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Abstract. In breast cancer diagnosis, fine needle aspiration biopsy is an
important diagnostic tool. It is used to estimate cancer malignancy grade
that is further required for treatment determination. In this paper we
describe a scheme based on pattern recognition and image processing tech-
niques for automatic breast cancer malignancy grading from cytological
slides of fine needle aspiration biopsies. To determine a malignancy classi-
fication of the slide we propose to extract textural features of nuclei with an
application of local binary patterns. Based on texture determination, we
present an improved classification system for cancer malignancy grading.
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1 Introduction

In recent years computerized cancer diagnosis plays a crucial role in cancer
examination procedure. According to the Polish National Cancer Registry [1],
in Poland alone, the number of reported cancer cases doubled in the last three
decades. According to statistics, around 300 000 middle-aged women in European
Union will be diagnosed with breast cancer. This makes it the highest oncological
problem affecting developed countries. About 89 000 of cases will be fatal. To
reduce this high ratio, a number of computer aided techniques were developed to
make the process more reliable and faster. The aim here is to diagnose a cancer
is an early development stage. Cancers in their early stages are more vulnerable
to treatment and we can assume that most of the diagnosed cases will lead to a
successful recovery. Conversely, most advanced cancers stages are usually almost
impossible to treat.

To overcome the problem of late diagnosis, screening mammographic tests
were introduced and when a suspicious region in the image is noted, a fine needle
aspiration biopsy (FNA) is taken. FNA is a minimally invasive method to extract
a small tissue sample of the questionable breast tissue. This procedure allows
for the description of the type and malignancy grade of the cancer. Depiction of
malignancy plays a crucial role in the determination of patient’s treatment.
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Cancer malignancy is graded according to the three point scale that was
first proposed by Bloom and Richardson in 1957 [4]. The proposed scheme was
originally derived for assessment of malignancy from histopathological slides
and today is very popular among pathologists. They use it for grading not only
histological but also cytological tissue.

In literature we can find a numerous approaches to computerized cancer
diagnosis [11]. Most of these approaches deal with the classification between
benign and malignant cases [12] of histological tissue. To the best of authors
knowledge, the first description of the computerized breast cytology classification
problem was provided by Wolberg et al. in 1990 [21]. In this work, authors
presented an application of a multi-surface pattern separation method applied to
cancer diagnosis. Their idea was wildly propagated among researchers what led
to the description of other breast cancer computer aided systems. In 2009, Malek
et al. [15] described an application of active contours to nuclei segmentation and
a fuzzy c-means classifier for classification of 80 malignant and 120 benign cases
and in 2010, Niwas et al. provided a description of texture features for cancer
classification [16]. In 2011, Jeleń et al. [13] described a neural network approach
to breast cancer malignancy classification and in 2016, Jeleń et al. [12] provided
a wide description of morphological features used for breast cancer classification.
In that same work they provided an extended research on feature classification
power and selection providing information about the best performing features.

Most recent approaches include a deep learning and convolutional neural
network approaches. In 2017, Araújo et al. [3] used convolutional neural networks
for feature extraction. In 2018, Kowal et al. [14] presented a similar study to
this described in [12] on feature selection problem. Authors used convolutional
neural networks for segmentation and have performed feature selection test on
500 images of benign and malignant cases.

For complete cancer diagnosis it is necessary to also determine the malig-
nancy stage of cancer which is called a malignancy grading, and this is the
problem that we are focusing on in this paper. The pre-screening process before
taking an FNA results in the situation in which the biopsy slide being classified
is nearly always malignant. Henceforth, in this work, we deal with a malignancy
grading problem instead of malignancy diagnosis. In 2017, Alsaedi et al. [2]
described six computer-aided grading frameworks assigning malignancy grades
to cytological images of FNA biopsies of breast cancer.

In this paper we address an important issue of texture features that can be
used for computer-aided grading of cancer malignancy. Texture is a very valuable
source of information when analyzing structures in an image [9,19] and therefore,
a textural description of the nucleus is an important feature of the computerized
breast cancer malignancy grading system. According to Bloom and Richardson
textural analysis allows for the determination of the chromatin distribution and
detection of mitotic cells.

The aim of the described study is to present an improved classification scheme
that takes into consideration a textural description of nuclei in the slide and will
determine the malignancy of breast cancer tissue. Additionally we will describe
a set of morphological features that are used for comparison purposes.
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2 Database Description

The database used in this study includes images of fine needle aspiration biopsy
that were collected by dr. Artur Lipiński during an FNA examination at the
Department of Pathology and Oncological Cytology of the Medical University
of Wroc�law, Poland. Slide preparation technique includes staining with Haema-
toxylin and Eosin, known as HE technique. The choice of the staining agents
allows for visualizing a nuclei with purple and black dyes, cytoplasm with shades
of pink and red blood cells with orange/red dyes. The setup consisted of an
Olympus BX 50 microscope with CCD–IRIS camera mounted on the head of
the microscope and a MultiScan Base 08.98 software. Such a system allowed for
recording of images with the resolution of 96 dots per inch (dpi) and a size of
764 × 572 pixels.

There are 218 images in the database that represent two classes of cancer
malignancy, namely intermediate (G2) and high (G3) malignancy grades (see
Fig. 1). The lack of low malignancy images is caused by the fact that these cases
very rarely require FNA and in recent years there was only a few of them at the
Medical University of Wroc�law. There are 134 cases of intermediate and 84 of
high malignancy. For all cases, breast tissue was surgically removed during follow-
up biopsy and it was histopathologically graded using the Bloom–Richardson [4]
grading scale which confirmed the FNA grading. Therefore all the cases in our
database were histopathologically validated.

(a) Intermediate malignancy (b) High malignancy

Fig. 1. Example of images for one case in the database.

3 Methods

Recently a number of classification frameworks were presented [2]. All of them
use shape descriptors to represent relevant Bloom-Richardson features. In [12]
except for features definition, authors preformed a comparison of their discrim-
inatory powers to choose a subset of the best performing features. According to
the authors, there are two types of features required for proper malignancy clas-
sification. These features are described in Sect. 3.2. To correctly classify breast
cancer malignancy we need to calculate features at two different magnification of
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the slide. Lower magnification will allow for the determination of cells behavior
and their ability to form groups. This simply means if there are more loosely
spread cells in the image, the more malignant the case should be. On higher
magnification we will be able to determine cells morphology as well as textural
differences between nuclei.

In this paper we propose to use only texture description to extract features
from images of higher magnification images. In Sect. 3.1 we will describe Local
Binary Patterns that were used as a texture measure. Last part of this section
is devoted to the description of classification scheme that was used for the eval-
uation of the textural features performance.

3.1 Texture Description

Textural features are used to measure the texture information of the image [9,19].
Here, the texture of the nucleus is taken into consideration. To extract textural
features, a local binary patterns method was applied. This method was first
proposed by He and Wang in 1990 [20]. Here, we use a variation of the method
that was described by Ojala et al. in 2002 [17]. They described an efficient
approach based on the local binary patterns and nonparametric discrimination
of sample and prototype distributions to rotation invariant texture classification.
Authors defined a texture Tx of a graylevel image in a local neighborhood as a
joint distribution of gray levels as represented in Eq. 1.

Tx = t(gc, g0, ..., gP−1), (1)

where gc is a gray level associated with the center of neighborhood, gp for p ∈ {0,
..., P− 1} is a gray level associated with P pixels arranged in circular manner,
equally spaced on a circle with a defined radius.

To obtain the Gray–Scale invariance authors subtracted the gray level value
of the neighborhood center from gray level values of the neighborhood pixels
and further scaling of the gray scale using only signs of the differences and not
the exact values. This situation is represented by Eq. 2.

Tx ≈ t(s(g0 − gc), s(g1 − gc), ..., s(gP−1 − gc)), (2)

where

s(x) =

{
1 if x > 0
0 if x < 0

.

According Ojala et al. adding a 2p binomial factor to each scaling term, the
characterization of the local spatial image texture structure can be rewritten by
Eq. 4.

LBPP,R =
P−1∑
p=0

s(gp − gc)2p. (3)
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To further remove the effect of rotation, authors defined a following relation:

LBP ri
P,R = min{ROR(LBPP,R, i)|i = 0, 1, ..., P − 1}, (4)

where ROR(x, i) is a circular bit-wise right shift on the P-bit number x i times,
which means clockwise rotation of the neighborhood until maximal number of
the most significant bits will be 0.

3.2 Morphological Features

As mentioned previously, there are two image magnifications that are used for
breast cancer malignancy grading. Morphological feature extraction in this paper
takes both of these types into consideration. The magnifications of images corre-
sponds to the magnifications used during a cytological examination of a breast
tissue. For the calculation of the low magnification features, images recorded
with 100x magnification are used and for the calculation of high magnification
features, images obtained with 400x magnification are used.

Low Magnification Features (LM) – these features are defined based on
the number of groups and their area (A100). The first feature is calculated as a
number of groups in the image that weren’t removed during the segmentation
process and the area is calculated as the average number of nuclei pixels. The
third feature describes nuclei dispersion within an image and is defined as a
variation of cluster areas (Ac) which is determined by the following equation [12]:

1
D

=
1

n − 1

n∑
i=1

(Ac − A100)2, (5)

High Magnification Features (HM) – the feature vector constructed by
extraction of high magnification features includes 30 features calculated accord-
ing to [12]. These features are divided into binary, momentum, histogram, tex-
tural and color based features.

Binary features that were calculated for set of nuclei N = {N1, N2, ..., Nn}
from a binary image (I), where N is defined as a collection of all connected
components and the nucleus Ni. Using this definition, the following features are
extracted [12]:

– Area (A400) – Ai is defined as the sum of all nuclei pixels of the nucleus Ni.
– Perimeter (Perim) – is a length of the nuclear boundary of a nucleus Ni that

is approximated by a length of the polygonal approximation of the boundary.
– Convexity (Conv) – is defined as a ratio of the nucleus area and the area of

the minimal convex polygon that contains the nucleus, called a convex hull.
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– Eccentricity (Ecc) – calculated as a ratio of the distance between focal
points of an ellipse matched with a nucleus having the same second–moments
as the segmented nuclei, and its major axis length.

– Centroid ((x − Ctr, y − Ctr)) – For each nucleus, the centroid (Ctri) is a
point (xi, yi) called a center of mass of the extracted nucleus along each row
(X) and column (Y ).

– Orientation (Or) – For the coordinate system placed at the centroid (xi, yi)
of the nucleus the orientation is defined as

Ori = tan(2θi), (6)

where the angle θi is measured counterclockwise from the x–axis.
– Projection ((x-Prj, y-Prj)) – to calculate the feature Prji for each nucleus,

projections along rows (x-Prji) and columns (x-Prji) are performed.

Momentum–based features use normalized central moments, ηij to calculate
rotation, scaling and translation invariant features as described in [19]. Using
these ηij values, seven momentum–based features, were calculated.

Another set of features is histogram based. The histogram is treated as a
probability distribution function of grey level values from the red channel in the
image and describes their frequencies in that image [12]. Based on this definition,
five histogram-based features were calculated. Additionally statistical features
of a texture were calculated based on the gray level co–occurrence matrix that
describes the relationships between a pair of pixels and their grey levels [19].
Assuming that the distance between the pixels and the directions are given four
textural features were extracted.

Last set of features is based on the spherical coordinate transform applied to
the RGB image. Determining a histogram of the converted image 5 color–based
features were computed.

3.3 Malignancy Classification

To classify the cytological FNA tissue we build four classifiers that take a fea-
ture vector (see Sect. 3.2) as an input and respond with a two element output
vector (1, 0)T for intermediate malignancy and (0, 1)T for high malignancy. In
the remainder of this section, classification methods are presented and, in the
following section, their ability to classify malignancies is studied.

Decision Trees (Tree) – most of the traditional pattern recognition algo-
rithms are based on the feature vectors that are real–valued and some kind of
metric can be applied to them [6]. Tree classifiers on the other hand are able to
solve classification problems that involve nominal data such as a list of attributes
like fruit colors and sizes.

Decision trees are constructed in a way where the classes are held in the
leaves of the tree and the decision rules are kept in the internal nodes including
the root [18]. Classification with decision trees seeks a path from the root to the
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correct leaf creating a decision path. Here, we make use of the CART (Classifica-
tion And Regression Trees) method described by Breiman et al. [5] that provides
a general framework for decision tree construction. In general, the tree–growing
process declares the node to be a leaf or finds another property that can be used
to split the data represented at the node into subsets creating new nodes. This
is process is run recursively until all the data is represented by the constructed
tree.

Linear Discriminant Analysis (LDA) – is one the simplest classification
algorithms that requires a construction of a, so called, decision boundary. This
boundary is constructed as discriminant function of a form presented by [6]:

g(x) = wtx + ω0, (7)

where w is a weight vector and ω0 is a threshold weight.
In a general way we can rewrite the the decision boundary as:

g(x) = ω0 +
d∑

i=1

ωixi. (8)

Here, ωi represents the components of w. If we add to Eq. 8 terms related to
products of pair of x, a definition of a quadratic discriminant function (Eq. 9)
will be determined.

g(x) = ω0 +
d∑

i=1

ωixi +
d∑

i=1

d∑
j=1

ωixi. (9)

To train an LDA based classifier we need to calculate a decision boundary accord-
ing to Eq. 9.

Support Vector Machines (SVM) – are used to separate two or more classes
of patterns or data points by constructing a boundary between them [10]. An
unknown point will be classified according to its orientation with respect to the
boundary. To estimate the boundary between classes we support vectors from
each class. This is performed as an iterative approach that minimizes an error
function.

1
2
wTw + C

N∑
i=1

εi (10)

with the following restrictions:

yi(wTφ(xi) + b) ≥ 1 − εi and εi ≥ 0, i = 1, ..., N (11)

where C and b are constants, w is the weight vector, εi is a bias value that deals
with overlapping cases and φ is a kernel function that transforms input data
into the feature space. In this work we have used a linear kernel as described by
Huang et al. in [10].
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Classifiers Ensembles (Ensemble) – enhance a single–model classifiers offer-
ing hybrid approaches [8] for a better classification of two-class classification
problems. Here, we use an AdaBoost. M2 approach, which is defined for a multi-
class problems. The algorithm seeks an approximation of the Bayes classifier
B(x), where x is a set of observations, based on a combination of other classi-
fiers such as decision trees [7]. During training, weights of misclassified points
are increased and a second classifier in the ensemble will use these new weights.
This approach is called boosting. Such a procedure is iterated and can lead to a
creation of numerous classifiers [22]. After training, each built classifier will be
assigned with a score. Such a combination of classifiers will define an AdaBoost
classifier as a classification model. All the classifiers in the final model are linearly
connected.

4 Results and Discussion

In this paper we discuss a problem of malignancy classification of fine needle
aspirates. For this purpose we have calculated textural features based on local
binary patterns as described in Sect. 3.1. For our calculations we have used 8
pixels neighborhood. Additionally a set of morphological features proposed by
Jeleń et al. [12] was extracted as described in Sect. 3.2.

Obtained feature vectors were presented as an input to four different clas-
sifiers to check their ability to distinguish between two malignancy classes: G2
and G3. Tests were performed using a 5–fold cross–validation method. Presented
Table 1 classification results are averages over the 5 folds used for testing.

To perform a complete analysis of the texture description, we have calculated
local binary patterns not only to a graylevel image (LBP features) but addition-
ally for a combination of R, G and B channels. Table 1 summarizes obtained
classification results for these features also. Further analysis shows that red and
blue channel together provided the best classification of malignancy cases. Addi-
tionally we included morphological features of low magnification images to show
the performance of a complete malignancy classification scheme.

From the results presented in this section we can see that classification based
only on the morphological features from high magnification images provided the
worst results. Textural features alone outperformed them but when low magni-
fication features were taken into consideration, the proposed scheme was able to
classify malignancy with accuracy around 90% or better. Inclusion of low magni-
fication features to the local binary patterns calculated for a red and blue channel
provided the best classification with an accuracy of 97.6% for an SVM classifier.
From Table 1 we can also see that this classifier outperforms all other tested
classifiers for textural features. Classification results obtained for morphological
features clearly show that classifier ensembles perform much better.
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Table 1. Classification accuracies for different feature vectors and classifiers.

Classifier
morphological features LBP features LBP for RB channels
without LM with LM without LM with LM without LM with LM

Tree 66.4% 92.2% 82.1% 92.1% 82.6% 92.6%
LDA 67.3% 94.1% 79.8% 89.8% 79.4% 88.9%
SVM 64.4% 89.4% 87.1% 97.1% 88.1% 97.6%
Ensemble 77.2% 96.0% 83.0% 93.0% 83.5% 93.2%

LBP for RG channels LBP for GB channels
without LM with LM without LM with LM

Tree 81.2% 89.8% 80.3% 89.7%
LDA 83.5% 91.4% 79.8% 85.5%
SVM 86.3% 95.9% 87.2% 97.2%
Ensemble 84.7% 93.6% 84.4% 94.4%

5 Conclusions and Further Work

In this paper we conducted a research on malignancy grade classification based
on textural features calculated with local binary patters. We have compared
classification accuracies of texture features extracted for different color chan-
nels and graylevel image against accuracies obtained for classification of mor-
phological features. As described in the previous section, the best performing
scheme included local binary patterns with low magnification features yield-
ing an accuracy of 97.6% when SVM classifier was used. The worst performing
setup included only morphological features extracted form high magnification
features. Considering the above, we can conclude that textural representation
of fine needle aspirates would be very good choice for breast cancer malignancy
classification.

In the further research the classification framework that includes images for
all three malignancy classes, should be tested. Introducing the low malignancy
class will make the classification more difficult and therefore even a more inter-
esting problem. Also, it would be necessary to perform per nuclei analysis but the
problem of occluding cells needs to be addressed and taken into consideration.
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