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Abstract. The cognitive and social aspects of students’ learning process
in acquiring scientific, tiered system of knowledge are explored by using
an agent-based-model. Cognitive aspects of learning are described as for-
aging for the best explanations on epistemic landscapes, whose tiered
structures are set by instructional design. The sociodynamic aspects
of learning are described as an agent-based model, where agents com-
pare and adjust their proficiency through peer-to-peer comparisons. The
results show that even in cases where social learning is unbiased, social
learning has a substantial effect on learning outcomes.
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1 Introduction

Students’ learning processes for acquiring advanced and abstract scientific knowl-
edge are complicated ones, with cognitive and social learning playing crucial roles
[1–3]. Such learning processes have been discussed from viewpoints based on com-
plex dynamic systems [3–5], where the cognitive and social aspect of learning
[1,6] are seen in equally important roles. In that learning process, two key issues
are: First, learner’s mental models and explanatory schemes are strongly con-
text dependent [2,3], giving emergence to varied but robust outcomes within a
given context [4,5], and second, social learning may significantly boost learning
even in cases where only indirect effects operate through constant peer-to-peer
comparisons which reinforce students’ self-efficacy [6] or mutual appreciation [7].

Here, an agent-based-model is introduced for exploring the social and cogni-
tive aspects of teaching-learning processes, referred briefly as the sociocognitive
aspects of learning. The target system to be modelled here is a five-person group,
with a learning task to learn a tiered system of explanatory schemes to explain a
set of observed phenomena, for which only a few possible explanatory schemes of
different levels of sophistication are available, corresponding to some well-known
and extensively studied cases of learning scientific knowledge [4,5]. The basic
assumptions in modelling such a teaching-learning process are that the process
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is affected by: (1) the context of learning and its design, (2) students’ cognitive
abilities and proficiencies, and (3) social interactions. These three sociocognitive
aspects and how they are idealised are discussed in more detail in what follows.
The teaching-learning task and the corresponding explanatory schemes are mod-
elled as an epistemic landscape [8,9] while the cognitive dynamics of learning is
described as the agent’s exploration of the epistemic landscape. Social interac-
tions, on the other hand, are modelled by using an agent-based model of how
agents’ proficiencies develop solely through their mutual comparisons of their
proficiencies [10].

2 Models of Knowledge and Learning

Knowledge systems which are the target of learning of interest here are systems
of tiered knowledge schemes [4,5]. A concrete example of such system consist
of explanatory schemes describing the behaviour of simple DC-circuits, where
from five to seven explanatory schemes can be discerned [4,5]. Consequently, a
three-tiered system consisting of five explanatory schemes m1 − m5 is assumed
here. The details of the tiered systems and how they correspond to real learning
tasks are explained elsewhere [5].

Each scheme m1 − m5 can be associated with a utility function uk, with
k = 1, . . . 5, which provides an abstract representation of the likelihood that
scheme mk provides an explanation. The utility uk depends on two external
(exogenous) variables ε and κ. The first variable ε ∈ [0, 1] is the relative number of
explained features (i.e. explanans) contained in tasks. The value ε = 1 describes
the explanandum, where all features are explained and the explanans becomes
equal to the explanandum. The second variable is the proficiency κ ∈ [0, 1],
which describes the proficiency required from a learner to use a given scheme
mk in providing explanations. The value κ = 1 denotes full mastery in using the
highest-level schemes [10].

Explanatory schemes have different utilities in different situations of expla-
nation. Using or not using the given scheme is assumed to depend on its utility in
a given context or situation and the proficiency of the user, higher level schemes
requiring higher proficiency. The tiered system of explanatory schemes can be
described by constructing a corresponding manifold of utility functions, called
an epistemic landscape (see refs. [8,9] and the references therein). The system
of utility functions is modelled here as a set of Gaussian functions in a two-
dimensional space (ε, κ) spanned by the explanans ε ∈ [0, 1] and proficiency
κ ∈ [0, 1], in form

uk(ε, κ) = exp[−(
1

2(1 − ρ2)
(
(ε − εk)2

2w2
ε

+
(κ − κk)2

2w2
κ

) + 2ρ
(ε − εk)(κ − κk)

wεwκ
)] (1)

where εk and κk define the maximum, with εk+1 > εk and κk+1 > κk correspond-
ing to the tiering of schemes mk. The allowed variation in utility is governed by
wε and wκ, respectively, while ρ controls the (positive) correlation between pro-
ficiency and explanans, taken here to be only moderate with ρ = 0.20.
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The fact that explanatory schemes contain similar elements means that learn-
ing one scheme may help or hinder learning a closely related scheme. Such entan-
glement of the explanatory schemes m1 − m5 is here described at an idealised,
generative level, by using an entanglement factor which modifies the schemes so
that utility functions u′

k affected by entanglement are given by (compare with
ref. [11])

ũk = uk(1 + ΔkΘ), where
∑

k

Δk = 0 (2)

where Θ =
∑

k uk cos [(πRk)/(2λ)] with Rk = [(ε − εk)2 + (κ − κk)2]1/2 models
the effects of entanglement. The parameter λ is roughly related to the num-
ber of combinatorial factors responsible for the entanglement and thus affects
the number of intermediate maxima in the entangled landscape between max-
ima in the non-entangled landscape. The entanglement factor Δk for the util-
ity functions are defined as D1 = A1,2 + A1,3, D2 = −A1,2 + A2,3, D3 =
−A1,3 − A2,3 + A3,4 + A3,5, D4 = −A3,4 − A3,5 + A4,5 and D5 = −A4,5, where
Ak,k′ = A0

√
ukuk′ . The entanglement factors sum up to zero so that they only

redistributes the probability mass. Three different epistemic landscapes A-C
studied here are shown in Fig. 1.

Fig. 1. The epistemic landscape in two dimensional space spanned by explanans ε and
proficiency κ and consisting of utilities u1 (orange), u2 (blue), u3 (green), u4 (purple)
and u5 (red). The three different landscape models shown are: A (no entanglement),
B (λ = 3) and C (λ = 5). (Color figure online)

Cognitive learning is described by a probabilistic learning model (PLM),
where the most probable scheme is selected through comparison of utilities uk

so that the selection of a given explanatory scheme mk follow a simple canonical
probability distribution [10–12]

P (mk) =

⎡

⎣ 1 +
∑

j �=k

exp [ −β(ũk − ũj) ]

⎤

⎦
−1

(3)

with utilities ũk given by Eq. (2). The parameter β determines the noise-level
of selection and is termed in what follows the confidence of choice. In what
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follows, only high confidence choices with β = 10 are considered, corresponding
in practice to all choices with β � 1.

The foraging on the epistemic landscape consists now of τ attempts to find
the best explaining scheme. In practice, the number of attempts is chosen to
be τMAX = 15 × 12 corresponding to 15 attempts for each key feature. This is
enough to reach stable final states and stable LOAs in the simulations. At each
instant when the value of τ is increased by one event, it is decided:

1. which scheme mk becomes selected
2. what is the explanans provided by mk

3. how proficiency κ changes as guided by mk

Each of these three steps is characterized by a set of probabilities and the
selection of an outcome is carried out on the basis of the “roulette wheel”
method [13]. In this method a discrete set of possible outcomes k = 1, 2, . . . , N
with probabilities Πk are arranged cumulatively with cumulative probability
Φk = (

∑
j′≤k Πj′)/

∑
j′≤N Πj′ . The outcome k is selected if a random num-

ber r∗ ∈ [0, 1] falls in the slot Φk−1 < r∗ < Φk, where Φ0 = 0. In case (1)
the probabilities Πk are given by Eq. (5) with k = 1, . . . , 5 for all five possible
choices. In cases (2) and (3) Πk is given by marginal probability distributions
Uκ(k = κ∗) =

∫
uk(κ∗, ε)dε and Uε(k = ε∗) =

∫
uk(κ, ε∗)dκ, where ε∗ and κ∗

are discretised to k ∈ [1, 100] discrete bins. The values of ε∗ and κ∗ sampled
from the marginal distribution Uε and Uκ represent the agent’s new attempted
explanans and proficiency, which may be larger or smaller than the initial ones.
However, the agent is not assumed to change its state independent of its current
state. Instead, the change of state depends on how agent’s attempted new state
at τ +1 is related to its initial state at τ . The realised changes are calculated from
a discretised evolution equation for explanans ε and proficiency κ as follows

ετ+1 ← ετ + δε (4)
κτ+1 ← κτ + μ δκ [4κτ (1 − κτ )] (5)

The changes δε and δκ depend on the sign of change where δε and δκ depend
on the state of the agent and on the attempted new state as shown in Table 1.
The evolution Eq. (5), where in the equation for κ parameter μ is the memory

Table 1. Changes δε and δκ in explanans and proficiency, respectively, to be used in
the evolution equations for agent’s state changes in Eqs. (4)–(5). The initial values are
ε and κ and the new attempted values sampled from marginal distributions Uε and
Uκ) are ε∗ and κ∗.

δuk δε δκ

ε∗ ≥ ε ε∗ < ε κ∗ ≥ κ κ∗ < κ

δuk ≥ 0 ε ∗ −ε ε ∗ −ε uk(τ + 1)(κ ∗ −κ) uk(τ)(κ ∗ −κ)

δuk < 0 uk(τ + 1)(ε ∗ −ε) 0 uk(τ + 1)(κ ∗ −κ) uk(τ)(κ ∗ −κ)



86 I. T. Koponen

effect and the term 4κ(1 − κ) takes into account the cognitive limits in changes
of proficiency, leads to logistic evolution of the proficiency [10]. Regarding the
explanans, the above rule means that the utility function decides how much
in a given stage τ of the exploration (or foraging) agent manages to explain,
given its current state i.e. proficiency κ and adopted explanatory scheme mk.
Regarding proficiency, the above rules implement the idea that if evolution is in
the direction of stronger explanations, then the proficiency κ increases, but if the
direction is on the weaker explanations, corresponding to failure, then proficiency
κ decreases. Such cognitive dynamics can be also interpreted as a “hill climbing”
–type of exploration of an epistemic landscape [8]. The parameter μ controls the
strength of the memory of success or failure. In principle it can be different
for success and failure, but in what follows, for want of better information, we
discuss only the case of equal memory for success and failure.

Proficiency is here not considered as a fixed property, but depending on peer-
to-peer comparison and appraisals between peers [10] (see also refs. [6,7]). The
dynamic equations for the proficiency are thus assumed to follow a bounded
confidence model [10,14,15]. In that model, the changes in proficiency due to
interaction between agents q and q′ with possession of explanatory schemes mk

and m′
k and proficiencies κ and κ′, respectively, are given by

κ ← κ + γ Jq,q′(κ′ − κ)[4 κ(1 − κ)] (6)
κ′ ← κ′ + γ Jq,q′(κ − κ′)[4 κ′(1 − κ′)] (7)

where Jq,q′ = exp
[

−(
√

(k′/5) κ′ − √
(k/5) κ)2/(2σ2)

]
exp

[ −(ε′ − ε)2/(2σ2)
]

is the propagator for the change (compare with ref. [14,15]). The width σ of the
Gaussian function is related to the agents’ tolerance to diversity (the diversity
in what follows) in proficiency. In the simulations γ = 0.15, chosen to represent
moderate sensitivity, is kept fixed, and only the parameter σ is changed. The
output variables of the simulations are the agents’ proficiencies and the relative
number density nk(ε, κ) of adopted explanatory scheme mk in the space spanned
by proficiency κ and explanans ε. Because κ evolves during the simulations, this
leads eventually to accumulation of scheme choices, seen as peaked values of
nk(ε, κ) at certain regions in the (ε, κ)-space. These regions, in what follows, are
called Learning Outcome Attractors or LOAs.

The LOAs and their evolution during the simulations when explorations on
the epistemic landscape increases with increasing value of τ provides, however,
very detailed information of the evolution of the agents’ states. A more compact
measure is provided simply as an integral measure of the total (relative) number
density Nk of a given explanatory scheme mk, in the form

Nk = N−1
0

∫
nk(ε, κ)dεdκ, (8)

with the normalisation N0 chosen so that
∑

k Nk = 1. The total number density
Nk is then used to track the learning process.
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3 Results

The dynamic systems model, which describes learning as foraging for knowledge
on an epistemic landscape, leads to the formation of robust learning outcomes
attractors (LOAs), where learning paths accumulate. The formation of the LOAs
is determined by the interplay of learning by foraging for knowledge on the epis-
temic landscape and by social learning. Here, the focus is on social learning and
on the effects the entangled and overlapping components of explanatory schemes
have on learning. In order to keep the social learning effects and entanglement
effects in control, we have chosen here to keep the parameters β, μ and γ fixed,
a corresponding high confidence (β = 10) in selection of explanatory schemes,
low cognitive learning (μ = 0.05) and moderate sensitivity to social learning
(γ = 0.15). In addition, we study only one type of cohort of learners, where all
the learners have low initial proficiency 0.05 < κ < 0.25. This cohort is the most
interesting one and shows the most nontrivial behaviour in regard to learning,
thus best revealing the effects of social learning.

The learning outcome attractors (LOAs) resulting from cognitive learning
and social learning are shown in Fig. 2 for epistemic landscape C for three diver-
sities σ = 0.08, 0.10 and 0.14 and for an increased number of exploration attempts
τ = 0.05, 0.15, 0.40 and 1.00. The results are shown as density distributions
nk(ε, κ) of preferred explanatory schemes in the end of the learning sequence
corresponding to τ = 1 The shift to select more advanced schemes during the
learning when τ increases from τ = 0.15 (little exploration) to τ = 1 (explo-
ration to nearly saturation) is particularly clear when a density from nk(ε, κ)-
of selected explanatory scheme in the (κ, ε)-space is examined.

The results in Fig. 2 show that by increasing the tolerance to diversity σ in
social learning, the outcomes of learning are significantly improved. Interactions
with more competent peers, although they do not directly nor proportionally
increase the agent’s proficiency, increases the rate of growth of proficiency. In all
these cases, however, the LOAs are located roughly in areas of (ε, κ) -space, where
the epistemic landscape has peak values, but the details of formation of LOAs
depend on diversity and entanglement. In practice this would mean that very
different learning outcomes are observed depending on how extensively learner’s
explore the tasks (described by τ) and how tolerant they are to their peers’
diversities in proficiency (described by σ). For shallow exploration (low values
of τ) and low tolerance to diversity, i.e. high homophily (low values of σ), learn-
ing outcomes may appear better in comparison to cases when diversity is high.
However, when chances for exploration and thus for interaction are increased
(increasing value of τ), learning outcomes become better for cases where toler-
ance to diversity is high; given enough time for explorations and interactions,
interactions with peers is always beneficial even in the absence of bias to learn
from more competent peers. This is an outcome of how exploration of the epis-
temic landscape, its structure, and social learning are interconnected. In practice,
it means interconnections between task structure (designed to advance learning)
and collaborative learning where learners communicate with their peers. It is
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Fig. 2. The Learning Outcome Attractors (LOAs) for epistemic landscape C. The
LOAs are recognised as peaked regions in number density distribution nk(ε, κ) for
schemes mk, shown as: n1 (orange), n2 (blue), n3 (green), n4 (purple) and n5 (red).
The results are shown at different stages of evolution and for different values of diversity
σ, as indicated in panels. Only densities nk > 0.1 are shown. The darker/lighter shade
indicates positive/negative gradients of nk. (Color figure online)
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noteworthy that the advantageous effect of competent peers persists even if the
strength γ of social learning is fixed and only the diversity σ changes.

Fig. 3. The Learning Outcome Attractors (LOAs) at the intermediate stage of evolu-
tion (τ = 0.40) compared for epistemic landscape A (no entanglement), B (entangled
with λ = 3) and C (entangled with λ = 5), from left to right. The LOAs are recognised
as peaked regions in number density distribution nk(ε, κ) for schemes mk, shown as: n1

(orange), n2 (blue), n3 (green), n4 (purple) and n5 (red). The results are shown for an
intermediate stage of evolution τ = 0.40 and for diversity σ = 0.10 (upper panels) and
σ = 0.14 (lower panels), as indicated in panels. Only densities nk > 0.1 are shown. The
darker/lighter shade indicates positive/negative gradients of nk. (Color figure online)

The effect of entanglement in LOAs is shown in Fig. 3 for models A (no entan-
glement), B (entangled with λ = 3) and C (entangled with λ = 5) an intermedi-
ate stage of evolution, and for final states in Fig. 4. The effect of entanglement is
also detectable, although it is clearly weaker than the effect of diversity. In Fig. 3
we see that for intermediate diversity the non-entangled landscape A leads to
the formation of very sharply defined LOAs, and even the LOA corresponding
scheme m4 and high proficiency is formed. In the entangled landscapes B and C
equally, strong LOAs corresponding m4 and m5 of high proficiency emerge only
when high explanans values ε are reached. In practice, this means that if only low
values of ε (corresponding to relatively simple situations and only a moderate
number of observations to be explained), non-entangled model A provides better
learning outcomes in comparison to entangled cases B and C. In all cases, how-
ever, the diversity increases learning. Interestingly, the highly entangled model
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Fig. 4. The Learning Outcome Attractors (LOAs) at the intermediate final of evolution
(τ = 1.00) compared for epistemic landscape A (no entanglement), B (entangled with
λ = 3) and C (entangled with λ = 5), from left to right. The LOAs are recognised as
peaked regions in number density distribution nk(ε, κ) for schemes mk, shown as: n1

(orange), n2 (blue), n3 (green), n4 (purple) and n5 (red). The results are shown for an
intermediate stage of evolution τ = 0.40 and for diversity σ = 0.10 (upper panels) and
σ = 0.14 (lower panels), as indicated in panels. Only densities nk > 0.1 are shown. The
darker/lighter shade indicates positive/negative gradients of nk. (Color figure online)

C with high diversity σ = 0.14 (Fig. 3 lower right) leads to the emergence of high
proficiency LOAs already corresponding to scheme m5 at intermediate stages of
evolution and already for intermediate explanans with ε > 0.3. This shows that
appearance of states due to entanglement may help the very effective shift from
lower level explanatory schmes to higher level ones if social learning facilitates
this shift.

The interplay of entanglement and diversity in social learning is, however,
rather complicated. When final, nearly stabilised LOAS corresponding τ = 1
are examined, shown in Fig. 4, we observe that while diversity σ = 0.10 again
leads clearly to better learning outcomes for entangled (B and C) than for non-
entangled landscapes (A), this is no longer the case when diversity is high, having
a value of σ = 0.14. Now, again, we see that the non-entangled model A gives
emergence to sharply defined high proficiency LOAs for m5 and for m4. In fact,
if learning outcomes only for ε < 0.7 are examined (corresponding roughly to
tasks I-III and omitting task IV) it appears that A outperforms B and C. The
advantages of the entangled condition contained in B and C become evident only
for ε > 0.7, i.e. only when a complex enough task are involved.
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In all cases we observe the strong presence of an LOA corresponding to
m3. This LOA is present and clearly visible also at the final stages for high
diversity cases. Interestingly, the LOA corresponding to m3 persists even when
the LOA corresponding to m4 begins to diminish, apparently feeding the LOA
corresponding to m5. This phenomenon, where at final stages and especially
for high diversity, LOAs of m3 and m5 are the most persistent ones, shows
that symmetric, non-biased and zero-average interaction of social learning and
non-biased, zero average cognitive learning leads to the polarisation of learning
outcomes. Many agents successfully reach the highest, high proficiency LOAs,
but some agents are stuck forever at the final low LOAs with low proficiencies.
This is, of course, an outcome of the bounded confidence type model adopting
certain proficiency states, which, when formed, remain stable. This phenomenon
corresponds to the resistance of learners to change their strong adherence in
certain low level explanatory schemes irrespective of the fact that they do not
explain but only a part of the observations they encounter in the given task (see
e.g. [4,5]).

To get a more comprehensive picture of how social learning and differently
entangled epistemic landscapes affect the agents’ learning we need to condense
the information contained in Figs. 2, 3 and 4. For this purpose, we use the total
number density Nk of adoption of scheme mk. The total number density Nk

compresses the information of how a given explanatory scheme is learned into
a single number, but no longer provide the information of explanans and profi-
ciency contained in the LOAs. The results for different diversities from σ=0.08
to 0.18, for landscapes A, B and C and for τ ∈ [0, 1] are shown in Fig. 5.

The results in Fig. 5 show that if one focuses only on simple tasks (tasks
I-III, corresponding roughly ε < 0.7) with low and moderate diversity (σ = 0.08
and 0.10), the non-entangled landscape A produces the best learning outcomes
and scheme m3 is rapidly learned. Only when the task becomes more demanding
(ε > 0.7), or when diversity increases (σ > 0.10), the entangled landscapes B and
C become more advantageous for learning. On the other hand, the best learning
outcomes are reached for entangled landscapes and high diversity σ > 0.14.
In examining the results, it should be borne in mind that in all the cases the
same value of memory μ of cognitive learning and strength γ of social learning
has been kept constant. Also, the variations in probability mass contained is
kept unbiased, with zero-averaged variation, in the same way as the tolerance to
diversity in social learning which is also unbiased with zero-average variation.

The learning models of cognitive and social learning which produce these
results are highly idealised, but, nevertheless, they show how delicately the
learning outcomes depend on the interplay between task (as describe by epis-
temic landscapes) and the peer-to-peer interactions contained in social learning,
and on the extension and duration (parameter τ) of exploration of the possible
explanations (parameter ε). It is evident, that all the factors discussed here -
cognitive learning, entanglement of different explanatory schemes, social learn-
ing, and tolerance to diversity - affect the learning outcomes, not only separately
and independently but together as a whole system.
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Fig. 5. The total number density of Nk for adoption of schemes mk for epistemic
landscape A (no entanglement), B (entangled with λ = 3) and C (entangled with
λ = 5), from left to right. Total number densities Nk(ε, κ) for schemes mk, shown as:
N1 (orange), N2 (blue), N3 (green), N4 (purple) and N5 (red). Results are shown for
the complete stage of evolution from τ ∈ [0, 1] to and for diversity σ = 0.08, 0.10, 0.14
and 0.18. (Color figure online)

4 Discussion and Conclusions

The process of learning scientific knowledge from the dynamic systems view-
point [4] is here discussed in terms of the Probabilistic Learning Model (PLM)
for the cognitive effects of learning and in terms of a social learning model
(SLM) for the effects of social interactions in learning [10]. The model of learn-
ing based on PLM and SLM is a sociocognitive model of learning, which con-
siders some very primary features of a student’s learning process on the lev-
els of individual cognition and the sociodynamics of learning. The model is an
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idealised description of the learning process, based on the assumptions that: (1)
the teaching-learning sequence can be described as an epistemic landscape; (2)
the only relevant cognitive property that characterises the learner and changes
during the teaching-learning sequence is the learners’ proficiency in using the
given scheme, enhanced/weakened by success/failure; and (3) social interaction
either increases or decreases proficiency independently of cognitive abilities. In
the present model, social learning is thus indirect instead of being a direct trans-
fer of knowledge. This agrees with the views that social learning very often seems
to operate through the indirect effect increasing the learners’ self-efficacy and
their feelings of competence [6,7].

The model of knowledge system studied here is a tiered system of explana-
tory schemes which is a generic description of certain well-known empirically
studied learning situations (see e.g. [4,5]) and references therein). Sociocogni-
tive dynamics, as it is implemented in the model, leads to the formation of
dynamically robust preferences for certain explanatory schemes, which explains
a set of evidence contained in the learning task designed to facilitate targeted
learning. Adopting and using such explanatory schemes require appropriate pro-
ficiency from a learner. Thus, each explanatory scheme is characterised by what
it explains (explanans) and what is the proficiency it requires from a learner.
Robust learning outcomes can be then conceptualised as Learning Outcome
Attractors (LOAs) corresponding to these schemes, located in space spanned
by explanans and proficiency. These learning outcome attractors (LOAs) are
essentially outcomes of the interplay between the design of the learning task,
learners’ cognitive dynamics and social dynamics.

The development and implementation the model shares many similarities
with decision models and opinion dynamics models. The model is basically an
agent-based model (ABM), where agents have an internal state characterised
by the adopted explanatory scheme and proficiency. Both these features evolve
during the simulations. The selection of interaction between agents is based on
the bounded confidence type model. A similar type of social interaction has been
recently proposed for modelling social interaction in the task centered collabo-
ration [14]. The current model, in its use of epistemic landscapes, has also many
similarities with simulation models designed for discovery of knowledge [8,9].

In the present model, the effects of social learning can account for a consid-
erable part of successful learning and be comparable to cases where the memory
effects (i.e. cognitive effect) in learning are high (see refs. [10]). Interestingly,
although even in cases where the effect social learning depends on the differ-
ence between proficiencies and the positive and negative changes have similar
effects, and even in case the probability for such events is without bias to positive
effects, the effective outcome favours advancement in learning. This is due to the
fact that the epistemic landscape itself, due to its design, is biased to advance-
ment; positive change in proficiency matters more than equally strong negative
change and learning bias emerges. This, of course, is due to fact that learn-
ing tasks, which the epistemic landscape is intended to model, is deliberately
designed to support learning. The tolerance of diversity of peers’ proficiencies
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thus allows learners to benefit occasionally with interaction with more compe-
tent peers and such cases are magnified by the effect it produces as an improved
foraging capacity; the occasional encounter with more competent peers open new
vistas for cognitive development. The social effect is thus not only restricted to
adoption of peer’s best choices but more importantly, it drives the agent’s own
cognitive proficiency. This result, although based on idealised model, suggest
that tolerance to diversity of peers in social learning, when learning tasks are
appropriately designed, is always beneficial for growth of proficiency, because it
opens learning possibilities which may significantly enhance learning.

The results presented here have also implications for research into learning.
In the picture presented here learning appears as a dynamic, continuous change
from one dynamically and contextually determined learning outcome to another
rather than a switch from one static, cognitively determined and context inde-
pendent state to another. Research settings that can detect such a continuous
change evolution and its context dependence of learning outcomes should pay
attention to the effects of alternation between contexts and how interleaving of
different contexts affect the learning outcomes. However, the complexity of the
situation makes the mapping of the model parameters onto empirically testable
research settings challenging. While proficiency can be mapped to success in
providing correct answers in the given task (see e.g [4,5]), the tolerance to diver-
sity, although in principle possible to operationalise in empirically accessible
form, would require a novel types of reliable self-evaluation reports. Therefore,
developing research settings which are appropriate for exploring rich variations
of learning outcomes related to context dependence and how it interacts with
learning dynamics remains thus as a challenge. In meeting such challenges and
in advancing the research in sociocognitive learning the agent-based simulations
may prove to be an invaluable tool. One advantage of the agent-based mod-
elling as it is presented here is that the conceptualisation of learning within it
is designed to be close to conceptualisations of social and collaborative learning
phenomena now emerging in educational research of learning and instruction (see
e.g. [16] and references therein). Complementing such research with agent-based
modelling may eventually open new fruitful ways to model learning phenomena
and to find new empirical approaches to study complex sociocognitive learning
phenomena.
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