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José A. Sáez1(B), Pablo Villacorta2, and Emilio Corchado1

1 Department of Computer Science and Automatics, University of Salamanca,
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Abstract. In supervised learning, some data characteristics (e.g. pres-
ence of errors, overlapping degree, etc.) may negatively influence classi-
fier performance. Many methods are designed to overcome the undesir-
able effects of the aforementioned issues. When comparing one of those
techniques with existing ones, a proper selection of datasets must be
made, based on how well each dataset reflects the characteristic being
specifically addressed by the proposed algorithm. In this setting, sta-
tistical tests are necessary to check the significance of the differences
found in the comparison of different methods. Wilcoxon’s signed-ranks
test is one of the most well-known statistical tests for pairwise compar-
isons between classifiers. However, it gives the same importance to every
dataset, disregarding how representative each of them is in relation to
the concrete issue addressed by the methods compared. This research
proposes a hybrid approach which combines techniques of measurement
for data characterization with statistical tests for decision making in
data mining. Thus, each dataset is weighted according to its represen-
tativeness of the property of interest before using Wilcoxon’s test. Our
proposal has been successfully compared with the standard Wilcoxon’s
test in two scenarios related to the noisy data problem. As a result, this
approach stands out properties of the algorithms easier, which may oth-
erwise remain hidden if data characteristics are not considered in the
comparison.

1 Introduction

Classification tasks aim to create a model, called a classifier, from labeled exam-
ples of the problem. The classifier is then used to predict the class label of new
examples from the value of their attributes. Thus, the characteristics of the data
used to build the classifier directly influence it, affecting its complexity and clas-
sification performance. Moreover, the presence of some undesirable properties
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in the data, which are usually quantified using well-known metrics, may nega-
tively affect classifier learning, causing problems broadly studied in the literature
[6,9,12]. For instance, data that are characterized by an unequal distribution of
the examples among the classes (which is usually measured using the imbal-
ance ratio) results in the imbalanced classification problem [6]. Data that are
characterized by a large quantity of unknown attribute values (which is usually
measured as the percentage of these values in the data) results in the missing
values problem in classification [9].

In order to build a classifier from data heavily characterized by these unde-
sirable characteristics, many techniques have been proposed in the literature. In
these works, new algorithms are typically compared against existing ones con-
sidering a set of datasets, which should be representative of the issues being
addressed [14] (degree of imbalance between classes, presence of missing val-
ues, errors, etc.). In such a way, it is possible to analyze the effects of these
properties on the classifiers built by all these methods. However, the selection
of the datasets must be done carefully, since some of them may be much more
representative of the problematic characteristic than others.

In the last decade, the analysis of results has been closely related to the usage
of statistical tests [3,15], which are needed to confirm whether a new method
provides a significant improvement with respect to existing ones. Among them,
Wilcoxon’s signed-ranks test [3] (hereafter called Wilcoxon’s test) is commonly
used in the machine learning literature to perform pairwise comparisons. It is a
non-parametric statistical test that, in the context of classification algorithms,
compares the performance of two methods when they are applied to a set of prob-
lems to find differences between them. In this test, each problem (i.e. dataset)
has the same relevance. However, the relevance of each dataset when determin-
ing the output of the test should be different, according to the degree to which
a dataset reflects the characteristic of interest. Datasets in which the presence
of the characteristic being addressed is stronger should have a stronger influence
on the result of the test, as they are more representative of such characteristic.

This study proposes an hybrid system which weights each one of the datasets
used in the comparison performed by Wilcoxon’s test according to its represen-
tativeness with respect to the characteristic under study. To the best of our
knowledge, this approach has not been previously used in the context of pair-
wise statistical comparisons between classifiers. Weighting schemes do have been
applied to statistical comparisons between multiple classifiers (not pairwise).
Quade’s test [11] considers that some problems are more difficult than others,
and proposes scaling each problem depending on the differences observed in
the algorithms’ performances. However, there are two main differences between
Quade’s test and our proposal. First, our weighting scheme is for pairwise com-
parisons, whereas Quade’s test is aimed at detecting differences between more
than two classifiers and requires the usage of post-hoc procedures to characterize
these differences. Second, Quade’s test only allows a weighting scheme based on
the performance of the classifiers, whereas our proposal can be used with the
performance of the methods, but also with any other metric computable from
the data, as explained in Sect. 3.
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The novel approach proposed implies a modification of Wilcoxon’s test in
order to include information about the relevance of each dataset in the compar-
ison, giving more importance to those problems that are interesting from the
point of view of the metric under study. When comparing supervised classifi-
cation algorithms, experiments are usually conducted to show that one of the
algorithms is better than some others. However, it is well-known that no algo-
rithm can be better than any other for any condition (no free lunch theorem
[17]). Thus, instead of this kind of comparisons trying to find the best overall
algorithm, experiments should be conducted to show which characteristics of the
problem (such as the class imbalance, missing values, noisy data, etc.) lead to a
better or worse performance of a classification algorithm. The weighting scheme
enables us to easily focus on the exploration of such conditions, which is recom-
mended when proposing new methods [14]. For this reason, the modification of
Wilcoxon’s test presented in this study is an interesting analysis tool that allows
to include additional information about the characteristics of each classification
problem in order to deal with the comparison of two classification algorithms
and better identify the conditions that are most favorable for each of them.

To assess the feasibility of our proposal, Wilcoxon’s test and its weighted
version will be experimentally compared in different scenarios in the framework
of the noisy data in classification [12]–note that the proposal is not exclusively
applicable to this task, but can be used in any comparison of classification meth-
ods. In them, different metrics that can be computed from the data will be
studied and the performance of several classifiers will be compared using the
unweighted and weighted Wilcoxon’s test. The output of both tests will be com-
pared with findings already published in the literature about noisy data.

The rest of this research is organized as follows. Section 2 provides an
overview of metrics to characterize datasets and the description of Wilcoxon’s
test. Section 3 introduces the hybrid version of Wilcoxon’s test for classifier com-
parison, including data weighting. Then, Sect. 4 includes the comparison of the
unweighted and weighted versions of Wilcoxon’s test. Finally, Sect. 5 points out
some concluding remarks.

2 Background

2.1 Measuring Data Characteristics

Each dataset has particular characteristics that define it, such as its size, the gen-
erality of the data and the inter-relationships among the variables. These prop-
erties are generally quantified defining numerical metrics directly computable
from the data, with the aim of increasing the knowledge about the problem and
determining the best way to deal with the data.

Classification datasets are composed by examples that are described by sev-
eral attributes (numerical or nominal) and a class label (always nominal). This
formation enables one to compute any numerical measure that summarizes the
full data or a concrete part of these, such as relative or absolute frequencies of
concrete values, means and medians, correlations among variables and so on.
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Among the simplest metrics that can be computed from a dataset are the
number of examples, attributes and classes. These are traditionally used to quan-
tify, in a simple way, data characteristics such as the size and complexity of a
dataset. Thus, higher values of these metrics usually represent a higher size and
complexity of the corresponding dataset, resulting in some of the most stud-
ied problems within the framework of classification tasks - a clear parallelism
among the characteristics of the data, the metrics employed to quantify them
and the type of problems studied can be established. For example, some works
focus on datasets with a high number of attributes, a fact that results in the
curse of dimensionality problem [1]. The presence of unknown attribute val-
ues (which can be quantified by the ratio of missing values) for some examples
results in missing values problems [9]. Big data problems [2] are characterized,
among other factors, by the presence of a high number of attributes and exam-
ples simultaneously. Datasets with a highly unequal number of examples in each
class (quantified using the imbalance ratio) lead to imbalanced data problems [6].

Another recent trend proposes more sophisticated data complexity measures
[5] to quantify more subtle characteristics of the data which are considered diffi-
cult in classification tasks, such as the overlapping among classes, their separa-
bility or the linearity of the decision boundaries. Among the metrics estimating
the overlapping existing in a dataset, one can find the F1 metric, which computes
the maximum Fisher’s discriminant ratio; the F2 metric, which estimates the
volume of the overlapping region; and the F3 metric, representing the maximum
feature efficiency, which is the maximum fraction of examples within the overlap-
ping region distinguishable with only one attribute. Class separability measures
include the N2 metric, which is used to estimate whether the examples of the
same class lie close in the feature space, and the N3 metric, which denotes how
close the examples of different classes are. Other metrics, such as L3 or N4, are
used to estimate the linearity of the decision boundaries.

Finally, other artificial mechanisms have been proposed in the literature to
build synthetic datasets from the modification of real-world ones, controlling
the presence of a particular characteristic of the data [9,12]. These schemes
enable one to extract conclusions based on the properties of the data which are
modified. Examples of these mechanisms are, for example, the introduction of
errors into the data (resulting in noisy data problems [12]) or the introduction of
missing values [9]. In all these cases, the metric to study usually represents the
amount (commonly, a percentage) of the property modified in the data. In this
research, we consider both the computation of data complexity metrics and the
use of artificial mechanisms to modify the datasets in two different experiments
related to the problem of noisy data in classification.

2.2 Wilcoxon’s Signed-Ranks Test

Wilcoxon’s signed-ranks test [3] is a simple, yet safe and robust, nonparamet-
ric procedure that aims to detect whether two related samples come from two
different populations. When applied to classification algorithms comparison, it
performs an statistical comparison between the performance of two techniques
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X and Y when they are applied to a common set of n problems. Let x1, . . . , xn

and y1, . . . , yn be the performance results of X and Y in the n datasets consid-
ered in the comparison. Wilcoxon’s test proceeds as follows:

1. Compute the difference between the performance results of X and Y for each
one of the n datasets, that is, di = xi − yi, i = 1, . . . , n.

2. Rank the differences from the lowest value of |di| (with rank(di) = 1) up to
the highest one (with rank(di) = n), by increments of 1. If there are t tied
differences |di|, . . . , |di+t|, they are sorted in any order, but the final rank of
all of them is computed as the average rank (rank(di) + . . . + rank(di+t))/t.

3. Let R+ be the sum of ranks for the datasets in which X outperforms Y
(di > 0), and R− the sum of ranks for the opposite (di < 0). Those rank(di) |
di = 0 are evenly splitted between R+ and R− and, if there is an odd number
of them, one is ignored –note that R+ + R− = n · (n + 1)/2:

R+ =
∑

di>0

rank(di) +
1

2

∑

di=0

rank(di) R− =
∑

di<0

rank(di) +
1

2

∑

di=0

rank(di)

4. Let W = min(R+, R−) be the Wilcoxon statistic. If this value is less than
or equal to the theoretical value of the specific distribution this statistic is
known to follow (Table B.12 in [18]), the null hypothesis of mean equality is
rejected. This fact implies that a given method outperforms the other one,
with the corresponding p-value associated.

Note that Wilcoxon’s test is analogous to the paired t-test, but it does not
require any parametric assumption. It is more sensitive; thus, higher differences
|di| have a greater influence than in the t-test when determining the final result of
the comparison, which is probably desired, although the absolute magnitudes of
these differences are ignored. This means that two differences di, dj can be equal,
but we lose the information about the magnitudes of the performance values of
the classifiers xi, yi, xj , yj they come from. This fact is one of the reasons that
motivates the proposal of a weighting scheme for the data considered.

3 Hybridizing Wilcoxon’s Signed-Rank Test with Dataset
Weighting Based on Data Characteristics

When applying Wilcoxon’s test to compare two methods over a set of problems,
only the performance results of each algorithm in each dataset are considered.
The intrinsic properties of these datasets are not usually taken into account in
the statistical comparison, and each one of the problems receives the same impor-
tance for determining the result of the test. As mentioned previously, sometimes
we are interested in comparing methods which explicitly address a specific prob-
lematic characteristic of the data, such as noise, class imbalance, missing values,
etc. However, the datasets considered may present this characteristic to different
degrees, which can be quantified by an appropriate metric. Consequently, each
dataset should have a different influence on the test result.
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Our novel hybrid proposal in this scenario is to weight each one of the datasets
of the comparison depending on its relevance with respect to the characteristic
being studied when applying Wilcoxon’s test: the higher the value of the metric
in the dataset, the higher the weight, that is, the importance of the dataset
when determining the test result. Therefore, the test conclusions are based on
the representativeness of each dataset with respect to the metric used.

The weighting proposed for Wilcoxon’s test is based on the following steps:

1. Computation of the metric to study on each dataset. A metric of inter-
est is computed over each one of the n datasets considered in the comparison
of the methods X and Y , resulting in the values mi, i = 1, . . . , n.

2. Computation of the weight associated to each dataset. The values mi

are normalized to obtain a weight wi for each dataset as follows:

wi = mi/
n∑

j=1

mj (1)

Note that the aforementioned equation is used to maximize the weight of
those datasets with higher values mi. In case we want to maximize the weight
of the datasets having lower values, the equation of the weights is wi =
(M − mi)/

∑n
j=1 (M − mj), being M = max

i
{mi}.

Due to the large variety of metrics that can be computed from the data,
this paper proposes the calculation of weights linearly distributed across the
domain of the metric (as shown by Eq. 1). However, other schemes are also
possible, such as logarithmic or exponential. The choice of a concrete scheme
should be made by the data analyst based on the problems involved in the
comparison and the distribution of values mi. In any case, it is important
to remark that we do not manipulate the weight of each dataset arbitrarily,
since the weights are determined by the values mi of the metric.

3. Modification of the performance values of the methods to compare.
The performance results xi and yi of the two algorithms X and Y involved in
the comparison are replaced by their weighted versions xw

i and yw
i as follows:

xw
i = xi · wi yw

i = yi · wi

4. Application of Wilcoxon’s test over the weighted results. Finally,
Wilcoxon’s test is applied to the weighted data xw

i and yw
i , i = 1, . . . , n.

Note this weighting scheme is not a new statistical test; it requires a modifi-
cation of the original data samples based on the relevance of each dataset with
respect to the characteristic of interest. It neither intends to be a substitute of
Wilcoxon’s test, but a complementary tool to be used when analyzing the results
obtained in experiments. Even though a classifier should show differences against
another one when using unweighted Wilcoxon’s test, the use of its weighted ver-
sion enhances this issue. Unlike the unweighted Wilcoxon’s test, the weighting
can capture the relevance of those data more representative with respect to the



Dataset Weighting via Intrinsic Data Characteristics 67

property of interest. Our novel proposal modifies (considering the property of
the data) the differences in performance on the two methods, which determine
the rankings assigned to each method and, thus, the final test result.

Although in some works the only goal of new proposals is to improve the
classification performance of existing methods (without focusing on particular
data characteristics), the use of the weighting scheme for statistical comparisons
could be also interesting. Several metrics could be computed from the data and
applied to the statistical comparisons to obtain another batch of results. With
them, we could check whether giving more importance to some property of the
data makes a particular algorithm stand out. Thus, the weighting approach can
be useful to uncover properties of the algorithms, that is, their better behavior
in datasets presenting a particular characteristic to a high degree, even when
they were not specifically designed for dealing with this type of data.

Finally, even if we are not studying any specific characteristic of the data, a
relevance metric based on the accuracy itself can still be defined. The weighting
procedure can be applied to assign more importance to those datasets that are
intrinsically more difficult for constructing a model (and therefore every classifier
performs poorly on them in terms of accuracy), since those are more interest-
ing from a classification point of view. This would partially remedy the fact
that Wilcoxon’s signed-ranks test does not consider absolute magnitudes of the
samples to reach the final result, which in our scenarios may often represent an
omission of valuable information. In these cases, datasets could be weighted, for
example, depending on the intrinsic difficulty of the problem to be learnt by
any classifier, which can be quantified, for instance, as the minimum theoretical
error achievable in the dataset by the Bayes classifier. Other option could be the
minimum error obtained experimentally by any known classifier in that dataset.

4 Combining Data Weighting and Wilcoxon’s Test in the
Framework of Noisy Data in Classification

In this section we assess the differences of applying Wilcoxon’s test with or
without the weighting scheme proposed in Sect. 3. Two scenarios are studied
focusing on a common problem in classification, namely, the existence of errors
or noise in the data [12]. These scenarios are not aimed at showing that the
weighted version allows to reach statistically significant results, neither if it is
better or worse than the unweighted version, but showing that giving more
importance to more representative datasets for the comparison of algorithms
leads to different conclusions that are closer to those claimed in the literature.

4.1 Robustness of Different Classifiers to Noise

This scenario considers the results of two classification algorithms, C4.5 [8] and
SVM [16], over a collection of 30 datasets taken from the UCI repository [4], which
are affected by different amounts of noise (added artificially).
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These algorithms are known to behave differently dealing with noisy data
[10]. On the one hand, C4.5 is a well-known robust learner, which is less affected
by the presence of noise thanks to the pruning mechanisms which reduce the
chances that the trees overfit the data [8]. On the other hand, SVM usually obtains
better results when data have little or no noise at all, but performs poorly in
presence of severe noise [10].

Ideally, Wilcoxon’s test without weights should be able to find statistically
significant differences in this setting, as already noted in existing literature.
Furthermore, since we are focusing on noisy data, the amount of noise present
in each dataset should be considered when drawing a conclusion.

The performance of the methods is calculated as the average of the accuracy
in test sets of five independent runs of 5-fold stratified cross validation (SCV).

To control the presence of noise, different noise levels l% are introduced into
each training set. To this end, the uniform class noise scheme [12] is used, in
which l% of the examples are corrupted randomly changing their class labels by
other randomly chosen one. For each one of the 30 datasets used we introduce
a different random noise level l ∈ [5, 50]%, in steps of 5%. The procedure to
introduce a noise level l% in the original dataset is the following:

1. A noise level l% is introduced into a copy of the full original dataset.
2. The original dataset and the noisy copy are partitioned into 5 folds, main-

taining the same examples in each one.
3. The training sets are built from the noisy copy, whereas the test sets are built

from the original dataset.

The algorithms have been executed with the following configurations:

– C4.5: confidence = 0.25, instances per leaf = 2, prune after the tree building.
– SVM: C = 100, tolerance = 0.001, ε = 10−12, kernel = PUK (σ = 1, ω = 1).

Table 1 shows the datasets considered in the experiments, their noise levels
and the performance of C4.5 and SVM. The usage of unweighted Wilcoxon’s test
over the results shown above, comparing C4.5 versus SVM in the 30 datasets,
provides a total sum of ranks R+ = 289 in favor of C4.5 and a sum of ranks
R− = 176 for SVM. These results show that C4.5 presents, as expected, a better
behavior than SVM dealing with this type of data (since it obtains a sum of ranks
higher than that of SVM). However, this difference is not statistically significant
to a significance level of 0.05 since the p-value obtained is 0.241.

In order to include information about the noise level of each dataset, the
weighting scheme of Eq. 1 is used. In this case, we want to give more importance
to those datasets with higher amount of noise when determining the outcome of
the test. The weight wi in this problem is computed by dividing each noise level
li in Table 1 by the sum of noise levels, S = 10 + 25 + . . . + 15 + 15 = 635. The
weighted version of Wilcoxon’s test provides R+ = 333 for C4.5 and R− = 132
for SVM, with an associated p-value = 0.038420.

As these results show (Table 2), C4.5 obtains a higher sum of ranks than
SVM when using the weighting scheme (like in the first comparison without using
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weights), but in this case the p-value obtained is much lower and now deter-
mines statistical significance, which is consistent with the results published in
the literature [10]. Thus, by weighting each dataset based on the noise level, we
were able to uncover a particular property of C4.5 versus SVM, that is, a better
behavior when dealing with datasets affected by severe noise.

Table 1. Datasets, noise levels and accuracy of C4.5 and SVM.

Dataset Noise C4.5 SVM Dataset Noise C4.5 SVM Dataset Noise C4.5 SVM

autos 10 73.56 64.5 heart 40 70.81 69.33 satimage 5 85.4 89.25

banana 25 88.03 90.04 ionosp. 40 80 75.05 segment 20 93.09 87.77

cleveland 20 49.96 36.82 iris 25 90.27 86.8 sonar 20 68.76 83.46

contracep. 10 50.52 46.8 led7digit 35 68.72 66.88 twonorm 5 84.61 96.96

dermat. 5 93.07 96.53 lymph. 10 77.31 80.96 vehicle 45 52.84 53.12

ecoli 15 77.73 63.28 magic 45 83.36 83.73 vowel 10 74.91 87.11

flare 30 73.81 70.71 pageblocks 30 95.59 95.77 wdbc 25 88.61 85.77

german 30 69.68 64.46 penbased 20 93.28 84.57 wine 5 89.55 94.93

glass 5 67.28 67.75 phoneme 10 84.76 86.66 yeast 15 51.97 54.3

hayes 15 81.24 73.15 pima 50 70.94 60.21 zoo 15 92.26 72.85

Table 2. Wilcoxon’s test with and without weights using the results of Table 1.

Wilcoxon C4.5 (R+) SVM (R−) p-value

Unweighted 289 176 0.241038

Weighted 333 132 0.038420

4.2 Noise Filtering Efficacy

This scenario focuses on using noise filters in classification problems [12]. These
are preprocessing methods to identify and remove noisy data before building a
classifier. The removal of noisy examples has shown to be beneficial in many
cases, improving the performance of the classifiers used later [12]. However,
examples containing valuable information may also be removed, which implies
that filters do not always provide an improvement in performance [13].

The work of Sáez et al. [13] show that the efficacy of noise filters, i.e., whether
their usage causes an improvement in classifier performance, is somehow related
to the characteristics of the data. The authors show that the overlapping among
the classes, measured with the F2 metric, is important to determine whether fil-
ters will improve classifier performance. Thus, when the amount of overlapping is
high enough, filters usually improve classifier performance. The F2 metric com-
putes the volume of the overlapping region among the examples of two different
classes C1 and C2, by means of the following equation:

F2 =

d∏

i=1

minmaxi − maxmini

max(fi, C1 ∪ C2) − min(fi, C1 ∪ C2)
, (2)
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being d the number of attributes, max(fi, Cj) and min(fi, Cj) the maximum and
minimum values of the feature fi in the set of examples of class Cj , minmaxi

the minimum of max(fi, Cj) and maxmini the maximum of min(fi, Cj).
In this case, we compare a well-known noise filter, Edited Nearest Neighbor

(ENN) [7], versus not considering any preprocessing of the data. As in [13], the
classifier used in both cases is the Nearest Neighbor (NN) rule [8], known to be
sensitive to noise. ENN is run considering k = 3, and both ENN and NN consider
the HVDM distance, which is valid for nominal and numerical attributes.

These two methods are compared over 20 datasets taken from the UCI repos-
itory [4]. The performance is measured using AUC, which is an evaluation metric
less sensitive to class imbalance, an issue posed by some of the data used. The
AUC shown in Table 3 is the average of 5 independent runs of a 5-fold SCV, when
no preprocessing is done before NN (None) and when ENN is used prior to NN.

Table 3. Datasets, F2 metric and performance of ENN and None.

Dataset F2 None ENN Dataset F2 None ENN

appendicitis 4.50E-02 0.7551 0.7511 monk-2 6.67E-01 0.7531 0.7601

australian 3.00E-03 0.8236 0.8120 phoneme 2.71E-01 0.8683 0.8440

banana 6.26E-01 0.8710 0.8917 pima 2.52E-01 0.6487 0.6601

breast 1.88E-01 0.5570 0.5978 sonar 1.00E-06 0.8614 0.7964

bupa 7.30E-02 0.6218 0.6116 spambase 2.53E-33 0.8965 0.8749

crx 3.00E-03 0.8233 0.8172 spectfheart 3.60E-19 0.6299 0.6203

haberman 7.18E-01 0.5519 0.5658 tic-tac-toe 1.00E+00 0.9088 0.8970

heart 1.96E-01 0.7663 0.8043 twonorm 4.12E-03 0.9424 0.9518

housevotes 1.00E+00 0.9484 0.9550 wdbc 5.90E-11 0.9507 0.9469

mammograp. 7.44E-01 0.7494 0.7968 wisconsin 2.17E-01 0.9547 0.9691

The results of the tests are summarized in Table 4. Regarding the unweighted
version, the test slightly favors ENN as it has a larger R− = 117 than None, R+ =
93, but no statistically significant differences are found (p-value = 0.640744). To
sum up, no interesting conclusions can be drawn about the efficacy of ENN when
the only information is the AUC.

When the data are weighted by their F2 metric, the output of the test is the
same, but it is closer to statistical significance. Thanks to such additional infor-
mation, ENN is now clearly favored, with R− = 141 versus a much smaller value
R+ = 69 obtained when no preprocessing is done. The p-value corresponding to
this comparison is 0.189340, closer to the significance threshold.

This fact shows that, giving more importance to datasets with higher degrees
of overlapping, the preprocessing can work better than not considering it, which
is in concordance with the results claimed in [13]. This conclusion can be drawn
from the great decrease in the p-value when the weighted version of Wilcoxon’s
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Table 4. Wilcoxon’s test with and without weights using the results of Table 3.

Wilcoxon None (R+) ENN (R−) p-value

Unweighted 93 117 0.640744

Weighted 69 141 0.189340

test is employed instead of the conventional one, even though the new p-value
is still larger than the significance threshold. It is important to note that the
conclusions claimed in [13] on the data properties that determine in which cases
the filtering is statistically beneficial are based on a combination of several data
complexity metrics considered simultaneously, among which F2 is included. This
fact can explain why the weighting scheme does not show significant differences
in the comparison, since we only consider the isolated metric F2 in our study.

5 Concluding Remarks

This research proposes a hybrid approach to weight data before using Wilcoxon’s
test and give more or less importance to the different data in a comparison. The
weights of the datasets are computed using characteristics of the datasets used
in the comparison. The conclusions reached by the statistical test consider the
property that determines the weighting, which constitutes additional information
not exploited by the unweighted version of Wilcoxon’s test.

We have evaluated our proposal in two scenarios related to the problem of
noisy data. In the first scenario, we have compared the C4.5 robust learner and
the noise-sensitive SVM classifier when they are trained over data with differ-
ent noise levels. The results revealed that the weighting scheme based on the
noise ratio of each dataset leads to statistically significant differences that the
unweighted Wilcoxon’s test could not find. Such differences support the claims
done in the existing literature about the superiority of C4.5 over SVM on noisy
data, particularly when the amount of noise is high enough [10].

In the second scenario, we have compared the efficacy of the ENN filter versus
not-preprocessing. In the literature, it is claimed that noise filters are usually
useful when the overlapping among the classes is noticeable. Neither of the tests
were able to detect such differences, but the weighted version showed a clear
advantage towards the use of ENN, supported by a large decrease of the p-value.
This can be considered additional information which the unweighted version
could not uncover, in accordance with the existing literature [13].

As a final note, it is clear that the information returned by the weighted
Wilcoxon’s test is a revenue for the weights we have computed at the input of
the test, but this constitutes a desirable approach: we are orienting our analysis
and conclusions to be based on the properties of the data we are interested in.
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13. Sáez, J.A., Luengo, J., Herrera, F.: Predicting noise filtering efficacy with data
complexity measures for nearest neighbor classification. Pattern Recogn. 46(1),
355–364 (2013)

14. Santafe, G., Inza, I., Lozano, J.: Dealing with the evaluation of supervised classi-
fication algorithms. Artif. Intell. Rev. 44(4), 467–508 (2015)

15. Singh, P., Sarkar, R., Nasipuri, M.: Significance of non-parametric statistical tests
for comparison of classifiers over multiple datasets. Int. J. Comput. Sci. Math.
7(5), 410–442 (2016)

16. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
17. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE

Trans. Evol. Comput. 1(1), 67–82 (1997)
18. Zar, J.: Biostatistical Analysis. Prentice Hall, Upper Saddle River (2009)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Dataset Weighting via Intrinsic Data Characteristics for Pairwise Statistical Comparisons in Classification
	1 Introduction
	2 Background
	2.1 Measuring Data Characteristics
	2.2 Wilcoxon's Signed-Ranks Test

	3 Hybridizing Wilcoxon's Signed-Rank Test with Dataset Weighting Based on Data Characteristics
	4 Combining Data Weighting and Wilcoxon's Test in the Framework of Noisy Data in Classification
	4.1 Robustness of Different Classifiers to Noise
	4.2 Noise Filtering Efficacy

	5 Concluding Remarks
	References




