher signal-to-noise ratio is achieved because it is close to
leadless capsule, thus resulting in lower channel attenuation or path loss than that of
receiver two, which is physically away from the body of implanted capsule. In this
work, path loss model from [10] is utilized to formulate attenuation between nodes.

The rest of this paper is organized as follows: System model is provided in
Sect. 36.2, whereas Sect. 36.3 contains numerical results. Section 36.4 provide
conclusions and followed by acknowledgments.
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36.2 System Model

This section focuses on providing system model used in the analysis. For our
scenario, the system model consists of an LCP implanted in the right ventricle
of human heart. The LCP wants to communicate with a subcutaneous implant,
whereas an eavesdropper tries to overhear the communication as shown in Fig. 36.1.
The subcutaneous implant is considered to be placed at a distance of 150 mm
below the collarbone under the skin, thus having lower channel attenuation than
eavesdropper. The eavesdropper is assumed to be physically away from a body
in which leadless capsule is implanted. As mentioned earlier, in order to ensure
secrecy we utilized strategy of Degraded Gaussian Broadcast Channel (DGBC)
with confidential messages, which can be presented schematically in Fig. 36.2. This
method is utilized because of its resemblance to our scenario, where eavesdropper
channel is always degraded version of legitimate channel. In context of DGBC,
subcutaneous implant is considered as the receiver one, whereas the eavesdropper
is considered as receiver two. Leadless capsule will transmit two different messages
intended for two receivers. Message 1 (X1) will be confidential information intended
for receiver one and message 2 (X2) will be dummy message or jamming signal
intended for receiver two.

Encoding

In order to encode messages, the encoder of leadless capsule will encode message
X1 with rate R1 and power (αP ) for receiver one and X2 with rate R2 and power
(1 − α)P for receiver two, where α is the power allocation factor that distributes
total power between confidential message X1 and jamming signal X2. Transmitter
then calculates sum of useful information and jamming signal and transmits sum
X over a channel as shown in Fig. 36.2. The transmitted signal along with signals
received by the two receivers is expressed, respectively, as

X = X1 + X2 (36.1)

Fig. 36.2 Gaussian
broadcast channel with
confidential information
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Y1 = √
Ph1X + n1

Y2 = √
Ph2X + n2 (36.2)

X is subject to average power constraint 1
n

∑n
i=1 E[Xi]2 ≤ P , h1, h2 are channel

gains, and n1 ∼ N (0, N1), n2 ∼ N (0, N2) is additive white Gaussian noise
(AWGN). Multipath small scale fading is assumed to be negligible and channel
gain only constitutes path loss which can be expressed in logarithmic scale as

PL(d)i = PL(do) + 10γ log10(di/do),

d ≥ do, iε(1, 2)
(36.3)

|hi |2 = 10
PL(d)i

10 , iε(1, 2) (36.4)

In (36.3), PL(d)2 is path loss at distance d2 between implant and receiver two
(eavesdropper) and PL(d)1 is path loss between implant and receiver one at
distance d1. do is the reference distance, where PL(do) is path loss at reference
distance and γ is path loss exponent.

Decoding

The respective receivers then decode messages. Our aim is to maximize mutual
information I (X;Y1) between capsule and receiver, keeping mutual information
between eavesdropper and capsule to zero s.t. I (X;Y2) = 0. First, consider receiver
two, which is the eavesdropper. She will try to map a received sequence to a

message pair (X1, X2). Her effective signal-to-noise ratio of X is (1−α)P |h2|2
(αP |h2|2+N2)

,

where αP |h2|2 acts as noise. Thus, she will be able to decode only X2. Receiver one
which is subcutaneous implant first decodes X2, which he can accomplish because

of his higher SNR, i.e., αP |h1|2
N1

. Then he will decode the confidential message X1
intended for himself. Thus, in order to have conferential messages, information rates
R1 and R2 must satisfy secrecy condition.

Secrecy Capacity

Secrecy capacity region is the set of information rates that can be achieved by
keeping confidentiality of secret information to maximum from eavesdropper. The
secrecy capacity region for one confidential message and one dummy message or
jamming signal can be expressed as
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Cs =
⋃

0≤α≤1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1, R2 :

R1 ≤

⎡
⎢⎢⎢⎣

1

2
log

(
1 + αP |h1|2

N1

)
−

1

2
log

(
1 + αP |h2|2

N2

)

⎤
⎥⎥⎥⎦

+

R2 ≤ min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
log

(
1 + (1 − α)P |h1|2

N1 + αP |h1|2
)

,

1

2
log

(
1 + (1 − α)P |h2|2

N2 + αP |h2|2
)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(36.5)

Equation (36.5)1 provides secrecy rate pairs (R1, R2) depending upon different
values of α and channel attenuation (|hi |2), i ∈ (1, 2). Noise variance for receiver
one is N1 and N2 for receiver two. For simplicity, N1 = N2 = N0 is considered,
suggesting same noise for both receivers. The only thing that varies SNR for both
receivers is channel attenuation and power allocation factor α. As α increases,
information rate R1 will increase, whereas R2 will reduce. In Eq. (36.5), R1 is a
positive confidential information rate when inequality holds.

Analysis of the Strategies

The strategy above provides the secrecy operating regions for leadless cardiac
capsule where our motive is to keep confidential information secret from receiver
two. In our analysis, we focus on fixing certain information rate R1 for legitimate
receiver and find the value of α where eavesdropper distance is maximum which can
then be related to maximum threat distance. Consider, fixed secrecy information
rate R1 = R∗

1 , which is chosen to be decodable at channel attenuation (|h∗
1|2)

(corresponds to distance d1). Eavesdropper threshold attenuation (|h2|2) can be
expressed from (36.5) as

log(2R∗
1 ) + 1

2
log

(
1 + αP |h2|2

N0

)
≤ 1

2
log

(
1 + αP |h∗

1|2
N0

)
(36.6)

Using properties of log, (36.6) transforms into

1All bases are log2, else specified.
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log

⎛
⎝2R∗

1

(
1 + αP |h2|2

N0

) 1
2

⎞
⎠ ≤ log

(
1 + αP |h∗

1|2
N0

) 1
2

(36.7)

For simplicity, we put inequalities to equality. After simplification,

|h2|2 = N0

αP

((
1 + αP |h∗

1|2
N0

)
1

22R∗
1

− 1

)

|h2|2 = N0

αP

(
1

22R∗
1

− 1

)
+ |h∗

1|2
22R∗

1
(36.8)

Equation (36.8) provides maximum eavesdropper threshold attenuation for fixed
R∗

1 and |h∗
1|2, which can be transformed to maximum eavesdropper distance by

using (36.3) and can be expressed as

10 log10 |h2|2 = 10 log10 K (36.9)

where K = N0
αP

(
1

22R∗
1

− 1
)

+ |h∗
1|2

22R∗
1

. From (36.3), (36.9) can be expressed as

10 log10(K) = PL(do) + 10γ log10(d2/do)

d2 = d0 × 10

(
1

10γ (10 log10(K)−PL(d0))
)

d2 = d0 × 10

(
log10(K)

1
γ − 0.1

γ
PL(d0)

)

d2 = d0 × K
1
γ

10
1

10γ
PL(d0)

d2 = d0 ×

(
N0
αP

(
1

22R∗
1

− 1
)

+ |h∗
1|2

22R∗
1

) 1
γ

10
1

10γ
PL(d0)

(36.10)

Equation (36.10) provides eavesdropper threshold distance, for a fixed secrecy
rate R∗

1 . Thus, at this distance, eavesdropper will be able to decode only R∗
2 . When

eavesdropper is closer, she will be able to partially decode R∗
1 as well. Eventually

a point will reach when eavesdropper attenuation becomes equal to receiver one,
where she will be able to decode both R∗

1 and R∗
2 . Thus d2 from (36.10) is the

distance from which eavesdropper can eavesdrop the confidential message for a
given fixed information rate R1. So, eavesdropper should be outside this threat
distance d2 for data confidentiality. Beyond d2, entire region will be in secure zone.
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36.3 Numerical Results

The system model of Fig. 36.1 is considered, with a leadless capsule and subcu-
taneous implant at a distance d1 = 150 mm, where an eavesdropper attempts
to eavesdrop communication at a distance d2 ≥ 150 mm. The main interest is
to find secrecy capacity region (Cs) for different values of α and eavesdropper
distance. In addition, a threat zone around implanted body will also be found for
fixed information rate R1.

For numerical results, we consider that legitimate nodes are communicating in
medical implant communication (MICS) band. MICS band ranges between 402
and 405 MHz with authorized channel bandwidth of 300 kHz. Implanted medical
devices operate on low operational power usually between −16 and −25 dBm due
to which transmitted power of P = −16 dBm is considered[11]. In addition, noise
power spectral density (PSD) of −100 dBm/channel is considered for both receivers.
Channel attenuation is obtained from (36.3) in which path loss PL(do) at reference
distance of 50 mm is 47.14 dB and path loss exponent (γ ) is 4.26 [10]. This is
the case for communication between leadless capsule and subcutaneous implant,
whereas for an eavesdropper link, a reference distance of 150 mm is considered,
and beyond its free space path loss is applied with path loss exponent γ = 2.

Figure 36.3 shows capacity and secrecy capacity region (R1, R2) for a particular
distance pair (150 mm, 300 mm). In this case, receiver two is considered at a
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distance of 300 mm, resulting in channel attenuation of 73.48 dB. It can be seen
that when power allocation factor α increases, information rate R1 to legitimate
receiver increases, while information rate R2 to receiver two reduces. In addition,
cost for making communication secure can also be seen by observing a difference
between capacity region and secrecy capacity region. Now consider a case, when
α = 0.9, receiver two (eavesdropper) is at a distance of 300 mm, and receiver
one is at mentioned fixed distance of 150 mm. The secrecy rate pair (R1, R2) is
approx. (1,0.4) bps/channel. Now, if eavesdropper move closer towards receiver one,
its channel SNR improves, this results in decoding a part of confidential message
as well. Thus, 300 mm is threshold distance for an eavesdropper to support that
secrecy capacity region. If eavesdropper moves closer than 300 mm, rate R1 should
be reduced by reducing alpha (α) and feeding more power to jamming signal;
otherwise, eavesdropper will be able to eavesdrop communication partially and will
be able to decode completely when she reaches the same distance as legitimate
receiver.

Similarly, in Fig. 36.4 it is shown that if eavesdropper distance (d2) increases,
attenuation increases due to which information rate R2 reduces, whereas R1
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Fig. 36.5 Information rate R1 versus eve distance

increases. Thus, making information rate adaptable by estimating eavesdropper
distance can help increasing the secrecy capacity. Figure 36.5 shows change in
information rate R1 with changing Eve distance for different values of α. It is evident
that if eavesdropper distance increases, rate R1 can be increased.

Furthermore, by using (36.10) maximum eavesdropping distance is depicted
for different values of total power (P), information rate (R1), and α in Fig. 36.6,
mirroring the threat zone around the implanted node. The region beyond threat zone
is considered to be in secure zone. Secure zone can be increased by reducing the
total power which has twofold advantages, one by conserving energy for low power
implanted devices such as cardiac pacemaker that help increasing the longevity of
a device and also results in increased secure zone. The eavesdropper then needs to
move closer to eavesdrop the legitimate transmission. As shown in Fig. 36.6, with
α = 0.2, P = −16 dBm, and R1 = 3.5, the threat zone can be reduced to about
400 mm.
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36.4 Conclusions

This work includes information theoretic security analysis of leadless cardiac
pacemaker, transmitting data over a wireless channel to a subcutaneous implant,
with an eavesdropper in the near premises to overhear the communication. For
securing leadless cardiac pacemaker (LCP), we intend to use degraded Gaussian
broadcast channel approach in which a node broadcasts the information to different
receivers in a way that legitimate node can decode all the information, whereas other
receivers can only decode the information intended for them.

The secure information rates region is depicted where LCP can communicate
securely with legitimate receiver in the presence of eavesdropper. A fixed distance
between legitimate nodes is considered, whereas eavesdropper distance is varied.
LCP sends confidential message to legitimate receiver, whereas noise signal or
common signal is used to jam the eavesdropper. Legitimate receiver with lower
attenuation and higher SNR will be able to decode both the messages, whereas
eavesdropper with inferior SNR will be able to decode only the common signal.
In order to find channel attenuation between nodes, a path loss model from [10] is
used. Total power is distributed between both messages by power distribution factor
(α). By increasing α information rate to legitimate receiver is increased whereas
information rate to eavesdropper decreases. We also fixed certain information rate
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between legitimate nodes and find the maximum eavesdropping distance in order
to decode confidential information by eavesdropper. If eavesdropper is at maximum
eavesdropper distance for certain fixed value of α, it will not be able to decode
any information, but when it starts getting close to legitimate receiver it will be
able to partially decode the confidential information, until it reaches to a point
where she will decode entire information. It has been seen that if distance between
eavesdropper and legitimate node is increased, information rate between legitimate
nodes is increased, whereas information rate for noise signal can be reduced.
Similarly, by increasing information rate and total power between the legitimate
nodes, the threat zone increases. In this work, maximum eavesdropping distance
reflects the threat zone around the pacemaker, beyond which the region can be
considered secure.
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Chapter 37
Feasibility Analysis for Pulse-Based
Synchronization in a Dual Chamber
Leadless Pacemaker System

Deepak Palaksha, Kimmo Kansanen, and Muhammad Faheem Awan

37.1 Introduction

Pacemakers are implanted for patients with bradyarrhythmias. Innovation in pace-
makers has led to many different configurations of pacing like single-, double-, and
multichamber transvenous systems. In the last years, pacemaker therapy has con-
siderably expanded, exceeding 700,000 implantations annually worldwide [1, 2].

Despite the progress, pacemaker therapy may still be associated with significant
post-procedural complications, with transvenous lead remaining the weakest ring at
the chain of pacing [3]. In some cases, implantation also leads to complications like
infection in valves. This issue has given way to develop a new system of pacing by
eliminating leads, such devices are called leadless pacemakers.

Currently available versions of leadless pacemaker system in market are the
Nanostim Leadless Pacemaker System (LCP) (St. Jude Medical, St Paul, MN,
USA), introduced in 2012, and the Micra Transcatheter Pacing System (TPS)
(Medtronic, Minneapolis, MN, USA), introduced in 2013 [4, 5]. The capsule has
embedded electronics for pacing and sensing, with battery source powering the
electronics, which is encapsulated in a biocompatible material.

Traditionally single chamber pacemakers, both atrial and ventricular devices,
make up <10% of pacemaker implants, whereas dual chamber pacemakers make
up to 49% of pacemaker implants. Dual chamber pacing allows for atrioventricular
synchrony, which has been shown to minimize pacemaker syndrome [6]. The most
significant limitation of the existing leadless pacemaker devices is the restriction
to single chamber ventricular pacing. Extending the system from single chamber
system to dual chamber system can be achieved by establishing synchronization
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between leadless pacemakers to maintain atrial-ventricular synchrony, in other
terms to maintain atrial-ventricular delay in the desirable range.

In this chapter, a novel strategy is discussed, a radio frequency (RF) pulse-based
technique is used to establish the synchronization between the leadless pacemakers
where the RF pulse is transmitted from transmitter leadless pacemaker (atrial
unit) to receiver leadless pacemaker (ventricular unit) on every beat. The energy
consumed for the synchronization operation is directly reflected on the longevity of
leadless pacemaker, hence, in the chapter, the energy consumed for synchronization
operation is evaluated and this information is used to analyze the feasibility of the
system.

Currently, in this chapter, the system is studied in MICS band. For analysis,
channel attenuation in an in-body environment and noise behavior at receiver are
considered in MICS band [7]. The channel bandwidth available for the RF pulse is
300 kHz, in other terms pulse width (Ts) and symbol rate (Rs) of the pulse is 6.7 μs
and 150 kbps.

The chapter is structured to give background in Sect. 37.2 on dual chamber
pacing and DDD pacing mode. In Sect. 37.3, a wireless dual chamber leadless
pacemaker system is proposed and a system description for maintaining the
atrioventricular synchrony is provided. Section 37.4 consists of numerical results
and feasibility analysis of the system. Section 37.5 contains conclusion and outline
of our future work.

37.2 Background

Conventional Dual Chamber Pacemaker

In dual chamber configuration, as the name suggests, pacing and sensing are
performed in two chambers of the heart, namely, atrium and ventricle. A dual
chamber pacemaker system is illustrated in Fig. 37.1. The pacemaker unit is
surgically placed under the skin, beneath collarbone, and is connected to heart by
one or more wires, or leads. A dual chamber pacemaker has one lead in the upper
chamber, or atrium of the heart and one in a lower chamber, or ventricle of the
heart [6]. The leads sense the electrical activity (EGM signal) at their respective
placement sites and the pacemaker unit detects the depolarization activity from the
sensed signals. The depolarization of heart can physiologically be understood as the
contraction of the heart chambers. A dual chamber pacemaker can be operated in
several pacing modes. In this chapter, DDD pacing mode is considered as it provides
atrial-ventricular coordination. DDD pacers pace both the chambers (D stands for
“dual”), they sense both chambers, and each of the two leads inhibits pacing by
sensing an intrinsic beat.
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Fig. 37.1 Conventional dual
chamber pacing system

DDD Pacing Mode

At the start of the cardiac cycle, the heart relaxes and expands while receiving blood
into both ventricles through both atria; The Sino-Atrial (SA) node releases electrical
stimuli, this creates a wave of contraction in both atria, and each atrium pumps blood
into the ventricle below it. To ensure that the atria have ejected their blood into the
ventricles before the ventricles contract, the atrioventricular node delays electrical
impulses for a brief time (AV-delay) before reaching ventricle; consequently, the
ventricles contract vigorously ejecting two separated blood supplies from the
heart—one to the lungs and one to all other body organs and systems. This precise
coordination between atrial and ventricular contraction is established by AV-delay
[6]. The DDD mode of operation is the most common dual chamber pacing mode,
and it maintains the AV-delay time (Tavd) in desirable range to provide atrial-
ventricular coordination which otherwise is lost with single chamber ventricular
pacing [8]. Physicians pre-program the atrioventricular delay value (Tavd) based
on the condition of the heart. In our analysis, the system performance is limited
to constant heart rate condition. In systems responsive to adaptive heart rate (rate
response systems), the atrial and the ventricular window ranges are changed with
increase or decrease in heart rate. This can be handled by including adaptive
observation window sizes and rate response algorithms, but it is beyond the scope
of this chapter [9]. The DDD pacemaker operation is detailed below.

The implanted pacemaker unit (see Fig. 37.1) senses the EGM signal from the
atrial and ventricular lead. The depolarization of atrium is detected by pacemaker
unit from the sensed EGM signal (P wave) (see Fig. 37.2) [10]. The depolarization
at atrium is either because of natural contraction or by pacing. The atrium is
paced if the pacemaker unit does not detect the P wave within a certain time
interval (Tasmax). The time instant when the P wave is sensed or paced is denoted
as Tas. In case of atrial pacing, the cardiac electrical conduction path requires a
longer time than the natural conduction as electrical stimuli do not start from SA
node. Therefore, the pacemaker unit adds an offset time (Toffset) to compensate
for the delay. Consequently, the pacemaker unit expects ventricular depolarization
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Fig. 37.2 Timing intervals at atrial and ventricular EGM sensor leads

(QRS complex) as soon after the pre-programmed AV-delay (Tvpred). If it detects
ventricular depolarization as soon after Tvpred, then it will inhibit pacing else
performs ventricular pacing. Tvpred is given by Tas + Tavd for atrial sensed and is
Tas + Tavd + Toffset for atrial paced case (see Fig. 37.2). In case the pacemaker
unit fails to provide atrial-ventricular coordination because of switching of pacing
modes, and there is no ventricular contraction in the ventricular sensing window
then the ventricle is paced at Tvsmax. The sensing window at atrium and ventricle is
in the range [Tasmin, Tasmax] and [Tvsmin, Tvsmax], respectively; the typical value for
atrial and ventricular sensing window is ≈100 ms or 150 ms (see Fig. 37.2).

It is clear that in conventional dual chamber DDD pacing mode the micro-
controller in the pacemaker unit handles the functionality of maintaining the atrial-
ventricular coordination. On the other hand, leadless pacemakers are independent
pacing units measuring local activity at respective placement sites, and therefore the
conventional approach is not possible. In the next section, a model is proposed where
an RF pulse-based synchronization technique is used between leadless pacemakers
to implement the DDD pacing mode.

37.3 System Description

In this section, dual chamber leadless pacemaker system working in DDD pac-
ing mode (wireless-DDD) is detailed. In addition, synchronization methodology
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Fig. 37.3 Dual chamber
leadless pacemaker system

employed to overcome the shortcomings of traditional single chamber leadless
pacemaker is described.

Dual Chamber Leadless Pacemaker System

The proposed system has two leadless pacemakers, at the apex in the right ventricle
(RV) and next to tricuspid valve in the right atrium (RA). Both the units locally
sense the electrical activity and pace at the implanted location. For implementing
a wireless DDD pacing mode, the ventricle unit needs to know the expected
time of ventricular depolarization (Tvpred). RF pulse is transmitted from atrial unit
to ventricular unit on every heartbeat notifying the expected time of ventricular
depolarization. The pictorial representation of dual chamber leadless pacemaker
system is shown in Fig. 37.3.

The simplified functional block diagram for leadless pacemakers is as shown in
Fig. 37.4. The block diagram shows major functional components involved in right
atrium leadless pacemaker (RA LP) or atrial unit, and in right ventricle leadless
pacemaker (RV LP) or ventricle unit. At the atrial unit, the transmitter electronics
consume 2 nJ/symbol [11]. The RF pulse detection at the receiver is performed
by the energy detector and the power consumed by electronics at MICS band is
≈90 pJ/symbol. For an observation window of 100 ms and longevity of 10 years,
the energy consumed by transmitter and receiver electronics is around 0.14 mAh
and 40 mAh [12]. Clearly, the energy consumed by electronics is below the energy
limits (220 mAh); however, future research focuses on implementing an algorithm
to optimize the energy consumed by electronics.
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Fig. 37.4 Functional block
diagram of leadless
pacemaker units

* = Envelope Detector

+ = Pulse Timing Estimate ( ) 

n(t)

Sensor data

Micro controller

Pacer

Pulse 
shaper 

Sensor data

Micro controller

Pacer

ED*

Sampling 

+

Atrial unit

Ventricular 
unit

System Operation

The functionality of wireless-DDD pacing mode majorly differs from conventional
DDD mode by its technique of maintaining atrioventricular delay (AV-delay, Tavd)
and offset time (Toffset). At atrium, the depolarization is possible either by natural
contraction of the atrium or by pacing at the atrium. If depolarization is because
of pacing at atrium, the RF pulse is sent from the atrial unit after an offset time
(Toffset). On the contrary, if depolarization is sensed, the pulse is sent with no delay.
A typical value of Toffset is around 32 ms. Let transmit time of RF pulse from atrial
unit be Ttx as shown in Fig. 37.5, Ttx can be either Tas or Tas + Toffset based on
atrial sensed or paced condition. At the ventricle unit, the received pulse location in
time after successful pulse detection is Trx (see Fig. 37.5). The received pulse timing
(Trx) with pre-programmed AV-delay (Tavd) provides a reference in time to expect
ventricular depolarization. The expected ventricular depolarization time is given by
Tvpred = Trx + Tavd. If ventricle unit does not detect ventricular depolarization as
soon after Tvpred, ventricle unit paces the ventricle or inhibits pacing if it detects
the ventricular depolarization. The operation repeats on every beat, achieving atrial-
ventricular coordination. RF pulse transmission and reception is described in next
subsection.

We calculate the pulse propagation time from a basic distance and speed
equation. In practice, the propagation time is in the order of nanoseconds for
distance range in cm. As the order of timing windows is in millisecond range for our
application, we consider Trx≈ Ttx. At ventricular unit, the communication reception
starts at Trxmin and the observation window allows reception until Trxmax. The
observation window range is around 100 ms. The size of the observation window
is obtained from atrial window size (Tasmin, Tasmax), and this ensures that the atrial
activity is not missed in the observation window. The analysis of estimating the
pulse timing (Trx) is performed over observation window.
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Fig. 37.5 Timing diagram of synchronization mechanism

Synchronization Methodology

In this subsection, technical details on transmission and reception of RF pulse are
discussed. A non-coherent pulse detection technique is used at the ventricle unit.

Both the units have their own internal clocks that are not synchronized, and these
clocks are used for internal synchronization of operations performed. The typical
value of a clock drift for a crystal oscillator is 20 ppm at room temperature [13];
this implies that the leadless pacemaker clocks might drift from each other with
20 ppm, and one focus of future research is to overcome this issue. In this chapter,
it is assumed that the atrial and ventricular units have their clocks synchronized,
as the RF pulse transmission and reception is performed only at clock intervals. At
the atrial unit, the time vector is pulse shaped to get the transmitted signal. The
transmitted pulse is expressed as (Eq. 37.1),

xi = g (t − iTs) (37.1)

where Ts is the RF pulse width and g(t) is the impulse response of raised cosine
pulse shaper.

The signal xi propagates through a lossy medium with channel attenuation h, in
the presence of white Gaussian noise with power spectral density No. The signal at
the receiver is given by

y(t) = h xi(t) + w (t) (37.2)

where i = 0, 1, 2, . . . , M−1.
There are M pulse symbol location, where “i” represents ith symbol location.
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The maximum likelihood non-coherent detector does not use the random phase
in the decision process and chooses the message vector that maximizes the joint
conditional pdf p(y|xi) [14]. After solving the expression for observations with equal
prior probability, the equation is simplified to the maximum likelihood (ML) rule as
shown in Eq. 37.3 [14].

li = argmaxi∈{0,1,...,M−1}
(∣∣∣∣
∫ T

0
y(t) ∗ xi(t)dt

∣∣∣∣
)

(37.3)

The estimated pulse location provides the timing location of the pulse in the
observation window, which is an estimate of pulse receive time (Trx); this in
combination with pre-programmed AV-delay (Tavd) gives the time instant at which
right ventricular depolarization time (Tvpred) can be expected.

Since Nyquist pulse is used, the signals are orthogonal to each other. An error is
committed if “i” is the true hypothesis, but li is not the maximum. Expression for
probability of error for large M is given by [15]:

PrM(e) ≤ (M − 1)

2
exp

(
−SNR

2

)
(37.4)

where SNR = Signal to Noise Ratio.
In cases of erroneous detection of pulse location at the receiver unit, the synchro-

nization between −leadless pacemakers is lost and the coordination of atrium and
ventricle could be disturbed. Nevertheless, because the pacing is performed in the
sensing window range [Tvsmin, Tvsmax], it is not fatal to the functioning of the heart.

Power Consideration

One of the major focus of the chapter is to study the relationship between transmit
signal power and power needed at the receiver for reliable pulse detection. In this
chapter, the probability of error is used as the metric for measuring the performance.
From the clinical application, it is found that the system is reliable for a target
probability of error in pulse detection = 10−3. In addition, the power analysis also
provides an insight into the longevity of leadless pacemaker, i.e., energy consumed
for having successful pulse transmission and reception for a span of 10 years
(standard life cycle of leadless pacemaker).

The transmitted RF pulse has a signal power Pt; the signal propagates through
the lossy medium inside the heart from the atrial unit (transmitter) to the ventricular
unit (receiver). The signal undergoes attenuation PL, which is a function of distance.
Considering optimal placement sites of a leadless pacemaker in the right atrium
and right ventricle, on an average, the distance between these is around 8–9 cm,
which is generally patient specific [16]. In this chapter for analysis, the distance
between leadless pacemakers is considered as 9 cm. From channel attenuation
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model obtained by simulation, PL was found to be −82 db [17]. Therefore, the
received power at the right ventricular leadless pacemaker is given by Pr.

Pr(dbm) = Pt(dbm) − PL(db) (37.5)

For MICS band in an in-body implant, the receiver noise floor is given by
−120 dbm [7]. The Signal to Noise Ratio (SNR) is calculated from the received
signal power and noise power at the receiver. SNR is calculated as

SNR(db) = Pr(dbm) − No(dbm) (37.6)

In numerical results, the analysis is performed on the required SNR for maintain-
ing the target probability of error (10−3). Transmit power (Pt) at atrium is evaluated
for the target probability of error using Eq. 37.5 and Eq. 37.6. The symbol energy
per pulse is calculated from transmit power and symbol rate (Rs) as

Es = Pt/Rs (37.7)

37.4 Numerical Results

In the current study, raised cosine pulse with roll-off factor 1 is used as the pulse
shaper. The pulse bandwidth is adapted to MICS band and each narrowband channel
has 300 kHz bandwidth [7]. The RF pulse width (Ts) is 6.7 μs and the symbol rate
is (Rs) 150 kbps [15].

From channel model, PL is −82db for a distance of 9 cm. Figure 37.6 indicates
simulation results between target error probability vs number of symbol loca-
tion = 4096, 8192, 16,384. The observation window considered is in the order
of 100 ms, i.e., 16,384 × Ts, therefore the number of possible symbol location
is 16,384. From Fig. 37.6, for number of symbol location = 16,384 and target
probability of error ≈10−3, the scheme requires an SNR = 28.55 dB. Using
Eqs. 37.5 and 37.6 transmit power needed at the atrial unit is evaluated; for
SNR = 28.55 dB the required transmit power (Pt) is 75μW. Using Eq. 37.7 symbol
energy (Es) per pulse is calculated to be 0.52 nWs. Considering the pulse is sent on
every heartbeat, the energy consumed for synchronization of leadless pacemakers
for 10-year longevity is 15.4 μAh. The battery energy rating in the existing leadless
pacemaker system is 220 mAh for a longevity of 10 years. Therefore, it can be
seen that the energy consumed for pulse transmission and reception operation is
five orders less in magnitude than the available energy; hence, claiming feasibility
of system is positive.

The above analysis is performed for the distance between the leadless pacemak-
ers = 9 cm. In reality, the size of the heart is patient specific and the distance between
leadless pacemakers change for the same implant sites. Since attenuation offered by
the medium is a function of distance, Fig. 37.7 depicts for a longevity of 10 years, the
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Fig. 37.6 Plot of SNR vs
probability of error for
different symbol locations

Fig. 37.7 Plot of energy
consumed for
synchronization for a
lifecycle of 10 years vs the
distance between the leadless
pacemakers in cm

energy consumed for pulse transmission and reception operation for different inter-
pacemaker distances. The energy consumed is obtained by varying path loss (PL)
in Eq. 37.5 in relation with the distance; furthermore Eq. 37.7 is used to calculate
the absolute energy consumed for a life span of 10 years. It follows the intuition
that there is an increase in energy consumption with an increase in distance between
leadless pacemakers.

37.5 Conclusion

In the dual chamber leadless pacemaker system, wireless-DDD pacing mode is
implemented by establishing synchronization between leadless pacemakers at right
atrium and right ventricle.
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Minimum SNR that the receiver unit requires to do pulse detection with target
probability of error value is evaluated. SNR in turn provides information on transmit
power needed to perform successful pulse detection. In our simulation studies, it
is found that the transmit pulse power of 75 μW per pulse is needed to detect
the pulse with target probability of error ≈ 10−3. The energy consumed for
synchronization operation (pulse transmission and reception) by the dual chamber
leadless pacemaker system operated in wireless DDD mode for a longevity of
10 years is 15.4 μAh. The battery energy rating in the existing leadless pacemaker
system is 220 mAh for a longevity of 10 years. Therefore, it can be seen that the
energy consumed for pulse transmission and reception in an in-body environment
of leadless pacemakers is five orders less in magnitude than the available energy,
hence claiming that system feasibility is positive. It is also observed that energy
consumption increased with increase in distance between leadless pacemakers.

In our future research, we try to address the problem considering an inhomoge-
neous medium for pulse propagation. It is also interesting to include clock drift in
the model and evaluate the system performance.
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Appendix: Stepwise Algorithm for System Operation
(Wireless-DDD)

1. Open the atrial sensing window, i.e., from Tasmin, this is decided from the basic
rate set by the physician for the subject.

2. Observe for any activity in the atrium (atrial depolarization).
3. If depolarization is sensed (Tas), based on the prescribed rate, a new value for

timers Tasmin and Tasmax is set.
4. If atrial depolarization is not sensed, we pace the atrium and reset timer Tasmin

and Tasmax to new value considering paced time as Tas.
5. If sensed, then Ttx is equal to Tas but if it is paced Ttx is equal to Tas + Toffset,

where Toffset is to compensate for the delay in conduction due to pacing.
6. At receiver, leadless pacemaker pulse is received at Trx, which is the sum of Ttx

and Tpt time.
7. The receiver starts Tvpred timer which is the sum of Trx + TAVD, this predicts

when we can expect a ventricular depolarization.
8. In parallel, based on the prescribed rate the values for timers Tvsmin and Tvsmax

are calculated, ventricular sensing window is opened at Tvsmin.
9. If ventricular natural depolarization is not sensed (Tvs) after predicted depolar-

ization time (Tvpred), the ventricle is paced, hence maintaining the coordination
between atrium and ventricle.
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10. New timer values for Tvsmin and Tvsmax are calculated from paced time Tvpred
or ventricular sensed time Tvs.

11. Repeat the operation for every beat.
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Chapter 38
Low-UWB Directive Antenna for
Wireless Capsule Endoscopy Localization

Chaïmaâ Kissi, Mariella Särestöniemi, Carlos Pomalaza-Raez, Marko Sonkki,
and Mohamed Nabil Srifi

38.1 Introduction

In recent years, UWB directive antennas have been in demand for applications in
radar, sensing, and telemetry systems. UWB have also been of interest in the area
of Wireless Capsule Endoscopy (WCE) in particular when investigating its use in
clinical studies of the small intestine, a component of the gastrointestinal (GI) tract
[1, 2].

In the context of WCE, using UWB band [3.1–10.6 GHz] has the advantage of
providing high resolution, in the order of millimeters, and low power consumption
in contrast with the use of narrow-band systems [3]. On the other hand, the use of
higher frequencies in on-/in body communications incurs large path losses. Thus the
goal is to use as low-UWB band as possible for WCE localization purposes [4, 5] to
minimize path losses and obtain high image resolutions [5].

Several published papers emphasize the importance to comply with the low-
UWB band IEEE 802.15.6 standard [6, 7]. Therefore a number of implantable
antennas working in the 3.4–4.8 GHz range have been implemented [5, 8–10]. An
UWB trapezoid monopole antenna [11], a broadband horn antenna [5], a planar
unbalanced dipole antenna [12], and a helical receiving antenna [9] have been used
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as receiving antenna for tests and measurement in WCE localization scenarios using
different frequency ranges.

In this chapter, an UWB antenna operating in the low-UWB band of the IEEE
802.15.6 standard is presented. The proposed antenna is directional and provides
high gain. A comparative study of published UWB antennas is found in [13],
confirming that the proposed antenna has a very good performance and that is a
good candidate as a receiving antenna for WCE localization systems. The detailed
antenna structure is described in Sect. 38.2. Antenna configuration, analysis, and
discussion are provided in Sect. 38.3. Conclusions and future work are included in
Sect. 38.4.

38.2 Antenna Structure

Antenna Design

The proposed antenna is a dipole type of antenna. The structure is printed on a FR-4
material with 1.6 mm thickness (hs), 30 mm width (Ws), and 25 mm length (Ls). Let
λ ( c

f
) be the wavelength at 4 GHz (center frequency of the IEEE 802.15.6 low-UWB

band). The antenna size then corresponds to 0.41 λ × 0.33 λ × 0.021 λ. The ground
plane is a combination of a rectangle and an inverted-L form, while the radiator
element has a close inverted-L shape. The antenna structure is fed by a microstrip
line of 3 mm width. Front and back sides of the proposed UWB antenna geometry
are depicted in Fig. 38.1. Optimized parameters of the proposed low-UWB antenna
are summarized in Table 38.1.
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Fig. 38.1 Geometry of the proposed low-UWB band antenna. (a) Front side (b) Back side
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Table 38.1 Optimized parameters of the proposed low-UWB antenna

Parameter Ws Ls hs W1 W2 W3 W4 W5

Value (mm) 30.3 25 1.6 3 16.4 3 13.15 13.15
Parameter W6 W7 L1 L2 L3 L4 L5
Value (mm) 4 9.5 20.14 2.9 12 2 7.14

Fig. 38.2 Reflection coefficient of the proposed single UWB antenna (a) by varying L2 (b) by
varying W7

38.3 Antenna Configuration and Analysis

Single Low-UWB Antenna

Every parameter affects the antenna’s impedance and resonant frequency. For the
sake of brevity, the parametric study here is limited to L2 and W7 tune effects on
the antenna frequency response.

The effect of L2’s length on the reflection coefficient of the proposed UWB
antenna is illustrated in Fig. 38.2a. Varying L2 values from 1.5 to 4.5 mm resulted in
a significant shift in the bandwidth and in the resonant frequency in the low-UWB
band. The optimal L2 value that complies with the IEEE 802.15.6 standard is chosen
to be 2.9 mm. By using this value, the covered bandwidth is 3.74–4.25 GHz and the
achieved resonant frequency is 3.906 GHz with maximum reflection coefficient of
about −17.16 dB. For the case when the length of L2 is increased to 4.5 mm, the
bandwidth shifts to the left [3.63–4.12 GHz] and the achieved resonant frequency
is at 3.789 GHz with the reflection coefficient of −17.39 dB. When L2 is set to
1.5 mm, the bandwidth shifts to the right [3.8–4.37 GHz] and the achieved resonant
frequency is at 4.014 GHz with the reflection coefficient of −19.32 dB.

The effect of W7’s length on the reflection coefficient of the proposed antenna
is illustrated in Fig. 38.2b. Varying W7 values from 9.5 to 10.5 mm with a step of
0.5 mm reveals that the lower frequency remains quite constant, while increasing
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Fig. 38.3 (a) Input impedance and (b) Surface current distribution of the single low-UWB antenna
at 4 GHz (Solid arrow: Front side, Dashed arrow: Back side)

W7 leads to a decrease of the upper frequency which degrades significantly the
resonant frequency and the maximum reflection coefficient from 3.906 to 3.8 GHz
and from −17.16 to −13.33 dB, respectively.

The input impedance of the proposed low-UWB single antenna is shown in Fig.
38.3a. At 4 GHz, the real part of the parameter Z11 is 49.22 � 50 � and the
imaginary part is about 9.93 �. It can be then concluded that the proposed antenna
has an inductive behavior at 4 GHz center frequency. Besides, these results show
that the antenna has a good impedance matching of about 50 �.

The surface current distribution of the low-UWB antenna at 4 GHz is illustrated
in Fig. 38.3b. Current directions in the front and back sides are represented by solid
and dashed arrows, respectively. It is clearly seen on this illustration that currents
are cancelling each other at part A while at part B currents are moving in opposite
directions.

Directivity results of the proposed single low-UWB antenna at the frequencies
3.74, 4, and 4.26 GHz are shown in Fig. 38.4. These results show that the single
antenna is directive toward Y-axis. At the three frequencies, total and radiation
efficiencies are less than 1 dB, which implies a good operation of the proposed
antenna. Additionally, it is worth noting that directivity achieves high values up
to 6.18, 6.04, and 5.52 dBi at the frequencies 3.74 GHz, 4 GHz, and 4.26 GHz,
respectively.

Radiation patterns of the single low-UWB antenna at 3.74, 4, and 4.26 GHz are
plotted in Fig. 38.5. Gain values, by cutting axis planes at Theta = 90◦, Phi = 90◦,
and Phi = 0◦, are summarized in Table 38.2. It is clearly shown that, with the
frequency increase from 3.74 to 4.26 GHz, the directivity decreases slightly to reach
6.18 and 5.52 dBi, respectively. However, maximum directivity is always toward Y-
axis (Theta = 90◦).
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Fig. 38.4 Directivity of the single low-UWB antenna with the hidden substrate at 3.74, 4, and
4.26 GHz

Fig. 38.5 Radiation patterns of the single low-UWB antenna at 3.74, 4, and 4.26
(Black ≥ Phi = 0◦, Red ≥ Phi = 90◦, and Blue ≥ Theta = 90◦)

Table 38.2 Gain values of the proposed single low-UWB antenna by cutting axis planes

Frequency [GHz] Theta = 90◦ [dBi] Phi = 90◦ [dBi] Phi = 0◦ [dBi]

3.74 6.17 6.14 −1.46
4 6.04 5.99 0.674
4.26 5.52 5.46 1.51

Cavity Approach

In this second part, a metallic box serving as a cavity with a thickness of 0.5 mm is
used. The cavity approach is used to act as a reflector ensuring good directivity
and high gain improvement [14, 15]. The single antenna is positioned in the
cavity center. The cavity size is 90.8 × 85 × 39.5 mm3 which corresponds to
1.21 λ × 1.13 λ × 0.52 λ (λ is the wavelength at 4 GHz). The overall configuration
of the proposed cavity-backed low-UWB antenna is illustrated in Fig. 38.6a.

Antenna parameter values are reviewed when introducing the cavity. The most
influencing parameters are W2, L2, and L3; the antenna is more sensitive to
these parameters. Figure 38.6b shows the reflection coefficient of the single
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Fig. 38.6 (a) Overall view of the cavity-backed low-UWB antenna. (b) Reflection coefficient of
the cavity-backed low-UWB antenna by tuning W2, L2, and L3 parameters

Fig. 38.7 (a) Input impedance of the cavity-backed low-UWB antenna at Fr = 3.85 GHz. (b)
Radiation and total efficiency of the cavity-backed low-UWB antenna over the desired bandwidth

antenna inserted within the cavity (case A). However, tuning slightly the previously
mentioned parameters adapts well the antenna to improve its performance (case B).

Input impedance matching of the proposed cavity-backed low-UWB antenna
at the resonant frequency of 3.85 GHz is presented in Fig. 38.7a real part of the
parameter Z11 is 55.1 � and the imaginary part is about −0.1 � 0 �. It can be
concluded from this input impedance study that the proposed antenna has a good
impedance matching around 50 �.

Radiation and total efficiency of the cavity-backed low-UWB antenna over the
covered bandwidth is between −1 and 0 dB as presented in Fig. 38.7b. Therefore,
the antenna seems to operate well at low-UWB band which shows its conformity
with IEEE 802.15.6 standard.

Directivity results of the cavity-backed low-UWB antenna at the frequencies
3.63, 4, and 4.43 GHz are given in Fig. 38.8. These results show that the single
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Fig. 38.8 Directivity of the cavity-backed low-UWB single antenna at (a) 3.63 GHz, (b) 4 GHz,
and (c) 4.43 GHz

Fig. 38.9 Radiation patterns of the cavity-backed low-UWB antenna at (a) 3.63 GHz, (b) 4 GHz,
and (c) 4.43 GHz. (Black ≥ Phi = 0◦, Red ≥ Phi = 90◦, and Blue ≥ Theta = 90◦)

Table 38.3 Gain values of the proposed cavity-backed low-UWB antenna by cutting axis planes

Frequency [GHz] Theta = 90◦ [dBi] Phi = 90◦ [dBi] Phi = 0◦ [dBi]

3.6558 0.072 8.95 5.57
3.906 0.751 9.32 6.86
4 1.89 8.93 5.83
4.4361 1.12 8.39 5.7

antenna is directive toward Z-axis. At the three frequencies, total and radiation
efficiencies are between −1 and 0 dB, which implies the good operation of the
proposed cavity-backed antenna. Additionnaly, it is worth noting that directivity
achieves high values up to 9, 8.98, and 8.41 dBi at the frequencies 3.63 GHz, 4 GHz,
and 4.43 GHz, respectively.

Radiation patterns of the single low-UWB antenna at 3.63, 4, and 4.43 GHz are
plotted in Fig. 38.9. Gain values, by cutting axis planes at Theta = 90◦, Phi = 90◦,
and Phi = 0◦, are summarized in Table 38.3. It is worth nothing that the directivity
decreases from 9 to 8.41 dBi with the increase of frequency from 3.63 to 4.43 GHz.
However, maximum directivity is always toward Z-axis (Phi = 90◦). It is concluded
that the cavity approach comes as a solution to change antenna directivity from Y-
axis to closely Z-axis. The cavity approach has proved a significant increase of the
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maximum gain from 6.04 to 8.98 dBi at 4 GHz. Therefore, the aim of this approach
for wireless capsule endoscopy localization is to reinforce the radiation to Z-axis
and hence to direct the field to the body, so the penetration is better with lower
power.

On-Body Simulation Results

The performance of a cavity-backed low-UWB antenna in the vicinity of a human
body is investigated in this section as illustrated in Fig. 38.10a. Since WCE
localization is important within the small intestine part of GI tract, for simplicity
and as a preliminary realistic study, multi-layers in close proximity of the proposed
antenna are placed and introduced to emulate dielectric properties of the skin, fat,
muscle, and small intestine at 4 GHz. The layer arrangement with the associated
thickness is as followed: Skin (2.3 mm), fat1 (11 mm for males and 18 mm for
females), muscle (2.7 mm for males and 4.3 mm for females), fat2 (10 mm for
males and 30 mm for females), and small intestine (2 mm) [16, 17]. The dielectric
properties of the human tissues at 4 GHz are presented in Table 38.4 [18, 19].

Fig. 38.10 (a) Cavity-backed low-UWB antenna in close proximity to the human model. (b)
Comparison of reflection coefficient with different study cases

Table 38.4 Dielectric properties of human tissues at 4 GHz

Tissue layer Permittivity Conductivity (S/m) Tang loss

Small intestine 51.7 4.62 0.402
Muscle 50.8 3.01 0.267
Fat 5.13 0.183 0.16
Skin 36.6 2.34 0.287
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Table 38.5 Antenna
performance per study case

Study case Fr [GHz] BW [GHz] S11|Fr [dB]

Healthy male 4.28 [3.62–4.52] −26.71
Healthy female 4.29 [3.62–4.55] −36.97
Overweight female 4.29 [3.6–4.59] −43.75
Overweight male 4.29 [3.6–4.55] −27.54

In the literature, for example in [11], the distance between the receiving antenna
and the human model is 5 cm. In this study case, the simplified layer is placed at
3 cm from the proposed cavity-backed low-UWB antenna.

A comparison study based on the reflection coefficient of the proposed cavity-
backed antenna in proximity to human model is shown in Fig. 38.10b. The study
cases distinguish between healthy and overweight persons by selecting the gender
(male and female). The introduction of the multi-layer model in vicinity to the
proposed cavity-backed antenna assures a bandwidth around 3.62–4.55 GHz, for
all the study cases, which covers the required bandwidth [3.75–4.25 GHz] for low-
UWB band of IEEE 802.15.6 standard for Body Area Network (BAN). However,
it is clearly seen from the results presented in Table 38.5 that maximum reflection
coefficient for overweight persons is higher that for healthy persons. Furthermore,
the maximum reflection coefficient for female tissues is higher than for male tissues.
The resonant frequency is around 4.27 GHz for different human tissues. From Table
38.5, it is concluded that the proposed cavity-backed low-UWB antenna is suitable
to WCE purposes and conforms well with the IEEE 802.15.6 standard.

Radiation patterns of the single low-UWB antenna at 3.57, 4, and 4.43 GHz in
vicinity to human tissues are plotted in Fig. 38.11. Gain values, by cutting axis
planes at Theta = 90◦, Phi = 90◦, and Phi = 0◦, are summarized in Table 38.6.
Results show that high gain is still maintained even in close proximity to different
human tissues (multi-layer model). However, maximum gain is slightly decreased
for overweight person cases. It is clearly seen that different human tissues features
(gender, thickness) do not affect too much the resulted radiation pattern.

38.4 Conclusion and Perspectives

A new low-UWB band directive antenna for WCE localization systems is presented
in this chapter. Good directivity is achieved for both single antenna and cavity-
backed antenna. Furthermore, they both comply with IEEE 802.15.6 standard
requirements. For the single antenna, the gain reaches a value of 6.14 dBi at
4 GHz. For the proposed cavity-backed antenna, the gain is increased to 8.93 dBi
at 4 GHz. The work was not restricted to free space investigations, but also an on-
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Fig. 38.11 Radiation patterns of the cavity-backed low-UWB antenna at 3.57, 4, and 4.43 GHz.
(a) Phi = 0◦, (b) Phi = 90◦, and (c) Theta = 90◦ (Black solid ≥ Healthy Male, Blue solid ≥ Healthy
Female, Black dashed ≥ Overweight Male, and Blue dashed ≥ Overweight Female)

body preliminary realistic study was carried out. For this end, a multi-layer model
emulating dielectric properties of the different human tissues at 4 GHz was used and
satisfying results are concluded. According to the presented simulated results, it is
concluded that both single antenna and cavity-backed antenna provide satisfying
results for WCE localization purposes. Fabrication, measured results, and necessary
tests using phantoms and realistic scenarios will be presented in the future work to
validate these simulated results.
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Table 38.6 Gain values of the proposed cavity-backed low-UWB antenna in vicinity to human
model layers by cutting axis planes

Study case Frequency [GHz] Theta = 90◦ [dBi] Phi = 90◦ [dBi] Phi = 0◦ [dBi]

Healthy male 3.5757 3.82 3.78 4.51
4 4.53 4.63 6.81
4.4361 3.06 5.32 3.89

Healthy female 3.5757 3.92 4.24 3.9
4 4.89 2.53 6.63
4.4361 3.19 4.57 2.87

Overweight female 3.5757 4.33 4.43 3.99
4 5.32 2.58 6.38
4.4361 3.18 4.59 2.51

Overweight male 3.5757 3.84 3.88 4.67
4 4.83 4.47 6.53
4.4361 2.97 5.21 3.54
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Chapter 39
Experimental Path Loss Models
Comparison and Localization of Wireless
Endoscopic Capsule in the
Ultra-Wideband Frequency Band

Sofia Perez-Simbor, Martina Barbi, Mehrab Ramzan, Xiao Fang,
Concepcion Garcia-Pardo, Narcis Cardona, Qiong Wang, Niels Neumann,
and Dirk Plettemeier

39.1 Introduction

The usage of wireless medical devices is growing in the biomedical sector due to
the advantages compared with traditional procedures. Wireless Capsule Endoscopy
(WCE) is an example of these medical devices. However, the current WCE transmits
low quality images with low data rate [1], which leads to long and tedious time
for the physician while watching the images and searching for polyps, tumors,
and diseases. In addition, the position estimation of the WCE is currently very
inaccurate that makes the localization of detected diseases very hard for the doctors
[2]. Higher data rate would improve the transmitted and received signal enabling
the transmission of high quality videos as well as the accuracy of the capsule
localization.

The current frequency band defined in the standard for implant to surface body
transmission (in-body to on-body, IB2OB), i.e., WCE case, is the narrowband
Medical Implanted Communication Service (MICS) band. Although this band offers
good penetration of the RF signal inside the human body, it provides low data rate
(up to 500 kbps) [2]. As a result, Ultra-Wideband (UWB) [3, 4] frequency band is
becoming more attractive for the scientific community due to its many advantages
such as the small antenna size, the low power consumption, and the high data
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rate. On the contrary, propagation losses caused by the human body are higher and
frequency dependent [5].

In order to overcome this issue, a good characterization of the channel is required.
There are plenty of works in literature that present path loss (PL) models for
the IB2OB scenario [6, 7]. Nevertheless, the antenna effect is theoretically being
considered part of the RF link, it is common that the path loss models consider this
effect as antenna dependent. The way the antenna pattern affects the RF link is still
unknown. Thus, a fair comparison of PL models for different antennas is required
to explore this dependence.

In this chapter, a formal comparison between different antennas and their RF
link budget (hereinafter path loss) is performed in the UWB frequency band for
IB2OB scenario. Laboratory measurements are conducted, where the transmitting
antenna is an omnidirectional in-body antenna and the receiving antennas are an
omnidirectional and a directive antenna, respectively. Particularly, experimental
measurements are performed using a customized phantom-based testbed. Moreover,
in order to check whether the PL model is well characterized, a practical case of
localization is performed. Concretely, an RSS-based localization [8] technique of
the in-body antenna is investigated and compared when using different path loss
models.

This chapter is organized as follows: in Sects. 39.2 and 39.3 an explanation of
the setup, antennas, phantom, and methodology is given. Section 39.4 presents and
compares the obtained results for the two different on-body antennas.

39.2 Setup

Measurement Setup

The measurement setup was developed for the purpose of IB2OB measurements
in the UWB frequency band and it was exactly the same for the measurements
performed for both antennas. It consists of a robotic arm that precisely moves along
XYZ axis, a magnetic tracker, in-body antenna, on-body antennas, a laptop, and a
vector network analyzer. All the necessary components of measurement setup are
enclosed inside a large wooden box and each side of the box is internally covered
by absorbers and aluminum to minimize the reflections from the boundaries and
reduce the outside interference during the measurement process [6]. As a remark,
the magnetic tracker by means of two wired nodes, one usually attached to the on-
body antenna and the other one to the in-body antenna is used to track the relative
position of the in-body antenna inside the phantom, being possible to know where
both antennas are spatially located.
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Antennas Used for the Path Loss Model

For channel modeling setup, a common in-body antenna and two different kinds
of on-body antennas are used for the measurement. The first on-body antenna is a
simple UWB planar patch antenna which is fabricated on a Rogers 4003 substrate
with εr, length, width, and a thickness of 3.28, 40, 50, and 0.813 mm, respectively
(Fig. 39.1a) [8]. The second on-body antenna is a UWB antipodal Vivaldi antenna
fabricated on a bit flexible substrate of Rogers RO 3010 with εr, length, width, and a
thickness of 10.2, 40, 50, and 0.25 mm, respectively (Fig. 39.1c) [9]. A small UWB
in-body antenna which is based on CPW feeding structure, with length 23 mm and
width 20 mm is used (Fig. 39.1b) [10].

Figure 39.2 shows the measured reflection coefficients for the three antennas. As
seen all the antennas have a value lower than −10 dB in the UWB frequency regime.

Figure 39.3 shows the radiation pattern for both on-body antennas in free space
for three different frequencies, at 3.1, 4, and 5 GHz. As noticed, the patch antenna
is omnidirectional, while the Vivaldi antenna is a directional antenna.

Fig. 39.1 (a) Monopole on-body antenna (b) In-body antenna (c) Antipodal on-body antenna

Fig. 39.2 S-parameters of
the antennas
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Fig. 39.3 Far field for (a) Vivaldi antenna and (b) Patch antenna

Phantom Properties

A simple UWB phantom was developed based on the proportion of sugar and
water content recipe to approximately mimic the properties of muscle tissue in
the frequency regime of 3–6 GHz [11]. The development of UWB phantom is
done on a large scale on the basis of 1 L (1 mole/L = 342.297 g). Fourteen
liters of UWB phantom were prepared on the basis of defined recipe and stored
in a large container with capacity of 16 L of water in order to provide flexibility
for the movement of the in-body antenna. The measurement of the tissue-based
phantom is done by initially calibrating the probe in open air, short circuit, distilled
water, and methanol [12] and then used for the measurement of the permittivity and
conductivity of the UWB liquid phantom. Figure 39.4 shows the measured relative
permittivity and conductivity of the UWB phantom from 3 to 6 GHz. Concretely, the
relative permittivity varies from 1 to 9% and from 23 to 25% for the conductivity.
Nevertheless, for the means of comparison between antennas in the UWB frequency
band these discrepancies are the same for both antennas, maintaining the same
conditions between antennas.
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Fig. 39.4 Dielectric
properties

Fig. 39.5 Measurement setup and in-body and on-body positions for the channel modeling in
lossy tissue

39.3 Methodology

The measurement setup described in the previous section is shown in Fig. 39.5.
Before measurement, a two-port calibration was performed at the reference plane of
two long 50 � coaxial cables used to connect one to the on-body antenna and other
to the in-body antenna. The on-body antenna is only moved manually in YZ plane
on the external wall of the container, as seen on the right side of Fig. 39.5. The
on-body antenna is placed in 13 different locations. From Fig. 39.5, the distance
between receivers in the internal grid (R × 1 − R × 9) is din = 3 cm, while the
distance between the external grid (R × 10–R × 13) is dout = 5 cm. At each location
of the on-body antenna, the in-body antenna is placed at different sample points in
X, Y, and Z axis, achieving a 3D lattice. As seen on the left side of Fig. 39.5, the
in-body antenna is moved with a spatial resolution of (dx, dy, dz) = (3, 1, 3) and
a total number of sample points per axis of (Nx, Ny, Nz) = (3, 11, 3). Moreover,
five snapshots of the measurements are saved to minimize the fluctuation of results
due to the movement of a robotic arm while moving from one in-body position to
another. The system parameters were set as finitial = 3 GHz, ffinal = 6 GHz with
N = 3201 resolution points, achieving a resolution frequency of �f = 937.21 kHz.
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Moreover, the intermediate frequency and the output power were set as fIF = 3 kHz
and P = 8 dBm. Finally, the noise threshold level measured for each antenna under
these conditions was NLOmni = −90 dB while the NLVivaldi = −110 dB.

39.4 Results

Comparison of the PL Models

From the measurements performed with the VNA, the forward transmission coef-
ficient (S21) per position is obtained. Then channel transfer function is calculated
as:

H(f ) =
(
|S21| e−jθS21

)
(39.1)

Graphically, the absolute value of the channel transfer function is depicted for
both antennas in Fig. 39.6, where the channel transfer function, |H(f, dB)|, as a
function of the frequency in dB for different distances is shown.

In Fig. 39.6a, the response of the directional Vivaldi antenna is shown for
different distances, while the omnidirectional antenna is plotted in Fig. 39.6b. Figure
39.6b shows that for distances greater than 6.5 cm the noise floor threshold level
is reached for frequencies around 4.5 GHz. Whereas for the Vivaldi directional
antenna, longer distances are achieved. For that, the behavior of the omnidirectional
antenna is more restrictive than the directional antenna in terms of distance and
frequency bandwidth as a function of frequency. Therefore, in order to have the
maximum components above the noise level for both antennas, the maximum
distance chosen for the calculation of the path loss is dmax = 6.5 cm and a maximum
frequency of fmax = 5.1 GHz.

Fig. 39.6 Channel transfer function (a) Vivaldi antenna (b) Patch omnidirectional antenna
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From the response of the |H(f, dB)| is seen that the Vivaldi antenna has smoother
response and greater slope, whereas the omnidirectional antenna is more irregular
and has a lower slope. This behavior is reflected in the PL values, which are
extracted from the channel transfer function by Eq. 39.2. In order to execute the
calculation of the PL values, an averaging of the values of H(f ) is performed for the
full bandwidth (3.1–5.1 GHz).

PLmeas (dB) = −10 log

(∑
i=N

∣∣H(fi)
2
∣∣

N

)
(39.2)

In Fig. 39.7, the path loss values are depicted for both antennas and their
different evident behavior. As expected from the results in Fig. 39.6, the directional
Vivaldi antenna has a higher path loss values than the omnidirectional patch antenna
(greater slope). A possible explanation might be due to the high path losses that the
directional antenna experiences when the antennas are not located in the area of the
directive beam. Besides, in Fig. 39.7, the aligned samples of the omnidirectional
patch antenna are highlighted in brown. As seen, they have similar behavior to the
PL values of the Vivaldi antenna.

From the path loss values, different path loss models are computed from Eq. 39.3
and summarized in Table 39.1.

PL (d, dB) = PL0(dB) + 10nlog10

(
d

d0

)
+ N (μ, σ) (39.3)

In Eq. 39.3, PL0 is the reference path loss values for the given reference distance
d0. In addition, N(μ, σ ) is the scattering normal function being μ the mean and σ

the variance in dB.
From the results, the Vivaldi antenna shows a higher path loss exponent (n), than

the other two models, which was expectable from the results. Nevertheless, it may

Fig. 39.7 Path loss values
for different antennas
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Table 39.1 Path loss models for different antennas

Path loss
model Vivaldi

Path loss
model patch

Path loss model
both antennas

d = [3, 6.5] cm
f = [3.1, 5.1] GHz
PL0 = 17.35 dB
d0 = 1 cm
n = 7.37
μ ≈ 0
σ = 5.72 dB

d = [3, 6.5] cm
f = [3.1, 5.1] GHz
PL0 = 24.86 dB
d0 = 1 cm
n = 5.09
μ ≈ 0
σ = 4.26 dB

d = [3, 6.5] cm
f = [3.1, 5.1] GHz
PL0 = 19.05 dB
d0 = 1 cm
n = 6.56
μ ≈ 0
σ = 6.79 dB

come as a surprise that the variance (σ ) of the omnidirectional antenna is smaller
than directive one. As expected, the path loss model resulting from the combination
of both antennas has a path loss exponent in between the other two models and
a variance higher than the other models. This is due to the widespread and wide
difference that appear between the measured path loss values.

RSS-Based Ranging and Localization

In this section performance of the two antennas, presented in the previous sections,
are analyzed and compared when used for the localization of the in-body antenna.
Because UWB signals are distorted in a frequency-dependent manner by the body
tissues, accurate estimation of parameters such as ToA (time of arrival) or TDoA
(time difference of arrival) is difficult [13]. Consequently, using the Received Signal
Strength (RSS) metric for ranging purposes appears more feasible.

The real positions of the in-body antenna, as well as the estimated ones, are
evaluated with respect to the magnetic tracker transmitter’s reference system (Fig.
39.5). Ranging distance estimation is performed as in [14] by using the path loss
models evaluated in section “Comparison of the PL Models”. Considering the setup
depicted in Fig. 39.5, only two coordinates of the in-body antenna (y and z) could be
estimated as all receivers (on-body antenna locations) share the same x-coordinates.
Trilateration is used for the estimation of the in-body antenna coordinates, i.e., the
position of the in-body antenna corresponds to the point of intersection of at least
three circles, whose centers are the locations of the selected receivers and whose
radii are the estimated distances between in-body antenna and selected receivers
(ranging distances). In this study, different combinations of three receivers were
considered to locate the in-body antenna. In order to solve the system of three
nonlinear equations, the linearized method described in [15] is adapted [14] and
implemented for two-dimensional positioning. In this approach, one of the three
selected receivers is taken as reference to find the unique solution (y and z coordinate
of the in-body antenna) of the linearized system of two equations in two unknowns.

Performance is evaluated in terms of relative localization error as in [14]. Figure
39.8 shows a comparison of the Cumulative Distribution Function (CDF) of the
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Fig. 39.8 CDF of relative localization error for (a) Patch antenna using the general PL model,
(b) for the patch antenna using the related PL model, (c) for the Vivaldi antenna using the general
PL model and (d) for the Vivaldi antenna using the related PL model

relative error calculated as in [14] for the patch and Vivaldi antenna, using different
combinations of three receivers and two different path loss models. Particularly,
results for each antenna are evaluated and compared when using the general path
loss model and the antenna related path loss model (see Table 39.1).

For both antennas, performance obtained using the antenna-related path loss
models (Fig. 39.8c, d) are slightly better than those obtained with the general
path loss models (Fig. 39.8a, b). The best combination of receivers, leading to
lowest error values, is receiver 1, 3, and 5 (taken as reference), i.e., the magenta
curve in Fig. 39.7. In fact, for this combination of receivers the average ranging
error (distance between the real antennas distance and the estimated one) has been
assessed to be the lowest compared to the other receivers combinations. This, in
turn, results in better accuracy in the estimation of the in-body antenna coordinates
when solving the linearized system of eqs. [14].

Considering the best combination of receivers (i.e., 1, 3, and 5 as reference), error
values obtained using the patch antenna and its antenna-related model are 2–3%
higher than those obtained using the Vivaldi antenna and its corresponding model.
In terms of localization error and considering the same combination of receivers,
an average error of 1.6 cm is obtained with the patch antenna and of 0.98 cm with
the Vivaldi antenna, using the antenna-related path loss models. The reason behind
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this behavior can be explained by the fact that when using the Vivaldi antenna path
loss values corresponding to receivers 1, 3, and 5 are closer to the antenna-related
fitting model curve. This turns into a lower average ranging error and, consequently,
a slightly lower localization error compared to the one obtained using the patch
antenna.

39.5 Conclusions

In this chapter, in-body to on-body UWB transmission experiments are performed
inside a lossy tissue based on liquid phantoms. A fair comparison was performed
between two different receiver antennas to compare different channel characteris-
tics. Three different path loss models are extracted from the measurements, one
general PL model considering all the PL values and two of them related with each
antenna (omnidirectional and directive antenna). From the results, it is observed that
the directional antenna has higher path loss exponent and variance. Nevertheless,
from the results obtained in the RSS-based localization algorithm, there is a slightly
better performance for the path loss obtained with the directive antenna. This result
might seem contrary as the expected ones, since, as said the path loss exponent
is higher for the directive antenna. These results show the necessity of a good
understanding of the effect of the antenna in the channel characterization to properly
characterize the IB2OB channel in the UWB frequency band. As a further research,
a deeper study in how the antenna affects the RF link should be performed.
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Chapter 40
Planar Elliptical Ring Implanted
Antennas for UWB Body Area
Communication

Qiangbo Zhang, Xiao Fang, Qiong Wang, and Dirk Plettemeier

40.1 Introduction

One of the most popular research areas of body area network (BAN) is design
of miniaturized and high efficiency electronic devices. Many kinds of BAN
applications have been proposed. And especially, one of the most interesting fields
is wireless capsule endoscope. To achieve high data rate and real-time imaging
transform for communicating between implanted and wearable devices, the UWB
is the feasible operating frequency band for the transmitter and receiver systems
[1]. The co-authors have designed some wearable antennas working at lower part of
UWB band, which can be used as on-body antennas. In this chapter, we propose a
novel type of UWB implanted antenna which can be used as the in-body antenna to
communicate with on-body devices.

The proposed antennas are planar double elliptical rings antenna operating
at lower part of UWB inside human body. The double elliptical rings are used
for radiation and provide a wideband characteristic for the antenna. In addition,
the thick and large permittivity substrate also is utilized to extend the operating
frequency band further. Based on the application of wireless endoscope capsule, the
dimensions of antennas are shrunk and the shapes are cut into circular plate to fit
in capsules. The application scenarios decide that the antennas perform inside the
human body; therefore, in our simulation the parameters of antennas are optimized
within the muscle tissue. The simulated and measured reflection coefficients show
that the designed antennas can satisfy the requirement operating at the lower part
of UWB. The radiation characteristic of implanted antenna is evaluated through

Q. Zhang (�) · X. Fang · Q. Wang · D. Plettemeier
Communication Laboratory, TU Dresden, Dresden, Germany
e-mail: qiangbo.zhang@tu-dresden.de; qiong.wang@tu-dresden.com

© Springer Nature Switzerland AG 2020
C. Sugimoto et al. (eds.), 13th EAI International Conference on Body
Area Networks, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-29897-5_40

455

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29897-5_40&domain=pdf
mailto:qiangbo.zhang@tu-dresden.de
mailto:qiong.wang@tu-dresden.com
https://doi.org/10.1007/978-3-030-29897-5_40


456 Q. Zhang et al.

measuring the transmission coefficient between two implanted antennas in phantom.
As well, the receipt of phantom of muscle tissue is proposed to simulate the electric
properties of muscle tissue.

40.2 Antenna Design

The proposed antenna is working at UWB and has small dimension so that it could
be embedded in a capsule, which can be swallowed into the human body through
esophagus. So a basic antenna type “Elliptical Ring” is chosen due to its simplicity
and good performances for wideband communications [2]. Considering ease of
fabrication, a planar double elliptical ring antenna is designed [3]. As shown in
Fig. 40.1, the dimension of antenna is designed as a circular plate (radius = 5.9 mm)
to take full advantage of the volume of cylinder capsule. The substrate is Rogers
TMM10 (thickness = 75 mil, εr = 10.2). The thickness and high permittivity of
substrate are used to reduce the dimension of the antenna and extend the bandwidth.
The top layer of substrate is double elliptical ring while bottom layer is the ground
plane. The antenna is fed by the coaxial cable whose conducting shield is welded
with the ground plane while inner conductor goes through the dielectric material
and is connected with the radiation part, which is on top of the substrate.

The Top-View in Fig. 40.1a shows the concept of the antenna configuration for
its radiation part. It consists of two elliptical rings and one elliptical branch. The
two elliptical rings are the radiation parts of antenna, which have different current

Fig. 40.1 Structure of the
proposed antenna (a)
Top-View (b) Side-View
(c) Bottom-View
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Fig. 40.2 Two actual
antenna configurations (a)
first type (b) second type

Table 40.1 Configuration
specification of two proposed
antennas

Type First type Second type

ma1 (mm) 5.85 5.85
ma2 (mm) 1.76 2.34
ma3 (mm) 4.56 4.56
ar1 0.85 0.95
ar2 1.1 1.1
ar3 0.88 0.88

lengths providing two relative narrow frequency bands that are somehow close with
each other and merged into one wideband. Sequentially, the two rings have similar
dimensions and as a result they have partly overlapped with each other. The elliptical
branch is a wideband matching branch used to match the antenna with 50 � coaxial
cable in the whole demanded band. There is another small disc partly overlapping
with the biggest elliptical ring at one side of it. It is used for connecting with the
inner conductor of coaxial cable.

As shown in Fig. 40.1a, the major axis’s lengths of three elliptical parts are ma1,
ma2, and ma3, respectively. And the axis ratios are defined as ar1, ar2, and ar3,
respectively. Based on the former design principle, two different configurations of
antennas have been proposed in Fig. 40.2. The parameters of these two types are
listed in Table 40.1. The radiuses and operating frequencies of both are 5.9 mm and
lower part of UWB band, separately.

40.3 Simulation and Measurement

Body Area Environment

The designed antenna works inside the human body; therefore, the electric prop-
erties of human tissues are significant for antenna design. As we all know,
human body has the high lossy and large permittivity characteristics for EM-
Wave propagation, and its electric properties are frequency depended. According to
Gabriel’s work [4], the defined 4-Cole-Cole models can be utilized to describe the
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Fig. 40.3 Body tissue properties (a) Relative permittivity (b) Conductivity

frequency-depended electric properties of human tissues. In our simulation, the
surrounded tissue is muscle whose relative permittivity and conductivity from 3 to
5 GHz are calculated based on Gabriel’s 4-Cole-Cole model. As shown in Fig. 40.3,
with frequency growing, permittivity decreases while conductivity increases. At
the center frequency 4 GHz, the theoretical εr is equal to 52 and s is equal to
3.6 S/m.

For measurement, a body tissue liquid is made up by mixing water and sugar.
The relative permittivity of water is about 83 under room temperature and that of
sugar is about 3. Conductivity of water is similar to that of body. By dissolving
sugar into water, an imitation for body tissue could be created. The recipe is under
our test about: 350 g sugar with 780 g water. Measurements of body tissue liquid
are carried out at 20 ◦C grads by utilizing equipment Agilent 85070E. In Fig. 40.3,
measurement results of the phantom are presented. The measured permittivity at
center frequency is almost equal to the theoretical value but only its slope is a
little larger. The maximal relative error is about 3%, which is not supposed to
result in many differences between simulation and measurement. On the other hand,
measured conductivity is larger than 4-Cole-Cole model within the whole band. It
may be caused by that the water we used for testing is not distilled water which
contains some unnecessary ions. Fortunately, conductivity only results in losses but
attributes little at changing performances of antenna.

Antenna Results

Antennas are fabricated on 75-mil-thick Rogers TMM10 substrate, then cut into
circular plate, and are shown in Fig. 40.4. To measure the electric characteristics
of antennas, the coaxial cables are utilized to connect the antenna with the vector
network analyzer (VNA). The conducting shield of coaxial is welded with the
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Fig. 40.4 Fabricated antennas (a) Antennas without coaxial cables. (b) Antennas with coaxial
cable

Fig. 40.5 Two different environment scenarios (a) in a capsule (b) coating for measurement

ground plane of antenna, and the inner conductor with the top layer. Figure 40.4a
shows the fabricated antennas, and Fig. 40.4b is antennas with coaxial cables.

Because the high lossy characteristic of human body tissue can destroy the
current distribution of antenna, a shell-isolating antenna from human tissue is very
necessary. As mentioned the proposed antennas are used in a capsule. As shown
in Fig. 40.5a, a shell surrounds the top and the side of antenna. As the capsule
conceived in our plan, beneath antenna’s ground there should be something that
has similar electrical properties like air. So antennas are simulated under this
environment configuration. However, as shown in Fig. 40.4b, for testing no real
shell are made and the tested antennas have a coating all around it, as shown in
Fig. 40.5b. Beneath the ground and a thin isolation shell, there is nothing but human
tissue instead of air. Both two environments are simulated, but the measurements
are carried out only in the second scenario.

All simulation and measurement results are presented in Fig. 40.6. Impedance
performances of both antennas are satisfied within the whole required band in
every situation. Measurement results agree well with the simulation one, i.e., the
second environment scenario. As illustrated, the lower bands of measurements
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Fig. 40.6 S11 performances
of two proposed antennas at
simulation and measurement
(a) first type (b) second type

are lower than simulation one while the upper bands are higher. This may be
caused by differences between 4-Cole-Cole model and artificial liquid. As shown
in Fig. 40.3, permittivity slope of the testing liquid is larger than that of 4-Cole-
Cole model. Shorten factors enlarge at lower frequencies (<4 GHz) and on contrast
decrease at higher frequencies (>4 GHz). It may consequently force the lower
band lower and the higher band higher. However, this comparison can lead to
that simulation and measurement is almost identical. And for scenario of capsule
shell, i.e., first scenario, both antennas show very good impedance performances. At
center frequency (4 GHz), S11 is deeper than −20 dB and −25 dB. Though there is
no fabricated shell for testing, it can still be deduced that the proposed antennas can
work well in a capsule.

As we can see from results, the EM-environment beneath the ground has a little
influence on performance of the antenna: It shifts the two-resonating band apart,
but fortunately the impedance performances are still lower than −10 dB within the
whole band. It may be resulted that the ground copper is not larger than the radiation
copper. As a result, EM-field of non-radiative field may not only be limited in the
dielectric but also partly in the very close region beneath ground copper. The worst
situation is the testing condition (εr > 50 from 3 to 5 GHz). It means if in the
future the air under the ground is substituted by crutching clapboard or microwave
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Fig. 40.7 Current configuration at 4GHz of second antenna type (a) phase = 0 (b) phase = 45 (c)
phase = 90 (d) phase = 135

PCB-board, whose εr is smaller than 10, impedance performance will not change
so much.

Figure 40.7 illustrates the current configuration upon the radiation part of second
antenna type from phase = 0 to phase = 135. As expected before, current distributes
along the curve of the two ellipses. Within a half duty cycle the current resonates
from the probe to the two ellipses and then flow back. It means the energy is
transmitted into tissue rather than attenuated within the dielectric.

Gain of an antenna could not be derived directly from its radiation pattern when
the antenna is working within a lossy medium because in lossy medium EM-field
will stimulate electric current within tissue and therefore there are no more far-fields.
In this chapter [5], another method by applying path loss to evaluate the transmission
budget between two antennas in lossy medium is proposed. A path loss equation is
raised in the chapter and rewritten as follows:

1

PL
= Pr

Pt

=
(

1 − |S11|2
) (

1 − |S22|2
)

• GtGr • λ2

(4πr)2 • exp (−αr)
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Fig. 40.8 Comparison
between theoretical
calculated path loss and
measurement S12

PL means path loss, Pr and Pt are transmitting and receiving power, respectively.
Gt and Gr are the gain of the transmitting and receiving antennas according to the
chapter. r is the distance of two antennas. α is the attenuation factor. This equation
involves Friis Equation, mismatching of the input power at antenna feeding, antenna
gains, and attenuation of EM-field in lossy medium. If Gt and Gr are set to 1,
theoretical path loss can be derived. It means, when neglecting the so-called gain, an
ideal path loss between two ideal point sources can be calculated. After measuring
S12, this theoretical value can be compared with the tested S12. By doing that, an
evaluation of antenna’s transmission properties can be obtained.

Before measuring S12, a proper distance should be ensured. Due to large
attenuation in-body tissue, the distance between two antennas should not be too
large; otherwise, the tested S12 will vanish within noises. And the distance should
not be too small either, considering the near-field coupling. For our testing 40 mm
is chosen, which is approximately four times the wavelength. The two antennas
are placed like looking each other in a mirror. The radiation parts are parallel
so that the polarization matches. In Fig. 40.8, comparison between measured S12
and theoretical path loss calculated from the former equation with r = 40 mm is
illustrated. As illustrated, the trend of two lines is similar after 3.5 GHz and the S12
is even a little bit better. Between 3 and 3.5 GHz the measured result is a little bit
worse. However, we can still conclude that the proposed antenna can work within
the demanded frequency band, i.e., the energy is transmitted into body area rather
than attenuated within the near field of the antenna.

40.4 Conclusion

To achieve high data rate and real-time video imaging transform from in-body to on-
body devices, a novel type of implanted antenna for UWB body area communication
is proposed. By using double elliptical rings and small elliptical branch, the
wideband radiation and matching characteristics of antenna have been achieved. The
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thick and high permittivity substrate also is used to extend the bandwidth and reduce
the dimension of antenna further. The diameter of antenna is limited to be less
than 10 mm to fit into the wireless endoscope capsule. Two antennas with different
configurations are designed, the parameters of which are optimized in the muscle tis-
sue. Operating frequencies of both antennas satisfy the requirement (3.1–4.8 GHz)
according to the simulated and measurement results. The transmission coefficient
between two same implanted antennas are also measured in the phantom to check
the radiation characteristic of designed antennas, which shows that the measured
result fits with the theoretically calculated one. In addition, we propose the receipt
of phantom of muscle in the lower part of UWB band, and the measured relative
permittivity and conductivity are shown in the chapter.
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Chapter 41
Motion Artifact Reduction
in Electrocardiogram Using Adaptive
Filtering Based on Skin-Potential
Variation Monitoring

Shumei Dai, Dongyi Chen, Fan Xiong, and Zhenghao Chen

41.1 Introduction

Cardiovascular diseases have become more and more important in recent years. In
the field of clinical and medical research, a standard commercial Ag/AgCl electrode
is used to record ECG signal. This electrode contains an electrolyte gel, which
can irritate the human skin, and the signal quality degrades over time due to the
dehydration of the gel [1, 2]. For this reason, Ag/AgCl electrodes are not suitable
for wearable health care devices which are intended for long-term continuous
monitoring. Therefore, textile-based dry electrodes are alternatively used owing to
their stable electrical properties. Textile electrodes are dry, free from gel, and can be
readily converted into wearable medical garments, which make them preferable for
long-term monitoring [3].

However, the biggest challenge of the fabric dry electrodes is that the collected
ECG signals are greatly disturbed by motion artifacts. Most of the noise can be
filtered out using common filtering techniques, but motion artifacts are difficult
to filter out since they have the same frequency range as ECG signals. Accurate
detection of a person’s biopotential signals in movement state is always difficult
and challenging [4]. SPV is a major composition of the motion artifacts [5].

The performance of adaptive filtering in noise suppression depends largely on
the level of correlation between the reference signal and the ECG noise source
[6]. The reference signal measures motion artifacts by means of various sensors
(pressure sensors, accelerometers, and optical displacement sensors) [7–10]. A
low correlation with motion artifacts were shown in indirectly measured reference
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signals, because they yield inaccurate estimates of the electrical characteristics of
the skin/electrode interface. Ko et al. [11] designed an acquisition structure to
measure the half-cell potential by using sol-gel foams wet electrodes, The half-cell
potential signal was used to estimate motion artifacts, but wet electrodes were not
suitable for long-term use. In general, these research works can effectively reduce
motion artifacts by using adaptive filtering. However, the ECG signal collected by
the textile electrodes and the motion artifact induced by skin-potential variation
(SPV) were not taken into consideration.

In this chapter, a simple method was demonstrated to measure skin-potential
variation (SPV). SPV signals were used as reference signals to reduce ECG motion
artifacts with the adaptive filtering technique. To measure SPV signal, two additional
textile electrodes were positioned adjacent to the ECG sensing electrodes and
connected with a resistance. The skin deformation causes a potential difference
between the two electrodes, and a voltage drop is generated across the resistance.
This voltage drop signal is adaptively filtered as a reference signal input. This
method can eliminate the need for placing different sensors on the body, and obtain
SPV signal which is high similar with ECG signal by using two more textile
electrodes to estimate motion artifacts with adaptive filtering.

41.2 Methodology and Measurement

The proposed method using textile electrodes acquired two types of physiological
signals, ECG signals and SPV signals. Then formula derivation, circuit simulation,
and experiments were carried on to demonstrate that motion artifacts can be
effectively removed by the SPV signal.

Electrical Circuit Model

The equivalent circuit model for ECG signal is shown in Fig. 41.1a, b shows the
equivalent circuit model for SPV signal [11]. Zsi is the impedance of skin, Zei is
the impedance of skin–electrodes interface, Zr is the resistance which connects two
electrodes, and Zin is the input impedance of the front-end.

In Fig. 41.1a:

ECG = V +
1 × Zin

Zs1 + Ze1 + Zin
− V −

1 × Zin

Zs2 + Ze2 + Zin
(41.1)

From Eq. (41.1), when the input impedance Zin is large relatively to the
interface impedance (Zs1 + Ze1, Zs2 + Ze2) and the impedance between the two
lead electrodes is approximately equal (Zs1 + Ze1, Zs2 + Ze2), the equation is
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Fig. 41.1 Equivalent circuit model for (a) ECG signal; (b) SPV signal

approximately equal to ECG = V +
1 − V −

1 . In conclusion, when the front-end input
impedance is large relative to the interface impedance, the motion artifacts caused
by the impedance change have little effect on the ECG.

In Fig. 41.1b:

C − D = (V +
1 − V −

1

)× Zr

Ss1 + Zs2 + Zr

∼= if
Zr

Zs1 + Zs2

∼= 0 (41.2)

In Eq. (41.2), when the impedance Zr is smaller than the interface impedance
Zs1 + Zs2, the equation is close to 0.

SPV = C − D = Zin × C − D

Ze1 + Ze2 + Zin + Zr
=
(

1

1 + Ze1+Ze2+Zr
Zin

)
× (C − D)

(41.3)

In formula (41.3), C and D represent skin potentials which are in contact with

the electrodes. When

(
1

1+ Ze1+Ze2+Zr
Zin

)
approaches to 1, the SPV is approximate to

C – D.

Circuit Simulation

First, by using a circuit simulation Software Multisim13.0, the ECG signal acqui-
sition equivalent circuit model and SPV signal acquisition equivalent circuit model
were built. Then the influence of impedance change was simulated. The R and the
C component values used in the circuit were obtained from previous experiments.
The feasibility of the proposed method was evaluated by changing the value of Zr.
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Fig. 41.2 Wearable chest
strap

Fig. 41.3 Signal acquisition
process

Experiment

The wearable chest strap is shown in Fig. 41.2; two pairs of textile electrodes are
integrated on a wearable chest strap, one for ECG signal acquisition, and the other
for SPV signal acquisition. Resistance (1, 22, 47, 100 k�) connects two textile
electrodes which are used to obtain SPV signal connection. The experiment required
six male volunteers (A–F) aged 20–25 years old to wear the wearable chest strap
under the pressure of 2 N/cm2, which was fixed at about 1 cm below the chest. The
subjects performed stoop motions in an environment of 25 ◦. ECG signal and SPV
signal were measured by BIOPAC data acquisition system (Model: MP36, BIOPAC
Systems Inc., USA) with a sample rate of 2000 Hz and 10 s for each recording with
the change of the resistance. Biological signals are finally analyzed and processed
by a computer. The signal acquisition process is shown in Fig. 41.3.

41.3 Result and Discussion

Circuit Simulation Result

The simulation results are shown in Fig. 41.4 (red: ECG signal, green: SPV
signal). As the resistance Zr decreases, the amplitude of the SPV signal decreases.
Obviously, the value of Zr is very important. When Zr is smaller than the interface
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Table 41.1 The correlation of SPV signal and ECG signal in different resistance values of six
males

Resistance
value (k�)

Correlation
of A

Correlation
of B

Correlation
of C

Correlation
of D

Correlation
of E

Correlation
of F

1 0.3916 0.2665 0.0874 0.0915 0.0862 0.1282
22 0.5170 0.3483 0.2075 0.3291 0.1970 0.2366
47 0.5709 0.7563 0.8626 0.3890 0.2767 0.3684
100 0.4519 0.7088 0.8181 0.1431 0.1622 0.1164

impedance of Zs1 + Zs2 and Zr/Zs1 + Zs2 is approximate to 0, so the SPV signal
is close to 0. The effect is shown in Fig. 41.4a, b is the waveform diagram of the
ECG signal and the SPV signal when Zr is 47 k�. The SPV signal is superimposed
with a weak ECG signal and needs to be removed by preprocessing. As shown in
Fig. 41.4c, when Zr is too large, the path is equivalent to broken circuit and the SPV
signal approaches to the ECG signal.

Experimental Result

In the dynamic situation, Table 41.1 shows six volunteers’ correlations between the
SPV signal and the ECG signal in different value of resistance. When the value of
resistance is equal to 47 k�, the SPV signal and the ECG signal have a highest
correlation.

Adaptive filtering was conducted using a basic LMS (least mean square) error
cancellation algorithm, and the SPV signal measured in four resistances are
respectively input as adaptive filtering reference signal. The output of adaptive
interference cancellation is shown in Fig. 41.5. It can be seen that the ECG signal
and SPV signal in the 47 k� resistance have a high correlation, and the wave
fluctuation of two signals is consistent. Table 41.2 shows the changes of SNR before
and after the interference cancellation. As shown in Fig. 41.5 and Table 41.1, when
the SPV signal measured in 47 k� resistance is used as a reference signal, the
filtered QRS waveform is obvious and the SNR is improved.
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Fig. 41.5 ECG waveforms before and after adaptive filtering in different resistances

Table 41.2 The SNR changes of ECG signals with SPV interference in different resistance values

Resistance value (k�) Before filtering SNR (dB) After filtering SNR (dB) SNRI (dB)

1 5.7453 5.8274 0.0821
22 5.7947 8.7272 2.9325
47 6.0317 11.7578 5.7261
100 5.5763 10.4293 4.8530

Independent component analysis is one of the recently developed techniques for
the blind source separation (BSS). It is used to identify original signals from the
observed linear combinations of the original signals. We deal with the ECG signals
by using adaptive filtering algorithm and ICA algorithm, and the adaptive filtering
reference signal is the SPV signal in 47 k� resistance. The output of filtering is
shown in Fig. 41.6. Table 41.3 shows that adaptive filtering has higher SNR values
and better noise suppression than ICA filtering.

The results demonstrate the feasibility of the method by using textile electrodes
to measure the SPV signal as an adaptive filtering reference signal, and the
results show the ability of adaptive filtering in suppression of motion artifacts in
electrocardiograms recorded with textile electrodes.
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Fig. 41.6 ECG waveforms
after adaptive filtering of
different resistances

 

Table 41.3 The SNR changes of adaptive filtering and ICA filtering

Algorithm name Before filtering SNR (dB) After filtering SNR (dB) SNRI (dB)

Adaptive filtering 6.0317 11.7578 5.7261
ICA filtering 6.0317 7.1343 1.1026

41.4 Conclusion

In this chapter, the SPV signal acquisition structure can effectively measure the skin-
potential variation. The SPV signal is measured by textile electrodes and served as
a reference signal for adaptive filtering. In this way, it can effectively remove the
motion artifact caused by the skin-potential variation. Since two electrode pairs are
distributed on the same substrate and the acquisition position of two signals is close,
the motion artifact can be measured more accurately, ensuring the high correlation
between ECG and SPV signals. Besides, using the electrode to collect the SPV
signal doesn’t require extra sensor components and improves the accuracy of the
later diagnosis.

It can be found in the experiments that the correlation between the SPV signal and
the ECG signal is deteriorated when large movements, such as running and jumping,
are performed, which leads to insignificant signal characteristics after filtering. In
the future, researchers should focus on removing motion artifacts under large-scale
motions.
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