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Preface

These proceedings in three volumes contain the papers presented at the 16th Pacific
Rim International Conference on Artificial Intelligence (PRICAI 2019) held during
August 26–30, 2019, in Yanuca Island, Fiji. PRICAI started as a biennial conference
inaugurated in Tokyo in 1990. It provides a common forum for researchers and
practitioners in various branches of artificial intelligence (AI) to exchange new ideas
and share experience and expertise. Over the past years the conference has grown, both
in participation and scope, to be a premier international AI event for all major Pacific
Rim nations as well as countries from further afield. Indeed, the growth has merited
holding PRICAI on an annual basis starting this year.

Submissions to PRICAI 2019 were received through two different routes: (1) some
papers were directly submitted to PRICAI as in earlier years, and (2) in a special
arrangement with IJCAI 2019, authors of submissions that narrowly missed out being
accepted were encouraged to resubmit to PRICAI, along with the reviews and
meta-reviews they received. The submissions of the first category underwent a
double-blind review process, and were reviewed by the PRICAI Program Committee
(PC) members and external reviewers against criteria such as significance, technical
soundness, and clarity of presentation. Every paper received at least two, and in most
cases three, reviews. Submissions of the second category were not subjected to further
review, keeping in mind the workload of the reviewers in the community.

Altogether we received 311 high-quality submissions (with 265 submissions being
of the first category) from 34 countries, which was impressive considering that for the
first time PRICAI was being held in consecutive years. The program co-chairs read the
reviews, the original papers, and called for additional reviews if necessary to make final
decisions. The entire review team (PC members, external reviewers, and co-chairs)
expended tremendous effort to ensure fairness and consistency in the paper selection
process. Of the 265 submissions under the first category, 105 (39.6%) were accepted as
full papers for the main-track, and 6 as full papers for the industry-track. A small
number of papers were also accepted as short papers for the main-track (6), short papers
for the industry-track (7), and as posters (6) – with the understanding that papers in the
last category will not be included in these proceedings. The papers are organized in
three volumes, under three broad (and naturally overlapping) themes, “Cognition”,
“Investigation”, and “Application.”

The technical program consisted of two workshops, five tutorials, and the main
conference program. The workshops and tutorials covered important and thriving
topics in AI. The workshops included the Pacific Rim Knowledge Acquisition
Workshop (PKAW 2019) and the Knowledge Representation Conventicle (2019). The
former was co-chaired by Prof. Kouzou Ohara and Dr. Quan Bai, while the latter was
organized by Dr. Jake Chandler. The tutorials focused on hot topics including Big Data
in bioinformatics, Data Science, Cognitive Logics, and Identity Management. All
papers at the main conference were orally presented over the three days in parallel, and



in thematically organized sessions. The authors of the posters were also offered the
opportunity to give short talks to introduce their work.

It was our great honor to have four outstanding keynote/invited speakers, whose
contributions have pushed boundaries of AI across various aspects: Prof. Hiroaki
Kitano (Sony Computer Science Laboratories Inc. and The System Biology Institute,
Japan), Prof. Grigoris Antoniou (University of Huddersfield, UK), Prof. Mary-Anne
Williams (University of Technology Sydney, Australia), and Prof. Byoung-Tak Zhang
(Seoul National University, South Korea). We are grateful to them for sharing their
insights on their latest research with us.

The success of PRICAI 2019 would not have been possible without the effort and
support of numerous people from all over the world. First of all, we would like to thank
the PC members and external reviewers for their engagements in providing rigorous
and timely reviews. It was because of them that the quality of the papers in this volume
is maintained at a high level. We wish to thank the general co-chairs, Professors Abdul
Sattar and MGM Khan for their continued support and guidance, and Dr. Sankalp
Khanna for his tireless effort toward the overall coordination of PRICAI 2019. We are
also thankful to various chairs and co-chairs, namely the industry co-chairs, workshop
co-chairs, the tutorial co-chairs, the web and publicity co-chairs, the sponsorship chair,
and the local organization chair, without whose support and hard work PRICAI 2019
could not have been successful. We also acknowledge the willing help of Kinzang
Chhogyal, Jandson S. Ribeiro, and Hijab Alavi toward the preparation of these
proceedings.

We gratefully acknowledge the financial and/or organizational support of a number
of institutions including the University of the South Pacific (Fiji), Griffith University
(Australia), Macquarie University (Australia), Fiji National University (Fiji), RIKEN
Center for Integrative Medical Sciences (Japan), University of Western Australia
(Australia), Australian Computer Society (ACS), and Springer Nature. Special thanks
to EasyChair, whose paper submission platform we used to organize reviews and
collate the files for these proceedings. We are also grateful to Alfred Hofmann and
Anna Kramer from Springer for their assistance in publishing the PRICAI 2019 pro-
ceedings in the Lecture Notes in Artificial Intelligence series, as well as sponsoring the
best paper awards.

We thank the Program Chair and the Conference Chair of IJCAI 2019, Professors
Sarit Kraus and Thomas Eiter, for encouraging the resubmission of many IJCAI
submissions to PRICAI 2019. Last but not least, we thank all authors and all confer-
ence participants for their contribution and support. We hope all the participants took
this valuable opportunity to share and exchange their ideas and thoughts with one
another and enjoyed their time at PRICAI 2019.

August 2019 Abhaya C. Nayak
Alok Sharma
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Attacking Object Detectors Without Changing
the Target Object
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Abstract. Object detectors, such as Faster R-CNN and YOLO, have numer-
ous applications, including in some critical systems, e.g., self-driving cars and
unmanned aerial vehicles. Their vulnerabilities have to be studied thoroughly
before deploying them in critical systems to avoid irrecoverable loss caused by
intentional attacks. Researchers have proposed some methods to craft adversarial
examples for studying security risk in object detectors. All these methods require
modifying pixels inside target objects. Somemodifications are substantial and tar-
get objects are significantly distorted. In this paper, an algorithm which derives
an adversarial signal placing around the border of target objects to fool objector
detectors is proposed. Computationally, the algorithm seeks a border around tar-
get objects to mislead Faster R-CNN to produce a very large bounding box and
finally decease its confidence to target objects. Using stop sign as a target object,
adversarial borders with four different sizes are generated and evaluated on 77
videos, including five in-car videos for digital attacks and 72 videos for physical
attacks. The experimental results show that adversarial border can effectively fool
Faster R-CNN and YOLOv3 digitally and physically. In addition, the experimen-
tal results on YOLOv3 indicate that adversarial border is transferable, which is
vital for black-box attack.

Keywords: Adversarial examples · Attack · Object detection

1 Introduction

Computer vision methods have significant progress in recent years because of the
advancement of deep neural networks (DNNs) and computational hardware, as well
as the availability of large image and video datasets. Some of these methods have
been deployed in real-world applications, e.g., face recognition methods in surveil-
lance systems. However, the existence of adversarial examples in DNNs, which was
first discussed by [23], raises great concerns on their deployment, especially in privacy
and security-critical industries. Szgedy et al. demonstrated that DNN image classifiers
can be easily fooled by images with deliberately designed perturbations. The perturbed
images and the original ones are almost the same to the naked eye but DNNs classify
them differently. Even worse, the adversarial examples are transferable [18], meaning
that an adversarial example trained to mislead a DNN can likely mislead other DNNs
with different parameters or even different architectures. In other words, attackers can
carry out black-box attacks by exploiting this transferability.
c© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11672, pp. 3–15, 2019.
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In order to identify potential risks and to eventually improve the safety of DNN-
based systems, researchers put great efforts on investigating adversarial examples. It
can be summarized into three research directions: (1) designing new attack strategies
[11,23][?][4,17,19,21] and countermeasures against adversarial examples [3,7,26],
(2) estimating boundaries of DNNs against zero-day (new) attacks [2,10,12] and (3)
explaining the existence of adversarial examples and their transferability [9,14,24].
From the application perspective, designing adversarial examples is arguably the most
important because it reduces the number of possible zero-day attacks and provides criti-
cal information to develop countermeasures. Following Szgedy et al.’s research in 2014,
researchers proposed different methods to generate adversarial example. Most of them
targeted on DNN image classifiers and succeeded in misleading the classifiers with
high misclassification rates digitally or physically. A question then arises: is it possible
to attack more complex computer vision systems, such as those for object detection
digitally and physically? Object detection has various applications, for instance, face
detection, people counting, self-driving cars, etc. If an object detector is vulnerable to
adversarial examples, it may not be wise to use it in a fully automatic environment
before corresponding countermeasures are developed. Therefore, it is important and
necessary to study the impact of adversarial examples on object detectors.

Object detection is different from image classification. Image classifier outputs
a class label for an input image, while object detector localizes multiple objects in
an image and predicts their class labels. Generally, object detector produces multiple
bounding boxes internally for each object and uses non-maximum suppression or other
techniques to select one bounding box for each object. Attacking object detectors is
more difficult than attacking image classifiers because adversarial examples have to
cause significant errors on all the internal bounding boxes [16]. Some researchers suc-
cessfully attacked object detectors by changing every pixel in entire images [25], which
generally cannot be implemented as physical attacks. Some researchers changed target
objects extensively to achieve effective digital and physical attacks. Their adversar-
ial examples are hard to be classified even for human beings. Is it possible to design
adversarial examples, which are effective for digital and physical attacks, against object
detectors without modifying target objects? According to the best knowledge of the
authors, no existing adversarial examples can effectively fool object detectors digitally
and physically without changing target objects. In this paper, an algorithm is proposed
to craft adversarial examples, named adversarial borders to answer this question.

The rest of this paper is organized as follows. Section 2 reviews the existing adver-
sarial examples against image classifiers and object detectors. Section 3 describes the
proposed algorithm based on Faster R-CNN to craft adversarial border. Section 4 eval-
uates adversarial borders with different sizes on 77 videos for digitally and physically
attacking Faster R-CNN and YOLOv3. Section 5 offers some conclusive remarks.

2 Related Work

2.1 Adversarial Examples Against Image Classifier

Szgedy et al. [23] introduced a method named L-BFGS to generate adversarial exam-
ples which are able to mislead DNN image classifiers into making wrong classifica-
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Fig. 1. The 1st–3rd columns are adversarial stop signs generated by the methods in [Lu et al.,
2017a; Chen et al., 2018; Eykholt et al., 2017b], respectively.

tion. Their work revealed the potential risks of deep learning systems. Following their
work, Goodfellow et al. [11] proposed a new method called Fast Gradient Sign Method
(FGSM) for generating adversarial examples which is much faster than L-BFGS. Then,
Rozsa et al. [21] proposed Fast Gradient method (FGM) based on FGSM, where they
replaced the sign of the gradient with the original gradient to achieve more precise opti-
mization direction. Papernot et al. [19] designed a new attack named Jacobian-based
Saliency Map Attack (JSMA), which achieved higher adversarial success rate by modi-
fying a small amount of pixels with higher computational cost. In addition to the above
mentioned attacks, there are more attack methods such as Deepfool [17], C&W attack
[4], Zeroth Order Optimization (ZOO) attack [5], etc. These attacks have a common
assumption that attacker has access to the input of targeted DNN to perform the digital
attacks. Comparing with the digital attacks, a more realistic scenario is that attacker can
manipulate only adversarial examples in the physical world and these examples are fed
into targeted DNN by an input device such as a camera. To evaluate the effectiveness
of adversarial examples in the physical world, Kurakin et al. [13] extended FGSM by
using a finer optimization scheme. Taking distance between camera and object, view-
point variations and other noise in the physical world into account. Athalye et al. [1]
used a function to model image transformation including scaling, rotation and trans-
lation, and then injected noise into the training process to increase robustness of their
adversarial examples. Eykholt et al. [8] handled physical variations by selecting images
with target object under diverse imaging conditions such as different viewpoints, dis-
tances and lighting conditions for training. They also used a synthetic transformation
function to further increase the robustness of their adversarial examples. Those works
proved that image classifiers are not safe in physical world.
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2.2 Adversarial Examples Against Object Detector

After the success of adversarial examples against DNN image classifier, some
researchers studied adversarial examples against object detector. Currently the attacks
against object detector can also be classified into digital attacks and physical attacks.
Lu [?] [16] set a target vector with all elements close to zero and employed the attack
method in image classification to generate adversarial examples against YOLO detec-
tor. The experimental results showed that their method can successfully mislead YOLO
digitally, but is ineffective in physical attack. Xie et al. [25] derived an attack named
Dense Adversary Generation (DAG) to fool Faster R-CNN. They assigned an adver-
sarial label to each object in an image and attacked the classification layer in Faster
R-CNN by decreasing its output confidence to the original class label and increasing its
confidence to the adversarial class label. Their method can mislead Faster R-CNN into
outputting wrong object labels. Lu et al. [15] designed a method to construct an adver-
sarial stop sign against Faster R-CNN. To make adversarial pattern robust, they selected
a set of diverse frames which contain stop signs from a video to train their method.
They minimized the mean score of the stop signs detected by Faster R-CNN in all the
training frames. Their method relies on a shape matching function to map an adver-
sarial stop sign in a root coordinate system to the stop signs in the training frames. It
cannot be generalized to other objects, in particular those without well-defined shapes,
e.g., chairs. Although their adversarial stop sign can attack Faster R-CNN successfully
in the physical world, it is difficult even for humans to recognize it. Chen et al. [6]
adapted the technique of expectation over transformation [1] and successfully produced
an adversarial stop sign, which can physically fool Faster R-CNN. The perturbation in
their attack is applied to the entire stop sign. However, it is also difficult for humans to
recognize it. Song et al. [22] proposed a sticker attack which can successfully mislead
both YOLO and Faster R-CNN when attaching their adversarial sticker to a stop sign.
However their attack is not applicable when attackers have no access to the object in
the physical world. All the previous methods require changing target objects. Figure 1
shows some adversarial stop signs generated by [6,15,22]. The proposed algorithm in
the next section is to generate adversarial examples named adversarial border to attack
object detectors digitally and physically without changing the objects.

3 The Algorithm Generating Adversarial Board

The proposed algorithm utilizes Faster R-CNN to derive adversarial board and therefore
a brief summary of Faster R-CNN is first given. Faster R-CNN illustrated in the blue
box in Fig. 2 adopts a two-stage detection strategy. In the first stage, a CNN takes an
image as an input and produces feature maps. Then, a region proposal network (RPN) is
used to generate bounding boxes called region proposals that may contain objects. The
region proposals and the feature maps are taken into the second stage for classifying the
objects and determining their locations and sizes, which are respectively performed by a
classification layer and a regression layer. Finally, Faster R-CNN outputs classification
results and refines bounding box coordinates of each region proposal. Currently, all
adversarial examples against Faster R-CNN make use of the classification layer in the
second stage only and require modifying pixels inside target objects. According to the
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best knowledge of the authors, no one attempted to use the regression layer to mislead
Faster R-CNN and no one successfully misled Faster R-CNN without modifying pixels
inside target objects.

The regression layer is used to compute bounding box coordinates of objects. For
each region proposal, the regression layer outputs four values dx, dy, dw, and dh to
refine the region proposal’s coordinates (px, py, pw, ph), where (px, py) is the top left
hand corner of the region proposal and pw and ph are its width and height, respectively.
The bounding box coordinates are calculated by the following equations:

gx = pw × dx + px (1)

gy = ph × dy + py (2)

gw = pw × edw (3)

gh = ph × edh (4)

The equations imply that if dw and dh are slightly distorted, the bounding box coor-
dinates will change a lot due to the exponential function. Adversarial border is designed
to mislead the regression layer such that it outputs very large bounding boxes for tar-
get object, e.g., stop sign and finally decreases the output confidence to it. The size of
the bounding box, i.e., gw × gh and the size of the corresponding region proposal, i.e.,
ph × pw are always similar. Faster R-CNN is designed in such a way so that the param-
eters dw and dh can be learned more effectively. Mathematically, when gw ≈ pw and
gh ≈ ph, it implies that dw ≈ 0 and dh ≈ 0. If the regression layer is misled to output
dw = v and dh = v, where v > 0, the size of the output bounding box will be roughly
ev × ev times larger than the size of the target object. In the experiments, v is set to 1,
which corresponds roughly to 738% enlargement.

To handle the scale, distance and lighting variations in the physical world, n images
are sampled from a video collection V which contains a target object T as a training
set. Let the adversarial border be a patch Λ with a fixed size of s × s pixels and the
bounding box predicated by Faster R-CNN for the target object T in a training image
Ii be bti with a size of hti × wti pixels. The patch Λ is first enlarged to αhti × βwti

pixels, where α > 1 and β > 1. Then, the enlarged patch is inserted to Ii at the
location bti. Note that the image pixels inside bti are retained and only the pixels out-
side bti are replaced with the pixels in the enlarged Λ. These operations are repre-
sented by Zαβ and Iip = Zαβ(Λ, bti, Ii) represents the perturbed image. Figure 5(a)
shows some perturbed images in training. Note that in training, the adversarial border
is inserted at the location of bti, which is determined by Faster R-CNN and therefore,
it may overlap with the target object (Fig. 5(a)). However, in testing and attacking, it
is assumed that bti is not available, which is important for black-box attacks, and the
ground truth bounding box of the target object is used to insert the trained adversarial
border. Figure 5(b) shows some testing images with a trained adversarial border. In fact,
in preliminary experiments, the enlarged Λ was inserted in the ground truth location of
the target object. However, its performance is not as good as the one inserted at the loca-
tion of bti. Let fh(·) and fw(·) be two functions representing the operations in Faster
R-CNN to compute the scaling values of dw and dh. Since the box-regression layer
in Faster R-CNN outputs one boundary box for each region proposal and the number
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Fig. 2.A schematic diagram of Faster R-CNN and the construction of adversarial border. The blue
box highlights the operations of Faster R-CNN and the outside is the construction of adversarial
border. (Color figure online)

of region proposals is fixed for each image, fh and fw produce two fixed-length vec-
tors, Dw and Dh, whose elements are respectively dw and dh of one bounding box and
whose dimensions are same as the number of bounding boxes. Faster R-CNN uses non-
maximum suppression and confidence values to determine final object bounding boxes.
Mathematically, given an input image with an adversarial example i.e., Zαβ(Λ, bti, Ii),
Dw = fw(Zαβ(Λ, bti, Ii)) and Dh = fh(Zαβ(Λ, bti, Ii)). To train an adversarial bor-
der, the minimization is performed through the equation:

min
Λ

n∑

i=1

||I − fw(Zαβ(Λ, bti, Ii))||2 + ||I − fh(Zαβ(Λ, bti, Ii))||2 (5)

where I represents a vector all whose elements are one and its dimension is same as Dh

and Dw.

4 Experimental Results

To evaluate the risk caused by adversarial border, stop sign is selected as a target object
because it was used in the previous adversarial example studies [6,15,16,25] and is an
important object for self-driving car. In this evaluation, bothwhite-box attacks and black-
box attacks are studied. Forwhite-box attacks, adversarial border is trained and evaluated
on Faster R-CNNwith VGG-16 as a backbone network, while for black-box attacks, it is
also trained on Faster R-CNNwith VGG-16 but examined onYOLOv3 [20]. Both Faster
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R-CNN and YOLOv3 were trained on the COCO dataset to detect multiple objects,
including stop sign. In addition to white-box and black-box attacks, the performance
of adversarial border for digital attacks and physical attacks is also investigated.

Fig. 3. Sample frames from the five videos for evaluating digital attack.

4.1 Digital Attack Evaluation

For evaluating adversarial border in digital attacks, five in-car videos with stop signs
were downloaded from the Internet. Figure 3 shows sample frames from the videos. In
each of the videos, a car was approaching to a stop sign. Since adjacent frames in the
videos are similar, each alternative frame in the videos is sampled and five clips named
Clip 1 to Clip 5 are constructed for evaluating adversarial border in digital attacks. All
the images in these five clips have a stop sign facing to the camera. Table 2 summarizes
the total number of images in each clip and the corresponding detection rates obtained
by Faster R-CNN and YOLOv3. Clip 1 is used to train adversarial border and the other
four clips are used to test its impact to Faster R-CNN and YOLOv3. The size of adver-
sarial border is controlled by β and α. In the experiment, α = β is set and four values
of α computed by the equation,

αi = 2 × ( i

6
)
+ 1 (6)

where i ∈ {1, 2, 3, 4}, are used to generate adversarial borders with four different sizes.
Size 1 to Size 4 are used to denote the sizes of the adversarial borders computed from
α1 to α4, respectively. Since the loss decreases slowly between the 200th iteration and
the 300th iteration, the optimization is terminated at the 300th iteration. The adversarial
borders generated at the 100th, 200th and 300th iterations are used in this experiment.
The adversarial borders with different sizes and generated by different iterations are
shown in Fig. 4. The number of detected stop signs with and without adversarial borders
in each clip are denoted as Detadv and Detorg respectively. The successful attack rate
for digital attacks is defined as:

AR = 1 − Detadv/Detorg (7)
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Fig. 4. The 12 adversarial borders used in the experiments. The adversarial borders in the 1st–4th

columns are respectively computed from α1 to α4 and the adversarial borders in the 1st–3rd are
respectively obtained at the 100th, 200th and 300th iterations.

Table 3 lists the average successful attack rates of Clip 2 to Clip 4 against Faster
R-CNN and YOLOv3. It shows that the adversarial borders can successfully mislead
Faster R-CNN and can also be transferred to YOLOv3 with high successful attack rates.
In other words, adversarial border can be used in white-box and black-box attacks.
Figure 7(a) shows the detection results with and without the adversarial examples.

4.2 Physical Attack Evaluation

For evaluating adversarial border in physical attacks, one original stop sign and the 12
adversarial borders (Fig. 3) with the original stop sign were printed on A3 paper using
HP Colour LaserJet Enterprise flow MFP M880. The stop signs in these printouts were
from the same image downloaded from Google image, not from the training video, Clip
1. The stop signs with the 12 different adversarial borders have the same size in the
printouts but the sizes of the adversarial borders are different (Fig. 6). Each of them was
placed in two different outdoor locations and three videos from the left hand side, the
front view and the right hand side were taken from it using Samsung Galaxy 7. Totally,
72 (12×3×2) videos were taken from the 12 stop signs with the adversarial borders and
6 (1 × 3 × 2) videos were taken from the original stop sign without adversarial bor-
der. The resolution of the videos is 1080 by 1920 pixels. As with the previous experi-
ment, images are extracted from every alternative frame from these videos for evalua-
tion. Table 1 lists the detection rates of the six videos collected from the original stop
sign. It shows that Faster R-CNN and YOLOv3 can detect around 80% and 60% of the
frames, respectively. The successful attack rate for digital attacks defined Eq. (7) can-
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(a)

(b)

Fig. 5. Examples for perturbed training images (left) and perturbed testing images (right).

Table 1. Detection rates of Faster R-CNN and YOLOv3 for the videos collected in location 1 and
location 2 with adversarial borders.

Video Location 1 Location 2

Total frames Faster
R-CNN

YOLOv3 Total frames Faster
R-CNN

YOLOv3

Left hand side view 181 0.796 0.751 107 0.813 0.542

Front view 194 0.743 0.557 106 0.887 0.774

Right hand side view 149 0.832 0.497 95 0.863 0.611

Mean 175 0.79 0.602 103 0.854 0.642

not be employed to evaluate physical attacks because the videos with and without the
adversarial borders are different, e.g., viewpoints and the number of frames. Instead,
the Faster R-CNN and YOLOv3 detection rates for the stop signs with the adversarial
borders are computed and their means are given in Table 4. Each value in Table 4 is the
mean detection rate computed from three different videos collected at the same location.
Comparing with the detection rates with and without adversarial borders respectively in
Tables 1 and 4, it shows that adversarial border can effectively mislead Faster R-CNN
and YOLOv3 in the physical world. Figure 7(b) shows the detection results with and
without the adversarial examples in the physical world.
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Fig. 6. An adversarial border and the original stop sign on printouts.

Table 2. A summary of Clip 1–Clip 5 for digital attacks

Resolution Number of stop signs Faster R-CNN YOLOv3

Clip 1 1280× 720 94 1.000 1.000

Clip 2 1280× 720 100 0.800 0.790

Clip 3 1280× 720 74 1.000 1.000

Clip 4 1280× 720 157 0.981 0.987

Clip 5 406× 720 298 0.997 0.876

Table 3. Average successful attack rates of digital attacks

Iteration Faster R-CNN YOLOv3

100 200 300 100 200 300

Size 1 0.626 0.790 0.826 0.626 0.847 0.885

Size 2 0.854 0.912 0.908 0.753 0.909 0.941

Size 3 0.882 0.857 0.819 0.884 0.871 0.904

Size 4 0.789 0.816 0.833 0.686 0.763 0.788

Table 4. Detection rates of Faster R-CNN and YOLOv3 for the videos collected in location 1 and
location 2 with adversarial borders.

Iteration Location 1 Location 2

Faster R-CNN YOLOv3 Faster R-CNN YOLOv3

100 200 300 100 200 300 100 200 300 100 200 300

Size 1 0.644 0.674 0.589 0.533 0.549 0.516 0.354 0.358 0.354 0.118 0.150 0.121

Size 2 0.421 0.532 0.675 0.393 0.385 0.506 0.035 0.118 0.248 0.108 0.107 0.145

Size 3 0.337 0.356 0.349 0.287 0.270 0.215 0.058 0.135 0.152 0.121 0.094 0.069

Size 4 0.441 0.413 0.488 0.296 0.301 0.282 0.300 0.301 0.266 0.144 0.115 0.093
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Fig. 7. Detection results on images with and without adversarial borders. (a) Results from the
digital attacks and (b) results from the physical attacks.
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5 Conclusion and Discussion

Researchers demonstrated that deep image classifiers are vulnerable to adversarial
examples with deliberately designed perturbations. Some researchers extended these
adversarial examples to study vulnerability of deep object detectors. Comparing with
the adversarial example studies for image classification, the studies for object detection
are relatively limited. The previous studies for object detection require changing target
objects significantly. In this paper, a new type of adversarial examples named adversar-
ial border, which does not change any pixel in target object, is designed. The algorithm
proposed to generate adversarial border sets the target values of the parameters dw

and dh in Faster R-CNN to a large value such that the regression layer outputs very
large bounding boxes and finally decreases the output confidence to the target object.
The adversarial borders with four different sizes are evaluated on five in-car videos for
digital attacks and 72 videos for physical attacks. The experimental results show that
adversarial border can effectively fool Faster R-CNN and YOLOv3 digitally and phys-
ically. They also demonstrate that adversarial border can be used to perform white-box
and black-box attacks.
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Abstract. In recent years, object detection has become a popular direc-
tion of computer vision and digital image processing. All the research
work in this paper is a two-stage object detection algorithm based on
deep learning. First, this paper proposes the Deep Dilated Convolution
Network (D dNet). That is, by adding the operation of dilated convo-
lution into the backbone network, in this way, not only the number of
training parameters can be further reduced, but also the resolution of
feature map and the size of receptive field can be improved. Second, the
Fully Convolutional Layer (FC) is usually involved in the re-identification
process of region proposal in the traditional object detection. This too
“thick” network structure will easily lead to reduced detection speed and
excessive computation. Therefore, the feature map before training is com-
pressed in this paper to establish a light-weight network. Then, transfer
learning method is introduced in training network to optimize the model.
The whole experiment is evaluated based on MSCOCO dataset. Experi-
ments show that the accuracy of the proposed model is improved by 1.3
to 2.2% points.

Keywords: Object detection · Deep dilated convolution network ·
Light-weight network · Transfer learning · Convolutional neural
network

1 Introduction

With the research of unstructured visual data, object detection algorithm has
become a classic subject in the field of image processing and computer vision.
The research on this topic is mainly based on two methods: one is based on
traditional image processing and machine learning algorithm, the other is based
on deep learning [4]. The two methods have their own characteristics in feature
extraction, but the latter’s region selection strategy is better than the former’s
SIFT, HOG and SURF methods in terms of pertinence, time complexity and
window redundancy. In addition, the latter gradually realizes the end-to-end
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target recognition and detection network from the initial R-CNN [6], Fast R-
CNN [5] to the later Faster R-CNN [16], R-FCN [3], Mask R-CNN [12]. They
can deal with the diversity change well, and the training and testing efficiency
of the network has been greatly improved. This makes the computer vision have
much room for improvement in object detection, instance segmentation [20] and
object tracking.

First, RBG [6] proposed the R-CNN network framework, which provides a
new way of thinking for object detection. From then on, the deep learning method
has been brought into the field of object detection. Then, Girshick [5] introduced
Fast R-CNN network structure, which improved the problems of long training
time, large memory consumption and high complexity of R-CNN. The perfor-
mance of object detection is further improved by improving image convolution
operation and Region of Interest pooling (ROI pooling) input. Recently, He et al.
[12] proposed Mask R-CNN network structure, and realized the instance segmen-
tation [13] and key point detection [19]. In short, the implementation of Mask
R-CNN algorithm is to add FCN to Faster R-CNN to generate corresponding
object mask [12].

Inspired by the above related papers, this paper improves the network frame-
work from two parts: the process of generating feature maps in the backbone
network part and the process of identifying candidate areas in the head net-
work [9] part. So, this paper proposes a deep dilated convolution network and
a light-weight network model. Firstly, our basic network abandons AlexNet and
VGG network, but integrates residual network (ResNet) [7] layer and dilated
convolution network, which can not only avoid the problem of deep network
degradation, but also reduce the number of parameters. Secondly, in order to
improve the speed of classification and regression, we compress the feature map
by mapping, and reduce the number of fully connected layers and the number
of operations in the process of classification and regression operation. In this
paper, we obtain better results within acceptable error range.

Structural improvement of backbone network: Firstly, from the point of view
of reducing the number of parameters of deep network, this paper adds the
structure of the dilated convolution network [1] while retaining the partial resid-
ual network (ResNet) layer. In this way, the stability of network performance is
guaranteed, and the number of network parameters is reduced by 17 times. In
addition, in order to obtain better semantic features, this paper adds an improved
spatial feature pyramid network (FPN) [11] after convolution operation to fur-
ther improve the performance of object detection and instance segmentation.

Head Network Structure Processing: In order to change the time-consuming
and computational normality of the fully convolutional layer (FC layer), this
paper compresses the classification of feature map into 10 categories (MSCOCO
[2,8] datasets have 80 classifications), and changes the FC layer for classification
and regression operation into single layer operation

In this paper, a series of comparative experiments on MSCOCO datasets are
carried out. The experimental results of backbone network structure improve-
ment are improved by 1.9% and head network improvement by 1.4%. To further
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Fig. 1. D dNet R-CNN network structure diagram

optimize the network model, this paper adds the transfer learning method, which
improves the accuracy of the whole network model by up to 2.5%. The overall
network framework of this article is shown as Fig. 1.

2 Models Description

2.1 Overview

In recent years, the research of object detection algorithm has turned to the
detection technology based on a deep neural network. In the design of backbone
network, AlexNet and VGG network are gradually replaced by ResNet network,
because ResNet network structure has strong feature representation ability and
can solve the problem of deep network degradation in the past. In the pre-
training process, the deeper the feature map is, the vaguer the definition of the
object’s edge is, and the corresponding regression is weaker, so it is difficult
to see smaller objects in the feature map with small resolution. In general, the
step size of ResNet or VGG is equal to 32 (that is, the ratio of the input image
to the final feature size). According to the decreasing rule of feature map size,
trunk network usually has five stages (p1–p5). In addition, it is known that the
FPN network contains p6, while RetinaNet contains p6 and p7 (p6 and p7 have
no pretraining) [17]. So, against a background of 1/32 or smaller, small objects
become invisible on them (that 32 × 32 objects are a point on them). Even if
we add the shallow to the deeper semantics, most of the semantic information
will be lost. To address this issue, two additional phases (p6 participation is in
pretraining) have been added to the trunk network, as detailed in Sect. 2.2.

Although the two-stage object detection has higher accuracy than the one-
stage object detection, the speed is slower. The main reason is that in order to
achieve higher accuracy, the head design is usually “thick”, which increases the
calculation of the whole network and reduces the detection speed. This paper
maps and performs compression operations on the feature diagrams output in
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the pretraining (the MSCOCO dataset’s sample is always 81 × P × P that is
compressed to 10 × P × P or 5 × P × P ). See Sect. 2.3 for details.

In addition, everyone knows that it is difficult to obtain high quality and large
amount of data for deep neural network training in practical research. Transfer
learning can solve the data embarrassment problem well. In addition, convolution
neural network has good hierarchy. With the increase of network layer and the
detection of image features, the more common the features detected by deep
convolutional neural network are, the better the effect of transfer learning is.
So we add the transfer learning method to the pretraining of the network. See
Sect. 2.4 for details.

2.2 Deep Dilated Convolutional Neural Network

Firstly, considering the excellent performance of ResNet-50 network itself, it
is often used as the backbone network of object detection. Therefore, the first
four stages of Resnet-50 (1, 2, 3, 4) are still retained in the design of backbone
network in this paper. The first stage passes 7 × 7 × 64 convolution operation,
batch normalization (BN), activation function (Rectified Linear Unit, ReLU) and
maximum pooling layer (Max pooling layer). This ensures that the input image
is only 1/4 of the original image after passing through stage 1, thus ensuring
a sufficiently large receptive field. However, considering that the feature map
obtained in the first stage is large, the corresponding time is also large. Therefore,
this paper still follows the practice of the Mask R-CNN: in the first stage, we only
participated in the pretraining stage. In addition, each large layer in stages 2–4
is superimposed by the same repeat convolutional layer of remaining modules
1 × 1, 3 × 3 and 1 × 1.

F(X)

1*1 conv

3*3 conv
Dilate2,conv

1*1 conv

add

ReLU

X

F(X)+X

X
identity

Weight 
layer

Weight
layer

H(X)

ReLU

+

X

1*1 conv

BN

ReLU

3*3 conv
Dilate2,conv

1*1 conv

1*1 conv

BN

+

ReLU

BN

ReLU

(a) (b) (c)

ReLU

Fig. 2. Core module comparison diagram. (a) ResNet residual module, (b) DetNet core
module, (c) D dNet core module.
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In stage 5–6, this paper absorbs the idea of DetNet network [10] design,
changes the traditional residual convolutional module operation, and increases
the bottleneck network structure of dilated convolution network [18]. In Fig. 2a,
b, and c give the ResNet residual module, the DetNet core module, and the own
network structure D dNet core module respectively. First of all, the size of the
feature map of these two stages is consistent, which is 1/16 of the original feature
map and better than the resolution and receptive field effect of the original
ResNet-50 network. Second, the first layer of stage 5–6 consists of two branches:
main path and bypass. On the main road, the three convolution layers of 1× 1,
3 × 3, and 1 × 1 are used as basic modules. Then, a processing operation of a
batch normalization and activation function is respectively added between the
convolution layers. Since the input first passes through the 1 × 1 convolution
kernel, the feature map size is not changed, then the batch normalization and
activation function processing operations are performed, and then the 3 × 3
convolution layer is entered. Since padding = 1 is set here, it does not change.
Enter the size of the feature map so that the size of the feature map remains the
same on the main road. On the bypass, in order to ensure that the input feature
map can be added to the feature map output on the main road, a 1 × 1 × 256
convolution operation is set on the bypass. The second and third layers in the two
stages of stage 5–6 continue to use the residual module. In addition, it is found
through analysis that directly outputting a 256-dimensional layer first passes
through a 1×1×64 convolution layer, then passes through a 3×3×64 convolution
layer, and finally passes through a 1 × 1 × 256 convolution layer. The output
is 256 dimensions, and the parameter quantity is reduced by 1/9. Therefore,
increasing the depth expansion convolution network module reduces the pressure
on the amount of computation and memory requirements to a certain extent.
The complete pretraining model is shown as Fig. 3.
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C5
Stage5

...(c) (b) (b) (c) (b)(b)

1*1 conv 1*1 conv 1*1 conv

+ +

ResNet+Dilated Net

Fig. 3. D dNet backbone network structure.

2.3 Light-Weight Head Network

At present, it is very difficult to improve the accuracy and computational speed of
two-stage object detection. This paper assumes that in the network framework,
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if the computational load of the second stage is negligible compared with that
of the first stage, the second stage has little effect on the computational speed
of the whole network structure.

This paper analyses two decisive factors affecting the complexity of head
network. One is that the feature map after pooling treatment is thicker and
the other is that the fully connected layer is too thick. We try to compress
the output feature map of pooling operation from 81 × P × P to 10 × P × P
(based on MSCOCO dataset) in the framework of Mask R-CNN object detection,
which is equivalent to compress more than 3900 channels to 490 channels. Then,
this paper adds an 81-class fully connected layer before the classification and
regression operations, and make the classification and regression operations all
pass through a fully connected layer. Although the accuracy may be somewhat
compromised, the design of head network structure within acceptable range is
shown in Fig. 4.

Classification

Location

Feature Map

FC

2048
channels

Our Approach

Fig. 4. Light-weight network structure diagram.

2.4 Training Model Based on Transfer Learning

This paper attempts to further optimize the first two models by adding a transfer
learning method. This paper finds that the knowledge learned by convolutional
neural network is actually the weight parameters obtained through pretraining,
so the essence of transfer learning in this paper is the weight transfer. For exam-
ple, in literature [14] and [15], classification and behavior recognition are realized
based on the transfer learning task. In addition, studies in literature [14] have
proved that knowledge movement among convolutional neural networks does not
need to have strong semantic correlation.

In this paper, this paper modifies the number of output layer neurons accord-
ing to the object task, and randomly initialize the weights of all connected layer
neurons. At the same time, this paper initializes the parameters of other network
layers using the weights that are obtained from the pre-training of MSCOCO
datasets. Finally, this paper trains the whole network with the target task train-
ing set and get the final model. The whole process is shown in Fig. 5.

The model based on transfer learning can not only improve the accuracy of
the classification part in object detection, but also refine the convolution layer
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Fig. 5. Schematic diagram of the transfer learning process

parameters in the training target task network model to further improve the
training accuracy and overall improve the performance of the model.

3 Experimental Results

3.1 Datasets and Evaluation Indicators

Dataset Description: This article chooses to use the extensive MSCOCO dataset,
which has 80 categories in the direction of object detection. There are 80k images
in the training set, 40k images in the test set and 40k images in the verification
set. In addition, we combine the 80k training set with the 35k verification set
and divide them into the 115k training set and the 5K small verification set.
Here this paper uses the standard MSCOCO dataset indicators to evaluate the
experiment. It mainly includes average precision (AP), average recall (AR) and
variant criteria of different indicators.

Partial Parameter Settings: The GPU1080 configuration is selected in this
paper. Due to the limitation of the processor, each GPU can only process one
image at a time, and each image will set 2000 training regions of interest and
1000 test regions of interest. The learning rate is set to 0.01. The image input
is still 1024 × 1024 size, but in a spatial pyramid operation the input size is
256 × 256 size feature map. The size of the pooling layer is set to 7.

Experimental evaluation criteria: This paper aims to obtain more persuasive
evidence. Firstly, this paper validates and compares the proposed model and
method. Then, this paper does a global comparative experiment, that is, this
paper adds the transfer learning method to the two improved network models.
The experimental analysis and results are as follows:

3.2 Deep Dilated Convolutional Neural Network Experiment

Experiment 1: In order to further verify the effectiveness of the proposed D dNet-
65 network in the feature space pyramid structure, the D dNet-65 network is
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compared with the ResNet-50, ResNet-101, Mask R-CNN-50, Mask R-CNN-101
and DetNet networks. The specific results are shown in Table 1. The error rate
of D dNet-65 network is 23.8%, and the corresponding complexity reaches 5.2G.
First of all, compared with ResNet-50 and Mask R-CNN-50, we found that the
accuracy of the D dNet-65 is better for the same basic network (up to 1.7% in
mAP). Secondly, this paper also wants to further verify the effectiveness of the
structure of the D dnet-65 network with the increase of parameters. It can be
seen from Table 1 that compared with resnet-101 and Mask R-CNN-101, D dnet-
65 has lower bit error rate and higher accuracy.

Table 1. Effects of various backbone networks on FPN in MSCOCO (%).

Backbone Classification FPN results

Toperr FLops mAP AP50 AP75 APs APm APl

ResNet-50 24.1 3.8G 37.9 60.0 41.2 22.9 40.6 49.2

ResNet-101 23.0 7.6G 39.8 62.0 43.5 24.1 43.4 51.7

Mask R-CNN-50 23.9 4.3G 37.8 60.2 41.5 20.1 41.1 50.4

Mask R-CNN-101 23.6 4.6G 38.7 61.1 42.8 22.4 42.5 51.6

DetNet-59 23.5 4.8G 40.2 61.7 43.7 23.9 43.2 52.0

D dNet-65 23.8 5.2G 39.5 61.2 43.2 22.6 42.7 51.9

Experiment 2: In this paper, in order to further verify the effectiveness of D dNet-
65 network, this paper takes Mask R-CNN network structure as the basic model,
and only change its backbone network structure. Then, this paper compares
their effects on border regression to prove the performance of the D dNet-65.
From Table 2, there is a slight gap between D dNet-65 and the latest DetNet
networking approach. However, the proposed the D dNet-65 network structure
can improve the performance of Mask R-CNN, even by 1.3 to 2.2% points.

Table 2. Effect of various backbone networks on border regression on MSCOCO (%).

Models Backbone Bounding box AP

mAP AP50 AP75 APs APm APl

Mask R-CNN-50 ResNet-50-FPN 39.1 61.7 42.9 21.3 42.3 50.7

Mask R-CNN-101 ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2

Mask R-CNN DetNet-59-FPN 40.7 62.5 44.1 24.6 43.9 52.2

Mask R-CNN D dNet-65-FPN 40.4 62.1 43.5 22.7 42.8 52.0
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Experiment 3: On backbone network, we consider the difference between the
D dNet-65 network and the Mask R-CNN network. Table 3 shows the compari-
son experiments of four kinds of backbone network from zero training FPN. We
find that the D dNet-65 network model proposed in this paper has good accu-
racy. Next, this paper wants to experiment further with the effectiveness of the
D dNet-65 network for different size objects.

Table 3. Results of zero-training of FPN network on MSCOCO (%).

Backbone mAP AP50 AP75 APs APm APl

ResNet-50 34.5 55.2 37.7 20.4 36.7 44.5

Mask R-CNN-50 34.9 56.1 38.4 21.3 37.4 45.1

DetNet-59 36.3 56.5 39.3 22.0 38.4 46.9

D dNet-65 35.6 56.3 38.9 21.7 38.1 46.4

3.3 Light-Weight Head Network Experiment

Experiment 4: In order to verify the validity of the light-weight network model,
we will do a series of comparative experiments on MSCOCO’s small dataset.
In this paper, it embeds the improved light-weight network into R-FCN, Mask
R-CNN-50, D dNet-65 and so on. In Table 4, the experimental effect of Mask R-
CNN-50 was 1.8% lower than our own model. Although our results are slightly
worse than those of Light-Head R-CNN, the computational speed is improved
with the accuracy guaranteed. In addition, the regression loss of this paper is
obviously smaller than the classified loss.

Table 4. Results of various models based on Light-weight network on MSCOCO (%).

Models mAP APs APm APl

R-FCN 33.1 18.8 36.9 48.1

Mask R-CNN-50 37.9 21.1 40.5 51.2

Light-Head R-CNN 41.5 25.2 45.3 53.1

D dNet-65 R-CNN 39.7 22.3 42.7 52.6

3.4 Experiment Based on Transfer Learning Method

Experiment 5: In order to further optimize the network model, this paper adds
transfer learning method in the training stage. In order to verify the effectiveness
of the transfer learning method, we add the transfer learning method to the
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ResNet (50, 100) and the Mask R-CNN (50, 100) networks and the D dNet-
65 R-CNN networks respectively, and verify the trained model with verification
set (the verification set is 5k small verification sets separated from MSCOCO
dataset).

In Table 5, this paper finds that the training accuracy and object detection
performance of the network with the transfer learning method are very good.
The improved Mask R-CNN-50 was increased by 1% point compared with the
original experimental results in [12], and our D dNet-65 R-CNN experimental
results were 1.2% higher than the Mask R-CNN-50. In addition, this paper can
fine-tune the parameters of convolution layer in the training process, so as to
better improve the performance of the model.

Table 5. Multiple model training results based on transfer learning (%).

Models Training accuracy Performance test

ResNet-50 94.9 -

ResNet-101 94.7 -

Mask R-CNN-50 95.1 39.3

Mask R-CNN-101 95.3 39.1

D dNet-65 R-CNN 96.3 39.7

4 Analysis of Results

Here this paper will analyze the comparison experiment of the D dNet-65 R-
CNN network model in detail. Our experiment is divided into four stages.

In the first stage, this paper validates the influence of network structure on
FPN and border regression respectively. In order to further validate the per-
formance of the D dNet-65 network structure, we do experiments on the Mask
R-CNN (50, 101). The results show that adding the D dNet-65 network can
effectively improve the instance segmentation performance of the Mask R-CNN
(50, 101). In the second phase, in order to verify the effectiveness of light-weight
network, comparative experiments were carried out on ResNet (50, 100), Mask
R-CNN, D dNet-65 and so on. In the third stage, this paper adds the proposed
transfer learning method into the pretraining of several models for experimental
analysis. In the fourth phase, as shown in Fig. 6, we do a comparative exper-
iment on the whole network structure. In this paper, two models and transfer
learning methods are embedded in the network of the graph and validated on
MSCOCO dataset. Compared with the polygonal line of the inverted triangle,
the polygonal line of the positive triangle tends to approach gradually with the
increase of training time. Although inverted triangles do not work as well as reg-
ular triangles, the accuracy is much improved. Generally speaking, the method
proposed in this paper has achieved good results in performance and speed.
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Fig. 6. Comparison of various models on MSCOCO

Finally, in order to further optimize the model, transfer learning method is
used to train the model. Through the comparative analysis of several experi-
ments, both single training and comprehensive experiments, have achieved good
results.As shown in Fig. 7, Detection activations look for trouble signs by check-
ing the activation of different layers. Detection anchors generate many anchors
without location information through detection. Then, according to the size of
the input image, the location information of each detection object can be accu-
rately obtained. In this paper, better detection results are obtained.

(a) Detection_activations

(b) Detection_anchors (c) Detection_refinement

Fig. 7. D dNet-65 R-CNN results on the MSCOCO test (a) Detection activations, (b)
Detection anchors, (c) Detection refinement
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5 Conclusions

This paper presents a D dNet-65 R-CNN model based on a two-stage object
detection method. The model is based on MSCOCO dataset and consists of
backbone network, head network and new transfer learning method. Firstly,
based on the backbone network, a deep dilated convolution network is proposed.
On the one hand, it can ensure the resolution of the feature map and the size
of the receptive field, on the other hand, it can further reduce the number of
parameters in the network. In addition, the “thickness” of the head network is
reduced by compressing the feature map according to the characteristics of one-
stage object detection, so that the training speed of the head network can be
improved on the premise of guaranteeing the accuracy. Finally, to further opti-
mize the model, transfer learning method is used to train the model. Through
the comparative analysis of several experiments, both single training and com-
prehensive experiments, have achieved good results.

In addition, in addition to the proposed improved method and experimental
verification, this paper also considers the next step of work. First, from the
experimental direction, in addition to the possibility of adding multiple datasets
for comparative experiments, it can also further study the effect of multi-scale
images. Secondly, from the research direction, it can transfer the proposed object
detection framework to the direction of instance segmentation and key point
detection. Because transfer learning can solve the problem of data defects, it
can consider adding unsupervised learning to further improve the performance
of object detection.
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Abstract. Recently, unidirectional convolutional neural networks have
been widely used for salient object detection. However, most methods
cannot solve common problems (i.e., the loss of valid information, tiny
predicted feature, and isolated features in one block), which lead to
inefficient feature reuse and blurred salient object edges. To address
these problems, we propose a novel bi-directional features reuse network
(BDFRN) for salient object detection, which consists of two subnets:
forward-skip subnet and reverse-connect subnet. The forward-skip sub-
net employs an encoder-decoder structure to remedy the loss of salient
details, and progressively refine the size of the predicted feature; mean-
while, the reverse-connect subnet can transmit the location features from
top blocks to bottom blocks, such that these features can be reused
and communicated between different blocks. Extensive experiments are
conducted to demonstrate the performance of the proposed method, as
compared with baseline methods.

Keywords: Salient object detection · Skip connection ·
Convolutional neural network

1 Introduction

As a pixel-wise image analysis task, salient object detection (SOD) aims to
accurately pinpoint all the pixels of the most attractive objects in images, which
has received broad attention, owing to its wide applications in the fields of object
segmentation [2,14], fixation prediction [4] and object importance [18], etc.

The performance of SOD in these fields highly depends on the robustness of
feature clues from images. Initially, only a single salient clue, such as objectiv-
ity, local or global color contrast, is exploited in SOD [8]. Then, the combina-
tions of these single salient clues are applied, which can overcome shortcomings
of using single clue [16]. Recently, convolutional neural networks (CNN) based
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supervising methods have shown promising performance in the applications with
artificially labeled data [3,7,12,20,22].

However, these CNN based networks still have limitations due to some inap-
propriate operations. Firstly, in spite of widely being used to extract high-level
feature, multiple stages of spatial pooling and dropout operation are still the
reasons that part features of valid and noise information are discarded simulta-
neously. In [6], a residual structure is applied to solve such problem, which can
avoid the loss of valid information, however, because of small resolution of the
output, it cannot be applied for SOD problem. Secondly, general unidirectional
architecture can be beneficial for image classification, but the size of the final
predicted map is too small to clearly distinguish object boundary. In [12], the
authors employ a multi-level upsample and multiple masks strategy to enlarge
the predicted map. However, to reshape feature, extra calculated fake data rather
than true features are added into the network during frequent upsampling oper-
ations, which deteriorates predicted results. Thirdly, since the position and edge
features of a salient object are learned respectively from the top and the bottom
blocks, which are isolated across blocks in unidirectional network [7], hence the
predicted outputs from top layers are often in an accurate position but blurred
contour. In [3,22], bidirectional networks are introduced to remedy this problem.
Nevertheless, these works resort to merging all layers indiscriminately, which is
hard to observe the status of different layers. In addition, the output of these
networks comes only from the first or the last layer, and the features of each
layer cannot be fully utilized.

From the discussions above, the unidirectional network cannot solve these
three problems at the same time. Meanwhile, existing bidirectional networks
equipped with simple structures and poor integration also have the same limi-
tations, which becomes the bottleneck to further improve performance for the
task of SOD.

To resolve these limitations, we present a bi-directional features reuse net-
work, which can be decomposed into a forward-skip subnet and a reverse-connect
subnet. By employing the encoder-decoder structure, the forward-skip subnet
provides two ways to address the problem of the loss of valid information. The
first is intra-block skip connection, where each layer is connected directly to its
anterior layer to achieve the features reusing and decrease the features dropping;
and the second is inter-block skip connection, where the outputs of the encoder
are directly used and fed into the decoder. Regarding the problem of the small
size of the output image, we gradually increase the width and length of pre-
dicted features by using multiple deconvolution layers, where the extra spatial
features of encoder blocks add to decoder blocks. In the reverse-connect sub-
net, a reversing attention operation is carried out to solve the isolated features
problem.

Thus, our contributions can be summarized as follows:

– We present a novel bi-directional features reuse network to solve problems
of the loss of valid information, the tiny predicted feature, and the isolated
features in a block.
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Fig. 1. The structure of the proposed bi-directional feature reuse network (BDFRN),
where the top and bottom labels are given for the directional information. The sizes of
the feature maps and channel numbers are shown within blocks as [height × width ×
channel]. (Color figure online)

– We weight all blocks’ contribution and adaptively fuse multi-resolution fea-
tures to balance the object position and edges at the same time.

– We improve the baseline methods and outperform current state-of-the-art
results on five benchmarks.

2 The Proposed Method

As can be seen from Fig. 1, the structure of BDFRN includes two subnets.
The blue dotted box denotes the forward-skip subnet, which mainly consists of
encoder blocks and decoder blocks. The red dotted box represents the reverse-
connect subnet, which is composed of several summary blocks and a fusion block.
To avoid the directional confusion, the directions of the bottom and the top are
given in the figure.

2.1 Forward-Skip Subnet

Existing networks [3,7,12,20,22] have a shortage structure that predicted out-
puts from the pipeline are small size images. Here, a forward connection subnet
with encoder-decoder structure [2] is employed to solve the problem. This sub-
net contains four blocks: input block, output block, encoder block, and decoder
block. The input block and the output block are a series of layers, which are used
to initially process and finally integrate the image respectively. The configura-
tion of the subnet is given in Table 1, where Conv denotes convolution operation,
and Full-Conv is full-convolution [14]. The encoder block and decoder block are
used to implement two connections: intra and inter block skip connection.

Intra-block Skip Connection. Inside a block, an encoder is applied to
decrease the loss of valid information. The structure of the encoder block is
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Conv
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Fig. 2. Illustration of block structure. From top to bottom are the encoder block,
decoder block and summary block respectively.

Table 1. The configuration of input block and output block

Layer In channel Out channel Filter size Stride Padding

Input block Conv 3 64 7 2 3

BatchNorm 64 64 - - -

ReLU - - - - -

MaxPool 64 64 3 2 1

Output Block Full-Conv 64 32 3 2 -

ReLU - - - - -

Conv 32 32 3 1 -

ReLU - - - - -

Full-Conv 32 1 2 1 1

given in Fig. 2. Here, conv(k × k)(i, o) denotes convolution operation, where
(k × k) is the kernel size, i and o represent the input channel and output chan-
nel, respectively. /2 means the step size of the convolution layer is set as 2, so
that the width and length of features are reduced by half. To enhance the gen-
eralization and non-linear capability of the network, each convolutional layer is
attached with a batch normalization layer and a ReLU layer. Given the input
image Iinput, the output features Enb of the encoder block b is

Enb =
{

Input(Iinput), b = 0
Encoderb(Enb−1), b = 1, 2, 3, 4 (1)

where the Input(. . . ) and Encoderb(. . . ) denote the function of input block and
encoder block b respectively.

Thus, each feature in a block can be fully utilized. Moreover, the intra-block
skip structure can relieve the problem of vanishing gradient [6].

Inter-block Skip Connection. Among the blocks in the forward-skip subnet,
we apply a jump connection strategy to connect each encoder block and its
corresponding decoder block, as illustrated in Fig. 1.
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Table 2. The configurations of encoder block, decoder block and summary block,
where n,m, k denote the same means in Fig. 2.

Block Encoder Decoder Summary

m n m n n k

Block1 64 64 64 64 64 3

Block2 64 128 128 64 64 5

Block3 128 256 256 128 128 5

Block4 256 512 512 256 256 5

Block5 - - - - 512 7

Mathematically, the output features Deb of the decoder block b can be
expressed as

Deb =

⎧⎨
⎩

Output(De1), b = 0
Decoderb(Deb+1 + Enb), b = 1, 2, 3
En4, b = 4

(2)

where Output(. . . ) and Decoderb(. . . ) denote the function of output block and
decoder block b respectively.

The structure of the decoder block is also given in Fig. 2. Here, ∗2 represents
the transposed convolution operation with the stride set as 2, so that we can
double the width and length of the features. Same as the encoder block, the
convolutional layer is attached with a batch normalization layer and a ReLU
Layer to enhance the generalization and non-linear ability of the network.

Since the inter-block skip connection is convenient for features reusing, the
decoder block needs less weight and bias to resize the predicted map to the same
as the input image.

Finally, the output features of the forward-skip subnet are from the output
block, i.e. De0 in Eq. 2. Table 2 details the configuration of every encoder block
and decoder block in the forward-skip subnet.

2.2 Reverse-Connect Subnet

The reverse-connect subnet includes summary blocks, an operation of reversing
effective region, and a fusion block.

Summary Block. Intuitively, in order to be able to simultaneously use the
features of the encoder and decoder, the simple method is to directly merge the
extracted features. The designed structure of summary block is shown in Fig. 2,
and the configuration is given in Table 2. We use a convolutional layer followed
by ReLU non-linearity. The outputs of summary block b is

Sb = Summary(Enb−1 + Deb), (3)

where Summary(. . . ) denotes the function of summary block.
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Fig. 3. From left to right: the input image, smallest sufficient region (SSR) and smallest
destroying region (SDR). (The images are introduced from [4]).

The summary block is helpful in summarizing each feature by element addi-
tion between encoder block and decoder block. However, the performance was
not perfect during the actual test. Therefore, it is necessary to introduce a new
mechanism.

Reverse Effective Region. In the task of image classification, as the layers of
the network gradually deepen, the network can learn the higher-level semantic
information, and the top layer can provide the category label for the entire
image. From a visualization point of view, the bottom layer of the network can
see the texture and the edge. Whereas the features of the top layer are helpful
for classification, due to the larger of the receptive field. To put it another way,
the network will gradually increase the confidence of object classification in the
image, which can determine the category. It is the existing special region that
is identified by the top layer, which can contribute to the classification. This
special region is called an effective region. For this interesting phenomenon, we
introduce two concepts: SSR and SDR [4].

SSR, the smallest sufficient region, is the smallest region of the image that
allows a confident classification. For example, the SSR is the middle image in
Fig. 3, in which only parts of the seal can be seen. Even if humans see this
region, it is difficult to identify what the preserved image is. However, this region
contains all the features that the network can recognize and distinguish from
other categories, such as the part of the face with whiskers.

The opposite concept is SDR, the smallest destroying region. SDR refers to
the serious impact of classification when the region is removed from the image.
This region and the counter-classification method have been discovered, i.e.,
generating adversarial artifacts. Because of the tiny and imperceivable region
for human eyes, the SDR impedes right prediction from a classifier.

The top layer of the network would obtain an effective region between SSR
and SDR to help the network to classify more accurately.

Reverse Effective Region. To get the clear edges of predicted salient objects,
the operation of reversing effective region [3] is introduced into reverse-connect
subnet, as illustrated in Fig. 4.



Bi-directional Features Reuse Network for Salient Object Detection 35

Filp 
0/1

Encoderb-1

Decoderb

Sb+1

Sb

Summary

Fig. 4. The operation of reverse attention region

The region of an image can be divided into three parts: the effective object
region, the object edges’ region, and the background region. Initially, we flip the
zero and one in the predicted map Sb of the summary block, hence the effec-
tive region is filled with zeros. Then, both of the flipped predicted map and the
input of the next summary block are subjected to element-wise multiplication
⊗ to exclude the effective region of the object. The output features remain the
edge region and the background region, except the effective region. At last, the
summary blocks are connected with the predicted map Sb+1, which extract the
features of salient object edges. The features of edges and the previous predict
map are combined to perform element addition ⊕ operation. Therefore, regions
of effective objects learned in the top layer can be accumulated back. Mathe-
matically, for each input of the summary block Enb−1 +Deb, the predicted map
Sb by the previous predicted map Sb+1 is

Sb = Summary{(Enb−1 + Deb) ⊗ (1 − Sb+1)} ⊕ Sb+1. (4)

We calculate the extract predicted map from top to bottom by opposite
direction along with the forward-skip subnet.

The advantage of reversing effective region is that the summary block can
learn from the least amount of features, which avoids relearning from redundant
effective regions used for object location. In addition, the effective region can
propagate without losing object position.

Fusion Block. The information on the object position and edge are very impor-
tant to the SOD performance, therefore, we focus on each summary block and
the output of the forward-skip subnet, and apply adaptively self-learning to fuse
five different sizes of predicted maps. The fusion block Ffuse is constructed by the
combination of all summary blocks Sb with the output block Foutput, expressed
as

Ffuse = Fuse(Sup
b , Foutput|θ), (5)

where Fuse(·) is a function of cumulative sum, Sup
b denotes enlarge Sb by trans-

posed convolution operation. Fusion block adaptively learn multi-resolution fea-
tures to boost predicted map performance of clear edges and right location.
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2.3 Loss

Instead of binary cross entropy, the focal loss can solve the problem of the
extreme foreground-background class imbalance [11]. Thus, we compare the pre-
dicted map Pr with its corresponding ground truth map GT by focal loss, as
follows

σ(GT,Pr) = −(1 − pt)γ log(pt), (6)

where pt represents the probability of pixel, and γ is the tunable focusing param-
eter, which is set to be 2, as suggested in [11].

The loss of the entire network should have the ability to adjust all the param-
eters contained in the two subnets. Therefore, we apply the loss consists of three
parts: subnet loss, summary loss, and fusion loss. The whole loss for end-to-end
training can be calculated as follows:

Loss = λσ(GT,Foutput)

+ ρ(
∑b

1
σ(GT, Sup

b) + σ(GT,Ffuse)),
(7)

where Foutput is the output feature from forward-skip subnet, λ and ρ are the
trade-off control factors, which are set empirically as λ = 2 and ρ = 1 in our
work.

2.4 Different from Existing Methods

Due to forward-skip subnet is built on encoder-decoder structure [2] and similar
to the well-known U-Net [17], there is some improved design for better per-
formance. One is that we simplify the downsampling layers from five to four,
but add extra encoder blocks and skip connect between them. The input image
is transformed into four features with different size. The advantage is to train
deeper network and extract high-level semantic features without tiny feature size
for the task of SOD. The other is that we obtain each scale of block features after
decoder blocks instead of only the last layers for the balance of object position
and edges. [7] show that bottom layers extract texture details and top layers
achieve accurate location information. In order to predict salient object with
clear contour and the right location of the salient object, each encoder block
is bypassed to the output of its corresponding decoder and waiting for further
operations in the reverse-connect subnet. The BDFRN− in Table 3 show the
result of the single forward-skip subnet.

In the reverse-connect subnet, we introduce the concepts of SSR and SDR
from RAS [3]. The way of adopting summary block helps to reduce the number
of operational features in the operation of reverse effective region. Meanwhile,
we choose a fusion method that can learn parameters, and adaptively obtain
the parameters of the best performance. Table 3 show the proposed BDFRN is
better than the RAS [3].



Bi-directional Features Reuse Network for Salient Object Detection 37

3 Experiments

Table 3. Quantitative comparison. Each cell from up to down composed of max and
mean F-measure (higher better) and MAE (lower better).

ECSSD PASCAL-S DUT-OMRON HKU-IS SOD

LEGS [19] 0.827 0.762 0.669 0.766 0.734

0.785 0.704 0.592 0.723 0.683

0.118 0.155 0.133 0.119 0.196

MCDL [23] 0.837 0.743 0.701 0.808 0.731

0.796 0.691 0.625 0.757 0.677

0.101 0.145 0.089 0.092 0.181

RFCN [20] 0.890 0.837 0.742 0.892 0.799

0.834 0.751 0.627 0.835 0.751

0.107 0.118 0.111 0.079 0.170

DHS [12] 0.907 0.829 0.881 0.890 0.827

0.872 0.779 0.835 0.855 0.774

0.059 0.094 0.077 0.053 0.128

Amulet [22] 0.915 0.837 0.742 0.895 0.806

0.869 0.768 0.647 0.839 0.755

0.059 0.098 0.098 0.052 0.141

DSS [7] 0.908 0.836 0.771 0.910 0.844

0.873 0.804 0.729 0.895 0.795

0.062 0.096 0.066 0.041 0.121

LinkNet [2] 0.901 0.829 0.766 0.905 0.812

0.871 0.801 0.718 0.885 0.775

0.068 0.099 0.070 0.048 0.131

RAS [3] 0.921 0.837 0.786 0.913 0.850

0.889 0.785 0.713 0.871 0.799

0.056 0.104 0.062 0.045 0.124

BDFRN− 0.909 0.832 0.775 0.905 0.821

0.878 0.803 0.719 0.889 0.779

0.066 0.092 0.070 0.045 0.128

BDFRN 0.929 0.845 0.793 0.909 0.851

0.897 0.818 0.741 0.890 0.794

0.051 0.089 0.051 0.041 0.117

3.1 Datasets and Evaluation Metrics

Here, the datasets and evaluation metrics applied in the next experiments are
introduced simply.
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Fig. 5. PR curves on ECCSSD (left) and SOD (right).

Datasets. To demonstrate the effectiveness and robustness of the proposed
network in salient object detection, we conduct evaluations on six widely
used saliency detection datasets, including DUT-OMRON [5], ECSSD [21],
HKU-IS [9], MSRA-B [13], PASCAL-S [10] and SOD [15].

Evaluation Metrics. Several evaluation metrics are used to evaluate the per-
formance of BDFRN, including precision-recall (PR) curve, F-measure score,
mean absolute error (MAE) score.

F-measure is defined as the harmonic mean of the average precision and the
average recall, which is calculated as

Fβ = (1 + β2)
Precision × Recall

β2Precision + Recall
, (8)

where β is set to 0.3 as suggested in [1] to emphsize the precision. The max value
and mean value of F-measure express the best detection and average character-
istics in entire test images.

The MAE between predicted map S and groundtruth G can be computed as

MAE =
1

H × W

H∑
x=1

W∑
y=1

|S(x, y) − G(x, y)| , (9)

where W and H are width and height of the saliency map respectively.

3.2 Implementation Details

For the network initialization, the trained model of ResNet34 is used to ini-
tiate the encoder blocks of the forward-skip subnet. The random initialization is
adopted for the rest of the layers. 5000 training images of MSRA-B are divided
into two parts: 4500 images for training and 500 for validation. Network hyper-
parameters are set as follows: Adam optimizer is set β = [0.9, 0.999], ε = 10−8,
learning rate is set to 1e−4 and batch size is 32.
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Fig. 6. Visual comparisons with other methods.

3.3 Performance Comparison

For comparison purpose, 9 state-of-the-art methods are tested as baseline meth-
ods, including LEGS [19], MCDL [23], RFCN [20], DHS [12], Amulet [22], DSS [7],
LinkNet [2] and RAS [3].

Quantitative Evaluation. From the PR curves shown in Fig. 5, we can clearly
find that BDFRN outperforms the state-of-the-art when recall ≤0.9. From Table 3,
we can see that the proposed BDFRN outperforms all baseline methods in terms of
max F-measure, mean F-measure and MAE score. Moreover, thanks to the design
of the encoder-decoder structure, BDFRN−, which only test forward-skip sub-
net, achieved competitive scores as the motivated method LinkNet [2]. However,
BDFRN combined the forward-skip subnet and the reverse-connect subnet can
completely defeat others, as shown from the table. BDFRN improves the max and
mean F-measure over the LinkNet by 2.2% and 2.7% respectively, and reduce the
MAE score by 25%. BDFRN also can achieve comparable performance as com-
pared with RAS [3] on difficult datasets (i.e. HKU-IS and SOD), and better results
on other datasets. The results show that the performance benefit from three kinds
of connections (reverse connection, intra and inter block skip connection), grad-
ually resizing the features and the adapted fusion can alleviate the loss of valid
information and adds details to the object contour. BDFRN can solve three prob-
lems (the loss of valid information, tiny predicted feature, and isolated features in
one block) at the same time.
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Qualitative Evaluation. Figure 6 shows a visual comparison of saliency maps
produced by state-of-the-art methods and the proposed BDFRN. It can be
observed from the figure that BDFRN not only can detect the salient regions
correctly with the less false location but also produce clear contour and coherent
details. When compared to baseline methods, we can observe some characters
as follows. In the first row, object overlapping semitransparent water, BDFRN
can detect more torso part than RAS and less needless edge than LinkNet. In
the second row, a salient object connects with some trees in the background,
which shows BDFRN is good at distinguishing them. In the fourth row, we pick
multiple objects in an image, which BDFRN can detect all the salient object.
In the fifth row, the small salient object is detected clearly by BDFRN without
any redundant object, especially for RAS and Amulet. Especially for the last
row which is most difficult, it has the characteristic of large objects, rich edges,
and complex background. Although all methods do not perfectly identify all the
details, BDFRN recognizes more object boundary details than other methods
without adding extra body torso.

4 Conclusion

In this paper, we propose an end-to-end method bi-directional features reuse
network for salient object detection, which includes a forward-skip subnet and
a reverse-connect subnet. The forward-skip subnet is able to effectively reuse
features from inter and intra blocks, and gradually increase the size that can
contribute to pixel-wise detection. The reverse side connection can enhance the
salient object edge detail. By applying adaptive fusion, the whole network can
gain a balance between the object position from the top layers and object edges
from the bottom layers. Experimental results demonstrated the validity and
performance of the proposed method.

Acknowledgment. This research is supported by Key Technology Program of
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Abstract. Commercial image search applications like eBay and Pinterest allow
users to select the focused area as bounding box over the query images, which
improves the retrieval accuracy. The focused area image retrieval strategy moti-
vated our research, but our system has three main advantages over the existing
works. (1) Given a query focus area, our approach localizes the most similar
region in the database image and only this region is used for computing image
similarity. This is done in a unified network whose weights are adjusted both for
localization and similarity learning in an end-to-end manner. (2) This is achieved
using fewer than five proposals extracted from a saliency map, which speedups
the pairwise similarity computation. Usually hundreds or even thousands of pro-
posals are used for localization. (3) For users, our system explains the relevance
of the retrieved results by locating the regions in the database images that are the
most similar to the query object. Our method achieves significantly better retrieval
performance than the off-the-shelf object localization-based retrieval methods
and end-to-end trained triplet method with a region proposal network. Our exper-
imental results demonstrate 86% retrieval rate as compared to 73% achieved
by the existing methods on PASCAL VOC07 and VOC12 datasets. Extensive
experiments are also conducted on the instance retrieval databases Oxford5k and
INSTRE, where we exhibit competitive performance. Finally, we provide both
quantitative and qualitative results of our retrieval method demonstrating its supe-
riority over commercial image search systems.

Keywords: Object detection · Similarity measure · Image retrieval ·
Saliency map · Region proposals

1 Introduction

Today, on average 52 billion images are uploaded on image sharing applications each
day [9]. Due to this proliferation of visual content, image-to-image search have gained
substantial attention and now almost every commercial image search system has incor-
porated an image-to-image search engine in their framework. But the retrieval accuracy
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of these systems particularly for small objects with background clutter and/or occlusion
is still lacking in performance. For instance, Google’s reverse image search facilitates
the retrieval of similar images from vast online resources. But it only focuses on global
image perspective, and often misses the relevant objects in images. To demonstrate
this, let us consider the query focused area shown magnified in Fig. 1. The focused
area, which usually contains a single object, is helpful to improve object search, as the
query images may contain multiple objects and the user might be interested in one par-
ticular object for online search. Only this area is used as query. AS shown in Fig. 1,
Google reverse search does not retrieve any image containing objects similar to those
in the query focused area (bottles). The performance of triplet net is nearly as bad too.
However, Pinterest [11] allows the selection of the focused area in query images. But,
it still only considers global descriptors for database images. Therefore for small query
objects, like bottles, it is unable to retrieve correct results. In contrast, all results of the
proposed method are correct.

Fig. 1. Top-5 best matches for Google reverse search, Pinterest focused area search, the proposed
method, and triplet net similarity (red shows wrong retrieval and green shows correct retrieval).
(Color figure online)

The state-of-the-art approaches [21–23] to image retrieval discard the noisy back-
ground and keep the useful convolutional features to localize the main object. That
is, they exclude the background in forming the final object descriptor [21]. The app-
roach in [23] proposes parts detector consisting of convolutional filters to generate the
probabilistic proposals, which highlight certain discriminative parts of the objects and
suppress the noise of the background. These techniques show good results for fine-
grained category retrieval [21] which only has a single category present in each image.
However, these methods are ineffective for images with multiple objects as observed in
[5,14]. To cope with the presence of multiple objects in the image, [14] pool the feature
representations from object detector. Their image search framework is based on faster
R-CNN for object detection followed by a spatial re-ranking based on class scores.
Faster R-CNN utilizes Region Proposal Network (RPN) [18] for object proposal gener-
ation. RPN generates region proposals combining both exhaustive search using sliding
window, merging segmentation at varying threshold and group multiscale regions into
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object proposals. [5] train a separate triplet network and RPN, and combine both at test
time. In this sequential setting, triplet network is trained for global image representation
and RPN is trained for object localization using bounding box annotation. In another
approach to image retrieval, [24] pick two neural activations from the convolutional net-
works, one for localization, and the other for object’s feature description. In the last few
years, image retrieval frameworks started adding object location as a part of retrieval
problem, but these methods [5,14,23] either use two separate localization and feature
embedding networks or rely on off-the-shelf object detection methods for object local-
ization. Moreover, they utilize RPN which provide thousands of proposals but typically
few indicate the actual object’s locations. In our method, we generate region proposals
from saliency maps at different threshold values. Even though we restrict the number of
proposal to a maximum of five, we obtain better retrieval rate compared to these current
methods [2,5].

1.1 Contributions
As mentioned above, we believe that localizing the query object in the target image can
improve the performance of a retrieval system. The five main contributions of this paper
can be summarized as follows:

(1) Localization−similarity module: A unified module for simultaneous localization
and similarity learning is introduced.

(2) Saliency driven proposal set: We construct a saliency driven proposal set to localize
objects in the target images.

(3) The localization in target images of the most similar region to the focus area in
the query image not only makes the retrieval results better but also provides an
explanation why the retrieved images are similar to the query.

(4) Proposed framework localizes the region most the similar to the query in the
database images irrespective of the object class. Thus, it is applicable to visually
diverse datasets without computing class scores.

(5) We demonstrate a better performance for the natural images as compared to com-
mercially available image search applications.

To the best of our knowledge, this is a first attempt to combine localization and learning
localized similarity embedding in a unified network for a class agnostic case in an end-
to-end manner.

For our experimental evaluation, we consider the challenging PASCAL VOC07
[3], PASCAL VOC12 [3] datasets and the instance retrieval datasets namely Oxford5k
[10] and INSTance-level object REtrieval and REcognition (INSTRE) [20]. We deliber-
ately selected these datasets to evaluate our method, because they enable us to evaluate
the performance on two visually different dataset types; with PASCAL set being the
object detection dataset with cluttered or even overlapping objects in natural images,
and Oxford5k [10] and INSTRE [20] being the instance retrieval datasets having small
inter-class variability close to product search problem.

2 Method

A key motivation for our work is the fact that image retrieval can be addressed by com-
bining object localization in target images with local similarity learning. In this section,
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we describe each component of our localization driven retrieval network. In Sect. 2.1 we
explain the proposal generation by a recurrent convolutional neural network. Sect. 2.2
details the object localization. Sect. 2.3 describes the similarity learning in a unified net-
work, and Sect. 2.4 defines the loss functions. The overall pipeline of our architecture
is given in Fig. 2.

2.1 Saliency Driven Region Proposal Generation

In this work, we propose to simultaneously learn two functions Δ = f(y, z) and ϕ =
f(Δ) for localization and local similarity respectively. We compare query image y with
database image z predicting the area of interest Δ in the database image that is most
similar to the focused area in query image. Similarity metric (ϕ) is close to 1 if y and
z contain similar objects or 0 otherwise. The predicted variable Δ is simultaneously
utilized by similarity learning module in the unified network. So Δ is the intermediate
output of the unified network. To estimate the location of similar object in the database
image, we start with the salient regions extracted from recurrent convolutional archi-
tecture. We term these salient regions as “Salient Proposal Boxes” (SPB). Lately, [19]
uses saliency maps to indicate approximate position of objects. However, it utilizes the
saliency information to filter the proposals extracted by selective search [18]. In con-
trast, we generate proposals based on saliency maps without any additional proposal
generation module.

Fig. 2. The overall architecture of image retrieval with local similarity of the detected objects.

In the proposed work, saliency maps are extracted from recurrent convolutional
architecture. Recurrent architecture refines the saliency prediction at each pass using
the error from the previous iteration, details of the recurrent architecture can be found
in [19]. We extract the saliency map at a third time step because it contains the refined
saliency regions. The salient regions indicate probable presence of objects in the image.
To convert them into proposal boxes, we apply multiple thresholds to the saliency map
to obtain binary images followed by the connected component labeling. We use four
threshold intervals K = {[0, 1], [1, 50], [50, 100], [100, 255]} for partitioning saliency
maps at multiple scales. Each of the intervals has the lower and the upper limit, denoted
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as kl and ku to capture the objects corresponding to particular scale. For instance, the
threshold range [1, 50], kl = 1 and ku = 50, captures less salient objects, whereas
the range [100, 255] captures highly salient objects. We use these thresholds to convert
saliency map S to binary map B:

Br =
{

1 if kl < Sr < ku
0 otherwise,

(1)

where Br is the binary map value and Sr is the saliency intensity levels at point
r. To extract SPB from binary map B, we locally fit bounding boxes to connected
components of B. The set of all SPB at the threshold interval [kl, ku] is denoted as
B(kl, ku). Connected components of the binary map may generate multiple proposal
boxes depending on the quality of saliency map, but we retain only five proposal boxes
with the largest area. Hence, B(kl, ku) denotes the set of at most five SPB for a given
threshold interval. In the case when the set of SPB is empty for a given threshold inter-
val, B(kl, ku) will contain the whole image frame as the only proposal box. A set of
proposals extracted from the saliency map obtained by the recurrent fully convolution
network at the four threshold intervals is illustrated in Fig. 3. As it can be seen, for
small objects a low threshold of saliency map suggests better proposals (row 1). How-
ever, for large objects, as shown in rows 3 and 4, the proposal extracted at a higher
thresholds give better prediction of object’s location. If none of the proposal boxes is
extracted at a given threshold, then the bounding box of the whole image is consid-
ered as a proposal box as shown in row 1 (columns 3 and 4). We actually performed
experiments to determine the number of most suitable proposal boxes. To determine
the number of proposal boxes, we initially consider ten different numbers of proposal
boxes for each image. The number of these proposal boxes are set to 1, 2, 3, 4, 5, 10,
20, 30, 50 and 100. For N number of proposal boxes, largest N boxes are retained, and
the rest of the boxes are discarded. Next, we compute the intersection over union (IOU)
of the retained boxes with the ground truth bounding boxes of the objects present in the
image. For one proposal box, the average IOU of the proposal box and objects’ ground
truth is reported to be 18.6%. For two proposal boxes IOU is 43.2%, for three proposal

Fig. 3. The salient regions and SPB at four different threshold intervals.
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boxes IOU is 46.0%, and for four and five proposal boxes IOU is 46.05%. For proposal
boxes greater than 5 (that is, 10, 20, 30, 50 and 100), we observe the same IOU equal
to 46.07%, which is very close to the IOU reported by 5 proposal boxes. Therefore, we
used five proposal boxes for the rest of the analysis in this work. The salient regions
provide a good starting guess for the location of the objects in the image. But these ini-
tial guesses may not fit the objects well, i.e., they may contain parts of the other objects
or background around the object of interest, which may negatively effect the retrieval
performance. Therefore, our next step is to find the object’s exact location initialized
from these proposal boxes. For this purpose, we train a unified localization-similarity
network to find the exact location of objects of interest in the database images.

2.2 Object Localization

In the learning function Δ = f(y, z) of our convolutional neural network, Δ is the pre-
diction offset for the proposal boxes that locate the similar object in database images. Δ
is an intermediate network variable, which is implicitly learned in the network to local-
ize the objects and simultaneously utilized by the network to generate feature embed-
ding for the regions of the database images most similar to the query image’s focused
area.

Object localization in database images is useful for image retrieval as it helps to
exclude the background in feature learning, consequently increasing the retrieval accu-
racy. Unlike our work, previous method applied the localization idea to retrieval prob-
lem by separately training localization and feature embedding [5]. Another work [14]
on instance retrieval makes use of CNN features extracted from an established object
detector i.e., faster-RCNN [13]. It provides a simple baseline that uses off-the-shelf
faster R-CNN features to detect the object before retrieving similar images. In the pro-
posed work, we used a different strategy as we train the complete network in an end-
to-end manner without utilizing pre-trained networks [13,14]. Hence, we propose a
unified network in which one part is localization and the other part is the similarity
learning fused together.

Since in our framework, the parameter regression works for SPB as well as other
proposals. We also performed experiments with the complete image as a proposal box
keeping the rest of the setting same. We construct a Siamese branches for feature learn-
ing using VGG layers cropped at pool5 layer [17]. These layers act as a backbone to
learn high level features for object’s location prediction and feature embedding of both
the focused area in the query image and the most similar region in target image with
shared network parameters. The location of similar objects in the database images is
learned by regression layers initialized by SPB, which regress them to the exact loca-
tion of the objects.

In regression layers, for positive pairs (query and database image both have a com-
mon objects), the proposal boxes regress to the location of the common object in the
database image. For negative samples (both from different classes), proposal box remain
unchanged. In other words, the network forces the proposal to stay where it is, so that
they do not regress to any random location. The bounding box regression equations are
taken from [13]. Moreover, the regression layer for localization is also able to perform
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object location regression initialized from the bounding box of the whole image (i.e.,
image size proposal box without using SPB).

The location of the object in the target image is then predicted from fully convolu-
tional regression layer. The goal of this regression layer is to find the region in the target
image that is the most similar to the focused area in the query image.

2.3 Similarity Learning

Concurrently, with object localization estimation, we learn a suitable feature embed-
ding of the query focused area and the predicted location in the target image. Our goal
is learning the local features embedding of the predicted location of the target image
rather than considering the global image level features. The objective of this part is to
minimize the error given by the localized similarity:

φ(y, z) =
1
n

[f(y) − f(z′)]2, (2)

where f(y) is the feature vector of the focused area in the query image y, f(z′) is the
feature vector of a regressed proposal box in database image z, and n is the dimension
of the feature vectors. Small number of proposal boxes used in this research prevent
us from an exhaustive search of query object over different scale ranges [5,8,14]. An
alternate approach would be to utilize the off-the-shelf object detection methods (e.g.,
[14,18]) to generate proposals. But these methods give large number of candidate pro-
posals that increase the overhead of computation for the calculation of pairwise similar-
ity values, making it unfeasible for real time computation. We compare our method to
off-the-shelf object localization methods [13] combined with image re-ranking [14],
and our method exhibits superior performance (Sect. 3). Our localization-similarity
method integrates the object discovery and similarity scoring in a single unified convo-
lutional neural network without any auxiliary network. In this way, we simultaneously
estimate the location of objects in the target images as well as their similarities with
focused area in query image.

2.4 Loss Function and Network Update

To train our network, we use a combination of two loss functions, regression Lreg(Δ)
and contrastive Lcont(φ) loss, where Δ is the predicted location in database image and
φ is a pairwise similarity defined in Eq. (2). The unified network is updated to minimize
both the losses in a single pass. In our work, we evaluated the performance of the system
with equal contribution from both loss functions:

L = Lreg(Δ) + Lcont(φ). (3)

The formula for regression loss is given as

Lreg(Δ) =
N∑
i=0

(g(x − x∗)) (4)



Image Retrieval with Similar Object Detection and Local Similarity 49

Table 1. Comparison of Accuracy (%) for the localization−similarity network on PASCAL
VOC07 and PASCAL VOC12.

Here, x is the predicted coordinates and x∗ is the ground-truth coordinates of the object.
N is number of images in each batch. Function g is same as in Eq. (3) in [4]. The
contrastive loss is given as,

Lcont(φ) = δ(f(y) − f(z′))2 + (1 − δ)max(0,m − (f(y) − f(z′))2) (5)

Definitions of f(y) and f(z′) are given in Sect. 2.3. For a pair of similar images δ = 1
and otherwise δ = 0. The margin value m is set to 3.

The gradient in the regression layers for localization (Δ) and similarity feature
learning (φ) is updated as,

∂Lreg(Δ)
∂Xp

=
∂Lreg(Δ)

∂Δ
.
∂Δ
∂Xp

,
∂Lcont(φ)

∂Xp
=

∂Lcont(φ)
∂φ

.
∂φ

∂Xp
(6)

where, Xp is the output at the feature extraction stage (features are extracted at pool5
layer of the VGG architecture. This backbone of Siamese feature extraction layers, used
by both localization (Δ) and similarity embedding learning (φ), are updated simultane-
ously by adding the gradient from two regression layers:

∂L
∂y

=
∂Lreg(Δ)

∂Xp
.
∂Xp

∂y
+

∂Lcont(φ)
∂Xp

.
∂Xp

∂y
(7)

where y is the input image (Eq. 7 is the same for z as well), substituting values from
Eq. (6) to Eq. (7) gives the gradient for the overall loss function L:

∂L
∂y

=
∂Lreg(Δ)

∂Δ
.
∂Δ
∂Xp

.
∂Xp

∂y
+

∂Lcont(φ)
∂φ

.
∂φ

∂Xp
.
∂Xp

∂y
(8)

The weights of the unified network are adjusted in the way to optimize the perfor-
mance of localization prediction and similarity feature embedding learning simultane-
ously. This makes sure that the unified networks is coherently optimized. In this way,
the weights of the Siamese feature extraction layers as well as the regression layers for
localization and similarity learning are adjusted simultaneously.
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3 Experimental Evaluation

For the evaluation, we use PASCAL VOC07 [3], PASCAL VOC12 [3], Oxford5k [10]
and INSTRE [20] datasets. We compare our results with previous methods [2,5,14,15].
We use three performance metrics, namely, Accuracy (%), precision-recall curve and
mean Average Precision (mAP).

3.1 PASCAL VOC07/PASCAL VOC12

In the first set of experiments, we use PASCAL VOC07 and PASCAL VOC12 datasets
to find the retrieval accuracy. Accuracy is defined as the percentage of correct retrievals
in the top-t retrieved images. In order to keep the value of t same as in [2], we use
t = 10. We select the PASCAL VOC07 as benchmark dataset for object localization,
because in this dataset 4,952 test images contain 12,032 objects, providing approxi-
mately 2.5 objects per image [3] and making this dataset favorable for testing the pro-
posed localization−similarity network. For training, the ground-truth annotation of the
objects is used to train the regression layer for localization, but for testing the object’s
location is predicted from regression network without ground truth annotation.

The retrieval accuracy for PASCAL VOC07 and PASCAL VOC12 are listed in
Table 1, On both datasets, our method outperforms by a significant margin the triplet
network based method [15], Faster-RCNN based instance retrieval [14], deep retrieval
(triplet network+RPN) [5] and pretrained activation maps [21]. This is due to a better
discriminatory ability of the proposed localization based retrieval for local perspective
as opposed to global image similarity.

In Table 1, bold numbers show the maximum retrieval accuracy for each category.
Our results are significantly better in the case of classes with multiple objects like bicy-
cles, motorbikes, sofa and small occluded objects like bottles, chairs and dining tables.
Overall, using SPB improves the Accuracy (%) from 69% to 86% in comparison with
the baseline network [14]. Varying the threshold for SPB does not effect the perfor-
mance much, but the optimal threshold is [1, 50] for both datasets.

We also evaluate our localization-similarity network with only one proposal being
the bounding box of the whole image. It also yields results better than previous methods
and validate the effectiveness of unified localization-similarity network for retrieval
tasks. The reason of this improvement is the mutual benefit of the two sub networks
(regression layers for localization and similarity embedding) in a unified network. The
precision-recall (PR) curves for PASCAL VOC07 and PASCAL VOC12 are shown in
Fig. 4. The PR curves give the holistic view of the effectiveness of our method. It can
be seen that the performance of baseline method [14] is very poor, deep retrieval (triplet
network+RPN) also have much lower precision compared to our method for all recall
values. Thus, our method outperforms previous localization based methods for object
search.

One of the challenges of evaluating object retrieval on PASCAL datasets is due to
the overlapping objects in query image. Note that, all of our analysis is based on strict
criteria for retrieval. For example, if the image has both person and sofa class and the
query object sofa is overlapping with person, then retrieved images without sofa but
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Fig. 4. PR curves for PASCAL VOC07 and PASCAL VOC12.

Table 2. Accuracy (%) of our method compared to Google reverse image search and Pinterest.

Method Our-Image size proposal Google reverse search Pinterest

Accuracy (%) 76.5 63.5 68.7

with person are considered incorrect, irrespective of the fact that person class is over-
lapping with sofa class in the focused area of the query image. The qualitative results
of our method are shown in Fig. 5. In column 3–12, the localization of database object
with respect to the query focused area is plotted with yellow boxes. For calculating
the similarity of database image with query image’s focused area, the feature descriptor
from the localized yellow boxes are only extracted. This excludes the object’s surround-
ing while ranking the images similar to query object. Our localization based retrieval
method also explains retrieval results to the user. In Fig. 5 we present some example
retrieval results of our localization-similarity network. In rows 1–5, we show the cor-
rect retrieval results with the correct localization. In row 6, one of the retrieved images
does not belong to query class because the network localizes a similar object a horse
instead of a query object which is cow, this is due to visual similarity of horse and cow
class. The explanation of results to the user is more important when the network can
inform user where it is actually looking in the target images. In row 7, the network can
explain to the user that it is looking for birds in the target images, while the actual object
in query focused area is a boat. However, after a closer look we discovered that there
are birds above the boat in the query focused area.

In Table 2, we also provide a quantitative comparison to Google reverse search and
Pinterest focused area search on 100 images sampled from PASCAL VOC07. Both
quantitative (Table 2) and qualitative (Fig. 1) results of our retrieval method demonstrate
its superiority over commercial image search systems.

3.2 Ensemble Model

We tried the ensemble of models which are trained at different thresholds. We used
the threshold values of [0, 1], [1, 50] and [50, 100]. When we evaluate the model at
these thresholds separately, we get the average accuracy of 85.85%, 86.3% and 85.3%
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respectively. Whereas, when we apply the ensemble of the average of these models, we
get the accuracy equal to 87.27%. Another way to construct the ensemble model is to
max-pool individual model, that produces 86.6% accuracy, which is almost the same as
the best performing model. These results for the average of models are better than the
individual models but do not show noticeable improvement, so we did not include this
aspect in the presented comparison.

3.3 Oxford5k and INSTRE-S1

We also compare the results for landmarks instance retrieval datasets Oxford5k
[10] with existing localization based methods. This dataset has a lot of unlabeled
∼4000/5008 images. The results are produced using image size proposal (the best
performing for this application), to justify the effectiveness of localization-similarity
network for instance retrieval. For Oxford5k dataset (which includes 4000 unlabeled
images) we are able to get comparative results to the previous methods as shown in
Table. 3, even though we used only 55 query images to finetune the network without
any data augmentation. We believe that if we can increase the number of training images
for Oxford5k dataset then the results would be a lot better.

For INSTRE dataset [20], which is an instance retrieval dataset with 100 classes,
we perform better than the previous methods. The INSTRE dataset has more than 100
images per class for training, which validates our claim that our performance becomes
better if we can increase the number of training images.

The mAP for INSTRE dataset is listed in Table 3. We are able to outperform pre-
vious region matching [12] and diffusion [7] based methods with our baseline method
which uses only the image size proposal.

Fig. 5. Some example retrieval results of our localization-similarity network. Column 1: the query
image, Column 2: the query image with the focused area marked. Columns 3–12: top-10 most
similar images (green frames mark correct retrieval, red frames wrong retrieval, and the bounding
boxes localized by our method are shown in yellow). Best viewed in colors. (Color figure online)
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Table 3. Comparison of mAP on Oxford5k and INSTRE-S1.

Table 4. Time required to perform image search in our unified network, Faster-RCNN based
retrieval method [14] and image re-ranking [2]

Method Our-Image size proposal [2] [14]

Time (seconds) 54 153 117

Our method not only yields good results but also takes less time to compute as
compared to the baseline re-ranking methods for retrieval [14] as shown in Table 4.

The results are listed for PASCAL VOC07 dataset for 2000 database images, the
set of query and database is consistent for all methods. The test time comparison of
the proposed saliency-based object detection methods as compared to state-of-the-art
object detection methods such as Fast RCNN, YOLO, Spatial Pyramid Pooling network
(SPPnet) is as follows (in seconds/image): SPPnet = 28.65; Fast RCNN = 3.99; Our =
1.4829 (VGG = 1.052+regression layer = 0.4309); YOLO = 0.51 The test runtime for
FastRCNN is 3.99, our method is computationally less costly than FastRCNN and far
better than SPPnet. We computed these test times on NVIDIA GeForce GTX1080 GPU
to ensure that it is a fair comparison.

3.4 Unknown Target Classes

To demonstrate the ability of our framework to handles unknown targets, we set up an
additional experiment in which we included an unknown “zebra” class from MSCOCO
datasets and tested its retrieval accuracy against the already trained system. The system
has not seen the examples from this class before. For the unknown “zebras” class, we
get 64% for top-5 and 80% for top-1 correct retrieval results. The important thing to note
here is the visual closeness between “horse”, “cow”, “zebra” classes but still our system
can perform well. For the unknown object retrieval case, we also tested our system for
INSTRE, an instance retrieval dataset. This small object instance retrieval dataset is
comprehensive with more than 11,000 database images. We trained the network for the
subset of the INSTRE datasets and tested it on five randomly selected unknown classes.
For these five classes, without image labels and bounding box information in the target
images, we get 61.6% accuracy for top-5 correct retrieval and 76.0% accuracy for top-1
correct retrieval. These results show the effectiveness of our method for small object
retrieval with unknown class information.
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4 Conclusion

We present a unified method based on similar object localization for image retrieval.
Our results demonstrate that the retrieval performance significantly improves by com-
bining object localization and image similarity learning into a single network rather
than perform object detection as a separate step before computing similarity. Our sys-
tem also exhibits competitive performance with the previous instance search methods
on Oxford 5k and INSTRE datasets. We also demonstrate the generalization ability of
the proposed network to unseen queries without any retraining.
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Abstract. In recent years, deep learning technique has received intense atten-
tion owing to its great success in image recognition. A tendency of adaption of
deep learning in various information processing fields has formed, including
music information retrieval (MIR). In this paper, we conduct a comprehensive
study on music audio classification with improved convolutional neural net-
works (CNNs). To the best of our knowledge, this the first work to apply
Densely Connected Convolutional Networks (DenseNet) to music audio tag-
ging, which has been demonstrated to perform better than Residual neural
network (ResNet). Additionally, two specific data augmentation approaches of
time overlapping and pitch shifting have been proposed to address the defi-
ciency of labelled data in the MIR. Moreover, an ensemble learning of stacking
is employed based on SVM. We believe that the proposed combination of strong
representation of DenseNet and data augmentation can be adapted to other audio
processing tasks.

Keywords: Music classification � Spectrogram � CNN � ResNet � DenseNet �
Deep learning

1 Introduction

With the rapid development of digital technology, the amount of online music accu-
mulates so dramatically that structuring large-scale music is becoming a fundamental
problem. Since 2000s, music information retrieval (MIR) has been widely studied for
important applications including recommendation systems of music. As one of the
main top-level descriptors (Chathuranga 2013), music genre is a kind of label generally
created by human experts and used for categorizing. However, it is impossible to label
the gigabyte music manually. Thus, automatic music genre classification has been
considered as a great challenge and valuable for MIR systems.

Most of music classification problems mainly consist of two modules. One is the
preprocessing of raw audio data, the other is the design of classifier model. As a crucial
part of the system, preprocessed data is the key to the final classification accuracy.
Generally, there are three main ways to preprocess raw audio: (1) acoustic features
extraction (Auguin 2013); (2) spectrograms transformation (Costa 2011) (3) using raw
audio (Dielman 2011). Before the blossoming of deep learning, a common way is to
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extract specific acoustic features and aggregate them as input using various machine-
learning algorithms (Ogihara 2003). However, this method requires intense engineering
effort and professional knowledge. With the fast development of deep learning, con-
volutional neural network (CNN) has received much success in image recognition and
been tried in the MIR field (Nakashika 2012). On the other hand, labelled music audio
is really deficient in this area due to high cost professional tagging of experts.

In this paper, we exploit the advanced DenseNet as the building block of CNN
architectures to boost performance of music audio classification, achieving higher
accuracy than ResNet and baseline. In the part of data processing, grayscale spectro-
grams transformed from music raw audio are used for feature engineering (Dieleman
2014). To address the shortage of labelled audio data, music-specific data augmentation
is realized with the time overlapping and pitch shifting of spectrograms. All of the
results verify that the methods we proposed achieve improvements over the state-of-
the-art models on both of the FMA-small dataset (Defferrard 2017) and GTZAN
(Sturm 2012).

This paper is structured as follows. In Sect. 2, a brief overview on related work is
provided. We then describe the feature extraction in detail in Sect. 3. Section 4 dis-
cusses our methodologies, followed by the experimental results and some discussion.
Finally, Sect. 6 provides conclusions and describes potential future work.

2 Related Work

As one of the high-level descriptors, music genre is always associated with harmonic,
rhythm, pitch and other acoustic features (Aguiar 2018). In this sense, physical
properties of audio signal have been studied for music analysis. For instance, Mel
Frequency Cepstral Coefficients (MFCCs) have been proven effective in the analysis of
structures of music signals (Mubarak 2006). Similar to other hand-crafted features,
MFCCs is still a lossy representation. In order to fully utilize the information from the
audio signal, raw audio has been directly used (Dielman 2011). However, results show
the use of raw data did not exhibit better performance than spectrograms in classifi-
cation tasks. Spectrogram retains more information than MFCCs but with lower
dimension than raw audio, which is more suitable for classification tasks (Wyse 2017).

As a typical neural network of deep learning, CNN has been extensively applied in
various image recognition tasks. Recently, CNN has been adapted for audio recogni-
tion tasks (Gwardys 2014). In this kind of tasks, audio data was first converted to 2D
spectrograms and then classified with CNN. For instance, Lee et al. (2009) applied
CNN to promote the classification accuracy of music genre and artist. And in (Choi
2016), the usual CNN network with 2D convolutional layers obtained state-of-the-art
performance at that time, which demonstrated the effectiveness of feature extraction of
CNN for diverse music classification tasks. Contrary to visual images, however, 2D
convolution of spectrograms along the frequency axis is not musically plausible to
some extent. Lately, Dieleman et al. (Dieleman 2014) introduced the network structure
with ‘1D-CNN’ to process spectrograms in music classification.
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Recently, a number of sophisticated CNN models have emerged to improve the
performance of image recognition drastically. For example, He et al. introduced ResNet
(He 2016) with skip connections enabling a very deep CNN to be effectively trained.
And Huang et al. (Huang 2017) proposed DenseNet which exploited feature reuse
through dense connections instead of skip connection. Owing to the rapid advance of
CNN in computer vision (CV), the ResNet architecture (Kim 2018) was successfully
applied for music auto tagging by processing raw audio directly. In this paper, we
explore a more advanced CNN architecture, i.e. DenseNet, to process spectrogram
instead of raw audio for music classification. To avoid over fit of network training, data
augmentation is effectively realized with the time overlapping and pitch shifting of
original spectrograms.

3 Data Processing

3.1 Input Length

Spectrogram represents spectra sequences varied along with the time axis. Spectrogram
preparation is key to successfully applying CNN on music genres classification. In this
way, the music audio tagging is reformulated as an image classification task (Schluter
2013).

To generate grayscale spectrograms of music, Sound eXchange (SoX) package has
been used. The spectrogram is with a fixed height of 128 pixels representing frequency
per frame and varied widths dependent on 50 pixels per second of audio.

Additionally, the size of the spectrogram is also a hyper-parameter. If the full-scale
spectrogram of an entire song is used, network size of CNN could be enlarged sig-
nificantly. Following prior experiments in (Tokozume 2017), time slice T ¼ 1:0� 2:5 s
is applied in this work. Thus, each slice takes approximately 2.56 s long segments.
Finally, grayscale spectrograms with 128 � 128 dimension is input for CNN training.
In the phase of evaluation, classification outputs of each slice of one song can be
ensemble as a single song-level prediction.

3.2 Data Augmentation

Data Augmentation is a technique to avoid overfit of model training by increasing the
volume of data. Based on the unique characteristics of music, two methods to augment
the data are proposed. One is the time overlapping which is an effective way in the field
of image processing. To increase the valid data size, window moving of audio signals
generates extra data by setting the overlap of 50%. And the other way is pitch shifting.
With a small change of pitch of a song, its classification still works. Thus, shifting the
pitch of songs by a half of the tone is done with SoX. To increase the diversity of the
data, extra data generated from two methods was mixed together, resulting in 3 times
more data than the original one
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Figure 1(a) illustrates 50% overlap of spectrograms and (b) compares the difference
between the origin and the pitch shifting spectrogram.

4 Methodology

Firstly, 1D CNN own less parameters and is computationally efficient (Nam 2019),
which is more suitable for music tagging because of limited dataset in this area.
Moreover, 2D convolution over frequency dimension is uninterpretable (Ulyanov
2016). Therefore, we choose 1D CNN as the basic block for spectrogram processing.
Though time-consuming feature engineering can be alleviated by end-to-end training,
the architecture of CNN network should be carefully designed for performance boost in
specific tasks. In this paper, we firstly adapt DenseNet from CV to audio processing
and compare its performance with ResNet and a regular CNN.

4.1 Basic Model

Our basic for music classification is shown in Fig. 2(a), which is inspired by (Park
2018). Gray-scale spectrograms with the size of 128 � 128 are prepared in the input
layer. Instead of the popular 2D Conv, the convolution kernel of 1D Conv spans all the
frequency of one time. As shown in Fig. 2, it mainly consists of 5 convolution layers
with the kernel size of 4. After convolution layers, max-pooling layers with filter size of
4, 2 and 1 are applied in sequence. The last convolution layer with filter size of 1 is
used instead of a fully connection layer (Lin 2014). Batch normalization and rectified

(a) Time overlapping – 50% 

(b) Pitch shifting – half tone higher

Fig. 1. Example of data augmentation techniques.
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linear unit (RELU) are applied behind each convolution layer. Before the softmax
output layer, there are two dense layers with 1024 and 8 hidden units respectively. The
dashed boxes in Fig. 2(a) are the regular CNN blocks.

4.2 Advanced Building Blocks

ResNet-Block Model. ResNet-block is inspired by residual learning (He 2016). The
basic block idea is that H xð Þ is considered as the desired underlying mapping when x is
the input, then if one hypothesizes the net can approximate a residual function, i.e.,
F xð Þ :¼ H xð Þ�x . The origin mapping becomes F xð Þþ x. Unlike (Kim 2018), we
modified the ResNet-block to adapt the spectrogram input rather than the raw audio. As
shown in Fig. 2(c), the ResNet-block contains two convolution layers. After the block,
the max pooling layer is applied. A comparison experiment has been conducted by
replacing the basic block of the black dotted box in Fig. 2(a).

DenseNet-Block Model The DenseNet-block is illustrated in Fig. 2(d). In some sense,
DenseNet (Huang 2017) increases representational power of the basic CNN and cap-
ably improve performance over ResNet in classification tasks.

Contrary to the ResNet model, transition layers and connection methods are
employed. Connectivity pattern in DenseNet is expressed x1 ¼ H1ð½x0; x1; . . .; x1�1�Þ .
the Lth layer receives the feature-maps of all former layers that is different from the
H1 xð Þ ¼ F x1�1ð Þþ x1�1, which can alleviate the gradient vanishing problem, and

(a) Main architecture            (b) Basic-block         (c) ResNet-block          (d) DenseNet-block 

Fig. 2. The proposed stacking model for music classification. (a) shows the main architecture
with 5 convolution blocks and the SVM to predict the tags. (b) denotes the basic CNN block in
the baseline model. (c)–(d) denotes the ResNet and DenseNet blocks to replace the basic one.
(Color figure online)
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feature reuse can present better performance with fewer parameters and lower com-
putational cost than ResNet. One dense-block contains two convolution layers with
filter size of 4 and the translation layer follows the dense block to prevent the channel
growing exponentially. In the same way, the DenseNet-block is used to replace the
basic block of the red dotted box in Fig. 2(a).

4.3 Ensemble of Audio Segments

During the data processing, a complete audio signal was clipped into small segments.
Each segment is then predicted by the CNN classification model. Since these sliced
segments belong to the same original audio clip, ensemble learning actually should be
used. A common approach is to vote by selecting the most predicted labels among all
segments as the final label. Inspired by (Gwardys 2014), however, we propose to use
SVM as the stacking classifier. Feature vectors can be obtained by averaging each
feature vector of each segment extracted from the trained CNN model, and handled by
SVM for final genre prediction.

5 Experiments and Results

5.1 Dataset

Our proposed architectures are experimented on two different datasets: FMA-small and
GTZAN. FMA-small dataset is a new influential music dataset to help alleviate data
scarcity problem of MIR (Defferrard 2017), which contains 8000 tracks (.mp3 format)
of 30 s per piece. There are 8 main genres with 1000 sub-classes per genre, such as
Electronic, Experimental, Folk, Hip-hop, Instrumental, International, Pop, Rock. And
most of them are with sampling rate of 44,100 Hz, bit rate 320 kb/s, and in stereo.
The GTZAN dataset consists of 1000 audio tracks of 30 s long, which contains 10
genres with 100 tracks per genre. All tracks are 22,050 Hz, Mono 16-bit audio files in .
wav format (Sturm 2012).

As described in Sect. 3, sound tracks are firstly processed into grayscale spectro-
grams and then is sliced into 10 segments with 2.56 s per one. As a result, images of
128 � 128 are input the model with 128 frequency bins as the channel. Data aug-
mentation described in Sect. 3 is also employed.

5.2 Training Details

In all experiments, model training is implemented with SGD and the learning rate of
1e−2 and the decay of 1e−6. Dropout of 0.5 is applied to the output of the full con-
nection layer. Zero padding is applied to each convolution layer to maintain its size. In
addition, mini batch of 128 samples and regularization of L2 are used to prevent the
model from overfitting.
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5.3 Results

Table 1 summarizes the performance of baseline models with different parameters on
FMA-small dataset. The kernel size of CNN cell is firstly optimized, where the model
with kernel size of 4 outperform that of 3. In terms of ensemble methods, SVM offers
higher accuracy than the voting method. When data augmentation is applied, signifi-
cant improvement is achieved. Moreover, an interesting finding in Table 1 shows that
the ResNet-block in the red box performs better than that in the black box. In our
opinion, 1D-CNN in the black box connect the entire frequency range at once, which is
different from other convolution layers to some extent.

Table 2 summarizes the results of our proposed DenseNet model compared to other
state-of-the-art methods. On the FMA-small dataset, our models outperform all the pre-
vious results. Moreover, our proposed DenseNet model performs better than ResNet one
owing to its strong feature extraction capability and cost less time to get a better result.

Table 1. Summarization of test accuracies of the Baseline and ResNet models on FMA-small
dataset. Note that k4 denotes the kernel size of 4 while k3 is of 3, data-aug represents the data
augmentation, ResNet–black denotes that the ResNet block is in the black box in Fig. 2(a), and
ResNet-red means in the red box.

Model+method Accuracy (%)

Basic (k4+voting) 59.4
Basic (k3+SVM) 61.3
Basic (k4+SVM) 63.0
Basic (k4+SVM+data-aug) 64.7
ResNet-black (k4+SVM+data-aug) 63.7
ResNet-red (k4+SVM+data-aug) 66.3

Table 2. Comparison with previous state-of-the-art models on FMA-small and GTZAN. Note
that ‘*’ denotes a round number because the accuracy is plot on the line chart but not provided.

Model FMA-small GTZAN

Transfer learning CNN (Gwardys 2014) – 78.0
MRMR (Baniya 2014) – 87.9
Transfer learning CNN (Choi 2017) – 89.9
SVM (Arabi 2009) – 90.8
Sparse representation-based classifier (Panagakis 2010) – 93.7
SVM (Defferrard 2017) 54.8 –

Transfer learning CNN (Park 2018) 56.8 –

Transfer learning CNN (Lee 2019) 51.2 (*) 92.2 (*)
Our basic model 64.7 84.0
Our ResNet model 66.7 89.5
Our DenseNet model 68.9 90.2
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Since the FMA-small dataset is published in 2017 and related experiments are not many,
we adapted ourmethod to another dataset, i.e. GTZAN to comparewithmore approaches.
Obviously, that also shows the better performance.

As can be seen, even without extra dataset, our DenseNet model performs close to
the state-of-the-art deep learning method by using transfer learning CNN (Lee 2019).
Note that our models which introducing the shortcut connections outperform (Park
2018) which using the same basic model by enhancing the representation of a layer.

6 Conclusion and Future Work

In this paper, a comprehensive study on music classification using a DenseNet deep
learning method is conducted. To overcome the shortage of labelled music audio data,
a music-specific data augmentation method is proposed with time overlapping and
pitch shifting on spectrograms. Owing to the strong feature extraction capability of
DenseNet, our stacking method achieves a state-of-the-art result on FMA-small dataset.
We believe our presented approach can be adapted to other audio processing tasks.

In the future, we will investigate our DenseNet Model more thoroughly. We plan to
investigate every layer expression and then try diverse connections. Then, we will
adapt more advanced architectures which are designed for the image and language
challenges in audio tasks.
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China.
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Abstract. Bayesian classifiers have been proven effective in many prac-
tical applications. To train a Bayesian classifier, important parameters
such as prior and class conditional probabilities need to be learned from
datasets. In practice, datasets are prone to errors due to dirty (miss-
ing, erroneous or duplicated) values, which will severely affect the model
accuracy if no data cleaning task is enforced. However, cleaning the whole
dataset is prohibitively laborious and thus infeasible for even medium-
sized datasets. To this end, we propose to induce Bayes models by clean-
ing only small samples of the dataset. We derive confidence intervals as
a function of sample size after data cleaning. In this way, the posterior
probability is guaranteed to fall into the estimated confidence intervals
with constant probability. Then, we design two strategies to compare
the posterior probability intervals if overlap exists. Extension to semi-
naive Bayes method is also addressed. Experimental results suggest that
cleaning only a small number of samples can train satisfactory Bayesian
models, offering significant improvement in cost over cleaning all of the
data and significant improvement on precision, recall and F-Measure over
cleaning none of the data.

Keywords: Bayesian classifiers · Data cleaning ·
Probability intervals

1 Introduction

Bayesian classifiers are statistical classifiers. They can predict class membership
probabilities, that is, the probability that a given sample belongs to a particu-
lar class [4]. Naive Bayesian classifiers assume that attributes are independent
with each other, which simplifies the computation involved and, in this sense, is
considered naive [8]. Semi-naive Bayesian classifiers consider the dependencies
among attributes. In order to avoid massive calculation, semi-naive Bayesian
classifiers assume one attribute depends on only another one [10].
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An industry survey shows that more than 25% of the critical data in top
companies contained significant data errors [11]. Real-world data are commonly
integrated from multiple sources, and the integration process may lead to a
variety of data errors, such as incorrect values and duplicate representations of
the same real-world entity [5]. While some domain-specific softwares have been
developed for data cleaning, it is widely recognized that, in order to obtain
reliable results, many cleaning techniques need humans to get involved. Thus,
the procedure of data cleaning is often costly and time-consuming [1].

As will be shown shortly in Sect. 3.1, training a Bayesian classifier with dirty
data may jeopardize classification accuracy dramatically. In order to deal with
dirty data in Bayesian modeling, we usually have the following options: (1) Clean-
ing the whole dirty data, which leads to huge cost and, (2) Applying point esti-
mation, namely, drawing a sample set and then cleaning the samples to train a
Bayesian model. While in this case we decrease the cleaning cost, no theoretical
guarantee is provided over the consistency between the models trained by point
estimation and induced with the whole clean training set.

To this end, we propose IBCM, a probability-Interval-based Bayesian Classi-
fier Modeling framework. With IBCM, we derive confidence intervals as a func-
tion of sample size for class conditional and prior probabilities after data clean-
ing. In this way, the posterior probability is guaranteed to fall into the estimated
confidence intervals with constant probability. Two strategies are introduced to
compare the overlapped posterior probability intervals. Both naive and semi-
naive Bayes methods are supported in our IBCM framework. To verify the effec-
tiveness of IBCM, we conduct extensive experiments on four real datasets. The
results suggest that cleaning only a small number of samples can train satisfac-
tory Bayesian models, offering significant improvement in cost over cleaning all
of the data and significant improvement on precision, recall and F-Measure over
cleaning none of the data. It is worth nothing that we focus on Bayesian classifier
modeling on dirty data from the efficiency point of view. How to build a more
accurate and effective Bayesian classifier is beyond the scope of this paper.

The paper is organized as follows. Section 2 introduces the preliminaries and
related work. We discuss IBCM in Sect. 3 and the two interval comparison strate-
gies are presented in Sect. 4. We give the experimental results and discussions in
Sect. 5. Section 6 concludes the paper.

2 Preliminary and Related Work

2.1 Naive Bayesian Classifier

The naive Bayesian classifier works as follows. Let T be a training set of samples,
each with their class labels. There are k classes, C1, C2, . . . , Ck. Each sample is
represented by a n-dimensional vector, X = {x1, x2, . . . , xn}, depicting n mea-
sured values of the n attributes, A1, A2, . . . , An, respectively. Given a sample X,
the classifier will label X as the class with the highest posterior probability, i.e.,
the class that maximizes P (Ci|X). By Bayes’ theorem, P (Ci|X) = P (X|Ci)P (Ci)

P (X) .
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As P (X) is the same for all classes, the goal is reduced to compute P (X|Ci)P (Ci)
for each Ci.

In order to reduce computation overhead in evaluating P (X|Ci)P (Ci),
the assumption of class conditional independence is made, i.e., P (X|Ci) =∏n

k=1 P (xk|Ci). The class conditional probability P (x1|Ci), P (x2|Ci), . . .,
P (xn|Ci) can easily be estimated from the training set. Naive Bayesian classifier
treats discrete and continuous attribute somewhat differently. If Ak is discrete
attribute, then P (xk|Ci) is modeled by a single real number between 0 and 1
which represents the probability that the attribute Ak will take on the particular
value xk in the case of Ci. If Ak is a continuous attribute, then for each class Ci

μCi
follows a normal distribution with mean μ.

2.2 Semi-naive Bayesian Classifier

The posterior probability is calculated as P (Ci|x1, x2) = P (Ci|x2) × P (x1|Ci,x2)
P (x1|x2)

for semi-naive Bayesian classifier. The semi-naive Bayesian classifier uses the
same method as the naive Bayesian classifier to compute parameters for dis-
crete attributes. For two continuous attributes, semi-naive Bayesian classifier
assumes that the two continuous attributes obey a two-dimensional normal dis-
tribution. The distribution of random variables X and Y that satisfy the fol-
lowing probability density distribution is called a two-dimensional normal dis-
tribution. (1) f(x, y) = θ × exp(η × ε). (2) θ = 1

2πσ1σ2

√
1−ρ2

. (3) η = − 1
2(1−ρ2) .

(4) ε = (x−μ1)
2

σ2
1

− 2ρ(x−μ1)(y−μ2)
σ1σ2

+ (y−μ2)
2

σ2
2

. ρ is correlation coefficient, and dif-
ferent ρ corresponds to different two-dimensional normal distribution.

2.3 Data Cleaning

It is becoming easier for enterprises to store and acquire large amounts of data.
These datasets can facilitate decision making, richer analytics, and increasingly,
provide training data for Machine Learning. However, data quality remains to
be a major concern, and dirty data can lead to incorrect decisions and unreli-
able analysis. Examples of common errors include missing values, typos, mixed
formats, replicated entries of the same real-world entity [?], and violations of
rules [16]. Analysts must consider the effects of dirty data before making any
decisions, and as a result, data cleaning is a key area of database research [14].
In this paper, we focus on two types of data errors: value errors and duplication
errors.

Data cleaning is a broad area that encompasses extraction, deduplication,
schema matching, and many other problems in relational data. While significant
progress has been made in data cleaning, cleaning the entire data is still time
consuming [13,17], and often requires user confirmation or crowdsourcing [3,15]
to achieve satisfactory data quality. Thus, data cleaning is generally laborious
and costly for large datasets.
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3 IBCM Framework

3.1 Motivation

The following example shows that training Bayesian classifiers with dirty data
may jeopardize classification accuracy.

Table 1. Toy example for Bayesian classifier modeling

Weight Color Shape Good Apple #dup

111(106) green irregular No 2(1)

152 red irregular Yes 1

148 green(red) circle Yes 1

145 red(green) circle Yes(No) 1

147 green irregular No 2(1)

118 red circle Yes 1

135 green circle(irregular) No 1

121 red circle(irregular) No 3(1)

109 green circle No 1

138 red irregular(circle) Yes 1

In Table 1, the values in bold font indicate the correct values after data clean-
ing. Good Apple is the class attribute, and Weight, Color, Shape are observable
attributes. Among these attributes, Weight is continuous, and Color, Shape and
Good Apple are discrete. #dup represents the number of tuples duplicated.

Consider the dirty data in Table 1 and choose the naive Bayesian classi-
fier for classification. We use the correct and dirty versions in Table 1 to train
two Bayesian models, and then compare the classification accuracy of the two
models. Assume that we have one test data {126, red, circle}. We can calcu-
late the posterior probability P (No|Weight = 126, red, circle) = 0.0012 and
P (Yes|Weight = 126, red, circle) = 0.0042 with the correct values. The test
data {126, red, circle} belongs to the class “Yes”. In contrast, we can calcu-
late the posterior probability P (No|Weight = 126, red, circle) = 0.0040 and
P (Yes|Weight = 126, red, circle) = 0.0019 with the dirty data. The test data
{126, red, circle} belongs to the class “No”. We can see that dirty data lead to
the change of posterior probability and affect the result of classification.

In order to deal with the dirty data in Bayesian modeling, we usually have
the following two options: (1) Cleaning the whole dirty data, which leads to
huge cost and, (2) Applying point estimation, namely, drawing a sample set
and then cleaning the samples to train a Bayesian model. While in this case
we decrease the cleaning cost significantly, no theoretical guarantee is provided
over the consistency between the models trained by point estimation and with
the whole clean training set. To this end, we propose IBCM, a novel approach
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utilizing the Central Limit Theorem (CLT) and interval estimation to ensure
that the posterior probability falls into the estimated confidence interval with
constant probability.

3.2 Parameter Estimates Without Data Errors

We first introduce the parameter estimation using sampled data without data
errors. We start with the dataset D of N tuples. From D, we draw a subset S of
i.i.d samples with size K. Consider the discrete attribute in D. Suppose the pro-
portions of a certain attribute value in D and S is denoted by m and m′, respec-
tively. According to the CLT, m′ approximately follows the normal distribution
N(m, m(1−m)

K ). Thus, we can define a confidence interval of m parameterized by

α (e.g., 95% indicates Zα/2 = 1.96): m′ ± Zα/2

√
m′(1−m′)

K .
Suppose we want to estimate the mean of a continuous attribute in D. We

can calculate the mean of the continuous attribute in S and the CLT states that
the estimate follows a normal distribution N(mean(D), var(D)

K ). Thus, we can
define a confidence interval of mean(D) parameterized by α (e.g., 95% indicates

Zα/2 = 1.96): mean(S) ± Zα/2

√
var(S)

K .

3.3 Estimation with Data Errors

Suppose Dclean is the correct version of the dirty data population D. We are
interested in estimating the distribution of attributes in Dclean. However, since
we do not have the cleaned data in the first place, we cannot directly sample
from Dclean. We must draw our sample from the dirty data D and then clean
the sample. We consider two types of errors: value error and duplication error.
Reference [7] provides methods for dealing with value errors and duplication
errors.

Value errors are caused by incorrect attribute values. These errors do not
affect the size of the population, i.e., |D| = |Dclean|. Furthermore, correcting a
value error only affects an individual tuple. Consequently, if we correct a tuple,
we still preserve the uniform sampling properties of the sample, S. In other
words, the probability that a given tuple is sampled does not change due to data
cleaning.

Since duplication errors affect multiple tuples and the size of Dclean is differ-
ent from the size of D, they do affect the uniformity of sampling. The duplicated
data is more likely to be sampled and thus be over-represented in the estimate.
Therefore, modification in estimates is needed. For each tuple ti ∈ S, let mi

denote its number of duplicates in D. (1) For discrete attribute, The cleaned
value of ti is equal to the number of dirty value of ti divided by mi. (2) For
continuous attribute, the result has to be scaled by the duplication rate d = K

K′ ,
where K ′ =

∑n
i=1

1
mi

. The cleaned value is equal to the dirty value times d, and
then divided by mi. [7] proves that the above treatment of these two types of
errors is unbiased.
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Getting back to the example in Table 1 and assuming the test data is {126,
green, irregular}, we will show how the confidence intervals for prior and class
conditional probabilities are calculated in the presence of dirty data. For con-
tinuous attribute, assume we want to calculate the class conditional prob-
ability P (Weight = 126|No). It is easy to see that the duplication rate is
d = 10

1
2+

1
1+...,+ 1

1
= 1.2. The values of cleaned column Weight under the con-

dition of category No is equal to { 1.2×106
2 , 1.2×145

1 , . . . , 1.2×109
1 }. We calculate

mean(S) and var(S) for cleaned column Weight under the condition of cate-

gory No and return mean(S) ± Zα/2

√
var(S)

K as the estimated confidence inter-
val, where Zα/2 is a constant derived from the user-specified confidence level. For
discrete attribute, assume we want to calculate the class conditional probabil-
ity P (Color = green|No). Since we needn’t to calculate the duplication rate for
discrete attribute, we can easily obtain the number of green value for the clean
column Color under the condition of category No, namely { 1

2 , 1
1 , . . . , 1

1}. We
calculate m′ for the value of green in clean column Color under the condition

of category No and return m′ ± Zα/2

√
m′(1−m′)

K as the estimated population
proportion interval, where Zα/2 is a constant derived from the user-specified
confidence level.

3.4 Calculation of Posterior Probability Intervals

The posterior probability is equal to the product of the class conditional prob-
ability and the prior probability. In order to get the two endpoints of each pos-
terior probability interval, we have to obtain the two endpoints of each class
conditional and prior probability interval first. Since the confidence interval of
the discrete attribute is just the probability interval, we can directly use the
value of the two endpoints of the interval for multiplication.

For continuous attributes, identifying the two endpoints is more complicated
since we assume that attributes are normally distributed, and the mean value is
an interval. Thus, we actually obtain a family of density functions. For the sake

of convenience, we let u = mean(S), t = Zα/2

√
var(S)

K . The confidence interval
of mean(D) is [u − t, u + t]. We will show how we calculate the probability
interval for continuous attribute for the naive and semi-naive Bayesian classifier
respectively.

In the naive Bayesian classifier, given an x (x is determined by test data,
namely a certain value of continuous attribute in the test data), we calculate
the maximum value and minimum value of the density function according to
the following two cases. (1) If x falls within [u − t, u + t], the maximum value is
taken at the midpoint of the interval, namely u, and the minimum value must
be taken at either the left endpoint u − t or the right endpoint u + t of the
interval. (2) If x does not fall within [u − t, u + t], then the density function will
be either monotonically increasing or monotonically decreasing on [u − t, u + t].
If the density function is monotonically increasing on [u− t, u+ t], the maximum
value is taken at u + t, and the minimum value is taken at u − t. If the density
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ALGORITHM 1. Computing probability intervals with IBCM
Given a sample S and columns A1, A2, . . . , Ak;
Clean the sample for value errors and duplication errors;
for i = 1; i ≤ k; i + + do

if Ai is continuous attribute then
Get the confidence interval of mean(D);

return mean(S) ± Zα/2

√
var(S)

K ;

Convert the confidence interval into the probability interval;

end
else

Get the confidence interval of m;

return m′ ± Zα/2

√
m′(1−m′)

K ;

The confidence interval m′ ± Zα/2

√
m′(1−m′)

K is the probability interval;

end

end
Calculate posterior probability intervals;

function is monotonically decreasing on [u−t, u+t], the maximum value is taken
at u − t, and the minimum value is taken at u + t.

In the semi-naive Bayesian classifier, given an x and a y (x and y are deter-
mined by test data, namely two values of two different continuous attributes in
the test data), we will first rewrite f(x, y) as a function of f(μ1, μ2) by sym-
metry. We let [u1 − t1, u1 + t1] and [u2 − t2, u2 + t2] be the confidence interval
of two mean values. We calculate the first order partial derivative with respect
to μ1 and μ2 and set ∂f

∂μ1
= 0, ∂f

∂μ2
= 0. Thus, we can easily solve for μ1 and

μ2. If μ1 falls within [u1 − t1, u1 + t1] and μ2 falls within [u2 − t2, u2 + t2], we
should compare (μ1, μ2), (u1 − t1, u2 − t2), (u1 − t1, u2 + t2), (u1 + t1, u2 − t2)
and (u1 + t1, u2 + t2). By comparing the values of the above five points in the
density function, we can get the maximum value and minimum value of the
density function. If μ1 does not fall within [u1 − t1, u1 + t1] or μ2 does not fall
within [u2 − t2, u2 + t2], we should compare (u1 − t1, u2 − t2), (u1 − t1, u2 + t2),
(u1+ t1, u2− t2) and (u1+ t1, u2+ t2). By comparing the values of the above four
points in the density function, we can get the maximum value and minimum
value of the density function.

Once the probability intervals for class conditional and prior probabilities are
obtained, calculating the posterior probability intervals is trivial. To sum up, we
present the procedure of IBCM in Algorithm 1. As shown in Algorithm 1, for
continuous attribute, we need to convert the confidence interval of mean(D)
into a probability interval following the aforementioned discussion. For discrete
attribute, the confidence interval can be directly used as the class conditional or
prior probability intervals, because the confidence interval of discrete attribute
is the probability interval. Therefore, the posterior probability interval can be
obtained by multiplying the class conditional probability intervals with the prior
probability intervals (the product of two intervals is equal to multiply the left
endpoints and the right endpoints of these two intervals respectively).
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3.5 Theoretical Guarantee

As discussed earlier, for discrete and continuous attributes, the class conditional
probability or prior probability fall into the estimated interval with confidence
level α.

Theorem 1. The probability that the true posterior probability falls into the
posterior probability interval is greater than or equal to αn (n is the number of
attributes involved, typically α = 0.95).

Proof. Since we only care about the classification problem, the posterior prob-
ability is equal to the class conditional probability times the prior probabil-
ity. Let B be the posterior probability, and let A1 . . . An be the class condi-
tional probability. According to Bayes’ theorem, we have the equation P (B) =
P (A1)P (A2) . . . P (An) (we ignore the prior probability since they are same for
all cases). We know P (B) and P (A1)P (A2) . . . P (An) are probability intervals.
We also know A1 . . . An have a alpha probability of falling within their respective
probability interval. Thus, the worst probability that B falls into P (B) is equal
to αn.

4 Interval Comparison

In this section the problem of comparing the probability intervals with overlaps
is considered.

4.1 BoL Strategy

Suppose the two probability intervals are a = [aL, aU ] and b = [bL, bU ]. In
addition, we define the lengths of the two intervals as L(a) = aU − aL and
L(b) = bU − bL. Let P (a ≥ b) the possibility of a ≥ b. As discussed in [2],
P (a ≥ b) is defined as P (a ≥ b) = max[0,L(a)+L(b)−max(0,bU −aL)]

L(a)+L(b) , which has the
following properties: (1) If P (a ≥ b) = P (b ≥ a), then P (a ≥ b) = P (b ≥ a) = 1

2 .
(2) P (a ≥ b) + P (b ≥ a) = 1. (3) If a ≥ b, then P (a ≥ b) ≥ 1

2 . If P (a ≥ b) ≥ 1
2 ,

then a ≥ b. Property (3) can be used as the criteria for comparing two probability
intervals.

Theorem 2. If a ≥ b, then the midpoint of a is greater than or equal to the
midpoint of b.

Proof. For the two intervals a = [aL, aU ] and b = [bL, bU ], P (a ≥ b) =
max[0, aU −aL +bU −bL −max(0, bU −aL)]/(aU −aL +bU −bL) by definition. If
a ≥ b, then P (a ≥ b) ≥ 1

2 , which means max[0, aU −aL + bU − bL −max(0, bU −
aL)]/(aU −aL+bU −bL) ≥ 1

2 . Due to aU −aL+bU −bL−max(0, bU −aL) ≥ 0, we
can simplify the inequality as aU −aL+bU −bL−max(0, bU −aL)/(aU −aL+bU −
bL) ≥ 1

2 . Through the transposition, we obtain aU −aL+bU −bL

2 ≥ max(0, bU −aL).
If bU − aL ≤ 0, then the above inequality is permanent establishment, which
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means the interval a is constantly greater than or equal to the interval b. If
bU −aL > 0, then we can obtain the following inequality aU −aL+bU −bL

2 ≥ bU −aL.
Through the transposition, we can finally get the inequality aL+aU

2 − bL+bU

2 ≥ 0.
It states clearly that the midpoint of the interval a is greater than or equal to
the midpoint of the interval b.

Theorem 2 indicates that interval comparison is closely related with the com-
parison of the corresponding midpoints under the BoL strategy. In practice, using
the BoL strategy makes interval comparison easier. As long as we know the two
endpoints and the length of each interval, we can do interval comparison for
overlapped posterior probability intervals.

4.2 BoAR Strategy

In BoAR strategy, we assume the true probabilities obey uniform distribution
in a and b respectively, which are independent with each other. Therefore, the
possible relationship between a and b can be transformed into the following
problem: Find the value u and v randomly drawn from interval a and interval
b, and then calculate the probability of u greater than or equal to v, that is,
P (a ≥ b). The joint probability density function h(u, v) of the two-dimensional
random variable (u, v) is h(u, v) = 1

(aU −aL)(bU −bL)
.

Fig. 1. Six cases for the probability density functions of u and v

In Fig. 1, x-coordinate indicates the data range of u, and y-coordinate indi-
cates the data range of v. By the relationship between the boundary points of u
and v, and the position relation between the boundary region and the line y = x,
the probability density functions of u and v can be classified into six cases [6].
The probability P (a ≥ b) is the ratio of the shaded area to the rectangular area
in Fig. 1.
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According to the six cases for the probability density of u and v, we can
figure out the formula of the possibility for each case. (1) bL ≤ aL: (a) bU ≤ aL,
the distribution of h(u, v) is shown in Fig. 1(a). We can get P (a ≥ b) = 1. (b)
aL < bU ≤ aU , the distribution of h(u, v) is shown in Fig. 1(b). We can get

P (a ≥ b) = 1 − 1
2
(bU −aL)

2

L(a)L(b) . (c) bU > aU , the distribution of h(u, v) is shown

in Fig. 1(c). We can get P (a ≥ b) = 1
2
(aL+aU −2bL)

L(b) . (2) bL > aL: (a) aU ≤ bL,
the distribution of h(u, v) is shown in Fig. 1(d). We can get P (a ≥ b) = 0. (b)
bU ≤ aU , the distribution of h(u, v) is shown in Fig. 1(e). We can get P (a ≥ b) =
1
2
(2aU −bU −bL)

L(a) . (c) bU > aU > bL, the distribution of h(u, v) is shown in Fig. 1(f).

We can get P (a ≥ b) = 1
2
(aU −bL)2

L(a)L(b) . As in BoL strategy, a ≥ b if P (a ≥ b) ≥ 1
2 .

5 Experiments

5.1 Experimental Settings and Datasets

In our experiments, we adopt three performance measures commonly used in
machine learning, i.e., Precision, Recall and F-Measure. We evaluate the efficacy
of our approach by controlling the following parameters: (1) Error%: The number
of tuples affected by the error, ranging from 0% (all of the tuples clean) to 100%
(all of the tuples dirty) for value and duplication errors. (2) Sampling Ratio%:
The proportion of tuples that are sampled from the entire dataset.

We compare IBCM with either cleaning none of the data (AllDirty) or clean-
ing all of the data (AllClean) for naive and semi-naive Bayesian classifier. We
used the following four datasets in the experiments.

(1) The SUSY dataset is from the UCI Machine Learning Repository. The data
in SUSY dataset has been produced by using Monte Carlo simulations. The
SUSY dataset contains about 5,000,000 rows with 17 feature columns and
1 categorical column.

(2) The Adult dataset is from the UCI Machine Learning Repository, which has
census information. The Adult dataset contains about 48,842 rows with 14
feature columns and 1 categorical column. In the 14 feature columns of the
Adult dataset, 6 feature columns are continuous, and the others are discrete.

(3) The Letter dataset is from the UCI Machine Learning Repository. The Letter
dataset contains about 20,000 rows with 16 feature columns and 1 categorical
column. All of the columns in the Letter dataset are discrete.

(4) The Bank dataset is related with direct marketing campaigns of a Por-
tuguese banking institution. The Bank dataset contains about 45,224 rows
with 16 feature columns and 1 categorical column. In the 16 feature columns
of the Bank dataset, 3 feature columns are continuous, and the others are
discrete.

Due to space limitation, we only report the results for SUSY dataset since it
is of the largest size. The similar trends are observed for all the other datasets.
The Naive Bayesian classifier is used as the default unless stated otherwise.
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5.2 BoL vs. BoAR

We compare two interval comparison strategies in fixed error rate (30%) and
sampling ratio (10%).

Table 2. BoL vs. BoAR for the SUSY dataset

Precision Recall F-Measure

BoL 0.7341 0.9066 0.7843

BoAR 0.7289 0.9235 0.7919

In Table 2, we can see that the recall and F-Measure of BoAR strategy are
better than those of BoL strategy, respectively. The precision of BoAR strategy
is slightly lower than that of BoL strategy. Since BoL strategy do not utilize
the distribution within the probability interval, the effect of BoL strategy is less
accurate than that of BoAR. In the remaining experiments, BoAR is used as the
default since it is superior to the BoL strategy.

5.3 IBCM with Different Error Ratios

We evaluated IBCM for a fixed sample size, and for each type of error, we varied
the error percentage. For our experiments, we cleaned 10% of the training set,
and evaluated the precision, recall and F-Measure.

(a) Precision (b) Recall (c) F-Measure

Fig. 2. Results with different error ratios for the SUSY dataset

In Fig. 2(a), one can observe that the precision for dirty training set drops
dramatically as the error rate increases. We repeated the same experiment for
recall and F-Measure in Figs. 2(b) and (c), and then observed similar trends.
Thus, using dirty data in Bayesian classifier modeling will get inaccurate results.
However, with IBCM, we can see the precision, recall and F-Measure improve
significantly compared with AllDirty. Therefore, IBCM appears to be more sta-
ble, that is, its performance is not dependent on the rate of errors. To sum up,
IBCM is robust and returns more accurate results, regardless of the proportion
of errors in the data set.
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5.4 IBCM with Different Sample Sizes

We evaluated IBCM for a fixed proportion of errors and varied the sampling
ratio. In addition, we uniformly sampled from the dataset and compared IBCM
with AllClean and All Dirty. For the following experiments, we set a fixed error
rate (30%), and evaluated the precision, recall and F-Measure.

(a) Precision (b) Recall (c) F-Measure

Fig. 3. Performance of IBCM-N with different sampling ratios for the SUSY dataset

In Fig. 3, IBCM-N stands for applying naive Bayes method in the IBCM
framework. We can see that as the sample size increases, the precision, recall
and F-Measure for IBCM-N, AllDirty and AllClean almost have no change.
The most likely reason is that when the number of samples reaches a certain
threshold, the statistical probability tends to be stable. Results in Fig. 3 suggest
that IBCM can quickly converge to the optimum and outperform AllDirty even
though only a small number of sampled are cleaned. Particularly, we find that
after cleaning only 6000 tuples (0.15% of all tuples), we are able to estimate more
accurately than AllDirty. In addition, we observe that the effect of cleaning 0.15%
for AllDirty is close to the effect of AllClean. As we all know, data cleaning is
laborious and costly because many data cleaning techniques need humans to
get involved in order to obtain reliable results. Therefore, IBCM achieves better
results by cleaning only a small number of samples, which greatly improves the
classification performance of Bayesian classifier and reduces the cleaning cost
significantly.

5.5 Semi-naive Bayes Method

We also evaluated the semi-naive Bayes method in our IBCM framework with
a fixed error rate (30%). When using semi-naive Bayes method, we choose two
attributes that are actually related. It is worth noting that our purpose is not to
compare the classification accuracy of the naive and semi-naive Bayes methods,
but to illustrate that IBCM supports both methods well.

In Fig. 4, IBCM-S stands for applying the semi-naive Bayes method in the
IBCM framework. We can see that using the semi-naive Bayes method to cal-
culate internal parameters for two attributes which are actually correlated, the
precision, recall and F-Measure improves significantly compared with the naive
Bayes method. As expected, IBCM performs as well as AllClean, which means
the proposed method supports both the naive and semi-naive Bayes methods.
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(a) Precision (b) Recall (c) F-Measure

Fig. 4. Performance of IBCM-S with different sampling ratios for the SUSY dataset

6 Conclusion

In this paper, we present IBCM, a novel approach that cleans only small samples
of the dataset to train a Bayesian model. Our analysis and experimental results
suggest that a few cleaned samples can train a good Bayesian model, offering
significant improvement in cost over cleaning all of the data and significant
improvement on precision, recall and F-Measure over cleaning none of the data.

Acknowledgment. The work reported in this paper is partially supported by NSFC
under grant number 61370205 and NSF of Xinjiang Key Laboratory under grant num-
ber 2019D04024.
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Abstract. Human face image contains abundant information including
expression, age and gender, etc. Therefore, extracting discriminative fea-
ture for certain attribute while expelling others is critical for single facial
attribute analysis. In this paper, we propose an adversarial facial expres-
sion recognition system, named expression distilling and dispelling learn-
ing (ED2L), to extract discriminative expression feature from a given
face image. The proposed ED2L framework composed of two branches,
i.e. expression distilling branch ED2L-t and expression dispelling branch
ED2L-p. The ED2L-t branch aims to extract the expression-related fea-
ture, while the ED2L-p branch extracts the non-related feature. The dis-
entangled features jointly serve as a complete representation of the face.
Extensive experiments on several benchmark databases, i.e. the CK+,
MMI, BU-3DFE and Oulu-CASIA, demonstrate the effectiveness of the
proposed ED2L framework.

Keywords: Facial expression recognition · Feature distilling ·
Feature dispelling · Adversarial learning

1 Introduction

Facial expression is one of the most important characteristics for people to
express emotion and interact with others. In the field of computer vision and
machine learning, numerous studies have been conducted on the facial expression
recognition (FER) due to its practical importance in sociable robotics, medical
treatment, driver fatigue surveillance, and many other human-computer inter-
action systems [1]. In [2], Ekman and Friesen firstly defined six basic emotions,
including anger, disgust, fear, happiness, sadness and surprise. Contempt was
subsequently added as one of the basic emotions [3].
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Fig. 1. Overview of our approach. A facial image contains abundant information. Our
approach consists of two branches, which separate expression-related and non-related
features for facial expression recognition by adversarial learning.

Current FER systems in the literature can be classified into two categories
according to their feature extraction methods: hand-crafted features based meth-
ods and deep learning based methods. Majority of hand-crafted features based
methods employed features such as LBP-TOP [4] and Gabor [5] to represent
a given image. The extracted features are then used to classify facial expres-
sions by Support Vector Machine (SVM) [6] or Nearest Neighbor classifier. Zhao
and Pietikainen [4] proposed the LBP-TOP operator for expression recogni-
tion, which extracts co-occurrence features by computing concatenated LBP
histograms from three orthogonal planes. Xie et al. [5] employed the Gabor sur-
face feature (GSF) to represent the facial expression and SVM for classification.
Since the extraction of hand-crafted features is separated from the training of
classifier, these methods may lose useful facial information and achieve limited
performance.

To extract sufficient and representative features, the deep learning based
methods (e.g. IACNN [7] and DTAGN [8]) were adopted to facial expression anal-
ysis. Meng et al. [7] proposed an identity-aware CNN network to capture both
expression-related and identity-related information, which achieved 95.37% accu-
racy on the CK+. Jung et al. [8] proposed the DTAGN composed of two different
deep networks to extract temporal appearance feature from image sequences and
temporal geometry feature from temporal facial landmark points, respectively.
Although the performance of these methods are better than the hand-crafted
features based methods, their capacities are still limited. Because a human face
contains various attributes, e.g. age, skin color and gender, these expression fea-
tures may be confused with other facial attributes related features.

With consideration to the aforementioned issues, some scholars tried to
extract facial expression feature by comparing the differences between query
face image and neutral face image. Yang et al. [9] proposed a De-expression
Residue Learning (DeRL) method to extract expressive component (the dif-
ference between neutral expression and other expressions). The DeRL com-
posed of two stages: First, a generator is trained using cGAN [10] to regen-
erate the neutral face image for a facial expression image. Then, the expression
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information contained in the intimidate layers of the generative model was cap-
tured and concatenated for facial expression recognition. Since the DeRL method
contains two stages, the performance of the generative model in the first stage
has a great impact on that of the FER in the second stage. Liu et al. [11] pro-
posed a distilling and dispelling auto-encoder (D2AE) framework to perform
face editing. Its encoder contains two branches: identity-distilling and identity-
dispelling branches, to extract the identity information and the complementary
facial information, respectively. Features in the two streams represent different
information of a face, which were then used by the decoder to manipulate facial
attributes.

In this paper, inspired by the success of the DeRL [9] and D2AE [11], we
propose an end-to-end adversarial expression distilling and dispelling learning
(ED2L) framework for facial expression recognition, as depicted in Fig. 1. Sim-
ilar to Liu et al. [11], the proposed ED2L have two branches, i.e. the expres-
sion distilling and dispelling branches. Since the facial expression database is
much smaller than those databases for face identification, the facial expression
database is not large enough to train complex face identification network. We
use SpherefaceNet-20 [12] instead of Inception-ResNet [13] as the backbone of
our framework, which makes our network structure much lighter than D2AE.
The model parameter size of D2AE is about 20 times larger than that of our
approach, which saves computational resources and brings about a faster conver-
gence during training our framework. In addition, Additive Margin Softmax [14]
is used in our expression distilling branch as the loss function. Also, as shown
with the purple dotted arrow in Fig. 2, the optimization of lpe in the expression
dispelling branch updates Base net, Bθp and dispeller simultaneously. The pro-
posed ED2L framework aims to separate discriminative expression feature from
other face information. Our main contribution can be summarized as follows:

• A adversarial ED2L framework is proposed to disentangle expression-related
feature from a given face.

• The adversarial learning of the proposed ED2L framework ensures the effec-
tive extraction of the expression-related and non-related features.

• The automatically learned expression-related feature achieves competitive
performance in several benchmark databases.

2 Methods

In this section, we introduce the proposed ED2L framework. As visualized in
Fig. 2, the entire framework consists of three parts, the base net Sθ and two
parallel branches: expression distilling branch ED2L-t and expression dispelling
branch ED2L-p. Given a face image x, a variety of face attribute information
Sθ(x) is extracted by the base net Sθ. Then, Sθ(x) is fed into expression distilling
branch Bθt and expression dispelling branch Bθp to further extract expression-
related and non-related features, respectively. The expression-related feature
ft ∈ RNt and non-related feature fp ∈ RNp jointly serve as a complete rep-
resentation of the face.
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Fig. 2. The expression distilling and dispelling framework. (Color figure online)

2.1 Base Net

Adapted from SpherefaceNet-20 [12], the architecture of our framework is
demonstrated in Table 1. Conv1, Conv2 and Conv3 denote convolutional blocks
that contain multiple convolutional layers and residual units. [3 × 3, 64] × 2
denotes two cascaded convolution layers with 64 filters of size 3 × 3, and S-2
denotes stride 2 in the down sample layer. Each convolutional layer is followed
by a batch normalization layer and a PReLU [15] layer. FC-256 denotes a fully
connected layer with 256 neurons.

2.2 Expression Distilling Branch

We propose the expression distilling branch ED2L-t to extract discriminative
expression-related information ft. As revealed in Fig. 2, ft is extracted using the
subnet Bθt after the base net.

ft = Bθt(Sθ(x)) (1)

Then, ft is mapped by a non-linear function Additive Margin Softmax [14],
defined in Eq. (2),

yt =
es(̇WT

yt
ft−m)

e
s(̇WT

yi
t

ft−m)
+

∑c
j=1,j �=yi

t
esWT

j ft

(2)

where yt ∈ RNt is an Nt-dimensional vector, which represents the probabilities
of belonging to the corresponding class, m and s are two hyper-parameters of the
additive margin softmax which denote the margin among categories and scaling
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Table 1. Architectures of the proposed ED2L framework.

Components Layers Configurations

Base net Conv1 [3 × 3, 32] × 1, S-2 [3 × 3, 32; 3 × 3, 32] × 1

Conv2 [3 × 3, 64] × 1, S-2 [3 × 3, 64; 3 × 3, 64] × 2

Conv3 [3 × 3, 128] × 1, S-2 [3 × 3, 128; 3 × 3, 128] × 4

Expression
distilling branch

Bθt [3 × 3, 256] × 1, S-2 [3 × 3, 256; 3 × 3, 256] × 1 FC-256

Classifier #Expression Category

Expression
dispelling branch

Bθp [3 × 3, 256] × 1, S-2 [3 × 3, 256; 3 × 3, 256] × 1 FC-256

Dispeller #Expression Category

factor, respectively. The classification loss lte is computed by the probability
vector yt ∈ RNt , where i denotes the ground truth index.

lte = − log yi
t (3)

The back-propagation route of lte optimization including the expression distilling
branch Bθt and base net Sθ is indicated with the red dotted arrow in Fig. 2.

2.3 Expression Dispelling Branch

Similar to the ED2L-t, the structure of expression dispelling branch ED2L-p
composed of a subnet Bθp and an expression dispeller. The ED2L-p inhibits
expression-related feature and extracts the non-related feature fp by the subnet
Bθp following the base net.

fp = Bθp(Sθ(x)) (4)

In order to ensure that the ED2L-p can extract expression non-related feature, an
adversarial supervised training method composed of two different loss functions
lae and lpe is employed.

The cross entropy loss lae = − log yi
p is leveraged to supervise the train-

ing of the expression dispeller based on yp, which is computed by yp =
softmax(Wpfp+bp). Note that the gradient of lae is only back-propagated to the
expression dispeller and does not update the previous layers, which is different
from lte.

lpe is proposed to fool the training of expression dispeller yp. In other words,
lpe is required to be constant over all expressions and equal to 1

N . Thus, the
optimization goal is equivalent to minimize the negative entropy of the predicted
expression distributions, where N denotes the number of expression categories.

lpe = − 1
N

N∑

j

log yj
p (5)
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The optimization of lpe updates the expression dispelling branch Bθp and the
base net Sθ.

The sum of lae and lpe constitutes the total loss function of the expression
dispelling branch. Note that yp of the feature dispelling branch is not used to
predict the expression category.

2.4 Objective Function

The ED2L framework is jointly optimized by three loss functions lte, lae and lpe .
The total loss function L is the weighted sum of lte, lae and lpe , as formulated in
Eq. (6).

L = λtl
t
e + λp(lae + lpe) (6)

3 Experiments and Results

In this section, we evaluate the performance of the proposed approach on four
benchmark databases, including CK+ [16], MMI [17], BU-3DFE [18] and Oulu-
CASIA [19], and compare the results with the state-of-the-art methods.

3.1 Implementation Details

Data Preprocessing. For each database, the faces are first detected by the
MTCNN [20] and aligned to the resolution of 128 × 110 according to their cor-
responding landmarks. Then, ten gray patches with the size of 112 × 96 are
generated by cropping from four corners and center of each aligned image and
the horizontal flipping mirror.

Hyperparameters. The proposed ED2L framework is optimized using Adam
optimizer [21] with betas of 0.9 and 0.999, ε of 1e−8 and weight decay of 0.0005.
The optimization is performed about 100 epochs with a batch size of 64 and an
initial learning rate of 1e − 4. For objective function, we set m = 0.35, s = 30,
λt = 1 and λp = 10.

3.2 Databases

The Extended Cohn-Kanade database (CK+) [16] is a representative
laboratory-controlled database for facial expression recognition. It contains 593
video sequences from 123 subjects. Among these videos, only 327 sequences from
118 subjects are labeled with seven expressions (anger, contempt, disgust, fear,
happiness, sadness and surprise). In order to compare with other methods, the
10-fold cross validation protocol in [9] is followed. The last three frames of each
labeled sequence are selected and all subjects are divided into ten groups based
their ID in an ascending order. Every subgroup is further selected as testing set
to evaluate the model performance, and the remaining subgroups are used for
training in the 10-fold cross validation.
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(a) CK+ (b) MMI

(c) BU-3DFE (d) Oulu-CASIA

Fig. 3. Confusion matrix of the ED2L framework with fine-tuning for the CK+, MMI,
BU-3DFE and Oulu-CASIA databases. The labels on the vertical and horizontal axis
represent ground truth and predicted expressions, respectively.

The MMI database [17] consists of 236 sequences from 32 subjects with six
basic expressions. We select 209 sequences captured in front view. Since the
sequences of this database begin with the neutral expression and show a peak
expression near the middle of the sequences. We select three frames in the middle
of each sequence and employ a 10-fold cross validation similar to that of the CK+
database.

The BU-3DFE database [18] consists of 2500 pairs of 3D face models and
texture images of 100 subjects (56 female and 44 male subjects). Each subject
displayed six basic facial expressions (anger, disgust, fear, happiness, sadness
and surprise) with four intensity levels and a neutral expression. Following the
test protocol in [9], only the texture images with high-intensity expressions (i.e.
the last two levels) were selected. The selected pictures were further divided into
10 subject-independent groups.

The Oulu-CASIA database [19] contains two subsets, i.e. the Oulu-CASIA
NIR database and the Oulu-CASIA VIS database, which were captured under
three different illumination conditions (dark, weak and strong) using a NIR
camera and a VIS camera, respectively. In our experiments, only the Oulu-
CASIA VIS database under strong illumination condition is used. The Oulu-
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Table 2. Overall accuracy on the CK+ database. Remark that w. and w.o. denote the
use of fine-tuning, or not, respectively.

Method Accuracy (%)

LBP-TOP [4] 88.99

3DCNN [23] 85.90

STM-Explet [24] 94.19

IACNN [7] 95.37

DTAGN-Joint [8] 97.25

DeRL [9] 97.30

Baseline(w.o.) 94.19

Baseline(w.) 94.50

Ours(w.o.) 96.33

Ours(w.) 97.86

CASIA VIS database includes 480 image sequences from 80 subjects labeled
with six basic expressions (anger, disgust, fear, happiness, sadness and surprise).
Similar to the CK+ database, the last three frames of each sequence are selected
and a 10-fold cross validation is applied.

3.3 Experiments

Baseline. In order to prove the effectiveness of the proposed ED2L framework,
we employed a baseline network for comparison which has the same structure as
the ED2L framework without ED2L-p branch.

Transfer Learning. Training of the CNN is prone to over-fitting because the
number of images in the CK+, MMI, BU-3DFE and Oulu-CASIA databases
are insufficient. Therefore, firstly, we trained the ED2L framework on the
FER2013 [22] database with the same parameter settings described in Sect. 3.1
and used the pretrained model as the base model. Then, the base model was fur-
ther fine tuned using the CK+, MMI, BU-3DFE and Oulu-CASIA databases.
When training the baseline model, the same procedure was adopted.

3.4 Results

CK+. The overall accuracy of 10-fold cross validation is displayed in Table 2.
The proposed ED2L framework outperforms the baseline with a 3.36% gap, which
suggest the effectiveness of the adversarial learning between two branches. Com-
pared to other methods, our approach achieves the best performance, i.e. 97.86%
and beats all hand-crafted features based methods (LBP-TOP [4]) and CNN-
based methods (3DCNN [23], STM-Explet [24], IACNN [7], DTAGN-Joint [8] and
DeRL [9]). Figure 3(a) shows the confusionmatrix of ED2L framework for theCK+
database.Diagonal of thismatrix, suggests that ourmethodperformed remarkably
well in recognizing the expressions of disgust, happiness and surprise.
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Table 3. Overall accuracy on the MMI database.

Method Accuracy (%)

LBP-TOP [4] 59.51

STM-Explet [24] 75.12

DTAGN-Joint [8] 70.24

IACNN [7] 71.55

DeRL [9] 73.23

Baseline(w.o.) 62.68

Baseline(w.) 76.56

Ours(w.o.) 72.73

Ours(w.) 80.38

Table 4. Overall accuracy on the BU-3DFE database.

Method Accuracy (%)

Wang et al. [25] 61.79

Berretti et al. [26] 77.54

Yang et al. [27] 84.80

Li et al. [28] 86.32

Lopes [29] 72.89

DeRL [9] 84.17

Baseline(w.o.) 86.00

Baseline(w.) 87.17

Ours(w.o.) 87.83

Ours(w.) 88.67

MMI. Table 3 lists the results of the proposed ED2L framework, together with
that of baseline and other approaches in literature. The accuracy of our approach
with fine tuning, 80.38%, is significantly higher than that of baseline (76.56%),
and the best results in literature (75.12%). As shown from the confusion matrix
of MMI database in Fig. 3(b), the ED2L framework has a remarkable recognition
performance for the expression of surprise.

BU-3DFE. As it can be seen in Table 4, the accuracy of our approach, 87.83%
show a better performance than that of the baseline (86.00%) and the best result
in literature (86.32%). As illustrated in Fig. 3(c), our approach performed well
in recognizing the expression of happiness.
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Table 5. Overall accuracy on the Oulu-CASIA database.

Method Accuracy (%)

LBP-TOP [4] 68.13

STM-Explet [24] 74.59

Atlases [30] 75.52

DTAGN-Joint [8] 81.46

PPDN [31] 84.59

DeRL [9] 88.0

Baseline(w.o.) 83.96

Baseline(w.) 84.58

Ours(w.o.) 85.21

Ours(w.) 87.71

Ang
Dis
Fea
Hap
Sad
Sur

(a) ED2L

Ang
Dis
Fea
Hap
Sad
Sur

(b) baseline

Fig. 4. Visualization of the features extracted by the adversarial ED2L framework and
baseline network, using t-SNE [32]. (Color figure online)

Oulu-CASIA. The overall accuracy of 10-fold cross validation is illustrated
in Table 5. Fine-tuning has also been shown to improve the accuracy of our
framework from 85.21% to 87.71%, which is again higher than that of baseline,
84.58%. When the performance of our framework is better than most of the
approaches in literature, our accuracy is a little bit lower than that of DeRL,
88.0%. However, the number of training images (60,600) used for pretrained
model in DeRL is much bigger than that of our approach (28,709). The amount
of augmented training images in the second stage of DeRL is also about 10 times
larger than that of our approach.

3.5 Visualization

In order to further illustrate the effectiveness of the proposed ED2L framework,
we extract the image features of the CK+ database from the FC-256 layer of the
ED2L-t branch and baseline, respectively. We use the first validation set of the 10-
fold cross validation protocol to extract these features. Note that as subject inde-
pendent division is used, the subjects in the first fold only present six expressions,
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(a) Female subject (b) Male subject

Fig. 5. Visualization of the feature heat-maps extracted from the down sample layers of
ED2L-t and ED2L-p. The left column is the input image, the middle and right columns
are the feature heat-maps extracted from ED2L-t and ED2L-p, respectively.

i.e. anger, disgust, fear, happiness, sadness and surprise. As depicted in Fig. 4, the
features extracted by the ED2L framework are densely clustered for each expres-
sion category and easy to distinguish. There are distinct boundaries between fea-
tures of different expressions. While the features extracted by the baseline net-
work are non-discriminative and have ambiguous boundaries, e.g. the points of fear
expression (blue points) are mixed with others. The results qualitatively suggests
that the proposed approach has an extraordinary ability to extract discriminative
expression-related information, mainly due to the adversarial supervised learning
of the expression distilling and dispelling branches.

In addition, we extract the feature maps of the CK+ database from the
down sample layer of ED2L-t and ED2L-p, respectively. The 10th validation set
of the 10-fold cross validation protocol is used to extract these feature maps
composed of 256 channels. Then the sum of these feature maps is normalized
to [0, 1] to calculate the heat-maps. The feature heat-maps are resized to 112 ×
96 to match the size of input image. In Fig. 5, we extract and visualize the
feature maps for different expressions of two different subjects. For different
expressions of the female subject shown in Fig. 5(a), the heat-maps extracted
from ED2L-t differ significantly with each other, while the ED2L-p heat-maps
are almost the same. The same conclusion can be drawn for the male subject
shown in Fig. 5(b). The examples clearly suggest that ED2L-t tries to look at
regions sensitive to expressions like eyes, nose and mouth, while ED2L-p focus
on expression invariant regions like forehead.

4 Conclusions

In this paper, we present an adversarial expression distilling and dispelling
learning (ED2L) framework for facial expression recognition. The framework
uses expression distilling (ED2L-t) and dispelling (ED2L-p) branches to extract
expression-related and non-related features, respectively. The features learned by
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two branches jointly serve as a complete representation of the face. As evaluated
on several facial expression benchmark databases, the ED2L framework showed
its superiority over both traditional hand-crafted features based methods and
CNN-based methods.
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Abstract. Second order representation, like non-local operation and
bilinear pooling, has significantly outperformed the plain counterpart
on a wide variety of visual tasks. However, these previous works focus
on feature interactions either in spatiotemporal dimension or in chan-
nels, both of which have been ignored the joint effect of feature interac-
tions along with different axes. We thus propose a general interaction-
aware neural network that captures higher order feature interactions
both in spatiotemporal and channel dimensions. In this paper, we illus-
trate how to implement the second and third order exemplar CNNs in
a compacted way and evaluate their performance on action recognition
benchmarks. Comprehensive experiments demonstrate that our method
can achieve competitive or better performance than recent start-of-the-
art approaches and visualization results illustrate that our scheme can
generate more discriminative representations, focusing on target regions
more properly.

Keywords: Interaction-aware neural network ·
High-order representations · Action recognition

1 Introduction

Human action recognition is a fundamental and important research field in com-
puter vision, which can be widely applied in different areas such as public security
and human-computer interaction. Inspired by the success of convolutional neural
network (CNNs) for visual tasks in image domain [4,9,13], many recently works
introduce deep models to recognize actions in videos [7,15,18,19], which outper-
form traditional approaches using hand-crafted representations [3,12,16] by a
good margin. Despite of these progress, there are two crucial difficulties imped-
ing on representation learning in action recognition: how to capture longe-range
dependencies and how to depict spatio-temporal interaction.
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To interpret actions in videos, it usually requires coping with three-
dimensional spatio-temporal signals from video to construct appearance fea-
ture in each frame and model dynamics across frames. There are several genres
of architectures for learning video representations: (1) two-stream CNNs [15],
(2) 3D CNNs [11], (3) 2D CNNs inserted with temporal models, like LSTM [5],
attention modelling [8], etc.

Two-stream CNNs model static appearance and motion information via two
parallel branches. The spatial stream operates on individual video frames to
characterize appearance descriptors and the temporal stream takes advantage of
optical flow to capture local motion pattern, as well as exploiting long range inter-
dependencies by stacking multiple frames. Nevertheless, high computational cost
of generating optical flow and multi-stage training make it time-consuming and
inefficient. In contrast, 3D convolutional operators dedicate to learn local features
and relations directly from staked RGB volumes. Due to limited receptive field,
it is required to stack multiple of these operations to process correlation within
spatial, temporal or spatio-temporal regions in the long-range. Yet, this pipeline
repeats the same operation again and again, hampering with optimization dur-
ing the training. Even though carefully addressed, it causes inefficient computa-
tion and makes multi-hop feature interaction difficult. Similarly, temporal models
encounter the same dilemma. CNNs with LSTM increase the optimization diffi-
culties and attention models often merely sever as feature selectors.

Motivated by the non-local means algorithm [1], non-local neural network [20]
explicitly models feature interactions between any two positions and captures
long-range dependencies simultaneously, which boosts the performances on many
video classification benchmarks. However, the original non-local module ignores
correlation between channels, which is important for discriminating actions as
suggested by a recent work [10]. Therefore, in this work, we aim to extend the
non-local module to a general interaction-aware block aiming to exploiting cor-
relations among the entire feature space. The core idea is to first compute long-
range interaction between distant pixels in the whole spatio-temporal space and
then add cross-channel correlations as complementary information.

Our general interaction-aware module is related to several recent works,
including the Squeeze-and-Excitation Networks [10], compact generalized non-
local network [22], and convolutional block attention module [21]. Nevertheless,
our proposal has a number of unique merits: it captures dense interaction across
channels while SENet [10] only computes correlations between statistical means
obtained by the global average pooling. Our novel block employs two different
branches to learn the interaction in spatio-temporal space and in channel space
respectively, which eases the optimization compared with the joint modeling
style in CGNL [22]. Although CBAM [21] sequentially infers attention maps for
feature refinement, similar in some ways to us, it overlooks the feature interac-
tions for discriminative representations, while we take both into consideration.
Extensive experiments are conducted to evaluate our proposed method on the
task of action recognition and to demonstrate the above advantages.
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2 General Interaction-Aware Module

In this section, we first briefly review the original non-local module and kernel
pooling in CNNs, then we propose our general interaction-aware block for action
recognition based on these works.

2.1 Formulation

Suppose that the input feature map of a 3D convolutional layer is X ∈ R
t×h×w×c,

where t, h, w, c denote the time-span, height, width and the number of channels
respectively. In [20], the non-local operation is defined as the weighted sum of
features over all positions:

yi =
1

Z(x)

∑

∀j

f(θ(xi), φ(xj))τ(xj) (1)

where i is the index of an output position, θ(·), φ(·), τ(·) represent the transfor-
mation or projection functions on the input signal X and f is a pairwise function
to model the affinity, namely relationship, between i and all j. Z(x) is a partition
function, which satisfies Z(x) = Σ∀jf(θ(xi), φ(xj)). Equation 1 can be written
into matrix form, Y = f(θ(X), φ(X))τ(X)

Specifically, the feature projection functions θ(·), φ(·), τ(·) can be eas-
ily implemented via 1 × 1 × 1 convolution with parameterized matrices
Wθ,Wφ,Wτ ∈ R

Cin×Cout . The pairwise function f(·) has several instantia-
tions, such as Gaussian, Embedded Gaussian, dot product. Apparently, the orig-
inal module ignore channel-wise correlation due to its operation to aggregate all
channel information together in Eq. 1.

However, a recent work [2] illustrates that learning higher-order interac-
tions across channels can yield impressive performance gains on a number of
visual tasks, including fine-grained classification, person re-id and visual ques-
tion answering. The principle behind is that high-order pooling can provide
more discriminative information than max or average pooling in classification
tasks. Therefore, we integrate the powerful high-order pooling into the original
non-local block to formulate general interaction-aware module, for enhancing
the ability in modelling the relationships both in spatio-temporal and channel
dimensions.

In order to learn the channel-wise correlations in neural network, we denote
the input signal as a c dimensional feature vector, X = [x1, x2, ..., xc]T ∈ R

c,
where xi ∈ R

thw for 3D signals. A kernel function K(·, ·) can usually be decom-
posed as the inner-product of two explicit feature transformation on the input
signals P(X) and P(X) as:

K(X,Y) = 〈P(X),P(Y)〉 . (2)

Various kernel functions can be applied here, such as polynomial kernels (xTy)p,
Gaussian RBF kernel exp(−γ‖x−y‖2), χ2 kernel Σc

i=1
2xiyi

xi+yi
, etc. We introduce
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Taylor series kernel in [2] to explore the interactions across channels, which could
be implemented by tensor product.

For example, a 2nd order cross-channel interactions can be reformulated as
outer product as:

g2(X,X) = X ⊗ X =

⎡

⎢⎢⎢⎣

x1x1 x1x2 · · · x1xc

x2x1 x2x2 · · · x2xc

...
...

. . .
...

xcx1 xcx2 · · · xcxc

⎤

⎥⎥⎥⎦ (3)

where ⊗ denotes the outer product operation and the results g2(X,X) ∈ R
c2 .

From another perspective, bilinear pooling is a special case of second-order ker-
nel pooling, which employs identity map as transformation functions, that is
K(X,Y) = XYT ∈ R

c2 .
It is easy to deduce the cross-channel interactions formula based on the orig-

inal non-local module and above kernel pooing method as:

Y = f(θ(X), φ(X))τ(X)K(X,X)
= f(θ(X), φ(X))τ(X)g2(α(X), β(X)) (4)

where θ(·), φ(·), α(·), β(·) and τ(·) are projection functions, while f(·) and g(·)
denote the spatio-temporal interactions and channel-wise correlations, respec-
tively. Similarly, this operation can be generalized to model feature interactions
of arbitrary order, when n ≥ 2, via defining:

fn(θ(X), φ(X)) = (θ(X)T φ(X))n−1

gn(X) = X ⊗ · · · ⊗︸ ︷︷ ︸
n−1 times

X ∈ R
cn . (5)

where f(·), g(·) represents spatial or spatio-temporal correlation and channel-
wise interdependency respectively. To summarize, we have the general
interaction-aware module as:

Y = fn(θ(X), φ(X))τ(X)gn(Ω1(X), · · · , Ωn(X)) (6)

where θ, φ, τ,Ωi are projection functions. Equation 6 can model the n-order
channel-wise and spatio-temporal correlations of video signals for discrimina-
tive representations. However, some kernels may refer to an infinite dimensional
projection (e.g., Gaussian RBF), which is computationally infeasible. For exam-
ple, a fourth order (n = 4) cross-channel interactions with c = 256 will lead to
a 232 dimensional feature space of fn(·, ·). Thus, a compact approximation is
crucial to implement our scheme.

2.2 Compact Approximation

The formulation of our proposed module has high time and space complexity
due to the multiplication operations, thus, we employ Taylor series and kernel
approximation with random feature projections to save time and space cost.
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According to [2], a kernel can be approximated up to a certain order p with
Taylor series:

K(X,Y) ≈
p∑

i=0

α2
i (X

TY)i (7)

where (XTY)0 = 1, (XTY)1 = XTY and it has been proved in [14] that any ith

order tensor product is equivalent to the feature projection of the ith polynomial
kernel, i.e. (XTY)i = (Xi)T (Yi). Taking Gaussian RBF kernel as an example,
the Taylor expansion can be formulated as K(X,Y) = exp(−γ‖X − Y‖2) =∑p

i=0 α2
i (X

TY)i, where α2
i = exp(−γ(‖X‖2 + ‖Y‖2)) (2γ)p

i! and γ is a hyper-
parameter.

Fig. 1. A second-order exemplar of general interaction-aware module. THWC denotes
the shape of feature maps. “⊗” represents matrix multiplication and “⊕” denotes
element-wise sum. Compared with the original non-local block, this exemplar increases
a symmetric part for modelling interaction across channels.

According to Eq. 7, we have n + 2 parameter sets for optimization, given
below:

Param{θ} = [α0(θ(X)0), · · · , αp(θ(X)p)]

Param{φ} = [α0(φ(X)0), · · · , αp(φ(X)p)]

Param{Ωi} = [α0Ωi(X)0, · · · , αpΩi(X)p]

(8)

where θ(X)0 = 1, φ(Y)0 = 1 and they can be learned via back-propagation. We
will show how to achieve simplified version via conducting related experiments
and the results are shown in Table 5.

Second-Order Exemplar: For the second order terms, namely f2(·), g2(·) in
Eq. 6, as an exemplar for comparison with non-local and other methods. Thus,
in Fig. 1, we have:

Y = f2(θr(X), φr(X))τ(X) + ε(X)θl(X)T φl(X) (9)

where ε(X) = α2
1f

2(θr(X), φr(X))τ(X). We employ (θr, φr) and (θl, φl) to learn
spatio-temporal correlation and cross-channel interdependency respectively via
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inner product of embedded input signal. It can also be regarded as an extension
of the original non-local module, which adds channel-wise interaction as supple-
mentary information. According to Eq. 9, (θr, φr) is used to model the relations
across positions in spatio-temporal space and (θl, φl) is applied to obtain the
cross-channel correlations.

3 Experiments

In this section, we evaluate our general interaction-aware neural network on sev-
eral action recognition benchmarks and validate the complementarity between
channel-wise feature interactions and spatio-temporal correlations. For consis-
tency, we employ our second order instantiation comparing with the original
non-local module and conduct several experiments for determining kernel func-
tions and exploring weight-shared mode.

Table 1. Our backbone ResNet-50 3D model follows the k = 3 and for the 2D coun-
terpart, k = 1. The input with 8×224×224 dimensions was performed down-sampling
in the temporal size only at layer maxpool2. T ×H ×W represents the dimensions on
time, height, weight of filter kernel size and output feature maps.

Layer name Net Architecture Output size

conv1 1 × 7 × 7, 64, s(1, 2, 2) 8 × 112 × 112

maxpool1 1 × 3 × 3, s(1, 2, 2) 8 × 56 × 56

res2

1 × 1 × 1 64

1 × 3 × 3 64

1 × 1 × 1 256

× 3 8 × 56 × 56

maxpool2 2 × 1 × 1, s(2, 1, 1) 4 × 56 × 56

res3

1 × 1 × 1 128

1 × 3 × 3 128

1 × 1 × 1 512

× 4 4 × 28 × 28

res4

k × 1 × 1 256

1 × 3 × 3 256

1 × 1 × 1 1024

× 6 4 × 14 × 14

res5

k × 1 × 1 512

1 × 3 × 3 512

1 × 1 × 1 2048

× 3 4 × 7 × 7

pool3 Global average pool 1 × 1 × 1
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3.1 Implementation

In this part, we introduce datasets and the general configurations, including both
training and test procedure. Some specific settings will be mentioned when it is
used.

Dataset: Kinetics, Charades and UCF101 are used to conduct experiments for
comparison with previous methods and ablation study. Due to the copyrights
and unavailable download links of the original kinetics datasets, a large number
of videos cannot be collected for training and testing. Thus we mainly analyze
the results on mini-kinetics dataset, which test data is completed and it contains
200 action categories, 5000 videos for validation and 80000 videos for training.
UCF101 collects 13,320 labeled videos from 101 action categories, which has
three splits for train/test.

Configuration: Following [6], we adopt ResNet-50 in the slow pathway as the
baseline, which is implemented as Table 1 and only the last two residual block
inflated to 3D convolutions with 3 × 3 × 3 kernels. In order to compare with the
non-local module in [20], we also insert our GIAM into the network and construct
our general interaction-aware neural network. Similarly, we also adopt the con-
figuration of adding 1 and 5 blocks into baseline network, as [20]. Three kernel
functions are explored in ablation studies: dot production, embedded Gaussian
and Gaussian RBF using configurations following [20].

Table 2. Classification accu-
racy of 1 block with differ-
ent kernel functions added
into 2D ResNet-50 on mini-
Kinetics, reported in per-
centage

Net(R50+) Top-1 Top-5

C2D baseline 76.09 93.05

Gaussian RBF 77.15 93.13

Gaussian, embed 77.19 93.57

Dot production 77.48 93.48

Table 3. NL vs. Ours
comparison on Kinetics
via added 5 blocks into 3D
ResNet-50. Accuracies are
reported in percentage

Net(R50+) Top-1 Top-5

C2D baseline 70.92 86.37

C3D baseline 71.33 87.76

5-block NL 72.48 90.37

5-block Ours 72.97 90.77

Table 4. 2D vs. 3D
comparison between NL
modules and ours on
mini-Kinetics via added
5 blocks into 2D/3D
ResNet-50 respectively

Net(R50+) Top-1 Top-5

C2D NL 77.86 93.57

C2D Ours 78.35 93.65

C3D NL 78.01 94.02

C3D Ours 78.64 94.13

Training/Test Procedure: Our model are pretrained on ImageNet and fine-
tuned on 8-frame input clips based ResNet-50 model with 0.005 learning rate,
a momentum of 0.9 and a weight decay of 1e−4. We first resize the shorter side
of each frame to 256 pixels and randomly crop a 224 × 224 region for training,
while only one center crop for testing. The 8-frame clip is randomly sampled
from 64 consecutive frames. We also set the BatchNorm (BN) layer learnable,
which scale parameter in our module was initialized as zero for identity mapping
and 64 clips are allocated on 8 GPUs evenly. Dropout is adopted after the global
pooling with the ratio of 0.5 to avoid over-fitting. Stochastic gradient descent
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(SGD) and multi-step learning strategy were employed in the training procedure,
the learning rate decreases with a factor of 10 at 30, 50 epochs within 60 epochs.

3.2 Ablation Study

All of our experiments are based on ResNet-50, which is inflated to 3D CNNs fol-
lowing [6] for C3D configuration. The detailed architecture is shown in Table 1.
First, we illustrate how to implement a second-order exemplar of our gen-
eral interaction-aware network and compare different instantiations of kernel
functions. Then we explore the influence of tied-weights and untied-weights on
classification accuracy for compacted representation. We also demonstrate our
second-order exemplar outperforms the original non-local module on action
recognition benchmarks. Finally, we build a third-order instantiation of gen-
eral interaction-aware network and conduct comparative experiments with our
second-order one.

Kernel Functions: Three popular kernel functions are used in our experiments:
Gaussian RBF, Embedded Gaussian and dot production. All the settings are
consistent with [20]. We conduct experiments on mini-kinetics dataset and the
results are shown in Table 2. All three kernel function achieve improvements
compared with the ResNet-50 baseline and dot production obtained the best
performance of top-1 accuracy, while embedded gaussian got the highest top-5
scores. In addition, the dot production is efficient and easy to implementation,
thus we make it the main configuration for all later experiments.

Weight-Shared Mode: Our second-order exemplar in Fig. 1 was implemented
without weight sharing, which could make the optimization difficult. It is natu-
rally to consider exploring the weight-shared mode. In general, we have 4 com-
bination of shared weight schemes for θ(·), φ(·), τ(·), ε(·). As shown in Table 5,
we conduct experiments for comparison in tied and untied τ, ε combined with
tied and untied θ, φ. For C2D configuration, the tied τ, ε with tied θ, φ obtained
the best results of top-1 accuracy, which is 78.35%, while the untied τ, ε with
tied θ, φ achieved the highest top-5 accuracy, 93.82%. In C3D experiments, the
untied τ, ε with tied θ, φ configuration achieved the best classifying performance
in both, which was up to 78.64% in top-1 and 94.13% in top-5. It is worth

Table 5. Results on mini-Kinetics w/o tied weight

Net top-1 top-5

C2D Baseline 76.09 93.05

Tied τ , ε
Tied weight(θ, φ) 78.35 93.65
Untied weight(θ, φ) 78.11 93.53

Untied τ ,ε
Tied weight(θ, φ) 78.23 93.82
Untied weight(θ, φ) 78.02 93.79

(a) Classification accuracy of ResNet-50 C2D
configuration, reported in percentage

Net top-1 top-5

C3D Baseline 77.51 93.57

Tied τ , ε
Tied weight(θ, φ) 78.46 93.73
Untied weight(θ, φ) 78.37 93.84

Untied τ ,ε
Tied weight(θ, φ) 78.64 94.13
Untied weight(θ, φ) 78.24 93.96

(b) Classification accuracy of ResNet-50 C3D
configuration, reported in percentage
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noting that the unshared weight style, namely untied τ, ε with untied θ, φ, got
the least improvement on performance, not only in C2D configuration but also
in C3D. This verified the initial conjecture that shared weight could ease the
optimization processing for better performance. In addition, whether (τ, ε) is
bound or, the classification accuracy of weight-shared model is higher than that
of unshared mode. This indicates tied weight (θ, φ) models the spatio-temporal
relations and channel-wise correlations on the same projection space, while the
untied mode models them in different projection space. In other word, the mod-
eling is not synchronized via using (θl, φl) and (θr, φr), that might cause (θl, φl)
extracts relations in one space but (θr, φr) models correlations in another space.
Therefore, we refine the architecture of our second-order exemplar in Fig. 1 via
employing the same θ, φ to learn both spatio-temporal interactions and channel-
wise correlations.

Compared with Non-Local (NL) Module: Due to the copyright of download
link in Kinetics, comparative experiments were conducted on mini-kinetics and 5
blocks of NL or our exemplar were inserted into ResNet-50 backbone like Table 1.
The results of Table 4 demonstrate our second-order exemplar outperforms the
original NL module in both 2D and 3D configuration. For C2D experiments,
our scheme achieved 78.35% top1-accuracy, which was round 0.5% higher than
NL. Similar amount improvement could also be seen in C3D when we got 78.64%
top-1 accuracy and NL achieved 78.01%. We also show the results of original non-
local module and our second-order exemplar on incomplete Kinetics. In Table 3,
our module got 72.97% top-1 accuracy while NL counterpart obtained 72.48%,
0.5% less than ours, which indicates the effect of supplementary information
from channel-wise interaction.

Comparison to Other Competitive Methods: We compare the classi-
fication performance of our second-order exemplar with the state-of-the-art
approaches on the validation set of Kinetics. The results are summarized in
Table 6. We first compare with the three popular methods: CNN+LSTM [5],

Table 6. Comparison with competitive
methods on the validation set of Kinetics
via averaging Top-1 and Top-5 accuracy.
For fairness, methods with only RGB input
are considered

Method Val set

ConvNet+LSTM 68.0%

Two-stream Spatial Net 66.6%

C3D Resnet-34 77.0%

C3D Baseline 79.5%

TSN Spatial Net 78.2%

ARTNet with TSN 80.0%

I3D NL 81.4%

I3D Ours 81.9%

Table 7. Classification mAP in Cha-
rades, NL and our scheme are based on
ResNet-50 with 5 blocks, which was a lit-
ter lower than the published results of NL

Model Modality train/val

2-stream RGB+flow 18.6%

2-stream+LSTM RGB+flow 17.8%

Asyn-TF RGB 22.4%

I3D RGB 32.9%

NL I3D (5 blocks) RGB 36.2%

I3D (5 blocks) [ours] RGB 36.8%
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Spatial Stream [15] and C3D (ResNet-34) [11]. Our proposed second-order exem-
plar significantly outperform these methods by a good margin, especially around
10% higher than the first two approaches. Then we evaluate our scheme with
recent state-of-the-art methods, namely temporal segment network (TSN) [19]
and Inflated 3D CNN (C3D baseline) [6], ARTNet with TSN [17] and non-local
NN [20]. Our proposed achieved more than 3.7%, 2.4%, 1.9% and 0.5% accu-
racy higher than them, respectively. It is worth noting that the current published
performance is 86.3% achieved by Resnet-101 with non-local module in slow-fast
style. We reproduced I3D NL method based on our limited data and computing
resource and got 81.4% classification accuracy. It is reasonable to infer that if
the same experimental configuration achieved, including the data, computing
resource and training epochs, our scheme still can outperform it.

Experiments on Charades: Charades contains round 8k training, 1.8k val-
idation and 2k testing videos, which provides a multi-label classification task
with 157 categories in actions. We initialize our model pre-trained on Kinetics
and fine-tune it for 200 epochs, according the same setting in [20]. The detailed
comparisons are shown in Table 7, the result of I3D is the 2017 competition win-
ner in Charades and NL I3D was current highest mAP. Our proposed achieved
better performance, which is 0.6% higher than that of NL I3D and round 4%
above I3D.

Table 8. Comparison with state-of-the-art methods in UCF101. We report the average
accuracy over three splits. For fair comparison, we only compare approaches with only
RGB input and group the results according to its pre-train datasets

Net Pre-train Acc

LTC Sport-1M 82.4%

MiCT Sport-1M 88.6%

Two-stream Spatial Net ImageNet 73.0%

ST-ResNet ImageNet 82.3%

TSN Spatial Net ImageNet 86.4%

C3D baseline ImageNet 84.5%

Ours ImageNet 89.9%

TSN-Inception V3 Kinetics 93.2%

C3D Baseline Kinetics 92.5%

ARTNet Kinetics 94.3%

Ours Kinetics 96.7%

Experiments on UCF101: In this experiment we study the generalization of
learned feature interactions on the Kinetics dataset via our second-order exem-
plar. The results are summarized in Table 8. Sport-1M, ImageNet and Kinetics
are three popular dataset usually used for pre-trained model and we conduct our
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Fig. 2. Third-order exemplar of our gen-
eral interaction-aware neural network.
THWCi denotes the shape of feature
maps. “⊗” represents matrix multiplica-
tion and “⊕” denotes element-wise sum.

Fig. 3. Results of different order exem-
plars on mini-kinetics

proposed scheme on the last two. First, we compare with competitive methods
pre-trained on ImageNet. Our result is higher than two-stream spatial net more
than 15% and outperform TSN spatial net by 3.5%, which demonstrates that the
feature interactions learned in our proposed is more discriminative than them
for generalization. In addition, our result is better than the MiCT pre-trained on
Sport-1M by 1.3%, which demonstrated that high order information can extract
better spatio-temporal representations. Then, we investigate the exemplar with
approaches pre-trained on Kinetics and our proposed could still yield a slightly
higher classification accuracy than others. It got 96.7%, higher than ARTNet and
TSN, which are 94.3% and 93.2% respectively and improved the performance of
C3D baseline by 4.2%.

Higher-Order vs Second-Order: According to Eq. 6, we can easily extend
our second-order exemplar to any arbitrary order by repeating the left branch
in Fig. 1. Taking the third-order one for example, as shown in Fig. 2, the output
Y consists of four parts, which are the input signals, spatio-temporal relations,
second-order channel-wise correlations and the third-order feature interactions in
channel dimension. Based on these construction, we conduct the first four order
NNs of our proposed module, due to [2] showing p = 4 enough for approximating.
Figure 3 shows the trend of accuracy.

3.3 Visualization Results

In this section, we employ class activation mapping [23] method to show what
models learned for qualitative analysis. Figures 4, 5, 6 and 7 show the heatmap
of NL and ours via the same number of blocks (5) into ResNet-50. It can be
observed that our model enhances the feature and help the baseline net focus
more properly on the target object regions related to a certain human action.
In Fig. 4, our model pays more attention to “cello” when recognizing “playing
cello” activity in videos, the same observation can be seen from other samples.
In Figs. 5 and 6, our model learns relations between scene and people, while NL
focus on less related regions, which indicates that the joint feature interactions
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(a) NL (b) Ours

Fig. 4. Playing
cello

(a) NL (b) Ours

Fig. 5. USA foot-
ball

(a) NL (b) Ours

Fig. 6. Crossing
river

(a) NL (b) Ours

Fig. 7. Diving cliff

from spatio-temporal and channel can help refine the feature map from baseline
net and generate more discriminative representations for action recognition. In
Fig. 7, NL fails to model the relationships among people, water and cliff, on the
contrary, our scheme successfully capture the diving cliff action. These observa-
tions illustrate that the complementary effect of interactions between channels
on spatio-temporal relationships.

4 Conclusion

In this paper, we present the general interaction-aware neural network for action
recognition via learning high order feature interactions in both spatio-temporal
and channel dimension. Our module can be easily combined with existing archi-
tectures and extensive experiments demonstrate significant improvement on clas-
sification performance due to modeling more discriminative representations.
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Abstract. Incredible capacity of machine learning models to mine the
underlying information has led to concerns of privacy disclosure. This
makes privacy-preserving learning algorithms become a hot spot. In this
paper, we focus on Gaussian processes classification (GPC) with a prov-
able secure and feasible privacy model, differential privacy (DP). First we
apply a functional mechanism to design a basic privacy-preserving GP
classifier. This involves finding the sensitivity of the outputs, and adding
a Gaussian process noise proportional to the sensitivity to the trained
classifier. Then we propose a variant-noise mechanism to perturb the
classifier with different scaled noise based on the density of dataset. We
show that this method can significantly reduce the added noise, whilst
sufficiently maintaining the accuracy of the classifier both in theory and
experiments.

Keywords: Machine learning · Gaussian processes ·
Differential privacy

1 Introduction

Massive data collected from our daily lives enables machine learning algorithms
to find our habits and preferences, however, some information which we should
have kept secret, such as financial records and health condition, may also be dis-
covered. For this reason, privacy-preserving learning is becoming a burning issue.
At the first glance, we just need “anonymise” the dataset – namely, removing
or blurring all the identifiers about individuals (e.g. names, PIN codes, etc.) to
keep the dataset private. However, such treatment and traditional k−anonymity
or l−diversity based methods have been proved to be not sufficient due to the
existence of “background” or auxiliary information related to the dataset [9,17].
Instead, differential privacy [7], as a standard of privacy with strict mathemati-
cal foundation, gives a more reliable and practical privacy-preserving framework
with no assumption about auxiliary information, making the statistical charac-
teristics of the dataset be remained, whilst any individual record will not be
leaked.
c© Springer Nature Switzerland AG 2019
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In this paper our goal is to build a differentially private Gaussian processes
(GP) classifier by perturbing GP’s fit with specifically distributed noise. In our
view, for a sample data point of the training dataset, the label of the sample,
y, is considered as the output, whilst the rest of features, X, being the input,
and we try to exploit the input to make the output private. This point of view is
reasonable in that usually in actual structured dataset, only a portion of features
need to be kept private (in our case, only one), and the rest can be directly
exposed. With this treatment, the majority of information in the dataset can be
still learned by classifier, whilst the private feature is perturbed. This will be a
significative attempt to help dataset managers to share their data without fear
of privacy disclosure.

To address this issue, we apply differential privacy to GP classifier by calcu-
lating the sensitivity of the classifier, which measures the maximum variation of
classifier’s predicted expectation when only one sample in the training dataset
is changed. It’s not necessary to calculate the sensitivity of the predicted vari-
ance in that we find the variance is not relevant to private features. Different
from the case in GP regression (GPR), the sensitivity in GPC model is hard
to obtain an accurate solution with analytical methods, but need approxima-
tion techniques to estimate. Here we use Laplacian approximation and find an
upper bound of the sensitivity. Then we adopt a functional mechanism proposed
by [10] to add Gaussian process noise to the predicted expectation. However,
this is not the most efficient way. In real-world datasets, distribution of data
points is not always uniform. If we take the “density”1 of dataset into consider-
ation, we can expect a privacy mechanism to add larger noise to sparse parts,
and add smaller noise to dense parts. That means we need an approach to more
accurately describe the similarity of data points. To achieve this, we introduce
Mahalanobis distance to capture the density information of the dataset. In this
condition, noise added to the outputs should be a multivariate Gaussian variable,
instead of a Gaussian process. Experiments on both synthetic dataset and real-
world dataset show that this variant-noise mechanism can sufficiently preserve
the performance of the GP classifier.

In summary, this paper makes contributions as follows:

(a) To the best of our knowledge, our work is the first research on the design of
a Gaussian processes classification model with differential privacy.

(b) We use Laplacian approximation method to present a simple GP classifier by
bounding the changes in the predictive expectation caused by modification
of a single record in the dataset. Then we take the density distribution of
the dataset into consideration and redefine the sensitivity with Mahalanobis
distance to propose a variant-noise privacy mechanism to reduce the scale
of added noise.

1 When we say a datapoint is of high density, that means in its neighbourhood of
a given radius, there are a relatively larger amount of data points than that of a
datapoint with low density.
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(c) Experiments on synthetic datasets and real-world datasets verify that, our
presented variant-noise privacy mechanism can sufficiently maintain the
performance of a standard GP classifier.

2 Related Work

Gaussian processes based methods have been widely used in classical machine
learning tasks, such as regression [3], classification [12], and dimensionality reduc-
tion [11]. Combination of GP and deep neural networks is a new attractive area.
A typical instance is deep Gaussian processes (DGP), which is essentially a deep
belief network (DBN) based on GP mappings [6]. Under the frame of DGP, data
is modeled as the output of a multivariate Gaussian processes. Correspondingly,
inputs are governed by another GP. Then GPLVM can be seen as a single layer
of a DGP model. More generally, a fully-connected neural network of single layer
with an i.i.d. prior over its parameters is equivalent to a GP [13].

A machine learning model with differential privacy [7] allows algorithms (or
queries) to be sufficiently accurate without disclosing individual private infor-
mation. Many basic machine learning algorithms, including logistic regression,
expectation maximization and deep neural networks can become differentially
private by adding noise to parameters of models [1,4,14]. A more universal app-
roach is introducing a noise term to the empirical risk function of models then
obtaining perturbed parameters by optimising this noised risk function [5]. But
for functional data, where the functions are assumed to be lying in a reproducing
kernel Hilbert space (RKHS) generated by a GP kernel, the noise should be a
random process (e.g. Gaussian process) with a sensitivity measured in terms of
the RKHS norm [10].

3 Preliminaries

3.1 Differential Privacy

For a dataset D and all potential neighbouring dataset D′ (i.e. D′ and D can
only differ in one sample), a randomised query algorithm R is (ε, δ)−differentially
private if

Pr{R(D) ∈ m} � eε · Pr{R(D′) ∈ m} + δ, (1)

where m is any possible subset of query outputs, and ε and δ are two usually
small positive numbers called privacy parameters. A smaller ε or δ provides
a higher degree of privacy, and if we set δ to 0, a stronger definition named
ε−differential privacy can be readily obtained. A differentially private algorithm
guarantees that the output of the algorithm will not change significantly if a
single record in dataset has been modified. In cryptography terms, differential
privacy can be used to avoid differential attack. That means, an attacker can
not get any new information about a specific user through comparing outputs
generated from a pair of neighbouring datasets. Common methods to achieve
differential privacy include perturbation and sampling [8].
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3.2 Gaussian Processes Classification

Gaussian processes classification (GPC) can be considered as a natural generali-
sation of Gaussian processes regression (GPR). Concretely, if the output of a GP
regressor is mapped onto the interval [0, 1] through a squash function, then this
output value represents the probability of a sample belonging to one of the two
classes. In practical implementation [15], a GP is “interposed” between the data
point and squash function. Then for a new data point x∗, the GP classification
involves a two-step procedure:

1. Place a GP prior over the latent function f(x), which depicts the likelihood
of one class versus the other with respect to x.

2. Map the value f(x∗) onto [0, 1] through a sigmoidal function: π(f) = Pr(y =
1|f).

The Gaussian cumulative distribution function, or probit function usually
denoted as Φ(x) is the most frequently used squash function. Under this frame,
the expected value of the probability π∗ = π(f∗) = Φ(f∗) is

π̄∗ = Φ

(
f̄∗√

1 + var(f∗)

)
, (2)

where the expectation and variance of the predictive distribution are as follows:

f̄∗ = k∗K−1f̂ , (3)

var(f∗) = k∗∗ − k∗(K ′)−1kT
∗ . (4)

Here k∗∗ = k(x∗,x∗) is the prior variance of the new data point, k∗ is the
covariance vector between the new data point and the training dataset, and K ′

can be considered as the covariance of the training dataset (but not exactly the
same). Due to the lack of space we omit a detailed explanation of these symbols,
which can be found in [15]. The value of f̂ can not be calculated directly through
analytical methods, but need some approximate techniques, such as Laplace
approximation and expectation propagation [2].

4 Applying Differential Privacy to Gaussian Processes
Classifier

One straightforward way to design a differentially private GP classifier is directly
applying classical Laplacian mechanism to the predictive expectation π̄∗ in
Eq. (2). The sensitivity of π̄∗ is also obvious: the range of probit function Φ(x)
(or any other squash function) is [0, 1], therefore Δπ̄∗ = 1. But after being added
noise based on this sensitivity, the new π̄∗ may become an invalid value. We can
adopt a “cut-off” Laplace mechanism to restrict the perturbed value of π̄∗:

π̃∗ =

⎧⎪⎨
⎪⎩

0, π̄∗ + Lap(Δπ̄∗
ε ) < 0

π̄∗ + Lap(Δπ̄∗
ε ), 0 � π̄∗ + Lap(Δπ̄∗

ε ) � 1
1, π̄∗ + Lap(Δπ̄∗

ε ) > 1
(5)
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where Lap(·) denotes the Laplacian distribution and Δπ̄∗ is taken as 1. However,
many values of π̃∗ will be set to 0 or 1 if we handle it in this manner. This means
that GP classification, as a probabilistic soft classification method, is approx-
imately simplified to a hard classification method. Such a privacy mechanism
remarkably reducing the practicality of algorithms is obviously not expected.
Alternatively, we can privatise π̄∗ by adding noise to f̄∗√

1+var(f∗)
.

It is worth noting that the variance var(f∗) does not depend on the output y
(or f) of the training dataset, so we only need to make the expectation function f̄∗
private. The proposed mechanism in [10] applies DP to functional data. Consider
a continuous function f which we try to release with privacy. In RKHS space H,
f can be seen as a point. Now we use f ′ to denote the query function applying
to the same dataset as the counterpart of f , except that one sample in the
dataset has been modified. That means, the values of f and f ′ are generated
using two neighbouring datasets, respectively. The sensitivity of f is defined as
the supremum of the RKHS distance of f and f ′, ‖f − f ′‖H:

sup
D,D′

‖f − f ′‖H � Δ. (6)

The seminal work [10] further proved that, a perturbed version of f formalised
as

f̃ = f +
c(δ) · Δ

ε
G (7)

is (ε, δ)− differentially private if c(δ) satisfies

c(δ) �
√

2 log
2
δ

(8)

and G is a sample function from a Gaussian process prior which has the same
kernel as f . Notice that c(δ) should be set as a constant, instead of a function
of δ.

Now our target is to find the concrete form of Δ(f̄∗), which measures the
variation of f̄∗ if one record in dataset has been perturbed. Notice that k∗ and K
in Eq. (3) can be seen as constant in neighbouring datasets, then the sensitivity
of f̄∗ becomes

Δ = ‖f̄∗(D) − f̄∗(D′)‖ = ‖k∗K−1‖ · ‖f̂(D) − f̂(D′)‖. (9)

If we adopt Laplace method to approximate f̂ , then its value is determined by

f̂ = K∇ log p(y|f̂). (10)

This equation is difficult to solve with analytical method, but we only need to
estimate an upper bound of ‖f̂(D) − f̂(D′)‖. We expand p(y|f̂) to

p(y|f̂) =
n∏

i=1

p(yi|f̂i). (11)
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The logarithmic form is more convenient for further calculations, so take the
logarithms of both sides in Eq. (11) and we have

log p(y|f̂) =
n∑

i=1

log p(yi|f̂i). (12)

Therefore, f̂(D) − f̂(D′) can be written as:

K∇ log p(y|f̂(D)) − K∇ log p(y|f̂(D′))

=K∇[log p(y|f̂(D)) − log p(y|f̂(D′))]

=K∇
n∑

i=1

[log p(yi|f̂i(D)) − log p(yi|f̂i(D′))].

(13)

Now we make an assumption similar to the kernel density estimation example
in [10], that in D and D′, variation happens at only one position, e.g. f̂n. This
indicates f̂i(D) = f̂i(D′) for 1 � i � n − 1, then p(yi|f̂i(D)) = p(yi|f̂i(D′)) for
1 � i � n− 1. All but the last term in Eq. (13) thereby cancel, and Eq. (13) can
be simplified to

f̂(D) − f̂(D′) = K∇[log p(yn|f̂n(D)) − log p(yn|f̂n(D′))]. (14)

As already mentioned, the form of p(yi|f̂i) is probit function Φ(·), which yields

∂

∂f̂n

log p(yn|f̂n) =
ynN (f̂n)

Φ(ynf̂n)
. (15)

Put this result substitute into Eq. (14), we obtain

‖f̂(D) − f̂(D′)‖ = ‖f̂n(D) − f̂n(D′)‖

= |K|
∥∥∥∥∥ynN (f̂n(D))

Φ(ynf̂n(D))
− ynN (f̂n(D′))

Φ(ynf̂n(D′))

∥∥∥∥∥
= |K|yn

∥∥∥∥∥ N (f̂n(D))

Φ(ynf̂n(D))
− N (f̂n(D′))

Φ(ynf̂n(D′))

∥∥∥∥∥ .

(16)

Again, this equation is not analytically soluble since f̂n(D) and f̂n(D′) appear
on both sides. To obtain an upper bound, we might as well assume maximum of
‖f̂n(D) − f̂n(D′)‖ has been fund and let d be this maximum. Now consider the
maximum of

|K|yn

∥∥∥∥∥ N (f̂n(D))

Φ(ynf̂n(D))
− N (f̂n(D′))

Φ(ynf̂n(D′))

∥∥∥∥∥ . (17)

Because Φ(·) is a continuous function with range [0, 1], Φ(ynf̂n(D)) can be con-
sidered almost equal to Φ(ynf̂n(D′)). Consequently all that left to do is calculating
the maximum value of ‖N (f̂n(D)) − N (f̂n(D′))‖ given ‖f̂n(D) − f̂n(D′)‖ = d.
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Fig. 1. If f̂n(D) or f̂n(D′) equals the normal distribution’s mean value, μ, ‖N (f̂n(D))−
N (f̂n(D′))‖ is maximised.

Fig. 2. An illustration of the function λ(d; σ) and how its three features of this function
determine the upper bound of d through Eq. (18): the solution of inequality d �
2|K| · λ(d; σ) must be in the form of d � M .

The bell shape of the normal distribution curve clearly demonstrates that
‖N (f̂n(D)) − N (f̂n(D′))‖ reaches the maximum when f̂n(D) or f̂n(D′) just lies
in the expectation of the normal distribution, as shown in Fig. 1.

Therefore, for a specific normal distribution N (x;μ, σ), we can use λ(d;μ, σ)
to denote

max
f̂n(D),f̂n(D′)

‖N (f̂n(D)) − N (f̂n(D′))‖,

when ‖f̂n(D)− f̂n(D′)‖ = d. We can further notice that λ(d;μ, σ) is independent
to μ, hence λ(d;σ) is also an acceptable notation. Another obvious conclusion
is that when ‖f̂n(D) − f̂n(D′)‖ reaches its maximum, yn in Eq. (17) equals 1.
Recall that both f̂n(D) and f̂n(D′) lie in the expectation value of normal curve,
then Φ(ynf̂n(D)) ≈ Φ(ynf̂n(D′)) ≈ 1

2 . Now substitute these results into Eq. (16),
we obtain

d � 2|K| · λ(d;σ). (18)

We only need to show this inequality did determine an upper bound of d
without solving it and finding the concrete value. This can be guaranteed by
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three features of the function λ(d;σ): (a) λ(0;σ) = 0; (b) ∂
∂dλ(d;σ) � 0; (c)

|λ(d;σ)| � N (μ).
Figure 2 gives a brief illustration of how Eq. (18) determines a upper bound

of d.
Now that the maximum of d is known, substitute it into Eq. (9) and Δ can

be expressed as
Δ = ‖k∗K−1‖d, (19)

where d is controlled by Eq. (18). If we assume further that values of kernel
function is bounded, e.g. 0 � k(xi, xj) � 1 (not unreasonable, as many kernels,
such as the Gaussian kernel, satisfies this constraint), we get a more concise form
of the sensitivity:

Δ = d|K−1|. (20)

This is the sensitivity we need to make f̄∗, or π̄∗ private. However, privacy
mechanism based on this sensitivity is not the most efficient approach to use
our privacy budget. In a real-world dataset, distribution of data points can be
uneven, which suggests that we can exploit a new mechanism to add larger noise
to sparse area, whilst add smaller noise to dense area, instead of perturbing all
the outputs with the same scaled noise. In the following section we show how
to significantly reduce the added noise by introducing Mahalanobis distance to
reflect the density distribution of dataset.

5 Differential Privacy with Variant-Noise for Gaussian
Processes Classification

A theorem in [10] can help us to find a way to add variant noise according to the
density of dataset: for a positive definite symmetric matrix (covariance matrix)
M ∈ R

d×d, if vectors of query results denoted as vD ∈ R
d satisfy

sup
D,D′

‖M− 1
2 (vD − vD′)‖2 � Δ, (21)

then a released version of vD defined as

ṽD = vD +
c(δ) · Δ

ε
Z (22)

achieves (ε, δ)−differential privacy. Here Z is a d−dimensional vector randomly
sampled from a multivariate Gaussian distribution Nd(0,M) and c(δ) meets the
same condition as in Eq. (8). In our case, vD means the expectation values of
the predictive distribution, f̄∗. Compare Eq. (22) with Eq. (7), the main change
is ṽD is discretised, i.e. functional data fD becomes vectorised data vD, and
Gaussian process noise G becomes Gaussian distributed noise Z. This change
can be interpreted as placing a priori upon test data points.

As in Eq. (21), now we introduce Mahalanobis distance matrix M , instead of
simply using norm to define the sensitivity. In this way we can establish a linkage
between the density of dataset and the sensitivity therein. In order to obtain a
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noise with smaller scale, we expect M to have larger covariance in sparser area,
i.e. in those directions more stronger affected by changes in single training data
point [16].

Let f̄∗ be the vector constructed by values of f̄∗ = k∗K−1f̂ for all test data
points, and corresponding k∗K−1 can build a matrix C = K∗K−1. Then

f̄∗(D) − f̄∗(D
′) = C

(
f̂(D) − f̂(D′)

)
. (23)

Here f̄∗ contains the predicted values for new test data points, and f̂ only
depends on training data, therefore C entirely reflects how outputs on new data
points will change after training dataset is modified. Substitute f̄∗ into Eq. (21),
we have

‖M− 1
2 (f̄∗(D) − f̄∗(D

′))‖2 = ‖M− 1
2 C(f̂(D) − f̂(D′))‖2. (24)

We have used the symmetry of M . Similar to the treatment described earlier
in this article, now we still assume that f̂n is the only position where change
happens when D becomes D′, and the difference between f̂n(D) and f̂n(D′) is
at most d. Note that d has been determined in Eq. (18). Let cn be the n−th
column of C, then

‖M− 1
2 C(f̂(D) − f̂(D′))‖2 = ‖M− 1

2 dcn‖2
= (dM− 1

2 cn)T(dM− 1
2 cn)

= d2(cTnM−1cn).

(25)

In this equation, for a given training dataset, d is a constant, and cn reflects the
distance or similarity of data points. For a new test point, cn is also a definite
vector. To reduce the scale of noise in Eq. (22), we just need to minimise Eq. (25)
with respect to M , which can be solved by universal multivariate optimisation
algorithms. Let M∗ denote the optimal solution of M , then the sensitivity of f̂∗
is bounded by the inequality

Δ � d2 min
i

(cTi M−1
∗i ci). (26)

We have taken the random selection of cn into consideration and use M∗i to
denote the solution when ci is chosen, i.e. when f̂i is the only position where
change happens. Obviously, the upper bound of Δ in Eq. (26) is variant for
different test points, which can help us to add variant noise to outputs based on
the density distribution of dataset.

6 Experiments

In this section, we test our proposed method both on a synthetic dataset and
an actual dataset. We use the standard non-private GP classification and the
cut-off Laplacian mechanism for comparison.
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(a) Standard GPC (b) GPC with cut-off mechanism

(c) GPC with simple DP (d) GPC with variant-noise

Fig. 3. Decision boundaries generated by a standard GP classifier and GP classifiers
with three different noise mechanisms. We have set ε = 1 and δ = 0.01 for all three
differentially private GP classifiers. We can see that classification boundaries generated
by cut-off mechanism are of many discontinuities, compared to smooth boundaries
generated by another two privacy mechanisms. This is because continuity of Φ(·) is
seriously destroyed by cut-off treatment, but if indirect perturbation strategy is applied,
squashed feature of Φ(·) can overcome this limitation.

6.1 Results on Synthetic Data

First we experiment with a synthetic dataset to demonstrate how the accuracy
of classifiers will degrade when our presented mechanisms are applied, compared
to that of the standard non-private GP classification method. There are 100
sample data points in both training and test dataset.

In Fig. 3 we show an overview of decision boundaries generated by a standard
GP classifier and three differentially private GP classifiers with different privacy
mechanisms. We can easily see that, the cut-off strategy (Fig. 3(b)), i.e. directly
adding noise to π̄∗ in Eq. (2) then restricting the new values, generates “frag-
mented” decision boundaries, whilst indirect perturbation (Fig. 3(c) and (d)) by
noising f̄∗√

1+var(f∗)
can well maintain the smoothness of classification boundaries.

This is a natural result in that the cut-off treatment as in Eq. (5) gravely destroys
the continuity of the function Φ(·), but indirect perturbation can reduce such
destruction through squashed feature of Φ(·). Figure 4 describes the reduction of
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Fig. 4. The degradation of differentially private classifiers’ accuracies when ε varies (We
have set δ to 0.01 for all cases). Reduction of accuracies with the decrease of ε reflects
the tradeoff between privacy and performance of models. Accuracy of the classifier
with cut-off Laplacian mechanism is close to 50% throughout, i.e. a random classifier.
Meanwhile, compared to the counterpart with simple DP, the classifier with variant-
noise mechanism can better preserve the performance of the standard GP classifier.

the accuracy when we vary the value of ε in a more intuitive way. Noting that
a smaller ε yields a noise with a larger scale, then accuracies of classifiers (with
differential privacy) degrade with the decrease of ε. On the other hand, reducing
ε corresponds to the strengthening guarantee of privacy. This reflects a tradeoff
between privacy and usability of learning algorithms. From Fig. 4 we can find
the cut-off mechanism achieve privacy at the expense of almost all the practica-
bility of models: the accuracy is close to that of random classification. Results
in this experiment also verify that our proposed variant-noise mechanism can
better preserve the performance of the standard GP classifier than the simple
DP functional mechanism (as an evenly noise adding strategy).

6.2 Results on Real-World Data

We also perform a simple test of our proposed method on an actual oil dataset
provided by NCRG of Aston University2. This dataset is used to model mea-
surements on a pipe-line transporting a mixture of oil, gas and water, including
2000 records. It contains 12 (real-valued) features to describe the mixture flow
in the pipe with a category label. The flow of mixture belongs to one of three
possible configurations: horizontally stratified, nested annular or homogeneous
mixture.

We adopt the “one vs. rest” (OvR) strategy to train three GP binary classi-
fiers for this multi-classification task. In Table 1 we give the results of our exper-
iments. On this dataset, classifier with cut-off Laplacian mechanism become
unstable, but two indirect perturbing strategies can still generate classifiers per-
form better than random classification even with large noise. Further more, our
proposed variant-noise mechanism can best maintain the performance of the
non-private model.

2 http://www.aston.ac.uk/eas/research/groups/ncrg.

http://www.aston.ac.uk/eas/research/groups/ncrg
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Table 1. Experimental results of test on NCRG oil dataset. (δ = 0.01 for all ε)

Models Test accuracy

ε = 1 ε = 0.5 ε = 0.2 ε = 0.1

Standard GPC 0.85 0.85 0.85 0.85

Cut-off mechanism 0.51 0.50 0.45 0.44

Simple DP 0.66 0.64 0.60 0.53

Variant-noise mechanism 0.75 0.72 0.66 0.56

Optimisation of Hyper-Parameters. So far we have not mentioned how we
optimise hyper-parameters in a standard GP classification model, including f̂ ,
K ′ in Eqs. (3) and (4), and the scale parameter l of the kernel function. This
is because concrete optimisation of these hyper-parameters is not relevant to
our privacy protection strategy. Note that we add noise to a trained classifier,
instead of a training classifier, which guarantees that we can ignore the impact
of the selection of optimisation methods. As a contrast, some models achieve
differential privacy by being perturbed parameters during the training process
(e.g. in gradient descent), including convolutional neural networks [1].

7 Conclusion

We have designed a differentially private Gaussian processes classifier. Through
the analysis of the Laplacian approximation method, we find the sensitivity of a
GP classifier. Then we make an improvement by introducing the density distri-
bution of dataset into the calculation of sensitivity and present a variant-noise
mechanism. Using this approach, we are able to add different scaled noise to out-
puts generated from different areas of the dataset. In this way, the total noise
can be reduced compared with an evenly noise adding strategy, and the perfor-
mance of GP classifier can be preserved to a great extent. As future work, we
plan to apply differential privacy to online learning cases, and GP classification
with other approximation techniques, e.g. expectation propagation.

Acknowledgements. This work is supported by National Key Research and Develop-
ment Program of China (No. 2018YFC0830400) and Shanghai Electric Vehicle Public
Data Center.
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Abstract. Slot filling is a demanding task of knowledge base popula-
tion, which aims to extract facts about particular entities from unstruc-
tured text automatically. Most of the existing approaches rely on pre-
trained extraction models which may suffer from robustness caused by
unseen slots, or the so-called zero-shot slot filling problem. Recent stud-
ies try to reduce the slot filling to a machine reading comprehension
task and achieve certain improvements on unseen slots, but they still
face challenges to generate appropriate questions for models and find
the right answers. In this paper, we propose a novel end-to-end approach
to address the zero-shot slot filling by unifying the natural language
question generation and machine reading comprehension. Especially, we
explore how to learn a well-organized latent question representation by
incorporating external knowledge. We conduct extensive experiments to
validate the effectiveness of our model. Experimental results show that
the proposed approach outperforms the state-of-the-art baseline methods
in zero-shot scenarios.

Keywords: Slot filling · Zero-shot learning · Reading comprehension

1 Introduction

Slot filling (SF) aims at extracting facts about particular entities from unstruc-
tured text automatically, and it has gradually become an important task for
knowledge base population and completion. A slot is a named attribute, e.g.,
spouse, and fill the specified value of a slot for a given entity, e.g., for the
entity Mark Zuckerberg, the fill for spouse is Priscilla Chen. Traditional
approaches [6,18] usually treat slot filling as a typical relation extraction task.
Given an entity and the slot, they first utilize natural language processing tech-
niques (e.g., named entity recognition and disambiguation) to get several candi-
date fills from the unstructured text, and then determine the final fill by classify-
ing relationships between the given entity and the candidate fills. Nevertheless,
these approaches rely on pre-trained extraction models and fail on unseen slots,
or the so-called zero-shot slot filling problem.

c© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11672, pp. 123–136, 2019.
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Recently, the template-based approach [8] and the question generation-based
approach [11] are proposed to treat slot filling as a machine reading comprehen-
sion process and provide a pathway to zero-shot slot filling. Given an entity and
the slot, these methods first formulate a natural language question. Then, they
get the target fill by a question answering system over the unstructured text.
During this process, the input questions for unseen slots could be generated from
new manually annotated templates [8] or natural language question generation
models [5,11,17]. Additionally, the generated questions of unseen slots can be
directly fed into the pre-trained machine reading comprehension model [14] to
extract the final answer from the relevant text.

Fig. 1. Zero-shot cases in slot filling

However, existing reading comprehension-based approaches [8,11] still have
limitations to generate appropriate questions for models to find the right answers.
For instance, Fig. 1 illustrates the scenario of an unseen slot place_of_death
comparing to several seen slot cases. The template-based model [8] requires
skilled annotators to generate new templates for unseen slots in the testing phase
and feeds the questions to the pre-trained question answering model. For the
question generation-based approach [11], it may generate confusing and useless
natural language questions because of lacking-related information in historical
training instances. Moreover, since the gradients cannot be passed in natural
language, the question generator and the reading comprehension extractor have
to be trained individually. Such a pipeline framework combined by a question
generator and extractor tends to result in cumulative errors. Therefore, the core
issue of zero-shot slot filling is how to produce an appropriate potential question
representation to unseen slots with limited manual annotations.
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As shown in Fig. 1, we can observe that slots date_of_birth and
date_of_death are both related to a date of an entity e, so the question could be
formulated as “What was the date of e’s death (or birth).” It indicates that slots
describing the same type of fills may share similar question patterns. We can
also observe that date_of_birth and place_of_birth share the similar ques-
tion pattern “When (or Where) was e born,” because these two slots share the
same topic word “birth.” Therefore, given an unseen slot, although it is difficult
to find the specific question template or generate the exact question for the slot,
we can infer the target question by leveraging the related seen slots with the same
fill type or topic word in training corpus, e.g., the unseen slot place_of_death
can be asked by “What was the date of e’s death (inspired by date_of_death)
or Where was e dead (inspired by place_of_birth).” However, directly adopt-
ing word embedding-based approaches [9,12] to compute the similarity between
unseen slots and seen slots will not achieve accurate results because of the limited
information contained in the single entity and slot embeddings.

To improve the quality of the latent representation of questions and achieve
better performance for zero-shot slot filling, we propose a knowledge-enhanced
end-to-end framework, which consists of an encoder and an extractor. The
encoder is used to capture semantic information of seen slots in a latent variable.
This latent variable indicates the universal question distribution of both seen and
unseen slots. Benefited from it, the extractor is designed to take the latent vari-
able and the conditions as the question representation and determine the final
fill. Especially, we incorporate external knowledge (i.e., Wikipedia abstracts) in
both encoder and extractor to enhance the accuracy of questions sampling and
fills extracting. We conduct experiments on the dataset proposed by [8], and
the experimental results illustrate that the proposed method consistently and
significantly outperformed state-of-the-art baselines concerning seen and unseen
slots.

The contributions of our study are summarized as follows:
– We propose a knowledge-enhanced end-to-end framework to address slot fill-

ing by unifying the natural language question generation and machine read-
ing comprehension. We learn the universal question distribution for sampling
instead of generating concrete questions, which is simple but effective for
handling the zero-shot slot filling problem.

– We incorporate external knowledge to improve questions sampling in the
encoder and fills discovering in the extractor. This also frees the proposed
model from human intervention in zero-shot slot filling scenarios.

– We conduct extensive experiments to validate the effectiveness of the pro-
posed framework.

2 Method

To find the accurate fills for a given slot from relevant unstructured texts, we
design a unified model with question representation learning and machine read-
ing comprehension. Figure 2 illustrates the overview of the proposed slot filling
framework.
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Fig. 2. Overview of the framework. A normal distribution z ∼ N (μ, δ2) of questions is
learned into a latent vector space based on the existing slots and external knowledge.
Then, the unseen slots can be further filled by the learned distribution and the reading
comprehension process.

2.1 Encoder

As above mentioned in Sect. 1, the similar slots share similar questions, and the
questions of unseen slots could be inferred from existing questions in the train-
ing data. To capture this similarity appropriately and accurately, the proposed
framework starts from a variant of Variational Autoencoder (VAE) [7,15] to
learn the distribution of latent variable z from question templates x of the seen
slots. As questions obey a universal distribution, we can sample the question
representation from the distribution for an unseen slot.

In the conventional VAE model, the log-likelihood logp(x(i)) could be written
as a sum of the lower bound L(θ;φ;x(i)) and the KL divergence between the real
posterior p(z|x(i)) and the approximation qφ(z|x(i)):

log p(x(i)) = DKL(qφ(z|x(i))||p(z|x(i))) + L(θ;φ;x(i)), (1)

where θ is the parameter of the model. Since the KL divergence is non-negative,
L(θ;φ;x(i)) can be formulated as:

L(θ;φ;x(i)) = −DKL(qφ(z|x(i))||p(z|x(i))) + Eqφ(z|x(i))[log pθ(x(i)|z)], (2)

where −DKL(qφ(z|x(i))||p(z|x(i))) makes approximate posterior distribution
close to prior, and Eqφ(z|x(i))[log pθ(x(i)|z)] reconstructs the input data. In the
proposed model, we do not need to reconstruct a concrete question x(i) and
further modify Eqφ(z|x(i))[log pθ(x(i)|z)] to Lext(θ; z) (i.e., Extractor in Sect. 2.2).

Following the definition of VAE, we utilize the standard normal distribution
N (0, I) as the specified distribution of p(z|x). Eventually, given an entity e
and the slot s, to sample the latent question representation z from N (0, I)
approximately, we take e and s as the condition c and define the approximate
distribution as:

p(z|x(i); c(i)) ∼ N (μ(x(i); c(i)), δ2(x(i); c(i))), (3)
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where μ(x(i); c(i)) and δ(x(i); c(i)) are arbitrary deterministic functions with
parameters φ that can be learned from data. To simplify the equation, we use
μ(i) and δ(i) to represent them respectively:

L(θ;φ;x(i); c(i)) � 1
2

N∑

n=1

(1 + log((δ(i)n )2) − (μ(i)
n )2 − (δ(i)n )2) + Lext(θ; z; c(i)).

(4)
Note that literal information of an unseen slot is limited. For instance, it

is difficult to map the unseen slot spouse to wife or husband which are the
usual expressions of the slot. Therefore, we incorporate external knowledge k
(i.e., Wikipedia description of the slot) into the condition c.

For the structure of the encoder, we utilize Bidirectional Gated Recurrent
Units (BiGRU) [4] to model the sequence data from questions and external
knowledge. The encoder contains a stack of recurrent connections so that the hid-
den state ht+1 could be calculated based on the previous state and the input data
xt in current time step. The distribution over the latent variable z is obtained
from the last state hend of the BiGRU, defined as:

μzx = W�
μxhendx + bμx; log(δzx) = W�

δxhendx + bδx,

μzc = W�
μchendc + bμc; log(δzc) = W�

δchendc + bδc,

μz = [μzx, μzc]; log(δz) = [log(δzx), log(δzc)],

(5)

where μzx and log(δzx) are learned from hendx which is the last state generated
from questions. Analogously, the μzc and log(δzc) are learned from hendc which
is obtained from c. Finally, the intermediate variable μz and log(δz) could be
computed by concatenating both pair of parameters.

Further, the condition c is constituted by three parts, i.e., the given entity
e, the specified slot s and the external knowledge k. Usually, e and s are short
terms with no more than 5 words. Therefore, we only utilize a two-layer neural
network to calculate the μ and log(δ) of them. To capture the most related infor-
mation from external knowledge, we employ the pre-trained word embedding and
perform a simplified attention layer:

w′
t = [aetwt, astwt], (6)

where aet is the attention value calculated by cosine similarity between entity
embedding of e and the input wt in current time step, and the ast is the slot
attention value. Each word in external knowledge would be modified as w′

t by
this attention layer and generates the μk and log(δk). Additionally, the condition
variable μzc and log(δzc) could be expressed as:

μzc = [μze, μzs, μzk],
log(δzc) = [log(δze), log(δzs), log(δzk)].

(7)

Since it is difficult to optimize all parameters with a general normal distri-
bution, we inspired by the work in [7] and obtain the latent variable z = μ+ δε,
where ε ∼ N (0, I) could be seen as a constant which splits from the optimization.
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Based on the above encoding process, the distribution of questions is learned,
and the questions of unseen slots could be inferred from the distribution. In the
next section, we will introduce how to extract the accurate fill for the slot of a
given entity.

2.2 Extractor

Inspired by machine reading comprehension, we reduce the slot filling to a sim-
plified question answering task. For instance, we could regard the given entity
Mark Zuckerberg and slot spouse as a question, and try to extract the accurate
answer Priscilla Chen as the fill from the relevant text.

Fig. 3. Structure of the extractor. The extractor is a four-layer network to locate the
expected slot value in text t ⊇ {w1, w2, w3, · · · , wn}. Moreover, each word wi is mapped
to a part of speech (POS) tag pi respectively. Each layer of the extractor is introduced
respectively: (1) Representation layer refines the word embeddings and the POS tag
embedding with contextual cues from surrounding words. (2) Interaction layer couples
the representation of text t with z and c, aligning essential information between them.
(3) Modeling layer employs an RNN to scan the context and refine the representation
of each word. (4) Output layer returns the answer for the query which depends on the
given entity e and the slot s.

In the encoder, we obtain the latent question representation z from N (0, I).
Relatively, in the extractor, the latent variable z and the representation of con-
ditions c (i.e., the given entity e, the slot s, and the external knowledge k) form
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the input question to the question answering model. As shown in Fig. 3, the
extractor is a four-layer network to locate the expected slot value in the text.

Precisely, we utilize BiGRUs in the representation layer to model the temporal
interactions between the contextual words of the relevant text t. Then, the hidden
state h1

i of each time step of representation layer is inputted into the interaction
layerwhich is responsible for aligning and fusing informationbetween the text t and
question q (i.e., the condition c and the latent variable z). As shown in Fig. 3, we
define a latent variable attention to measure the correlation between each hidden
state hi and the latent variable z:

fz(h1
i ) = α(h1

i , z)h
1
i , (8)

where αj ∝ h�
i z. Analogously, the condition attention value on each hidden state

hi is computed by:
fc(h1

i ) = α(h1
i , c)h

1
i . (9)

Note that there are three semantic parts, i.e., e, s and k contained in the
condition representation. The attention values of these three parts will be com-
puted respectively. Therefore, the modified hidden state h2

i (i.e., the combination
of h1

i , fz(h1
i ) and fc(h1

i )) is inputted into the modeling layer (or the so-called
fusion layer) to combine the different information obtained from the previous
layers. We also utilize BiGRUs to modeling this layer. Furthermore, the pointer
networks are adapted to indicating the boundary of the expected answer. We
mark the start index and end index of the answer as start and end respectively,
and we obtain the probability distribution of the start index by:

pstart = softmax(W�
startH), (10)

where W�
start is a trainable transformation matrix for start index detection, and

H is the concatenated hidden state of the modeling layer. Moreover, we utilize
the same strategy to obtain the pend. Further, the objective function of the
extractor is to maximize the log probabilities of the true start and end index by
the predicted distributions which are averaged over all examples:

Lext(θ; z; c) =
1
N

N∑

i

log pistart
piend

≤ 0, (11)

where N is the training sample capacity. Particularly, we modify the model in
a way that allows it to decide whether an answer exists by marking the end-
of-sentence (EOS) tag as the answer in negative examples. Finally, the total
objective could be defined as to minimize the follow function:

L(θ;φ;x; c) � −
N/M∑

n=1

M∑

i=1

{1
2
(1 + log((δ(i)n )2) − (μ(i)

n )2 − (δ(i)n )2)

+ log pθ(start|z(i)n , c(i)n ) + log pθ(end|z(i)n , c(i)n )},

(12)

where M is the batch size.
Based on the above-extracting process, the boundary of the expected fill is

detected, and the span of the expected fill could be inferred from the boundary.
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3 Experiments

To verify the performance of the proposed model, we conducted two types of
experiments. First, we compare the proposed model to several baseline methods
on typical slot filling, in which all slots appeared in the training data. Then, we
evaluate the performance of the proposed model in zero-shot scenarios.

3.1 Dataset Construction

We mainly conduct experiments on the dataset in [8], which includes 1,192 high-
quality question templates spanning 120 slots and 30,000,000 instances. Each
instance is made up of a slot s, a question q, a relevant text t, and a set of
answers a. We partitioned the dataset along with slots and randomly clustered
each slot into one of three groups: train, dev, or test. Then, we sampled 1,000,000
examples for train, 1,000 for dev, and 10,000 for test. Moreover, we construct the
slot descriptions from Wikipedia by extracting the abstract of the most related
Wikipedia items automatically.

3.2 Comparison Systems

We take the models proposed in [8] and several variants of the proposed model
as baselines. They are named after the preprocessing of the input of machine
reading comprehension systems:

1. KB Slot only takes an indicator (e.g., R7) as a question, that means it cannot
be generalized to unseen slots.

2. NL Slot uses the slot name as the question, but the information of the ques-
tion is still limited to extract answers from the relevant text.

3. Single Template leverages the crowed-source labeled question templates to
generate natural language questions. There is only one template per slot could
be observed in this model during training.

4. MultipleTemplates is a modified version based on Single Template and is
trained on a diverse set of question templates.

5. Question Ensemble is the full vision of baseline, and leverages three questions
per test instance and predict answers for each to improve the performance.

Compared with the above models, we consider a more rigorous experiment
setting of zero-shot scenarios where there are no manually labeled question tem-
plates for unseen slots. Concretely, we leverage auto-aligned slot description as
external knowledge and employ a unified model to handle the zero-shot issue.
To evaluate the performance of each part, the baseline models are implemented
incrementally:

1. ES − ZES(Att) takes slot (entity, ?) as the question directly without con-
straints of external knowledge and question templates, and the latent variable
z serves as the only attention key in the extractor.
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Fig. 4. Loss values in the training procedure

2. ES − ZES(Cont) also takes the slot (entity, ?) as the input, but the latent
variable z will serve as the context in RNN labeler.

3. QES(Att) takes question template with the entity e and slot s into consider-
ation, such as “who is the wife of x” and spouse (Zuckerberg, ?), the question
could be formulated as “who is the wife of Zuckerberg” eventually. Such ques-
tions serve as the input of VAE, and the original query slot (entity, ?) serves
as the condition factor.

4. QES(Wiki)(Att) is modified based on QER(Att). External knowledge will
be integrated into the model, i.e., slot description (gained from Wikipedia
abstracts).

5. QES(Wiki/POS)(Att) leverages the POS tag of each token (gained from the
result of spaCy1) as the additional knowledge to Wikipedia abstracts.

3.3 Evaluation Metrics and Settings

Following the setting in typical reading comprehension, each instance is eval-
uated by comparing the predicted span with the tokens in the labeled answer
set. Therefore, we employ Precision and Recall to evaluate the performance of
the proposed model in the seen slot filling scenario and the zero-shot slot filling
scenario at the test time. Precision is the true positive count divided by the
number of times the system returned a non-null answer. The recall is the true
positive count divided by the number of instances that have an answer.

We first initialized word embeddings with GloVe [12] trained on Wikipedia
dataset. Additionally, we created ten folds of train/dev/test slot filling instances
partitioned along with entities and slots respectively. We used a grid search strat-
egy to determined the optimal parameters. The search ranges for each param-
eter follow: the learning rate λ for the Adam algorithm {0.1, 0.01, 0.001}, the
1 https://spacy.io.

https://spacy.io
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Table 1. Performance on seen slot filling

Precision Recall F1

KB Slot 89.08% 91.54% 90.29%
NL Slot 88.23% 91.02% 89.60%
Single Template 77.92% 73.88% 75.84%
Multiple Templates 87.66% 91.32% 89.44%
Question Ensemble 88.08% 91.60% 89.80%
ES-ZES(Cont) 55.70% 57.32% 56.50%
ES-ZES(Att) 61.32% 63.46% 62.37%
QES(Att) 88.94% 91.34% 90.12%
QESK(Wiki)(Att) 90.93% 91.17% 91.05%
QESK(Wiki/POS)(Att) 91.25% 91.63% 91.44%

dimension of word embedding dw {100, 300, 500}, the dimension of latent vari-
able dz {100, 300, 500, 1000}. The best configurations for the joint model were:
λ = 0.001, dz = 300, dw = 300. Three epochs were enough for convergence, and
each epoch contains 10,000 mini-batches. As shown in Fig. 4, the KL-divergence
part converged rapidly in the training procedure, and this made it quite hard to
distinguish the semantic information from the input question. To address this
problem, we set a flag to control the convergence rate of each part in the loss
function by not optimizing KL-divergence part until the extractor is trained to
convergence.

3.4 Evaluation on Seen Slot Filling

In this section, we report the performance of the proposed model in a typical
slot filling scenario, in which all slots appeared in the training data. As shown in
Table 1, QESK(Wiki/POS) (Att) achieved the best performance compared with
other models in [8]. Note that we obtained the highest F1 to 91.44% without
manually annotated templates in testing.

In the listed results of the proposed models, ES-ZES(Cont) and ES-ZES(Att)
performed differently because of the diverse utilization of latent variable gen-
erated from entity e and slot s. Specifically, ES-ZES(Att) incorporated latent
variable z with the attention mechanism, whereas ES-ZES(Cont) treated z
as the context of RNN in extractor. As a result, the F1 of the model with
the attention mechanism is higher than the other one with 5.87%. With the
help of natural language questions, the performance of QES(Att) (without
external knowledge) improved significantly comparing with ES-ZES(Cont) and
ES-ZES(Att). The different results of QES(Att) and QESK(Wiki)(Att) show
the benefit of incorporating external knowledge (i.e., Wikipedia abstracts) in
the training phase. Moreover, with the help of POS tag of each token in the
training corpus, QESK(Wiki/POS)(Att) achieved the best performance.
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Table 2. Performance on unseen slot filling

Precision Recall F1

KB Slot 19.32% 2.54% 4.32%
NL Slot 40.50% 28.56% 33.40%
Single Template 37.18% 31.24% 33.90%
Multiple Templates 43.61% 36.45% 39.61%
Question Ensemble 45.85% 37.44% 41.11%
ES-ZES(Cont) 20.20% 13.52% 16.19%
ES-ZES(Att) 21.36% 20.42% 20.84%
QES(Att) 30.24% 33.34% 31.71%
QESK(Wiki)(Att) 47.35% 40.36% 43.57%
QESK(Wiki/POS)(Att) 48.52 % 40.73% 44.28%

3.5 Evaluation on Unseen Slot Filling

In this section, we present the performance of the proposed model in the zero-
shot scenario. As shown in Table 2, our model QESK(Wiki/POS)(Att) performed
better than the best model Question Ensemble in [8]. We analyze that there are
mainly two reasons for the improvement. On the one hand, we sampled the latent
question representation from the learned universal question distribution for an
unseen slot, whereas Question Ensemble relied on the annotated templates to
generate the corresponding question. On the other hand, incorporating external
knowledge in both encoder and extractor enhanced the accuracy of question
sampling and fills extracting.

Regarding the listed results of the proposed models, ES-ZES(Cont) and
ES-ZES(Att) which only utilize the entity e and slot s are not competitive with
the others. The performance of QES(Att) improved significantly with 10.87%
F1 value comparing with the previous two variants owing to the help of natural
language questions. However, QES(Att) still could not achieve the performance
as well as the baseline Question Ensemble, which indicates simply utilizing
entities, slots and natural language questions cannot learn and sample appro-
priate question representations very well. To address this issue, we utilized the
Wikipedia abstract as the external knowledge in the training and testing phases.
As a result, the performance of QESK(Wiki)(Att) shows that external knowledge
can contribute to the unseen slot scenario with 11.86% F1 improvement than
QES(Att). Note that, QESK(Wiki)(Att) did not need a diverse set of question
expressions while got a higher F1 score than Question Ensemble. Moreover, by
adding more syntactic information, i.e., POS tags, in QESK(Wiki/POS)(Att),
we achieved the state-of-art performance.
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4 Related Work

Slot filling is a significant issue in knowledge base population and completion.
Traditional rule-based or pattern-based approaches [2,3,16] directly use rules
or patterns to extract instances and usually suffer from the poor generalization
and low recall. As mentioned in Sect. 1, many approaches are proposed to reduce
the slot filling problem to a typical relation extraction task in recent years. Yu
and Ji [18] proposed a graph-based model to fill the slot while they also needed
to obtain all entity pairs and classify the relation between them. Adel et al.
[1] proposed a conventional neural networks-based slot filling model with the
presupposition of detected entities pairs as well. Huang et al. [6] used a pipeline
framework to extract all candidate mentions in the source corpus. They proposed
attention-based CNN for searching subgraph and detecting the slot type. As
relation extraction-based approaches need to obtain all entity pairs by named
entity recognition, they suffer from potential error accumulation between pipeline
components and are disabled to extract open-type slot values. For instance, the
fill is a short description of the appearance or the dead reason for someone.

To address the problem in conventional relation extraction, it is also possible
to reduce slot filling to the task of answering simple reading comprehension
questions. A typical machine reading task [10,13] could be formulated as utilizing
the natural language question q to extract an answer a from the relevant text t,
which is quite similar to slot filling tasks. In comparison, machine reading tasks
focus on the open-domain natural language understanding, while slot filling focus
the knowledge population under a schema and the information of question is
limited. Nishida et al. [11] incorporated the information extraction and reading
comprehension tasks by supervised multi-task learning, in which the extraction
component can be trained by considering answer spans. Levy et al. [8] proposed a
new method to utilize the reading comprehension models by modifying slots into
natural language questions directly. Nevertheless, they did not solve the zero-
shot problem in slot filling because manual annotation was still indispensable to
obtain the question templates in testing.

5 Conclusion and Future Work

In this paper, we proposed a unified, end-to-end model with natural language
question generation and machine reading comprehension to address the zero-shot
slot filling problem. We first utilized a variant VAE to learn a latent variable
to represent questions in the encoder. Then, we reduced the slot filling to a
simplified question answering process from unstructured text in the extractor.
Different from existing approaches, the proposed model learned the universal
question distribution for unseen slot sampling instead of generating concrete
questions, and we did not require human intervention for unseen slots owing
to the external knowledge. Experimental results demonstrated that our model
outperformed the state-of-the-art baseline methods in zero-shot scenarios with
high precision and recall.
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For the future work, we will explore a more general slot filling method based
on transfer learning so that lots of labeled data related to machine reading
comprehension or other areas can be utilized in the proposed framework. In
addition, as introducing knowledge may introduce noise information, we will try
to merge some manners (e.g., attention mechanism) to alleviate this issue.

Acknowledgment. This work was supported by National Key Research and Devel-
opment Program of China (2018YFC0830200), National Natural Science Foundation of
China Key Project (U1736204) and the Fundamental Research Funds for the Central
Universities (3209009601).

References

1. Adel, H., Roth, B., Schütze, H.: Comparing convolutional neural networks to tradi-
tional models for slot filling. In: Proceedings of NAACL-HLT, pp. 828–838 (2016)

2. Bikel, D.M., Castelli, V., Florian, R., Han, D.J.: Entity linking and slot filling
through statistical processing and inference rules. Theory Appl. Categ. (2009)

3. Chiticariu, L., Li, Y., Reiss, F.R.: Rule-based information extraction is dead! long
live rule-based information extraction systems! In: Proceedings of EMNLP, pp.
827–832 (2013)

4. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Proceedings of EMNLP, pp. 1724–1734 (2014)

5. Duan, N., Tang, D., Chen, P., Zhou, M.: Question generation for question answer-
ing. In: Proceedings of EMNLP, pp. 866–874 (2017)

6. Huang, L., Sil, A., Ji, H., Florian, R.: Improving slot filling performance with
attentive neural networks on dependency structures. In: Proceedings of EMNLP,
pp. 2588–2597 (2017)

7. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Proceedings of
ICLR, pp. 866–874 (2014)

8. Levy, O., Seo, M., Choi, E., Zettlemoyer, L.: Zero-shot relation extraction via
reading comprehension. In: Proceedings of CoNLL, pp. 333–342 (2017)

9. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed rep-
resentations of words and phrases and their compositionality. In: Proceedings of
NeurIPS, pp. 3111–3119 (2013)

10. Nguyen, T., et al.: MS MARCO: a human-generated machine reading comprehen-
sion dataset. In: Proceedings of NeurIPS, pp. 2383–2392 (2017)

11. Nishida, K., Saito, I., Otsuka, A., Asano, H., Tomita, J.: Retrieve-and-read: multi-
task learning of information retrieval and reading comprehension. CoRR (2018)

12. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: Proceedings of EMNLP, pp. 1532–1543 (2014)

13. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100, 000+ questions for
machine comprehension of text. In: Proceedings of EMNLP, pp. 2383–2392 (2016)

14. Seo, M.J., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention flow
for machine comprehension. In: Proceedings of ICLR, pp. 891–904 (2017)



136 T. Wu et al.

15. Sohn, K., Yan, X., Lee, H.: Learning structured output representation using deep
conditional generative models. In: Proceedings of NeurIPS, pp. 3483–3491 (2015)

16. Sun, A., Grishman, R., Xu, W., Min, B.: NY University 2011 system for KBP slot
filling. In: Proceedings of TAC, pp. 328–338 (2011)

17. Wang, T., Yuan, X., Trischler, A.: A joint model for question answering and ques-
tion generation. arXiv preprint arXiv:1706.01450 (2017)

18. Yu, D., Ji, H.: Unsupervised person slot filling based on graph mining. In: Pro-
ceedings of ACL, vol. 1, pp. 44–53 (2016)

http://arxiv.org/abs/1706.01450


Constrained Relation Network
for Character Detection in Scene Images

Yudi Chen1,2, Yu Zhou1(B), Dongbao Yang1, and Weiping Wang1

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{chenyudi,zhouyu,yangdongbao,wangweiping}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

Abstract. Characters are the basic components of text. Accurate char-
acter detection plays an important role in text detection and recognition.
Previous character detectors tackle characters as independent objects,
without considering the meaningful context information among them. In
this paper, we propose a new module named constrained relation module
which utilizes both the geometric and contextual information to exploit
the strong relationship between characters. With this module, we build a
new network named constrained relation network for character detection
and recognition. To the best of our knowledge it is the first work to uti-
lize contextual information among texts for character detection in scene
images. The module can improve the detection results by suppressing
the confusing text-like regions and recalling the hard examples. Exper-
iments on SynthText, ICDAR2013 and SCUT-FORU demonstrate the
effectiveness of our method on both detection and recognition tasks.

Keywords: Character detection · Neural network · Context attention

1 Introduction

Detecting text in scene images has become a hot research topic for its broad
applications in content based image retrieval, scene understanding, multilingual
translation and industrial automation. Although great progress have been made,
dilemmas such as vast variations of text scales, orientations, illumination, and
fonts are still remained to be remedied.

According to the basic elements, text detection can be categorized into char-
acter based, word based and text line based methods. Though the mainstream
text detection methods aim to detect words and text lines, character detection is
indispensable in some cases, e.g. detecting characters for mathematical formula
recognition and Chinese character extraction in equally row space and column
space situation (Fig. 1). Moreover, the extremely large aspect ratio of text region
is one of the most challenging problems unsolved in state-of-the-art text detec-
tion approaches because of the limited receptive fields of CNN. On the contrary,
for most languages the character has limited aspect ratio. For region proposal
c© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11672, pp. 137–149, 2019.
https://doi.org/10.1007/978-3-030-29894-4_11
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Fig. 1. Difficult patterns for text detection.

detector detector

detectorcharacter

backgroundcharacter

backgrounddetector

Fig. 2. Illustration of structure of conventional character detector and our detector.
The first row shows the raw image. The second row shows the structure of conventional
detectors. The third row shows the structure of our constrained relation module.

based methods, limited aspect ratio means fewer anchor boxes, which leads to
less computation.

Conventional character detectors such as SWT [3] and MSER [16] try to make
use of edge and region features of characters. Recently many works [10,20,26]
based on deep learning use high-level visual features for character detection.
However, all character detectors mentioned above consider characters as inde-
pendent objects, and only use the corresponding deep features of themselves
for classification. Many empirical studies have demonstrated that the contextual
information can significantly improve the object detection and classification per-
formance. Among them, the SIN [14] and the relation network [9] design simple
structures to integrate geometrical and contextual information to the detection
process. Inspired by these two contextual object detection methods, we find that
even more strong relationships exist in scene characters as illustrated in Fig. 2.
The left image in the top row has a hard example ‘T’, and the right image has
some confusing text-like regions. The context-free detection methods may suffer
from false negative and false positive errors. If we use the contextual detection
method, the character ‘T’ can be recalled correctly and the text-like regions can
be eliminated.

In this paper we propose the constrained relation network (CRN) for char-
acter detection. The CRN can take full use of context information to deal with
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most of the challenges mentioned above. The proposed architecture is based on
Faster R-CNN [18], and the backbone is VGG-16. A constrained relation mod-
ule is added after the FC layer. The constrained relation module utilizes both
the geometric features and the appearance features to construct the relation
network, and use a constrained mask to further select the appropriate context
information.

Our contributions are as follows: (1) To the best of our knowledge it is the
first character detection work which utilizes contextual information among texts
in scene images. (2) We introduce the relation network to character detection and
verify its effectiveness. (3) A constrained module is further proposed to precisely
model the character context, and experimental results show that the proposed
method is superior to the conventional relation network.

2 Related Works

Previous work for text detection and recognition can be roughly categorized
into character-based [1–3,10,16,20,27] and word-based [6–8,12,13,15,25,29,31]
methods. The character detection based methods usually first detect multiple
character candidates coarsely. After that candidates are filtered by a text/non-
text classifier to remove false positives. Finally, the identified characters are
grouped into words or text lines by either heuristic rules or clustering models.
Early works such as SWT [3] and MSER [16] use well-designed features to rep-
resent characters. They work well on focused text tasks, but will be vulnerable
to complex background in scene images. With the development of deep learning,
CNN based methods [10,20,27] play an important role in recent works.

The methods in the second category detect words directly. In [31] a neural
network model is trained to directly predict the existence of text instances and
their geometries from full images. [13] extracts features in different feature maps
to jointly achieve text detection and bounding-box regression at multiple image
scales. [12] designs a segmentation-based detector with multiple predictions for
each text instance to deal with multi-oriented texts. Though the word detection
approach is simpler, it does not work well with long aspect ratio texts and it is not
robust enough to data patterns. In addition, visually defining a word boundary
may not be feasible for texts in many non-Latin languages such as Chinese and
Korean. Comprehensive surveys for scene text detection and recognition can be
referred to [28].

Context has been demonstrated to be effective for object detection and recog-
nition [9,14]. Recently, some approaches based on deep ConvNet have made some
attempts to incorporate object context information to text detection [17,32].
In [23], RNN is used to explore meaningful context information of text line.
However, it only considers the information of the sliding windows in the hori-
zontal line. We find that even more strong relationships exist in all characters
which in the same scene image, thus we propose a constrained relation module
to exploit relations for characters in a self-adaptive mask.
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Fig. 3. Illustration of the architecture of the constrained relation network.

3 Methodology

In this section, the architecture of CRN is detailedly described, and the corre-
sponding loss function is presented. The overall architecture of CRN is shown in
Fig. 3.

We select Faster R-CNN as the character detection framework, and the net-
work backbone is VGG-16. There are two RPNs to extract character proposals
and word proposals respectively. The relation network is connected after the
character RPN to generate relation weights for all character proposals. The char-
acter proposals are grouped according to the bounding boxes of the word RPN.
Accordingly, the constrained mask is generated. After that, the constrained mask
and the relation weights are fused to generate the constrained relation weights.
The final feature are the combination of the conventional feature and the con-
strained relation weights. Classification and regression are implemented using
the final feature.

In Sect. 3.1, we first review the conventional relation network. The con-
strained relation module and the loss function are described in the next two
subsections respectively.

3.1 Relation Network

In Faster R-CNN, the classification and regression of a specific RoI only rely on
its own feature. To take the context information into consideration, the relation
network proposed an adapted attention module for object detection. The final
feature fn

R of the adapted attention module is calculated as:

fn
R =

∑

m

wmn(WV · fm
A ) (1)

where m,n is the index of RoI, WV represent the weight parameters in the
network, the appearance feature fA is the output of RoI-Pooling layer, wmn is
the final weights formed by context information, it is computed as follow:

wmn = softmax(
WKfm

A · WQfn
A√

dk
+ log wmn

G ) (2)
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where WK ,WQ represent the weight parameters in the network, wmn
G is the

weight of geometry features of mth RoI and nth RoI, which is encoded by the
embedding method in [24]. The feature dimension after projection is dk. For
more detailed information about the relation network, please refer to [9].

3.2 Constrained Relation Module

For character detection, we take the characters as the target objects. However,
the relation network takes the relations of the character RoIs of the whole image
into consideration, which is not the case sometimes. As shown in Fig. 4, the
characters in the same word are more correlated while the characters in different
words are not. It is straightforward that the closer characters are more helpful
to the detection of the target character than those distant ones.

Algorithm 1. Constrained Relation Algorithm
Input: RoIs: Rw, Rc, Scores: Sw

Output: Constrained relation mask: M
1: function CRM(Rw, Rc, Sw)
2: rt ← [ ]
3: Rw, Sw ← NMS(Rw, Sw)
4: Rw, Sw ← TopK(Rw, Sw,K)
5: p ← size(Rw, 0), q ← size(Rc, 0)
6: P ← zeros(p, q),M ← zeros(q, q)
7: P ← Cover(Rw, Rc)
8: for j = 0 → size(Rc, 0) do
9: rt ← find(P [:, j] == True)

10: for each r ∈ rt do
11: M [j, :] ← Logical OR(M [j, :], P [r, :])
12: end for
13: end for
14: return M ,P ;
15: end function

We propose the constrained relation module to implement the local attention
strategy. The module takes the labels of word bounding boxes as the supervised
information. An extra RPN process with different anchor sizes and aspect ratios
is introduced to propose word RoIs. Next, an efficient algorithm is designed to
group character RoIs. The details of the algorithm are summarized in Algo-
rithm1. Rw represents the RoIs of words and Rc represents the RoIs of charac-
ters. Sw is the text/non-text confidence scores of word RoIs. NMS represents a
Non-Maximal Suppression algorithm [19] and TopK returns the first K results
based on the input scores. M is the output of constrained relation module. rt is
the intermediate result. P is the matrix returned by the function Cover, P [i, j]
is True when the ith word bounding box contains the jth character bounding



142 Y. Chen et al.

Fig. 4. The relationship of the characters. Characters marked in the same color are
closely related, while characters marked in different colors are uncorrelated with each
other.

box. Logical OR(c, d) calculates the element-wise logical OR results of vec-
tors c and d.

Once the constrained relation matrix M of character RoIs is calculated, it is
sorted by the character groupings which is represented by P , and then fed into
Conv(3,3) layer to get wl. Then, an element-wise product is executed between
wl and wmn (in Sect. 3.1). The result of the element-wise product is fed into
FC layer to get the same shape of the feature after RoI-Pooling, then we get
the constrained relation weights of the CRN. Another element-wise product is
executed between the features and the constrained relation weights to get the
final features, which is used for classification and regression in the second stage.

3.3 Loss Function

For learning the network, the loss function can be formulated as:

L = Lc + αLw (3)

where Lc, Lw represent character loss and word loss respectively, α is a weight
balancing these two losses. Lc is the same as in [18] and [4].

Lc = Lrpn + Lrcnn (4)

Lrpn and Lrcnn are the RPN loss and the R-CNN loss respectively. Some char-
acters in the scene images may be too small, even a 1-pixel error will change
the prediction result. The loss function should be suitable for precise localiza-
tion. Because the 2-stage strategy of Faster R-CNN is very suitable for precise
localization, the loss function is inherited for character detection. For the word
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RPN part, only the classification result is needed to help to group the character
RoIs. Therefore only the cross entropy loss for classification is used. Moreover,
the convolution parameters that are used to fuse the constrained relation mask
(discussed in Sect. 3.2) should be learned during training. The word loss includes
two loss functions Lws and Llp which are listed as follows:

Lw = Lws + βLlp (5)

Lws = − 1
N

N∑

n

[yn log(xn) + (1 − yn) log(1 − xn)] (6)

Llp = 1 − 2
∑

m,n wm,n
l ∗ lm,n

∑
m,n(wm,n

l )2 +
∑

m,n(lm,n)2
(7)

where xn is the pixel value in RPN scores map, yn is the pixel label. In Llp, the
prediction is wl, and the ground truth label is lm,n ∈ RN∗N which is generated
by the matching of the ground truth character and word bounding boxes, N is
the number of character RoIs. A dice loss is used here to deal with the class-
imbalanced problem. In this work α, β are set to 1 and 0.5.

3.4 Implementation Details

The backbone network is VGG-16 pre-trained on the ImageNet dataset. The
aspect ratios are set to [1, 1

2 ] for the character RPN and [1, 2, 5] for the word RPN.
The anchor sizes are set to [2, 4, 8, 16, 32] for character RPN and [8, 16, 32] for
the word RPN. The CRN is trained on 100k images from the SynthText dataset
for 240k iterations as the pre-trained model, then fine-tune is implemented on
the ICDAR13 training dataset. The learning rate is set to 10−3 for the first 120K
iterations and then is reduced by 10 times for the other 120K iterations. In the
training stage, all the short edge of the input images are resized to 600 pixels
while keeping the aspect ratio of the images.

All the experiments are conducted on an Intel Xeon E5-2630 CPU worksta-
tion with 32 GB RAM, NVIDIA M40 24 GB and Ubuntu 16.04 OS, and with the
framework Tensorflow 1.8.0.

4 Experimental Results

Following the standard evaluation protocols, we evaluate our method on the
SynthText, ICDAR13 and SCUT-FORU datasets. These three datasets have
character-level annotations.

SynthText. The SynthText dataset [5] consists of 800,000 images, generated
by a synthetic engine proposed in [5]. We randomly select 105k images, 100k of
which are used for training and others for test. In fact, 20k images are already
enough for character detection. Considering the character recognition process we
choose 100k images here for the purpose of learning the semantic information.
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We resize the short sides of all input images to 600 pixels and the aspect ratios
are retained when evaluation. For multi-scale evaluation the short sides of the
input images are randomly resized to four scales (300, 600, 1200, 2400). We use
the same multi-scale resizing strategy for ICDAR13 and SCUT-FORU.

ICDAR13. The ICDAR13 datasets [11] are from the ICDAR 2013 Robust Read-
ing Competition, containing 229 images for training, and 233 for test. We use
50k SynthText data for pre-training, and then fine-tune on 229 training images
for 8 epochs. We resize the short sides of all input images to 1500 pixels and the
aspect ratios are retained when evaluation.

SCUT-FORU. The samples of SCUT-FORU dataset [30] consist of 813 training
images and 349 test images. The background and illumination vary in large scales
in the dataset, so we use it to test the generalization performance of CRN. We
do not train on any SCUT-FORU image, instead we use the model trained on
ICDAR13 for evaluation.

Table 1. Character detection results on SynthText, P, R and F mean precision, recall
and F1-measure respectively, MS means multi-scale

Method Character detection Character recognition
P R F P R F

Hu et al. [10] 0.830 0.770 0.799 * * *
Hu et al. [9] 0.878 0.867 0.872 0.752 0.795 0.773
Base 0.793 0.853 0.822 0.649 0.763 0.701
CRN 0.930 0.874 0.901 0.824 0.812 0.818
CRN+MS 0.928 0.908 0.918 0.903 0.827 0.863

Three methods are compared to show the effectiveness of CRN. The first one
is Faster R-CNN, in which some hyper parameters are changed for detecting
characters, and it is marked as Base. The second one is an implementation of
the relation network [9], in which embedding and multi-head attention are used.
The third one is the proposed CRN, and it is marked as CRN.

Tables 1, 2 and 3 show the results on SynthText, ICDAR13 and SCUT-FORU
datasets respectively. Since there is not much work related to character detection
on these three datasets, we only choose the latest work for comparison. In addi-
tion to character detection, we also implement character recognition by simply
replacing the classification of text and background with the classification of 36
characters and background in RCNN module.

The results shown in Table 1 demonstrate the effectiveness of CRN in large
scale synthetic dataset. The detection f-measure of Faster R-CNN is 82.2%. By
using relation network, the f-measure is increased by 5.0% compared to that
of Faster R-CNN. Moreover CRN have increments of 7.9% and 2.9% f-measure
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Table 2. Character detection results on ICDAR13, P, R and F mean precision, recall
and F1-measure respectively, MS means multi-scale

Method Character detection Character recognition
P R F P R F

Sung et al. [21] 0.864 0.743 0.799 * * *
Tian et al. [22] 0.718 0.854 0.780 * * *
Hu et al. [9] 0.919 0.826 0.870 0.856 0.769 0.810
Base 0.868 0.842 0.855 0.798 0.774 0.786
CRN 0.923 0.862 0.891 0.861 0.804 0.831
CRN+MS 0.917 0.898 0.907 0.821 0.856 0.838

Fig. 5. P-R curves for character detection on ICDAR13

compared to Faster R-CNN and the relation network. CRN obtains another
increment of 1.7% f-measure and finally achieves the f-measure of 91.8% for
multi-scale evaluation. For recognition, the relation network, CRN and multi-
scale CRN have increments of 7.2%, 11.7% and 16.2% separately. It can be
seen that CRN has a greater improvement in multi-label classification task than
two-class classification task. This fully demonstrates that semantic information
between categories is important for classification tasks.

On the real scene text dataset ICDAR13, the consistent improvements are
obtained. As shown in Table 2, the increments that from 85.5% to 89.1% and
78.6% to 83.1% are achieved respectively. Our method outperforms the method
in [9] significantly by 3.7% F-score (90.7% vs 87.0%). The overall superior per-
formance of CRN over Faster R-CNN and conventional relation network can be
proved with the more detailed precision-recall curves of ICDAR13 dataset shown
in Fig. 5.

As shown in Table 3, three key components in our pipeline are evaluated
On SCUT-FORU dataset. With “relation network” branch, the f-measure is
improved by about 1% with similar recall. If we further add “constrained mask”,
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Table 3. Character detection results on SCUT-FORU, P, R and F mean precision,
recall and F1-measure respectively, MS means multi-scale

Relation network Constrained mask MS P R F

✗ ✗ ✗ 0.877 0.887 0.882
✔ ✗ ✗ 0.913 0.873 0.893
✔ ✔ ✗ 0.926 0.901 0.913
✔ ✔ ✔ 0.921 0.951 0.936

the performance in recall increases by 3%. In accordance to our previous anal-
ysis in Sect. 3.2, information from other objects contributes differently to the
detection of the current object. The detection process can benefit from a local
attention strategy. All the models are only fine-tuned on ICDAR13 training set

Fig. 6. The Comparison between the Faster R-CNN based method and the Constrained
Relation Network based method. (a) and (c) are the results with Faster R-CNN method,
(b) and (d) are results with Constrained Relation Network method. The first row shows
the promotion of recall, the second row shows the promotion of precision.
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without using any training sample of SCUT-FORU dataset, and are directly
used for evaluation in the SCUT-FORU test set, which demonstrate the gener-
alization ability of CRN.

Two qualitative examples are shown in Fig. 6. (a) and (c) are the detection
results with Faster R-CNN method, (b) and (d) are those with CRN. The char-
acter ‘R’ in the word ‘COOKERY’ in (a) is missed, but in (b) it is detected
correctly and precisely, and many other tiny characters are additionally recalled
by CRN. In (c) a whole line of false positive regions are detected as charac-
ters, but with the constrained relation module these false positive regions are
eliminated, and at the same time all the true positive regions are correctly kept.

The above results indicate that a properly adjusted Faster R-CNN is suit-
able for character detection tasks. The relation network can improve test results
to some extent by utilizing contextual information. But the global information
fusion strategy will lead to the distraction of attention. By reasonably restrict-
ing the perceptual area, the CRN can achieve further improvements in detection
task, especially for multi-category situations. All these quantitative and qual-
itative experimental results show the effectiveness of relation network and the
constrained module for detection and recognition of characters.

5 Conclusions

In this paper we propose the constrained relation network (CRN) for character
detection. The constrained relation module utilizes both the geometric features
and the appearance features, and use a constrained mask to further select the
appropriate context information. The F-Measure increments of 3.6% and 3.1%
on ICDAR and FORU show the effectiveness of CRN for character detection.
For future work, we will investigate whether the constrained mask can be trained
to figure out the exactly grouping results.
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Abstract. This paper proposes a novel two-stage learning framework
TS-OBR for double-sided Braille images recognition. In the first stage,
a Haar cascaded classifier with the sliding window strategy is adopted
to quickly detect Braille recto dots with high confidence. Then a coarse-
to-fine de-skewing method is proposed to correct original skewed Braille
images, which maximizes the variance of horizontal and vertical projec-
tion at different angles. And an adaptive Braille cells grid construction
method based on statistical analysis is proposed, which can dynamically
generate the Braille cells grid for each Braille image. In the second stage,
a decision-level SVM classifier with four classifiers recognition results is
used to get recto dots detection results only on intersections of the Braille
cells grid. Experimental results on the public double-sided Braille dataset
and our Braille exam answer paper dataset show the proposed framework
TS-OBR is effective, robust and fast for Braille dots detection and Braille
characters recognition.

Keywords: Optical Braille Recognition · De-skewing ·
Braille dots detection · Braille cell location · Double-sided Braille

1 Introduction

There are about 1.3 billion visual impaired and 36 million blind in the world
according to the WHO [13]. Braille is a tactile writing system for the visu-
ally impaired to learn knowledge and obtain information, which is designed by
Frenchman Louis Braille. Automatic recognizing Braille document images into
Braille characters can be called Optical Braille Recognition (OBR) [8]. OBR
system is meaningful and important for republication of numerous early and
valuable Braille books, translation of Braille exam papers in the special educa-
tion field, and communication with others.

The Braille document consists of Braille characters based on rectangular cells,
which contain six dots arranged in three rows and two columns. Many Braille
books are double-sided to save papers, which may contain recto dots and verso
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dots in one Braille document. Double-sided OBR is a challenging task for the
diversity of Braille papers, disturbance of complex arrangement of recto and
verso dots, deformation and skewness of Braille images by acquisition noise.

Generally, the OBR system contains several steps including Braille image
acquisition, image de-skewing, Braille dots recognition and Braille cells location
and recognition [8]. Image segmentation based OBR methods are widely used,
which segment the Braille dots from the background and design some rules to
identify them.

Antonacopoulos et al. [5] segmented the Braille image into shadow, high-
light and background regions, and then identified them as recto dots or verso
dots according to different combinations of highlight and shadow regions. Al-
Shamma et al. [4] used canny method to detect dot edges and used holes filling
and image filtering to detect Braille dots. They tested on several scanned single-
sided Braille documents with the average time of 32.6 s for one document. Above
segmentation based methods are simple and affected by designed rules and seg-
mentation threshold values, and not robust for complex Braille images.

Some work used statistical learning methods to detect Braille dots and rec-
ognize Braille cells. Namba et al. [12] applied the neural network based on asso-
ciative memory to classify Braille cell images into ten classes and obtained 87.9%
recognition rate on Braille cell images. This method cannot deal the whole Braille
image which is not suitable in real applications. Li et al. [9] used SVM with the
sliding window strategy to recognize Braille characters, which needed 20 min to
process one Braille image with the classification error of 5%. This method is
time-consuming with low performance.

Recently, Li et al. [10] released the first public Braille images dataset DSBI [1].
They also proposed a Haar+Adaboost with the sliding window strategy to detect
recto dots. Their strategy got 0.970 F1 value for recto dots detection on the
DSBI dataset. However, they only evaluated on de-skewing images for recto
dots detection. And the performance is not good enough, since even little error
rate may lead dozens of Braille dots recognized wrong for a Braille page with
over one thousand dots averagely.

Besides Braille dots detection, in real applications, one OBR system also
should process the original Braille images with certain degree of skewness and
deformation from acquisition noise or human errors. Most of existing OBR meth-
ods didn’t mention this issue, some de-skewing methods are mentioned lightly
and time-consuming in practice.

Braille cells locating is also a crucial stage of OBR systems. Most of existing
methods are based on the standard arrangement of Braille dots, which are not
robust for some complex situations with sparse Braille characters, incomplete
Braille row or column groups and image deformation.

This paper focuses on the effective and quick double-sided Braille image
recognition task for original images. The main contributions are as followings.

We propose a novel Two-Stage learning framework for double-sided Braille
image recognition called TS-OBR. There are several advantages of our pro-
posed framework TS-OBR, which contains the whole processing including image
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Fig. 1. Our proposed framework TS-OBR.

de-skewing, location of Braille cells and Braille dots detection and Braille char-
acters recognition. We can directly process the original Braille images with skew-
ness and deformation. Our system can recognize recto and verso Braille charac-
ters together so that we can only scan and process one side of the double-sided
Braille image in real applications. Experimental results on the DSBI dataset
and our Braille exam answer paper dataset show the effectiveness of our pro-
posed method. The average F1 value is over 0.997 for both recto and verso dots
detection and over 0.994 for Braille characters recognition on the DSBI. We
also achieve an excellent performance with the average F1 value 0.992 for recto
dots detection on our Braille exam answer paper dataset BEP directly using
the model only trained on the DSBI. Unlike the DSBI, which is from printed
Braille books, our dataset BEP comes from manually stabbed paper by blind
student. The whole system TS-OBR only costs about 1.5 s for recto and verso
dots detection respectively with high recognition rate on the two datasets.

2 The Proposed Framework

The proposed framework TS-OBR is shown in Fig. 1. The DSBI dataset pro-
vides the original color images and de-skewing color images. We just use original
images to process. Firstly, we convert the original color image to the gray image.
In our first stage, different from other methods, we use Haar+Adaboost with the
sliding window strategy to quickly detect Braille dots rather than performing the
de-skewing process. Then, the position of detected Braille dots will be used by a
coarse-to-fine method to find an appropriate angle to correct the skewed image.
A flexible Braille cells grid is then constructed to locate the Braille cells based on
detected Braille dots and the statistical information of Braille cells arrangement.
In our second stage, we further classify each intersection of the Braille cells grid
using a decision-level SVM classifier to improve the performance of OBR.
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3 Our Main Work

3.1 The First Stage for Braille Dots Initial Detection

Braille dots detection is the most crucial task in OBR systems. The existing
segmentation based methods are not robust for complex double-sided Braille
images. This paper regards Braille dots detection as general object detection in
nature images. So we also adopt the classical object detection method, which
uses Haar feature and Adaboost classifier [10,14] to detect Braille dots.

Different from [10], our first stage is only used for the initial Braille dots detec-
tion. Figure 2 shows one local region of recto dots detection with Haar+Adaboost
and most of recto dots are detected successfully and reliably. Although some
recto dots are missing, this problem can be resolved in our second stage with
a higher performance classifier. Experimental results show that our first stage
only takes average 0.29 s for each image with 200 dpi in the DSBI dataset.

Fig. 2. Braille recto dots detection results with Haar+Adaboost.

3.2 De-skewing by a Coarse-to-Fine Strategy

The standard arrangement of Braille dots and cells should be regular in both
horizontal and vertical directions, while the acquired Braille images have much
noise. So de-skewing process is necessary and important. Most of original Braille
images have a slight skewness in the DSBI dataset and our dataset, which will
make the Braille cells location and Braille characters recognition more difficult.

Many existing de-skewing methods, including Linear regression [6] and Hough
Transform [5], are not robust and fast for complex double-sided Braille images.
Mennens et al. [11] used the deviation over the sum of the rows to calculate the
image rotation angle. The image was slanted one pixel in vertical direction each
time.
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Algorithm 1. De-skewing by coarse-to-fine strategy

1. Create a white binary image b(x, y) with the same size of the original image oi(x, y).
2. Replace each detected dot d(x, y) at the same position (x, y) in b(x, y) with a black
square with size of s× s .
3. In the coarse de-skewing stage, rotate the image b(x, y) from −angle◦

1 to +angle◦
1

with a large step ls.
4.For each angle angle◦, project the rotated binary image ba(x, y) in horizontal and
vertical directions, and obtain the horizontal frequencies h and vertical frequencies v.
5. Calculate the projection variance var for angle◦ :

h =
1

n

n∑

i

hi, v =
1

n

n∑

i

vi (1)

varh =
1

n

n∑

i

(hi − h)2, varv =
1

n

n∑

i

(vi − v)2 (2)

var = varh + varv (3)
6. Select the rotated angle with the maximum var as a1◦.
7. In the fine stage, rotate the binary image b(x, y) from (a1 − angle2)

◦ to (a1 +
angle2)

◦ with a small step ss to find a more accurate rotated angle.
8. Select the rotated angle with the maximum var as a2◦.
9. Rotate the original image oi(x, y) with angle −a2◦, get the de-skewing image
dsi(x, y) and de-skewing dots DSD.

This paper proposes a coarse-to-fine de-skewing method with two levels angel
interval by maximizing the variance of horizontal and vertical projection. And
the angle with the maximum variance is the skewed angle. The details are
described in Algorithm 1.

In our experiments, the parameters are set s = 5, angle1 = 5, angle2 = 0.5,
ls = 1◦, ss = 0.02◦.

We use the coarse-to-fine projection strategy to quickly get the skewed angle
with average 0.57 s for each image.

3.3 Dynamic Braille Cells Grid Location

Each Braille document consists of hundreds of Braille characters and each Braille
character has a rectangular block called a Braille cell, which contains six Braille
dots arranged in three rows and two columns. These six dots can be tiny bump
called recto dots or flat to represent a certain Braille character. In ideal situa-
tions, the Braille cells grid is a regular grid, and the distances among horizontal
and vertical lines are regular and easy to estimate at a specific resolution of
scanned Braille images.

Most of Braille cells grid location methods are based on arrangement rules
of Braille characters. Some methods used a preset fixed grid and selected a
Braille dot as the starting point to construct a regular grid [3,9]. To enhance
the robustness, Antonacopoulos et al. [5] used an adaptive method to form the
Braille cells gird rather than the preset grid by calculating the distances of Braille
rows and columns for each Braille document.
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While in real applications, this grid is usually deformed due to acquired noise,
thus the distances between lines are usually not fixed even in the same document.
Besides these noise and deformation, Braille cells grid location is also difficult in
some complex situations.

We introduce a robust and flexible method to construct the Braille cells grid
by statistical information. The Braille cells grid can be dynamically generated
by distribution of Braille dots. Our method contains four steps: detect Braille
lines, group Braille lines, add missing Braille lines and construct the cells grid,
which we will describe as followings.

Detect Braille Lines. With the de-skewing image and Braille dots, we firstly
sort all the detected dots in ascending order by y coordinates and generate the
first horizontal line according to the first dot. Then the distance of subsequent
dots to the line is calculated. If the distance is below the threshold TH1, it will
be added to this line and the position of this line is updated by the average of
y coordinates on this line dynamically. Otherwise, a new horizontal line will be
generated. In this way, some candidate horizontal lines are extracted. Then we
remove some very close lines and only remain those with many dots to reduce
the influence of wrong detected dots.

Group Braille Lines. Based on the detected Braille lines, we select some reli-
able groups of three continuous horizontal lines from top to down, according to
the arrangement rules of Braille cells. Set {hl1, hl2, hl3} is one group of lines, d12
and d23 are the distances of hl1 and hl2, hl2 and hl3 respectively, which should
satisfies the following constraint:

d12, d23 ≤ TH2 + α && d12, d23 ≥ TH2 − α (4)

where TH2 is the distances of lines in one Braille cell, and α is a penalty factor.
We will update the value of TH2 according to the d12 and d23 in each line group
dynamically. Some overlapped line groups will be removed by statistical analysis.

Add Missing Braille Lines. The above steps can form some reliable groups
with three lines. Other line groups will be inserted according to the remaining
lines and the regular distance to make sure that line groups are placed in the
regular interval by y coordinates.

Construct Cell Grid. The above steps construct the whole horizontal lines
and line groups of current Braille image. Then the similar process is applied for
detecting and grouping vertical lines according to x coordinates while each group
only contains two vertical lines.

The threshold values in our method change dynamically to adapt the complex
situations and could be tolerate some errors. Braille images in the DSBI dataset
are scanned with 200 dpi, the initial parameters are: TH1 = 5, TH2 = 21, α = 3
in our experiments. Experimental results show the effectiveness of our proposed
Braille cells grid location method for complex double-sided Braille images.
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3.4 The Second Stage for High-Precision OBR

With above accurate Braille cells grid information, we can further adopt a rela-
tively complex and high performance machine learning method for Braille dots
detection and Braille characters recognition. This stage can only process on the
vertexes of Braille cells, also the intersections of Braille cells grid, instead of the
whole image. This strategy is not mentioned in existing methods for OBR.

Fig. 3. Results of the second stage. The green dot is the detected recto dots and the
white rectangle is the located Braille cells. (Color figure online)

This paper selects the feature of Histogram of Oriented Gradient (HOG) [7],
Local Binary Pattern (LBP) [2] and fused HOG LBP to train three SVM clas-
sifiers. We classify each intersection of the grid using them.

For better performance of Braille image recognition, the initial detection
result will also be converted to the result based on the grid by assigning each
detected dot to the nearest intersection. And then, we use a decision-level SVM
to fuse the converted result and the classified results by three SVMs. We take
these results as a 4-dimension feature to train the decision-level SVM for fusion
so that we don’t have to be stuck on how to balance the weight of each result.

The processing time has been reduced greatly in this strategy compared with
general sliding window strategy. Our method can also help avoid the wrong dots
detection beyond the grid intersections and then improve the precision and recall
rate. One region of the recto dots detection and cells location result by the second
stage is shown in Fig. 3.

4 Experiments and Analysis

4.1 Dataset

Unlike most existing methods which are tested on their small datasets, we use
two Braille datasets to evaluate our method. Firstly, we choose the double-sided
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dataset DSBI [10]. DSBI is the first public and only Braille image dataset avail-
able, which contains 114 double-sided Braille images from several Braille books.
These Braille images are acquired by the flatbed scanner with 200 dpi and the
resolution is about 1700 × 2338 pixels. Some of Braille images have defects such
as oil stains, distortion, cracks and abrasion Braille dots, which are complex and
difficult for OBR.

The training set of DSBI contains 26 Braille images from 4 books and the
test set contains remained 88 Braille images from all the books. This dataset also
provides both the original Braille images and de-skewing images with detailed
position annotation information of recto and verso dots, which can be used to
evaluate the performance of dots and characters recognition.

In order to further verify the effectiveness of our proposed framework TS-
OBR, we also constructed a Braille exam answer paper dataset called BEP. We
have collected a total of 95 Braille exam answer papers from 28 blind students.
Unlike Braille books, Braille papers are stabbed by blind students themselves
using the special Braille writing tablet. Braille exam answer papers are usually
one-sided, and the size of Braille dots stabbed varies greatly because of the
difference of stab habits and strength.

What’s more, many wrong-stabbed Braille dots are usually erased directly.
But these erased dots are very difficult to distinguish from ordinary Braille dots
visually, which are usually inferred by Braille teachers combined with context
semantics. One local region of the Braille exam paper with some erased dots in
our BEP is shown as Fig. 4. Therefore it’s more challenging than the recognition
of printed Braille books for these cases. We use all the pages in dataset BEP to
evaluate the performance and generalization ability of our framework. And the
models are the same as DSBI and only trained on the training set of DSBI.

Fig. 4. One local region of the Braille exam paper with some erased and various appear-
ance dots.

Unlike other datasets, each image contains only one or few objects, one Braille
image contains averagely over 1,000 very small recto dots and hundreds of Braille
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characters. Table 1 gives us the statistical information of recto dots and Braille
characters in both datasets. There are averagely over 1000 recto dots and around
400 Braille characters each Braille image no matter in the DSBI and BEP. The
total number is very huge about over 100 thousands dots and around 40 thou-
sands characters in each dataset. And we use 88 pages in DSBI and all 95 pages
in BEP for evaluation.

Table 1. Statistical information of Braille recto dots and Braille characters.

Dataset Recto dots Braille characters Total pages Evaluated pages

DSBI Average: 1071
ALL: 122117

Average: 401
ALL: 45725

114 88

BEP Average: 1147
ALL: 109034

Average: 406
ALL: 38659

95 95

4.2 Metrics

We adopt precision, recall and F1 value to evaluate our method, which is used
in [10]. Besides Braille dots detection, we also evaluate the performance of Braille
characters recognition for double-sided Braille images. These metrics can be
defined as follows:

Pre =
TP

TP + FP
(5)

Rec =
TP

TP + FN
(6)

F1 =
2 × Pre × Rec

Pre + Rec
(7)

4.3 Experiment Details

All the experiments in this paper are carried out by the ordinary computer with
Intel i7-6700@3.40 GHz and 16G RAM without GPU. We also evaluate our
framework on several laptops. It’s very fast and easy to run without extra setup
so that Braille teachers and others can easily make use of our work to save their
valuable time.

Haar+Adaboost Training. For recto dots training, we collect 9690 recto dots
regions as positive samples and 28212 negative samples from the background and
verso dots regions. The sample size is 20 × 20. We train a 7 cascaded classifier
of Haar+Adaboost for recto dots using OpenCV. For verso dots training, we
collect 10206 positive samples and 15016 negative samples to get a 9 cascaded
classifier.
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SVMs Training. For recto dots training, we collect 26908 positive and 33853
negative samples with the size of 24 × 24 to train three SVMs. For verso dots
training, we collect 26590 positive and 33806 negative samples. For HOG feature,
we adopt the block size of 16× 16, the cell size of 4× 4, bin number of 9 and get
1296 dimension feature. For LBP feature, we take the Uniform Pattern LBP with
the cell size of 8×8 and get the 522 dimension feature. Then the fused HOG LBP
feature has 1818 dimension. Then the final decision-level SVM is trained by the
4 dimension feature vector from the detection results of Haar+Adaboost and
three SVMs.

4.4 Results and Analysis

To objectively evaluate the performance of our proposed framework TS-OBR,
we compare our method with the Braille dots detection in [10] which gave the
results of segmentation based method and Haar+Adaboost method for only
recto dots. Our paper gives the results of dots detection and Braille characters
recognition including recto and verso. In order to evaluate the performance and
generalization ability of our proposed framework TS-OBR, we also evaluate on
our constructed Braille exam answer paper dataset BEP. To analysis the pro-
posed method in detail, we also summary processing time and other statistical
information.

4.4.1 Results on the Public Dataset DSBI
Braille Recto Dots Detection. Table 2 gives the recto dots detection results.
The first two lines are from [10], which are on the de-skewing Braille images.
Our first stage of the Haar+Adaboost with sliding windows method got the
same F1 value 0.970, and a higher precision rate 98.38% compared with 97.65%
of Haar in [10]. Since we want to ensure the detected dots are more reliable,
we remain a high precision rate in our first stage. We also test the method
of the HOG LBP with SVM called HOG LBP SVM using the sliding window
strategy on the entire de-skewing Braille image. And it got the 0.958 F1 value,
which is 0.01 higher than the image segmentation based method but 0.012 lower
than the Haar method. The initial recto dots detection by our Haar only took
average 0.89 s (including the image de-skewing time) for a Braille image. But
the HOG LBP SVM took average 15.02 s, which is time-consuming and about
17 times that of our Haar method.

The method SVM Grid means that we only apply a SVM classifier with
HOG LBP on the cells grid, which got the 0.996 F1 value just using 1.22 s.
This F1 value is higher than above four methods and is 0.038 higher than
HOG LBP SVM with the sliding window strategy method. But our SVM Grid
used much less time, which can reduce much wrong detection on the background
and also greatly reduce the number of windows to extract features and recognize.

This last method in Table 2 is our proposed framework TS-OBR, which
uses two-stage dots detection. It got the highest F1 value 0.998 for recto dots
detection, which is 0.028 higher than Haar in [10] and 0.002 than SVM Grid.
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Table 2. Results of Braille recto dots detection.

Method Images Pre Rec F1 Time

Segment [10] De-skewing 91.72% 98.11% 0.948 /

Haar [10] De-skewing 97.65% 96.38% 0.970 /

Haar(ours) Original 98.38% 95.75% 0.970 0.89 s

HOG LBP SVM De-skewing 93.14% 98.69% 0.958 15.02 s

SVM Grid Original 99.31% 99.97% 0.996 1.22 s

TS-OBR Original 99.65% 99.97% 0.998 1.45 s

Our framework TS-OBR just took average 1.45 s to process one Braille image in
the DSBI dataset. There are mainly three time-consuming steps in our frame-
work, and the average time of them are 0.29 s for Haar+Adaboost, 0.57 s for
de-skewing process and 0.52 s for decision-level SVM.

Statistical Analysis of Recto Dots Detection. In order to more intuitively
illustrate the effectiveness of our TS-OBR framework, the average correctly
detected dots number TP, wrong detected dots number FP, and missing dots
number FN for recto dots detection of our methods are given in Table 3. There
are averagely about 1085 recto dots on one double-sided Braille image in the
DSBI dataset, which is much more than the general number of objects in nat-
ural image. As Table 3 shows, although in first stage, the Haar method had a
high F1 value of 0.970, the average wrong detected dots number is 17.13 and the
average missing dots number is 46.15.

Braille Verso Dots Detection. The experimental result shows the F1 value
of Haar method in our first stage has dropped sharply from 0.970 to 0.895,
which is influenced by the lower recall rate of 81.37%. But in our framework,
the first stage is just used to quickly get some reliable Braille verso dots for next
accurate Braille cells grid construction. So we remain the high precision rate of
99.53% with a lower recall rate. Finally, our TS-OBR method still obtains high
performance with the F1 value 0.997 for verso dots detection, which is similar
as recto dots. The processing time is average 1.58 s for verso dots detection with
our TS-OBR framework (Table 4).

Table 3. Statistical information of Braille recto dots detection.

Method Images TP FP FN

Haar (ours) Original 1039.38 17.13 46.15

TS-OBR Original 1085.16 4.03 0.34

While our proposed framework TS-OBR with F1 value of 0.998, these can
be reduced sharply to average 4.03 wrong detected dots and 0.34 missing dots
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for one Braille image. This statistical analysis results show the effectiveness of
our framework for real applications.

Table 4. Results of Braille verso dots detection.

Method Images Pre Rec F1 Time

Haar (ours) Original 99.53% 81.37% 0.895 0.86 s

TS-OBR Original 99.77% 99.74% 0.997 1.58 s

Braille Characters Recognition. Based on the detection of Braille dots and
cells grid, we can easily get the results of Braille characters recognition as Table 5
shows. The F1 values are 0.995 and 0.994 for recto Braille characters and verso
Braille characters respectively on the DSBI dataset. The results are little lower
than F1 value of Braille dots detection, which lies in the evaluation of six-doted
Braille character is stricter than a single Braille dot.

Table 5. Results of Braille characters recognition.

Method Dots type Pre Rec F1

TS-OBR recto 99.06% 99.99% 0.995

TS-OBR verso 99.10% 99.71% 0.994

4.4.2 Results on Our Dataset BEP
We use the models trained on the DSBI to directly evaluate all the Braille
exam papers of BEP including recto dots detection and the Braille characters
recognition. The detailed result is shown as Table 6.

For recto dots detection in the first stage, the method based on Haar+
Adaboost achieves a very high precision rate 99.25% on the BEP. Although the
recall rate drops significantly from 95.75% to 90.50%, which means many dots
are missing. However, the recall rate can be increased to 99.90% in the second
stage. Compared with the results on DSBI, the precision rate on the BEP has a
slight reduce from 99.65% to 98.46%. Braille exam papers are more complex than
printed Braille books, for the size and appearance of Braille dots stabbed vary
greatly because of the difference of stab habits and strength. And some detected
errors are from those erased dots on BEP dataset, which are also difficult for
manual detection. Finally, the F1 value on the BEP is 0.992, which demonstrates
the good generalization ability of our proposed method and framework.

For Braille character recognition, the precision on the BEP reduced from
99.06% to 96.18% compared with the results on DSBI, which means there
are average 12 wrong recognized characters in one Braille exam paper. Com-
pared with Braille dots detection, Braille character recognition is more rigorous.
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As long as one of the six points in the Braille cell is wrong, the whole Braille
character recognition is wrong. Though our framework has gained an excellent
performance on Braille dot detection, it still needs more efforts and study for
manually stabbed Braille exam answer papers.

Table 6 also shows the whole system TS-OBR only costs about 1.5 s for recto
dots detection with high recognition rate on the two datasets.

Table 6. Comparison of results on both datasets.

Dataset Method Type Pre Rec F1 Time

DSBI Haar Recto dot 98.38% 95.75% 0.970 0.89 s

BEP Haar Recto dot 99.25% 90.50% 0.947 0.95 s

DSBI TS-OBR Recto dot 99.65% 99.97% 0.998 1.45 s

BEP TS-OBR Recto dot 98.46% 99.90% 0.992 1.54 s

DSBI TS-OBR Recto character 99.06% 99.99% 0.995 1.59 s

BEP TS-OBR Recto character 96.18% 99.93% 0.980 1.53 s

5 Conclusion

Double-sided Braille image recognition is challenging for various Braille papers,
interference of recto and verso dots, deformation and skewness of Braille images.
This paper proposes a novel two-stage learning framework for double-sided
Braille image recognition. The experimental results on the public dataset DSBI
and our Braille exam answer paper dataset BEP show the effectiveness, good
generalization and fast ability for Braille dots detection and Braille characters
recognition. Our future work is to further optimize our framework and apply it
in real Braille images recognition applications.
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Abstract. Named entity recognition (NER) is typically viewed as a
sequence labeling problem, where the solution is optimized in sentence
level. In this paper, we explore utilizing document-level label consistency
to improve NER performance by reinforcement learning. The process
entails searching similar mentions and reconciling the labels, which are
repeated until sufficient evidence is collected. We employ a Q-network,
trained to maximize the total reward that reflects labeling accuracy while
penalizing extra effort. On three publicly available datasets, our approach
achieves an F1 of 90.75%, outperforming the ensemble method (89.80%)
by 0.95% and the best base tagger (88.16%) by 2.59% (The source code
is available at https://github.com/KrisWentaoWong/dqnner/).

Keywords: Document-level named entity recognition · Q-network ·
Reinforcement learning

1 Introduction

Named entity recognition (NER) is a natural language processing task that aims
to find mentions of named entities (NEs) in text and classify them into prede-
fined categories, such as person, location, and organization [10]. Most previous
studies formulate NER as a sequence labeling task and optimize the solution in
sentence level with various learning models [6,7,16,17,24,27]. However, there are
still some instances whose sentence-level context is ambiguous or lacks sufficient
evidence [26].

The intuition for utilizing document-level label consistency is that within a
particular document, similar mentions are likely to have the same label [3,5].
Taken from the AKSW-News dataset [18], Fig. 1 shows a document in which
several mentions co-refer to a company “Nintendo”. By looking only at local
evidence it is unclear whether NINTENDO (mention 1) should be identified as a
NE mention, but Nintendo Co. (mention 3) and Nintendo (mention 4) provide
ample evidence that NINTENDO refers to a company.

In previous studies [3,5,20,26], document-level label consistency is incorpo-
rated into sequence models as constraints for boosting NER performance, while
c© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11672, pp. 164–178, 2019.
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Fig. 1. A document from the AKSW-News dataset. NINTENDO (mention 1 and 2),
Nintendo Co. (mention 3) and Nintendo (mention 4) are coreferential mentions.

in this paper, we explore utilizing it by reinforcement learning. Specially, for each
mention msrc in an input document D, our strategy is to find other mentions in
D which are similar to msrc but with clearer context, so as to collect additional
evidence for labeling msrc.

The challenge of the strategy lies in propagating label information among
these mentions, because label consistency does not hold so strictly. As an exam-
ple, one document contains references to both The China Daily, a newspaper,
and China, the country [3]. In order to label an ambiguous mention msrc in the
document D correctly, one solution would be to select a similar mention mevi in
D, and to decide whether the label of msrc should be kept consistent with mevi.
However, if the evidence are still not enough, then we might wish to select the
next similar mention. Thus, this is inherently a sequential decision problem.

We address the challenge using a reinforcement learning (RL) approach which
combines similar mention selection and label reconciliation. For each mention
msrc in D, a new episode is created. In each step, the state representation encodes
information about the current and new labels along with the context of msrc and
the selected similar mention mevi. The RL agent takes an action for both similar
mention selection and label reconciliation. The reward function reflects label
accuracy and includes penalties for extra effort. We train the RL agent using
a Deep Q-Network (DQN) [8] which predicts both selection and reconciliation
choices simultaneously.

Our approach is evaluated on three publicly available datasets. Several base
taggers are utilized to produce candidate NE mentions, including state-of-the-
art Stanford NER [3] and an implementation of BiLSTM-CNN-CRF model [7,
17]. The experiments demonstrate that our approach outperforms the ensemble
method as well as the best base tagger on all datasets, in terms of F1.

The remaining part of this paper is organized as follows: In Sect. 2, we intro-
duce related work. Section 3 introduces our RL approach. Section 4 describes the
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experiments, followed by results and analysis in Sect. 5. Finally, we conclude in
Sect. 6.

2 Related Work

In this section, we introduce related work for document-level NER and reinforce-
ment learning-based NER. Then we compare previous work with ours.

2.1 Document-Level NER

While sentence-level NER have been extensively studied [16,27], including recent
work incorporating deep learning models [6,7,17,24], the studies on document-
level NER are relatively rare. Finkel et al. [3] propose some penalties for incon-
sistency in labels based on the training data and then maximize an objective
function with the penalties with Gibbs Sampling inference. Krishnan and Man-
ning [5] propose a two-stage model with non-local features to make label con-
sistency in both document-level and cross-document level. Radford et al. [15]
exploit document-level tags to create document-level gazetteers at inference time
to improve NER. Wang et al. [20] propose a document-level optimization app-
roach to NER and apply it in a domain-specific NER task. Zhang et al. [26]
propose a model that learns to incorporate document-level and corpus-level con-
textual information alongside local contextual information via global attentions,
which dynamically weight their respective contextual information.

2.2 Reinforcement Learning-Based NER

Wang et al. [21] propose a deep RL based augmented general sequence tagging
system, which contains two parts: a deep neural network based sequence tagging
model and a deep RL based augmented tagger. The augmented tagger helps
improve system performance by modeling the data with minority tags. Fang
et al. [2] reframe the active learning as a RL problem to explicitly learn a data
selection policy. The policy takes the role of the active learning heuristic. Yang et
al. [25] design an instance selector based on RL to distinguish positive sentences
from auto-generated annotations. Najafi et al. [11] frame the prediction of the
output sequence as a sequential decision-making process, where the network is
trained with an adjusted actor-critic algorithm.

2.3 Comparison with Previous Work

Thanks to the decades research on NER, many NE taggers are publicly available
now. Our approach utilizes multiple existing NE taggers to produce candidate
NE mentions, and then on the basis of ensemble method, we model the sim-
ilar mention selection and label reconciliation process using a multi-step RL
framework. Based on RL, our study is unique in the sense of the capability of
integrating any existing NE tagger.
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Our work is inspired by Narasimhan et al. [13]. They use a RL framework to
acquire and incorporate external evidence to improve event extraction accuracy.
However, our task–NER–is different from theirs–event extraction. NER finds
multiple NE mentions in a document and classifies each mention into predefined
categories, while event extraction task extracts predefined slots of special kind
of events from a document.

3 Framework

An overview of our approach is illustrated in Fig. 2. For an input document,
multiple existing NE taggers are used as base taggers to generate candidate
mentions, then ensemble model assigns the most probable label and a confidence
score to each mention, and finally the RL agent reconciles the label for each
mention.

Fig. 2. Overview of our approach. The ensemble model incorrectly labels NINTENDO as
NONE (red). Then the RL agent utilizes document-level label consistency and re-labels
it as ORG (blue). (Color figure online)

3.1 Base Taggers

A base tagger takes a document D as input, and outputs a set of named entities.
Suppose there are K base taggers. The kth base tagger outputs Ek = {e}, where
e = 〈m, l〉, m is a mention and l is a label. The set of mentions produced by the
kth base tagger is denoted by Mk. Then the set of mentions by K base taggers
can be obtained by

M =
K⋃

k=1

Mk. (1)
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3.2 Ensemble Model

For each m ∈ M (Eq. (1)), the ensemble model takes multiple base taggers’
output as input, and then predicts the most probable label l and a confidence
score c based on a classifier, which are essential to our RL model. Features used
by ensemble model’s classifier include base tagger features and context features.
Base tagger feature fbase(m, k) represents label of m predicted by the kth base
tagger, defined as

fbase(m, k) =

{
l if ∃〈m, l〉, 〈m, l〉 ∈ Ek,

NONE otherwise,
(2)

k ∈ {1, 2, ...,K}. Context features are simply part-of-speech tags (postags).
fpostag(m, i) represents postag of the token at position i within or around m,
i ∈ {START,END,PREV,SUCC}.

3.3 RL Framework

We model the multi-step process of similar mention selection and label reconcil-
iation as a markov decision process (MDP). The MDP framework allows us to
sequentially perform label reconciliation, and in the same time, to choose differ-
ent kinds of similar mentions for additional evidence. In each episode, the RL
agent handles one mention msrc. At each step, the agent has to reconcile a label
levi of a similar mention mevi with the current label lcurr of msrc, and decide on
the next query for retrieving more similar mentions.

We represent the MDP as a tuple 〈S,A, T,R〉, where S = {s} is the state
space, A = {a = (d, q)} is the set of all actions, R(s, a) is the reward function,
and T (s′, r|s, a) is the transition function. We describe these in detail below.

States. The state s in our MDP consists of the ensemble model’s confidence
in predicted labels, and the context of mentions. We represent the state as a
continuous real valued vector incorporating information listed in Table 1. Val-
ues of nominal features (lcurr, levi and postag features) are encoded as one-hot
vectors. For feature fpostag(m, i), i ∈ {START, END,PREV,SUCC}. For features
fcontain(m, l), fin(m, l) and foverlap(m, l), l ∈ {PER, LOC,ORG}.

Xequal(msrc), Xsuper(msrc) and Xsub(msrc) are the list of equal, super and
sub mentions of msrc, respectively, each of which is sorted in descending order
of confidence. While deciding if two mentions are equal or hold a super mention
or sub mention relation, we ignore case, which will performs better than being
sensitive to case according to [5]. This is because our dataset contains many
mentions in all Caps especially in news headlines, and ignoring case enables us
to model dependences with other occurrences with a different case. For exam-
ple, Nintendo Co. is a super mention of NINTENDO, and Nintendo is an equal
mention of NINTENDO.
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Table 1. State feature of our RL framework.

Feature Description

lcurr current label of msrc

levi label of mevi

1lcurr=levi match of lcurr and levi

ccurr confidence score of msrc being labeled as lcurr

cevi confidence score of mevi being labeled as levi

ccurr − cevi difference between ccurr and cevi

fpostag(msrc, i) postag of token at position i within or around msrc

fpostag(mevi, i) postag of token at position i within or around mevi

fequal(msrc, mevi) mevi exactly matches msrc

fsuper(msrc, mevi) mevi is a super mention of msrc

fsub(msrc, mevi) mevi is a sub mention of msrc

|Xequal(msrc)| > 0 exists available equal mentions of msrc

|Xsuper(msrc)| > 0 exists available super mentions of msrc

|Xsub(msrc)| > 0 exists available sub mentions of msrc

fcontain(msrc, l) msrc contains another mention with label l

fin(msrc, l) msrc lies in another mention with label l

foverlap(msrc, l) msrc overlaps with another mention with label l

fcontain(mevi, l) mevi contains another mention with label l

fin(mevi, l) mevi lies in another mention with label l

foverlap(mevi, l) mevi overlaps with another mention with label l

Actions. At each step, the agent is required to take two actions–a reconciliation
decision d and a query choice q. The decision d on the new label can be one of
the following types: (1) accept the label, (2) ignore the label, or (3) stop. In cases
(1) and (2), the agent continues to find more mentions, while the episode ends if
a stop action (3) is chosen. The current label lcurr and confidence score ccurr are
simply updated with the accepted label levi and the corresponding confidence
cevi.

The choice q is used to choose the next query in order to retrieve the next
similar mention. Possible values of q are (1) equal, (2) super and (3) sub, indi-
cating that the agent requests the environment to find an equal mention, a super
mention, or a sub mention.

Rewards. The most obvious reward is to wait for the end of an episode, then
measure whether the label for msrc is correct. However, this kind of reward is
delayed, and is difficult to related to individual actions after a long episode. To
compensate for this, we use reward shaping, whereby intermediate rewards are
assigned which speed up the learning process. At each step, the intermediate
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reward is defined as below to maximize the final accuracy while minimizing the
number of queries:

R(s, a) = 1lcurr=l∗ − 1lprev=l∗ − ζ (3)

where lprev is the label of msrc before taking action a, lcurr is the one after
taking a, l∗ is the gold standard label of msrc, and ζ is a penalty.

Transitions. Each episode starts off with a single mention msrc in a document
D. The subsequent steps in the episode involve equal, super or sub mentions of
msrc in D. A single transition in the episode consists of the agent being given
the state s containing information about msrc and mevi. The transition function
T (s′, r|s, a) incorporates the reconciliation decision d from the agent in state s
along with the information from the next similar mention retrieved using query
q, and produces the next state s′ as well as the reward r. The episode stops
whenever d is a stop decision.

3.4 Q-Network

The MDP described in the previous subsection can be viewed as a sequence of
transitions (s, a, r, s′). In order to learn a policy maximizing the accumulative
rewards in episodes, we adopt a value-based RL algorithm Q-learning [22], which
updates its Q-function estimate according to

Qi+1(s, a) ← Qi(s, a) + α
[
r + γ max

a′
Qi(s′, a′) − Qi(s, a)

]
, (4)

where α ∈ (0, 1] is a learning rate.
We use Deep Q-Network (DQN) [8] as the function approximator Q(s, a) ≈

Q(s, a; θ), in which the Q-function is approximated using a neural network, to
capture non-linear interactions between the different pieces of information in
state [4,12]. DQN uses experience replay that randomizes over the data, thereby
removes correlations in the observation sequence and smoothing over changes in
the data distribution. In addition, it uses an iterative update which adjusts the
action-values towards target values that are only periodically updated, thereby
reduces correlations with the target.

3.5 Algorithm

Algorithm 1 details the entire MDP framework for document-level NER in the
training phase, in which transitions are sent to DQN to learn the Q-function.
During the test phase, each mention is handled only once in a single episode,
where actions are selected under a greedy policy with respect to the learned
Q-function.
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Algorithm 1. MDP framework for document-level NER
1 Initialize set of training documents D
2 for epoch = 1,N do
3 for D ∈ D do
4 Obtain candidate mentions M by tagging D using base taggers
5 Obtain the most probable label and a confidence score for each mention

in M
6 for msrc ∈ M do
7 Construct Xequal(msrc), Xsuper(msrc) and Xsub(msrc)
8 lcurr ← label of msrc

9 ccurr ← confidence of labeling msrc with lcurr
10 d ← ignore, q ← random(), r ← 0
11 while d �= stop do
12 Pop next mention mevi from Xq(msrc)
13 Form state s
14 Send (s, r) to agent
15 Get decision d, query q from agent
16 lprev ← lcurr
17 if d = accept and mevi �= null then
18 lcurr ← levi
19 ccurr ← cevi

20 r ← 1lcurr=l∗ − 1lprev=l∗ − ζ

4 Experimental Setup

In this section, we first introduce evaluation metric. Then we detail datasets,
base taggers and classifiers for ensemble model used in our experiments. Finally,
parameters of our RL model are described.

Evaluation. Performance on NER is evaluated by measuring the precision and
recall of tagged mentions (and not tokens), combined into F1 score. There is
no partial credit for labeling part of a mention correctly; an incorrect mention
boundary is penalized as both a false positive and as a false negative.

Datasets. All the datasets in our experiments are publicly available. Each
dataset is divided equally into three parts: (1) train-e for training the ensemble
model, (2) train-q for training the Q-network, and (3) test for evaluation.

The AKSW-News dataset consists of 325 newspaper articles [18], most of
which are reports in aerospace domain. The CoNLL-2003 shared task [19] data
is widely used in NER task. Since one of our base taggers (Stanford NER)
is trained on the training part of CoNLL-2003, we only use the testing part.
The OntoNotes 5.0 [14] dataset contains 3,145 annotated documents. These
documents come from a wide range of sources which include newswire, bible,
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transcripts, magazines, and web blogs. 719 documents are sampled randomly
from the dataset and are used in our experiments.

Base Taggers. Seven existing NE taggers are used as base taggers. For outputs
of the base taggers, only three classes are considered in our experiments, namely
person, location, and organization. Their performance1 is listed in Table 2 for
comparison with the ensemble method and the RL model.

Table 2. Precision (P), Recall (R) and F1-score of the base taggers. The best base
tagger (Stanford) achieves an F1 score of 88.16% averaged on three datasets.

Tagger AKSWNews CoNLL’03 Ontonotes 5.0

P R F1 P R F1 P R F1

Stanford 93.61 88.52 90.99 91.85 87.22 89.48 85.80 82.30 84.01

BLCC 81.97 81.12 81.54 88.97 88.74 88.85 72.75 75.68 74.18

Illinois 78.18 67.30 72.33 89.83 80.70 85.02 67.80 61.36 64.42

GATE 83.84 74.80 79.06 68.82 56.46 62.03 61.00 53.41 56.95

OpenNLP 59.63 54.21 56.79 81.32 75.79 78.46 54.17 54.37 54.27

Balie 66.86 61.03 63.81 56.09 47.32 51.33 55.11 44.95 49.51

LinePipe 52.34 56.16 54.18 51.48 42.08 46.31 52.80 56.81 54.73

The Stanford Named Entity Recognizer (Stanford) is a CRF-based tagger [3].
BiLSTM-CNN-CRF (BLCC) [7,17] is a neural network architecture that benefits
from both word- and character-level representations automatically, by using com-
bination of bidirectional LSTM, CNN and CRF. Base taggers also include Illinois
Named Entity Tagger (Illinois) [16], General Architecture for Text Engineer-
ing (GATE) [1], Apache OpenNLP Name Finder (OpenNLP), Ottawa Baseline
Information Extraction (Balie) [9] and LingPipe2. Although their performance
is lower compared to Stanford and BLCC, we believe more base taggers are ben-
eficial because they produce more candidate NE mentions and hence increase
the potential of our approach.

Classifiers for Ensemble Model. Four classifiers are used for building dif-
ferent ensemble models in our experiments, including Bagging, Decision Tree,

1 For performance of BiLSTM-CNN-CRF (BLCC), there is a difference between the
results reported by its authors (https://github.com/UKPLab/emnlp2017-bilstm-
cnn-crf/blob/master/docs/Pretrained Models.md) and the results by us listed in
Table 2, although its authors and us use the same implementation. This is because
its authors use CoNLL format (in which texts have been tokenized) as input, while
we use raw text of documents so as to make our approach “end-to-end”.

2 http://alias-i.com/lingpipe/ (version 4.1.0).

https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf/blob/master/docs/Pretrained_Models.md
https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf/blob/master/docs/Pretrained_Models.md
http://alias-i.com/lingpipe/
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Random Forest and Support Vector Machine (SVM). We use the implementa-
tions of these classifiers in the Waikato Environment for Knowledge Analysis
(Weka) [23] with default parameters.

Parameters of RL Model. We train the RL model for 30 epochs (N = 30)
and evaluate on the test set every epoch. The final performance scores reported
are averaged over 10 epochs after 20 epochs of training. The penalty per step is
set to 0.1. Following [13], the Q-network consists of two linear layers (20 hidden
units each) followed by rectified linear units (ReLU), along with two separate
output layers. We also use a learning rate of 2.5E−5, a discount (γ) of 0.8, and
a replay memory of size 500k. The target-Q network is updated every 5k steps.

5 Results and Analysis

5.1 Results

Figure 3 shows the learning curve of the RL agent by measuring F1 score on the
test set after each training epoch. The F1 scores increase gradually and converge
after about 20 training epochs.

Fig. 3. Evolution of F1 scores on the three datasets using different classifiers for ensem-
ble, averaged on 2 independent runs.
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Performance of the ensemble method and our approach (ensemble+RL) is
listed in Table 3, averaged on the four classifiers (Bagging, Decision Tree, Ran-
dom Forest and SVM) for ensemble. Performance of the best base tagger (Stan-
ford) is also listed for comparison. In term of F1, our approach outperforms
the best base tagger and the ensemble method on all the datasets. With the
RL agent which utilizes document-level label consistency and learns to reconcile
labels among similar mentions, our approach achieves an F1 of 90.75%, out-
performing the ensemble method (89.80%) by 0.95% and the best base tagger
(88.16%) by 2.59%.

Table 3. Precision (P), recall (R) and F1 score of ensemble and ensemble+RL methods
averaged on the four ensemble classifiers and 2 independent runs. Performance of the
best base tagger (Stanford) is also listed for comparison.

Dataset Tagger P R F1

AKSW-News best base tagger 93.61 88.52 90.99

ensemble 93.39 90.56 91.95

ensemble+RL 93.51 92.18 92.84

CoNLL’03-Test best base tagger 91.85 87.22 89.48

ensemble 94.86 91.05 92.91

ensemble+RL 94.51 92.42 93.45

Ontonotes 5.0 best base tagger 85.80 82.30 84.01

ensemble 91.56 78.54 84.55

ensemble+RL 91.03 81.41 85.95

Avg. best base tagger 90.42 86.01 88.16

ensemble 93.27 86.72 89.80

ensemble+RL 93.02 88.67 90.75

5.2 Analysis

Compared to the ensemble method, ensemble+RL improves recall by 1.62%,
1.37% and 2.87% on the three datasets separately, with precision slightly
increased by 0.12% or decreased by 0.35% and 0.53% (see Table 3). In average,
RL boosts the recall by 1.95% over ensemble. We explain the reason below.

There are some NE mentions (such as mention 1 and mention 2 in Fig. 1)
whose local context is ambiguous, and hence they are hard to be identified
by base taggers which usually look only at context in current sentence. They
are also hard to be assigned with correct labels by the ensemble method, since
ensemble classifier takes only the base taggers’ outputs and local context as
input. However, the RL agent learns to find similar mentions which are not so
ambiguous in the scope of the current document, and then propagates labels.
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Table 4. Statistics of label propagations by the RL agent. It makes more correct
propagations than incorrect ones, on the basis of the ensemble method.

Propagation AKSW-News CoNLL’03-Test Ontonotes 5.0

Correct Incorrect Correct Incorrect Correct Incorrect

NONE→PER 15.3 5.0 16.5 4.6 5.0 4.8

NONE→LOC 12.1 4.0 9.6 5.1 11.8 10.6

NONE→ORG 41.6 4.0 14.8 8.9 121.9 39.3

PER→LOC 0.4 0.0 1.9 0.3 0.0 0.0

PER→ORG 0.3 0.3 2.3 0.0 21.8 1.6

LOC→PER 6.3 0.5 0.9 0.6 0.0 0.0

LOC→ORG 0.0 0.0 4.4 0.6 0.5 0.9

ORG→PER 11.5 2.6 1.4 2.3 0.0 0.6

ORG→LOC 0.9 0.6 0.6 0.5 0.1 1.3

Total 88.3 17.0 52.3 22.9 161.0 59.0

Taking AKSW-News as an example, the RL agent correctly propagates labels
for 88.3 mentions which are incorrectly classified by the ensemble method,
although the RL agent also introduces 17.0 errors (see Table 4). Especially,
about 80% of the propagations are made for mentions which are assigned with
NONE labels by the ensemble method. This demonstrates that the RL agent is

Fig. 4. The learned policies after 5 (a) and 10 (b) training epochs.
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capable of propagating labels for mentions which are with ambiguous local con-
text and hence are hard to be identified by the base taggers as well as the
ensemble method.

5.3 Case Study

Going back to the example in Fig. 1, five of the base taggers fail to identify
NINTENDO (mention 1), while only Balie and LingPipe identify it as an organi-
zation. As a result, the ensemble method assigns it with a NONE label.

Figure 4 illustrates two episodes under the policies learned after different
number of training epochs. After 5 epochs training (a), the RL agent fails to
accept the correct label ORG. It stops very early, to avoid penalties on further
steps. But after 10 epochs training (b), the RL agent has learned a better policy.
It accepts the label ORG from two similar mentions–Nintendo Co. (mention 3)
and Nintendo (mention 4), despite the penalty on each step. Finally it stops
after the confidence is high enough.

6 Conclusion

In this paper, we utilize document-level label consistency to improve NER perfor-
mance by reinforcement learning. Multiple existing NE taggers are used as base
taggers to generate candidate NE mentions, and then on the basis of the ensem-
ble method, the RL agent trained using a Q-network chooses similar mentions
and reconciles the labels. We evaluate our approach on three publicly available
datasets, and four classification models are employed to build different ensem-
ble models. With the RL agent searching evidence in the scope of a document,
our approach boosts the recall by 1.95% over the ensemble method, with a slight
decrease of precision by 0.25%, and finally achieves an F1 of 90.75%, outperform-
ing the ensemble method (89.80%) by 0.95% and the best base tagger (88.16%)
by 2.59%. Our approach is flexible, as it can incorporate any existing NE tagger.
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Abstract. Extreme multi-label text classification (XMTC), the prob-
lem of finding the most relevant label subset of each document from
hundreds or even millions labels, has been a practical and important
problem since the boom of big data. Significant progress has been made
in recent years by the development of machine learning methods. How-
ever, although deep learning method has beaten traditional method in
other related areas, it has no clear advantage in XMTC when we consider
the performance of prediction. In order to improve the performance of
deep learning method for Extreme multi-label text classification, we pro-
pose a novel feature extraction method to better explore the text space.
Specifically, we build the model consisting of attention mechanism, con-
volutional neural network and recurrent neural network to extract multi-
view features. Extensive experiments on four public available datasets
show that our method achieves better performance than several strong
baselines, including traditional methods and deep learning methods.

Keywords: Extreme multi-label classification · Deep learning ·
Feature extraction

1 Introduction

Multi-label text classification task is an important problem and has been applied
in many areas such as relational classification [18] and document classification
[19]. When the number of labels grows larger, such as hundreds, thousands and
even millions, multi-label classification is called extreme multi-label text classi-
fication (XMTC for short). For example, Amazon products datasets can easily
have millions of labels due to the wide variety of products and each product may
be associated with a large number of labels.

Traditional methods for XMTC have made significant progress in recent
years such as target-embedding methods [10], tree-based ensemble methods [11]
and linear methods [13]. This kind of methods represents text by bag-of-words
with no semantic considered. Deep learning models, solving this problem by dis-
tributed word embedding, have gained a great success in many areas, such as
c© Springer Nature Switzerland AG 2019
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text summarization [14,16], automatic question answering [1] and multi-label
text classification [5,18,19]. For XMTC, deep learning models have also been
explored more and more. Zhang et al. [17] propose a deep embedding method to
explore the label space, Liu et al. [8] employ convolutional neural network (CNN)
to encode the source sequence and then predict the labels by the extracted fea-
tures. However, these deep learning methods simply use CNN to encode text
by extracting the local information and treat them equally. We believe convo-
lutional results in different position have different importance [15]. Meanwhile,
CNN mostly focuses on the local features of the text while global features play
an important role in classification task. Inspired by the above, we explore the
improvement of feature extraction method in the XMTC field. We employ self-
attention [12] to allocate different weights for different convolution results in
different position and add a long short-term memory (LSTM) neural network
into our model to obtain the global features.

To investigate the advantage of our model on XMTC, we conduct experiments
on four benchmark datasets. Experimental results demonstrate that our model
significantly and consistently outperforms the traditional methods as well as
some other deep learning methods on all datasets and evaluation metrics.

Specifically, we accomplish this paper with the following contributions:

– To the best of our knowledge, this is the first work to focus on the convo-
lutional results in different position and introduce attention mechanism into
the extreme multi-label text classification.

– We propose a deep learning model with novel feature extraction module by
combining the advantages of existing CNN, LSTM and self-attention. mech-
anism [12] to extract more effective text features for XMTC.

– Extensive experiments on various public benchmark datasets show that our
method can perform competitively against or even outperform state-of-the-
art methods including traditional models and deep learning models.

The remainder of this paper is organized as follows: after reviewing the related
work in Sect. 2, we present the framework of our method in Sect. 3. Experimental
results are presented in Sect. 4 and we conclude this paper in Sect. 5.

2 Related Work

XMTC has drawn lots of attention recently and several methods have been
proposed to solve it. Similar with many other tasks, these methods could be
divided into traditional methods where text is represented by bag of words and
deep learning methods where distributed word vector is used to encode text.

In traditional methods, there are three kinds of representative work: target-
embedding methods [10], tree-based ensemble methods [8] and linear methods
[13]. For target-embedding method, since the size of labels is huge, the idea is
to learn a mapping F1 from the true label vector L to an auxiliary label vector
L̂ with a much smaller size, then another mapping F2 from the feature vector
to the label vector L̂ and F3 from the label vector L̂ back to label vector L
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should be learned. Much work focus on finding the best mapping F1 and F3
[4], such as Bloom filters [3], Landmark labels [2], SLEEC [10] and so on. For
tree-based ensemble, it is motivated by the decision tree classification model.
This method induces a tree structure which recursively partitions the instance
space or sub-spaces at each non-leaf node, so that the classifier of each leaf
only focuses on a part of the labels [11]. Most tree-based ensemble methods
use decision tree as the selector, and the representative method is FastXML
[11], which has better performance in the multi-label field. Linear methods differ
from the above two. It is a standard training method by using linear relation,
and imposes some penalty limit. For example, the well-known model PD-Sparse
[13] uses elastic net regularization with multi-class hinge loss and exploits primal
and dual sparsity.

Deep learning models, on the other hand, have achieved great successes
recently in other related domains by automatically extracting context-sensitive
features from raw text. Deep learning method uses distributed vector (word
embedding) to represent words, so similar words have high similarity. One sim-
ple neural network model called FastText [5] is to average the word embedding
directly and then sends the averaged embedding to the final layer for prediction.
Other deep learning models include the CNN [6], the RNN [7] and so on. These
models are widely used but not optimized for XMTC. Recently, some researchers
have begun to study how to solve XMTC problems with deep learning methods.
For example, Zhang et al. [17] propose a deep embedding method to explore the
label space, and Liu et al. [8] employ convolutional neural network (CNN) to
encode the source sequence and then predict the labels by the extracted features.
However, their researches are only a small step forward and far from enough.

3 Method

In this section, we introduce the problem definition of XMTC first and then
describe the proposed model in detail. The overall architecture of our model
(DSANN for short) is shown in Fig. 1.

3.1 Problem Definition

Our problem setup is the same as [8]. Given an input text sequence, we denote
it by x = {w1, w2, .., wn}, where wi ∈ V . V is the vocabulary collected in a large
training data and n is the length of text sequence.

We assume that we have a set of training sequences and their corresponding
labels, denoted as D = (xj , yj)

N
j=1, where N is the size of training set, yj is the

label set owned by xj . Our goal is to learn a classifier model from D and predict
labels for any unseen sequence x.

3.2 The Structure of DSANN

In this part, we first introduce our novel feature extraction module in which
multi-view features are extracted. Then, we describe the k-max pooling which
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Fig. 1. Architecture of our proposed model. Our feature extraction module consists of
CNN, LSTM and self-attention. With combining the features selected from CNN with
self-attention and LSTM respectively, we extract features from multi-view.

is inspired by XML-CNN [8]. Finally, we show the output layer and the loss
function of our model.

Feature Extraction: We input the text into two modules at the same time.
One module is composed of TextCNN and self-attention, and the other module
is LSTM. These two modules combined together to form final feature of the text.

For input sequence, let us use x = {w1, w2, ..., wn} to denote the sequence
of word embedding vectors, where wi ∈ Rd, d is the dimensional size. Next, we
input the x into our proposed model.

We use convolution kernels of different sizes to obtain different receptive field
features. In addition, in order to combine the features obtained by convolution
kernels of different sizes together, a padding operation is adopted, which can
ensure the length of all feature vectors are equal to the length of the text. The
convolutional result obtained by one convolution kernel is defined as a vector
c = {c1, c2, ..., cn}T . For each ci:

ci = gc(v · wi:i+m+1) (1)

where gc represents the nonlinear activation function of the convolutional layer,
m refers to the filter size and v is the convolutional filter. Then all the feature
vectors obtained by different convolution kernel are combined together.

Convolutional results in different position have different importance. There-
fore, on top of convolutional results, we use self-attention [12] to solve this prob-
lem. Formally, after the convolutional part, we use the following equation to
calculate the attention:
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A (Q,K, V ) = softmax

(
QKT

√
dk

)
V (2)

headi = A
(
QWQ

i ,KWK
i , V WV

i

)
(3)

MultiHead (Q,K, V ) = Concat(head1, ..., headh)WO (4)

where WQ
i ,WK

i ,WV
i ,WO are the trainable parameters, n is the sequence length

and df is the number of convolution kernel. WQ
i ∈ Rdf×dk , WK

i ∈ Rdf×dk ,
WV

i ∈ Rdf×dv , and WO ∈ Rhdv×df . We employ h parallel attention layers, or
heads. For each of these we use dk = dv = df/h. In our work, Q,K, V are the
convolutional result C, where C ∈ Rn×df .

After the self-attention, important convolution result has a larger weight and
vice versa. But this kind of features extracted are locally defined because of the
limitation of CNN. Therefore, we employ a LSTM neural network to capture the
global features. All hidden state is obtained as follows:

H1...n = LSTM(w1, ..., wn) (5)

where H1...n ∈ Rn×dh and dh is the hidden vector size.
Thus, H and MultiHead (M for short) have obtained different views on the

text sequence and then we concatenate them together as our final features:

X1...n = H ⊕ M (6)

K -Max Pooling: After feature extraction, the matrix X is sent to the Dynamic
k-max pooling layer as the same with XML-CNN [8] model. We use maxk(·)
function to select the top k max features of X(i) which defined as each column
of X.

P (O) = [maxk
(
X(1)

)
, ...,maxk

(
X(dt)

)
] (7)

where dt = df + dh.

Output Layer: Finally, the pooling results are sent into a fully connected layer
to predict the optimal labels.

Ô = WhP (O) (8)

where Wh are parameters to be learned.

Loss Function: On XMTC, the most common used loss function is the cross-
entropy loss, we follow this setting in our experiments and use the following
formula [9] to calculate it:

minΘ − 1
n

n∑
i=1

L∑
j=1

yij log
(
σ

(
Ôij

))
+ (1 − yij) log

(
1 − σ

(
Ôij

))
(9)
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Fig. 2. Results of P@K with loss calculated by top k labels. The x-axis represents the
label size modeled, y-axis represents the performance in terms of different evaluations
metrics.

Table 1. Datasets Information. F is the total number of features, L is the total number
of class labels, N is the number of training instances, M is the number of test instances,
L̂ is the average number of documents per label, N̂ is the average number of label per
document.

Datasets F L N M L̂ N̂

RCV1-2K 48,367 103 23,149 5674 745.56 3.79

Amazon-12K 135,895 12,277 490,310 152,981 214.45 5.37

Wiki-30K 100,623 29,875 12,456 5,543 8.15 18.42

Amazon-670K 135,895 670,091 490,449 153,025 3.99 5.45

where σ is sigmoid function defined as σ (x) = 1
1+e−x .

During the experiments, we found that each instance is only related to few
labels. The rest labels are completely unrelated to this instance. After a few
steps of training, these unrelated labels can be easily predicted correctly. But
calculating their loss is time consuming and slowing down the convergence rate.
So after a few steps of normal training, we only calculate the loss function on
top k predicted labels where k is manually defined. For example, on one of
the dataset, we calculate the loss function on the whole labels in the first 100
training step and then we only calculate the loss on top 800 predicted labels. In
this manner, the model convergence from 3000 to 2500 steps.

Since the number of label sets of RCV1 dataset is too small, we have not exper-
imented with them. The results of other datasets are shown in the Fig. 2. It can
be seen that for different datasets, we always have a k to achieve the best result.
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4 Experiments

In this part, we first introduce the datasets and experiment settings which include
baseline methods we compared with, metrics for performance evaluation and
hyper-parameters setting for our and compared methods. Then we present the
experiment result and our analysis. After that, we finish this part with the
ablation test where components of our method are test step by step.

4.1 Datasets and Experiment Settings

Datasets. We evaluate our model with the following four datasets:

1. RCV1: This is an English news text and the corresponding news categories
data which is widely used in text classification and many other natural lan-
guage processing task. The data we use consists of about thirty thousand
samples and more than one hundred labels.

2. Amazon-12K: This data is collected from Amazon products and their cor-
responding product categories. There are more than six hundred thousand
samples and more than one hundred thousand labels.

3. Wiki-30K: This data contains about eighteen thousand samples and thirty
thousand labels, which is collected from Wikipedia.

4. Amazon-670K: This is another data collected from Amazon products and
their categories. It is much larger than Amazon-12K, which has six hundred
thousand labels and six hundred thousand samples.

The detail information about these four datasets1 are listed in Table 1.

Baselines. We adopt the following seven representative methods of text classi-
fication as baselines to compare with our model, including traditional learning
methods and deep learning methods. Each of these methods has its own advan-
tages and characteristics, which are described in detail below:

– FastXML [11]: This is a tree-based approach in XMTC. It uses tree ensemble
to learn hierarchy of the target labels.

– SLEEC [10]: This is a representative method of target-embedding methods in
XMTC. It clusters the labels first and then uses KNN to classify new samples.

– PD-Sparse [13]: This is one of the most representative linear methods which
has a max-margin designed for Extreme multi-label classification.

– FastText [5]: This is a simple and effective deep learning method for classifi-
cation. It encodes the source sequence by averaging the embedding of words.

– TextCNN [6]: This is a widely used text classification model. The model uses
CNN to encode text sequence and makes prediction based on the features
extracted by CNN.

1 Available at http://manikvarma.org/downloads/XC/XMLRepository.html.

http://manikvarma.org/downloads/XC/XMLRepository.html
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– TextRNN [7]: Different from TextCNN, this model replaces CNN with RNN
for text sequence encoding and prediction.

– XML-CNN [8]: This is an advanced deep learning CNN model designed for
XMTC. It designed the model by considering multi-label co-occurrence pat-
terns in the CNN architecture.

Evaluation Metrics. Same with [8], we evaluate the performance by Precision
at top k (P@K) and the Normalized Discounted Cumulative Gains (NDCG@K)
[11], with k = 1, 3, 5. Let us use ŷ = {ŷ1, ŷ2, ..., ŷL} and y = {y1, y2, ..., yL}
represent the predicted score vector and the ground truth respectively, where L
is the number of labels. Then the metrics are defined as follows:

P@k =
1
k

∑
lεrk(ŷ)

yl

DCG@k =
∑

lεrk(ŷ)

yl

log (l + 1)

NDCG@k =
DCG@k∑ ∑min(k,‖y‖0)

l=1
1

log(l+1)

where rk (ŷ) is the set of rank indices of the truly relevant labels among the top-k
portion of the system-predicted ranked list for a document, and ‖y‖0 counts the
number of relevant labels in the ground truth label vector y. P@k and NDCG@k
are calculated for each test document and then averaged over all the documents.

Hyper-parameter Setting. In the experiments, we experiment with each
dataset several times and get the average performance of the experimental results
as the final experimental results.

In our proposed model, the window sizes of one-dimensional convolutional
filters is [3, 5, 7]. The number of feature maps for each filter was 128 for all
datasets. Dropout rate was p = 0.5. The hidden vector size of RNN is set to
128 and we use bidirectional LSTM specifically. These hyper-parameters were
fixed across all datasets. For SLEEC, the number of learners was set to 15, and
embedding dimension was set to 100. For FastXML, the number of trees was set
to 50 and hyper-parameter Cδ = Cr = 1.0. For PD-Sparse, the tuning parameter
C was set to 1.0. All other hyper-parameters of these methods were chosen on
the validation set. For word embeddings in deep learning models, we used pre-
trained 300-dimensional Glove vectors. The model is trained by Adam and the
learning rate is set to 10−3. Batch size is set to 128.
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4.2 Result Analysis

The result of the experiments are showed in Tables 2 and 3. From the result, we
can see that traditional methods, unexpectedly have a relatively good perfor-
mance on XMTC. By contrast, without adjusting to the problem, deep learning
methods such as TextCNN and TextRNN are difficult to beat traditional meth-
ods. Therefore, XMTC is different from traditional classification task where
deep learning models can easily beat traditional methods. XML-CNN, which
takes multi-label co-occurrence patterns into account in a CNN architecture and
is specially designed for XMTC, achieves better performance on most metrics
compared with other methods (excluding our model). It could be inferred that
correlation of labels in XMTC is actually helpful for building models. Differ-
ent from XML-CNN, our deep learning model focus on feature extraction and
combines local and global text features for prediction, the experiments result
demonstrates its effectiveness. Even compared with the second place, our model
can increase the evaluation metrics by 1.01–3.91%, we outperform all the base-
lines and achieve a new state-of-the-art.

4.3 Ablation Test

Our method is characterized by a novel feature extraction module which could
be divided into three components: CNN, RNN and self-attention. We conduct
ablation test to investigate the effectiveness of each component for XMTC.

Based on CNN model, we evaluate the performance by adding these com-
ponents step by step and record the performance on three datasets: RCV1,
Wiki-30k and Amazon-12k. The models are defined as follows:

– CN: This is the model [8] which uses CNN with k-max pooling to encode the
source text sequence.

– CN+SA: In this model, we employ the self-attention on top of convolution
to calculate the weight of each convolutional result.

Table 2. P@K performance. ‘-’ means the result is unavailable, and bold fonts represent
the best performance on the dataset.

Datasets Metrics FastXML SLEEC PD-Sparse FastText TextCNN TextRNN XML-CNN DSANN

RCV1-2K P@1 94.73 95.32 95.43 95.40 93.43 92.53 96.86 98.06

P@3 78.52 79.64 79.46 80.12 76.15 75.43 81.23 82.98

P@5 54.35 54.67 55.61 55.75 53.47 53.63 56.03 57.56

Amazon-12K P@1 94.62 93.84 88.96 82.23 90.39 89.75 95.23 97.35

P@3 78.95 79.25 71.35 71.94 74.36 77.86 81.02 83.62

P@5 63.72 64.27 56.28 58.99 59.40 59.42 64.98 67.99

Wiki-30K P@1 83.72 86.03 82.69 66.86 80.24 79.45 85.34 87.54

P@3 68.79 74.23 67.03 55.83 55.98 55.21 74.98 76.26

P@5 59.03 63.82 55.83 48.74 36.73 37.42 64.11 65.45

Amazon-670K P@1 36.26 35.37 – 9.08 17.47 13.57 35.68 36.98

P@3 31.87 30.89 – 9.07 15.78 12.35 32.34 33.76

P@5 28.84 28.93 – 9.02 14.73 11.32 29.56 31.15
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Table 3. NDCG@K performance. ‘-’ means the result is unavailable, and bold fonts
represent the best performance on the dataset.

Datasets Metrics FastXML SLEEC PD-Sparse FastText TextCNN TextRNN XML-CNN DSANN

RCV1-2K G@1 94.73 95.32 95.43 95.40 93.43 92.53 96.86 98.06

G@3 89.21 91.37 90.72 91.02 88.26 87.83 92.34 94.65

G@5 88.64 89.36 89.93 89.78 87.96 87.37 91.63 93.26

Amazon-12K G@1 94.62 93.84 88.96 82.23 90.39 89.75 95.23 97.35

G@3 88.83 89.56 81.56 80.86 84.80 84.56 89.98 91.86

G@5 85.37 87.04 78.57 80.78 82.19 81.47 87.21 88.96

Wiki-30K G@1 83.72 86.03 82.69 66.86 80.24 79.45 85.34 87.54

G@3 72.78 76.45 70.98 58.23 60.88 60.36 76.94 78.04

G@5 65.43 68.98 61,86 52.45 53.84 53.02 69.32 71.23

Amazon-670K G@1 36.26 35.37 – 9.08 17.47 13.57 35.68 36.98

G@3 33.62 33.27 – 9.51 16.60 13.65 33.89 35.12

G@5 32.32 31.54 – 9.74 15.38 12.48 32.98 33.99

– CN+SA+RN: We employ the feature extraction module with self-attention
on top of convolution and then concatenate it with the LSTM hidden vectors.
The combination of the features are sent to the k-max pooling and then used
to predict the labels (i.e. DSANN).

Fig. 3. Performance by adding components. The meanings of CN, CN+SA and
CN+SA+RN are explained in the ablation test section.

The experiment results are shown in the Fig. 3. The results prove the effec-
tiveness of attention mechanism and LSTM. For attention mechanism, due to
self-attention, the model pays more attention to important information by giving
greater weights to convolution result in important position. The perform value
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could be increased by 2%–18% after adding self-attention. For LSTM, It extracts
global features and thus improve the performance of the model on XMTC tasks.
In our experiment, after using LSTM, the evaluation score could be increased
by 1%–8%.

5 Conclusion

Different from traditional text classification, the number of predicted labels for
XMTC could be very large, reach hundreds of thousands or million. Therefore,
existing deep learning models can not apply to XMTC directly. In this paper, we
analyze the shortcomings of existing deep learning model for XMTC, and propose
a new method to solve this problem. Specifically, we focus on the convolutional
results in different position and introduce self-attention mechanism on top of
CNN. Instead of using CNN to encode the text sequence only, we input the text
into two modules at the same time. One module is composed of TextCNN and
self-attention, and the other module is LSTM. Features extracted by these two
modules are combined to predict the result. We conduct experiments on four
real-world datasets, the experiment results show that our approach outperforms
baseline methods and achieves new state-of-the-art under different evaluation
metrics.
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Abstract. The large and growing amounts of semi-structured Chinese text
present both challenges and opportunities to enhance text mining and knowl-
edge discovery. One such challenge is to automatically extract a small set of
visible tag from a document that can accurately reveal the document’s topic and
can facilitate fast information processing. Unfortunately, at this stage, there is
still a certain gap between the existing methods and truly engineering
application.
In order to narrow this gap, we propose Rule-Based HierarchicalRank (RBH),

an unsupervised method for visible tag extraction from semi-structured Chinese
text via a documents’ title and non-title two levels. In different level, we use
inconsistent methods to extract the candidate visible tags. The experiment
results show that the performance of the RBH method is far better than all the
baseline methods on visible tag extraction task on two distinct experiment
datasets. Specifically, On Paper-Dataset, the rule-based HierarchicalRank
methods’ precision and F1-score achieves 18.6% and 14.1%, while TOP K = 5.
In addition, on Event-Dataset, the best precision of our method is higher 7%
than the state-of-the-art method PositionRank with TOP K = 1. Furthermore,
the best Recall of RBH achieves 37.7% when TOP K = 5.

Keywords: Tag extraction � RBH � Text mining � Knowledge discovery �
PageRank

1 Introduction

With the development of the internet and information technology, and using text to
store data or information is very common in the modern life. These texts are usually
divided into three forms: structured, semi-structured and unstructured. Such as a basic
table information, academic papers and Weibo content. Among these three forms,
semi-structured text is the most commonly used. Because on the one hand, it can store
not only structured data, but also unstructured information. Semi-structured text usually
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contains a lot of text information. Because it is not fully structured, most of the
unstructured information can’t be directly used. It needs to exploit multiple advanced
analysis techniques to further complete the structure task to mining the data potential
value. Extracting useful tag information from these rapidly-growing semi-structured
text has become very challenging.

Text tag it is a general concept in current academe. In order to describe it more
details, we divided it into visible tag and hidden tag two categories, which are
described as follows:

Visible tag: it is a visible topic-word for the original text, such as an entity name or
a keyphrase.
Hidden tag: it is an invisible topic-word for the original text, such as a meta-
physical category.

Refining research tasks by classification is a common way. For different classifi-
cation, we can use different method to extract tags. In this paper, we mainly study
visible tag extraction instead of hidden tag extraction.

According to the definition of visible tag, we can know that keyword or keyphrase
extraction at most of the time will be very similar to the visible tag extraction task. Via
extracting tag can well summarize the topic of a document and can as the basis support
for efficient information processing and application task. Such as scientific article
summarization [1] or text classification [2], and information retrieval [3] or recom-
mendation [4]. In the field of tag extraction, many methods have been proposed in
recently. Related works are mainly divided into two categories: supervised [5] and
unsupervised [6].

Kim [7] has pointed out that the supervision method in the field of visible tag
extraction is better than the unsupervised method. However, the shortcoming of the
supervision method is that it requires a large amount of annotation data to complete the
training of the model. This labeling cost is too high to support the automatic extraction
of tag for the open-domain task. For unsupervised method, Florescu [8] proposed using
the global positional information that appears in the text to improve the extraction of
key-phrases and achieve better experimental results on scholarly documents. Huang [9]
point out selecting special POS (for example, noun, verb, adj) feature and length of the
word can improve keyphrase extraction quality. In addition, via deeply analysis of
semi-structured text, it is found that the title of the document is much shorter than the
abstract or content, but the part of title often included some tags. Figure 1 shows a
semi-structured text (Chinese/English) sample [10], and it contains title, abstract, and
keywords of the document.
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Nguyen [11] has finished a preliminary study for the type of sample with Fig. 1, by
selecting some features such as the distribution of candidate phrases in different sections
of a research paper, and the acronym status of a phrase to improve extraction quality.

For the visible tag extraction task, although the advantages are obvious and some
research progress has been made. However, the state-of-the-art method still can’t
support engineering application of the Chinese text visible tag extraction task. In order
to improve this situation, via using hierarchical strategies, we propose rule-based
HierarchicalRank method to achieve visible tag extraction task from semi-structured
Chinese text. In this paper, our contributions are as follows:

(a) Based on our knowledge, for the first time, we propose to segment the text tag as
visible tag and hidden tag two categories, and it via the dynamic extension method
to automatic extract the visible tags between the title and non-title part in a
document.

(b) We propose an unsupervised rule-based and hierarchical extraction model, called
HierarchicalRank, that using different extraction strategies at different field, and
combine a words’ occurrences into a biased PageRank [12] to extract visible tag
from semi-structured Chinese text.

(c) We summarize some effective general rules in Chinese tag extraction task, which
can assist in the extraction of keyphrase or keyword.

(d) we improved the PositionRank method, and via introduce words’ length to
compute the weight of the word.

The rest of the paper is organized as follows. The related work is summarized in the
next section. rule-based HierarchicalRank method is described in Sect. 3. And then,
give the experimental results and analysis in Sect. 4. In Sect. 5, we did a simple
discussion. Finally, we conclude the paper and future work in Sect. 6.

Fig. 1. The sample of a semi-structured (Chinese/English) text
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2 Related Work

For visible tag extraction task, many approaches have been proposed [13, 14]. Using
supervised method to complete the extraction of key-phrases, mainly KEA [15], GenEx
[16], BDT [17]. In 2012, Chuang [18] proposed a model that incorporates a set of
statistical and linguistic features for identifying descriptive terms in a text. In addition,
some researches to map the corresponding tag and non-tag in the document into a
binary classification problem by labeling the data, and train the relevant classifier
according to the labeled data to realize automatic extraction of tags. a method was
proposed for visible tag extraction based on the Naive Bayes [15]. Using SVM clas-
sifier and combined N-gram language model to extract tags from meeting transcripts
has been proven to improve performance [19]. Recently, proposed a neural network
architecture based on a Bi-LSTM or RNN that is able to detect the main topic on the
well-known INSPEC datasets [20].

In addition, utilizing unsupervised method to extract keyword or keyphrase is also
very popular. For this case, tag extraction task is seen as a statistical and ranking
problem [21]. A typical approach in the early date was to use TF-IDF to implement
visible tag extraction [22, 23]. At present, it is more common to use co-occurrence and
graph theory to construct a graph-based ranking algorithm to automatically extract tags.
TextRank [24] is a classic method, based on which a series of methods have been
derived and have achieved well performances in visible tag extraction in different
fields. For example, ExpandRank [25] and PositionRank [8]. In addition, PTR [26] and
WAM [27] are also belong to efficient methods on some special tasks.

Usually, different extraction methods are also used for different type of the text. Hu
[28] through combined Skip-gram model to propose PKEA algorithm to extract patent
keywords. Naidu [29] proposed an algorithm that automatically extract keywords for
text summarization in Telugu e-newspaper dataset. In order to improve the accuracy of
keyword extraction, Yuan [30] put forward a framework of keyword extraction based
on meta-learning. Biswas [31] proposed an unsupervised graph-based visible tag
extraction method from Tweets content, called KWG which uses Node-Edge rank
centrality measure to calculate the importance of nodes closeness centrality measure to
break the ties among the nodes.

In contrast to the above approaches, we propose HierarchicalRank, aimed at cap-
turing both word’s POS information and highly frequent weights in a document via
hierarchical extraction strategies. The strong contribution of this paper is the design of
hierarchical extraction strategies, which is different from existing methods that use the
same level to extract visible tags. Our method assigns priority extraction strategy to the
title in a document instead of using a uniform distribution over all content.

3 Rule-Based HierarchicalRank Method

In this section, we describe a fully unsupervised method HierarchicalRank. Consid-
ering that visible tags contain not only keyword or keyphrase, but also some repre-
sentative entity names. So, in the hierarchical segmentation phase, we segment the title
and non-title content as two parts in a contains title’s semi-structured text. Particularly,
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if the semi-structured text being processed is missing a title, the algorithm will be
automatically set the title to Null-value. After segmentation as described above, the
length of the title will be shorter, while the content of non-title will be longer. For this
case, for the title of text, we prefer to use a rule-based approach for automatic extraction
of visible tags. For the non-title part, an unsupervised method will be used for the
extraction of visible tags. Finally, the extracted results of the two parts are combined
according to the visible tag selecting strategies to merge the TOP-K topic words as the
visible tags of the semi-structured text. Figure 2 shows the flow chart of the rule-based
HierarchicalRank method.

3.1 Rule Setting

In order to extract higher quality visible tags from the title of semi-structured text.
Based on two semi-structured Chinese text experiment datasets, we made in-depth
statistics and analysis for the title with all of the documents, and found that more than
84% of the title contained one or two visible tags. According to the analysis results
from the Chinese text part-of-speech (POS) information, it is found that the visible tag
in the title include the following eight categories: (1) Person Name; (2) Institution
Name; (3) English Proper Noun; (4) Chinese Proper Noun; (5) Subject Proper Noun;
(6) Geographic Location Noun; (7) Biological Proper Noun; (8) Compound word of
Nouns, Verbs and Adjectives. Based on these statistics results, we set an eight-level
rules table for the extraction of visible tags in the title. The detailed level as shown in
Table 1:

Fig. 2. The flow chart of the rule-based HierarchicalRank method

Table 1. Rule table level divide status

Rule-Level Rule-Content (POS) Rule-Level Rule-Content (POS)

I Person Name (nr) V Geographic Location Noun (ns)

II Institution Name (nt|nz|ni) VI Subject Proper Noun (g)
III English Proper Noun (nx) VII Biological Proper Noun ([nb|nf|nh])

IV Chinese Proper Noun (nn) VIII Compound word ([n+v]|[adj+n]|[n+n]|[v+n])
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In Table 1, we list all the general rules for the tag extraction from the title. Spe-
cially, the priority is decremented from I to VIII. The end of each rule represents part
of speech, for example, ‘nr’ in rule I represent the word belong to a person name, and
(nt|nz|ni) in Table 1 indicates OR relationship.

3.2 Candidate Tags Hierarchical Extraction

According to Fig. 2, we can know that candidate tags are derived from both the title
and non-title two parts. Because the title length is very shorter and the length of the
non-title is longer, a hierarchical ranking approach is applied to the different content.
For the title, we using a rule-based extraction approach, and the unsupervised approach
will be used in the non-title part.

3.2.1 Title Candidate Tags Extraction
For the title, by combining the rules have listed in Table 1, it can efficiently and
easily extract TOP K no duplicate candidate visible tags. In the experiment, we
select TOP K (K = 2) candidate tags from the title, and the K-value should be
adjusted in different application scenarios. Here, using the title in Fig. 1 as the visible
tags extraction sample. The original title is

. The result after the
word segmentation is .
Finally, Matching the rules III (nx) and VIII (v+n) in Table 1, we easily get two tags

as the titles’ candidate visible tags.

3.2.2 Non-titles Candidate Tags Extraction
Considering that the non-title content is relatively longer than the title, it is not
appropriate to use a rule-based method to extract the tag. Therefore, we propose to use
an unsupervised method to complete the extraction of the tag. Based on the current
state-of-the-art method PositionRank [8], we have made some fine-tuning and
improvements to make it better adapt to the hierarchical extraction architecture.

The part of fine tuning: PositionRank method is to extract the keyphrase by using
both the title and non-title content as input of the algorithm, but now we only use the
non-title part as the input of the improved PositionRank algorithm to extract the visible
tag. Improvements: (1) the original PositionRank not well support Chinese text pro-
cessing, and we introduced the Chinese words segmentation module jieba1 tokenizer to
support Chinese text processing; (2) the PositionRank using the regular expression
[(adjective)*(noun)+] to match phrase, for Chinese, we expand it to [(noun)*(verb)+|
(adjective)*(noun)+|(noun)*(noun)+|(verb)*(noun)+]; (3) the PositionRank using all
position information of the word to calculate the words’ weight, we add length of the
word to compute the weight. The improved PositionRank method detail described as
followed.

1 https://pypi.org/project/jieba/.
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Suppose D is a target document for tags extraction. For non-title of D, via using
jieba to finish words segment, and combine both POS filter and words’ co-occurrence
to build an undirected graph G = (V, E) for D. Two nodes vi and vj are connected by an
edge vi; vj

� � 2 E if the word corresponding to these nodes co-occur within a window of
w contiguous tokens in the content of D. The weight of an edge vi; vj

� � 2 E is com-
puted based on the co-occurrence count on the two words within a window of w
successive tokens in D. Let M as its adjacency matrix. An element mij 2 M is set to the
weight of edge (vi, vj) if there exist an edge between nodes vi and vj, and is set to zero
otherwise. M is the normalized form of matrix with mij 2 M defined as:

mij ¼ mij=
PjV j

j¼1 mij; if
PjV j

j¼1 mij 6¼ 0
0; otherwise

�
ð1Þ

Where |V| is the number of nodes. The rank score of a node vi is recursively
computed by summing the normalized scores of node vj, which are linked to vi. Let S
denote the vector of rank scores, for all vi 2 E. The initial values of S are set to 1/|V|.
The rank score of each node at step T+1, can than be computed recursively using:

SðT þ 1Þ ¼ M � SðTÞ ð2Þ

To ensure that the PageRank does not get stuck into cycles of the graph, a damping
factor a is added to allow the ‘teleport’ operation to another node in the graph. Hence,
the computation of S as followed:

S ¼ a �M � Sþð1� aÞ � P ð3Þ

Where S is the principal eigenvector and P is a vector of length |V| with all elements
1/|V|.

The idea of improved PositionRank is to assign big weights with the word that both
appeared early and have a big length of the word in a document. Specifically, we want
to assign a higher weight to a word appeared in third position as compared to a word
found on the tenth position with the same length of word. If the same word appears
multiple times in the target document, then we sum all its position weights and product
with the length of the word as the word total weight. For example, if the length of the
word = 2, and it appears in the 5th and 8th, its weight is:

W ¼ 2 � 1
5
þ 1

8

� �
¼ 0:65
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Then, the vector P is set to the normalized weight for each candidate word as
follows:

P ¼ P1

P1 þP2 þ . . .þPjV j
;

P2

P1 þP2 þ . . .þPjV j
; . . .;

PjVj
P1 þP2 þ . . .þPjV j

� �
ð4Þ

The rank score of a vertex vi, i.e., S(vi), can be obtained in an algebraic way
recursively computing the following equation:

SðviÞ ¼ ð1� aÞ � Pi þ a �
X

vj2AdjðviÞ

wji

OðvjÞSðvjÞ ð5Þ

Where Pi is the weight found in the vector P for vertex vi, and O(vjÞ¼P
ðvkÞ2AdjðvjÞ

wjk.

When all candidate words have finished the computation of rank score, we
according to appearing contiguous positions in the original document to concatenated
the words into a phrase. Then, using the expand regular expression to match all phrases
with the phrases’ length more than L (L is the least length of a phrase). Finally, via
ranking the value of sum (scores) of individual words that include the phrase to extract
the TOP K candidate tags.

In our experiments, we setting a ¼ 0:85, co-occur window size = 6, candidate tag
number K ¼ 6;L ¼ 3, and the words’ rank scores are recursively computed until the
difference between two consecutive iteration is less than 0.001 or a number of 200
iterations is reached.

3.3 Candidate Tags Merger

According to Sect. 3.2, for a semi-structured Chinese document, by using Hierarchi-
calRank method, we can get title_Tags (TOP 2) and non-title_Tags (TOP 6) two
candidate tag lists. Follow the extraction rule, we can know that title_tags contains no
more than two non-repeating tags, and non-title_tags contains no more than six non-
repeating tags. Considering that they use an independent extraction method, there may
exist duplicate or similar tags within two tags’ lists.

In order to merge the candidate tags, we use the Longest Common Sequence
(LCS) [32] value of the strings to filter similar tags. The detail merge algorithm is as
followed.
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Using this algorithm, we can easily to get all the visible tags, and for Chinese, we
suggest C = 2.

4 Experimental Results and Analysis

4.1 Datasets and Evaluation Metrics

Datasets Introduction. In order to evaluate the performance of HierarchicalRank, we
carried out experiments based on two Chinese datasets. The first dataset consists of all
the Chinese research papers published by the Journal of Software2 in 2018. The second
dataset consists of the mainly China hot social events published by zhiweidata3 from
January 1st to January 15th, 2019. For the first dataset, we use the title and abstract of

2 http://www.jos.org.cn/jos/ch/index.aspx.
3 http://ef.zhiweidata.com/#!/down.
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each paper to extract visible tags. The author-input keywords are used as gold-standard
for evaluation. For the second dataset, we use the title and description content of each
event to extract visible tag. The original visible events’ tags are used as gold-standard
for evaluation. All two datasets are summarized in Table 2, which show the number of
documents in each dataset, the total number of visible tags (Vt), and the average
number of visible tags per document (AvgVt).

Evaluation Metrics. We use the mean reciprocal rank (MRR) curve to illustrate our
experimental results. MRR value revealed the averaged ranking of the first correct
prediction and is defined as:

MRR ¼ 1
jDj

X
d2D

1
rd

ð6Þ

where D is the collection of documents and rd is the rank at which the first correct
keyphrase of document d was found. In addition, we also summarize the results in
terms of Precision, Recall, and F1-score in a table to contrast HierarchicalRank with
previous methods since these metrics are widely used in previous works.

4.2 Core Parameter Setting and Analysis

For the rule-based HierarchicalRank extraction methods, the number of best candidate
tags in the title is an important parameter. Considering that the length of the title is very
short, and the number of best candidate tags in the title is recommended between 1 and
3. An effective method of processing is to sample and statistic the extracted text and
calculate the AvgVt value of this type. For example, the first dataset AvgVt is 4.8, and
the second dataset AvgVt is 1.4. Then, set the number of best candidate tags to 1, if the
AvgVt <= 2, and the number of best candidate tags set 2, if the AvgVt > 2 and the
AvgVt <= 6, in addition, if the AvgVt > 6, we can set 3 as the number of best can-
didate tags. For the choice of the number of non-title best candidate tags and words co-
occur window size, we can refer to PositionRank [8] method to set it.

Figure 3 shows the MRR curve of rule-based HierarchicalRank and TextRank for
different values of the number of best candidate tags in the title, on all two datasets.

Table 2. A summary of the datasets

Dataset #Docs Vt AvgVt

Paper dataset (Journal of Software 2018) 56 267 4.8
Event dataset (zhiweidata) 50 71 1.4
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According to Fig. 3, the MRR curve shows that the performance of our method is
better than TextRank algorithm for title-tag extraction on all two experiment datasets.

In addition, for improved PositionRank, we add the words’ length to compute word
weights. In order to evaluate the performance of improved PositionRank algorithm. We
combining the original PositionRank and the improved PositionRank algorithm to do
comparative experiment in all two datasets. Figure 4 shows the MRR curve for the
experiment.

From Fig. 4, through the MRR curve, we can know that the performance of the
improved PositionRank algorithm is slightly better than the original PositionRank
algorithm in complete tags extraction task for all two experimental datasets.

Another core parameter of the HierarchicalRank is the total number of extracted
visible tags (title_tags + non-title_tags) in a document, and this parameter is usually
sensitive to the average length of the document. In our experiments, we set the total
number of tag in a document between 1 and 5. Figure 5 shows the MRR curve of rule-
based HierarchicalRank and another four unsupervised baselines method, Posi-
tionRank, Improved PositionRank, TextRank, and TF-IDF for different total number of
the tags within all two datasets.

Fig. 3. MRR curves with different values for the number of best candidate tags in title

Fig. 4. MRR curves of the PositionRank and improved PositionRank algorithm
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Via Fig. 5, shows the MRR curve, we can know that the performance of the rule-
based HierarchicalRank algorithm is far better than all the baselines method on visible
tags extraction task for all two experiment datasets.

4.3 Overall Performance

In order to consistent with these prior works on visible tag extraction report results also
in terms of precision (P), Recall (R), F1-score (F1). We also calculate the P, R and F1
in our experiment. In Table 3, we show the results of the comparison of rule-based
HierarchicalRank with all baselines, in terms of P, R and F1 for TOP K = 1, 3, 5
predicted number of total tags, on all two datasets.

As show from Table 3, the rule-based HierarchicalRank method outperforms all
baselines, on all two datasets. The performance of the improved PositionRank algorithm
is slightly better than the PositionRank, but it is not obviously on the Paper-Dataset. The
rule-based HierarchicalRank method in Paper-Dataset achieves 18.6% Precision and

Fig. 5. MRR curves of the rule-based HierarchicalRank and baselines algorithm

Table 3. rule-based HierarchicalRank against baselines in terms of P, R and F1

Dataset Unsupervised methods TOP #1 (%) TOP #3 (%) TOP #5 (%)
P R F1 P R F1 P R F1

Paper-
Dataset

rule-based
HierarchicalRank

18.6 6.0 9.1 15.5 9.7 12.0 14.3 13.9 14.1

Improved PositionRank 9.0 2.1 3.4 9.0 5.8 7.1 7.3 6.9 7.1
PositionRank 8.9 1.9 3.1 8.9 5.6 6.9 7.0 6.7 6.9
TextRank 7.1 1.5 2.5 4.8 3.0 3.7 4.0 3.7 3.9
TF-IDF 7.8 1.7 2.8 5.2 3.3 4.0 4.5 3.9 4.2

Event-
Dataset

rule-based
HierarchicalRank

36.0 23.7 28.6 21.0 37.7 27.0 20.6 37.7 26.6

Improved PositionRank 29.7 16.6 21.3 17.1 16.7 16.9 16.5 16.7 16.6
PositionRank 29.0 16.0 20.6 16.4 16.0 16.2 16.0 16.0 16.0
TextRank 16.0 8.3 10.9 11.4 11.1 11.3 11.1 11.1 11.1
TF-IDF 17.2 8.6 11.5 12.1 11.6 11.8 11.2 11.6 11.4
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14.1% F1-score, when TOP K = 5, it is double the PositionRank method on Precision
and F1-score. On Event-Dataset, the best Precision of our method higher 7% than
PositionRank with TOP K = 1, and the best Recall achieves 37.7% when TOP K = 5.

5 Discussion

The main purpose of the rule-based HierarchicalRank method proposed in this paper is
to solve the visible tag extraction task of semi-structured text, but it can also adapt the
keyphrase or keyword extraction task by adjusting the corresponding parameters. In
addition, the method also can be used to processed have title and content unstructured
text, such as Chinese Weibo text.

Considering the setting of the rules, one of the shortcomings of this method is that
only the visible tag extraction task of Chinese text is currently supported. If reader use
this method to process non-Chinese text, it is a new task to redesign the rules according
to interrelated text corpus.

In the processing of Chinese text, the accuracy of word segmentation and part-of-
speech (POS) annotation often have a greater impact on the performance of the
algorithm. In order to improve the performance of the rule-based HierarchicalRank
method, when dealing with Chinese text, we suggest that increase the accuracy of word
segmentation by introducing the domain dictionary to improve the quality of tag
extraction.

For the setting of the core parameters of the method, the relevant solutions are given
for the papers of our experimental datasets. If the algorithm is used in other application
scenarios, it is recommended that to adjust and test the parameters according to the
specific data feature, it will give fuller play to the performance of the algorithm.

This paper only studies the visible tags extraction task. For the hidden tags
extracting task, and it may be solved in the future by using supervised learning method
or deep learning method.

6 Conclusion and Future Work

We proposed a novel hierarchical unsupervised method, called HierarchicalRank,
which segment both the title and non-title content of the semi-structured Chinese text to
extract the visible tags. In addition, we improved the PositionRank algorithm via
introduce words’ length to compute the weights. To our knowledge, we are the first to
propose using hierarchical method in unsupervised visible tag extraction. Specifically,
in title level, the experimental results show that the quality of the extraction of the
visible tag can be effectively improved via combining some general rules.

In a addition, the experimental results on two datasets show that rule-based Hier-
archicalRank method achieves better performance than the currently state-of-the-art
method. In the future, it would be interesting to explore the performance of Hierar-
chicalRank on other types of unstructured text, e.g., web news. Finally, combined
HierarchicalRank to extract hidden tag belong to another very important direction in
text mining.
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Abstract. This paper deals with the task of part-of-speech (POS) tag-
ging for Vietnamese social media text, which poses several challenges
compared with tagging for conventional text. We introduce a POS tag-
ging model that takes advantages of deep learning and manually engi-
neered features to overcome the challenges of the task. The main part
of the model consists of several bidirectional long short-term memory
(BiLSTM) layers that are used to learn intermediate representations of
sentences from features extracted at both the character and the word
levels. Conditional random field (CRF) is then used on top of those BiL-
STM layers, at the inference layer, to predict the most suitable POS
tags. We leverage various types of manually engineered features in addi-
tion to automatically learned features to capture the characteristics of
Vietnamese social media data and therefore improve the performance
of the model. Experimental results on a public POS tagging corpus for
Vietnamese social media text show that our model outperforms previ-
ous work [4] by a large margin, reaching 91.9% accuracy with 27% error
rate reduction. The results also reveal the effectiveness of using both
automatically learned and manually designed features in a deep learning
framework when only a limited amount of training data is available.

Keywords: Part-of-speech tagging · Social media text ·
Bidirectional long short-term memory · Conditional random field

1 Introduction

Part-of-speech (POS) tagging is the task of determining a proper POS tag for
each word in an input sentence according to its context. For example, a good
English POS tagger is expected to be able to differentiate the proper POS tag
of the word “play” in the following two sentences: (1) I saw that play yesterday ;
and (2) He can play piano. While the word “play” in the first sentence is a noun,
it is a verb in the second sentence. The outputs of POS taggers provide useful
information for most natural language processing (NLP) tasks as well as appli-
cations, including syntactic parsing, semantic role labeling, question answering,
information extraction, and machine translation.
c© Springer Nature Switzerland AG 2019
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POS tagging for social media text has received a great attraction in NLP
research community in recent years [1,2,4,7,10,23,28,31]. The task for noisy
text generated by social users exposes several challenges compared with tagging
for conventional text. The first challenge comes from the characteristics of social
media text, which is not always written conforming to the formal grammar
and correct spelling. Social users often use abbreviations, wrong capital letters,
jargons, typos, and emoticons. There are other problems specific to Vietnamese
social media text such as frequent use of foreign language words like English
words, or use of words without tone marks. Another challenge is the lack of
large-scale annotated POS tagged corpora for social data. Developing a robust
and accurate POS tagger for social media text is therefore difficult, especially in
low resource languages like Vietnamese.

Previous studies on POS tagging usually train statistical classifiers or
sequence labeling models using annotated corpora. The most popular learn-
ing algorithms include maximum entropy models (MEMs) [30,35], support vec-
tor machines (SVMs) [9], hidden Markov models (HMMs) [5], and conditional
random fields (CRFs) [4,10]. To achieve good tagging performances, such algo-
rithms need to be trained with a set of manually engineered features. “The
current word”, “the previous word”, “the next word”, “the POS tag of the pre-
vious word”, “whether the first letter of the current word is capitalized”, and
“whether the current word contains digits” [30] are among the most effective
manually designed features.

The last few years have seen much success of deep learning in various fields of
computer science, especially in computer vision [13,21] and natural language pro-
cessing [11,39]. Convolutional neural networks (CNNs) [20] and recurrent neural
networks (RNNs) [8] are among the most popular and successful deep learn-
ing architectures. A number of research works have applied CNNs and RNNs
for POS tagging and achieved impressive results [14,16,17,22,26,29,32,37]. The
advantage of deep learning models is the ability to automatically learn effective
features from raw inputs. Deep models, however, are data hungry, which perfor-
mances usually degrade when only a small amount of training data is available.

The aim of this work is to develop an accurate and robust POS tagging model
for Vietnamese social media text, in which we tackle two problems: (1) charac-
teristics of Vietnamese social media text; and (2) the lack of large-scale available
annotated datasets. To this end, we employ advanced learning techniques, i.e.
deep learning models. We leverage various types of manually engineered fea-
tures in addition to automatically learned features, which are the advantage of
deep architectures. Such manually designed features can capture characteristics
of social media data and makes the model accurate when training on a relatively
small size corpus, which is the drawback of deep learning models. We present
a BiLSTM-CRF model in which BiLSTM is used for learning word and sen-
tence representations and CRF is employed at the inference layer to capture the
relations between POS tags of adjacent words. Experimental results on a pub-
lic POS tagging dataset for Vietnamese social media text show that our model
outperforms the best previous work by a large margin.



208 N. Xuan Bach et al.

The rest of this paper is structured as follows. Section 2 presents related
work. Section 3 introduces our proposed POS tagging model for Vietnamese
social media text. Experimental results and analyses are described in Sect. 4.
Finally, Sect. 5 concludes the paper and discusses future work.

2 Related Work

This section gives a brief review of related work, including POS tagging for social
media text, neural network based POS taggers, and POS tagging for Vietnamese
language.

POS Tagging for Social Media Text. Gimpel et al. [10] present a study on
POS tagging for Twitter in English. They employ CRFs as the learning method
and got 89.4% tagging accuracy on a corpus consisting of 1,827 tweets. Owoputi
et al. [28] propose to utilize word cluster features to improve POS tagging for
English tweets, and report an accuracy improvement of more than 3% over a
baseline. Derczynski et al. [7] investigate existing English POS taggers for tweet
data and introduce a method to combine the outputs of taggers, which use
different tagsets. In addition to English, several studies have been conducted
on POS tagging for social media text in other languages. Nooralahzadeh et al.
[27] address the task for French. Their model with CRFs achieves 91.9% and
51.1% token and sentence accuracy on a dataset consisting of 1,700 French sen-
tences extracted from social media services like Twitter, Facebook and forums.
Albogamy and Ramsay [1,2] conduct empirical studies on POS tagging for Ara-
bic tweets. They provide a detailed error analysis of state-of-the-art POS taggers
when applied to Arabic tweets and introduce a fast and robust POS tagger for
Arabic tweets using agreement-based bootstrapping. Rehbein [31] uses CRFs on
a collection of 1,426 German tweets and reports the tagging accuracy of 88.8%.
Neunerdt et al. [23] investigate the task for German social media text. They
evaluate state-of-the-art German POS taggers on multiple types of data sources,
including chat messages, blog comments, Merkur and YouTube comments.

Neural Network Based POS Taggers. Several neural network based models
have been developed for POS tagging. RNNs are among the most popular choice
due to their power in modeling sequence data. Efficient POS taggers usually
combine RNNs or their variants such as bidirectional RNNs, LSTM, bidirec-
tional LSTM with other types of networks, including CNNs and CRFs. Plank
et al. [29] with bidirectional LSTM, Wang et al. [37] with bidirectional LSTM-
RNN, Labeau et al. [17] with CNN-Bidirectional RNN, Shao et al. [32] with
bidirectional RNN-CRF, Huang et al. [16] with LSTM-CRF and bidirectional
LSTM-CRF, and Ma and Hovy [22] with bidirectional LSTM-CNN-CRF are
examples of successful neural network architectures for POS tagging. Our model
also exploits bidirectional LSTM for feature representation learning and CRF
for inference, but focuses on Vietnamese social media text. Moreover, we use a
rich feature set consisting of both automatically learned and manually designed
features to tackle the lack of annotated social media data.
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POS Tagging for Vietnamese Language. Most previous work on
Vietnamese POS tagging focuses on general text, which usually formulates the
task as a sequence labeling problem. Various kinds of learning algorithms have
been investigated, including MEMs [19,36], SVMs [24], CRFs [25,36], guided
online learning [25], dual decomposition [3], and neural networks [26]. The most
closely related previous work is that of Bach et al. [4]. They introduce a POS
tagged corpus for Vietnamese social media text consisting of 4,150 Vietnamese
sentences extracted from Facebook. A series of experiments have been conducted
on the corpus using CRFs. Our work also focuses on Vietnamese social media
text, but introducing a model with advanced learning techniques, i.e. deep neu-
ral networks. As shown in experiments, our model achieves impressive results on
the same corpus of Bach et al. [4].

3 Tagging Model

This section describes our POS tagging model for Vietnamese social media text.
Given an input sentence in Vietnamese language represented by a sequence of
words s = (w1, w2, . . . , wm), the goal of the model is to determine the most
proper POS tag li ∈ L for each word wi, where m denotes the length of sentence
s, and L is the set of POS tags.

3.1 Model Overview

As shown in Fig. 1, our model consists of three main stages: word representation,
sentence representation, and inference.

– Word representation: The goal of this stage is to produce a representation
vector for each word in the input sentence. To utilize various types of informa-
tion, our model combines both automatically learned features and manually
engineered features extracted at the character and word levels. While the
former ones use words directly, the later ones are carefully extracted in a
preprocessing step with human knowledge.

– Sentence representation: At this stage, BiLSTM is used to capture left-
to-right and right-to-left information of the word sequence to generate the
intermediate representation for the input sentence. We stack two BiLSTM
layers to build deeper representations1.

– Inference: At the inference layer, CRF takes the sentence representation as
the input and output the most suitable POS tag sequence.

In the next sections, we describe how to build word representations and how
BiLSTM and CRF are used in our model. For notation, we denote vectors with
bold lower-case (e.g., x, yt), matrices with bold upper-case (e.g., W, Hi), and
scalars with italic lower-case (e.g., c, α).

1 Goldberg [11] shows that by stacking several BiLSTM layers we can produce better
representations for sentences.
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Fig. 1. Model architecture.

3.2 Word Representation

The representation vector xt of word wt is made by concatenating both auto-
matically learned features and manually engineered features. We consider two
types of manually engineered features, including features extracted from words
(call handcrafted features) and features extracted from word clusters trained by
using a corpus of plain text (call word cluster features).

– Automatically learned features: Automatically learned features consists
of word-level features and character-level features. For word-level features, we
use word embeddings directly. For character-level features, character embed-
dings are employed as the input to a BiLSTM to capture left-to-right and
right-to-left information of the character sequence. Both word and character
embeddings are initialized randomly and learned in the training process.

– Handcrafted features: Like the work of Bach et al. [4], we use the following
handcrafted features:

• A feature that checks whether the word is a special character (hyphen,
punctuation, mathematical operation, dash, and so on)
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• A feature that checks whether the word is an icon or emoticon
• A feature that detects whether the word contains digits
• Features looking at capitalization patterns (the first letter and all the

letters) in the word
• Features that detect hashtags and URLs
• A feature generated by applying Metaphone2 algorithm to create a coarse

phonetic normalization of the word to simpler keys
• The predicted POS tag of vnTagger [19], a widely-used Vietnamese POS

tagger trained on general text.
– Word cluster features: Word cluster features have been shown to be an

important information source for POS tagging, both conventional and social
media text [4,25,27,28,34]. We extract word cluster features using Brown
word clustering [6] and CCA word clustering [33] in a similar way of Bach et al.
[4]. Both Brown and CCA are hard hierarchical agglomerative word clustering
algorithms, which produce a word-cluster hierarchy in a binary tree style from
a plain text corpus. While the Brown algorithm performs clustering directly
on words, the CCA algorithm derives a low-dimensional representation of
words and builds word clusters on the obtained representations.

We also use feature embeddings for both handcrafted features and word clus-
ter features, which are initialized randomly and learned in the training process.

3.3 BiLSTM

Long short-term memory (LSTM) networks [15] are a variant of recurrent neural
networks (RNNs) [8], a class of neural network architectures specially designed
for modeling sequence data. LSTM networks deal with the long-range depen-
dency problem in RNNs by introducing some gates at each position to control
the passing of information along the sequence.

Let X = (x1,x2, . . . ,xm) denote an input sentence consisting of the feature
representations of m words. At each position t, the RNN outputs an intermediate
representation based on a hidden state h:

yt = σ(Wyht + by),

where σ denotes the element-wise Softmax, Wy and by are parameter matrix and
vector which are learned in the training process. The hidden state ht is updated
using a non-linear activation function on the previous hidden state ht−1 and the
current input xt as follows:

ht = f(ht−1,xt).

Each type of RNNs has different ways to implement the function f . LSTM cells
use a few gates, including an input gate it, a forget gate ft, an output gate ot

and a memory cell ct to update the hidden state ht as follows:

it = σ(Wixt + Viht−1 + bi),
2 http://commons.apache.org/codec/.

http://commons.apache.org/codec/
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ft = σ(Wfxt + Vfht−1 + bf ),

ot = σ(Woxt + Voht−1 + bo),

ct = ft � ct−1 + it � tanh(Wcxt + Vcht−1 + bc),

ht = ot � tanh(ct),

where � denotes the multiplication operator function, and W∗, V∗, and b∗
(∗ denotes i,f ,o,c) are weight matrices and vectors to be learned.

To capture both left and right information, we employ bidirectional long
short-term memory (BiLSTM) networks [12], which combine an LSTM that
moves forward from the start of the sentence with another LSTM that moves
backward from the end of the sentence. The hidden state ht of the BiLSTM
is the concatenation of the forward h→

t and backward h←
t hidden states, ht =

[h→
t ,h←

t ], where h→
t = LSTM(h→

t−1,xt) and h←
t = LSTM(h←

t+1,xt).
Here, we present the BiLSTM layer for learning sentence representations from

sequences of words. The BILSTM layer for learning word representations from
sequences of characters is exactly the same.

3.4 CRFs

The inference layer takes the sentence representation Y = (y1,y2, . . . ,ym) as the
input and outputs a POS tag lt, at each position t (t = 1, 2, . . . ,m). It is beneficial
to consider the correlations between the current POS tag and neighboring tags
since there are syntactical constrains in natural language sentences. For example,
in Vietnamese, nouns (tag N) usually precede adjectives (tag A) and verbs (tag
V) usually come after proper nouns (tag Np). If we simply feed the tth element
yt to a Softmax layer to predict the POS tag, such constraints are more likely
to be violated. Our tagging model, therefore, employs Conditional random fields
(CRFs) [18], a powerful framework to deal with structure prediction problems.
CRFs have been shown to be an effective model for building POS taggers for
social media text [4,10,27].

CRFs define the probability of a tag sequence l = (l1, l2, . . . , lm) given the
sentence representation Y as follows:

p(l|Y,λ,μ) =
1

Z(Y)
exp(

∑

j

λjfj(lt−1, lt,Y, t) +
∑

k

μkgk(lt,Y, t))

where fj(lt−1, lt,Y, t) is a transition feature function, which is defined on the
entire input sentence Y and the POS tags at positions t and t − 1 in the tag
sequence l; gk(lt,Y, t) is a state feature function, which is defined on the entire
input sentence Y and the tag at position t in the tag sequence l; λj and μk are
model parameters, which are estimated in the training process; and Z(Y) is a
normalization factor. CRFs are commonly trained by maximizing the likelihood
function using convex optimization techniques. Searching the most likely output
label sequence, i.e. inference step, can be done by using the Viterbi algorithm.
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Table 1. Statistical information about the tagset

Tag Description % Tag Description %

Np Proper noun 3.54 CC Coordinating conjunction 0.49

Nc Classifier 1.15 I Interjection 1.55

Nu Unit noun 0.32 T Auxiliary, modal words 3.52

N Common noun 18.46 X Unknown 1.75

V Verb 19.20 AB Abbreviation 5.23

A Adjective 6.68 FL Foreign language 1.31

P Pronoun 5.89 AR Angry (emoticon) 0.05

R Adverb 8.04 CF Confused (emoticon) 0.79

L Determiner 0.93 HP Happy (emoticon) 2.36

M Numeral 2.41 IL Inlove (emoticon) 0.21

E Preposition 3.80 SD Sad (emoticon) 0.30

C Subordinating conjunction 3.17 PUN Punctuation 8.86

4 Experiments

4.1 Dataset

We conducted experiments on the Vietnamese POS tagging corpus introduced
by Bach et al. [4]. The corpus consists of a tagset for Vietnamese social media
text with 24 POS tags and 4,150 annotated Vietnamese sentences extracted from
Facebook. The list of POS tags and their percentages are shown in Table 1. V
(verbs, 19.20%), N (common nouns, 18.46%), PUN (punctuations, 8.86%), R
(adverbs, 8.04%), A (adjectives, 6.68%), P(pronouns, 5.89%), and AB (abbrevi-
ations, 5.23%) are the most frequent POS tags.

4.2 Models to Compare

We conducted experiments to compare the performances of the following POS
tagging models:

– CRF: This model is presented by Bach et al. [4]. We include two variants of
the model using different feature sets as follows:
1. using handcrafted features only, and
2. using word cluster features in addition to handcrafted ones.

– BiLSTM-CRF: This is our proposed model with bidirectional LSTM and
CRF. We conducted experiments with three variants of the model using dif-
ferent feature sets as follows:
1. using automatically learned features (word and character embeddings),
2. using both automatically learned and handcrafted features, and
3. using word cluster features in addition to automatically learned and hand-

crafted features.
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– BiLSTM-Soft: This model was similar to BiLSTM-CRF, but using the Soft-
max function at the inference layer instead of using CRF. We also conducted
experiments with three variants of the model using different feature sets like
BiLSTM-CRF.

The performances of tagging models were measured using accuracy, precision,
recall, and the F1 score. While accuracy was computed over all kinds of POS
tags, precision, recall, and the F1 score were computed for each kind of POS tag.
We performed 10-fold cross-validation in all experiments3.

4.3 Network Training

We trained the networks using NCRF++, an open-source neural sequence label-
ing toolkit4 developed by Yang and Zhang [38]. The dimensions of word embed-
dings, character embeddings, and feature embeddings (for manually engineered
features) were set to 100, 50, and 20, respectively. All models were trained using
standard stochastic gradient descent (SGD) with batches of size 128. We chose
the initial learning rate η0 = 0.003, and the learning rate ηi was updated on
each epoch of training as ηi = η0

1+ρi , with decay rate ρ = 0.05 and i denotes
the number of epochs completed. To mitigate overfitting, dropout was applied
to the outputs of both word representation and sentence representation stages
with dropout rate of 0.5.

4.4 Experimental Results

In the first experiment we compared the effectiveness of different tagging models.
Table 2 summarizes the accuracies for each model. As can be seen, LSTM models
that do not use handcrafted features achieved the lowest accuracy. BiLSTM-Soft
and BiLSTM-CRF models that take only word and character embeddings as
input assigned correct tags only to 87.4% and 87.3% tokens respectively, which
is almost 1% worse than CRF with handcrafted features. The bad performance of
pure deep learning models compared to CRFs may be attributed to the small size
of training data and/or the informativeness of features that were chosen manu-
ally. There is no clear winner between BiLSTM-Soft (87.4%) and BiLSTM-CRF
(87.3%) when no additional features are used, which is somewhat surprising.
The next observation is that handcrafted features are very useful in improving
the accuracy of BiLSTM models. Both BiLSTM models augmented with such
features achieved substantial improvements of 3% or more over the original mod-
els (90.3% vs 87.4% for BiLSTM-Soft and 90.7% vs 87.3% for BiLSTM-CRF).
These results confirm the importance of manually engineered features in some
NLP tasks, which are complement to features learned by deep learning models.
The results also show the usefulness of word cluster features when used with both
traditional CRF and BiLSTM. Adding these features to CRF improved the accu-
racy from 88.3% to 88.9%. Even more significant improvements were observed
3 The division into training and test sets is the same as the work of Bach et al. [4].
4 Software available at https://github.com/jiesutd/NCRFpp.

https://github.com/jiesutd/NCRFpp
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when adding word cluster features to BiLSTM. BiLSTM-Soft achieved 0.8%
improvement whereas BiLSTM-CRF achieved 1.2% improvement in accuracy
when using cluster features in addition to others. Among the models, BiLSTM-
CRF achieved the highest accuracy of 91.9%, which is substantially higher than
that of the second best BiLSTM-Soft. The superiority of BiLSTM-CRF over
BiLSTM-Soft is consistent with previous work on the effectiveness of using CRF
as the final inference layer for BiLSTM models. Overall, the best proposed model
achieved 3% accuracy improvement (or 27% error rate reduction) over the best
model of Bach et al. [4].

Table 2. Accuracies of POS tagging models

Model Features Accuracy(%)

CRF (Bach et al. [4]) Handcrafted features 88.3

+ Word cluster features 88.9

BiLSTM-Soft Word & Character embeddings 87.4

+ Handcrafted features 90.3

+ Word cluster features 91.1

BiLSTM-CRF Word & Character embeddings 87.3

+ Handcrafted features 90.7

+ Word cluster features 91.9

Next, we look more closely on how well the proposed models work with
each type of POS tags. Table 3 shows the F1 scores for different types of POS
tags. Note that the model of Bach et al. [4] employs a post processing step,
in which the model utilizes a dictionary of emoticons to correct the output.
Their model, therefore, achieved perfect scores for all emoticon tags (AR, CF,
HP, IL, SD). We argue that their method is corpus-dependent and may limit
its use in practice. Thus, we did not perform a similar post processing step.
Even without post-processing, our models still got very good results for emoticon
tags. Specifically, BiLSTM-CRF achieved 100%, 100%, 99.8%, 98.8%, and 92.7%
F1 values for HP, SD, CF, IL, and AR, respectively. Given the prevalence of
emoticons in social media texts, this result demonstrates the appropriateness
of the proposed tagger for the problem at hand. Among 19 types of POS tags
other than emoticons, both BiLSTM-Soft and BiLSTM-CRF improved CRF
on 17 types and got comparative results on the two other ones. Moreover, we
achieved a big improvement on many word types, including foreign language
words (FL, 30.4%), unknown words (X, 14.2%), abbreviation words (AB, 8.3%),
interjections (I, 6.6%), proper nouns (Np, 6.2%), auxiliary and modal words (T,
4.6%), common nouns (N, 4.4%), verbs (V, 4.1%), adjectives (A, 2.9%), and
adverbs (R, 2.9%). The superior performance of BiLSTM-CRF over BiLSTM-
Soft on almost all tags showed the effectiveness of using CRF at the inference
layer.
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Table 3. F1 scores (%) on each type of POS tags

Tag Models Tag Models

CRF BiLSTM-Soft BiLSTM-CRF CRF BiLSTM-Soft BiLSTM-CRF

Np 76.9 81.3 (+4.4) 83.1 (+6.2) CC 98.4 99.2 (+0.8) 99.2 (+0.8)

Nc 84.7 86.6 (+1.9) 87.4 (+2.7) I 70.9 76.1 (+5.2) 77.5 (+6.6)

Nu 82.7 82.5 82.1 T 77.7 80.8 (+3.1) 82.3 (+4.6)

N 86.5 90.4 (+3.9) 90.9 (+4.4) X 46.9 53.4 (+6.5) 61.1 (+14.2)

V 89.0 92.3 (+3.3) 93.1 (+4.1) AB 86.8 94.2 (+7.4) 95.1 (+8.3)

A 82.6 84.9 (+2.3) 85.5 (+2.9) FL 52.5 78.9 (+26.4) 82.9 (+30.4)

P 92.4 94.1 (+1.7) 94.6 (+2.2) AR 100 60.0 92.7

R 91.1 93.5 (+2.4) 94.0 (+2.9) CF 100 99.7 99.8

L 93.1 94.0 (+0.9) 94.3 (+1.2) HP 100 100 100

M 96.0 97.6 (+1.6) 97.7 (+1.7) IL 100 93.6 98.8

E 96.1 97.0 (+0.9) 97.3 (+1.2) SD 100 100 100

C 90.2 91.5 (+1.3) 91.7 (+1.5) PUN 99.7 99.7 99.7

Fig. 2. Tagging performances with different training data sizes.

In the previous experiments, we conducted 10-fold cross-validation, i.e. 90%
data were used for training and 10% data were used for testing. The results were
then averaged over 10 folds. The next experiment was designed to investigate the
POS tagging performance of the proposed model when smaller datasets were used
to train the model. Figure 2 shows tagging accuracies when reducing the amount
of training data, from 90% to 80%, 70%, 60%, 50%, 40%, 30%, 20%, and 10%.
Our model achieved relatively good results when using a very small a mount of
training data, 85.0% and 87.9% accuracies when using only 10% and 20% data
for training, respectively. The model need only 30% (three times less) data for
training to get better result compared with the best model of Bach et al. [4].
The performance stably improved when we increased the size of training data,
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reaching 91.9% accuracy when using 90% of data for training. This stability can
be attributed to the appropriate combination of different types of features which
we use in the proposed method, which alleviate the dependence of deep learning
models on the availability of large training datasets.

5 Conclusion

We have presented in this paper a neural network based POS tagger for
Vietnamese social media text. By utilizing a rich feature set consisting of both
automatically learned and manually engineered features in a BiLSTM-CRF
framework, our model achieved impressive results compared with the best pre-
vious work even when the amount of training data is small. We plan to inves-
tigate other types of neural network architectures for reducing the dependence
on manually designed features. Studying neural network based models for other
Vietnamese NLP tasks is also an interesting direction for future research.
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Abstract. Mutual bootstrapping is a commonly used technique for
many natural language processing tasks, including semantic lexicon
induction. Among many bootstrapping methods, the Basilisk algo-
rithm achieved successful applications through two key iterative steps:
scoring context patterns and candidate instances. In this work, we
improve Basilisk by modifying its two scoring functions. By incorpo-
rating AutoEncoder to the scoring functions of patterns and candidates,
we can reduce the bias problems and obtain more balanced results. The
experimental results demonstrate that our proposed methods for guiding
bootstrapping of a semantic lexicon with AutoEncoder can boost overall
performance.

Keywords: Bootstrapping · AutoEncoder · Semantic lexicon

1 Introduction

Acquiring large amounts of knowledge for natural language processing tasks
can be costly when performed manually. Therefore, there is an increasing need
to acquire knowledge, such as semantic relations, from raw text corpora. Such
semantic knowledge is beneficial for the other numerous application scenarios
(e.g., domain-specific dialogue systems). Hearst started the early work with
manually-constructed lexico-syntactic patterns to infer hyponyms (Hearst 1992).
Given a set of expert-designed patterns, high-precision results could be achieved.
However, this method cannot be easily applied directly to other corpora or
tasks (Jurafsky and Martin 2009) because each task requires specific expert-
designed patterns. A supervised algorithm trained on human-labeled samples is
another straightforward and effective approach (Santos et al. 2015). However, it
is time-consuming to obtain annotated data for a sizable language corpus. Due
to the above reasons, weakly supervised or semi-supervised approaches have
attracted more attention for obtaining semantic resources from a large-scale cor-
pus. The weakly supervised method, also known as distant supervision, attempts
to build an alignment between a raw corpus and a knowledge database (Mintz
et al. 2009). By using a database like Freebase (Bollacker et al. 2008), a large
c© Springer Nature Switzerland AG 2019
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number of samples with noisy labels and features can be created and used for
training a normal supervised mechanism. However, the use of distant supervision
is limited only to existing available knowledge databases.

Compared with the approaches described above, mutual bootstrapping can
be considered a more effective and adaptable algorithm as it is not required
to construct complex patterns and knowledge bases. This technique has been
frequently used in a variety of tasks, including relation extraction (Hearst 1992;
Brin 1998; Agichtein and Gravano 2000), semantic lexicon induction (Lin et al.
2003; Thelen and Riloff 2002), and word sense disambiguation (Yarowsky 1995).
Given raw text and a limited number of initial seed instances (an initial seed
list), bootstrapping methods can learn context patterns and expand the seed list
with newly obtained candidate instances. As a minimal supervision algorithm,
iterative bootstrapping does not need extensive annotation and knowledge base
alignment, unlike the supervised methods.

Basilisk (Thelen and Riloff 2002) is an effective and commonly used boot-
strapping approach for constructing a semantic lexicon from a corpus. Its perfor-
mance depends on its two fundamental steps: evaluating patterns and candidate
instances alternately. On the basis of our experimental observation and analysis,
which we describe later, the results of Basilisk are easily biased due to poor
scoring functions for patterns and candidates.

In this paper, we propose methods that can improve the global performance
of the bootstrapping approach based on Basilisk. The key idea is to modify the
two scoring functions: candidate scoring and pattern scoring. To better score
candidate instances, AutoEncoder is used to score and identify the better can-
didates. Our motivation is that while we have only a small amount of seed
(positive) instances, we can train AutoEncoder only on the positive samples,
extracted by previous iterations. In this setting, we do not rely on any negative
samples, unlike other related bootstrapping approaches (Curran et al. 2007; Lin
et al. 2003). To better score patterns, we attempt to use a more balanced scoring
mechanism by also using AutoEncoder. This new metric of pattern scoring could
benefit downstream steps, resulting in boosting the results of the bootstrapping
approach based on Basilisk.

Our methods can be summarized as follows:

– We improve candidate evaluation by incorporating AutoEncoder, which does
not rely on any additional training data.

– We also present a new function to boost the scoring of patterns such that bet-
ter candidates will be pooled in subsequent steps. The performance of candi-
date scoring can be improved by including our new pattern scoring function.

The rest of the paper is as follows: Sect. 2 introduces Basilisk and some related
work for our improved methods. Section 3 describes our motivation and proposed
methods. The experimental setup and results are presented in Sect. 4. Finally,
we conclude this paper.
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2 Basilisk

Basilisk, proposed in (Thelen and Riloff 2002), acquires a high-quality semantic
lexicon in a bootstrapping manner. To alleviate the semantic drift phenomenon,
Basilisk’s direct predecessor (Riloff et al. 1999) rated candidate instances, on the
basis of collective evidence from a large set of patterns. The process of Basilisk
is illustrated in Algorithm 1.

Algorithm 1: Process of Basilisk
Input: Seed list, patterns, and their extractions in the corpus
Output: Seed list (Updated)
Parameter : k, N

1 Score all patterns
2 Select top-(k+i) patterns to pattern pool
3 Select all extractions of patterns in pattern pool to candidate instance pool
4 Score all candidate words in candidate instance pool
5 Add top-N candidates to seed list
6 i = i + 1,
7 Repeat Steps 1 to 6

Prior to the actual iterative process, a list of seed instances with a limited
number is inputted to the system. The seed instances are considered to be mem-
bers of a specific semantic category. Basilisk first generates and stores all context
patterns where the inputted seed instances appear in the corpus and then starts
with pattern scoring as shown below:

1. Pattern Scoring: Basilisk uses RlogF to score and rank patterns:

RlogF (pi) = Fi/Ni ∗ log(Fi), (1)

where Fi represents the number of seed instances extracted by pattern pi,
and Ni is the total number of extracted instances related to the pattern.

2. Pattern Selection: on the basis of the score, the top-(k+i) patterns are selected
and placed in the pattern pool.

3. Candidate Pool: all the instances newly extracted by the patterns in the
pattern pool are put into the candidate instance pool, except for those
already in the seed list.

4. Candidate Scoring: to evaluate candidates in the candidate instance pool,
AvglogF is used as the scoring metric, as defined below:

AvglogF (ci) =
Pi∑

j=1

log2(Fj + 1)/Pi, (2)

where ci is the candidate to be evaluated, Pi is the number of patterns that
extract ci, and Fj is the number of correct instances corresponding to pattern
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pj . This function calculates the mean value of productivity for patterns. The
most important step is step 4, where candidate instances are scored. Note
that the candidates are evaluated on the basis of all the patterns.

5. Top-N words are added to the seed list for the semantic lexicon.

Figure 1 shows the process in Basilisk.

seed list
(updated)

pattern scoring

candidate scoring

pattern pool

candidate
instance pool

top-k+i

top-N

Fig. 1. Basilisk’s process

In the paper of Basilisk (Thelen and Riloff 2002), rather than using AvglogF
(Eq. 2), the authors first investigated the effect of another candidate scoring
function AvgF :

AvgF (ci) =
Pi∑

j=1

Fj/Pi. (3)

However, the simple average strategy is prone to be biased by one pattern with
a large number of extractions Fj (the ability to extract candidates). To minimize
this problem, logarithm is added to constrain the effect of any single pattern.
The improved version, AvglogF , as shown in Eq. 2, was adopted for the final
version of Basilisk.

However, our preliminary experiments showed that this bias still occurred
during candidate estimation. If one candidate ci is extracted by a low number
of high-score patterns (larger logF ), it is still prone to be overrated.

An intuitive method for alleviating the problem is to set a threshold for the
number of patterns, i.e., to discard candidate words recalled by fewer than M
patterns. Although several values were used for the threshold in our prelimi-
nary experiments, there was no significant improvement when compared with
AvglogF . Furthermore, setting a good threshold value is also a problem. All
in all, we can say that this intuitive method “treats the symptoms rather than
curing the disease.”

The reason for the bias problem is that lexicon induction does not effectively
rely on collective evidence over all patterns. Therefore, we can improve candi-
date scoring by considering confidences from more patterns. We thus turn our
attention to the related bootstrapping work. NoisyOR is an effective technique
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used in Snowball (Agichtein and Gravano 2000) and NOMEN (Lin et al. 2003).
NoisyOR assesses each instance, on the basis of the contribution of wider range
of patterns. In contrast to AvglogF , which prefers clues from a small number
of high-quality patterns, NoisyOR considers the evidence on the quantity of
patterns. We can attempt to use NoisyOR for candidate scoring.

NoisyOR(ci) = 1 −
Pi∏

j=1

(1 − conf(pj)), (4)

where i is the index of a candidate and pj is one pattern. Pi is calculated from
the number of patterns candidate ci is extracted. The confidence of each pattern
can be described as conf(pj) = Fj/Nj , as shown in Eq. 1. Given NoisyOR,
the acceptance of candidate ci is based on the backing of as many patterns
as possible. This metric prevents the ranking and selection from being easily
biased to the lexicon selected by high-confidence patterns, as in the cases with
AvglogF . Now, we utilized both AvglogF and NoisyOR as the two baseline
scoring functions to evaluate candidates in Step 4 of Algorithm 1.

3 Proposed Methods

3.1 Candidate Scoring with AutoEncoder

The above-mentioned baseline candidate scoring methods, NoisyOR and
AvglogF , along with other bootstrapping systems, like WMEB (McIntosh and
Curran 2008) and Espresso (Pantel and Pennacchiotti 2006), evaluate instances
by using the information from pattern confidence or co-occurrence between pat-
terns and instances. Another type of knowledge, a set of instances acquired in
previous iterations of bootstrapping, can also be directly used to evaluate can-
didates. The characteristics of the acquired lexicon in the updating seed list are
as follows:

1. Both the initial set of instances and the acquired instances in the seed list
can be seen as positive samples belonging to the target semantic category.

2. The vocabulary in the seed list is expanded over time.
3. The seed list from the different initial seed list will be updated and acquired

independently with each other.

To utilize this resource in the bootstrapping, one option would be to train a
supervised classifier or regression model on the acquired lexicon. However, it
needs “appropriate” negative labeled samples, which are hard to obtain in dif-
ferent bootstrapping iterations with a varying initial seed list. One trick is to
input a negative list as well as a positive list (Agichtein and Gravano 2000).
While general negative instances (e.g., “the” and “a”) cannot cover and reflect
differences among patterns, too specific instances are only adaptive to a few
patterns.

Therefore, our motivation is to evaluate candidate instances only with pos-
itive seed instances. On the basis of the above motivation, we utilize a neural
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model called AutoEncoder (Japkowicz et al. 1995), which can be trained in
an unsupervised manner. AutoEncoder is an unsupervised neural network that
learns the data description of positive instances. With the bottleneck structure
between input and reconstruction output layers, the identity in the small set of
examples is in fact learnable (Bengio et al. 2015). This can avoid issues with
saturation in learning only from positive instances, and enable AutoEncoder to
take into account the first characteristic of a seed list in which its instances are
all positive.

Another characteristic of a seed list is that its size is enlarged by itera-
tions. AutoEncoder can not only boost training in an incremental mode but also
acquire adaptability to different iterations. Therefore, we can also train indepen-
dent models for a different initial seed list, such that the learned model can fit
its own initial seed list. Thus, AutoEncoder can match our objectives and the
three characteristics of the seed list.

Fig. 2. Architecture of AutoEncoder

The architecture of AutoEncoder is shown in Fig. 2. We first use feature
vectors (learned from word embeddings) of instances as the input at the bottom.
Then, the input is compressed into a smaller number of hidden states. Finally,
the output layer tries to rebuild the input signals with the reconstruction loss
function. After being trained with only positive instances, AutoEncoder can
output positive instances with smaller reconstruction loss, which enables distinct
features to be acquired from positive instances such that it is hard to reconstruct
negative instances. The scoring function with AutoEncoder can be defined as
follows:

AE(ci) = 1 − softmax(reconstruct(ci, c′
i)), (5)

where output c′
i represents the reconstruction output for input ci, and reconstruc-

tion loss is measured by reconstruct(). We use softmax = exp(xi)/
∑

exp(xj)
to output a probability value AE(ci), in which we can rank and select the better
candidates with larger AE(ci) values using Eq. 5. This value can also be used
for the pattern scoring step introduced in Subsect. 3.2 below.

3.2 Pattern Scoring with AutoEncoder

As shown in Fig. 1, all candidates come from the candidate pool acquired on
the basis of the pattern pool, which is determined during the pattern scoring
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step. Therefore, if low-quality patterns are selected, credible results are hard
to be obtained even when there is a better candidate assessment metric. We
hypothesize the following:

Hypothesis 1 (H1): Better pattern evaluation results in better candidate selec-
tion, and so the pattern scoring function contributes to the performance improve-
ment in candidate selection.

Therefore, our motivation is to modify the pattern scoring function for better pat-
tern evaluation. Reviewing the first step of the Basilisk loop (see Algorithm 1), the
score for each pattern pi is computed by Eq. 1. Here, we rewrite it as follows:

RlogF (pi) = Fi/Ni ∗ log(Fi) = Ri ∗ logF (Rewriting), (6)

where Ri = Fi/Ni denotes “reliability” that computes the correct probability of
extracting pattern pi, while logF = log(Fi) measures the potential “productiv-
ity.” The characteristics of RlogF are as follows:

1. “Reliability”: R = F/N assumes all extracted instances other than previous
seed instances as False Positive.

2. “Productivity”: logF = log(F ) is not a probability.
3. “Combination”: RlogF combines Ri and logF by a “multiplication.”

First, we attempt to incorporate AutoEncoder into the calculation of Ri =
Fi/Ni. Since Ni consists of correctly extracted seed instances Fi and other
instances whose correctness is unknown, it is ill-advised to regard all the uniden-
tified ones as negative when calculating Ri. For each unknown candidate xi in
Unk (unknown instances extracted by a pattern), 1−AE(xi) is incorporated to
score the probability of the instance being a “False Positive.” The formula of Ri

could be replaced by the following:

autoRi = Fi/(Fi +
∑

xi∈Unk

(1 − AE(xi))). (7)

Second, we replace log(Fi) with a new measure Li = Fi/L, where L is the size
of the updated seed list. Now, the “productivity” is represented as Li, which is
a probability that agrees with “reliability.”

Finally, we combine the previous two metrics, autoRi and Li. Rather than
“multiply” the two metrics, as RlogF , a more balanced combination operation
named harmonic mean can be used:

autoRL(pi) = 2 ∗ autoRi ∗ Li/(autoRi + Li), (8)

where autoRi and Li are defined as above. Similar to the F1 measure, the har-
monic mean is a metric for averaging two measures.



AutoEncoder Guided Bootstrapping of Semantic Lexicon 227

3.3 Summarizing Proposed Methods

We summarize our proposed methods in accordance with the motivations pre-
sented above. We utilize the basic framework of Basilisk and modify two key
steps.

Candidate Scoring. To evaluate candidate seed instances, we modify AvglogF
(Eq. 2) or another baseline NoisyOR, adapted in the other bootstrapping sys-
tems, to AutoEncoder (AE) for the candidate scoring step:

AE(ci) = 1 − softmax(reconstruct(ci, c′
i)).

Pattern Scoring. As described in Subsect. 3.2, we substitute RlogF with
autoRL, combining two new probability metrics of autoRi and Li that represent
“reliability” and “productivity,” respectively:

autoRL(pi) = 2 ∗ autoRi ∗ Li/(autoRi + Li).

The above formula is used as the new pattern scoring function in Step 1 of
Basilisk.

4 Experiments

In this section, we first introduce the data for the experiments and the evaluation
metrics, and then show the experimental results and their analysis. We also
perform ablation studies to understand the behavior of each component in our
methods.

4.1 Data

The objective of this research is to acquire a lexicon from a general corpus for a
specific semantic domain (specifically, the food domain). We used the Wikipedia
dataset as the corpus. The dataset was preprocessed by a Spacy2 pipeline, includ-
ing a tokenizer and a noun phrase chunker (Honnibal and Montani 2017). With
minimal syntactic structure information, we used only a conjunction pattern
with the form of multiple conjunctive items (ti−1, ti, ti+1) (a trigram of noun
phrases or nouns). Here, candidates are selected irrespective of order and can
be at any position in (ti−1, ti, ti+1). Once an instance t is chosen, the pattern
including the instance will be extracted as a candidate pattern.

4.2 Evaluation Metrics

We evaluated the results in terms of Precision, Recall, and F1-measure (F1). Pre-
cision is defined as the ratio of correct instances in all the extracted instances.
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Each result instance was manually evaluated by inspecting whether it was cor-
rect. For Recall, we calculated two different values with a small and large list of
correct instances. The small list with 68 instances consists of more single-token
instances. The large list with 457 instances consists of more noun phrases. Recall
values were the ratio of the number of instances in the lists that can be acquired
in the bootstrapping. Therefore, two recall metrics are recorded: Recall (small)
and Recall (large). As F1 considers both the precision and the recall, we have
two corresponding F1s: F1 (small) and F1 (large).

4.3 Experimental Setting

All experiments were performed using ten initial seed instances. In each iteration,
top− (20+ i) patterns were added to the pattern pool. The top-5 best candidate
instances were then added to the expanded seed list for the next iteration. For the
inputs of the AutoEncoder model, Glove embeddings (300 dimensions) trained
on Common Crawl were used (Pennington et al. 2014)1. We transformed each
instance to one input vector by averaging the embedding vectors of its words.
Each input to AutoEncoder was compressed by a hidden layer with 100 dimen-
sions. Sigmoid was selected as the decoder activation to reconstruct input. Mean
Squared Error (MSE) loss is optimized by the Adam algorithm. For each training
phase, AutoEncoder was trained with the early stopping strategy by the maxi-
mum number of epochs (128). Because bootstrapping approaches can be easily
influenced by different input seed instances (McIntosh and Curran 2008; Riloff
and Jones 2018), we evaluated the results with five different initial seed lists for
all compared bootstrapping systems for 20 iterations. There were no overlaps
among the five seed lists to ensure reliable experiments. For fair comparisons, all
the results for the methods were the average of the metrics over the five disjoint
seed lists.

4.4 Experimental Results and Analysis

Candidate Scoring. First, we compared our AutoEncoder-guided scoring func-
tion with the two baseline methods: AvglogF and NoisyOR.

Table 1. Results for candidate scoring. All metrics are averaged over five independent
initial seed lists. The best scores are in bold.

Method F1(small) F1(large) Precision Recall(small) Recall(large)

AvglogF 0.119 0.147 0.840 0.065 0.082

NoisyOR 0.202 0.165 0.870 0.115 0.091

AE 0.254 0.280 0.878 0.150 0.172

1 https://nlp.stanford.edu/projects/glove/.

https://nlp.stanford.edu/projects/glove/
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As shown in Table 1, NoisyOR outperforms AvglogF in all five metrics. AE,
with AutoEncoder, outperforms both the previous baseline systems. As for F1,
AvglogF and AE obtain higher scores for F1 (large) than for F1 (small). In
contrast, NoisyOR achieves higher scores for F1 (small) than for F1 (large).
This may be due to its preference for single-token instances of which the small
list consists. NoisyOR evaluates candidates by collecting evidence from a larger
range of patterns, and so extracts more general single-token instances. In sum-
mary, our AutoEncoder-based candidate scoring function improved overall per-
formance compared with the two baseline methods.

Pattern Scoring. This subsection investigates the performance of our new
pattern scoring function autoRL, to validate Hypothesis 1 and our motivation
in Subsect. 3.2.

In the experimental setting, we used the same baseline candidate scoring
functions (AvglogF and NoisyOR) and modified the pattern evaluation func-
tion.

As shown in Table 2, autoRL improved performance, especially in F1 (small),
which increased to 0.232. The same scale of improvement (from 0.165 to 0.253)
was also achieved in F1 (large) for the method with NoisyOR, at the cost of a
slight precision drop. Precision is affected, especially for the AvglogF method.
One possible reason is that the candidate instances extracted by few patterns
can be also derived by using autoRL. Table 2 shows that the overall performance
of both the baseline methods in candidate scoring could be enhanced by using
autoRL in pattern scoring.

Table 2. Results for pattern scoring. autoRL+AvglogF denotes that autoRL is used
for pattern evaluation, and candidate scoring still uses AvglogF . autoRL + NoisyOR
represents autoRL plus NoisyOR. The best scores are in bold.

Method F1(small) F1(large) Precision Recall(small) Recall(large)

AvglogF 0.119 0.147 0.840 0.065 0.082

autoRL + AvglogF 0.232 0.213 0.774 0.138 0.124

NoisyOR 0.202 0.165 0.870 0.115 0.091

autoRL + NoisyOR 0.259 0.253 0.838 0.153 0.149

Ablation Study 1: Impact of Each Part in the Pattern Scoring Func-
tion. To assess the contribution of each part in our new pattern scoring method,
we performed an ablation study. Table 3 summarizes the results in F1 scores. In
Basilisk’s original formula RlogF (pi) = Ri ∗ logF , Ri represents “reliability”
and logF measures “productivity.” They are combined by the “multiply” opera-
tion. Therefore, our autoRL (Eq. 8) modifies three parts of RlogF . More specifi-
cally, we can replace Ri with autoR for “reliability” and F/L for “productivity.”
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Finally, harmonic mean, instead of “multiply”, can be used to combine “reli-
ability” and “productivity.” In this ablation study, we kept the basic Basilisk
framework and investigated the contribution of the changes in “productivity,”
“reliability,” and their combination. Because logF is not a probability, we do
not show its score in the Harmonic cell.

Index 0 shows the results of the original Basilisk as the baseline. The first
adjustment is autoR, which is a new reliability metric based on AutoEncoder.
It significantly outperformed R, multiplied by logF (index 0). Specifically, F1
(small) increased from 0.119 to 0.176 and F1 (large) increased from 0.147 to
0.192. By changing “productivity” to F/L, R ∗ F/L also achieved a better F1
(small) score than RlogF , as shown in the third row (index 2). However, it
could not boost logF in F1 (large), which remained at 0.147. As for index 3,
where both parts were modified, autoR multiplying F/L obtained a compara-
ble F1 (small) result (0.151) to R multiplying F/L (0.149) and a significantly
higher F1 (large) result (0.199). The last four columns for F1 show that replacing
“multiply” with “harmonic mean” also improved performance. The results for
“Harmonic” were around 0.056–0.08 in F1 (small) and 0.014–0.035 in F1 (large)
higher than those for “Multiply.” Therefore, in the combination operation, har-
monic mean is a better choice than multiplying “reliability” and “productivity.”
In the comparison of the two adjustment methods, the improvement of autoR
over R demonstrates the benefit of AutoEncoder to improve the representation
of “reliability.” Overall, our proposed method enhanced the performance on the
basis of the contribution of the multiple different parts.

Table 3. Impact of each part in pattern scoring function. The index 0 row denotes
the initial pattern scoring function RlogF , while indexes 1–3 denote three ablation
studies. The numbers in the last two columns denote F1-scores for the small and large
lists for different combination operations including “Multiply” and “Harmonic Mean,”
respectively. “nan” indicates that we did not receive any result. Bold numbers indicate
the best F1 scores.

Index Reliability Productivity F1(small) F1(large)

Multiply Harmonic Multiply Harmonic

0 R logF 0.119 nan 0.147 nan

1 autoR logF 0.176 nan 0.192 nan

2 R F/L 0.149 0.205 0.147 0.182

3 autoR F/L 0.151 0.232 0.199 0.213

Ablation Study 2: Impact of the Size of the Training Data for AutoEn-
coder. We performed another ablation study to investigate the effect of the
training data size for AutoEncoder. The results are reported in Table 4. Here,
100 additional human-crafted positive instances were added to the training set
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with each initial seed list. We report the influences on F1 (small) and F1 (large)
on the basis of the two training data: the original data (10 seed instances) and the
augmented seed list with extra examples (110 seed instances). The first column,
“Step,” denotes in which step the augmented training data is used among the two
steps in Basilisk: pattern scoring and candidate scoring. In “Pattern Scoring,”
we tested two baseline methods for candidate scoring: AvglogF and NoisyOR.
The performance was improved with the augmented data for AvglogF . Table 4
shows that F1 (small) increased from 0.232 to 0.252 and F1 (large) increased
from 0.213 to 0.235 when the augmented data was used. In contrast to AvglogF ,
it is more beneficial to train AutoEncoder only with Data (Base) than with Data
(Augm). The performances for NoisyOR + AE degraded when more training
instances were used, as shown in the second row from bottom. One possible
interpretation is that random selection of augmented data caused a biased set of
training instances, that resulted in a performance degradation. The augmented
data may also break the characteristics of a seed list, as illustrated in Subsect. 3.1.
For example, it violates the adaptiveness of AutoEncoder to each independent
initial seed list.

Table 4. Impact of the training data size. “Step” indicates in which step we used
augmented training data. “Data(Augm)” denotes the augmented data. “Data(Base)”
denotes the base seed set. Bold numbers denote the better scores in each row com-
parison (“Data(Base)” vs “Data(Augm)”).

Step Method Data(Base) Data(Augm)

F1(small) F1(large) F1(small) F1(large)

Pattern scoring AvglogF 0.232 0.213 0.252 0.235

NoisyOR 0.259 0.253 0.224 0.221

Candidate scoring AE 0.254 0.280 0.226 0.259

5 Conclusion

In this paper, we presented methods for improving bootstrapping of a seman-
tic lexicon that uses AutoEncoder to better evaluate candidate instances. The
experimental results, including ablation studies, validated the effectiveness of
the proposed methods. By training AutoEncoder on the updated seed lists, we
could provide a better candidate scoring function. Additionally, our more bal-
anced pattern evaluation function, guided by AutoEncoder, also improved the
overall performances. In future work, we plan to incorporate more knowledge
into our methods for bootstrapping.
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Abstract. We propose a hierarchical convolutional attention network
using joint Chinese word embedding for text classification. Compared
with previous methods, our model has three notable improvements: (i)
it considers not only words but also their characters and fine-grained
sub-character components; (ii) it employs self-attention mechanisms with
the benefits of convolution feature extraction, enable it to attend differ-
entially to more and less important content; (iii) it has a hierarchical
structure that can get the document vector. We demonstrate the effec-
tiveness of our architecture by surpassing the accuracy of the current
state-of-the-art on four classification datasets. Visualization of our hier-
archical structure illustrates that our model is able to select informative
sentences and words in a document.

Keywords: Joint Chinese word embedding · Self-attention ·
Hierarchical structure

1 Introduction

Text classification is one of the fundamental tasks in natural language processing
(NLP). It has broad applications including topic labeling (Wang and Manning
2012), sentiment classification (Maas et al. 2011; Pang and Lee 2008), and spam
detection (Sahami et al. 1998). Traditional approaches of text classification uti-
lize features generated from vector space models such as bag-of words or term
frequency-inverse document frequency (TF-IDF) (Sebastiani 2005), and then use
a linear model or kernel methods on these features (Wang and Manning 2012;
Joachims 1998).

More recently, deep learning approaches typically rely on architectures based
on convolutional neural networks (CNN) (Blunsom et al. 2014) or recurrent
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neural networks (RNN) (Young et al. 2017) to learn text representations. These
newer approaches have been shown to outperform traditional approaches.

Among the two, RNN has attained remarkable achievement in handling seri-
alization tasks. As RNN is equipped with recurrent network structure which can
be used to maintain information, it can better integrate information in certain
contexts. For the purpose of avoiding the problem of gradient exploding or van-
ishing in a standard RNN, long short-term memory (LSTM) (Hochreiter and
Schmidhuber 1997) and other variants (Cho et al. 2014) have been designed for
the improvement of remembering and memory accesses. Living up to expecta-
tions, LSTM does show a remarkable ability in the processing of natural lan-
guage. Moreover, the other popular neural network, CNN, has also displayed
a remarkable performance in computer vision (Krizhevsky and Hinton 2012),
speech recognition, and natural language processing (Kalchbrenner et al. 2014)
because of its remarkable capability in capturing local correlations of spatial or
temporal structures. In terms of natural language processing, CNN is able to
extract n-gram features from different positions of a sentence through convolu-
tional filters and then it learns both short- and long-range relations through the
operations of pooling.

Although neural-network-based approaches to text classification have been
quite effective (Kim 2014; Zhang et al. 2015; Johnson and Zhang 2014; Tang
et al. 2015), we still find the following two shortcomings.

Firstly, when it comes to document representation, most of the above meth-
ods use word-level distributed word representation. Among these embedding
methods (Bengio et al. 2003; Mnih and Hinton 2009), CBOW and Skip-Gram
models can learn good embeddings of words from large scale training corpora
(Mikolov et al. 2013a, 2013b). However, when use these methods which treat
each word as the minimum unit, it is easy to ignore the morphological informa-
tion of words. There are also related works that used character-level features for
text classification (Zhang et al. 2015)(charCNN). They first applied CNN only
on characters and obtained the advantage that abnormal character combinations
such as misspellings and emoticons may be naturally learnt.

In Chinese, the characters themselves are usually composed of sub-character
components, which have semantic information. The components of a charac-
ter can be roughly divided into two types: semantic component and phonetic
component1. The semantic component represents the meaning of the charac-
ter, while the phonetic component represents the sound of the character. For
example (see Figs. 1 and 2), we intercepted a sentence from the Fudan text clas-
sification dataset C36-Medical007 and extracted the keyword “ ” (symptom).

Fig. 1. Component example.

1 https://en.wikipedia.org/wiki/Written Chinese.

https://en.wikipedia.org/wiki/Written_Chinese
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Fig. 2. Semantic and phonetic component. (Color figure online)

As mentioned above, “ ” consists of “ ” (green part in the figure) and “ ”
(blue part in the figure). “ ” (sick) is the semantic component, while “ (posi-
tive)” is the phonetic component. If methods pay more attention to the character
“ ” and the component “ ”, it is easy to correctly classify this document into
the Medical class.

Secondly, not all parts of a document are equally relevant for a query. In the
above example, “ ” (Plateau polycythemia) plays a more impor-
tant role than “ ” (is known as) in the final classification result.

The current state-of-the-art in text classification are Hierarchical Attention
Networks (HAN), developed by Yang et al. (2016). HAN use a hierarchical
structure in which each hierarchy uses the same architecture - a bidirectional
RNN with gated recurrent units (GRU) (Chung et al. 2014), followed by an
attention mechanism that creates a weighted sum of the RNN outputs at each
timestep. The HAN processes documents by first breaking a long document
into its sentence components, then processing each sentence individually before
processing the entire document. By breaking a document into smaller, more
manageable chunks, the HAN can better locate and extract critical information
useful for classification. This approach surpassed the performance of all previous
approaches across several text classification tasks.

Our work focuses mainly on Chinese text classification, which is known as
a completely different language from English. We propose Hierarchical Convo-
lutional Attention Network using Joint Chinese Word Embedding(HCAje), an
architecture based off joint Chinese word embedding that can generate docu-
ment representations from words as well as their characters and fine-grained
sub-character components. Meanwhile, we use the convolution feature extrac-
tion to improve the self-attention architecture (Vaswani 2017) and adapt it into
an effective approach for text classification. To evaluate the performance of our
model in comparison to other common classification architectures, we look at
4 Chinese data sets. HCAje can achieve accuracy that surpasses the current
state-of-the-art on several classification tasks.
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Fig. 3. Architecture for HCAje.

2 Hierarchical Convolutional Attention Network Using
Joint Chinese Word Embedding

The overall architecture of our HCAje is shown in Fig. 3. It consists of several
parts: joint Chinese word embedding, hierarchical structure, convolution feature
extraction, parallel convolutional multihead self-attention and vector attention.
We describe the details of different components in the following sections.

2.1 Joint Chinese Word Embedding

Fig. 4. Illustration of joint Chinese word embedding.
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Our joint Chinese word embedding model is based on CBOW model (Mikolov
et al. 2013a) and combines words, characters and components information. In
the Sect. 3.5, we verified the effects of different combinations, and the following
combinations worked best. It uses the average of context word vector, the average
of context character vector and the average of context component vector to
predict the target word, and use the sum of these three prediction losses as the
objective function. We denote D as the training corpus, W = (w1, w2, ..., wn)
as the vocabulary of words, C = (c1, c2, ..., cm) as the vocabulary of characters,
O = (o1, o2, ..., ok) as the vocabulary of component, and T as the context window
size respectively. As illustrated in Fig. 4, our model aims to maximize the sum
of log-likelihoods of three predictive conditional probabilities for target wi:

L (wi) =
3∑

k=1

log P (wi | hik) (1)

where hi1 , hi2 , hi3 are the composition of context words, context characters,
context components respectively. Let vwi

, vci , voi be the “input” vectors of word
wi, character ci, and component oi respectively, v̂wi

be the “output” vectors
of word wi. The conditional probability is defined by the softmax function as
follows:

p (wi | hik) =
exp

(
hT
ik

v̂wi

)
∑N

j=1 exp
(
hT
ik

v̂wj

) , k = 1,2,3 (2)

where hi1 is the average of the “input” vectors of words in the context:

hi1 =
1

2T

∑

−T≤j≤T,j �=0

vwi+j
(3)

Similarly, hi2 is the average of character “input” vectors in the context, hi3 is
the average of component “input” vectors in the context. Given a corpus D, our
model maximizes the overall log likelihood:

L (D) =
∑

wi∈D

L (wi) (4)

where the optimization follows the implementation of negative sampling used in
CBOW model (Mikolov et al. 2013a).

2.2 Convolution Feature Extraction

As mentioned in the Introduction, our model refers to Scaled Dot Product Atten-
tion which is a type of self-attention and multihead attention developed by
Vaswani et al. Rather than use the same input for Q, K, and V , we used a
convolution to extract different features from input for each of the Q, K, and
V embeddings. This allows for more expressive comparison between entries in
a sequence; for example, certain features may be useful when comparing Q and
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K but may not be necessary when creating the output sequence from V . For
our feature extractor function, we use a 1D convolution with d filter maps and
a window size of three words, which provides more context for each center word
when extracting important features.

Q = GELU(Conv1D(E,W q) + bq)

K = GELU(Conv1D(E,W k) + bk)
V = GELU(Conv1D(E,W v) + bv)

(5)

In the equation above, Conv1D(A,B) is a 1D convolution operation with A
as the input as B as the filter. We found gaussian error linear units (GELU)
(Hendrycks and Gimpel 2016) to perform better than rectified linear units
(ReLUs) and other activation functions. The GELU nonlinearity is the expected
transformation of a stochastic regularizer which randomly applies the identity
or zero map to a neuron’s input. The GELU nonlinearity weights inputs by their
magnitude, rather than gates inputs by their sign as in ReLUs.

2.3 Parallel Multihead Convolutional Self-attention

As we know, attention mechanisms are designed to produce a weighted average
of an input sequence. However, a weighted average is not sufficient when capture
the overall content within a linguistic sequence. To better capture the linguis-
tic information, we use two multihead convolutional self-attentions (Eq. 6) in
parallel followed by elementwise multiplication. Compared to simple weighted
average, our approach can capture more complex interactions between elements
in the sequence. After many attempts, we found that the combination of these
two activation functions obtains the best performance. Among them, tanh out-
puts a value between −1 and 1, and prevents the final output from becoming
too small or large after elementwise multiplication. GELU’ s convergence rate is
rapid.

Parallel (E) = Multihead (Qa,Ka, V a)

� Multihead
(
Qb,Kb, V b

)

where Multihead (Q,K, V ) = [head1, ..., headh]
headi = Attention (Q,K, V )

Qa = GELU (Conv1D (E,W qa) + bqa)

Ka = GELU
(
Conv1D

(
E,W ka

)
+ bka

)

V a = GELU (Conv1D (E,W va) + bva)

Qb = tanh
(
Conv1D

(
E,W qb

)
+ bqb

)

Kb = tanh
(
Conv1D

(
E,W kb

)
+ bkb

)

V b = tanh
(
Conv1D

(
E,W vb

)
+ bvb

)

(6)
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Fig. 5. Scaled dot-product attention and multihead convolutional self-attention.

2.4 Vector Attention

The output of parallel multihead convolutional self-attention is a sequence
Eoutput ∈ Rl×d in which l is the length of the input sequence, and d is the
embedding dimension. To obtain a single fixed-length vector which represents
each sequence, we introduce vector attention which is same as the traditional
attention mechanism that is used on RNN. For word level,

uit = tanh (Wwzit + bw) (7)

αit =
exp

(
u�
ituw

)
∑

t exp
(
u�
ituw

) (8)

si =
∑

t

αitzit (9)

Firstly, we feed the word vector zit (obtained by wit through parallel mul-
tihead convolutional self-attention and elementwise multiplication) through a
one-layer MLP to get uit as a hidden representation of zit. Then we measure
the importance of the word as the similarity of uit with a word level context
vector uw and get a normalized importance weight αit by softmax. After that,
we compute the sentence vector si as a weighted sum of the word annotations
based on the weights. The context vector uw is randomly initialized and learned
in training process.

For sentence level,
ui = tanh (Wszi + bs) (10)

αi =
exp

(
u�
i us

)
∑

i exp
(
u�
i us

) (11)

v =
∑

i

αizi (12)

where v is the document vector that summarizes all the information of sentences in
this document, zi is obtained by si through parallel multihead convolutional self-
attention and elementwise multiplication, us is a sentence level context vector.
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2.5 Hierarchical Structure

We utilize a hierarchical structure that breaks up documents into sentences
and attained state-of-the-art performance. This structure consists of two levels:
the word level and the sentence level. The word level reads in word vectors
from a given sentence and outputs a sentence vector representing the content
within that sentence, and the sentence level reads in the sentence vectors and
outputs a document vector representing the content of the entire document.
Each hierarchical consists of two parallel multihead convolutional self-attentions
followed by a normalization layer and an vector attention layer (see Fig. 3).

2.6 Document Classification

The document vector v is our final representation of the document and can be
fed into a softmax and used for classification purposes:

p = softmax (Wdv + bd) (13)

We use the negative log likelihood of the correct labels as training loss:

L = −
∑

d

jd log pd (14)

where j is the label of document d.

3 Experiments

3.1 Datasets

We evaluate the effectiveness of our model on three document classification
datasets. The statistics of the datasets are summarized in Table 1. We use 80%
of the data for training and the rest are used as testing set to evaluate the
performance.

Table 1. Datasets.

Dataset Categories Documents Train Samples Test Samples

Fudan-large 5 6,121 4,894 1,227

Fudan-small 5 294 233 61

THUCNews 14 21,000 16,800 4,200

SogouNews 11 50,000 40,000 10,000

Fudan corpus2 contains 20 categories of documents, including economy, poli-
tics, sports and etc. The number of documents in each category ranges from 27
2 http://www.nlpir.org/download/tc-corpus-answer.rar.

http://www.nlpir.org/download/tc-corpus-answer.rar
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to 1061. In this paper, we refer to the processing method by Zhang et al. (2015).
To avoid imbalance, we select 10 categories and organize them into 2 groups.
One group is named Fudan-large and each category in this group contains more
than 1000 documents. The other is named Fudan-small and each category con-
tains less than 100 documents. The publish information for each document is
also removed because it contains strong indication of the categories, which will
bias the classifier with unfair benefits.

THUCNews is obtained from (Guo et al. 2016). It consists of 740,000 news
spanning 2005 to 2011. For our evaluation, we selected 14 popular categories
and extracted 1,500 randomly selected news from each: economy, lottery, real
estate, stock, home, education, technology, society, fashion, politics, sports, con-
stellation, entertainment and game.

Sogou news is a combination of the SogouCA and SogouCS news corpora
(Wang et al. 2008), containing in total 2,909,551 news articles in various topic
channels. We then labeled each piece of news using its URL, by manually clas-
sifying their domain names. This gives us a large corpus of news articles labeled
with their categories. We choose 14 categories and extracted 50,000 randomly
selected news from each: sports, finance, entertainment, automobile, house, edu-
cation, travel, female, culture, health and technology.

3.2 Baselines and Hyperparameters

To offer fair comparisons to competitive models, we conducted a series of exper-
iments with both traditional methods such as Näıve Bayes (NB) and logistic
regression (LR). For logistic regression, we use L1 regularization with a penalty
strength of 1.0. We also compare HCAje with five deep learning methods.

Word-based CNN like that of (Kim 2014) are used. We use three parallel
convolution layers with 3-, 4-, and 5-word windows, all with 100 feature maps and
apply 50% dropout on the concatenated vector. We use the pretrained word2vec
embedding.

Character-based CNN are reported in (Zhang et al. 2015). To ensure fair
comparison, the models for each case are of the same size as Word-based CNN,
in terms of both the number of layers and each layer’ s output size.

Bi-directional GRU We also offer a comparison with a recurrent neural net-
work model, namely Bi-directional Gated Recurrent Unit. The Bi-directional
GRU model used in our case is word-based, using pretrained word2vec embed-
ding as in previous models.

Hierarchical Attention Networks (HAN) are the current state-of-the-art.
For our experiments, we use the same optimized hyperparameters as those used
by Yang - each hierarchy is composed of a bi-directional GRU with 50 units and
an attention mechanism with a hidden layer of 200 neurons.
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BERT or Bidirectional Encoder Representations from Transformers, is a new
method of pre-training language representations which obtains state-of-the-art
results on a wide array of Natural Language Processing (NLP) tasks. We fine-
tuned Google’s pre-trained Chinese Bert model on the data set mentioned above.

For our HCAje, we tuned the hyperparameters on the remaining text of the
Sogou news. We use 8 heads for our final implementation. As for joint Chi-
nese word embedding, we adopt the Chinese Wikipedia Dump3 as our train-
ing corpus and removed pure digits and non-Chinese characters. After Chinese
word segmentation and POS tagging, we obtained a 1 GB training corpus with
153,071,899 tokens and 3,158,225 unique words. The components information of
Chinese character is crawled from HTTPCN4. For fair comparison, we used the
same parameter settings with the pretrained word2vec embedding. We fixed the
word vector dimension to be 100, the window size to be 5, the training iteration
to be 100, the initial learning rate to be 0.025, and the subsampling parameter
to be. Words with frequency less than 5 were ignored during training. We used
10-word negative sampling for optimization.

3.3 Model Configuration and Training

For training, we use a mini-batch size of 64 and documents of similar length (in
terms of the number of sentences in the documents) are organized to be a batch.
All models are trained using the Adam optimizer (Kingma and Ba 2015) with
learning rate 2E–5, beta1 0.9, and beta2 0.99. We save the model parameters
with the highest validation accuracy and use those parameters to evaluate on
the test set.

3.4 Results and Analysis

The experimental results on all datasets are shown in Table 2. For each model,
we record the final test accuracy. Results show that HCAje gives the best per-
formance across all datasets.

The improvement is regardless of data sizes. For small datasets such as Fudan-
small and Fudan-large, our model outperforms the previous baseline methods
by 1.7% and 1.4% respectively. This finding is consistent across other larger
datasets. Our model outperforms previous best models by 2.2% and 2.5% on
THUCNews and Sogou news.

Within the HCAje, using joint Chinese word embedding achieves better
accuracy than using word2vec, using two parallel multihead convolutional self-
attentions achieves better accuracy than using one or three, and using vector
attention outperforms using maxpool. Here PCMS stands for parallel convolu-
tional multihead self-attention.

3 http://download.wikipedia.com/zhwiki.
4 http://tool.httpcn.com/zi/.

http://download.wikipedia.com/zhwiki
http://tool.httpcn.com/zi/
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Table 2. Test set accuracy.

Methods Fudan-small Fudan-large THUCNews Sogou news

Näıve Bayes 65.28 74.95 84.36 80.97

Logistic Regression 68.30 76.57 84.91 82.65

Word-based CNN 70.05 78.58 85.81 83.61

Character-based CNN 70.34 78.88 85.73 84.23

Bi-directional GRU 70.70 78.84 85.53 84.07

HAN 70.92 79.75 86.76 85.67

HCAje(word2vec, 2 PCMS, maxpool) 70.81 79.43 86.38 85.13

HCAje(word2vec, 2 PCMS, vector attention) 71.29 80.15 87.07 85.89

HCAje(joint word embedding, 2 PCMS, maxpool) 70.89 79.51 86.58 85.27

HCAje(joint word embedding, 1 PCMS, vector attention) 70.44 79.62 86.12 85.49

HCAje(joint word embedding, 3 PCMS, vector attention) 71.07 79.70 86.74 85.66

HCAje(joint word embedding, 2 PCMS, vector attention) 72.12 80.87 88.67 87.81

3.5 Different Combinations of Embedding

As mentioned above, Chinese words can be divided into words, characters and
components. We try different combinations to represent Chinese words, and
test the classification effect on four datasets. The results are shown Table 3.
By comparing the experimental results, the combination of words, words and
components has the best classification results, while the combination of words
and components has the worst classification results.

Table 3. Test set accuracy.

Methods Fudan-small Fudan-large THUCNews Sogou news

HCAje(word, character) 71.01 78.43 83.18 84.06

HCAje(word, component) 71.21 79.5 84.19 84.21

HCAje(character, component) 70.75 80.20 83.14 82.31

HCAje(word, character, component) 72.12 80.87 88.67 87.81

3.6 Visualization of Attention

In order to validate that our model is able to select informative sentences and
words in a document, we visualize the hierarchical structure in Fig. 3 for one
document from the sports classification of Fudan corpus. Every line is a sen-
tence (the upper lines are the original Chinese texts, and the lower lines are
the translated English texts). Red denotes the importance of sentences and blue
denotes the importance of words (The darker the color, the more important it
is). Figure 6 shows that our model can select the words carrying strong informa-
tion like “ (the FIFA)”, “ (World Cup)” and their corresponding
sentences.
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Fig. 6. Visualization of attention.

4 Conclusion

In this paper, we introduced a new self-attention based Chinese text classifi-
cation architecture, HCAje, and compared its performance with the traditional
approaches and deep learning approaches, in four classification datasets. In all
four tasks HCAjes achieved slightly better performance than previous methods.
Visualization of these attention layers illustrates that our model is effective in
picking out important words and sentences. Although our model is introduced
to classified Chinese text, the idea can also be applied to other languages that
share a similar writing system. In the future, we would like to further explore
learning representations for traditional Chinese words and Japanese Kanji.
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Abstract. This paper aims to solve the problem of identifying commodity
names in the field of cross-border e-commerce by using some machine learning
algorithms. As far as we know, this is the first attempt to use machine learning
algorithms to solve this kind of problems in this field. A model of commodity
name recognition algorithm based on the SVM and TF-IDF models is proposed.
For 115,521 commodity description texts containing 2,128 different commodi-
ties, experiments show that the recognition accuracy of the algorithm is 91% and
the recall rate is 93%. At the same time, compared with the traditional manual
method, the algorithm can improve the efficiency of commodity export decla-
ration by about 20% during the “Double Eleven” period. It is proved by
experiment and practice that this algorithm is reasonable, effective and practical.

Keywords: Cross-border e-commerce � Commodity description �
Commodity name � Commodity name recognition � SVM � Feature extraction

1 Introduction

1.1 Background

With the advent of the “Internet plus” era, cross-border e-commerce has been on top of
the market. Alibaba is a well-known e-commerce enterprise in China. In addition to
having the Taobao and Tmall e-commerce platforms, it also provides a good cross-
border e-commerce platforms Ali Express and Ali to Global (AE and ATG) for global
e-commerce users.

Currently, Alibaba’s cross-border e-commerce platforms use the customs declara-
tion mode by entrusting the generated order of goods to a third party customs decla-
ration agency to complete the customs declaration by filling in the customs declaration
form manually. This mode of manual declaration through a third-party agency com-
pany is inefficient, costly and inaccurate, and there is also a risk of business data
leakage. In order to achieve intelligent automatic declaration, it first need to accurately
identify the cross-border goods’ name. This paper firstly describes the use of machine
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learning algorithms to process the commodity description text information for product
name recognition.

1.2 Problem Definition

The cross-border e-commerce commodity description name recognition is a new
problem, which is aimed at accurately identify the correct name of the goods in the
short text of commodity description and that this short text is usually no more than 50
Chinese characters.

As shown in the Fig. 1, the title, written by merchants, usually contain a lot of
information in order to maximize the likelihood of a product getting search engine hits.
Such descriptive title is characterized by strong randomness of words, poor correlation
between words, non-strict grammatical structure, colloquial semantic expression and
repeated synonyms.

This problem can be defined as a “special” problem of “weak correlation short text
multi-classification”. Compared with the traditional short text classification, the par-
ticularities are mainly manifested in the classification rules. Traditional short text
classification rules usually include whether the short text contains a given topic,
whether the semantics are related to a given topic, whether the similarity of the text
meets a given classification threshold, and so on. However, the precondition of com-
modity name recognition is that the commodity name must be recognized in the given
commodity description text, that is, the identified commodity name vocabulary must be
included in the commodity description text; while in the traditional short text classi-
fication problem, the category words are not necessarily included in the original short
text. For example, the short text commentary text “China J-20 (Chinese new stealth

Fig. 1. Product description example 1
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fighter), so cool!” There is no word “military” in this article, but the classification result
should classify this short text into “military” category. While, for the commodity
description in the Fig. 2, It is likely to be classified into the category of “film and
television works” because it contains words such as “The mummy”, “Mission:
Impossible” and “Tom Cruise”.

Through the above analysis, the conclusions are as follows: the problem of com-
modity name recognition in cross-border e-commerce is a new kind of short text multi-
classification problem, which is different from the traditional short text classification
problem. So, how to accurately identify the commodity name in the short text of
commodity description with the above characteristics has become a very interesting
issue and it is also worth to explore and research.

1.3 Contribution

The main contributions of this paper are as follows:

(1) For the first time, this paper explores and presents a cross-border e-commerce
commodity name recognition algorithm based on the machine learning model.
The recognition accuracy of over 2,000 commodities is more than 90%.

(2) In collaboration with Alibaba Group, the first cross-border e-commerce product
description text dataset at home and abroad was constructed with about 120,000
commodity description texts. All the texts in the dataset are standardized and
labeled manually, which can provide high quality dataset for follow-up research in
this field.

Fig. 2. Product description example 2
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(3) For this problem, the text feature extraction effects of Word2vec model and TF-
IDF model are compared. The reasons for the difference in effect are analyzed in
principle. Furthermore, the text feature extraction model which is most suitable for
this problem is given.

(4) The product name optimization algorithm proposed in this paper has achieved
good practical results in the practical application process of “Double Eleven”
(November 11 is the Chinese e-commerce festival, named “Double Eleven”) in
2017, and the clearance speed of cross-border goods has increased by more than
20%.

2 Related Work

As far as we know, there are few algorithms for recognition commodity names by using
commodity description texts in cross-border e-commerce at home and abroad. The
most relevant research is the short text classification.

The research of short text classification began in the 1990s. Sriram et al. [1]
proposed a new short text classification method based on the combination of Twitter
users’ personal information and the internal characteristics of message organization,
and the effect was improved significantly. However, the feature selection in this method
needs to be done manually, which leads to poor generality, so it has not been popu-
larized. Phan et al. [2] used Wikipedia data as classified data set, and used Latent
Dirichlet Allocation (LDA) [3] to train to get the theme model of the document. After a
series of processing and calculation, the theme feature vectors of the short text were
obtained and used to represent the short text. This method combined text vectors and
topics at the same time, so it achieved good classification results.

With the emergence and development of machine learning algorithms, many
classical machine learning algorithms, such as Naïve Bayes, CART and Random
Forest, have also been applied to short text classification. With the popularity of deep
learning algorithms, neural network models such as RNN and LSTM also show good
results on short text classification [4]. However, depth learning models also have some
shortcomings, such as large amount of calculation, long training time, poor inter-
pretability, difficulty in adjusting parameters and over-fitting. For comparison of
effects, the paper also selected the RNN model as a comparative experimental model.

Literature review shows that the above algorithms have strong pertinence and good
performance in solving problems in their fields. However, for the problem of com-
modity name recognition studied in this paper, the results are not satisfactory. The short
texts of this problem have the characteristics of weak correlation between words,
disorder, irregular grammatical structure and repetition of synonyms. This leads to the
coexistence of similar features, the ambiguity of feature differences and the high
dimensionality of features in text classification. So, the selection of classification model
has become a difficult problem.
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3 Data Collection and Preprocessing

The raw data is obtained directly from the commodity trading information database in
Alibaba’s cross-border e-commerce platforms.

Three-month trading records of October, November and December in the “Double
Eleven” period of 2016 were selected. The top 30% of the trading records was
extracted as the sample dataset. The sample dataset contains different 2,597 com-
modities, which represent the most popular commodities during the “Double Eleven”
e-commerce festival and are also the most frequently declared commodities for export
declaration.

Total about 149,672 short texts have been filtered and labeled. After filtering and
cleaning, the dataset contains 2,128 different commodities and 115,521 commodity
description texts.

4 Model Introduction

Word2vec and TF-IDF are the two most commonly used models for extracting text
features. In this paper, the two feature extraction models are used to extract text
features, respectively.

Support Vector Machine (SVM) model has high classification accuracy. This paper
chooses the support vector machine model as the kernel algorithm to solve this
problem.

4.1 Word2vec

Word2vec is a neural network probabilistic language model proposed by Mikolov et al.
[5] Word2vec model contains two training models: CBOW and Skip-gram.
The CBOW model can predict a given word by context. This paper used the CBOW
training model in the experiment.

4.2 TF-IDF

TF-IDF model is often used to measure how important a word in a text dataset. TF-IDF
is the product of the TF value and the IDF value of a word [6]. The characteristic
extraction formula of TF-IDF is as follows:

f wð Þ ¼ TF wð Þ � IDF wð Þ ¼ TF wð Þ � log N
n wð Þþ 1

ð1Þ

Where N is the total number of texts, n(W) is the number of texts, which contain the
word w.
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4.3 Support Vector Machine (SVM) Model

The Support Vector Machine (SVM) model was proposed by Vapnic et al. in 1995 [7].
Linear SVM finds the hyperplane with the largest edge, so it is also called the maximal
edge classifier. The smaller the decision boundary, the worse the generalization ability
is. Therefore, it is necessary to design a linear classifier that maximizes the decision
boundary to ensure that the generalization error is minimized at the worst.

A binary classification problem involving N training samples is considered. Each
sample can be represented as a two-tuples Xi;Yið Þ i ¼ 1; 2; . . .Nð Þ, where, xi represents
the attribute set of the i sample. Let yi 2 �1; 1f g represent its class label. Then the
decision boundary of a linear classifier can be expressed as follows:

w � xþ b ¼ 0 ð2Þ

Where w and b are the parameters of the model. The optimized separation
hyperplane can be expressed in the following form:

y ¼ sign wTu xið Þþ b
� � ð3Þ

It is obtained by solving the following Quadratic Optimization problem:

minQ wð Þ ¼ wk k2
2

þC
XN

i¼1
ni

� �
ð4Þ

Where C is a user-specified parameter indicating a penalty for misclassified training
instances, n� 0 is a slack variable. The SVM Support vector is only a small part of the
training set, which greatly reduces the model’s dependence on the data and improves its
generalization ability.

5 Experiment

5.1 Experimental Design

First, short-form texts for cross-border e-commerce products were pre-processed,
including data cleaning, filtering and manual labeling. Then, a user dictionary com-
posed of labels was established. It was added to the jieba word segmentation system.
Then, the jieba system was used to segment the corpus. After that, the stop word list
was expanded to remove the stop words.

Next, the two models of word2vec and TF-IDF were used to extract the features of
the pre-processed corpus. The word vector matrix and the TF-IDF matrix were got.
Then, the 10-fold cross-validation method was used and the dataset was divided into
the training set and the test set according to 9:1.

Lastly, many machine learning models, such as Linear SVC, SVM (RBF), Naïve
Bayes, Logistic Regression, XGBoost, RNN, etc., were used to train the commodity
description corpus for commodity name recognition. Then, all experimental results
were compared and evaluated.
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5.2 Evaluation

In this paper, three metrics: accuracy, recall and F1_score value, which are widely used
in supervised machine learning, are used to evaluate the quality of the results.

Precison ¼ TP
TPþFP

ð5Þ

Recall ¼ TP
TPþFN

ð6Þ

F1 score ¼ 2 � Pr � Re
PrþRe

ð7Þ

Where TP: True Positive; FP: False Positive; FN: False Negative.

5.3 Contrastive Experiment

First, Word2vec was used to extract features. According to the Table 1, the SVM
model with linear kernel function performs best by using Word2vec model to extract
features. However, the difference between the experimental results of various machine
learning models is not very significant (Table 2).

Table 1. Word2vec comparative experiment

word2vec 

Precision Recall F1_SCORE

Naïve Bayes 0.75 0.66 0.69 

Logistic Regression 0.72 0.79 0.74 

Random Forest 0.73 0.75 0.73 

XGBoost 0.75 0.77 0.75 

RNN 0.72 0.68 0.70 

SVM(RBF) 0.76 0.79 0.76 

SVM(linear) 0.79 0.83 0.80 

ML 

Model

Feature 

Extract Model
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Next, the TF-IDF model was used to extract features. The experimental results are
shown in the Table 3. By using the TF-IDF model to extract features, the experimental
results of various machine learning models were significantly different. The SVM
model that uses linear kernel functions still performs the best.

In the two comparative experiments using different feature extraction models, the
SVM using linear kernel functions always performs well.

Table 2. Word2vec parameter setting table (others use default value setting)

name values Parameter description

sentence / The corpus to be trained is a list of lists
size 300 Dimensions of training feature vectors

window 10
The maximum distance is between the current word and the 

prediction word in a sentence

sg 0 
sg=0，use CBOW model
sg=1，use skip-gram model

Min_count 2 
Words whose frequencies are less than Min_count times will be 

discarded

Table 3. TF-IDF comparison experiment

TF-IDF

ML 

Model

Feature 

Extract Model 

Precision Recall F1_SCORE

Naïve Bayes 0.44 0.53 0.42 

Logistic Regression 0.77 0.85 0.80 

Random Forest 0.85 0.87 0.86 

XGBoost 0.83 0.84 0.83 

RNN / / / 

SVM(RBF) 0.06 0.24 0.09 

SVM(linear) 0.91 0.93 0.92 
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6 Discussion

The experimental results of SVM+TF-IDF composite model by using linear kernel
function are not only better than those of SVM+Word2vector composite model, but
also better than those of other machine learning algorithm models. Comparing the two
schemes, the Precision values differ by 0.12, the Recall values differ by 0.10, and the
F1_score values differ by 0.12.

7 Conclusion and Summary

Through the experiment results, we found that the TF-IDF model is better than
Word2vec model in representing the commodity description short texts. For such an
interesting result, this paper provides the following analysis:

(1) The characteristics of cross-border e-commerce commodity description corpus are
the primary reason for the impact of results.

(2) The principle of Word2vec based on the CBOW training model is precisely to
predict the current word according to the previous N words and the subsequent N
words. The advantage of the model is that it can extract the relationship between
words well. However, the special features of the corpus have some deviations
from the principle of the Word2vec model, so the performance of the powerful
Word2vec model is not good enough.

(3) The principle of the TF-IDF model is to express every word in the text using the
product of word frequency and inverse word frequency. However, this model
often ignores the relevance between words. That is why TF-IDF model performs
better in this kind of short-text corpus.

(4) Through experiments, we also found that the performance of the deep learning
model RNN is too general. The principle of RNN is that you can use the previous
information to help infer the current information. So, it is easy to explain why, for
such independent distribution, low correlation corpus, the effect is not good
enough.

(5) The SVM model with linear kernel function in traditional machine learning model
stands out, which shows its strong multi-classification ability, good robustness
and generalization ability. But the principle of the model determines that it is
sensitive to outliers or noise, so it is very important to preprocess the dataset used
for training.

Recognition of commodity names from short descriptive texts in cross-border
e-commerce is the basis for automatic declaration of commodities. Up until the present,
this is the first time to study this problem in the field where the algorithm scheme of
TF-IDF with linear SVM is used. For more than 2000 different commodities, the
precision and recall rate of the algorithm reach 0.91 and 0.93 respectively.
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In 2017, during the Alibaba “Double Eleven” period, the algorithm improved the
efficiency of commodity export declaration by about 20%. The experimental and
practical tests prove that the algorithm is reasonable, effective and has practical
application value.

In our future work, we will explore how to use deep learning composite neural
networks to research the case of commodity name recognition. I sincerely hope to share
this work with the vast number of scholars who are working in this field.

Acknowledgements. This work is sponsored by the National Natural Science Foundation of
China (No. 71373123), the Fundamental Research Funds for the Central Universities (NO.
NW2018004).
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Abstract. This paper presents a novel, syllable-structured Chinese lyrics gen-
eration model given a piece of original melody. Most previously reported lyrics
generation models fail to include the relationship between lyrics and melody. In
this work, we propose to interpret lyrics-melody alignments as syllable structural
information and use a multi-channel sequence-to-sequence model with consid-
ering both phrasal structures and semantics. Two different RNN encoders are
applied, one of which is for encoding syllable structures while the other for
semantic encoding with contextual sentences or input keywords. Moreover, a
large Chinese lyrics corpus for model training is leveraged. With automatic and
human evaluations, results demonstrate the effectiveness of our proposed lyrics
generation model. To the best of our knowledge, there is few previous reports on
lyrics generation considering both music and linguistic perspectives.

Keywords: Natural Language Processing � Natural Language Generation �
Seq2Seq � Lyrics generation

1 Introduction

Natural language generation (NLG) plays an important role in machine translation,
dialogue generation and other fields. In the recent years, owing to the fast rise of deep
learning, RNN and other alternate neural networks are often used in NLG applications.
In particular, an encoder-decoder based sequence-to-sequence (Seq2Seq) generation
framework has been widely applied in various NLG problems including poetry and
short essays generation. The main idea behind the Seq2Seq model is to encode input
sequences into a fixed-length dense vector, and then decode corresponding sequences
from this contextual vector. Moreover, attention mechanism has also been incorporated
into this architecture to learn to soft alignments between contextual semantics.

Given a piece of melody, automatic lyrics generation is a challenging task. Com-
pletely different from prose text, lyrics generation should include both knowledge and
consideration of music-specific properties including melody structure, rhythms, etc. For
instance, word boundaries in lyrics and the rests in a melody should be consistent. As
depicted in Fig. 1, it sounds unnatural if a single syllable spans beyond a long melody
rest. During the procedure of lyrics writing, such constraints in content and lexical
selection could impose extra cognitive loads.
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Because of Chinese language specificity, one Chinese character represents one
syllable. Therefore, beat patterns of melody can be interpreted as character number of
lyrics and its fine sections. Different from regular poems, the form of lyrics is more
free. To address this issue, this paper proposes a novel two-channel Seq2Seq for lyrics
generation, which combines both syllable-pattern and contextual semantic information.
With attention mechanism, singable lyrics can be generated and perfectly matched with
the original melody.

The remainder of this paper is organized as follows. In Sect. 2, background about
NLG is introduced. In Sect. 3, our lyrics generation model is described at detail.
Section 4 discusses the model structure and experimental results. Section 5 concludes
the work. Main contributions of our work are also listed:

• We propose a syllable-structured lyrics generation model, considering both music
specialty and language attribute simultaneously with a two-channel encoder.

• To improve the singability of generated lyrics, the beat pattern of melody has been
approximately interpreted as syllable structural information.

• To enhance the coherence and entirety of generated lyrics, the contextually-based
conditional generation model can take in previous sentences or keywords.

• We leverage a large Chinese lyrics corpus of 300,000 pop songs to pre-train this
model.

2 Background

2.1 Prior Work

Automatic text generation has been always a popular but challenging research topic.
Recent work (Oliveira 2012) has been conducted to address this problem with gram-
matical and semantic templates. Statistical machine translation methods (He 2012) have
also been exploited, in which each new line is considered as a “translation” of the
previous line. Deep learning has also been proposed for language generation. For
instance, an attention-based bidirectional RNN model (Yi 2016) was proposed for

Fig. 1. Structural alignment between lyrics and melody of a Chinese popular song.
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generating 4-line Chinese poems. Except for Chinese regular poems, Chinese iambic
poems with free forms has also been demonstrated (Wang 2016). Moreover, the lan-
guage model of LSTM (Potash 2015) was used to generate rap lyrics with a desired
style, but failed to control the structure flexibly. In order to consider music properties, a
melody-conditioned language model (Watanabe 2018) was proposed to generate
Japanese lyrics. However, lyric-melody aligned data was really rare and highly cost if
labelled by experts. Moreover, a RNN based language model is really difficult to
capture long-term contextual information and hard to generate coherent multi-
paragraph lyrics. To address this issue, we propose a two-channel Seq2Seq model
which can contextually generate texts by taking in previous sentences or keywords.

2.2 RNN Encoder-Decoder

The RNN encoder-decoder framework (Sutskever 2014) is firstly introduced, of which
the encoder and decoder are two separate RNN modules. The encoder converts a
sequence of input x1; . . .; xtð Þ to a contextual dense vector c. Vector c encodes infor-
mation of the whole source sequence, and is incorporated into decoder to generate the
target output sequence. Thus, the probability distribution of prediction is defined as:

P Yð Þ ¼
YT

t¼1
P ytjyt�1; cð Þ ð1Þ

where yt�1 represents the generated output sequence prior to time step t. Different from
an RNN based language model, the encoder-decoder model is capable of mapping
sequence to sequence even from different domains. To apply explicit alignment between
source and target sequences, attention mechanism is incorporated into this model.

3 Proposed Methods

In this section, a baseline model of lyric generation with an attention based encoder-
decoder architecture is described. Following that, we describe the proposed method to
control the generation of syllable structure and content with a multi-channel Seq2Seq
model.

3.1 Baseline Model

In the encoder of the baseline model, a bidirectional RNN is used, which has been
successfully applied in text generation and spoken language understanding. In addition,
LSTM is used as the basic RNN unit because of its better long-term dependencies than
vanilla RNN.

During the lyrics generation, context-aware generation is realized by inputting
x1; . . .; xtð Þ. The bidirectional LSTM reads the source word sequence forward and
backward. The forward RNN reads the word sequence in its original order and gen-
erates a hidden state hfi at each time step. Similarly, the backward RNN reads the word
sequence in the reverse order and generate a sequence of hidden states hbT; . . .; hb1ð Þ.
The final encoder hidden state hi at each time step i is a concatenation of the forward
state hfi and backward state hbi i.e. hi ¼ hfi; hbi½ �.
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Therefore, last state of the forward and backward RNN carries information of the
entire source sequence. We use the last state of the backward encoder as the initial
decoder hidden state following the approach (Bahdanau 2014). The decoder is a uni-
directional LSTM. At each decoding step i, the decoder state si is calculated as a
function of the previous decoder state si�1, the previous predicted token yi�1, the
encoder hidden state hi and the context vector ci:

si ¼ f si�1; yi�1; hi; cið Þ ð2Þ

where the context vector ci is computed as a weighted sum of the encoder states
h ¼ h1; . . .; hTð Þ (Liu and Lane 2016):

ci ¼
XT

j�1
ai;jhj ð3Þ

And

ai;j ¼
exp ei;j

� �
PT

k¼1 exp ei;k
� � ; ei;k ¼ g si�1; hkð Þ ð4Þ

where g is a feed-forward neural network. At each decoding step, the explicit aligned
input is the encoder state hi. The context vector ci provides extra information to the
decoder and can be seen as a continuous bag of weighted features h1; . . .; hTð Þ.

3.2 Multi-channel Seq2Seq with Attention

Fig. 2. Scheme of the multi-channel Seq2Seq generation model with structure and content
encoders. Tokens of ‘S’, ‘B’, ‘M’, ‘E’ represent the syllable structure of lyrics, meaning the start
of a sentence, the beginning, middle and end of a music segmentation of a melody.
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As shown in Fig. 1, there is a finer structural alignment between lyrics and melody,
except for sentence length. To be consistent with the beat pattern of melody, finer
control of lyrics structures is required. Due to specialty of Chinese, phrase groups with
certain character numbers retain both semantic and beat pattern information. To fuse
both music and language into sentence decoding, we propose a multi-channel Seq2Seq
model as shown in Fig. 2. Two different Bi-LSTMs read the structural token sequence
and previous sentences, while text generation is only modeled with one forward LSTM.

When the attention mechanism is enabled, the context vector ci provides partial
information from input sequences that is used together with the aligned hidden state hi
for generating Chinese characters. Different from the contextual vector in Sect. 3.1, ci
in this model is calculated based on the concatenation of the two encoders’ hidden
states. But the initial state of the decoder is still same with the last state of content
encoder.

Other than syllable structural encoding, two approaches of content encoding have
been conducted to determine new sentence generation. In one case, two neighboring
sentences extracted from lyrics are processed as previous and next sequence pairs.
Similar to a kind of monolingual translation, next sentence can be generated by taking
the previous one as input. In the other case, one keyword was retrieved from one lyric
sentence to form training corpus of keyword-sentence pair. For keyword retrieval, a
text-rank algorithm was used.

4 Experiments

4.1 Data

A large corpus of Chinese lyrics of 160,000 songs has been prepared to pre-train our
lyrics generation language model. From this corpus, corresponding music notations of
50,000 songs have been manually interpreted with crowdsourcing. Among them, 4.15
million previous-next sentence/keyword-sentence pairs have been accumulated for
model training. 10,000 lyric sentences are used for evaluation of model.

4.2 Training Procedure

LSTM cell is used as the basic RNN unit in all models, of which the dimension size of
hidden state is 128. And then 4 layers of LSTM networks are used in the proposed
models. Embedding size of 128 of Chinese characters are randomly initialized and then
fine-tuned by training with mini-batch size of 16. Dropout rate of 0.3 is used to the non-
recurrent connections for model regularization. Maximum norm for gradient clipping is
set to 1. Adam method is used for model optimization and Bahdanau attention is
applied. Schedule sampling with probability of 0.1 instead of teaching force is used for
preparing ground truth. For inference, beam search decoding with beam width size of
35 is used.
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4.3 Evaluation Metric

Automatic Evaluation
To evaluate our proposed model, a test lyric corpus has been selected as ground truth
reference. For the melody structure control, the melody-alignment accuracy between
prediction and ground truth will be calculated. In the case of semantic prediction,
BLEU scores of generations will be computed. Even if BLEU is not a suitable metric
for this NLG task, we believe that it can still reflect the semantic coherence and
relevance of generation. Note that Bi-gram is the max length of n-gram. And BLEU
can reflect the degree of control of the content which is very important.

Human Evaluation
Since lyrics generation belongs to literature creation, human evaluation might be a
better way for performance evaluation. Following the reference (Yi 2016), three criteria
has been designed: Fluency (fluency of generated sentences), Meaningfulness (do
generated lyrics convey some certain messages and the contextual relevance?),
Diversity (do generated sentences often show similar phrases or word?), and Entirety
(general impression on sentences). Five thousand of generated lyrics samples were
cross-scored by five Chinese language experts with score range of 0 to 5.

4.4 Results and Analysis

Automatic Evaluation Result
Compared to previous work, main contribution of this paper is to fuse syllable-
structural control into text generation. As seen in Table 1 and Fig. 3, the multi-channel
generation model can completely control the output sentence length, and melody-
matching accuracy is also very high. With a beam-search decoder, the baseline model
tends to generate sentences with shorter length and results in lower BLEU scores.
However, BLEU of the keyword-aware generation model (KG) is higher than others
including the sentence-aware generation model (SG), because the encoded keyword
provides more context information, which offers a promising approach for structure and
semantic control in NLG.

Table 1. Accuracy of automatic evaluation

Models Length control Melody matching BLEU

Baseline 8.20% 2.00% 2.83%
SG 100.00% 87.60% 4.61%
KG 99.93% 83.85 16.22%
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4.5 Human Evaluation Result

As seen from Table 2 and Fig. 4, our model performs much better than the baseline.
One main reason is that the generic Seq2Seq baseline model tends to generate short
sentences, often less than five words, which decreases the meaningfulness and
increases repeatability of generated sentences. While with our generation model, two
encoders of structure and content will mutually promote the effect of decoding referred
to (Ghazvininejad 2016).

Fig. 3. Overall comparison of automatic evaluation.

Table 2. Score of human evaluation

Models Fluency Meaningful Diversity Entirety

Baseline 3.01 2.11 1.2 2.11
SG 4.21 3.74 3.92 4
KG 4.25 4.54 4.43 4.4

Fig. 4. Human evaluation of three models.
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Moreover, the KG model owns higher scores than SG, because the encoded key-
word represents global context of next generation, resulting in the increase of mean-
ingfulness and diversity scores. Overall, both the KG and SG models have achieved
satisfactory results. Furthermore, during the generation of an entire lyrics, it is too
cumbersome to give one keyword for each sentence. Therefore, in the real lyrics
generation, SG and KG models fuse together to compose a full-paper lyrics samples.
Figure 5 shows a typical example.

5 Conclusion and Future Work

In this paper, we consider lyrics generation as a sequence-to-sequence learning prob-
lem, and propose a two-channel Seq2Seq generation model conditioned on input
melody. Better than the baseline, our model jointly learns contextual information and
syllable structures, verified by both automatic and human evaluation. Moreover, our
proposed approach can be extended to other kinds of language structure control,
including poetry rhythm and specific language templates.

To generate perfect lyrics, there are still further works for model polishing. The topic
and emotion of the entire lyrics is difficult to handle only through encoding keywords
and contextual sentences. Therefore, encoding channels can be scaled to fuse more
controlling information, including global theme, sentiment or other literature styles.

Fig. 5. Generated lyrics with tune of Chinese song “Water for Forgotten Love” (忘情水).
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Abstract. In Mongolian historical document recognition, preprocessing
mainly involves image binarization and denoising. This is a challenging
task and greatly effects the accuracy of the recognition result. Concerning
the fact that image binarization and denoising are both image-to-image
tasks, this paper proposes an end-to-end preprocessor for Mongolian his-
torical document OCR. The preprocessor is trained in an adversarial
learning fashion and deal with binarization and denoising simultane-
ously. The input of the preprocessor is the color image of Mongolian
document images, and the output is the clean binary images which can
be used for word recognition. The preprocessor was trained on a limited
dataset and performed better than the combination of binarization and
denoising methods used in earlier Mongolian historical document OCR
systems.

Keywords: Adversiarial learning · Preprocessing · Binarization ·
Denoising · OCR

1 Introduction

Recently, a trend of digitizing historical documents has emerged to facilitate
access and preservation. Inner Mongolia, an autonomous region of northern
China, is home to a substantial number of ancient Mongolian books. The
Mongolian Kanjur is well known among these books and is considered to be an
encyclopedia. It consists of 108 volumes altogether. Each volume contains 800
pages. The total number of words is about 20,000,000. It encompasses history,
literature, religion, sociology, and many other subjects. To protect this native
literature and facilitate its retrieval, a more efficient way involves converting
these images into text using optical character recognition (OCR).

Document OCR is usually divided into three stages, including preprocessing,
word recognition and post-processing. The first stage involves image binariza-
tion and denoising. It has a great influence on the accuracy of the recognition
result. In fact, there are two challenges in the preprocessing step of Mongolian

c© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11672, pp. 266–272, 2019.
https://doi.org/10.1007/978-3-030-29894-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29894-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-29894-4_21


An End-to-End Preprocessor Based on Adversiarial Learning 267

historical document OCR. The first one is finding the best threshold for bina-
rization. The second is denoising these document images which contain severe
and various noises. The noise is mainly caused by several reasons. At first, since
the Mongolian Kanjur was produced using woodblock printing during the Qing
Dynasty, ink spreading caused the spur noise in the documents. Meanwhile, pig-
ment shedding introduced much noise during the preservation of this ancient
book. Besides, the scanning process results in some noise since the protective
film is worn during scanning. Therefore, a more sophisticate preprocessor is nec-
essary for the OCR system.

From the perspective of image processing, document image binarization and
denoising are both image-to-image tasks. The former is converting the color
image to a binary image, and the latter is converting the binary images with noise
to clean ones. A more efficient way is integrating the binarization and denoising
into a unified framework. In this paper, the preprocessor tackles binarization and
denoising in one step with conditional GAN, which was proved to be suitable
for the image-to-image task. Denton et al. in [8] introduce a generative model
capable of producing high-quality samples of natural images. Gauthier in [9]
applies a conditional GAN to generate faces with specifc attributes. Inspired by
the pix2pix work [1], we take conditional GAN [2] as a solution to preprocessing
of Mongolian historical document OCR and learned an end-to-end preprocessor
for this task. The input of the preprocessor is the color image of Mongolian
Kanjur, and the output is the clean binary images which can be used for word
recognition.

As a deep learning model, GAN was first proposed by Goodfellow in 2014
[3]. It cast generative modeling as a game between two networks: a generator
network produces synthetic data given some noise source and a discriminator net-
work discriminates between the generator’s output and true data. After training,
the generator can produce fairly good output. When adding a condition to the
generator in GAN, we can control the output of the generator more closer to our
expectations. This allows the condition GAN is quite suitable for image-to-image
problems.

There are three main advantages of the proposed approach. First, we formu-
late the document image preprocessing as a pix2pix problem and take condition
GAN to solve this problem. The whole process requires no threshold computing,
filter design and mapping function formulation. Second, our approach performs
better than the combination of binarization and denoising methods used in ear-
lier Mongolian historical document OCR systems. Third, our approach runs
faster than multi-stage preprocessor. This paper also set an example of docu-
ment preprocessing for other OCR systems.

2 Proposed Preprocessor

2.1 Module Architecture

This paper takes conditional GAN [2] as a solution to preprocessing of
Mongolian historical document OCR and learned an end-to-end preprocessor
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for this task. As shown in Fig. 1, the conditional GAN consists of two compo-
nents. The discriminator network D maps from an output image to a probability
that the image is from the real data distribution: D(x) → (0, 1). In contrast, the
generator network G maps from random noise vector z and observed condition
x (Mongolian historical document image) to target clean image y: G(z, x) → y.
These two networks are trained iteratively. For a fixed generator G, the discrim-
inator D is trained to classify the output image as either being from the training
data (close to 1) or a fixed generator (close to 0). When the discriminator is opti-
mal, it can be frozen, and the generator G can continue to be trained to lower the
accuracy of the discriminator. The generator possesses an encoder-decoder struc-
ture. The input (including the noise z and the color image y) is first compressed
into a higher level representation through a series of encoders (convolution +
activation function). Then, the compressed representation is converted into the
target image through a series of decoders (deconvolution + activation function).

(a) generator network

(b) discriminator network

Fig. 1. The generator network and discriminator network

Batch normalization is used in each convolutional layer to ensure network
performance and stability [10,11]. Both of the modules here take the form
convolution-BatchNorm-ReLu [10]. The discriminator also uses an encoder-like
structure, in which the inputs are the preprocessed images from the generator
and the ground truth. They are concatenated together and passed through the
processing modules in sequence.
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The objective of the conditional GAN can be expressed as Eq. (3):

LconditionalGAN (G,D) = Ex,y[logD(x, y)] + Ex,z[log(1 − D(x,G(x, z)))] (1)

Where G tries to minimize this objective against an adversarial D that tries
to maximize it.

The previous study has proved that it is beneficial to mix the GAN objective
with a L1 loss function [1]. The discriminator’s job remains unchanged, but the
generator is tasked with not only fooling the discriminator but also being near
the ground truth output from a L1 perspective. The L1 loss function can be
written as Eq. (2):

LL1(G) = Ex,y,z[y − G(x, z)] (2)

Thus, the final objective is Eq. (3):

G∗ = arg min
G

max
D

(LconditionalGAN (G,D) + λLL1(G)) (3)

2.2 Optimization

We follow the literature [12] to design the generator in conditional GAN. We
directly give an output of each ith convolution layer to the (n−i)th deconvolution
layer by adding a skip connection between them, where n is the total number of
layers. Previous work [13] has proved the fact that L1 loss can excellently capture
the low frequencies of the images and Patch-GAN can sufficiently model high-
frequency structure of those images. Therefore, the PatchGAN used in image-to-
image tasks also adopted in our approach. This discriminator D tries to classify
if each N × N patch in an output image is real or fake, averaging all responses
to provide the ultimate output of discriminator D.

3 Experiments

3.1 Data Set and Evaluation Metric

In this section, we evaluate the proposed preprocessor on Mongolian histori-
cal documents images with complex noise. The dataset consists of the scanned
images of Mongolian Kanjur, whose width and height are 17196 pixels and 5621
pixels individually. Since the preprocessor is trained with several paired color
images and their corresponding clean binary images, we created the clean binary
image in a semiautomatic way. At first, we automatically binarize the color image
with OTSU [4], and then manually remove the noise in the binary image. The
repaired binary image is used as the ground truth.

To train the model more efficiently, images need to be cut into 2048 × 2048
blocks. In the segmentation process, we start with the upper left corner of the
image. For the image edge part whose width and height are less than 2048 pixels,
we recalculate 2048 pixels from the right and the bottom, and segment them.

There are 405 samples in the training dataset (2048×2048 pixel), 135 samples
in validation dataset, and 135 samples in the test dataset.
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In our experiment, we use three metrics to evaluate the proposed preproces-
sor, including peak signal-to-noise ratio (PSNR), structural similarity measure
(SSIM) and mean opinion score (MOS).

3.2 Related Methods for Comparison

To systematically evaluate the proposed system, we compare the proposed pre-
processor with four methods. The first one is the combination of OTSU algorithm
[4] (image binarization) and Gaussian Filter (image denoising), belonging to the
traditional method. Three other methods are recently proposed deep learning
methods, including Grid LSTM [5], SAE [6], and FCN [7].

3.3 Result and Discussion

The experimental results are summarized in Table 1. Our model achieves a PSNR
43.89, an SSIM 0.9942, and a MOS 4.6. It performs best among the listed mod-
els, indicating that it does a very good job at binarization and denoising for
Mongolian historical document. This is owing to the well-defined network archi-
tecture. Compared to the deep learning based models, the combination of OTSU
and Gaussian Filter is the worst.

Table 1. Performance comparison in terms of PSNR, SSIM and MOS

Model PSNR SSIM MOS

OTSU+Gaussian Filter 14.82 0.8665 3.2

Grid LSTM [5] 26.81 0.9273 3.2

SAE [6] 38.52 0.9812 3.9

FCN [7] 41.78 0.9881 4.4

Ours 43.89 0.9942 4.6

Figure 2 shows the results coming from the proposed preprocessor and related
methods for comparison. Due to each image of the Mongolian historical docu-
ment (Mongolian Kanjur) is very large, we only show a clip of them. From the
figure, we can see that the proposed preprocessor obtains the best performance.

From the point of denoising, the proposed preprocessor can distinguish
between noise and text in images, so that the noise can be well removed while
the text part does not be interfered in the preprocessing. This is because the
model is trained in an adversarial way with a few of paired images (color images
with noise and clean binary images). The proposed approach can automatically
fill the incomplete parts of text resulting from pigment shedding. Filling actions
are learned from hand-restored images, and the repaired results are is consistent
with our expectations. Figure 3 shows a word in the Mongolian Kanjur, in which
Fig. 3(a) is the word in the color document image, Fig. 3(b) is its appearance
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(a) Original
graph

(b) OTSU (c) OTSU+Gauss (d) Grid LSTM

(e) SAE (f) FCN (g) Ours

Fig. 2. Illutstration of the processing results with different methods

after binarization with OTSU method, and Fig. 3(c) is its appearance proposed
by our approach. It demonstrates that our approach can handle noise resulting
from pigment shedding in document reservation.

(a) a Mongo-
lain word

(b) word pro-
cessed with
OTSU

(c) word pro-
cessed with our
approach

Fig. 3. Single word comparison

4 Conclusion

To deal with image binarization and denoising in Mongolian historical document
OCR, this paper proposes an end-to-end preprocessor based on adversarial learn-
ing. The preprocessor is trained in an adversarial learning fashion and deal with
binarization and denoising simultaneously. The input of the preprocessor is the
color image of Mongolian historical document images, and the output is the
clean binary images which can be used for word recognition. Compared with the
combination models of a binarization method (OTSU) and several deep learning
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methods, the proposed preprocessor obtains the best performance in processing
effect. It can removed the noise well and fill the incomplete parts of text resulting
from pigment shedding. This also set an example of document preprocessing for
other OCR systems.
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Abstract. Neural networks with auto-regressive structures, such as
Recurrent Neural Network (RNN), have become the most appealing
structures for acoustic model in parametric text-to-speech synthesis
(TTS). Despite the prominent ability to generate high quality results,
high inference cost of RNN model prevents its usage in industry TTS
applications and services. In this paper, we propose a fully-parallel
convolutional neural network based acoustic model, U-shaped Fully-
parallel Acoustic Neural Structure (UFANS). Experiments show our
model achieves 20 times speed up in inference and is 300 times faster than
real time with comparable speech quality, which is suitable for industrial
level TTS services.

Keywords: Text-to-speech · Acoustic model · UFANS · U-Net ·
Fully-parallel

1 Introduction

Text-to-speech (TTS) systems aim to convert texts to human-like speeches. Acous-
tic model is a model in TTS system that maps linguistic features to acoustic fea-
tures. RNNs [1,15] and auto-regressive CNNs [2,8] based acoustic models have
achieved great success due to its capacity to capture long-term information. How-
ever, those types of models usually result in high time latency in computations,
since the computation of current step relies on the results of previous steps.

U-Net [11], a fully-parallel convolutional neural network, is first proposed
for image segmentation tasks. Down-sampling and up-sampling operation make
the receptive field of U-Net increase exponentially. Skip connection structure in
U-Net enable the information flow across different layers. The combination of
these prominent characteristics make U-Net successful in image segmentation.
Inspired by the success, U-shaped models are applied in various acoustic appli-
cations, e.g. denoise [5], audio source separation [13].
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In this paper, we propose a fully-parallel acoustic neural structure (UFANS),
motivated by U-Net, aiming to reduce industrial cost. Our model is a fully-
parallel gated convolutional structure with skip connections. The characteristic
of parallel ensures our system highly concurrent. The skip connection struc-
ture and the gate in convolution block control the information flows. And large
receptive field helps our model capture long-term information. The experimental
results show 2 things: (1) Our model is 300 times faster than real time in infer-
ence with comparable speech quality. (2) Large receptive field, the gate structure,
and the skip connection structure improve speech quality. Low time latency and
high speech quality are essential for industrial TTS services.

2 U-Shaped Fully-Parallel Acoustic Neural
Structure (UFANS)

2.1 Overall Structure

We apply a modified U-shaped structure to speech synthesis tasks which used
RNN based [1,15] acoustic model in the past. The main difference between
UFANS and U-Net are listed here:

– Different convolution structure. We use gated convolutions [7] instead
of regular convolutions. The gate structure is able to control the information
flows within layers. The experiments also show that UFANS benefits from
gated convolutions.

– Different pooling method. Image segmentation is a classification task, U-
Net uses maximal pooling [3] to extract the most important spatial features.
TTS is a regression task, we replace maximal pooling by average pooling to
utilize all information along time dimension. The experiments also show that
average pooling performs better.

– Different input dimension. The inputs of U-Net are 2-Dimension data,
pixel values of images. Pooling and up-sampling are performed along height
and width dimensions of images. The inputs of UFANS are 1-Dimension data,
frames of linguistic features. Pooling and up-sampling are performed along
time dimensions.

2.2 Convolution Blocks

Gated convolution is used in the two phases in UFANS; Fig. 1 is convolution
block in contraction phase. ‘Conv’ doubles the channel dimension, after which
the output of ’Conv’ is split from middle along the channel dimension.

Figure 2 is the convolution block in expansive phase. The input of this block
consists of two parts, ‘Input1’ and ‘Input2’. ‘Input1’ is the output of the previous
layer; ‘Input2’ is the output of the corresponding layer in contraction phase. We
use dropout [12] to do generalization.
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2.3 Down-Sampling and Up-Sampling

The average pooling operation plays a role of a down-sampling layer. The time
dimension is reduced to half after average pooling. The deconvolution layer plays
a role of up-sampling. The time dimension is doubled after the deconvolution
layer. The combination of down-sampling and up-sampling makes receptive field
increase exponentially.

Fig. 1. Contraction phase Fig. 2. Expansive phase.

Suppose the depth of UFANS is N , which means there are N down-sampling
and up-sampling operations. The number of adjacent frames SN that offer infor-
mation to one specific acoustic frame is determined by the following iteration.

Si = 2 ∗ (Si−1 + 2), S0 = 0, i = 1, ..., N (1)

3 Experiments and Results

3.1 Dataset

We use two female Mandarin datasets to do experiments. Each dataset has about
10500 utterances, each utterance lasts from 3 s to 7 s and sample rate is 24 kHz.
We extracted 60-dimensional mel-cepstral coefficients, 5-dimensional band-
aperiodicity parameters, 1-dimensional logarithmic fundamental frequency and
their delta, delta-delta dynamic features [14], and one additional voiced/unvoiced
dimension. The inputs are frame based linguistic features with dimension 165,
up-sampled and aligned with manually annotated ground truth duration tag-
ging. WORLD [6] deterministic vocoder is used to synthesize audios. Both the
linguistic and acoustic features are normalized before training.

3.2 Model Hyper-Parameters

As far as we know, no fully-parallel convolutional structure has been applied as
a acoustic system in speech synthesis. So we compare our model with several
RNN based baseline systems.

The Bi-LSTM baseline system consists of four dense layers with 1024 chan-
nels, followed by one Bi-LSTM layer with 384 channels for each direction, as is
used in [15]. We also train a larger one that consists of one dense layer with 2048
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channels and three Bi-LSTM layers with 1024 channels for each direction, which
is used as baseline model in [1]. The Bi-SRU system consists of three dense layers
with 1024 channels and four Bi-SRU layers with 512 channels in each direction.
The DNN system consists of three dense layers with 1024 channels [10]. UFANS
uses nine down-samplings and up-samplings, 3 * 3 kernel gated convolutions with
256 channels in all blocks except in the final block where a regular convolution
with 512 channels is used.

Table 1. Comparison of objective results.

Model MSE Parameter size (MB) Parallel Inference time (ms) Training time (s)

Bi-LSTM [1] 192.8 292 No 243 184917

Bi-LSTM [15] 195.3 30 No 69 49260

Bi-SRU 194.9 74 No 44 35491

DNN [10] 209.2 9.5 Yes 0.84 5214

UFANS 194.6 42 Yes 3.2 6724

The frame level based mean squared error (MSE) is taken as the training
criteria. We train all models by Adam [4] method with batch size 16, initial
learning rate 0.0004 and β1, β2 to be 0.9, 0.999. The model is implemented with
MXNET. We trained all models to achieve best validation records. Training is
finished in 5 h on a single GTX Titan X GPU.

3.3 Performance Comparison

Two methods are used to evaluate the performance of our generated speeches,
i.e., quantitative results and user study.

Quantitative Results. The quantitative results of our experiments are pre-
sented in Table 1, where MSE is averaged between the two speaker cases. The
inference speed is evaluated as the time latency to synthesize one-second speech,
which includes data transfer from main memory to GPU global memory, GPU
calculations and data transfer back to main memory. The larger Bi-LSTM sys-
tem got the lowest MSE while at the cost of a much larger parameter size and
a much lower inference speed. Actually, as we will see in the following section,
the speeches synthesized from UFANS even have comparable quality with the
speeches synthesized from the larger Bi-LSTM system. Bi-SRU got slightly bet-
ter MSE than Bi-LSTM system used in [15], while Bi-SRU is faster. UFANS
got better MSE than Bi-LSTM system in [15] with a speed-up factor of 23,
and a speed-up of 76 compared with the larger Bi-LSTM system. We did all
experiments on GeForce GTX TITAN X devices.
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User Study. We did a user study to compare the quality of synthesized speeches
with above systems. We randomly selected 20 Mandarin reviewers (10 female and
10 male) who are qualified to judge qualities of speeches. The score ranges from
1 (bad) to 5 (excellent). We also computed 95% confidence interval for each score
using crowdMOS method [9]. The results show that UFANS is able to generate
comparable or better speeches than RNN based baseline systems.

4 Conclusion

In this paper, we propose an U-shaped Fast Acoustic Neural Structure (UFANS).
Our structure greatly reduces the time cost in training and inference with com-
parable speech quality. We show the possibility and promising prospect of apply-
ing fully-parallel CNN structure to industrial TTS applications and services. We
also show that large receptive field (long-time information dependency), the gate
structure (information flows) and the skip connection structure(combination of
different level features) in UFANS ensure high speech quality.
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Abstract. In this paper, we comprehensively study on context-aware genera-
tion of Chinese song lyrics. Conventional text generative models generate a
sequence or sentence word by word, failing to consider the contextual rela-
tionship between sentences. Taking account into the characteristics of lyrics, a
hierarchical attention based Seq2Seq (Sequence-to-Sequence) model is pro-
posed for Chinese lyrics generation. With encoding of word-level and sentence-
level contextual information, this model promotes the topic relevance and
consistency of generation. A large Chinese lyrics corpus is also leveraged for
model training. Eventually, results of automatic and human evaluations
demonstrate that our model is able to compose complete Chinese lyrics with one
united topic constraint.

Keywords: Natural language generation � Seq2Seq � Gate recurrent unit �
Attention

1 Introduction

Natural language generation (NLG) (Mann 1982), also known as text generation, is one
of most important tasks in the field of natural language processing (Chowdhury 2003).
NLG has been extensively studied in many applications, such as dialogue system
(Chen et al. 2017), machine translation (Cho et al. 2014), text summarization (Nallapati
et al. 2016) and so on. In this paper, however, we concentrate on Chinese lyric text
generation. Different from prose texts, lyrics exhibits its own significant characteristics,
including rhyme, rhetoric and repeated structures. In the perspective of narrative, a
lyrics paragraph always concentrates on one main topic due to its limited length, which
is totally different from long documents often covering several topics. Moreover,
sentence length of lyrics is always short, in a range of 8 to 15 words, which results in
close contextual relationship between adjacent sentences.

In general, most of text generation models can be extended for lyrics generation. In
the area of text generation, there exist two main approaches, one of which is proba-
bilistic language model (LM) and the other is Sequence-to-Sequence (Seq2Seq). LM
has been successfully used in various NLG applications, which is capable of predicting
next words on the premise of prior contexts. For instance, Bengio used n-gram model
of three layers to construct a language model (Bengio et al. 2003). Then, Mikolov
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promoted LM with recurrent neural network (RNN) (Mikolov 2010). However, LM
even with long-short term memory (LSTM) network would suffer from semantic shift
along with the accumulation of sequence length (Hochreither and Schmidhuber 1997).
To address sequence transduction between heterogeneous data, a sequence-to-sequence
model was proposed (Sutskever et al. 2014). Taking a sequence as input, Seq2Seq can
encode it into a fixed dense vector and then decode to another sequence. Moreover,
Bahdanau applied the attention mechanism to the Seq2Seq in order to diffuse decoding
weights into different parts of input (Bahdanau et al. 2015). Based on Seq2Seq, text
generation can be defined as next sentence prediction on the premise of prior sentences.
In most of Seq2Seq applications, however, input contexts are formed based on
sequential concatenation of previous sentences directly. Consequently, the semantic
effect of sub-sequences far from the decoder could become weaker on prediction.

To generate long-paragraph Chinese lyrics with high contextual relevance and
consistence, in this paper, we propose a hierarchical recurrent encoder (HRE) incor-
porated into the seq2seq framework. HRE can extract both sentence-level and word-
level semantics from prior sentences, providing more contextual information for
decoding. Moreover, the attention mechanism covering the most adjacent sentence is
applied, considering the closest connection with next prediction. The rest of the article
will be structured as follows: Sect. 4.1 describes the data preprocess of Chinese lyrics
corpus, Sect. 3 describes the details of our model, Sect. 4 describes the experiments on
several models, Sect. 2 briefly introduces the related work and we make some con-
clusion in Sect. 5.

2 Related Work

NLG is an essential part of natural language processing (NLP). According to the
modality of input, there exist text-to-text generation, meaning-to-text generation, data-
to-text generation, image-to-text generation etc. In this paper, lyrics generation is
modeled as a specific text-to-text generation with previous sentences as input. Similar
tasks including Chinese poetry generation (Wang et al. 2016), essay generation (Feng
et al. 2018) and comment generation (Tang et al. 2016) have been extensively studied.
Chinese poetry generation generate a kind of hierarchical text with strict format which
often has a fixed number of sentences and each sentence has a fixed number of words.
For instance, to generate context-aware comments, Tang proposed to encode the
context as a continuous semantic representation into a basic RNN model. Moreover,
essay generation covering several topic words has also been demonstrated by similar
methods.

Various hierarchical models have been used for generating coherent long texts. For
example, Li proposed a hierarchical neural auto-encoder to build an embedding for a
paragraph (Li et al. 2015). Lin presented a novel hierarchical recurrent neural network
language model (HRNNLM) to maintain overall coherence in a document (Lin et al.
2015). Following the HRED proposed by Sordoni (2015), Serban extended the hier-
archical model to promote dialogue generation with long-term contexts (Serban and
Bengio et al. 2016). Later, he enhanced the HRED model with a latent variable at the
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decoder (Serban and Sordoni et al. 2016). Furthermore, a hierarchical seq2seq with
attention is proposed by us for Chinese lyrics generation to address the long-term
coherence.

3 Model

In this section, a hierarchical attention based Seq2Seq model for lyrics generation is
described. Original lyrics has been preprocessed into the paragraph format for model
training in advance. Here, a lyrics paragraph comprises a sequence of M sentences, i.e.
P ¼ S1; S2; . . .; SMf g. Each sentence Sm consists of a sequence of Nm words
Sm ¼ xm;1;xm;2; . . .xm;Nm

� �
, wherexm;n represents theword at position n in sentencem.

3.1 Recurrent Neural Network

A recurrent neural network (RNN) model recurrently calculates a vector named
recurrent state or hidden state hn by taking a sequence of words x1;x2; . . .;xNf g:

hn ¼ f hn�1;xnð Þ; n 2 1;Nð Þ; h0 ¼ 0 ð1Þ

Particularly, the h0 denote the initial state and always is set as zero at the time of
training. Usually, hn depends on the current word xn and previous ones before the
current time step. In Eq. 1, f denotes a parametrized non-linear function, such as
sigmoid, hyperbolic tangent, long-short term memory (LSTM) and gate recurrent unit
(GRU). The hidden state will lose long contextual information when a vanilla RNN
such as sigmoid or hyperbolic tangent is used. Through bringing in a memory cell,
LSTM or GRU can handle longer-term contexts. Moreover, GRU requires less com-
putational cost compared with LSTM. Thus, GRU is used as the RNN cell unit. The
equations of GRU are summarized as follows:

zt ¼ r Wzxt þUzht�1ð Þ ð2Þ

rt ¼ r Wrxt þUrht�1ð Þ ð3Þ

eht ¼ tanh Wxt þU rt � ht�1ð Þð Þ ð4Þ

ht ¼ 1� ztð Þ � ht�1 þ zt � eht ð5Þ

In the Equation above, the r is the non-linear function i.e. logistic sigmoid, which
limits output to range [0, 1]. zt is the update gate deciding the weight of input infor-
mation past, and rt is the reset gate determining the weight of last state. The candidate
update eht controls the percentage of information obtained from ht�1 with reset gate.
The final update ht depends on the update gate and candidate update. The subscript
letter t represents the time step.
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3.2 Hierarchical Recurrent Encoder

Sordoni proposed a hierarchical recurrent encoder-decoder (HRED) to predict a next
web query conditioned on previous queries submitted by users (Sordoni et al. 2015).
The hierarchical encoder consists of query-level and session-level encoders, which has
been demonstrated very successful for web query prediction. Following this HRED
work, a lyrics paragraph is considered with hierarchical structure of word-level and
sentence-level as shown in Fig. 1. At the bottom of the network, the sentence-level
RNN encodes each sentence into a fix dense vector. This higher-level semantic vector
is used to predict the next sentence Smþ 1.

Different from web queries, however, a lyrics paragraph always contains more than
ten sentences. Thus, we adapt this HRE to handle a certain number of sentences before
decoding as shown in Fig. 2. The number of sub-group sentences is denoted as Num,
which is a hyper-parameter. After some trial and error, the Num is optimized as 5. Note
that GRU is used as the basic RNN cell unit. Moreover, the word-level encoder and the
decoder share same parameters.

Fig. 1. The graph of HRED model constructing a Chinese lyrics paragraph with three sentences.
The word-level encoder the sentences into a fix dense vector and the sentence-level encoder map
the vectors into the representation of paragraph, which is the input of decoder. We bold the last
rhyming word.

282 H. Fan et al.



3.3 Decoder

In the decoder, the last state of the sentence-level RNN is used as the initial state. The
probability distribution in the time t. represented:

pðxtjs;x1; . . .;xt�1Þ ¼ g ht;dec;xt�1; s
� � ð6Þ

In the Eq. 6, the s is the last state of the sentence-level encoder. The state ht;dec can
be denoted as:

ht;dec ¼ f ht�1;dec;xt�1; s
� � ð7Þ

S2Seq with attention was first proposed by Dzmitry and has achieved a great
success in various NLG applications. Here, the attention mechanism is incorporated
into the hierarchical model and applied to the word-level encoder. The difference
between seq 2seq with attention and conventional seq2seq is that the decoder uses
different context vector st in each step as:

ht;dec ¼ f ht�1;dec;xt�1; st
� � ð8Þ

The context vector st is a weighted sum of the encoder hidden states
h1;dec; h2;dec; . . .; hNm;dec

� �
:

st ¼
XNm

j¼1
atjhj;enc ð9Þ

where the atj is computed by decoder hidden state ht�1;dec and each encoder hidden
state h1;dec; h2;dec; . . .; hNm;dec

� �
. As shown in Fig. 3, we only use the sequence of

hidden states of last sentence Sm�1 as the input of attention while predicting the next
sentence Sm because of the strongest semantic relationship between adjacent sentences.
Finally, beam search is used in the inference stage.

Fig. 2. Hierarchical Seq2Seq extending HRED.
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4 Experiments and Results

In this section, settings of experimental parameters are described at detail. A generic
Seq2Seq model is applied as a baseline. Tensorflow framework is used to implement
the hierarchical attention based Seq2Seq model because of its flexibility and accu-
mulated development experiences shared in community (Tang 2016).

4.1 Data Processing

Lyrics in monolingual Chinese was collected to guarantee the same data struc-
ture. 100,000 pop song lyrics has been prepared, which is familiar with most Chinese
Netizens. Based on this corpus, a prior vocabulary of 7030 words was achieved.
Filtering out 1985 low frequency words which occur less than 10 times in the para-
graphs, our vocabulary size is eventually 5045. Additionally, the following three
symbols have been added into this vocabulary, including ‘unk’ representing unknown
words, ‘go’ and ‘eos’ donating the start and end of sentences. Besides, the maximum
length of all sentences is limited to 20. Those sentences longer than 20 have been
filtered out. Finally, the prepared corpus was divided into two parts, 90% as training
data while 10% as test data.

Fig. 3. Hierarchical Seq2Seq with attention.
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4.2 Parameters Setting

We use the word embedding with dimension 300 to represent the words. Specifically,
the word embedding is defined as the trainable parameters, which will be fine-tuned as
the training progress. The word-level encoder has 1000 hidden unit. To keep the
sentences talking the same topic and memorizing complex topics and emotion, we set
the dimensionality of sentence-level encoder and decoder to 1500. Moreover, the word-
level encoder has 3 layers to ensure the model can encode the complex lyrics sentences
while the sentence-level encoder and decoder has 1 layer. Finally, the beam width k is
set to 5. All of the parameters are randomly initialized within the range [−0.5, 0.5].
They are trained to minimize the cross-entropy loss function with the Adam optimizer
(Kingma and Ba 2015). We set the mini-batch to 256. We train the model until the loss
function has a minimum value and is no less than that in the next three epochs.

4.3 Evaluation Metrics

Human Evaluation
Nine Chinese experts are asked to evaluate the performance of our model. They are
asked to mark generated lyrics samples from three different aspects: Topic Relevance,
Fluency and Semantic Coherence. The score is range from 1 to 5. 5000 lyrics para-
graphs are randomly generated for graduate students majored in Music to score.

BLEU
Additionally, we use Bilingual Evaluation Understudy (BLEU) as our automatic
evaluation (Papineni et al. 2002). BLEU is an evaluation method widely used for
machine translation. In this paper, the test dataset is used as the reference ground truth
for automatic evaluation.

4.4 Experimental Results

Table 1 shows the final results of human evaluation of different models. The basic
Seq2Seq model exhibits the worst performance since it only considers the adjacent
sentences, which can’t maintain the long-term semantic coherence. In comparison, the
hierarchical Seq2Seq model boosts the performance in terms of “Topic Relevance” and
“Semantic Coherence”. The main reason is that the hierarchical model is able to
remember higher-level semantics due to the sentence-level encoding. However, the

Table 1. Averaged score of different model for lyrics text generation.

Model Topic
relevance

Fluency Semantic
coherence

Average
score

Seq2Seq 2.34 2.99 2.38 2.57
Hierarchical Seq2Seq 2.99 2.79 2.76 2.85
Hierarchical Seq2Seq with
attention

3.11 3.17 3.46 3.24
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poor performance of the hierarchical model in “Fluency” is attributed to the omission
of word-level encoding. Thus, the hierarchical Seq2Seq with attention performs best in
all three perspectives. The attention mechanism helps the model directly connect the
semantic relationship between adjacent sentences while retaining higher-level con-
textual information.

Table 3. Example of generated lyrics. The blue text is the lyrics generated by the hierarchical
Seq 2Seq model with attention. Note that the first line “Homeland” is the title of the lyrics.

Table 2. BLEU scores of different models.

Model BLEU score

Seq2Seq 0.189
Hierarchical Seq2Seq 0.274
Hierarchical Seq2Seq with attention 0.288
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In order to make the evaluation result more objective, we also show the BLEU
result in Table 2. Obviously, the results of BLEU show the same trend as those of
human evaluation. The hierarchical Seq2Seq preforms better than Seq2Seq model and
the hierarchical Seq2Seq with attention performs better than the hierarchical Seq2Seq.
Compared with other area of text generation such as machine translation, the BLEU
results are very small. The reason is that the generated lyrics use different word
combinations to express the same meaning while each word of the text to be translated
often has a unique correct answer. Finally, a sample of generated lyrics is given in
Table 3. Those underlined and bold Chinese characters at the ending of sentences are
rhyming.

5 Conclusions

In this paper, we propose a novel hierarchical Seq2Seq model with attention for
Chinese lyrics generation. A large-scale Chinese lyrics corpus has been leveraged for
model training. Results of human and BLEU evaluation demonstrate the effectiveness
of this model owing to its sentence-level semantic encoding and attended to adjacent
sentences. Moreover, this hierarchical encoder method offers a promising approach of
context fusing for other NLG applications.
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China.
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Abstract. Natural Language Processing (NLP) is an important technology that
motivates the form of AI applications today. Many NLP libraries are available
for researchers and developers to perform standard NLP tasks (such as seg-
mentation, tokenization, lemmatization, POS tagging, and NER) without the
need to develop from scratch. However, there are some challenges in selecting
the most suitable library such as data type, performance, and the compatibility.
In this paper, we assessed five popular NLP libraries for performing the standard
processing tasks on datasets crawled from different online news sources in
Malaysia. The obtained results are analysed and differences of those libraries are
listed. The goal of this study is to provide a clear view for users to select the
suitable NLP library for their text analysis task.

Keywords: Natural language processing � Sentence segmentation �
Tokenization � Lemmatization � POS tagging � Named entity recognition

1 Introduction

Natural Language Processing (NLP) plays an important role in current AI applications
that require an understanding of human language such as contextual extraction,
machine translation, content categorization, and so on. Some of the most common and
practical examples of NLP-related applications are Google translate, Bing translate,
spam email filtering, customer services, and voice assistants (e.g. Alexa, Cortana, Siri
or Google Assistant).

Different libraries are available for researchers and developers to perform standard
processing of widely-spoken languages, such as sentence segmentation, tokenization,
part-of-speech tagging (POS), lemmatization and named entity recognition (NER).
Factors such as update frequency, cost integration, language support, and accuracy
performance need to be considered for implementing a robust application [1].

In this paper, wewill focus on the comparison between five popular NLP libraries that
are publicly available (i.e. CoreNLP,NLTK,OpenNLP, SparkNLP, and spaCy) to help in
sentence segmentation, tokenization, lemmatization, POS tagging, and NER tasks. In
summary, the selected libraries are reviewed and evaluated based on the choice of pro-
gramming language, license type, supported NLP tasks, and the algorithms used. The
results found using the pre-trained models of these NLP libraries are compare in detailed.

© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11672, pp. 289–294, 2019.
https://doi.org/10.1007/978-3-030-29894-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29894-4_24&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29894-4_24&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29894-4_24&amp;domain=pdf
https://doi.org/10.1007/978-3-030-29894-4_24


2 Common NLP Tasks

Table 1 lists the common NLP tasks and their dependencies/difficulties in processing.

Table 1. List of common NLP tasks.

NLP Task Description Difficulties/Dependencies

Sentence
segmentation

Divide a bunch of text into sentences - Language dependency: each written
language has its own sentence structure or
rules such as the full stop punctuation used
to end a sentence for Chinese (。) and
English (.) is in a different form and has a
different meaning in a context [2]
- Application dependency: there is no
absolute definition on what constitutes a
sentence and is relatively arbitrary distinction
across different written languages [2]
- Corpus dependency: a robust NLP
approach is needed with the increasing
number of text corpora that contain irregular
features, punctuation or misspelling that are
unable to be processed by algorithm that is
trained to process well-formed sentences [2]

Tokenization Break a sentence into tokens (words,
numbers or punctuation)

Difficulties in tokenization:
- Space-delimited languages (Latin
alphabet): Tokenization ambiguity exists
with the uses of punctuation such as
apostrophes, hyphen, commas, etc.
- Unsegmented languages (Chinese,
Japanese or Thai) do not contain word
boundaries or whitespace between each word
where additional lexical and morphological
information is needed while tokenizing these
languages [2]

Lemmatization Remove the inflectional ending of a word
to lemma

Lemmatization provides a better precision
are usually used to improve the performance
of text similarity metrics [3]

POS tagging Classify words in a sentence to the proper
morphosyntactic tags

The most common POS tagger for English
is the Penn Treebank tag set which contains
36 POS tags and 12 other tags [4]

Named entity
recognition

Identify unique entities and classify them
into predefined categories (e.g. person,
location, organization, etc.)

Linguistic grammar-based techniques show
a higher precision but lower recall and time
consuming for expert linguist to craft the
rules whereas statistical machine learning
models required large amount of annotated
training data [5]. Both methods suffer from
shortcomings on the maintenance and
development of large scale NER system [5]
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3 NLP Libraries

In this study, five NLP libraries (as shown in Table 2) are selected based on (i) the
availability of pre-trained model, (ii) the ability to perform the five common NLP tasks
mentioned above, (iii) the ability to process English language text, and (iv) the support
of Java or Python programming language.

Table 2. List of five popular NLP libraries. They all provide pre-trained models for the 5
common NLP tasks in Table 1, except that OpenNLP doesn’t support lemmatization.

Library Description Licence Language

Stanford
CoreNLP

Highly flexible and extensible. Can be used as an integrated toolkit
with a wide range of grammatical analysis tools and provides a number
of wrappers that can be used in various major modern programming
languages [6]

GPL v3 Java

NLTK Provides ready-to-use computational linguistics courseware. Contains
over 50 corpora and lexical sources such as Penn Treebank Corpus,
Open Multilingual Wordnet and a suite of text processing libraries for
almost all NLP [7]

Apache
v2.0

Python

OpenNLP Contains various components that enable user to build a full NLP
pipeline to execute respective NLP tasks, or train and evaluate a model
via its API [8]

Apache
v2.0

Java

SparkNLP A natural language processing library built on top of Apache
Spark ML. SparkNLP provides simple, performance & accurate NLP
annotations for machine learning pipelines that can be scale easily in a
distributed environment [9]

Apache
v2.0

Python

spaCy Designed specifically for production use which helps to build
applications that process a large volume of text [10]. spaCy can be
used to build information extraction or natural language understanding
system or pre-processing text for deep learning [10]

MIT Python

Table 3. The accuracy of 5 NLP libraries for sentence segmentation, tokenization, lemmati-
zation & POS tagging based on the annotated data.

Library #Sentences #Tokens Segmentation
(%)

Token.
(%)

Lemma.
(%)

POS
(%)

NER
(%)

CoreNLP 117 881 96.85 99.89 97.26 97.17 97.67
NLTK 111 871 96.85 96.69 82.67 92.45 94.43
OpenNLP 116 870 90.55 99.09 N/A 96.89 96.72
SparkNLP 150 881 74.16 98.97 96.01 93.56 93.08
spaCy 150 906 75.59 98.86 90.08 97.20 93.92
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4 Results and Discussion

We collected 171 news articles from Malaysian news sites from July to August 2018.
Images and unwanted symbols were removed. We then ranked these articles based on
the number of words, named entities, different sentence structure and punctuation used.
Finally, ten highest ranking articles were manually annotated and processed with
sentence segmentation, tokenization, lemmatization, POS tagging and NER.

Table 3 shows the results of these 5 NLP libraries on the 10 highest ranking news
articles. The results show that CoreNLP has the highest accuracy in four of NLP tasks
(segmentation, tokenization, lemmatization, and NER) and slightly (0.03%) worse than
spaCy on POS tagging. Table 4 highlights the differences between human annotated
results and these 5 libraries on processing the 5 common NLP tasks.

The available pre-trained models are unable to detect Malaysian named entities: they
were either left untagged or incorrectly tagged. Hence, we selected CoreNLP, OpenNLP
and, spaCy – the three best libraries on the other four NLP tasks – and retrained their
NER models using our local news dataset of 171 articles (80% training and 20%
testing). Table 5 shows the results of these three libraries on NER tagging. CoreNLP
and spaCy both reached an F-score of 0.78 whilst OpenNLP only scored 0.62.

Table 4. Detailed comparison of results processed by 5 NLP libraries and human. Results that
different to human annotation are bold.

Task Human CoreNLP NLTK OpenNLP SparkNLP spaCy

Tokenization “anti-graft” “anti-graft” “anti-graft” “anti-graft” “anti-graft” “anti”,
“-”,
“graft”

“KG-DWN-
98/2”

“KG-DWN-
98/2”

“KG-DWN-
98/2”

“KG-DWN-
98/2”

“KG-DWN-
98/2”

“KG”,
“-”,
“DWN-98/2”

“US$8.5mil” “US$”, “8.5”,
“mil”

“US”, “$”,
“8.5mil”

“US$”,
“8.5mil”

“US$8.5mil” “US$”,
“8.5mil”

Lemmatization “was” “was” “wa” “was” “was” “was”

“as” “as” “a” “as” “as” “as”

“MyEG
Services Bhd”

“MyEG
Services Bhd”

“MyEG
Services Bhd”

“MyEG
Services Bhd”

“MyEG
Services Bhd”

“myeg
services bhd”

POS
tagging

“co” (NN),
“-” (HYPH),
“founder” (NN)

“co-founder”
(NN)

“co” (NN),
“-” (HYPH),
“founder” (NN)

“co” (NN),
“-” (HYPH),
“founder” (NN)

“co” (NN),
“-” (HYPH),
“founder” (NN)

“co” (NN),
“-” (HYPH),
“founder” (NN)

NER “AirAsia”
(ORG)

“AirAsia”
(LOC)

“AirAsia”
(PER)

“AirAsia”
(PER)

“AirAsia”
(PER)

“AirAsia”
(LOC)
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5 Conclusion

Selection of the right NLP library is critical in developing an NLP-based application as
it affects the accuracy of analysis tasks. Our results showed that both CoreNLP and
spaCy produced higher accuracy than others. Between the two libraries, spaCy is
significantly faster than CoreNLP, up to 10 times faster on certain tasks. We hope that
our findings can help developers or researchers in selecting the right NLP library for
their tasks, saving them the time and effort to retrain and compare different libraries for
common NLP tasks.
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Abstract. Traffic sign recognition is a key function in driver assistant sys-
tems and autonomous vehicles. Several benchmark datasets had been pro-
posed to test the performance of various recognition models. However, two
related problems remained unsolved. First, whether the data samples are
enough to evaluate the performance of the proposed recognition models?
Second, whether data augmentation could be introduced to build better
benchmark datasets? To solve these two problems, we show in this paper
that some famous benchmark datasets can be further improved via appro-
priate data augmentation. Specially, we propose a feature-space data aug-
mentation algorithm that first determines an appropriate feature space for
the available data, then generates potentially useful new samples in the
feature space and finally maps these new samples into original spaces to
get new data samples. Numerical tests show that this algorithm helps to
increase the accuracies of recognition models.

Keywords: Traffic signs recognition · Benchmark datasets ·
Data generation

1 Introduction

Traffic sign recognition is a basic function of advanced driver assistant systems
(ADAS) and autonomous vehicles [23,26]. Prompt and accurate traffic sign recog-
nition enable drivers or autonomous vehicles to notify the change of road condi-
tions in time, so as to avoid making traffic accidents or violating traffic laws.

Various methods had been proposed to detect and recognize traffic signs.
For example, Adaboost method was applied in [3,5]; sparse coding models were
studied in [25]; supporting vector machines were used in [5,10]; extreme learning
models were examined in [15]; and convolutional neural networks (CNN) were
tested in [24,29,33].

Several benchmark datasets had also been proposed to test the performance
of these methods [13]. Testing results on these benchmark datasets indicate that
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some methods could recognize the given traffic sign data with an impressively
high accuracy. For example, it was shown in that [13] several recognition models
yielded more than 99% accuracy on testing datasets.

However, most existing approaches in this direction focused on model selec-
tion for traffic sign recognition and paid less attention to the data used for
training and testing. Particularly, few studies in this field thoroughly answer
the following question: Whether these data samples are enough to evaluate the
performance of the proposed recognition models?

That is, we are interested in whether the obtained recognition model had
been well trained to deal with various instances of traffic signs, based on these
limited data samples [14,22]. Notice that all existing recognition models are
data-driven, we may get insufficient models, if training data do not cover the
whole space of the traffic sign of interests.

If we found any existing benchmark dataset is not abundant for a thorough
test, another corresponding question can be naturally raised as: How to generate
more useful training and testing data from a limited number of sample data?

Such a question attracted great interests and received many efficient answers
[9,16,19]. Generally, we can categorized the approaches into two kinds: data-
space based data augmentation methods and feature space based data augmen-
tation methods. The first kinds of approaches directly change the data; while
the second kinds of approaches first retrieve the common features of the exist-
ing data points, then change the corresponding points in the feature space, and
finally map the changed points back into the data space.

In other words, feature space based approaches generate new data points that
share the same common features. For example, the recently popular Variational
Autoencoder (VAE)[19], Generative Adversarial Networks (GAN)[9], autoregres-
sive model [4], and Glow [18]. However, as we know, the deep generative model
based on deep neural networks is a black-box method [35], and it is not easy to
explain the process of a deep generative model of generating samples. According
to the Geometric view [21], we can regard these deep generative models as the
two process: one is the process of feature selection, the other is the process of
optimal transportation based on selected feature. This views can be good to
explain the process of generative model and need less demand of the hardware.
So why not we use the feature selection and optimal transportation to simulate
the process of generating samples?

However, for traffic sign testing problem, we aim to generate more critical
data points that are often rare event to sample but are crucial to build recognition
models. Existing approaches are not designed for this purpose and are thus
ineffective.

To solve these problems, we propose a feature-space data augmentation algo-
rithm using optimal mass transport that first determines an appropriate feature
space for the available data, then generates potentially useful new samples in
the feature space and finally maps these new samples into original spaces to get
new data samples. Numerical tests show that this algorithm helps to increase
the accuracies of recognition models. The rest of this short paper is arranged
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as follows. Section 2 explains the details of the algorithm. Section 3 gives some
numerical testing results based on the famous benchmark GTSRB datasets and
Sect. 4 concludes the paper.

2 Data Augmentation Methods

2.1 Data-Space Data Augmentation

Data augmentation usually refers to applying deformations to the labeled data
and meanwhile keep the semantic meaning of the labels unchanged [7,32].

In this paper, we had considered the following four widely used data-space
data augmentation:

1. Flip. The upper part and the lower part of the image are transformed with
the image horizontal central axis as the center axis.

2. Rotation. We rotate the image 30◦ clockwise according to the center point to
form a new image.

3. Scale. We used the closest interpolation algorithm to zoom up to twice the
size of the original image.

4. Crop. We only keep a quarter image of the center of the image center.

2.2 Feature-Space Data Augmentation

Notations. For presentation simplicity, in the rest of this paper, we define
F := {1, 2, 3, . . . ,D} as the feature set for D ∈ N. For a matrix L ∈ R

D×D, Lij

is its (i, j)-th component.
Given two discrete probability distributions over vector xxx, p(xxx) of sizes N and

q(xxx) of sizes M , ∀i ∈ {1, 2, 3, . . . , N},∀j ∈ {1, 2, 3, . . . ,M}, we define p(xi) and
q(xj) are the i-th competent of p(xxx) and the j-th competent of q(xxx) respectively.

We suppose get i.i.d. samples from these two probability distributions of sizes
N and M , respectively. We define P and Q are two histograms from samples
of p(xxx) and q(xxx) respectively, their discrete joint distribution is fij and

⋃
fi∗ =

P,
⋃

f∗j = Q [11].
Suppose the key features Sp from the discrete probability distributions p(xxx)

and the key features Sq from the discrete probability distributions q(xxx), the
space where Sp and Sq are located is Ω. The dimension of Sp is recorded as dSp

,
the dimension of Sq is recorded as dSq

, and the number of Sp and Sq is recorded
as α. In Ω, T is a self-mapping, the map T maps the key features Sp into a key
features Sq, is recorded as T ⊗Sp = Sq. To compute fast, we could introduce the
Frobenius dot product < ·, ·>F , for matrix A and B, < A,B>F = Tr(AT B),
where Tr(·) the function of the trace of the matrix.
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Feature-Space Data Augmentation Using Optimal Mass Transport.
According to the Geometric view [21], we can regard the deep generative model
as the two process: the first process is feature selection, the second process is
optimal transportation based on selected feature. Therefore, we can use the
feature selection method using Wasserstein distance to get the key features of
the input data and use optimal mass transport based on selected feature to
generate specific samples.

In the first process, we use feature selection method using Wasserstein dis-
tance to find a subset S of feature set F = {1, 2, . . . ,D} in which these two kinds
of distributions do not match.

We can define a distance/divergence matrix L ∈ R
D×D that estimates the

difference between p(xxx) and q(xxx) based on the available sampling data. Then,
we can formulate our problem as an optimization problem that seeks a sparse
approximation of matrix L [11]

min
S⊆F

∑

i,j∈S

Li,j − ||L||1, s.t.|S| = α (1)

where α is the pre-selected number of features, ||L||1 denotes the entrywise
1-norm of matrix L, |S| is the cardinality of S.

We can introduce the Wasserstein distance to estimate the difference between
p(xxx) and q(xxx). Specifically, we denote flow fji and define another all-zero his-
togram R to be the sum that is moved from the bin j in R to the bin i in P
[2]. Wasserstein distance between P and Q can then be defined as the minimum
total flow that is needed to make R to be equivalent to Q, can be written as

LWD = WD(p(xxx), q(xxx)) =

min
{fi,j ,i=1,2,3,...,n,j=1,2,3,...,m}

m∑

j=1

n∑

i=1

fijdij
(2)

where fi = pi, fj = qj . i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . ,m. dij is the distance
between the bins i and j. In this paper, we simply use the L1 distance, i.e.,
dij = |i − j|.

According [31], once we design matrix L, the problem (1) is seen as the
sparsest k-subgraph problem and we can find a suboptimal solution in polyno-
mial time.

By this process, we can get the selected feature to provide the input and
foundations for the next process.

In second process, we use optimal mass transport to transforms selected fea-
ture using previous process to specific samples. Specifically, the optimal mass
transport problem is to find a map that minimizes the inter-domain transporta-
tion cost [27]. On the basis of the statistical view of machine learning, we can
transform one space for all possible input data to another space. For Ω ⊂ R

n, let
us take the process of transforming the features Sp from p(xxx) to the features Sq

from q(xxx) to be an example to illustrate this process of optimal mass transport.
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Assume Ω have an equal total measure as
∫

Ω

dSp =
∫

Ω

dSq (3)

We aim to find a region to its own foem mapping (diffeomorphism), T :
(Ω,Sp) → (Ω,Sq). According to the theory of Gu et al. [20,21], T : (Ω,Sp) →
(Ω,Sq) is a unique optimal transport mapping. We transform initial probability
distribution Sp into target probability distribution Sq, T ⊗Sp = Sq. At the same
time, minimizing the transport cost,

Cost(T ) := min
T⊗Sp=Sq

∫

Ω

|x − T (x)|2dSp (4)

Otherwise, we can use the fast computer optimal transport method by Perrot
et al. [28] proposed to estimate the mapping of Eq.(4), it can be written as:

f(γ, T ) =
1

α × dSq

||T (Sp) − α × γ × Sq||22

+
λγ

max(C)
< γ,C>F

+
λT

dSp
× dSq

R(T )

(5)

where f(γ, T ) is the estimation function by Perrot et al. proposed, T (Sp) is a
short-hand for the application of T on each example in Sp, the parameter γ
to control the closeness between Sp and Sq, C is the cost matrix related to
the function Cost(T ), R(·) is a regularization term, λγ and λT are two hyper-
parameters controlling the trade-off between the three terms in (5).

We choose the �1�2 regularization [6] as R(·). According to the Perrot’s
advices [28], we define the value of λT , λγ are 10−2, 10−7 respectively.

By this process and previous process, we can get the specific samples by
controlling the parameter γ.

To sum up, our method contains three steps. Firstly, we use the feature
selection method to get the key features of the input data. Then, we use the
optimal transportation model [28] to simulate the process of generating samples
based on the key features of samples. Finally, we use the fast computer optimal
transport method (5) [8] to get final results. See Algorithm 1 below, where
the Feature-Select-Solution function is mentioned in Algorithm 2, the Solve-
Optimal-Transport function is mentioned in POT library [8] and Perrot’s method
[28].

3 Numerical Tests

We randomly select 2000 images from the traffic sign dataset [13] as original
dataset.
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Algorithm 1. Feature-Space Data Augmentation Algorithm Using Optimal
Mass Transport
Input: Parameter γ
Output: Generated Samples SamplePart

1: [SubP , SubQ] =Feature-Select-Solution(P, Q)
2: SamplePart =

Solve-Optimal-Transport(SubP , SubQ, γ)
3: return Generated Samples SamplePart

Fig. 1. The results of transforming speed limit 30 to speed limit 50 of the selected
features. From left to right, in turn, the original image of speed limit 30, the transport
result when the parameter γ is {10−5, 10−4, · · · , 104, 105}, and the original image of
speed limit 50.

Table 1. Contrast the results of the first experiment

Data Augmentation Method
Recognition Method

HOG+SVM NMF+KNN NMF+SVM PCA+KNN PCA+SVM

Data-Space Data Augmentation

Flip 45% 49% 56% 63% 64%

Rotation 45% 52% 60% 62% 70%

Scale 46% 56% 62% 64% 68%

Crop 47% 53% 57% 58% 60%

Our Methods 65% 67% 74% 84% 84%

Table 2. Contrast the results of the second experiment

Data Augmentation Method
Recognition Method

HOG+SVM NMF+KNN NMF+SVM PCA+KNN PCA+SVM

Data-Space Data Augmentation

Flip 50% 53% 57% 58% 63%

Rotation 48% 48% 56% 59% 59%

Scale 47% 55% 58% 61% 64%

Crop 50% 51% 55% 64% 72%

Our Methods 79% 82% 91% 95% 93%

We set the parameter γ in {10−5, 10−4, · · · , 104, 105}, and use the fast
computer optimal transport algorithm [8,28] to get the generated samples. For
example, the portion of generated samples is shown in Fig. 1. We choose clear
generated samples and mark them as the newly generated data.

To test whether the newly generated data bring benefit of traffic sign recog-
nition problems, we design the following test.
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First, HOG+SVM [34], NMF+KNN [17], NMF+SVM [12], PCA+KNN [1]
and PCA+SVM [30] are trained merely based on the original dataset provided in
GTSRB [13]. The obtained HOG+SVM [34], NMF+KNN [17], NMF+SVM [12],
PCA+KNN [1] and PCA+SVM [30] are then tested on the newly generated data.

Second, another HOG+SVM [34], another NMF+KNN [17], another
NMF+S–VM [12], another PCA+KNN [1] and another PCA+SVM [30] are
trained based on a mixture of the original dataset provided in GTSRB and
the newly generated data. The obtained HOG+SVM [34], NMF+KNN [17],
NMF+SVM [12], PCA+KNN [1] and PCA+SVM [30] are then tested on the
rest of data.

Finally, we compare their performance inTables 1 and 2. ForTables 1 and 2, it is
obvious that the recognition rate of the five models using our method is better than
others. It means our method is robust and effective for increasing the recognition
rate of traffic sign recognition.

4 Conclusion

Based on optimal mass transport theory, we have proposed a novel data aug-
mentation for traffic sign recognition. In our method, we have first got the key
features of the input data using the feature selection method and then trans-
formed the key features of input data using optimal mass transport theory. Our
method can generate any Wasserstein distance of generated samples that you
desire. We design the experiment of traffic sign recognition problem to prove the
effectiveness of the way to improve the performance of exacting methods using
generated samples. Our experimental results show that many simple methods
can improve their the recognition rate of special traffic sign recognition problem.

The above findings indicate that optimal mass transport theory might be
used as an effective alternative and explanation of intelligence test [22] in many
applications. We expect more attention could be drawn in this direction in the
near future.

A A Feature-Select Solution Based Wasserstein Distance

The Feature-Select-Solution function is shown in Algorithm 2.

Algorithm 2. Feature-Select-Solution

1: function DP(i)
2: for LWD[i] ≤ 0 do
3: if ∼ isempty(Sub[i]) then
4: Subtemp = Sub[i];
5: i = i + 1;
6: Sub[i] = DP (i)
7: end if
8: if Subtemp 	= Continue then
9: Sub ← Sub ∪ Subtemp
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10: return Sub
11: end if
12: end for
13: return Continue
14: end function
15: function Relevance Analysis(fij)
16: for i = 1 : 1 : N do
17: for j = 1 : 1 : M do
18: LWD(i, j) = fij ∗ |i − j|
19: end for
20: end for
21: end function
22: function Solve-K-SubGraph-Problem
23: Sub ← ∅, [N,M ] = size(LWD)
24: for i = 1 → max(N,M) do
25: Sub[i] ← DP(i)
26: end for
27: return Score vector Sub
28: end function
29: fij =Solve-Joint-Distribution(P,Q)
30: LWD =Relevance Analysis(fij)
31: Sub =Solve-K-SubGraph-Problem(LWD)
32: return Score vector Sub
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Abstract. Detection of anomalous patterns from traffic data is closely
related to analysis of traffic accidents, fault detection, flow management,
and new infrastructure planning. Existing methods on traffic anomaly
detection are modelled on taxi trajectory data and have shortcoming
that the data may lose much information about actual road traffic sit-
uation, as taxi drivers can select optimal route for themselves to avoid
traffic anomalies. We employ bus trajectory data as it reflects real traffic
conditions on the road to detect city-wide anomalous traffic patterns and
to provide broader range of insights into these anomalies. Taking these
considerations, we first propose a feature visualization method by map-
ping extracted 3-dimensional hidden features to red-green-blue (RGB)
color space with a deep sparse autoencoder (DSAE). A color trajectory
(CT) is produced by encoding a trajectory with RGB colors. Then, a
novel algorithm is devised to detect spatio-temporal outliers with spatial
and temporal properties extracted from the CT. We also integrate the
CT with the geographic information system (GIS) map to obtain insights
for understanding the traffic anomaly locations, and more importantly
the road influence affected by the corresponding anomalies. Our pro-
posed method was tested on three real-world bus trajectory data sets to
demonstrate the excellent performance of high detection rates and low
false alarm rates.

Keywords: Traffic ⋅ Anomalous pattern ⋅ Bus trajectory ⋅
Deep sparse autoencoder

1 Introduction

Detection of anomalous traffic patterns is to find out the traffic patterns which are
not expected but which are helpful for traffic management [10]. Anomalous pat-
terns in moving transportation carriers’ trajectories can reflect abnormal traffic
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streams on the transportation networks [13]. These patterns can be caused by var-
ious factors such as traffic accidents, traffic controls, parades, sports events, dis-
asters or other events. To our knowledge, existing trajectory-based traffic anoma-
lies/outliers detection methods are based on taxi trajectory data [3,7,13,16,19].
However, many accessible trajectory data sources of the bus have not been inves-
tigated for traffic anomalies probing. Bus service operates along almost all main
roads in metropolitan cities everyday, which facilitates commuters substantially.
Moreover, GPS has equipped bus with high-resolution positioning information,
which probes the city-wide traffic situations factually.

Models based on bus trajectory data have the following advantages: (i) As
public transportation carrier, there is not much risk of privacy leaking; (ii) Easy
to get access to the real-time bus data for many cities via API; and (iii) Each
bus service has its own regular route, bus trajectory is more independent of
the drivers’ preference, which can probe the real road traffic conditions. On the
contrary, taxi trajectory data may lose much information about traffic situation,
since taxi drivers can choose paths for themselves [6,20]. If a taxi driver gets
the traffic information ahead, the driver very likely chooses the optimal route to
avoid a foreseeable congestion, which may not get useful information regarding
anomalous traffic pattern discovery.

Our contributions in this research are summarized as follows:

1. We present a deep neural network architecture to extract deep hidden features
and devise a novel algorithm for anomalous traffic patterns detection.

2. We visualize features by mapping them into red-green-blue (RGB) color space
and conduct GIS map fusion for getting insights into anomalies regarding of
uncovering anomaly locations as well as impacts to road traffic.

3. We perform comprehensive experiments on three real-world data sets to con-
firm the effectiveness and superiority of the deep neural network architecture
on feature extraction, our proposed anomaly detection algorithm and insight
of anomaly.

2 Related Work

Anomalous pattern detection from spatio-temporal data is a popular topic in
the domain of data mining and knowledge discovery [13]. For anomaly/outlier
detection, principal component analysis (PCA) based methods [8], random pro-
jection [5], clustering based method [14] and one-class SVM [9] have been widely
adopted.

The study of road traffic anomaly detection has also been investigated in
many studies, most of which are based on city-wide taxi trajectories. Pang
et al. [16] have applied likelihood ratio tests which have been commonly used
in epidemiological studies to represent traffic patterns. Experiments on real taxi
GPS data show the accurate and rapid detection of traffic anomalies. Liu et al.
[13] constructed anomaly detection model by building a region graph from taxi
GPS data, where a node represents a region and the link between every two
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nodes denotes the traffic flow, and the extreme outliers can be detected from
graph links. Chawla et al. [3] used PCA to identify traffic anomaly form GPS
trajectory data based on their deviation from their respective historical traffic
profile. Zhang et al. [19] proposed an isolation based anomalous taxi trajectory
detection method and get high detection rate. Kuang et al. [7] employed wavelet
transform and PCA to uncover anomalous traffic events in urban areas using
taxi GPS data.

Apart from using taxi trajectory data, there are also a few papers utilizing
other kinds of data sources. Nguyen et al. [15] developed a real-time system
using social media (Twitter) data for traffic incident detection. Li et al. [11]
introduced a traffic anomaly detection algorithm based on the massive traffic
video. Riveiro et al. [17] constructed a visual analytics framework that employs
large amounts of multidimensional and heterogeneous road traffic data for traffic
anomaly detection.

Fig. 1. The workflow of anomalous traffic pattern detection and insight analysis.

3 Proposed Method

Figure 1 illustrates the overall workflow of our proposed method. First, feature
extraction is conducted by a deep learning method; and a color trajectory (CT)
is established and visualized for traffic anomalous insight analysis. Then, anoma-
lous patterns are uncovered by extracting spatial and temporal properties and
devised anomaly detection algorithm.

3.1 Feature Extraction and Visualization Using Deep Learning

We employ deep sparse autoencoder (DSAE) to extract hidden features, which
can also be used for bus trajectory visualization. A GPS trajectory trip T is
defined as

T = ((ϕ1, λ1, v1)T
, ⋅ ⋅ ⋅, (ϕN , λN , vN)T ) ∈ R

D×N (1)

where ϕ, λ and v denote latitude and longitude and velocity (unit: km/h), N
denotes the number of time series and D denotes the dimensionality. In this
study, we have D = 3.
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We also consider the impact of rainfall on traffic conditions, as the consensus
that heavy rainfall can significantly affect traffic flow characteristics and lead to
traffic congestion or even accidents. Therefore, we integrate trajectory data with
precipitation data ri (unit: mm/h) to get

Z = ((ϕ1, λ1, v1, r1)T
,⋯ ⋅ ⋅, (ϕN , λN , vN , rN)T ) ∈ R

(D+1)×N (2)

Before feeding the data to DSAE, data normalization and windowing opera-
tion are conducted. We set a time window size ω to move zi by one step along
the time axis, therefore, we have the windowed data as the network input X

xi = (ϕi, λi, vi, ri, ⋅ ⋅ ⋅, ϕi+ω−1, λi+ω−1, vi+ω−1, ri+ω−1)T ∈ R
4∗ω (3)

X = (x1, x2, ⋅ ⋅ ⋅, xNX−1, xNX
) ∈ R

(4∗ω)×NX (4)

where NX = N − ω + 1, ω is an integer and 0 < ω < N .
We feed X into the DSAE, which is a deep neural network stacked by many

sparse autoencoder (SAE). Each single SAE is lay-wise pre-trained before fine-
tuning of the whole network. Suppose the visible layer’s vector in the lth SAE
denotes v(l) ∈ R

DV ×NX , then we can get the hidden layer’s vector (h(l)) and
reconstruction vector (r(l)).

h(l) = tanh(W(l)
en ⋅ v(l) + b(l)

en) ∈ R
D

(l)
H ×NX (5)

r(l) = tanh(W(l)
de ⋅ h(l) + b(l)

de ) ∈ R
D

(l)
R ×NX (6)

where W(l)
en and W(l)

de are the weights of lth layer of encoder and decoder. b(l)
en

and b(l)
de are the biases of lth layer of encoder and decoder. The reconstruction

error is

min L
(l) = 1

2

�����h
(l) − r(l)�����

2

2
+ α (�����W

(l)
en
�����

2

2
+
������W

(l)
de

������
2

2
) + β ∑

D
(l)
H

j=1 KL (ρ∣∣ρ(l̂)j ) (7)

KL (ρ∣∣h(l̂)) = ρ log
ρ

ρ
(l̂)
j

+ (1 − ρ) log
1 − ρ

1 − ρ
(l̂)
j

(8)

where α, β and ρ are the preset parameters. ρ
(l̂)
j is the average activation of units

in the lth hidden layer.
We embed a 3-neuron layer as the output layer of DSAE to get 3-dimensional

hidden features, corresponding to red, green and blue channel in RGB color
space.

Y = (or, og, ob)T ∈ R
3×NY (9)

where NY = N−ω+1. Then we normalize the red channel or into range [0, 255].

R = Round ( or − min(or)
max(or) − min(or)

× 255) (10)
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In a similar way, we can also get the green channel (G) and blue channel
(B).

CT = (R,G ,B)T ∈ R
3×NCT (11)

where NCT = N−ω+1, and we call CT the color trajectory (CT) forementioned.

3.2 Anomalous Patterns Detection

For the ith complete trajectory, we have τi called trajectory representation.

τi = (NCTi
,CTi) = (NCTi

, (Ri,Gi,Bi)T ) (12)

where NCTi
is a temporal feature that reflects the trajectory duration. A longer

duration indicates a higher confidence that traffic anomaly might have occurred.
However, if a trajectory duration is located in a normal zone, there also might
be traffic anomaly happened.

We choose a trajectory representation τk as exemplar, which we recommend
to choose with small NCT , as it is more impossible to be anomaly. We define
s (τi, τk) as the similarity between CTi and CTk of exemplar. To calculate the
similarity, there is precondition that NCTi

= NCTk
. If NCTk

< NCTi
, we append

NCTi
−NCTk

points of white color (rgb(255, 255, 255)) to CTk. In that way, we
construct a new trajectory representation τj to make NCTi

= NCTj
, while the

temporal feature NCTk
keeps the same.

τj = (NCTk
,CTj) = (NCTk

, (Rj ,Gj ,Bj)
T ) (13)

Similarly, if NCTk
> NCTi

, we do the same processing on CTi. Then, the
similarity between CTi and CTk can be derived by Eq. (14).

s (τi, τk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
NCTi

n=1 ((Rn
i −R

n
k )

2+(Gn
i −G

n
k )

2+(Bn
i −B

n
k )2

2552+2552+2552 ) if NCTi
= NCTk

∑
NCTi

n=1 ((Rn
i −R

n
j )

2+(Gn
i −G

n
j )

2+(Bn
i −B

n
j )2

2552+2552+2552 ) if NCTi
> NCTk

∑
NCTk

n=1 ((Rn
k−R

n
m)2+(Gn

k−G
n
m)2+(Bn

k−B
n
m)2

2552+2552+2552 ) if NCTi
< NCTk

(14)

Suppose d
n
ab = (Rn

a−R
n
b )

2+(Gn
a−G

n
b )

2+(Bn
a−B

n
b )2

2552+2552+2552 , we introduce a small positive
threshold ε, if the similarity between two color points is smaller than ε, we
regard that they are the same and the similarity equals 0. Therefore, we have
Eq. (15) in Eq. (14).

d
n
ab = {d

n
ab if d

n
ab ≥ ε

0 if d
n
ab < ε

(15)

For the ith complete trajectory, we have

εi = (NCTi
, s (τi, τk)) (16)

where s (τi, τk) is a spatial property which reflects the spatial distribution of the
moving object. By mapping all ε to a two-dimensional space which we refer to as
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spatio-temporal plane here, we could categorize anomalous trajectories into two
categories: class 1 anomaly and class 2 anomaly. They are defined as follows:

Class 1 anomaly : An anomalous trajectory whose associated spatial and tem-
poral feature values are both different from both spatial and temporal feature
values of its spatio-temporal neighbors.

Class 2 anomaly : An anomalous trajectory whose associated spatial feature
value is very different from the spatial feature values of its temporal neighbors.

Spatio-temporal outliers points can be detected with devised anomalous traf-
fic patterns detection (ATPD) algorithm (Algorithm1), where steps 4 to 13
divide the whole observations into different candidature sets for different detec-
tion tasks (class 1 and class 2 anomaly detection) by adopting a threshold
NC . For class 2 anomaly detection, we employ Boxplot rule with a threshold

Algorithm 1. ATPD algorithm
1 Parameters: NC , δ, r, K;

2 Input: ε;

3 Output: C;
4 m ← 0, n ← 0;

5 for εi ∈ ε do
6 if NCTi

≥ NC then

7 m ← m + 1;

8 εC1(m) ← NCTi
;

9 else

10 n ← n + 1;

11 εC2(n) ← NCTi
;

12 end if

13 end for
14 for εC2(n) ∈ εC2 do

15 TN ← Temporal K neighbors selection (NCTn
, K);

16 S ← Get corresponding similarity set (TN, ε);
17 Q1, Q3 ← Compute the first and third quartile (S);
18 IQR ← Q3 − Q1;

19 U ← Q3 + δ ∗ IQR;
20 L ← Q1 − δ ∗ IQR;

21 if sC2(τn, τk) > U or sC2(τn, τk) < L then
22 CC2(n) ← True;

23 else

24 CC2(n) ← False;
25 end if

26 end for
27 for εC1(m) ∈ εC1 do

28 D ← Compute distance to the nearest spatio-temporal neighbor (εC1(m));
29 if D > r then
30 CC1(m) ← True;

31 else

32 CC1(m) ← False;
33 end if

34 end for

35 C ← Combine (CC1, CC2);
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δ to uncover anomalous observations (steps 14 to 26). Simultaneously, class 1
anomaly could be detected by computing Euclidean distance from the nearest
neighbor and employing a threshold r (steps 27 to 34).

3.3 Anomaly Insight Analysis

We combine Eqs. (1) and (11) together to construct color trajectory map (CTM)
by integrating CT with GIS map. Note that NCT < N as the windowing pro-
cessing introduced. We construct location vector li and location matrix L.

li = (ϕi, λi)T ∈ R
2 (17)

L = (l�����w−1
2

�����+1, l�����
w−1
2

�����+2, ⋅ ⋅ ⋅, l�����
w−1
2

�����+N−w, l�����
w−1
2

�����+N−w+1) ∈ R
2×NL (18)

where NL = NCT = N − ω + 1.
We combine the location matrix L and CT together to get

L′ = (L,CT) (19)

For each L
′
i, map color with value of (Ri,Gi,Bi)T to coordinate (ϕi, λi)T on the

GIS map. So that the CTM of a whole trajectory has been generated.

L′
i = ((ϕi, λi)T

, (Ri,Gi,Bi)
T
) (20)

Color trajectory (CT) and CTM are linked together via rgb value
((Ri,Gi,Bi)T ). By comparing the CT of an anomalous trajectory and non-
anomalous trajectories, the anomalous color with significant difference could be
found intuitively. Then, the anomaly happened location (road section) could also
be discovered on CTM intuitively.

4 Experiments and Analysis

In this section, we conduct extensive experiments for answering the following
questions:

Q1: Is ATPD effective while detecting all anomalies i.e. high detection rate?
Q2: Does our developed feature visualization method useful for capturing

anomaly locations and traffic impacts with detected anomalies using ATPD?
Q3: How does our proposed ATPD for feature extraction and anomaly

detection performs in comparison to the state-of-the-art anomaly detection
methods?
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4.1 Experimental Settings

Data Sets: We use the GPS trajectory data of bus Route 66, Route 50 and
Route 18 in Guiyang, China. All the data (including the local hourly precipita-
tion data) is available at Guiyang Open Government Data Platform [1]. All the
data are divided into training and test set: three months for training, and the
following one month for testing. Table 1 gives detail description of data sets.

Table 1. Data sets description

Route no Day type Whole

sample

Training

sample

Test

sample

Training set

period

Test set period Input

dimension

66 Weekend 486 324 162 1 Aug.∼ 31 Oct 1 Nov.∼ 30 Nov 118041 × 40

50 Weekend 1304 950 354 1 Aug.∼ 31 Oct 1 Nov.∼ 30 Nov 406030 × 40

18 Weekday

Off-peak

1117 824 293 1 Sept.∼ 30 Nov 1 Dec.∼ 31 Dec 238555 × 40

Parameters: The parameters are set as: (ω, α, β, ρ, ε) = (10, 10−5, 10−4,
0.05, 0.01) for all the data sets, as suggested by the literature work [12]. The
algorithm’s parameters are set as: (NC , δ, r, K) = (450, 2.2, 50, 2) for Route 66,
(NC , δ, r, K) = (500, 1.7, 50, 2) for Route 50 and (NC , δ, r, K) = (350, 0.9, 40,
2) for Route 18, with the understanding and trials from training set. Besides,
we employ a DSAE with four encoding layers with the dimensions of 40 → 20
→ 10 → 3 to get the three-dimensional hidden features.
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Fig. 2. Spatio-temporal planes of Route 66, 50 and 18. Objects inside □ are not with
high confidence to be regarded as anomalies, as their spatial and temporal features are
not far away from their spatio-temporal neighbors.



Detection of Anomalous Traffic Patterns and Insight Analysis 315

4.2 Result from Anomalous Patterns Detection (Answering Q1)

To evaluate this criteria we utilize the detection rate (precision) calculated as
TP/(TP + FN) and false alarm rate calculated as FP/(FP + TN) [18]. The
performance comparisons of our proposed ATPD versus popular baselines are
shown in Table 3, note that we transfer the anomalous observations in training
set to test set in order to enlarge the anomalous sample size for performance
testing. The proposed ATPD detects all anomalies with low false alarm rate.
Visualizations of spatio-temporal planes for Route 66, 50 and 18 are shown in
Fig. 2, where points are distributed along the tick ( ) with the pattern that
similarity s increases with NCT when NCT > NCTk

, while it decreases with NCT

when NCT < NCTk
. Moreover, at first glance, we can discern those anomalous

objects that are not located in the expected zones from the spatio-temporal
planes shown in Fig. 2. Also, in Fig. 2(a), anomalies #1 and #2 are referred
as class 1 anomaly as their spatial and temporal features are both far away
from their spatio-temporal neighbors, and so does anomalies #1, #2, and #3 in
Fig. 2(b). However, we regard anomaly #3, #4 in Fig. 2(a), #4, #5 in Fig. 2(b)
and #1, #2 in Fig. 2(c) as class 2 anomaly, as only their spatial features are
far away from their temporal neighbors. In general, class 1 anomaly has more
serious impact on traffic than class 2 anomaly, while class 2 anomaly is more
difficult to uncover.

The detected outliers by using our model are all coincide with the known
traffic anomalous events (Table 2). They are listed in the following:

Known event 1 : A sedan bumped another car at the Shachong East Road
in the late afternoon of 14 August 2016, the driver of the sedan ran away after
accident resulting in severe traffic congestion. Note that it was raining during
this time period and the event only affected services for Route 50.

Fig. 3. Insight analysis example of anomaly #1 in Route 66. (i) CTM of anomaly #1.
(ii) CT of anomaly #1. (iii) CT of an non-anomaly. (iv) CT of another non-anomaly.
(Color figure online)
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Known event 2 : A severe car crash (a SUV and a truck) happened in the
West No.2 Ring Road in the morning of 18 September 2016. Two men died and
one got injured. This event imposed impacts on Route 66 and Route 50 bus
services.

Known event 3 : Two cars crashed at a bus station near the Guizhou Can-
cer Hospital (West Beijing Road) around the noon on 26 November 2016. A
pedestrian died. This event only affected Route 66 service.

Known event 4 : A SUV crashed an electric motorcycle in North Wenchang
Avenue in the morning of 14 December 2016. Two riders on the electric motor-
cycle got injured while trapping under the vehicle. Only Route 18 service was
influenced by this event.

(a) DSAE (b) PCA (c) RP (d) SAE

Fig. 4. A color trajectory in Route 66 generated by methods of DSAE, PCA, RP and
SAE. The CT generated by our DSAE based method is the most smooth and distinct.
(Color figure online)

4.3 Result from Visualization and Anomaly Insight Analysis
(Answering Q2)

Figure 4(a) gives an example of the CT from a real-world bus trajectory. For
Fig. 4(a), the bus trajectory starts at color of yellow ■, with the bus proceeding
to the destination, the color changes gradually and finally terminates at blue
■. The horizontal axis indicates the trajectory duration (NCT , 1 unit equals 10
seconds, each row contains 100 units).

Table 2. Detected anomalies

Route Anomaly Date Running Time Event Category

66 #1 18 Sept. 2016 07:29-09:00 Event 2 Class 1 anomaly

#2 18 Sept. 2016 07:00-08:23 Event 2 Class 1 anomaly

#3 26 Nov. 2016 12:43-13:55 Event 3 Class 2 anomaly

#4 26 Nov. 2016 12:07-13:09 Event 3 Class 2 anomaly

50 #1 18 Sept. 2016 06:58-09:25 Event 2 Class 1 anomaly

#2 18 Sept. 2016 07:22-09:40 Event 2 Class 1 anomaly

#3 18 Sept. 2016 07:34-09:48 Event 2 Class 1 anomaly

#4 14 Aug. 2016 19:41-21:01 Event 1 Class 2 anomaly

#5 14 Aug. 2016 17:32-18:51 Event 1 Class 2 anomaly

18 #1 14 Dec. 2016 09:31-10:28 Event 4 Class 2 anomaly

#2 14 Dec. 2016 09:50-10:48 Event 4 Class 2 anomaly
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After detecting anomalous trajectory we can get the CTM of these trajecto-
ries by fusion of the GIS map (Eq. 20). We illustrate an anomalous trajectory by
taking the CTM of anomaly #1 for Route 66 as example as displayed in Fig. 3,
where in (i) denotes the actual event site. In contrast the CT of anomaly #1
(Fig. 3 (ii)) and non-anomalies (Fig. 3 (iii) and (iv)) we could have an intuitive
perspective that the anomaly might have occurred around light yellow ■ color.
Since, the trajectory part with such color is quite different from those of non-
anomalies. However, when it proceeds to color of grey ■, the rest partial colors
turn to be similar to those of non-anomalies. Therefore, we could infer that
the anomaly indeed happened at the locations highlighted between locations ■
and ■ in Fig. 3, which is in line with the real location ( ) of event 2. Apart
from location detection, we also provide influential insights to this car crash by
highlighting road between ■ and ■ (left bottom of Fig. 3).

4.4 Baseline and Comparison (Answering Q3)

Feature Extraction and Visualization: We compare our model with other
popular baselines in dimensionality reduction: PCA, random projection (RP)
and sparse autoencoder (SAE). In contrast the CTs generated by DSAE
(Fig. 4(a)) and baselines ((Fig. 4)(b) (c) (d)), we can find that DSAE gets a
more smooth and distinct color distribution. In Fig. 5, by comparing the spatio-
temporal planes derived by above baselines, we can find that none of these base-
lines can get favorable detection performance than the DSAE-based model on
all data sets. Some anomalies (especially for class 2 anomaly) are mixed together
with non-anomalies (#3, #4 in Route 66 with PCA and SAE, #4, #5 in Route
50 with RP and SAE, #1, #2 in Route 18 with PCA, RP and SAE), which is
quite difficult to detect. Moreover, many non-anomalies can be mis-detected as
outliers with high confidence (labeled in Fig. 5).

We define an evaluation index named averaged moving standard deviation
(AMSD) to evaluate the concentration of tick shape ( ) distributed data. We
employ a window size (κ) for windowing operation along NCT (horizontal axis),
compute the sample standard deviation of all normalized s (τij , τk) (denoted as
ŝ (τij , τk)) within each κ-sized NCT . Following this, we get the mean standard
deviation of all κ-sized NCT for AMSD. We remove those anomalous trajecto-
ries from training sets, and calculate the AMSD value of all the non-anomalies
derived from DSAE-based model and other baselines. In Fig. 6, our model per-
forms best in data sets of Route 66 and Route 18. RP can get fairly good per-
formance in Route 50, however, its performance in anomaly detection is poorly
as it mis-detected quite a number of points in Route 50.

AMSD = 1
m

m

∑
i=1

√
√√√√√⎷

1
ni − 1

ni

∑
j=1

(ŝ (τij , τk) − s̄i) (21)

Anomaly Detection: We also compare our model (ATPD) with other base-
lines that employed in outlier/anomaly detection: classification based (one-class
SVM, long short-term memory (LSTM) networks), clustering based (affinity
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(a) PCA (Route 66) (b) RP (Route 66) (c) SAE (Route 66)

(d) PCA (Route 50) (e) RP (Route 50) (f) SAE (Route 50)

(g) PCA (Route 18) (h) RP (Route 18) (i) SAE (Route 18)

Fig. 5. Spatio-temporal planes from baselines of PCA, RP and SAE.
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propagation (AP) clustering) and nearest-neighbor based (kNN) [2]. We also
feed the extracted features via DSAE into those baselines. The performances
are given in Table 3. Since there is no anomalous trajectory in Rout 18 training
set, supervised learning of SVM, LSTM and kNN cannot be conducted. Overall,
ATPD can get superior performance, SVM performs poorly since it might have
exploited inadequacies of the soft-margin maximization paradigm when handling
extremely imbalanced data [4].

Table 3. Comparison of performance in test set with baselines

Route Detection Rate False Alarm Rate

ATPD SVM LSTM AP kNN ATPD SVM LSTM AP kNN

66 100% 0 25.00% 50.00% 50.00% 0.63% 38.12% 0 12.50% 0

50 100% 0 20.00% 60.00% 60.00% 1.69% 51.98% 0 0 0

18 100% — — 0 — 3.09% — — 0.34% —

5 Conclusion and Future Work

In this paper, we proposed an anomalous traffic patterns detection method for
bus trajectory data analysis. We extracted spatial and temporal properties from
the color trajectory derived from deep learning method, and then devised an
algorithm based on Boxplot rule and nearest neighbor for anomalous patterns
detection. We integrated the visualized color trajectory with GIS map to gener-
ate color trajectory map, from which we can get intuitive insights into the loca-
tions of these anomalies and also the traffic influences to road by the correspond-
ing anomalies. Experiments on three real-world bus route data sets confirmed
the effectiveness and superiority of our proposed method compared with base-
lines of PCA, RP, SAE, SVM, LSTM, AP and kNN. Some cities have adopted
‘Bus Lane’ strategy for some metropolitan roads in certain periods to improve
the reliability and efficiency of bus services. In that case, our approach may not
be efficient to detect some city-wide incident-based anomalies, as the situation
that some incidents that affect other vehicles on the road might not affect buses.
However, from the perspective of bus service operation or management, such
situation does not make much sense, since those anomalies that impose little
impact on bus service will not be taken into account for decision making. In the
future, we plan to study the online approach based on the developed method-
ology for real-time traffic anomaly detection, which is essential as buses run on
almost all major roads of the city area.
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Abstract. To investigate, how a Robot ’s communication ability in terms
of explanations can cultivate better trust relationships between a Robot
and it's human teammates. We opted a partial information game-
playing environment, to immerse interaction between humans and a
Robotic Agent. We designed our Robotic Agent as a Knowledge-Based
(KB) Robotic Agent that does not play perfectly, but plays with sig-
nificant expertise and approximates well enough by updating it’s belief
all the time in a partially observable environment. We developed the
explanation-generation mechanism on top of the game that generates
meaningful explanations for the strategy of a game at a level that the
human teammates appreciate and understand. The generated explana-
tions adapt according to the game situation that can increase human’s
overall understanding of the task domain. We evaluated the individual
effectiveness of our KB Robotic Agent, by developing a Case Study with
the partial information game Domino. In a computational experiment,
our KB Robotic Agent played 10,000 game matches with other agents
and exhibited a reasonable winning rate. With this victory proportion,
we can conclude that our KB Robotic Agent captured and analysed all
available information intelligently and forecast the possible moves of the
opponents correctly.

Keywords: Trust · Explanations · Human-robot interaction

1 Introduction

The diverse and growing number of robotic application has created a significant
effect on human society [10], and a human’s interaction with a robot has evolved
from operator interaction to peer interaction. Yet, it has also generated different
challenges that require to be overcome before a human-robot team could work
successfully [5]. One of the primary challenges is to ensure appropriate levels
of human’s trust in a robot [1,6]. Trust is a challenging aspect for humans and
robots to perform together as a team [3]. Trends in the literature have shown that
if humans do not trust autonomous systems, the interaction between human and
system may suffer that ultimately leads to abortion of future interaction [4,7]. We
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argue that by augmenting a robot with the capability of providing explanations
can tailor human-robot interaction and make it possible for a human to trust a
robot. In human-human interaction, explanations serve to make something clear
and understandable and are given to change, clarify or impart knowledge. Sim-
ilarly, in human-robot interaction (HRI), explanations, by virtue of making the
performance of a Robot transparent to its human teammates, solve the challeng-
ing problem of human’s trust in robots. In this manner, hand-craft explanations
have also shown to be promising in providing enough transparency to humans [2].
Therefore, the research at hand rendering more human like approach by aug-
menting a robot with the explanations capability to establish a trust relationship
between human and a robot. We developed an HRI scenario in which a Robotic
Agent plays a partial information game with humans in teams (four players are
divided in two teams). The Robotic Agent plays a dual role, i.e., as an adversary
with two humans and as a team partner with a human. We selected a team-based
scenario, in which humans and a Robot interact and play together. We expect,
by supplementing the Robotic Agent with the explanation ability also help in
improving human-robot team performance.

1.1 Main Contributions of this Study

This study addresses four main contributions:

1. The development and implementation of a Knowledge-Based(KB) Robotic
Agent that can deal with the hidden information of a game.

2. Autonomous decision-making of the KB Robotic Agent to play a multi-player
strategy game with humans with significantly expertise by playing a dual
role, i.e. an adversary and a team partner.

3. The implementation details of the Explanation-Generation mechanism of the
KB Robotic Agent.

4. The evaluation of the individual effectiveness of the KB Robotic Agent, by
developing a Case Study with the partial information game Domino, which
has not been studied before in Artificial Intelligence (AI).

We chose Domino for our study because (1) environment in the game of
Domino is partially observable. (2) There is no explicit verbal communication
during the game in the environment. (3) It is also a multi-player team-based
game that requires teammates to develop trust in each other. (4) It is also
played in teams (in pairs) that adds an element of cooperation and competition
among teammates. We divided the paper into different sections. Section 2 shows
complete system architecture of our HRI scenario, by highlighting the main
components of our Knowledge Base Robotic Agent that generates autonomous
behaviour within the HRI scenario. Section 3 presents a Case Study with the help
of a partial information game Domino, to describe the performance evaluation
of our Knowledge Base Robotic Agent. Section 4 describes how our Knowledge
Base Robotic Agent generates different types of explanations.
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2 Complete System Architecture for HRI

Figure 1, shows the complete integration framework that organises all the main
modules involved in the HRI scenario.

Fig. 1. Complete architectural overview of our HRI scenario.

2.1 Detailed Overview of Our Knowledge-Based Robotic Agent

We created our Robotic Agent, as an intelligent “Knowledge-Based (KB) Agent”
which has three main modules.

1. The Knowledge-Based Module: On the implementation facet, the cen-
tral component of our KB Robotic Agent is the Knowledge-Base module that
incorporates an up-to-date repository of well organised data for the accurate
and quick response to other modules (i.e. Decision Maker module, Explanation
Generator module) for further computations. Its primary responsibility is to
store two types of knowledge. (1) Static Knowledge that includes rules, facts
and mechanics regarding the task1. (2) Dynamic Knowledge: Direct knowl-
edge of the task environment is inaccessible because of the partial observ-
ability. Therefore, the KB Robotic Agent uses Bayesian Inference to capture
the information regarding the task environment in terms of observations and
return those observations as belief states to the Knowledge-Base. Also, the
KB Robotic Agent updates its belief space after every new information is
revealed (Bayesian Updation).

1 Here task means game.
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2. The Decision-Maker Module: that gleans insight from the information
housed in the Knowledge Base and uses that information for doing all the
reasoning (decision-making) for the game-play according to some strategy.
To do so, the Decision-Maker module uses MinMax algorithm with Alpha-
beta pruning in it’s reasoning process to approximate well enough and make
inferences to provide a solution for a given problem based on the current state
of the game.

3. The Explanation-Generator Module: we adopt a human-in-the-loop
approach by augmenting the KB Robotic Agent with the capability of pro-
viding different types of explanations to make complex behaviour of the KB
Robotic Agent more understandable and intuitive for a human that will lead
to build the trust of the human on it’s KB Robotic Agent (see Sect. 4 for
details).

2.2 Behaviour Module

The Behaviour Module stabilises the decisions made by the Decision Maker
module by taking the final decided move from the Decision-Maker module and
produces an appropriate sequence of behaviour. The Behavioural Module uses
ROS (Robotic Operating System) that is predominantly used to interface with
the KB Robotic Agent itself, through the NAOqi framework2, is mainly respon-
sible for KB Robotic Agent’s physical behaviour according to game-play events
i.e., click and play.

3 Case Study

The remainder of this paper highlight the performance evaluation of our KB
Robotic Agent by developing a Case Study scenario with the help of partial
information game Domino. Before moving forward, first, we discuss the mechan-
ics of the partial information game Domino.

3.1 Mechanics of the Game Domino

The version of the Domino game is four players Pi (for i = 0,1,2,3), with some
partnering, where Pi is in the same team as Pj if i∼=j mod 2. We have our focus on
the “Block Type Game of Domino” in which a player can have only two choices
(1) to make a legal move by putting a tile with an endpoint matching one of
the open ends (either left or right) of the current board (2) Pass if the player
has no legal move, and turn will be forwarded to next player. Let S represents
a double-six set of 28 unique Domino tiles of the form: Suv = {u,v}, 0 ≤ u, v
≤ 6 and u can be equal to v. The total number of dots d of a Domino tile is
defined as d(Suv) = u + v. The game starts by setting a constant permutation
(Puv = π(Suv)) and at the start of each game, each player i gets seven random

2 NAOqi is the main programming framework, that runs on the robot and controls it.
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Domino tiles from the permutation {P8(i−1)+1, P8(i−1+2, . . . , P8i}. Players take
their turn clockwise. The first move of the first round must be made by the
player with the highest pips, i.e., (6,6). The 28 Domino tiles can also be labeled
as the edges E of the complete graph Kv on V = {0,1,2,3,4,5,6} including loops
(i.e., (v,v) is an edge in E for all v ∈ V). Domino is a non-deterministic game,
because of the random shuffling and dealting of tiles among four players at the
beginning of every game. However, the element of non-determinism is resolved,
after all players receive their HAND.3

3.2 Dynamic Knowledge Acquision

In the game, our KB Robotic Agent continuously updates it’s belief using
Bayesian Inference. (1) When it receives it’s HAND, before the start of every
game and (2) when any player makes a move or fails to make a move because
this changes the environment and reveals information about someone’s HAND
and strategy to play the game.

Bayesian Inference: Bayesian Inference derives a posterior probability as a
consequence of two antecedents, a prior probability and a likelihood function
derived from a statistical model for the observed data. Bayesian Inference com-
putes the posterior probability according to Bayes’ theorem:

Prob(H|E) =
Prob(E|H) Prob(H)

Prob(E)
(1)

where:

– Conditional probability has been denoted by (i.e., given with |)
– H stands for the belief whose probability may be affected by new data.
– the evidence E is an observation that is captured through a sensor
– Prob(H), the prior probability, is the probability of H before E is observed
– Prob(H | E), the posterior probability is the probability of H given E (after

E is observed)
– Prob(E | H), is the probability of observing E given H4

– Prob(E) is sometimes termed the marginal likelihood or model evidence.

Before the game begins, our KB Robotic Agent has some initial belief ahead of
time for certain regarding the position of 28 tiles among four players. The initial
belief is some previous estimation known as prior probability before gaining the
current evidence E. For each player Pi the initial belief is as: Prob(Hpi,(u,v)) =
1/4 (or 7/28) regarding the position of the 28 tiles among four players (discrete
probability mass function).

3 A HAND represents a set of seven tiles of a player.
4 In some literature, it is considered as sensor model, that is the probability of observ-

ing E given that H is true.
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Belief Updation After Every Player Received it’s HAND: After the
tiles are dealt among four players, our KB Robotic Agent Pi collects it’s seven
tiles and makes the fundamental belief for making a move as:

HPi,(u,v) = Player Pi is supplied (u, v) initially (2)

for all i ∈ {0, 1, 2, 3} and all edges (u,v) in E.
The KB Robotic Agent Pi learns by collecting it’s HAND and updates it’s

prior belief based on the tiles it received using Bayes’ theorem. The updation
of belief is after seeing the evidence E as: if Pi is given a tile (u,v), then
Prob(HPi,(u,v)) = 1, while Prob(Hpj ,(u,v)) = 0, for all j �= i. Similarly, if the
KB Robotic Agent Pi is not given a tile (u,v), then: Prob(HPi,(u,v)) = 0, while
Prob(HPj ,(u,v)) = 7/21 (or 1/3), for all j �= i.

Belief Space: Figure 2, shows a glimpse of belief space before and after every
player received it’s HAND. Our KB Robotic Agent is sure5 only about those
tiles which are in it’s HAND. As the game proceeds, the KB Robotic Agent gets
more information about the true state of the environment6 and updates it’s belief
space.

Fig. 2. Change in belief space before and after every player received it’s HAND.

BeliefUpdationWhenaPlayerPutaTile on theBoard: Let’s take a simple
example of the fundamental belief updation when a player j put a tile (u,v) on the
board. Now theKBRobotic Agent Pi has seen the evidenceE as:The player j holds
the tile (u,v). The KB Robotic Agent Pi has already some previous estimate in the
form of prior probability 1/3 (less than one) for the hypothesis (Hj = (HPj ,(u,v)),
for other players holding (u,v). Moreover, ourKBRobotic Agent Pi also knows that
he does not hold the tile (u,v) because it has already updated it’s belief for all those
tiles, it did not get as Prob(HPi,(u,v)) = 0 for all j �= i. Therefore, further evidence
that the KB Robotic Agent Pi does not hold the tile (u,v) will not change it’s belief

5 Sure means the belief computed after seeing the evidence, which is basically posterior
probability because it reflects the level of belief computed in the light of the new
evidence.

6 By keeping track of the moves played by each player including passes and the number
of tiles in other players’ HAND.
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and Prob(Hi = (HPi,(u,v)) will remain 0. Actually, Bayes’ theorem explains it that
our KB Robotic Agent already knows it doesn’t hold a tile (u,v) so any further
evidence that our KB Robotic Agent doesn’t hold it will not change it’s belief and
Prob(Hi | E) = 0 will remain same.7 Now, interestingly, our KB Robotic Agent
Pi will learn through the evidence E that when some other player j holds the tile
(u,v) then any other player k can not hold it. Bayes’ theorem explains it in this way
that if a player j holds the tile (u,v), then the player k could not have revealed it.
That is, the KB Robotic Agent will never observe that a player k holding a tile (u,
v). Therefore, the KB Robotic Agent updates it’s belief for any other player k as
Prob(E | Hk) = 0, and for player j who has revealed a tile (u,v) as:

Prob(Hj | E) =
Prob(E | Hj) Prob(Hj)∑

t=0,1,2,3 Prob(E | Ht)Prob(Ht)
(3)

Prob(Hj | E) =
Prob(E | Hj) Prob(Hj)
Prob(E | Hj)Prob(Hj)

= 1 (4)

This is because when t �= j, the KB Robotic Agent knows Prob(E | Ht) = 0.
It is impossible to see the evidence E, when some other player holds it.8

Belief Updation When a Player Passed it’s Turn for Making a Move.
Let’s take an example, when a player j passes it’s turn for a tile (u,v). Now, our
KB Robotic Agent Pi knows for sure that a player Pj is lack of having any tile
with a value matching to any of the open ends on the board (means having 0
probability). Therefore, it updates it’s belief for the player j as 0 for all those
tiles containing the number matching to any of the open ends on the board
and renormalises the probabilities pertaining to the other players for all those
tiles containing that particular number(s). However, the player who has more
unplayed tiles, has more chances of having a tile with that specific numbers
as compared to the player who has less unplayed tiles. Figure 3(b), shows an
example of Player 02 passed it’s turn for making a move, when there is number
6 on the both open ends of the board. The Player 03 has more unplayed tiles,
therefore, it has more chances of having a tile with the numbers 6 as compared
to the Player 01, who has less unplayed tiles. As the game proceeds and more
actual knowledge gets disclosed, the estimated belief space becomes true belief
space. Based on the player’s set of moves, Bayesian Inference not only allows
an implicit deduction of what a player’s tiles are but it also makes explicit
expectations over the tiles and gives observed information more accurately. The
KB Robotic Agent not only updates it’s belief space regarding the probabilities
of all other tiles pertaining to each player, but it can also estimate the location
of a tile by making prediction ie. how likely are the remaining unknown tiles
among other players (Bayesian Prediction).

7 Because it is the probability of the hypothesis given the observed evidence.
8 When Prob(E | H) is considered as likelihood, it is seen as a function of H with E

fixed. It indicates the compatibility of the evidence with the given hypothesis.
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Belief Space After the First Move and When a Player Passed it’s
Turn for Making a Move: Figure 3(a), shows the whole belief space is updated
after the first move and the probability of all other tiles have also been slightly
increased. Figure 3(b), shows when a player fails to make a move, the whole belief
space gets updated because it changes the environment and reveals information
about the HAND of the player who passed it’s turn. The probability also gets
bigger of any tile belonging to a player at the expense of more unplayed tiles
than one with fewer.

Fig. 3. Updation in belief space.

3.3 Decision-Making

The KB Robotic Agent uses MinMax algorithm with Alpha-beta pruning to cal-
culate the best possible moves. The KB Robotic Agent and his teammate rep-
resent max players and the opponents two players are min players. We used
standard MinMax algorithm and allowed each possible move’s score to be dis-
connected from their current probabilities by rounding them off to 1 and assign 0
to rest of the moves. This approach provided not only provided a simple heuris-
tic to estimate the position of few Domino tiles play but also permitted the
use of alpha-beta pruning algorithm, which optimises the MinMax technique by
adjusting the parameters towards the value of a more in-depth search and culling
the search paths that could not contribute to the final result. In this way, the
KB Robotic Agent estimates the order of some given Domino tiles by using the
approach for perfect information game. Rounding off to the nearest 0’s and 1's
is an approximation-space that leaves out a few states based upon the obser-
vations while keeping track of all possible sets of Domino tiles that have been
observed before. Given the current state of the game9, the KB Robotic Agent
determines what HANDS the other players could possibly have and returns the
best possible move10.

3.4 Evaluation of Our Knowledge-Based Robotic Agent

We present the performance comparison between our KB Robotic Agent with
other players based on how many rounds it wins/loses or draw against a team of
9 Open ends on the board, the sizes of all other players’ HANDS, moves played by

every player including passes and current belief space.
10 Choose an adequate tile to play.
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(1) Random players, who prefers to play random moves (2) Perfect Information
players, who are skilled enough and know everyone’s HAND during the game
through cheating. We played total 10,000 team-based games. Please note, for
the sake of simplicity, we call the Perfect Information players as the “Perfect”
player and our Knowledge-Base Robotic Agent as “KB” player.

First Simulation of Games: Team of KB Players vs. Team of Random
Players: In the first simulation of games, we partnered our KB player with
another KB player and played 5000 games against two Random players.

Fig. 4. (a) Game statistics. (b) Overall performance comparison of both teams.

Overall, the performance of our team of KB players maintained their highest
victory proportion in this short experiment of 5000 games, as shown in the Fig. 4.

Second Simulation Experiment: Team of KB Players vs. Team of Per-
fect Players. In the second experiment, our team of KB players played a total
of 5000 games against a team of Perfect players. The overall performance of our
team KB Players does not seem to be on the same par with the team of Perfect
players, who maintained their highest victory proportion. We not only account
for wins and loses between two teams, but we also investigated that the team
of Perfect players always turn out with positive score, even in the games the
team of Perfect players lost. The difference between our team of KB players and
the team of Perfect players is quite straightforward in the sense that the team
of Perfect players know every other player’s HANDS including the HANDS of
their team partner’s (Fig. 5).

Therefore, the team of Perfect Players have more chances of winning because
they compute all possible paths of the game from an initial configuration that
leads to success. Therefore, the only way for the team of Perfect Players to lose is
if one or both Perfect Players are dealt with a very bad HAND at the beginning
of the game(s).
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Fig. 5. (a) Game statistics. (b) Overall performance comparison of both teams.

Third Simulation of Game: Team of KB Players vs. Team of Random
Players - (Two Sets of Tiles Randomly Selected and Fixed:). In the
third simulation, we shuffled the tiles and randomly selected two sets of tiles.
The set of the selected tiles remained fixed throughout the game. However, the
position of the players exchanged. We gave both the teams an opportunity to
play with the same set of tiles. Basically, this simulation constitutes a HAND,
and we want to analyse the difference of the lost margin of both teams in terms
of the difference of the tiles left in each player’s HAND (Fig. 6).

Fig. 6. First set of tiles.

We observed that with the same tile-set, our team of KB players analysed
the open ends of the board more intelligently as compared to team of Random
players, and won both the games. We interpreted this to mean that, in the early
phase of the game where most Domino tiles are uncertain. Our team of KB
players had a potentially better deduction of what a player’s tiles are based on
their current set of moves (Fig. 7).
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Fig. 7. Second set of tiles.

4 Explanation Generator

There are five different goals of explanations i.e. Conceptualisation, Justifica-
tion, Learning, Transparency and Relevance [4,8,9] that provide with the fertile
ground of understanding why an explanation is required. For current work, we
mainly concentrate on Learning, Transparency and Justification goals of explana-
tions. Our Explanation-Generation mechanism provides support for generating
two possible types of explanations keeping in view different goals of explanations:

1. Static Explanations
2. Dynamic Explanations

Static Explanations (Goal of Learning): Static Explanations have a pre-
defined explicit goal of enhancing a human’s Learning by offering explanations
that differ between Declarative knowledge, i.e., what is the main purpose of the
game and Procedural knowledge, i.e., how to play the game. Static Explanations
which are central ones in our study are (1) Rules of the game (2) History and
facts about the game (3) Game-play Tips. Figure 8, shows Static Explanations
generation mechanism.

Dynamic Explanations (Goal of Transparency, Justification, Learn-
ing): Our method of generating Dynamic Explanations is meaningful for the
strategy of a game and is more like a goal-driven11, constrastive approach that
explains the cause of an event relative to some other event that did not occur.
The perspective of constrastive approach can motivate human that among all
available choices, the final decision made is best according to the current game
situation.
11 Which means based on the goal state, our KB Robotic Agent tracks back to find

the game state in which the decision was made. To do so, the KB Robotic Agent
basically leaves a reasoning trace behind a goal tree, which makes it possible to
answer questions about it’s behaviour (decision-made).
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Fig. 8. Static explanation-generation mechanism.

Fig. 9. Dynamic explanation-generation mechanism.
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Dynamic Explanations provide a human with the:

1. Transparency of how did the KB Robotic Agent make a decision and are
more towards how -type questions. An example of explanation contains goal
of Transparency is below:
Human : How did you decide this move?
KB Robotic Agent : “I played this tile to block my opponent for making a
move, because my opponent is lack of having a tile matching open ends of the
board”.
The human teammates’ can access Transparency of Knowledge Acquision sub-
module to verify whether the immediate opponent of the KB Robotic Agent
has passed his turn for any tile(s) or not by looking into Transparency of
Knowledge Acquision sub-module.

2. Justification for the underlying intended cause offering a reason in terms of
explaining the KB Robotic Agent ’s motive of the decision made and mainly
focus on why-type questions. An example of explanation contains goal of
Justification is:
Human : why did we lose the game?
KB Robotic Agent : “I did not have an excellent HAND to play the game, I
have to pass my turn more then once, so we lost the game. Better next time”.
The human teammates’ can access Transparency of Knowledge Acquision to
verify whether the KB Robotic Agent passed his turn or not.
Figure 9, shows Dynamic Explanations generation mechanism.

3. Dynamic Explanations also hold the capacity to improve a human’s learn-
ing12. An example of explanation contains goal of Learning is:
if it is Game 01 and the KB Robotic Agent plays the tile (6,6), then if the
human asks: Human : How did you decide to play this move?
KB Robotic Agent : “it is a basic rule to play the first tile with the highest
pips on the board. Therefore, I put this tile on the board”.
Human teammates learn a fundamental rule of playing the game.

4. Transparency of Knowledge Acquision: that provides a human with the con-
crete and individual segments of stored knowledge from the Knowledge Base.
The main segments are (1) raw sensor belief space (observations) of the KB
Robotic Agent that consists of objective facts about the environment. (2) The
known HANDS of the players in terms of complete and accurate record of
what moves have been played by players. (3) All other known public infor-
mation.13 (4) Information with all the HANDS of the players whose owner is
unknown14 and each time any player plays a move, it is removes from the set
of all HANDS.

12 We did not make strategies of playing the game, as a part of Static Explanations
because we want that the human teammates should learn different strategies by
observing the KB Robotic Agent’s way of playing (decisions).

13 For example, in the game Domino, pass information of a player (which player passes
it’s turn and on which tile number).

14 A complete set of 28 Domino tiles in terms of the “number” of tiles that left in each
player’s HAND.
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5 Discussion

In this paper, we discussed the design and implementation of an HRI scenario
in which a KB Robotic Agent plays a partial observable strategy game with
humans in teams and provides different explanations to its human teammates.
We mainly described the implementation details of our KB Robotic Agent and
it’s Explanation-Generation mechanism. We implemented the Robotic Agent as
a “Knowledge-Based” Agent that keeps a rapid update of knowledge to play
a partial information game with humans in teams. We developed Explanation-
Generation mechanism on top of the game that generates multiple Static and
Dynamic Explanations along with the Transparency of different components of
the Knowledge-Base mainly involved in the decision-making of the Robot. Static
Explanations are based upon rules and tips of playing the game. While Dynamic
Explanations provide insight into the KB Robotic Agent’s decisions, so that the
human teammates are better equipped to understand and therefore trust on
the KB Robotic Agent teammate. We evaluated the performance efficacy of our
KB Robotic Agent with a partial information game “Domino” against a team
of Perfect Information players and Random players. Overall, our team of KB
Robotic Agent game players won a remarkable number of games. We are hopeful
that our KB Robotic Agent will work better with a human as a teammate and
will also win a significant number of games against a team of human players.
We also included different game elements, i.e., number of games win/loss and
game score that not only reflect a teammate’s individual performance but also
encourage them to engage (cooperate and compete) and improve joint-team
performance. Our immediate next step is to evaluate this interactive scenario in
a lab experiment to gather data on how much a Robot ’s explanations influence
a human’s level of trust. We are hopeful that with the physical presence of a
Robot in the same human environment and the Robot’s enhanced capability
of communicating via explanations can upraise human’s stakes of trusting the
Robot.
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Abstract. There aremany economic losses due to the crowded andpoorly
managed traffic conditions in urban areas. In this regard, reinforcement
learning (RL) has emerged as a promising approach for optimizing urban
traffic control (UTC) based on the real-time traffic conditions. One of the
RL-based algorithms is Distributed W-Learning (DWL) in which each
agent has multiple policies and then this agent learns to optimize the traf-
fic light control (green, red and so on) based on these policies. In this con-
text, there are situations in which it is only necessary for the control agent
to achieve its own policy, and other situations where the priority must be
given to the performance of other control agents. As a result, DWL is able
to learn how to optimize the entire UTC. In addition, DWL has a mediator
that informs the control agents the traffic volume of each road, and these
agents learn based on that information. However, the limitation of DWL is
that it is based on Q-learning, therefore, it is difficult to optimize multiple
policies when the control area expands. In addition, because the action val-
ues are represented by tables, these tables grow exponentiallywhen applied
to large-scale action spaces. Likewise, the ability to adapt to new environ-
ments becomes poor. Therefore, in this paper, we propose an approach to
address this problem.Theproposed approachusesDeepQNetwork (DQN)
algorithm in order to optimize the traffic conditions more flexibly. The pro-
posed approach utilizes deep learning for value function approximation.
Therefore, the proposed approach has the advantage of being highly exten-
sible and capable of predicting an action in large-scale action spaces even in
unknown environments. The experimental results show the proposed app-
roach is capable of optimizing multiple policies of the UTC, efficiently.

Keywords: Reinforcement learning · Urban traffic control ·
Deep learning

1 Introduction

The population of the world as of 2019 is set to become 7.6 billion people. In addi-
tion, this population is estimated to be around 10 billion people by 2050. There-
fore, it is suggested that the number of people who utilize cars will increase expo-
nentially from now on. In order to solve this challenge, a rule based UTC system
called Split Cycle Offset Optimisation Technique (SCOOT) was proposed [3–5].
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A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11672, pp. 337–349, 2019.
https://doi.org/10.1007/978-3-030-29894-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29894-4_28&domain=pdf
https://doi.org/10.1007/978-3-030-29894-4_28


338 S. Kitagawa et al.

However, there is still a limit to the volume of traffic that can be optimized in
SCOOT, due to its reliance on a set of predefined rules, and due to the central-
ized nature of this system. On the other hand, multi-agent RL has proven flexible
and suitable to solve a wide spectrum of problems, especially those that require
cooperation among the control agents. Therefore, in recent years, UTC systems
based on multi-agent RL has attracted attention [15,16,18]. Because multi-agent
RL is very effective as an approach to optimize changes in complex and dynamic
environments such as real-world urban traffic control. In this regard, many opti-
mization approaches based on multi-agent reinforcement learning for urban traf-
fic control have been proposed [1,2,6,7,17]. One of these RL-based algorithms is
Distributed W-Learning. However, this algorithm has the problem of lack of scal-
ability, i.e., it does not scale well in the face of large-scale environments. Because
this algorithm is based on Q-learning so each control agent learns the action value
in a tabular format. Therefore, in order to overcome this challenge, we propose a
novel approach for UTC that fits large-scale environments using DQN. In this con-
text, DQN expresses the action value function by an approximate function rather
than a table. In specific, the proposed approach deploys six agents and each agent
has ten learning models to improve the traffic conditions. Therefore, the proposed
approach learns how to optimize the traffic conditions by learning models whose
total number is sixty. We evaluate the proposed approach using the multi-modal
traffic flow simulation software (VISSIM). Towards this end, a detailed map of the
road network around Nagoya Institute of Technology in Japan is used. In addition,
we use a set of records that shows the traffic volume in 2015 at Nagoya City, Japan
[19] for input. The experimental evaluation assesses the performance of the pro-
posed approach against the existing state-of-the-art approaches. In specific, those
experiments consider UTC optimization with three policies, which are improving
the traffic conditions of the entire cars, minimizing the stop time of the official vehi-
cles, and minimizing the stop time of the emergency vehicles.

The rest of this paper is organized as follows. Section 2 presents the prelimi-
naries and the challenges of modern UTC systems. In Sect. 3, we introduce the
proposed approach that is able to optimize UTC in large-scale environments
with multiple policies. Extensive experimental results are presented in Sect. 4.
Discussions of the proposed approach are presented in Sect. 5. Finally, the paper
is concluded in Sect. 6.

2 Preliminary

2.1 SCOOT

At the beginning, a system called SCOOT was proposed in order to control the
traffic in urban areas. This system, i.e., SCOOT, is a rule based system that
aims to optimize the flow of the traffic in urban areas using a set of predefined
rules. Towards this end, SCOOT changes the color of the of traffic lights (green
and red) when the traffic volume in each direction of a certain junction exceeds a
preset threshold. Since it depends on a predefined set of specific rules, SCOOT is
a system that lacks flexibility. In addition, SCOOT adopts a centralized system
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perspective which proved challenging in large-scale environments. Therefore, in
order to optimally control the large traffic volumes in urban environments, there
exists a pressing need for learning-based systems. These learning-based systems
are envisioned to learn rather than optimize, and hence, become flexible in the
face of dynamic traffic environments. In addition, these learning-based systems
are envisioned to show a form of cooperative behavior by distributing the control
among multiple nodes.

2.2 DWL

There are many endeavours for developing learning based UTC systems where
various data input formats are used. Among these endeavours, there is a UTC
system that aims to improve the traffic conditions based on the data input
from satellite images using convolutional neural networks (CNN) [11]. In addi-
tion, there are many other proposed systems to control real-time traffic volumes,
using several techniques including image processing, and remote sensing [12–14].
One notable implementation of the learning-based systems that is able to con-
trol traffic in dynamic urban environments is DWL [8–10,20]. DWL is based on
the action value learning strategy of RL, i.e., Q-learning. In this regard, DWL
is an algorithm that learns and utilizes the dependencies among the learning
agents, and the dependencies among the control policies in order to improve
the entire system performance. Towards this end, each control agent proposes a
certain action, that is selected by Q-learning, to its surrounding agents in order
to determine the group action, while placing a greater weight on the action of
the agent with the highest importance. This way, each control agent learns how
to cooperate and how to improve the entire system performance. Comparing
DWL to SCOOT, the traffic conditions have improved, as the traffic volume
per time unit is reduced, and it is demonstrated that the traffic conditions have
improved by 5% even when the traffic volume is high [9]. However, DWL has
many limitations. In specific, DWL takes time to learn the optimal control policy
because the reward given to the control agent is a constant value. In addition,
DWL does not take into account the change of the learning rate especially when
selecting an action. Moreover, given the fact that DWL is based on Q-learning,
the learning speed becomes slow once the control area has increased. Further-
more, with the increase in the number of learning policies, the state/action space
explodes exponentially and it becomes difficult to learn correctly. Besides, there
is another serious drawback, DWL can not estimate the best action in those sit-
uations that have not been experienced during the learning phase. Since DWL
is learning discretely with a table, it fails to predict the optimal action under
continuous traffic conditions. However, this problem can be solved by defining
action value as a function by using DQN. It can be assumed that there is a lin-
ear relationship between agent action and traffic conditions. Therefore, we think
that it is possible to estimate even if the traffic condition of the road becomes
unlearned situation.
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3 Distributed W-Learning with Deep Q-Networks

In order to overcome the limitations of DWL, this paper proposes a learning-
based approach that is able to optimize traffic control in large-scale environments.
Towards this end, the proposed approach employs DQN in order to estimate the
value function of the control agents, and therefore, it enables theses control agents
to adapt efficiently in continuous traffic control scenarios with multiple optimiza-
tion policies. The proposed approach is called Distributed W-learning with Deep
Q-Networks (DWDQN). This proposed approach, i.e., DWDQN, works as follows.

3.1 Overview

In this approach, we aim to improve the traffic control by optimizing the traffic
volume of each road. In specific, each agent in this approach has four choices (30,
40, 50, 60) as candidate actions. This action value represents the duration that the
traffic signal lasts. For example, if the action with the value 30 is selected to control
the green signal, the action of sustaining the green signal for 30 s is performed. In
this approach, each control agent presumably has three policies and needs learning
in order to optimize these policies. Figure 1 shows a description of the action selec-
tion of each DWDQN agent. It is important to note that the number of learning
models depends on the number of policies each agent needs to learn. For example,
the proposed approach assumes three models per policy to learn, and each of these
learning models is used to select an action. Therefore the total number of learning
models canbe represented by the number of control policiesmultiplied by three and
then added to the base learning model. For the purpose of urban traffic control, the
three control policies are set as in Table 1.

Fig. 1. Action selection of DWDQN

Table 1. Control policies of agents

Policy Feature

1 Optimize the entire traffic volume

2 Optimize the traffic volume of official vehicles (e.g., bus, taxi and so on)

3 Optimize the traffic volume of emergency vehicles (e.g., ambulance)
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As a result, the proposed approach, i.e., DWDQN, has ten models each of
which independently learns. These learning models can be divided into nine
models that learn control policies and a baseline model that learns choosing
the group action that coordinates among these policies. All of these models,
i.e., ten models, learn using Deep Q-Network (DQN). Therefore, these models
learn the approximate function of the action value. This means that even if
the area of traffic control is large, it is possible to scale the learning up. In
addition, the proposed approach assumes that the criteria for selecting a certain
action in UTC is linearly related to the traffic volume per time unit in a certain
place. In addition, learning the action value by approximate function improves
the learning efficiency. For example, when expressing the traffic volume at a
crossroad intersection as (a, b), where a and b represent the traffic volume in
each direction. In the case of (10, 100), the priority is given to the traffic on the
right side, i.e., 100. This also applies to the case of (10, 50). The consideration
here is how much time it takes to control the right side traffic. In other words,
it is enough to learn what to control while the duration of the green signal. On
the other hand, in the case of DWL, since learning is performed independently
for the action value between (10, 100) and (10, 50), the learning time becomes
exponential as the control area increases.

3.2 Learning Models

As mentioned above, DWDQN employs ten models for learning. The basic struc-
ture of these learning models is demonstrated in Table 2. In addition, each control
agent learns the optimal group action by linking these ten models. The types of
these learning models are listed in Table 3. In this context, each control agent
employs one G q model, one R q model, one w model in order to learn each
control policy, and only one baseline c model in order to learn the group action.

Table 2. Basic structure of learning models
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Table 3. Learning models for each agent

Model Feature

G q model This model is used to learn each control policy and is used when the traffic
light is Green. The state of this model is expressed by the tuple (a, b) which
represents the traffic volume of each junction. This model is employed by
each agent

R q model This model is used to learn each control policy and is used when the traffic
light is Red. The other settings are the same as G q model

w model This model is used to learn the weights among neighbor agents in each
policy. In specific, each agent is able to observe its neighbor agent selections
(the traffic light of junction). Therefore, this learning model increases the
weight of the action which improves the entire traffic performance. The state
of this model depends on the number of neighbor agents. For example,
Crossroads (+) is expressed by the tuple (a, b, c, d), T-junction is expressed
by the tuple (a, b, c) which represents the traffic volume of neighbor agents.
This model focuses on multiple agents

c model This baseline model is used to learn the relative weights of each policy. In
other words, this model is used to learn the concession degree of those
candidate actions. In this case, since the number of policies is three, the
candidate actions based on each policy are initialized with equal weights
(0.33, 0.33, 0.33). The concession degree is described by (Lines 6 to 14) in
Algorithm 3. In specific, DWDQN subtracts all the actions with the
minimum values among the candidate actions in order to define the
inclination among the respective policies as their importance degree. The
reason for adding base reward is to avoid setting the minimum value to 0.
Besides, if we know beforehand that a certain policy is important, we can
optimize more quickly by increasing the base weight value of this certain
policy. This makes it possible to make significant concessions like (0.8, 0.1,
0.1) among the control policies. For example, action 30 is selected for Policy
1, action 50 is selected for Policy 2, action 60 is selected for Policy 3 and the
weights of these policies are set as (0.7, 0.1, 0.2). In this case, the group
action is calculated as 30 × 0.7 + 50 × 0.1 + 60 × 0.2 = 38, this result is
rounded to 40 because the action space is defined as (30, 40, 50, 60)

3.3 Algorithm

The reason why the control agents use different learning models to control the
traffic lights in both the green and red modes is that we consider the following
situation. At the crossroads, where the action space that the control agent can
take is (30, 40, 50, 60), when the traffic volume in one direction is large, UTC can
be optimized with assuming the green light time is set to 30 s, and the red light
is set to 60 s. In other words, it is best to just take the reverse action selected
at the green signal. Therefore one learning model becomes sufficient. However,
if the traffic volume in the area to which the control belongs is low, optimizing
the entire system can be achieved by setting both the green signal and the red
signal to 30 s. In order to cope with such situations, it is necessary to learn each
model separately from both the green signal and the red signal. The proposed
DWDQN approach works, in details, as follows. The initial step is to initialize
each agent state and its reward value. This step is described in Algorithm 1.
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Algorithm 1. DWDQN Initialization of each agent
1: while Agents do
2: InitializeAgent.stateq(Pi states, Ai actions)
3: InitializeAgent.statew(Neighbor agents states)
4: InitializeAgent.statec(Pi states, Wi states)
5: InitializeAgent.reward
6: Agent.Green switch ← 0 � 0 means signal is red
7: end while

Firstly, each agent learns q model, w model, and c model, independently.
Then, each agent selects the candidate actions based on each policy. At this time,
each agent can learn the best action for each policy based on the q model and
w model. The detailed procedure for action selection is described by Algorithm 2.
In addition, Algorithm2 shows the detailed procedure for calculating the reward
value. In the proposed approach, cooperation is promoted among the control
agents. But, at the time of initial selection of candidate actions based on the
relative policy, local reward is multiplied by 10 in order to make a choice that
maximizes the utility of each control agent. In addition, the reason for adding a
base reward is that the learning agent can select actions with negative reward
values. In this context, it is important to note that the ReLU function is used to
perform normalization, but since this function may take a lot of negative values,
learning does not proceed if all the values are treated as 0. On the other hand,
adding a base reward reduces the part that was truncated as 0. In addition, the
reason to divide by max reward is to perform normalization so that DWDQN
can scale up especially in these scenarios where the size of the state/action space
is large.

Algorithm 2. DWDQN agent get action and get reward on each policy
1: function get action(current state)
2: Initialize(max index list)
3: while policies do
4: weight ← Agent.w model(current state)

5: q value ← Agent.q model(current state)

6: value ← weight × q value
7: max index list.append(max(value))
8: end while
9: return random.choice(max index list)

10: end function

11:
12: function get reward(previous state, current state)

13: reward ← ReLU(local reward × 10 + global reward + base reward)/max reward
14: return reward /* Reward function used for each models.*/

15: end function
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Finally, DWDQN learning algorithm works as follows. Each agent selects its
candidate actions based on each control policy. In the proposed approach, the
number of control policies is set to three so the learning agents receive three
candidate actions. Those candidate actions are weighed by the c model, and the
final action is decided. In this regard, each control agent proceeds through the
steps that are presented in Algorithm 3.

Algorithm 3. DWDQN agent select action step and learn step
1: /* While simulation in progress*/
2: while Agents do
3: while policies do
4: Agent.reward ← GET REWARD(previous state, current state)
5: Agent.Green switch ← convert(0, 1)
6: Agent.action p ← GET ACTION(current state)
7: � The action is candidate action on policy
8: Agent.memory append(previous state, Agent.action p,
9: Agent.reward, current state)

10: Agent.p weight ← Agent.c model(p state) − min p weight + base weight
11: end while
12: Agent.action ← Agent.action p1 × Agent.p weight(p1 state)
13: +Agent.action p2 × Agent.p weight(p2 state)
14: +Agent.action p3 × Agent.p weight(p3 state)
15: end while
16: /* Learning by DQN*/
17: while Agents do
18: replay experience(Agent.memory)
19: end while

4 Experimentation

We created and implemented a map that represents the area around Nagoya
Institute of Technology in VISSIM. In addition, we set the number of vehicles
based on the “27th National road/street traffic situation survey that was con-
ducted” by the Japanese government [19]. Besides, we implemented SCOOT,
DWL, and DWDQN in the road network in order to compare those algorithms.
The destination of each vehicle is determined by the simulator. The actually
implemented road network is represented in Fig. 2. As shown in Fig. 2, the num-
ber of signal/control agents is set to six and each agent can observe the conditions
of other neighbor agents. Therefore, Agent 1 in Fig. 2 can observe Agent 2, Agent
3 and Agent 6. Those conditions of neighbour agents are used when learning
w model. In this experiment, the traffic volume for 12 h is simulated by VISSIM,
and the traffic volume every 5 s in the simulator is recorded and compared. In
addition, we change the traffic volume in a scale from 0.5 to 1.5 in order to
confirm the robustness of UTC. In this context, the number 1.0 in Figs. 4, 5 and
6 means the simulated traffic volume is based on the actual traffic volume. For
the sake of evaluation, the average value of running the simulation 50 times by
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Fig. 2. Region to which the UTC is applied in this paper

each algorithm (SCOOT, DWL, DWDQN) is recorded and compared. In order
to avoid overfitting, we randomly increase or decrease the number of vehicles
deployed to each road by 20% each round we run the simulations. However, at
the initial step, the total number of vehicles, i.e., vehicle volume, is set as the
same. On the other hand, we set the required number of training epochs accord-
ing to each algorithm. However, given the fact that SCOOT is not a learning
based algorithm, so there is no training phase. In specific, in DWL, the number
of training epochs is set to 400 because the quality of the control/learning pol-
icy could not be improved beyond 400 training epochs. On the other hand, in
DWDQN, the number of training epochs is set to 200. It is important to note
that, at the initial stage, it was planned to set the number of training epochs to
400 for all learning algorithms, i.e., DWL and DWDQN. However, in DWDQN,
the obtained results seemed to overfit, therefore, we set the number of train-
ing epochs to 200 instead. Figures 4, 5 and 6 show the results using the actually
learned UTC policies. On the other side, Fig. 3 signifies the accumulated rewards
during the learning step. In this regard, we define the reward function using the
following equations.

p1 reward = total traffic volume (1)
p2 reward = official vehicle volume (2)
p3 reward = emergency vehicle volume (3)
reward = −(p1 reward + 2 × p2 reward + 5 × p3 reward) (4)

The reason for using multiplication when calculating the reward value is to
express the relative importance of each policy through multiplying by its weight
value. As shown in Fig. 3, after running around 120 training epochs, DWDQN
receives higher rewards than DWL, and it can be confirmed that DWDQN
achieves higher rewards also in the final learning results. On the other hand,
Fig. 4 compares the total traffic volume of each algorithm (Policy 1). As shown
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in Fig. 4, DWDQN achieves better results in all the three traffic volume situ-
ations (0.5, 1.0, 1.5). Between DWL and DWDQN, the result of conducting p
test, returns a p-value where p < 0.001, and it is significant. In addition, Fig. 5
compares the official vehicle volume of each algorithm (Policy 2). Please note
that DWL has the property that it cannot improve the official vehicle volume
compared to SCOOT when the traffic volume is large (1.5). This property has
also been confirmed in other recent studies [9]. Although it has a significance
test value with p > 0.05, we think the obtained result is acceptable, because we
set the priority of this policy to a relatively low value, i.e., 2.

Fig. 3. Accumulated rewards in learning step

Fig. 4. Total traffic volume per hour in
the UTC area

Fig. 5. Official-vehicle traffic volume
per hour in the UTC area

Algorithm SCOOT DWL DWDQN

0.5 23881 23100 23055
times 1.0 48809 47020 46127

1.5 78612 78037 76587

Algorithm SCOOT DWL DWDQN

0.5 1513 1497 1475
times 1.0 3123 3109 3011
.eps 1.5 5120 5137 4989

Furthermore, Fig. 6 compares the emergency vehicle volume of each algorithm
(Policy 3). Between DWL and DWDQN, the result of conducting p-test, returns
a p-value where p = 0.01, and it is significant. The reason we obtain better results
than Policy 2 is that we set Policy 3 with a higher weight, i.e., 5. Finally, Fig. 7
compares the total stop vehicle volume of each algorithm. In specific, the traffic of
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the entire UTC is recorded every 5 s, the number of stopped (velocity is 0 km/h)
vehicles is counted, and the results are shown in Fig. 7. This is an indicator that
measures how people actually perceive the improvement in traffic conditions. In
other words, this indicator can be regarded as an individual satisfaction metric
that is calculated when applying a certain control algorithm in order to control
large-scale traffic volumes. In this experiment, as well, it is clear that DWDQN
is able to obtain the best results. In specific, the p-test result is confirmed to be
very small and significant with p = 6.2e-12.

Fig. 6. Emergency-vehicle volume per
hour in the UTC area

Fig. 7. Stop-vehicle volume per hour in
the UTC area

Algorithm SCOOT DWL DWDQN

0.5 156 147 149
times 1.0 314 304 296

1.5 514 513 499

Algorithm SCOOT DWL DWDQN

0.5 5434 4404 4416
times 1.0 11933 9844 9195

1.5 21859 19836 18096

5 Discussion

We run the simulations 50 times in order to obtain the average of the experi-
mental results for each algorithm. In this regard, it is observed that DWDQN
has less dispersion than DWL, and therefore, good performance can be achieved
with high accuracy. Towards this end, the max, median, min and variance of
the obtained values from the experimental results are shown in Table 4. In addi-
tion, the obtained p value when comparing the total traffic volume of DWL and
DWDQN based on the actual traffic volume is p < 0.001. Moreover, as shown
in Table 4, it is clear that DWL has larger variance than DWDQN. This can be
attributed to the fact that DWL employs Q-learning as a baseline algorithm. As
a characteristic of the Q-learning algorithm, the agent can only learn the situ-
ation it has experienced once, so the control agent cannot optimize the traffic
well if it gets into a state of traffic that did not exist at all during the learn-
ing phase. Therefore, the learning agent has the possibility to select extreme
actions with negative reward values. Furthermore, if we increase the learning
time during the experimentation, it may reduce the variance of the results, but
this would also increase the possibility of overfitting. Therefore, we believe that
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it is difficult to stabilize the learning results any more beyond the settings in
the current experiments. In contrast, DWDQN is also based on RL, however, it
can be observed that its variance is small. In other words, DWDQN can adapt
for variable traffic conditions swiftly compared to DWL. On the other hand, in
the conducted experiments, in order to make it easy to compare DWDQN and
DWL, the agent’s action space is set to 4 choices (30, 40, 50, 60). However, this
action space is only a measure to ensure the learning efficiency by the Q-learning
agent used for DWL. Contrarily, in the proposed DWDQN approach, since the
action value is expressed by an approximate function, even if the action space is
made finer like (30, 31, 32, ..., 58, 59, 60), the learning efficiency is not lowered.
This means, DWDQN can further improve the traffic volume. Finally, regarding
the scalability, we run the conducted experiments while increasing the number
of control agents/signals to 2, 4, 6, respectively. In the future, we plan to exper-
iment the proposed approach with larger number of control agents. In terms
of the learning time, DWL suffered an increase in its learning time exponen-
tially. On the other hand, this exponential increase did not happen in the case
of DWDQN.

Table 4. 50 times experimental results

Algorithm SCOOT DWL DWDQN

Max 49659 48357 46697

Median 48960 46811 46130

Min 48076 46406 45803

Variance 563 556 261

6 Conclusion and Future Work

This paper proposes a novel approach for urban traffic control using multi-agent
deep reinforcement learning. The proposed approach employs DQN in order to
estimate the value function of the traffic control agents, and therefore, it enables
those control agents to adapt efficiently in lare-scale traffic control scenarios.
The experimental results has shown the efficiency of the proposed approach in
urban traffic control, especially with multiple optimization policies. Future work
is set to investigate the extension of the action space and the increase of the
number of control policies.
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13. Sochor, J., Juránek, R., Herout, A.: Traffic surveillance camera calibration by 3D
model bounding box alignment for accurate vehicle speed measurement. J. Com-
put. Vis. Image Underst. 167, 87–98 (2017)

14. Liu, H., Ma, J., Yan, W., Liu, W., Zhang, X., Li, C.: Traffic flow detection using
distributed fiber optic acoustic sensing. IEEE Access 6, 68968–68980 (2018)

15. Zhang, K., Yang, Z., Liu, H., Zhang, T., Basar, T.: Fully decentralized multi-agent
reinforcement learning with networked agents. PMLR (2018)

16. Omidshafiei, S., Pazis, J., Amato, C., How, J.P., Vian, J.: Deep decentralized multi-
task multi-agent reinforcement learning under partial observability. In: PMLR
(2017)

17. Ma, C., Hao, W., Wang, A., Zhao, H.: Developing a coordinated signal control
system for urban ring road under the vehicle-infrastructure connected environment.
IEEE, September 2018

18. Calvo, J.A., Dusparic, I.: Heterogeneous multi-agent deep reinforcement learning
for traffic lights control. In: AICS (2018)

19. MLIT homepage. http://www.mlit.go.jp/road/census/h27/. Accessed 16 Feb 2019
20. Dusparic, I., Monteil, J., Cahill, V.: Towards autonomic urban traffic control with

collaborative multi-policy reinforcement learning. In: ITSC, pp. 1–4, Decemeber
2016

http://www.mlit.go.jp/road/census/h27/


Limited Receptive Field Network
for Real-Time Driving Scene Semantic

Segmentation

Dehui Li1, Zhiguo Cao1, Ke Xian1(B), Jiaqi Yang1, Xinyuan Qi1, and Wei Li2

1 School of Artificial Intelligence and Automation,
Huazhong University of Science and Technology, Wuhan 430074, China

{ldh,zgcao,kexian,jqyang,silliam qi}@hust.edu.cn
2 Queen Mary University of London, London, UK

w.li@qmul.ac.uk

Abstract. Most existing real time semantic segmentation models focus
on leveraging global context information and large receptive field. How-
ever, these undoubtedly introduce more computational cost and limit
the inference speed. Inspired by the mechanism of human eyes, we pro-
pose a novel Limited Receptive Field Network (LRFNet) which achieves
a good balance between the segmentation speed and accuracy. Specifi-
cally, we design two sub-encoders: the fine encoder which encodes suf-
ficient context information, and the coarse encoder which supplements
spatial information. In order to recover high-resolution accurate outputs,
we fuse the features from the two sub-encoders followed by a lightweight
decoder. Extensive comparative evaluations demonstrate the advantages
of our LRFNet model for real-time driving scene semantic segmentation
task over many state-of-the-art methods on two standard benchmarks
(Cityscapes, CamVid).

Keywords: Neural network · Semantic segmentation · Real-time

1 Introduction

Semantic segmentation is about labeling all pixels of the whole image. It is
widely applied in applications that highly demand real-time inference speed for
fast interaction and response, such as autonomous driving, indoor navigation,
and virtual reality devices. Existing studies typically focus on learning global
context information via introducing heavy network structure [1–3] or achieving
comprehensive information aggregation using the large receptive field. As we
all know, the driving scene semantic segmentation task is inherently computa-
tionally intensive due to the notorious high resolution of input images, especially
when heavy network structures were widely chosen for better performance. Also,
large receptive field embedded in network blocks for useful information aggrega-
tion would definitely bring the difficulty of having high inference speed. There is

c© Springer Nature Switzerland AG 2019
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Fig. 1. Comparison of inference speed and mIoU on Cityscapes test set [5].

consequently an inevitable need for a better designed model for achieving good
balance of inference accuracy and speed for real-time driving scene semantic
segmentation.

In this work, we argue that it is unnecessary to incorporate global context
information and large receptive field for real-time semantic segmentation. As
mentioned in [4], humans cannot distinguish all the objects within the field of
view but can only distinguish a very limited area projected on the macula lutea
which is a small sensitive region on the center of retina. The structure of human
eyes indicates that the global information or large receptive field may be unneces-
sary in driving scene semantic segmentation. Inspired by this insight, we propose
the Limited Receptive Field Network (LRFNet). LRFNet can save a lot of cal-
culation by discarding the additional structure to acquire global information or
large receptive field. To figure out the influence of limited receptive field, we
visualize the empirical receptive field of LRFNet and LRFNet with additional
global structure. Our experiments demonstrate that they have the similar empir-
ical receptive field which is limited in a small region around the classified pixel
(Table 6), even though very large theoretic receptive field is adopted in the latter
network. These results are coincide with the human visual system. LRFNet is
very effective and efficient. Significantly, LRFNet achieves 70.2% mean IoU on
the Cityscapes [5] test dataset with speed of 91.0 FPS on a NVIDIA TITAN
Xp card, which gives the highest accuracy and one of the fastest speed among
real-time semantic segmentation networks. The accuracy and speed compared
with the exiting state-of-the-art methods are shown in Fig. 1.
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Our main contributions are summarized as follows:

– We rethink the global information of semantic segmentation and point out
the global information or too large receptive field is unnecessary especially in
broad view scene such as driving scene, since it brings a mass of redundant
information which will be suppressed by the network eventually.

– We design a novel semantic segmentation network using no global informa-
tion nor too large receptive field, i.e. the Limited Receptive Field Network
(LRFNet). Without the effort to acquire global information and the effort to
suppress the plenty of redundant information, LRFNet is of great effectiveness
and efficiency.

– We achieve state-of-the-art results on Cityscapes and CamVid dataset. More
specifically, we obtain 70.2% mean IOU on the Cityscapes test dataset with
the speed of 91.0 FPS.

The remainder of this paper is structured as follows. Section 2 discusses about
some related works on the task of semantic segmentation. Section 3 discusses
the model design of our work, including the motivation and the description of
LRFNet. Section 4 compares our work with state-of-the-arts, and then performs a
comprehensive set of experiments to figure out the influence of global information
and each element in LRFNet. Section 5 summarizes this work.

Input

Output

Input Output Input Output Input

Output

(a) U - shape (b) spatial pyramid pooling (c) global context path (d) ours

Fig. 2. Illustration of different network structure. (a) displays the U-shape structure.
This kind of networks downsample feature maps to very small size to acquire large
receptive field. Networks presented in (b) use spatial pyramid pooling to obtain multi-
scale information and large receptive field. (c) exhibits the multi-path networks among
which Context Path adopt global information. (d) demonstrates our proposed LRFNet.
All the first three kinds of networks use additional structure to gain global information
or large receptive field (emphasized with red boxes). By contrast, LRFNet uses no
additional structure to obtain global information or large receptive field and saves a
lot of calculation. Without too much redundant information, LRFNet can achieve high
performance with lightweight structure. (Color figure online)

2 Related Work

In this section, we introduce the related work in semantic segmentation, including
global information and real-time semantic segmentation.
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2.1 Global Information in Semantic Segmentation

Larger receptive field means more context information. Based on such hypothe-
sis, many networks use different kinds of structure to obtain global information
or large receptive field. U-shape like methods [3] used very deep networks to
downsample the feature maps to very low resolution to acquire large receptive
field. [6–8] used spatial pyramid pooling to obtain multi-scale information and
large receptive field. [1,2] used very deep Context Path to gain large receptive
field. [9,10] used global pooling or large kernel to get more context informa-
tion. However, these methods paid a lot of efforts to enlarge theoretic receptive
field superficially while taking no consideration of empirical receptive field. Our
experiments show that the empirical receptive field is much smaller than the the-
oretic one. The empirical receptive field will be limited in a small region around
the classified pixel even though very large theoretic receptive field is adopted
(Table 6). In other words, too large receptive field is unnecessary in broad view
scene such as driving scene, since a lot of redundant information will be brought
in by over large receptive field and the redundant information will be suppressed
by the network eventually.

2.2 Real-Time Semantic Segmentation

Semantic segmentation has achieved great progress in the recent works [6–8,11].
These networks achieved pretty high accuracy but paid little attention on effi-
ciency. [12] adopted ResNet [13] structure but used bottleneck to reduce com-
putation, which is one of the first networks aiming at semantic segmentation
in real-time. [14] designed an efficient spatial pyramid (ESP) module that uses
point-wise convolution in front of the spatial pyramids to reduce computational
cost. These two networks improved efficiency greatly but significantly sacrificed
accuracy. [15] employed a subset of ResNet [13] at three resolution levels which
were later combined to provide semantic segmentation results, but its complicate
structure brought quite a few computation. [1] used different branches to get con-
text and spatial information, respectively. In context path, they used pre-trained
backbone to downsample the feature maps to 1

32 and then used global pooling
to get global information. These operations bring a lot of redundant information
and consuming calculation, which eliminate the opportunity of higher accuracy
and faster speed.

3 Model Design

3.1 Motivation

Proper size of the receptive field is very important for real-time semantic seg-
mentation. Unlike existing networks taking global information or large receptive
field immoderately [1,6–10], we argue that over large receptive field is unnec-
essary for semantic segmentation especially in broad view scene. For example,
when to classify a pixel of a car (the yellow dot) from the surrounding region
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of the car (region within red box) in Fig. 3(a), it is unnecessary to compare the
information like the sky and trees in a large distance. This is similar to the mech-
anism of macula lutea (a sensitive region on the center of the retina) found in
the human eye system [4], which allows human can efficiently achieve this task
without taking the whole field of information.

Fig. 3. An overview of the Limited Receptive Field Network (LRFNet). (Color figure
online)

3.2 Limited Receptive Field Network

Armed by the insights above, we now propose the Limited Receptive Field Net-
work (LRFNet) that aims to discover and capture representative information
effectively and efficiently for the input driving scene image by incorporating
small receptive model units. This contrasts to most existing semantic segmen-
tation models typically using large receptive units or learning global informa-
tion with high-level semantics. The overall design of the proposed LRFNet is
demonstrated in Fig. 3(a). In general, we follow the standard encoder-decoder
[3] model design. Our model consists of three parts: (i) one coarse encoder, with
a shallow network design, to capture widespread spatial information, (ii) another
fine encoder, with deeper stacked blocks, to capture rich contextual semantics,
and (iii) a carefully designed decoder responsible for recovering segmentation
details and producing the accurate prediction after fusing the features of the
two encoders. Since no additional structure to acquire global information or
lager receptive field is introduced, LRFNet can save a lot of calculations. Also,
without redundant information, LRFNet is able to learn expressive representa-
tions with a lighter weight model structure.

Fine Encoder. We design a fine encoder (FE) to encode sufficient context infor-
mation. Specifically, FE has three downsampling stages as shown in Fig. 3(a),
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which consists of three downsample layers, two residual blocks and four dilated
residual blocks. Different from other networks [1,6–10], FE uses no additional
structure to encode global information or lager receptive field, which saves a lot
of calculation and makes itself very efficient.

Downsample Rate: Most exiting semantic segmentation networks attach great
importance to large receptive field or global information [1,3,6,8–10]. In these
networks, feature maps are downsampled to pretty low resolution, 1

32 of the input
size for example, and more convolution layers are employed which brings heavy
calculations. However, based on our motivation, instead of using large downsam-
ple rate to encode too much context information, the encoder of LRFNet only
downsample the feature maps to 1

8 of the input size which is much shallower
and much more lightweight than most exiting methods. Besides, more details
are reserved with small downsample rate.

Residual Learning: Traditional convolution layers only receive the information
from the previous one. Residual learning network add skip-connection between
nonadjacent layers to reuse features and improve gradient back-propagation dur-
ing training. This operation has been proven to be useful in many networks
[13,16]. Therefore, we adopt residual learning in LRFNet and name related lay-
ers as residual block (RB) which is shown in Fig. 3(b).

Dilated Convolution: Dilated convolution is another powerful tool used to encode
context information while retaining resolution of feature maps. Since we use finite
downsample rate, we adopt dilated convolution in the fine encoder to adjust
networks ability to obtain context information. It should be noted that these
dilated convolutions could be adjusted according to specific scenarios and tasks.
In this paper, we use dilated convolution in the last four convolution blocks of
the fine encoder which dilated rates are 2, 4, 8, 16, respectively. We call these
blocks as dilated residual block (DRB) which is shown in Fig. 3(c).

Coarse Encoder. On the other hand, coarse encoder (CE) is designed to pro-
vide accurate spatial information, and its objective is to refine the results of the
fine encoder. As shown in Fig. 3(a), coarse encoder has only three downsample
blocks and the feature maps will be downsample to 1/8 size quickly. Without too
much convolution processing to destroy the original spatial structure of image,
CE reserves spatial location information effectively.

Fusion. The outputs of fine encoder and coarse encoder complement each other.
We concatenate the outputs and then reduce them to fewer channels by an 1×1
convolution for subsequent processing.

Decoder. To get sufficient semantic information, the feature maps are down-
sampled to 1/8 of input size and lots of details are lost. Some methods used
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bilinear interpolation to upsample the feature maps to the input size directly
[1,15] which cannot recover the details. On the other hand, other methods used
heavy decoder in their models [3,17], which make their network inefficient. To
recover object segmentation details without reducing the efficiency of the whole
network, we propose a lightweight decoder which has only three upsample blocks
and two RBs as illustrated in Fig. 3(a).

Loss Function. The loss function is the sum of cross-entropy terms for each
spatial position in the output score map as shown in Eq. 1, where N is the pixel
number of feature map, i is the true class the pixel belongs to, pi is the prediction
on the true class position, and c is the number of classes.

loss =
1
N

∑

i

−log
epi

∑c
j=1 e

pj
. (1)

4 Experiments

Datasets and Evaluation Protocol. For evaluation, we used two standard
driving scene benchmarks Cityscapes [5] and CamVid [18]. We adopted the
standard semantic segmentation setting including the training/validation/test
image split (Table 1). Following previous works use the standard Intersection-
over-Union (IoU) metric for model evaluations.

Table 1. Evaluation protocol.

Dataset Image resolution # Train # Validation # Test # Classes

Cityscapes 2048× 1024 2,975 500 1,525 19

CamVid 960× 720 367 101 233 11

Implementation. We implemented our LRFNet in the PyTorch framework.
For optimization, we use Adam [19] with batch size 20, betas = (0.9, 0.999), and
weight decay 0.0001 during training. We employ the “poly” learning rate policy,
in which we set base learning rate to 0.0005 and power to 0.9. The epoch is set to
300 in ablation studies and 600 in final results reported in Sect. 4.1. Noted that,
we trained our model from scratch in all experiments. The unlabeled pixels are
ignored. For a fair comparison, the speed test reported in this paper is evaluated
on PyTorch and performed on a workstation with NVIDIA TITAN Xp cards.

4.1 Comparison to State-of-the-Arts

Evaluation on Cityscapes. Table 2 shows the comparisons of LRFNet against
13 existing models on Cityscapes. On this dataset, the best mean IoU is 82.1%
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with extremely slow speed (3.7 FPS) achieved by DeepLabv3+ [8], which ben-
efits a lot from heavy ImageNet pre-trained backbone and additional coarse
label supervision. Our LRFNet can provide around 24 times (91.0/3.7) speed
gain while getting considerable performance (70.2–82.1). Also, it is evident that
LRFNet outperforms the fastest model ESPNet [14] in terms of mean IoU by
9.9% (70.2–60.3) with only 3.9 FPS (94.9–91.0) drop. These validate the clear
superiority of our LRFNet in balancing the inference speed and performance for
real-time driving scene semantic segmentation.

Table 2. Evaluation results on Cityscapes test set. “Sub”: the downsampling factor
of the input images. “ImN”: ImageNet dataset (Deng et al. 2009). “coa.”: the coarse
annotation set of Cityscapes dataset. “PaC.”: the Pascal Context dataset. Since all the
mean IoUs are reported at full resolution (2048 × 1024), the time of upsampling the
outputs to full resolution is counted if the input images are downsampled.

Method Publication Extra data Sub Pre-trained model mIoU (%) FPS

FCN8s [20] CVPR’15 ImN+PaC No VGG16 65.3 5.1

SegNet [17] T-PAMI’17 ImN 4 From scratch 57.0 19.4

PSPNet [6] CVPR’17 ImN+coa. No ResNet50 78.4 1.8

ICNet [15] ECCV’18 ImN No PSPNet50 69.5 16.8

denseASPP [7] CVPR’18 No No DenseNet161 80.6 2.1

DeepLabv3+ [8] ECCV’18 ImN+coa. No Xception71 82.1 3.7

ENet [12] CVPR’17 No 2 From scratch 58.3 50.8

SQ [21] NIPSW’16 ImN No SqueezeNet 59.8 30.0

ERFNet [22] T-ITS’17 No 2 From scratch 68.0 50.2

BiSeNet [1] ECCV’18 ImN 4
3

Xception39 68.4 53.8

ESPNet [14] ECCV’18 No 2 From scratch 60.3 94.9

EDANet [23] arXiv’18 No 2 From scratch 67.3 66.4

ContextNet [2] BMVC’18 No No From scratch 66.1 67.4

LRFNet (ours) - No 2 From scratch 70.2 91.0

Evaluation on CamVid. We evaluated the performance of LRFNet against
7 competitors on CamVid, a more challenging dataset with much fewer train-
ing images (CamVid: 367 vs. Cityscapes: 2,975). This generally carries out an
unavoidable challenge to the deep model training, especially when no auxiliary
data pre-training is available. Table 3 shows that LRFNet still achieves the best
performance under the setting of real-time inference, surpassing the 2nd best
ICNet [15] by 1.2% (68.3–67.1) in terms of mean IoU with significant 34.4 (80.4–
46.0) higher FPS. Also, LRFNet can gain 11.7% (68.3–56.6) higher mean IoU
compared with the fastest ESPNet [14]. Importantly, it is worth pointing out
that the performance advantage of our model is achieved by the proposed model
design rather than knowledge transferring. For example, the best model PSP-
Net50 [6] relies on the heavy ResNet50 backbone [13] (pre-trained on ImageNet),
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whilst LRFNet is only 0.8% (69.1–68.3) lower in terms of mean IoU and about
15 times (80.4/5.3) faster in terms of FPS.

4.2 Further Analysis and Discussions

We further studied three components that affect the performance on the
Cityscapes dataset: global information, fine and coarse encoders, and decoder.
More specifically, we used the Fine Encoder (shown in Fig. 3) as our baseline.
All of the following experiments are evaluated on Cityscapes validation set.

Influence of Global Information. We studied the influence of global infor-
mation by incorporating an extra global structure shown in Fig. 2(c) with our
LRFNet. Table 4 shows that global information can bring slight gain in terms
of mean IoU by 0.58% (71.23–70.65) while resulting in significant speed drop
(54.7–91.0). This indicates that global information or large receptive field is not
so important in high-resolution image segmentation such as driving scene. We
also visualized the empirical receptive field using the method proposed by [24].
As shown in Table 6, the empirical receptive field of global network is similar

Table 3. Evaluation results on CamVid test set.

Method Publication mIoU (%) FPS

SegNet [17] T-PAMI’17 52.4 14.8

SQ [21] NIPSW’16 60.2 24.3

PSPNet50 [6] CVPR’17 69.1 5.3

ENet [12] CVPR’17 60.0 51.0

ICNet [15] ECCV’18 67.1 46.0

ERFNet [22] T-ITS’17 64.4 43.9

ESPNet [14] ECCV’18 56.6 96.9

LRFNet (ours) - 68.3 80.4

Table 4. Evaluation of global informa-
tion.

Downsample rate mIoU (%) FPS

4 48.53 147.3

8 (LRFNet) 70.65 91.0

16 71.43 69.8

32 71.29 56.2

32 with global pooling 71.23 54.7

Table 5. Performance comparison of
each component in LRFNet. FE: Fine
Encoder; CE: Coarse Encoder.

Method mIoU (%)

FE (A) 62.53

FE+CE (B) 63.35

CE+Decoder (C) 45.10

FE+Decoder (D) 69.70

FE+CE+Decoder (E) 70.65
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to the network without global information, and it is limited in a small region
around the classified pixel even though the theoretic receptive field is across all
the picture. This means that the global network learns to focus on the crucial
region while suppressing the irrelevant region, which coincides with the physio-
logical structure of human eye. In other words, the additional structure to get
global information in network is in vain since a lot of information the additional
structure brings in is redundant and will be suppressed eventually.

Influence of Different Downsample Rates. We compared the mean IoU
and FPS on Cityscapes dataset under different downsample rates. The com-
pared results in Table 4 show that the downsample rate of 16 achieves the best
performance, surpassing LRFNet by 0.77% (71.42–70.65) in terms of mean IoU
with significant 22.1 (91.0–68.9) lower FPS. To achieve a balance between mean
IoU and speed, the downsample rate of 8 is adopted in LRFNet.

(a) ground truth (b) LRFNet w/o decoder (c) LRFNet (d) ESPNet-2-8 (e) ENet

Fig. 4. Examples of predictions. Yellow boxes indicate the differences between LRFNet
and LRFNet without decoder. Green boxes show the differences compared with other
real-time semantic segmentation networks. (Color figure online)

Table 6. The empirical receptive field of
car, sky and pole.

Table 7. Examples of error maps.
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Complementary of Fine and Coarse Encoders. We evaluated the com-
plementary effects of our jointly learned fine and coarse encoders by comparing
their independent performance against that of the dependent. Table 5 shows
that a performance gain is obtained from the joint feature representation of
both encoders. To further investigate how does the CE can bring the benefit of
enriching information learned from inputs, we compared some prediction error
maps of Model D (without CE) and E (with CE), as illustrated in Table 7. These
examples indicate that the model with CE makes less error near the objects edge
since CE can capture more accurate spatial information.

Importance of Decoder. Since a lot of details are lost in downsampled fea-
ture maps, we use a decoder in LRFNet to recover more details from the coarse
prediction. To investigate the effectiveness of the decoder, we evaluate its per-
formance and compare the results in Table 5. Apparently, decoder gains higher
accuracy of network. Also, we exhibit some comparative predictions in Fig. 4.
From the qualitative results, we observe that the predictions of network without
decoder are much coarser and lost a lot of details as indicated with yellow boxes.

5 Conclusion

In this paper, we rethought global information and too large receptive field for
semantic segmentation. Inspired by human eye systems, we proposed a novel
architecture named Limited Receptive Field Network (LRFNet). LRFNet is
lightweight by discarding the additional structure to acquire global information
or very large receptive filed. We lucubrated with experiments to figure out the
influence of limited receptive field in driving scene semantic segmentation. We
found that global information or very large theoretical receptive field is unnec-
essary, since the empirical receptive field is limited in a small region around the
classified pixel even when the theoretical receptive field is across all the image.
In other words, LRFNet is still effective in driving scene semantic segmenta-
tion with limited receptive field. We achieved state-of-the-art performance on
two standard benchmarks (Cityscapes and CamVid). Specifically, we achieved
70.2% mean IoU on the Cityscapes test dataset with speed of 91.0 FPS on a
NVIDIA TITAN Xp card, which is the highest accuracy and one of the fastest
speed among real-time semantic segmentation networks.
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Abstract. Fog computing is a promising Internet of Things (IoT)
paradigm in which data is processed near its source. Here, efficient
resource allocation mechanisms are needed to assign limited fog resources
to competing IoT tasks. To this end, we consider two challenges: (1) near-
optimal resource allocation in a fog computing system; (2) incentivising
self-interested fog users to report their tasks truthfully. To address these
challenges, we develop a truthful online resource allocation mechanism
called flexible online greedy. The key idea is that the mechanism only
commits a certain amount of computational resources to a task when
it arrives. However, when and where to allocate resources stays flexible
until the completion of the task. We compare our mechanism to four
benchmarks and show that it outperforms all of them in terms of social
welfare by up to 10% and achieves a social welfare of about 90% of the
offline optimal upper bound.

Keywords: Mechanism design · Fog computing · IoT ·
Resource allocation

1 Introduction

The Internet of Things (IoT) is developing rapidly, and it is estimated that by
2025, 22 billion active devices will be in the IoT (Lueth 2018). Since it is impos-
sible to let the often low-powered IoT devices perform all computing tasks, some
of which are highly computationally demanding, a common solution is to com-
bine IoT and cloud computing (Doukas and Maglogiannis 2012; Sajid et al. 2016).
However, cloud computing alone cannot satisfy all the computing requirements
from the IoT (Bonomi et al. 2012). The main reason is that transferring all the
data from the IoT to the cloud to analyse requires a huge amount of bandwidth,
and many IoT applications, such as autonomous vehicles, augmented reality and
virtual reality, need very low latency, which cloud computing cannot guarantee.
Consequently, fog computing has been proposed to make up for these shortcom-
ings (Bonomi et al. 2012). In simple terms, the key difference is that the fog is
c© Springer Nature Switzerland AG 2019
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closer to the IoT devices than the cloud (CIS 2015). To make the most of the
fog resources and maximise the efficiency, good resource allocation mechanisms
for fog computing are needed. However, unlike cloud computing, fog computing
cannot ignore bandwidth constraints because it is common to send large volumes
of traffic between IoT devices and fog nodes (FNs). Another difference is that
many tasks in the fog are time-oriented, which means that they need a certain
amount of computational time to achieve their maximum value, but they can
still achieve part of the value if they are allocated less time. For example, sup-
pose a user wants to run a video surveillance application with facial recognition
to surveil their shops for 24 h. In this case, the large volume of video streams
from the cameras in their shops will be sent to a nearby FN instead of a remote
data centre to do the compute-intensive analysis. Furthermore, it is still of value
to them if the surveillance lasts less than 24 h, say, 18 h.

To address these challenges, researchers have proposed many resource allo-
cation mechanisms for fog computing (or similar computing paradigms such
as cloud computing, edge computing or geo-distributed clouds) in order to
save energy, reduce cost or improve quality of service (Aazam and Huh 2015;
Cardellini et al. 2015; Gu et al. 2018). However, most of these mechanisms were
not specifically designed for settings where users act strategically to maximise
their utility (e.g., users may misreport higher value for their tasks to increase
their chances of acceptance). To address this problem, some researchers have
proposed truthful mechanisms that incentivise users to truthfully reveal their
private information. However, these approaches cannot be applied directly to
our model due to subtle but important differences. For example, several truthful
mechanisms are designed to schedule tasks in the cloud (Wang et al. 2012; Lucier
et al. 2013; Wang et al. 2015; Chawla et al. 2017; Zhu et al. 2018). However,
they all assume single-minded agents (i.e., agents who do not get any value for a
partially executed task). In addition, the model by Lucier et al. (2013) assumes
that each task requires a certain amount of resource to complete rather than a
certain running time, which is very different from the time-oriented tasks in the
fog. Furthermore, Zhang et al. (2015) and Shi et al. (2017) also propose truthful
mechanisms for single-minded users in a geo-distributed cloud, and they assume
users can specify all the details about the placement of resources among data cen-
tres for their tasks, which is not very practical mainly because users rarely have
the knowledge of the system structure. Finally, Hayakawa et al. (2018) intro-
duce the price-based mechanisms for homogeneous resource allocation, whereas
there are several heterogeneous resources in the fog. So their resource allocation
framework needs to be adapted in this case. In addition, we choose online greedy
(OG) and Social Welfare Maximisation Online Auction 2 (SWMOA2), which are
adapted from mechanisms in (Wang et al. 2012; Shi et al. 2017) respectively, as
the state-of-the-art benchmarks that we will evaluate our mechanism against.
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In this paper, we are the first to address these shortcomings. Specifically,
we design dominant-strategy incentive compatible (DSIC) and individually ratio-
nal (IR) mechanisms for realistic fog settings to maximise social welfare1. DSIC
mechanisms guarantee that regardless of others’ behaviours, users always max-
imise their utility by reporting truthfully. Furthermore, under an IR mechanism,
no user will get a negative utility by participation. Such mechanisms provide two
major benefits. First, they can elicit the true information about the tasks. Sec-
ond, fog users do not need to invest their resources into optimally manipulating
their bids to increase their utility. In addition, we focus on improving social
welfare in this paper and leave the objective of maximising the fog provider’s
revenue to future work.

To design a truthful mechanism which addresses these problems, we signifi-
cantly extend the framework proposed by Hayakawa et al. (2018) to our problem
model. This is because their resource allocation model is similar to ours, and they
show that a well-defined price-based mechanism can achieve high efficiency. In
brief, we extend the state of the art as follows:

– We are the first to formulate the resource allocation in fog computing (RAFC)
problem as a constraint optimisation problem that considers the bandwidth
constraints and allows flexible allocation of virtual machines (VMs) (i.e., emu-
lations of real computers that contain all the necessary elements to run fog
tasks) and of the bandwidth. We also show that it can be modelled as an
online mechanism design problem where a fog user requests an amount of
usage time with a given resource configuration.

– We design a DSIC and IR online mechanism called flexible online greedy
(FlexOG) for RAFC and show by extensive simulations, that it achieves a
social welfare better than that achieved by the state-of-the-art benchmarks
(up to 10%) and is close to the offline optimal value (around 90%).

The remainder of the paper is organised as follows: In Sect. 2, we propose a
formal model of the RAFC problem. In Sect. 3, we present our proposed resource
allocation mechanism as well as other benchmark mechanisms. In Sect. 4, we
show the results of simulations and evaluate the performance of our mechanism.
Finally, in Sect. 5, we conclude the paper.

2 The Fog Resource Model

We briefly describe our model of RAFC. The fog computing system is owned
by a fog provider. It contains a set P of geo-distributed FNs and a set L of
locations, which are interconnected through a set E of data links, as shown in
Fig. 1. Furthermore, there is a set El of IoT devices in each location l. An IoT
device (e.g., a smart TV, surveillance camera, smart speaker or smartphone)
is denoted as e ∈ El. Every FN p ∈ P has a set R of limited computational

1 We define social welfare as the difference between the value of all fog tasks and the
operational costs of all fog tasks.
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Fig. 1. General view of a fog computing system.

resources (e.g., CPU, RAM and disk storage). Moreover, there are Ap,r units of
type r ∈ R resources in FN p, and the unit operational cost of resource r in
FN p is op,r. In addition, the bandwidth capacity and the unit operational cost
of link (j, k) ∈ E are bj,k and oj,k respectively. For simplicity, we assume that
the bandwidth capacity and unit bandwidth costs are symmetrical for all links
(i.e., bj,k = bk,j , oj,k = ok,j , ∀(j, k) ∈ E). FNs and data links together offer their
resources to satisfy the needs of fog users. In particular, we assume that VMs can
be created in an FN to run fog tasks as long as there are enough computational
resources in that FN, and the total resource requirements of several virtual
machines are just the sum of their resource requirements. Furthermore, the fog
provider controls the resource allocation of the fog through a central control
system, which is a server that receives reports of tasks from fog users, makes
decisions of how to allocate resources and executes them through control links.

Fog users with tasks arrive over time and I denotes the set of all tasks. Note
that we adopt a continuous time system, but the tasks can only start execution
at discrete time steps, denoted by the set T = {1, 2, . . . , |T |}. Each task i ∈ I
is owned by a user, which is also denoted as i for simplicity. In addition, the
arrival time of task i is T a

i ∈ [0, |T |], which is the time when user i becomes
aware of its task i, and the time interval that the task can run is from its
start time T s

i to its finish time T f
i . Here, we assume that no tasks arrive at the

exact same time. User i reports its task’s type θ̂i (as defined in the following)
at time T̂ a

i to run a certain application (e.g., a video surveillance application
or a picture processing application). We assume that user i wants to know the
number of time steps t̃i it will get and the payment p̃i for its task also by time
T̂ a

i because users want to run the tasks locally or elsewhere if their tasks get
rejected. The operational cost of task i is denoted as oi, which is the sum of costs
of all resources allocated to task i, including the cost of bandwidth. Furthermore,
we also assume that every task only requires one VM to run but may require
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connections to several IoT devices e ∈ E (in the same location or in different
locations) because this is common in an IoT system. Users are also assumed to
be stationary, which means that the IoT devices of users do not change locations
over time. Furthermore, we also assume VMs can migrate between FNs and the
migration costs are negligible, and all tasks are preemptible, which means that
they can always be paused and resumed. Finally, we focus on one type of task
called time-oriented tasks (e.g., video surveillance and video processing tasks),
which are common in fog computing. Such a task i needs a certain capacity
of resources for a time length ti to get its full value, but can still get part of
the value if the processing time is less than ti. Formally, the type of task i: θi

is a tuple (T a
i , T s

i , T f
i ,vi, {ai,r}r∈R, {Γ i

l }l∈L), where ai,r denotes the amount of
resource r ∈ R required, and Γ i

l denotes the bandwidth demand between its VM
and location l ∈ L. For simplicity, bandwidth demands are symmetrical. That
is, Γ i

l denotes both the bandwidth demands to and from location l ∈ L. In this
paper, the valuation function vi = {vi,0, vi,1, . . . , vi,ti

}, where vi,t is the value
when task i gets usage time of t time steps and ti denotes the usage time needed
to get the full value of the task. We make a mild assumption that the value
monotonically increases with usage time (i.e., vi,t′ ≥ vi,t′′ ,∀t′ ≥ t′′). We choose
this type of valuation function because it corresponds to many applications in
the fog, which achieve better results as processing time increases. Moreover, the
reported type of task i: θ̂i is a tuple (T̂ a

i , T̂ s
i , T̂ f

i , v̂i, {âi,r}r∈R, {Γ̂ i
l }l∈L), and θ̂〈t〉

denotes the set of all reported types until and including time t.
Now, a key assumption in our work is that users are strategic, so θ̂i may not be

equal to θi. Moreover, we assume limited misreports (Nisan et al. 2007) based on
the nature of our problem (i.e. T̂ a

i ≥ T a
i , T̂ s

i ≥ T s
i , T̂ f

i ≤ T f
i , âi,r ≥ ai,r, Γ̂

i
l ≥ Γ i

l ).
This is reasonable because a user cannot bid for a task before it becomes aware
of it, and cannot bid a looser time constraint (T̂ s

i < T s
i or T̂ f

i > T f
i ) because the

provider can check whether i is ready to run at T̂ s
i and withhold the results for

i until T̂ f
i . So bidding T̂ s

i < T s
i will be detected and penalised by cancelling the

task and bidding T̂ f
i > T f

i will get no value. Finally, user i will not misreport a
lower resource requirement because its task cannot run in that case.

Next, when receiving the bid θ̂i for task i, the fog provider will decide the
resource allocation scheme λi to this task, how much usage time t̃i will be allo-
cated, and the payment p̃i right away because of the assumption we made ear-
lier. Formally, the fog provider solves a constraint optimisation problem, and
the decision variables are: (1) {zi

p,t ∈ {0, 1}}i∈I,p∈P,t∈T , indicating that the VM
of task i is placed in FN p (zi

p,t = 1), or not (zi
p,t = 0) at time step t. (2)

{f i
l,p,j,k,t ∈ R

+}i∈I,l∈L,p∈P,(j,k)∈E,t∈T , indicating allocation of the bandwidth on

each link for task i at time step t. (3) p̃i(λi, θ̂
〈T̂ a

i 〉) ∈ R
+, denoting the payment

of task i, which is a function of the allocation: λi and all information received
by T̂ a

i : θ̂〈T̂ a
i 〉. So, for task i, its usage time t̃i =

∑

p∈P,t∈T

zi
p,t, resource allocation

scheme λi = {zi
p,t}i∈I,p∈P,t∈T ∪ {f i

l,p,j,k,t}i∈I,l∈L,p∈P,(j,k)∈E,t∈T and its utility is

ui = vi(t̃i) − p̃i(λi, θ̂
〈T̂ a

i 〉). The objective function of this optimisation problem
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maximises the social welfare:

maximise
λi

∑

i∈I

vi(
∑

p∈P,t∈T

zi
p,t) − o (1)

where o =
∑

i∈I,r∈R,p∈P,t∈T ai,rz
i
p,top,r +

∑
i∈I,l∈L,p∈P,(j,k)∈E,t∈T 2oj,kf i

l,p,j,k,t

The constraints of the optimisation problem include resource constraints in
the fog system and time constraints for fog tasks. Please refer to Bi et al. (2019)
for details on these constraints. This is a mixed integer linear programming prob-
lem, and we use the IBM ILOG CPLEX optimiser to solve it in our simulations.

3 Allocation Mechanisms

In this section, we present the details of the mechanisms used in this paper.

3.1 Price-Based Mechanisms

First, we introduce a class of online resource allocation mechanisms called price-
based mechanisms that guarantee DSIC and IR for our resource allocation prob-
lem. Specifically, the properties that this class of mechanisms should have are:

Definition 1. A monotonic payment function is (weakly) monotonically
increasing over T̂ a

i , T̂ s
i , t̂i, âi,r, r ∈ R and Γ̂ i

l , l ∈ L, and (weakly) monoton-
ically decreasing over T̂ f

i .

Definition 2. An online mechanism belongs to the price-based mechanisms
class if it has the following properties:

1. The mechanism computes the payment p̃i for any possible allocation λi to
task i by using a payment function p̃i(λi, θ̂

〈T̂ a
i 〉) that is independent of v̂i and

monotonic.
2. The payment for tasks with no resource allocated is zero.
3. The resource allocation scheme λi for task i maximises v̂i − p̃i (over all λi

that can be made to task i for any v̂i).

Then, the following theorem guarantees that any mechanism in the class of
price-based mechanisms is DSIC and IR.

Theorem 1. Any online mechanism that satisfies Definition 2 is DSIC and IR.

This theorem can be proved in a similar way to Theorem 1 in (Hayakawa et
al. 2018), and the proof is omitted for space reasons.

3.2 Benchmark Mechanisms

We describe the benchmark mechanisms used in this paper in detail below.
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Offline Optimal Mechanism. Under this mechanism, we assume that we
know all the information about future tasks and allocate resources to optimise
the social welfare with no need to incentivise fog users to bid truthfully. This
theoretical and idealised case can be achieved by solving the optimisation prob-
lem 1.

Online Optimal Mechanism. This mechanism is similar to the offline optimal
except that the optimisation problem is solved at each time step with knowledge
only of the tasks that have arrived so far (and not of future tasks). Note that this
mechanism is non-truthful, but we use this to determine the social welfare that
could be achieved in an online setting if all users report truthfully. In Sect. 4, we
also evaluate this mechanism in settings where some users misreport.

Online Greedy Mechanism (OG). This mechanism is an extension of the
greedy algorithm from (Wang et al. 2012), and greedily allocates resources to
maximise the utility of a task when it arrives and commits to this allocation.
Furthermore, it computes the payment as this task’s corresponding operational
costs (p̃i = oi =

∑
r∈R,p∈P,t∈T (ai,rz

i
p,top,r)+

∑
l∈L,p∈P,(j,k)∈E,t∈T (2oj,kf i

l,p,j,k,t)).
Note that OG belongs to the price-based mechanisms and thus is DSIC and IR.

SWMOA2. Although the Social Welfare Maximisation Online Auction
(SWMOA) mechanism from (Shi et al. 2017) cannot be directly applied to
our model, we develop a variant of it called SWMOA2 as a suitable bench-
mark. The main difference between this mechanism (given in Algorithm 1) and
OG is that it keeps a virtual cost instead of an operational cost for every

Algorithm 1. The SWMOA2 mechanism
θall ← ∅ � The set of arrived tasks
Λ ← ∅ � The set of committed allocation decisions
κm,t ← 0, ∀m, t � The load factors of resources
cm,t ← 0, ∀m, t � The virtual costs of resources
for t in T do

while new tasks arrive within t do
When a new task i arrives � Tasks arrive over time
θall ← θall ∪ i � Update the set of arrived tasks
Solve the maximum virtual utility allocation for task i (i.e.,
argmax

λi

(v̂i(λi) − ci(λi))) � Find the allocation that maximises task i’s virtual

utility
Λ ← Λ ∪ λi � Commit this allocation
p̃i ← ci(λi) � Compute the payment for task i

κm,t ← κm,t + zi
p,tai,r/Ap,r, ∀m ∈ P × R, t ∈ T � Update load factors of

computational resources

κm,t ← κm,t +
∑

l∈L,p∈P

fi
l,p,j,k,t/bj,k, ∀m ∈ E, t ∈ T � Update load factors of

bandwidth resources
cm,t = μκm,t − 1, ∀t ∈ T, m ∈ M � Update the virtual costs of resources

end
Allocate resources for next time step (t + 1) according to Λ

end
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resource. For convenience, we use M to denote the set of every computa-
tional resource at each FN and the bandwidth resource on each link, and m
is one type of them. To compute the virtual costs, we define the load fac-
tor κm,t to be the proportion of occupied resource m at time step t. Then,
the virtual cost accordingly is: cm,t = μκm,t − 1,∀t ∈ T,m ∈ M , where
μ = 2|M |F + 2, and F is the upper limit of the ratio between the high-
est and the lowest task valuation per time step. Then, the virtual cost of
task i is ci =

∑
r∈R,p∈P,t∈T (ai,rz

i
p,tcp,r,t) +

∑
l∈L,p∈P,(j,k)∈E,t∈T (2cj,k,tf

i
l,p,j,k,t).

SWMOA2 also belongs to the price-based mechanisms and is DSIC and IR.

3.3 Flexible Online Greedy Mechanism (FlexOG)

Our mechanism, FlexOG (Algorithm 2), builds upon OG by allocating newly
arrived tasks greedily but keeps their specific allocation schemes flexible. This
gives it the DSIC property of OG but adds more flexibility. This also results in
higher social welfare because there is more space for optimisation when high-
value tasks arrive in the future. After receiving a report of task i, FlexOG finds
the allocation that maximises the social welfare of all flexible tasks given the
constraints of their committed usage time. Then, FlexOG computes the usage
time t̃i for task i from its corresponding allocation scheme, and commits it to
task i, which means that task i is guaranteed to get t̃i usage time before its

Algorithm 2. The FlexOG mechanism
θall ← ∅ � The set of arrived tasks
θflex ← ∅ � The set of flexible tasks
o ← 0 � The total operational costs

T̃ ← ∅ � The set of committed processing times
for t in T do

while new tasks arrive within t do
When a new task i arrives � Tasks arrive over time
θall ← θall ∪ i � Update the set of arrived tasks
θflex ← θflex ∪ i � Update the set of flexible tasks

Solve the maximum utility allocation for tasks in θflex (i.e.,
argmax

λj

∑

j∈θflex

(v̂j(λj) − oj(λj))) � Find the allocation for tasks in θflex that

maximise their social welfare, given their committed usage time

T̃ ← T̃ ∪ t̃i(λi) � Commit the processing time to i
p̃i ← ∑

j∈θall

oj(λj) − o � Compute the payment for i

o ← ∑

j∈θall

oj(λj) � Update the total operational costs

end
for i in θflex do

Allocate resources for the next time step (t + 1) according to λi

t̃i ← t̃i − ∑

p∈P

zi
p,t+1 � Update the remaining processing time of task i

if t̃i = 0 then
θflex ← θflex \ i � Delete task i from flexible tasks if it gets its
comitted usage time

end
end

end
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reported finish time T̂ f
i . Afterwards, FlexOG requires payment for task i as the

marginal total operational cost, and task i is put to the set of flexible tasks. In
addition, at the end of each time step, FlexOG allocates resources for the next
time step according to the latest allocation schemes. Finally, if a task will get
all of its committed usage time in the next time step, it will be removed from
the set of flexible tasks. In summary, the key idea of our mechanism is that we
only commit the usage time t̃i to task i but keep its allocation scheme flexible.

Theorem 2. The FlexOG mechanism is DSIC and IR.

We only give a proof sketch here because of space reasons. Obviously, FlexOG
satisfies condition 2 in Definition 2 by charging zero to a rejected task. The pay-
ment p̃i(λi, θ̂

〈T̂ a
i 〉) is independent of v̂ because by maximising

∑
j∈θflex

(v̂j(λj)−
oj(λj)) FlexOG actually minimises the total operational cost, which is indepen-
dent of v̂. The payment function is also monotonic because increasing T̂ a

i , T̂ s
i ,

t̂i, {âi,r}r∈R, {Γ̂ i
l }l∈L or decreasing T̂ f

i can only increase the total operational
cost

∑
j∈θflex

oj . Hence, this mechanism satisfies condition 1. The mechanism
also satisfies condition 3 because it maximises

∑
j∈θflex

(v̂j(λj) − oj(λj)), which
is equivalent to maximise (v̂i − p̃i) according to how the payment is computed
by FlexOG. From the above, FlexOG is DSIC and IR by Theorem 1.

4 Simulations and Analysis

In this section, we describe the setup of our experiments and evaluate our pro-
posed mechanism by simulations. The aim is to compare the social welfare
achieved by FlexOG to benchmark mechanisms in different situations.

4.1 Experimental Setup

We generate the following synthetic data to use in simulations because there
currently exists no comprehensive data set of real-world fog computing tasks.
The basic parameters of the synthetic data are as follows. The time span of our
discrete time period is |T | = 12. The fog provider has 6 FNs (|P | = 6) and 6
locations (|L| = 6). The topology of this setup is shown in Fig. 2. Additionally,
there are |R| = 3 types of computational resources (CPU, RAM, and disk
storage) at each FN. We choose this small setting so that we can run more trials
in a reasonable time for all mechanisms, and we get similar results in other
settings on a similar scale.

The number of tasks in this time period is |I| = 40. The arrival time T a
i

follows a continuous uniform distribution U(0, 10), so that no tasks arrive at
exactly the same time. Moreover, the number of IoT devices for each task Ei is
generated uniformly from {1, 2, . . . , 6}. The location of each IoT device ui

e,l is
chosen uniformly at random from all locations L with replacement.

Furthermore, we choose a special valuation function vi in our simulation for
simplicity, which is a non-decreasing linear function of the usage time t̃i.
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Fig. 2. The topology of the fog computing system.

vi(t̃i) =

{
gi × t̃i if t̃i ≤ ti

gi × ti if t̃i > ti

where the coefficient gi represents task i’s obtained value per usage time.
To make the resource allocation more realistic, there are two types of tasks

in this synthetic data: low-value tasks and high-value tasks, and the proportion
of high-value tasks is denoted as q ∈ [0, 1]. For task i of either type: ai,r,∀r ∈ R
and Γ i

l are all generated from a Gaussian distribution N (1, 1) with negative
results discarded. The usage duration ti is a positive integer uniformly chosen
from {1, 2, 3, 4}, and the start time T s

i is an integer uniformly chosen within 2
time steps after the arrival time: {�T a

i �, �T a
i � + 1, �T a

i � + 2}. Furthermore, the
finish time T f

i is an integer uniformly chosen between a and b time steps after the
earliest finish time (not exceeding the last time step): {T s

i + ti − 1 + a, T s
i + ti +

a, . . . ,min(T s
i + ti − 1 + b, |T |)}, and (a, b) defines the deadline slackness of the

task, which is an important parameter because it reflects the task’s flexibility.
For low-value task i, gi is uniformly chosen from a continuous interval: [8, 30].
However, for high-value task i, gi is uniformly chosen from a continuous interval:
[180, 200]. Thus, F = 200/8 = 25 in this case. Finally, users who misreport only
misreport their valuation coefficient as one million.

Furthermore, the overall resource capacity of each computational resource r:∑
p∈P Ap,r is set to be a k fraction of the corresponding total resource demand:∑
i∈I ai,r, and the overall bandwidth capacity:

∑
(j,k)∈E

bj,k is set to be a 2k

fraction of the total bandwidth demands:
∑

i∈I,l∈L Γ i
l . Then, each FN receives

the same fraction of resource r:
∑

p∈P Ap,r

|P | , and each data link receives the same

fraction of the available total bandwidth:
∑

(j,k)∈E
bj,k

|E| . Finally, the unit opera-
tional costs at different FNs and links: op,r, p ∈ P, r ∈ R, oj,k, (j, k) ∈ E are all
generated uniformly from [0.03, 0.1].

4.2 Simulation Results

We have tested the robustness of our mechanism by running simulations with
different parameters, such as the number of tasks, the value distribution, the
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arrival time distribution, the operational costs of resources, deadline slackness,
and resource scarcity in FNs and data links. We only show representative results
below due to the space limitation. Across all of these settings, trends are similar.
In particular, the FlexOG’s performance in social welfare is typically around 90%
of the offline optimal, and between 5–10% better than OG’s.

First, we compare the total social welfare achieved by FlexOG with other
benchmarks under different resource coefficients k indicating the scarcity of the
resources in Fig. 3.2 Note that we normalise the results to the performance of
offline optimal so that it is easier to compare the performance of different mech-
anisms. The figure shows that FlexOG consistently achieves better social welfare
than other truthful benchmark mechanisms. In particular, SWMOA2 always has
the worst performance mainly because its virtual price function is exponential
to the amount of occupied resource, and this hinders tasks from getting allo-
cated even when there is enough resource for them. It is worth noting that,
although the price function of SWMOA can guarantee that the allocation will
not break the resource constraints for the problem model in (Shi et al. 2017), it
no longer has this function in our model. The reason FlexOG performs better
than OG is the way in which committed time steps are allocated to tasks is
flexible, and so it can reschedule unfinished tasks to allocate more time steps for
the newly arrived task. In addition, our mechanism also performs close to offline
optimal, achieving around 90%, which indicates that our mechanism is efficient
even though it is online. Although online optimal performs about 10% better
than FlexOG, its performance drops below that of FlexOG when just 20% of
users misreport. In addition, we have also tested whether users have the incentive
to misreport by comparing utilities of truthful and non-truthful users, and the
result shows on average non-truthful users get a higher utility. This means that,
in a strategic setting where users can misreport, FlexOG can actually achieve
significantly more social welfare than online optimal. The figure also shows that
the performance difference between FlexOG and OG shrinks when the resource
coefficient k is relatively low or high. Intuitively, this is because when there are
few resources or there are abundant resources the performance of OG will be
closer to the optimal, and there is less space for FlexOG to improve social welfare
by rescheduling tasks.

Next, we compare the performance in social welfare under different levels of
task slackness in Fig. 4. A task with more slackness has more time steps between
its earliest and latest finish times. Such tasks are more flexible to allocate. As
can be seen from the figure, the gap between FlexOG and OG increases as the
tasks becomes more slack. This is because when tasks are more slack, FlexOG
is more likely to reschedule low-value tasks to allocate more high-value tasks,
while OG cannot benefit from this since its resource allocation schemes are fixed
once they have been made.

2 All figures are with 95% confidence intervals based on 200 trials, and the relative
tolerance is set to 1% for offline optimal, and 5% for others. (A 1% tolerance means
that the CPLEX optimiser stops when a solution is within 1% of optimality).
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Fig. 3. Social welfare achieved by the mechanisms ((a, b) = (5, 10), F = 25, q = 0.1)

Fig. 4. Social welfare achieved by the mechanisms ((a, b) = {(0, 5), (1, 6), (2, 7)(3, 8),
(4, 9), (5, 10)}, F = 25, q = 0.1, k = 0.3).

Finally, the evaluation of processing time is shown in Fig. 5. We plot the pro-
cessing time of all mechanism only under resource coefficient 0.25, 0.35 and 0,45

Fig. 5. Processing time of the mechanisms ((a, b) = (5, 10), F = 25, q = 0.1).
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because the trend is similar under other coefficients. Note that the boxes show
the lower to upper 25% values of the data with whiskers showing 5–95 percentile
of the data, and the outliers are not shown in the figure. It can be seen from
the figure that in general, offline optimal takes the least processing time, online
optimal, OG, and SWMOA2 take more, and FlexOG uses the most time. This
is mainly because offline optimal only needs to solve the optimisation problem
once, while all other mechanisms need to solve the optimisation problem multiple
times. FlexOG not only needs to solve the optimisation problem |I| = 40 times,
but its optimisation problems also have more decision variables. Thus FlexOG
is feasible for tasks where users can forecast their time constraints. Whereas for
task requests that need immediate processing or task requests that come very
frequently, the processing time of FlexOG would become an issue.

5 Conclusions

This paper formulates the RAFC problem as a constrained optimisation problem
and proposes a novel truthful online mechanism for solving it. We made two key
contributions. The first is that we extend price-based online mechanisms to our
RAFC problem. The second is that we propose a truthful fog resource allocation
mechanism called FlexOG, and we show its performance in terms of social welfare
is significantly better than state-of-the-art mechanisms.

In the future, we plan to improve the scalability of FlexOG and to combine
online mechanism design and machine learning to enhance social welfare further.
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Abstract. Autonomous driving has the potential to radically change the way
vehicles interact each other. This paper aims to develop a formal method to model
high level interaction between autonomous vehicles. We introduce a concept of
road graph to represent complex road situations such as intersections, road merg-
ing, unmarked roads, and traffic hazards. We then extend the concept to further
represent status of vehicles, dynamics of traffic and protocols of traffic control.
Specifically, we formalise two categories of traffic control protocols, time-based
protocols and priority-based protocols.

1 Introduction

Over the last decade, research on autonomous vehicles (AVs) has made revolution-
ary progress, which brings us hope of safer, more convenient and efficient means
of transportation [2,9]. A great number of tech giants and research institutes alone
with the major automakers are striving for the developments of new technologies for
autonomous driving with the ultimate target that all vehicles eventually become fully
autonomous without human intervention at their highest automation level [4,8].

An autonomous vehicle system is an integration of many technologies, including
computer vision, graphical processing, navigation, sensor technologies and so on. Most
significantly, the recent advance of machine learning technologies enables a self-driving
car to learn to drive in any complex road situations with millions of accumulated driving
hours, which are way higher than any experienced human driver can reach. However,
driving is not a purely technical job but involves complicated social activities, which
could be hard to learn from experience. For instance, if two cars meet in a narrow road
or a long bridge on which only one car can go through, how do the cars decide which one
should reverse to give way to the other? Many of such a situation requires direct inter-
action among vehicles, vehicles and infrastructures, or vehicles and authorities [3,5].
Such demands push the research on AVs to a different direction from machine learn-
ing with regards to communication, negotiation and cooperation among autonomous
vehicles. Unfortunately the studies along, this direction is far from adequate.

Existing research on vehicle to vehicle (V2V) allows exchange of information col-
lected from local sensors to achieve a form of ‘collaborative awareness’ [1,7]. However,
the information exchanged between vehicles are normally signal data or messages.
Such low level communication cannot achieve high-level interaction for the purpose
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-29894-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29894-4_31&domain=pdf
https://doi.org/10.1007/978-3-030-29894-4_31


378 J. Qiao et al.

of automated negotiation, cooperative maneuvering, collaborative auto-piloting among
autonomous vehicles [6].

The primary goal of our research is to establish a high-level communication protocol
for autonomous vehicles, which can solve various traffic conditions through negotiation
between vehicles. Herein, we propose the road graph; a novel concept for representing
roads and traffic which includes fully autonomous vehicles, as the basis of our research.
With this road graph model we describe various traffic-related elements, such as traffic
flow, traffic-control protocols, vehicle information and vehicle management processes.
It should be mentioned that at this point our work is only for theoretical research. Its
purpose is to develop an abstract model that allows self-driving vehicles to understand
roads and traffic, so as to pave the way for more advanced vehicle negotiation. We leave
it as future work to develop models that are closer to real-world traffic.

The structure of this paper is as follows. In Sect. 2 we introduce the representation
of roads, vehicle and traffic setting, and traffic state and traffic flow. In Sect. 3, we give
traffic control protocols in detailed. In Sect. 4 we summarise the paper with conclusions
and future research directions.

2 Traffic Representation

To allow autonomous vehicles to reason about complicated traffic situations, we intro-
duce a formal method to represent roads, traffic flows and traffic control protocols. As
a generic assumption of this work and a way of abstraction, time occurs at distinct,
separate “points in time”, throughout each non-zero region of time (“time period”),
represented by natural numbers T = {1, 2, 3, · · · } .
2.1 Road Graph

In order to specify any complicated road, we divide a road into a number of blocks or
road segments. Each block of a road allows one car to travel at each time1, represented
as a vertex in a graph. Directed edges in a graph represent connections and travel direc-
tions between road blocks. If two vertices have no edge to link them, no vehicle can
travel directly between these two blocks. In addition, we assume that each road contain
a number of entries and a number of exits. For each entry, it must have at least one
out-going edge, and for each exit, it must have at least one incoming edge. Formally we
have the following definition.

Definition 1. A road graph G is a tuple (B, E , Bn, Bx) , where:

– B is a non-empty and finite set of blocks;
– E ⊆ B × B is a set of arcs. An arc (b, b′) ∈ E refers to a connection and travel

direction from block b to block b′ ;
– Bn ⊆ B is a set of blocks to represent the road entries;
– Bx ⊆ B is a set of blocks to represent the road exits.

Figure 1 shows a simple road graph representing a typical two-way two-lane road.
The vertices b1, · · · , b20 represent the segments of the road while the arcs indicate the
traffic flows that are allowed from segments to segments. For instance, b1, b2, b3, b4, b5
are the blocks of the left most lane. The arc from b2 to b8 means a vehicle on block b2
can change lane to block b8 but is not allowed to shift to block b7 . Blocks b1 , b6 , b11
and b16 are entries of the road, and blocks b5 , b10 , b15 and b20 are exits of the road.
1 We will use discrete time to represent traffic flows thus a time point represents a period of time.
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Fig. 1. A road graph representing a two-way two-lane road

As an abstraction of roads, a road graph can represent more complicated road sit-
uations and configurations, such as multi-way junctions, roundabout, no-through road
and U-turns. The following example shows a representation of a typical four-way inter-
section.

Example 1. Figure 2 shows an example of road graph for a four-way intersection
which will be used as running example of the paper. Each direction has one lane. Note
that the road graph indicates that a vehicle turning right is not allowed to travel in diag-
onal inside the intersection. For instance, a vehicle at b2 turning to b19 must travel
via b3 , b4 and b10 rather than a sharp turn from b3 to b10 . This is by no means a
restriction of road graph representation but reflects an actual setting of the road.

Fig. 2. A road graph for four-way intersection

Given a road graph, a road path can be easily defined as path in terms of the standard
graph theory terminology. Formally we have the following definition:

Definition 2. Given a road graph (B, E , Bn, Bx) , a path ρ is a sequence b0
e1→ b1

e2→
b2 · · · em→ bm , where

– bi ∈ B for all 0 ≤ i ≤ m
– ei = (bi−1, bi) ∈ E for all 0 < i ≤ m
– bi �= bj for any i �= j

ρ is called a complete path if b0 ∈ Bn and bm ∈ Bx . We use ρ̂ to denote the start
block of the path and ρ̌ the end block of the path, i.e., ρ̂ = b0 and ρ̌ = bm .
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2.2 Vehicles and Traffic Settings

Vehicles are road users. We assume that all vehicles are fully autonomous, which means
that decision-making of each vehicle is not centralised but by the vehicle itself, no mat-
ter they driven by human or computers. We also assume that each vehicle has a desig-
nated complete path, which specified its entry block, exit block and intended travel path.
In the context of automated negotiation between autonomous vehicles, these pieces of
information are initial settings of a vehicle before it enters a road. They are negotiable
when it travels on the road. In addition, we also assume each vehicle has a designated
time point to enter the road. Formally, we specify the information of vehicles with the
following concept:

Definition 3. Given a road graph G = (B, E , Bn, Bx) and a set V of possible vehi-
cles, the vehicle information, I , on G is represented by a tuple (μ, σ, η,P) where

– μ : V → Bn is a function that maps each vehicle to a road entry;
– σ : V → Bx is a function that maps each vehicle to a road exit;
– η : V → T is a function that maps each vehicle to a time point indicating the time

the vehicle is expected to enter the road;
– P : V → P is a function that maps each vehicle to a complete path such that for

each vehicle v ∈ V , ˆP(v) = μ(v) and ˇP(v) = σ(v) .

In the rest of the paper, we call (G,V, I) a traffic setting.

2.3 Traffic States and Traffic Flows

Traffic means that vehicles move on a road. A snapshot of traffic on a road can be
viewed as a set of vehicles that currently on the road and the positions they occupy. As
we mentioned before, we assume that each block can only contain one vehicle at each
time point. Therefore vehicles’ location can be represented with an injective function
from a vehicle to a block of the road. Formally we introduce the following concept:

Definition 4. Given a traffic setting (G,V, I) , a traffic state with respect to the traffic
setting is a pair (V, τ) where

– V ⊆ V , indicating the vehicles that are currently on the road;
– τ : V → B is an injective function that maps each vehicle to a block of the road.

In other words, for any v, v′ ∈ V , τ(v) = τ(v′) implies v = v′ .

A traffic state represents a snapshot of a traffic flow, thus, is a static view of traffic.
However, traffic is dynamic. In order to model a flow of traffic, we define traffic on a
road as a set of traffic states in time sequence:

Definition 5. Let (G,V, I) be a traffic setting. A traffic flow F = 〈(Vt, τt)〉t∈T is a
temporal sequence of traffic states such that for each time point t ∈ T ,

1. v ∈ Vt+1 \ Vt implies τt+1(v) = μ(v) , i.e., a vehicle must enter the road from its
specified entry.

2. for each v ∈ Vt , exactly one of the following conditions holds
(a) τt(v) = τt+1(v)
(b) (τt(v), τt+1(v)) ∈ E
(c) τt(v) = σ(v) and v �∈ Vt+1

3. for any v, v′ ∈ Vt such that v �= v′ and τt(v) = τt+1(v′) , τt+1(v) �= τt(v′) .
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3 Traffic Control Protocols

Traffic must be controlled to ensure road safety and efficiency. The way of traffic control
is to instruct vehicles taking appropriate measures or actions in order to avoid collisions
or delays. Complex operational procedures, rules and laws, and physical equipment
(such as signs, markings, and lights) have been used in real-world traffic control sys-
tems. The most common traffic control devices and methods are traffic lights, stop signs,
roundabouts and other facilities. Despite of the significant differences between different
traffic control methods and systems, the mechanisms of all traffic control methods can
be categorised into two fundamental traffic control protocols: time-based traffic control
and priority-based traffic control.

3.1 Time-Based Traffic Control Protocols

The time-based traffic control utilises protocols that control traffic by restricting acces-
sibility or impassability of roads in different time periods. With the road graph repre-
sentation, we can simply define a time-based traffic protocol as a temporal sequence
of arc groups, indicating which road segments are accessible at each time. A typical
application of time-based traffic control protocols is traffic light systems.

Definition 6. Given a road graph G = (B, E , Bn, Bx) . A time-based traffic control
protocol α : T → 2E is a function from each time point to a subset of arcs. Fur-
thermore, a traffic flow F = 〈(Vt, τt)〉t∈T is said to be complied with a time-based
protocol α if for any time point t and any vehicle v , if v ∈ Vt , τt(v) �= σ(v) and
τt(v) �= τt+1(v) , then (τt(v), τt+1(v)) ∈ α(t) .

Intuitively, a time-based traffic control protocol specifies which segment of road can
go through at each time point. In other words, for each time point t , all the arcs in α(t)
are passible (green light), while all the arcs in E \α(t) are impassible (red light). When
a traffic control protocol is enforced on a road, traffic is shaped to form specific patterns
of traffic flow. A traffic flow is complied with a time-based protocol means any vehicle
must travel at green lights. The following example shows a representation of traffic in a
four-way intersection when time-based protocol is enforced.

Example 2. Consider a road graph for a four-way intersection in Example 1, and a
time-based traffic control protocol α on the road graph as follows:

α(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Eg ∪ {e2, e3, e9, e8}, if 0 ≤ t mod l < 11
Eg ∪ {e2, e3, e18, e14}, if l1 ≤ t mod l < l2
Eg ∪ {e14, e13, e17, e18}, if l2 ≤ t mod l < l3
Eg ∪ {e9, e8, e13, e17}, if l3 ≤ t mod l < l

where 0 < l1 < l2 < l3 < l and Eg = {e1, e4, e5, e6, e7, e10, e11, e12, e15, e16,
e19, e20} . t mod l means “ t modulo l ”.

The protocol specifies four time intervals in each period of length l : [0, l1) ,
[l1, l2) , [l2, l3) and [l3, l) . The first time interval allows vehicles from east or west
to travel straight or take a left turn. The second interval allows traffic from west to take
right turn and traffic from south to take left turn. The other two intervals are similar for
traffic from other directions.
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3.2 Priority-Based Traffic Control Protocol

A priority-based protocol controls traffic based on preset priorities of roads at each road
junction. For instance, in a left driving country, vehicles give way to the traffic on right
whenever they are approaching an intersection, which means that the road on right has
higher priority than the road a vehicle travels on. With the help of graph representation
of roads, we can formalise a priority-based traffic control protocol as follows:

Definition 7. Given a road graph G = (B, E , Bn, Bx) . A priority-based protocol
β : E → 2E is a function from each arc of the road to a subset of the arcs E such that

1. for any (b1, b2) ∈ E , if (b′
1, b

′
2) ∈ β(b1, b2) , then b2 = b′

2 ;
2. if e′ ∈ β(e) , e �∈ β(e′) .

To understand the conditions of the definition, the first condition means that an arc
gives priority to another arc only if they meet at the same block. The second condition
means that two vehicles on different roads do not give way to each other. Similar to
time-based traffic control protocols, we can also define whether a traffic flow is com-
plied with a priority-based traffic control protocol.

Definition 8. Let (G,V, I) be a traffic setting. A traffic flow F = 〈(Vt, τt)〉t∈T is said
to be complied with a priority-based protocol β if for any t ∈ T and any v, v′ ∈ Vt ,
such that v �= v′ , τt(v) �= τt+1(v) implies (τt(v′), τt+1(v)) �∈ β(τt(v), τt+1(v))
unless (τt(v′), τt+1(v)) �∈ P(v) .

It means that a vehicle does not have to give way to another vehicle only if the road
that the other vehicle travels on does not have a higher priority or the other vehicle does
not travel into the same block.

Example 3. Figure 3 shows a road graph representing a T-junction. Imagine there is a
stop sign in block b15 . Then all vehicles entering b9 via e14 must stop at the stop sign
and observe the coming vehicles towards b9 from other roads. Assume that we enforce
the following priority-based traffic control protocol β at this T-junction:

– β(e) = ∅ , where e ∈ {e1, e3, e4, e5, e6, e7, e8, e10, e11, e13, e14, e15, e16} .
– β(e2) = {e13} ; β(e12) = {e8} ; β(e9) = {e14} ;

Let F(t) = (Vt, τt) be a traffic state at time t where Vt = {v1, v2} , τt(v1) = b10
and τt(v2) = b15 . Assume that both vehicles v1 and v2 are travelling towards block
b9 . Since e8 has a higher priority than e14 , only vehicle v1 can go through but v2
must stay in block b15 . If F(t + 1)) = (Vt+1, τt+1) represents the next state, we then
have τt+1(v1) = b9 and τt+1(v2) = b15 .
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Fig. 3. An example of priority-based protocol on a T-junction

4 Conclusion and Future Work

In this paper, we proposed a way to represent traffic roads, traffic flow, and control
protocol at first. And then we introduce a process to generate a traffic flow within
traffic control protocols, which are time-based protocol and priority-based protocol.
Autonomous vehicle will determine the future of road transportation systems. These
technologies aim to improve mobility, safety, comfort, and fuel consumption while
reducing emissions. However, the extent of this improvement is unknown. Although
the impact on the driving environment has extensively analysed in the literature, more
comprehensive studies are needed. Our research can not only describe a single type of
traffic situation but also cover different traffic situations. However, this article is just the
basis for our research. We will pave the way for future vehicle negotiations by indicating
roads, traffic flow, and traffic control protocols.
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Abstract. Ecological imbalance owing to rapid urbanization and defor-
estation has adversely affected the population of several wild animals.
This loss of habitat has skewed the population of several non-human
primate species like chimpanzees and macaques and has constrained
them to co-exist in close proximity of human settlements, often lead-
ing to human-wildlife conflicts while competing for resources. For effec-
tive wildlife conservation and conflict management, regular monitoring
of population and of conflicted regions is necessary. However, existing
approaches like field visits for data collection and manual analysis by
experts is resource intensive, tedious and time consuming, thus necessi-
tating an automated, non-invasive, more efficient alternative like image
based facial recognition. The challenge in individual identification arises
due to unrelated factors like pose, lighting variations and occlusions due
to the uncontrolled environments, that is further exacerbated by limited
training data. Inspired by human perception, we propose to learn repre-
sentations that are robust to such nuisance factors and capture the notion
of similarity over the individual identity sub-manifolds. The proposed
approach, Primate Face Identification (PFID), achieves this by training
the network to distinguish between positive and negative pairs of images.
The PFID loss augments the standard cross entropy loss with a pairwise
loss to learn more discriminative and generalizable features, thus making
it appropriate for other related identification tasks like open-set, closed
set and verification. We report state-of-the-art accuracy on facial recog-
nition of two primate species, rhesus macaques and chimpanzees under
the four protocols of classification, verification, closed-set identification
and open-set recognition.

Keywords: Face recognition · Deep learning · Primates · Social good

1 Introduction

One of the key indicators of a healthy ecosystem is its constituent biodiversity.
Over the last several decades, technological progress has substantially improved
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human quality of life, albeit at a cost of rapid environmental degradation. Specif-
ically, to meet the needs of the growing human population, various factors like
urban and infrastructural development, agricultural land expansion and livestock
ranching have resulted in soaring rates of deforestation. In addition to the risk
of extinction for many species, shrinking natural habitats have led to increased
interactions between humans and wildlife, often raising safety concerns for both
(Fig. 1).

Conflicts with primarily forest-dwelling species like big cats (tigers, leopards,
mountain lions, etc.), elephants, bears or wolves may cause severe injuries or even
death to humans. On the other hand, there are species which have transitioned
into a commensal relationship with humans, i.e., they rely on humans for food
without causing direct harm. Due to their apparent harmlessness, several com-
mensal (or semi-commensal) species like wild herbivores, wild boars, macaques
and other non-human primates often dwell in close proximity of human settle-
ments. This co-existence leads to indirect conflicts in the form of crop-raiding
and property damage as well as occasional direct conflicts such as attacks or bit-
ing incidents. An example image of crop raiding and primates in close vicinity
of humans is shown in Fig. 2. Certain species like the rhesus macaque (Macaca
mulatta) have become a cause of serious concern due to their resilience and abil-
ity to co-exist with humans in rural, semi-urban and urban areas. Their prolific
breeding and short gestation periods lead to high population densities, thereby
increasing the chances and extent of conflicts with humans. As a consequence,
organizations have resorted to lethal conflict management measures like culling
[2], which become infeasible when the conflicted species have declining popu-
lations, e.g., the human-primate conflict crisis in Sri Lanka where two of the
responsible primate species are endangered: Toque macaques (Macaca sinica)
and the purple faced langur (Trachypithecus vetulus) [5]. Besides, the effective-
ness of lethal measures is well debated and poorly designed initiatives could have
unexpected consequences like increased aggression or even extinction of the con-
flicted species [16]. On the other hand, non-lethal approaches are easier to adopt
across geographies as they avoid complex socio-religious issues [19]. Two recur-
ring non-lethal themes in conflict management discussions are population mon-
itoring and stakeholder engagement [16], both of which can be easily achieved
with a combination of smartphone and AI technology. Pursuing a crowdsourcing
approach to population monitoring and conflict reporting has two direct ben-
efits: the cost and scalability of data collection for population monitoring can
be improved drastically and active involvement of the affected community can
help increase awareness, which in turn abates the human behavioral factors that
often influence human-wildlife conflicts.

In this work, we focus on addressing the human-primate conflicts, largely
because of the frequency and magnitude of encounters in urban, rural and agri-
cultural regions across developing South Asian nations [1]. Inspired by the success
and scalability of human face recognition, we propose a Primate Face Identifica-
tion (PFID) system. Automatic identification capabilities could serve as a back-
bone for a crowdsourcing platform, where geo-referenced images submitted by
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users are automatically indexed by individuals, gender, age, etc. Such an indexed
database could simplify downstream tasks like primate population monitoring and
analysis of conflict reports, enabling better informed and effective strategies for
conflict as well as conservation management.

Fig. 1. Example images showing primates in human shared space and crop raiding
[source: google images].

We summarize the contributions of this paper as follows:

– We propose Primate Face Identification (PFID), a deep neural network based
system for automated identification of individual primates using facial images.

– We introduce a guided pairwise loss using similar and dissimilar image pairs
to learn robust and generalizable representations.

– Our fully automatic pipeline convincingly beats state-of-the-art methods on
two datasets (macaques and chimpanzees) under all settings.

2 Existing Work on Face Recognition

There is a vast body of literature in human face recognition. Without attempting
to present a comprehensive survey, we briefly discuss prior work relevant to
facial identification of primates. We broadly categorize these approaches into
two categories: Non Deep Learning Approaches and Deep Learning Approaches.

Non Deep Learning Approaches. Traditional face recognition pipelines com-
prised of face alignment, followed by low level feature extraction and classifica-
tion. Early works in primate face recognition [13], adapted the Randomfaces
[25] technique for identifying chimpanzees in the wild and follows the standard
pipeline for face recognition. Later, LemurID was proposed in [6], which addi-
tionally used manual marking of the eyes for face alignment. Patch-wise multi-
scale Local Binary Pattern (LBP) features were extracted from aligned faces
and used with LDA to construct a representation, which was then used with an
appropriate similarity metric for identifying individuals.

Deep Learning Approaches. Freytag et al. [9] used Convolutional Neural
Networks (CNNs) for learning a feature representation of chimpanzee faces. For
increased discriminative power, the architecture uses a bilinear pooling layer
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after the fully connected layers (or a convolutional layer), followed by a matrix
log operation. These features are then used to train an SVM classifier for clas-
sification of known identities. Later, [4] developed face recognition for gorilla
images captured in the wild. This approach fine-tuned a YOLO detector [17]
for gorilla faces. For classification, a similar approach was taken as [9], where
pre-trained CNN features are used to train a linear SVM. More recently, [7] pro-
posed PrimNet, a deep neural net based approach that uses the Additive Margin
Softmax loss [22] and achieves state of the art performance for identifying indi-
viduals across different primate species including lemur, chimpanzee and golden
monkey. However, it requires substantial manual effort to designing landmark
templates for face alignment prior to identification process, which can adversely
affect adoption rates in a crowdsourced mobile app setting. For human face recog-
nition techniques, various approaches have improved performance by combining
the standard cross entropy loss with other loss functions such as contrastive loss
[21] and center loss [23] to learn more discriminative features.

3 Primate Face Identification (PFID) System

Pose Invariant Representation Learning. We would like to motivate the choice
of our loss function with the following reasons

1. Our approach is inspired by the human perception system, which is robust to
nuisance factors like illumination and pose and is able to identify individual
faces captured in unconstrained environments and extreme poses. Geometri-
cally, face images of an identity defines a sub-manifold [15] in image manifold
of faces. This allows one to devise a metric such that sample pairs of the same
identity have small distances regardless of pose and other nuisance factors,
while those of different identities have larger distances. In PFID, we use a deep
neural network to learn such a representation through a specially designed
loss function over similar and dissimilar pairs of primate face images.

2. Learning invariant features has long been a challenging issue in computer
vision. Owing to the high curvature of original image data manifold [14], sim-
ple metric like euclidean distance fails to capture the underlying data seman-
tics. Consequently, linear methods also are inappropriate to learn decision
boundaries for tasks like image recognition. In such scenarios, deep learning
approaches have come in handy, with their ability to flatten the data man-
ifold owing to the successive non linear operations applied though a series
of layers [3]. However, deep models are often trained with a cross-entropy
based classification loss, to drive the class probability distribution for a given
image independently to one hot encoding vector. Given sufficient training
data, this training protocol often generalizes well for classification task, how-
ever, its performance is often limited on other related tasks like verification
and unseen class generalizabilty. The latter’s performance crucially depends
on the ability to learn a representation space that can model class-level simi-
larities. By incorporating a pairwise similarity loss term operating on the class
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probability (softmax) distributions, we drive the learned representations to
be semantically more meaningful, and hence invariant to other factors.

Fig. 2. Illustration of proposed PFID loss function vs. the standard cross entropy loss
on the learned class probability distributions with ResNet model.

We now present our proposed PFID loss function for unique identification of
primates using cropped facial images that can be obtained using state of the art
deep learning based detectors. We note that images will be largely collected by
the general public, professional monkey catchers and field biologists. Typically,
we expect the images to be captured in uncontrolled outdoor scenarios, leading to
significant variations in facial pose and lighting. These conditions are challenging
for robust eye and nose detection, which need to be accurate in order to be useful
for facial alignment. Consequently, we train our identification model to work
without facial alignment and capture the semantic similarities of the underlying
space.

The proposed loss formulation combines the standard cross entropy network
with a guided pairwise KL divergence loss imposed on similar and dissimilar
pairs. Using pairwise loss terms ensure that the underlying features are more
discriminative and generalize better. Our analysis in Sect. 4.4 show empirical
evidence that the learned features are more clusterable than when trained with
the standard cross-entropy loss.

An illustration of the effect of loss function is shown in Fig. 2. A similar pair
corresponds to images of same individual, while a dissimilar pair corresponds to
images from two different identities. The learned class probability distribution
for a similar pair and dissimilar pair using two different loss functions is shown.
In case of network trained with PFID loss, the class probabilities are maximally
similar for a similar pair as oppose to standard cross entropy loss.

Let, X = {x1, x2, . . . , xn} be the training dataset of n samples with li ∈
{1, 2, . . . ,K} as the associated labels. We use the labeled training data to create
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sets of similar image pairs, Cs = {(i, j) : xi, xj ∈ X , li = lj}, and that of
dissimilar pair, Cd = {(i, j) : xi, xj ∈ X , li �= lj} for i, j ∈ {1, 2, · · · , n}. The KL
divergence between two distribution pi and qj corresponding to points xi and xj

is given by

KL(pi||qj) =
K∑

k=1

pik log
pik
qjk

(1)

For a similar pair (i, j) ∈ Cs, we use the symmetric variant of (1) given by

Lij
s = KL(pi||qj) + KL(qj ||pi) (2)

and for a dissimilar pair (i, j) ∈ Cd, we use its large-margin variant for improving
discriminative power

Lij
d =max(0,m−KL(pi||qj))+max(0,m−KL(qj ||pi)) (3)

where m is the desired margin width between dissimilar pairs. It is important to
note that during training, when both xi and xj are misclassified by the model,
minimizing (2) may lead to an increase in the bias.

Guided Pairwise Loss Function. Since we use class labels for the cross-
entropy loss, we incorporate them in the pairwise loss terms to guide the training.
Subsequently, we modify the terms in (2) and (3) to get the following guided KL
divergence loss term

Ls =
∑

i,j∈Cs

aLij
s , Ld =

∑

i,j∈Cd

aLij
d (4)

where, a = 1 if either arg max pi = li or arg max qj = lj and a = 0 otherwise.
The loss function for PFID is given by the sum of standard cross entropy (LCE)
and the guided KL divergence loss

L(θ) = LCE +
1

|Cs|
∑

j,k∈Cs

aLjk
s +

1
|Cd|

∑

j,k∈Cd

aLjk
d (5)

This loss function is used to train the network with a mini-batch gradient descent.
Here |Cs| and |Cd| are the number of similar and dissimilar pairs respectively in
a given batch. More details on the training are provided in Sect. 4.3.

4 Experimental Setup and Results

4.1 Dataset

We evaluate our model using three datasets, the details of which are given in
Table 1. As is typical of wildlife data collected in uncontrolled environments, all
the three datasets have a significant class imbalance as reported in the Table 1.
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Rhesus Macaque Dataset. The dataset is collected using DSLRs in their
natural dwelling in an urban region in the state of Uttarakhand in northern
India. The dataset is cleaned manually to remove images with no or very little
facial content (e.g., extreme poses with only one ear or only back of head visible).
The filtered dataset has 59 identities with a total of 1399 images. An illustrative
set of pose variations for the datasets are shown using the cropped images in
Fig. 3. Due to the small size of this dataset, we combined our dataset with the
publicly available dataset by Witham [24]. The combined dataset comprises 7679
images of 93 individuals. Note that we use the combined dataset only for the
individual identification experiments, as the public data by Witham comprises of
pre-cropped images. On the other hand, the detection and the complete PFID
pipeline is evaluated on a test set comprising full images from our macaque
dataset.

Fig. 3. Pose variations for one of the Rhesus Macaque (Top) and Chimpanzee (Below)
from the dataset.

Chimpanzee Dataset. The C-Zoo and C-Tai dataset consists of 24 and 66
individuals with 2109 and 5057 images respectively [9]. The C-Zoo dataset con-
tains good quality images of chimpanzees taken in a Zoo, while the C-Tai dataset
contains more challenging images taken under uncontrolled settings of a national
park. We combine these two datasets to get 90 identities with a total of 7166
images.

Table 1. Dataset Summary. The numbers in the brackets show the range of samples
per individual ([min,max]), highlighting the imbalance in the datasets.

Dataset Rhesus Macaques C-Zoo C-Tai

# Samples 7679 2109 5057

# Classes 93 24 66

# Samples/individual [4,192] [62,111] [4,416]
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4.2 Evaluation Protocol

We evaluate and compare the performance of our PFID system under four differ-
ent experimental settings, namely: classification, closed-set identification, open-
set identification and verification.

Classification: To evaluate the classification performance the dataset is divided
into 80/20 train/test splits. We present the mean and standard deviation of
classification accuracy over five stratified splits of the data. As opposed to other
evaluation protocols discussed below, all the identities are seen during the train-
ing, with unseen samples of same identities in the test set.

Open and Closed-Set Identification: Both, closed-set and open-set perfor-
mance is reported on unseen identities. We perform 80/20 split of data w.r.t. to
identities, which leads to a test set with 18 identities in test for both chimpanzee
and macaque datasets. We again use five stratified splits of the data. For each
split, we further perform 100 random trials for generating the probe and gallery
sets. However, the composition of the probe and gallery sets for the closed-set
scenario is different from that of open set.

Closed-Set: In case of closed-set identification, all identities of images present
in the probe set are also present in the gallery set. Each probe image is assigned
the identity that yields the maximum similarity score over the entire gallery set.
We report the fraction of correctly identified individuals at Rank-1 to evaluate
the performance.

Open-Set: In case of open-set identification, some of the identities in the probe
set may not be present in the gallery set. This allows to evaluate the recognition
system to validate the presence or absence of an identity in the gallery. To
validate the performance, from the test of 18 identities, we used all the images
of odd numbered identities as probe images with no images in the gallery. The
rest of the even numbered identities are partitioned in the same way as closed-
set identification to create probe and gallery sets. We report Detection and
Identification Rate (DIR) at 1% FAR to evaluate open-set performance.

Verification: We compute positive and negative scores for each sample in test
set. The positive score is the maximum similarity score of the same class and
negative scores are the maximum scores from each of the classes except the
true class of the sample. In our case, where the test data has 18 identities, each
sample is associated with a set of 18 scores, with one positive score from the
same identity and 17 negative scores corresponding to remaining 17 identities.
The verification accuracy is reported as mean and standard deviation at 1%
False Acceptance Rates (FARs).

4.3 Network Details and Parameter Setting

We resize all the face images in macaque and chimpanzee dataset to 112 × 112.
We add the following data augmentations: random horizontal flips and random
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rotations within 5◦ for both the datasets. We use the following base network
architectures for PFID: ResNet-18 [10] and DenseNet-121 [11] and remove the
first maxpool layer because of small image size. For CE setting, we fine-tuned
the imagenet pre-trained networks with cross-entropy loss and a batch size of 16.
For the PFID setting, for each image in a batch, a similar class image is sampled
to make a batch size of 8 pairs (16 images in a batch). The dissimilar pairs are
then exhaustively created from these pairs. We used SGD for optimization with
an initial learning rate of 10−3 and weight decay of 5e−4. We trained all the
models for both datasets for 40 epochs with learning rate decay by 0.1 at 25th

and 35th epoch. We observed better performance with batch size of 16 instead
of 32 or higher especially in case of training with only cross-entropy loss. It is
recommended to use a lower batch size given that the training data is less in
both the datasets.

4.4 Results

We present the results corresponding to PFID and other state of the art
approaches for face recognition.

Baseline Results. For the baseline results, we extracted the penultimate (FC)
layer features from both ResNet-18 and DenseNet-121 models. For all the evalu-
ation protocols, the features are l2-normalized and in addition for classification,
they are used to train a SVM (Support Vector Machine) classifier by perform-
ing a grid-search over the regularization parameter. The results are given in the
first 2 rows of the Tables 2 and 3. We directly used the features and did not
perform PCA (Principal Component Analysis) to reduce the number of feature
dimensions because it had no impact on the performance in each evaluation.

Comparison with State of the Art Approaches. We compare PFID with
recent work PrimNet [7] that achieved state of the art performance on chim-
panzee face dataset. While our approach outperforms PrimNet by a large margin,
it is worth noting that our results are reported on non-aligned face images, that
makes PFID better suited for the application of crowdsourced population mon-
itoring by eliminating the need for manual annotations of fiducial landmarks.
Since ResNet-18 and DenseNet-121 are pretrained on imagenet data, we addi-
tionally fined-tuned ArcFace [8] and SphereFace [12] models that are pre-trained
on human face images, specifically on CASIA [26] dataset. We use ResNet-50
as the backbone for ArcFace and 20-layer network for SphereFace, and use the
parameters given in the respective papers. We observed best performance with
batch size 32 in all the three methods. We used a learning rate of 0.1, 0.01 and
0.001 for PrimNet (trained from scratch), SphereFace and ArcFace respectively
and weight decay as 5e−4. We trained all the models for 30 epochs to avoid
over-fitting with learning rate decay by 0.1 at 15th and 25th epoch. The results
are reported in Tables 2 and 3 for both the datasets. The results highlight that
the imagenet pre-trained models generalize well in our case where the training
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data is not huge. Further, it should be noted that the results reported for the
three models ArcFace, SphereFace and PrimNet are also reported without face
alignment as oppose to the results reported in the respective papers. While we
report results with non-aligned face images, we would also like to point out that
the performance dropped in all the approaches with aligned face images in case
of chimpanzee dataset owing to loss of features in aligned faces.

Table 2. Evaluation of Chimpanzee dataset for classification, closed-set, open-set and
verification setting. Baseline results are reported by taking the penultimate layer fea-
tures of the network and training a SVM for classification. For all the remaining settings
the features are directly used for the evaluation protocol.

Method Classification Closed-set Open-set Verification

Rank-1 Rank-1 Rank-1 1% FAR

Baseline
(ResNet-18 FC +
SVM)

55.38 ± 1.18 70.51 ± 2.98 12.80 ± 5.73 37.10 ± 4.63

Baseline
(DenseNet-121
FC + SVM)

61.78 ± 1.4 75.34 ± 3.98 30.51 ± 6.61 54.80 ± 3.65

ArcFace
(ResNet-50)

85.47 ± 0.86 78.47 ± 5.81 41.24 ± 7.82 63.91 ± 5.37

SphereFace-20 78.38 ± 1.23 72.72 ± 3.44 35.49 ± 8.34 57.74 ± 6.38

PrimNet 70.86 ± 1.19 72.22 ± 5.33 37.27 ± 5.48 62.83 ± 5.98

CE (ResNet-18) 85.29 ± 1.43 86.44 ± 5.42 48.62 ± 9.05 75.19 ± 8.16

CE
(DenseNet-121)

86.74 ± 0.74 87.01± 5.39 53.60 ± 13.04 76.86 ± 9.55

PFID
(ResNet-18)

88.98 ± 0.26 88.26 ± 5.01 59.36 ± 9.12 80.06 ± 6.62

PFID
(DenseNet-121)

90.78 ± 0.53 91.87 ± 2.92 66.24 ± 8.08 83.23 ± 6.07

PFID Results. To show the efficiency of our approach, we fine-tuned ResNet-
18 and DenseNet-121 models with standard cross entropy (CE) loss and report
in the Tables 3 and 2 for macaque and chimpanzee datasets respectively and
compared it with the PFID loss. We observe an increase in performance for
the four evaluation protocols with PFID loss as opposed to traditional cross
entropy fine-tuned network. Imposing a KL-divergence loss has improved the
discriminativeness of features by skewing the probability distributions of similar
and dissimilar pairs. For chimpanzee dataset an improvement of 4.04%, 4.86%,
12.64% and 6.97 % is achieved in case of classification, closed-set, open-set and
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Table 3. Evaluation of Rhesus Macaque dataset for classification, closed-set, open-set
and verification setting. Baseline results are reported by taking the penultimate layer
features of the network and training a SVM for classification. For all the remaining
settings the features are directly used for the evaluation protocol.

Method Classification Closed-set Open-set Verification

Rank-1 Rank-1 Rank-1 1% FAR

Baseline (ResNet-18
FC + SVM)

85.28 ± 0.25 88.29 ± 2.95 50.09 ± 7.35 66.98 ± 9.21

Baseline
(DenseNet-121 FC
+ SVM)

88.3 ± 0.57 89.24 ± 3.63 53.93 ± 10.27 71.34 ± 8.88

ArcFace
(ResNet-50)

98.23 ± 0.47 93.98 ± 2.99 67.07 ± 13.91 95.16 ± 1.56

SphereFace-20 97.61 ± 0.74 93.41 ± 2.19 95.62 ± 12.21 93.18 ± 1.95

PrimNet 97.11 ± 0.65 90.94 ± 2.54 65.98 ± 15.23 92.14 ± 2.82

CE (ResNet-18) 97.91 ± 0.58 95.94 ± 2.94 79.69 ± 8.12 96.35 ± 2.06

CE (DenseNet-121) 97.99 ± 0.69 96.24 ± 0.85 71.36 ± 10.05 96.01 ± 3.01

PFID (ResNet-18) 98.71 ± 0.41 96.18 ± 1.58 83.02 ± 7.36 97.71 ± 0.91

PFID
(DenseNet-121)

98.91 ± 0.40 97.36 ± 1.73 84.00 ± 7.43 98.24 ± 0.94

verification respectively using DenseNet-121. The corresponding CMC (Cumu-
lative Matching Characteristic) and TAR (True Acceptance Rate) vs FAR plots
for the datasets are shown in Fig. 4.

Feature Learning and Generalization. To further show the effectiveness of
PFID loss function and robustness of features, we perform cross dataset experi-
ments in Table 5. We used model trained on chimpanzee dataset and extracted
features on macaque dataset to evaluate the performance for closed-set, open-set
and verification task and vice versa. We compared the quality of the features
learned with PFID with the features learned with cross entropy based fine-
tuning. We also show the generalizability between two chimpanzee datasets cap-
tured in different environments i.e. CZoo and CTai. The results clearly highlight
the advantage of PFID over cross entropy loss for across data generalization.
Additionally, to highlight the discriminativeness and clusterability of the class
specific features, we cluster the feature representations of unseen (identities) test
data using K-means clustering algorithm. We report the clustering performance
in Table 4 and compare with the standard cross entropy loss.

Comparison with Siamese Network Based Features. One might draw
similarity of our approach with the popular siamese networks [20] that are trained
on similar and dissimilar pairs to result in a similarity score at the output. We
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Fig. 4. CMC (Top) and TAR vs FAR (Bottom) plots for (Left) C-Zoo+CTai and
(Right) Rhesus Macaques dataset.

Table 4. Comparison of K-means clustering performance on the learned representa-
tions with DenseNet-121. The results highlight that the PFID learns more clusterable
space.

Model Macaque Chimpanzee

NMI NMI

CE 0.868 ± 0.008 0.686 ± 0.084

PFID 0.897 ± 0.030 0.715 ± 0.089

Table 5. Evaluation of learned model across datasets. Left of the arrow indicates
the dataset on which the model was trained on, and right of the arrow indicates the
evaluation dataset. All the results are reported for DenseNet-121 network.

Macq. → Chimp. Chimp. → Macq. CZoo → CTai CTai → CZoo

CE PFID CE PFID CE PFID CE PFID

Closed Set 54.58 63.48 83.02 88.38 59.92 70.35 87.54 91.96

Open Set 13.56 34.29 32.04 43.00 17.21 27.21 43.25 64.75

Verification 43.02 63.77 67.51 75.37 48.68 60.57 66.71 82.22
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train ResNet-18 on chimpanzee data in siamese setting with pairwise hinge-loss
on features to show that the learned features in the classification setting are not
discriminative as compared to our PFID. While training in siamese setting, we
also observe that the network overfits on the training data and performs poorly
on unseen classes. The results for different evaluation protocols are: Classification
(83.97 ± 1.42), Closed-set (75.45 ± 5.51), Verification (57.28 ± 7.37) and Open-
set (22.22 ± 8.07).

Identification on Detected Face Images. The above results evaluated the
performance of PFID on cropped face images i.e. the true bounding box of the
test samples. As the captured images with handheld devices like cameras would
also have background, we evaluate the performance of PFID on the detected
faces on test samples. Since, we had 1191 full images for the Macaque dataset,
the detector is trained and tested with a split of 80/20. We fine-tune state-of-the-
art Faster-RCNN [18] detector for detecting macaque faces and achieve highly
accurate face detection performance. The identification results on the cropped
faces obtained from the detector is shown in Table 6. For identification evalua-
tion, we have 10 identities and 227 images for both closed-set and verification,
whereas for open-set we extend the probe set by adding 8 identities and 1100
samples which are not part of the dataset.

4.5 Integration with Crowd Sourcing App

We have developed a simple app to work as a front-end for PFID, which per-
mits a user to upload geo-tagged images of individuals and troops as well as
report a conflict incident. Augmented with the PFID based back-end service,
this app could help maintain an updated database of reported conflicts, along
with a primate database indexed by individuals, troop and last-sighted loca-
tions, which can be used with techniques like Capture-Recapture to estimate
population densities.

Table 6. Evaluation of detected macaque faces for closed set, open set and verification
setting.

Method Closed-set Open-set Verification

Rank-1 Rank-1 1% FAR

CE (ResNet-18) 95.00 70.78 89.22

PFID (ResNet-18) 97.20 78.80 91.11

CE (DenseNet-121) 95.30 80.67 91.56

PFID (DenseNet-121) 97.80 89.67 95.11
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5 Conclusion

In this work, we discussed the problem of unique identification of non-human
primates using face images captured in the wild. From existing literature, we
found that population monitoring is an important step in the management
strategies and largely rely only on field-based efforts. In this work, we identi-
fied this challenge and proposed an alternate solution that can simultaneously
improve monitoring of commensal primates as well as actively involve the affected
human community without any serious cost implications. We developed a novel
face identification approach that is capable of learning pose invariant features,
thus allowing to generalize well across poses without the requirement of a face
alignment step. Additionally, the proposed approach leverages the pairwise con-
straints to capture underlying data semantics enabling it to perform effectively
for unseen classes. With the effectiveness of our approach in different identifica-
tion tasks on real world data, we foresee that the PFID system could become a
part of widely used wildlife management tools like SMART1.
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Abstract. Dealing with compressed video streams in mobile robotics is
an unavoidable fact of life. Transferring images between mobile robots
or to the Cloud using wireless links can practically only be achieved
using lossy video compression. This introduces artifacts that often make
image processing challenging. Recent algorithms based on deep neural
networks, as advanced as they are, are commonly trained and evaluated
on datasets of high-fidelity images which are typically not captured from
aerial views. In this work we evaluate a number of deep neural network
based object detection algorithms in the context of aerial search and res-
cue scenarios where real-time and robust detection of human bodies is
a priority. We provide an evaluation using a number of video sequences
collected in-flight using Unmanned Aerial Vehicle (UAV) platforms in
different environmental conditions. We also describe the detection per-
formance degradation under limited bitrate compression using H.264,
H.265 and VP9 video codecs, in addition to analyzing the timing effects
of moving image processing tasks to off-board entities.

Keywords: CNN · Compression · UAV · Search & rescue ·
Cloud robotics

1 Introduction and Motivation

Industrial scale data and computing power used by companies such as Google or
Facebook is revolutionizing applications of image processing and speech recogni-
tion in all walks of life. The basic driving force behind these advances is the use
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of deep learning which is based on many-layered neural networks. Embedding
deep-learning based image processing functionality in autonomous systems such
as Unmanned Aircraft Systems (UAS’s) with the intent of operating in-the-field
and in near real-time, introduces a number of additional issues that require much
deeper analysis in terms of execution speed, memory requirements and accuracy
tradeoffs.

For example, in the case of object detection for static stand alone systems,
what meta-architectures for convolutional neural networks are most adequate
for a particular application in terms of speed/memory/accuracy tradeoffs? What
does the analysis show and how can such results be used in choosing the most
efficient meta-architecture for a particular application? Several of these issues
have been considered in Huang et al. [6] which presents results of an extensive
study and serves as a good starting point for this kind of research. Although
related, the main emphasis in this paper is to determine how such an analysis
carries over to the use of autonomous or other systems in-the-field and what
additional parameters and constraints specific to autonomous systems need to
be studied in order to understand the tradeoffs in this context while taking full
advantage of the new algorithms.

In this paper, the target application context is outdoor emergency search and
rescue operations using collaborating teams of heterogenous systems that include
smaller quadrotor helicopter platforms operating together with human rescue
responders and other resources. Such teams collaborate to achieve complex goals
such as aerial-based human body detection and delivery of medical and food
supplies to the injured in a timely manner. In this application, it is assumed
that each quadrotor system has embedded image processing capabilities or access
to such external capabilities. Figure 1 (right) depicts three of several quadrotor
platforms used in our experimentation.

The operational environments in which these combined human and aerial
robotic teams operate are supported by a larger distributed system consisting
of Ground Operation (GOP) centers, information sources for the querying and
storage of mission data, maps, images and video streams. Cloud technology is
also used for additional data storage and access to additional computational pro-
cessing capabilities that can be leveraged during missions. Cloud Robotics is the
terminology used for integrating Cloud technologies with robotic systems, where
robotic sensing, computation and storage can be shared between the robotic
system and the Cloud infrastructure. A comprehensive survey of research within
the field of Cloud Robotics can be found in [13].

For a particular quadrotor platform, there are options for executing com-
putationally intensive image processing algorithms on-board the system itself;
leveraging resources in another UAV; outsourcing some or all of the compu-
tation to workstations in ground operation centers; using Cloud resources for
computation, or using different combinations of the above.

Figure 1 depicts the basic experimental setup for this paper and also that
used in actual in-the-field emergency rescue experimentation. The top-left part
of the figure depicts several different computational sources for a specific UAV to
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Fig. 1. Overview of the system components in focus in this work. Top-left: compu-
tational resources available to a UAS. Bottom-left: detailed view of the most relevant
system components. Right: three quadrotor platforms used for experimentation. (Color
figure online)

leverage. The bottom-left part of the figure provides the configuration that will
be studied in this paper, where we assume one local robotic system interfacing
with a remote system with computational resources that in our context could
be the Cloud, another UAV, or a ground operation center.

The combination of autonomous UAVs, embedded computer vision algo-
rithms, Cloud Robotics, and a highly distributed collaborative system of teams
introduces additional complexities besides speed/memory/accuracy tradeoffs for
deep-learning based image processing. In particular, the encoding, transmission
and decoding phases in an image processing pipeline that may be distributed
must be taken into account as is clearly visible in Fig. 1.

For many computer vision algorithms it is assumed that the input images
are of high fidelity. However, this is not the case in application areas such as
surveillance or robotics in general, due to the way acquisition, transmission and
even storage of video signals is performed. This situation is further degraded in
the case of aerial robots since generally the carrying capacity does not permit the
use of high fidelity cameras and sufficient on-board computational power. More-
over, for very small size UAVs (e.g. below 1.0 kg), on-board image processing is
severely limited as the latest developments and state-of-the-art algorithms using
deep neural networks require computational power offered mainly by Graphics
Processing Units (GPU) in order to deliver timely results.

Even though there exist mobile processing solutions that can achieve accept-
able levels of performance, complementing the on-board computations with off-
board processing can be very beneficial. In such cases, wireless transmission of
video signals is inevitable in order to transport data to remote processing units.
However, this comes at the price of increased delays as well as introducing com-
pression artifacts, especially if the available bandwidth is limited as shown in
Fig. 2.
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Fig. 2. Example frames from the evaluation sequence showing degradation of image
quality when using different video encoding techniques with the same bitrate of 50 kbps.
From the right: H.265, VP9, H.264.

An example of taking advantage of off-board and in-the-cloud computation
for image processing and UAVs is presented in [7]. The authors describe a system
that first performs a local check of objectness to find potentials for detecting
objects that is executed on a remote computer in the Cloud. Substantial speedup
of computation is reported due to the use of powerful hardware. However, the
authors do not investigate issues related to image compression and transmission.

The results presented in [3] show the influence of the blur, noise, contrast,
JPEG and JPEG2000 compression on a number of deep neural networks in
the classification task. The authors investigate how these quality distortions
influence the performance in a per-frame setting. In this work we investigate the
degradation of performance under limited bitrate video compression.

1.1 Contributions

In this paper, we investigate the use of deep neural networks for human body
object detection in the context of emergency rescue using aerial robots. In par-
ticular, we evaluate the performance of a number of existing neural networks
under various video compression techniques when the available video transmis-
sion bandwidth is limited. We quantify the degradation of object detection per-
formance when dealing with video compression as well as investigate the timing
properties of the components involved in leveraging remote processing such as
computation in the Cloud.

The remainder of this paper is structured as follows. In Sect. 2, we review a
number of deep network structures and provide basic information about three
families of networks as well as specific information about the networks used in
this work. Section 3 includes a description of the dataset used for the evaluation.
Section 4 describes the video compression techniques investigated. Evaluation
results are then presented in Sect. 5. Final remarks and conclusions are provided
in Sect. 6.

2 Network Architectures and Configurations

There exists a plethora of techniques based on deep neural networks developed
in recent years for dealing with the issue of object detection. Some of them are
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general [11], some are designed for a specific application, and some are adapted
to specific circumstances through transfer learning. The objective of the eval-
uation performed in this research is to test the applicability of existing suc-
cessful families of neural networks used in the task of object detection under
limited bandwidth video compression. We believe that this approach offers more
insight and can provide guidelines for choosing an appropriate class of methods
given specific practical limitations when operating in-the-field (e.g. computa-
tional resources or communication links). An alternative approach would be to
fine-tune a number of methods to the task at hand. However, this would provide
a different type of insight and it also runs the risk of overfitting the model to the
datasets used. Both approaches have their merits and the latter will be pursued
in future research.

The aim of detecting objects in images (using deep neural networks or oth-
erwise) is to find bounding boxes of objects belonging to specific classes includ-
ing detection confidence measures for each box. Similarly to [6], we focus on
three families of detection networks which encompass a number of specialized
variations: Single Shot MultiBox Detectors (SSD) [9], Faster Region-based Con-
volutional Network (R-CNN) [12], and Region-based Fully Convolutional Net-
work (R-FCN) [2]. For different network meta-architectures one of the follow-
ing feature extractors were used: ResNet [5], Inception v2 [15], and Inception
ResNet v2 [14]. In-depth description of the network architectures as well as fea-
ture extractors can be found in [6] and in the respective publications. A short
description of these methods is given below.

2.1 Networks

The following neural network architectures will be considered in the evaluation:

– SSD : The Single Shot MultiBox Detector architecture uses a single feed-
forward convolutional network to directly predict classes and bounding boxes.
By using a single stage, the need for a second stage where a number of pro-
posals are classified is omitted. This is in contrast to networks which operate
in two stages as described below. The approach discretizes the output space
into a set of default boxes with different aspect ratios and scales per feature
map location. Moreover, predictions from multiple feature maps with differ-
ent resolutions are combined to account for different sizes of objects. During
inference, the network computes scores for objects detected in each default
box and adjusts its shape to better fit the object [9].

– Faster R-CNN : Region-based Convolutional Networks (R-CNN) operate in
two stages. First, a Region Proposal Network (RPN) is used to generate
detection region proposals. In the second stage, the generated proposals are
evaluated using a classifier and the class-specific box is refined for each pro-
posal as well [12]. Faster R-CNN uses a network architecture which overcomes
shortcomings of its previous versions: R-CNN and Fast R-CNN. Due to the
speed improvements, Faster R-CNN is suitable for real-time operation.
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– R-FCN : The Region-based Fully Convolutional Network structure is similar
to Faster R-CNN but the cropping of features happens in the last layer before
the object class prediction takes place. This is unlike Faster R-CNN where
the cropping is done from the same layer where region proposals are pre-
dicted. This allows for significant gain in speed as the amount of per-region
computations is minimized [2].

2.2 Feature Extractors

In all network families mentioned above first a convolutional feature extractor
transforms an input image to a set of high level features. We chose the following
feature extractors in our evaluation:

– ResNet (50 and 101): The training of very deep networks becomes difficult
and the vanishing gradient problem is one of the reasons that accuracy starts
to saturate and can even degrade. To overcome this issue the authors [5]
reformulated the layers as learning residual functions with reference to the
inputs. Here, the residual can be understood as a subtraction of a feature
learned from the input of the layer. The ResNet structure also uses shortcut
connections between layers. Due to these changes, the learning of networks
of this form is easier to do than with simple deep networks. The issue with
degrading accuracy is also resolved. The introduction of Residual Networks
is considered as one of the bigger breakthroughs in the area. The designation
of 50 and 101 (also 152) refers to the number of layers in the network [5].

– Inception v2 : The choice of kernel size depends on the locality of the salient
information (object of a class) in an image. For local information, a small
kernel is better, and for global information, a larger one is more suitable. Very
deep networks are prone to overfitting. To solve this issue, the authors [15]
decided to go wider instead of deeper. Filters with multiple sizes are placed
on the same level (1 × 1, 3 × 3, 5 × 5 convolutions) creating an inception
module. This basic idea with a few additional aspects omitted here is known
as GoogLeNet (Inception v1). Inception v2 increased the speed and accuracy
by factorizing 5 × 5 into two 3 × 3 convolutions and n× n to a combination
of 1 × n and n× 1 to improve the speed [15].

– Inception ResNet v2 : This is a hybrid of ResNet and Inception networks
which introduces residual connections that add the output of the convolution
operation of the inception module to the input [14].

2.3 Configurations

The table in Fig. 3 presents the network configurations evaluated in this paper.
In addition to the network family, the type of feature extractor is also specified.
For all networks the input image is first resized in one of two ways. Either it
is scaled to a fixed size (300 × 300, or 600 × 600 pixels) or it is resized such
that the shorter edge is 600 pixels and the longer is scaled to be no longer than
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Network Feature extractor Input Resizer Region Proposals

- Resnet-50 300

LP Resnet-50 20

- Resnet-101 100

LP Resnet-101 20

- Inception Resnet (v2) 300

LP Inception Resnet (v2) 20

R-FCN Resnet-101 100

Network Feature extractor Input Resizer

SSD Inception (v2) Fixed: 300, 300

SSD Resnet-50 Fixed: 640, 640

SSD MobileNet (v2) Fixed: 300, 300F
as
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R
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N
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Keep aspect: 
600, 1024

Fig. 3. Network configurations used for evaluation. LP refers to low-proposal versions.

1024 pixels. In the latter case the scaling is done in a manner that preserves the
aspect ratio.

Finally, the number of produced region proposals is specified where appli-
cable. A typical number of proposals evaluated by Faster R-CNN and R-FCN
is 300. In order to speedup the detection process the number of proposals can
be reduced with a small penalty on the recall performance, as reported in [6].
Since our interest is in close to real-time performance, we also investigated the
effect of using a lower number of proposals on our dataset. For the evaluation,
we used already pre-trained networks available within the TensorFlow [1] models
zoo1. The networks were trained on the COCO (Common Objects in Context)
dataset [8] which contains over 90 object classes. However, we report results only
for the person class due to the chosen application area.

3 Evaluation Dataset

In order to evaluate the degradation of performance of the detectors due to image
compression, a number of aerial sequences were selected from videos collected
during a two year period. The selection was made to assure variations in weather
conditions, times of year, locations, detection subjects’ poses and appearance
(clothing), and backgrounds (grass, gravel, wood, asphalt, dirt road, water).
Over 69 min of source video footage was used.

The table in Fig. 4 presents descriptions of the sequences collected at four
locations abbreviated as T, M, V, and K. Figure 4 (right) shows a number of
sample images from these locations. The distance of the camera and objects to
be detected is characterized by the percentage of objects belonging to groups
defined in the COCO evaluation protocol: small (area< 322 pixels), medium
(322 pixels< area< 962 pixels), and large (area> 962 pixels).

The original sequences were recorded using DJI Zenmuse Z3 cameras on
DJI Matrice 100 and Matrice 600 Pro platforms (see Fig. 1). The videos were
recorded on the cameras’ internal SD Cards with 1920 × 1080 resolution and a
60 Hz framerate using an H.264 codec with a bitrate of 60 Mbps.

1 TensorFlow detection model zoo: https://github.com/tensorflow/models/blob/
master/research/object detection/g3doc/detection model zoo.md (2019).

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
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Name Weather Month
Class: person Length 

m:sSmall % Med. % Large % Total
T1 Overcast April 12 78 10 618 5:25

T2 Sunny May 12 87 1 628 5:22

T3 Sunny May 4 82 14 744 6:23

T4 Overcast May 12 84 4 2799 6:19

M1 Sunny June 3 97 0 30 0:29

M2 Sunny June 22 69 8 131 1:21

M3 Sunny June 34 60 7 173 2:25

M4 Sunny June 26 69 5 170 3:15

M5 Sunny June 1 98 1 318 2:35

M6 Sunny May 6 81 14 426 3:01

M7 Sunny May 0 93 7 290 2:38

M8 Sunny May 4 88 8 729 6:23

M9 Overcast October 18 80 2 907 8:32

M10 Sunny April 5 90 4 568 4:36

V1 Sunny Sep. 5 95 0 64 2:59

V2 Sunny Sep. 20 80 0 219 4:23

V3 Overcast June 78 22 0 497 0:43

K1 Sunny May 23 75 2 1352 2:17

Fig. 4. Summary of video sequences and example images used for evaluation: four
locations (T, M, V, K), different weather conditions and times of year, percentage size
composition (small, medium, and large) and total number of objects of class person.

In producing the evaluation sequences, the originals were transcoded using
the codecs described in Sect. 4, to a resolution of 1024 × 576 and a 30 Hz fram-
erate. This resolution and framerate were chosen as they are more common for
cameras typically used on UAV platforms for on-board processing, as well as to
fit to the inputs of the evaluated networks. A wide range of bitrates were tested,
spanning from 20 Mbps, down to the extremely low 50 kbps.

For SSD networks which use fixed size input images with aspect ratio of 1:1,
no additional pre-processing has been applied. It has the disadvantage that the
input images are deformed when scaled from the original 16:9 aspect ratio. To
remedy this, it is common to crop the images or add padding in order to preserve
the aspect ratio. This however will be investigated in future work.

Finally, images at the rate of 2 Hz were extracted from the transcoded
sequences to produce more than 8200 images per all codec and bitrate combi-
nations. Because we are dealing with video sequences, unlike the case of typical
image datasets, the consecutive images are similar. For this reason, images at a
lower rate are still representative of the full sequences. Finally, the evaluation
images were annotated with the person class and used as ground truth during
evaluation. In the research presented here, we focus on human body detection
due to the targeted application area of search and rescue. However, the results
should be applicable to objects of other classes (in fact, the evaluated networks
can detect over 90 object classes).
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4 Video Compression

Three common video compression techniques were investigated in the experi-
mentation: H.264, H.265, and VP9. The H.264 (MPEG-4 AVS) coding format is
currently one of the most commonly used techniques for a multitude of applica-
tions. Compared to its predecessor (MPEG-2 Part 2), it offers bitrate savings of
up to 50% with comparable quality. The H.265 (High Efficiency Video Coding
- HEVC) is a successor to H.264 and is quickly gaining market share. Again, it
offers up to 50% of the required bitrate reduction as compared to H.264. The
third codec under evaluation is an open, royalty-free media file format called
VP9. It offers bitrate savings of up to 20–50% when compared to H.264. More
details about the coding techniques can be found in [10], or [4].

The encoding configurations for the application considered in this paper have
been chosen to minimize the encoding time, i.e. to allow to transfer, decode and
process the data with minimum delay. The evaluation and results character-
ize the degradation and performance of object detection, where minimal time
increase is paramount. For applications where timely delivery of results is not
a priority (e.g. off-line and/or batch processing), different encoding configura-
tions can be more suitable. This would result in either better image quality at
the same bitrate or decreased required bitrate for the same quality. The results
presented below correspond to the worst case i.e. lowest quality settings with
minimal delays.

Video sequences described in the previous section were encoded using the
FFMpeg2 multimedia framework. The most important parameters were chosen
as follows: 1-pass encoding with a target bitrate and ultrafast preset. The lat-
ter parameter allows for achieving a very fast encoding time, but the resulting
compression level is not optimal.

5 Evaluation

The evaluation of the degradation of object detection performance under limited
bitrate compression has been performed using two parameters: precision and
recall. In machine learning, precision answers the question: what proportion
of positive identifications was actually correct? In other words, a model that
produces no false positives has a precision of 1. Similarly, recall answers the
question: what proportion of actual positives was identified correctly? A model
that produces no false negatives has a recall of 1. The two parameters together
describe the behavior of an algorithm. In many applications there exists an
inverse relationship between precision and recall, so that it is possible to increase
one at the cost of the other.

From the perspective of the application investigated in this paper, the second
parameter is more important as its high value means a low number of false
negatives. In the context of detecting human bodies in search and rescue missions,
it is more important not to miss a potential victim than it is to deal with a larger
2 FFmpeg multimedia framework: https://www.ffmpeg.org.

https://www.ffmpeg.org
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Fig. 5. Average Precision and Recall for different networks and bitrates.

number of false positives. But of course, a proper balance is also important to
avoid accepting an overwhelming number of false positive detections.

The results presented below were obtained by performing evaluations using
TensorFlow with COCO detection metrics. The parameter, Intersection over
Union (IoU), measures how much overlap there is between areas of two regions.
If the ground truth and prediction regions are identical, IoU is equal to 1. In
other words IoU measures how good the prediction in the object detector is. For
COCO, Average Precision is the average over multiple IoUs (e.g. a detection is
considered positive if IoU > 0.5). The label, AP 0.50 0.95, in the vertical axis,
corresponds to the Average AP for IoU from 0.5 to 0.95 with a step size of 0.05.

5.1 Accuracy

Figure 5 presents Average Precision and Average Recall values for different net-
works, codecs, and bitrates. In general, all networks show little degradation as
the bitrate is reduced down to 2.5 Mbps. This applies for all encoding techniques.
Below this value, the performance deteriorates rapidly for H.264 and more grace-
fully for VP9 and H.265, respectively. The relatively best performance is achieved
using H.265 even when the bitrate is reduced to 500 kbps.

The performance of the SSD Inception v2 and Mobilenet v2 networks is
consistently poor relative to other networks and stays constantly poor for almost
all bitrates. If these networks are the only available option, there is no need to
devote additional bitrate for video transmission. Additionally, these networks do
not greatly benefit from using GPU computations instead of standard Central
Processing Units (CPUs). This will be shown in the next subsection.
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Fig. 6. The degradation of Average Precision and Recall of Faster R-CNN networks
with lower number of proposals (LP).

Figure 6 presents the difference in Average Precision and Recall for Faster
R-CNN networks depending on the number of proposals used. The configuration
of networks is presented in Fig. 3. The decrease in number of proposals does
not significantly lower the accuracy but gives big gains in computation times
as described in Sect. 5.2. However, if the best object detection performance is
required, a higher number of proposals is better. The general performance of
codecs at specific bitrates follows the findings described above. Figure 7 presents
the Precision and Recall for objects of different sizes as defined in the COCO
evaluation protocol for different networks and bitrates.

The accuracy of the networks on large and medium size objects follows the
above findings about codecs and bitrates. However, for small objects the overall
performance is low and its degradation is very rapid for all codecs and bitrates.
Therefore, if the application at hand requires detecting small objects, the highest
available bitrate should be used. Alternatively, care should be taken to make sure
the distance between an object and a camera is small. This can be achieved by
performing search flights at a lower altitude.

5.2 Timing

When off-loading or complementing computationally intensive tasks such as
object detection to a remote unit, introduction of delays is inevitable. Figure 1
(right) presents a schematic of steps involved in processing the image data locally
(e.g. directly on a robotic system) as well as using a remote entity. Compari-
son between local processing (in green) with processing on a remote entity, a
number of additional steps (in blue) introduce delays in the processing pipeline.
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Fig. 7. Average Precision (top) and Recall (bottom) at IoU 0.5 0.95 for objects of
different sizes: large (left), medium (middle), and small (right).

These delays are caused by encoding and decoding times as well as transmission
to and from the remote unit. For off-board processing to make sense, one or both
of the following has to be true: (a) the total time of remote processing has to be
smaller than the total time of local processing (due to the availability of more
powerful hardware) or (b) off-board processing has to provide a solution which
is not achievable on the local system alone. In the evaluation, we omit the time
taken to grab images, since it is the same for both cases.

It is important to note that both cases are hardware dependent and repro-
ducibility of the results is not straight forward. The computation speed is highly
dependent on the specific hardware configuration and even software versions
used. Consequently, the results should be treated as indicators or relative mea-
surements rather than absolute values. Furthermore, the inference setup can be
tailored to specific hardware to achieve maximum performance. Here, we analyze
the performance as-is without attempting to improve it through an optimized
deployment. At this stage of investigation, we do not perform any compara-
tive evaluation of specific technologies that can be used to transmit video data
between systems. WiFi, 3G, 4G or even 5G have different properties and their
use is dependent on availability. Instead, we provide the time gains of process-
ing using different hardware components. Based on this data, an appropriate
transmission technology can be chosen.

The table in Fig. 8, presents the hardware used for the timing evaluation of
the models presented in previous sections. Four system configurations denoted
as A, B, C and D were used, each with an increasing amount of discrete GPU
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Fig. 8. Hardware configurations of systems used for execution timing analysis.

power available. System A is a small form-factor computer from the Intel NUC
family. Due to its size, it is suitable for usage on-board smaller UAV platforms
(see Fig. 1 right), but it lacks a dedicated discrete GPU. System B is a typical
desktop computer with a mid-range gaming class GPU and a corresponding
CPU. System C has been configured for the purpose of machine learning. It is
equipped with a GPU tailored for this purpose. System D is a machine in a
datacenter. Its configuration is heavily tailored to machine learning tasks.

The table in Fig. 9 presents the average per-frame execution times of the net-
works listed when performing inference on the evaluation sequences described in
Sect. 3. Additionally, time differences are listed to easily assess the performance
gain in computations using different hardware components. The overall speedup
of computations using GPUs compared to CPUs is also provided.

Figure 10 (left), compares the inference performance using GPUs. Average
frame inference times as well as minimum and maximum values are provided
(note the logarithmic time scale).

The gains in performance using the faster GPU systems were as follows. Sys-
tem C was on average 1.52 times faster than System B. System D was 1.72 and
1.09 times faster than Systems B and C, respectively. Unsurprisingly, the most

CPU 
[ms]

GPU
[ms]

CPU-GPU time diff. 
[ms]

CPU/GPU 
speedup

Model / System A B C D B C D B C D B C D

Inception Resnet v2 21030 15487 13299 12969 801 390 263 14686 12909 12706 19,3 34,1 49,3

Inception Resnet v2 LP 8012 6412 5403 5270 395 207 149 6017 5196 5121 16,2 26,1 35,4

Resnet 101 3493 2509 2130 2057 130 79 69 2379 2051 1988 19,3 27,0 29,8

Resnet 101 LP 2259 1673 1418 1344 102 64 55 1571 1354 1289 16,4 22,2 24,4

Resnet 50 2610 1860 1594 1567 104 66 61 1756 1528 1506 17,9 24,2 25,7

Resnet 50 LP 1372 1025 882 860 64 51 48 961 831 812 16,0 17,3 17,9

RFCN Resnet 101 2956 2157 1813 1725 123 75 67 2034 1738 1658 17,5 24,2 25,7

Inception v2 118 88 81 86 27 29 34 61 52 52 3,3 2,8 2,5

Mobilenet v2 68 61 53 65 25 26 35 36 27 30 2,4 2,0 1,9

Resnet 50 v1 1990 1461 1192 1186 80 50 56 1381 1142 1130 18,3 23,8 21,2
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Fig. 9. Execution times, gains of time and speedup of GPU over CPU processing.
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computationally demanding (and most accurate) is the Faster R-CNN ResNet
Inception v2. It executes 3.05 and 2.05 times faster using System D, as com-
pared to systems B and C, respectively. In the case of the least computationally
demanding models, SSD Inception v2 and SSD Mobilenet v2, a slight decrease in
performance was observed using the more powerful GPU systems C and D. This
can be explained by the fact that the more powerful GPUs are not required as
these networks have very little demand and the potential gains disappear in the
overhead before a GPU can actually process a frame. It is also important to note
that these two network configurations scale input images to a lower resolution
of 300 × 300 as specified in the table in Fig. 3.

The speedup of GPU frame inference due to using a lower number of pro-
posals (as described in Sect. 2) is substantial. For the three variants of networks
as ordered in Fig. 10 (left), the average speedup for the three GPUs was, 1.89,
1.25, and 1.40 times, respectively.

Figure 10 (right), presents the timing analysis results of performing inference
using CPUs. The average, as well as minimum and maximum times are shown
(note the logarithmic scale). The differences between performing inference using
CPU computations using the four hardware configurations, is not as large as in
the case of GPUs. This is expected, as performing inference using CPUs is known
not to be optimal and the CPUs used are similar in computational power. SSD
Inception v2 and SSD Mobilenet v2 models are the fastest to compute. These
models are the most suitable for use when GPU power is not available, as is
often the case with on-board computation on aerial vehicles.

However, as expected, the gain of using GPUs over CPUs is dramatic. For
example, comparing the execution times for the most accurate network, the
Faster R-CNN ResNet Inception v2, the gain of the slowest CPU execution
(System A) versus the fastest GPU execution (System D) is 80 times (21030 ms
vs 263 ms). This clearly demonstrates the gains of taking advantage of remote
computational resources in the Cloud Robotics setting. The speedup gained

Fig. 10. Inference times (logarithmic scale) for a number of models using three GPU
systems. Average, minimum and maximum times are shown.
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makes up for any reasonable delays introduced by encoding and transmitting the
data for off-board processing. The same applies to the other networks (excluding
SSD Inception v2 and SSD Mobilenet v2) as the average speedup is 20 times.

The speedup of frame inference using CPUs is also substantial due to using
a lower number of proposals (as described in Sect. 2). For the three variants of
networks as ordered in Fig. 10, the average speedup for the four CPU systems
was: 2.49, 1.52, and 1.84 times, respectively.

The time gains for using GPU over CPU processing (as shown in Fig. 9)
allow us to assess if processing on a remote unit makes sense. For most networks,
the time difference is larger than 1 s which should compensate for the time of
encoding, transmitting, and decoding of the video stream. As mentioned earlier,
for the most extreme case, the gain in processing time is larger than 20 seconds
per frame.

6 Conclusion

We have evaluated a number of deep neural network-based object detection
algorithms from the perspective of in-the-field usage where video transmission
bandwidth is limited. We showed how the detection performance of human bod-
ies degrades under a decreasing bitrate using three common video compression
algorithms. For the evaluation, we used a novel dataset of video sequences col-
lected during real flights in various environmental conditions which are repre-
sentative for a wide variety of search and rescue missions. We also presented the
performance of the algorithms in terms of per-frame calculation times on four
hardware systems with varying performance of CPU and GPU components. The
results presented can provide criteria for choosing an appropriate object detec-
tion algorithm given the available computational and communication hardware,
or for assessing the tradeoffs in performing image processing tasks on-board or
off-board with UAV platforms.
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object detection for unmanned aerial vehicles. In: 2017 First IEEE International
Conference on Robotic Computing (IRC), pp. 36–43, April 2017

8. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

9. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

10. Ohm, J.R., Sullivan, G., Schwarz, H., Tan, T., Wiegand, T.: Comparison of the
coding efficiency of video coding standards including high efficiency video coding
(HEVC). IEEE Trans. Circ. Syst. Video Technol. 22, 1669–1684 (2012). https://
doi.org/10.1109/TCSVT.2012.2221192

11. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified,
real-time object detection. CoRR abs/1506.02640 (2015). http://arxiv.org/abs/
1506.02640

12. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
39(6), 1137–1149 (2017)

13. Saha, O., Dasgupta, P.: A comprehensive survey of recent trends in cloud robotics
architectures and applications. Robotics 7(3) (2018). https://doi.org/10.3390/
robotics7030047

14. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-ResNet and the
impact of residual connections on learning. CoRR abs/1602.07261 (2016)

15. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016)

http://arxiv.org/abs/1611.10012
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/TCSVT.2012.2221192
https://doi.org/10.1109/TCSVT.2012.2221192
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
https://doi.org/10.3390/robotics7030047
https://doi.org/10.3390/robotics7030047


A Deep Learning Approach for Dog Face
Verification and Recognition

Guillaume Mougeot(B), Dewei Li, and Shuai Jia

Department of Control Science and Engineering,
Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China

{gmougeot,dwli,liu2596615}@sjtu.edu.cn

Abstract. Recently, deep learning methods for biometrics identification
have mainly focused on human face identification and have proven their
efficiency. However, little research have been performed on animal bio-
metrics identification. In this paper, a deep learning approach for dog
face verification and recognition is proposed and evaluated. Due to the
lack of available datasets and the complexity of dog face shapes this
problem is harder than human identification. The first publicly available
dataset is thus composed, and a deep convolutional neural network cou-
pled with the triplet loss is trained on this dataset. The model is then
evaluated on a verification problem, on a recognition problem and on
clustering dog faces. For an open-set of 48 different dogs, it reaches an
accuracy of 92% on a verification task and a rank-5 accuracy of 88% on a
one-shot recognition task. The model can additionally cluster pictures of
these unknown dogs. This work could push zoologists to further investi-
gate these new kinds of techniques for animal identification or could help
pet owners to find their lost animal. The code and the dataset of this
project are publicly available (https://github.com/GuillaumeMougeot/
DogFaceNet).

Keywords: Dog face recognition · Dog face identification ·
Pet animal identification

1 Introduction

Nowadays, the main techniques for dog identification are collars, tattoos and
microchip implants [12]. As these methods can be unreliable or harmful for the
animals, zoologists and computer scientists have started exploring new strate-
gies through the use of machine learning. Machine learning techniques have now
become reliable enough for human face identification [27]. They can thus poten-
tially be used on the more complex problem of dog face identification.

This project is mainly inspired by the recent development of deep learning in
face verification: does these two pictures represent the same individual?, in face
recognition: who is this individual? and in face clustering: group these pictures
by individuals [22,26].
c© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11672, pp. 418–430, 2019.
https://doi.org/10.1007/978-3-030-29894-4_34
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However, animal face identification needs improvement. There is no publicly
available dataset and little development in used techniques. This work aims thus
at developing the existing methods by using recent deep learning research in face
verification and recognition on a novel dataset of dog faces.

A brief review of the last development in human and animal identification is
presented in Sect. 2. In Sect. 3, we first build a dataset using pictures we took
and images retrieved from the Internet. The face pictures are then aligned and
grouped into triplets. In Sect. 4, a ResNet-like model [9] coupled with the triplet
loss [22] is designed to be trained on this dataset. In Sect. 5, the trained model
is evaluated on a verification, a recognition and a clustering task. The main
applications of this work could be to find stray animals or track free-ranging
animals in smart cities.

2 Related Work

So far, research on animal biometrics recognition has mainly focused on cattle
identification [2,8,13,15,17,18] or endangered species identification [5,6]. Kumar
et al. [19] present a complete review on the latest development in this field. Dog
faces are mainly subject to studies in landmark detection [29] and breed classifi-
cation [20,29]. A method for dog face identification was recently proposed in [16].
In this paper they classify the most recent development in animal biometrics
identification into four categories: muzzle points, iris pattern, retina vascular
and face images. As human fingerprints identification, muzzle points identifi-
cation is a reliable way to identify individual animals but in order to extract
features, pictures have to be in a high resolution and well exposed or muzzles
prints should be retrieved using an appropriate scanner. In both cases, data
collection on animals is difficult and time consuming. Iris pattern and retina
vascular identification suffer from the same problems. On the other hand, a lot
of high resolution dog faces can now be found on the Internet. The work of
Kumar et al. [16] on dog faces is inspired by classical machine learning methods
for face recognition like Fisherfaces. Their image dataset is composed of one face
per individual animal and data augmentation is then used to create new repre-
sentations of these individual animals. Their model reached a top-1 accuracy of
82% on a closed-set of test data.

A more realistic goal would be to consider several actual pictures per indi-
vidual animal taken in the wild. A trained model could then to be tested on an
open-set of test data. These changes increase the difficulty of the problem sig-
nificantly. The same difficulty arises for human face identification. To deal with
it, researchers have created deep learning methods. As human face recognition
represents a key domain in computer vision, many related research results can be
found [1,3,4,26,27]. The work of Schroff et al. in [22] illustrates the importance
of this new types of methods: the previously published error rate on the Labeled
Faces in the Wild (LFW) dataset [11] has been reduced by 30%.

The determinant part in face identification method based on deep learning
is the loss definition for which a lot of important improvements have been devel-
oped during the past few years [7,21,22,28,30]. Among these different losses,
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the triplet loss generates better results on a small open-set of data. Even though
CosFace [28] or ArcFace [7] should normally work better regarding their accu-
racy on standard human face datasets as LFW, they rapidly overfit when trained
on small datasets with a low level of regularity such as dog faces.

In order to train a network with the triplet loss, triplets of pictures have to
be defined. A triplet is composed of an anchor picture xa, a positive picture xp

and a negative picture xn. The anchor picture is a picture of a randomly chosen
individual inside the dataset. The positive picture is a different picture of the
same individual. The negative picture is a picture of another individual. For an
image x the network f will generate an embedding vector f(x). The goal of the
model is to ensure that the Euclidean distance between the anchor embedding
vector f(xa) and the positive image one f(xp) is lower than the Euclidean dis-
tance between the anchor embedding vector and the negative image one f(xn).
In order to increase the margin between the different classes, a constant α is
added in the previous inequality. This can be written as follows:

||f(xa) − f(xp)||2 + α < ||f(xa) − f(xn)||2 (1)

The final objective of the network is then to minimize the following loss L
defined as the triplet loss in [22] (N is the number of triplets per batch):

L =
N∑

i=0

max(||f(x(i)
a ) − f(x(i)

p )||2 − ||f(x(i)
a ) − f(x(i)

n )||2 + α, 0) (2)

Regarding the model selection, a VGG network [23] was used in Schroff
et al. [22] paper. This network is a standard for image classification. Never-
theless, it has been improved by He et al. in [9]. Their created structure, called
ResNet, has five time less parameters and a better accuracy on the ImageNet
classification task. More complex networks have lately been developed such as
InceptionNet [25], SENet [10] or NASNet [31]. These methods are the current
state-of-the-art regarding image classification.

3 Dataset Creation and Pre-processing

3.1 Data Collection

As no open source dog face datasets are available, a new one is created. This
dataset is a collection of dog face pictures we took ourselves and pictures found on
the Internet. The main contributions on this dataset can be found on non-profit
pet adoption websites: Streunerhilfe1, Tiko2, Pfotenhilfe3, La SPA4, Tieronline5

and Animal-happyend6.
1 https://www.streunerhilfe-bulgarien.de/.
2 https://www.tiko.or.at/de/tiere/.
3 https://www.pfotenhilfe.org/tiervermittlung/.
4 https://www.la-spa.fr/.
5 https://www.tieronline.ch/.
6 https://www.animal-happyend.ch/.

https://www.streunerhilfe-bulgarien.de/
https://www.tiko.or.at/de/tiere/
https://www.pfotenhilfe.org/tiervermittlung/
https://www.la-spa.fr/
https://www.tieronline.ch/
https://www.animal-happyend.ch/
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Fig. 1. Data pre-processing. Left: a raw image with its corresponding labels, Right:
a set of aligned images after similarity transform.

In order to increase the network accuracy, only dogs with more than 5 pictures
are selected. The final dataset contains 3148 pictures of 485 dogs.

3.2 Data Pre-processing

As the dataset is small, feeding the model with only raw images would give a
bad accuracy. Three labels are thus manually added on the images: the left eye,
the right eye and the muzzle, as shown on the left part of Fig. 1.

Dog faces are then aligned using the position of the eyes. Face alignment
creates regularities in images and facilitates dog face parts automatic detection.
A similarity transformation, i.e. a translation, a rotation and a re-sizing, is used
to align the raw images. The eyes are horizontally constrained in the upper
third of the picture. It creates a strong similarity between pictures and leaves
enough space in the bottom part for the dog muzzle. The right eye of the dog
is placed in position (0.7/2.4 × new height, 0.7/2.4 × new width) and the left
eye in position (0.7/2.4 × new height, 1.7/2.4 × new width). It is a good com-
promise between reducing the background regions and ensuring enough space
for long dog noses to appear on the pictures. The pictures are finally re-sized to
(new height,new width, depth) = (104 × 104 × 3) pixels. Figure 1 represents an
example of different aligned dog faces.

To properly train the model, the dataset is split into a training set and a
testing set. There are two main methods to define the testing set: either to
create what is called a closed-set or to create an open-set. A closed-set is a set
of unknown images of known dogs, which means that the network has already
seen pictures of these dogs during the training stage. An open-set is a mixture of
unknown dog pictures, the network sees these dogs for the first time during the
testing stage. The open-set problem is a harder problem to solve and closer to a
real life problem. The testing set is thus defined as an open-set. If an application
has to be developed later, a network that manages to correctly identify dog faces
from an open-set of images will be a necessity.

The training set is composed of 2850 pictures of 437 dogs, and the testing
set contains 298 pictures of 48 dogs. As specified above, there is no intersection
between these two sets of dogs.
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In order to prevent overfitting, to increase the size of the dataset and to
foster generalization, the training set is augmented by slightly zooming into the
pictures (zoom range = 0.1), by rotating them (rotation range = 8◦) and by
shifting their channels (channel shift range = 0.1).

The images are finally grouped into triplets following the procedure defined
in Sect. 2. The final dataset, ready for training, contains: 10000 triplets (30000
pictures) of augmented dog faces for the training set and 1000 triplets (3000
pictures) of non-augmented dog faces for the testing set.

4 Model Definition and Training

4.1 Model Definition

Because of the novelty of the problem a new model has to be designed to solve it.
This model is a deep convolutional neural network inspired by the recent develop-
ment on this type of structure. Many different VGG-like [23] and ResNet-like [9]
models have been trained on the dataset. The final model has the best performance
on both verification and recognition task. It is described on Fig. 2. It is mainly
inspired from the ResNet [9] structure to which a lot of dropout layers [24] are
added. The network takes an image x of size (104 × 104 × 3) as input and out-
puts an embedding vector f(x) of size 32. In order to scale the Euclidean distance
in the loss defined in Eq. (2), the output vector has to rely on the unit hypersphere,
hence ||f(x)||2 = 1.

To design this model the utmost attention is paid to prevent overfitting.
In order to extract a sufficient number of features from pictures, the network
has to be as deep as possible. The residual layers allow to design such a deep
network: it prevents the gradient from vanishing during back-propagation. The
final model contains 92 layers for a total of 5.8 million of parameters. However,
a too deep model would rapidly overfit to the small training set and its accuracy
on the testing set would decrease. The model also contains many dropout layers
to create a sparse network during training. Each of these dropout layers will
set three fourths of the previous output to zero. This technique thus strongly
prevents the network to specialize too much.

4.2 Training

The model is trained using a GPU Tesla K80 with a margin α = 0.3. However,
the model rapidly overfits if it is only trained on the dataset defined in Sect. 3.
In order to fix such a problem we could have re-generated augmented triplets.
Although this solution can temporarily work, it rapidly overfits again. A better
solution is described in [22]: to generate so-called hard triplets. It consists in
taking a subset of dogs, and then for each picture xa:

– among pictures of the same class, find the most different positive picture xp

from xa, that is, compute argmaxxp
||f(xa) − f(xp)||2
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Fig. 2. Model definition. The model takes a dog face image as input and outputs its
corresponding embedding vector. The core block (inside the blue box) is sequentially
repeated 6 times. The ConvBlock and the ResBlock descriptions are presented on the
right side of the figure. (Color figure online)

– among pictures of the other classes, find the most similar negative picture xn

from xa, that is, compute argminxn
||f(xa) − f(xn)||2

These hard triplets can be generated either online (during training) or offline
(every n epochs). We choose to use offline training for computation power rea-
sons: the online generation needs a minimal number of images per classes, which
leads to a too big sized batch for our available computational power. Offline
training consists in re-generating hard augmented triplets every n = 3 epochs,
what will be called a cycle. The model is finally compiled using the Adam opti-
mizer [14]. To improve the convergence, the learning rate is scheduled during
training as shown in Table 1.

Table 1. Learning rate scheduling.

Cycles Epochs Learning rates

13 39 0.001

4 12 0.0005

4 12 0.0003

2 6 0.0001

Total 23 69 -
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The accuracy is monitored on the open test set defined in Sect. 3. In this
set, a triplet is considered as correct if it respects the hard condition defined
by inequality (1). As shown on Fig. 3, the model loss decreases during a cycle
and increases after hard augmented triplets generation. If the model is trained
more than 70 epochs, it starts overfitting: the validation loss will increase as the
training loss will decrease.

5 Evaluation

As previously emphasized, the model is evaluated on an open-set of dogs. These
dogs are unknown to the network during training. This set is composed of 298
pictures of 48 dogs. After feeding the network with these images, 298 embedding
vectors are computed. These vectors will finally be used by a specific algorithm
to evaluate the network performances on the three following tasks:

– Verification: given a pair of pictures, the algorithm has to say if it is the
same dog or not. In term of embedding vectors, it means that the distance d
between the vectors of a pair is compared with a threshold t. If d < t then the
algorithm considers that the pair represents the same dog. A random choice
algorithm will obtain an accuracy of 50% here.

– Recognition: given one or several pictures per dog that are considered as
learned by the algorithm, the algorithm has to determine for every non-
learned picture which dog it represents. Given a newly computed vector the
algorithm looks at its closest neighbors in the set of learned vectors and
outputs the most frequent class in this set: it is the k-nearest neighbors
(k-NN) algorithm. This task is harder than the previous one: a random choice
algorithm will obtain an accuracy of one over the number of dogs, so 2.08%
here.

Fig. 3. Model convergence. Left: training and validation loss. Right: training and
validation accuracy.
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– Clustering: given all the images, the algorithm has to group them by dogs.
After computing all the embedding vectors, the clustering algorithm creates
groups of vectors that are close to each other. The algorithm applied here is
the classic k-means algorithm.

In order to highlight the efficiency of ResNet-like structure, the results obtained
with it will be compared to the one obtained with the best VGG-like structure
designed to solve this problem.The latter network is composed of 14million param-
eters and just like the ResNet-like structure, it contains many dropout layers.

5.1 Face Verification

For this first test, 2500 positive pairs and 2500 negative pairs are generated. A
positive pair is a pair of pictures representing the same dog. A negative pair
is a pair of pictures representing two different dogs. The Table 2 sums up the
main results for this task. The first row shows the models’ performances using
their best thresholds. The second row shows the models’ performances using the
value of α used for training. Additionally Fig. 4 illustrates the ROC curve of
these models for this binary classification task. The best accuracy reached with
the ResNet-like model is 92%. Although it could be considered as low compared
to human face identification models (FaceNet methods reaches 99.63% accuracy
on LFW dataset), it is high regarding the size of our dataset and the high
complexity of dog faces. Indeed human face models are normally trained on
datasets of millions of human faces and thanks to the strong similarity between
human faces, the model can extract key features more easily.

Finally some examples of false positive and false negative pairs are presented
on Fig. 5. Mistakes are mainly due to a too big difference in light exposure
between the two pictures and due to a too large angle between the two dog faces.
Verification problems can also sometimes come from occlusions, for instance due
to the dog tongue or to a muzzle protection.

Table 2. Verification results. First row: results obtained with the best distance
threshold. Second row: results obtained with the α margin used for training.

ResNet-like VGG-like

Threshold Accuracy Threshold Accuracy

best = 0.63 92.0%± 0.3 best = 0.99 91.3% ± 0.3

α = 0.3 85.8% ± 0.3 α = 0.3 68.3% ± 0.3

5.2 Face Recognition

This is the main issue for an identification tool. As previously explained, after
embedding vector computation by the model, this task is simply a k-NN problem.
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Fig. 4. Verification task. ROC curve comparing VGG with ResNet for a face verifi-
cation task.

Fig. 5. Verification task. Left: some false positive pairs. Right: some false negative
pairs.

The testing set is divided into a sub training set and a sub testing set. The sub
training set is used to train the k-NN algorithm and the sub testing set to
evaluate it. In order to create the sub training set, M embedding vectors per
dog are selected. The rest of the embedding vectors composes the sub testing
set. For instance, if M = 1 then it means that a single vector per dog is selected
(48 vector in our case) and the rest of them (250 vectors) are used for testing: it
is called a one-shot recognition problem. In this case k = 1, which means that
the class of a vector in the sub testing set is given by the class of its closest
neighbor in the sub training set. For M > 1, taking k = M + 1 gives the best
accuracy for this task.

As the M vectors are randomly selected within a class, the output accuracy
on the sub testing set is different depending on this selection. In order to be more
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accurate on this evaluation task, for each possible value of M , 1000 different sub
training/sub testing sets are created and evaluated. The Table 3 represents the
different rank-1 results obtained for different values of M . The Mean, Minimum
and Maximum columns contain the average, the minimum and the maximum
accuracy of the algorithm over these 1000 sub sets.

Table 3. Recognition results. This table presents the rank-1 accuracy on this task.

ResNet-like VGG-like

M k Mean Minimum Maximum Mean Minimum Maximum

1 1 60.44% 50.80% 69.60% 57.03% 44.00% 66.00%

2 3 67.49% 56.43% 79.21% 63.13% 51.98% 72.77%

3 4 73.25% 61.54% 83.33% 64.99% 54.49% 74.36%

4 5 73.92% 60.34% 86.21% 65.13% 54.72% 74.54%

The ResNet-like network reaches a rank-1 accuracy of 60.44% for the one-shot
recognition task. This is lower than a normal human face recognition algorithm.
However, as mentioned in the previous section, this is due to the very small
amount of available data and the dog face complexity. It can also be noticed
that the performances of the algorithms improve with the number of embedding
vectors per class into the sub training set. Indeed the more information that are
provided to the network the more accurate its predictions are.

As one of the potential applications of this project is to find a lost pet it
could be interesting to look at the rank-5 accuracy. It means that the answer of
the algorithm is considered as correct if the right dog is given within the 5 first
suggestions. Indeed, the application could suggest to the user a list of possible
dogs and the user could then select the correct animal. The obtained results are
presented in Table 4. The model accuracy on this task reveals the potential of
this project: for a one-shot recognition problem the model reaches 88% accuracy
and given at least 3 pictures per dogs the model reaches a maximum accuracy
of 100%.

Table 4. Recognition results. This table presents the rank-5 accuracy on this task.

ResNet-like VGG-like

M k Mean Minimum Maximum Mean Minimum Maximum

1 1 88.41% 80.00% 94.40% 85.92% 78.80% 91.60%

2 3 92.83% 87.13% 98.83% 89.68% 85.64% 95.05%

3 4 95.97% 86.54% 100% 92.22% 87.18% 96.15%

4 5 96.10% 88.79% 100% 93.44% 87.93% 97.41%
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5.3 Face Clustering

We finally try to cluster the 48 dogs’ pictures after embedding vector computa-
tion using the k-means clustering algorithm. Over the 48 clustered sets created,
the algorithm manages to output 20 sets of correctly clustered dogs. These results
are good regarding the complexity of this task: as shown on the left side of Fig. 6,
the network can cluster pictures of a dog taken with very different angles and
lighting. This figure also shows one of the mistakes made by the algorithm: two
badly clustered dogs from the same breed that look very similar.

This kind of application could, for example, help zoologists to automatically
sort their animal photos.

Fig. 6. Clustering task. Left: the algorithm correctly clustered 9 pictures of the
same dog with different angles and lighting. Right: the algorithm wrongly clustered
pictures of two different dogs (3 pictures for the first one and 5 for the other one).

6 Conclusion

Animal identification has until now relied on standard tagging tools and on
classical computer vision and machine learning methods. Very little research
on this problem has been conducted using deep learning techniques. Recent
improvements in deep learning methods have created a breakthrough for human
face identification and can now be employed to solve the more complex problem
of animal face identification.

A novel method to identify dog faces using deep learning is presented here.
Dog face identification is a more complicated task than for human faces due to
the lack of available data and to the large range of texture variations in dog face
pictures. A new dataset is built and a new model is designed to solve this prob-
lem. The trained network reaches a satisfying accuracy on both verification and
recognition tasks. This project could thus allow researchers to pay more attention
on these new kinds of techniques for their future work on animal identification.

However, there is still room for improvement. Our dataset is significantly
small compared to the standard in deep learning domain and too few dogs per
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breed are represented. The images have to be labeled by hand which could
be improved by automatic landmarks detection. Dog muzzle riddles or other
dog features could also have been used to help the network with its task. The
model is not accurate enough to solve a real identification problem but has its
usefulness in other problems such as helping dog owners finding their lost pet.
To showcase the potential of the developed method, a mobile app is currently
under development to achieve the latter objective.
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Abstract. There are nearly 70 million deaf people in the world. A signif-
icant portion of them and their families use sign language as a medium
for communicating with each other. As automation is being gradually
introduced to many parts of everyday life, the ability for machines to
understand the act on sign language will be critical to creating an inclu-
sive society. This paper presents multiple convolutional neural network
based approaches, suitable for fast classification of hand sign characters.
We propose two custom convolutional neural network (CNN) based archi-
tectures which are able to generalize 24 static American Sign Language
(ASL) signs using only convolutional and fully connected layers. We com-
pare these networks with transfer learning based approaches, where mul-
tiple pre-trained models were utilized. Our models have remarkably out-
performed all the preceding models by accomplishing 86.52% and 85.88%
accuracy on RGB images of the ASL Finger Spelling dataset.

Keywords: Image processing · CNN · Transfer learning · ASLR ·
Finger Spelling dataset

1 Introduction

A language that needs manual communication and involvement of body language
to convey meaning as opposed to conveyed sound patterns is known as sign lan-
guage. This can involve a simultaneous combination of handshapes, orientation,
and movement of the hands, arms or body, and different facial expressions to
fluidly express a speaker’s thoughts. In some cases, sign language is the only
method that is used to communicate with a person with hearing impairment.
Sign languages such as the American Sign Language (ASL), British Sign Lan-
guage (BSL), Quebec Sign Language (LSQ), Spanish sign language (SSL) differ
in the way an expression is made. They share many similarities with spoken
languages, which is why linguists consider sign languages to be a part of natural
languages.
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Sign Language Recognition (SLR) system which is required to perceive
gesture-based communications, has been widely studied for years. It provides
a way to help deaf/mute individuals interact easily with technology. However,
just like speech recognition, this is not an easy task. However, recent advances in
computer vision, particularly the use of convolutional neural networks (CNN),
has created opportunities to create effective solutions to problems previously
thought to be almost unattainable. In this paper, we present multiple CNN-
based models to classify 24 characters from the ASL Finger Spelling Dataset.
We present models which were custom made for this problem, as well as mod-
els which leverage transfer learning. One of our custom models achieved a test
accuracy of 86.52%, which is better than the current best published result.

2 Related Works

In 2013 Pugeault and Bowden [18] proposed an interactive keyboard-less graph-
ical user interface that can detect hand shapes in real time. In that work, they
used a Microsoft Kinect device for collecting both appearance and depth images,
OpenNI+NITE framework for hand detection and tracking, features based on
Gabor filters and a Random Forest classifier for classification. From the ASL
dataset, which was also proposed in that paper, they have ignored and dis-
carded images of letter j and z since both of these letters require motion and
used leftover 48000 images; 50% for training and 50% for validation. Using both
appearance and depth images together brought them better classification result
compared to the usage of appearance and depth information separately.

Tripathi et al. have proposed a continuous hand gesture recognition system
[29]. In their approach, keyframes were extracted using gradient-based methods
and HoG features were used for actual feature extraction. For classification, sev-
eral distance metrics were used including City Block, Mahalanobis, Chess Board,
Cosine, etc. They created a dataset using 10 sentences signaled by 5 different
people. They found that using a higher number of bins for HoG resulted in bet-
ter performance and the best performance was found when Euclidean distance
employed.

Masood et al. [15] proposed a method to bridge the gap for the people who
do not know and want to communicate using sign languages through isolated
sign language recognition using methods based on computer vision. They used
an Argentinean dataset (LSA) with 2300 video samples and substantial ges-
ture variation with 46 categories. Their model used the Inception-v3 pre-trained
CNN, and combined with the use of Long Short Term Memory (LSTM) for
sequence predictions. They tried 3 models such as a single layer of 256 LSTM
units, a wider Recurrent neural network(RNN) network with 512 LSTM units,
a deep RNN network consisting of 3 layers with each 64 LSTM units. Empiri-
cally, they found the model with 256 LSTM units gave the best performance.
Two approaches were taken for training, one was a prediction approach in which
predictions of frames made by CNN were fed as input to the LSTM. In the other
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approach, the output of the pooling layers was directly fed into the LSTM. The
second approach gave a better result with an accuracy of 95.2%.

3 Experimental Setup

This section provides details of the setup used for the experiments performed.
We initially present the dataset on which we will train and compare the different
models. This is followed by a brief description of the data preprocessing and par-
titioning. The proposed models are discussed next, which includes descriptions
of the custom models as well as the transfer learning techniques.

3.1 Dataset

The work is based on ASL Finger Spelling dataset that consists of images which
were obtained from 5 different users. In the proposed dataset [18], images were
obtained in 2 different ways, each user was asked to perform 24 ASL static
signs which were captured in both color and depth format. There are a total of
131,670 number of images where 65,774 images have RGB channels and rest
are depth images that contain the intensity values in the image which represent
the distance of the object or simply depth from a viewpoint. The reason behind
choosing American Sign Language (ASL) for this work was that ASL is widely
learned as a second language and the dataset contains sign from only using one
hand which reduces the task of over-complicated feature extraction. Here, the
dataset comprises 24 static signs which have similar lighting and background
excluding the letters j and z since these 2 letters require dictionary lookup and
involve motion (Table 1).

Table 1. Types of images collected from each user

User Image type

RGB Depth+RGB

A 12,547 25,118

B 13,898 27,820

C 13,393 26,810

D 13,154 26,332

E 12,782 25,590

3.2 Data Preprocessing and Feature Extraction

From the total of 5 user samples, 4 were considered in such a way that the
proposed dataset [18] was divided into two parts. First part is Dataset-A which
contains only color images and the other one is Dataset-B which contains both
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Table 2. Preparing the dataset

Image type Training set Validation set Label

RGB 26,547 26,445 DataSet-A

Depth+RGB 53,142 52,938 DataSet-B

depth and color images. This is shown in Table 2. In both the DataSet-A and
DataSet-B, images from users C and D were used as the training set and images
from user A and B were used to make validation/test set. As the images were of
different sizes, all of them were re-sized to 200×200 pixels. Pixel color values were
re-scaled between 0 and 1 and then each image was normalized by subtracting
the mean (Fig. 1).

Fig. 1. Illustration on the variety of the dataset where each column represents images
of individual letters that has been collected from 4 different users.

To increase the amount of training data, each training image was augmented
using the transformations mentioned in Table 3. The augmentations were applied
single (not compositionally) and were only applied to RGB images. The valida-
tion data were not augmented per say, but were modified.

Table 3. Augmentation techniques applied on Dataset-A and Dataset-B

Training data set Validation data set

Arguments Parameters Arguments Parameters

Rescale 1./255 Rescale 1./255

Center-Cropped True Center-Cropped True

Shear Range 0.2 Degree

Zoom range 0.1

Random Rotation 20 Degree

Horizontal Flip True

Height Shift Range 0.1

Width Shift Range 0.1

Fill Mode Nearest
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3.3 The Proposed Architecture

Table 4 shows the details of the two custom models used for comparison. Both
models were trained and tested on DataSet-A and DataSet-B. For Custom-
Model-A, conv3-32 means respective field size 3 and number of channels 64.
The images were resized to 128 × 128 dimension which will go through the con-
volutional layers. The model uses LeakyReLU as activation function. We found
LeakyReLU to work better than RelU for this model after experimentation.
Apart from using max pooling, Global Average Pooling (GAP) was also used to
downsample the input dimension from each layer using a 2 × 2 window. After
flattening the output of the last pooling layer was passed through four fully con-
nected layers with the final layer having 24 neurons for the 24 classes. The last
layer also uses the softmax activation function.

In custom-Model-B, 2×2 strided convolution [27] was used to reduce the size
of the output feature maps instead of the more commonly used pooling tech-
niques. Surprisingly, for this model, our tests showed better performance using
the RelU activation function (an investigation looking into the discrepancy is
currently under progress and will be reported in a later paper). Batch normal-
ization was also used in this model. This model also flattens the output of the
last convolutional layer and forwards the output to four fully connected layers,
although the configurations are slightly different from Custom-Model-A.

3.4 Transfer Learning Using Pre-trained Models

Apart from our custom models, we have also experimented using Transfer Learn-
ing which leverages the weights or filters of a pre-trained model on a new problem
as in the case of most real-world problems when there are insufficient data points
to train complex models. The premise is if knowledge from an already trained
machine learning model is applied to a different but related problem, it may
facilitate the learning process as the model is already trained to identify some
potentially useful features.

Figure 2 shows the overall strategy used for transfer learning. This method
is one which has been used in many different tasks, where the softmax layer of
the original pre-trained model is discarded and replaced by a new classification
layer with random weights. All layers except this new one are frozen and then the
newly crafted model is trained until the random weights change to be compatible
with the rest of the model. Then the frozen layers are unfrozen and the entire
model is trained.

For this work, we experimented with five different models all pre-trained on
the ImageNet dataset. These are MobileNetV2, NASNetMobile, DenseNet21,
VGG16 and VGG19.

3.5 Training Details

We arrived at a set of hyper parameters which worked well through experimen-
tation. Table 5 summarizes this information.
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Table 4. Configuration of the customized models

Configuration of the proposed architectures

Custom-Model-A Custom-Model-B

input ( 128 × 128image) input (200 × 200 image)

conv3-32. LeakyReLU

conv3-32. LeakyReLU

conv3-32. LeakyReLU

conv3-64

Sequential (conv3-64.ReLU, BatchNorm

conv3-64.Relu, BatchNorm)

MaxPool (stride=2) conv3-64 (stride = 2)

Dropout(0.6)

conv3-32. LeakyReLU

conv3-32. LeakyReLU

conv3-32. LeakyReLU

Sequential (conv3-64.ReLU, BatchNorm

conv3-64.Relu, BatchNorm)

Sequential (conv3-64.ReLU, BatchNorm)

MaxPool (stride=2) conv3-64 (stride = 2)

DepthwiseConv3. LeakyReLU

BatchNormalization

conv3-32. LeakyReLU

BatchNormalization

Sequential (conv3-64.ReLU, BatchNorm,

conv3-64.Relu, BatchNorm)

Sequential (conv3-64.ReLU, BatchNorm,

conv3-64.Relu, BatchNorm)

Dropout(0.6)

conv3-64. LeakyReLU

conv3-64. LeakyReLU

conv3-64. LeakyReLU

conv3-64. LeakyReLU

conv3-64 (stride = 2)

Sequential (conv3-64.ReLU, BatchNorm,

conv3-64.Relu, BatchNorm)

Sequential (conv3-64.ReLU, BatchNorm,

conv3-64.Relu, BatchNorm)

MaxPool (stride=2) conv3-64 (stride = 2)

conv3-64 (stride = 2)

conv3-64. LeakyReLU

conv3-64. LeakyReLU

conv3-64. LeakyReLU

conv3-64. LeakyReLU

Sequential (conv3-64.ReLU, BatchNorm,

conv3-64.Relu, BatchNorm)

Sequential (conv3-64.ReLU, BatchNorm,

conv3-64.Relu, BatchNorm)

GlobalAveragePooling

MaxPool (stride=2)

conv3-64 (stride = 2)

FC-1024

Dropout(0.4)

ReLU

Dropout(0.6)

FC-576

ReLU

FC-576

Dropout(0.4)

ReLU

Dropout(0.6)

FC-256

ReLU

FC-256

Dropout(0.4)

ReLU

Dropout(0.6)

FC-128

ReLU

FC-128

Dropout(0.4)

ReLU

Dropout(0.6)

FC-64

ReLU

FC-24, softmax FC-24, softmax

The loss function of choice was categorical cross entropy as shown in Eq. 1,
which measures the classification error as a cross entropy loss when multiple
categories are in use. Here, the double sum is over the observations i, whose
number is N , and the categories c, whose number is C and the term 1yi∈Cc
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Table 5. Training details

Training details

Batch Size 64

Input size 200*200*3

Learning Rate 0.001

Optimizer Adam

Loss Function Categorical Crossentropy

Epoch 25

Fig. 2. The proposed transfer learning process

is the indicator function of the ith observation belonging to the cth category.
Finally, the probability predicted by the model for the ith observation belongs
to which of the cth category is determined by Pmodel[yi ∈ Cc].

− 1
N

N∑

i=1

C∑

c=1

1yiεCclogPmodel[yiεCc] (1)

For this work the base learning rate was set to 0.001 with which the
network starts to train itself but as mentioned earlier the learning rate is
being adapted step wise here by using Eq. 2. Here last epoch , the value of
Step Wise LR will be updated as if an epoch completes all its steps.

Step Wise LR = (base lr ∗ gamma ∗ (
last epoch

step size
)) (2)

4 Results

The task of finding a model which will detect the signs based on ASL was divided
into two parts. In the first segment, two custom models were built from which
accuracy of 86.52% and in the second segment, an accuracy of 85.88% was
achieved using pre-trained models on Dataset-A.
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4.1 Results from Custom Model

To evaluate the model several approaches were taken. At first, two custom
models (custom-model-A) and (custom-model-B) were created using the corre-
sponding configurations mentioned in Sect. 3.3. Using the custom-model-A men-
tioned in Table 6, 77.19% accuracy was achieved while validating images
from Dataset-A. Here to minimize overfitting 40% and 60% of dropout, L2
regularization and Global Average Pooling (GAP) were used. After 25
epochs a training accuracy of 96.33% and a validation accuracy of 77.19%
were achieved using 5,214,840 trainable parameters for RGB images.

Table 6. Results obtained using the custom models

Model name No. of
trainable
parameters

DataSet-A DataSet-B

Training
accuracy
(%)

Validation
accuracy
(%)

Training
accuracy
(%)

Validation
accuracy
(%)

Custom-Model-A 5,214,840 96.33 77.19 86.54 66.79

Custom-Model-B 428,728 98.54 86.52 89.45 62.16

The custom-model-B from Table 6 which architecture was discussed in
Sect. 3.3, gave the best validation accuracy compared to the custom-model-A
for Dataset-A.

Between two custom models, training and validation accuracy for each model
in every epoch are recorded to find out the best model that gives comparatively
better validation accuracy. From Fig. 3, we can see that after a certain epoch
training accuracy highlighted with blue color remains almost the same where
validation accuracy highlighted with orange color drops and doesn’t increase

Fig. 3. Illustration of training and validation accuracy of the proposed Custom-Model-B
(Color figure online)
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prominently. This indicates that there was no need for running the model after
that certain epochs. To overcome overfitting some regularization techniques such
as Dropout, L2 Regularization were applied by tuning the hyperparameters
which lead to the best performance on the validation set. For this work, 3 dif-
ferent instances of dropout value for custom model-B were considered where
dropping 60% of neurons reduces the overall validation loss by an amount of
0.25 that helped to increase the validation accuracy.

4.2 Results from Transfer Learning

Table 7. Results from pre-trained models using DataSet-A

Pre-trained model No. of total
parameters

DataSet-A

Training accuracy (%) Validation accuracy (%)

MobileNetV2 4,297,816 99.88 84.93

NASNetMobile 5,044,012 99.60 85.88

DenseNet121 7,467,480 96.18 76.92

VGG19 29,076,312 84.75 59.93

VGG16 20,024,384 86.50 55.57

Fig. 4. Illustration of training and validation accuracy of the best two transfer learning
models
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To improve the validation accuracy, fine-tuning process was introduced where the
model was initialized using the technique mentioned in Sect. 3.4. From this con-
figuration, with trainable parameters-9, 051, 928 and non-trainable parameters-
20, 024, 384 a validation accuracy of 55.57% was achieved using VGG16 model
which weights were pre-trained on imagenet dataset and from VGG19 with
Trainable parameters-9, 051, 928 & Non-trainable parameters-14, 714, 688, a val-
idation accuracy of 59.93% was achieved where the training accuracy was 84.75%.
In both the models, parameters except in fully connected layers were being
frozen. As this result was not even close to our custom models, a different tech-
nique with other pre-trained models was implied. With this technique, the top
layers or fully connected layers of the model was first trained for 10 epochs,
then the weights of all the pre-trained layer and the top layer were unfrozen and
the same model was trained for the second time. In the first scenario, when the
model was only trained with top layers weighs the activation function “Softmax”
that relied upon the last fully connected layers trained itself in a way that when
in the second time model retrained itself for 25 epochs, it gives much better val-
idation accuracy mentioned in Table 7. From this process using ‘MobileNetV2’
& ‘NASNetMobile’ model’s pre-trained weights with 2072 and 1176 correspond-
ing neurons, accuracy of 84.93% and 85.88% were recorded. In the case of
Densenet121, VGG16 and VGG19 same configuration could not be applied as
there is a huge number of parameters or weights in terms of memory. In case of all
the pre-trained models, “MobilenetV” and “NASNetMobile” gives linear growth
in terms of validation accuracy. From Fig. 4 we can see that, after running for
several epochs, validation accuracy has gone lower for the first 3–4 epochs, then
it jumps to 75% and gradually increases to 84% and stabilizes for the remaining
epochs. On the other hand, the training accuracy gains 98% accuracy in first
5–6 epoch and remain stable for the rest of the epochs.

4.3 Discussion on Results

The previous work that gave best validation accuracy based on ASL fin-
gerspelling dataset was conducted by Pugeault and Bowden [18] where they
recorded accuracy on three different instances. They obtained 73% accuracy for
using only RGB images, 69% for using only depth information and 75% accu-
racy for using RGB+depth images. In our work, we have considered only two
instances as we only used RGB(“DataSet-A”) and Depth+RGB(“DataSet-B”)
to measure performances. Although our customized models could not perform
better on “DataSet-B” compared to their [18] work but all the other models
performed better than [18] on RGB images. A total of 240 unseen color images
were used to measure f1 score of both the customized models. Both the models
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were asked to measure ground truth values of 10 images from each class. Based
on the precision and recall values, f1 score was then generated for each class that
is shown in Table 8.

Fig. 5. Illustration of different scenarios of our custom models predictions

For “Custom-Model-A” recall values are significantly higher than the preci-
sion values for classes k,m, o, v where for “Custom-Model-B” those classes are
d, q, w. The reason behind this might be because signs of c and o, w and f, d
and l, m and n, k and r shown in Fig. 5 are quite similar which is why models
may get confused while classifying for those particular classes. In case of both
the models, the classifiers could not predict n, r out of given images. In case
of letter c, f “Custom-Model-A” shows small confusion as the precision values
are slightly lower than the recall values for those classes wherein for “Custom-
Model-B” those classes are l, t. Although for some classes the custom models
could not give accurate predictions overall performance of both the models was
good as the macro-average value of “Custom-Model-A” is nearly 59% and for
“Custom-Model-B” it is nearly 68%.
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Table 8. F1 score obtained from customized models

Class F1-score Predicted accurately

Custom Model-A Custom-Model-B Custom-Model-A Custom Model-B

a 0.89 1.00 8 10

b 0.89 0.17 8 1

c 0.83 1.00 10 10

d 0.00 0.46 0 4

e 0.46 0.75 3 9

f 0.91 0.89 10 10

g 0.95 1.00 9 10

h 1.00 0.9 10 8

i 0.84 0.68 8 7

k 0.33 0.95 8 10

l 1.00 0.79 10 7

m 0.62 0.93 10 10

n 0.00 0.00 0 0

o 0.12 0.36 1 3

p 0.3 1.00 3 10

q 0.00 0.57 0 7

r 0.00 0.00 0 0

s 1.00 1.00 10 10

t 0.53 0.67 4 5

u 0.95 0.89 9 8

v 0.27 0.74 4 6

w 0.75 0.24 6 2

x 0.00 0.71 0 7

y 0.83 0.35 10 9

5 Conclusion

In this paper, we present an image-based comparison wise approach to finding
models that can interpret sign languages in a much more efficient way from ASL
finger Spelling dataset. For that, we have developed two custom models and
several transfer learning models based on convolutional neural network. Then for
training and validating the network, two approaches were considered in which
one approach was to use only RGB images and the other one was to use both
RGB and depth information. Our classification results of RGB images exceeded
all the previous models. For further improvement, the letters j and z will be
included in the video dataset which will be utilized to recognize continuous
hand signs.
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4. Núñez Fernández, D., Kwolek, B.: Hand posture recognition using convolutional

neural network. In: Mendoza, M., Velast́ın, S. (eds.) CIARP 2017. LNCS, vol.
10657, pp. 441–449. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75193-1 53

5. Ghotkar, A., Kharate, G.K.: Study of vision based hand gesture recognition using
Indian sign language (2017)

6. Chollet, F.: Xception: deep learning with depthwise separable convolutions (2014)
7. Hoque, T., Kabir, F.: Automated Bangla sign language translation system:

prospects, limitations and applications, pp. 856–862 (2016)
8. Hosoe, H., Sako, S.: Recognition of JSL finger spelling using convolutional neural

networks, pp. 85–88 (2017)
9. Huang, G., Weinberger, K.Q.: Densely connected convolutional networks (2016)

10. Karabasi, M., Bhatti, Z., Shah, A.: A model for Real-time recognition and tex-
tual representation of Malaysian sign language through image processing. In: 2013
International Conference on Advanced Computer Science Applications and Tech-
nologies (2013)

11. Karmokar, B.C., Alam, K.R., Siddiquee, K.: Bangladeshi sign language recognition
employing neural network ensemble (2012)

12. Kishore, P.V.V., Kumar, P.R.: Segment, track, extract, recognize and convert sign
language videos to voice/text. IJACSA 3, 35–47 (2012)

13. Koller, O., Forster, J., Ney, H.: Continuous sign language recognition: towards large
vocabulary statistical recognition systems handling multiple signers. Comput. Vis.
Image Underst. 141, 108–125 (2015)

14. Kumar, P.K., Prahlad, P., Loh, A.P.: Attention based detection and recognition of
hand postures against complex backgrounds (2012)

15. Masood, S., Srivastava, A., Thuwal, H.C., Ahmad, M.: Real-time sign language ges-
ture (word) recognition from video sequences using CNN and RNN. In: Bhateja,
V., Coello Coello, C.A., Satapathy, S.C., Pattnaik, P.K. (eds.) Intelligent Engineer-
ing Informatics. AISC, vol. 695, pp. 623–632. Springer, Singapore (2018). https://
doi.org/10.1007/978-981-10-7566-7 63

16. Mekala, P., Gao, Y., Fan, J., Davari, A.: Real-time sign language recognition based
on neural network architecture, pp. 195–199 (2011)

17. Prajapati, R., Pandey, V., Jamindar, N., Yadav, N., Phadnis, P.N.: Hand gesture
recognition and voice conversion for deaf and dumb. IRJET 5, 1373–1376 (2018)

18. Pugeault, N., Bowden, R.: Spelling it out: real-time ASL fingerspelling recognition
(2011)

19. Rahaman, M.A., Jasim, M., Ali, H.: Real-time computer vision-based Bengali sign
language recognition, pp. 192–197 (2014)

20. Rajam, P.S., Balakrishnan, G.: Real time Indian sign language recognition system
to aid deaf-dumb people, pp. 1–6 (2011)

21. Rao, G.A., Kishore, P.V.: Selfie video based continuous Indian sign language recog-
nition system. Ain Shams Eng. J. 9, 1929 (2017)

https://doi.org/10.1007/978-3-319-75193-1_53
https://doi.org/10.1007/978-3-319-75193-1_53
https://doi.org/10.1007/978-981-10-7566-7_63
https://doi.org/10.1007/978-981-10-7566-7_63


444 P. Paul et al.

22. Sandler, M., Zhu, M., Zhmoginov, A., Howard, A., Chen, L.-C.: MobileNetV2:
inverted residuals and linear bottlenecks (2018)

23. Savur, C.: Real-time American sign language recognition system by using surface
EMG signal, pp. 497–502 (2015)
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Abstract. We present FeatClust, a software tool for clustering small
sample size single-cell RNA-Seq datasets. The FeatClust approach is
based on feature selection. It divides features into several groups by per-
forming agglomerative hierarchical clustering and then iteratively clus-
tering the samples and removing features belonging to groups with the
least variance across samples. The optimal number of feature groups is
selected based on silhouette analysis on the clustered data, i.e., selecting
the clustering with the highest average silhouette coefficient. FeatClust
also allows one to visually choose the number of clusters if it is not
known, by generating silhouette plot for a chosen number of groupings
of the dataset. We cluster five small sample single-cell RNA-seq datasets
and use the adjusted rand index metric to compare the results with other
clustering packages. The results are promising and show the effectiveness
of FeatClust on small sample size datasets.

Keywords: Single-cell RNA-Seq · Hierarchical clustering ·
Feature selection

1 Introduction

Single-cell RNA sequencing (RNA-Seq) is at the cutting edge of cell biology.
It quantifies the gene expression profile of the whole transcriptome of individ-
ual cells. Analysis of single-cell RNA-seq data through unsupervised clustering
c© Springer Nature Switzerland AG 2019
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enables researchers to identify cell type and function and to discover heterogene-
ity within the cell populations. Heterogeneity within a cell population is common
[11] and it occurs in a variety of different cell populations such as tumor cells
[10,24], embryonic stem cells (ESCs) [21], hematopoietic stem cells (HSCs) [12]
and T cells [5].

Recently, several clustering software packages were developed for analysis of
single-cell datasets. One such software package is called SEURAT, developed by
Satija Labs for analysis of single cell data-sets [6,18,20]. The original version
of SEURAT used PCA on highly variable genes. It then selected statistically
significant principal components and projected these to two-dimensional space
using t-SNE. Density clustering (DBSCAN) algorithm was then used to identify
clusters. The newer version of SEURAT uses PCA and graph-based clustering
similar to [16,26].

Žurauskienė and Yau [28] developed a hierarchical clustering based method
which they called pcaReduce. pcaReduce works by first reducing the dimension-
ality of the gene expression matrix to k − 1 using PCA, where k is the initial
cluster size. It then uses k-means to divide the data into k clusters and obtains
the mean and the covariance matrix for each cluster. pcaReduce does the follow-
ing steps in a loop. A probability distribution based on multivariate Gaussian is
used to find the probability of merging pairs of clusters for every possible pair of
clusters. The pair with the highest probability is merged. The principal compo-
nent in the reduced data that explains the least variance is removed iteratively.
The mean and covariance are updated, and the algorithm repeats until only one
principal component is left.

A recently developed software package for clustering of single cell data is
called SC3 [15]. The SC3 package utilises three different metrics for calculation
of the distance between cells. They use Euclidean, Pearson’s and Spearman’s
distances. Also, the authors use PCA and graph Laplacian for transforming
the data into a lower dimensional space. They then use k-means and select some
clusterings corresponding to the reduced dimension for consensus. They choose a
range of reduced dimensions and finally perform consensus using various results.
While the consensus approach improves clustering accuracy and provides stable
cluster assignments, the method is very complicated to use for small datasets.

The clustering packages described here use either centroid based k-
means clustering, connectivity based hierarchical clustering or graph-based clus-
tering. The k-means clustering algorithm also commonly referred to as Lloyd’s
algorithm [17] finds k centroids and assigns each of the samples to its closest
centroid to minimise the sum of the squared distance between the centroids and
each of its assigned sample point. While the k-means clustering algorithm does
converge in finding k optimal centroids or means, it can get stuck in local min-
ima. Another problem is that different initialisation can result in different cluster
centroids, which makes the algorithm unstable. Hence, the k-means algorithm is
usually run a few times using different initialisation. The k cluster means are the
parameters of the algorithm, and it can be initialised by randomly choosing k
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samples from the dataset. There are numerous initialisation methods. However,
one favorite initialisation technique is kmeans++ [3].

Connectivity-based methods such as hierarchical clustering work by dividing
the data points into a hierarchy of clusters. A standard version is agglomerative
hierarchical clustering which is the bottoms up approach. Initially, each data
point in the training set is its cluster. In other words, all the clusters initially
are singletons. Subsequently, pairs of clusters are merged at each step of the
algorithm by minimising the linkage criterion until only one cluster remains
(containing all the data points). One useful measure is Ward’s criterion [25].
Ward’s criterion merges two clusters by minimising their within-cluster variance.
Thus it is also known as minimum variance criterion. Hierarchical clustering,
while giving very stable groupings is prone to noise which can lead to incorrect
clusters of the data. Furthermore, computational requirements increase with
increasing number of samples.

Graph-based clustering methods treat samples as nodes in a graph. Graph-
based clustering methods identify groups of nodes that are highly connected,
for example, by constructing a k-nearest neighbour graph. Two nodes can be
combined if they share at least one nearest neighbour (shared nearest neighbour).
The k in k-nearest neighbour graph affects how many clusters are detected. In
the results section, we describe how we used SEURAT which uses graph-based
clustering to obtain the desired number of groups. Graph-based methods are
more suited to large datasets with a high number of samples.

One of the challenges in clustering single-cell RNA-Seq data is the high
dimensionality of the genes in the dataset. For clustering purposes, genes which
are expressed in all the cells (ubiquitous genes) do not contribute much to deter-
mining the groupings of the cells. On the other hand, genes which are only
expressed in a few cells also do not assist to identifying the clusters of the cells.
Many of the dimensions also contain noise which can prevent correct clustering
of the sample cells. Removing these genes is one way of reducing the dimen-
sionality of the dataset to some extent. This approach is called gene filtering,
and many clustering packages such as SC3 and SEURAT use this approach for
reducing data dimensionality.

Popular clustering packages discussed here perform feature extraction
through PCA, t-SNE or graph Laplacian-based methods prior to clustering.
Through such techniques, the features are projected to a lower dimensional space
which contains essential information in the data and the dimensions that include
noise are removed. Also, these methods do not require grouping information of
the samples to be known a priori. On the other hand, selecting important fea-
tures through feature selection for clustering of single cell data has not been
explored much. Feature selection involves applying a statistical technique to
select informative features or genes in the data. For example, genes with the high-
est variance across cells could be instructive in determining cell type. Through
feature selection, features which do not give valuable information for clustering
the samples, or noisy features may be removed.
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In this paper, we explore the idea of feature selection for reducing the high
dimensionality of gene expression data and for improving clustering accuracy. We
propose the concept of first clustering similar features in the data into groups,
finding the mean of the feature groups and then iteratively removing those groups
of features from the dataset which contain low cluster mean variance across the
samples. FeatClust selects the optimal number of feature groups by performing
silhouette analysis; that is, computing silhouette score in each iteration after
the clustering the samples. FeatClust can additionally generate silhouette plots
that can be used to visually determine the number of clusters if it is not known.
The method is simple to understand and easy to implement. Also, the clustering
results on five small sample single-cell datasets show that this approach success-
fully removes less informative features and improves clustering accuracy. This
paper is organized as follows. Section 2 describes the method in more details.
Section 3 presents the clustering results of the technique on three small sample
datasets and provides a discussion of the results. Section 4 draws the conclusions
and recommendations for future work.

2 FeatClust Method

The proposed FeatClust method takes an iterative feature elimination approach
where we first cluster features into some groups and then iteratively remove less
important groups of features. The proposed algorithm is given in Algorithm 1.
The input to the proposed approach is the gene expression matrix X which is
a d× n matrix where d represents features (or genes), and n represents samples
(or cells) and the number of clusters q, which is known a priori. The output
ysamples is a n-dimensional vector which contains the cluster labels in the range
[1, 2, ..., q] of each cell in X.

2.1 Gene Filtering and Normalization

As a pre-processing step, we take the counts or the normalised counts matrix
where rows represent genes and columns represent cells and apply log transfor-
mation after adding a pseudo-count of 1. Thus we get X = log2(counts + 1). A
gene filter is applied which rejects highly and lowly expressed genes. The gene
filter removes genes expressed (expression value > 0) in less than r% of cells and
genes expressed in greater than (100 − r)% of the cells. By default we choose
r = 10 as ubiquitous and rare genes do not provide much information to improve
clustering. This reduces the dimensionality of the cells, thus increasing the com-
putational speed of the method. Finally, the features are normalised to the L2
unit norm. This is done by computing the L2 norm across all samples for each
feature and then dividing the feature by the L2 norm.

2.2 Feature Clustering

The proposed approach starts by clustering the features of the input X into
k groups, where k can be any integer in the range [q + 1, q + 2, ..., d]. If k is
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Algorithm 1. Proposed FeatClust Algorithm
Input: X a (d × n) gene expression matrix, q and k
Output: ysamples ∈ {1, 2, ..., q}, an n-dimensional vector of cluster labels of the

samples

1 Cluster the features of X into k groups using agglomerative clustering
2 For the k feature groups compute cluster centres to get μi, where i = 1, 2, ..., k

and μi is a n-dimensional vector
3 Compute the variance σ2

i of μi across samples

4 X
′ ← X

5 i ← 0
6 for j = k to q do

7 Perform hierarchical clustering on samples of X
′
,

yi ← hierarchical clustering(X
′
, q)

8 s scorei ← silhouette score(X, yi)

9 Remove all features from X
′

belonging to feature group having lowest
cluster mean variance so that only j − 1 feature clusters remain

10 i ← i + 1

11 index ← arg max
i

s scorei

12 ysamples ← yindex

d, then we have singleton clusters of the features. Setting a very large value
of k can slow down the algorithm while on the other hand setting a very small
value can result in the algorithm not being able to properly separate and remove
low variance features. We suggest setting k to about 20% of n to create a bal-
ance between removing less informative features and computational speed of
the algorithm. The features are then clustered using agglomerative hierarchical
clustering employing Ward linkage criterion and Euclidean distance measure.
Once the features are clustered into groups, the cluster centres of the k groups
are computed resulting in μi which is a n-dimensional vector. The variance σ2

i ,
where i = 1, 2, ..., k, across samples of each of the feature cluster means is also
computed.

The proposed approach then iteratively clusters the samples, again using
hierarchical clustering employing Ward’s criterion, computes the silhouette
score using the cluster labels obtained through hierarchical clustering and then
removes the feature group which has the least variance of the cluster means. The
iteration starts with all k groups of features and stops when q groups of features
remain.

2.3 Optimal Feature Groups

The silhouette score is computed as the mean of individual silhouette coefficient
of the samples. The silhouette coefficient for each sample is computed as follows

S =
sn − sw

max(sw, sn)
(1)
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where sw is the mean within cluster distance and sn is the mean nearest clus-
ter distance for the sample. Usually, silhouette analysis is done to determine
the number of clusters in the dataset visually. We also use silhouette analysis
to determine the optimal number of groups of features. To select the optimal
number of feature groups, we take the clustering which gives the maximum sil-
houette score. In addition to clustering, the FeatClust method provides functions
to visualise the clustering result as silhouette plots, and its corresponding 2D
scatter plot. Figure 1 shows silhouette and its relevant PCA scatter plots in 2D
generated by FeatClust for two different clustering results. It is seen that the
average silhouette score of all the samples (depicted by the red dashed line) is
greater in the plots corresponding to higher ARI score.

3 Results

We tested our clustering method five small sample single cell datasets containing
very high dimension. Here we define small sample datasets as datasets having
less than 200 samples. These datasets include Biase et al. [4], Yan et al. [27],
Goolam et al. [8], Fan et al. [7] and Treutlein et al. [22]. The Biase et al.,
Goolam et al. and Fan et al. datasets contain single cells from various stages of
mouse embryo development. The Yan et al. dataset contains single cells from
human preimplantation embryos, and embryonic stem cells and the Treutlein
et al. dataset contains single cells from various mouse tissues. A summary of the
datasets is given in Table 1.

Table 1. Summary of single cell datasets used in experiments. The last column, clus-
ters, refers to the number of different cell types in the dataset as reported by the
original authors.

Dataset Features (genes) Samples (cells) Clusters

Biase 25737 49 3

Yan 20214 90 7

Goolam 41480 124 5

Fan 26357 66 6

Treutlein 23271 80 5

The datasets were downloaded in R SingleCellExperiment object format
from [1]. The counts/normalised counts and column/row meta-data (e.g., names
of genes etc.) were extracted from SCE object and stored in comma-separated
values (CSV) files to be accessed by our Python script. We compared our method
with the various recent state of the art single cell clustering packages such as
SEURAT, SC3, SIMLR [23], pcaReduce, SINCERA [9] and TSCAN [13]. We
applied the same pre-processing and normalisation steps as we did in our method
to the datasets before running the clustering functions of various methods.
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Fig. 1. Silhouette plot and the corresponding PCA 2D scatter plot for Biase et al.
dataset for two different clustering results; (a) result with ARI of 0.95 and (b) result
with ARI of 0.37. The cells are clustered and labelled by our clustering method, Feat-
Clust. The red dotted lines show the average silhouette score for all the samples. The
average silhouette score is slightly higher for (a) thus FeatClust selects clustering
obtained in (a). One can see that (a) is a better clustering result than (b) because
more samples in (a) have higher than average silhouette score and the 2D scatter plot
differentiates between the three clusters in the dataset. (Color figure online)
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The SEURAT R package was installed using the instructions on [2] on 5
December 2018. To run SEURAT’s clustering algorithm on the datasets, we first
imported the RDS datasets which were downloaded earlier. The gene expres-
sion matrix was extracted, and a SEURAT object was created using the gene
expression matrix. PCA was performed separately on the SEURAT object before
performing clustering. The SEURAT clustering algorithm had several parame-
ters which we set as follows. All default values of the FindClusters function were
used except for the three parameters; k, resolution and the number of prin-
cipal components to use in the clustering algorithm. k defines the number of
neighbours for the k-nearest neighbour algorithm. Resolution parameter can be
used to adjust the number of clusters. The resolution and the number of prin-
cipal components to use was set to 1 and 1:10 (this means use first 10 PC’s)
respectively. The k parameter was adjusted experimentally to obtain the desired
number of clusterings.

The SC3 R package was downloaded and installed from Bioconductor on 19
September 2018. Since SC3 works on single cell experiment (SCE) objects, a
SingleCellExperiment library and class are needed to create SCE objects and
pass it to the SC3 function. The originally downloaded datasets were already
SCE objects. Thus, we passed these objects to SC3 function to test SC3. The
parameters of SC3 for various datasets were set as follows. The first parameter
is ks where we can either give a range of values or a single value. This parameter
sets the number of clusters in the SC3 algorithm. For each dataset, we knew
the number of clusters. We set this parameter as a single value representing the
number of clusters for each dataset. The second parameter is biology. We set this
as FALSE since we only wanted to test the clustering part of SC3.

The SIMLR R package was downloaded and installed from Bioconductor on
3 March, 2019. An R script was written to test the SIMLR clustering method
on the datasets that we have obtained. We followed the examples given in [19]
to test SIMLR on our datasets. The parameters of SIMLR were set as follows.
The X parameter was set to the preprocessed and normalized gene expression
matrix. The c parameter was set to the actual number of clusters in the dataset.
The k parameter which is the tuning parameter was set to default value of 10.
The rest of the parameters were set to defaults.

The pcaReduce clustering package was downloaded from GitHub https://
github.com/JustinaZ/pcaReduce on 4 March 2019 and installed using the
instructions in the readme file. An R script was developed to test the pcaRe-
duce method. The pcaReduce algorithm had four arguments. The first is the D t
which is the dataset argument. We provided the filtered and normalised gene
expression matrix. The second parameter is nbt which is the number of times
to perform the pcaReduce algorithm. This parameter was set to 100. The next
argument is q which refers to the number of reduced dimension to start pcaRe-
duce. This parameter was set to the default 30. The last parameter of pcaReduce
is the method parameter. We set it to the character value ‘S’ which means to
perform sample-based merging of clusters.

https://github.com/JustinaZ/pcaReduce
https://github.com/JustinaZ/pcaReduce
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The SINCERA package was installed on 4 March 2019 following the instruc-
tions on their GitHub page https://github.com/xu-lab/SINCERA. An R script
was written to test the method on our selected datasets following a demonstra-
tion file on their GitHub page. To run SINCERA, an S4 object was created using
the filtered and normalized data. Then, PCA was run on the S4 object and finally
cluster assignment function was run on the S4 object to obtain the clustering of
the datasets. For this method, PCA features were used. The clustering method
was hierarchical clustering and the first 10 reduced dimensions were used. The
default clustering method in SINCERA was used which is hierarchical clustering
with Pearson’s correlation distance and average linkage.

The TSCAN package in R was installed directly from Bioconductor on 3
March, 2019. The TSCAN reference manual [14] was followed and an R script
was implemented to test the method on our selected datasets. The TSCAN
method was relatively simple to test. There is one function exprmclust which
runs TSCAN clustering on the datasets directly. We passed the filtered and nor-
malized gene expression matrix, together with the target number of clusterings
(clusternum) into this function. The rest of the parameters were defaults.

The results were compared using the adjusted rand index (ARI) metric which
compares two different clusterings. The ARI is defined as follows. Given a set of
n samples in the data and two clusterings of these samples, the overlap between
the two groupings can be summarized in a contingency table, where each entry
nij represents the number of samples in common between i-th group of the first
clustering and the j-th group of the second clustering. The adjusted rand index
is computed as follows

ARI =
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where ai and bj are the sums of rows and columns of the contingency table
respectively. The ARI values are in the range [−1, 1]. A value of 1 indicates per-
fect grouping. A value of 0 indicates a random assignment of samples to groups,
and negative values indicate wrong cluster assignments. For all the datasets we
computed the ARI between the cluster assignments obtained by the methods
and the original groupings of the samples into cell types. We performed 100
trials for each method on all the datasets as some methods included a random
component. The results reflect the median of 100 trials. The ARI of our approach
and various methods are shown as a bar plot in Fig. 2. Compared to the rest of
the methods FeatClust performed better in four out of the five datasets.

https://github.com/xu-lab/SINCERA
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Fig. 2. Bar plot showing the ARI score for various methods on five datasets. FeatClust
performs better in clustering in four out of five datasets compared to the rest of the
methods. Note that no results for the method TSCAN on the Yan et al. dataset was
obtained.

4 Conclusion

We have presented FeatClust, a software tool for clustering and visualisation of
small sample size single-cell RNA-seq datasets containing high dimensionality.
The method is based on feature selection by iteratively removing groups of fea-
tures which give less information for performing clustering on the samples. The
feature clustering and sample clustering is both performed using agglomerative
hierarchical clustering employing Ward linkage criterion. The FeatClust method
on each iteration removes the feature cluster group giving least variance, where
the variance across samples of the cluster means is computed. The result in
terms of ARI on five selected datasets shows the effectiveness of the proposed
approach. The FeatClust method can also be applied to cluster larger sample
datasets. However, the computation speed will reduce if the sample size increases
as the method clusters features also. To take advantage of FeatClust’s good clus-
tering capability, we recommend using it in a hybrid approach where a smaller
subset of cells can be sampled uniformly from large datasets and clustered using
FeatClust. The remaining cells can be classified using supervised learning.

Software Availability. The FeatClust algorithm was implemented in Python
programming language and is available on GitHub https://github.com/
edwinv87/featclust. The installation and usage instructions are provided on the
readme file on GitHub.

https://github.com/edwinv87/featclust
https://github.com/edwinv87/featclust
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Abstract. Document classification (DC) is one of the broadly investi-
gated natural language processing tasks. Medical document classification
can support doctors in making decision and improve medical services.
Since the data in document classification often appear in raw form such
as medical discharge notes, extracting meaningful information to use as
features is a challenging task. There are many specialized words and
expressions in medical documents which make them more challenging to
analyze. The classification accuracy of available methods in medical field
is not good enough. This work aims to improve the quality of the input
feature sets to increase the accuracy. A new three-stage approach is pro-
posed. In the first stage, the Unified Medical Language System (UMLS)
which is a medical-specific dictionary is used to extract the meaning-
ful phrases by considering disease or symptom concepts. In the second
stage, all the possible pairs of the extracted concepts are created as
new features. In the third stage, Particle Swarm Optimisation (PSO) is
employed to select features from the extracted and constructed features
in the previous stages. The experimental results show that the proposed
three-stage method achieved substantial improvement over the existing
medical DC approaches.

Keywords: Medical text classification · Particle swarm optimization ·
Feature selection · Feature construction · Conceptualization · Ontology

1 Introduction

Document classification has many important applications such as filtering spam
emails, labeling client queries and tagging patient reports. In general, text mining
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includes preprocessing, representing text, weighting features, selecting features,
training, testing and evaluating.

There is a principal difference between clinical text mining and standard
text mining in terms of text terminology and their frequency. In clinical text
mining, the text describes a set of clinical events within a narrative, with the
goal of producing an explanation as precisely and comprehensively as possi-
ble when describing the health status of a patient. Generally, such text heavily
uses domain-specific terminology and acronyms, making clinical text analysis
very different from standard text mining. Moreover, various combinations of
domain-specific medical events in a clinical report can describe patient’s con-
ditions totally differently. Hence, extracting meaningful information to analyze
medical discharge notes is very important.

Information extraction (IE) task targets to extract structured information
from the unstructured and semi-structured texts. The process involves trans-
forming an unstructured text or a collection of texts into structured data that
can be used in a database. As our society became more data oriented, many
different communities of researchers bring in techniques from machine learn-
ing, databases, information retrieval, and computational linguistics for various
aspects of the information extraction problem in different fields such as the med-
ical domain.

In medical document classification, there are thousands of features and often
there are redundant and irrelevant features which can make noise in the training
step to create a model. Consequently, the obtained model may have poor clas-
sification accuracy. This issue can be addressed by utilizing feature engineering
approaches such as feature selection (Bai et al. 2018) and feature construction
to improve the quality of features by removing irrelevant and noisy features.

Most previous approaches for document classification are not effective enough
for feature extraction due to a large number of redundant features (Bai et al. 2018).
To solve this issue and improve the performance of document classification, this
paper proposes a three-stage method by using discriminative knowledge-guided
medical concept pairings from clinical notes for stratifying risk of coronary artery
disease (CAD).

In this method, a tool is employed to extract concepts and detect most related
features to the candidate classification problem. As medical domain is the main
focus, a domain-specific ontology is used for feature extraction. After extracting
features from the documents, all the possible pairs of the extracted features are
constructed to create new features. Then, particle swarm optimization (PSO)
is utilized for feature selection. This paper aims to investigate the following
research questions:

1. Whether the concept pairs can construct meaningful features from the
extracted information of document set;

2. Whether PSO can reduce the number of features and keep the meaningful
features; and

3. Whether the suggested approach can increase the classification accuracy in
the aimed clinical notes classification.



Knowledge-Guided Concept Pairings for CAD Identification 459

The rest of the paper is organized as follows: Sect. 2 gives the problem descrip-
tion and related works. The proposed method is described in Sect. 3. The exper-
iment design and results are presented in Sects. 4 and 5. At the end, the conclu-
sions and future works are showed in Sect. 6.

2 Background

2.1 Document Classification in Medical Domain

The first application of classifier models in predicting medical research results
was presented in (Bellazzi and Zupan 2008). In this study, the authors tried
to make use of data mining in the field of medicine. Yoo et al. investigated the
advantages and disadvantages of using data mining algorithms in the biomedical
field (Yoo et al. 2012), in which the proposed medical features include predic-
tion health costs, prognosis and diagnosis, hidden knowledge from biomedicine
data, relationship among diseases and among drugs are tested using data min-
ing methods, and the extracted information is used in prediction. In (Wagholikar
et al. 2012) more than ten methods have been used to identify more than ten
types of diseases. Based on the results of this study, the efficacy of these methods
is better for some diseases such as gastroenterology, oncology and cardiovascular.

2.2 Information Extraction in Medical Document Classification

There has been research on using statistical methods from the distribution of the
features in document classification problems for ranking features (Shah and Patel
2016). Existing methods employed metrics associated with word frequency, infor-
mation gain, mutual information, term frequency-inverse document frequency
(tf-idf) for extracting textual features. However, they tend to treat each fea-
ture separately, and ignore the dependencies between features. Ontology-based
classification methods is introduced in (Dollah and Aono 2011). They use ontolo-
gies such as Medical Subject Headings (MeSH), Systematized Nomenclature of
Medicine (SNOMED) and Unified Medical Language System (UMLS) to improve
classification.

Clinical documents has been used in tasks such as finding risk factors for
diabetic patients, assessing Framingham risk score (FRF) for candidate popula-
tion, distinguishing heart disease risk factors, and finding the risk of heart disease
(Shivade et al. 2015). In this research, we use ontology as a feature extraction tech-
nique for document classification to identify Coronary Artery Disease (CAD).

2.3 Feature Selection in Medical Document Classification

In medical document classification, choosing a more efficient feature selection
method that works with small sets of features from a high dimensional set
of features is necessary. In some research, traditional feature selection meth-
ods, such as information gain, are generally employed (Gaizauskas et al. 2014).
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And then, after selecting a small set of features, learning algorithms such as Sup-
port Vector Machine (SVM) are used to learn classifiers. One of the promising
methods in feature selection is PSO.

PSO has been used to predict and analyze different diseases in medical field.
For example, (Eberhart and Hu 1999) utilized PSO to check human tremor. PSO
is used to improve a neural network that makes a distinction between normal
people and those have tremor. Fong et al. (2014) employed PSO to find optimal
feature subsets.

3 Our Three-Stage Method

In this section, the developed three-stage algorithm and the employed tools for
extracting concepts of phrases and constructing new features are described in
detail. Figure 1 presents the flowchart of the proposed three-stage method.

Fig. 1. The proposed three-stage method

The input of the proposed method is a set of medical discharge notes. Firstly,
the method detects all of the meaningful phrases in the discharge notes by utiliz-
ing the MetaMap tool (Aronson and Lang 2010) to extract their concepts from
the United Medical Language System (UMLS). After eliminating unrelated fea-
tures in the first stage, all the possible pairs of extracted expressions are created
as the constructed features. Then, Particle Swarm Optimisation (PSO) is applied
to select a feature subset from all of the extracted features in the first stage and
the constructed features in the second stage. The classifier is learned along with
the PSO feature selection.

It is expected that the proposed algorithm extracts meaningful features and
selects more informative subset of the constructed features and maintains or
enhances the classification accuracy.

3.1 Feature Extraction Method

UMLS is a dictionary in the biomedical area. An ontology structure of clinical
vocabulary concepts is provided by UMLS. In this work our medical documents
are the inputs of UMLS, and the detected meaningful expressions are the out-
puts. In the first stage, the MetaMap tool is utilized to send all of the discharge
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documents to UMLS to extract the concepts of the detected meaningful expres-
sions. Then, the classification task and the target label of the candidate problem
is considered in the concept selection step. As the class label of the problem
is the name of a disease and diseases have symptoms, all of the phrases whose
concepts belong to “Disease or Syndrome” or “Sign or Symptom” are selected
as a feature subset and the rest of the concepts are deleted. Figure 2 shows the
outline of the feature extraction and feature construction method.

A paragraph is given below as an example to describe how MetaMap works
on the input discharge notes and what output it provides in classification process.
Below is an example of a raw clinical notes.

“Hyperlipidemia: The patient’s Lipitor was increased to 80mg q.d. A
progress note in the patient’s chart from her assisted living facility indi-
cates that the patient has had shortness of breath for one day. The patient
is a 63-year-old female with a three-year history of occasional weakness.
Increasing large right-sided pulmonary edema.”

Figure 3 presents the extracted concepts from MetaMap for the detected
meaningful expressions from the notes. Table 1 shows the detected phrases based
on their concepts. Some of the phrases such as “hyperlipidemia” and “shortest of
breath” belong to more than one concept. As this research targets “[Disease or
Syndrome]” and “[Sign or Symptom]” concepts, the scientific names of “hyper-
lipidaemia”, “shortness of breath”, “weakness” and “pulmonary oedema” are
selected as a feature subset and the rest of the concepts are deleted. The sci-
entific names of the expressions “Hyperlipidemia”, “Dyspnea”, “Weakness” and
“Pulmonary Edema” are shown in lines 7, 19, 32 and 40 of Fig. 3, respectively.

Fig. 2. Feature extraction method
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Fig. 3. A segment of returned results of extracted concepts using MetaMap

3.2 Feature Construction Method

After the feature extraction, the obtained features are used to construct new fea-
tures. To consider the relationship between the extracted diseases and symptoms,
all of the possible pairs of (disease, disease), (disease, symptom) and (symptom,

Table 1. The extracted concepts of the example notes using MetaMap.

Sentences Detected phrases Extracted concepts Selected

First sentence Hyperlipidaemia [Disease or Syndrome] �
[Finding] ×

Patient [Patient or Disabled group] ×
Lipitor [Organic Chemical, ×

Pharmacologic Substance]

80% [Quantitative Concept] ×
mg++ increased [Finding] ×

Second sentence Progress note [Clinical Attribute] ×
[Intellectual Product] ×

Patient chart [Manufactured Object] ×
Assisted living facility Healthcare Related Organization, ×

Manufactured Object

Patient [Patient or Disabled group] ×
Shortness of breath [Sign or Symptom] �

[Clinical Attribute] ×
[Intellectual Product] ×

One day [Temporal Concept] ×
Third sentence Occasional [Temporal Concept] ×

Weakness [Sign or Symptom] �
Fourth sentence Pulmonary oedema [Disease or Syndrome] �
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symptom) are constructed for each document and added to the extracted fea-
tures. Table 2 shows the constructed features for the extracted features from the
sample sentences.

Table 2. The constructed features for the extracted features from the sample sentences

Cases Pairs Constructed Features

Case 1 (Disease, Disease) (Hyperlipidemia, Pulmonary Edema)

Case 2 (Disease, Symptom) (Hyperlipidemia, Dyspnea), (Hyperlipidemia, Weakness),

(Pulmonary Edema, Dyspnea), (Pulmonary Edema, Weakness)

Case 3 (Symptom, Symptom) (Dyspnea, Weakness)

Case 4 Case 1 + Case 2 (Hyperlipidemia, Pulmonary Edema), (Hyperlipidemia, Dyspnea),

(Hyperlipidemia, Weakness), (Pulmonary Edema, Dyspnea),

(Pulmonary Edema, Weakness)

Case 5 Case 1 + Case 3 (Hyperlipidemia, Pulmonary Edema), (Dyspnea, Weakness)

Case 6 Case 2 + Case 3 (Hyperlipidemia, Dyspnea), (Hyperlipidemia, Weakness),

(Pulmonary Edema, Dyspnea), (Pulmonary Edema, Weakness),

(Dyspnea, Weakness)

Case 7 Case 1 + Case 2 + Case 3 (Hyperlipidemia, Pulmonary Edema), (Hyperlipidemia, Dyspnea),

(Hyperlipidemia, Weakness), (Pulmonary Edema, Dyspnea),

(Pulmonary Edema, Weakness), (Dyspnea, Weakness)

After the feature construction step, all of the created pairs are added to the
obtained feature set in the concept selection step. In Table 2, the last column
presents the total feature size for each case. The obtained output will be used
instead of the original documents in the binary classification problem. The first
stage keeps the informative features and the second stage enrich the feature
set. For giving weights to the extracted phrases of the documents, TF-IDF is
utilized in the vectorization phase and each document is represented as a vector
of weights based on the TF-IDF function.

3.3 PSO-Based Algorithm for Feature Selection

In the second step, different pairs are made from disease and symptoms. As the
pairs are constructed using all the extracted features, there might be redundant
features among the obtained feature set. Hence, it is necessary to do feature
selection. In this stage, PSO is applied to remove the irrelevant and unnecessary
features from the extracted and constructed features in the first and second
stage. The value for each particle is initialized randomly between [−1, 1]. Each
particle in PSO indicates a feature subset and is represented as a vector. For
instance, a negative value indicates the feature is not selected and a positive
value means the feature is selected. The dimension of each vector is d and each
vector includes real numbers. The dimension of the search space is represented by
d which is equal to the size of the obtained features by the first and second steps.
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Table 3. Possible Pairs and the number of features

Cases Pairs Number of original

features (100%)

Number of UMLS

features (10.33%)

Number of features

(UMLS + Pairs)(%)

Case 1 (Disease, Disease) 7554 780 10107(133.80)

Case 2 (Disease, Symptom) 7554 780 11261(149.07)

Case 3 (Symptom, Symptom) 7554 780 4199(55.59)

Case 4 (Disease, Disease) + (Disease,

Symptom)

7554 780 20578(272.41)

Case 5 (Disease, Disease) + (Symptom,

Symptom)

7554 780 13518(178.95)

Case 6 (Disease, Symptom) + (Symptom,

Symptom)

7554 780 14670(194.20)

Case 7 (Disease, Disease) + (Disease,

Symptom) + (Symptom,

Symptom)

7554 780 24074(318.69)

The position and velocity of each particle is initialized randomly. Then, particles
moves by updating their gbest (the best position) and pbest (best position has
found so far). At the end of the method, gbest is found using the fitness values of
particles and also the obtained best particle is used to form the selected feature
set. Algorithm 1 shows the pseudocode for PSO for feature selection in the
third stage. The fitness value for each particle is calculated by the classification
accuracy (see line 5).

The method used in this work is a wrapper approach. Hence, a classifier is
utilized to run with PSO to calculate the value of fitness function.

Algorithm 1. Pseudo-code of PSO to select the best feature subset

Input : Training instances
Output: The best feature subset (gbest)

1: Keep only the features that are extracted in the first and second stages;
2: Randomly initialize the position and velocity of particles;
3: iter ← 0
4: while iter < maxIter do
5: Evaluation: Evaluate fitness of particles based on classification accuracy on the training set;
6: for i = 1 to |Particle| do
7: Update pbest and gbest for particle i;
8: end
9: for i = 1 to |Particle| do

10: for d = 1 to dimension do
11: Update the velocity of particle i
12: Update the position of particle i

13: end

14: end
15: iter ← iter + 1
16: end
17: return the position of gbest;
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The process of calculating the fitness function value for each particle is pre-
sented in Fig. 4. All of the training documents are feeded as input to PSO for
selecting features. Fitness value of a particle is computed by 10-fold cross val-
idation. The training document set is separated into 10 subsets. One training
subset is used for evaluating the particle’s fitness value and the nine remained
training subsets are utilized as input to PSO for training a classifier. The fitness
value of a particle is the average of computed ten classification accuracies. In
this stage, only the training set is considered to train the candidate classifier
and the test set is only utilized after the training to evaluate the classification
accuracy of the selected best feature subsets.

Fig. 4. PSO for feature selection using 10 fold cross validation

4 Experimental Design

4.1 Dataset and Preprocessing

The performance of the proposed three-stage method is evaluated on the 2010
Informatics for Integrating Biology and the Bedside (i2b2) data set. The labels
of the 2010 i2b2 data set are CAD (Coronary Artery Disease) and non-CAD that
form a binary classification problem. The data set includes 426 documents which
170 documents for training and 256 documents for testing. All of the features
are extracted by considering two specific concepts (“Disease or Syndrome” and
“Sign or Symptom”) by employing the MetaMap tool and utilizing the UMLS.
Then, all of the possible pairs of obtained features are constructed for the output
of each document separately. Next, the following preprocessing steps are applied
on the obtained results of the feature extraction step:

– Hold only words and delete punctuation, numbers, etc. Convert all words to
lowercase.

– Delete words which are less than 3 letters long. For example, removing “am”
but keeping “are”.

– Remove the 524 SMART stopwords.
– Extract stems of the remained words.
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4.2 Parameter Settings

The 2010 i2b2 data set includes 426 documents with 7554 various terms. Table 3
shows the total number of attributes for each case after applying the first and
second stages (check the last column). Five different classifiers (Logistic Regres-
sion (LR), Linear Support Vector Machine (LSVM), Naive Bayes (NB), Decision
Tree (DT) and K-Nearest Neighbor (KNN)) are employed for the experimental
comparison. The classification accuracy is calculated on the testing documents
to evaluate the performance of the classifiers. Table 4 presents the set parame-
ters of PSO which are proposed in (Bai et al. 2018). The values for particles are
initialised using numbers in [−1, 1], and the threshold (θ) is set to zero, hence,
about 50% of the features will be selected. Some documents will disappear if less
than 50% of features are selected.

Some of the classifiers’ parameters are tuned to get better results. The inverse
of regularization strength (“C”) is adjusted to 10 in the Logistic Regression. The
number of the neighbors is set to the value 28 in KNN. The maximum depth of
the tree and the random number generator are adjusted to values 14 and 11 in
Decision Tree classifier, respectively. Furthermore, early stopping rule is chosen
to avoid overfitting in training Linear SVM and Logistic Regression classifiers.
The rest of the classifiers’ parameters are kept the same as default values.

Table 4. PSO parameter setting

PSO Parameters Value

Population size 30

Maximum number of iteration 100

Dimension of All+PSO (Abdollahi et al. 2019) 7554

Dimension of UMLS+PSO (Abdollahi et al. 2019) 780

Dimension of case 1 10107

Dimension of case 2 11261

Dimension of case 3 4199

Dimension of case 4 20578

Dimension of case 5 13518

Dimension of case 6 14670

Dimension of case 7 24074

Velocity [−3, 3]

Threshold (θ) 0

Acceleration coefficients 2.0

Run times 40
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5 Results and Further Analysis

5.1 Results

Five different classifiers are employed to assess the proposed approach, and the
results are shown in Figs. 5, 6, 7, 8 and 9 for each classifier respectively. Our
three-stage approach has seven cases (case1 to case7) and they use different pair
combinations shown in Table 3. The seven methods are compared with four other
methods: “All Deter” which uses all unique term features; “UMLS Deter” which
uses UMLS concepts as features; “All+PSO” (Abdollahi et al. 2019) which uses
PSO to select features from all terms; and “UMLS+PSO” (Abdollahi et al. 2019)
which uses PSO to select from UMLS concepts. The efficiency of the classifiers
are assessed based on classification accuracy. From Figs. 5, 6, 7, 8 and 9 it is
obvious that the proposed technique with three stages (case 1 to case 7) is
significantly better than the other compared methods.

5.2 Further Analysis

Number of Selected Features: Table 5 shows the average (and standard devia-
tion values for stochastic methods) of the selected features by different approaches.
“Original”, “UMLS” and “UMLS+Pairs” methods are deterministic and use
all of the features without any feature selection. “Original” is using all unique
terms in the original documents. “UMLS” approach is using the extracted fea-
tures from UMLS by applying MetaMap tool. “UMLS+Pairs” method is uti-
lizing the detected features from UMLS and the constructed pairs of features.
“All+PSO” (Abdollahi et al. 2019), “UMLS+PSO” (Abdollahi et al. 2019) and
“UMLS+Pairs+PSO” are stochastic methods by applying PSO to select a fea-
ture subset. The smallest feature subset belongs to “UMLS+PSO” method which
contains only 10.33% of the original features. The smallest number of features is
allocated for case 3 in “UMLS+Pairs” and “UMLS+Pairs+PSO” with 55.59%
and 27.02%, respectively. By comparing the number of the selected features for
the deterministic and stochastic versions of the proposed approach, it can be con-
cluded that case 3 has the smallest size of the features in both methods which is

Fig. 5. Comparison of Naive Bayes classifier accuracy
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Fig. 6. Comparison of Linear SVM Classifier accuracy

Fig. 7. Comparison of k-Nearest Neighbor classifiers accuracy

Fig. 8. Comparison of Decision Tree classifier accuracy

smaller than “Original” method’s feature size and the feature size of stochastic
method is approximately 50% smaller than the deterministic method.

With or Without PSO: Table 6 compares the statistical results of the deter-
ministic and stochastic versions of the proposed approach with the pairs.
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Fig. 9. Comparison of Logistic Regression classifier accuracy

Table 5. Number of selected features

# Classifiers NB LSVM KNN DT LR

Cases Ave±Std

1 Original

(100%) (Abdollahi

et al. 2018)

7554 7554 7554 7554 7554

2 UMLS (Abdollahi

et al. 2018)

780 780 780 780 780

3 All+PSO

(Abdollahi et al.

2019)

3779.35± 38.01 3768.75± 48.22 3774.13± 39.36 3775.25± 43.04 3767.65± 32.77

4 UMLS+PSO

(Abdollahi et al.

2019)

387.20± 14.61 386.08± 14.79 394.35± 10.68 388.60± 15.14 388.25± 12.31

5 UMLS+Pairs

(Case 1)

10107 10107 10107 10107 10107

6 UMLS+Pairs

(Case 2)

11261 11261 11261 11261 11261

7 UMLS+Pairs

(Case 3)

4199 4199 4199 4199 4199

8 UMLS+Pairs

(Case 4)

20578 20578 20578 20578 20578

9 UMLS+Pairs

(Case 5)

13518 13518 13518 13518 13518

10 UMLS+Pairs

(Case 6)

14670 14670 14670 14670 14670

11 UMLS+Pairs

(Case 7)

24074 24074 24074 24074 24074

12 UMLS+Pairs+

PSO (Case 1)

5051.68± 56.22 5055.95± 51.53 5048.78± 52.02 5049.85± 55.25 5041.68± 53.57

13 UMLS+Pairs+

PSO (Case 2)

5630.18± 56.41 5625.6± 53.50 5616.0± 44.85 5625.1± 51.37 5630.55± 54.53

14 UMLS+Pairs+

PSO (Case 3)

2097.25± 34.79 2090.85± 34.84 2100.0± 35.59 2089.93± 33.19 2103.33± 29.34

15 UMLS+Pairs+

PSO (Case 4)

10276.4± 81.09 10292.38± 81.56 10275.6±83.59 10288.23± 67.09 10274.93± 80.68

16 UMLS+Pairs+

PSO (Case 5)

6756.98±71.62 6747.9± 59.01 6762.73± 47.58 6763.4± 63.10 6752.05± 56.78

17 UMLS+Pairs+

PSO (Case 6)

7310.73± 53.22 7329.95± 55.86 7343.43± 59.93 7343.9± 68.94 7329.78± 59.80

18 UMLS+Pairs+

PSO (Case 7)

12038.48± 75.39 12042.25± 79.63 12037.60± 62.95 12035.55± 77.71 12026.95± 69.64
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The best results are highlighted and three-stage method (with PSO) shows bet-
ter performance than two-stage method (without PSO) (Abdollahi et al. 2019)
in Naive Bayes, Linear SVM, KNN and Logistic Regression classifiers.

Significance Test: The suggested three-stage approach is applied on the train-
ing set using 40 independent PSO runs. Next, the quality of the selected feature
subsets is evaluated on the test set by using the gained best feature subsets
from each run. The experimental results are computed by considering the clas-
sification accuracies of the 40 selected feature subsets. Table 7 compares the
statistical results for six approaches. The standard deviation and average of
accuracies are calculated for all of the classifiers and the Wilcoxon signed ranks
test with significance level of 0.05 is used to test whether the suggested approach
has made significant difference in classification accuracy. In Table 7, “T” column
presents the significance test of the proposed approach against the other five
approaches, where “+” means the suggested three-stage method is significantly
more accurate, “=” means no significant difference, and “−” means significantly
less accurate. The best results are highlighted in the table.

6 Conclusions and Future Work

This work introduces a three-stage method to utilise domain concepts and their
relations to enrich the input data for a classification problem. The proposed
approach is able to improve the quality of the input data set by constructing new
features and increase the classification accuracy in the majority of the targeted
classifiers. From the experimental and statistical examinations it can be seen that
the suggested approach can achieve significantly better classification accuracy.

This work shows promise in using a third-stage feature extraction, construc-
tion and selection method in clinical document classification, however, it still
needs more research to improve the classification performance. We will study
other ways to construct features for the second stage by analyzing the distance of
the detected features in the document to guide our feature construction method
in making pairs. In the meantime, we will consider different fitness functions to
enhance the PSO method.
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Abstract. De novo peptide sequencing algorithms have been widely
used in proteomics to analyse tandem mass spectra (MS/MS) and assign
them to peptides, but quality-control methods to evaluate the confidence
of de novo peptide sequencing are lagging behind. A fundamental part
of a quality-control method is the scoring function used to evaluate the
quality of peptide-spectrum matches (PSMs). Here, we propose a genetic
programming (GP) based method, called GP-PSM, to learn a PSM scor-
ing function for improving the rate of confident peptide identification
from MS/MS data. The GP method learns from thousands of MS/MS
spectra. Important characteristics about goodness of the matches are
extracted from the learning set and incorporated into the GP scoring
functions. We compare GP-PSM with two methods including Support
Vector Regression (SVR) and Random Forest (RF). The GP method
along with RF and SVR, each is used for post-processing the results of
peptide identification by PEAKS, a commonly used de novo sequencing
method. The results show that GP-PSM outperforms RF and SVR and
discriminates accurately between correct and incorrect PSMs. It correctly
assigns peptides to 10% more spectra on an evaluation dataset contain-
ing 120 MS/MS spectra and decreases the false positive rate (FPR) of
peptide identification.

Keywords: Genetic programming · Symbolic regression ·
Peptide-spectrum match · Tandem mass spectrometry
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1 Introduction

Mass spectrometry (MS) is the most commonly used method for the accurate
mass determination and characterisation of proteins in complex biological sam-
ples. The common method for MS-based protein identification and characterising
their amino acid sequences involves digesting proteins into peptides, which are
then separated, fragmented, ionised, and captured by mass spectrometers. One
of the common methods for assigning MS/MS spectra to peptide sequences is de
novo peptide sequencing which is particularly appropriate for discovering novel
peptides which are not presented in any protein sequence database. Given a set
of MS/MS spectra to a de novo peptide sequencing algorithm, the results of
peptide sequencing for each spectrum is a set of candidate peptides each hav-
ing a confidence score indicating the quality of match between the spectrum
and the candidate peptide. Normally, the highest-scoring (first ranked) candi-
date in each set of candidate peptides is regarded as the correct match for each
spectrum. However, even with the identification of highest scoring PSMs, the
fraction of peptide sequences that are fully correctly predicted by existing de
novo sequencing algorithms cannot achieve 70% [1]. The existence of noise, low
quality of spectra, incomplete fragmentation and missing fragment ions could be
possible reasons of incorrect full-length peptide sequencing. Therefore, the top-
scored candidate does not necessary indicate a correct match and the correct
match could be in the second or third rank in the candidate list.

As we do not want to assign a spectrum to a peptide which is not presented
in the biological sample because incorrect peptide assignments result in incor-
rect protein identifications and the search scores in the current de novo peptide
sequencing algorithms do not always guarantee to find the true(correct) matches
from many false matches, therefore, it is essential to apply a post-processing
step as a PSM validation phase on the results of de novo sequencing in order
to improve peptide identification sensitivity and accuracy. Current de novo pep-
tide sequencing algorithms suffer from the lack of suitable scoring functions. The
existing PSM-scoring functions to measure the goodness of a match between a
spectrum and a peptide have the following limitations. A number of them are
based on the simple shared peak count (SPC) approach where the number of
peaks matched between experimental and theoretical (simulated) spectrum are
counted [2] and the weight of all peaks are considered equal although some peaks
are more informative than other peaks. Cross correlation based scores or statisti-
cal measures like the expectation value also have been previously used, but each
one on its own does not serve as a strong discriminatory scoring function [3]. In
addition, some methods put a prior assumption and built a linear scoring func-
tion from combination of different similarity scores which measure the goodness
of match between a spectrum and a peptide [4].

Building a new scoring function from the possible combinations of different
(sub)scores can be considered as a regression problem, where the (sub)scores
are treated as features. Symbolic regression is a type of regression analysis that
attempts to find the model that best fits a given dataset by discovering both
model structure and parameters at the same time. Being a function identification
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process, symbolic regression does not face the problem of unknown gap in domain
knowledge or human bias [5,6]. Having symbolic nature of solutions and being
independent of any prior knowledge, GP is a promising method for symbolic
regression problems. Symbolic regression using GP has been successfully applied
to many real-world applications such as finance [7], industrial processing [8],
and software engineering [9]. Therefore, it is worth discovering how GP employs
different database search (sub)scores as its features and builds a regression model
to reveal the intrinsic relationship of the data. The regression model will be used
as the PSM-scoring function. The new scoring function will be used to re-score
a collection of candidate PSMs resulting from de novo peptide sequencing of
MS/MS data. It is expected that the new GP-based function gives the highest
score (first rank) to the correct match among other peptides belonging to the
same candidate set, finding the correct peptide candidate for the given spectrum.

1.1 Research Goals

The main goal of this paper is developing an effective GP-based PSM scoring
function to re-score and re-rank the PSMs which are the output of de novo
sequencing algorithms, aiming at improving the rate of full-length correct peptide
identification of the de novo algorithm. This problem will be formulated as a
symbolic regression. The following objectives are specifically investigated:

1. Design appropriate terminal set, function set and a fitness function that help
GP to explore the space of all possible combinations of similarity (sub)scores.

2. Compare the performance of GP with other benchmark algorithms.
3. Evaluate the effectiveness of the new GP-based scoring function on the results

of de novo sequencing in terms of improvement in FDR.

2 Background

2.1 Assigning MS/MS Spectra to Peptide Sequences

Basically, proteins and peptides are fundamentally the same as, being comprised
of chains of amino acids that are held together by peptide bonds. Peptide and
protein identification is one of the significant challenges of proteomics. Mass
spectrometry is the most commonly used techniques to overcome the challenge.
A MS/MS spectrum is a mass to charge ratio plot which is the result of ionisation
the biological sample by a mass spectrometer. The spectrum is used to identify
the peptides in the sample and then from combining the peptides, proteins are
identified. Mainly there are two main peptide identification strategy including
database search and de novo sequencing. A database search method matches the
input experimental MS/MS spectra against the theoretical spectra predicted for
the peptides included in a protein sequence database search. However, when
the protein database is not available or the biological sample contains unknown
peptides and proteins de novo sequencing methods are used. Peptide sequences
are extracted directly from the MS/MS spectrum by measuring the mass differ-
ences between two informative peaks (b-/y-ions) corresponding to the mass of
an amino acid and then linking the amino acids together to build a peptide.
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2.2 Genetic Programming and MS/MS Data Analysis

Genetic Programming (GP) is a technique whereby a population of computer
programs is evolved using an evolutionary algorithm to perform well in a pre-
defined task. Randomly generating a set of individual as an initial population,
GP searched for the solutions during the evolutionary search process. A set of
genetic operators is applied on the individuals to generate fitter offsprings for the
next generation [10]. GP simulates evolution by employing fitness based selection
where the fittest program is expected to be chosen. The process can be stopped
based on the stopping criteria which can be finding an ideal individual with a
specified fitness value or reaching a maximum number of generations.

Feature
Extraction

GP-PSM
Scoring 
Model

Raw MS/MS
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De novo Sequencing
Algorithm 
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Fig. 1. The workflow of the proposed GP-PSM method consisting of three phases.

3 The Proposed Ranking GP Method

The proposed GP-PSM workflow designed for scoring the PSMs is presented
in Fig. 1. The workflow proceeds in three phases: creating the ground truth,
learning the GP-based PSM scoring function followed by an evaluation step to
re-score the results of de novo sequencing using the new scoring function.

Our ground truth is a set of MS/MS spectra with known identifications. The
spectra used in the learning set are composed of various qualities with different
peptide lengths varied from 5 to 12. More details about the learning set and val-
idation set is given in Table 2. It is important to mention that the correct identi-
fication for each spectrum in both sets is known. This is an essential requirement
since the existence of false positive PSMs in the learning set would not allow
GP to find discriminating scoring functions. Therefore, here we have used a set
of high confident PSMs identified and validated by Mascot database search, a
benchmark database search tool. The Mascot database search has already iden-
tified the correct peptide corresponding to each spectrum with a Mascot score
indicating the confidence level of the identification.

For each instance in the learning set, a set of features explained in Table 1
is extracted. The features are the (sub)scores or similarity scores which measure
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the quality of match between the experimental spectrum s and the theoretical
spectrum t, the simulated spectrum of peptide p, from different perspectives.
After feature extraction, the instances from the learning set are divided into
two sets train and test set (70% and 30%) to be used by GP to build the PSM
scoring model. Therefore, the features are used as the independent variables and
the Mascot score is the dependant variable in the GP regression model. GP
uses train set to learn the model and applies the model on the test set. After
generating the GP-PSM model, it is used to re-score the set of PSMs from the
evaluation set. Each feature used in the model is relatively useful at determining
if a PSM is correct or not, but the GP-PSM model incorporates them into a
strong discriminatory scoring function for PSMs.

Table 1. Features used in GP-PSM to represent a PSM.

Feature name Description

f1 Imatched sum of intensities of matched peaks

f2 Nmatched # of matched peaks

f3 Nnot−matched # of un-matched peaks

f4 Δmass The mass difference between the s and p

f5 Nterm # of matched b-ions from N-terminus

f6 Cterm # of matched y-ions from C-terminus

f7 Cos Fixed length Normalised Dot product

f8 Euc Fixed length normalised Euclidean distance

f9 Hamming Hamming distance between two vectorised

f10 SeqFix Fixed length SEQUEST-like scoring function

f11 SeqVar Variable length SEQUEST-like scoring function

After building the GP-PSM model, the effectiveness of this model is evalu-
ated on the evaluation set and using the current de novo sequencing algorithms.
Given a raw MS/MS spectrum from the evaluation set to the de novo sequencing
algorithm, the result is a set of PSMs each having a de novo score. The spectrum
has been previously identified by Mascot database search and its corresponding
peptide is known to us, but the de novo sequencing algorithm does not know
that and needs to assign a peptide to the spectrum. As it can be seen in the
example, for the input spectrum, five candidate peptides are listed as the results
of identification by the de novo sequencing tool. The de novo sequencing algo-
rithm normally reports the highest-scoring candidate peptide as the results of
the identification. As it can be seen in the example, the correct candidate is sit
at the lowest score in the list (‘before’list). The scores of the PSMs in this list
can be refined by using the GP-PSM model. So the first step is applying feature
extraction and the second step is applying the GP model to re-score the PSMs.
It is worth mentioning that the de novo scores in the ‘before’list are not used
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when the GP model is applied. As the result it can be seen that in the new
re-scored list (‘after’list) the correct PSM got the highest score among the other
candidates and this is what we would like to obtain.

3.1 Feature Extraction

For each PSM, a vector of 11 features summarised in Table 1 is computed. These
features measure the quality of match between the spectrum s and the peptide p
based on different criteria. In order to match the experimental spectrum s against
the peptide p, a theoretical spectrum t is constructed from peptide p based on the
CID fragmentation rules [11]. Imatched as the first feature in Table 1, calculates
the sum of intensities of peaks matched between the experimental spectrum s
and the theoretical spectrum t. Nmatched and Nnot−matched equals to the number
of peaks in the theoretical spectrum t, which are match and not matched against
the spectrum s, respectively. Δmass is the mass difference between the spectrum
s and the peptide p. The Nterm feature counts the number of consecutive b-
ions matched from N-terminus (left to right) of t against s. Similarly, the Cterm
feature counts the number of y-ions from t matched against s from C-terminus
side (right to left). The first six features were previously used as the fitness
function of a genetic algorithm based de novo sequencing [12] where all features
were linearly combined with each feature having equal weights of 1. However, in
this work we will not put the prior linear assumption on their combination and
let GP to find the non-linear relationship between them.

Features {f7, f8, f9, f10, f11} vectorise the experimental spectrum s and the
theoretical spectrum t into two binned vectors and then measure how well s fits
t. Features {f7, f8, f9, f10} have fix length of 4,000, whereas f11 has a variable
length. The value in each bin in the vectorised experimental spectrum equals
to the sum of the intensities of all peaks within the corresponding bin, whereas
in the case of the vectorised theoretical spectrum the bin gets a value of one.
The Cos feature, {f7}, uses dot/scalar product between two vectors s and t to
calculate and normalises the result of the dot product to be in the range of [0,1]
by dividing it into multiplication of the magnitude of the two vectors. A value of
0 for f7 indicates that the two spectrum vectors s and t have no peaks matched in
between, whereas f7 = 1 indicates a perfect match, and represents that all peaks
in t are matched against those of s. The Euc and Hamming features, {f8, f9},
calculate the normalised Euclidean distance and hamming distance between s
and t, respectively.

The features SeqFix and SeqVar, (f11, f12) are inspired from the scoring
function used in SEQUEST, a benchmark database search engine [13]. Both
features apply a preprocessing step on the experimental spectrum in order to
remove the potential noise peaks and normalise the intensities and then vectorise
the spectra. SeqVar has a variable length for each spectrum and is determined by
dividing the mass of the experimental spectrum into the fragment ion tolerance
which here is 0.5. Both features use normalised dot product to measure the
goodness of the match between s and t.
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3.2 GP Program Representation

A tree based GP structure is considered to represent each GP individual in GP-
PSM. Each individual represents a scoring function that returns a real number as
the match score. A terminal set consisting of 11 features and random constants
and a function set of arithmetic operators including {+,−,×, /(protected)} are
considered for GP. A population size of 300 and maximum number of generations
G = 100 are considered. The initial population is created based on ramped half-
and half. The mutation and crossover rates are 0.1 and 0.9, respectively and the
best individual is copied to the next generation. Tournament selection with size
5 selects the parental individuals. The algorithm is implemented in Python 3.6
and uses DEAP (Distributed Evolutionary Algorithms in Python) package [14].

Table 2. The MS/MS spectra used in this study.

Dataset # of MS/MS # of PSMs

Learning set Train 7,000 7,000

Test 3,000 3,000

Evaluation set 120 600

3.3 An Effective Fitness Function for PSMs Scoring

The GP method tries to generate a scoring function which combines different
similarity (sub) scores as features and produces a real value score as the confi-
dence score of the match between the experimental spectrum and the theoretical
spectrum. The scoring function should be discriminating enough in order to dis-
tinguish a correct match from false matches in the evaluation phase (please see
the flowchart in Fig. 1). As the GP problem is formulated as a symbolic regres-
sion task, we use relative sum of squared error (RSS) in Eq. (1) to compute the
error of the prediction.

RSS =
ΣN

i=1(Ŷi − Yi)
2

ΣN
i=1(Y − Yi)

2 (1)

where Ŷi is the output of the GP individual corresponding to the target value
Yi, Y is the mean of the target values, and N is the number of instances. A
model with good performance has RSS < 1. Therefore, in this problem GP tries
to minimise the RSS.

4 Experiment Design

4.1 MS/MS Datasets

To build the learning set and the evaluation set, the MS/MS spectra from
the comprehensive full factorial LC-MS/MS benchmark dataset are used [15].
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This dataset contains 50 protein samples extracted from Escherichia coli K12
designed for evaluating MS/MS analysis tools. The MS/MS spectra are acquired
from the linear ion trap Fourier-transform with the collision-induced dissociation
(CID) technique. The peptide identification has been already applied by Wessels
et al. [15] using Mascot v2.2 [16] with maximum missed cleavage of 1, precursor
mass tolerance of 10 ppm, and fragment error of 0.8 Da with a cutoff q-value of
0.01. Therefore, the so called ground truth data (the peptide corresponding to
each spectrum) is included in the full factorial dataset.

Since the fragmentation pattern strongly relies on the peptide’s charge and
the precursor mass, this study only focuses on doubly charge peptides. The
MS/MS spectra used in both learning and evaluation set have following char-
acteristics: doubly charged, maximum precursor mass of 1150 Dalton, peptide
length of 7 to 12 with no modifications. As it can be seen from Table 2, a set of
10,000 MS/MS spectra corresponding to 10,000 peptides are selected from the
full factorial dataset to create the learning set. The learning set is split by 70%
and 30% to create the train and test set, respectively. Also a set of 120 spectra
as selected from the comprehensive dataset to create the evaluation set. These
spectra later are given to a benchmark de novo sequencing algorithm, called
PEAKS [17], for peptide identification. For each spectrum, PEAKS produces at
least five candidate peptides as the results of identification. That is the reason
that the number of PSMs in evaluation set is not equal to the number of MS/MS
spectra. The evaluation set is used for evaluating the effectiveness of GP-PSM in
terms of improving the false discovery rate of the de novo sequencing algorithm.
More details is given in Experiments Section.

4.2 Benchmark Algorithm

As GP is used to learn a scoring function in a regression task, the proposed
method is compared with Random Forest (RF) and Support Vector Regression
(SVR). Also as mentioned previously, the effectiveness of the scoring functions
generated by GP, RF, SVR is evaluated by applying the model on the results of
PEAKS. The results are evaluated in terms of false positive rate (FPR) before
and after applying the model. Given the ground truth, FPR is the ratio of the
number of correct matches to the total number of MS/MS spectra.

FPR =
FP

N
(2)

Where FP is the number of false-positive PSMs and N indicates the number
of MS/MS spectra. After applying the new GP-based scoring function on the
results of PEAKS, in each group of five candidate peptides corresponding to the
same spectrum, if the highest scoring peptide is not the correct match, the value
of false positive increases by 1.
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4.3 Experiments

Experiment I: Learning the PSM Scoring Functions. Based on the learn-
ing phase in the GP-PSM flowchart in Fig. 1, the three algorithms including GP,
RF and SVR are used to learn the PSM scoring functions using the train set
of the learning set from Table 2. The three algorithms are evaluated in terms of
RSS measure in Eq. (1) on both train and test sets. As previously mentioned,
the intention of the models is minimising the RSS value on both train and test
sets. However, a method with low accuracy is sometimes superior to the one with
high accuracy, therefore regardless of the performance of these three algorithms
in learning phase, in evaluation phase each of them is applied on the evaluation
set to investigate the effectiveness of each model as a post-processing method.

Experiment II: Evaluating the Effectiveness of GP-PSM, RF and
SVR. This experiment measures the performance of the three algorithms in
terms of FPR before and after applying the models on the evaluation set. One
question that might arise here is that what is the difference between the test set
in the learning set and evaluation set. To answer this question we should explain
how each set is created. The PSMs in the test set are the results of peptide iden-
tification by Mascot database search from the full factorial dataset. However, the
PSMs in evaluation set are produced by PEAKS which is a de novo sequencing
algorithm.

Table 3. The RSS results of the three methods in learning phase using the PSMs in
learning set.

Method Train Test

RF 0.13 0.53

SVR 0.69 0.67

GP-PSM 0.55 ± 0.04 0.55 ± 0.03

Best GP individual 0.49 0.50

Given an MS/MS spectrum to PEAKS, the output is a set of peptide
sequences each having a confidence score between 0 and 100 [17]. As previously
mentioned even the highest-scored PSM does not necessary indicate a correct
match for the corresponding spectrum, therefore the output of PEAKS is given
as the input to the scoring functions generated by GP, RF and SVR for re-
scoring. Then for each spectrum, the highest-scored PSM is reported as the final
peptide identification. That is the reason that FPR before and after applying
post-processing on the results of PEAKS for each algorithm is calculated. It is
worth mentioning the already the correct peptide corresponding to the spectra
in evaluation set is known, that is why FPR can be calculated.

Another important point about the difference between the PSMs in the learn-
ing set and in the evaluation set is that as PEAKS reports five candidate peptide
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for each spectrum, the candidate are highly similar to each other, therefore, the
value of their features also very close to each other. So the scoring function gen-
erated by the regression-based method should be strongly discriminated in order
to give the highest score to the correct candidate peptide.

5 Results and Discussions

5.1 Results of Experiment I

Table 3 presents the results of the experiment I when three methods includ-
ing RF, SVR and GP were used to learn the PSM scoring function. The three
methods are evaluated in terms of RSS on both train and test sets. For GP
experiments, 30 individual runs using 30 different random seeds are considered.

As it can be seen from Table 3 that RF has the best result of train set and
the second best is the Best individual of GP. On test set the best individual of
GP has the best result. However, as it was previously mentioned from the results
of learning set we might not be able to conclude which scoring function is the
best, therefore, the three algorithm are applied on the evaluation set to check
the effectiveness of the model. For GP the best individual in terms of RSS on
train set is used at the PSM scoring function. More details are explained in the
following section.

Table 4. The results of PEAKS using the MS/MS spectra from evaluation set.

FP

# of MS/MS spectra that it’s correct match

Method TP (Target PSMs) is not first-rank
(Missed Target
PSMs)

does not exist
among the five
candidates

FPR

PEKAS 67 25 28 0.44

Table 5. The results of PEAKS peptide identification after post-processing by RF,
SVR and GP using the PSMs from evaluation set.

Method # of Target PSMs
which are missed
(out of 67)

# of identified
Missed Target
PSMs (out of 25)

TP FP FPR FPR reduction after
post-processing

RF 6 7 68 52 0.43 1%

SVR 6 11 72 48 0.40 4%

GP-PSM 8 20 79 41 0.34 10%
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5.2 Results of Experiment II

This experiment is conducting in order to evaluate the performance of the new
scoring functions generated by the three methods RF, SVR and GP on the eval-
uation set. PEAKS is used to perform de novo sequencing using 120 MS/MS
spectra from the evolution set. For each spectrum, PEAKS reports 5 candidate
peptides each having a confidence score indicating the reliability of the match.
In each set of candidates, the top-scored candidate is selected as the correspond-
ing match for the input spectrum. Having the ground truth (from full factorial
dataset), we can calculate the peptide identification rate. The results of peptide
identification by PEAKS is shown in Table 4. It can be seen that out of 120 total
number of spectra, only 67 of them are correctly identified by PEAKS (labelled
as TP or Target PSMs in this table). However, there are 25 spectra that their
corresponding correct peptide did not get the highest-rank in the candidate list.
We call these PSMs as Missed Target PSMs which means they are those target
PSMs which wrongly got lower scores by PEAKS. Therefore, other PSMs which
were not supposed to get the highest scores belong to FP. Moreover, there are
28 spectra that non of the peptides in their candidate lists were correct. It can
be seen that the FPR of PEAKS using evaluation set before applying the post-
processing is 0.44. In overall, we expect the post-processing method to increase
the number of TPs or Target PSMs, reduce the number of Missed Target PSMs
and decrease the FPR. Please notice that for the set of 28 spectra, the post-
processing method cannot help as the correct match does not exist among the
candidate list of each spectrum.

Table 5 presents the results of PEAKS de novo peptide sequencing after post-
processing by RF, SVR and GP using the PSMs from evaluation set which are
the output of PEAKS. The second column in this table, # of target PSMs
which are missed, presents the number of target PSMs previously identified by
PEAKS, but now are wrongly got low scores by the post-processing method.
Also the third column in this table, number of identified missed target PSMs,
indicates the number of missed target PSMs by PEAKS that are now identified
by the post-processing method.

The results show that the PSM scoring function generated by GP is able to
identify 80% (= (2025 × 100)) of the missed target PSMs whereas SVM and RF
only found 44% and 28%, respectively. However, it can be seen that the RF and
SVR are relatively better than GP in terms of keeping the target PSMs which
are already got the highest ranks by PEAKS.

Getting the lowest rate of FPR amongst the other methods, the GP method
in overall outperforms other methods by 10% reduction in FPR. The reason
of the overall good performance of GP is its good discriminating ability. More
analysis on the results of RF reveals that in most of failure cases assigned the
similar rank to two candidate peptides in the list. As a rule in our method, if
two PSMs belonging to the same candidate list if get the similar rank score, the
identification is rejected even if one of them is the correct match. In the case
of SVR, quite often the target PSM did not have the change to get the highest
score. This could be due to the low RSS results of SVR in the learning phase.
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5.3 Analysis on the Best GP Evolved Program

Figure 2 shows the best GP-based scoring function among the 30 independent
runs in terms of RSS on train set. The Tree contains 67 nodes. Having implicit
feature selecting ability, GP automatically discarded irrelevant or redundant
features such as {f4}, Δmass, and {f8}, Euclidean distance. These discards
highly makes sense as for all the PSMs Δmass is a small value and almost
the same for all instances since the MS/MS spectra selected in this study do
not have any post translation modifications so the mass difference between each
spectrum and its corresponding peptide is very close to zero. As Cos feature
and Euclidean features used here are both normalised and are mathematically
equivalent and GP already has selected Cos feature, {f7}, seven times so, {f8},
Euc, is discarded by GP. As previously mentioned about finding the non-linear
relationship between features {f1} to {f6}, it can be seen that the left big sub-
tree is mainly responsible for this task. It has 17 features and 13 of them are
among features {f1, f2, f3, f4, f5, f6}, whereas the right big sub-tree is looking
after the combination of the vectorised features including {f7, f8, f9, f10, f11}.

Fig. 2. The best GP evolved program (the PSM ranking function).

6 Conclusions and Future Work

This work developed a genetic programming (GP) based method to automati-
cally generate a PSM scoring function aiming at reducing the rate of false dis-
covery peptide identification from MS/MS data. The effective fitness function
let GP to generate a strong discriminative scoring function which was able to
improve the peptide identification. The GP method learns from thousands of
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MS/MS spectra. Important characteristics about goodness of the matches are
extracted from the learning set and incorporated into the GP scoring functions.
We compare GP-PSM with two methods including Support Vector Regression
(SVR) and Random Forest (RF). The GP method along with RF and SVR,
each is used for post-processing the results of peptide identification by PEAKS,
a commonly used de novo sequencing method. The results show that GP-PSM
outperforms RF and SVR and discriminates accurately between correct and
incorrect PSMs. It correctly assigns peptides to 10% more spectra on an evalua-
tion dataset containing 120 MS/MS spectra and decreases the false positive rate
(FPR) of identification. The results show that GP-PSM outperformed RF and
SVR by 9% and 4% in terms of reduction the FPR, resulting in improving the
PEAKS peptide identification. Not being a black box, GP with its interpretabil-
ity characteristic gives the chance to identify the important features which proven
to be more informative for discriminating the correct PSMs from incorrect ones.
The non-linear combination of the selected features can be used as the fitness
function for other de novo sequencing algorithms.

As for future work, we will investigate how to design a wrapper GP method
by considering the learning phase as the feature selection and the evaluation
phase as the classification part of the wrapper method. We will also investigate
how the new scoring function generated in this study can be used as a new
feature for PSM scoring.
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Abstract. Post-transcriptional modification (PTM) in a form of covalently
attached proteins like ubiquitin (Ub) are considered an exclusive feature of
eukaryotic organisms. Pupylation, a crucial type of PTM of prokaryotic proteins,
is modification of lysine residues with a prokaryotic ubiquitin-like protein
(Pup) tagging functionally to ubiquitination used by certain bacteria in order to
target proteins for proteasomal degradation. Pupylation plays an important role
in regulating many biological processes and accurate identification of pupylation
sites contributes in understanding the molecular mechanism of pupylation. The
experimental technique used in identification of pupylated lysine residues is still
a costly and time-consuming process. Thus, several computational predictors
have been developed based on protein sequence information to tackle this
crucial issue. However, the performance of these predictors are still unsatis-
factory. In this work, we propose a new predictor, PSSM-PUP that uses evo-
lutionary information of amino acids to predict pupylated lysine residues. Each
lysine residue is defined through its profile bigrams extracted from position
specific scoring matrices (PSSM). PSSM-PUP has demonstrated improvement
in performance compared to other existing predictors using the benchmark
dataset from Pupdb Database. The proposed method achieves highest
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performance in 10-fold PSSM-PUP with accuracy value of 0.8975, sensitivity
value of 0.8731, specificity value of 0.9222, precision value of 0.9222 and
Matthews correlation coefficient value of 0.801.

Keywords: Post-translational modification � Lysine pupylation prediction �
Position specific scoring matrices (PSSM)

1 Introduction

The chemical alterations of proteins after being transformed in the ribosome creates a
relevant biological reaction in the cell. Post-translational modification (PTM) is alter-
ation of amino acids in the protein sequence, which contributes to diversify the pro-
teome [1, 2]. There are many PTMs, listed from methylation [3] and ubiquitination [4]
to acetylation [5], succinylation [6, 7] and phosphoglycerylation [8]. Recently, the
scientific community are looking into another PTM called pupylation. A bacterial
prokaryotic ubiquitin-like protein (Pup) is an intrinsically unstructured protein with 64
amino acids [9]. Pupylation is a process of Pup attaching substrate lysine via is
opeptide bonds which plays important role in regulating various cellular processes such
as protein degradation and signal transduction in prokaryotic cells [10]. Although
pupylation and ubiquitylation are functionally the same, the enzymology involved in
the two are different. Ubiquitylation requires three enzymes (activating enzyme, con-
jugating enzyme, and protein ligase), whereas pupylation requires only two enzymes;
deamidase of Pup (DOP) and proteasome accessory factor A (PafA) [11–13]. Firstly,
C-terminal glutamine of Pup is deamidated to glutamate via DOP and then deamidated
Pup is attached to specific lysine of substrate proteins by PafA. The prokaryotic
pupylation is still mostly unknown [14–16].

It is important to accurately identify pupylation sites to understand the fundamental
mechanisms of pupylation. The traditional wet-lab experiment to identify pupylated
site is expensive, inefficient and time-consuming and therefore computational tools for
prediction are essential. Although there a number of computational methods developed
for this, the prediction performance is still unsatisfactory. The first predictor to predict
pupylation sites was proposed by Liu et al. called GPS-PUP which used a group-based
prediction system (GPS) sequence encoding [17]. Zhao et al. employed the bi-profile
Bayes feature extraction with support vector machine (SVM) classifier to develop
EnsemblePup [18]. Zhao et al. also proposed another computational predictor PrePup
which uses multiple feature encoding such as position-specific scoring matrix (PSSM)
conservation scores, structural disorder score, amino acid index property (AAindex),
secondary structure, solvent accessibility, and feature space with a SVM classifier [19].
Another computational predictor PUL-PUP, was established by Jiang and Cao using
positive-unlabeled learning with a composition of k-spaced amino acid pairs feature
(CKSAAP) and SVM algorithm [20]. Ju et al. proposed a predictor IMP-PUP by
constructing features based on the composition of k-spaced amino acid pairs and on the
basis of semi-supervised self-training SVM algorithm [21]. In SVM based predictor
iPUP, Tung et al. also used the CKSAAP [22]. Chen et al. proposed PupPred, where
the sequential, structural and evolutionary hallmarks around pupylation sites were

Computational Prediction of Lysine Pupylation Sites in Prokaryotic Proteins 489



investigated and employed some of the sequence-derived features [23]. The features
included physicochemical properties, binary features, protein secondary structures,
amino acid pairs and PSSM with a k-nearest neighbor algorithm in SVM-based clas-
sifier. Hasan et al. developed pbPUP predictor on the basis of profile-based compo-
sition of k-spaced amino acid pair (pbCKSAAP) encoding with SVM classifier [24]. In
recent paper by Hasan et al. shows the progress and challenges faced in protein
pupylation sites prediction [25]. Most recently, Xuanguo et al. proposed an enhanced
positive-unlabeled learning algorithm (EPuL) which employs only positive and unla-
beled samples. The EPuL algorithm is implemented to select the reliably negative
initial dataset and then iteratively picking out the non-pupylation sites [26]. In very
recent work, Bao et al. developed CIPPN which identifies pupylation sites using neural
network [27]. Most of the predictors have used the benchmark datasets from the
PupDB database [28].

Although there are several predictors available, performance of pupylated lysine
residues prediction remains unsatisfactory. Therefore, better approaches are needed by
using relevant characteristics of amino acids for perception information. From the
existing predictors, PrePup [19] and PupPred [23] incorporated evolutionary infor-
mation, but performance can be further improved. In this work, we propose a new
predictor named as PSSM-PUP (position specific scoring matrix into bigram for
pupylation prediction) which employs evolutionary features of amino acids where we
computed PSSM for each protein for predicting pupylated lysines. We selected a
segment comprising 21 amino acids, 10 upstream and 10 downstream corresponding to
each lysine residue for feature extraction. Afterward, profile bigram [29] was computed
on this segment which is used to define the features of lysine residue. Since there is not
enough information available from the knowledge of primary sequences, PSSM-PUP is
designed to obtain information by evaluating each protein sequence related to pupy-
lation sites.

For this work, we used a benchmark dataset consisting of 153 proteins from PupDB
database [28]. This dataset has a very high number of non-pupylated lysine residues
(negative samples) over the pupylated lysine residues (positive samples). We employed
k-nearest neighbors cleaning treatment [1] to reduce this imbalance. Finally, a
LIBSVM (library for support vector machines) package was used to develop pupyla-
tion prediction. PSSM-PUP has shown improvement in performance compared to
existing predictors [20, 21].

2 Materials and Methods

This paper discusses the predictor called PSSM-PUP, which uses PSSM of a protein
with the profile bigram of amino acids around lysines to predict pupylated and non-
pupylated lysine residues [29]. The following sections discusses the benchmark data
used for this study, extraction of evolutionary feature via PSSM, computation of profile
bigram from PSSM for a segment of amino acids around corresponding lysine reside
and SVM classifier used for pupylation prediction.
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2.1 Benchmark Dataset

The dataset used in this study was downloaded from PupDB database [28]. It com-
prises of 153 protein sequences with pupylated and non-pupylated lysine residues. All
the protein sequences were used for computing the sequence identity of the dataset. We
used the cd-hit program [30] to have less than 40% sequence alignment. We evaluated
each protein sequence and retrieved its pupylated and non-pupylated lysine residues.
We obtained 181 pupylation sites (positive samples) and 2290 non-pupylation sites
(negative samples).

2.2 Evolutionary Feature via PSSM

For a given amino acid, PSSM gives its substitution probability with the 20 amino
acids of the human genome, according to its location in the protein sequence. These
probabilities are obtained using PSI-BLAST tool that aligns the protein sequence to
similar sequences found in the protein data bank [31]. PSI-BLAST calculates the
probabilities for all the protein sequences in our benchmark dataset. The output of this
tool are two L � 20 matrices in which L represents the protein sequence length and 20
the amino acids of the genetic code. One matrix is called log-odds, while the other one,
the linear probabilities of amino acids. In this work, the latter is used, i.e., the linear
probabilities of amino acids. PSSM extracts promising features relevant for evolu-
tionary information [32–38].

2.3 Feature Extraction

In this work, PSSM feature is used to discriminate the pupylated and non-pupylated
sites by considering 10 downstream and 10 upstream amino acids to the lysine residue.
The lysine residue in the center, with downstream and upstream amino acids (see
Fig. 1) and makes a total window size equal to 21. We computed predictor’s perfor-
mance with window sizes of 15, 21, 25, 27, 31, 37, 41 and 21 gave the best result. Four
of the previous studies [19–21, 26] also used window size 21 for pupylation prediction.
For the case where a lysine is located towards the N or C terminus of the protein
sequence and there are not enough residues for either downstream or upstream, the
mirroring effect [1, 6, 8, 39, 40] is used (see Fig. 2). Usage of the mirror technique to
deal with the issue of insufficient residues may not be biologically correct procedure,
but it has been the most effective solution by far. We can represent each lysine residue
with 10 amino acids downstream and 10 amino acids upstream by

S ¼ L�10; L�9; . . .;L�2; L�1;K; L1; L2; . . .; L9; L10½ � ð1Þ

The residues L−i (1 � i � 10) are the upstream amino acids and Li (1 � i � 10)
are the downstream amino acids. It can be observed from Eq. (1) that each lysine residue
is represented by 21 amino acids, including the lysine itself in the center. The segment
S describing each lysine residue belongs to one of the two classes (c = {0,1}), where a
non-pupylated site falls in class 0 (c = 0) while a pupylated site is categorized as class 1
(c = 1). The vector that represents each segment S are extracted from the PSSM values
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obtained for the entire protein sequence. Furthermore, this vector was transformed into
frequency vector with bigram [29]. The resulting 20 � 20 matrix obtained after the
PSSM + bigram transformation was reordered into a 400-dimensional vector, which are
the evolutionary features representing the segment S.

The PSSM + bigram procedure and how each segment S are represented is outlined
below. PSSM obtained from PSI-BLAST for each protein sequence is a matrix of size
L � 20. Each element of the matrix, which can be labeled as mij, indicates the tran-
sitional probability of j-th amino acid at i-th location in the protein sequence concerned.

Fig. 1. Shows neighboring residues to the one lysine residues (K). Lysine site with enough
upstream and downstream amino acids.

Fig. 2. Illustrates lysine with insufficient number of amino acids on either left or right of lysine
residue (K). Left mirroring carried out to get adequate upstream and right mirroring is done to get
missing downstream amino acids.
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In this manner, PSSM results in the substitution probabilities of the 20 amino acids for
the given protein sequence. The segment S, which is a small part of the entire protein
sequence, is therefore a 21 � 20 feature vector after the extraction. The profile bigram
[29] of segment size 21 was calculated by

Bp;q ¼
X20

k¼1
mk;pmkþ 1;q where 1� p� 20 and 1� q� 20 ð2Þ

The Eq. (2) returns 400 frequencies that correspond to 400 bigram transitions.
Profile bigram is known to give good performance in the different areas of protein
analysis [29, 41, 42]. The matrix B (PSSM + bigram) was reordered into a 400 element
feature vector F as shown in Eq. (3) below. The superscript T denotes transpose.

F ¼ B1;1;B1;2; . . .;B1;20;B2;1;B2;2; . . .;B2;20;B20;1;B20;2; . . .;B20;20
� �T ð3Þ

The evolutionary information was computed for the 181 lysine residues in the
positive set (c = 1), as well as for the 2471 in the negative set (c = 0). It is worth noting
that this method provides a 400-dimensional feature vector in spite of the length of the
segment size. This is an important property of profile bigram where the size of feature
vector does not increase when larger segment sizes are used.

2.4 Support Vector Machine

SVM [43] is one type of supervised learning algorithm in the field of machine learning.
SVM has been used for both regression and classification purposes but is mostly
common for classification tasks and used in many existing pupylation predictors [19–
22, 24, 26]. The way this algorithm works is by finding a hyperplane that best dis-
criminates the two classes i.e. it finds a plane that has the maximum distance between
data points of the two classes. Moreover, the number of features of these data points has
the effect on the dimensionality of the hyperplane. For instance, feature size of 2
requires a hyperplane that is 1 dimensional (a line). Furthermore, not all classes are
linearly separable. In these cases, non-linear kernels are used. Non-linear kernels map
the nonlinear input space to a feature space of higher dimension in which the classes
can be linearly separated. LIBSVM [44] predictor has been employed in this work on
Matlab platform and the SVM type selected was radial basis function kernel and cost
value of 2 and gamma value of 0.0250.

2.5 Statistical Measures

To evaluate the performance of the proposed predictor and compare with the existing
predictors, few measures which are sensitivity (Sn), specificity (Sp), accuracy (Acc),
precision (Pre) and Matthews correlation coefficient (MCC) are employed in this work.
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One of the key measure is sensitivity, which evaluates the percentage of pupylated
residues correctly classified by the model. The predictor achieving high sensitivity
shows that it can accurately detect those positive instances (pupylated residues) in the
dataset. Simply when sensitivity equals to 1 makes an accurate predictor and when it
equals to 0 makes it an inaccurate one. The formula for sensitivity is defined as:

Sensitivity ¼ PLþ
PLþ þPL�

ð4Þ

where PLþ is number of pupylated lysine predicted correctly and PL� represents the
number of pupylated lysine incorrectly classified by the predictor.

On the other hand, specificity assesses the proportion of correctly identified non-
pupylated lysine residues. Specificity of 1 demonstrates an accurate predictor which is
able to predict negative instance of the dataset (non-pupylated residues) and specificity
equals to 0 shows predictor is unable to identify non-pupylated residues. The metric for
specificity is defined as

Specificity ¼ NPLþ
NPLþ þNPL�

ð5Þ

where NPLþ is the number of non-pupylated lysine predicted correctly and NPL�
represents the number of incorrectly classified non-pupylated lysine by the predictor.

For a predictor to correctly distinguish between positive samples and negative
samples is evaluated by the accuracy of the predictor. Predictor with accuracy equals to
1 shows an accurate predictor whereas a zero accuracy means predictor is totally
incorrect. Accuracy is calculated as

Accuracy ¼ PLþ þNPLþ
PLþNPL

ð6Þ

where PL and NPL are the total numbers of pupylated and non-pupylated lysine
residues, respectively.

Precision is another assessment measure of the predictor defined as the ratio of the
number of correctly identify pupylated lysine over sum of correctly classified pupylated
and non-pupylated lysine residues.

Precision ¼ PLþ
PLþ þNPLþ

ð7Þ

Final statistical measure used in this paper is the Matthews correlation coefficient
(MCC). It shows the value of correlation coefficient between predicted and observed
instances. If a predictor has MCC equals to 1, it implies a perfect correlation between
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prediction and observation whereas, MCC equals to −1 does not show any agreement.
MCC metric is calculated as

MCC ¼ NPLþ � PLþð Þ � NPL� � PL�ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PLþ þPL�ð Þ PLþ þNPL�ð Þ NPL� þPL�ð Þ NPLþ þNPL�ð Þp ð8Þ

A best predictor is the one that achieves high performance in the five statistical
measures discussed. However, it should perform better at least in some of the measures
compared to the existing predictors. A predictor which is unable to predict pupylated
lysine correctly (low sensitivity) cannot be used for pupylation prediction.

2.6 Validation Scheme

The effectiveness of a new predictor needs to be assessed with a validation method.
There are several validation methods discussed in literature, however, two most used
ones are the jackknife and n-fold validation scheme [45, 46]. In validation phase, an
independent test set has to be used to assess the predictor. The Jackknife validation is
less arbitrary than the n-fold cross-validation and provides unique results for a dataset
[47]. From the literature, the same validation scheme [19–22, 26, 48] (n-fold cross-
validation) technique is used in this study. The n-fold cross-validation technique is
carried out in following steps listed in Table 1:

In this study, we conducted 6-, 8- and 10-fold cross-validations for assessing the
PSSM-PUP predictor and result were recorded.

3 Results and Discussion

Any proposed predictors need to be assessed in order to measure it performance. For
this study, we used five statistical metrics: sensitivity, specificity, precision, accuracy
and Matthews correlation coefficient [19, 20, 22, 24, 49] which are commonly used in
the literature. The following sections discusses how the class imbalance were treated

Table 1. Steps for cross-validation approach

1. Split the data samples complementary into n folds of roughly equal sample size 
with similar positive and negative sample size in each.

2. Use one fold as independent test set and the remaining 1 folds as training 
data.

3. Use the training data, adjust the parameters of the predictor
4. Compute all the statistical measures on independent test set 
5. Repeat steps 1 to 4 for the remaining folds for assessment and calculated the av-

erage of each statistical measure.
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and also presents the results of support vector machine classification. The overall
performance of PSSM-PUP and comparison with existing pupylation predictors with
five metrics are also discussed.

3.1 Reducing the Imbalance Between Classes

After analyzing the protein sequence of our dataset, we found out the number of
positive samples (pupylation sites) is much smaller than the negative samples (non-
pupylation sites). This led to a high class imbalance samples that can cause biased
classification results. Imbalance between samples of different classes is a common issue
in machine learning and it is crucial to mitigate this problem. This proposed predictor
removes redundant instances before the classification takes place. We used k-nearest
neighbor technique in this study to deal imbalance of samples between classes. K-
nearest neighbor technique is very popular in pattern recognition which was reintro-
duced for protein attribute prediction by Chou [50]. To balance both negative and
positive classes, we removed redundant negative samples using k-nearest neighbors
cleaning treatment [25]. We calculated Euclidean distance between all the samples in
the dataset. We first set the cut-off by dividing the number of negative instance and
positive instances (2,290/181) which came to a ratio of 12.65. Thus, K = 12 was
initially set for reducing class imbalance. In other terms, we remove a negative sample
if one of 12 nearest neighbor is a positive sample (calculation based on the Euclidean
distance between the negative sample and all other samples in the entire dataset). After
this first filtering, the imbalance classes still remained, therefore, we kept increasing the
K value until the both the sets were almost similar in size. This method reduced the
initial negative samples of 2,290 to 180 with a threshold value of 70, meaning a
negative sample was removed if at least one positive sample is present within the 70
nearest neighbor. The negative instances were reduced to 180 samples. The positive
instances remained 181 as it can affect the sensitivity. The final dataset after filtering
(filtered negative samples and positive samples) was used to carry out 6-, 8-, 10- fold
cross-validation and assess the predictor’s performance.

3.2 Comparison with Existing Predictors

We compared our proposed PSSM-PUP predictor with two recently proposed pre-
dictors: PuL-PUP [19] by Jiang and Cao, and IMP-PUP [20] by Ju et al. Unfortunately,
we could not compare with EPuL algorithm [25] since the given webserver was not
working and the software package also did not work. The software package for testing
were given for these two predictors PuL-PUP [19] and IMP-PUP [20]. Since all exiting
predictors used the same dataset, it is worth noting that the trained model in existing
predictors would have utilized some of the same protein sequences in their training
which are in my test samples. Therefore, for comparison purposes, we used the feature
extraction method to extract the features from the given software package and trained
and tested using the LIBSVM classifier. The same train and test sets used in our
proposed PSSM-PUP predictor was used to train and test for different folds when

496 V. Singh et al.



comparing with other predictors. We calculated the sensitivity, specificity, precision,
accuracy, MCC for PSSM-PUP, PuL-PUP and IMP-PUP for 6-, 8- and 10-fold cross-
validation trials (Table 2).

The comparison of predictor PuL-Pup [19], IMP-PUP [20] with PSSM-PUP is
shown Table 1. Improvement in performance for PSSM-PUP is seen over PuL-Pup
[19] and IMP-PUP [20] on sensitivity, specificity, precision, accuracy and MCC. The
performance improved slightly for sensitivity but significantly for specificity, precision,
accuracy and MCC. It is worth noting that only the feature extraction methods were
used to get the training and test sets. Same LIBSVM classifier with the same SVM
parameters was used to train and test the predictors for comparison.

The promising results shows the ability of proposed PSSM-PUP predictor to cor-
rectly identify pupylated and non-pupylated lysine residues. This is possible since
proposed predictor uses significant evolutionary information of protein sequences
effectively. This information which is stored in the PSSM of each amino acid around
lysine, when placed in one matrix of bigram shows important characteristic for
detecting modified lysines. The SVM classifier and its effective use in PTM also
improves the outcome. In short, the combination of PSSM + bigram extracts more
information around lysine residues, which plays a vital role in predicting pupylated and
non-pupylated lysine residues.

Our PSSM-PUP predictor’s software package can be accessed from: https://github.
com/vinzsingh09/PSSM-PUP.

4 Conclusion

This paper discussed a new predictor named PSSM-PUP, which has used the combi-
nation of PSSM + Bigram efficiently for pupylation prediction. The evolutionary
information hidden in PSSMs that is converted to bigram occurrences shows to be a
significant feature which can used for prediction. The k-nearest neighbors cleaning
treatment also plays an important role to solve imbalance data issue and removing

Table 2. Table shows performance assessment of two benchmark predictors and PSSM-PUP for
6-, 8-, 10- fold cross validation. The highest values in each metric are highlighted in bold.

Fold Predictor Sensitivity Specificity Precision Accuracy MCC

6 PSSM-PUP 85.645 92.222 91.920 88.916 0.782
PUL-PUP 80.054 74.444 76.188 77.272 0.552
IMP-PUP 82.276 72.222 74.856 77.272 0.549

8 PSSM-PUP 85.598 92.762 92.523 89.174 0.788
PUL-PUP 79.891 77.841 78.552 78.873 0.583
IMP-PUP 81.719 72.826 75.231 77.280 0.551

10 PSSM-PUP 87.310 92.222 92.290 89.752 0.801
PUL-PUP 81.754 76.111 77.693 78.956 0.584
IMP-PUP 82.310 70.556 74.145 76.441 0.537
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redundant samples to balance the dataset. A balanced dataset with support vector
machine (LIBSVM) has shown PSSM-PUP to perform better than exiting existing
predictors. For future study, we intend to use structural properties of amino acids for
pupylation prediction and further explore the use of a 21-residue window for describing
lysine residues.
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Abstract. Dermoscopy imaging analysis is the basic operation for diag-
nosing and treating skin lesions. Recently, deep neural networks have
been able to segment melanoma from surrounding skin accurately. How-
ever, because of the limitation of demanding a large amount of floating
point operations and having long runtime on skin lesion segmentation
network, it is difficult to deploy models to existing medical devices. In
this paper, we design LCASA-Net, a novel light-weight neural network
architecture, which applies Context-Aware Self-Attention block to effec-
tively and efficiently capture informative features in dermoscopic images.
Our model is created specifically for skin lesion segmentation task requir-
ing low latency operation with higher precision. LCASA-Net is up to
2× faster, requires 5× less FLOPS, possesses 10× less parameters and
achieves higher performance to existing state-of-the-art methods on ISBI
2017 dataset.

Keywords: Dermoscopy image · Skin lesion segmentation ·
Light-weight neural network · Context-Aware Self-Attention block

1 Introduction

As shown in Skin Cancer Foundation statistics [11], malignant melanoma is a
kind of deadly cutaneous cancer, for the number of patients has increased dra-
matically in recent years. Early diagnosis and therapy can greatly reduce the risk
of death. With the rapid development over the past decades, deep learning has
achieved great success in segmentation of skin lesions [2,7,8,12], which assists
dermatologists correctly segment and analyze melanomas. Most of them follow
the design principles of pursuing remarkable accuracy, which makes them have
poor efficiency of floating point operations and long runtime. Therefore, they
are unsuitable for existing medical devices. To address the above issue, we intro-
duced traditional small semantic segmentation model named ENet [9] into skin
lesion segmentation tasks, which requires making a good trade-off on accuracy
c© Springer Nature Switzerland AG 2019
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and model parameters or memory footprint. As displayed in our experiments,
although the above network achieved high running speed in the field of semantic
segmentation, the requirements of low latency operation with high performance
for skin lesion segmentation is difficult to be met.

In this paper, we employ context aware local features with attention modules
as the basic unit to propose a fast light-weight model in dermoscopic images for
skin lesion segmentation. In particular, our model achieved the Jaccard index
of 80.9% on ISBI 2017 [4] Skin Lesion Segmentation dataset. Furthermore, our
model has less than 0.5M parameters, and can process a dermoscopy image with
768 * 1024 resolution at a speed of 20 fps on only one NVIDIA TITAN X. To
the best of our knowledge, it is the first time that a small semantic model has
been used in the field of skin lesion segmentation.

Fig. 1. It is difficult to distinguish whether a and b are benign point or lesion when we
only pay attention to themselves. The red contour represents the lesion region which
is annotated by doctors. (2) With the help of its surrounding context, it is easier
to recognize that a is benign point and b is lesion. (3) The architectural design of
Context-Aware Self-Attention block. (Color figure online)

2 Methodology

The challenge is presented in dermoscopic images that makes it difficult for com-
puters to identify automatically the edge contour of lesion region from healthy
skin with large variations (e.g., skin colors, different resolutions of images, pres-
ence of hair, variations of illumination or reflection, etc.). Specially, the infor-
mation for border of lesion would be easily ignored in the final segmentation,
resulting in poor performance for skin lesion analysis. Figure 1(1) shows the
problem that some pixels in skin lesion segmentation tasks are difficult to be
distinguished whether it is a lesion (red point) or not (yellow point).

It is known that context information could greatly improve performance for
scene labeling [3,5]. Inspired by the success of the Context Contrasted Local
(CCL) [5], which is proposed to reach a equilibrium between the informative
context and the local information for semantic segmentation, we integrate coarse
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context and delicate local to extract multi-level context aware local features. The
informative features are extracted by concatenating different branches. However,
context of different positions tends to be dominated by consistency represen-
tation, which may result in lacking in discrimination. It is difficult to obtain
apposite and effective high-quality features for lesions, which is more serious
around the border. To address this issue, we introduce an attention module
[10] after each Context-Aware local module to improve the discriminability of
the representation. The architecture of the Context-Aware Self-Attention block
is illustrated in Fig. 1(3). Table 1 shows our proposed network architecture in
detail.

Table 1. LCASA-Net architecture. Input size is given for an image resolution of 3 *
768 * 1024. CASA means the Context-Aware Self-Attention block proposed by us.

Name Type Output size

Stem 3 * 3 conv with stride = 2 32 * 384 * 512

3 * 3 conv with stride = 1 32 * 384 * 512

3 * 3 conv with stride = 1 32 * 384 * 512

Pooling 1 Average pooling with stride = 2 3 * 384 * 512

Pooling 2 Average pooling with stride = 2, repeat 2 times 3 * 192 * 256

Concat 1 Concat stem and pooling 1 35 * 384 * 512

Down-sample 1 CASA with stride = 2 64 * 192 * 256

Stage 1 CASA with stride = 1, repeat 8 times 64 * 192 * 256

Concat 2 Concat stage 1, Down-sample 1 and Pooling 2 131 * 192 * 256

Down-sample 2 CASA with stride = 2 128 * 96 * 128

Stage 2 CASA with stride = 1, repeat 16 times 128 * 96 * 128

Concat 3 Concat stage 2, Down-sample 2 256 * 96 * 128

Classifier 1 * 1 conv 1 * 96 * 128

Up-sampling Bilinear interpolation 1 * 768 * 1024

3 Experiments

Dataset. In our work, we employed ISBI 2017 [4] dataset of dermoscopy images
to test the robustness of LCASA-Net. Images of the dataset were annotated by
different doctors in various top medical centers. The dataset of ISBI 2017 [4]
consists of training, validation, and test set, which contains 2000, 150 and 600
images, respectively.

Implementation Details. LCASA-Net was implemented on PyTorch, which
is an open source deep learning library. The SGD optimization algorithm was
employed with momentum = 0.9 and weightdecay = 1 ∗ 10−4 for adjusting
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learning rate. We used the learning rate of 5 ∗ 10−2 with a power of 0.9. To
prevent overfitting, we selected color distortion, flipped horizontally with 0.5
probability, randomly cropped and resized the cropped region into 768-by-1024
pixels for our model. During training, we set the batchsize to 8 and the epochs
to 500. As for loss function, the lovaâz loss [1] and OHEM [6] were combined for
watershed energy. We conducted the experiments on NVIDIA TITAN X with
12 GB memory.

Results. Quantitative results are displayed in Table 2. We compared LCASA-
Net against 4 state-of-the-art methods on ISBI 2017 [4] test subset. The seg-
mentation performance of our model reached an overall Jaccard index of more
than 80.9%, which is the new state-of-the-art result. Specially, Table 2 provides a
comparison of LCASA-Net with other state-of-the-art skin lesion segmentation
networks to memory footprint, parameters and inference speed, and it is shown
that LCASA-Net is 10 times smaller and 2 times faster than MtSinai [12], which
makes use of color spaces to train a model and has achieved great success in
the skin lesion segmentation challenge [4]. Compared with the current smallest
semantic segmentation model, the number of parameters and the inference speed
of LCASA-Net are close to ENet [6], and our method is about 6.8% higher than
it in Jaccard index. With fewer parameters, less memory footprint, less inference
time, and significantly higher accuracy, our method is shown to be very suitable
to be deployed in existing medical devices for skin lesion segmentation.

Table 2. Performance, memory, parameters and inference speed analysis, evaluated on
768 * 1024 high resolution images on ISBI 2017 dataset. For fairness, we reimplemented
these methods on NVIDIA TITAN X.

Methods ACC JAC DIC FLOPS (G) Parameters (M) Speed (fps)

RECOD [8] 0.931 0.754 0.839 275.95 44.78 <1

ResNet [2] 0.934 0.758 0.842 55.48 25.56 6.14

FCN [7] 0.930 0.752 0.837 24.21 134.27 3.60

MtSinai [12] 0.934 0.765 0.849 42.67 5.04 9.28

ENet [9] 0.929 0.741 0.827 5.27 0.36 22.80

Ours 0.947 0.809 0.879 8.08 0.49 19.56

4 Conclusion

In this work, we designed a novel light-weight network named LCASA-Net for
skin lesion segmentation, including the proposed Context-Aware Self-Attention
block which can capture informative features in dermoscopic images effectively
and efficiently. The quantitative results showed that LCASA-Net is a robust
segmentation technique as it achieved high performance, owned little parame-
ters, and processed a dermoscopy image with fast speed. Future work aims to
demonstrate the versatility of LCASA-Net for a variety of medical applications.
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Abstract. The authors propose a preliminary design and development of an
assistive technology, which addresses the problem for people with disabilities to
communicate with learning environments. An assistive Tongue Drive System
(TDS) has been proposed which permits the end user to make use of their tongue
for communication. In this paper, the hardware/software co-design of the pro-
posed TDS system is presented and discussed in detail.

Keywords: Assistive technologies � Tongue-computer interface �
Spinal cord injury � Brain computer interfaces � Magnetic field

1 Introduction

In this study, the authors propose a wearable device which enables the end users with
disabilities to operate a laptop/computer without the need of keyboard or mouse. Not
only the proposed system is capable to operate a laptop/computer, but also has the
potential to enable people with disabilities to interact with the environment. This will
help the disabled individuals to lead more independent lives.

With an ever-increasing technology, recent advancements have been made when it
comes to wearable devices with assists in improving the lives of individuals, specifi-
cally those who live with complete paralysis [1, 2]. Through these types of assistive
technologies and wireless communication systems, individuals with severe disabilities
are able to communicate with other devices such as television set, radio, wheelchair,
laptop, tablet etc.

The prime objectives of this study are; firstly, to model the problem mathematically
in order to grasp the situation and simulate the underlying design solutions. Next is to
acquire enough data from the sensors to learn the mechanical singularities in the
proposed system and prepare countermeasures to refine the proposed design. Actually,
this step is very important because it involves the adjustments been made to the
proposed design so that outputs are recognized accurately which is then used to
translate specific tongue gesture into computer commands. Final objective is to make
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use of a wireless technology for communicating the information between the magnetic
field sensing device and the peripherals. Next we present the design methodology.

2 Methodology

The proposed assistive TDS is equipped with multiple magnetic sensors together with a
magnetic tracer which makes it capable to detect the position and movement in 3D
space. Figure 1 describes the overall system setup for the TDS.

The TDS comprises of an array of magnetic sensors carefully positioned and worn
by placing it around user’s head via means of a headset like structure. By means of the
magnetic tracer, the tongue movement is detected (magnetic tracer is a spherical per-
manent magnet of approximately 2.5 mm in diameter and placed as shown in Fig. 1)
through measurement of differential changes in magnetic field around the mouth. These
signals from the sensors are transmitted wirelessly to a laptop for further processing in
order to decode/classify the tongue gesture, which is then translated into computer
commands or actions.

The incoming data samples then undergoes segmentation and feature extraction
procedure at the receiving workstation. Once the appropriate features are acquired, it is
then subjected to a classifier which translates the sensor signals to one of the five
tongue gestures. In this study, these five tongue gestures (which are basically the output
commands) are: NO MOVEMENT, UP, DOWN, LEFT and RIGHT patterns. It must
be noted that the classifier development plays a major role in this study and various
different machine-learning algorithms have been tested and the best one turned out to
be a shallow neural network classifier.

Fig. 1. Proposed TDS system representation
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2.1 Data Pre-processing

The magnetic induction signals are continuous in nature (in both amplitude and in
time). In order to analyze the data, a pre-requisite is to digitize the continuous signal.
The time scale is made discrete sampling the continuous waveform at a given interval
while the amplitude is made discrete by means of an analog-to-digital converter (ADC).
After conversion of the signal samples, the data is stored as real numbers for further
processing.

In this study, the statistical time features (STF) of the digitized version of the signal
is studied in detail and have been used to extract significant attributes of the signal for
the purpose of training the classifier. Table 1 below shows 15 statistical time features
used for feature extraction prior to training.

Since there are three magnetic sensors proposed for the system, the feature set will
contain a total of 45 features at one instance. This number is of features is very high and
would be cumbersome when it comes to hardware deployment stage. Thus, an addi-
tional step to reduce the number of features via principal component analysis was
carried out. By preserving 95% of the variability, only first 22 set of linear combina-
tions of the features was preserved and used for training the classifier.

2.2 Development of the Classifier

To this aim, various classification algorithms have been used to train the classifier.
Using 1500 samples of data, following methods were used to train the classifier: these
include, neural networks, support vector machines, k-nearest neighbor, family of trees
as well as ensemble based classifiers.

After the feature extraction step, the feature set is normalized and trained by
splitting the data randomly in partitions of: 50% for training, 25% for validation and
25% for the test set. The best performance after comparison among the aforementioned
methods is demonstrated by a shallow neural network classifier which has an accuracy
of 93.4% (Table 2). Using neural networks is advantageous because not only it has
higher accuracy, but also due to its error function and output layer, we are able to
analyze how confident the network is when it comes to the output class. The designed
neural network is equipped with a cross entropy error function and has a softmax
function in its output layer, which gives the class based on its probabilities.

Table 1. Feature list

STF (1–5) STF (6–10) STF (11–15)

Variance Root mean square Latitude factor
Mean Square root mean Crest factor
Max value Normalized 5th central moment Shape factor (with RMS)
Standard deviation Normalized 6th central moment Shape factor (with SRM)
Kurtosis Skewness Impulse factor
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In the next section, we present the hardware implementation details.

3 Hardware Arrangement of TDS

The process on how the proposed system works is given in Fig. 2. The major com-
ponents are shown in red. The control module on the right of Fig. 2 detects tongue
movement which then activates the data acquisition from the magnetic sensors using
the inbuilt DSP module, the signal is filtered and digitized. Thereafter, the signal is
transmitted to the receiving end, which is basically a laptop via a Bluetooth connection.
Then, the oncoming signal is then classified on a real time basis by means of the
developed neural network based classifier. The output is the tongue gesture as men-
tioned in the previous section. The tongue gesture is then displayed and conveyed via
means of a speaker.

3.1 Wireless Data Transfer

The inbuilt Bluetooth module of Raspberry Pi Zero carries out the data transfer as
described in Fig. 2. After the filtering and digitizing step, the signal is transmitted to the
main processing module for classification (laptop) which classifies the signal in
question on a real time basis. In order to quantify the time delay of the developed
system, 300 samples were taken for each type for gesture (class) which underwent the
testing phase. It is apparent from Fig. 3, that the developed system has an average time
delay of less than approximately 0.25 s. This signifies that the proposed system
response is fast and robust. Next we present the conclusion.

Table 2. Comparison of the classifiers

Classification model Accuracy
(%)

1. Support vector machine (best configuration is with fine Gaussian kernel with
box constraint of 1.0)

84.7

2. Medium kNN (best configuration is with k = 10) 86.9
3. Decision Trees (best configuration under complex tree with maximum no.
splits = 100)

83.3

4. Ensemble Classifier (Boosted tree) 80.3
5. Ensemble Classifier (Bagged tree) 81.6
6. Artificial neural network (shallow network with only single hidden layer
with 11 neurons)

93.4
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4 Conclusion

The proposed assistive TDS does not only provide a portable solution but also, due to
its open architecture can be easily integrated with other peripherals. With an average
time delay of less than 0.25 s and a system accuracy of 93.4%, the proposed system is
very responsive and efficient when it comes to assess the performance of the TDS. It
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also has a power saving feature which governs the sensor and communication modules
only when the tongue is in motion. The proposed solution will be able to assist many
individuals with Spinal Cord Injuries (SCI) at much lower cost which would revolve
around US$30.

Moreover, the system is versatile as it can work with any other type of
laptop/computer device. It can also act as a control module for computer mouse,
keyboard and as well as for wheelchairs. In this study, the TDS language is limited to
only five classes. Future research will focus on extending the current TDS language to a
more explanatory level and develop a curriculum such that end users can exploit the
full potential of the developed TDS.
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Abstract. Collaborative filtering (CF) is among the most effective tech-
niques for recommendations. However, it suffers from data sparsity and
cold-start issue. One solution is to incorporate the side information and
the other is to learn knowledge from relevant domains. In this paper,
we consider both aspects and propose a generic deep transfer collabo-
rative filtering (DTCF) architecture, which integrates collective matrix
factorization and deep transfer learning. We exhibit one instantiation
of our architecture by employing non-negative matrix tri-factorization
and stacked denoising autoencoder (SDAE) in both source and target
domains. Deep learning copes with both the ratings’ statistic charac-
teristics and the side information to generate effective latent representa-
tions. Matrix tri-factorization produces private latent factors linked with
per SDAE and common latent factors connected with different domains.
Extensive experimental results on real datasets exhibit a superiority of
our approach in comparison to state-of-the-art works.

Keywords: Collaborative filtering · Recommender system ·
Matrix tri-factorization · Side information · Knowledge transfer

1 Introduction

Recommendation becomes important and draws much attention in current
information-overload era. Plenty of classical recommendation methods have been
proposed during the last decade, which are largely categorized as content-based
methods and collaborative filtering (CF) based methods [24]. Content-based
methods consider user profile or item content information while CF-based meth-
ods utilize the user’s past activities or preferences for recommendation. The CF-
based methods are preferred owe to a better performance than content-based
methods. Among various CF methods, matrix factorization acts out as a pow-
erful tool for recommendations in large datasets [3].

Matrix factorization techniques are the main cornerstone of CF [12], which
can produce effective latent factors for users and items from the rating matrix
c© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11672, pp. 515–528, 2019.
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[10,22]. However, there are two primary challenges for CF-based methods: data
sparsity and cold start [4,6,8]. When the historical data is very sparse, CF-based
methods degrade significantly [7]. On the other hand, the recommender systems
are incapable of recommending users any new item that has not received rating
information yet.

In order to overcome these problems, one solution is to integrate CF with
the side information like users’ profiles or items’ properties to exploit prior fea-
tures [25,26]. The side information has been either loosely utilized as regular-
izations [26] or tightly coupled with CF by using deep learning [13,28]. Another
solution is to transfer the knowledge from relevant domains to a target domain
and the cross-domain recommendation techniques address such problems [8]. In
practice, we can track the same user’s participation in a couple of recommenda-
tion systems to acquire various information in different domains. Deep transfer
learning improves the recommendation performance in the target domain [9,14].

In this paper, we investigate the combination of CF and deep learning in both
source and target domains to improve the recommendation performance. The
generic architecture of deep transfer collaborative filtering (DTCF) is proposed
by integrating cross-domain collective matrix factorization and deep learning.
One DTCF instantiation is exhibited in detail, in which each stacked denoising
autoencoder (SDAE) deals with both the ratings’ statistic characteristics and
the side information to achieve effective latent representations. Non-negative
matrix tri-factorization [2] on the ratings engenders the private latent factors
for both users and items in each domain, which are respectively connected with
an individual SDAE. On the other hand, this factorization also generates the
common latent factors, representing the association between users’ latent factors
and items’ latent factors, which are treated as a bridge between source and target
domains due to the across-domain stability [29]. DTCF jointly optimizes deep
representation learning and CF for both source and target domains.

The main contribution of this paper lies in that we propose a generic archi-
tecture of deep transfer collaborative filtering and each deep structure SDAE in
DTCF deals with both the ratings’ statistic characteristics and the side infor-
mation, where a feature extraction technique is used to deal with the rating’s
sparsity. DTCF addresses the knowledge transfer in a deep manner under the
constraint of matrix factorization. We specifically study the simultaneous opti-
mization of empirical likelihood and deep structure in source and target domains.

The remaining of this paper is organized as follows. Section 2 introduces the
related work in general. Section 3 describes the preliminary and our proposed
novel generic architecture. The proposed DTCF instantiation is presented in
detail in Sect. 4, including the specific strategy, the loss function and the opti-
mization. Performance evaluations on three real datasets are reported in Sect. 5,
followed by Conclusion in Sect. 6.

2 Related Work

In general, our work is related to the following topics: matrix factorization based
CF, deep learning based CF and matrix factorization based transfer learning.
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2.1 Matrix Factorization Based CF

MF is the most popular technique to derive latent factors [11]. By adopting dif-
ferent loss function, a variety of matrix factorization models have been investi-
gated, such as non-negative matrix factorization [12], probabilistic matrix fac-
torization [22], Bayesian probabilistic matrix factorization [21], and max-margin
matrix factorization [20]. By incorporating side information in sparse ratings, CF
methods have shown an improved performance [18,19]. However, it is not sufficient
because the side information is loosely coupled. Different from these methods, we
further take the advantage of deep structure and transfer knowledge.

2.2 Deep Learning Based CF

Deep learning based CF is comparatively new, which could alleviate those
intractable problems. Restricted Boltzmann machine is modified for CF tasks
in [23] while ordinal Boltzmann machines are proposed for CF tasks in [27].
Recently, several deep learning models learn latent factors by tightly coupling
with the side information [17]. Based on generalized Bayesian SDAE, a collabo-
rative deep learning is proposed in [28] that only extracts deep features for items.
Deep collaborative filtering based on marginalized denoising autoencoder is pro-
posed for learn both items and users in a deep manner [13]. An alternative model
of incorporating the side information is investigated in [3]. Deep heterogeneous
autoencoder is proposed in [14] for dealing with heterogeneous data. Different
from these methods, we further consider the transfer of knowledge from related
domains in target domain.

2.3 Matrix Factorization Based Transfer Learning

Knowledge can be transferred across domains by using multiple decomposed
matrices via collective matrix factorization (CMF) [26]. Its tri-factorization vari-
ants have been extensively studied for transfer learning [5]. CMF jointly factor-
izes multiple matrices with correspondences between rows and columns while
sharing a set of common latent factors across different matrices [15]. CMF max-
imizes the empirical likelihood among multiple domains and the common latent
factors are then used as a bridge for knowledge transfer [16,29]. Different from
these methods, we further take the advantage of deep structure to integrate the
side information and the ratings’ statistic characteristics.

In addition, different from the traditional deep transfer structures that share
cross-domain information via hidden connections [8] or learn a common network
via domain separation network [1,9], we share the common latent factors.

3 Preliminary and Our Proposed Generic Architecture

Prior hybrid CF models combine deep structure and matrix factorization [3,
13,28], where deep structure deals with either the side information or both the
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Fig. 1. Generic architecture of our proposed model.

ratings and side information, and matrix factorization on the ratings considers
the production of users’ latent matrix and items’ latent matrix. However, this
architecture cannot be used for cross-domain recommendations in the absence
of a linkage between source and target domains.

In this paper, we attempt to propose a novel architecture to achieve cross-
domain CF recommendations. Figure 1 shows the generic architecture, which
utilizes non-negative matrix tri-factorization in each domain to generate an
additional association matrix that could link different domains. For convenient
description, define by Ds the source domain and Dt the target domain. And
the domain indices are denoted as d ∈ {s, t}. In a recommendation setting, the
user-item matrix can be decomposed as the production of three non-negative
matrices Rd = UdHVT

d in domain Dd, where Ud indicates the user latent fac-
tors, Vd indicates the item latent factors, and H indicates the association of Ud

and Vd. Non-negative matrix tri-factorization is integrated with deep structure
by private latent factors Ud, Vd and deep latent representations, where an indi-
vidual deep structure deals with either only the side information or both the side
information and the feature from ratings (dashed in Fig. 1). The source domain
Ds is connected with the target domain Dt via common latent factors H.

As in Fig. 1, we have an individual deep structure to learn effective latent
representation of users or items in each domain, which possibly incorporates the
side information and the ratings in various ways. Based on the generic cross-
domain architecture, we will present one specific DTCF instantiation in the
following, which takes the SDAE as deep structure to learn latent representation.
For convenience, Table 1 summarizes the primary symbols used in our approach.
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Table 1. Summary of primary notations.

Notation Description

md Number of users in Dd

nd Number of items in Dd

Rd = [rd,ij ]md×nd Rating matrix in Dd

Ud = [ud,ij ]md×k1 Users’ latent factor matrix in Dd

ud,i ∈ R
1×k1 Latent factor vector (user i) in Dd

Vd = [vd,ij ]nd×k2 Items’ latent factor matrix in Dd

vd,j ∈ R
1×k2 Latent factor vector (item j) in Dd

H ∈ R
k1×k2 Common latent factors

X
(u)
d , X

(v)
d Transformed rating matrix in Dd

x
(u)
d,i , x

(v)
d,j Transformed rating vectors

p
(u)
d,i , p

(v)
d,j Side Information for ud,i, vd,j in Dd

W
(u)
d = [W

(u)
d,l ]

L
(u)
d

1 Weights of users’ SDAE in Dd

W
(v)
d = [W

(v)
d,l ]

L
(v)
d

1 Weighs of items’ SDAE in Dd

z
(u)
d , z

(v)
d Weights for side Information in SDAE

z
(u)
d,l , z

(v)
d,l Weights for side Information at layer l

b
(u)
d , b

(v)
d Biases of users/items’ SDAE

b
(u)
d,l , b

(v)
d,l Biases of users/items’ at layer l

h
(ui)
d,o , h

(vj)

d,o Latent representation of ud,i, vd,j

4 Deep Transfer Collaborative Filtering

4.1 Structure of DTCF

Figure 2 shows the specific DTCF instantiation, where we have an individual
SDAE for users or items in each domain to integrate the side information and
learn effective latent representations. The TFE block in Fig. 2 denotes the trans-
formation and feature extraction (TFE), where the transformation is similar
to [3] and feature extraction considers statistical characteristics. Specifically, we
have X(u)

d = [Rd]F and X(v)
d =

[
RT

d

]
F

, where the operator [·]F considers each
row of the matrix and sequentially concatenates one-hot coding of the maximum,
the minimum, the median, the mode, the quartiles and the rounding mean. More-
over, x(u)

d,i and x(v)
d,j , the vector of X(u)

d and X(v)
d , are obtained to feed SDAEs.

Please be noted that we also consider the case without feature extraction in our
experiments, where X(u)

d = Rd and X(v)
d = RT

d instead.
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Fig. 2. The proposed DTCF instantiation.

Furthermore, the hidden representation at layer l and the output at layer
L
(u)
d can be obtained as

h(u)
d,l = g

(
W(u)

d,l h
(u)
d,l−1 + z(u)d,l p̃

(u)
d,i + b(u)

d,l

)

x̂(u)
d,i = f

(
W(u)

d,L
(u)
d

h(u)

d,L
(u)
d

+ b(u)

d,L
(u)
d

)

p̂(u)
d,i = f

(
z(u)

d,L
(u)
d

h(u)

d,L
(u)
d

+ b(u)
d,n

)
(1)

where l ∈ {1, 2, · · · , L
(u)
d − 1}; p̃(u)

d,i is the corrupted side information; g(·) and

f(·) are active functions for the hidden and output layers; b(u)
d,n is the biases in

the output layer for the side information. x(u)
d,i is the input to the first layer,

effective latent representation is obtained in the middle layer and x̂(u)
d,i denotes

the output. Similar results can be obtained for the items’ SDAE by replacing
(u) with (v), i with j.

As in Fig. 2, non-negative matrix tri-factorization is integrated with deep
structure by approximating private latent factors as deep representation. Specif-
ically, for both source and target domains, the users’ SDAE takes as input the
side information of users to learn effective latent representation h(ui)

d,o that is
used to compensate latent factor vector ud,i in matrix tri-factorization. And
the items’ SDAE takes as input the side information of items to learn effective
latent representation h(vj)

d,o that is used to compensate latent factor vector vd,j

in matrix tri-factorization. The source domain is linked with the target domain
by common latent factors H.
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4.2 Loss Function

The overall loss of DTCF consists of three components: the matrix tri-
factorization loss, the reconstruction cost of the side information, and the approx-
imation error between deep representations and private latent factors.

Firstly, the loss of matrix tri-factorization in source and target domains can
be expressed as

min
θm

L =
∑

d∈{s,t}

∥
∥Cd �

(
Rd − UdHVT

d

)∥∥2
, (2)

where θm = {Us,Vs,H,Ut,Vt} the binary matrix Cd is an indicator of sparsity
and � is the element-wise operation. Here, UdHVT

d can be further written as
[
UdHVT

d

]
ij

=
[
ud,iHc

1,u
c
d,iHc

2, · · · ,ud,iHc
k2

]
vT

d,j

= ud,i

[
Hr

1v
T
d,j ,Hr

2v
T
d,j , · · · ,Hr

k1
vT

d,j

]
, (3)

where Hc
k with k ∈ {1, 2, · · · , k1} denotes the column of H; Hr

k with

k ∈ {1, 2, · · · , k2} denotes the row of H. By defining ūd,i �
[
ud,iHc

1,u
c
d,i

Hc
2, · · · ,ud,iHc

k2

]
and v̄T

d,j �
[
Hr

1v
T
d,j ,Hr

2v
T
d,j , · · · ,Hr

k1
vT

d,j

]
, it can be rewrit-

ten as [
UdHVT

d

]
ij

= ūd,ivT
d,j = ud,iv̄T

d,j . (4)

Furthermore, the reconstruction cost at both source and target domains can
be expressed as

min
θr

Lr =
∑

d

αd

∑

i

(
x(u)

d,i − x̂(u)
d,i

)2

+
∑

d

βd

∑

j

(
x(v)

d,j − x̂(v)
d,j

)2

+
∑

d

(1 − αd)
∑

i

(
p(u)

d,i − p̂(u)
d,i

)2

+
∑

d

(1 − βd)
∑

j

(
p(v)

d,j − p̂(v)
d,j

)2

where θr =
{
W(u)

s ,b(u)
s ,W(v)

s ,b(v)
s ,W(u)

t ,b(u)
t ,W(v)

t ,b(v)
t

}
. αd and βd are

penalty parameters.
Thirdly, the approximation error between deep representations and latent

factor vectors can be expressed as

min
θa

La =
∑

d

ρd

∑

i

(
ud,i − h(ui)

d,o

)2

+
∑

d

γd

∑

j

(
vd,j − h(vj)

d,o

)2

,

where θa =
{
Us,Vs,W

(u)
s ,b(u)

s ,W(v)
s ,b(v)

s

}
∪

{
Ut,Vt,W

(u)
t ,b(u)

t ,W(v)
t ,b(v)

t

}
;

ρd and γd are penalty parameters.
Therefore, the overall loss function of the proposed DTCF is finally obtained as

min
Θ

J = L + Lr + La + λfreg, (5)



522 S. Gai et al.

where Θ = θm ∪ θr ∪ θa, freg is the regularization that prevents overfitting,

freg =
∑

d

⎛

⎝
∑

i

‖ud,i‖2 +
∑

j

‖vd,j‖2
⎞

⎠

+
∑

d

(
‖W(u)

d ‖2 + ‖W(v)
d ‖2 + ‖b(u)

d ‖2 + ‖b(v)
d ‖2

)

+
∑

d

(
‖z(u)d ‖2 + ‖z(v)d ‖2

)
(6)

and λ is a penalty parameter.

4.3 Optimization

To solve this problem, the alternate optimization algorithm is considered by
utilizing the following three-step procedure.

Step I : Given all weights W(u)
d , W(v)

d , and biases b(u)
d , b(v)

d in source and
target domains, the gradients of J in (5) with respect to ud,i and vd,j , d ∈ {s, t},
can be obtained as

∂J
∂ud,i

= −
∑

j

cd,ij

(
rd,ij − ud,iv̄T

d,j

)
v̄d,j + ρd

(
ud,i − h(ui)

d,o

)
+ λud,i,

∂J
∂vd,j

= −
∑

i

cd,ij

(
rd,ij − ūd,ivT

d,j

)
ūd,j + γd

(
vd,j − h(vj)

d,o

)
+ λvd,j , (7)

where the binary cd,ij indicates whether the corresponding rating rd,ij is observed
(= 1) or not (= 0). By using coordinate ascent similar to [28], we have

ud,i =
(
V̄dCd,iV̄T

d + (ρd + λ)I
)−1

(
V̄dCd,iRd,i + ρdh

(ui)
d,o

)
(8)

vd,j =
(
ŪdCd,jŪT

d + (γd + λ)I
)−1

(
ŪdCd,jRd,j + γdh

(vj)
d,o

)
(9)

with Ūd = [ūd,i]k1
1 and V̄d = [v̄d,j ]k2

1 ; Cd,i = diag(ci1, · · · , cik2) and Cd,j =
diag(c1j , · · · , ck1j); Rd,i = (Rd,i1, · · · ,Rd,ik2)

T and Rd,i = (Rd,1j , · · · ,Rd,k1j)T.
Step II : Fixed the users’ latent factors Ud and the items’ latent factors Vd,

d ∈ {s, t}, by referring to [2], the association between the users’ latent factors
and items’ latent factors H can be updated by

H ← H �

√√
√
√
√

{∑
d∈{s,t} U

T
d (Cd � Rd)Vd

}

{∑
d∈{s,t} U

T
d

(
Cd �

(
UdHVT

d

))
Vd

} , (10)

where � is the element-wise operation defined as above and {·}
{·} is the element-

wise division.
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Step III : Fixed the users’ latent factors Ud, the items’ latent factors Vd and
the common latent factors H, d ∈ {s, t}, all weights W(u)

d , W(v)
d , and biases

b(u)
d , b(v)

d , of SDAEs in both domains, can be learnt by backpropagation with
stochastic gradient decent (SGD) method

∂J
∂W

(u)
d

= −ρd

∑

i

(
ud,i − h

(ui)
d,o

) ∂h
(ui)
d,o

∂W
(u)
d

+ αd

∑

i

(
x
(u)
d,i − x̂

(u)
d,i

) ∂x̂
(u)
d,i

∂W
(u)
d

+ λW
(u)
d ,

∂J
∂W

(v)
d

= −γd

∑

j

(
vd,j − h

(vj)
d,o

) ∂h
(vj)
d,o

∂W
(v)
d

+ βd

∑

j

(
x
(v)
d,j − x̂

(v)
d,j

) ∂x̂
(v)
d,j

∂W
(v)
d

+ λW
(v)
d . (11)

Furthermore, ∂J
∂b

(u)
d

and ∂J
∂b

(v)
d

can be easily obtained by replacing W with b

in (11). ∂J
∂z

(u)
d

and ∂J
∂z

(v)
d

are obtained by

∂J
∂z

(u)
d

= −ρd
∑

i

(
ud,i − h

(ui)
d,o

) ∂h
(ui)
d,o

∂z
(u)
d

+ (1− αd)
∑

i

(
p
(u)
d,i − p̂

(u)
d,i

) ∂p̂
(u)
d,i

∂z
(u)
d

+ λz
(u)
d ,

∂J
∂z

(v)
d

= −γd
∑

j

(
vd,j − h

(vj)

d,o

) ∂h
(vj)

d,o

∂z
(v)
d

+ (1− βd)
∑

j

(
p
(v)
d,j − p̂

(v)
d,j

) ∂p̂
(v)
d,j

∂z
(v)
d

+ λz
(v)
d . (12)

Iterate all three steps until the convergence.

5 Experiments

We evaluate our DTCF instantiation on the challenging movie and book rec-
ommendations, where experiments are conducted on three popular datasets:
MovieLens-100K (MLK)1, MovieLens-1M (MLM) (see Footnote 1) and
BookCrossing (BC)2.

5.1 Dataset

MLK consists of 100 K ratings of 943 users and 1682 movies while MLM consists
of 1 million ratings of 6040 users and 3706 movies. Each rating is an integer in
the range of 1 to 5. The ratings are highly sparse, where no ratings occupy 93.7%
in MLK and 95.8% in MLM. The side information for users contains the user’s
age, gender, occupation and zipcode while the side information for items contains
the category of movie genre and release date. BC contains 1149780 books from
278858 users, where each rating is an integer from 0 to 10 and no ratings occupy
99.9%. Some attributes of books and users are also provided and being utilized
as the side information.

1 http://www.grouplens.org/datasets/movielens.
2 http://www2.informatik.uni-freiburg.de/∼cziegler/BX/.

http://www.grouplens.org/datasets/movielens
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
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Table 2. RMSE comparison of various methods on three pairs of datasets.

Algorithm MLK(s) vs MLM(t) MLM(s) vs MLK(t) BC(s) vs MLK(t)

60% 80% 95% 60% 80% 95% 60% 80% 95%

NMF 1.0258 1.0127 1.0040 1.0381 1.0276 1.0195 1.0381 1.0276 1.0195

GCMF 1.023 1.0116 1.0107 1.0326 1.0215 1.0123 1.0337 1.0319 1.0205

CDL 1.0113 1.0027 0.9871 1.0207 1.0168 0.9984 1.0207 1.0168 0.9984

PMF 0.9204 0.9131 0.9100 0.9590 0.9380 0.9236 0.9590 0.9380 0.9236

RGCMF 0.9173 0.9123 0.9079 0.9585 0.9366 0.9213 0.9614 0.9371 0.9220

CMF 0.9090 0.8857 0.8746 0.9476 0.9232 0.9162 0.9476 0.9232 0.9162

DCF 0.8864 0.8632 0.8571 0.9348 0.9157 0.8981 0.9348 0.9157 0.8981

aSDAE 0.9964 0.9777 0.9701 0.9345 0.9278 0.9227 0.9964 0.9777 0.9701

DTCFr 0.8716 0.8575 0.8490 0.9282 0.9100 0.8993 0.9290 0.9242 0.9219

DTCF 0.8582 0.8471 0.8420 0.9124 0.8957 0.8897 0.9157 0.8980 0.8902

To incorporate the side information in movie recommendation, the side infor-
mation for users and items are encoded into a binary valued vector of length 139
and 28 in both domains respectively. Similarly, for book recommendation, the
side information for users and items is encoded into binary vectors of length 62
and 1003 respectively.

We organize MLK(s) vs MLM(t), MLM(s) vs MLK(t) and BC(s) vs MLK(t)
as three pairs for evaluation, where the former acts as the source domain and
the latter acts as the target domain. For all compared methods, we train each
compared method with different percentages of the user-item ratings, where 60%,
80% and 95% of the whole rating data are randomly selected as the training data
and the remaining data are taken as the test data. We repeat the evaluation five
times with different randomly selected training data.

We employ the root mean squared error (RMSE) and the mean absolute
error (MAE) as the evaluation metric, which are defined respectively as

(1) RMSE:

RMSE =

√√
√
√

1
NT

∑

Rt
ij∈T

(
Rt

ij − R̂t
ij

)2

, (13)

(2) MAE:

MAE =

∑
Rt

ij∈T
∣
∣
∣Rt

ij − R̂t
ij

∣
∣
∣

NT
, (14)

where Rt
ij is the ground-truth rating of user i for item j, R̂t

ij denotes the esti-
mated rating of Rt

ij , NT is the total number of ratings in the test dataset T .
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5.2 Baselines

In order to evaluate the performance of our proposed DTCF, we consider the
following methods as baselines:

– NMF - Non-negative matrix factorization [12] is a single-domain recommen-
dation model.

– GCMF - Graph-based collective matrix factorization [16] is a transfer model
and attempts to combine factorization with graph co-regularization that does
not work well for sparse datasets.

– CDL - Collaborative deep learning [28] is a hierarchical deep Bayesian model
to achieve deep representation learning for the item information.

– PFM - Probabilistic matrix factorization [22] assumes that there exists Gaus-
sian observation noise and Gaussian priors on the latent factors.

– RGCMF - Revised GCMF (RGCMF) is a revision and extension of the
original GCMF [16]. We improve this method by considering the data sparsity
and inducing a binary indicating matrix as in (2).

– CMF - Collective matrix factorization [26] is a model factorizing multiple
sources, including the ratings and the additional side information.

– DCF - Deep collaborative filtering [13] is a single-domain recommendation
model which combines PMF with marginalized SDAE.

– aSDAE - Additional denoising autoencoder [3] is a single-domain model
which has autoencoders with both side information and raw rating.

– DTCFr - DTCFr is similar to DTCF, which considers the transformation of
ratings but not feature extraction.

For our DTCF instantiation, we set the parameters αd and βd as 0.1, the
parameters γd, ρd as 0.9, the regularization coefficient λ as 0.2, respectively.
The learning rate η is set to 0.001. We use a masking noise with a noise level
of 0.1 to get the corrupted inputs. In terms of the SDAE in both source and
target domains, the number of layers for the encoder or decoder is set to 2 and
the total number of layers for the encoder-decoder is equal to 7. Moreover, the
dimensionality of learned latent factor vectors for users is set to 30 while the
dimensionality of learned latent factor vectors for items is set to 100. The size
of the hidden layers is 37 and 55 for users and items respectively in both MLK
and MLM, and 58 and 86 in BC.

5.3 Experimental Results

Tables 2 and 3 shows respectively the average RMSE and MAE of all baselines
and our proposed DTCFr and DTCF on three pairs of datasets, where the lowest
and second lowest value of each dataset is highlighted in boldface and italic,
respectively. As observed, DTCF performs the best for all cases and DTCFr
performs the second best in most of cases.

From Tables 2 and 3, it is observed that DTCF, DTCFr, DCF and CMF
achieve a better performance than NMF, PMF, GCMF and RGCMF, indicat-
ing the effectiveness of incorporating the side information. Moreover, DTCF,
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Table 3. MAE comparison of various methods on three pairs of datasets.

Algorithm MLK(s) vs MLM(t) MLM(s) vs MLK(t) BC(s) vs MLK(t)

60% 80% 95% 60% 80% 95% 60% 80% 95%

NMF 0.8241 0.8207 0.8169 0.8283 0.8249 0.8225 0.8283 0.8249 0.8225

GCMF 0.8214 0.8183 0.8172 0.8261 0.821 0.8196 0.8275 0.8254 0.8249

CDL 0.8173 0.8146 0.8061 0.8209 0.8187 0.8116 0.8209 0.8187 0.8116

PMF 0.7619 0.7553 0.7517 0.7903 0.7815 0.7694 0.7903 0.7815 0.7694

RGCMF 0.7232 0.7186 0.7124 0.7741 0.7702 0.7649 0.7843 0.7782 0.7680

CMF 0.7214 0.7066 0.6993 0.7876 0.7652 0.7447 0.7876 0.7652 0.7447

DCF 0.7122 0.6918 0.6852 0.7632 0.7407 0.7236 0.7632 0.7407 0.7236

aSDAE 0.8029 0.7850 0.7769 0.7475 0.7404 0.7355 0.8029 0.7850 0.7769

DTCFr 0.6832 0.6711 0.6638 0.7276 0.7125 0.7034 0.7285 0.7258 0.7235

DTCF 0.6728 0.6640 0.6596 0.7151 0.7021 0.6960 0.7167 0.7021 0.6961

DTCFr and DCF outperform CMF, NMF, PMF, GCMF and RGCMF, indicat-
ing that deep structures can exploit better feature quality of the side information.
Furthermore, DTCF outperform DCF and CDL, validating the effectiveness of
cross-domain learning in recommendations. DTCFr outperform DCF in general
except a few cases in terms of RMSE because BC dataset is extremely sparse
and learning from the ratings gets difficult.

DTCF outperforms DTCFr, validating the effectiveness of feature extraction
for highly sparse ratings. Both aSDAE and DTCFr takes the extreme-sparse
ratings into the SDAE so that it is very difficult to learn effective latent rep-
resentation from the ratings. Therefore, on the one hand, we design the TFE
block to improve the way of incorporating the sparse ratings in deep structure
to learn effective latent representation. Using statistic characteristics to raising
the encoding of raw ratings from different users is reasonable.

In addition, the cross-domain RGCMF is comparative to CMF that incor-
porates the side information, which implies the effectiveness of both transfer
learning and the incorporation of the side information. To sum up, our pro-
posed DTCF achieves a superiority in comparison to state-of-the-art methods,
which demonstrates the effectiveness of the integration of deep learning and
cross-domain non-negative matrix tri-factorization.

From Tables 2 and 3, it is observed that the performance of our proposed
DTCF, DTCFr, GCMF and RGCMF on the pair of MLM vs MLK is better than
that on the pair of BC vs MLK, in terms of both RMSE and MAE. That indicates
that the source domain of MLM has more common characteristics with the target
domain of MLK than it of BC. In other words, the dataset of MLK is more like
MLM instead of BC, which is consistent with our intuition. On the other hand,
the remaining techniques including NMF, CDL, PFM, CMF and DCF have an
equal performance on both data pairs because they are not cross-domain recom-
mendation techniques and the source domain thus becomes useless.
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6 Conclusion

DTCF is proposed for cross-domain recommendation. In both source and target
domains Non-negative matrix tri-factorization is integrated with deep structure,
where common latent factors conduct a bridge between domains and private
latent factors link with per deep structure. The feature extraction technique is
used to improve the performance. Effective latent representations of users and
items are learned by jointly optimizing matrix tri-factorization and SDAEs in
both source and target domains. The proposed scheme has been demonstrated
by extensive experiments.
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Abstract. Collaborative filtering based recommendation systems rely
on underlying similarities among users and items across multiple dataset
and hence requires sufficiently large amount of ratings data to achieve
accurate and reliable results. However, newly established businesses do
not have sufficient ratings data and hence this requirement is rarely met.
In this research, we propose Multiple Latent Clusters (MultLC) transfer
to exploit the correlations among multiple datasets that do not necessar-
ily have an identical dimension of information. In particular, we transfer
different aspects of knowledge across different data sources where while
transferring each aspect from a source to the target, we only soft-transfer
common latent clusters while preserving unique (domain-specific) latent
clusters of the target. By soft-transfer, we mean that we minimize the
difference among the shared clusters (while not making them identi-
cal). Comprehensive experiments on real-world datasets demonstrate
the effectiveness of our proposed MultLC over other widely utilized
cross-domain recommendation algorithms. The performance improve-
ments demonstrate the benefits of transferring knowledge from multiple
sources while preserving the unique information of the target-domain for
cross-domain recommendations.

Keywords: Recommendation systems · Cross-domain ·
Coupled matrix factorization · Collaborative filtering ·
Transfer learning

1 Introduction

Recommendation systems have been widely deployed in many products and ser-
vice providers. One of the most popular methods is matrix factorization (MF)
which demonstrated its effectiveness notably in the Netflix Prize competition
[13]. MF decomposes an incomplete rating matrix of n-user-by-m-movie into
two lower rank matrices. Even though MF has shown its capability in many rec-
ommendation problems, it is based only on observed ratings to predict missing
ones [12] and hence suffer cold start problems i.e., problem of users’ with few
ratings [5,20]. Thus, it fundamentally requires sufficient observations to provide
c© Springer Nature Switzerland AG 2019
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Fig. 1. An illustration of Multiple Latent Clusters Transfer Learning model for a target
rating matrix X1. X2 is a source matrix having the same users as those in the target.
X3 is another source matrix having the same items as those in the target.

accurate and reliable recommendations. In other words, only established busi-
nesses with a massive collection of their users’ preferences can take advantages of
these technique. Hence, new businesses with limited ratings are unable to utilize
MF techniques to achieve reliable recommendations.

Given a wide variety of public datasets on the Internet, one can borrow some
knowledge from related sources. It is the way human beings develop new fields.
For example, data mining borrows many concepts, ideas, and methodologies
from machine learning, statistics and database systems. Instead of developing
all new theories, data mining re-uses knowledge from related fields in addition
to its own domain’s specialties. Inspired by this intuition, we propose a multiple
knowledge transfer approach in which different aspects of a target are transferred
from related aspects of various sources, each from a correlated one.

Formally, suppose target X1 contains ratings collected from n users for m
items, X2 and X3 are rating matrices from other domains, where X1 and X2 have
the same n users, and X1 and X3 have the same m items; in other words, the user
dimension is the shared aspect between X1 and X2 whereas item dimension is
the shared aspect between X1 and X3. Our research problem is how to utilize X2

and X3 to improve the prediction accuracy of missing ratings on X1. Although
researchers have proposed several approaches [4,10,14,15,17] for transfer learn-
ing, there are still two gaps in the literature. Firstly, many researchers attempted
to use the correlations from only one source. Secondly, and more importantly
all of them assumed the source and the target share an identical dimension of
information. Because the datasets come from different domains, they have unique
characteristics even in the shared aspects. Thus, enforcing them to share an iden-
tical dimension of information may lead to a false knowledge transfer, reducing
the recommendation accuracy.

In this paper, we propose a Multiple Latent Clusters (MultLC) transfer
learning which is the first method to learn from cross-domain datasets that
do not necessarily have identical dimensions of information. In particular, our
approach firstly extracts latent clusters from matrix tri-factorization. When the
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source matrices are decomposed into user factors (the factors on user dimension)
and item ones with rank r, where r latent clusters of users in X2 are captured
in r columns of its user factor. Similarly, r latent clusters of items in X3 are
captured in r columns of its item factor. Then, we only transfer latent clusters
in the shared dimension between the source and the target, e.g., the user latent
clusters between X2 and X1 and the item latent clusters between X3 and X1.
Unlike traditional methods, our key hypothesis is that the source X2 and the
target X1 share only some parts of their user latent clusters. Besides, they have
parts of the user latent clusters which are unique for their domains. In a similar
hypothesis, the source X3 and the target X1 share some parts of their item latent
clusters. Our idea is to transfer the shared parts from the sources to the target as
illustrated in Fig. 1 from X2 to X1 and from X3 to X1, where we minimize the
difference between latent variables of shared dimensions (i.e. min ‖U c1 − U c2‖2F
and min ‖V c1 −V c3‖2F in Fig. 1) instead of making them identical. In summary,
our main contributions are:
1. Multiple sides knowledge transfer: We provide theories for utilizing both

source dimensions of the matrix and validate its advantages with real-world
data. Our model is generic that can be easily extended to high-dimensional
matrices such as multi-mode tensors.

2. Common latent clusters transfer with preservation of unique clus-
ters: We propose a novel model for transferring common latent clusters from
a source to a target-domain while preserving their respective unique clusters.
We show that this way of transfer learning can better capture the actual
correlations of cross-domain datasets.

3. Real-world cross-domain datasets validation: Our algorithm is vali-
dated on real-world datasets in comparisons with other cross-domain meth-
ods including matrix factorization and deep neural network based algorithms.
Empirical results suggest our proposed idea is the best choice for transferring
knowledge from other domains to improve the performance of cross-domain
recommendation systems.

2 Related Work

We briefly review three major approaches applied to leverage closely related
datasets for cross-domain recommendation systems: (a) transfer learning [14,18];
(b) co-factorization [1,7,19]; and (c) related deep learning based approach [6].

Transfer Learning was proposed to transfer knowledge from a source matrix
to a target matrix for improving prediction of the target. Li et al. [14] proposed
Code Book Transfer (CBT) for transferring rating patterns, weighting low-rank
factor S from the source to improve recommendation accuracy on the target.

Improving the method for transferring latent similarities of users or items,
Weike et al. proposed Coordinate System Transfer (CST) to transfer identical
latent clusters, called principal coordinates, between the source and the target-
domain [18]. The principal coordinates from the source were used as a regular-
ization term in the loss function of the target decomposition.
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Joint Analysis. Collective Matrix Factorization (CMF) [19], jointly analyzes
both X1 and X2 for utilizing the correlation between them. It assumed they
share an identical low-rank subspace in their common dimension. Suppose X1

and X2 be correlated in their user dimension, their identical low-rank subspace is
expressed by the same latent factor U in the following coupled loss function: L =
∥
∥X1 − U × V1T

∥
∥
2 +

∥
∥X2 − U × V2T

∥
∥
2. This identical low-rank subspace basis

connects both datasets to provide a deeper understanding of their underlying
structure [1]. Thus, it helps improving recommendation for both X1 and X2.

A recent approach on CMF is proposed in [3] where the authors studied
the problem of recommending items to user based on item-item (co-occurrence
matrix) lists. The co-occurrence lists for items are generated using word embed-
dings based on correlation of items. However, this approach utilizes an additional
source of data (a correlation matrix of items) for joint factorization; it is unclear
how can this approach extended for cross-domain recommendation with multiple
data sources that does not necessarily having similar information.

Deep Learning. Recent technique leverages deep learning to capture similar-
ities and latent relationships between users and items. In this regard several
deep networks have been introduced for collaborative filtering and recommenda-
tion systems. For collaborative filtering few recently frameworks are proposed in
[8,11,16]. These deep networks are either generic neural network based frame-
works or they combine content-based filtering and collaborative filtering in a
unified framework as in [16]. However, in case of the cross-domain recommenda-
tion system, [6] proposed a multi-view deep learning approach (DSSM) in which
users and items of each dataset inputted through two neural networks. These
networks were then mapped into semantic vectors. In this approach, the rela-
tionships between users and items were defined as the cosine similarity of their
corresponding semantic vectors. Besides, the common dimension among datasets
shared the same network. For example, in case X1 and X2 have the same users,
their users would be fed to the same network to learn the parameters.

3 Proposed Multiple Latent Clusters Transfer Learning

This section explains our algorithm to transfer common latent clusters from
multiple sources to the target while preserving the target’s specific clusters. To
achieve this, the first step is to extract latent clusters from both the sources and
the target. Since we utilize matrix tri-factorization to extract the latent clusters,
we briefly introduce the matrix tri-factorization technique and how the latent
clusters are captured in the low-rank factors.

3.1 Matrix Tri-Factorization as a Clustering Method

Matrix tri-factorization decomposes a matrix X ∈ R
n×m into three low-rank

factors: user U ∈ R
n×r, weight S ∈ R

r×r and item factor VT ∈ R
r×m, where r

is the rank of the factorization.
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Fig. 2. A demonstration of matrix tri-factorization for clustering. X has two user clus-
ters based on their similar preferences: users with blue circles and those with green
triangle ones. When decomposing X into low-rank factors U, S and V with r = 2, the
first user cluster is captured in the first column of the user factor matrix U. Whereas,
the second user cluster is captured in the second column of the user factor matrix U.
(Color figure online)

X ≈ U × S × VT (1)

where UT × U = I and VT ×V = I are enforced with the factorization. U and
V contain clusters of users and items respectively [2], as illustrated in Fig. 2.

3.2 One Side Knowledge Transfer

We first explain the case a single source X2 (from another domain) and the
target X1. The case of transferring from multiple sources is discussed later.

Suppose X1 and X2 are correlated in their user dimension, i.e., X1 is a rating
matrix from n users for m items and X2 is another rating matrix from the same
n users for different p items. Our proposed idea is to transfer common latent
user clusters from the source to the target while preserving unique ones of the
target. To this end, the first step is to extract user latent clusters from the source
domain with matrix tri-factorization:

X2 ≈ U2 × S2 × V2T (2)

such that U2T × U2 = I; V2T × V2 = I, where I is the identity matrix.
As discussed in Sect. 3.1, each column of U2 is a cluster of users and that of

V2 is a group of items. Because X1 and X2 are correlated in their user dimension,
their latent user clusters are closely related. However, as they are from different
domains, we propose that they share only a few user latent clusters and possess
their domain’s user latent clusters. In other words, among r clusters of users
captured in columns of U2, only cu of them have corresponding user clusters in
the target and hence Eq. 2 can be rewritten as below:

X2 ≈ [Uc2 | Us2 ] × S2 × V2T (3)

where Uc2 ∈ R
n×cu and Us2 ∈ R

n×(r−cu); cu ∈ [1, r] is the number of common
user latent clusters shared between the source and the target.
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We then transfer this Uc2 to the corresponding user clusters of the target:
Uc1 = Uc2 . However, we relax this relationship so that the shared user clusters
between the target and the source does not have to be identical. We use this
constraint to regularize the target’s corresponding user clusters to be as close to
the source’s as possible. As a result, our loss function for factorization becomes

L =
∥
∥ X1 − [Uc1 |Us1 ] × S1 × V1T

∥
∥
2

F
+ ρu

∥
∥ Uc1 − Uc2

∥
∥
2

F
+ λθ (4)

where θ is the weighted λ-regularization [21], [Uc1 |Us1 ]T × [Uc1 |Us1 ] = I,
V1T × V1 = I, Uc1 ∈ R

n×cu , and Us1 ∈ R
n×(r−cu).

Rows of Uc1 , Us1 and V1 are independent. Thus, this computation can be
performed row-wise in parallel either by multi-threaded or distributed program-
ming paradigms; Eq. 4 can now be rewritten for each row as below:

L =

n,m
∑

i,j

∥
∥ X1

i,j − [uc1
i |us1

i ]T × S1 × v1
j

∥
∥
2

F
+ ρu

∥
∥ uc1

i − uc2
i

∥
∥
2

F
+ λθ (5)

Equation 5 is a non-convex function but, it is convex with respect to each
factor when the others are fixed. Therefore, we employ the alternating least
square (ALS) [9] for optimization where each factor is updated by freezing others
factors as constant. This process then alternates among all the factor which needs
to be computed, whose derivations are presented in the following subsections.

Updating Rule for Uc1 : Let
[
wc1

j

ws1
j

]

= S1 × v1
j , then Eq. 5 becomes

L =

I,J
∑

i,j

∥
∥ X1

i,j − uc1
i

Twc1
j − us1

i
Tws1

j

∥
∥
2

F
+ ρu

I∑

i

∥
∥ uc1

i − uc2
i

∥
∥
2

F

+ λ(

I∑

i

‖uc1
i ‖2

F +

I∑

i

‖us1
i ‖2

F + ‖S1‖2
F +

J∑

j

‖v1
j ‖2

F )

(6)

The optimal value of uc1
i is achieved when ∂L

∂u
c1
i

equals to zero.

∂L
∂uc1

i

= −2
J∑

j

(

X1
i,j − uc1

i
Twc1

j − us1
i

Tws1
j

)

wc1
j

T + 2ρu

(

uc1
i − uc2

i

)

+ 2λuc1
i

= −2x1
i,∗

T
Wc1 + 2uc1

i
TWc1TWc1 + 2ρuu

c1
i + 2λuc1

i + b

(7)

where b = 2us1
i

TWs1TWc1 − 2ρuuc2
i and x1

i,∗ is a vector of observed X1
i,j,∀j ∈ J.

Let ∂L
∂u

c1
i

= 0, we can find the updating rule for uc1
i :

uc1
i =

(

Wc1TWc1 + (λ + ρu) × I

)−1 (

x1
i,∗

T
Wc1 − b

)

(8)

Updating Rule for Us1 : Analogy to Uc1 , Eq. 6 is a convex function with
respect to Us1 when all other factors are fixed.

Optimal Us1 can be achieved the same way by setting ∂L
∂u

s1
i

equal to zero.

us1
i =

(

Ws1TWs1 + λ × I

)−1(

x1
i,∗

T
Ws1 − b

)

(9)



Multiple Knowledge Transfer for Cross-Domain Recommendation 535

Updating Rule for V1: Let w1
i = [uc1

i |us1
i ]T × S1, then Eq. 5 becomes:

L =

I,J
∑

i,j

∥
∥ X1

i,j − w1
i
T
v1
j

∥
∥
2

F
+ λ (

J∑

j

‖v1
j ‖2

F + const ) (10)

where const is the remaining of the regularization term.
Similar to solving Uc1 updating rule for v1

j can be derived by setting ∂L
∂v1

j
= 0.

∂L
∂v1

j

= −2
I∑

i

(

X1
i,j − w1

i
T
v1
j

)

w1
i
T

+ 2λv1
j = −2W1Tx1

∗,j + 2W1TW1v1
j + 2λv1

j = 0

⇔ v1
j =

(

W1TW1 + λI
)−1(

W1Tx1
∗,j

)

(11)

where x1
∗,j is a column vector of all observed X1

i,j, ∀i ∈ I.

Updating Rule for S1: Let

sT =

⎡

⎢
⎢
⎣

S1
1,1,S

1
2,1, ...,S

1
R,1

S1
1,2,S

1
2,2, ...,S

1
R,2

....., ....., ....., .....
S1
1,R,S1

2,R, ...,S1
R,R

⎤

⎥
⎥
⎦

, aT =

⎡

⎢
⎢
⎣

U1
i,1V

1
j,1,U

1
i,2V

1
j,1, ...,U

1
i,RV

1
j,1

U1
i,1V

1
j,2,U

1
i,2V

1
j,2, ...,U

1
i,RV

1
j,2

........., ........., ........., .........
U1

i,1V
1
j,R,U1

i,2V
1
j,R, ...,U1

i,RV
1
j,R

⎤

⎥
⎥
⎦

(12)

then Eq. 5 can be rewritten as below:

L =

I,J
∑

i,j

∥
∥ X1

i,j − sTa
∥
∥
2

F
+ λ (‖s‖2

F + const) (13)

where const is the remaining of the regularization term.

∂L
∂s

= −2

I,J
∑

i,j

(
X1

i,j − sTa
)
aT + 2λs = −2x1

∗,∗
T
A + 2 sTATA + 2 λs = 0

⇔ sT =
(
ATA + λ × I

)−1(
x1

∗,∗
T
A

)

(14)

where x1
∗,∗

T contains observed entries of X1
i,j.

3.3 Both Sides Knowledge Transfer

There are situations when we can find from another domain an extra X3 which
has the same items as X1 does. In this case, X1 and X2 are correlated in their
user dimension and X1 and X3 are correlated in their item dimension as illus-
trated in Fig. 1. Now we propose how X1 use not only knowledge from X2 but
also that from X3 to improve its recommendation performance.

As an analogy to the case where common user latent clusters from X2 are
transferred to X1, we also transfer shared item latent clusters from X3 to X1.
Thus, item factor of X3 is computed to group items in latent space.

X3 ≈ U3 × S3 ×
[
Vc3

Vs3

]T

(15)

where cv ∈ [1, r] is the number of common latent clusters shared between X3

and X1; U3T × U3 = I;
[
Vc3

Vs3

]T

×
[
Vc3

Vs3

]

= I; Vc3 ∈ R
cv×m; Vs3 ∈ R

(r−cv)×m.
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Algorithm 1. MultLC: Transferring multiple common latent clusters while pre-
serving unique latent clusters of the target
1: Input: X1, X2, X3, cu, cv , E
2: Extract user latent clusters in X2 by matrix tri-factorization
3: Extract item latent clusters in X3 by matrix tri-factorization
4: Randomly initialize all factors
5: Initialize L by a small number
6: while (PreL−L

PreL < E) do

7: PreL = L
8: if cu > 0 then
9: Solve common Uc1 while fixing other factors following Eq. 8
10: Solve target’s specific Us1 while fixing other factors following Eq. 9
11: else
12: Solve U1 while fixing all other factors

13: if cv > 0 then
14: Solve common Vc1 while fixing other factors
15: Solve target’s specific Vs1 while fixing other factors
16: else
17: Solve V1 while fixing the
18: other factors following Eq. 11

19: Solve S1 while fixing all other factors following Eq. 14
20: Compute L following Eq. 16

21: Output: U1,S1,V1

Then, both the shared item latent clusters from X3 and the common user
latent clusters from X2 are utilized in our new loss function:

L =

∥
∥
∥
∥
X1 − [Uc1 |Us1 ] × S1 ×

[
Vc1

Vs1

]T ∥
∥
∥
∥

2

F

+ ρu

∥
∥Uc1 − Uc2

∥
∥
2

F
+ ρv

∥
∥Vc1T − Vc3T

∥
∥
2

F
+ λθ (16)

Our model, as defined in Eq. 16, allows the number of latent clusters cu shared
between X1 and X2 and cv shared between X1 and X3 to be different depending
on their correlations’ nature. This idea guarantees their actual relationships are
best utilized. Following the same procedures for finding all factors in Sect. 3.2,
we can effectively find Uc1 , Us1 , S1, Vc1 , and Vs1 .

A pseudo-code of our proposed multiple latent clusters for cross-domain
transfer learning is shown in Algorithm 1. User latent clusters in X2 are extracted
in line 1. Then, the item latent clusters in X3 are extracted in line 2. Only the
shared latent clusters are transferred to X1. For this transfer learning process,
we randomly generate all Uc1 , Us1 , S1, Vc1 and Vs1 in line 3, and initialize a
loss value in line 4. If there are shared common user latent clusters between X1

and X2, every row of Uc1 and Us1 is computed in line 8 and 9, respectively. If
not, full U1 is computed in line 11. Solving V1 is performed similarly in lines
12 to 16. Factor S1 is solved in line 17. These steps are repeated until the loss
function converges (Table 1).

4 Experiments and Results

In this section we evaluate performance of our proposed MultLC with other
existing models and present a comprehensive study of how well these models
leverage the correlations from observed ratings from different source domains.
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Table 1. Dimension and observation size of ABS census data of New South Wales
(X1), Victoria states (X2), and crime data from BOCSAR (X3).

Characteristics X1 X2 X3

Dimension 154 × 7,889 81 × 7,889 154 × 62

Training 91,069 47,900 661

Validation 4,793 2,521 34

Testing 23,965 12,605 173

4.1 Data for the Experiments

We use three pairs of data collected from different public sources.

Datasets 1: We extract this dataset from census data of New South Wales (NSW)
state and that of Victoria state. Australian Bureau of Statistics1 (ABS) has pub-
lished their collected data about Australia states’ demography profile. Popula-
tion and family profiles for NSW are separated by 154 local government areas
(LGA). We form this information into a matrix X1 of 154 LGAs by 7,889 demog-
raphy categories. As for Victoria state, census data in 81 LGAs are provided; a
matrix X2 of 81 LGAs by 7,889 demography categories is created. X1 and X2

have the second dimension (demography categories) in common.

Datasets 2: This dataset is constructed from the crime statistics in New South
Wales state reported by Bureau of Crime Statistics and Research (BOSCAR).
Crimes are grouped into 62 specific offenses within 154 LGAs in NSW. This
data is used to create a matrix X3 of 154 LGAs by 62 crimes. X3 has the first
dimension (LGA) identical with the first dimension of X1.

Datasets 3: X1 and X2 are of the same demography profiles whereas X1 and
X3 are of the same LGAs. The correlations between X1’s and X2’s demogra-
phy coordinates and between X1’s and X3’s LGA coordinates can be leveraged
altogether for this dataset.

4.2 Empirical Results

Case #1. Transferring States Demographic Similarities from a Source
to a Target-Domain. Table 2 shows recommendation performance of all algo-
rithms when the source (X2) and the target (X1) have correlations on their
demography latent factors. In general, models shared same factors (CST, CBT,
CMF) achieve lower accuracy (higher RMSE) as they do not properly utilize the
correlations between datasets. In particular, CMF which assumes both X1 and
X2 have the same factor on demography dimension performs the worst. Their
factors on demography dimension are highly correlated, but they are not the
same. Thus, forcing them to be identical does not help. Similarly, CST transfers

1 http://www.abs.gov.au/websitedbs/censushome.nsf/home/datapacks.

http://www.abs.gov.au/websitedbs/censushome.nsf/home/datapacks
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Table 2. Mean and standard deviation of test RMSE on X1 with transfer across ABS
VIC data (X2) with different algorithms and decomposition ranks. A lower RMSE
means a higher accuracy. Best results for each rank are in bold. The last row represent
p-values of t-tests between each algorithm and our proposed MultLC.

Rank CST [18] CBT [14] CMF [19] our MultLC

5 0.0168 ±0.0003 0.0159 ±0.0008 0.0235 ±0.0035 0.0127 ±0.0004

7 0.0180 ±0.0003 0.0143 ±0.0001 0.0213 ±0.0007 0.0127 ±0.0001

9 0.0193 ±0.0004 0.0139 ±0.0001 0.0224 ±0.0013 0.0127 ±0.0003

11 0.0205 ±0.0004 0.0137 ±0.0001 0.0222 ±0.0022 0.0129 ±0.0003

13 0.0216 ±0.0002 0.0138 ±0.0001 0.0238 ±0.0020 0.0127 ±0.0001

15 0.0227 ±0.0006 0.0141 ±0.0001 0.0242 ±0.0020 0.0128 ±0.0002

t-tests 5.57 × 10−4 6.10 × 10−3 3.34 × 10−6 −

all latent clusters on demography dimension from X2 to X1, losing the target’s
specific demography groups. This transfer leads to the second lowest accuracy.
CBT produces the best RMSE among the three. One reason could be X1 and
X2 are closely related, so their weighting factors are quite similar.

Table 2 clearly demonstrates that preserving the target’s specific informa-
tion while utilizing common knowledge improves recommendation performance
significantly. Our method proposes to transfer common parts of demography
latent clusters of X2 while preserving the unique demography latent clusters of
X1, providing a more accurate understanding of the underlying structure of X1.
Thus, it achieves the highest accuracy (the lowest RMSE).

To confirm the statistical significance of our method, we perform t-tests to
validate if the average RMSE of each baseline (CST, CBT, CMF) and that of
MultLC differ significantly. As shown in Eq. 2, all p-values < α(0.05) validating
that the observed improvements of our method are statistically significant.

Case #2. Transferring Local Area Similarities from a Source to a
Target. Table 3 re-confirms the above reasoning with another pair of datasets.
Although X1 and X3 are from the same LGAs, their LGAs latent factors do
have their respective unique latent clusters in addition to their common ones.
Transferring those common latent clusters while preserving the target’s specific
ones accurately leverages the correlations between these datasets. Thus, this
produces the best accuracy. We perform the same t-tests as of the case #1.

Since all p-values < α(0.05), the observed difference between each algorithm
and our proposed method is statistically significant.
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Table 3. Mean and standard deviation of tested RMSE on X1 with correlations from
BOCSAR NSW crime data (X3) with different algorithms and ranks. A lower RMSE
means a higher accuracy. Best results for each rank are in bold. The last row represent
p-values of t-tests between each algorithm and our proposed MultLC

Rank CST [18] CBT [14] CMF [19] our MultLC

5 0.0158 ±0.0001 0.0153 ±0.0012 0.0167 ±0.0020 0.0128 ±0.0001

7 0.0162 ±0.0002 0.0142 ±0.0001 0.0171 ±0.0017 0.0127 ±0.0002

9 0.0167 ±0.0002 0.0141 ±0.0001 0.0155 ±0.0010 0.0127 ±0.0001

11 0.0176 ±0.0001 0.0139 ±0.0001 0.0158 ±0.0010 0.0129 ±0.0001

13 0.0178 ±0.0001 0.0140 ±0.0001 0.0155 ±0.0011 0.0130 ±0.0002

15 0.0185 ±0.0003 0.0143 ±0.0001 0.0154 ±0.0010 0.0132 ±0.0002

t-tests 1.88 × 10−4 7.09 × 10−4 5.10 × 10−5 −

Table 4. Mean and standard deviation of tested RMSE on X1 with transfer across
ABS VIC data and BOCSAR NSW crime data. Only CST and our MultLC support
this scenario. Best results for each rank are in bold.

Rank CST [18] our MultLC

5 0.0228 ±0.0002 0.0127 ±0.0002

7 0.0235 ±0.0001 0.0125 ±0.0001

9 0.0256 ±0.0001 0.0125 ±0.0002

11 0.0244 ±0.0002 0.0125 ±0.0002

13 0.0265 ±0.0002 0.0128 ±0.0003

15 0.0251 ±0.0002 0.0129 ±0.0001

t-tests 4.19 × 10−6 -

Fig. 3. Tested mean RMSEs under different numbers of common latent demography
clusters cv and different numbers of common latent LGA clusters cu transferred to both
dimensions of the target. Results are with rank 9. The lowest RMSE is not achieved
when full latent clusters in both dimensions are transferred (cu = cv = 9) with no
target’s specific preservation, suggesting the disadvantages of existing methods.
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Case #3. Transferring both Sides: Demography and Local Area
Dimensions. Table 4 displays the results when common latent clusters on both
dimensions of X1 are transferred from X2 and X3. In particular, common latent
clusters on demography factor of X2 and those on LGA factor of X3 are utilized
in corresponding factors of X1. Only CST and our proposed model support this
case, thus, we compare their results with ours. There are two conclusions we can
draw here. Firstly, recommendation performance of MultLCSpace is improved
more than two times compared to CST, a significant difference confirmed by
our t-tests. This improvement again clearly demonstrates the advantages of pre-
serving unique latent clusters in the target-domain. Secondly, when information
in both dimensions is utilized, the accuracy is even further improved in com-
parison with the case when knowledge in either dimension is transferred. This
accuracy improvement is very encouraging as it suggests the potential to extend
our multiple knowledge transfer approaches to high-dimensional matrices.

We also analyze how MultLC works with different numbers of common
and unique latent clusters in both dimensions. Figure 3 illustrates the results of
MultLC when decomposition rank equals 9. The best accuracy is achieved when
cu = 5 and cv = 1. On the contrary, the worst case is produced when cu = cv = r
which is the case of the CST model. The results confirm the importance of the
target’s specific latent clusters on cross-domain transfer learning.

5 Conclusion and Future Work

In this paper, we proposed MultLC to transfer a single aspect of knowledge
from multiple sources for improving target-domain recommendations. As the
sources come from different domains, our model transfers only shared latent
clusters without requiring the shared latent variables to be identical and pre-
serves the unique ones of the target on both sides of the target matrix. This
idea better leverages similarities of the first dimension or those of the second
dimension or both. Validated on real-world datasets, our proposed approach
significantly outperforms existing models. These results demonstrate the impor-
tance of transferring common latent clusters from a source while preserving the
target’s specific ones. Moreover, our findings show that the multiple knowledge
transfers on both dimensions further improves the performance in cross-domain
recommendations. Our experimental results suggest possibility of simultaneous
transfer of multiple dimensions in high-dimensional matrices (tensors) providing
us an interesting future work.
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Abstract. Fine-grained opinion analysis is a very important task, especially
identifying opinion target and opinion expression. In this paper, a new neural
architecture is proposed for the sentence-level joint extraction of opinion target and
opinion expression. The neural architecture namely cascaded model includes pre-
trained model BERT Base, linguistic features, bi-directional LSTM, soft attention
network and CRF layer from bottom to top. The cascaded model provides the best
joint extraction results in the SemEval-2014/2016 Task 4/5 data sets compared
with the state-of-the-art. There are three main contributions in our work, (1) at-
tention network is introduced into the task of sentence-level joint extraction of
opinion target and opinion expression, which enhances the dependence between
opinion target and opinion expression. (2) pre-trained model BERT-Base and
linguistic features are introduced into our work, which greatly improve the con-
vergence speed and the performance of the cascadedmodel. (3) opinion target and
opinion expression are synchronously extracted, and achieved better results
compared with the most of the existing pipelined methods.

Keywords: Opinion target � Opinion expression � Joint extraction � LSTM �
Cascaded model

1 Introduction

Fine-grained opinion analysis aims to discover opinion expressions, subjective inten-
sity, emotional orientation (such as “positive” or “negative”) and opinion targets in
sentence. For example, in the sentence “Tom says, the cellphone runs very slowly.”,
tom expresses a very negative opinion towards the target “cellphone” using the
opinionated expression “slowly”. In this work, we focus on the joint extraction of
opinion targets and opinion expressions based on cascaded model.

Opinion targets, T, which are the entities or topics that the opinion is about;
Opinion expressions, O, which are direct subjective expressions toward target,

explicit mentions of private states or expressive subjective elements in the sentence are
expressed entirely by the words in text [1].

© Springer Nature Switzerland AG 2019
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Compared with the traditional serialization method, the serialization method usu-
ally first identifies the opinion expression, and then identifies the opinion targets
according to the relationship clue between opinion expressions and opinion targets. In
order to identify opinion targets, many researchers regard opinion words as obvious
identification [2, 3], their work is based on the observation that opinion words are
generally around the opinion targets, and there is a strong correlation between them.
Therefore, most of the previous methods extract opinion targets mainly depending on
the correlation, and the extraction of opinion word and opinion target is a mutually
reinforcing process [3]. However, the correlation between opinion word and opinion
target can not be obtained accurately and effectively, especially in the case of long-
distance semantic association. So, how to discover the correlation is the key to solve
this problem. Many researchers used dependency tree to solve the problem of long-
distance semantic association [4, 5], the effect of this method depends on the results of
parsing, and all kinds of user-generated content are often irregular texts, many errors
occur in the process of parsing. At the same time, some researchers regard the
extraction of opinion targets and opinion words as a problem of sequence labeling. For
example, many variations of conditional random fields have been successfully applied
to the joint extraction of opinion targets and opinion expressions [2, 6]. However, the
method of conditional random fields need to design a large number of features man-
ually, sometimes including dependency trees, opinion-bearing words and other pre-
processed components. The process of feature extraction is very time-consuming, and it
is unrealistic that manual feature design relies heavily on a large number of human
prior knowledge and the experience of experts and linguists.

In recent years, feature-based deep learning has become a research hotspot and
applied to various tasks of natural language processing. Especially RNN, CNN, LSTM
and transformer model have been used in fine-grained opinion mining [7–10]. Con-
sidering the strong dependence and mutually reinforcing relationship between opinion
target and opinion expressions, in the process of fine-tuning we combine pre-trained
model with bi-directional LSTM recurrent neural network for joint extraction. The
main contributions of this work are summarized as follows:

(1) attention network is introduced into the task of sentence-level joint extraction of
opinion target and opinion expression, which enhances the dependence between
opinion target and opinion expression.

(2) pre-trained model BERT-Base and linguistic features are introduced into our
work, which greatly improve the convergence speed (than without BERT-Base)
and the performance of the cascaded model.

(3) opinion target and opinion expression are synchronously extracted, and achieved
better results compared with the most of the existing pipelined methods.

2 Related Work

For natural language processing tasks, deep neural network, which regards sentences as
word sequences, has been successfully applied to language model, word segmentation
and other tasks. The work of (Collobert et al. [24]) utilized convolutional neural
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network to tackle sequence labeling problem, their model consists of a convolutional
neural network and a CRF layer on the output. The Conv-CRF model has generated
promising results on sequence labeling tasks.

At the same time, several RNN-based neural network models have been proposed
to solve sequence labeling tasks like POS tagging [11] and NER [12, 13], achieving
competitive performance against traditional models, but the performance of these
models drops rapidly when the models solely depend on neural embeddings. Some
experts and researchers have tried Elman-RNN, Jordan-RNN and LSTM models in
fine-grained opinion mining [7]. Yao et al. employed LSTM network for tagging [14],
the work didn’t make use of bi-directional LSTM and CRF layers and thus the tagging
accuracy may be suffered. However, the work in (Huang et al.), they used the bi-
directional LSTM CRF model and obtained better tagging accuracy than a single CRF
model with identical feature sets [11]. Especially the work in (Lample et al.), they
presented a LSTM-CRF architecture with a char-LSTM layer learning spelling features
from supervised corpus and didn’t use any additional resources or gazetteers except a
massive unlabeled corpus for unsupervised learning of pre-trained word embeddings
[15]. Meanwhile, the work in (Zheng et al.) investigated different kinds of LSTM-based
end-to-end models to jointly extract the entities and relations, they found that the
tagging-based methods are better than most of the existing pipelined and joint learning
methods [16]. Further, both [17] and [18] used attention networks to extract fine-
grained information from different text contents, and obtained better results.

In our work, we acquire pre-trained word embeddings from pre-trained model
BERT-Base (Cased, 110M parameters) to give better initialization to our cascaded
model [19]. The cascaded model then fine-tune the word vectors during training to
learn task-specific embeddings. We present an architecture to incorporate other lin-
guistic features into our cascaded model. The results on the task of joint extraction of
opinion targets and opinion expressions show that BERT-Base, linguistic features and
attention network improve the performance of state-of-the-art LSTM-CRF model.
Meanwhile, our cascaded model also can be easily applied to a wide range of sequence
labeling tasks on different languages and domains.

3 Method

3.1 System Architecture

Our cascaded model can be divided into three parts as shown in Fig. 1. The first is a
feature rich word encoder which uses pre-trained model BERT-Base and other lin-
guistic features to encode words into a vector with semantic and contextual information
from raw sentences, this part uses three layers bi-directional LSTM recurrent neural
network to encode words. The second is attention layer which uses attention network to
generate word representation. And the last part of the cascaded model is CRF layer, it
takes into account neighboring tags and yields the final predictions for every word.
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3.2 Feature Rich Word Encoder with Pre-trained Model BERT-Base

The work of (Devlin et al.) is mainly divided into two parts [10]. One is the pre-train
part of the language model. Another is the fine-tune part of the training task-specific.
We know in a neural language model, the higher-level hidden state usually captures
context information and the low-level hidden state usually captures syntax information.
In our cascaded model, we take advantage of both of them and use pre-trained model
BERT-Base and three layers bi-directional LSTM to fine-tune contextualized word wi

at position i:

wi ¼
XL

l¼1
dlhi;l ð1Þ

where L is the number of layers, dl 2 R is the weight of each layer learned by bi-
directional LSTM, hi;l 2 RT is the hidden state of each layer, T is the hidden size, and
the loss function is the cross entropy.

In addition, we consider some other linguistic features, because POS information,
position information and dependency relation between opinion target and opinion
expression are also very important when identifying role of argument. Formally, given
a source sentence (s, OT, OW) where s ¼ w1;w2; � � � ;wm½ �, OT represents opinion
target, OW represents opinion expression. For each word wi in s, we generate a multi-

type embedding: evl ¼ vi; pi; di; edl; ti
h i

where vi denotes a pre-trained word embedding,

pi denotes POS information when considering word embedding, and we give every

Tom says, the cellphone runs very slowly

……

……

……

……

O O S-OW

……

……

……

CRF Layer

Attention Layer

Feature Rich
Word Encoder

BERT-Base

POS

position

dependency

Fig. 1. System architecture.
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POS tag a unique id and note it as a one-hot vector for word at position i. di and edl are
position embeddings (Al-Badrashiny et al.) indicating the distance from wi to OT and
OW respectively [20]. ti is a binary digit indicating whether the word is within the
shortest dependency path between OT and OW [21]. Thus the sentence is a sequence of
word representations V ¼ ev1;ev2; � � � ;evmf g where m is the length of the sentence.

Finally, our feature rich word encoder concatenates BERT-Base embeddings after
fine-tuned and linguistic features embeddings together.

3.3 Attention Layer

In previous works [7–9, 11], CNN, RNN and bi-directional LSTM were directly used
to extract features and then do prediction based on them. However, not all words
contribute equally to the representation of opinion target in a sentence, or not all words
contribute equally to the representation of opinion expression. Hence, we introduce
attention mechanism to jointly extract opinion target and opinion expression, which is
important while computing sentence representation.

In our cascaded model, we propose soft attention network to explicitly encode
BERT-Base after fine-tuned and linguistic features into sentence representation.
Specifically,

ult ¼ tanh Wwhlt þ bwð Þ ð2Þ

alt ¼
exp u|ltuw

� �
P

t exp u|ltuw
� � ð3Þ

sl ¼
X

t
althlt ð4Þ

where in our model l ¼ 3. We first feed the word annotation hlt through bi-directional
LSTM to get ult as a hidden representation of hlt, then we measure the importance of
the word as the similarity of ult with a word-level context vector uw and get a nor-
malized importance weight alt through a softmax function. uw is initialized by pre-
trained model BERT-Base and jointly learned during the training process. After that,
we compute the sentence vector sl as a weighted sum of the word annotations based on
the weights. So sl effectively includes a representation of a word in sentence, which is
useful for numerous tagging applications.

3.4 CRF Layer

We model tagging decisions jointly using a conditional random field (CRF). For an
input sentence X ¼ x1; x2; � � � ; xmð Þ, we consider P to be the matrix of scores output by
soft attention network. P is of size T � K, where K is the number of distinct tags,
including B-OT, I-OT, E-OT, S-OT, B-OW, I-OW, E-OW, S-OW, O. The BIESO tag-
ging scheme means (Beginning, Inside, End, Single, Other), which is used to label
every word. Pi;j corresponds to the score of the jth tag of the ith word in a sentence. For
a sequence of predictions Y ¼ y1; y2; � � � ; ymð Þ. The score is defined as follows:
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s X; Yð Þ ¼
Xm

i¼0
Ayi;yiþ 1 þPi;yi

� � ð5Þ

where A is a matrix of transition scores such that Ai;j represents the score of a transition
from the tag i to tag j.

A soft attention network over all possible tag sequences generates a probability for
the sequence Y:

p Y jXð Þ ¼ es X;Yð Þ
Pey2YX es X;eyð Þ ð6Þ

where YX represents all possible tag sequences for a sentence X. During training, we
maximize the logðpðYjXÞÞ of the correct tag sequence. From the formulation (6), we
know while decoding, we predict the output sequence that obtains the maximum score
given by:

Y� ¼ argmaxey2YX s X;eyð Þ ð7Þ

both the summation in (6) and the maximum a posteriori sequence Y� in (7) can be
computed using dynamic programming. More information can refer to the work
of [15].

3.5 Training

We learn word-level features while training instead of hand-engineering prefix and
suffix information about words. Our cascaded model uses a generic SGD forward and
backward training procedure. We divide the whole training data to batches and process
one batch at a time.

For each batch, we first run cascaded model (three layers bi-directional LSTM-soft
attention network) forward pass which includes the forward pass for both forward state
and backward state of LSTM. As a result, we get the output score for all words (tags) at
all positions. We then run CRF layer forward and backward pass to compute gradients
for network output and state transition edges. After that, we can back propagate the
errors from the output to the input, which includes the backward pass for both forward
state and backward state of LSTM. Finally, we update the cascaded model parameters.

4 Experiments

In this section, we present our experimental settings and results for the task of joint
extraction of opinion targets and opinion expressions from customer reviews.

548 Q. Liu and Y. Hu



4.1 Data Sets and Evaluation Metric

Data Sets. In our experiments, data sets come from two sources. One is the REST and
LAPT two review data sets provided by the SemEval-2016 Task 5: Aspect Based
Sentiment Analysis (Pontiki et al.) which are annotated at the sentence-level [22]. The
other is from the SemEval-2014 Task 4: Aspect Based Sentiment Analysis. Given an
opinionated document about a target entity (e.g. a laptop or a restaurant), the goal is to
identify all the opinion tuples with the type of {Aspect Category Detection#Opinion
Target Expression, Sentiment Polarity}. Take “I was very disappointed with this
restaurant.” for example, the expected output is {RESTAURANT#GENERAL,
“restaurant”, negative, from = “34” to = “44”}. According to the requirements of the
experiments, we revise the data sets manually to meet the training data. The specific
operation is to tag opinion expressions in sentences which have tags of “target”
(“target” cannot be “NULL”, or “term” from SemEval-2014) and “negative/positive”.
As to “I was very disappointed with this restaurant.”, we additionally label opinion
expression “disappointed” and change the expected output to {RESTAU-
RANT#GENERAL, “restaurant”, from = “34” to = “44”, “disappointed”, from =
“11” to = “23”}. Certainly, some sentences have no opinion target entity (or opinion
expression) and some have more than one opinion target entity (or opinion expression).
We use the standard labelling and training to compare our results. For example,
“Service was slow, but the people were friendly.” corresponds to {RESTAU-
RANT#GENERAL, “Service”, from = “0” to = “7”, “slow”, from = “12” to = “16”;
“people”, from = “26” to = “32”, “friendly”, from = “38” to = “46”} but “The waiter
is beautiful and generous.” corresponds to {RESTAURANT#GENERAL, “waiter”,
from = “4” to = “10”, “beautiful and generous”, from = “14” to = “36”}. Finally,
from two domains data sets we only retain 10120 sentences that contain both opinion
targets and opinion expressions, Table 1 shows basic statistics about the data sets.

Evaluation Metric. The evaluation metric measures the standard precision (P), recall
(R) and F1 score based on exact matches. This means that a pair of opinion target and
its opinion expression is considered to be correct only if it exactly matches with the pair
of {opinion target, opinion expression} annotated by the human. In all our experiments
when comparing two models, we use P, R, F1 scores to measure statistical significance
and report the corresponding value.

Table 1. Corpora statistics.

REST LAPT
(0nly
2014)

Train Test Train Test

Total sentences from SemEval 5041 1476 3045 800
Retained sentences 4937 1403 3021 759
One opinion target and expression 1908 869 1803 439
Multiple opinion targets and expressions 3029 534 1218 320
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4.2 Model Configuration

We use 100 dimensions for POS, position embeddings and dependency relation, 768
dimensions for deep contextualized word representation, 200 dimensions for the bi-
directional LSTM hidden layers. The dropout is set to 0.5, and the cascaded model is
trained using SGD for 30 epochs with a learning rate of 0.05, where a batch size of 100
sentences is used. The cross-entropy is used as the loss function.

The implementation of cascaded model is based on TensorFlow. We get POS and
dependency of words through using standfordNLP. And use pre-trained model BERT
Base representations to compute deep contextualized word representation. During
training, both SGD and 10-fold cross-validation are used to update model parameters.

4.3 Results and Analysis

In this section, we will present the procedure of our experiments and make further
comparative analysis with other state-of-the-art approaches.

First of all, we need determine the number of layers in neural network. Generally
speaking, we can choose a shallow and wide neural network or a deep and narrow
neural network to fit the same function. But the latter (deep network) expresses more
rich semantic and contextual information. We test the performance of our cascaded
model with different number of bi-directional LSTM layers. As a result, the perfor-
mance obtains slight improvement, as shown in Table 2, bi-LSTM-1 means a bi-
directional LSTM network with one layer, and bi-LSTM-2 means a bi-directional
LSTM network with two layers, the others are the same. But adding layers becomes not
so effective when the number of bi-directional LSTM layers exceeds three, and the
convergence speed of training has been affected to a certain extent. So we set three
layers in our cascaded model. From Table 2 we know that LSTM units become less
effective in higher level layers and there is no need to build very deep neural network
for extracting contextual information.

Secondly, we compare it with the works of [7, 11, 15, 17, 18]. Table 3 lists the
performances from different models. Liu et al. [7] used LSTM RNN and different pre-
trained word embeddings to validate fine-grained opinion mining, in our comparative
experiments, google embeddings is used for their word embeddings. Huang et al. [11]
proposed a variety of LSTM and finally utilized bi-directional LSTM-CRF for POS and

Table 2. Performance of cascaded model with different number of layers.

Number of layers REST LAPT

P(%) R(%) F1(%) P(%) R(%) F1(%)

Bi-LSTM-1 layer 70.9 73.9 72.4 67.2 69.3 68.2
Bi-LSTM-2 layers 73.1 78.1 75.5 69.1 72.1 70.6
Bi-LSTM-3 layers 74.9 79.1 77.0 70.3 72.9 71.6
Bi-LSTM-4 layers 74.1 78.2 76.1 69.0 71.7 70.3
Bi-LSTM-5 layers 74.2 77.9 76.0 69.3 71.9 70.6
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NER. Lample et al. [15] also used bi-directional LSTM-CRF to achieve NER, but their
works generated a word embedding for a word from its characters. Gao et al. [17] built
the architecture for hierarchical attention network as 2 hierarchies. The lower hierarchy
processed one line at a time, fed in as word embeddings. These were processed by a bi-
directional LSTM/GRU with an attention mechanism that determined which words are
most important. The upper hierarchy processed an entire document at a time by taking
in the line embeddings generated from the lower hierarchy. In our comparative
experiments, the lower hierarchy is adopted and processes one sentence at a time. Ding
et al. [18] built three parts for event extraction, including a feature rich word encoder, a
multi-attention layer and a classifier. The input of classifier was obtained by con-
catenating event vector and sentence representation. However, in our comparative
experiments CRF is used as the output layer of our model for synchronously extracting
opinion target and opinion expression.

Our cascaded model achieved competitive performance compared to their works.
However, different from their works, advanced pre-trained model BERT, linguistic
features, attention mechanism and CRF model are introduced, which makes the per-
formance of our cascaded model significantly improved. In addition, opinion target and
opinion expression from the same sentence are synchronously extracted compared with
the most of the existing pipelined methods.

In order to show contributions of each item in cascaded model, finally we perform a
cascaded model ablation experiment. The ablation experimental results are shown in
Table 4. It should be noted that each experimental ablation is only one item, while the
rest is retained in the cascaded model. From Table 4 we know that pre-trained model
BERT Base contributes the most performance gains. The remaining items are position,
attention network, dependency and POS in turn. So the pre-trained word representation
based on massive data is the key for the identification of opinion target and opinion
expression. In addition, both position and attention network also play an important role
for the joint extraction, but dependency and POS are not so important to our cascaded
model, mainly because they have a small ability to capture token sequence relations.

Table 3. The compare of the performances from different models.

Models REST LAPT

P(%) R(%) F1(%) P(%) R(%) F1(%)

(Liu et al. 2015) 68.3 69.1 68.7 65.8 67.2 66.5
(Huang et al. 2015) 65.9 66.1 66.0 62.8 64.1 63.4
(Lample et al. 2016) 70.1 72.8 71.4 65.9 68.7 67.3
(Gao et al. 2018) 67.9 70.3 69.1 64.7 66.9 65.8
(Ding et al. 2018) 73.3 76.1 74.7 68.9 70.6 69.7
Ours 74.9 79.1 77.0 70.3 72.9 71.6
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5 Discussions

Our work is close to the work of [18] as both of them utilized deep neural networks for
sequence labeling problem. While their work used classifier to give a confidence score
to each argument role, ours used CRF to predict the output sequence. Further, we also
utilized pre-trained model BERT-Base and different linguistic features to improve the
performance of cascade model.

Our work is also close to the work of [7] as both of them regarded the tasks in
opinion mining as either a word-level sequence labeling problem or as a semantic
compositional task. They emphasized the influence of different word embeddings on
feature engineering, but we utilized advanced pre-trained model BERT-Base and soft
attention network.

Finally, our work is also related to the work of [11, 15, 23] as all of them employed
bi-directional LSTM and conditional random fields (CRF) to tackle sequence labeling
problem. But we showed that with the pre-trained model BERT-Base, essential lin-
guistic features and soft attention network, we consistently obtained better tagging
accuracy than the simple combination of bi-directional LSTM and CRF.

In addition, we try to explore a new information extraction scenario, that is the joint
extraction of opinion target and its maximized opinion expression, which provides
more all-round opinion information for fine-grained opinion mining.

6 Conclusion and Future Direction

In this paper, we present a new neural architecture for the joint extraction of opinion
target and opinion expression. The neural architecture namely cascaded model includes
pre-trained model BERT, linguistic features, bi-directional LSTM, soft attention net-
work and CRF model from bottom to top. The cascaded model provides the best joint
extraction results in the SemEval-2016 Task 5 data sets compared with LSTM-CRF
model. In general, there are three main key to success. One is to model output label
dependencies via CRF model. The second is the attention mechanism, which enhances
the word-level features between opinion target and opinion expression. Thirdly, the
pre-trained model BERT is used for word representations, which captures deep
semantic and contextual information.

Table 4. The ablation experimental results.

Model ablation REST LAPT

P(%) R(%) F1(%) P(%) R(%) F1(%)

Cascaded model 74.9 79.1 77.0 70.3 72.9 71.6
- BERT Base 59.9 63.2 61.5 55.8 59.1 57.4
- POS 72.1 75.9 74.0 69.1 72.3 70.7
- Dependency 72.9 75.1 74.0 68.0 71.9 69.9
- Position 65.6 68.3 66.9 61.9 64.7 63.3
- Attention 68.9 70.3 69.6 64.9 66.1 65.5
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In the future, we would like apply our models to other fine-grained opinion mining
tasks including opinion expression detection and characterizing the intensity and
sentiment of the opinion expressions. We would also like to explore to what extent
these tasks can be jointly modeled in the BERT-BLSTM (Bi-directional LSTM)-
ATTENTION based multi-task learning framework.
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Abstract. The parameters of any machine learning (ML) model are
obtained from the dataset on which the model is trained. However, exist-
ing research reveals that many datasets appear to have strong build-in
biases. These biases are inherently learned by the learning mechanism of
the ML model which adversely affects their generalization performance.
In this research, we propose a new supervised data augmentation mech-
anism which we call as Data Augmentation Pursuit (DAP). The
DAP generates labelled synthetic data instances for augmenting the raw
datasets. To demonstrate the effectiveness of utilizing DAP for reduc-
ing model bias, we perform comprehensive experiments on real world
image dataset. CNN models trained on augmented dataset obtained
using DAP achieves significantly better classification performance and
exhibits reduction in the bias learned by their learning mechanism.

Keywords: Generative Adversarial Networks · Data Augmentation ·
Dataset bias

1 Introduction

In today’s era of Artificial Intelligence (AI) the machine learning models are
increasingly used in our daily lives, such as product recommendations and bank
loan approvals. The complexity of decision rules for models trained with deep
neural networks have grown exponentially resulting in high decision accuracy on
many benchmark datasets. However, there exists evidences [8] which strongly
recommend that the accuracy of such models must not be the sole criteria with
their deployment for social purposes. Since the problems inherent within the
datasets like dataset-bias [2] affects the decision made by these models. Some-
times the consequences of false decisions made by these models can be catas-
trophic, for example the Uber self driving car’s accident1 or the racial biases in
Google searches2.
1 https://www.bbc.com/news/technology-44243118.
2 http://www.bbc.com/news/technology-21322183.
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Although the benchmark datasets are created with an attempt to capture
unbiased real world representations, there are evidence in the literature that
show that strong build-in biases exists in these datasets [22,23]. Various biases
are induced while generating datasets, for example the “capture” bias which is
related to the devise utilized while capturing the data instances; it is also related
to collectors preferences of views for the real world. The category or label bias
arises when the visual categories are poorly defined, like similar images may be
annotated with different names. These biases cause poor generalization perfor-
mance of machine learning models. An over-simplified solution to alleviate this
phenomenon is to remove the culprit data instances. However, the identification
of such data instances is a challenge and more importantly the performance of
models trained on unbiased dataset might deteriorate [14]. This will lead to roll-
back of the previous biased model which contradicts the objective of removing
biases from the datasets.

Motivated by the aforementioned issues, in this paper we address the issue of
bias management in the datasets by developing a data provisioning mechanism
which we call as Data Augmentation Pursuit (DAP). Contrary to previous
works, where sophisticated machine learning models are devised to mitigate the
dataset-biases while learning ML models [7,14], we are interested in how we
can use the available data to augment these datasets with synthetic
instances, resulting in lesser bias learned by the ML models.

To achieve this objective, we utilize generative adversarial networks (GANs)
[5] to generate synthetic examples for augmenting the existing datasets. However,
we argue that blindly augmenting the datasets with synthetic examples gener-
ated by GANs does not guarantee reduction in bias learned by the machine
learning models [24]. Rather the bias in the augmented dataset might increase,
therefore, a principled approach is required to augment these datasets. In this
regard, we devise DAP an iterative filtering with an objective to ensure that
the retained synthetic examples do not increase the biases while augmenting the
datasets. The ML models thus trained performs better than the original model
and exhibits decrease in the biases learned from the dataset.

Our contributions can be summarized as:

– We propose Data Augmentation Pursuit (DAP) for augmenting dataset
with synthetic examples. The DAP regulates the fraction of sample inputs to
GAN and controls the synthetic examples selection for dataset augmentation.
ML models trained with the obtained augmented using DAP exhibits least
model and achieves significantly better classification performance.

– We propose a filtering strategy for sieving synthetic examples generated by
GAN. Our filtering strategy ensures the reduction in semantic gap between
real and syntheticaly generated data instances.

– We perform extensive experimentation on CIFAR-10 dataset by utilizing var-
ious GAN’s frameworks for data augmentation and empirically demonstrate
that proper attention is required while augmenting datasets.

The rest of the paper is organized in the following sections: Literature
review is presented in Sect. 2, followed by Sect. 3 on preliminaries of GANs.
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Our proposed DAP is described in Sect. 4 and finally experiments, results, and
conclusions are discussed in Sect. 5, Sect. 6, and Sect. 7 respectively.

2 Literature Review

Data augmentation has played a crucial role in object and image recogni-
tion tasks. In order to improve recognition accuracy using CNN, several state
of the art models has applied extensive data augmentation to the training
datasets [11,21]. Conventionally, for generating synthetic examples trivial image
transformation techniques like random rotation, cropping, contrast normaliza-
tion, etc., have been applied extensively. However, not all synthetic examples help
in improving the classifier’s learning algorithm and selecting good examples is
critically important [15]. However, for large datasets, the number of possible data
augmentations are exhaustive and the number of parameters in CNN is exponen-
tial. Hence selecting good synthetic examples is almost intractable. Therefore,
we require a clever way to select synthetic examples which adds value to datasets
and the classifiers inexpensively. Therefore, we focus our literature review on the
work which augments the training data by adding “virtual samples” following a
systematic procedure and not blindly applying basic image transformations.

Paulin et al. [15] proposed a novel approach for creating augmented data
sets by greedily selecting set of image transformations. Their approach “Image
Transformation Pursuit” (ITP) iteratively and greedily selects a set of optimal
transformations which maximizes the classifier’s performance. While testing, the
transformations selected by ITP are first applied to the test instances and then
those transformed instances are classified. Similarly, in [14], the authors proposed
sophisticated data augmentations which exists in the real world scenarios but
might not exists in the training data. Performance of classifier’s trained with
their proposed augmentations generalize better on cross-datasets.

Similarly Sato et al. [18] authors proposed an online data augmentation pro-
cedure called APAC (Augmented PAttern Classification), which applies random
deformations to the data samples in an online fashion. Here the classifier is
only trained with multiple deformed samples from the training instances. The
expected loss from these deformed instances is then utilized to train the classi-
fier. Similar to ITP, the testing data instance undergoes the same deformation
process while performing classification. However, both ITP and APAC requires
heavy computational resources, and hence extensive pursuit is not possible when
deep networks with a huge number of parameters are trained.

Conversely, Khosla et al. [7] proposed a discriminative framework that explic-
itly defines bias associated with each dataset and, attempts to approximate
weights for the generalization. Their model applies max margin principle to per-
form better on cross datasets by taking into account label of the originating
datasets for the data instances. Their model can be considered as a sophisti-
cated domain adaptation technique which simultaneously trains a classifier on
multiple datasets.
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Besides the above, some recent techniques have applied data augmentation
by utilizing the images generated by GANs. However, each of the devised mech-
anism has to apply domain-specific knowledge in-order to increase the quality
of generated images prior their utilization. In [20], the authors proposed refine-
ment of synthetic images by processing them with a refiner trained on unlabeled
real data called SimGAN. The refiner adds realism to the synthetic images such
that the synthetic images looks similar to the real image but preserves the anno-
tated information of the generator. Classifier’s trained with these refined images
improves the state of the art in gaze estimation. Similarly in [10], the authors
proposed refinement of synthetic images by conditioning on the image quality
and achieved improvement in presentation attacks in biometric applications.

Our work is similar to ITP, as both targets selection of synthetic examples
for augment the datasets. But our work differs in two ways: (1) we focus on har-
nessing the gains from available synthetic images generated by GANs, whereas
ITP first selects the transformations to augment the dataset and then generate
synthetic examples accordingly. (2) In ITP, both training and testing data were
augmented, while we only augment the training dataset and does not alter the
testing dataset.

3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) first introduced in [5] are composed
of deep networks. The first network is called the discriminator (D), while the
second network is called the generator (G). The generator network aims to
generates realistic images starting from noise prior (z) resembling true images
of the dataset. In other words, if px is the distribution over true data then G(z)
learns the distribution pg ∼ px. On the other hand, D aims at learning the
discrimination between the distributions px and pg, where D(input) represents
the probability (px|input) and G(z) represents the output from G having noise
(z) as its input. Formally, the learning algorithm of GANs is formulated as
minimax two-player game with objective function V (G,D) as in Eq. (1).

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pdata(z)[log(1 − D(G(z)))] (1)

both the networks compete against each other in the GAN learning framework
maximizing their gains by applying alternatively updates rules defined in Eq. (2)
and Eq. (3) respectively, where m is the size of minibatch.

Δθd

1
m

m∑

i=1

[logD(xi) + log(1 − D(G(zi)))] (2)

Δθg

1
m

m∑

i=1

[log(1 − D(G(zi)))] (3)

The gradient based updates on parameters of G (θg) in Eq. (3) are depen-
dent on D, whose parameters (θd) are updated prior updating parameters of G.
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Fig. 1. Procedure of generating sieved synthetic data

Due to this update strategy, the bias leaned by the discriminator network even-
tually gets inherited by the learning mechanism of the generator network.

In other words, the discriminator which is itself a deep model that falls prey
to inevitable dataset biases. Hence the same biases are eventually transferred
to the learning mechanism of the generator network. Therefore, the resultant
augmented dataset will eventually contain these biases inherently affecting any
classifiers’ learning mechanism. Also, currently the generator is not capable of
adding real world flavors to the synthetic examples unless domain specific oper-
ations as in [10,20] are not applied on the synthetic images.

Recent novel advances in GANs include CoGAN (Coupled GAN) [13] which
couples a pair of generative adversarial networks to learn joint distribution over
multiple modalities; this is achieved by sharing weights among higher convolution
layers. Similarly, InfoGAN [3] is an information-theoretic extension allowing
learning meaningful representations of objects with the GAN framework. While,
in CycleGAN [25] allows style and domain transfer by learning cross-domain
relationships. Furthermore works, like ImprovedGAN [17] extended the GAN
framework for semi-supervised classification.

Despite the recent advancements in GAN, synthetic images generated by
them on datasets with high variability like CIFAR or ImageNet are of low quality
[6,24]. Improving the quality of the images generated by GANs is currently an
active research topic, but this paper does not focus on improving the learning
framework of GANs. Rather, this work focuses on how one selects a subset of
images to train GANs such that, the generated synthetic images can be utilized
to augment the training dataset.

4 Data Augmentation Pursuit

As explained in Sect. 3, blindly augmenting datasets with synthetic examples can
increase the bias in the augmented datasets. Therefore, we design a two stage
filtering technique to control the training data instances utilized to train GANs
and sieve unbiased synthetic examples generated by the generator. Our filtering
technique is based on the ensemble classifier learning which outperforms a single
classifier by creating diversity in the ensemble [12]. This leads to a reduction
in bias on the final prediction from an ensemble classifier [2]. Hence, synthetic
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Algorithm 1. Data Augmentation Pursuit
1: Input: Training Data D, Train labels TL ∈ Z

M
2 , splitting percentage α

2: GANΘ ← Train GAN on α% of D
3: I ← generate synthetic examples by trained GAN conditioned on TL

4: Eθ ← Train SVM, naive Bayes, and KNN classifiers on the remaining (100 − α)% of D
5: PredL ← θ(I), predict the labels for synthetic examples using ensemble classifiers
6: Index ← select the indices from PredL where ensemble classifiers has consensus (majority vote)

on the prediction and the synthetic example is correctly classified
7: [DAug, DLab] ← I[Index], TL[Index] retain synthetic examples filtered from above
8: Output: Augmented Data

[
DAug

]
and Augmented Label

[
DLab

]

images selected using DAP does not adversely affect the learning system of
classifier’s when trained on them.

Moreover, due to filtering of synthetic images with an ensemble classifier;
synthetic instances which closely resembles true data distribution receives con-
sensus on prediction from classifiers’ in the ensemble. As a result, the semantic
gap between true data and synthetic data is reduced and, augmenting datasets
with these filtered images results in reducing the variance learned by the alter-
nating models which reduces the affects dataset biases in the learning mechanism
of ml models. Our 2-stage filtering technique is shown in Fig. 1.

Stage-1. Randomly sample α% of data instances from the true dataset (denoted
as D) to train conditional GAN. A conditional GAN is simply a GAN framework
conditioned with certain priors. This conditioning helps in generating synthetic
examples by selecting the priors in the generator. Once the GAN is trained, we
generate adequate number of synthetic examples denoted as I by conditioning
the generator with data labels as priors. The utilization of conditional GAN gen-
erates synthetic examples with known ground truth. Simultaneously, we utilize
(100 − α)% of the remaining true dataset to train our ensemble classifier (naive
Bayes, SVM, and KNN).

The motivation behind splitting the dataset D in ‘α%’ and ‘(100 − α)%’
while training GAN and ensemble classifier is to ensure that the biases learned
by the two sub-processes are dissimilar. Later in Stage-2 when filtering synthetic
images generated by GANs utilizing ensemble classifier, the biases of the two sub-
processes will work against each other resulting in removal of synthetic examples
which are misclassified by the ensemble classifier.

Stage-2. Utilize the pre-trained ensemble classifier from Stage-1 to classify
the synthetic images generated by the GANs. The synthetic images which are
correctly classified and achieving a consensus from the ensemble classifier are
retained. Since the bias learned by the ensemble classifier and the GAN are
complementary due to the random split of training data between them. The
complementary biases act against each other while filtering synthetic images
generated by GAN with ensemble classier. Hence, this strategy cancels the bias
learned by the two mechanisms guaranteeing that augmenting dataset with these
retained synthetic images will reduce the dataset bias and eventually the model
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Algorithm 2. Calculation of Bias Variance and Accuracy
1: Input: Training Data Dtrain, Training Label Ltrain, Testing Data Dtest, Testing Label Ltest,

Augmented Data DAug , Augmented Label LAug , Cross-folds = k, α ∈ [0, 10, 20, ..., 90, 100]
2: (D1, L1), (D2, L2), ..., (Dk, Lk) ← CV (Dtrain, Ltrain) � Create K cross folds of the training

data and training labels
3: (DA1 , LA1 ), (DA2 , LA2 ), ..., (DAk

, LAk
) ← CV (Dtrain, Ltrain) � Create K cross folds of the

augmented data and augmented label
4: [PredLabel, Accuracy] ← [ ], [ ]
5: for iter = 1 to k do
6: if isequal(α, 0) then
7: [train, label] ← Diter, Liter � Use true training data and labels
8: else
9: train ← [Diter, DAiter

] � add synthetic examples to training data

10: label ← [Liter, LAiter
] � add synthetic labels to training labels

11: ModelΘ ← CNN(train, label) � Train model parameters on the training data
12: [PredLabel, Accuracy] ← CNN(test, ΘCNN ) � predict labels and accuracy of testing

examples using CNN and append them to the List

13: Accuracy ← mean(Accuracy) � calculate mean of k-fold accuracies
14: Bias ← bias2(Ltest, PredLabel) � calculate bias using Equation (4)
15: V ariance ← variance(PredLabel) � calculate bias using Equation (5)
16: Output: Bias, Variance, Accuracy

bias. The whole procedure of augmenting datasets with Data Augmentation Pur-
suit is described in Algorithm 1.

5 Experiments

We utilized publicly available implementation of DCGAN3 [16] and IWGAN4 [6]
architectures on CIFAR-10 dataset [11]. The dataset consists of natural RGB
images of size 32×32 distributed among 10 categories. Since we require labelled
synthetic data generation the implementation for DCGAN was modified by con-
ditioning both the discriminator and the generator on input labels.

However, the current state of GANs are not able to generate images which
can span the whole manifold of the training data i.e. can be utilized for training
ML models [19,24]. We downscale our experiments to binary categories as this
reduces the search space required by the generator drastically and recognizable
synthetic images are generated. Furthermore, the bootstrap sampling parameter
‘α’ Algorithm 1 is initialized with a value equal to 10% of the true data and
incremented with 10% on each iteration Algorithm1.

5.1 Experimental Setup

In our experiments, we compare the performance of the CNN5 classifier on four
datasets (1) original CIFAR-10 dataset ‘Org’; (2) dataset augmented blindly with
synthetic examples generated using DCGAN [16] ‘DCGAN’; (3) dataset aug-
mented blindly with synthetic examples generated using IWGAN [6] ‘IWGAN’;
and (4) dataset augmented by applying two stage filtering strategy of DAP.
3 https://github.com/kvfrans/generative-adversial.
4 https://github.com/igul222/improved wgan training.
5 https://github.com/soumith/DeepLearningFrameworks.

https://github.com/kvfrans/generative-adversial
https://github.com/igul222/improved_wgan_training
https://github.com/soumith/DeepLearningFrameworks
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For evaluating the performance of the classifier’s, we utilized three perfor-
mance metrics: (a) classification accuracy, (b) bias, and (c) variance. We per-
formed 3-fold cross-validation on multiple binary categories and reported the
mean accuracy, whereas the bias and the variance inherited by the learning
mechanism of classifier’s are obtained by bias-variance decomposition technique
for zero-one loss functions [9] and are mathematically calculated as below:

bias2x ≡ 1
2

∑

y∈Y

[
P(YF = y|x) − P(YH = y|x)

]2 (4)

variancex ≡ 1
2

(
1 −

∑

y∈Y

[P(YH = y|x)2
)

(5)

where, YF represents the ground truth of data instance x represented as a prob-
ability distribution (one hot vector), and YH represents the probability distri-
bution for the predictions made by the classifier for the data instance x.

5.2 Feature Extraction for Ensemble Classifier

We utilized K-means triangle features [4] for training ensemble classifier in stage-
1 Fig. 1 of DAP. The process begins with extracting random sub-patches from
the input data neglecting its labels, denoted as X ∈ R

M×N , where M is the total
number of sub-patches and each sub-patch xi ∈ R

N and i ∈ [1,M ]. The vectors
in X are then normalized by subtracting the mean and dividing them by the
standard deviation of its elements, followed by whitening procedure. After pre-
processing, K-means clustering technique is applied to learn ‘k’ centroids c(k).
Finally for each xi ∈ X, K-means triangle features are extracted [4]. Briefly,
K-means triangle features are a form of non-linear mapping where each feature
fk is encoded with the following rule.

fk(x) = max
{
0, μ(z) − zk

}
(6)

where zk = ‖x − c(k)‖2 and μ(z) is the mean of the elements of z. This mapping
assigns ‘0’ for any feature fk where the distance from c(k) > μ(z).

6 Results and Discussions

In this section we study the performance of CNN and SVM classifiers with
various degrees of dataset augmentation. We divide the discussion in two sub-
sections, where in the first subsection we study the performance of the CNN
classifier trained on the four datasets described in Sect. 5.1. Our hypothesis of
measuring the model bias consists of three performance metrics namely the bias,
variance, and the accuracy of the classifier. In the second subsection we study
the effect of how does the classifier performs by regularizing the level of data
augmentation i.e., by varying the hyper-parameter α in proposed DAP.
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Table 1. Performance comparisons using CNN classifier on baselines datasets and
augmented dataset obtained using DAS. The p − values obtained using t − tests on
pairs ‘Baseline vs DAP’ are tabulated in the last column. Note that we follow the
scientific notationa where we use 1Ex to present 1×10x. Please note that, for bias and
variance lower is better whereas for accuracy higher is better.

Categories Accuracy Bias Variance

Org DCGAN IWGAN DAP Org DCGAN IWGAN DAP Org DCGAN IWGAN DAP

Frog - Truck .962 .965 .961 .976 .028 .026 .029 .016 .010 .009 .010 .006

Frog - Ship .965 .973 .963 .976 .027 .020 .026 .017 .008 .006 .010 .005

Cat - Truck .942 .946 .933 .953 .047 .042 .051 .036 .011 .012 .016 .010

Bird - Truck .954 .960 .946 .963 .034 .030 .041 .027 .012 .010 .013 .009

Dog - Ship .954 .962 .956 .964 .034 .030 .034 .027 .012 .008 .009 .009

Mobile - Cat .953 .958 .952 .960 .038 .032 .035 .031 .009 .010 .013 .007

Dog - Truck .958 .962 .945 .965 .031 .030 .041 .026 .011 .008 .014 .007

Frog - Horse .951 .954 .951 .961 .034 .034 .036 .028 .015 .012 .014 .011

Mobile - Dog .967 .971 .968 .973 .025 .023 .024 .021 .008 .006 .008 .006

Horse - Truck .953 .952 .942 .959 .034 .036 .044 .030 .013 .012 .014 .009

Deer - Dog .852 .870 .859 .871 .110 .099 .106 .096 .038 .031 .035 .032

Plane - Truck .921 .925 .913 .928 .060 .056 .065 .053 .019 .019 .021 .017

Deer - Frog .896 .905 .902 .908 .075 .069 .069 .066 .029 .027 .030 .025

Dog - Frog .906 .913 .921 .919 .067 .065 .057 .060 .026 .022 .022 .021

Mobile - Bird .964 .966 .957 .968 .026 .025 .029 .023 .011 .010 .014 .009

Mobile - Horse .977 .982 .972 .980 .015 .013 .021 .013 .008 .006 .007 .006

Plane - Ship .899 .908 .903 .910 .074 .069 .072 .066 .027 .023 .025 .024

Mobile - Frog .971 .969 .960 .973 .022 .022 .029 .019 .008 .009 .011 .007

Mobile - Deer .975 .974 .967 .979 .018 .018 .023 .016 .007 .007 .010 .005

Dog - Horse .858 .875 .866 .874 .105 .095 .102 .095 .037 .030 .033 .030

p-values 1E−8 3E−5 1E−8 - 3E−8 2E−6 1E−7 - 6E−8 6E−5 7E−9 -
ahttps://en.wikipedia.org/wiki/Scientific notation

6.1 How Does Data-Augmentation Affect the Performance
of Classifier?

In order to evaluate the above research question, we study the performance of the
CNN (and SVM) classifier when trained on dataset augmented with (1) original
dataset i.e. without data augmentation; (2) blindly augmenting with synthetic
DCGAN examples; (3) blindly augmenting with synthetic IWGAN examples;
and (4) augmenting by applying our two stage filtering strategy of DAP.

Similarly, we evaluate bias, variance, and accuracy of SVM classifier on 20
randomly selected pairs from the dataset, and the results are shown in Table 2.
Again, the values under the DAP column is chosen with the optimal value of α;
i.e., the value of α where the reduction in the bias of the classifier is maximum.

Besides, to test the significance of the developed approach we use paired
t-test to test the null hypothesis: the difference of the two distributions in the pair
comes from the same normal distribution. Where each pair consists of the values
obtained through the baselines one at a time against values obtained through
DAP as shown in Table 1. The last row of Tables 1 and 2 reflects the p−value of
the t-statistics obtained at 5% level of significance. These low p − values reject
the null hypothesis, and the improvements achieved using proposed DAP are
statistically significant.

https://en.wikipedia.org/wiki/Scientific_notation
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Table 2. Performance comparison using SVM classifier on baselines datasets and aug-
mented dataset obtained using DAS. The p − values obtained using t − tests on pairs
‘Baseline vs DAP’ are tabulated in the last column. Note that we follow the scientific
notationa where we use 1Ex to present 1× 10x. Please note that, for bias and variance
lower is better whereas for accuracy higher is better.

Categories Accuracy Bias Variance

Org DCGAN IWGAN DAP Org DCGAN IWGAN DAP Org DCGAN IWGAN DAP

Plane - Cat .934 .936 .909 .945 .047 .042 .059 .037 .018 .021 .030 .016

Mobile - Frog .975 .979 .966 .980 .018 .016 .021 .014 .006 .004 .011 .004

Frog - Ship .979 .977 .962 .983 .015 .015 .024 .012 .005 .006 .012 .004

Mobile - Bird .969 .972 .954 .973 .020 .019 .027 .017 .010 .009 .017 .008

Horse - Truck .960 .960 .941 .969 .026 .027 .039 .022 .012 .012 .018 .007

Plane - Mobile .941 .943 .933 .950 .041 .039 .042 .035 .017 .017 .023 .015

Mobile- Deer .978 .980 .961 .982 .014 .012 .024 .012 .007 .007 .0144 .005

Mobile - Horse .973 .974 .960 .979 .016 .017 .025 .014 .009 .008 .013 .006

Plane - Truck .929 .931 .910 .936 .050 .046 .058 .043 .020 .021 .031 .018

Bird - Ship .952 .949 .937 .955 .032 .034 .040 .028 .015 .016 .022 .013

Mobile - Ship .941 .941 .934 .945 .040 .037 .044 .035 .017 .020 .021 .017

Plane - Horse .951 .948 .934 .957 .033 .036 .041 .030 .014 .015 .024 .010

Ship - Truck .937 .941 .926 .945 .043 .042 .051 .039 .018 .016 .022 .013

Cat - Truck .953 .954 .941 .958 .032 .030 .037 .028 .014 .015 .020 .011

Dog - Truck .963 .969 .952 .967 .025 .021 .030 .023 .011 .009 .017 .008

Plane - Bird .895 .892 .879 .904 .070 .072 .079 .064 .034 .035 .040 .029

Plane - Frog .969 .968 .944 .972 .022 .023 .035 .020 .008 .008 .020 .006

Bird - Deer .856 .853 .847 .864 .099 .097 .102 .091 .044 .048 .050 .042

Frog - Horse .958 .959 .950 .961 .028 .028 .033 .026 .013 .012 .015 .009

p-values 1E−7 9E−6 9E−12 - 1E−5 1E−4 1E−10 - 5E−8 2E−7 1E−12 -
ahttps://en.wikipedia.org/wiki/Scientific notation

It is clearly visible that the improvement in classification performance is
achieved via reduction in bias within the models trained on augmented datasets
obtained using our proposed augmentation service. This clearly validates that
one must not blindly augment datasets with available synthetic examples in
order to achieve higher recognition performance. Instead, proper attention must
be given to the bias of ML models which these synthetic examples affect.

6.2 How Does the Percentage of Input Data Affect the Quality
of Data-Augmentation?

In order to evaluate how does the bias in training dataset reduces by varying
the amount of examples shown to GAN. We plot the performance of classifiers
by varying α (data split percentage in Stage-1 of DAP) between 10% to 90% of
the training data. The accuracy and bias of the CNN and SVM classifier with
various amount of data-split is shown in Fig. 2 and Fig. 3 respectively. Note that,
the y-axis in the plots are scaled for visualization.

While the performance of the classifiers in these plots are fluctuating how-
ever their performance is mostly better than the baseline i.e. (a) no data-
augmentation (x − axis = 0) and (b) augmenting blindly (x − axis = 1) in the
plots. The reason for performance drop at certain α (for example Plane-Mobile
accuracy plot in Fig. 3) can be due to the mode-collapsing in GAN [1].

https://en.wikipedia.org/wiki/Scientific_notation
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Fig. 2. Accuracy-plot of top 6 pairs from Table 1. The x−axis in subplots represents
the values of α used in experiments, where x = 0, 1 corresponds to Org, DCGAN. The
y−axis represents the mean accuracy obtained after 3-fold crossvalidation.
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Fig. 3. Accuracy-plot of top 6 pairs from Table 2. The x−axis in subplots represents
the values of α used in experiments, where x = 0, 1 corresponds to Org, DCGAN. The
y−axis represents the mean accuracy obtained after 3-fold crossvalidation.
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7 Conclusion and Future Works

We presented a formal analysis of bias and variance associated with the learning
system of GANs and their affects on the bias of the learning systems of classi-
fiers. The proposed data augmentation strategy DAP is empirically shown to
alleviate the affects of dataset bias induced in the ML model. ML models trained
on augmented datasets obtained with DAP shows reduction in their bias and
achieves significantly better classification performance on multiple binary cat-
egories of CIFAR-10. Besides, the results measuring the bias and variance on
classifier’s learning system advocates the need for effective bias management
while augmenting datasets with synthetic images generated using GANs.

Development of DAP in multi-class settings is planned as future work of
this research. Besides, the formulation of an optimization procedure to estimate
α in DAP can benefit real-world systems and is another interesting future work
for this research.
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Abstract. Microblogging has become an important source of opinion-
rich data that can be used for understanding public opinion. In this
paper, we propose a novel weakly supervised probabilistic topic model,
Joint Entity-Sentiment-Issue (JESI), for political opinion mining from
Twitter. The model automatically identifies the target entity of the
expressed sentiment, the issues discussed and the sentiment towards
the issues and entity simultaneously. Unlike other machine learning
approaches to opinion mining which require labelled data for training
classifiers, JESI requires only a small number of seed words for each
entity and issue, and a sentiment lexicon. The model is evaluated on
a dataset of tweets collected during the 2016 Australian Federal Elec-
tion. Experimental results demonstrate that JESI outperforms baselines
for sentiment, entity and issue classification, especially achieving higher
recall and F1.

Keywords: Opinion mining · Sentiment analysis · Topic modelling

1 Introduction

The massive amount of opinion-rich data in microblogs such as Twitter provides
worldwide access to understand public opinion on a wide range of issues. Thus
exploiting such information to understand opinions is useful in many scenarios, for
example by political analysts interested in determining public opinion towards pol-
icy decisions or legislative changes. To automatically analyse such data, research
in opinion mining has attracted considerable attention in recent years.

Much early opinion mining research focused on business and e-commerce
applications, such as product and movie reviews. There is less research on under-
standing opinions in a political context. Among them, the majority of methods
are concerned with mining political sentiment to predict the outcome of elections.
The approaches employed range from lexicon based methods [13] to supervised
algorithms [1], and deep learning approaches [18]. Although the supervised and
deep learning approaches are claimed to perform well [1], labelled data for such
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approaches are not easily obtainable in practical applications. Further, most
work on political sentiment focuses on sentiment classification, though Maynard
and Funk [13] identified the opinion target and Vijayaraghavan et al. [18] clas-
sified topics along with the sentiment.

The work described in this paper concerns opinion mining in the political
domain, developing a model to identify sentiment, sentiment target and aspects
of the target using a weakly supervised approach. The weakly supervised app-
roach is motivated by the difficulty of obtaining a sufficient amount of labelled
data. Further, the identification of sentiment, target and aspects from each opin-
ion is vital for proper opinion analysis in the political domain due to the nature
of the posts. As an example, the tweet (underlining added):

Voting for the Liberals/Nationals & their “Free market” has killed the dairy industry.
Don’t vote for them!! #Auspol #Ausvotes #ozagchat

expresses a negative sentiment towards the Liberal Party on their economic man-
agement and dairy industry policies. The Liberal Party is the target, and eco-
nomic management and dairy industry are the aspects. In general, it is common
for people to write political tweets to express their sentiment towards targets
such as a political party or person, possibly with aspects of the target. This
argument can be further motivated by considering the definition of an opinion
as a quintuple: sentiment target, aspect of the target, sentiment on the aspect
of the target, opinion holder and time [10]. Mining these components of opinion
is called fine-grained opinion mining.

Latent Dirichlet Allocation (LDA) [2] based sentiment-topic models are con-
sidered to perform well for fine-grained opinion mining [6,8,9,19]. The strength
of such models is that all the dimensions can help to improve each other dur-
ing the joint modelling process. Recent methods show that weakly supervised
sentiment-topic models which utilise lexical information such as sentiment lex-
icons perform well compared to unsupervised models. However, many of the
proposed sentiment-topic models focus only on identifying aspects and senti-
ment, ignoring the target entity of the opinion. Further, the majority of such
models are evaluated on lengthy reviews. To the best of our knowledge, there is
no existing LDA-based opinion mining model which jointly models sentiment,
target and aspect from microblogging posts in the political domain.

In this paper, we propose a novel LDA-based weakly supervised fine-grained
opinion mining model, Joint Entity-Sentiment-Issue (JESI), to jointly identify tar-
get entity, target aspect (issue) and sentiment from political tweets. Sentiment
generation in JESI is conditioned on both the entity and issue distributions. JESI
is weakly supervised, where the only supervision comes from seed words for entities
and issues, and the SentiStrength classifier [17] to identify sentiment words.

The hypothesis underlying JESI is that the sentiment of an opinion depends
on both entity and issue. To validate the hypothesis, JESI is evaluated on a
dataset of tweets collected during the 2016 Australian Federal Election and com-
pared to the performance of weakly supervised JST [9] as a baseline. We select
JST as a baseline since the topic generation of JST depends on sentiment, which
is the reverse order compared to JESI. JST is the basis of many LDA-based
sentiment-topic models which detect sentiment and topic simultaneously [3,4].
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Experimental results demonstrate JESI outperforms the baseline for senti-
ment, entity and issue classification. Further, the qualitative analysis of topic
extraction demonstrates that JESI is capable of identifying more coherent topic
words for each entity, issue and sentiment.

The remainder of this paper is organised as follows. In Sect. 2, we present the
JESI model followed by the experimental setup in Sect. 3. The empirical analysis
and discussion are in Sect. 4. In Sect. 5 we briefly review related work.
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Fig. 1. (a) LDA model (b) JST model (c) JESI model

2 Joint Entity-Sentiment-Issue Model

In this section, we present the proposed model for fine-grained opinion min-
ing which aims to extract target entities (e.g. candidates or political parties),
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issues discussed (e.g. tax, refugees, etc.) and sentiment (positive or negative) on
the entity and issues from political tweets. The model is an LDA-based weakly
supervised fine-grained political opinion mining model called Joint Entity-Issue-
Sentiment (JESI), that jointly models entity, sentiment and issue. Figure 1 shows
LDA, JST and JESI models.

The LDA model [2] is based on the assumption that documents are a mixture
of topics, where a topic is a probability distribution over words. The model has
three hierarchical layers, where topics are associated with documents, and words
are associated with topics. In general, the procedure of generating a word in a
document under LDA can be broken down into two steps: first to choose a
distribution over a mixture of T topics, second to select a topic from the topic
distribution randomly, and then draw a word from that topic according to the
topic’s word distribution.

Table 1. Parameter notations used in the JESI model

Notation Description

D Number of documents in the collection

N Number of words in document d

E, I, S Number of entities, issues and sentiments

e, i, s An entity, an issue and a sentiment for the nth word in the dth

document

we, wi, ws Entity, issue and sentiment words for the nth word in the dth document

θe, θi, θs Entity, issue and sentiment distributions for document d

φe, φi, φs Word distribution for entity e, issue i and sentiment s

αe, αi, αs Symmetric Dirichlet priors for θe, θi and θs

βe, βi, βs Symmetric Dirichlet priors for φe, φi and φs

λe, λi, λs Transformation matrices for encoding prior-information

To model entity, issue and sentiment jointly, we propose the JESI model
with three variables instead of the topic variable in LDA. In JESI, entity and
issue are associated with documents, the sentiment is associated with entity and
issue, and entity, issue and sentiment words are associated with entity, issue and
sentiment respectively.

Compared to LDA, which is an unsupervised model, JESI is a weakly super-
vised model. In JESI, we add additional dependency links of φe, φi and φs on the
matrices λe, λi and λs respectively, which we use to encode word prior entity,
issue and sentiment information into the model. This weakly supervised approach
is inspired by the weakly supervised JST model [9]. JST incorporated only the
sentiment prior knowledge using a sentiment lexicon. More details on incorpo-
rating prior information into the JESI model are given in Sect. 2.1. A graphical
model JESI is shown in Fig. 1(c) and notations are described in Table 1.
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Consider that we have a corpus with a collection of D documents denoted
by C = {d1, · · · , dD}; each document in the corpus is a sequence of Nd words
denoted d = (w1, · · · , wNd

), and each word in the document is an item from a
vocabulary with V distinct terms. Also let E be the total number of entities,
I be the total number of issues and S be the number of distinct sentiments.
The procedure for generating words wen , win and wsn in document d under
JESI can be resolved into three steps. Firstly, an entity l is chosen from the
document-entity distribution θed and an issue k is chosen from the document-
issue distribution θid . Following that, a sentiment j is chosen from the sentiment
distribution θsd,l,k which is conditioned on the sampled entity l and issue k.
Finally, an entity word wen , an issue word win and a sentiment word wsn is
drawn from the per-corpus word distribution conditioned on generated entity l,
issue k and sentiment j separately. The generative process in JESI is:

– For each entity l ∈ {1, · · · , E}, draw φel ∼ Dir(λel × βE
el

)
– For each sentiment j ∈ {1, · · · , S}, draw φsj ∼ Dir(λsj × βS

sj )
– For each issue k ∈ {1, · · · , I}, draw φik ∼ Dir(λik × βI

ik
)

– For each document d, choose distributions θed ∼ Dir(αe) and θid ∼ Dir(αi)
– For each entity and issue under document d, choose a distribution θsd,l,k ∼

Dir(αs)
– For each word wi in document d

• Choose an entity ln ∼ Mult(θed), an issue kn ∼ Mult(θid) and a sentiment
jn ∼ Mult(θsd,ln,kn

)
• Choose words wen ∼ Mult(φeln

), win ∼ Mult(φikn
) and wsn ∼

Mult(φsjn
)

In our implementation, we use symmetric priors αe, αi, αs, βe, βi, and βs, which
can be treated as the prior observation counts before having any actual words.

2.1 Incorporating Model Priors

Similar to JST, we add a dependency link of φs to matrix λs of size S × V ,
which we use to encode word prior sentiment information into the JESI model.
Additionally, we use a similar approach for φe and φi to encode word prior
entity and issue information which is not available in the JST model. Further,
for the initialisation of posterior distributions e, i and s, we utilise model prior
information. If the word is not found in the prior information, we initialise e, i
and s randomly.

For entity and issue prior information, we use manually constructed seed
word lists. For example, the procedure of incorporating entity prior knowledge
into the JESI model is: first, λe is initialised with all the elements taking a
value of 1. Then for each term w ∈ {t1, ..., tV } in the corpus vocabulary and for
each entity l ∈ {l1, ..., lE}, if w is found in the entity seed word list of entity
ln, the element λeln,w

is kept as 1 and other entities for word w updated to
0. For instance, assume that there are only 3 predefined entities and the word
‘liberal’ with index n in the vocabulary is relevant to the ‘Liberal’ entity. The



Weakly Supervised Joint Entity-Sentiment-Issue Model 573

corresponding row vector in λe is [1, 0, 0] with elements representing Liberal
(l1), Labor (l2) and Greens (l3). Multiplying λeln

with βeln , only the values of
βel1n

are retained, and βel2n
and βel3n

are set to 0. Thus, “liberal” can only be
drawn from the Liberal entity word distributions generated from the Dirichlet
distribution with parameter βel1

.

2.2 Model Inference

In order to obtain the distributions of θe, θi, θs, φe, φi and φs, we first esti-
mate the posterior distribution over e, i and s. The sampling distribution for
a word given the remaining entity, issue and sentiment is P (en = l, in =
k, sn = j|we, wi, ws, e

¬n, i¬n, s¬n, αe, αi, αs, βe, βi, βs) where e¬n, i¬n and s¬n

are vectors of assignment of entities, issues and sentiments for all the words in
the collection except for the word at the position n in document d. The joint
probability of the words, entities, issues and sentiment is P (we, wi, ws, e, s) =
P (we|e)P (wi|i)P (ws|s)P (s|e, i)P (e)P (i).

For the first term, by integrating out φe yields

P (we|e) =

(
Γ (V βe)

Γ (βe)V

)E ∏
l

∏
n Γ (Nl,n + βe)

Γ (Nl + V βe)
(1)

where Nl,n is the number of times word n appears in entity l, Nl is the number
of times words are assigned to entity l, and Γ is the gamma function.

Similarly, for the second and third terms, by integrating out φi and φs sep-
arately,

P (wi|i) =

(
Γ (V βi)

Γ (βi)V

)I ∏
k

∏
n Γ (Nk,n + βi)

Γ (Nk + V βi)
(2)

P (ws|s) =

(
Γ (V βs)

Γ (βs)V

)S ∏
j

∏
n Γ (Nj,n + βs)

Γ (Nj + V βs)
(3)

where Nk,n is the number of times word n appears in issue k, Nk is the number of
times words are assigned to issue k, Nj,n is the number of times word n appears
with sentiment j, and Nj is the number of times words are assigned to sentiment j.

For the fourth term, by integrating out θs yields

P (s|e, i) =

(
Γ (Sαs)

Γ (αs)S

)D×E×I ∏
d

∏
l

∏
k

∏
j Γ (Nd,l,k,j + αs)

Γ (Nd,l,k + Sαs)
(4)

where D is the total number of documents in the collection, Nd,l,k,j is the number
of times a word from document d being associated with sentiment j, entity l
and issue k, and Nd,l,k is the number of times entity l and issue k is assigned
document d.

For the fifth and sixth terms, by integrating out θe and θi respectively, we
obtain

P (e) =

(
Γ (Eαe)

Γ (αe)E

)D ∏
d

∏
l Γ (Nd,l + αe)

Γ (Nd + Eαe)
(5)
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P (i) =

(
Γ (Tαi)

Γ (αi)I

)D ∏
d

∏
k Γ (Nd,k + αi)

Γ (Nd + Tαi)
(6)

where Nd,l is the number of times entity l being assigned to some word token in
document d, and Nd is the total number of words in document d. Similarly, Nd,k

is the number of times issue k is assigned to some word token in document d.
Gibbs sampling is used to estimate the posterior distribution by sampling the

variables of interest, en, in and sn here, from the distribution over the variables
given the current values of all the variables and data. The conditional posterior for
en, in and sn by marginalising out random variables θe, θi, θs, φe, φi and φs is

P (en = l, sn = j, in = k|we, wi, ws, e
¬n, i¬n, s¬n, αe, αi, αs, βe, βi, βs) ∝

N¬n
l,wn

+ βe

Nl + V βe︸ ︷︷ ︸
θe

· N¬n
j,wn

+ βs

Nj + V βs︸ ︷︷ ︸
θs

· N¬n
k,wn

+ βi

Nk + V βi︸ ︷︷ ︸
θi

· N¬n
d,l + αel

N¬n
d + Eαe︸ ︷︷ ︸

φe

· N¬n
d,k + αik

N¬n
d + Tαi︸ ︷︷ ︸

φi

· N¬n
d,l,k,j + αs

N¬n
d,l,k + Sαs︸ ︷︷ ︸

φs

(7)

Samples obtained from the Gibbs sampling are then used to approximate the
per-corpus entity (φe), issue (φi) and sentiment (φs) word distributions and the
per-document entity (θe), issue (θi), and entity and issue specific sentiment (θs)
distributions.

3 Experimental Setup

3.1 Dataset

As the evaluation dataset, we collected nearly 50,000 tweets with hashtags
#auspol and #ausvotes posted during the 2016 Australian Federal Election
(8 May – 2 July). We performed several standard preprocessing tasks on the
tweets, including punctuation, number, URL and stop words removal, and stem-
ming. Additionally, mention tags in tweets were replaced with the display name
of the Twitter user using the available Twitter metadata. After completing the
preprocessing, we removed duplicate tweets, which result in a dataset of 49,000
tweets as the training dataset.

Labelled data is not required to train the JESI model. However, to evaluate
the resulted model’s performance, it is required to have labelled data. Since

Table 2. Statistics of the datasets

Training Test

Number of tweets in corpus 49,000 1,407

Number of words in corpus 461,297 13,896

Vocabulary size 29,030 3,860

Average number of words/tweet 9 10
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it is difficult to annotate the full dataset manually, we selected a portion of
the training dataset randomly to annotate and prepare the labelled data for the
evaluation. Before the annotation, we independently predefined 18 entities based
on the analysis of frequently used mention tags in the dataset and 16 issues based
on the major parties’ policy analysis articles1.

Then, from the training dataset, tweets were selected randomly for anno-
tation by selecting 15% of tweets for each day between 8 May – 2 July. Three
annotators independently annotated entity, sentiment, and issues for each tweet.
Among them, we selected only the positive and negative tweets, which resulted
in 1,407 tweets as the test data. From the test data, 89% tweets contain neg-
ative sentiment and only 11% contain positive sentiment. We test annotation
reliability using Cohen’s kappa statistics, and for all the cases, it is above 75%.

We use the labels only for evaluation and not for training and inference. To
train the model, we use 49,000 tweets, and for evaluation, the labelled portion
of tweets (1,407) is used. Table 2 shows some statistics of the datasets.

3.2 Hyperparameter Settings

In the JESI model implementation, we empirically set the symmetric priors
βe = 1.5, βi = 1 and βs = 1. For symmetric prior α values we adapted the
approach proposed by JST [9]. We set αe = (L × 0.001)/E, αi = (L × 0.001)/I
and αs = (L × 0.05)/S, where L is the average document length, E is the total
number of entities, T is the total number of issues and S is the total number of
sentiments. The value of 0.001 on average allocates 0.1% of probability mass for
mixing entity and issue, and similarly, 5% for sentiment.

3.3 Model Priors

For the entity and issue prior information, we use manually constructed seed
word lists. The seed word lists contain a maximum of 20 word tokens for each
entity and issue.

To select sentiment prior information, we compared the MPQA lexicon2,
NRC Emotion Lexicon [14], SentiStrength [17] and Stanford CoreNLP Senti-
ment [16]. According to the type of output from each lexicon and classifier, we
use different approaches to update λsj,w .

The MPQA lexicon contains positive, negative and neutral words. If a word
in the vocabulary is found under the positive or negative category j in the
lexicon, λsj ,w is updated to 1. A similar approach is used for the NRC Emotion
Lexicon. However, in the NRC Lexicon, we consider trust, anticipation and joy as
positive, and anger, fear, sadness and disgust as negative in addition to positive
and negative words.

1 https://www.abc.net.au/news/2016-05-13/election-2016-policy-big-issues/
7387588, https://electionwatch.unimelb.edu.au/australia-2016/categories/policies.

2 https://mpqa.cs.pitt.edu/lexicons/.

https://www.abc.net.au/news/2016-05-13/election-2016-policy-big-issues/7387588
https://www.abc.net.au/news/2016-05-13/election-2016-policy-big-issues/7387588
https://electionwatch.unimelb.edu.au/australia-2016/categories/policies
https://mpqa.cs.pitt.edu/lexicons/
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SentiStrength and Stanford CoreNLP Sentiment return a sentiment score
for a given word. Based on the returned value we use empirically found different
weights on λsj ,w. SentiStrength returns a strength from 1 to 5 for positive (Spos)
and from −1 to −5 negative (Sneg) for each word. We update λsj ,w as 1 if
|Spos + Sneg| is 4, 0.8 if 3, 0.6 if 2, 0.4 if 1, or 0.2 if 1. Stanford CoreNLP
Sentiment returns a score from 0 to 4 where 3 and 4 are for positive, 0 and 1 are
for negative and 2 is for neutral words. We update λsj ,w as 1 if the score is 4 or
0, or as 0.8 if the score is 3 or 1.

4 Experimental Results

We modified the JGibbLDA3 package for implementation of JESI with Gibbs
sampling. Gibbs sampling is used with 1000 iterations to produce a sample of
results. We take 10 such samples of result sets, and for each sample, we calculate
the macro-averaged results to measure effectiveness on small classes [12] such
as the positive sentiment class in the evaluation dataset. Finally, we report the
average for results of samples to compare the performance of document-level
sentiment, issue and entity classification. We train JESI and baselines using the
training dataset and evaluate the model on test dataset as discussed above.

4.1 Sentiment Classification

The document sentiment is classified based on P (s|e, i), the probability of senti-
ment given entity and issue. From the output of the JESI model, we use the θs
distribution to select the sentiment with maximum probability for each tweet.

Sentiment Prior Information Selection. We compare the performance on
sentiment classification of JESI with different sentiment prior information, as dis-
cussed in Sect. 3.3. For entities and issues, we use seed words as prior information.

Table 3. JESI sentiment classification with different sentiment prior information

Prior information Positive Negative Macro-averaged

Pre Rec F1 Pre Rec F1 Pre Rec F1

MPQA Lexicon 16.6 69.2 26.8 93.7 56.5 70.5 55.1 62.8 58.7

NRC Emotion Lexicon 16.1 83.5 26.9 95.7 45.6 61.8 55.9 64.5 59.9

Stanford CoreNLP 20.4 50.4 29.1 92.4 75.6 83.2 56.4 63.0 59.5

SentiStrength 25.6 55.3 35.0 93.5 79.8 86.1 59.5 67.6 63.3

The results in Table 3 demonstrate that the model performs better for sen-
timent classification on the evaluation dataset with SentiStrength as sentiment
3 http://jgibblda.sourceforge.net/.

http://jgibblda.sourceforge.net/
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prior information. SentiStrength detects the highest percentage (9%) of nega-
tive words and the NRC Emotion Lexicon covers the highest percentage (10%)
of positive words compared to other prior information which explains why Sen-
tiStregth gives the highest recall for the negative class and the NRC Emotion
Lexicon gives the highest recall for the positive class. However, overall, JESI
performs better with SentiStrength.

JESI vs SentiStrength. We evaluate the sentiment classification performance
of JESI with SentiStregth as sentiment prior information, to the performance of
the SentiStrength classifier on tweets.

The results in Table 4 show that JESI with SentiStength as sentiment prior
information outperforms SentiStrength’s sentiment classification. Notably, Sen-
tiStrength alone does not perform well for the negative class, which resulted in
70.8% F1 compared to 80.6% for JESI. Overall, it can be concluded that JESI is
capable of learning more sentiment words during the learning process than the
initial identification of sentiment words using SentiStrength as prior information,
which helps to improve the overall sentiment classification performance of JESI.

JESI vs JST. We compare sentiment classification performance of JESI with
JST [9]. We use SentiStrength and seed word lists as prior information for both
models. However, in JST, words are generated conditioned on both sentiment
and topic. Therefore, it is not possible to incorporate topic prior information to
update Dirichlet priors β. However, to initialise posterior distributions l and z,
we use sentiment and topic prior information, respectively.

In JST, we use the π distribution (Fig. 1(b)) to select the sentiment asso-
ciated with the highest probability for each tweet as the predicted sentiment.
However, in JST, there is only a topic latent variable in addition to sentiment
variable. Therefore, here, we consider two JST models by considering JST topic
are equivalent to entities and issues in two models. For JST, we use its original
hyperparameter settings proposed in the paper [9].

The results in Table 5 show that JESI outperforms JST for sentiment classi-
fication. The main difference between JESI and JST is the sentiment generation
order where, in JESI, the sentiment is generated condition on entity and issue
and in JST entity/issue generation is conditioned on sentiment. Therefore, the
results demonstrate the effectiveness of sentiment generation of JESI over JST.

Table 4. JESI sentiment classification vs
SentiStrength sentiment classification

Model Pre Rec F1

SentiStrength 55.5 64.0 59.4

JESI 59.5 67.6 63.3

Table 5. Sentiment classification perfor-
mance comparison of JESI vs JST

Model Pre Rec F1

JST (topic as entity) 56.4 65.2 60.5

JST (topic as issue) 56.6 65.5 60.7

JESI 59.5 67.6 63.3
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Table 6. Entity classification performance
comparison of JESI vs JST

Model Pre Rec F1

JST (Topic as entity) 23.3 44.6 30.6

JESI 77.9 52.4 62.6

Table 7. Issue classification performance
comparison of JESI vs JST

Model Pre Rec F1

JST (Topic as issue) 37.6 36.3 36.9

JESI 76.6 61.7 68.4

Finally, we can conclude that the hypothesis of JESI is valid and in political opin-
ions, the sentiment is generate conditioned on the target entity of the sentiment
and issues of the target entity.

4.2 Entity Classification

Next, we evaluate the performance of JESI for entity classification. Entity clas-
sification is a multi-class classification task since there are 18 entity classes in
the dataset. In JESI, the document-level entity is classified based on P (e) which
is the θe distribution. From the output of JESI model, we use θe distribution
to select the entity for a given tweet by selecting the entity associated with the
highest probability value for a given tweet.

We compare JESI entity classification with JST as a baseline. For JST, we
use entity seed words as prior information for topics and SentiStrength for the
sentiment. However, as discussed in the previous section for JST, we use topic
(entity) prior information only to initialise the posterior distribution z. As hyper-
parameter values, for JST, we use the original values proposed in the paper [9].
In JST, we use the θ distribution to select the entity associated with the highest
probability for each tweet as the predicted entity.

The results in Table 6 show that JESI outperforms JST for entity classifi-
cation. In JST, the topic (entity) is conditioned on sentiment P (t|s) while in
JESI the entity generation is conditioned on the document P (e). Therefore, we
conclude that entity classification performs well when entity generation is not
conditioned on sentiment.

4.3 Issue Classification

Issue classification is a multi-label multi-class classification task since there are
16 issue classes and each tweet can have multiple issues in the dataset. From the
output of JESI, we use the θi distribution to select the issues for a given tweet
by selecting the issues associated with the probabilities higher than a threshold
value. For threshold selection, we use the PCut [7] method.

To compare performance, we use JST as a baseline. For JST, we use issue seed
words as prior information for topics and SentiStrength for the sentiment. As
discussed in the previous section for JST, we use topic (issue) prior information
only to initialise the posterior distribution z. As hyperparameter values, for JST,
we use the values proposed in [9]. In JST, we use the θ distribution to select
the issues associated with probability values higher than the threshold for each
tweet as the predicted issues.
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Table 8. Examples of entity, issue and sentiment words generated by JESI

Entity Liberal lnp, liberal, #lnp, vote, coalition, put, cut, #parakeelia, election, #lnpfail

Turnbull turnbull, malcolm, pm, news, cut, tax, vote, election, plan, #turnbull

Issue Refugees dutton, refugee, peter, labor, boat, asylum, bill, border, seeker, #refugees

Jobs turnbull, job, labor, pay, shorten, work, growth, union, leave, worker

Sentiment Positive shorten, labor, bill, abbott, news, policy, good, abc, support, vote

Negative turnbull, malcolm, lnp, liberal, vote, peter, lie, tax, cut, govt

The results in Table 7 show that JESI outperforms JST for issue classifica-
tion. In JST, the topic (issue) is conditioned on sentiment P (t|s) while in JESI
the issue generation is conditioned on the document P (i). Therefore, we con-
clude that the issue classification performs well when issue generation is not
conditioned on sentiment.

4.4 Topic Extraction

We perform a qualitative analysis of the generated entity, issues and sentiment
words from the Twitter dataset to evaluate the effectiveness of topic words learnt
by the JESI model. Some examples of entities, issues and sentiment along with
the top words extracted by the model are shown in Table 8. In the model, the
distributions of words given entity, issue and sentiment were estimated using φe,
φi and φs respectively.

It can be seen from the table that the extracted topic words are informative
and coherent. The majority of top entity words under the Liberal and Turnbull
entities represent the different terms commonly used to represent them when
writing tweets. Other than that it includes words such as ‘tax’ and ‘cut’, which
are jointly used with the government party or leading candidates. Similarly,
the issue words also contain the relevant entity’s representative words, such as
‘dutton’ and ‘peter’ (the name of the Immigration Minister) under the Refugee
issue. The extracted top sentiment words contain mixtures of entity words such
as ‘shorten’ and ‘turnbull’, issue words such as ‘tax’ and ‘cut’ and sentiment
words such as ‘lie’ and ‘support’. In the annotated tweets, 40% of negative tweets
are for the Liberal Party and, 30% are for Turnbull. We can expect the same
distribution in the full dataset also. Therefore, the majority of top negative words
are words relevant to Turnbull and the Liberal Party. Overall, the analysis of
extracted words under the entity, issue and sentiment illustrate the effectiveness
of JESI in extracting topics from a corpus of political tweets.

5 Related Work

Fine-grained opinion mining is an active research area of opinion mining, which
consists of the identification of opinion target, aspects of the target and sentiment
on the target and aspects. Previous methods have proposed different approaches
to extract target, aspect and sentiment separately, and others have proposed
models to identify components jointly.



580 S. Kannangara and W. Wobcke

Three approaches can be identified for aspect extraction: language depen-
dency rules [11], sequential learning algorithms such as Conditional Random
Fields (CRF) [5], and topic models such as LDA [15]. However, supervised meth-
ods such as CRF require substantial effort to label datasets word by word.

To jointly model sentiment and aspect, probabilistic topic models are utilised
heavily due to their ability to identify and concisely represent latent topics in
documents. The methods which used LDA as a basis to formulate joint topic-
sentiment models achieved good performance. For example, the Joint Sentiment-
Topic (JST) model [8], assumes that each sentiment has a multinomial distri-
bution over topics and that each sentiment has a multinomial distribution over
words. A hybrid model MaxEnt-LDA [19] was proposed to detect both aspects
and aspect-specific opinion words concurrently.

Recent methods show that lexical information such as sentiment labels can be
used to build weakly supervised topic models to improve sentiment analysis. The
baseline of this paper, weakly supervised JST [9], which extended the previous
JST model [8], is an example of such models. Later, most methods such as
Hierarchical Aspect-Sentiment Model (HASM) [6] which uses sentiment seed
words as supervised information, Multimodal Joint Sentiment-Topic (MJST) [4]
which uses emoticons as supervised data, and WS-TSWE [3] which uses word
embeddings for word co-occurrence statistics and sentiment lexicon, extended
the weakly supervised JST model.

6 Conclusion and Future Work

In this paper, we presented the LDA-based weakly supervised Joint Entity-
Sentiment-Issue (JESI) model for jointly identifying sentiment, sentiment target
(entity) and aspect of the target (issue). Extensive experiments conducted on
a Twitter dataset of political tweets show that the model outperforms JST, an
existing sentiment-topic model, on sentiment, entity and topic classification, with
higher precision, recall and F1. The results show that the hypothesis underlying
JESI that the sentiment of an opinion depends on both entity and issue is valid.
Further, JESI is capable of generating informative and coherent topic words for
entities, issues and sentiment.

Future directions include (i) extending the JESI model to detect the polit-
ical ideology of individuals, (ii) modifying JESI for stance detection by jointly
modelling stance and target of the stance.
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Abstract. In online discussion platforms, human facilitators are intro-
duced in order to facilitate the discussions to proceed smoothly and build
consensus efficiently. However, problems such as human bias and scalabil-
ity are becoming critical with increasing sophistication of these online dis-
cussion platforms. In order to address these problems, online discussion
facilitation support becomes more and more essential. Towards this end,
in this paper, a novel case-based reasoning (CBR) based online discussion
facilitation support approach, which consists of a case definition method
and a case retrieval algorithm, is proposed to support online facilitation
in large-scale discussion environments. The proposed approach models
the online discussions using the issue based information system (IBIS)
discussion style, where complex problems are modelled as a conversation
amongst several stockholders. In the proposed approach, discussion cases
are generated and retrieved based upon the structure features of their
discussions. The experimental results show the proposed discussion case
generation approach is able to reflect more precise discussion features
than those approaches that are based only on the quantitative features,
and the ability of the proposed case retrieval algorithm to retrieve the
most similar case from the case base.

Keywords: Online discussion platforms · Facilitation support ·
Case-based reasoning · Issue based information system

1 Introduction

One effective approach to solve critical social problems is to collect the wisdom
from a crowd of participant people. However, it grows difficult to organize a large
number of people to discuss in one particular place during a particular time.
With the development of the Internet, online discussion forums have attracted
much attention as the platform of gathering a crowd of people together to solve
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common problems. The core advantage of online discussion is that people can
join the discussion via the Internet from different places whenever they are free.
Therefore, platforms such as Climate CoLab [1], Deliberatorium [2] and Collagree
[3] have been developed to encourage people to discuss in online environments.
These platforms have been utilized to organize people to participant in online
discussions about topics such as global climate change, law reform and city
planning. In order to facilitate the discussion to proceed smoothly and achieve
consensus efficiently, many platforms [2,3] introduce human facilitators into the
discussions to conduct facilitation. Facilitators can promote the development
of the discussion, integrate ideas and opinions, and help the group to build
consensus [4]. However, as there is no general definition of online discussion
facilitation, a human bias cannot be avoided. In addition, with the increase of
the participants number in a certain discussion, scale issues and schedule issues
also become critical problems for human facilitators.

As a result, it becomes more and more necessary to develop online discussion
facilitation support techniques to help human facilitators relieve their burdens.
The challenging part of facilitation in online discussion forums is that it is a very
complicated problem, which changes significantly with the discussion develop-
ment. It means that plenty of information need to be considered for facilitation
and it is difficult to describe the method in a number of specific rules. Existing
research [5] emphasizes the importance of experiences for human facilitators,
since they reuse the successful experience they had in the past to solve new
similar problems.

In this paper, we propose using CBR to support online discussion facilita-
tion. CBR is one of the famous artificial intelligence techniques that have been
successfully used in real-world applications [6,7]. In this regard, it provides an
effective reasoning paradigm for solving new problems by adopting similar solu-
tions that have been proposed for similar problems in the past [8]. This is very
similar to the human facilitator thinking paradigm. Experienced human facili-
tators facilitate better than novice human facilitators because they have more
experience that is derived from the past facilitation they have done. And experi-
enced human facilitators are able to utilize these sorts of experience when they
try to conduct facilitation in new discussion situations. Towards this end, in this
paper, we propose a CBR based approach to support online discussion facilita-
tion. When using CBR to solve a problem, the first and most important part is
to find out the essential characteristics which can be used to express this prob-
lem in order to define the problem as a case. As a result, this proposed approach
introduces a novel method of defining online discussion cases from their struc-
tures. In addition, a case retrieval algorithm is implemented to retrieve the most
similar cases from the case base.

The rest of this paper is organized as follows. Section 2 introduces the related
work of this research. In Sect. 3, the proposed CBR based online discussion
facilitation support approach is introduced. Section 4 presents the experimental
settings along with the experimental results.
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2 Related Work

Many research efforts have been attempted in order to support group discussion
facilitation. In this regard, Dickson et al. [9] explored three human-based facili-
tation modes in Group Decision Support System(GDSS) meeting and showed
that group consensus improved in all the three modes. In addition, Anson
et al. [10] showed human facilitators maintain high quality group interactions
and improved group processes and greater cohesion. Also, an automated facil-
itation technique has been developed to support group discussion. Limayem
et al. [11] showed both human-facilitated decision making groups and automated-
facilitated decision making groups experienced significantly higher post-meeting
consensus and perceived decision quality than non-facilitated groups in GDSS
meeting. Aiken and Vanjani [12] showed that automated facilitator is better
than human facilitator for simple idea generation and voting tasks. Wong and
Aiken [13] showed both expert-human facilitated groups and automated facili-
tated groups perform significantly better than novice-human groups in electronic
meetings when faced with relatively simple idea generating and ranking tasks.
Derrick et al. [14] demonstrated that automated facilitation of system require-
ment generation is possible and showed that the agent-facilitated groups generate
more complete requirements than non-facilitated groups. As shown in the above
mentioned research works, just like human facilitators, automated facilitation
techniques can also support group discussions.

However, there are still some problems in group-discussion facilitation. In
specific, most of the group-discussion facilitation techniques can only support
tasks such as agenda preparer, timekeeper, simple idea generation and voting.
Therefore, it becomes difficult to use these techniques to support high level online
discussion facilitation, since high level discussion facilitation, such as proper
facilitation time detection and facilitation pattern decision, needs to be generated
on the basis of the dynamically changing discussion situation. As a result, it is
highly critical to develop novel discussion facilitation techniques to support high
level facilitation in online discussion forums.

On the other hand, Gu et al. [15] proposed a CBR based online discus-
sion facilitation support approach that is able to adapt to different discussion
situations. Specifically, they proposed to use IBIS style to model the discus-
sion structure and to define discussion cases from the quantitative perspective
of the IBIS structure elements. IBIS style is based on the principle that the
design process for complex problems is fundamentally a conversation amongst
several stakeholders [16]. This has been used as a visual aid to help participants
and facilitators to understand the discussion structure. However, in this IBIS
based discussion process, a lot of inner characteristics cannot be reflected if we
just consider the quantitative features. For example, we consider the similarity
between Case(a) and Case(b) that are demonstrated in Fig. 1. In this situation,
if we use the quantitative features to define a case base, the differences between
Case(a) and Case(b) cannot be distinguished because their quantitative features
are the same. Even though, they are constituted by different structures, these
differences cannot be reflected because they have the same number of issues,
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ideas, and arguments. On the other hand, it is critical to consider the structure
characteristics in the case definition because the discussion structure reflects the
relationship among the discussion contents. For example, the connections among
different vertexes need to be considered because they reflect the consistency in
the discussion while those vertexes which are not connected cannot reflect the
consistency in the discussion. As a result, it is critical to design new approaches
to define the discussion case in order to reflect the structure characteristics of
the discussion.

Fig. 1. Two IBIS style discussion cases

3 Proposed Approach

3.1 Problem Description

In this research, we aim to develop CBR based online discussion facilitation
support approach that can be used to help human facilitators conduct facilitation
in online discussion platforms.

In order to design a CBR based online discussion facilitation support app-
roach, as the first step, we need to build a reasonable case base that represents
the system’s experience in online discussion facilitation. For each case, the def-
inition consists of a problem description part and a problem solution part. In
this paper, we propose a novel structure perspective method to describe the
online discussion facilitation problem. The solution of the problem is a result
that whether facilitation is necessary to be added or not. In addition, we pro-
pose a case retrieval algorithm in order to find the most similar case from the
case base.

Specifically, we consider the discussion process that is represented in issue
based information structure(IBIS) style [16]. We generate IBIS structures of the
discussions by using three sorts of elements which are issue, idea, and argument.
Issues are defined as the questions that need to be answered during the discus-
sions. Ideas are defined as the possible answers to the issues. Arguments contains
both pros and cons. Pros are defined as the support to an issue or an idea and
cons are defined as the object to an issue or an idea. Each element in the IBIS
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style discussion structure is represented as a vertex. Facilitations are the posts
that facilitators generated to promote the discussion. Each association between
two elements is represented as a directed edge. For example, discussion in Fig. 2,
(a) can be represented in IBIS style as demonstrated in Fig. 2, (b). FA represents
facilitation posts and argu represents argument posts.

Fig. 2. IBIS style discussion expression

3.2 Discussion Case Definition

Discussion case definition has been proposed from the quantitative perspective
which focuses on the numeric IBIS style discussion features such as issue number,
idea number and argument number [15]. However, in order to reflect more precise
features of the generated IBIS style discussion graphs, the characteristics of
the structure in the graph also need to be considered. One of the examples is
demonstrated in Fig. 3.

Fig. 3. IBIS style discussion expression

As shown in Fig. 3, one of the salient characteristics in the IBIS style dis-
cussion structure is the original vertex. The original issue vertex, which equals
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to the root topic of the discussion, can be considered as the parent vertex of all
other vertexes. All other vertexes show the discussion details which are gener-
ated to solve the original discussion issue. Considering the discussion structure,
it is obvious that the depth of the vertexes in the discussion structure can reflect
status information in the discussion. For example, if two issues hold the same
number of ideas, the issue which has more deep ideas can be considered as better
discussed than the issue which has fewer deep ideas.

In this research, we define the original vertex’s depth as 0. All other vertexes
are in a depth which is more than 0. And we define the discussion case as a sort
of labeled graph on the basis of the IBIS style discussion structure. Specifically,
we define a labeled discussion graph as a directed graph in which each vertex
and each edge is associated with one label. A labeled graph is defined by a triple
G = <V, rV , rE>, where.

– V is a finite set of vertexes.
– rV ⊆ V × LV shows the relation between vertexes and labels. Each vertex has

only one related label, which can be issue, idea or argument. The situation that
vi has label lvi

is represented by a tuple (vi, lvi
). rV is the set of tuples vi.

– rE ⊆ V ×LV ×V ′×LV ′ shows the relation between edges and labels. One edge
(vi, lvi

, vj , lvj
) is defined as the combination of two labeled vertexes (vi, lvi

)
and (vj , lvj

). rE is the set of quaternaries (vi, lvi
, vj , lvj

).

For example, one labeled IBIS style discussion case graph as demonstrated
in Fig. 4(a) can be formulated by a labeled group as demonstrated in Fig. 4(b).

Fig. 4. IBIS style discussion expression

3.3 Discussion Case Retrieval

In this research, we calculate the similarity between two discussion cases on the
basis of labeled graph similarity algorithm [18].

When we measure the similarity between two labeled IBIS style discussion
graphs, we use the idea that comparing the number of features which are common
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to both objects, to the total number of the features [19]. In our situation, the total
number of the features of a labeled IBIS style discussion graph can be represented
as a triple G. When we compare the similarity of two graphs G1 = <V1, rV1 , rE1>
and G2 = <V2, rV2 , rE2>, such that V1 ∩ V2 = ∅, one additional thing that we
need to consider is the relation that connects the two graphs. In this research,
we define the relation that connects two graphs as: if two vertexes hold same
sort of label and are in the same structure depth, these two vertexes are consider
to be similar. Similarity between two graphs G1 and G2 can be calculated by
Eq. 1.

simS(G1, G2) =
f(descr(G1) ∩ descr(G2))
f(descr(G1) ∪ descr(G2))

(1)

descr(G1) and descr(G2) are the descriptions of labeled graph G1 and G2,
respectively. Each description is made up by all the labeled graph vertex features
in addition to the edge features. The similarity between the two graphs, i.e., G1

and G2, is calculated by using the common features that the two graphs share
divided by the set of all the two graph features.

There is a special state where new discussion case is the subgraph of more
than two cases in the case base, and the number of common features of these two
cases is the same. If these two cases are retrieved from the case base together, and
then the algorithm retains the subbranch that includes the new discussion case
and cut off other subbranches from the origin vertex. After that, the similarity
is recalculated between these two cases in order to choose the most similar case.

4 Experiments

In this section, we introduce the experimental results of comparing the proposed
structural perspective discussion case definition with the quantitative discussion
case definition in case retrieval results.

In order to demonstrate the ability of the proposed CBR-based approach to
retrieve similar discussion cases efficiently, we built a synthetic test case base
that includes seven discussion cases. The quantitative information of the case
base is shown in Table 1.

Table 1. Synthetic cases in test case base

Case ID Case1 Case2 Case3 Case4 Case5 Case6 Case7

Number of issues 1 1 1 1 1 3 3

Number of ideas 1 3 3 1 5 5 5

Number of arguments 2 4 3 1 5 2 2

Idea depth 1 1 2 1 3 3 3

Facilitation 1 0 0 1 0 1 0
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We choose four sorts of quantitative information as the parameters, number
of issues, number of ideas, number of arguments and idea depth. The idea depth
means the depth of the deepest idea in the discussion case. And the structural
information of the case base is demonstrated in Fig. 5.

Fig. 5. Experiment case base

In addition, we built two synthetic test cases whose information is demon-
strated in Table 2 and Fig. 6.

Table 2. Synthetic test cases

Case ID Case t1 Case t2

Number of issues 1 1

Number of ideas 1 6

Number of arguments 2 6

Idea Depth 1 2

In this experiment, firstly, we retrieve the most similar case to our test cases
from the case base by using the Nearest Neighbor (NN) algorithm [17]. In NN
algorithm, similarity is calculated on the basis of the euclidean distance of each
feature parameter. Two cases are more similar if the euclidean distance between
them is smaller. If the euclidean distance between two cases is 0, it means that the
two cases are identical, i.e., the two cases hold the same number of quantitative
perspective features. Secondly, we retrieve the most similar case to our test case
from the case base by using the proposed labeled graph similarity algorithm we
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Fig. 6. Synthetic test cases

Fig. 7. Experiment results

introduced in Sect. 3. Two cases are more similar if the labeled graph similarity
between them is higher.

Specifically, two test cases, Case t1 and Case t2 are designed to test our
proposed approach. Case t1, which is identical to Case1 of the test case base,
is designed to test whether identical cases can be calculated as identical by our
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proposed approach. Case t2, which is similar to Case5, Case6 and Case7 of the
test case base, is designed to test whether structure details can be reflected by
our proposed approach.

The results of the experiments are shown in Fig. 7. From these results, we
can see that proposed approach can work as good as the quantitative perspective
discussion case definition method. In specific, it finds the most similar case to
Case t1 and Case t2 from the case base, which are Case1 and Case5, respec-
tively. Case t1 is also identified to be identical with Case1 because the labeled
graph similarity is 1. In addition, for the similarity results of Case6 and Case7,
differences are not reflected when using the quantitative features, as shown in
Fig. 7(a) and (b). However, this sort of difference can be reflected when using the
structure perspective features and the proposed algorithm, as shown in Fig. 7(c)
and (d). This reflects the situation that the quantitative features are the same,
but the structures are different.

5 Conclusion

In this paper, we proposed a novel CBR based online discussion facilitation
support approach to support online discussion facilitation. In the proposed app-
roach, IBIS style discussion structure format is employed to define discussion
cases on the basis of their discussion structure. Labeled graph similarity algo-
rithm is utilized to retrieve the most similar discussion cases from the case base.
Experimental results demonstrated the ability of the proposed case definition
method to reflect structural discussion cases differences that the quantitative
features cannot reflect and the ability of the proposed case retrieval algorithm
to retrieve most similar cases from the case base. One of the directions for future
work is to improve the efficiency of the proposed case retrieval algorithm when
handling large-scale case base. The possible solution is to consider comparing
the extracted features from each case instead of comparing two graphs. Another
direction of future work is to introduce more information into the case defini-
tion in order to reflect more precise discussion situation. One possible solution
is to consider the semantic information of each IBIS vertex. These additional
information can be added as sub-vertexes that can ensure more precise case
retrieval.
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Abstract. Deep neural networks (DNN) have been recently shown to be
susceptible to a particular type of attack possible through the generation
of particular synthetic examples referred to as adversarial samples. These
samples are constructed by manipulating real examples from the training
data distribution in order to “fool” the original neural model, resulting
in misclassification of previously correctly classified samples. Addressing
this weakness is of utmost importance if DNN is to be applied to critical
applications, such as those in cybersecurity. In this paper, we present
an analysis of this fundamental flaw lurking in all neural architectures
to uncover limitations of previously proposed defense mechanisms. More
importantly, we present a unifying framework for protecting deep neu-
ral models using a non-invertible data transformation–developing two
adversary-resistant DNNs utilizing both linear and nonlinear dimension-
ality reduction techniques. Empirical results indicate that our framework
provides better robustness compared to state-of-art solutions while hav-
ing negligible degradation in generalization accuracy.

Keywords: Deep neural network · Adversarial sample defense ·
Non-invertible data transformation

1 Introduction

DNN has been applied to various critical fields such as medical imaging [2],
self-driving cars [11] and malware detection [5,18,23]. However, recent work [15,
20] uncovered DNNs are vulnerable to adversarial sample – a synthetic sample
generated by modifying a real example with imperceptible perturbations but
causing a target DNN model to believe it belongs to the wrong class with high
confidence.

To mitigate the aforementioned kind of attack, previous defenses [3,12,14]
generally follow the basic idea of adversarial training in which a DNN is trained
with both samples from the original data distribution as well as artificially
synthesized adversarial ones. A recent unification of previous approaches [16]
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showed that they were all special cases of a general, regularized objective func-
tion DataGrad. However, because the adversarial samples space is unbounded,
this framework is still vulnerable to a certain type of adversarial sample. To be
specific, as we will show later in Sect. 5, these defense can be easily bypassed if an
attacker generate adversarial samples from the network trained with DataGrad
(i.e., post-defense model).

In this paper, we present a new defense framework that increases the difficulty
for attackers to craft adversarial samples from both the original DNN and the
post-defense model. At a high level, we integrate an data transform layer in front
of a DNN model, which transform an input sample into an latent representation
before being inputted into the DNN. Technically speaking, this data transfor-
mation layer employs a non-invertible dimensionality reduction approach which
increases the computational cost of mapping an adversarial sample generated
from the latent space back to the input space. Evaluation results on MNIST
data set demonstrate an non-invertible data transformation layer improves the
robustness of a DNN and preserves the classification performance on clean test-
ing samples. In summary, we make the following contributions:

– We propose a comprehensive framework that makes a DNN model resistant
to adversarial samples by integrating an input transformation into the model.

– We develop two new defense mechanisms by injecting different dimensional
reduction methods into the proposed framework.

– We theoretically and empirically evaluate the DNN models, showing that our
new defense framework is resistant to adversarial samples.

2 Existing Defences

The existing defense mainly falls in to the following categories: (1) augment-
ing the training set and (2) enhancing model complexity. As is mentioned in
Sect. 1, most of the defenses augment the training set with a group of adver-
sarial samples [1,4,16,22] and retrain the model with the augmented data (i.e.,
adversarial training). These defenses can be viewed as adding a regularization
term to a DNN’s loss function [16], which penalizes the subspace where adver-
sarial samples lies in. Another line of works building defences by increasing the
complexity of a DNN and improve the tolerance of complex DNN models with
respect to adversarial samples generated from simple DNN models. For example,
[17] develops a defensive distillation mechanism, which trains a DNN from data
samples that are distilled by another DNN. By using the knowledge transferred
from the other DNN, the learned DNN classifiers become less sensitive to adver-
sarial samples. Similar to [17], [9] proposed stacking an auto-encoder together
with a normal DNN.

Though the above approaches, both from data augmentation and model com-
plexity perspectives, have proven effective in handling samples generated from
normal adversarial DNN models, they do not handle all adversarial samples. In
light of this, we propose a framework that blocks the gradient flow from the out-
put to input variables, a solution that prove effective even when the architecture
and parameters of a given a DNN are publicly disclosed.
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3 Data Transformation Enhanced DNN Framework

In this section, we introduce our framework’s design goals and choose a particular
type of data transformation that will fulfill these goals.

3.1 Design Goals

As is mentioned in Sect. 1, we build a novel DNN framework by integrating a
data transformation layer before an ordinary DNN. And we want our framework
to achieving the following goals:

– It has minimal impact on the performance of a DNN model when legitimate
samples are seen.

– It increases the computational cost of finding a group of adversarial samples
that can bypass the post-defense model.

– it is independent from the subsequent DNN model.

3.2 Framework Overview

As is mentioned before, to generate an adversarial samples from our framework,
an attack need to map an adversarial sample generated from the latent space
back to the input space. This indicates that if a selected data transformation
is Non-invertible, an attacker is not able to generate adversarial samples. To
be specific, non-invertible data transformation stands for the following prop-
erties: (1) inverting the data transformation is computationally too complex
to be tractable; or (2) inverting the data transformation will cause significant
reconstruction error. Besides non-invertible, the data transformation layer should
preserve the semantic meanings for an original input, which will ensure the clas-
sification of our framework. Last but not least, the transformation should also be
computationally efficient and more importantly, incremental. The latter require-
ment is essential given that any data transformation method must be capable of
handling unseen samples as they are presented. Otherwise, the data transforma-
tion will need to be retrained, and subsequently, the DNN on top of the newly
retrained transform layer.

Dimensionality reduction is one particular data transformation mechanism
that satisfies these design objectives. First, dimensionality reduction methods
are often designed to preserve at least the most important aspects of the orig-
inal data. Second, dimensionality reduction can serve as a filter for adversarial
perturbations when a DNN is confronted with adversarial samples generated
from the post-defence models. Third, dimensionality reduction helps reduce the
dimensionality of the input distribution that is fed into the DNN. Finally, it is
easier to develop non-invertible data transformation methods, since recovering
higher dimensional data from lower dimensional data is difficult. The following
sections introduce details of two developed defence mechanisms using different
non-invertible dimensional reduction methods.
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4 Data Transformation Enhanced DNNs

4.1 Designed Linear Mapping (DLM) DNN

We first propose a novel linear dimensional reduction method, which stems from
principal component analysis (PCA). And we provide a theorem that places the
lower bound on the reconstruction error.

PCA is computationally efficient and easy to implement [13]. Additionally, it
preserves critical information by finding a low-dimensional subspace with max-
imal variance. In another word, it is convenient for an attacker to generate
adversarial examples by mapping the low dimensional data back to the high
one.

PCA preserves meaningful features of the original data when mapping them
to a lower dimension. Given a data matrix X ∈ R

n×p, the transformation matrix
W can be obtained by solving the optimization function as:

arg min
Y,W

1

2

∣
∣
∣

∣
∣
∣X − Y W T

∣
∣
∣

∣
∣
∣
F

(1)

where W ∈ R
p×q, WTW = Iq and Y ∈ R

n×q. According to the Eckart-Young
Theorem [7], the optimal solution is obtained when W consists of the q largest
eigenvalues of XTX. Therefore, the low dimensional mappings can be computed
as follows:

Y = XW (2)

Accordingly, we can approximately reconstruct the high dimensional X from the
transformed data Y by:

X̂ = Y W T (3)

which represents the process of reconstructing high dimensional approximation
using only low dimensional mappings and a transform matrix. Therefore, using
PCA alone for a data transformation doesn’t satisfy the non-invertible criteria
we introduced in Sect. 3.

To deal with this problem and yet preserve computational efficiency, we equip
PCA with our first non-invertible characteristic. To do this, we propose a novel
dimension reduction method we call a designed linear mapping (DLM). This
design ensures that the PCA operation continues to preserve the critical infor-
mation while the column-wise highly correlated transformation matrix guaran-
tees that inverting the DLM will generate significant reconstruction error. To
explain the consequence of this, we now introduce DLM in detail and examine
its properties.

Much as in (2), we shall formally define DLM as:

Y = XCT + ω, (4)

where X ∈ R
n×p, Y ∈ R

n×pc . ω ∈ R
n×pc denotes a normally distributed noise

matrix, where each entry of ω generated from a normal distribution N(0, σ2).
C ∈ R

pc×p is the transformation matrix obtained by following equation:

C = [B; A], (5)
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where C is constructed by combining a loading matrix B ∈ R
pb×p obtained via

PCA with a designed matrix A ∈ R
(pc−pb)×p, of which all columns are highly cor-

related. This combination integrates PCA’s information-preserving effects into
our DLM. As such, the lower dimensional projection Y can provide a better
representation of the original X.

Since the DLM described by (4) has a simple linear form, we estimate recon-
struction X̂ for X using high-dimensional linear regression [19] (we omit calcu-
lation details due to space constraints). According to Theorem 1 in [19], we can
obtain a lower bound of the reconstruction error, which is the L2 norm of the
difference between X and X̂ as shown in (6):

(

L2(X, X̂)
)2

≥ κ0 σ2 s log(p/s)

pc
, (6)

where s denotes the sparsity of X. κ0 is a constant whose value depends closely
on the data set. Therefore, given a certain set of data, any linear transformation
method is restricted by a constant lower bound calculated according to (6). In
addition, according to Theorem 2 in [19], there also exists an upper bound of
the reconstruction error as follows:

(

L2(X, X̂)
)2

≤ f(C)
s log(p)

pc
, (7)

where f(C) is a function of C. According to [19], the upper bound of the recon-
struction error depends on both the data transformation matrix C and noise
ω. When C is a an independent correlation matrix, as in PCA, then the upper
bound will approach the aforementioned lower bound. However, since we specif-
ically design C to be highly correlated, the upper bound will be significantly
larger than the lower bound [6,8], and thus result in a larger range for the
reconstruction error.

4.2 Dimensionality Reduction by Learning an Invariant Mapping
(DrLIM) DNN

When adversarial samples are processed by normal DNN models, the decisions
made in a lower dimensional space are completely different from those made for
legitimate samples, even though adversarial samples are highly similar to legit-
imate ones. Therefore, we intend to employ a dimensionality reduction method
that preserves the similarity of high dimensional samples in their lower dimen-
sional mappings. Furthermore, our method needs to be capable of extracting
critical information contained in the original data. Since the training of a DNN
is already computationally intensive, our approach needs to be incremental in
order to avoid the need for retraining the DNN.

Because of these considerations, we employ the dimensionality reduction
method DrLIM proposed in [10]. DrLIM is specifically designed for preserving
similarity between pairs of high dimensional samples when they are mapped to
a lower dimensional space. As a result, there is a significantly lower chance that
an adversarial sample acts as an outlier in the lower dimensional space, since
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its mapped location is bounded by the mapped locations of similar, legitimate
samples. DrLIM can also be used in an online setting.

More importantly, we theoretically prove that inverting DrLIM is an NP-hard
problem. Therefore, DrLIM is suitable for our framework in that it satisfies the
second characteristic of non-invertibility defined in Sect. 3. But first, we briefly
review DrLIM.

DrLIM consists of a convolutional neural network (CNN) model designed for
optimizing the cost function:

P∑

i=1

L
(

W, (Y, Xi1 , Xi2)
i
)

, (8)

where W denotes the coefficients. Xi1 and Xi2 denote the ith pair of input sample
vectors with i = 1 . . . P . Y is a binary label assigned to each pair of samples,
with Y = 0 denoting a similar pair of Xi1 and Xi2 , and Y = 1 for dissimilar
pairs. Any prior knowledge can be applied to representing dissimilarity. Let the
loss function for measuring the cost for each pair be defined as:

L (W, Y, X1, X2) =(1 − Y )
1

2

(

D(X1, X2)
)2

+
Y

2
{max

(

0, m − D(X1, X2)
)}2, (9)

where D(X1,X2) = ‖G(X1) − G(X2)‖2 is the Euclidean distance measured
between the output lower dimension mapping G(X1) and G(X1) for the sample
pair X1 and X2. Let m be a predefined constant which indicates whether all
dissimilar pairs are pushed or pulled towards to maintain a constant distance m.

Since G represents a mapping by the CNN to enable the recovery of high
dimensional data from the low dimensional data G(X), we need to first get
G−1(X). For the forward pass of a conventional neural network, it is not guar-
anteed that the weight matrices are invertible [24], implying that information
lost during pooling cannot be recovered. Thus, it is very difficult to compute
G−1(X) and recover the original data from a low dimensional representation.
Since inverting the CNN is nearly impossible, one option is to reconstruct orig-
inal X according to (9) given W and Y . In the following, we demonstrate that
even this approach can be mapped to a NP-hard problem.

As discussed before, the most important property of DrLIM that allows
it to fit into our framework is that it is provably non-invertible. Assuming
G(X) takes a simple linear form of G(X) = WX, then we have D(X1,X2)2 =
(X1 − X2)TWTW (X1 − X2). Here we denote δX = (X1 − X2). Following this
assumption, we can reformulate (9) as follows:

min
δX,z

∑

(1 − Y )δXT W T WδX + Y z2,

s.t. z ≥ 0, z ≥ m −
√

δXT W T WδX,

(10)

where z = max
(
0,m − D(X1,X2)

)
. Here we reformulate the second constraint

as
√

δXTWTWδX ≥ m − z. Since m − z ≥ 0, we have following:

δXT W T WδX ≥ (m − z)2. (11)
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Therefore, W is positive semi-definite. When both sides of (11) are multiplied
by −1 and substituted into (10), we find that:

min
δX,z

∑

(1 − Y )δXT W T WδX + Y z2,

s.t. z ≥ 0, −δXT W T WδX ≤ −(m − z)2.
(12)

From earlier work [21], the formulation (12) implies a quadratic problem with a
non-positive semi-definite constraint, which is an NP-hard problem.

Note that solving (12) can yield the distance δX. There are multiple pairs
of X1 and X2 that satisfy that δX = (X1 − X2). This makes the problem even
harder to solve. Additionally, since the linear relaxation (12) is already NP-hard,
the original problem (9) is also NP-hard given that G(X) is commonly regarded
as a nonlinear function approximated by a neural network.

5 Evaluation

Fig. 1. Variance preservation rates
with different reduced dimensions of
PCA.

Fig. 2. Reconstruction errors with
varying parameters for inverting DLM.

Going beyond theoretical analysis the non-invertible ability of the proposed
defenses, we empirically demonstrate these defenses achieve the goals mentioned
in Sect. 3. To be specific, We evaluate our framework using the widely-used
MNIST data set [18]. MNIST contains a training split with 60000 greyscale
images of handwritten digits and a test set containing 10000 images. Each image
has a dimensionality of 28 × 28 = 784 pixels (Fig. 1).

In the following experiments, we evaluate the proposed approaches under two
types of adversarial samples. In order to first demonstrate that our mechanisms
do indeed preserve the classification performance of the DNN, we test them
with the original test set. We then test our methods with adversarial samples
generated from the post-defence models to show that we achieve our secondary
design goal.
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5.1 Limitations of Adversarial Training

In this section, We demonstrate the limitations of widely adopted defense mech-
anism: adversarial training. We build two different DNNs (model A and B) that
share the same purpose–image recognition. Furthermore, we utilize adversarial
training in learning both models A and B, which we denote as models AADT

and BADT . Note that all following experiment results are the result of evaluating
model AADT using different samples.

The results appear in Table 1. The second row ‘Legitimate’ presents the clas-
sification error rates achieved by model AADT when testing with normal samples.
In the next third and fourth row, we show classification error rates using adver-
sarial samples generated from model A and model B respectively. The error rate
obtained when testing with adversarial samples generated from model A itself is
higher than the error rate found when testing with adversarial sample generated
from a different model B. This is because adversarial samples generated from a
specific model are more powerful for attacking that specific model. The result
showed below demonstrates that adversarial samples generated from enhanced
DNN models maintain their cross-model efficacy.

Table 1. Classification performance of testing an adversarial training enhanced model
with various adversarial samples

Different testing sets Classification error
rates of model AADT

Legitimate 0.0213

Adversarial samples from A 0.2506

Adversarial samples from B 0.1633

Adversarial samples from AADT 0.7810

Adversarial samples from BADT 0.5715

5.2 Classification Performance

Classification Performance of DLM-DNN. In this experiment, we fix the
reduced dimensionality to 100. These mappings are found by DLM and PCA.
In order to better explore the effect of combining DLM with PCA, we vary the
percentage Ppca of PCA mappings used in the fixed 100 dimension. Meanwhile,
the percentage of DLM mappings used varies according to 100−Ppca. In addition,
we also change the level of noise added to study its influence on classification
performance.

We first show the classification performance when testing with legitimate
samples in the column named as ‘Legitimate’ in Table 2. The noise coefficient is
set to be either 0.1 or 0.3, while Ppca varies from 5% to 95%. This performance
degradation is due to the increase of noise injected into the lower dimensional
mappings. Therefore, we conclude that if properly set, DLM-DNN can result in
performance comparable to adversarial training.
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Table 2. Classification performance of DLM-DNN and DrLIM-DNN

Trained model Classification error rates with
different testing sets

Legitimate Adversarial

Normal DNN 0.0198 0.8981

Adversarial training enhanced DNN 0.0213 0.2506

DLM-DNN Noise coefficient of 0.1 PCA(95%) 0.0226 0.3591

PCA(75%) 0.0247 0.3211

PCA(50%) 0.0258 0.2893

PCA(25%) 0.0268 0.2735

PCA(5%) 0.3101 0.5212

Noise coefficient of 0.3 PCA(95%) 0.0386 0.2869

PCA(75%) 0.0403 0.2685

PCA(50%) 0.0427 0.2609

PCA(25%) 0.0452 0.2699

PCA(5%) 0.3710 0.5529

DrLIM-DNN 0.0384 0.1380

Fig. 3. 2D mapping generated by DrLIM (legitimate samples on the left and adversarial
sample on the right)

We further examine the influence of varying Ppca on classification performance.
As shown in Table 2, the classification performance slightly improves with the
increase of PCA dimensionality. When Ppca is 95%, most of critical information
about original samples are preserved. However, as Ppca reaches 25%, enough infor-
mation is preserved resulting in only a slight decrease in classification error. Mean-
while, when Ppca varies from 25% to 95%, the benefit of preserving any further
information diminishes as with only a negligible decrease in the error rate.

We next evaluate the classification performance of DLM-DNN when con-
fronted with adversarial samples. We list the classification error rates in the
column noted as ‘Adversarial ’. According to Table 2, the error rates obtained



602 W. Guo et al.

by the DLM-DNN are considerably lower than that of a standard DNN, 0.8981.
Again, when Ppca is properly set, the DLM-DNN achieves results comparable
to adversarial training. Interesting enough, as Ppca ranges from 25% to 95%,
classification error goes up. This observation might imply that the impact of
adversarial samples is mitigated to a larger degree when more random distur-
bances are added.

DrLIM-DNN Classification Performance. In this experiment we demon-
strate the classification performance of DrLIM-DNN. The training set used for
evaluation includes 5 classes from the MNIST data, and each class contains 2000
samples. For testing, each of the 5 classes contains 1000 testing samples.

For training the DrLIM, we label a pair of image samples as similar when
they have the same label. This simplifies the training of DrLIM utilizing strong
prior knowledge. We further set the reduced dimension to 30 during the experi-
ments. Classification performance is shown in Table 2. According to these results,
using DrLIM-DNN results in a slightly higher error rate (0.0384) when testing
with legitimate samples, but achieves a significant improvement in performance
(0.1380) when testing adversarial samples. Especially in the latter case, DrLIM-
DNN shows higher robustness when compared to adversarial training.

As previously introduced in Sect. 4, DrLIM is designed with the objective of
preserving similarity between a pair of high dimensional samples when mapped to
lower dimensional space. Figure 3(a) shows the 2D mapping result of legitimate
examples. We notice some outliers and hence highlight them and their neighbours
by showing their corresponding images.

Since the point of DrLIM is to preserve the similarity in a lower dimensional
space, we further visualize the 2D mapping of adversarial samples in Fig. 3(b).
The 2D mapping in this case is not as clear as that for legitimate samples, but
the similarity between pairs of samples are still reasonably well-preserved. This
result indicates that DrLIM-DNN will not suffer as much as a normal DNN
would when confronted with highly confusing adversarial samples.

Table 3. Classification confidence obtained from normal DNN and DrLIM-DNN

Outlier no. Classification confidence of testing
adversarial samples

Normal DNN DrLIM-DNN

1 0.9995 0.5196

2 0.9721 0.5290

3 0.9989 0.6220

4 0.9921 0.5646

5 0.9998 0.5903

6 0.9997 0.5402

7 0.9998 0.6596

8 0.9919 0.5638
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Table 4. Classification performance of PCA-DNN and DLM-DNN testing with recon-
structed adversarial samples by inverting PCA

Trained models Classification error rates

Normal DNN 0.6596

Noise coefficient of 0.1 PCA(95%) 0.2846

PCA(75%) 0.2011

PCA(50%) 0.1447

PCA(25%) 0.1131

PCA(5%) 0.3691

Noise coefficient of 0.3 PCA(95%) 0.1864

PCA(75%) 0.1729

PCA(50%) 0.1449

PCA(25%) 0.1884

PCA(5%) 0.4766

In order to explore more of these outliers, in Table 3, we show the probabil-
ities of making wrong classification decisions when testing a normal DNN and
a DrLIM-DNN with these outliers. As shown in Table 3, these outliers cause
a normal DNN to make wrong classification results with over 97% confidence.
However, when processed with DrLIM-DNN, although these outliers are not
mapped to ideal regions, the probabilities of being wrongly classified is signifi-
cantly reduced to lower than 66%. This result indicates that a DrLIM-DNN is
effective for responding to unfamiliar samples with lower confidence. Therefore,
DrLIM-DNN will not suffer as much as a normal DNN would when confronted
with highly confusing adversarial samples.

As our experimental results show, DrLIM-DNN provides the best perfor-
mance when tested against adversarial samples.

5.3 Reconstruction Performance

As previously introduced in Sect. 4, both DLM-DNN and DrLIM-DNN are non-
invertible for different reasons. More importantly, we have proven that recovering
the original data from a low dimensional space induced by DrLIM is an NP-hard
problem. In this subsection, we mainly focus on inverting the proposed dimen-
sional reduction method DLM by approximating it with a linear transformation
matrix. We obtain the linear transformation matrix by solving a linear regression
problem. In case the original data is sparse, we further employ a linear regres-
sion with L1 regularization. First, we demonstrate that when configuring DLM
as pure PCA, the approach is not robust given that it may be effectively inverted
and thus allow for reconstruction of adversarial samples. Next, we examine the
reconstruction error obtained from inverting DLM, taking a percentage of PCA
mappings less than 100%.
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We evaluate the reconstruction performance when inverting one extreme case
of DLM, where DLM uses only PCA mappings. We refer to this method as PCA-
DNN for comparison. To examine this extreme case, we first configure DLM
as pure PCA and map legitimate testing samples to a 100-dimensional space.
Then we reconstruct these legitimate samples by inverting PCA, as explained in
Sect. 4.

Now we assume that an adversary has acquired the lower dimensional map-
pings generated by PCA. Then this adversarial can easily generate their corre-
sponding lower dimensional adversarial mappings. So the adversarial example
can be easily reconstructed as mentioned in Sect. 4. We use the reconstructed
adversarial samples to test a normal DNN model and a DLM-DNN under differ-
ent settings. According to the testing results shown in Table 4, the reconstructed
adversarial samples maintain their attack power against a normal DNN model.
And these adversarial samples can be effectively defended by a DLM-DNN as
shown in Table 2.

We finally investigate the reconstruction errors when inverting DLM-DNN.
We present reconstruction errors when varying percentages of PCA mappings
used and when varying sub-space dimensionality in Fig. 2. Our experiment shows
that inverting a DLM-DNN leads to high reconstruction errors, regardless of how
many PCA mappings are used what dimensionality is used. Recall the theoretical
analysis of DrLIM-DLM in Sect. 4, we demonstrate that our proposed methods
effectively build an adversary-resistant DNN.

6 Conclusion

We proposed a new framework for constructing deep neural network models
that are robust to adversarial samples, based on an analysis of both the “blind-
spot” of DNNs and the limitations of previous solutions. With our proposed
framework, we developed two adversary-resistant DNN architectures that lever-
age non-invertible data transformation mechanisms. Then we empirically showed
that crafting an adversarial sample for the first architecture will incur significant
distortion and thus lead to easily detectable adversarial samples. In contrast,
under the second architecture, we theoretically demonstrated that it is impossi-
ble for an adversary to craft an adversarial sample to attack it. This implies that
our proposed framework no longer suffers from attacks that rely on generating
model-specific adversarial samples.

Furthermore, we demonstrated that recently studied adversarial training
methods are not sufficient defense mechanisms. Applying our new framework
to the MNIST data set, we empirically demonstrate that our new framework
significantly reduces the error rates in classifying adversarial samples. Further-
more, our new framework has the same classification performance for legitimate
samples with negligible degradation.
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Abstract. With the popularity of online social networks, social relation data is
becoming increasingly important to alleviate the data sparsity and cold-start
problem of the traditional recommender systems. Social relations, such as trust
or friend relationships, are used as complement source to user feedback data
(e.g. item rating). However, using explicitly issued social relations directly may
generate sub-optional recommendation results because of the inherent draw-
backs of explicit social relations. To address the inherent drawbacks of explicit
social relation, we incorporate top-k implicit friends, who can be identified from
a heterogeneous information network established by user feedback and user
social relation data, into a matrix factorization method to make social recom-
mendations. Experimental results on real-world datasets FilmTrust and Douban
show that our method can improve the performance of rating prediction, com-
pared to the social recommender systems using explicit social relation and non-
social recommender system.

Keywords: Social recommendation � Heterogeneous information network �
Network embedding

1 Introduction

Recommender systems have been widely adopted by many online websites, such as
Netflix and Amazon, to provide personalized products to their users. Personalized
recommendation technology also becomes an important and independent research area
to alleviate the data overload problem caused by the rapid growth of information on the
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Web. However, traditional recommender systems often suffer from the data sparsity
and cold start problem because of lacking enough user feedbacks.

Recently, online social networks, such as Facebook and LinkedIn, have become
popular. A user can not only make comments or give a rating to a product but also
build relationships with other users (e.g., “Web of Trust” at Epinions.com). Inspired by
the homophily theory [1], which assumes that people are more inclined to establish
contact with persons who have the same characteristics as their own, social recom-
mendation become an effective way to alleviate the data sparsity problem by utilizing
the social relation [2–4]. However, incorporate social relations in a recommender
system directly may only bring marginal gains in predictive accuracy for three reasons.
First, just like rating data, social relation is often very sparse (e.g., the trust density in
Epinions and Ciao is 0.029% and 0.23%, respectively) if it exists [5]. Second, there are
various kinds of relationships online, such as trust, follow, and friendship. Treating
them in the same way may generate suboptimal results. Last but not least, the trust or
friend relationships may only exist in some specific aspects. For example, user A
follows user B because of the same taste on books, but they may hold different opinions
on foods.

To mitigate the issues mentioned above, we propose a novel IFHN (Implicit
Friends Extraction from Heterogeneous Information Network) social recommendation
method which extracts implicit and reliable friends from the heterogeneous information
network (HIN) via carefully designed meta-paths. First, we combine the user-item
bipartite network (e.g., item rating information) with user social network to build an
HIN. Next, we carefully design some meaningful meta-paths and then explore the HIN
by conducting biased random walks to generate a set of node sequences, which we
called behavior corpus, under the guidance of meta-paths. Then, these node sequences
are used to learn user representation through a heterogeneous network embedding
approach proposed in [6]. Finally, the top-k implicit friends can be identified by
computing the cosine similarity for each pair of two users w.r.t. their embeddings.
Based on this, we incorporate the top-k implicit friends into an extended probabilistic
matrix factorization method to make the prediction on ratings.

To summarize, our work makes the following contributions:

– We extract the top-k implicit friends of each user from the heterogeneous infor-
mation network via meta-path based random walks and heterogeneous network
embedding technique.

– We incorporate the implicit friends into an extended probabilistic matrix factor-
ization model for rating prediction.

– We conduct extensive experiments to validate the effectiveness of IFHN. The
experimental results on two real-world data sets show that our method achieves
better performance than explicit social recommenders and non-social recommender.

The remainder of this paper is organized as follows. We first review the related
work in Sect. 2. Section 3 defines the basic concepts and the problem studied in this
work. In Sect. 4, we present the proposed method in details. Section 5 evaluates the
proposed method through extensive experiments. Finally, Sect. 6 concludes the paper
with a brief discussion on future work.
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2 Related Work

Based on the intuition that a user’s preference is similar to his or her socially connected
friends, social relations have been widely used as a complementary resource to user
feedback data to improve the performance of recommender systems. These kinds of
recommender systems can be seen as social recommender system. Most existing social
recommender systems are based on collaborative filtering (CF) techniques and can be
classified into memory-based and model-based social recommender systems, according
to the basic CF models adopted to build the systems [7]. Specifically, Ma et al. [8]
proposed a factor analysis approach based on probabilistic matrix factorization
(SoRec). The idea is to perform a co-factorization in the user-item matrix and the user-
user social relation matrix by sharing the same user preference latent factor. Further,
Ma et al. [4] proposed a social trust ensemble method RSTE which interpret the ratings
in user-item matrix R as the representation mixed by both the user’s own taste and his
or her trusted friends tastes on the item. They fuse the users’ own tastes and their
trusted friends’ tastes together by an ensemble parameter. Later on, Jamali et al. [3]
proposed a regularization method, called SocialMF, which consider that a user’s latent
feature vector should be close to the average of her social relations. This closeness is
enforced by the social regularization term in the objective function. In addition, Ma
et al. [9] consider that trusted neighbors of a user may have diverse tastes. The authors
design a pair-wise social regularization term, in which the preference closeness
between a user and her social relations is determined by the similarity of their past
rating pattern.

However, explicit social relation is not always available in recommender systems,
and it, if exists, is always sparse and noisy [7]. Recent studies [10, 11] have shown the
success of finding reliable implicit friends to make social recommendation. Ma et al.
[10] propose to identify the top-k similar users of each user from the user-item rating
matrix by calculating the Pearson Correlation Coefficient between them, when the
explicit social relation is not available. Taheri et al. [11] build a novel recommendation
model Hell-TrustSVD which uses Hellinger distance to extract implicit social relations
in the user-item bipartite network.

Recently, motivated by the success of word embedding techniques [12], some
random walk based network embedding algorithms have been proposed [13, 14]. The
purpose of these algorithms is to learn dense node representations and preserve the
structural information of nodes at the same time, so the learned embedding can be
applied to further data mining task, such as recommender system. Zhang et al. [15]
propose the CUNE method to identify implicit and reliable friends by embedding a
collaborative user network, which is a homogeneous information network and trans-
formed from a user-item bipartite network. And then, the authors extend MF and BPR
methods using the top-k implicit friends for ratings prediction and items ranking,
respectively. However, we argue that the only usage of rating information by CUNE
can’t fully catch the complicated relations between users. A recent study of hetero-
geneous information network embedding algorithm metapath2vec [6] makes it possible
to build a heterogeneous information network utilizing both rating and trust informa-
tion, and then learn user embedding through metapath2vec.
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3 Preliminaries

In the section, we first define the concepts used in this paper, and then describe the
problem studied in this work.

Definition 1. Heterogeneous Information Network (HIN): A heterogeneous informa-
tion network is defined as a directed graph G ¼ V ;E; Tð Þ in which each entity v and
each link e is tied with a mapping function / vð Þ : V ! TV and / eð Þ : E ! TE,
respectively. TV and TE denote the possible types of entity and link in the graph,
respectively, with the restraint that TVj j[ 1 or TEj j[ 1.

For example, Fig. 1 illustrates an HIN established by item rating network and user
relation network where three types of entity (i.e., user, item, and category) and three
types of edge (i.e., rate, trust, and belong to) are involved.

Definition 2. Meta-path: According to [16], a meta-path P is a path defined on
the graph of network schema TG ¼ V ;Rð Þ, and is denoted in the form of

V1!R1 V2!R2 � � � !Rn�1 Vn, which defines a composite relation R ¼ R1 � R2 � � � � � Rn�1
between type V1 and Vn, where � denotes the composition operator on relations.

For example, U!rate I rate U is a meta-path which explores the implicit social rela-
tionship between a user and another user who co-rated an item in a similar manner (i.e.,

positive or negative). In Fig. 1, U2 ! I4  U3 is an instance of U!rate I rate U, if U2 and
U3 rated I4 in a similar manner.

Definition 3. Implicit Friends: Implicit friends are defined as a pair of users who have
similar preferences but do not directly connected in the social network. Correspond-
ingly, explicit friends are defined as a pair of users who built relations in the social
network with a single edge.

Finally, we define the social recommendation studied in this paper as follows: Given
a heterogeneous information network G established by user-item rating information

Node Type:    User      Item      Category      
Edge Type:       Rate       Trust        Belong to 

Fig. 1. An example of HIN
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and user relation information, the task of social recommendation is to predict the
missing values in the user-item matrix by means of G.

4 The Proposed Method

In this section, we will elaborate the IFHN method which consists of four consecutive
steps: (1) designing meta-paths over HIN built by rating and social information;
(2) collecting semantic behavior corpus via meta-path-based random walks; (3) learn-
ing users’ latent representations through heterogeneous embedding; (4) identifying top-
k implicit friends for each user and incorporating them into a matrix factorization
model for rating prediction.

4.1 Designing Meta-paths over HIN Built by Rating and Social
Information

In this paper, we first build two HINs respectively using FilmTrust and Douban
datasets. Figure 2 is an illustration of how to build the Douban HIN. In Fig. 2, rating
information and user social relation in Douban dataset are represented in the form of
user-movie rating bipartite network Gr and the user social network Gs, respectively. Gc

denotes the movie-genre bipartite network using genre information from Douban
dataset. Based on the assumption that these three networks share the same group of
users and movies, we merge Gr, Gs and Gc into a Douban HIN shown in Fig. 2. In this
way, we can discover the rich information shared by these three networks to identify
implicit friends with similar preferences for each user.

Node Type:    User     Movie     Genre     
Edge Type:     Rate     Trust     Belong to 

Douban HIN 

Fig. 2. Douban HIN merged by Gr , Gs, and Gc
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Recent studies [16, 17] demonstrate the effectiveness of adopting meta-paths to
perform data mining tasks in heterogeneous information network. Given a meta-path,

say P ¼ V1!R1 V2!R2 � � � !Rn�1 Vn, the connection between a pair of objects x 2 V1 and
y 2 Vn can be quantified by several similarity measures, such as Path count and
PathSim [16]. In order to identify implicit friends with similar preferences for each
user, we design a set of meta-paths with different semantic meaning. Specifically, we
carefully design four meta-paths, demonstrated in Table 1, to model the complex
relations between users. Next, we descript the meaning of these meta-paths one by one.
P1 connects a pair of users who rated a movie in a similar manner (i.e., positive or
negative). Taking Douban HIN shown in Fig. 2 as an example, given U1 as the root
node, the path instance U1 ! M2  U4 can reach U4 after two steps under the
guidance of P1. P2 further exploit the co-rating behavior and try to build a relation
between two users who both like or dislike the same genre of movie. U1 ! M2 !
G2  M4  U3 is a path instance of P2, and it associates two socially unconnected
user U1 and U3. It is worth noting that P1 and P2 are based on the idea of collaborative
filtering. P3 leverages the concept of trust propagation to discover the potential trust of
friends without direct connections in the social network. U3 ! U4 ! U2 is a path
instance of P3. P4 associates a user with those who have similar preferences with
someone he or she trusts. o3 ! U4 ! M2  U1 is a path instance of P4. It is important
to notice that we use all the four meta-paths on Douban dataset and use only
P1; P3 andP4 on FilmTrust dataset for the lack of genre information.

4.2 Collecting Node Sequences via Meta-Path-Based Random Walks

To connect users who may share similar preferences, we conduct random walks over
HIN and collect a set of node sequences called behavior corpus. However, different
from the standard random walk which randomly selects a node from the neighbors of
its predecessor, we select each successor node under the guidance of meta-path for a
more reliable and meaningful node sequence. Here we elaborate the procedure of node
sequences collection. Given a heterogeneous network G ¼ V ;E; Tð Þ and a meta-path

Table 1. Meta-paths designed for implicit friend extraction

Path scheme Semantic information

P1 A pair of users who have both
positive/negative feedback to the same
movie can be similar

P2 A pair of users who both
positively/negatively rate the same genre of
movies can be similar

P3 A user may trust his/her friends’ friends

P4 A user may share similar taste with the one
who have similar preference with his/her
friends

612 Z. Ling et al.



P ¼ V1!R1 V2!R2 � � �Vt!Rt Vtþ 1 � � � !Rn�1 Vn, the transition probability at step k is defined
as follows:

ð1Þ

where vkt 2 Vt, Ntþ 1 vkt
� �

denotes the Vtþ 1 type of neighborhood of node vkt ,
w vkþ 1; vkt
� �

= Ntþ 1 vkþ 1
� �T

Ntþ 1 vkt
� ��� ��. In other words, at each step of random walk,

we select the successor node according to the pre-defined meta-paths. Specifically,
given a specific meta-path, when the relation between the current node and its suc-
cessor node should be rate or belong to, we uniformly select the next node. If trust
relation connects two consecutive nodes under the guidance of meta-path, namely two
users, we select the next node according to the number of overlapped neighbors with
the current node. It means, the more mutual friends two users share, the more likely
they choose each other as the next node. It is worth noting that the random walk is
recursive, which means the length of each walk can be longer than meta-path scheme.
When the pre-defined walk length exceeds a meta-path scheme, the meta-path scheme
is repeated, namely Vnþ 1 ¼ V2.

4.3 Learning User Embedding and Finding Top-k Implicit Friends

A number of recent works [12–14] demonstrate the effectiveness of network represen-
tation learning which can embed network vertices into a low-dimensional vector space
and preserve network topology at the same time. With network representation learning,
the similarity of vertices in a network can be quantified. However, these researches are
mainly focused on representation learning for homogeneous network and cannot directly
apply to HIN. Inspired by heterogeneous Skip-Gram [6], we feed the collected behavior
corpus to it for learning user representations Y 2 R

Vj j�d . The heterogeneous Skip-Gram
maximizes the likelihood of nodes co-occurrence within a context. Formally, given a
node sequence collected by meta-path-based random walk and the current node vk , the
objective function of heterogeneous Skip-Gram is defined as:

argmax
Y

X
v2V

X
vmt 2N vkð Þ

log p vmt jvk;Y
� � ð2Þ
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where N vk
� �

is the context of vk with the windows size w and p vmt jvk;Y
� �

is commonly
defined as a softmax function, that is:

p vmt jvk;Y
� � ¼ eYvmt

�Yvk

P
v2Vt

eYv�Yvk
ð3Þ

where Yv is the vth row of Y, denoting the learned embedding vector of node v, and Vt

is the node set with type t in G. When computing the normalization factor, hetero-
geneous Skip-Gram only considers nodes in the same type instead of all nodes, which
makes it different from the common Skip-Gram model. In addition, to accelerate the
learning, we adopt negative sampling [12] to avoid the complexity of computing
p vmt jvk;Y
� �

in Eq. (2). Given a node type in N vk
� �

and the negative sample size S, we
uniformly select S nodes with the same type from V for the softmax function. Next, we
update Eq. (2) by maximizing the following objective function:

O Yð Þ ¼ log r Yvmt � Yvk
� �þ

XS
i¼1

Evit �Pt vtð Þ log r �Yvit
� Yvk

� �h i
ð4Þ

where r Yð Þ ¼ 1
1þ e�Y and the sampling distribution Pt vtð Þ are determined by the node

degree.
After the user embedding Y is learned, we compute the cosine similarity for each

pair of users regarding their embeddings, and then we identify the top-k implicit friends
for each user.

4.4 Incorporating Top-k Implicit Friends into MF

Given an m� n matrix R formed by the m users’ ratings on n items, an matrix
factorization (MF) model approximates R by a multiplication of l-rank user and item
latent vectors, i.e., R � UTV , where U 2 R

l�m and V 2 R
l�n with l� min m; nð Þ.

When user i’s rating on item j is missing, MF can predict that rating by the inner
product of the user latent vector ui and item latent vector vj, i.e., r̂ ¼ uTi vj. The
assumption behind a MF model is that there are only a few factors influencing the
preferences, and that a user’s preferences vector is determined by how each factor
applies to that user [18].

We incorporate the top-k implicit friends into MF as a social regularization term to
constrain the objective function of MF, which is defined as follow:

L ¼ 1
2

Xm
i¼1

Xn
j¼1

IRi; j ri j � UT
i Vj

� �2þ €eU
2

Xm
i¼1

UT
i Uiþ kV

2

Xn
j¼1

VT
j Vj

þ kS
2

Xm
i¼1

X
f2F þi

sim i; fð Þ Ui � Uf
� �T

Ui � Uf
� � ð5Þ
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where IRi; j is the indicator function which equals to 1 if user i rated item j and equals to 0
otherwise. In addition, kU and kV are the regularization parameter that controls model
complexity to avoid over-fitting. We use the notation F þi denotes the top-k implicit
friends of user i, and use the notation F�i denotes the set of users whose top-k implicit
friends contains user i. The social regularization term in Eq. (5) is used to minimize the
preference of user i and his/her implicit friends. kS controls the degree of the social
constraint. Furthermore, in order to differentiate all top-k implicit friends, we add the
term sim i; fð Þ, computed by the cosine similarity between the embedding of user f and
user i, into the objective function.

A local minimum of the objective function given by Eq. (5) can be found by
performing gradient descent on Ui and Vj for all users and all items,

@L
@Ui
¼Pn

j¼1
IRi; j rij � UT

i Vj
� �

Vjþ kUUiþ kS
P

f2F þi
Ui � Uf
� �þ kS

P
g2F�i

Ui � Ug
� �

@L
@Vj
¼Pm

i¼1
IRi; j ri j � UT

i Vj
� �

Uiþ kVVj

ð6Þ

5 Experimental Analysis

In this section, we first introduce the datasets we use and then report the experimental
results of our method compared with several baseline methods. Then, we design an
experiment to verify the effectiveness of our method to alleviate the cold start problem.

5.1 Experimental Settings

Datasets. We adopt two real-world datasets FilmTrust and Douban, both contain
social relations and publicly available on the web, in our experiments. FilmTrust is a
movie sharing and rating website where a user can rate movies and add other users as
friends. The FilmTrust dataset consists of 1,508 users, 2,071 movies and 35,497 movie
ratings issued by the users. In addition, there are 1,632 trust relationships explicitly
declared by users. These trust relationships are direct, which means user A trusting user
B does not necessarily imply B also trusting A. Douban is a Chinese Web 2.0 website
providing user rating, review, and recommendation services for movies, books, and
music. A Douban user can rate movies on a scale of 1 to 5 and build connections with
other users. The Douban dataset consists of ratings from 2,965 users who rated a total
of 39,694 movies. The number of social connections in the Douban dataset is 35,770.
It’s worth noting that the trust value in both datasets is binary. The main statistics of
these two datasets are summarized in Table 2.
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Baseline Methods. In order to demonstrate the superiority of our method, we compare
it with a set of existing methods for rating prediction.

– PMF: A widely used basic matrix factorization approach proposed in [19], which
does not consider any social information.

– SoRec: A social recommendation method fuses the user-item rating matrix with the
user’s social network using probabilistic matrix factorization [8].

– SocialMF: A social recommender which makes the latent feature vector of each
user close to the average feature vector of his direct friends in social network [3].

Evaluation Metrics. We use two popular metrics, the Mean Absolute Error
(MAE) and the Root Mean Square Error (RMSE), to evaluate the prediction accuracy
of our proposed method compared with other baseline methods.

MAE ¼
P

rij2Rtest
rij � r̂ij
�� ��

Rtestj j

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
rij2Rtest

rij � r̂ij
� �2
Rtestj j

vuut

where Rtest denotes the test set, rij is the rating user i give to item j, and r̂ij represents the
prediction score made by a specific recommendation method. A smaller MAE or
RMSE value means a better performance.

Configuration. For all the baseline methods, we adopt the parameters settings sug-
gested in previous works or by experimental selection. Specifically, we set the regu-
larization coefficient kU ¼ kV ¼ 0:1 and the dimension of latent features K ¼ 10 for all
models. For the methods using explicit social relations (SoRec and SocialMF), the
social constraint coefficient is kS ¼ 0:2. For the IFHN method using graph embedding,
the number of walks is n ¼ 10, the length of each walk l ¼ 7, the window size is
w ¼ 5, the dimension of embedding is E ¼ 10, and the number of implicit friends

Table 2. Statistics of FilmTrust and Douban datasets

Datasets Users count Items count Category count Ratings count Density Social links

FilmTrust 1,508 2,071 35,497 1.136% 1,853
Douban 2,965 39,695 36 912,479 0.775% 35,770
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F ¼ 10 for FilmTrust, F ¼ 20 for Douban. In addition, when collecting behavior
corpus, all the designed meta-paths contribute evenly. We randomly select 80% of the
dataset as the training set to train the model, and predict the remaining 20% of the
dataset. The random selection was carried out 5 times independently, and we report the
average results.

5.2 Performance Comparison

The experimental results are shown in Table 3, and the main findings can be sum-
marized as follows.

• In all cases, our proposed method outperforms all the compared baseline methods.
Specifically, the average RMSE scores of its predictions are around 0.87, 0.78 for
FilmTrust and Douban datasets, respectively. The average MAE values of its results
are around 0.65, 0.61 for FilmTrust and Douban datasets, respectively. The per-
formance improvements, which are calculated by comparing our method with other
methods, ranging from 1.69% to 6.28%.

• In most cases, the performance of the two social recommendation approaches is
better than the traditional PMF approach. This finding shows that the social relation
can be an effective complement to the rating information, regardless of explicit or
implicit social information.

• Our implicit friend-based recommendation method outperforms the two explicit
friend-based recommendation methods (SoRec and SocialMF). This result can be
explained that the network embedding learning does a great job in modeling user’s
rating and social behavior. As a result, the identified top-k implicit friends can more
precisely reflect the current user’s preference than explicit friends.

• On Douban dataset, social recommendation method SoRec performs worse than
traditional recommendation method PMF. It demonstrates that explicit social
information is not always helpful to improve recommendation accuracy. The
potential reason is that there are noises in explicit social relations which do harm to
the recommendation performance.

Table 3. Performance comparison of our method and other baseline methods

Datasets Metrics PMF SoRec SocialMF IFHN

FilmTrust MAE 0.6853 0.6686 0.6732 0.6573
Improve 4.08% 1.69% 2.36%
RMSE 0.9274 0.8917 0.9078 0.8716
Improve 6.01% 2.25% 3.98%

Douban MAE 0.6343 0.6523 0.6324 0.6113
Improve 3.61% 6.28% 3.34%
RMSE 0.8280 0.8342 0.8149 0.7829
Improve 4.51% 6.14% 3.92%

Extracting Implicit Friends from HIN for Social Recommendation 617



5.3 Performance on Cold-Start Users

In this subsection, we intend to confirm whether our method can alleviate the cold start
problem. We consider users who rated less than 10 movies as cold-start users for both
FilmTrust and Douban datasets. Following this definition, about 33% of FilmTrust
users and 12% of Douban users are listed as cold-start users. Experimental results of
RMSE and MAE values on cold-start users are shown in Fig. 3.

According to Fig. 3, we could clearly observe that the IFHN method outperforms
other baseline methods in terms of the performance on cold-start users. In particular,
the IFHN method gets considerable improvements (18.6% and 14.8%) over PMF and
SoRec on FilmTrust dataset in terms of RMSE values, respectively. This improvement
for cold start users is bigger than the improvement for all users which is shown in
Table 3, which means that IFHN handles cold start users better than PMF and SoRec.
This result shows that the identified implicit friends can provide valuable information
for modeling the latent preference of the cold-start users.

5.4 Impact of Parameter kS

In our proposed method, the social regularization parameter kS plays an important role.
It is used to control how much our method should incorporate the social relation
information. On the one hand, a small value of kS can not fully take the advantages of
implicit social relation, and result in a similar performance with non-social method. On
the other hand, if we set a large kS, the implicit social relation information may have a
bigger impact on user’s latent representation than user’s own rating information, which
can degrade the performance of the recommender system. In this section, we analyze
how different value of kS can affect the final recommendation accuracy. Specifically,
we set kS value in the range between 0.01 and 2 to evaluate the performance of IFHN
method on FilmTrust dataset.
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As is shown in Fig. 4, the IFHN method achieves the best performance on both
RMSE and MAE when kS ¼ 0:2. The RMSE and MAE values decrease at first, but
when kS goes above 0.2, the RMSE and MAE values increase with further increase of
the value of kS. It seems that a small or big value of kS lead to a degradation in
recommendation quality, which is consistent with our expectation.

6 Conclusions

In this paper, we investigate how to improve the performance of recommender systems by
incorporating implicit social information. Inspired by the recent researches of network
representation learning, we propose a novel implicit friend based social recommendation
approach IFHN. Firstly, we build a heterogeneous information network using item-rating,
social relation and item-category data. Then, we collect a set of node sequences over the
HIN under the guidance of carefully designed meta-paths. After that, users are mapped
into a common embedding space by network representation learning technique, which
allows us to identify the top-k implicit friends for each user. Finally, we incorporate the
top-k implicit friends into a matrix factorization approach for rating prediction. Experi-
ments on two real-world datasets show that our method IFHN not only outperforms other
baseline models in prediction accuracy, but also alleviates the cold-start problem.
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Abstract. Person re-identification (re-ID) is a challenging problem due
to background clutter, illumination and pose variation, occlusion, and
pedestrian misalignment. Current state-of-the-art methods commonly
extract discriminative information by deep networks based on one-stage
training. Though straightforward, using one-stage learning, the presence
of pedestrian misalignment in practical applications may significantly
degrade the performance of the learned model. To address this issue, we
propose a novel model for person re-ID, called CD-ABM. It adopts a
curriculum design to proceed training from easy to hard samples and
generates an attention map in a supervised manner to further facilitate
discriminative feature extraction. Compared with existing methods, CD-
ABM has the following advantages: (1) The curriculum design can grad-
ually improve the model capability through progressive learning. (2) The
attention map enables the local branch to be associated with the global
branch and better exploits both local and global information. Experi-
ments on three benchmark datasets show that, CD-ABM can achieve
competitive performance with the state-of-the-arts. Noteworthily, on the
most challenging dataset MSMT17, it surpasses state-of-the-art methods
by 15.9% in Rank-1 and 21.0% in mAP.

Keywords: Person re-identification · Attention ·
Curriculum learning · Training strategy

1 Introduction

Person re-identification (re-ID) aims to associate the images of a same person
across non-overlapping surveillance cameras. More specifically, given a specified
person, the goal of person re-ID is to find out all images of that person from
a large gallery database. Due to its critical importance in video surveillance,
person re-ID has attracted much research attention recently.

Generally, person re-ID in practical environment is challenging due to the
presence of background clutter, illumination and pose variation and occlusion.
Moreover, inaccurate bounding boxes from a pedestrian detector would result in
c© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11672, pp. 621–635, 2019.
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misalignment and, finally, significantly degrade the performance of person re-ID.
An illustration of such situations is given in the Sub3 of Fig. 1. Consequently,
how to extract discriminative features is the key to achieve robust person re-ID.

Fig. 1. Curriculum Design with Attention Branch Model architecture. Left is original
samples with different challenges. Dataset is divided into three subsets by curriculum
design (illumination variation, occlusion and pedestrian misalignment appear in Sub3).
Then training proceeds with our training strategy. Attention branch model is used in
the last stage.

Recently, deep learning based data-driven methods have achieved overwhelm-
ing advantage over traditional handcrafted ones [32]. A straightforward idea is to
extract a global representation through deep networks [18,26]. Though simple,
such methods cannot well capture informative details. Moreover, once obtaining
misaligned images (e.g., images dominated by background), the features cannot
be representative enough. To solve this problem, part-based methods have been
proposed. Such methods can be generally classified into three categories: (1)
Utilizing additional auxiliary knowledge such as person attributes [11,16], pose
estimation [15,17,29], image segmentation [14,21], etc. This kind of methods
aims to locate regions with structural information and extract better features
for identities. These methods either require additional labels or need robust mod-
els from other domains, e.g., pose estimation. When there exists inconsistence
between the datasets for pose estimation and person re-ID, it would lead to
bad partition. (2) Dividing image (and also the corresponding feature map) by
grids [1] or strips [5,19]. This helps pedestrian alignment to some extent and
facilitates getting fine-grained details. However, such a fixed division destructs
the interrelation among various parts. (3) Exploiting attention mechanism to
allow the model to decide which regions to focus on [10,12]. These methods
usually cannot separately supervise the generation of the attention map.

To address these limitations of existing methods, this work proposes a novel
method, named curriculum design with attention branch model (CD-ABM),
to more effectively extract discriminative representations for person re-ID. As
shown in Fig. 1, our approach consists of two main pionts. Firstly, inspired by
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curriculum learning [4], we introduce a three-stage training strategy to train
from easy to hard samples. Naturally, well-aligned images have strong similari-
ties in one identity set, while the pedestrians with occlusion, inaccurate bounding
boxes, or irregular shapes are different. As a result, the model is able to rank
the training samples from easy to complex, since the complexity of images can
be divided by their distribution density. Then, the divided samples are fed into
the network by stage in our training procedure to gradually improve the pre-
sentation capability. The second is an attention branch model (ABM), which
aims to generate the attention map in the last stage, supervised by an attention
loss. Compared with [10,12], ABM can obtain more instructive attention map
with supervision. On the one hand, ABM reinforces global features through the
attention map. On the other hand, ABM can capture the correlation between
global and local branches and exploit the interrelation among various parts in
the local branch.

In summary, the main contributions of this paper are as follows:

• We adopt a curriculum design to divide training dataset by complexity, based
on the distribution density data in a feature space. It helps to get represen-
tative descriptors by training from easy to difficult samples.

• An attention branch model is designed to further facilitate discriminative fea-
ture extraction, which reinforces global information by generating the atten-
tion map in a supervised manner and exploits the correlation between global
and local branches.

• We present test results on three benchmark datasets to show that, the pro-
posed method achieves consistent improvement, e.g., exceeds by 15.9% in
Rank-1 and 21.0% in mAP on the MSMT17 dataset.

2 Related Work

Feature Extraction for Re-ID: Recent progress in person re-ID has benefited
a lot from the adoption of deep learning. Typically, classic deep network models,
such as ResNet-50 [9] and GoogleNet [20], pre-trained on ImageNet are used
and fine-tuned for feature extraction in person re-ID. Generally, the considered
feature representation can be classified into: (i) Global features, e.g., the out-
put of a fully connected layer of a deep network [18,26], which cannot capture
fine-grained details and cannot handle pedestrian misalignment. (ii) Part-based
features, such as part convolution baseline (PCB) [19], which horizontally par-
tition the feature map of a deep network and train multiple classifiers. Besides,
another class considers the fusion of global and local information to get a better
presentation. For example, Deep-person [3] integrates local features by LSTM
and concatenates them with a global branch to form combined features. Instead
of concatenating, our method bridge global and local branches through an atten-
tion map, which facilitates the exploitation of the interrelation between them.

Curriculum Learning: Curriculum learning (CL) [4] is inspired by human
learning, which starts from easy conception and gradually learns more compli-
cated contents. It has been shown that training a model from easy to hard is
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useful [24]. In person re-ID, PUL [6] iterates process between clustering and fine-
tuning to progressively improve the initialization model trained on an irrelevant
dataset. Moreover, the work [25] proposes a semi-supervised learning method
based on progressive learning, which gradually exploits the unlabeled data for
person re-ID. In these works, the main goal is to solve the label scarce problem.
It has been shown in [2] that, gradually increasing the percentage of difficult
samples can further improve the performance. Inspired by this concept and Cur-
riculumNet [8], which adopts curriculum learning based on a divided dataset (in
terms of label noise), our model estimates pedestrian complexity based on the
distribution density of data in a feature space. Then, in the training procedure,
difficult samples are gradually added to training procedure to improve network
performance.

Attention Model: Attention model is useful to enforce a network to focus on
salient regions. Recently, the attention model has been used in person re-ID
to solve the misalignment problem. For instance, in DLPA [30], feature map is
followed by a part-based net, which uses spatial attention to find aligned parts.
Meanwhile, HydrapPlus-Net [12] trains multi-level and multi-scale attention fea-
tures for fine-grained analysis. Moreover, HA-CNN [10] jointly learns soft pixel
attention and hard regional attention to select attention for feature represen-
tations. Inspired by [7], our work uses a supervised attention branch to further
extract features, which is able to enhance the global representation and better
fuse global and local information.

3 The Proposed Method

In this section, we introduce how the proposed CD-ABM to extract discrim-
inative features in detail. As is shown in Fig. 1, firstly, training samples I =
{I1, ..., In} are divided into three subsets Is = {Is1, ..., Isns

}, Im = {Im1 , ..., Imnm
}

and Ic = {Ic1, ..., Icnc
}, which is ordered by complexity. Is represent simple train-

ing samples while complex samples are positioned into Ic. Moreover, we intro-
duce attention mechanism to our model to extract discriminative features in
specific training stage. How such attention mechanism works in our model will
be detailed in Sect. 3.2.

Specifically, we increase complexity into the training procedure progressively
to improve the capability of the proposed model sequentially. Our model regards
pre-trained ResNet-50 as backbone, which consists of shared layer θS , global
branch θG, local branch θP , and attention branch θA. We train model with the
global branch in the first two stages to extract the features of full identities in
images roughly. At first, the model with the global branch is trained on the
simple subset Is, which makes the model learn clean representations and basic
features for identities. The optimization function in stage 1 is

Ls
G = − 1

ns

ns∑

i=1

log
eθG(Is

i )

∑C
k=1 eθG(Is

i )
, (1)
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where Ls
G is the optimization function in stage 1. After this model converges,

the second stage starts, where less complex samples Im are added to learn more
diverse and meaningful information. It makes the model robust and improves its
performance. The loss weights for simple and less complex subsets are set to 0.3
and 0.7, respectively. The optimization function in stage 2 is

Lm
G = −

{
0.3
ns

ns∑

i=1

log
eθG(Is

i )

∑C
k=1 eθG(Is

i )
+

0.7
nm

nm∑

i=1

log
eθG(Im

i )

∑C
k=1 eθG(Im

i )

}
. (2)

Fig. 2. Dataset division by the distribution density of data. The samples are mapped
into the same feature space firstly, then the distance between each other is calculated
for the value of density. The larger value of ρ represents similar images while complex
samples have a sparse distribution with small value of ρ.

After model with global branch have a better learning capacity, we combine
three subsets to train the whole ABM with three branches to further improve the
generalization capability of the model. In this stage, the optimization function
of ABM is formulated as:

Ltotal = LG(y, f(θS ,θG)) + LP (y, f(θS ,θP )) + LA(y, f(θS ,θA)), (3)

where y is one-hot vector of ground truth and f represents the softmax cross-
entropy loss. Similar to PCB [19], the feature of local branch is split into six
part and each part is used to identify. Thus, the part classifier is defined as:

LP =
6∑

i=1

LPi
(y, f(θS ,θPi

)), (4)

where Lpi
denotes the training loss of the i-th part in local branch. The attention

branch is supervised by LA, which is calculated as:

LA = − 1
n

n∑

i=1

log
eθA(Ii)

∑C
k=1 eθA(Ii)

, (5)
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where I stands for the whole training set and n is the number of it. Different
baselines [18,19,29,30], we update model parameters stage by stage according
to curriculum learning method, so that the learning capability of model achieve
improvement aggressively. Moreover, we integrate attention branch into model
to further capture discriminative information.

3.1 Curriculum Design

Compared with diverse complex samples, easy samples from one identity are
more similar, which makes them closely clustered together in the same feature
space. In comparison, complex samples are sparsely distributed. It is reasonable
to measure the complexity of samples by their distribution density in a feature
space, as shown in Fig. 2. In the beginning, we remove FC layer from the proposed
ABM to obtain feature extactor f , and then use f to extract features of images I.
To measure the similarity between images, we use Euclidean distance to calculate
the distance between image pairs:

Di,j = ‖f(Ii) − f(Ij)‖2, (6)

Fig. 3. The architecture of attention branch model, including global, local, and atten-
tion branches. An attention map generated from the attention branch to bridge global
and local branches.

where Ii, Ij are two images from the same category. The smaller the dis-
tance di,j , the more similar the two images are. A symmetric matrix D ∈ R

n×n

contains the distances between each image pair, and n is the number of images
in the current identity set. Then setting a threshold dc, which is the median of
the distance. A density ρi for the image i is computed as

ρi =
∑

j

Ψ(Di,j − dc), (7)
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where

Ψ(d) =
{

1 d < 0
0 d ≥ 0 .

It is considered that the closer similar images lead to a larger value of ρ. On
the contrary, complexity would generate a smaller density for a relatively sparse
distribution. With the distribution density, three clusters are generated by the k-
means algorithm, then the corresponding clusters in each identity set are grouped
together as a subset. Consequently, the dataset is divided in terms of complexity.
The subset with a large density value is regarded as simple data, which represents
more regular images. Inversely, the subset with a small density value has more
complex samples, e.g., misalignment and occlusion. Accordingly, the dataset is
split into three subsets as simple, less complex and complex ones as shown in
Fig. 2, denoted by Sub1, Sub2, and Sub3, respectively.

3.2 Attention Branch Model

The attention branch model is used to generate an attention map in a super-
vised manner, which makes contributions to global branch and local branch as
well. As is depicted in Fig. 3, ResNet-50 is used as backbone and we introduce
another conv 5 x block for attention branch. The conv 5 x block removes the
down-sampling operation to retain a proper receptive field, which gets more
details of identities. Introduced attention branch generate feature map Fmask

that can focus on salient regions and we leverage such region-interested feature
to supervise local and global branches. In detail, the attention map generated in
attention branch is computed as:

Fmask = σ(Wmask ∗ fReLU (W1 ∗ Wres ∗ Fres)), (8)

where σ is the sigmoid function, ∗ represents convolution with batch normaliza-
tion, Fres is the output of conv 4 x block, fReLU denotes the output from ReLU
layer, and W1 and Wmask represent the output of 1 × 1 convolution filters. The
output dimension of W1 is the number of identities and that of Wmask is 1. The
attention branch separates after the ReLU operation as

Ao = fReLU (W1 ∗ (Wres ∗ Fres)), (9)

and the output Fatt is calculated by:

Fatt = fGAP (W2 ∗ Ao), (10)

where W2 contains 1 × 1 convolution filters with the same output dimension as
W1. The attention branch guides attention generation in a supervised manner
and ends directly by convolution, without a fully connected layer, which can
reserve spatial information for salient regions.

We use PCB [19] as the local branch and insert the attention branch to
exploit interrelation among various parts. The local branch with the attention
branch operates as

Fp = Ao � Fmask (11)
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where � denotes the element-wise product and Fmask is the attention map.
Besides, a global branch is added to associate with the local branch by the
attention map, which is operated by:

Fg = Fres � Fmask + Fres, (12)

It shows that salient regions are aggregated according to the attention map.
Then Fg is sent to the conv 5 x block. The down-sampling rate of 2 in the
conv 5 x block is preserved, which obtains a large receptive field for integral
images capture. Thus, we leverage attention map to supervise three branches
and the whole optimization function of ABM is calculated in Eq. 3.

Table 1. The details of the three datasets, original and divided included. The blue
font indicates the change in the number of identities.

Dataset Train Test ID Sub1 Sub2 Sub3 Total

Market-1501 12936/750 19732/751 725 5501 4700 2629 12830

DukeMTMC-reid 16522/702 17661/702 701 7963 5370 3183 16526

MSMT17 32621/1041 93820/3060 1040 13867 10357 6018 30242

4 Experiments

4.1 Datasets and Implementation Details

As listed in Table 1, experiments are presented on three benchmark datasets,
including Market1501 [31], DukeMTMC-reid [33], and MSMT17 [22]. The pedes-
trian bounding boxes on the datasets are detected in different ways, e.g., Market-
1501 by DPM, DukeMTMC-reid by hand-drawn, and MSMT by Faster R-CNN.
MSMT17 is the most challenging dataset under the collection of various con-
ditions. We adopt the official evaluation protocols in these datasets. All the
experiments are under the single query setting and the performances are evalu-
ated by the mean average precision (mAP) as well as the cumulated matching
characteristics (CMC).

The CD-ABM model is implemented in Pytorch framework. During training,
random horizontal flipping and random erasing are used for data augmentation.
In the first-two stage, the inputs are resized to 256 × 128 while in the last stage
are resized to 384 × 128. The batch size is set to 64 and the learning rate decays
every 40 epochs by multiplying 0.1. Initially, the learning rate is 0.1 in the first
and third stages and 0.001 for the second stage. For the pre-trained layers, the
learning rate is delayed by ×0.1. The stochastic gradient descent algorithm with
a momentum 0.9 is used. In the first-two stage, the learning processes last for
60 epochs while in the last stage, it lasts 100 epochs. In the test phase, we
concatenate all outputs except that from the attention branch to obtain final
features.
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Table 2. Comparison of our model with the state-of-the-arts on Market-1501. The
compared methods are categorized into three classes: global, attentive, and part-based
methods. We show our results in the global and attention branches (CD-ABM G), and
the whole model in the three branches (CD-ABM)

Methods R-1 R-5 R-10 mAP

SVDNet [18] 80.5 91.7 94.7 55.9

PDC [15] 84.4 92.7 94.9 63.4

PAN [15] 84.4 92.7 94.9 63.4

HydraPlus [12] 76.9 91.3 94.5 -

DLPA [30] 81.0 92.0 94.7 63.4

AACN [27] 85.9 - - 66.9

HA-CNN [10] 91.2 - - 75.7

Spindle [29] 76.9 91.5 94.6 -

PSE [13] 87.7 94.5 96.8 69.0

GLAD [23] 89.9 - - 73.9

Part-aligned [17] 91.7 96.9 98.1 79.6

Deep-person [3] 92.3 - - 79.6

PCB [19] 92.3 97.2 98.2 77.4

PCB+RPP [19] 93.8 97.5 98.5 81.6

MAM [28] 93.5 - - 81.8

CD-ABM G(Ours) 91.6 97.1 98.5 79.3

CD-ABM(Ours) 94.1 98.0 98.8 84.1

4.2 Comparisons with State-of-the-Art Methods

Evaluation on Market-1501. CD-ABM is compared with 15 existing meth-
ods on Market-1501 in Table 2. These methods are categorized into three classes:
global, attentive, and part-based methods. Our model uses the global and atten-
tion branches (CD-ABM G) outperforms HA-CNN which also utilizes attention
mechanism by 0.4% in Rank-1 and 3.6% in mAP, showing the effective of our
attention mechanism in focusing on salient regions. Compared with MAM, which
also takes global information and attention mechanism into account in part-
based methods, our CD-ABM yields better results, reaching 94.1%(+0.6%) in
Rank-1 and 84.1% (2.3%) in mAP.

Evaluation on DukeMTMC-ReID. Table 3 presents the comparison result
on DukeMTMC-reID. With the help of curriculum design, our model achieves
84.8% in Rank-1 and 74.2% in mAP. It exceeds Part-aligned which utilizes extra
pose information to align by 4.4% in mAP and 0.4% Rank-1, which means that
CD-ABM is able to fully exploit discrimination information for the pedestrian
misalignment.
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Table 3. Comparison of our model with the state-of-the-arts on DukeMTMC-reID.

Methods R-1 R-5 R-10 mAP

SVDNet [18] 67.7 80.5 85.7 45.8

PAN [15] 71.6 92.7 94.9 51.1

AACN [27] 76.8 - - 59.3

PSE [13] 79.8 89.7 92.2 62.0

HA-CNN [10] 80.5 - - 64.8

PCB [19] 81.8 - - 66.1

PCB+RPP [19] 83.3 - - 69.2

MAM [28] 83.5 - - 69.8

Part-aligned [17] 84.4 92.2 93.8 69.3

CD-ABM(Ours) 84.8 93.2 94.8 74.2

Table 4. Comparison of our model with the state-of-the-arts on MSMT17.

Methods R-1 R-5 R-10 mAP

GoogleNet [20] 47.6 65.0 71.8 23.0

PDC [15] 58.0 73.6 79.4 29.7

GLAD [23] 61.4 76.8 81.6 34.0

CD-ABM(Ours) 77.3 87.5 90.8 55.0

Evaluation on MSMT17. MSMT17 is the most challenging dataset with
the largest number of identities in various conditions. From Table 4, we can
find that our method achieves the most excellent results, which reach to 77.3%
(+15.9%) in Rank-1 and 55.0% (+21%) in mAP, respectively. It means that the
progressive learning and further feature extraction facilitation can improve the
discriminative capability regardless of samples diversity.

4.3 Effectiveness of Attention Branch Model

As shown in Table 5, we evaluate the effectiveness of ABM in two aspects, with-
out the local branch as global aspect (Baseline G if without the attention branch)
and with the local branch as the part-level aspect (Baselin P if without the atten-
tion branch).

In the global aspect, ABM achieves better accuracy across all datasets. It
indicates that, in a supervised manner, ABM focuses efficiently on salient regions,
which alleviates the effect of pedestrians misalignment. Since bounding boxes
annotated by humans (as mentioned above), the dataset DukeMTMC-reid is
better aligned than Market-1501 and MSMT17 by algorithms, the improvement
in DukeMTMC-reid is smaller than that in the other two.

In the part-level aspect, to highlight the effect of ABM in exploiting global
and local information, we add a model only with local and global branches but
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without attention branch (+Global) as an additional set of comparison tests.
ABM achieves an increase of 1.6%∼4.5% in Rank-1 and 2.7%∼5.4% in mAP,
respectively. Meanwhile, the result shows that ABM can better fuse global and
local representations.

Table 5. Comparison of ABM with global and local branches.

Dataset Market-1501 DukeMTMT-reID MSMT17

R-1 mAP R-1 mAP R-1 mAP

Baseline G 88.7 72.8 77.5 61.1 38.9 24.9

ABM G 90.9 77.2 78.0 63.2 44.1 31.1

Baseline P 92.0 76.7 82.9 68.7 68.5 41.7

+Global 92.3 78.2 83.8 69.4 71.4 44.8

ABM P 93.6 82.1 84.5 71.4 73.0 47.1

Fig. 4. The visualization of divided subsets in Market-1501, ranked by complexity from
right to left. Sub1 stands for simple images set while sub3 represents complex one, with
more diversity in it.

4.4 Effectiveness of Curriculum Design

We divide the datasets by their distribution densities as mentioned in Sect. 3.1.
The detailed setting are given in Table 1. We have abandoned some badly divided
identities, caused by the small number of samples or the lack of diversity.
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Table 6. The performance of three-stage learning in the global and local branches
(mainly different in the last stage).

Dataset Market-1501 DukeMTMT-reID MSMT17

R-1 mAP R-1 mAP R-1 mAP

Stage1 75.9 54.4 69.4 51.4 32.0 19.3

Stage2 84.9 66.1 75.0 56.7 36.2 22.3

Stage3 G 91.6 79.3 79.1 64.7 46.4 33.3

Stage3 P 94.1 84.1 84.8 74.2 77.3 55.0

In Market-1501, there are 750 origin identities training set, while only 725 after
dividing. The other two datasets are reduced by one identity. Consequently,
In our experiences, the two baselines (Baseline G and Baseline P) are trained
with original training sets, while ABM and curriculum design are analyzed with
divided ones. As shown in Table 5, the reduced identities do not degrade the per-
formance of the model because of their complexity hard to adapt the model or
their small quantity. Figure 4 shows different scenarios from Market-1501 divided
by our curriculum design, where the complexity of scenario increases from left to
right. Sub1 stands for simple images set while Sub3 represents complex one, with
more diversity in it. Clearly, increasing complexity is caused by misalignment,
occlusion, background clustering, and wrong labels.

The performance of three-stage learning is described in Table 6. We find that
the capability of the model is gradually increased in all three subsets, which
demonstrates the effectiveness of training sets division and training strategy from
simpleness to complexity. Finally, ABM is added into the model in stage3. We
train two models, with global and attention branches (stage3 G) and with three
branches (the whole CD-ABM also as stage3 P). They all gain prominent results,
especially stage3 P. The results show that CD-ABM, which stands for ABM with
three-stage learning, can mine more valuable information from samples and learn
a more robust representation.

5 Conclusions

We proposed a model called Curriculum Design with Attention Branch Model
(CD-ABM) to excavate discriminative information for person re-ID. Based on the
density distribution, a curriculum design with training strategy increasingly adds
complexity into the training process, which significantly improves the capability
of representation. Furthermore, we use an attention branch model (ABM) in the
last stage to further promote representative feature extraction, with global infor-
mation reinforcement and the exploitation of the correlation between global and
local information. Experiments on three benchmark datasets showed that CD-
ABM can achieve competitive performance to state-of-the-art methods, which
reveals the effectiveness of our proposed framework.
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Abstract. Non-stationary multivariate time series (NSMTS) prediction
is still a challenging issue nowadays. Methods based on deep learning,
especially Long Short-Term Memory and Gated Recurrent Unit neu-
ral networks (LSTMs and GRUs) have achieved state-of-the-art results.
However, the architecture of LSTM and GRU may contain some use-
less components that affect the training efficiency, thus it is possible
that optional architecture exists. Recently, newly-introduced one gate
Minimal Gated Unit neural networks (MGUs) have exhibited promising
results in computer vision and some sequence analysis applications. In
this paper, we first transplant the MGUs into NSMTS prediction and
then evaluate the ability of LSTMs, GRUs and MGUs via experiments.
During these trials, none of these neural networks can always dominate
in performance over all the NSMTS. Therefore, we further propose a
novel Selective Recurrent Neural Networks with Random Connectivity
Gated Unit (SRCGUs) that train random connectivity LSTMs, GRUs
and MGUs at a time. This model can not only reduce the number of
parameters and save about 2/3 of time compared to the separate train-
ing but also adjust their importance weights dynamically to select a
more appropriate neural network for prediction. Experimental results
show that SRCGUs have better performance on the benchmarks used
and flexibility. And to the best of our knowledge, this selective architec-
ture has never been reported before.
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1 Introduction

Time series prediction, which aims to forecast new trends or potential hazardous
events, has a long history and literature as its applications are ubiquitous in our
everyday life ranging from forecasting stock price [20], traffic jam situation [6],
solar plant energy output [18] to weather condition [21]. Figure 1 shows that
time-series databases (Time Series DBMS) have the fastest growing speed in
types of databases for the last 12 months according to the DB-engines1.

Fig. 1. The historical trend of the databases popularity for the last 12 months.

Typically, time series can be categorized into two types, one is stationary,
the other is non-stationary. The definition of stationarity is that for two given
sequences xt1 , . . . , xtk

and xt1+τ
, . . . , xtk+τ

in a time series, the joint statistical
distributions of the above two sequences are identical for all τ . However, in
practice it is difficult to meet the requirement of stationarity, instead, most real-
world datasets are non-stationary. In addition, there are also many multivariate
time series exist. Therefore, analyzing such non-stationary multivariate time
series (NSMTS) has become a new hot spot in time series prediction domain
[3,5].

Traditional approaches used to solve the time series prediction problems,
like Exponentially Weighted Moving Average (EWMA) and Autoregressive Inte-
grated Moving Average (ARIMA) [2,5] fail in forecasting NSMTS because there
are some limitations in these methods: (1) they cannot deal with non-stationary
time series or need special preprocess before training; (2) these approaches can-
not solve the multivariate problems or capture and leverage the dynamic depen-
dencies among multiple variables; (3) these kinds of statistical methods are inef-
ficient and have some difficulties in dealing with big data. On the contrary, deep
learning methods have achieved outstanding performance [1,14] in solving the

1 DBMS popularity broken down by database model can be found at https://db-
engines.com/en/ranking categories.

https://db-engines.com/en/ranking_categories
https://db-engines.com/en/ranking_categories
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prediction problems and they are also capable to overcome the above three dis-
advantages. Therefore, in this paper, we mainly focus on the more popular deep
learning methods.

Deep learning methods, especially neural networks (NNs) based methods can
indeed solve the prediction problems effectively, among which Forward Neural
Networks (FNNs) [17], Fuzzy Neural Networks [17] and Recurrent Neural Net-
works (RNNs) [7] have been widely used. And with a chain-like structure and
special gate mechanism, the recent advances in the variants of RNNs provide
some useful and brand-new insights in tackling the NSMTS prediction prob-
lems.

However, there do not exist any researches on the choice of different variants
of gated unit based neural networks. To alleviate this problem, in this paper,
we evaluate the three gated units based neural networks (LSTMs, GRUs and
MGUs) on five NSMTS datasets with traditional neural networks. Specifically,
we first empirically compare the optimal performance of the three models con-
cerning their separate well-selected parameter settings [4,12] and conclude from
the experimental results that it is hard to derive one suitable neural network for
all data sets. This inspires us to propose a unified Selective Recurrent Neural
Networks by selecting an appropriate neural network dynamically to achieve rel-
atively higher prediction accuracy at the price of more parameters to tune during
the training procedure. Considering that random topology formation of synapses
can provide a sufficient foundation for specific functional connectivity to emerge
in local neural microcircuits [9], we finally decide to adopt Random Connectiv-
ity gated units denoted as RCLSTM, RCGRU and RCMGU [11] to replace the
traditional gated units in Selective Recurrent Neural Networks. Consequently,
our newly designed SRCGUs are the combination of Selective Recurrent Neural
Networks and Random Connectivity Gated Unit.

The contributions of this paper are multifold:

1. We apply the MGUs to the NSMTS predictions and compare the prediction
efficiency of the MGUs with the LSTMs and the GRUs.

2. To the best of our knowledge, the proposal of the novel SRCGUs is the
first work selecting a more appropriate gated unit based neural network for
NSMTS datasets prediction by dynamically adjusting the importance weights
of LSTMs, GRUs and MGUs at a time. And we also prove that there indeed
exists the adjustment of the weights.

3. We demonstrate in experiments on various kinds of time series datasets (finan-
cial data, air quality data and Optical fiber data) that the proposed app-
roach outperforms single neural network models, which saves time and further
improves the accuracy in prediction.

In the second section, we will review the related work of time series prediction.
Then the traditional model and our SRCGUs model will be introduced in the
third section. Finally, we apply the above two models to the prediction problems
and conclude by arranging the experimental results.
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2 Related Work

Researchers have put forward a number of methods for time series prediction
including traditional statistical methods and machine learning methods.

One statistical method used frequently in financial applications is called
autoregressive integrated moving average (ARIMA) model. It is quite popular
due to its statistical properties and the use of a well-known Box-Jenkins method-
ology [2] in the model selection procedure. However, with high computational
cost, this model cannot deal with high dimensional multivariate time series fore-
casting problems efficiently [2]. In addition to ARIMA model, a simpler vector
autoregression (VAR) [16] model and its variants have also become the most
widely used models in multivariate time series analysis. Nevertheless, the model
capacity of VAR grows quickly over the change of window size and the number
of variables, so the inherited model will be very large and easy to overfit when
dealing with long-range temporal patterns.

To assuage defects of these statistical methods, several machine learning
approaches make some progress to some extent in dealing with time series prob-
lems. For example, standard linear regression models [16] with time-varying
parameters have made some advances in handling multivariate forecasting prob-
lems [15] efficiently by using high-quality off-the-shelf solvers. Nevertheless, this
kind of linear model has difficulty in capturing complex non-linear relationships
between multivariate series. Another representative model is non-parametric
Gaussian Process (GP) [19] that can capture dynamic phenomena by model-
ing distributions over a continuous domain of functions. However, the inverting
of kernel matrix involved in the implementation of GP has cubic complexity over
the number of observations.

3 Methodology

In this section, we first formulate the NSMTS prediction problem and briefly
introduce two models for prediction, one is traditional neural network model,
the other is novel SRCGUs proposed by us. Then, for completeness, we give a
concise review of the RNN and the structures of three gated units (LSTM, GRU
and MGU). Finally, we detail the structure of the SRCGUs and introduce the
objective function and the optimization strategy.

3.1 Problem Formulation

In this paper, we primarily focus on NSMTS predictions by using simple rolling
multi-step prediction method. Here, we use boldface letters to represent vectors.
Specifically, given a series of known time series Y = {x1,x2, . . . ,xT }, where
xt ∈ R

n, n is the dimension of the time series and our goal is to predict xT+h, in
which h represents the desirable horizon ahead of the current time stamp. The
horizon can be chosen according to the demands of the environmental settings
in time series datasets ranging from a few seconds to a year and here we choose



640 J. Liu and S. Chen

(a) The traditional model for simulations (b) The designed SRCGUs model for sim-
ulations

(c) RCLSTM

Fig. 2. The framework of two models and the structure of RCLSTM.

it manually for each dataset. Rolling prediction means that when we predict
xT+h+1, the series {x1,x2, . . . ,xT+1} is available. We then formulate the input
matrix at time step T as XT = {x1,x2, . . . ,xT } ∈ R

n×T .
Figure 2(a) shows the structure of traditional neural network model for pre-

diction, where the RNN unit can be replaced by LSTM, GRU and MGU. While
the Fig. 2(b) gives an overview of the designed SRCGUs and this model will be
detailed in Subsect. 3.3.

In this paper, we use index t to represent the t-th time point in the time series
and assume a hidden state ht to indicate the system status at time t. In addition
to this, σ(x) denotes the logistic sigmoid function σ(x) = 1/(1 + exp(−x)),
the symbol � is the element-wise product between two vectors and tanh is an
activation that applies to every element of the inputs.

3.2 RNN: LSTM, GRU and MGU

Recurrent Neural Networks (RNNs), the extension of Feedforward Neural Net-
works (FNNs), are neural networks with feedback loops, through which past
information can be stored and exploited. Traditionally, the RNN unit updates
its recurrent hidden state ht by
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ht = f(ht−1,xt), (1)

where f is a nonlinear mapping and one usual way to define f is to make it a
linear transformation plus a nonlinear activation, like

ht = tanh(W [ht−1,xt] + b). (2)

This kind of unidirectional RNNs are commonly denoted as SimpleRNNs.
Unfortunately, SimpleRNNs have difficulty in prediction problems not only

because the gradients may vanish or explode during training, but also because
the long-range dependencies are difficult to be captured. To alleviate this, several
relatively sophisticated gated units are invented to capture long-range dependen-
cies [4].

In this paper, we are more interested in the performance of these variants of
RNN units (LSTM, GRU and MGU). For the completeness of further research,
we first detail the typical gated units in the following.

Long Short-Term Memory: Apart from the short-range information, one
important issue in time series prediction is that sometimes the long-range infor-
mation can also impact the forecasting accuracy. When the gap between relevant
information and the current time point is big enough, the SimpleRNNs cannot
connect the information because their ability in capturing long-range dependen-
cies is quite weak. However, the LSTMs do not suffer from this kind of problem
due to the special gating mechanism and internal memory in LSTM controlling
the flow of information [10]. Until now, the LSTMs still play a dominative role
in real-world applications.

The gating mechanism in LSTM is easy to understand in intuition, it contains
an internal memory ct and three gates, i.e., a forget gate f t, an input gate it and
an output gate ot. The hidden state of the recurrent units at time t is computed
as,

f t = σ(Wf [ht−1,xt] + bf ),
it = σ(Wi[ht−1,xt] + bi),
ot = σ(Wo[ht−1,xt] + bo),
c̃t = tanh(Wc[ht−1,xt] + bc),
ct = f t � ct−1 + it � c̃t,
ht = ot � tanh(ct).

(3)

Gated Recurrent Unit: As a commonly used variant of the LSTM, the GRU
has a simpler architecture that it innovatively combines the forget gate f t and
input gates it into a single update gate zt, it also proposes a reset gate rt and
removes the memory cell to merge it with the hidden state. The update rules of
GRU are shown as below,
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zt = σ(Wz[ht−1,xt] + bz),
rt = σ(Wr[ht−1,xt] + br),
˜ht = tanh(Wh[rt � ht−1,xt] + bh),
ht = (1 − zt) � ht−1 + zt � ˜ht.

(4)

Compared with traditional LSTMs, several experiments show that the GRUs
slightly outperform the LSTMs when they have the same number of parameters
[4] in several domains.

Minimal Gated Unit: In order to further simplify the architecture, a single
gate unit should be taken into consideration. A newly-introduced gated unit
called MGU is a minimal design among existed gated hidden units [22] and
more importantly, MGUs can get comparable promising accuracy as LSTMs do
in many existing experiments in computer vision and some sequence analysis
applications.

When designing the MGU structure, the choice of the only gate is crucial.
From the experimental aspect, it has been discovered that the forget gate is
extremely significant by performing experiments to measure the importance of
every component in LSTM [4,8,12]. Meanwhile, from the intuitive aspect, the
forget gate can decide what information to store or forget that makes it crucial
for capturing long-range dependencies.

So MGU is a simplified GRU and it further effectively shares the reset gate
and update gate together by letting rt = f t,∀t, and then use f t to denote the
forget gate. The update rules of MGU are computed as:

f t = σ(Wf [ht−1,xt] + bf ),
˜ht = tanh(Wh[f t � ht−1,xt] + bh),
ht = (1 − f t) � ht−1 + f t � ˜ht.

(5)

It is obvious that the structure of MGU is much simpler than that of LSTM
or GRU. The number of parameter sets {W, b} of MGU is only half of LSTM
and two-thirds of GRU. Therefore, when the three gated units-based models
achieve comparable prediction accuracy, MGU can be seen as an optimal choice
for reducing training time.

3.3 Selective Recurrent Neural Networks with Random
Connectivity Gated Unit (SRCGUs)

When dealing with NSMTS predictions with deep neural networks, the choice of
the gated units based neural network is crucial because inappropriate model may
affect the training efficiency and forecasting accuracy. However, traditional neural
networks can only train one neural network each time which will result in the waste
of hardware resources. Hence, we design a selective layer to train the LSTMs, the
GRUs and the MGUs at a time to choose the most appropriate one.
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Generally, the computing time for individual gated unit based neural network
is proportional to the number of parameters, without customized hardware and
software acceleration. If we use fully connected gated unit in our model, the
number of parameters may raise the computation complexity. Thus, we replace
them with randomly connected gated units [11] to reduce the number of involved
parameters. The probability of unit connections is determined by certain ran-
domness, which will be explained later.

Here we take the LSTM as an example. Since the trainable parameters in
LSTM only exist between the input data [xt, ht−1] of internal memory at time t
and the functional part (i.e. the gate layers and the tanh layer). So the random
connections exist between [xt, ht−1] and the functional part. Figure 2(c) shows
the architecture of RCLSTM as a representative structure of a random connec-
tion gated units in which the solid lines mean the pair of neurons is connected
and the dashed lines indicate the disconnection. If all the connection lines are
solid lines, this architecture can be seen as the typical fully connected LSTM.

The strategy for randomly selecting the connecting neurons is detailed below.
The probability values that show the tendency of corresponding pair of neurons
will be connected or not can obey arbitrary statistical distributions, and we
choose uniform distribution in our simulations due to the high computational
efficiency. We further assume all neurons are connected with the same probability
and then use a threshold to determine whether the neurons are connected or
prohibited. Therefore, the random connected gated units’ structures can create
some sparsity and considerably decrease the total number of involved parameters
to be trained and reduce the computational load of the whole network [11].

Another component is the dense layer whose inputs contain three hidden
states h

(i)
t (i = 1, 2, 3) from each gated unit component at time step t and the

output is the final prediction results that computed as,

Ŷ t =
3

∑

i=1

wih
(i)
t + b, (6)

where
∑3

i=1 wi = 1 and wi ∈ {0, 1}.

3.4 Objective Function and Optimization Strategy

Since squared error is the default loss function for most of the prediction prob-
lems, so our objective function can be formulated as,

minimize
Θ

∑

t∈ΩTrain

‖Y t − Ŷ t−h‖2F ,

s.t.
∑3

i=1 wi = 1,∀wi ∈ {0, 1}
(7)

in which Θ represents the parameter set of our model, ΩTrain is the time series
used for training and ‖ � ‖F is the Frobenius norm.
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Our optimization strategy is the same as the widely used strategy in
traditional time series prediction models. With an input time series Y t =
{x1, x2, . . . , xt} at time step t, we then define a tunable window size k to refor-
mulate the above series as Xt = {xt−k+1, xt−k+1, . . . , xt}. Subsequently, this
issue becomes a regression task with a feature value pairs {Xt,Y t+h} and we
adopt the Stochastic Gradient Decent (SGD) or its variants to solve it [13].

4 Experiments

In this paper, we first use the traditional neural network model to apply the
MGUs to the NSMTS prediction problems and then compare the ability of MGUs
in forecasting with LSTMs and GRUs by training them separately. We also
perform experiments on the SRCGUs and compare the prediction accuracy and
time costs for per epoch with the traditional neural network models above.

All models are implemented with the Keras library with TensorFlow2 back-
end.

Table 1. Results and statistics of MGUs, GRUs and LSTMs on five datasets.

Dataset #hidden units #trainable parameter Per epoch time

LSTMs GRUs MGUs LSTMs GRUs MGUs

BAC 32 9,794 7,362 4,930 0.908 1.284 0.865

C 64 35,970 27,010 18,050 1.368 1.332 1.155

GS 48 20,834 15,650 10,466 0.917 1.203 0.843

Pollution 64 37,124 27,908 18,692 2.97 2.524 2.169

Optical 256 588,804 441,860 294,916 10.072 7.714 7.537

Dataset RMSE MAE R2

LSTMs GRUs MGUs LSTMs GRUs MGUs LSTMs GRUs MGUs

BAC 0.167281 0.179057 0.176892 0.136586 0.14298 0.134421 0.997 0.996 0.996

C 0.612668 0.5632 0.610662 0.496549 0.456047 0.462657 0.996 0.998 0.991

GS 1.305976 1.358861 1.248959 0.99121 1.121053 1.007991 0.997 0.996 0.997

Pollution 4.844758 5.449293 4.467702 3.124952 3.555733 3.030868 0.996 0.996 0.996

Optical 13.92472 14.59827 20.15546 8.97219 10.05284 12.97202 0.995 0.997 0.995

4.1 Datasets

We use 5 datasets to complete the experiments.

1. Three stock price datasets3: These three stock price datasets, denoted as
“BAC”, “C” and “GS”, are collected from Kaggle Datasets and can be found
on the Internet. All of them contain 5 features and the length of the sequence
is 2517. We aim to predict the accurate “Close” price for each stock price
dataset.

2 https://keras.io/, https://www.tensorflow.org/.
3 These three datasets are available at https://www.kaggle.com/rohan8594/stock-

data.

https://keras.io/
https://www.tensorflow.org/
https://www.kaggle.com/rohan8594/stock-data
https://www.kaggle.com/rohan8594/stock-data
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2. Air quality dataset4: This dataset that denotes as “Pollution”, contains 7
features and the length of the sequence is 43825. This dataset contains several
missing value and we use mean to fill them. This task focuses on forecasting
the pollution of the next hour.

3. Optical fiber dataset: The optical fiber dataset denoted as “Optical” is
a real-world dataset that contains 30 columns and the sequence length is
259202. The dataset collects from several sensors in real production. However,
it is a confidential dataset that cannot be downloaded from the Internet. Since
the break of the optical fiber may cause catastrophic financial loss, it is crucial
to predict when the optical fiber is going to break. In this experiment, we are
going to predict the “fiber-tensor” and “line-speed”.

Every dataset has been split into training set (60%), validation set (20%)
and test set (20%) chronologically.

Table 2. Results and statistics of average results in the traditional neural network
model and the SRCGUs.

Dataset #hidden

units

Best choice in

traditional

model

# average

trainable

parameter

(100%)

Average

per epoch

time

Average

RMSE

Average

MAE

Average

R2

BAC 32 LSTMs 7,362 1.019 0.17441 0.137996 0.996

C 64 GRUs 27,010 1.285 0.59551 0.471751 0.998

GS 48 MGUs 15,650 0.987 1.304599 1.040085 0.996

Pollution 64 MGUs 27,908 2.554 4.920584 3.237184 0.996

Optical 256 LSTMs 441,860 8.441 16.22615 10.66568 0.995

Dataset #hidden

units

Best choice in

SRCGUs

modela

#trainable

parameter

(70%)

Per epoch

time

RMSE MAE R2

BAC 32 RCGRUs 7,660 1.032 0.146752 0.108009 0.996

C 64 RCGRUs 28,224 1.798 0.610032 0.462657 0.997

GS 48 RCMGUs 16,329 1.323 1.267075 1.048628 0.997

Pollution 64 RCMGUs 9,346 2.769 3.775834 2.679569 0.997

Optical 256 RCLSTMs 462,873 13.201 15.33951 10.63967 0.996
aThe best choice in SRCGUs means the neural network whose importance weight becomes 1 during the

training and the per epoch time is the per epoch training time for the whole SRCGUs model not for single

neural network.

4.2 Metrics

We use three conventional evaluation metrics called Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R2) to eval-

uate the performance of models that defined as: RMSE =
√

1
T

∑T
t=1(x̂t − xt)2,

4 This dataset is available at https://raw.githubusercontent.com/jbrownlee/Datasets/
master/pollution.csv.

https://raw.githubusercontent.com/jbrownlee/Datasets/master/pollution.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pollution.csv
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MAE = 1
T

∑T
t=1|xt − x̂t| and R2 = 1 − ∑T

t=1(xt − x̂t)2/
∑T

t=1(xt − x̄t)2, where
xt and x̂t represents the actual and predicted values at step t for 0 < t ≤ T respec-
tively, and x̄t is denoted as x̄t = 1

T

∑T
t=1 xt.

4.3 Experimental Result

First, we use the traditional neural network model to conduct three experiments
using LSTMs, GRUs and MGUs separately for each NSMTS dataset. We set
the number of the hidden units ranging from 32 to 256, and choose the suitable
hidden unit number for each dataset that shown in Table 1 to achieve the best
prediction accuracy and the number of ‘N’ in ‘N-layers’ shown in Fig. 2(a) can be
chosen ranging in the set of {1, 2, 3}. The dense layer in both model is optional,
but when the dimension of the input matrix is not the same as the output matrix,
the dense layer becomes necessary. Each network is trained for 100 iterations.

(a) Prediction curves of BAC
dataset.

(b) Prediction curves of C dataset.

(c) Prediction curves of pollution
dataset.

(d) The mean squared error of opti-
cal fiber dataset.

Fig. 3. The comparation of prediction results.
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Since the MGUs have achieved good performance in computer vision and
some sequence analysis problems, we intend to figure out whether this model
can exhibit promising results in NSMTS prediction or not. As shown in Table 1,
with a much simpler structure and fewer parameters, MGUs spend significant
less training time but still achieve comparable accuracy with other two units
that make it a good option for NSMTS with very small time interval.

However, from Table 1, there do not exist single gated unit base neural net-
work that has prominent performance by comparing all five datasets. For exam-
ple, GRUs achieve great performance in dataset “C” but fail in other datasets.
In order to handle this problem, we further conduct a group of experiments by
using SRCGUs to train the three neural networks at a time. This model set-
ting is almost identical to the traditional neural networks with the same number
of hidden units and depth of the neural networks for each specific dataset. As
demonstrated by previous studies, 70% neural connectivity in the SRCGUs can
achieve comparable RMSE with fully-connected models [11], so we choose this
percentage of connection to do the simulation.

In Table 2, the SRCGUs can obtain more appropriate gated unit and achieve
higher prediction accuracy with the average performance of traditional neural
network models for most conditions. The best choices in SRCGUs model are
shown in Table 2 and compared with the best choices in traditional models, the
SRCGUs make the right decision for most of the time and this proves that there
exists the adjustment in the importance weights. Since the traditional neural
network model must be trained three times separately to find the gated unit
that can achieve the highest prediction accuracy, the SRCGUs can finally save
about 2/3 of the training time in total at the price of more parameters to train
due to the combination of three neural networks.

The experimental results of evaluation among LSTMs, GRUs, MGUs and
SRCGUs are shown in Fig. 3, in which (a,b,c) are the prediction results of two
stock price datasets and the pollution dataset curves, while (d) is the test set
mean squared error comparison for the optical fiber dataset.

5 Conclusion

In this paper, we newly transplant the MGUs into the NSMTS prediction prob-
lems and prove that it can achieve comparable prediction accuracy with LSTMs
and GRUs. However, there do not exist a single gated unit based neural network
that can show supreme performance over all the NSMTS. In order to relieve the
problem, we use the SRCGUs to do the selection among three gated unit based
neural networks. Since existing experiments show that our SRCGUs can achieve
higher accuracy in time series prediction and this brings us a new perspective
in NSMTS predictions. Hence, the SRCGUs can be seen as a suitable model for
NSMTS prediction.
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Abstract. Image classification is a difficult machine learning task,
where Convolutional Neural Networks (CNNs) have been applied for over
20 years in order to solve the problem. In recent years, instead of the
traditional way of only connecting the current layer with its next layer,
shortcut connections have been proposed to connect the current layer
with its forward layers apart from its next layer, which has been proved
to be able to facilitate the training process of deep CNNs. However,
there are various ways to build the shortcut connections, it is hard to
manually design the best shortcut connections when solving a particular
problem, especially given the design of the network architecture is already
very challenging. In this paper, a hybrid evolutionary computation (EC)
method is proposed to automatically evolve both the architecture of deep
CNNs and the shortcut connections. Three major contributions of this
work are: Firstly, a new encoding strategy is proposed to encode a CNN,
where the architecture and the shortcut connections are encoded sepa-
rately; Secondly, a hybrid two-level EC method, which combines particle
swarm optimisation and genetic algorithms, is developed to search for the
optimal CNNs; Lastly, an adjustable learning rate is introduced for the
fitness evaluations, which provides a better learning rate for the train-
ing process given a fixed number of epochs. The proposed algorithm is
evaluated on three widely used benchmark datasets of image classifica-
tion and compared with 12 peer Non-EC based competitors and one
EC based competitor. The experimental results demonstrate that the
proposed method outperforms all of the peer competitors in terms of
classification accuracy.

Keywords: Evolutionary computation · Image classification ·
Convolutional Neural Networks · Shortcut connections

1 Introduction

Deep Convolutional Neural Networks (CNNs) have been the leading approach for
solving image classifications tasks since it was introduced around 30 years ago [12].
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Various CNN methods have been developed, e.g. VGGNet [16], Xception [2] and
GoogLeNet [21]. Deep CNNs have achieved better and better accuracy on image
classification tasks. However, the architectures of CNNs grow deeper and deeper
(i.e. more and more layers), which makes the training of deep CNNs much harder
due to the difficulty in the CNNs architecture design and network training.

Almost all of the state-of-the-art CNNs are with a manually designed archi-
tecture, which is very challenging to achieve without expertise both in CNNs and
domain knowledge on the target problem. However, most real-world users often
do not have such knowledge. In recent years, evolutionary computation (EC) has
shown to be effective in automatically searching for the optimal architecture of
CNNs [13,20,24].

Back-propagation with gradient descent optimisation is the most commonly
used method for training CNNs, but the vanishing gradients problem often occurs
when training a deep CNN [1,18]. Recently, shortcut connections have been intro-
duced and shown to be effective in dealing with this problem [15]. Shortcut con-
nections add extra connections between the current layer and the forward layers.
Typical examples are ResNet [6] as shown in Fig. 1 and the densely-connected
shortcuts in DenseNet [7] as illustrated in Fig. 2. As can be seen from Fig. 1, in
ResNet, along with the direct forward connections between the current layer and
the next layer, there are also jump connections, which connect the current layer
to the layer after the next layer. DenseNet divides the CNN architecture into a
number of blocks. Each layer can be connected to all of the forward layers of
the same block, which is called densely-connected structure. Such shortcut con-
nections have been heavily investigated in recent years with different variants
[15,25]. However, such shortcut connections are manually designed and there still
are a large number of open questions. For example, although the operations after
shortcut connections are addition in ResNet and concatenation in DenseNet, it
is unclear whether the shortcut connections in ResNet with the concatenation
mechanism is better than DenseNet. Without rich expertise, it is still challenging
to design the best shortcut connections to effectively and efficiently address a
given problem. Therefore, it is needed to develop an approach to automatically
searching for the shortcut connections.

Goals: we aim to develop a novel EC based approach that can automatically find
the optimal CNN architecture and decide whether there should be shortcut con-
nection(s) between one layer and its forward layer(s). A two-level encoding strat-
egy is proposed, which is then used by a hybrid EC method of a genetic algorithm
(GA) and particle swarm optimisation (PSO) to evolve both the network archi-
tecture and shortcut connections. Since both the architecture and the shortcut
connections are dynamically decided during the evolutionary process without any
human interference, the proposed method is named DynamicNet. The proposed
method will be examined and compared with one EC based method and 12 state-
of-the-art non-EC based methods on three of the widely-used datasets having dif-
ferent levels of difficulties. The specific objectives and contributions are:
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– Design a new encoding strategy that includes both the CNN architecture and
the shortcut connections. Since the CNN architecture is decisive to the classi-
fication accuracy and the shortcut connections impact how well the CNN can
be trained, a two-level encoding is proposed with the first level representing
the CNN architecture and the second level representing the shortcut connec-
tions. These two levels are encoded as a vector with decimal values and a
vector of binary values, respectively;

– Develop a hybrid algorithm that can work with the two-level encoding. A
variable-length PSO algorithm is proposed to evolve the CNN architectures
due to PSO’s promising performance on continuous optimisation while GA
is used to evolve the shortcut connections since it works well on optimisation
tasks with binary values;

– Propose a new fitness evaluation method to improve the effectiveness and
efficiency of the encoded CNN. Classification accuracy is used as the fitness
value of the proposed method. Each evaluation requires to train the encoded
CNN, which is an expensive process. Motivated by previous work [19], a small
number of training epochs is used to speed up the training. Furthermore, an
automation method is developed to search for the best learning rate among
a sequence of learning rates to improve the classification accuracy.

Fig. 1. ResNet architecture (image taken from [6])

Fig. 2. DenseNet architecture (image taken from [7])

2 Background

2.1 ResNet

As shown in Fig. 1, the architecture is built on a plain CNN architecture called
VGG nets [17], which mostly contains convolutional layers with 3× 3 filters;
while by inserting shortcut connections, the plain architecture is turned into the
recently proposed ResNet. The output is calculated based on Eq. (1), where x
is the input, F(x,Wi) represents the output of the convolutional layer with the
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weights Wi, and Ws can be a constant of 1 if the dimension of the input is
identical to that of the output of the convolutional layer; otherwise it will be a
linear projection of the input in order to match the dimension of the output of
the convolutional layer.

y = F(x,Wi) + Wsx (1)

2.2 DenseNet

DenseNet is a newly proposed CNN architecture in image classification tasks.
As shown in Fig. 2, a DenseNet is composed of several dense blocks, and the
convolutional layer and the pooling layer between the dense blocks which are
referred to as the transition layer. To be more specific with the dense block,
suppose a single image x0 is passed to a dense block, which is composed of L
layers. Each of the L layers implements a non-linear transformation Hl(·), and
the output of the lth layer is denoted as xl. As the output of the lth layer receives
all of the feature maps of all preceding layers, the output xl can be calculated
according to Formula (2), where [x0, x1, ..., xl−1] refers to the concatenation of
the feature maps obtained from layer 0, 1, ..., l−1, and Hl represents a composite
function of three consecutive operations, which are batch normalization (BN) [8],
a rectified linear unit (ReLU) [5] and 3 × 3 convolution (Conv).

xl = Hl([x0, x1, ..., xl−1]) (2)

2.3 GAs and PSO

GAs. As an EC approach, GAs are inspired by the process of natural selec-
tion. The bio-inspired operators, such as mutation, crossover and selection, are
utilised to evolve the population in order to obtain a high-quality solution [14].
The procedure of GA is composed of five parts: initialisation, selection, fitness
evaluation, mutation, and crossover. At the stage of initialisation, a population
of random vectors with a fixed dimension is generated; Next, the selection is
performed by using a selection algorithm to select the individuals into a mating
pool; After that, mutation is performed by selecting one individual from the
mating pool and the value of each dimension is randomly chosen to be changed
to evolve a new individual; Crossover is performed by selecting two individuals
in the mating pool and combining a part of one individual’s vector with that of
the other. By iterating the fitness evaluation, selection, mutation, and crossover,
the new population can be filled with new individuals with hopefully better solu-
tions. The whole process terminates when the stopping criteria are met, and the
best individual of all generations is reported as the evolved solution.

vid(t + 1) = w ∗ vid(t) + c1 ∗ r1 ∗ (Pid − xid(t)) + c2 ∗ r2 ∗ (Pgd − xid(t)) (3)

xid(t + 1) = xid(t) + vid(t + 1) (4)

PSO. As one of the EC approaches, PSO is motivated by the social behaviour
of fish schooling or bird flocking [4,9]. In PSO, there is a population consisting
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of a number of candidate solutions also called particles, and each particle has a
position and a velocity. The representation of the position is xi = (xi1, xi2, ...xid),
where xi is a vector of a fixed dimension representing the position of the ith parti-
cle in the population and xid means the dth dimension of the ith particle’s position.
vi = (vi1, vi2, ...vid) illustrates the velocity of a particle, where vi is a fix-length
vector expressing the velocity of the ith particle and vid means the dth dimen-
sion of the ith particle’s velocity. The way that PSO solves the optimisation prob-
lems is to keep moving the particle to a new position in the search space until the
stopping criteria are met. The position of the particle is updated according to the
update equation which incorporates two equations - the velocity update Eq. 3 and
the position update Eq. (4). In Formula (3), vid(t + 1) indicates the updated dth
dimension of the ith particle’s velocity, r1 and r2 carry random numbers between 0
and 1, w, c1 and c2 are PSO parameters that are used to fine-tune the performance
of PSO, and Pid and Pgd bear the dth dimension of the local best and the global
best, respectively. After updating the velocity of the particle, the new position can
be achieved by applying Formula (4).

Fig. 3. The flowchart of the experimental process

3 The Proposed Method

3.1 Overall Structure of the System

Figure 3 shows the overall structure of the system (this structure is actually used
by all of the experiments in this paper). The dataset is split into a training set
and a test set, and the training set is further divided into a training part and
a test part. The training part and the test part are passed to the EC process,
which is the HGAPSO algorithm. During the fitness evaluations, the training
part is used to train the neural network, and the test part is used to obtain the
test accuracy of the trained neural network, which is used as the fitness value.
EC produces the evolved CNN architecture, which is the best individual. Lastly,
in the CNN evaluation procedure, the produced CNN architecture is trained
on the whole training set, and the test accuracy of the trained CNN model is
obtained, which is the final output of the system.
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3.2 DynamicNet - The Evolved CNN Architecture

By comparing the figures of ResNet and DenseNet, it can be observed that in
ResNet, each layer has at most two connections from previous layers. However,
in DenseNet, the connections of each layer coming from previous layers are the
number of previous layers due to the densely-connected structure. Therefore, the
number of input feature maps is the sum of the numbers of feature maps of all
previous layers, which results in the exploding growth of the number of feature
maps, particularly for the layers near the output layer. The solution introduced
in DenseNet is to divide the whole CNN into multiple blocks called Dense Block.
Each block is followed by a transition layer, which comprises a convolutional layer
and a pooling layer, to reduce the number of feature maps to half the number of
input feature maps. The hyperparameters of the convolutional layer are fixed,
which are 3 as the filter size, 1 as the stride size, and half the number of input
feature maps as the number of feature maps; The pooling layer also has fixed
hyperparameters, which are 2× 2 as the kernel size and 2 as the stride size. As
the proposed DynamicNet may be densely-connected, it might have the same
exploding growth issue of the number of feature maps. Therefore, DynamicNet
adopts the block mechanism of DenseNet.

Inside each block, there are a number of convolutional layers with a fixed filter
size of 3× 3 and a fixed stride size of 1. After each layer, the total number of input
feature maps grows by the number of feature maps of the convolutional layer,
which is called the growth rate of the block. In DenseNet, the number of blocks,
the number of convolutional layers and the growth rate are manually designed,
which requires good domain knowledge and a lot of manual trials to find a good
architecture. In the proposed HGAPSO algorithm, these three hyperparameters
will be also automatically designed.

3.3 HGAPSO Encoding Strategy

DynamicNet is comprised of a number of blocks which are connected by tran-
sition layers, and the shortcut connections are built between layers inside the
block. Based on the construction pattern of the network, the hyperparameters of
the architecture can be split into the architecture and the shortcut connections.
Regarding the architecture of the network, there are various hyperparameters
including the number of blocks, the number of convolutional layers in each block
and the growth rate of the convolutional layer in the block, which need to be
evolved. In addition to the densely-connected structure in DenseNet, different
topologies of shortcut connections, i.e. the different combination of partial short-
cut connections in each block, will be explored by the proposed HGAPSO method
in order to keep the meaningful features and remove the unmeaningful features
learned by previous layers.

Based on the analysis of the architecture and hyperparameters, the encoding
process can be divided into two steps. The first step is to encode the hyperpa-
rameters of the CNN architecture. Each of the hyperparameters is a dimension
of the architecture encoding, which is shown in Fig. 4a. The first dimension is



656 B. Wang et al.

the number of blocks, and the two hyperparameters of each block, the number
of convolutional layers and the growth rate, as two dimensions are appended to
the vector. The first step of the encoding is named the first-level encoding, which
will be used by the first-level evolution. Based on the results of the first-level
encoding, the shortcut connections can be encoded into a binary vector at the
second-level encoding. An example of one block with 5 layers is illustrated in
Fig. 4b. Each of the dimensions represents a shortcut connection between two
layers that are not next to each other, and the two layers next to each other
are always connected. Taking the first layer as an example, the three binary
digits - [101] represents the shortcut connections between the first layer to the
third, to the fourth, and to the fifth layer, respectively, where 1 means the con-
nection exists and 0 means there is no connection. A number of similar binary
vectors shown in Fig. 4b constitute the whole vector that represents the shortcut
connections of the whole block.

3.4 HGAPSO Search

Overview. Based on the two-level encoding strategy, the algorithm is composed
of two levels of evolution, which are described in Algorithm 1. The first-level
evolution is designed to evolve the architecture of the CNNs encoded by the
first-level encoding, and the second-level evolution is performed to search for the
best combination of shortcut connections. There are a couple of reasons to sep-
arate the architecture evolution from the evolution of the shortcut-connection
combination. First of all, since the architecture and the shortcut connections
play different roles in the performance of CNNs, which are that the architec-
ture including the depth and the width of the CNNs represents the capacity of
network and the shortcut connections are to facilitate the training process of
the network, the training process is only comparable when the architecture is
fixed, which inspires the idea of splitting the evolution to two levels. Secondly, if
the hyperparameters of both the architecture and the shortcut connections are
combined into one encoded vector, it will bring some uncertainties to the search
space, which, therefore, may deteriorate the complex search space by introducing
more disturbance to the search space.

(a) First-level encoding (b) Second-level encoding

Fig. 4. HGAPSO encoding

It is arguable that the computational cost of the two-level evolution may be
high, but the two-level encoding strategy divides the complex search space into
two smaller search spaces and reduces the disturbance in the search space, so
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Algorithm 1. Framework of HGAPSO
P ← Initialize the population with first-level encoding elaborated in Section 3.3;

Pbest ← Empty PSO Personal Best;

Gbest ← Empty PSO global best;

while first-level termination criterion is not satisfied do

P ← Update the population with first-level PSO evolution described in Section 3.4;

for particle ind in population P do

P sub ← Initialize the population with second-level encoding based on the value of ind

illustrated in Section 3.3;

while second-level termination criterion is not satisfied do

P sub ← Update the population with second-level GA evolution described in Section 3.4;

evaluate the fitness value of each individual;

P subbest ← retrieve the best individual in P sub;

end while

Update Pbest if P subbest is better than Pbest;

end for

Gbest ← retrieve the best individual in P ;

end while

the two-level evolution we believe will not perform worse than searching for the
optima in a much more complex search space. Other than that, as the second-
level evolution of searching for the best combination of shortcut connections
only depends on the specific architecture evolved in the first-level evolution, the
second-level evolution can be done in parallel for each of the individual of the
first-level evolution, which can dramatically speed up the process if sufficient
hardware is available.

HGAPSO First-Level PSO Evolution. Algorithm 2 shows the pseudo code
of the PSO evolutionary process. Based on the encoded vector from the first-
level encoding, the value of each dimension is a decimal value, and PSO has
been proved to be effective and efficient in solving optimisation problems with
decimal values, so PSO is chosen to perform the first-level search. However, the
dimensionality of the encoded vector is not fixed, so an adapted variable-length
PSO is proposed to solve this variable-length problem. Since the size of the
input feature maps to each block is different and the specific block is trained
and designed to learn meaningful features given the size of the input feature
maps, when applying EC operators on two individuals, it is important to find
the matched blocks which have the same size of input feature maps and apply
the operators on the matched blocks. To be specific with the PSO evolution
in HGAPSO, the length of the particle may be different from the length of
the personal best and global best, so based on the blocks of the individual, the
corresponding blocks in the personal best and the global best need to be matched
by selecting the blocks with the same size of the output feature and the PSO
algorithm is only applied on the matched blocks.
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Algorithm 2. HGAPSO first-level PSO evolution
Input: The current particle ind, the personal best Pbest, the global best Gbest, the rate of

changing the number of blocks rcb;

rnd ← Generate a random number from a uniform distribution;

Find the matched blocks of the particle ind by comparing the feature map size;

Update the velocity and position of the matched blocks of the particle ind according to Equation

3 and 4;

if rnd < rcb then

Update the velocity and position of the dimension of number of blocks of the particle ind

according to Equation 3 and 4;

Randomly cut or generate the blocks to the value of the number of blocks.

end if

The first dimension of the vector represents the number of blocks. When the
number of blocks changes, the depth of the CNN architectures changes, which
achieves the ability to evolve the depth of the CNN architecture and keeping the
diversity of the PSO population. However, the change of the number of blocks
incurs a dramatic change to the CNN architecture, and if it changes too often,
each CNN architecture evolution might be too short to achieve good perfor-
mance, so it is better to leave the evolution some time to optimise other hyper-
parameters given the specific number of blocks. In order to keep the diversity of
the number of blocks and reduce the disturbance caused by frequently changing
the number of blocks, the rate of changing the number of blocks in the vector
is introduced, which is a real value between [0, 1]. Therefore, the preference for
diversity or stability depending on specific tasks can be controlled by tweaking
the rate of changing the number of blocks.

When the number of blocks is changed, some blocks need to be randomly
cut or randomly generated in order to meet the requirement of the number
of blocks in the first dimension. For example, suppose the number of blocks
is increased from 3 to 4, the hyperparameters of the fourth block need to be
randomly generated based on the first-level encoding strategy, which then are
appended to the vector of 3 blocks; On the other way around, assuming the
number of blocks is decreased from 4 to 3, the last block is removed. In the
proposed HGAPSO method, whenever removing a block(s), it always starts from
the last layer because it does not affect the feature map sizes of the other blocks.

HGAPSO Second-Level GA Evolution. According to the second-level
encoding depicted in Sect. 3.3, once the CNN architecture is obtained from the
first-level evolution, the dimensionality of the second-level encoding will be fixed,
so the encoded vector can be represented by a fixed-length binary vector. Since
GAs are good at optimising binary problems, a GA is chosen as the algorithm
to perform the second-level evolution.

3.5 HGAPSO Fitness Evaluations

It can be observed from Algorithm 1 that fitness evaluation only takes place
inside the second-level GA evolution, and the fitness of the best GA individual



A Hybrid GA-PSO Method for Evolving Deep CNNs 659

is used as the fitness of its corresponding particle of first-level PSO evolution.
Backpropagation with Adam Optimiser [10] is used to train the network for a
number of epochs on part of the training data. The accuracy of the trained CNN
on the test part of the training data as the fitness value of the individual.

There are two hyperparameters for the fitness evaluations, which are the
number of epochs and the initial learning rate of Adam Optimiser. In the exper-
iment, 5 epochs are used by considering the hardware available and a fairly-short
experimental time. After the number of epochs is chosen, DenseNet is used as
a baseline to determine an initial learning rate for optimising a CNN with the
given depth and width, i.e. after the architecture of the CNN determined, the
network with fully-connected blocks are used to find a best initial learning rate
among 0.9, 0.1 and 0.01.

In order to speed up the evolution process, a part of the training dataset is
used for the second-level evolution because the second-level evolution consumes
the most computation. While for the first-level evolution, as the computational
cost is not that high, and in order to achieve a more stable performance given
the architecture of a CNN, the full training dataset is used.

4 Experiment Design

4.1 Benchmark Datasets and State-of-the-Art Competitors

Due to our limited hardware resource, the DECNN method proposed in [23],
which only requires a few days running of the experiment on a single GPU,
is chosen as the peer EC competitor instead of the method proposed in [26],
which takes 28 days on 500 GPUs to obtain the final result. The state-of-the-art
machine learning algorithms used to compare with DECNN are also used as
the peer Non-EC competitors. As DECNN did not perform well on CONVEX
benchmark dataset [11], CONVEX dataset is selected as one of the benchmark
datasets to see if the proposed HGAPSO algorithm able to achieve better per-
formance. Apart from the CONVEX dataset, the MB and MDRBI datasets [11]
are also used as benchmark datasets to evaluate the proposed algorithm across
different complexities, as MB is the simplest dataset among the MB variants,
and MDRBI is the most complicated variant of the MB datasets. On MB, the
images represent the handwritten digits from 0 to 9, and there are 12,000 training
images and 5,000 test images; MDRBI contains the same amount of training and
test images, but some noises are added to the original MB dataset. The CON-
VEX dataset contains images with the shape of convex or non-convex, which are
divided into the training dataset of 8,000 images and the test dataset of 5,000
images. Since EC methods are stochastic, the experiment will be run 30 times
and statistical tests will be performed when comparing the proposed algorithm
with its peer competitors.

As it would be more convincing to evaluate the proposed HGAPSO algorithm
on larger datasets such as CIFAR-10, but the computational cost is too high,
e.g. one run of HGAPSO on CIFAR-10 takes more than a week. Therefore, the
experiment on CIFAR-10 will not be run for 30 times due to the very high
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Table 1. Parameter settings

Parameter Value

HGAPSO parameters

the range of # of layers in each block [4, 8]

the range of growth rate in each block [8, 32]

population size 20

generation 10

PSO

Parameter Value

c1, c2 1.49618

w 0.7298

GA

mutation rate 0.01

cross over rate 0.9

elitism rate 0.1

computational cost, our limited GPU resource and the time constraint. Instead,
only one run of the experiment will be performed in order to obtain an initial
result, which gives suggestions on whether it is worth continuing the experiments
for 30 runs in the future when more GPU resources are ready.

4.2 Parameter Settings

All of the parameters are configured according to the conventions in the commu-
nities of PSO [22] and GAs [3] along with taking into account the computational
cost and the complexity of the search space. The values of the parameters of the
proposed algorithm are listed in Table 1.

5 Results and Discussions

5.1 HGAPSO vs. State-of-the-Art Methods

The experimental results and the comparison between HGAPSO and the state-
of-the-art methods are shown in Table 2. In order to clearly show the comparison
results, the terms (+) and (−) are provided to indicate the result of HGAPSO is
significantly better or worse than the best result obtained by the corresponding
peer competitor. The term (−) means there are no available results reported
from the provider or cannot be counted.

It can be observed that the proposed HGAPSO method achieves a significant
improvement in terms of the error rates shown in Table 2. HGAPSO significantly
outperforms the other peer competitors across all the three benchmark datasets.
To be specific, it further reduces the error rate over the best competitor by 5%,
1% and 10% on the CONVEX, MB and MDRBI datasets, respectively.

5.2 HGAPSO vs. DECNN

In Table 2, it can be observed that by comparing the results between HGAPSO
and DECNN, both the mean error rate and the standard deviation of HGAPSO
are smaller than that of DECNN, and from the statistical point of view,
HGAPSO has a significant improvement in terms of the classification accuracy.
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Table 2. Classification errors of HGAPSO and Competitors

Method CONVEX MB MDRBI
CAE-2 – 2.48 (+) 45.23 (+)
TIRBM – – 35.50 (+)
PGBM+DN-1 – – 36.76
ScatNet-2 6.50 (+) 1.27 (+) 50.48 (+)
RandNet-2 5.45 (+) 1.25 (+) 43.69 (+)
PCANet-2 (softmax) 4.19 (+) 1.40 (+) 35.86 (+)
LDANet-2 7.22 (+) 1.05 (+) 38.54 (+)
SVM+RBF 19.13 (+) 30.03 (+) 55.18 (+)
SVM+Poly 19.82 (+) 3.69 (+) 54.41 (+)
NNet 32.25 (+) 4.69 (+) 62.16 (+)
SAA-3 18.41 (+) 3.46 (+) 51.93 (+)
DBN-3 18.63 (+) 3.11 (+) 47.39 (+)

HGAPSO(best) 1.03 0.74 10.53
HGAPSO(mean) 1.24 0.84 12.23
HGAPSO(standard deviation) 0.10 0.07 0.86

DECNN(mean) 11.19 1.46 37.55
DECNN(standard deviation) 1.94 0.11 2.45
P-value 0.0001 0.0001 0.0001

5.3 Evolved CNN Architecture

After investigating the evolved CNN architectures, it is found that HGAPSO
demonstrates its capability of evolving both the architecture of CNNs and the
shortcut connections between layers. By looking into the evolved CNN archi-
tectures, it can be observed that not only the CNN architectures with various
number of layers but also different topologies of shortcut connections are evolved.
For example, one evolved CNN architecture has 3 blocks. In the first block, there
are 4 convolutional layers, and [0, 0, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1], [0, 0] and [1]
represent the connections from the input, the first layer, the second layer, the
third layer to the following layers, where 1 indicates the connection exists, and 0
means no connection; The second block is composed of 8 layers with the growth
rate of 34, and the corresponding connections are [1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 1,
1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 0, 1], [1, 0, 0, 0], [0, 0, 0], [1, 1] and [0]; In
the third block, there are 5 layers with the corresponding connections of [0, 0,
1, 1, 0], [0, 0, 0, 0], [1, 0, 0], [0, 1] and [0], and the growth rate is 39.

5.4 One-Run Result on CIFAR-10 Dataset

As mentioned earlier, the computational cost of testing HGAPSO is extremely
high. For one run of the experiment using one GPU card, it takes more than a
week to evolve the CNN architecture, and it took almost 12 h to train the evolved
CNN architecture. The classification accuracy of the specific run is 95.75%, which
ranks the second among the state-of-the-art deep neural networks ranging from
75.86% to 96.53% that are collected by the rodrigob website1; However, all of
the state-of-the-art deep neural networks require very highly specialised domain
knowledge and tremendous experiments to manually fine-tune the performance,
while HGAPSO has the ability of automatically evolving the CNN architecture
without any human interference, which is considered as the biggest advantage.
1 http://rodrigob.github.io/are we there yet/build/classification datasets results.

html#43494641522d3130.

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html#43494641522d3130
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html#43494641522d3130
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6 Conclusions

This paper developed an EC based method for automatically evolving both the
architecture of CNNs and shortcut connections, without human intervention or
domain knowledge in either CNNs or the target problem. The proposed method
outperforms both the EC competitor and the Non-EC competitors on commonly
used benchmark datasets. The first reason is that by evolving shortcut connec-
tions, the feature maps learned in previous layers can be reused in further layers,
which amplifies the leverage of useful knowledge; Secondly, the shortcut connec-
tions make the training of very deep neural networks more effectively by passing
the gradients through shortcut connections, which has been proven by DenseNet
[7]. Furthermore, the classification accuracy of HGAPSO on CIFAR-10 is promis-
ing as it is very competitive with the state-of-the-art deep neural networks. In
addition, the most advantage of HGAPSO is that it does not require any human
efforts to design the architecture of CNNs, which is usually required for the peer
state-of-the-art competitors.

In regard to the future work, firstly, due to the hardware limitation, the
proposed algorithm has been tested on relatively small datasets. It would be
more convincing if the algorithms could be tested on other larger datasets such as
ImageNet dataset; secondly, as there are more and more new CNN architectures
proposed with better performance, it would be helpful to investigate more recent
CNN architectures, based on which EC methods can be applied to automatically
evolve more advanced CNN architectures.

References

1. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

2. Chollet, F.: Xception: deep learning with depthwise separable convolutions. arXiv
preprint 1610–02357 (2017)

3. Digalakis, J., Margaritis, K.: An experimental study of benchmarking functions
for genetic algorithms. In: Proceedings of 2000 IEEE International Conference on
Systems, Man and Cybernetics (2000). https://doi.org/10.1109/icsmc.2000.886604

4. Eberhart, Shi, Y.: Particle swarm optimization: developments, applications and
resources. In: Proceedings of the 2001 Congress on Evolutionary Computation
(IEEE Cat. No.01TH8546), vol. 1, pp. 81–86, May 2001. https://doi.org/10.1109/
CEC.2001.934374

5. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pp. 315–323 (2011)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

7. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks.
CoRR abs/1608.06993 (2016). http://arxiv.org/abs/1608.06993

8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

https://doi.org/10.1109/icsmc.2000.886604
https://doi.org/10.1109/CEC.2001.934374
https://doi.org/10.1109/CEC.2001.934374
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1502.03167


A Hybrid GA-PSO Method for Evolving Deep CNNs 663

9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International
Conference on Neural Networks, Proceedings, vol. 4, pp. 1942–1948, November
1995. https://doi.org/10.1109/ICNN.1995.488968

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

11. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical
evaluation of deep architectures on problems with many factors of variation. In:
Proceedings of the 24th International Conference on Machine learning, pp. 473–
480. ACM (2007)

12. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1(4), 541–551 (1989)

13. Miller, J., Turner, A.: Cartesian genetic programming. In: Proceedings of the
Companion Publication of the 2015 Annual Conference on Genetic and Evo-
lutionary Computation, GECCO Companion 2015, pp. 179–198. ACM, New
York (2015). https://doi.org/10.1145/2739482.2756571. http://doi.acm.org/10.
1145/2739482.2756571

14. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1996)

15. Orhan, E., Pitkow, X.: Skip connections eliminate singularities. In: International
Conference on Learning Representations (2018). https://openreview.net/forum?
id=HkwBEMWCZ

16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition, April 2015. https://arxiv.org/abs/1409.1556

17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014). https://arxiv.org/abs/1409.1556

18. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. CoRR
abs/1507.06228 (2015). http://arxiv.org/abs/1507.06228

19. Sun, Y., Xue, B., Zhang, M.: Evolving deep convolutional neural networks for image
classification. CoRR abs/1710.10741 (2017). http://arxiv.org/abs/1710.10741

20. Sun, Y., Xue, B., Zhang, M., Yen, G.G.: Automatically designing CNN archi-
tectures using genetic algorithm for image classification. CoRR abs/1808.03818
(2018). http://arxiv.org/abs/1808.03818

21. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015

22. Vandenbergh, F., Engelbrecht, A.: A study of particle swarm optimization particle
trajectories. Inf. Sci. 176(8), 937–971 (2006). https://doi.org/10.1016/j.ins.2005.
02.003

23. Wang, B., Sun, Y., Xue, B., Zhang, M.: A hybrid differential evolution approach to
designing deep convolutional neural networks for image classification. In: Mitrovic,
T., Xue, B., Li, X. (eds.) AI 2018. LNCS (LNAI), vol. 11320, pp. 237–250. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03991-2 24

24. Xie, L., Yuille, A.: Genetic CNN. In: 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 1388–1397, October 2017. https://doi.org/10.1109/
ICCV.2017.154

25. Yamanaka, J., Kuwashima, S., Kurita, T.: Fast and accurate image super resolution
by deep CNN with skip connection and network in network. In: Liu, D., Xie, S.,
Li, Y., Zhao, D., El-Alfy, E.S.M. (eds.) Neural Information Processing. LNCS, pp.
217–225. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70096-0 23

26. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578 (2016)

https://doi.org/10.1109/ICNN.1995.488968
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/2739482.2756571
http://doi.acm.org/10.1145/2739482.2756571
http://doi.acm.org/10.1145/2739482.2756571
https://openreview.net/forum?id=HkwBEMWCZ
https://openreview.net/forum?id=HkwBEMWCZ
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1507.06228
http://arxiv.org/abs/1710.10741
http://arxiv.org/abs/1808.03818
https://doi.org/10.1016/j.ins.2005.02.003
https://doi.org/10.1016/j.ins.2005.02.003
https://doi.org/10.1007/978-3-030-03991-2_24
https://doi.org/10.1109/ICCV.2017.154
https://doi.org/10.1109/ICCV.2017.154
https://doi.org/10.1007/978-3-319-70096-0_23
http://arxiv.org/abs/1611.01578


Deep Feature Translation Network
Guided by Combined Loss for Single

Image Super-Resolution

Mingyang Guan1, Dandan Song1(B), and Linmi Tao2,3

1 Beijing Engineering Research Center of High Volume Language Information
Processing and Cloud Computing Applications, Beijing Lab of Intelligent Information

Technology, School of Computer Science and Technology,
Beijing Institute of Technology, Beijing 100081, China

sdd@bit.edu.cn
2 Key Laboratory of Pervasive Computing, Ministry of Education,

Beijing 100084, China
3 Department of Computer Science and Technology, Tsinghua University,

Beijing 100084, China

Abstract. Single image super-resolution (SISR) which aims to infer
a high-resolution (HR) image from a single low-resolution (LR) image
has wide applications such as surveillance and medical image processing.
However, existing methods which aiming at minimizing the mean squared
error (MSE) always get high objective quality, i.e., peak signal-to-noise
ratios (PSNR), but their results are blurry which lacks high-frequency
details thus are perceptually unsatisfying. Some recently proposed Gen-
erative Adversarial Networks enhance the perceptual quality greatly, but
their objective quality is very low, which means their generated texture
details are not faithful to the real image. In this paper, we adopt a
multi-scale HR construction process to generate HR images gradually
to achieve large upscaling factors. For each level, the generation of HR
difference features from LR features is taken as a feature translation pro-
cess, and deep image feature translation network (DFTN) is designed.
To recover finer texture details, we combine three loss functions: content
loss, a novel fine-grained texture loss and adversarial loss in our model
optimization. We desire that the content loss ensures the LR results
faithful to the original image, and the other two losses push our model
to capture the manifold of natural images. Experiments confirm that
our model can achieve the state-of-the-art results in different evaluat-
ing metrics, including both objective and perceptual quality evaluations.
Therefore, our method can generate HR images with fine texture details
and faithful to original images.
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1 Introduction

The reconstruction of high-resolution (HR) image from a low-resolution (LR)
image is an important task, which is referred to as super-resolution (SR) or
single image super-resolution (SISR). It has a wide range of applications, such as
surveillance and medical image processing. Thus, it is a hot research area which
attracted substantial attention from both academic and industrial communities.
There are many classic methods for the SR problem, but this problem is still
highly challenging because the reconstructed HR images always lack enough
details and sharp edges.

In recent years, methods based on convolutional neural networks (CNN) [4,
9,13,16–18,24,25] are applied into the SR problem. They model the SR prob-
lem into the nonlinear low-resolution to high-resolution image mapping process,
and the optimization target of these supervised SR algorithms is to minimize
the pixel-wise difference such as mean squared error (MSE) between the HR
image and ground truth. Therefore, their peak signal-to-noise ratio (PSNR)
value exceeds traditional methods significantly in the objective quality. How-
ever, their resulted images are overly-smoothed and lack texture details, which
are perceptually unsatisfying [19].

Generative adversarial networks (GANs) have shown strong ability on con-
tent generations, thus are also adopted in the SR problem. To generate more
photo-realistic HR images, SRGAN [19] tries to apply perceptual loss and adver-
sarial training on the SR problem. EnhanceNet [23] propose an application of
automated texture synthesis with adding extra texture loss, besides the per-
ceptual loss and adversarial loss. Their results show that these methods can
generate images with high perceptual quality. However, their objective quality
such as PSNR is very low, revealing that the results have enhanced textures but
are not faithful to the original images.

 Generated 
difference image

LR image 
feature maps

Difference image 
feature maps

LR image

Feature 
Translation

Fig. 1. Visualization of the feature translation process.

In this paper, we design a deep feature translation network (DFTN) to
improve the super-resolution image quality. We adopt laplacian pyramid archi-
tecture which is a multi-scale reconstruction process that generates HR images
with large upscaling factors gradually. In each level of the pyramid, for the gen-
eration of the difference image features from the LR image features, we model it
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as a feature translation process, and designed feature translation layers to deal
with it. The intuitive visualization of the process is shown in Fig. 1. Inspired
by the U-Net structure which has been successfully applied in biomedical image
segmentation [22] and image-to-image translation [14], we apply a tailored U-net
architecture for the DFTN structure, which consists of a contracting path to cap-
ture contexts and a expanding path to get precise localizations. Furthermore, to
recover natural and realistic texture details, we combine three different losses for
optimization, which contains the fundamental content loss, a novel fine-grained
texture loss and the adversarial loss. We desire that the content loss ensures the
SR results faithful to the original image, and the other two losses help to recover
the realistic textures with high perceptual quality.

We conduct experiments on 6 benchmark datasets, and compare our model
with other state-of-the-art methods using multiple evaluating metrics. Compared
with methods whose optimization focus on pixel difference, our pre-trained model
(DFTN-C) can obtain state-of-the-art PSNR, SSIM (Structure similarity) and
IFC (Information Fidelity Criterion) scores, demonstrates the best objective
quality of the results. Compared with adversarial methods, our method (DFTN-
CTA) can achieve higher PSNR/SSIM/IFC scores while maintaining relatively
lower FID values, which reflects better objective quality. And based on volun-
teers’ judgment, our method achieves the highest MOS (Mean Opinion Score),
satisfying to the human inception. Therefore, our method can generate natural
and realistic HR images which are perceptually good and are faithful to the
initial images.

2 Related Work

Prediction-based methods including bilinear interpolation, bicubic interpolation,
Lanczos resampling [5] and so on have the advantage of fast speed, but their
results were smoother and lack texture details. More powerful researches rely
on the training data to establish a complex mapping between the LR and HR
images. Example-based methods [6] always divide the entire image into small
patches and create the example set to search enough examples for reconstruction.
Compared to the example-based methods, dictionary-based methods [3] have
higher computational efficiency since they don’t need example images if they
have learnt the prior knowledge.

In recent years, methods based on convolutional neural networks are applied
in SR and significantly perform better than classical methods. SRCNN [4] uses
a fully convolutional network to predict the nonlinear LR-HR mapping. Kim
et al. propose two deep convolution network models: VDSR [16] and DRCN [17],
where they show significant improvement by increasing the network depth to 20
convolutional layers. VDSR adopts global residual learning with inspiration of
the success of ResNet [10]. DRCN introduces a network that contains multiple
recursive layers with up to 16 recursions and adds skip connection to improve the
performance. DRRN [25] combines the idea of the above two methods, using a
deep recursive residual network containing 52 convolutional layers. LapSRN [18]
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introduce the laplacian pyramid structure to SR network, which takes coarse
images and predicts high-frequency residuals. DSRN [9] proposes a dual-state
recurrent network and exploits both LR and HR signals jointly. IDN [13] develops
a deep but compact convolutional network to reconstruct the HR image, with
fewer numbers of filters per layer and group convolution to achieve faster speed.
However, the objective of above methods are aiming at minimizing the pixel-
wise difference between HR image and real image, such as mean squared error
(MSE). Therefore, their results have high objective quality, i.e., peak signal-
to-noise ratios (PSNR). But they are always over-smoothed and lack detailed
textures, thus have poor perceptual quality.

Since the generative adversarial networks (GANs) [8] came out, they have
obtained great success in the field of content generation. Conditional GAN
are applied to image-to-image translation problems, such as pix2pixGAN [14].
Inspired by their advancement of getting more perceptual results, some
researchers have applied generative adversarial networks to the SR problems.
SRGAN [19] adopt a deep residual network to recover photo-realistic textures
from LR images. EnhanceNet [23] also use deep residual network trained by com-
bined loss. These methods can achieve high perceptual quality, however, their
objective quality is very low, which means their generated texture details are
not faithful to the real image.

Fig. 2. Network architecture and training procedure for scale: ×4. Feature translation
layers are responsible for translating the low-resolution features into the high-pass
features, which has a series of skip connections and a transposed convolutional (ConvT)
layer. Each level of network uses content loss and the output level has texture loss and
adversarial loss. (Color figure online)

3 Proposed Method

3.1 Network Architecture

we design a deep feature translation network (DFTN) to improve the super-
resolution image quality. It is a Laplacian Pyramid multi-scale structure, and
feature translation layers are applied on each level.
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Laplacian Pyramid. We design our multi-stage HR image reconstruction
architecture to be a Laplacian Pyramid, because it can generate HR image grad-
ually and we can apply supervised learning on each level. It can finally reach a
high scale factor 2N when the network has N levels. Figure 2 shows an example
of a pyramid structure with two levels. In each level, the input image will pass
2 routes: difference image generation (green route in Fig. 2) and coarse image
generation (blue route in Fig. 2).

(1) Difference image generation. The input image goes through a block
of feature translation layers. These feature translation layers are responsible
for translating the low-resolution features into the high-pass features, which
stand for the edge structure. And the contained transposed convolutional layer
upsamples the features to make its size doubled. Then the HR features pass a
convolution layer and output the difference image.

(2) Coarse image generation. The k ∗ k input image goes through a
transposed convolutional layer and is upsampled to be a 2k ∗ 2k image. This
upsampled image will be a coarse-version of the HR image.

The upsampled image is then added to the generated difference image to
produce the output image (a HR image on its level). Note that these two routes
are not simply fixed, but are jointly optimized in the training procedure.

Feature Translation Layers. For the generation of the difference image fea-
tures from the LR image features, we model it as a feature translation process
(as illustrated by Fig. 1). Accordingly, we add the feature translation layers to
our super-resolution network.

Our another intuitive idea is that a defining characteristic of SR problems is
to map a low resolution input image to a high resolution output image. How-
ever, the reality is that low resolution images contain less information while
high resolution images need more information. Hence making full use of original
information which LR image contains is very important.

Inspired of the success of image translation [14], we employ a tailored U-net
structure which add the information of front layer to the back layer by using con-
nection skips. Figure 3(a) shows our architecture of the feature translation layers.
Specifically, it is a symmetrical structure and skip connections (red arrows) were
placed between the ith layer and the (n− i)th layer, where n is the total number
of layers. Each skip connection concatenates all channels belonging to the ith
layer and the (n − i)th layer respectively.

Unlike previous U-net applications, this is a “feature” translation network
to translate the LR image features into difference image features instead of the
images. In addition, we modify the original U-net structure to adapt it for the
SR task. The “barrel shape” is used in place of the “hourglass shape”. More
specifically, we reserve the width and height of feature maps to keep all the
previous information, which is shown by Fig. 3(b).
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3.2 Loss Functions

In order to get natural and realistic texture details, we use three different losses
for optimization, which contains (i) content loss, (ii) fine-grained texture loss
and (iii) adversarial loss. The total loss is described as follows:

Loss = Lcontent + λ1 ∗ Ltexture + λ2 ∗ Ladv (1)

Figure 2 shows an overview of our method for the scale of ×4. For the training
phase, we downsample a training image to obtain its label images for each level.
At each level, we compute the content loss between the output image and the
target image. In addition, adversarial loss and fine-grained texture loss can be
applied to the entire network. Note that each loss will compute the gradients
from its position to the forefront LR input in the process of back propagation.
We first train the DFTN using content loss only to obtain the pre-trained model
and then add extra two losses.

(a) (b)

Fig. 3. Structures of our Feature Translation Layers. Here, “BN” refers to Batch Nor-
malization, “Cat” refers to the concatenation operation. Red arrows express skip con-
nections. Dashed arrows express the elliptical convolutional layers, which determine
the depth of the total network. (Color figure online)

Content Loss. Let ŷl (l = 1, 2, 3, . . . , L) be the output image and the yl be
the corresponding ground truth image on the lth level. The common ways are
minimizing the mean square errors (MSE) between ŷl and yl. Instead of it, we
adopt a differentiable variant of the L1 norm: Charbonnier penalty function, and
the total content loss is described as followed:

Lcontent =
L∑

l=1

√
(ŷl − yl)

2 + ε2 (2)

where L is the number of levels in Laplacian pyramid. And ε is set to 1e − 6.
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Fine-Grained Texture Loss. One of the important differences between the
output HR image and the target HR image is texture. In the training procedure, a
patch of image would contain multiple textures because the patch size 128×128
is still large. Our intuition is that if we deal with texture in a smaller scale,
the selected region would contain a same single texture. Hence, we propose a
novel fine-grained texture feature extraction process, as Fig. 4 shows. We divide
the whole image patch into several sub-patches and each sub-patch passes the
convolutional layer to produce its own feature map. Then we join all the produced
feature maps together into a tensor. Based on the tensor, the convolutional
operator can conduct different weight parameters on different layers of feature
maps, thus could deal with textures in a finer granularity.

Fig. 4. An illustration of fine-grained texture features extraction.

For the detailed computation, we incorporate the method of [7,15] into our
fine-grained texture loss computation. We extract fine-grained texture features
of the target HR image and the generated image, and then computes the MSE
differences between their Gram-matrix outputs of VGG-19:

Ltexture(ŷ, y) =
1

BC
‖G(φ(ŷ)) − G(φ(y))‖2 (3)

where B and C are the BatchSize and channel numbers, φ() is the output activa-
tions at ReLU5 4 of VGG-19, ŷ and y represent the generated image and ground
truth image of the last level of the Laplacian pyramid, respectively.

Conducted on an example image at ×4 SR, Fig. 5 shows comparison of our
model trained by content loss only, a combination of content and previous texture
loss realization [7], and a combination of content and our proposed fine-grained
texture loss. Obvious improvement can be noticed in the rightmost image, which
demonstrates the effect of our proposed fine-grained texture loss. More visual
results are available in the supplementary materials.
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Content loss Content + fine-
grained texture loss

Content + previous 
texture loss

Fig. 5. A comparison of our model trained by content loss, “content + previous texture
loss [7]” and “content + fine-grained texture loss” for an example image at ×4 SR.

Adversarial Loss. The training of Generative Adversarial Networks has
obtained impressive results on many generation tasks including SR, so we also
incorporate adversarial loss into our loss functions in order to get more realistic
SR results. SRGAN [19] has been applied the generative adversarial network on
the SR problem early and they adopt the original GAN [8]. However, the origi-
nal GAN model suffers from training instability. Referring to WGAN [1] which
obtains better convergence properties than the original GAN by replacing the
Jensen-Shannon divergence with the Wasserstein distance, our target is designed
as follows:

max Ex̃∼Pg
[D(x̃)] − Ex∼Pr

[D(x)] (4)

where Pg and Pr is the generator distribution and the real data distribution
respectively.

4 Experiments and Results

4.1 Implementation Details

Similar to other SR researches, for the training set, we use 91 images from
Yang et al. [28] and 200 images from the training set of Berkeley Segmenta-
tion Dataset [20], which contains 291 images totally. We evaluate our model
with 6 widely used benchmark datasets: Set5 [2], Set14 [29], BSDS100 [20],
Urban100 [12], Manga109 [21] and STL-101. We apply data augmentation on
the training set. Following [18], an image will go through three operations in
turn, (1) Flipping; (2) Rotation; (3) Scaling. Then we crop HR image patches
with the size of 128 × 128. We use bicubic downsampling operation to get the
LR images. We implement two versions of our DFTN method with different
loss functions: (1) DFTN-C: the pre-trained DFTN with content loss only; (2)
DFTN-CTA: content + texture + adversarial loss.

For training strategy, we use Adam optimizer with default parameters to
train our model (DFTN-C) with content loss in the pre-train procedure. As for
1 http://cs.stanford.edu/∼acoates/stl10.

http://cs.stanford.edu/~acoates/stl10
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our model DFTN (trained with combined loss), we use the RMSprop optimizer
and its default setting in Pytorch. Note that parameters of DFTN-CTA are
initialized by a pre-trained DFTN-C.

PSNR and SSIM are two classic metrics to evaluate pixel-wise and structure
similarities between reconstructed and original HR images. And the IFC value
which assesses the image quality based on natural scene statistics is thought to
correlates well with human perceptions [27]. These three metrics are the most
widely used objective quality evaluation metrics for SR task.

4.2 Evaluation on Pre-trained Model

Here we compare our pre-trained model DFTN-C with SR methods whose opti-
mization goal is mainly using pixel-wise difference (i.e. MSE), which always
achieve high objective qualities. Methods to be compared include two classic
algorithms (Bicubic, A+ [26]) and six state-of-the-art CNN-based SR algorithms
(SRCNN [4], DRCN [17], DRRN [25], lapSRN [18], DSRN [9] and IDN [13]).

Table 1. Quantitative evaluation of classic and convolutional neural network based SR
algorithms on objective qualities: PSNR, SSIM and IFC. Red texts express the highest
scores and underlined blue texts express the second highest scores.

Algorithm Scale Set5

PSNR/SSIM/IFC

Set14

PSNR/SSIM/IFC

BSDS100

PSNR/SSIM/IFC

Urban100

PSNR/SSIM/IFC

Manga109

PSNR/SSIM/IFC

Bicubic ×2 33.69/0.931/6.166 30.25/0.870/6.126 29.57/0.844/5.695 26.89/0.841/6.319 30.86/0.936/6.214

A+ [26] ×2 36.60/0.955/8.715 32.32/0.906/8.200 31.24/0.887/7.464 29.25/0.895/8.440 35.37/0.968/8.906

SRCNN [4] ×2 36.72/0.955/8.166 32.51/0.908/7.867 31.38/0.889/7.242 29.53/0.896/8.092 35.76/0.968/8.471

VDSR [16] ×2 37.53/0.959/8.190 33.05/0.913/7.878 31.90/0.896/7.169 30.77/0.914/8.270 37.22/0.975/9.120

DRCN [17] ×2 37.63/0.959/8.326 33.06/0.912/8.025 31.85/0.895/7.220 30.76/0.914/8.527 37.63/0.974/9.541

LapSRN [18] ×2 37.52/0.959/9.010 33.08/0.913/8.501 31.80/0.895/7.715 30.41/0.910/8.907 37.27/0.974/9.481

DRRN [25] ×2 37.74/0.959/8.671 33.23/0.914/8.320 32.05/0.897/7.613 31.23/0.919/8.917 37.92/0.976/9.268

DSRN [9] ×2 37.66/0.959/8.585 33.15/0.913/8.169 32.10/0.897/7.541 30.97/0.916/8.598 –

IDN [13] ×2 37.83/0.960/8.659 33.29/0.915/8.384 32.08/0.899/7.485 31.27/0.920/8.982 38.01/0.975/9.194

DFTN-C ×2 37.72/0.960/9.345 33.21/0.915/8.774 32.00/0.898/7.944 30.89/0.917/9.386 37.76/0.976/9.915

Bicubic ×4 28.43/0.811/2.337 26.01/0.704/2.246 25.97/0.670/1.993 23.15/0.660/2.386 24.93/0.790/2.289

A+ [26] ×4 30.32/0.860/3.260 27.34/0.751/2.961 26.83/0.711/2.565 24.34/0.721/3.218 27.03/0.851/3.177

SRCNN [4] ×4 30.50/0.863/2.997 27.52/0.753/2.766 26.91/0.712/2.412 24.53/0.725/2.992 27.66/0.859/3.045

VDSR [16] ×4 31.35/0.883/3.496 28.02/0.768/3.071 27.29/0.726/2.627 25.18/0.754/3.405 28.83/0.887/3.664

DRCN [17] ×4 31.54/0.884/3.502 28.03/0.768/3.066 27.24/0.725/2.587 25.14/0.752/3.412 28.98/0.887/3.674

LapSRN [18] ×4 31.54/0.885/3.559 28.19/0.772/3.147 27.32/0.727/2.677 25.21/0.756/3.530 29.09/0.890/3.729

DRRN [25] ×4 31.68/0.888/3.703 28.21/0.772/3.252 27.38/0.728/2.760 25.44/0.764/3.700 29.46/0.896/3.878

DSRN [9] ×4 31.40/0.883/3.500 28.07/0.770/3.147 27.25/0.724/2.599 25.08/0.747/3.297 –

IDN [13] ×4 31.82/0.889/3.744 28.25/0.774/3.282 27.41/0.731/2.757 25.41/0.764/3.685 29.42/0.895/3.881

DFTN-C ×4 31.75/0.889/3.772 28.24/0.774/3.285 27.37/0.730/2.767 25.31/0.761/3.714 29.26/0.894/3.933

Bicubic ×8 24.40/0.658/0.836 23.10/0.566/0.784 23.67/0.548/0.646 20.74/0.516/0.858 21.47/0.650/0.810

A+ [26] ×8 25.53/0.693/1.077 23.89/0.595/0.983 24.21/0.569/0.797 21.37/0.546/1.092 22.39/0.681/1.056

SRCNN [4] ×8 25.33/0.690/0.938 23.76/0.591/0.865 24.13/0.566/0.705 21.29/0.544/0.947 22.46/0.695/1.013

VDSR [16] ×8 25.93/0.724/1.199 24.26/0.614/1.067 24.49/0.583/0.859 21.70/0.571/1.199 23.16/0.725/1.263

DRCN [17] ×8 25.93/0.723/1.192 24.25/0.614/1.057 24.49/0.582/0.854 21.71/0.571/1.197 23.20/0.724/1.257

LapSRN [18] ×8 26.15/0.738/1.302 24.35/0.620/1.133 24.54/0.586/0.893 21.81/0.581/1.288 23.39/0.735/1.352

DRRN [25] ×8 26.18/0.738/1.307 24.42/0.622/1.127 24.59/0.587/0.891 21.88/0.583/1.299 23.60/0.742/1.406

DFTN-C ×8 26.22/0.745/1.389 24.46/0.624/1.184 24.58/0.588/0.924 21.93/0.589/1.388 23.66/0.749/1.480
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We show our quantitative results on these objective quality metrics in Table 1.
Our model has obtained competitive PSNR and SSIM results in most datasets
and scales. Especially, we have improved a lot and achieved new state-of-the-art
results in the Information Fidelity Criterion (IFC), which has been shown to
reflect the human perception of SR results best [27]. Figure 6 show the visual
comparisons of two examples from BSDS100 and Manga109 datasets. From this
figure, we can easily draw a conclusion that our model has obtained more clear
straight lines, more clear texts, and sharper edge, while other methods’ results
are more blurry.

Table 2. Comparison of PSNR, SSIM and IFC on state-of-the-art methods that focus
on human perception for the scale ×4.

Algorithm Set5
PSNR/SSIM/IFC

Set14
PSNR/SSIM/IFC

BSDS100
PSNR/SSIM/IFC

Manga109
PSNR/SSIM/IFC

Urban100
PSNR/SSIM/IFC

SRGAN 28.20/0.817/2.537 25.86/0.700/2.154 24.63/0.643/1.806 23.68/0.700/2.470 26.49/0.832/2.549

EnhanceNet28.57/0.809/2.647 24.95/0.653/2.008 24.14/0.605/1.426 23.55/0.694/2.655 20.44/0.674/1.101

DFTN-CTA 29.76/0.846/3.143 26.45/0.712/2.685 25.67/0.665/2.342 23.97/0.710/3.076 27.38/0.849/3.195

VDSRBicubic SRCNN

DRCN LapSRN DFTN-C (ours)BSDS100: 78004 IDN

VDSRBicubic SRCNN

DRCN LapSRN DFTN-C (ours)IDNManga109: TetsuSan

Ground Truth

Ground Truth

Fig. 6. Visual comparison on pre-trained model. Top: Results of “78004” from the
BSDS100 with the scale ×2. Bottom: Results of “TetsuSan” from the Manga109 with
the scale ×4.

4.3 Comparison with Adversarial Training Methods

Thanks to GAN’s excellent performance in generating real data distribution,
some GAN-based methods such as SRGAN [19] and EnhanceNet [23] have make
progress in enhancing the perceptual quality of LR images. However, their recon-
structed images have very low objective quality (with very low PSNR and SSIM
values) and thus are not faithful to original images. As Table 2 shows, our model
with combined loss functions (DFTN-CTA) performs better than SRGAN and
EnhanceNet in the objective quality, with higher PSNR, SSIM and IFC. For
example, DFTN-CTA improve PSNR with 1.04 dB and 1.53 dB over SRGAN
and EnhanceNet in the BSDS100 dataset.
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Fig. 7. Visual comparison between our model and previous methods on two example
images from Set5 and Set14 for the scale ×4.

Table 3. Comparison of FID on state-of-the-art adversarial training based methods in
the STL-10 dataset for the scale ×4. Bold texts express the highest score and underlined
texts express the second highest score.

Dataset IDN SRGAN EnhanceNet DFTN-C DFTN-CTA

STL-10 107.872 31.326 35.411 97.671 33.952

Fréchet Inception Distance (FID) is a widely used quantitative evaluation
metric to evaluate the perceptual quality of the generated images. Similar to
the image generation task, super-resolution model get the LR image input and
generate the HR images. Based on this similarity, we first introduce the Fréchet
Inception Distance (FID) for quantitative SR results evaluation. According to
[11], FID can measure the distance between two data distributions. The lower
FID score indicates higher similarity between generated data distribution and
real one. We desire it to be an overall indicator to reflect the similarity between
the original HR images distribution and reconstructed one.

Table 4. MOS comparison results of state-of-the-art methods on the Set5 and Set14
for the scale ×4. Bold text express the highest score.

Algorithm SRCNN DRCN LAPSRN DRRN IDN SRGAN EnhanceNet DFTN-C DFTN-CTA

Set5 2.28 2.97 3.02 3.15 3.26 3.38 3.45 3.28 3.56

Set14 2.43 2.91 2.91 2.98 3.21 3.30 3.35 3.22 3.36

More specifically, we use the dataset STL-10 as the benchmark dataset. We
select 20000 images with the size of 96×96 from the unlabeled set and downsam-
ple them to get the LR images at the scale ×4. We apply SR algorithms to these
LR images and compute FID between the set of original images and SR images.
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As Table 3 shows, although the FID of our model is higher than SRGAN, our
model DFTN-CTA get relatively low FID scores. Our pre-trained model DFTN-
C also obtains lower FID than IDN [13], which has similar pixel-wise loss. Above
results confirms the results of our method have better perceptual quality.

4.4 Mean Opinion Score Testing

Due to the disadvantages existing in current object and perceptual quality
evaluation metrics, for a more reasonable and intuitive evaluation, following
SRGAN [19], we use MOS testing to assess the comprehensive quality of images
that are reconstructed by our model. Specifically, we invite 20 volunteers to rate
on a five-point scale (1: bad quality, 5: excellent quality) on the SR results. Vol-
unteers has rated different versions of images from dataset Set5, and Set14, which
include SRCNN, DRCN, LAPSRN, DRRN, IDN, SRGAN, EnhanceNet and our
four DFTN models. For each image of all datasets, we calibrate the raters by
setting the bicubic (score: 1) and original HR (score: 5) versions for each image.
We show the mean opinion score testing results by Table 4, our DFTN-CTA ver-
sion has obtained the new state-of-the-art scores. The results confirm that our
model can confirm to the human perception better.

We plot SR results from adversarial training based methods (SRGAN,
EnhanceNet and DFTN-CTA) for the scale ×4, which are shown by Fig. 7.
We can see that adversarial training based methods can produce clearer and
sharper SR image, but some of their textures have many noisy points or arti-
ficial information which is different from the true HR images. Compared with
SRGAN and EnhanceNet, our model DFTN-CTA reduces noise while looking
into details, which not only improves the perceptual quality, but also reconstruct
the images more faithful to the target HR images.

5 Conclusion

In this work, we propose a super-resolution deep feature translation network
(DFTN) with Laplacian Pyramid architecture. At each level of pyramid, we
translate the LR image feature into difference image feature. To enhance detail
information, we combine three loss functions: content loss, fine-grained texture
loss and adversarial loss in our model optimization. For different evaluation
metrics including objective and perceptual quality metrics and MOS testing, the
proposed DFTN achieve state-of-the-art results. Extensive experimental results
confirm strongly that our model can improve perceptual quality and maintain
object quality at the same time.

Acknowledgement. This work was supported by National Key Research and Devel-
opment Program of China (Grant No. 2016YFB1000902) and the project of National
Science Foundation of China (No.61672017).
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Abstract. Many real-world complex systems can be treated as multi-
plex networks and there have constantly been unwanted diffusion (e.g.,
computer viruses, rumors, and epidemics) running on top of them. These
type of network risks often lead to the global economic burden every
year. Centrality-based immunization is an important approach to reduce
the cost of preventing such unexpected massive outbreaks, for its effec-
tiveness in cutting off the dissemination paths to delay the propagation.
However, most of the current strategies on multiplex networks only focus
on the topological structures when evaluating the influence of nodes,
and the heterogeneity of individual behaviors has been less addressed.
This paper proposes a heterogeneity-oriented (HO) immunization strat-
egy for multiplex networks based on heterogeneous features of nodes.
Specifically, the HO strategy treats nodes as independent agents, and
the behaviors of them are defined and quantified in each layer. After
coupling with the topological factor, this strategy is able to characterize
the importance of nodes which can further be used for pre-immunization
to delay the detrimental propagation. To testify the effectiveness, plenty
of experiments are conducted based on a multi-agent email model. The
results on large real-world and synthetic multiplex networks show that
our strategy outperforms the existing representative strategies and effec-
tively delay the propagation.

Keywords: Multiplex networks · Individual heterogeneity ·
Network immunization · Multi-agent systems

1 Introduction

Network theory is an important tool for analyzing complex systems [1,2]. From
social to science fields, almost all the systems can be represented as the intercon-
nected networks: “nodes” are defined as the individuals, and “edges” denote the
ties between pairs of nodes. In the last years, more and more studies start to char-
acterize the interactions between networks and other networks [3,4]. The system
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composed of several layers of subnetworks is called multiplex network. In different
layers, nodes still belong to the same sets [5], but the relationships and physical
meanings of them differ extremely [6,7]. Through links within each subnetwork
and external channels that connect all subnetworks, the dynamical processes
could go all over the whole interconnected network. Hence, multiplex networks
provide ideal inner structures for studying the real-world dynamics [8,9]. The
problem of controlling different diffusion phenomena is also transformed into
how to protect multiplex networks effectively.

Centrality-based immunization is an effective approach to achieve the goal.
By immunizing (or removing) parts of the most important nodes to cut off
the contagion paths, the propagation could be effectively delayed. In previous
studies, a number of strategies have been proposed for the purpose of immu-
nization [10,11]. For example, Betweenness [12] is a classical strategy which
identifies centrality based on the shortest path within layers and between layers;
PageRank [13] on the other hand, characterizes node centrality by considering
the importance of its neighbors. Although these strategies have exploited the
topological characteristics, the heterogeneous features of nodes have been less
considered [8], especially when the complexity and diversity of real-world systems
are emerging rapidly.

In the recent few years, more and more researches have revealed that hetero-
geneous peculiarities of nodes have a strong impact on the identification of node
centrality [14,15]. In multiplex networks, the individual heterogeneity of nodes
can be found in many fields. For instance, it can be denoted as the different
tendencies towards innovation adoption [14]; or represents divergent awareness
to the epidemic spreading process [15,16]. On the other hand, the heterogeneity
provides a new view of nodes. Nodes are treated as the independent agents and
they behave differently in the propagation process. Through this way, real sit-
uations could be simulated in a more general and comprehensive way, which is
essential towards optimizing the immunization strategy. Hence, to measure the
node centrality, both topology and heterogeneity factors should be taken into
consideration.

In this paper, we define the HO strategy from three aspects: (1) structure
centrality, (2) activity rank and (3) spread rank. Specifically, structure central-
ity measures the topological importance of nodes, activity rank and spread rank
quantify the activity level and spread ability of the nodes, respectively. By tact-
fully combining the three elements and immunizing nodes based on the HO
strategy, less cost and high efficiency could be achieved. For testing our strategy,
plenty of experiments are conducted on large real-world and synthetic multiplex
networks based on a multi-agent email model [17]. As shown in the results, our
HO strategy outperforms the existing immunization strategies and can restrain
the propagation process effectively [18]. Our main contributions can be summa-
rized as follows:

(1) A unique heterogeneity-oriented immunization strategy is proposed. It could
accurately measure the node centrality on multiplex networks, then through
immunizing accordingly, the propagation could be delayed effectively.
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(2) The effectiveness of our proposed strategy is testified on different types of
multiplex networks, and the comparisons are made with the existing repre-
sentative strategies.

The rest of the paper is organized as follows: Sect. 2 describes the model definition
and algorithm. Section 3 provides the detailed descriptions and formulations of
our proposed method. Section 4 represents some of the experiment results as well
as analyses. Finally, Sect. 5 states conclusions.

2 Preliminary

This section provides the theoretical foundation of our work. Specifically,
Sect. 2.1 introduces the dynamics of a multi-agent email model. Section 2.2 ana-
lyzes the model applicability on multiplex networks and presents the detailed
propagation algorithm.

2.1 Model Descriptions

Email model [17] is an interactive multi-agent model which depends on two
primary user behaviors: check email box and open email attachments. A node
becomes activated when it is checking the email box, after this, it has a possi-
bility to open the malicious attachments. Once the node gets infected, it would
immediately send one malicious attachment to its neighbors. Assume a multi-
plex network with two layers, specifically, layer A and layer B own the same
set of nodes but with the different edge pairs, and each layer represents one
independent social and communication environment.

Consider the non-reinfection case, initially ρ0 of nodes are selected as the
first infected sources, in this paper ρ0 = 2/N , namely two-origin infection. Let
D(x) denote the probability generating function of node degrees of each layer:

D(x) =
∞∑

k=1

PX(d = k)xk (1)

P (d = k) is the probability that a node is of degree k in layer X. When all nodes
have the same probability to open the malicious attachments, i.e., Pi = p, (i =
1, 2, ...|V |), the lower bound of the E[Nh

∞] is derived which denotes the average
number of uninfected nodes when the propagation is terminated:

EA[Nh
∞] ≥ |V |

∞∑

k=1

PA(d = k)(1 − p)k = |V |G(1 − p) (2)

EB [Nh
∞] ≥ |V |

∞∑

k=1

PB(d = k)(1 − p)k = |V |G(1 − p) (3)
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Interlayer communicationIntralayer communication

Uninfected node Infected source Infected node

Fig. 1. Illustration of a propagation on a double-layer multiplex network. There are
two key points: (1) overlapped infection exists in the propagation; (2) a node is changed
to infected state in all layers even if it gets infected in only one of them.

2.2 Propagation Algorithm

Different from the single-layer propagation, situations are more complicated in
multiplex networks. First, the propagation proceeds simultaneously on all of the
layers. This step is called intralayer communication. Then, during the prop-
agation, the status of nodes would be updated to keep the consistency between
layers. This step is called interlayer communication. The detailed mechanism
can be seen in Fig. 1, and the process is specified in Algorithm 1.

Algorithm 1. Propagation on multiplex networks
Input: The edge and node information data of all X layers in a network G
Output: A matrix R[k][t], which denotes the average proportion of infected nodes at
each time step during kth simulation
1. InitNetwork(filename);
2. /* start propagation */
3. For k = 1 to R do //An average value is obtained after running R times
4. InitialInfection(ρ0); //Initially infecting ρ0 of nodes randomly
5. While t < T do //There are T time steps at each run
6. For i = 1 to N in layer z (z = 1,2,...,X) do //Traverse every node in all
7. X layers
8. If vi

z.timeInterval.get(t) == 0 then //The node is activated now
9. Prob = probGenerator(); //compute the probability of clicking a
10. virus email based on β and virusNum
11. If rand() < prob then
12. If vi

z.status == danger then
13. vi

z.status = infected
14. update vi

z status (z = 1,2,...,X)
15. vi

z spreading virus to its neighbors
16. R[k][t] = It;
17. resetNode(); //reset the status of nodes
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To estimate the performance of one propagation, the average proportion of
infected nodes I at time step t is defined as follows:

It =
∑

vi
z|vi

z.status = infected

Nz
z = ∀z ∈ (1, 2, ...,X) (4)

X is the number of layers and Nz is the number of nodes in any of the layers.
Notice that z is equal to any value in set (1, 2, ...,X), this is because the status
of nodes is updated among layers immediately.

3 Method

This section presents the detailed principals of our proposed method. The
notions of activity rank are first defined in Sect. 3.1. Then, Sect. 3.2 gives the
measurement of spread rank. Finally, Sect. 3.3 derives the final formulation of
HO centrality.

3.1 Activity Rank

The activity rank measures the activity level of an entity [19], and the activities
of entities are different in different situations. For example, in the email networks,
agents may execute the email-box checking and clicking behaviors [17,18]; in the
geographical networks [20], humans may have the migration behaviors; or in the
movie networks [21], users may have the rating behaviors. In multiplex networks,
one entity has different activity rank in a different layer of the network. Consider
a Facebook-twitter double layer network, if an individual is a frequent Facebook
user and an indifferent twitter user at the same time, the activity frequency it
shows on these two different layers would vary in a great extent. In this paper,
the expected values of activity time intervals are formulated to measure the level
of such activities.

Given a multiplex network with X layers, for each layer z, the ith node is
denoted as vi, Li

z is the corresponding activity time interval queue defined in
Eq. (4). In this paper, the normal distribution N(40, 202) is adopted to depict
the attributes of Li

z based on [17].

Li
z = {li1z , li2z . . . limz } (5)

The activity time interval queue implies the specific time point the node get
activated and the length of one sleep time span. To measure the effect of activity
time interval, the activity rank is defined as follows:

Qz(i) =
∑m

h=1 lih

m
(6)

ARz(i) = − ln
Qz(i)∑n
i=1 Qz(i)

(7)

By the definition of activity rank, the smaller Q(i) is, the more active the
node vi becomes. After the transformation in Eq. (7), AR is able to describe the
activity levels of nodes based on Q(i).
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3.2 Spread Rank

Besides the activity rank, the spread rank is the other heterogeneity feature of
nodes, which quantifies the spread ability of a node. A parameter β is taken to
measure such spreading capacity of nodes. The meanings of spread rank also
differ as the definitions of the research fields vary. For instance, in the email
networks, the spread ability represents the worm emails clicking probability [18];
or in the social networks, it means the information forwarding ability [22].

However, different from the activity rank, the spread rank of an individ-
ual is the same in any of the layers. In general, the spread ability is an inherent
attribute of a node. Hence, for a specific node, such an intrinsic ability is station-
ary regardless of environments (i.e., layers). Besides, some studies have shown
that the spread abilities of nodes in a network can be characterized by the nor-
mal distribution in a statistical way [17]. In other words, most of the nodes are
normal spreaders, only a few nodes have extremely strong or weak spread abil-
ities. In this paper, N(0.5, 0.32) [17] is used to describe the distribution of β in
each layer.

3.3 HO Centrality

Sections 3.1 and 3.2 have provided the definitions of two core heterogeneity fac-
tors, to derive the final formulation, one topology factor is added into our pro-
posed HO centrality.

Our motivation is to formulate an immunization strategy which tactfully
combines the topology and heterogeneity factors, and can finally be used to
better characterize the importance of a node. Consequently, a balance is made
between three factors, and the situations all of the layers are considered. In a
multiplex network with X layers, the gross HO centrality of a node is defined
as follows [11]:

HO centrality(i) =
1
X

z=X∑

z=1

structure centralityz(i) ∗ ARz(i) ∗ β(i) (8)

For node i, structure centrality and AR are different among layers while β
stays the same. After averaging the effect of X layers, the final HO centrality
could be derived. For the rationality, if a node takes an important topological
position, but it is inactivated or it has no spread ability (i.e., AR(i)z = 0 or
β(i) = 0) in layer z, this node would be considered incapable of spreading in
layer z. Vice Versa, a node cannot spread virus if it is isolated in layer z (i.e.,
structure centraliyz(i) = 0). By such a fusion, extreme situations above could
be simulated. The illustration of HO strategy is shown in Fig. 2.
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Vi

Vi

Vi

Activated

Inactivated

Small spread rank

Large spread rank

Successful infection

Unsuccessful infection

Fig. 2. Propagation details by initially immunizing nodes based on HO method. It can
be seen that a successful infection only happens when the node is activated, and its
possibility is higher when the spread rank is higher at the same time.

4 Experiments

The details of the experiments are stated in this section. Specifically, Sect. 4.1
describes the procedures of preprocessing data and datasets being used. Then in
Sect. 4.2, the effectiveness of our proposed HO method is tested and its immu-
nization efficiency is compared with structural strategies and AR methods [17].

4.1 Datasets and Preprocessing

In our experiments, two real-world and two synthetic multiplex networks with
different layers are used as the import data. For real-world networks, G1 is
obtained from twitter [23], and three layers of relationships correspond to
retweet, mentions, and replies observed between. G2 is the biological network
which contains three different types of genetic interactions [24] including (1)
Direct interaction, (2) Physical association and (3) Association. Besides, for the
two synthetic networks, G3 is generated by BA algorithm [25] and G4 is a random
network. The detailed information is summarized in Table 1.

For preprocessing, there are three main steps in each simulation: (1) Sort
the nodes in descending order based on their centralities calculated by different
strategies; (2) Initially set ρ0 = 2/N of nodes as infected sources; (3) Start
propagation based on Algorithm 1, and all results are averaged over 100 runs
and the total simulation time is T = 600 in each run.
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Table 1. Networks used in our experiments. The total number of nodes and edges of
a network are denoted as |N | and |E|, respectively. The number of layers is denoted
by |L|. Type is the feature of edges and Range is main information of the network.

ID Networks |N | E |L| Type Range

G1 NYClimateMarch2014 102439 102439 3 Undirected Twitter
G2 PLASMODIUM 1023 2521 3 Undirected Biological
G3 BA 10000 7182 2 Undirected Synthetic
G4 ER 1115 6932 2 Undirected Synthetic

Based on the network data and procedures above, the node centrality could be
extracted by applying different strategies. For the HO centrality, the calculation
algorithm is specified in Algorithm2.

Algorithm 2. Immunization on multiplex networks by HO centrality

Input: The edge and node information data of all X layers in network G
Output: Network G with ρ0 = 2/N immunized nodes
1. InitNetwork(filename);
2. For i = 1 to N do
3. vi.beta = betaGenerator(average, variance); //generate the spread rank
4. based on the parameters of the normal distribution
5.. For z = 1 to X do
6. vi

z.timeInterval = timeGenerator(T ); //generate the activity time interval
4. queue based on simulation time
5. /* Immunization by HO strategy */
6. sorted = sort(); //sort all centralities in descending order
7. For i = 1 to N ∗ p% of sorted in layer z (z = 1, 2,...,X) do
8. vi

z.status = immunized; //Selecting top p% (p = 5%, 10%, 30% in this paper)
9. of nodes to be immunized

4.2 Evaluation of Performance

In this section, the efficiency of HO is evaluated by comparing with: (1)
Degree [11]: Immunizing the nodes with the highest average number of neigh-
bors between layers at once. (2) Betweenness [12]: Immunizing nodes based on
shortest paths. (3) PageRank [13]: Immunizing the nodes which have the neigh-
bors with the best qualities. (4) AR [19]: Immunizing the nodes by the fusion of
activity rank with a topology-based strategy.
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Figures 3, 4 and 5 illustrate the efficiency comparison results with immuniza-
tion rate p = 10%. Table 2 provides the statistical results between Degree and
HOdegree in every 100 time steps as an example. It is conspicuous that:

(1) The speed of epidemic propagation is extremely high on multiplex net-
works, the infection rate is close to a steady state at T = 400. This is because,
in every time step, the newly infected individuals have a significant diversity in
different layers, and such an effect is cross-layer. In other words, because of the
low-overlapping rate [14] of an infection, the virus could get disseminated more
easily.

(2) Compared with the single topology-based immunization strategies, the
heterogeneity-oriented methods (AR and HO) can improve the immunization
efficiency remarkably under the same condition (i.e., the same immunization
rate and network structures). At the same time, all the HO methods are more
efficacious than the AR methods. Such results prove that the spread ability
has a noteworthy impact on immunization efficiency and it could be applied on
multiplex networks.

(3) Under the same condition, the HO methods combining with different
structure centralities perform diversely due to the differences between networks.
This is because when the heterogeneity factor is kept the same, the structure of
a network is the main factor that makes the difference.

Table 2. Comparisons between average infected proportions of Degree and HOdegree

in every 100 time steps. It’s conspicuous that the propagation speed of HOdegree is
much lower than Degree’s.

Networks TimeStep
Strategy 100 200 300 400 500 600

G1 Degree 0.564 0.851 0.914 0.939 0.949 0.952
HOdegree 0.305 0.751 0.862 0.906 0.915 0.919

G2 Degree 0.019 0.428 0.900 0.973 0.892 0.899
HOdegree 0.012 0.348 0.721 0.851 0.870 0.876

G3 Degree 0.371 0.882 0.899 0.899 0.899 0.899
HOdegree 0.151 0.734 0.868 0.886 0.886 0.886

G4 Degree 0.182 0.582 0.799 0.867 0.875 0.875
HOdegree 0.164 0.585 0.720 0.837 0.875 0.875
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Fig. 3. Comparison results of the propagation in G1–G4 between Degree, ARdegree

and HOdegree. It is obvious that the infection process is the slowest when immunizing
nodes by HOdegree, which proves that the efficiency of HO method is better.
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Fig. 4. Comparison results of the propagation in G1–G4 between Betweenness,
ARbetweenness and HObetweenness. It is obvious that the infection process is the slow-
est when immunizing nodes by HObetweenness, which proves that the efficiency of HO
method is better.
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Fig. 5. Comparison results of the propagation in G1–G4 between PageRank,
ARPageRank and HOPageRank. It is obvious that the infection process is the slow-
est when immunizing nodes by HOPageRank, which proves that the efficiency of HO
method is better.

5 Conclusions

In this paper, a heterogeneity-oriented (HO) immunization strategy is proposed.
To elucidate our strategy, two core elements (i.e., activity rank, spread rank) are
first defined, then by tactfully combining with the structure centrality, the final
formulation is derived. Besides, a multi-agent email model is presented as the
simulation platform, and plenty of comparison experiments are conducted on
large real-world and synthetic multiplex networks. The main findings can be
concluded as: (1) HO strategy outperforms the single topology-based immu-
nization strategies as well as the existing heterogeneity-oriented method (AR);
(2) Due to the low-overlapping rate of the infection, the speed of the propaga-
tion on multiplex networks is typically high in different networks. However, HO
strategy could still slow the spreading process to some extent.

Future works include (1) to find the effect of overlapping rate on the prop-
agation and (2) to test the parameters of distribution on the efficiency of HO
strategy.
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Abstract. The ambiguous acronyms and abbreviations in clinical
reports can be quite confusing for patients and doctors to understand,
which will potentially lead to medical malpractice [15]. To solve this
problem, we proposed a supervised approach to detect abbreviations
in given clinical reports and normalise these abbreviations to medical
concepts. In the step of detection, a seq2seq model with the attention
mechanism was built and achieved the micro-average F1 score of 83.85%
among 99 test reports. In the step of normalisation, we used both internal
and external senses inventories to build one disambiguation classifier for
each abbreviation. Finally, the proposed normalisation method achieved
a micro-average accuracy of 74.7%, beating the first ranked team in the
ShARe/CLEF eHealth 2013 competition, Task 2. This work provided
a complete pipeline to handle ambiguous abbreviations in clinical doc-
uments, which is essential for healthcare providers and researchers to
understand and subsequently leverage the clinical reports.

Keywords: Clinical abbreviations · Named Entity Recognition ·
Named Entity Normalisation · Word sense disambiguation

1 Introduction

Effective and adequate communication between different healthcare providers is
essential for providing patients with high-quality medical care, and this commu-
nication is usually achieved through clinical reports [17]. As medical referrals
become more convenient and frequent, more and more healthcare profession-
als are involved in the treatment of one patient. This tendency means that a
patient’s clinical reports will be read and referenced by many doctors with dif-
ferent backgrounds. However, this seemingly ordinary process faces enormous
challenges due to the existence of ambiguous clinical abbreviations. A study in
the UK showed that 90% of doctors from other profession were unclear about 6
of the 13 commonly used abbreviations in otolaryngology, which may potentially
lead to medical misdiagnosis [5]. According to the “Institute of Safe Medicine
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Practices” (ISMP), more than 7,000 people die from drug errors each year, and
abuse of acronyms has made a significant contribution to this statistic [10].

Consequently, we urgently need to find an effective solution to detect abbre-
viations in clinical texts and normalise them into unified, clear and easy-to-
understand forms. This task is challenging for the reason that (1) some tokens
can refer to different concepts and (2) tokens referring to some concepts have dif-
ferent variations and these variations cannot exactly match terms in ontologies
[11]. To solve this problem, this project aimed to develop:

– A clinical abbreviation detector, which can detect spans of medical abbrevi-
ations and their variations in given clinical reports.

– A clinical abbreviation normaliser, which can map the detected abbreviations
to the concepts in the Unified Medical Language System (UMLS).

Our project contains two parts, “Named Entity Recognition” (NER) and
“Named Entity Normalization” (NEN). In the part of abbreviation detection, we
proposed a seq2seq neural network with the attention mechanism to predict the
BIO labels of text segments sampled by the predefined sliding window; then we
concatenated these labels to calculate the span indices of each abbreviation in the
reports. Our method achieved the micro-average F1 score of 83.85% among 99 test
reports; In the part of abbreviation normalisation, we developed one classifier for
each abbreviation to predict possible meaning based on its context. The use of
character-level word embedding and external acronym meta thesaurus [6] made
our normaliser outperform the previous works on clinical abbreviation normalisa-
tion, by training SVM classifiers based on the average word embedding in the 20-
word sampling window, our approach achieved a micro-average accuracy of 74.7%,
beating the first ranked team in the ShARe/CLEF eHealth 2013 competition.

2 Related Work

In general, the main idea of machine learning-based abbreviation normalisa-
tion approach is that, building classifiers for each abbreviation by training mas-
sive clinical texts containing this abbreviation with its gold standard long-form
labelled by professionals.

The first study on applying word embeddings to clinical text normalisation
was proposed by Wu et al. [21], before that, researchers generally used some text-
based features to train their models, such as part-of-speech (POS), N-grams text
snippet, semantic types, position feature and stemmed words features [13,19,23].
They trained the word embeddings on 403871 unstructured clinical texts from
the MIMIC II database using the framework proposed by Collobert et al. [4],
and their method achieved a micro-average accuracy of 93.01% and 95.79% on
the VUH and UMN dataset separately. Therefore, word embedding is proved as
a dominant feature to improve the performance of word sense disambiguation in
clinical texts.

In addition to improving the feature engineering, some scholars made some
improvement in the model structure. In 2017, Yepes [22] proposed a “Long-Short
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Term Memory” (LSTM) based recurrent neural networks (RNN) to do clinical
abbreviations normalisation. They evaluated their model on the MSH WSD data
set [8] and the NLM WSD data set [18], the results of their experiments showed
that, when using same features, the proposed LSTM model outperformed the
classical machine learning models including SVM, Naive Bayes and K-nearest
neighbours (KNN) [22] largely. In 2018, Joopudi et al. [9] proposed an effective
convolutional neural network (CNN) framework for abbreviation normalisation.
Their framework took as input the concatenation of word embedding, positional
embedding and POS embedding, and it avoided the feature engineering. They
built CNN classifiers for each abbreviation and evaluated these classifiers on an
auto-generated data set, and their proposed CNN classifiers improve 1 to 4% in
the accuracy compared to SVM. Since this end-to-end framework did not involve
feature engineering, the models kept promising performance on multiple data set.
The above two examples show that deep learning models have great potential in
clinical text normalisation, and these models are robust across different datasets.

3 Abbreviation Detection Methodology

The objective of detection is to locate all abbreviations in clinical reports so
that we can subsequently track these abbreviations and normalise them. In this
section, we will introduce how our detector extracted and transformed features
and labels from the raw texts and made the final predictions.

3.1 Feature and Label Transformation

Word Embedding. In steps of clinical abbreviation detection and normali-
sation, all abbreviations and their surrounding contexts were represented using
FastText word embedding, which overcame the limitations of word2vec models.
Because the word2vec model regards each word as an atomic entity, it ignores the
internal morphological features of words. For example, some words pairs, such as
“apple” and “apples”, “cook” and “cooker”, have some common characters, and
their semantical connections are tight. If using the word2vec model, internal
morphological relations of such words will be lost because they are converted
into different ids. To overcome this problem, FastText model uses character-
level n-grams to represent a word, which regards n-characters as atomic entities
rather than words. In FastText word embeddings, words with similar character
combinations will be mapped to similar vectors. Such a mechanism is good at
getting over variations of abbreviations. We leveraged Gensim package to train
200-dimensional word embeddings using all MIMIC III notes.

BIO Labeling. As for labels, BIO encoding is the most popular encoding in
NER task, which tags each token as beginning-of-entity (B), inside-of-entity (I)
or outside-of-entity (O). In this case, we can input a sequence of words to our
model and get the same-length “B”, “I”, “O” sequences as results. However,
the word numbers of different clinical reports may vary a lot. It would be quite
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challenging to map random-length sequences to random-length sequences with
the fixed-size architectures. To solve this problem, we set a sliding window to
sample the raw text. Therefore, we could get massive instances from reports,
and each instance contained the same number of words. Figure 1 demonstrates
what the training instances look like.

Fig. 1. Examples of feature and label transformation

3.2 Model Architecture

The seq2seq deep learning model used in this paper mainly leveraged the atten-
tion mechanism [2], which is a very influential and seminal improvement on the
“Encoder-Decoder” model [3,16]. We adopted this model for the reason that the
attention mechanism was good at finding detection-relevant source words for
prediction according to the surrounding detection result. [2] defined the context
variable context<t> as the weighted sum of hidden states of all timestamp for
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the timestamp t, by training these weights our model could easily find detection-
relevant source words. The detailed structure is shown in Fig. 2, the diagram
on the left shows the structure of our seq2seq model and the diagram on the
right show only one “attention” step in this model to calculate the attention
weights a<t,t′>, which is used to calculate the context variable context<t> for
each timestep in the output (t = 1, . . . , T ), through the following formula:

context<t> =
T∑

t′=1

a<t,t′>a<t′> (1)

where the superscript <i> indicates the ith time step of variables. a<t,t′> indi-
cates the weight of the influence of hidden state a<t′> on the context vari-
able context<t>, and a<t,t′> is based on the post-attention LSTM hidden state
s<t−1> and the pre-attention Bi-LSTM hidden state a<t> (Fig. 2 right).

Fig. 2. The seq2seq deep learning model with the attention mechanism [1] to solve the
task of clinical abbreviation detection

4 Abbreviation Normalization Methodology

After locating all abbreviations and their variations in clinical reports, we need
to normalise them to UMLS concepts. In general, clinical abbreviations have
multiple meanings and can refer to various concepts. Therefore, we converted
this “word sense disambiguation” task into a concepts-classification task.
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4.1 Overview and Strategy

We followed the strategy introduced in [19]; our abbreviation normalisation app-
roach mainly consisted of two steps: (1) generating one senses inventory for each
abbreviation; (2) matching the most possible concepts (senses) to each abbrevi-
ation from their sense inventories.

In the first step, we generated two types of senses inventory. The first one
was the “internal senses inventory” generated from the training set by grouping
all concepts and their original text in reports. The other one was the “external
senses inventory”. Grossman et al. [6] built one integrated senses inventory by
combining eight famous source inventories including UMLS LRABR, ADAM,
Berman, Vanderbilt, Discharge Summaries, Vanderbilt Clinical Notes, Stetson,
Columbia OBGYN and Wikipedia. We chose this integrated senses inventory as
our “external senses inventory”, then for each abbreviation in this inventory, we
queried its long forms of all concepts in the MIMIC III database and collected the
corresponding source sentences. In this way, we generated our “complementary”
training corpus.

In the second step, we normalised each abbreviation to UMLS concept from
both the “internal senses inventory” and the “external senses inventory”. When
predicting the concept of every target abbreviation, our normaliser first checked
whether this abbreviation was included in the “internal senses inventory”, if not,
our normaliser then checked whether the “external senses inventory” covered
this abbreviation. For the abbreviations covered in “internal senses inventory”
or “external senses inventory”, the mapping tasks had been transformed into
supervised classification problems. While for those “uncovered” abbreviations,
we directly called the UMLS Terminology Service API (UTS API) to find the
possible concepts. Figure 3 shows the working flow of the second step.

4.2 Model Architecture

The main idea of modelling was to capture the sentence-level meaning of words
surrounding the target abbreviation and used this meaning to predict the pos-
sible UMLS concept of this abbreviation. Because all possible concepts were
provided by the two senses inventories, for each abbreviation, we trained a clas-
sifier to pick the concept with the highest possibility.

We tried two methods to capture the sentence-level meaning. The first one
was “averaging method”, and the other one was “long short-term memory
method”, as shown in Fig. 4.

Averaging Method. Averaging method is our baseline method. For each target
abbreviation, we picked fixed-number of words before and after it, and used the
average value of these picked words’ word embedding values to represent the
feature of this text fragment. The SVM model is good at dealing with high
dimensional data, so we trained one SVM classifier for each abbreviation from
“internal senses inventory” and “external senses inventory”. We also compared
our averaging method with another two word embedding aggregating method



Supervised Clinical Abbreviations Detection and Normalisation Approach 697

Fig. 3. Working flow of abbreviation sense disambiguation

defined in [21], namely “Left-Right Surrounding Based Embedding” (LR-SBE)
and “MAX Surrounding Based Embedding” (MAX-SBE) with same classifier
parameters.

Long Short-Term Memory Method. Although the above averaging method
could train a large number of classifiers in a short time, its limitation was also
obvious, that was, this method did not consider the order between words when
acquiring sentence-level features. It was not difficult to understand that changing
the order of words may change the meaning of a sentence. Therefore, using the
LSTM model before averaging the vectors might be a better solution to solve this
problem. This assumption was supported by [22], their work showed that adding
one LSTM layer could improve the performance of word sense disambiguation of
abbreviations. Therefore, we assumed that the LSTM model would still perform
better than the averaging method in our task.

5 Dataset

The proposed approach was evaluated by the Shared Annotated Resources
(ShARe) corpus, which was a subset of de-identified clinical reports from approx-
imately thirty thousand ICU patients provided by MIMIC II database [14]. In
ShARe/CLEF eHealth challenge task 2, 298 clinical reports were split into two
parts, 199 clinical reports in the training set and 99 clinical reports in the test
set. All the 298 reports had corresponding annotations of acronym/abbreviation
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Fig. 4. Structures of our baseline classification model and LSTM-based model

spans and UMLS Concept Unique Identifiers (CUIs). In our project, we main-
tained this splitting method, used the annotated acronym/abbreviation spans to
evaluate our detection model and used annotated UMLS CUIs to evaluate our
normalisation model.

6 Evaluation and Results

We conducted two independent experiments to evaluate the performance of our
multi-label classification model - abbreviation detector and our multi-class clas-
sification model - abbreviation normaliser. To compare our proposed approach
with others’ work, we did not re-split the data set, and all the performances were
evaluated on the 99 clinical reports from ShARe corpus.

6.1 Task 1: Abbreviation Detection

In the first experiment, we used a sliding window to sample the pre-processed
free texts in the training set. All the sampled text segments were fed into our
seq2seq model; When predicting, we first split the pre-processed free texts into
non-overlapping segments with the same length as training segments. Then, we
made predictions for these segments separately. Finally, we concatenated these
predicted sequences as our detection result on one pre-processed free text.

We used the hamming loss as the matrix to train our model. After we concate-
nated the predictions into one string, we could also evaluate our model by words
as a single-label classifier. The size of the sliding window played an important
role in the predictive accuracy of our model. If the window size was too small,
some information that can be helpful to prediction might not be used; on the
contrary, if the window size was too large, we might cover too much unnecessary
information that did not contribute. Therefore, we tried different window sizes
in the first experiment; every time the window size was changed, a new seq2seq
model would be trained and evaluated.
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Fig. 5. Micro-average F1 score by batch size with different window sizes

We used 2, 4, 8, 12, 16, 20 as the size of our sampling window, trained and
validated multiple seq2seq models respectively and calculated the micro-average
F1 score on 99 test reports by different batch sizes. For each training, we set
the maximum number of epochs as 50 and use early stopping with the patience
parameter of 5. The result is shown in Fig. 5, choosing a window size of 4 got
the highest micro-average F1 score on the validation set, and it achieved the
micro-average F1 score of 83.85% on the test set.

6.2 Task 2: Abbreviation Normalisation

In the second experiment, our normalisation approach was evaluated indepen-
dently. We normalised human-detected abbreviation spans in ShaRe CLEF corpus
to compare the human-normalised results with ours. By using the strategy shown
in Fig. 3, 3774 abbreviations in the test set were split into three parts: “internal”
abbreviations, “external” abbreviations and “uncovered” abbreviations.

Because the training sets corresponding to the “internal” abbreviations were
manually labelled by medical professionals, the data quality of which was rel-
atively higher than our generated training data for external abbreviations. To
avoid interference factors caused by poor data quality and to control a single
variable, we validated our model only on these “internal” abbreviations and
applied the same setting to “external” abbreviations when predicting. Similar
to the practice in the first experiment, we first evaluated the effect of different
window sizes on the classification accuracy of models, such as SVM, Random
Forest and KNN.

As shown in Table 1, the random forest classifier was better than the other
two models when the window size was relatively large; and when the window
size became smaller, the SVM classifier gradually showed its advantage. When
the window size was 20, the three models simultaneously reached their highest
value and SVM classifiers achieve global optimal classification performance with
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the micro-average accuracy of 83.56%. With the same setting, we got the micro-
average accuracy of 40.06% on the “external” abbreviations. Table 2 shows the
overall performance of our normalisation baseline system.

Table 1. Micro-average accuracy of disambiguation for “internal” abbreviations with
different window size. Best results for each model are shown in bold, best global results
are shown underlined.

Window size SVM Random forest KNN

10 83.02% 82.86% 81.74%

20 83.56% 83.28% 81.83%

50 82.77% 82.93% 80.99%

100 82.24% 82.55% 80.77%

200 81.14% 81.77% 80.45%

300 80.89% 81.80% 80.42%

400 80.89% 81.80% 79.76%

Table 2. Performance of our baseline on the test set

Type #instances #correct Micro-average accuracy

Internal abbreviation 3187 2663 83.56%

External abbreviation 347 139 40.06%

Uncovered abbreviation 240 18 7.4%

In total 3774 2820 74.72%

We examined the two novel word embedding aggregation method proposed
by Wu et al. [21] on our task. As shown in Table 3, the random forest model and
KNN model had a slight improvement, but the overall highest micro-average
accuracy did not exceed our baseline model.

We also trained one LSTM-based classifier for each abbreviation. Finally,
we got 579 classifiers in total (382 classifiers for “internal” abbreviations and
197 classifiers for “external” abbreviations). It would be quite tricky and time-
consuming to make parameter tuning for each LSTM based networks, so we did
not do validation and use the default parameters for all 579 classifiers.

As shown in Table 2, our approach achieved the micro-average F1 score
of 74.72%, which was higher than the first ranked teams’ performance in the
ShARe/CLEF eHealth 2013 competition. The information about other teams’
performance is shown in Table 4.
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Table 3. Micro-average accuracy of disambiguation for “internal” abbreviations with
different aggregation method of word embeddings.

Features SVM Random forest KNN

AVG20 83.56% 83.28% 81.83%

LR10 83.49% 82.90% 82.21%

AVG20+LR10 83.28% 83.09% 82.33%

MAX20 83.15% 82.77% 82.11%

AVG20+MAX20 83.21% 83.31% 82.30%

Table 4. Participating teams performances compared with our approach performance

Abbreviation normalization system Accuracy

Our technique 74.7%

UTHealthCCB.B.1 [19] 71.9%

Majority Sense Approach [12] 69.6%

UTHealthCCB.B.2 [19] 68.3%

LIMSI.1 [23] 66.4%

THCIB.B.1 [20] 65.7%

TeamHealthLanguageLABS [13] 46.7%

WVU.1 [7] 42.6%

7 Conclusion

In this research, we proposed a complete solution for dealing with ambiguous
abbreviations in clinical reports. This pipeline had two stages: abbreviation
detection and abbreviation normalisation. In our work, a seq2seq neural network
was built as the abbreviation detector, and 579 SVM classifiers were trained
as parts of the abbreviation normaliser. Both of these approaches achieved a
promising performance. There are two main contributions in our work. Firstly,
we applied the attention-based model for language translation to the field of
clinical abbreviations detection and achieved satisfactory results, which might
provide new ideas for future researchers. Secondly, we provided an approach to
automatically generate supplementary data sets when the human-labelled data
is very limited. These external training set may play an important role when we
extend our approach to other data set.

In future work, we will collect more abbreviation senses inventories and query
in some larger medical or general corpus, such as PubMed and Wikipedia. We
believe that, with more data set provided, our model will achieve much higher
performance.
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Abstract. Although many smart farming related approaches have been
proposed to support farmers, crop modeling in smart farming and most
effective factors for the yield remains an open problem. In this paper,
we introduce Long Short Term Memory (LSTM) and Attention score
mechanism, which gives the most effective factors to tomato yield using
tomato growing under smart farm condition data set. Our finding shows
that plant factors are more important as well as environmental factors.
Next, we proposed DA-LSTM model for tomato yield prediction and best
time frame for harvest based on a deep learning algorithm. This model
shows high accuracy when compared with LSTM, XGBR and Support
Vector Regression (SVR).

Keywords: Machine learning · Smart farming · Tomato

1 Introduction

Tomato (Solanum lycopersicum) is one of the most consumable foods in the
whole world, not only as a fresh vegetable or fruit but also for other processed
products such as sauce, paste, etc [1]. As health issues increase, people intend to
eat more healthily, resulting in increased demand for healthy food like tomatoes.
For this demand, it is essential that the market is continuously supplied even
in extreme environmental conditions. The importance of smart-farming arises
at this point. Smart farming developed as an application of Internet of Things
(IoT) [15]. With this new technology, farmers are interested in growing tomatoes
under the smart farming conditions to ensure the constant supply of the quality
product and at the same time, targeting high yield as well as high profit.

All the environmental conditions can be monitored and changed in high tech
plant houses. For example, if the temperature is too high in the plant house,
it can be lowered using fans. Also, quality of the product could be enhanced
with proper monitoring such as early detection of pest and disease [4]. Resource
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management [14] and the minimum use of fertilizer and pesticides [11] are also
an advantage of smart farming. A massive amount of data is extracted during
the smart farming process. It is important to take full advantage of this data to
gain high-quality product and maximum profit.

Smart farming data could be used for many applications. With the new tech-
nology, farmers monitor their farms in a range of dimensions such as tempera-
ture, water requirement and detection of pest and diseases [12]. Yield prediction,
farm management, variety selection, and economic analysis are the other big data
applications in smart farming. Yield prediction is beneficial for farmers together
with policymakers, food marketing agencies, and governments for food security.
Authorities can plan to either import or export according to yield prediction
[7]. Therefore, accuracy in yield predicting is extremely important. Agriculture
wants crop models for a huge variety of applications, including yield predicting,
farm managing and policy analysis [5]. Various data mining methods are used
in different approaches in yield prediction but accuracy is remaining a problem.

To fill this research gap, we attempted to discover knowledge from the tomato
data sets obtained from a smart farm in South Korea. Two main research chal-
lenges are in this study. The first challenge is accurate yield prediction based on
lots of features within the time series. Though existing works have used different
techniques for the yield prediction models, input features are also important. Use
of only climatic data such as temperature, rainfall, etc. are not enough to predict
accurate yield. However, a large number of features could also make the predic-
tion over-fitting. The second challenge is the difficulty of interpreting the results
of many advanced methods, such as deep learning. But in the farming industry,
environmental factors play the main role during the plant growth including the
yield. Plant factors such as the number of leaves of the plant also determines
the yield. In this paper, the duo attention mechanism has been implemented
together with deep learning models. The attention mechanism not only could be
solving the feature engineering challenge, but also give a great interpretation of
the deep learning model.

Hence, in this paper, we attempt to address the following contributions
towards the two challenges.

– We proposed the duo attention based deep learning model which is the best
algorithm to predict yield

– We are using the two attention mechanisms to find out the factor/s or the
particular weeks mostly influence the tomato yield with regards to individual
farms and overall farm level.

We have investigated several methods to find out the best one for predicting
the yield accurately using all the attributes in smart farming data. Our proposed
method based on deep learning Long Short-Term Memory (LSTM)and attention
mechanisms stand out of the comparison through the validation, which is more
accurate when compared with XGBT-Regression and SVR. Specifically, by using
the attention mechanism, our method gives factors and lags with the most impact
on the yield.
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2 Related Work

Jones [8] proposed source-sink relationship yield model for tomatoes in 1991.
Effect of solar radiation and temperature before and after anthesis on tomato
yield is another approach of tomato yield modeling [6].

Existing data mining techniques applied to yield prediction for other crops
is as follows; Matsumura et al. 2015 [10] used both Artificial Neural Networks
(ANN) and Multiple Linear Regression (MLR) techniques. The ANN model used
in Matsumura et al.’s paper is the multi-layer perception, with one hidden layer
to predict Maize yield against climate changes. Whereas, relationships between
sunflower yields and soil, water and salinity is Dai et al. approach. ANN technics
used to predict yield for wheat, sesame and sugar cane by [13], [3] respectively.
On the other hand, Zheng et al. 2009 [17] predicted soybean yield using CART
and Generalised Linear Models (GLM). According to their research, they have
found that the most effective factor for the yield soil total potassium. Marko
et al. [9] proposed a different method for yield perdition for soybean, weighted
histograms regression(WHR). Furthermore, [2] proposed improved model using
feature selection, feature engineering and model tuning. Recently, [16] have used
remote sensing data for yield prediction based on Deep Gaussian Process.

However, the major limitation in those existing works is the accuracy of the
prediction. The next problem is they have paid less attention to find out the most
important time for harvesting and the features during the growth. Previous work
hasn’t recognized most affecting factors to the yield as they used few attributes
for their yield prediction.

3 Materials and Methods

In this section, we will first introduce the notation we use in this paper to for-
malize the tomato harvest forecast problem. Then, we will present the proposed
Duo Attention Long Short Term Memory (DA-LSTM) model with relevant deep
learning technologies that has been used for this paper.

Problem Formation and Notations. The tomato harvest prediction is
regarded as the multiple variate time series forecast problem. Hence, by given n
variables on the series in the dataset D, the input feature could be represented as
X = (x1,x2,x3...,xn)�, and further by choosing the lag window of T , the input
feature X on T lags is donated as X = (x1,x2,x3...,xT )� ∈ Rn×T where the
xt = (x1

t ,x
2
t ...,x

n
t )� ∈ Rn is a vector with n exogenous features at time t. Same

as the input X, the target output Y is employed as Y = (y1, y2, y3..., yT )� ∈ R.
In our prediction problem, the essence of our forecast aims on using the lag

window of T on input X = (x1,x2,x3...,xT )� with the corresponding target
Y = (y1, y2, y3..., yT )� to predict on the next lag target value yT+1 by using the
non-leaner mapping through the deep learning technology:

ŷT+1 = F (y1, y2, y3..., yT ,x1,x2,x3...,xT ). (1)
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LSTM for Time Series Forecast. LSTM had been widely used in time series
forecasting recently. The LSTM models are variants of the recurrent neural net-
work which is designed to solve the gradient vanishing problems by adding mul-
tiple gates into each unit. These gates control how much information could be
processed or forgot into next neural unit on each time step. The Fig. 1 is showing
the LSTM unit structure. Each gates in Fig. 1 could be using below equation to
express its functionality inside the LSTM unit on time step t:

ft = σ(Wf · [ht−1, xt] + bf ) (2)
it = σ(Wi · [ht−1, xt] + bi) (3)

Ĉt = tanh(WC · [ht−1, xt] + bC) (4)
Ct = ft ∗ Ct−1 + it ∗ Ĉt (5)
ot = σ(Wo · [ht−1, xt] + bo) (6)
ht = ot ∗ tanh(Ct) (7)

Fig. 1. LSTM unit structure

Attention on Deep Learning. Attention is a mechanism to help the deep
learning model to better focus on the useful features on the final predic-
tion. In our problems, our goal is to predict the yT+1 by using input of
(y1, y2, y3..., yT ,x1,x2,x3...,xT )�.

Given n + 1 dimensions feature with lags of T from the input X̂ on this
problem, The attention mechanism is basically assigning a weight matrix of
W ∈ R(n+1)×T which will dot multiply on the input X̂. The weight matrix
approach could be calculated by below equations:

W = softmax[(w1, w2, w3..., wt)] (8)

where the (w1, w2, w3..., wt) is from the model initialization and could be learned
from the training until converge. The t is the length of the input vector.
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Lag Attention. Particularly, by permuting the input vector, there are two kinds
of attention which could be applied. When the initial input is X̂ ∈ R(n+1)×T ,
by applying the attention weights from Eq. 10, the weights length equals to the
lag length of T .

Feature Attention. When the last dimension and second dimension of the
input X̂ ∈ Rn+1×T had been switched, then the new input could be expressed
as X̂� ∈ RT×(n+1). So the attention will be applied on the features directly
based on the Eq. 9.

Attentionf = softmax(tanh(W f · [X̂�] + ef )) · [X̂�] (9)

Attentiont = softmax(tanh(W t · [X̂] + et)) · [X̂] (10)

In the equations, W t and W f are the weights which could be learned in the
training in the attention layer, and the et and ef are the bias. tanh and softmax
is the activation function inside the attention layer.

Conceptual Model Structure. By applying the duo attention mechanism
with LSTM, we proposed the DA-LSTM framework to predict the tomato har-
vest time series problem. The figure shows the structure of the proposed DA-
LSTM framework.

The input of DA-LSTM is applied by two attention weights on top of it,
and then the outcome of the two attention layers will be separately put into the
two LSTM networks. After the computing of two LSTM networks, the hidden
state of ht will be concatenated together and pushed into the dense layers for
getting the predicted target value of ŷ. Figure 2 shows the proposed framework
structure.

3.1 Training Procedure

By minimizing the prediction error from the proposed model, we use the stochas-
tic gradient descent (SGD) together with the Adam optimizer to train the model.
The default loss function is the mean absolute percentage error:

L(yT , ŷT ) =
1
N

N∑

i=1

|y
i
T − ŷi

T

yi
T

| (11)

In the loss function, the N is the number of training samples from each epoch.

4 Experiment

The privet data set used in this approach collected from “Daphne” tomatoes
grow under plant house with sensors (smart-farms with the area of 13,200 m2),
five different locations in South Korea, from August, 2014 to July, 2015 (48
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Fig. 2. Tomato Model for feature attention

weeks) with 46 features. Recordings of environmental and plants were taken
throughout the period which represents one life cycle of the plant. In this data
sets, the features could be split into three main part: the environment features,
the plant measurement features and the fruit growth features. Environment fea-
tures represent temperature, solar radiation, humidity, CO2 level, water, elec-
tric conductivity and pH. Plant measurements were taken as follows; length and
width of the leaflet, stem thickness (between third and fourth nodes), height of
the flower, number of fruits, number of fruits per unit, flowering speed, and fruit
set speed. Leaf Area Index (LAI) is a key factor in this data set, where LL is
Leaf length, LW is Leaf width, NoL is Number of Leaves and PA is Penetration
area.

LAI =
(LL) ∗ (LW ) ∗ (0.5) ∗ (NoL) ∗ (DENSITY )

(10000) + (PA)
(12)

For fruit growth in this data set, the attributes have a factor of fruit (FoF),
which is considered as weight of tomato (WoT) per standard weight of tomato
(SWoT). Here, standard weight considers as 175 g.

FoF =
WoT

SWoT
(13)

The attribute Trans1 (T1) means amount of solar radiation received to the
pant house. Here, Transmittance = 0.85

T1 = 24hrRadiationsum(J) ∗ Transmittance (14)

This value depends on the state of the greenhouse. Trans2 (T2) means
amount of radiation received from the plant; where LA is Leaf area.

T2 = (LAI)3 − (0.133 ∗ LA(LAI)2) + (0.606 ∗ LA(LAI) + 0.003) (15)
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The last attribute of fruit grown in this data set is the average weight per
unit.

4.1 Results

In this section, we are using the 5 different farms’ data to evaluate the pro-
posed model. In order to provide the best performances on the 5 farms with
our proposed method, we use the walkthrough validation first to find out the
best parameters. Then we will compare the proposed method with the proper
parameters to compare with other models for showing its advantage on accuracy.

Validation and Parameter Settings. Several parameters in the proposed
model are needed to be determined through the walk through validation. The
walkthrough validation will need the training data on each week to be added by
last weeks’ validation data. On each week, when the model had been validated,
the validation data will be added into the training data to form the next new
training data for next week.

By using the walkthrough validation, the parameters such as the number of
time steps in the lag window T , the size of the hidden unit in LSTM p, the
dropout rate d, and the size of the dense layer q is determined. Practically the
time window of T ∈ {3, 6, 9, 12}, the hidden unit size of p ∈ {128, 256, 512},
drop out rate of d ∈ {0.01, 0.3, 0.5} and the dense layer q ∈ {32, 64, 128} were
evaluated in the validation. Finally the time window of T = 3, the hidden size
on LSTM of p = 256, the drop out rate of d = 0.3 and the dense layer q = 64
had archived the best performance through the validation and they are used for
the rest of the experiments.

Performance Evaluation. In order to compare effects on the performance of
the proposed model, we have used three metrics to evaluate the model compar-
ison, which are the root mean square error (RMSE), the mean absolute error
(MAE) and the mean absolute percentage error (MAPE).

Particularly, when yt is the target value and ŷt is the prediction at time t, the

RMSE is denoted as RMSE =
√

1
N

∑N
i=1(y

i
t − ŷi

t)2, and the MAE is denoted

as MAE =
1
N

∑N
i=1 |yi

t − ŷi
t|. Because we are using 5 farms data to compare

the proposed model with benchmark models. So MAPE is used at here which is

defined as MAPE =
1
N

∑N
i=1 |y

i
t − ŷi

t

yi
t

| × 100%.

In model comparison, LSTM is the most commonly used method on time
series prediction. ANN is the artificial neural network which is widely used in
regression and time series prediction. XGBTR, the extreme gradient boosting
tree regressor is a powerful tree model to solve the regression problems. The SVR
is very broadly used in many multi-variate regression approaches. Each model
will use the same validation method. For the XGBTR and SVR, they all use the
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past 3 month data as the input as the time window T = 3 from above parameter
settings.

Form Tables 1, 2 and, 3, clearly we could observe that the DA-LSTM has
the best performance over all three metrics over 48 weeks. LSTM has the second
best performance as it has the closest structure with DA-LSTM excluding the
two attention mechanisms. The XGBTR has the worst performances.

Table 1. MAPE Comparison on different Methods over 48 weeks

Farm DA-LSTM LSTM ANN XGBTR SVR

A 2.46 4.78 4.80 13.60 6.93

B 2.02 2.21 5.36 8.46 8.01

C 2.80 3.5 4.31 11.46 6.22

D 3.60 3.7 6.24 8.46 7.16

E 0.93 1.12 3.34 7.46 5.11

Mean 2.36 3.06 4.81 9.89 6.69

Table 2. MAE Comparison on different Methods over 48 weeks

Farm DA-LSTM LSTM ANN XGBTR SVR

A 0.054 0.112 0.121 0.452 0.302

B 0.061 0.072 0.151 0.293 0.322

C 0.131 0.191 0.221 0.671 0.412

D 0.109 0.182 0.347 0.511 0.381

E 0.011 0.021 0.108 0.361 0.237

Mean 0.073 0.116 0.190 0.458 0.331

Lag Importance. As attention had been implemented in the lags for each farm,
so the interpretation of lag importance could be observed during the experiments.
In the validation from performance evaluation, the time window of T = 3 had
been selected for the best performance on the accuracy. Figure 3 shows the lag
importance from the attention score.

From the Fig. 3, for farm A, C and D, the lag 2, which means the last-third
week has the maximum contribution on the next week’s yield.

Farm B and E, the lag 0 which means the last week gives the most important
for the next week’s prediction. Those patterns could give a great interpretation
of how the model select the lag during the attention mechanism.
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Table 3. RMSE Comparison on different Methods over 48 weeks

Farm DA-LSTM LSTM ANN XGBTR SVR

A 0.162 0.353 0.372 1.021 0.716

B 0.168 0.178 0.392 0.780 0.701

C 0.176 0.210 0.315 0.926 0.691

D 0.213 0.235 0.577 0.782 0.637

E 0.092 0.104 0.202 0.651 0.652

Mean 0.162 0.223 0.372 0.676 0.680

Fig. 3. Lag importance over 5 farms

Most Effective Features. The relationships between yield and other
attributes and most effective factors to the yield with attention score were found
out. First, we are presenting the top ten factors summarized for all the five farms
as shown in Fig. 4.

The first three factors were plant factors which have top attention score on
predicting yield. The flowering speed was the most significant factor in the data
sets, showing significance difference from the second most important factor, set
speed. The number of leaves is third. The CO2 level is the most imperative
environment factor according to our results followed by water usage, humidity
and temperature. Leaf Area Index (LAI) and the average weight per unit are
the next key features. Radiation sum during 24 hrs is the 10th factors with all
summary.

To see the most effective factors to the yield at the different farm level, first,
we normalized all the attention scores on all farms. Then summarized the related
attributes and plotted the top twenty factors according to different farm levels
as shown in Fig. 5.

This graph indicates which factors are most influenced by the yield. After
comparing all the five farms, we can see that all the five farms have some simi-
larities as well as some variations up to a certain range.

All the farms have shown that plant factors like flowering speed, set speed
and leaf area index are most effective to the yield. Flowering speed and set speed
are the most important factor in farm A and D. Farm B and D displayed different
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Fig. 4. Most effective features for the yield
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Fig. 5. Most effective features for the yield in all farms

results from other farms, for example, the factor importance of PH and height
of flower is significantly higher than other farms. The CO2 level per day is the
most important feature in farm E comparing to other farms. However, Farm A
has the smallest effects by CO2 level per day comparing to other farms.

For other factors, as seen in the graph, The LAI has a huge impact on farm
A, B, and C, but quite a small impact on others. Humidity and temperature
have a similar influence on all farms. The environment factors like humidity,
temperature, CO2 level per day water usage and the PH are all similar for farm
B and C. Which means farm B and C has a similar growing environment for the
tomato plant. Moreover, water usage has a more significant influence on farm A,
D, and E, and solar radiation has more impact on farm B and D.

5 Conclusion

According to our results in proposed duo attention with LSTM and Attention
score mechanism, we can conclude that plant factors such as flowering speed, set
speed and number of leaves are most important for the tomato yield whereas
carbon-dioxide level, water, humidity and temperature are the most effective
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environmental factors. The DA-LSTM model not only shows high accuracy
against other existing applications but also could give a better interpretation
on how the tomato features could affect the future yield growth. This paper
used the common deep learning technologies with two attentions to successfully
solve the time series prediction. The lag attention could let the model keep bet-
ter. The lag importance to better predict the future and the feature attention
could be working directly on each feature for enhancing the important features
and fading the less important one.
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Abstract. Variable annuities are important financial products that
result in 100 billion sales in 2018. These products contain complex guar-
antees that are computationally expensive to value, and insurance com-
panies are turning to machine learning for the valuation of large port-
folios of variable annuity policies. Although earlier studies, exemplified
by the regression modelling approach, have shown promising results, the
valuation accuracy is unsatisfying. In this paper, we show that one main
cause for the poor valuation accuracy is the inefficient selection of repre-
sentative policies. To overcome this problem, we propose a novel transfer-
learning based portfolio valuation framework. The framework first builds
a backbone deep neural network using historical Monte Carlo simulation
results. The backbone network provides a valuation-driven representation
for selecting the policies that best represent a large portfolio. Further-
more, the transferred network provides a way to adaptively extrapolate
from these representative policies to the remaining policies in the portfo-
lio. By overcoming a major difficulty faced by the popular Kriging model,
the need of matrix inversion, the transferred network can handle a large
number of representative policies to sufficiently cover a diverse portfolio.

Keywords: Variable annuity · Deep representation · Transfer learning

1 Introduction

A variable annuity (VA) is a retirement insurance product. Guarantees embedded
in variable annuities have complex risk profiles and many insurance companies
manage the risk through dynamic hedging [11], which results in a large portfolio
of individual policies. In order to simulate the performance of dynamic hedging
and determine the stochastic reserve of VA products, insurance companies rely
on nested Monte Carlo (MC) simulations [14]. However, the computation of MC
simulations for a large VA portfolio is time-consuming because each VA policy
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Fig. 1. Meta-modeling approach for VA portfolio valuation.

needs to be projected over many scenarios for a long time horizon. For example,
[9] implemented the nested MC simulations in Java, and they calculated the
partial dollar deltas along 1, 000 real-world paths at annual steps. For a portfolio
of 38, 000 VA policies, the calculation would take about 2.97 years to complete. In
practice, a portfolio needs to be reevaluated under multiple market assumptions.
Repeating the MC simulation for each market assumption is simply infeasible.

Recently, meta-modeling approaches [16] have been proposed in the litera-
ture [5,10,20] to address the aforementioned computational problem. Figure 1
shows that the meta-modeling approach involves three main steps: First, we
select a small number of representative VA policies by a clustering algorithm or
a sampling method; Then, we run the MC simulation to generate the valuation of
representative VA policies; Finally, we choose an appropriate meta-model (e.g.,
linear regression) to estimate the valuation of all policies in the large portfo-
lio based on the valuation of representative policies. Meta-modeling approaches
can significantly reduce the runtime because only a small number of represen-
tative policies are valuated by the high-accuracy MC simulation method, and
the whole portfolio of policies are valuated by the meta-model. Although the
meta-model may produce less accurate valuation for each policy, the aggregated
valuation for the whole portfolio can achieve a low overall error due to the nature
of dynamic hedging [5]. This attractive feature makes meta-modeling a popular
VA valuation framework.

However, current VA meta-modeling approach relies on efficient selection of
policies representing the whole portfolio. When a portfolio is large and with
diverse policies, this task is challenging and usually results in poor valuation
accuracy (See Sect. 3).

Our Contributions. We propose a new framework for accurate valuation
of a large VA portfolio. It builds on the commonly adopted clustering-based
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Table 1. Example predictor variables used for clustering VA policies.

Variable Description

gender Gender of the policyholder

age Age of the policyholder

productType Product type of the VA policy

gmwbBalance Guaranteed minimum withdrawal benefit (GMWB) balance

gbAmt Guaranteed benefit amount

FundValuei Account value of the ith fund, for i = 1,2,. . . ,n

ttm Time to maturity in years

approach. At the centre of our framework is the novel idea of clustering not at
the predictors themselves, but at a deeper representation guided by the target
performance of policies. This is done in a principled approach using deep neural
network motivated by the information bottleneck [17] principle (see Sect. 4.2 for
details).

The proposed method for selecting representative policies greatly improves
the coverage of the diverse policies in a dynamically hedged portfolio. This con-
tributes to superior performance in portfolio risk valuation. In addition to an
abstract representation to improve clustering, the deep neural network provides
a way to quickly re-estimate VA valuations under varying market assumptions.
Extensive empirical evaluations have confirmed that our framework provides
more accurate VA estimates, which also implies reduced dependency on the com-
putational expensive Monte Carlo simulation. Finally, our framework addresses
a major challenge faced by the state-of-the-art Kriging model, the need to com-
pute matrix inversion which inhibits the use of a moderately bigger number of
representative policies.

This paper is organized as follows. Section 2 reviews the related work, and
Sect. 4 proposes the transfer-learning framework. The details of experiments and
result analysis are presented in Sect. 5. Finally, in Sect. 6 we conclude the paper.

2 Related Work

During the past five years, a number of research papers on meta-modeling for
VA valuation have been published [2,3,5–8,10,12,13,20]. In [2] and [6], the k-
prototype algorithm was used to select representative VA policies and the Krig-
ing model was used as the meta-model. To address the drawback that the k-
prototype algorithm is not efficient for selecting a moderate number (e.g., 200)
of representative VA policies, [3] proposed the Latin hypercube sampling (LHS)
to select representative policies. In [5], a scalable clustering algorithm called the
truncated fuzzy c-means (TFMC) algorithm was used to select representative
policies. In [7], several methods for selecting representative VA policies were
compared. The authors found that the clustering method and the LHS method
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produce similar results, and both are better than other methods such as random
sampling.

In [12] and [20], neural networks were employed for the valuation of large VA
portfolio. In [13], the valuation of large VA portfolios was formulated as a spatial
interpolation problem. In [8], the authors studied the use of copula to model the
dependency of partial dollar deltas and found that the use of copula does not
improve the prediction accuracy of the meta-model. In [10], the authors used the
GB2 (generalized beta of the second kind) distribution to model the fair market
values. In [4], the author considered interactions between VA policy features in
linear models and found that linear models with interaction terms can produce
accurate predictions.

Among the meta-models considered in the aforementioned papers, the Krig-
ing model is one of the top performers in terms of accuracy. Therefore in this
paper, the Kriging model is used as the baseline for evaluating our proposed
framework. To describe the ordinary Kriging model, let z1, z2, . . ., zs be the
representative VA policies. For every j = 1, 2, . . . , k, let vj be the fair market
value of zj that is calculated by Monte Carlo simulation. Then the fair market
value of the VA policy xi in the portfolio is estimated as follows:

ŷi =
k∑

j=1

wij · vj , (1)

where wi1, wi2, . . . , wik are the Kriging weights obtained by solving the following
linear equation system [15]:

⎛

⎜⎜⎜⎝
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...

. . .
...

...
Vk1 · · · Vkk 1
1 · · · 1 0

⎞
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⎞
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⎛
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Di1

...
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1

⎞

⎟⎟⎟⎠ . (2)

In the above equation, θi is a control variable used to make sure the sum of
the Kriging weights is equal to one,

Vrs = α + exp
(

− 3
β

D(zr, zs)
)

, r, s = 1, 2, . . . , k, (3)

and

Dij = α + exp
(

− 3
β

D(xi, zj)
)

, j = 1, 2, . . . , k, (4)

where D(·, ·) denotes the Euclidean distance, and both α ≥ 0 and β > 0 are
parameters.

One major drawback of the Kriging model is that the computational cost for
large k can be inhibitive, due to the need for matrix inversion.
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(a) All variables including
productType and Gender.
Distinct clusters are for-
med for different product
types.

(b) With productType re-
moved and Gender kept.
Two genders lead to two
nearly identical clusters.
But better mixture is
achieved in each cluster.

(c) With both Gender

and productType remo-
ved. The artefact due to
Gender is also removed.

Fig. 2. t-SNE visualization of policies in a portfolio, forming clusters from which rep-
resentative policies are selected.

3 Challenges in Representative Policy Selection

The success of meta-modeling relies on a set of well-balanced representative
policies. However, finding such representative policies in a large portfolio remains
some challenges. We will illustrate these challenges for clustering-based meta-
modeling, which also apply to the sampling-based approach.

In the clustering-based approach, the representative policies are chosen from
cluster centroids. The clustering of policies are based on a bag of variables
assumed to be potentially predictive of the policy performance. These may
include variables related to the policy holder and those related to the prod-
ucts themselves. Some example variables are shown in Table 1. Clearly until the
simulation is completed, we do not actually know whether or how much these
variables can predict the policy performance. Adding to this indiscriminating
use of variables, the clustering also runs on bare categorical variables (e.g.,
gender and productType). Such categorical variables, especially those with a
large number of levels, can create artificial clusters aligned mostly with their
levels. Figure 2 demonstrates the inherent challenge of selecting ’representative’
policies solely based on independent variables, which may or may not be predic-
tive of target variable (policy valuation in this case). In other words, noisy or
irrelevant policies-level features may impose undue influence on the clustering
results, leading to unreliable ‘representative’ policies. Clearly the above diffi-
culties of finding truly representative policies also apply to the sampling-based
approach. The problem needs to be addressed for meta-modeling to achieve more
reliable valuation.

4 Method

In this section, we present the transfer-learning (TL) based framework. Figure 3
shows the major steps in our framework, and the difference with Fig. 1
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Fig. 3. The proposed model. The dashed line highlights the new components intro-
duced. A deep neural network is trained using historical data or data from an approxi-
mate (simplified) simulation (Sect. 4.1). The trained network provides both a regulated
space for robust policy clustering (Sect. 4.2) and a base model that can be transferred
for extrapolation (Sect. 4.3).

(the traditional approach) has been highlighted with bold arrows in Fig. 3. In
general, the proposed transfer-learning (TL) framework consists of the following
five major steps.

1. Fit a multi-layered (deep) model based on a large number of historical simu-
lations, under a potentially different market scenarios.

2. Obtain feature representations from an intermediate layer, which also forms
a manifold of the portfolio, then use a data clustering algorithm to find a
small number of representative policies.

3. With the configurations of the target market, run the Monte Carlo simulation
for the valuation of representative policies.

4. Fine-tune the pre-trained model using simulation results of representative
policies.

5. Use the transferred model to value all policies in the portfolio.

4.1 Build a Deep Neural Network Using Historical Data

This step builds a deep neural network that provides both a representation for
clustering and a base model for transfer learning. Figure 4 shows the network
architecture. To train such a network, we exploit available historical simulation
data for similar VA products, potentially under a different set of market assump-
tions. When such historical simulation data is not available, we rely on the fact
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Fig. 4. The transfer learning architecture

that Monte Carlo simulation can be simplified with a much lower resolution to
trade simulation accuracy for efficiency. A network trained on such a proxy tar-
get variable is often sufficient as a base model. With the proxy training labels,
we train a dense network with three hidden layers.

4.2 Clustering on Hidden-Layer Representation

With the neural network trained, we perform the following steps to obtain the
representative contracts from a portfolio.

1. Feed contacts to the network and obtain the hidden-layer representations.
2. Perform clustering on the obtained representations.
3. From the generated clusters, retrieve the cluster centers, which will become

the representative policies.

Performing clustering on deep features can overcome the problem of ineffi-
cient clustering as shown in Fig. 2, because performing unsupervised learning on
such features is a highly effective technique used by many deep learning practi-
tioners. For example, deep representation was recently used to improve robust-
ness in video anomaly detection [19]. Such representation can be extracted by
deep neural network, which can transform input signals through multiple hidden
layers to output layer. More specifically, when model training begins, the net-
work receives an input X, and successively processes it through hidden layers,
where the output of previous layer is the input of next layer. The closer the
hidden layer is to the output layer, the more relevant features can be captured.

In our setup, the deep representation can be viewed as the result of reg-
ulating input features using the (proxy) target variable. Formally, it can be



Fast Valuation of Large Portfolios of Variable Annuities 723

explained via the information bottleneck principle. The recent work by Tishby
and Zaslavsky [18] provides a formal structure for understanding the latent rep-
resentations in terms of information processing. The idea of information bottle-
neck principle is that a network rids noisy input data of extraneous details as
if by squeezing the information through a bottleneck, preserving information in
the data that is relevant to the outputs. As can be seen in Fig. 2, clustering
on the original inputs cannot distinguish relevant information from irrelevant
information.

More formally, assume an input random variable X ∈ X , and an output
random variable Y ∈ Y, given a join distribution p(X,Y ), the relevant informa-
tion is defined as the mutual information I(X;Y ), where we assume statistical
dependence between X and Y . In this case, we can capture relevant features by a
compressed mapping of input variable X that discards the information irrelevant
to Y .

In a multi-layer network, the hidden layer representation H provides an infor-
mation compression of X guided by Y . In terms of the mutual information, neural
network training tries effectively to minimise I(X;H) and maximise I(H;Y ).

4.3 Transfer Learning

The previous step produces a deep network that maps each policy to a proxy
measurement of its valuation. It forms a base model that can recalibrate using
the high-resolution Monte Carlo simulation results on representative policies
under the target market condition.

Let (P ) be the portfolio of policies as shown in Fig. 1. The pre-trained net-
work can be viewed as a function f(c; θs) minimising

∑
c∈P L(f(c; θs), ys

c), where
ys
c is the valuation used for pre-training. With the set R of the representative

policies, we fine-tune the network so that θs is replaced by θt that minimises∑
c∈R L(f(c; θt), yt

c), where yt
c is the valuation generated by high-resolution

Monte Carlo simulation.

5 Experiment and Analysis

Due to the demanding computational requirement of Monte Carlo simulation,
our experiment will be based on existing simulation results for a large VA port-
folio under five different sets of market assumptions. We will treat the first set
of simulation results as given and use it to train a deep neural network. From
the remaining four sets of results, we will simulate the process of re-valuation of
the representative policies under those market assumptions. They also provide
the ground truth for evaluating the valuation accuracy of the transferred model.

5.1 Data Description

To evaluate the performance of our transfer-learning framework, we follow [5]
and use a synthetic portfolio. The portfolio contains 38, 000 synthetic variable
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annuity policies, described by 34 features including 2 categorical features (See
Table 1).

Five sets of deltas have been generated using Monte Carlo simulation as in
[5] under different market assumptions. Figure 5 shows a histogram of the first
set of deltas. We use this set of deltas to simulate the available historical data
for training the backbone network. The remaining four sets of deltas will be used
as the ground-truths for evaluating the transfer-learning model.

Fig. 5. A histogram of deltas in a portfolio under the first application market. The
wide range of deltas reflects the diverse policies in a portfolio with dynamic hedging.
It is crucial that the selected representative policies provide sufficient coverage of such
a diverse portfolio.

5.2 Performance Metrics

To evaluate the accuracy of the proposed model, we follow the strategy in [5] and
use the following two validation measures: the percentage error at the portfolio
level and R2. The percentage error and R2 is respectively defined as

PE(P) =

∑
ci∈P(ŷi − yi)∑

ci∈P yi
, R2 = 1 −

∑
ci∈P(ŷi − yi)2∑
ci∈P(yi − μ)2

(5)

where yi describes the value of policy ci in the portfolio P from the high-
resolution Monte Carlo simulation. And ŷi is the corresponding estimate from
the neural network, μ = 1

n

∑
ci∈P yi is the average Delta value.

From the above equations we can see, PE and R2 are complimentary mea-
surements for the valuation accuracy. While R2 measures the fitness at the policy
level, PE directly measures the accuracy at the portfolio level. Therefore min-
imising PE is our primary objective.

5.3 Baseline Models

To verify the performance of proposed transfer-learning framework, two baseline
models are set. One is the meta-model in [5]. In that model, the TFCM++
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algorithm is used to obtain k cluster centres as representative policies. After
obtaining the Monte Carlo simulated deltas for these k representative policies,
Kriging is performed to extrapolate the delta values to other policies in the
portfolio. Please see [5] for more details.

(a) clustering on the input space (policy-
specific features).

(b) clustering on the hidden-layer represen-
tation.

Fig. 6. clustering on the input space (policy-specific features).

To demonstrate the value of transfer learning, we also use the neural network
(NN) model trained directly on the representative policies as another baseline.
For simplicity, we use the same representative policies selected by the backbone
network, and corresponding deltas are acquired via the MC simulation. How-
ever, no fine-tuning is applied, the neural network starts with random parame-
ter initialisation and is directly trained using the small number of representative
policies under a target market assumption.

5.4 Implementation Details of the Proposed Model

The deep network. Using the first set of deltas, we train a three-layer densely
connected network. From the third hidden layer, we obtain the representation of
the policies and perform clustering using K-means to obtain the representative
policies. The trained network is saved as the base network for transfer learning
under a different set of market assumptions.

Transfer learning. For each of the remaining four sets of market assumptions, we
obtain the deltas for representative policies. These additional deltas were used
to fine-tune the saved basic network. Detailed illustrations are shown in Fig. 4.

5.5 Results

Quality of Representative Policy Selection. To verify that the hidden
layer provides a better representation for selecting representative policies. We
randomly sample 5, 000 points on the input space and the representation space
respectively, and then group them into 5 clusters. The corresponding delta value
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range and distribution are shown in Fig. 6. Some similar clusters are presented in
Fig. 6a. For example, the leftmost two clusters have nearly identical distributions,
and similarly for the remaining three clusters, which suggests that the cluster-
ing on the input features will result in redundant representative policies, and
consequently inefficient use of the Monte Carlo simulation. In contrast, clusters
in Fig. 6b have distinct distributions, and they will likely lead to more distinct
representative policies.

Portfolio Estimation Accuracy. To demonstrate the superiority of proposed
model, we compare the TL model with Kriging model and NN model when
k = 100, 200 and 400. When k gets bigger, the baseline Kriging model becomes
infeasible due to the need for inverting a large matrix. Table 2 shows the accuracy
of three models. As we can see in this table, in each model, as the number of
clusters increases, PE reduces but R2 improves, which indicates that the larger
the number of representative policies, the higher the prediction accuracy. On
the other hand, in each setting, the accuracy of TL model is always the highest
among these models. For example, when k = 100, PE of Kriging model is 0.115
whereas TL model’s drops to 0.043. Similar trends can be observed in other
clusters, too. Moreover, with the increase of k, the advantage of the TL model
is more remarkable. The low R2 for the Kriging model suggests a poor model
fit. This is not surprising in views of the redundant clusters shown in Fig. 6a.

Overall, the transfer-learning framework outperforms the Kriging model and
the vanilla deep neural network in terms of the valuation accuracy.

Computing Cost. Table 3 shows the runtime of major steps of Kriging model
and TL model. The majority of the run time is still spent on generating Monte
Carlo simulation for the representative policies. In general, transfer-learning
framework does not take longer than the SoTA Kriging model, if a backbone
network is available. The fine-tuning step is faster than Kriging, especially when
the number of clusters k increases, because it avoids the need for matrix inver-
sion. The training of the backbone network took 54.90 s, a constant that is inde-
pendent of k.

Overall, the transfer-learning framework achieves improved accuracy (mea-
sured by PE) and shorter runtime (due to the avoidance of matrix inversion is
more pronounced). The differences are more pronounced as the number of clus-
ters k gets larger. For example, from Tables 2 and 3, when k = 400, PE of Kriging
model is 0.035, while TL model’s surprisedly drops to 0.001. This is achieved
with a shorter run-time than Kriging model. Therefore, the proposed framework
can have greater advantages in both estimation accuracy and computation time
when a portfolio has a greater diversity and requires more representative policies
for sufficient coverage.
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Table 2. Accuracy comparison of three models. k denotes the number of representative
policies.

k = 100 k = 200 k = 400

Kriging NN TL model Kriging NN TL model Kriging NN TL model

↓ PE 0.115 0.056 0.043 0.074 0.036 0.024 0.035 0.003 0.001

↑ R2 0.324 0.437 0.445 0.392 0.452 0.485 0.446 0.577 0.661

Table 3. Runtime of the proposed TL framework and the baseline Kriging model.

k = 100 k = 200 k = 400

Kriging TL model Kriging TL model Kriging TL model

Clustering 1.63 1.46 3.35 3.16 8.10 7.82

Monte Carloa 722.34 722.34 1,444.68 1,444.68 2,889.36 2,889.36

Krigingb/Fine-tuning 3.07 2.65 7.30 2.86 14.79 3.88

Total 727.04 726.45 1455.33 1450.70 2912.25 2901.06
a,b Estimations derived from the results reported in [5].

6 Conclusions

We have proposed a new framework to address two challenges that current
meta-modeling approaches face in a large portfolio of VA policies: inefficient
selection of representative policies and the need for matrix inversion in Kriging.
Incorporating the principles of information bottleneck and transfer learning, the
framework achieves empirically validated improvement on the representative pol-
icy selection and the policy re-valuation under varying marketing assumption.
Furthermore, by avoiding matrix inversion in the popular Kriging model, the
proposed framework is able to handle a large number of representative policies,
which is critical for sufficient coverage of a diverse portfolio.

The current work can potentially be extended along several dimensions. In
particular in [1], we show that the clustering can be performed in a space of
reduced dimension, which can result in further improvement of the valuation
accuracy.
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Abstract. The use of neural network models for currency exchange rate
forecasting has received much attention in recent time. In this paper, we propose
an exchange rate forecasting model based on artificial neural network. We tested
our model on forecasting the exchange rate of Solomon Islands Dollar against
some major trading currencies of the country such as, Australian Dollar, Great
Britain Pound, Japanese yen, and Euro. We compared the performance of our
model with that of the single exponential smoothing model; the double expo-
nential smoothing with trend model; and Holt-Winter multiplicative and additive
seasonal and multiple linear regression model. The performance of the models
was measured using the error function, root mean square error (RMSE). The
empirical result reveals that the proposed model is more efficient and accurate in
forecasting currency exchange rate in comparison to the regression and time
series models.

Keywords: Forecasting exchange rate � Neural network model �
Multiple linear regression model � Time series models � Naive method

1 Introduction

Currency exchange rate plays an import role for a country in any international trading.
Developing forecasting models for exchange rates is an on-going field of research
because of its contribution to investors’ confidence in the local currency,
entrepreneurship development and also the performance of the stock market. Many
time series models such as autoregressive integrated moving average (ARIMA),
autoregressive (AR), Random Walk (RW), generalized autoregressive conditional
heteroscedasticity (GARCH), and exponential smoothing models have been developed
over the past decades to forecast exchange rates (Meese and Rogoff 1983; Zhang et al.
1998, 2003; Tambi 2005; Lee and Boon 2007; Maniatis 2012; Ahmed et al. 2013).
However, these models are well known in the literature for their poor predictions,
which are characteristically highly volatile, complex, noisy, nonstationary, nonlinear
and chaotic (Meese and Rogoff 1983; Kuan and Liu 1995; Abhyanker et al. 1997;
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Gencay 1999; Zhang 2003; Tambi 2005; Maniatis 2012). In 1970, Box and Jenkins
popularized ARIMA and researchers use it to forecast economic time series for years as
a benchmark model (Kadilar et al. 2009). ARIMA is a general univariate model and it
is developed on the assumption that the time series being forecasted, is linear and
stationary. But most of the time series are nonlinear and nonstationary which makes
ARIMA not a good technique for forecasting (Kadilar et al. 2009; Ahmed et al. 2013).
Recently, ANN has become a popular model for forecasting (Leung et al. 2000;
Walczak 2001; Huang and Lai 2004; Kadilar et al. 2009; Pradhan and Kumar 2010;
Egrioglu et al. 2012) and was found to be more effective than other econometric models
with higher percentage of accuracy to predict (Walczak 2001).

In this paper, we develop an ANN-based forecasting model of exchange rates for
SBD against its major trading currencies such as AUD, GBP, JPY and EUR. The
proposed model forecasts the rate that minimizes the sum of squared errors and is based
on three neurons in the input layer and four neurons in the hidden layer. As a learning
algorithm, a generalized reduced gradient (GRG) is developed, which uses a tangent
hyperbolic transfer function and is solved using Excel Solver.

The rest of the paper is summarized as follows. First two sections discuss the
methodology of ANN and time series models with the measures of model evaluation
and validation. The next section describes the Solomon’s exchange rate data followed
by the presentation of results and discussion of the forecasting time series and proposed
ANN models. The paper ends with the discussion of results and conclusion with future
directions.

2 Solomon Islands Exchange Rate Data

This paper used the daily exchange rate of AUD against SBD (AUD/SBD) and the
three other major trading currencies, namely GBP, JPY and EUR from January 5, 1998
to June 30, 2014 collected from the Central Bank of Solomon Islands (CBSI 2005,
2014). The data contain 4150 observations, out of this, 3750 (90%) will be used for
training and the remaining 400 (10%) will be used for forecasting, which excludes
weekends and public holidays.

3 Methodology

The purpose of this paper is to develop an artificial neural network for forecasting the
exchange rate of a country against its major trading currencies and to compare its
performance with other time series models. We use the naive method as a benchmark
method for the comparison of the proposed ANN model.

The main goal of a neural network is to make an accurate prediction in the
dependent variable (output cell). The advantage of a neural network is that it uses less
assumptions; it can fit a nonlinear model that can approximate any nonlinear function
with higher accuracy; and has greater ability of prediction to be used in many different
areas (Kamruzzaman and Sarker 2004; Wu and Yang 2007; Kadilar et al. 2009).
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The ANN model designed in this paper is a multi-layered perception. The proposed
model considers the most widely used neural network, known as the back propagation
network. The network consists of one-hidden layer with different lags of exchange rate
as neurons in the input layer. We used 2 to 6 (lag 2 to lag 6) nodes for the input layer, 3
to 5 nodes for the hidden layer and one output in the model topology. We experiment
on different transformation or activation functions to map the inputs into the outputs
and found that the tangent hyperbolic tanh function gives better performance so we use
it in our model. The optimum weights and biases that yield the best forecasts are
obtained by minimizing the sum of square error (SSE). Using the training data with the
RMSE error measure for different number of nodes in the input and hidden layers we
found ANN (3, 4, 1) to be the best so we take it as our final model.

We also constructed the multiple linear regression (MLR) and time series models
for comparison purposes. For the selection of the number of time-lags that fits best a
multiple linear regression model for forecasting AUD/SBD exchange rate, we consider
the Akaike information criteria (AIC) and the Schwarz information criteria (SIC) and
found that MLR (6), the multiple linear regression with 6 lags is the most preferred
model because it is significant at the 1% level of confidence, and has the lowest values
of AIC and SIC. We also generate the time series models using the exponential single
and double smoothing models as well as the Holt–Winters (HW) additive and multi-
plicative models for the training sample.

4 Forecasting Results and Discussion

We use the testing sample to forecast the Solomon Islands exchange rates against
AUD, GBP, JPY and EUR using all the methods discussed above. For the comparison
of various forecasting models and exchange rate series, we present the error measures
in Table 1 for AUD, GBP, JPY and EUR. The results of the proposed ANN (3, 4, 1)
model are presented in the last row of the table. It reveals that the proposed ANN (3, 4,
1) is the preferred model with lowest RMSE. We further benchmarked our proposed
model with the naive method, which may appear to be the best forecasting method in
many cases. Thus, the proposed ANN method should be compared to this simple
method to ensure that the new method is better (Hyndman and Athanasopoulos 2014).
The results for the naive method along with the proposed method are presented in
Table 2. The table reveals that the proposed method outperformed the benchmarked
method in all of the four exchange rate.

Table 1. RMSE measures for different models and exchange rate series using the testing
sample.

Model AUD (�10−4) GBP (�10−4) JPY (�10−4) EUR (�10−4)

Single 10.49 12.33 12.74 7.26
Double 10.60 13.25 10.13 7.63
HW additive 9.31 12.33 8.53 7.20
HW multiplicative 9.31 12.33 8.53 7.20
MLR(6) 9.37 12.81 8.74 7.39
ANN (3, 4, 1) 9.23 11.95 8.52 6.96

Forecasting of Currency Exchange Rate Using Artificial Neural Network 731



5 Conclusion

In this paper, we propose an ANN model for forecasting Solomon exchange rates
against four major trading currencies. The result of this study reports that the ANN (3,
4, 1) produces least values of RMSE. This proposed model is compared with regression
and time series models and is found to be robust and superior. The proposed model also
has the least value of RMSE over the benchmarked method for all the currencies. These
empirical findings strongly indicate that ANN is an efficient tool for the forecasting the
currency exchange rates more accurately. The immediate future direction is to use other
exchange rate datasets with ANN or its variations such as recurrent neural network and
cooperative coevolution neural network.

Acknowledgement. The authors would like to thank Mr. Ali Homelo from the Central Bank of
Solomon Islands for providing the daily exchange rate data and the information on the basket of
currencies.
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Abstract. Recommender systems provide users with a personalized list
based on individual interests. There are three main challenges in tradi-
tional movie recommendation models: (1) considering recommendation
procedure as a static one; (2) not taking user’s feedback into consider-
ation; (3) it’s hard to extract similar features of items rated by users
effectively. To address these, we propose a Deep Reinforcement Learning
method based on the Capsule Network for the movie recommendation,
called CapDRL. Roughly speaking, to solve the first two problems, we
formulate the task of sequential interactions between users and recom-
mender systems as a Markov Decision Process and automatically learn
the optimal strategies by deep reinforcement learning. For the third prob-
lem, we leverage Capsule Network to dynamically decide what and how
much similar information need be transferred from each item, which can
capture the user’s preference. Experiments on real datasets indicate that
CapDRL outperforms state-of-the-art methods, validating the effective-
ness of our approach on the recommender system. In addition, we explore
the effects of different features on the proposed model.

Keywords: Deep reinforcement learning · Capsule ·
Recommender system

1 Introduction

Recommender Systems (RS) tend to predict the probability that a specific user
will like a specific resource. According to the past user behaviors, it will generate
a personalized list of potentially relevant resources [3]. Compared to traditional
recommendation methods [6,9], employing deep learning in RS draws wide atten-
tion [1,10] due to their capability of modeling complex user-item interactions.
However, there are some defects in movie recommendation.

First, methods often consider recommendation procedure as a static one. User
may have different interests as time goes by, and the properties of items cannot
always keep the same. Besides, new items can be constantly incorporated into the
system, which might influence users’ interests. Methods based on recommender
systems should model the dynamics of recommendation.
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Second, most models do not take users’ feedback into consideration for rec-
ommending the latest. The user either finds something interesting or gets bad
experience then relinquishes this movie after trying for a while. Both the actions
should be adopted as the feedback to improve the quality of recommendation.

Third, dealing with a wide variety of movies, it’s hard to aggregate informa-
tion about movies. Some common techniques such as concatenation and pooling
are difficult to capture similar features of items and learn user’s preference.

To handle these challenges in personalized movies recommendation, we pro-
pose a Deep Reinforcement Learning framework with the Capsule Network (Cap-
sNet), called CapDRL. Our model derives the Deep Deterministic Policy Gradi-
ent (DDPG) [5] framework to capture users’ dynamic properties with long-run
planning and dynamic adaptation. CapsNet [2,8] is proposed and proven as a
powerful alternative to CNNs and RNNs. We adopt CapsNet as an aggrega-
tion mechanism to cluster similar features together consciously. We take both
a user’s positive (rating score is 4 or 5) and negative (rating score is 1, 2, 3)
rated movies’ embeddings as the input of CapsNet. Adding negative behaviors
will disturb the original data and alleviate the impact of over-personalization.
Utilizing this clustering technique can guarantee the relevance and diversity of
recommended items. CapsNet maps the user’s behavior to a latent weight space,
which represents the feature of user’s preference.

Our contributions are three-fold. First, we propose a novel CapDRL model,
and it’s the first attempt to use DRL method based on the Capsule Network for
movie recommendation to the best of our knowledge. Second, deep reinforcement
learning method is utilized to model the sequential interactions between users
and recommenders, while Capsule Network extracts movies’ similar features as
user’s preference effectively. Third, we consider both content features and rating
information. Besides, we crawl additional movie information as the priors. Exper-
iments are conducted on MovieLens datasets to show that our method achieves
significant and consistent improvement as compared to the other baselines.

2 CapDRL Model for Movie Recommendation

To solve the issues of static recommendation and ignoring user’s feedback, we
model the task of sequential interactions between users and recommender sys-
tems as Markov Decision Process (MDP). DDPG building upon the Actor-Critic
architecture [4] is suitable for large action space and can also reduce the com-
putation cost.

In this paper, we utilize the Actor Network to recommend a list of items for
users. Critic Network is employed in evaluating whether the recommended items
is suitable or not. Facing a variety of items in recommender systems, we should
consider how to capture the similarity of items and describe user preferences
more accurately. In contrast to both the pooling and concatenation aggregation,
CapsNet proposed a novel aggregation mechanism to effectively capture the sim-
ilarity property and alleviate information redundancy or information loss. The
CapDRL architecture is depicted in Fig. 1.
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Fig. 1. The Architecture of CapDRL. Each state st is defined as previous N movies
that user u rated before time t. Each action at is a recommendation list including
Top-K movies generated by recommender agent (RA) based on st at time t. After RA
takes action at on current state st, the user gives his/her positive r = 1 or negative
r = 0 feedback based on the recommendation list.

Capsule Network. CapsNet provides a better understanding of users’
demands, items’ characteristics and their historical interactions. Compared with
deep learning methods, CapsNet is more effective at extracting relationships
between different features with the dynamic routing policy. This policy prefers
to cluster similar features together consciously rather than use pooling to aggre-
gate information. The vector-output capsule [2,8] can represent the specific prop-
erties, together with the existence of an entity. The predictions of higher-level
capsules are determined by the lower-level capsules and a transformation matrix.

We call each positive or negative behaviors, or a group of neurons, as a cap-
sule. Thus, the current state st denotes the input capsules for feature extraction,
and v denotes the output capsules. The negative behaviors perturbed the feature
detector, which can alleviate the impact of over-personalization. We describe the
Capsule Network formally.

z(l+1)
j =

∑

i

c
(l)
ij v̂

(l)
j|i, v̂(l)

j|i = W(l)
ij v

(l)
i , cij =

exp (bij)∑
k exp (bik)

l = 1, . . . , L

(1)
where v(l)

i is the vector output of capsule i in layer l, l = 1, . . . , L and v(0) = st.
zj is weighted sum over all outputs from the capsules in the layer below and v̂j|i
is the “prediction vector”. Coupling coefficient cij is the relevant between each
lower-level capsule i and higher capsule j, it will determined by the iterative
dynamic routing [8] process during the forward propagation, while other conv-
parameters and Wij in CapsNets need loss function to update. The bij are the
prior values that capsule i should be coupled to capsule j, which can extract the
relevant rather than the similarity from each capsule.

Then we squash z(l+1)
j to confine |z(l+1)

j | ∈ (0, 1) to a probability,

v(l+1)
j =

‖z(l+1)
j ‖2

1 + ‖z(l+1)
j ‖2

z(l+1)
j

‖z(l+1)
j ‖

, l = 1, . . . , L (2)

In this paper, there are two classes in the final layer, one for the user’s
positive feature and another for negative. Each class is represented by a



A Deep Capsule Reinforcement Learning for Movie Recommendation 737

low-dimension capsule, here we select the positive capsule as the output of Cap-
sNet. The Positive capsule will be the feature of user’s preference, represent-
ing the user’s positively rated and user’s like-minded feature. The output ot is
defined as follows.

ot = v(L)
positive. (3)

The Actor Network. As introduced above, we use CapsNet mapping the
user’s current state st to feature embedding ot, which represents user’s current
preference. Then we assume the Actor Network to find Top-K recommendation
list as follows:

fθπ : ot → wt, (4)

score
(t)
i = wt · ei, (5)

where fθπ is a two-layer neural network with parameters θπ that maps the feature
representation to weight space, wt. ei represents the embedding of movie i in
movie embedding space. We select the Top-K movies as at with highest scores.

The Critic Network. The Critic Network is utilized for evaluating whether
the action at generated by Actor Network suits for the user’s current state st.
The goal of reinforcement learning is to learn the optimal action-value function
Q(st,at). At each time step, Actor in DDPG method outputs a deterministic
action for Critic, which reduces the computational cost. The learning of the
optimal function follows the Bellman equation as:

Q(st,at) = Est+1 [rt + γQ(st+1,at+1)|st,at]. (6)

Many state-action pairs (s,a) may not be accessible. It’s practical that the
method of DDPG uses an approximate function to estimate the action-value
function Q(s,a). DDPG creates the copy of the Actor and Critic networks as
the target networks. Utilizing soft-update technique with parameter τ updates
the parameters of target networks, which can improve the stability of learning.
In this paper, we use a two-layer neural network with parameters θμ as Critic
Network. The target networks adopt the same architecture parameterized by θπ′

and θμ′
. The critic can be trained by minimizing a sequence of loss functions

L(θμ) as:
L(θμ) = Est,at,r,st+1 [(yt − Qθμ(st,at))2], (7)

where
yt = r + γQθμ′ (st+1,at+1). (8)

3 Experiments

In order to evaluate the effectiveness of our model, we conduct experiments on
the MovieLens-100k1 and MovieLens-1M2 datasets. In addition to rating infor-
mation, gender, age and occupation are integrated to initialize user features and
1 https://grouplens.org/datasets/movielens/100k/.
2 https://grouplens.org/datasets/movielens/1m/.

https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/movielens/1m/
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movie description as movie features. For each movie, we use the mapping from
the DBpedia ontology3 to obtain the Wikipedia page from which are extracted
the abstract of the entity as movie description. The purpose of our experiments
is to recommend Top-K movies for users at each time step.

For CapDRL model, we use all movies rated by users before time t as current
state st. At each time step, recommender agent recommends a list of k = 5
movies. The learning rate of Actor-Critic networks is set as 0.01 and 0.02. The
rate for soft updates of target network τ = 0.01, γ = 0.9. And the parameters
in all models are set with the best performance. Due to the lack of an online
platform, the experimental results in this paper are all from offline testing.

Table 1. Results on MovieLens Dataset (×10−2)

Using rating information Using rating-content information

MovieLens-100k MovieLens-1M MovieLens-100k MovieLens-1M

nDCG@5 Precision@5 nDCG@5 Precision@5 nDCG@5 Precision@5 nDCG@5 Precision@5

PMF 0.1034 0.0212 0.1814 0.0532 - - - -

RRN 0.1253 0.0247 0.1949 0.0473 - - - -

DQN 0.1620 0.0343 0.2327 0.0633 0.1702 0.0412 0.2409 0.0586

DDPG 0.1632 0.0402 0.2419 0.0645 0.1762 0.0433 0.2477 0.0572

CapDRL 0.1702 0.0445 0.2609 0.0659 0.1843 0.0556 0.2635 0.0632

Evaluation Against Other Algorithms. PMF [6] uses a user-item rating
matrix to product two lower-rank users matrix and items matrix for recommend-
ing new items to users without considering rating changes over time. In experi-
ments, at each time step t, we apply user’s history rating records before time t.
As a variant of PMF, RRN [10] consider temporal aspects using Recurrent neu-
ral network to predict future behavioral trajectories, but their goals only focus
on current reward, rather than the effect to the feedback. Deep Reinforcement
Learning models outperform them in terms of the accurate recommendations in
all experiments, which confirms the correctness of taking both the dynamic prop-
erty and users’ feedback into account. It benefits the recommendation accuracy
significantly in the long run.

Evaluation on DRL. Comparisons of CapDRL, DQN [7] and DDPG [5] are
conducted under the same settings with two layers for both Actor and Critic
Networks. CapDRL based on MovieLens-1M dataset outperforms DDPG 7.28%
on nDCG@5 and 2.17% on Precision@5, the results are depicted in Table 1. Note
that, CapDRL, due to the CapsNet, is more stable, performs better and is more
likely to capture similar features of movies that users rated. Only DRLs can
use the rating-content information. The results using rating-content information
only have a slight improvement on that using rating information. There are two
possible reasons for this phenomenon. The first is that user’s behavior is more
3 http://dbpedia.org/ontology/.

http://dbpedia.org/ontology/
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realistic about user’s interest in the movie domain, then the rating information is
relatively sufficient to indicate the user’s interest. Another is that we are limited
in the amount of content information on MovieLens dataset we can extract.

4 Conclusions

In this paper, we have proposed a Deep Reinforcement Learning method based
on the Capsule network (termed CapDRL model for short) for the movie rec-
ommendation. We modeled the sequential interactions between users and rec-
ommender agent as Markov Decision Process, and utilize DDPG method that
can automatically learn the optimal recommendation strategies. We utilized an
aggregation mechanism inspired by Capsule network to extract items’ similar
features as user’s preference. We have validated our model compared with four
baselines over MovieLens datasets. The experimental results show that CapDRL
always performs best. In addition, we compared the result of CapDRL based on
rating information with ones based on the rating-content information. There was
no significant improvement. We will try to crawl more features in the future.
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Abstract. The ongoing global economic turmoil has got the asset man-
agement industry look into new ways of financial risk management. Port-
folio optimisation and risk budgeting are at the heart of most computa-
tional finance studies by academics and practitioners. In this paper, we
introduce and analyse a method to construct an equity portfolio based on
decomposition of marginal asset risk contribution of each stock in a given
universe and then formulate a diversification problem for unsystematic
risk as an optimisation problem. We have illustrated the performance of
our method by comparing with another diversification technique, known
as the Risk Parity portfolio, and then benchmark our results against the
global major indices.

Keywords: Portfolio optimisation · Particle Swarm Optimization ·
PSO · Portfolio diversification · Risk Parity · Risk budgeting ·
Swarm intelligence

1 Introduction

Portfolio optimization primarily concerns itself with choosing the best propor-
tion of various assets that conforms to the investor needs. Markowitz [7] showed
that investment is not just about picking stocks, but about choosing the right
combination of stocks among which to distribute one’s nest egg. The risk in a
portfolio of diverse individual stocks will be less than the risk inherent in holding
any one of the individual stocks. The fluctuations of the prices of the various
assets are not independent, as they are exposed to common sources of risk, and
thus become correlated. In the universe of stocks, the most common source of
fluctuations is the price of the global equity factor, also called the market. Assets
relatively insulated from the market are less risky, all things being equal, and
thus yield less profit. Assets most exposed to the market deliver high profits for
a higher level of risk. A portfolio is therefore typically exposed to two types of
risks, namely systematic risk and unsystematic risk. In this paper, we propose a
swarm intelligence based method to optimise unsystematic risk by diversifying
our investments. Our method named, Maximum Diversification and Optimisa-
tion (MDO) strategy, constructs an equity portfolio based on decomposition of
marginal asset risk contribution of each stock in a universe and then formulate
c© Springer Nature Switzerland AG 2019
A. C. Nayak and A. Sharma (Eds.): PRICAI 2019, LNAI 11672, pp. 740–747, 2019.
https://doi.org/10.1007/978-3-030-29894-4_60
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a diversification problem for unsystematic risk as an optimisation problem. We
consider two popular portfolio construction techniques, namely Risk Budgeting
[10] and Maximum Diversification Ratio [2] in this analysis. First, we derive the
risk budget for all the equities in our universe based on equal weights and then
filter out the maximum risk contributing assets to define a new universe of low
risk contributing stocks. Secondly, we apply Particle Swarm Optimisation (PSO)
[8], a swarm intelligence based meta-heuristic algorithm, to explore the weights
of the selected securities that maximises the Maximum Diversification ratio of
the portfolio. Finally, we illustrate the performance of our method by comparing
with another diversification technique, known as the Risk Parity portfolio [6],
and then benchmark our results against the major known indices.

2 Related Works and Our Contribution

Markowitz’s portfolio theory [7] introduced that a portfolio is diversified if its
variance could not be reduced any further at the same level of expected return.
This definition implies that a portfolio’s variance maybe used as a proxy for
the fund’s diversification level. Based on it, Maximum Diversification (MD)
was proposed by Choueifaty et al. [2] along with the concept of a Diversifi-
cation Ratio (DR). Choueifaty claimed that portfolios with maximal DRs were
maximally diversified and that such portfolios provided an efficient alternative
to market cap-weighted portfolios. In our proposed Maximum Diversification
and Optimisation (MDO) strategy, we calculate the marginal risk contribution
(MCn) for each of the nth asset of a universe (U) of n risky assets, denoted as
U = (x1, x2, ..., xn) and then select the least risk contributing assets to build a
new portfolio P, denoted as P = (w1, w2, . . . , wi), where wi is weight for each
asset in P. We then apply swarm based optimisation algorithm, PSO, to find the
wi for each of the ith asset. Within the stochastic programming framework, it
is important to have an optimiser that can provide high-quality results, whilst
maintaining a reasonable run time. For this purpose, we have considered a swarm
intelligence optimiser, known as the Particle Swarm Optimisation (PSO), due
to its potential for solving complex high-dimensional problems [5]. Empirical
tests show the suitability of our method over different time horizon and compare
results with another portfolio risk management strategy introduced by Maillard
et al. [6], known as Risk Parity portfolio. We also provide benchmark compari-
son of our approach against leading global indices such as - S&P 500, S&P 100
and Dow Jones Industrial. The contribution of this paper is that our proposed
Maximum Diversification and Optimisation (MDO) strategy, incorporates the
interplay between marginal asset risk contribution and maximum diversification
techniques, to construct an optimal portfolio allocation and diversification strat-
egy using swarm intelligence. We also continuously evaluate market changes by
recurrently applying PSO using unanchored walk forward analysis technique [3],
to rebalance our portfolio over a configurable investment time horizon. It is, to
the best of our knowledge, the first paper in the literature to combine the appli-
cation of these factors together and dynamically optimise portfolio according to
recent market performance over a multi-period investment horizon.
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3 Preliminary

Particle Swarm Optimization. Particle Swarm Optimization (PSO) is a
stochastic evolutionary algorithm based on swarm intelligence, which was first
introduced by Kennedy and Eberhart in 1995 [5]. PSO uses a swarm of particles
to simulate the behaviour of bird flocks in finding food. Each particle is a possible
solution of the optimization problem and has a random initial position X and
velocity V . The objective function targeted to be optimized is used to evaluate
each particle position’s fitness. Higher fitness means a better position. For each
particle, PSO uses pBest to record the best position this particle has arrived.
For the whole swarm, gBest is used to record the global best position achieved
by all particles. At time t, PSO updates each particle’s velocity using (1), where
w is the inertia weight, c1, c2 are the acceleration coefficients and r1, r2 are two
random numbers in the range between 0 and 1. After updating the velocity, each
particle will move to a new position according to (2). This particle movement
will repeat iteratively until all particles converge to the optimal position at last,
like when birds find the food at the end of searching. The first term of (1)
indicates an inertia for a particle wondering in the search space. The second
term represents self-cognition of past experience of a particle, i.e., the particle
tends to move towards its past best position. Similarly, the third term indicates
that particles have social cognition to the whole swarm and are attracted by the
global best position.

V t+1 = wV t + c1r1(pBest − V t) + c2r2(gBest − V t) (1)

Xt+1 = Xt + V t+1 (2)

Risk Parity Portfolio. The Risk Parity Portfolio was established in 1996 by
Bridgewater Associates with the introduction of a risk parity fund, known as the
All Weather fund [1]. In a Risk Parity portfolio the product of each security’s
portfolio weight, wi, and its marginal contribution to the portfolio’s volatility, σp,
is the same for all (i, j) of the portfolio’s securities [6], as given in Eq. (3) where
δσp is the marginal change in volatility of a portfolio and δwi is the marginal
change in its allocation weight.

wi
δσp

δwi
= wj

δσp

δwj
(3)
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Fig. 1. Annualized rate of returns Fig. 2. Compound rate of returns

4 Maximum Diversification and Optimisation (MDO)
Method

Construction of long equity portfolios, based on optimal risk diversification of the
stocks in the portfolio and their respective risk contribution, has been at the center
of focus for investment managers in the last decade after the financial crisis in 2008.
Studies conducted by practitioners on the root cause for sub-optimal performance
during the period from 2007 to 2010, inspite of the belief that Markowitz’s port-
folio optimisation provides requisite diversification, helped realise a gap in exist-
ing investment techniques. Portfolio optimisation and risk budgeting are at the
heart of most computational finance studies by academics and practitioners. This
motivated us to study and propose a new technique to construct an equity port-
folio based on decomposition of marginal asset risk contribution of each stock in
the universe considered, and then formulate a swarm optimisation solution for a
diversification problem in terms of unsystematic risk. In our method for portfo-
lio construction, we use an ensemble of two techniques known as risk budgeting
and Maximum Diversification portfolio. The MDO model has two phases - Learn-
ing Phase and Testing Phase. We have further divided the model’s learning phase
into 3 stages - Data Capture, Risk Budgeting and Optimised Risk Diversification.
Data Capture module applies the walk forward analysis technique to rebalance
our portfolio over a configurable investment time horizon. We then use an ensem-
ble of marginal asset risk contribution and maximum diversification techniques, in
Risk Budgeting and optimised Risk Diversification stages, to construct an optimal
portfolio allocation and diversification strategy using swarm intelligence. Learn-
ing Phase:Data capture stage is responsible to collect input data for supervised
learning. Prudent and effective choice of a finite set of equities that constitutes an
individual portfolio can be a daunting task over period of time. Hence we utilise un-
anchoredwalk forward technique (WFA) [3] to constantly stay abreastwith current
market and make relevant changes to the portfolio. Risk budgeting is the anal-
ysis of a portfolio in terms of risk contributions rather than in terms of portfolio
weights. Zhu et al. [10] has shown that risk contributions are not solely ameremath-
ematical decomposition of risk. They have financial significance as good predictors
of the marginal contribution of each position to losses, especially for those of large
magnitude. Let us consider our universe of n risky assets, as U = (x1, x2, ..., xn).
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According to CreditMetricsTM [4], the marginal risk contribution of the ith asset
in U is defined in Eq. (4), where Cov[Ri, Rj] is covariance of returns for ith-asset
compared to other assets, wi is weight of the ith-asset in the universe U , σ[Rp] is
standard deviation of portfolio returns and MCi is the marginal contribution to
portfolio risk by ith-asset. We calculate the marginal risk contribution for each of
the ith-asset in our universe over the learning time horizon Lw and rank them so as
to filter out the high risk assets, assuming that the portfolio is initialised to equally
weighted assets. We pick the least risk contributors from the universe U and create
a new set of assets, denoted as portfolio P. We pass the set P, to the next phase
for finding the optimal combination of assets and their weights, that constructs a
portfolio which maximises the asset diversification. Optimised Risk Diversifi-
cation-The Diversification Ratio (DR), proposed and patented by Choueifaty [2],
measures how much a given portfolio is diversified and as such, the ratio can be
used to compare portfolios. The higher the DR, the more diversified the portfolio.
It is important to emphasize that holding a large number of assets or investments
does not necessarily increase a portfolio’s DR. Rather, for a portfolio to be char-
acterized by a high DR it must be exposed to a diversified number of sources of
risk. A portfolio that maximizes the DR has the appealing characteristic of max-
imizing the effective number of independent sources of risk that it is exposed to.
In that sense, a portfolio with a high DR is considered to be unbiased and built
without using any views (i.e. market biases) regarding the future risk compensa-
tion of the constituent stocks. A truly diversified portfolio, in other words, does
not reflect any speculative views from the marketplace. Let us consider a portfolio
with n risky assets, represented as P = (y1, ..., yn), where yi denotes each asset allo-
cated in P. Formally, the DR for portfolio P is denoted as given in Eq. (5), where
σi is the volatility (standard deviation) of the returns of ith-asset, ωi is the allo-
cation weight of the ith-asset, σP is the volatility (standard deviation) of returns
of the total portfolio P and DRP is the Diversification Ratio of the portfolio P. At
this stage, we apply particle swarm optimisation algorithm (PSO) to construct a
portfolio that has maximum diversification so as to minimize the portfolio risk. We
utilise the equation in (5) as our optimisation objective function. At the end of this
phase, we start with the next period and apply Risk Parity Portfolio strategy to
the set of assets in portfolio P, so as to find the optimal portfolio where each asset
has the same equal risk contribution as explained in Eq. (3).TestingPhase:After
each learning window, testing phase follows for period and the optimized portfo-
lio weights P = (w1, w2, . . . , wn) learnt during the learning phase are exploited to
allocate stocks and construct a portfolio to achieve maximum diversification. We
test our strategy and observe its performance over different time horizon and note
the Sharpe Ratio and returns generated.

MCi = wi ∗

n∑

j=1

wj ∗ Cov[Ri, Rj]

σ[Rp]
(4)
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DRP =

n∑

i=1

σi · ωi

σP
(5)

Fig. 3. Comparison of 6 monthly
returns

Fig. 4. Risk measurement - alpha and
beta

5 Experiments

In this section, we conduct extensive experiments to evaluate the effectiveness
and efficiency of our proposed methods. We have kept our approach configurable
and tried to avoid any kind of bias towards an upward or downward trend or
any particular time period or industry, by including all 100 stocks from S&P
100 index in our universe over last 14 years period from 2005 till 2018. We have
summarised the results of our experiments over multiple time period - 3 yrs,
5 yrs, 10 yrs and 14 yrs. Our benchmark reference for this evaluation is the Risk
Parity portfolio construction method and the 3 well known global indices - Dow
Jones Industrial (DIA), S&P 100 (OEM) and S&P 500 (SPY). Observation 1:
Risk Budgeting and Stock Selection in each iteration. We evaluate results from
the short-listed equities in our universe of stocks, for each 6 monthly iteration
starting from Jan 2005 till Dec 2018. We observe that during the period Jul-Dec
2008, when the S&P 500 index dropped significantly by −42.31%, using MDO
method, incurs much lower losses of −23.7%. We interpret that market downturn,
like in year 2008 and 2018, can’t mitigate systemic risk by risk budgeting and
diversification. Though MDO strategy performed relatively better during second
half of 2008 and 2018 periods, but might not help eliminate such systemic risks.
Observation 2: Compound and Annualized Returns (Figs. 1 and 2). Annualised
returns of MDO method over 4–14 years period outperformed all the benchmarks
indices and the Risk Parity portfolio. Similarly, we find that the compound
returns of MDO method over 3–14 years period outperformed all the benchmark
indices and the Risk Parity portfolio. Based on our 60 observations, we conclude
that the MDO method has significantly better performance when we compare
results over 3 or more years horizon. Observation 3: Risk Measurement - Alpha,
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Beta, Standard Deviation and Sharpe Ratio (Figs. 3, 4, 5 and 6). We find that
the Sharpe ratio [8] of our method is higher in comparison to the benchmark
indices and the Risk Parity portfolio, when we observe returns data for more
than three years. We also compare alpha ratio [9] against 3 different benchmark
indices and find that MDO has higher alpha by generating 4% excess returns.

Fig. 5. Standard deviation of returns Fig. 6. Sharpe ratio comparison

6 Conclusion

The MDO portfolio significantly outperformed the major US indices and the
Risk Parity portfolio, in terms of annualised and cumulative returns, when com-
pared over an investment horizon of more than 3 years. But this also comes with
a high cost due to excess beta, which meant higher volatility. Again, the Sharpe
ratio of our portfolio outperforms the benchmark indices when the investor’s
time horizon is above 3 years. In contrast, this method underperformed for
investors with a short term horizon of less than 3 years. To summarise, our
proposed method’s performance was quite encouraging as a long term strategy
but also varied considerably in short term. Further analysis of the MDO strat-
egy of portfolio allocation could be explored with a larger and wider universe of
stocks, which might allow for more scope in terms of diversification benefits as
well as the portrayal of better confidence on the technique presented.
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Abstract. In this paper, we propose a new method of algorithmic trading for
short term investors in the financial markets, by applying swarm intelligence. We
apply a well known meta-heuristic, known as Grey Wolf Optimizer (GWO), and
find multi-peak optimisation solutions having different expected risk and return
ratios, to propose 3 automated trading strategies. The novelty of our method is
howwe leverage three best swarm agents to construct multi-peak solutions that are
best suited for the stochastic nature of financial markets. We utilise the variance
between the positions of swarm agents in GWO to construct different algorithmic
approaches to day trading, with an aim to diversify expected portfolio volatility.
Our research showcases how the three best swarms of GWO are best suited to
predict stochastic time series problems, as we typically find in the field of finance.
Our experiments demonstrate the capability of our model compared to industry
benchmark indices and evaluates the effectiveness of the proposed strategies.

Keywords: GWO · Algorithmic trading · Swarm intelligence · Risk · Volatility
1 Introduction

In the current global financial markets era, algorithmic trading is fundamental to invest-
ment strategies for achieving financial goals. With evolution of technology and new
methods of algorithmic trading, financial markets have achieved more efficient execu-
tion of trade by lowering transaction costs, generating improved portfolio performance
and by providing higher transparency [1]. Glantz [2] has shown a strong negative rela-
tionship between investment portfolio returns and volatility. High volatility leads to
larger risks and high variability in returns compared to a portfolio with lower volatility.
Our motivation for this paper, is drawn from this need for choice of optimum volatility
by investors exposed to algorithmic trading. In this paper, we propose a swarm intel-
ligence based method for day trading of stocks using multiform algorithmic trading
strategies, where each strategy is recurrently evaluated and tuned for different levels
of volatility. Our method is based on a meta-heuristic algorithm, known as Grey Wolf
Optimizer (GWO), originally proposed by Mirjalili et al. [3]. We have proposed a vari-
ant of GWO algorithm, which utilises three best swarm agents (also known as the α,
β and δ swarms) to formulate multi-peak optimisation solutions and derive them as
short term trading strategies with different levels of volatility. We have defined these
approaches as the α, β and δ trading strategies. Our method is an ensemble where, we
first derive the relevant stock’s technical indicators and their optimum threshold values
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that best predicts the stock price movements to maximise returns at a minimum risk
level, and then assign each of the indicators with weights that maps to their relevant
entropy. Finally, we find the optimised threshold values that maximises the accuracy
of prediction to buy, sell or hold trade decisions, thus achieving an overall objective
to maximise the portfolio returns and minimise the risk level. We have illustrated the
performance of our method by benchmarking our results against the major known
indices - S&P 500, S&P 100 and Dow Jones Industrial.

2 Our Method and Related Works

Traditionally, portfolio managers have relied on technical and fundamental indicators
to feel for the concentration of risk in their portfolios. But determining the relevance
of these indicators at the asset allocation level, for a multi asset portfolio, has been
a daunting task with so many indicators to pick from [1]. In our proposed solution,
we create an ensemble of multi-threshold selection techniques, implemented as a two-
step optimisation method. Let us consider, a universe of n risky assets in a portfolio,
denoted as P = (x1, x2, ..., xn), and a universe of i technical indicators used by the
trader, denoted as F = (t1, t2, . . . , ti). Firstly, we find the relevance of each ti on every
asset xn in P, and optimise its threshold values to maximise the returns and minimise
the risks. By capturing the effects of every technical indicator on each asset, and rec-
ognizing that not all indicators have the same impact across different assets and also
that its impact changes with time, our method lays the foundation for the next step.
Subsequently, we use the cumulative effect of the learnt threshold values for items in
F , to calculate the final optimised threshold values for each asset (xn). Our goal for
each asset xn, is to maximise the accuracy of prediction of asset price changes, so as
to learn how to best classify the trades and make a decision to ‘Buy’, ‘Sell’ or ‘Hold’
trade over a given period. In a recent related work published by Sezer et al. [4], a multi-
layer perceptron (MLP) artificial neural network (ANN) model is proposed by applying
a single strategy for price prediction of 30 stocks from Dow Jones. In their method,
asset risk was not considered as a parameter for optimisation. Applying our suggested
model, we find that our method’s annualized returns outperformed their results. Tawfik
et al. [5] have applied Cuckoo search algorithm to optimize forex trading based on 3
technical indicators as predictors and depends on trend of 2 years historical data to max-
imize profit and sharpe ratio, but their method has proposed a single strategy to trade
on limited currencies. Our method is different to both of them, as we propose a ver-
satile method for constructing 3 distinct risk diversified strategies that can be opted by
investors depending on their risk profiles or market perspective, which could be conser-
vative or aggressive. We make two major contributions in this paper. Firstly, we propose
a new variant of GWO for construction of multi-peak solutions, instead of a single best
solution. Secondly it is, to the best of our knowledge, the first paper in the literature
to combine the application of above explained factors together to propose multiple risk
diversified day-trading strategies using single meta-heuristic.
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3 Optimisation Method and Evaluation Strategy

Grey Wolf Optimizer. Grey Wolf Optimizer (GWO) is a population based meta-
heuristic algorithm inspired by hunting behaviour of grey wolves (Canis lupus) [3].
The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey
wolves in nature. In this paper, we introduce a variation of GWO, that retrofits the logic
to update the position of the α, β and δ swarm wolves provided in the original GWO
implementation [6]. Our motivation to retrofit the original logic, comes from the need
to accurately map the multi-peak formation of the swarms as they depict the multiple
strategies suggested by our method. In our proposed method, we have calibrated the
logic to demote the current α agent to the position of the β swarm agent, when a new
agent is found with a fitness better than the current α agent, as in Algorithm 1. In the
original implementation, since typically we are only interested in the single best swarm,
the position of α or β agents never got demoted.

Algorithm 1. Retrofitted GWO snippet - update position for maximisation problem
Input: α pos, α score, β pos, β score, δ pos, δ score,
Positions, fitness, i
Output: α pos, α score, β pos, β score, δ pos, δ score
Function: Update Postition()

1: if fitness > α score then
2: Demote the current β position as the new δ position
3: Demote current α position as the new β position

4: if fitness < α score and fitness > β score then
5: Demote the current β position as the new δ position

6: return α pos, α score, β pos, β score, δ pos, δ score

Objective Function. Our variant of the GWO algorithm, provides a trader with options
to choose between different expected rate of returns and level of asset risks.We define the
three solutions as the α, β and δ strategy, as they represent α, β and δ wolf packs of the
GWO algorithm and have named our model as the αβδ - Trading Model. The objective
of the optimisation model is to maximize the portfolio returns and the Sharpe ratio [7].
Objective function for GWO is as given in Eq. (1), where i is the sequence of days of
trading for the period ‘n’, Ri is the returns from trade on day ‘i’, Rf is the risk free rate
of return for period 1 to n, and σr is the portfolio standard deviation depicting risk.

Maximize f(x) =

n∑

i=1

Ri ∗ (
n∑

i=1

Ri − Rf )

σr
(1)

Research Evaluation Strategy. We evaluate the robustness of our proposed trading
strategies on the basis of their capacity to perform effectively in a changing environ-
ment. Following hypothesis tests were evaluated across 60 cycles of independent tests,
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refer Table 1. Hypothesis 1-We expect that the portfolio returns from each of the α,
β and δ strategies to be distinct from each other and to consistently generate different
levels of returns, in accordance to their levels of risk. To prove this, we hypothesize that
the δ trading strategy achieves higher returns compared to the α strategy, resulting in
δ strategy as preferred stratagem for higher returns without considering risk associated
with each of the strategies. Hypothesis 2-Our second research hypothesis evaluates
the portfolio risks of the α, β and δ trading strategies. We hypothesize that due to the
GWO’s objective to minimise risk, the position of α swarm is closest to global opti-
mum, and thus the δ strategy achieves higher returns at a cost of higher portfolio risk
compared to the α strategy. Hypothesis 3-We further test and validate our method by
comparing the sharpe ratio for each of the α, β and δ strategies and confirm that our
method’s calibration of portfolio returns and risk is correct. We hypothesize that sharpe
ratio of the δ and β trading strategies are lower than the α strategy.

4 The αβδ Trading Model

In this section, we provide details of how in our proposed method, we construct multi-
ple strategies for algorithmic prediction of stocks from our universe of assets and trade
on them. Our model has two phases - Learning and Testing Phase. We have further
divided our model’s learning phase into 3 stages - Data Capture, Feature Threshold
Selection and Stock Threshold Selection. Let us consider, a universe of n risky assets
in a portfolio, denoted as P = (x1, x2, ..., xn), and a universe of i technical indica-
tors used by traders for stock price trend analysis, denoted as F = (t1, t2, . . . , ti).
Learning Phase: Data capture stage is responsible to collect input data for supervised
learning. To start with, we fetch the historical stock market data for each stock (xn) in
our portfolio P for period Lw, defined as the learning time period. Subsequently, we
calculate the technical indicators (ti) for each stock and map to F , using the historical
price movements of asset xn. In Feature Threshold Selection phase, we begin super-
vised training with input feature vector, F , to predict stock price trends. Applying the
GWO algorithm, we find the relevance of each indicator ti in F on every asset xn in
P , over the period Lw. We then search for optimum threshold values for each ti that
maximises the returns and minimises the risks using the objective function, in Eq. (1).
Subsequently, we rank the features in F on the basis of their information entropy to
predict price trends accurately and create a new sorted list of features, as Fopt , with its
relevant threshold values (to used for generating trade signals). In the last stage of Stock
Threshold Selection, we aggregate the individual trade signals from the top 5 stock’s
price trend indicators in Fopt , to derive the cumulative effect of trade recommenda-
tion for each stock. Individual signal generated using threshold values of each technical
indicator ti in Fopt with length i, denoted as Si, is aggregated based on the entropy
rank ri to derive S for each xn, using Eq. (2). We then again apply GWO algorithm,
to find the threshold values for each asset xn, that maximises the prediction accuracy
of asset price change and the precision to categorise trade decision into classifiers -
‘Buy’, ‘Sell’ or ‘Hold’, using S. For each stock xn, we note the optimised positions of
the α, β and δ wolves of GWO into vectors τα , τβ and τδ and define them as the α,
β and δ trading strategies for that individual stock. Testing Phase: During the testing
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period Tw, we trade on all assets in our portfolio P = (x1, x2, ..., xn) using the learnt
optimized threshold values in τα, τβ and τδ for each asset xn. These threshold values
facilitate the algorithmic trade decisions by classifying the daily trade calls into ‘Buy’,
‘Sell’ or ‘Hold’ positions, depending on recent stock price movements and aggregate
signals from the preferred technical indicators of that asset xn. We test and benchmark
our strategies on the basis of the portfolio risk, portfolio returns and portfolio Sharpe
Ratio over the duration Tw.

S =
i∑

1

Si(1 − ri

i
) (2)

5 Experiments

We kept our approach configurable and have tried to avoid any kind of bias towards
an upward or downward trend or any particular time period or industry, by including
all stocks from Dow Jones Industrial index and run the tests on our model over 14
years, from 2005 till 2018. We have preselected 7 stock market technical indicators for
our optimisation problem - Volatility index [8], Chaikin Volatility [9], Relative Strength
Index [9], MACD [9], William%R [9] and Ultimate Oscillator [9]. For the experiments,
the α, β and δ strategies close all trades over ‘T+1’ day.

Experiment Results and Benchmark Comparison. We evaluate the 3 hypothesis
undertaken for our research and validate our model’s performance based on the results.
We observe in Figs. 1 and 2 that the annualised returns and profits of α, β and δ trad-
ing strategies proposed using our method, outperforms well known global benchmark
indices in terms of profits and risk comparison. We gather further evidence by com-
paring the results with another meta-heuristic, known as Particle Swarm Optimisation
(PSO) [10]. We observe in Table 1 that the δ trading strategy consistently achieves
higher expected returns compared to the α strategy. We find that although absolute
returns of the δ strategy is higher than the α strategy, but the risks involved are also
high compared to the α strategy. As shown in Figs. 2, 4 and Table 1, δ strategy consis-
tently takes higher risk compared to α strategy. We find in Fig. 3, the Sharpe ratio of δ
strategy is less than α strategy and we can infer the same based on independent t-Test
conducted, with a confidence level above 99.9%.

Fig. 1. Annualised returns and risk comparison
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Fig. 2. Profit and risk comparison Fig. 3. Sharpe ratio comparison

Table 1. t-Statistics for hypothesis testing of αβδ trading model

Level of significance 0.01 D. freedom= 120

Decision t-Statistic Confidence

Hypothesis 1 - Portfolio
Returns

H0 : δprofit − αprofit ≤ 0 Rejected 14.13 99.9%

H1 : δprofit − αprofit > 0 Accepted

H0 : βprofit − αprofit ≤ 0 Rejected 5.22 99.9%

H1 : βprofit − αprofit > 0 Accepted

Hypothesis 2 - Portoflio
Risks

H0 : δrisk − αrisk ≤ 0 Rejected 13.51 99.9%

H1 : δrisk − αrisk > 0 Accepted

H0 : βrisk − αrisk ≤ 0 Rejected 5.55 99.9%

H1 : βrisk − αrisk > 0 Accepted

Hypothesis 3 - Sharpe
Ratio

H0 : αSR − δSR ≤ 0 Rejected 4.68 99.9%

H1 : αSR − δSR > 0 Accepted

H0 : αSR − βSR ≤ 0 Rejected 3.64 99.9%

H1 : αSR − βSR > 0 Accepted

Fig. 4. Portfolio risk Fig. 5. Portfolio returns
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6 Conclusion

High market volatility, increased investor risk aversion, and additional interest in risk
diversification in the equity market have prompted a surge of empirical research on
alternate options of trading strategies. Empirical experiments suggest that the perfor-
mance of our proposed α, β and δ trading solutions are efficient, consistent and reliable
options to alternate methods of algorithmic trading. Our method offers investors with
multiple trading alternatives instead of being complacent with a single strategy. We
also find that for complex problems which are stochastic in nature like financial mar-
kets, GWO algorithm when used with an active learning technique, was able to provide
a much more accurate prediction of future behaviour than PSO. Our findings add to the
growing body of literature that explores studies on effectiveness of algorithmic trading
strategies for global financial institutions, and offers insight into application of machine
learning for researchers as well as investors in the area of computational finance (Fig. 5).
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