)

Check for
updates

Anomaly Detection Using Gaussian
Mixture Probability Model to Implement
Intrusion Detection System

Roberto Blanco'2, Pedro Malagén®2®) Samira Briongos!?2,
and José M. Moyal!2

! LSI-Universidad Politecnica de Madrid, Madrid, Spain
2 CCS-Center for Computational Simulation, Madrid, Spain
{r.bandres,malagon,samirabriongos, josem}@die.upm.es

Abstract. Network intrusion detection systems (NIDS) detect attacks
or anomalous network traffic patterns in order to avoid cybersecu-
rity issues. Anomaly detection algorithms are used to identify unusual
behavior or outliers in the network traffic in order to generate alarms.
Traditionally, Gaussian Mixture Models (GMMs) have been used for
probabilistic-based anomaly detection NIDS. We propose to use multi-
ple simple GMMs to model each individual feature, and an asymmetric
voting scheme that aggregates the individual anomaly detectors to pro-
vide. We test our approach using the NSL dataset. We construct the
normal behavior models using only the samples labelled as normal in
this dataset and evaluate our proposal using the official NSL testing set.
As a result, we obtain a Fl-score over 0.9, outperforming other super-
vised and unsupervised proposals.

Keywords: Intrusion Detection + Gaussian Mixture Model - Voting

1 Introduction

In addition to general security concerns, service providers have to deal with
attacks to their infrastructures, which can affect their service availability, their
clients or industrial privacy, integrity or reliability of their solutions. Moreover,
the irruption of the Internet of Things has lead to an exponential growth of the
number of devices connected to the Internet. The challenges related to protect
services, networks and devices are drastically increasing in complexity.

Rule-based protection mechanisms, such as firewalls, are not as effective as
Intrusion Detection Systems (IDS) [5] when dealing with new security threats
and complex systems. Intrusion Detection Systems are based on the assumption
that an attack or an intrusion will change the pattern of resource usage or net-
work flow. Traditionally, IDS are classified as signature-based or anomaly-based
[1] depending on how they face detection. Signature-based detectors check if the
collected samples match with known attacks, whereas anomaly-based detectors
© Springer Nature Switzerland AG 2019

H. Pérez Garcia et al. (Eds.): HAIS 2019, LNAI 11734, pp. 648-659, 2019.
https://doi.org/10.1007/978-3-030-29859-3_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29859-3_55&domain=pdf
https://doi.org/10.1007/978-3-030-29859-3_55

Anomaly Detection Using Gaussian Mixture Probability Model 649

build statistical models that characterize normal behavior and look for abnormal
patterns. In practice, both approaches require to monitor network packets or to
collect representative samples of the system they want to protect.

Training and evaluating a NIDS requires a comprehensive dataset that is
representative of real traffic packets passing through a firewall. This dataset must
contain normal and abnormal samples. Indeed, each sample of these datasets
usually contains multiple features and its corresponding label. There are multiple
datasets available for research purposes [15,17] which are commonly used to train
IDS and test their performance, efficiency and accuracy.

The IDS classifies the data into categories using different methods. Multiple
machine learning algorithms have been proposed for implementing the classifier
of the IDS, including both supervised and unsupervised algorithms. Supervised
algorithms are capable of detecting known varieties of attacks. However, new
or undocumented attacks may go undetected. For this reason, it is commonly
suggested to implement IDS based on anomaly detection algorithms. Besides,
building a labelled dataset to model the new Internet of Things applications,
including normal traffic and attacks, can be more expensive (or even impossible)
than generating one with only normal patterns.

Our proposal is, consequently, based on anomaly detection [8]. We use Gaus-
sian Mixture Models (GMM) [20] to model normal behavior. We propose a set
of classifiers, which evaluate the individual probability of each of the features
of a sample, to be considered normal according to GMM. This information is
then used as the input to a voting based aggregation method which decides if
the sample is normal or abnormal. This method does not require any anomalous
sample during the training phase.

We use the NSL-KDD [17] dataset for our experiments. Our approach obtains
an Fl-score over 0.9 using a test set with completely new traces which are
not related to the training set, neither normal nor attacks. We compare our
solution to existing supervised and unsupervised methods, and the voting GMM
outperforms most of the considered algorithms.

2 Related Work

The main goal of an anomaly detection algorithm is to filter out outliers. This
task is critical in many disciplines, including medical diagnosis, fault prediction,
fraud detection or network intrusion detection [10].

According to Domingues et al. [6] anomaly detection algorithms are divided
into different families. Probabilistic methods fit the behavior of the system in a
set of known functions (Gaussian with GMM [20] or other generic functions in
Kernel Density Estimators, KDE [12]). Distance-based algorithms, such as the
Local Outlier Factor (LOF) [4], are applied to Gaussian models or clusters of
neighbors (using K-means or K-nearest neighbors). Neural networks constitute
another family in which the most common type of network used for anomaly
detection is known as Self-Organizing-Maps (SOM) [21]. Finally, domain-based
algorithms, such as one-class Support Vector Machines (SVM) [22] have been
used to establish an irregular multi-dimensional boundary to the normal data.

650 R. Blanco et al.

Network intrusion detection systems (NIDS) have been evaluated with mul-
tiple and well-known datasets. The KDD99 dataset [11] was used in [13] consid-
ering new attacks. The NSL-KDD dataset was evaluated in [19] and the UNSW-
NB15 dataset in [16]. NSL-KDD includes a separate official testing set, with
traces of attacks and normal traffic not present in the training set, which makes
it ideal for testing anomaly detection algorithms.

GMM based algorithms have been proposed to implement NIDS in [2]. In [14]
fuzzy logic was used to implement clustering using GMM. In [3], they present
a method that uses a lower dimensional space and adapts to changes in time.
A majority voting scheme is used in [9] with votes in time windows to reduce
noise in outlier detection. These algorithms, in order to be applied in real envi-
ronments, need to be fast and select realistic features. For example, Dromard
et al. [7] use a clustering anomaly detection algorithm to meet real time con-
straints.

3 Materials and Methods

3.1 Dataset Description

NSL-KDD dataset [17] is a refined version of the KDD cup 99 dataset (a well
known benchmark for the research of Intrusion Detection techniques). It contains
the essential records of its predecessor balancing the proportion of normal versus
attack traces, and excluding redundant records. Each record is composed of 41
attributes unfolding four different types of features of the flow, and its assigned
label which classifies it as an attack or as normal. These features include basic
characteristics of each network connection vector such as the duration or the
number of bytes transferred, content related features like the number of “root”
accesses, contextual time related traffic features such as the number of connec-
tions to the same destination, and host based traffic features like the number of
connections to the same port number. The whole amount of records covers one
normal class and four attack classes grouped as denial of service (DoS), surveil-
lance (Probe), unauthorized access to local super user (R2L) and unauthorized
access from a remote machine (U2R).

3.2 Data Preprocessing

NSL-KDD dataset contains numeric and categorical features. The most conve-
nient method for managing categorical features when feeding them to machine
learning algorithms is the one hot encoding conversion. However, in this dataset
there are only three categorical features (protocol, service and flag) that are not
independent from each other. We have removed the service and flag and we have
only selected tcp traces for our experiments, as this is the most relevant and
abundant protocol. Moreover, our intention is to build an anomaly detection
model that could be applied in a router node of the network, so we have also
removed the content related features which the router should not be able to
reach. After this process, the number of data features has been reduced to 24

Anomaly Detection Using Gaussian Mixture Probability Model 651

and we have a train dataset including 53600 normal and 49040 attack records
and a test dataset with 7842 normal and 10971 attack traces. It is important to
mention that the test dataset includes attacks that have not being included in
any entry of the training set.

3.3 Normalization

Since the range of values of the raw data varies widely, normalization is a
must step for some machine learning algorithms. It allows to calculate distances
between points using the Euclidean distance or even accelerates the convergence
of many optimization algorithms such as gradient descent. We use feature scaling
to adjust all column feature values into the range [0,1] and avoid large variations
in data.

X/ _ X - Xmin

X max Xmln

3.4 Principal Component Analysis

Principal component analysis (PCA) is a statistical procedure that uses an
orthogonal transformation to convert a set of observations of possibly correlated
variables into a set of linearly uncorrelated variables called principal components.
This transformation is defined in such a way that the first principal component
has the largest possible variance (that is, accounts for as much of the variability
in the data as possible), and each succeeding component has, in turn, the high-
est possible variance under the constraint that it is orthogonal to the preceding
components. This technique is mostly used to reduce the dimensionality of the
data while preserving the maximum amount of information among the features.
The problem to solve becomes much simpler, as it deals with less features and
the solution is still good enough. In this work, we are mainly interested in the
capability of PCA to obtain uncorrelated features. Our original space has not
too many dimensions, for this reason we do not care about dimensionality reduc-
tion. We propose to use the PCA technique in order to make a transformation
that allows to consider each generated feature as if it was independent from the
others. We know it is not really true but it is a better approximation if we make
the assumption after the PCA. We have explored both approaches.

3.5 Feature Gaussian Mixture Probability Model

A Gaussian mixture model is a probabilistic model that assumes all the data
points are generated from a mixture of a finite number of Gaussian distributions
with unknown parameters (Fig.1 left). For a given set of data we can apply
an expectation-maximization statistical iterative algorithm and obtain which
points come from which Gaussian latent component. The algorithm provides
a classification of the points and the latent components, which are useful to
our approach. Our goal is to implement an anomaly detection algorithm by
modeling the normal behavior of a system. Assuming that every feature of our

652 R. Blanco et al.

system normal traffic follows a Gaussian mixture distribution, we are able to
obtain its latent components; i.e., we can estimate the mean and the variance of
every Gaussian in the mixture. We consider an algorithm to distinguish normal
from anomalous traffic using the obtained normal model. The simple Gaussian
mixture model only gives us the probability of each sample to belong to every
latent component of the mixture, but this is only useful when classifying and
in our problem we don’t know what an anomaly is and we should not use any
attack record in the model building step. Therefore, we cannot use explicitly
this model to detect any behavior different from the normal one. This is the
reason why we need to obtain the latent components, because with them we can
compute a probability of occurrence. With the assumption of the normal traffic
in our system following a Gaussian mixture distribution we can obtain for a given
traffic vector the latent component that each one of the vector features belongs
with the highest probability. As we have characterized the latent components
we can then compute the probability of occurrence for this traffic vector values
following the corresponding latent components as if it was the worst case, that
means that we compute the area under the normal curve for all the possible
values with an absolute value greater than the analyzed value. For example, if
we analyze the probability of occurrence for a value that match the mean of
the latent component, this would be 1; on the other hand, if we consider the
probability of occurrence for a value that match the mean plus the variance of
the latent component, its probability wouldl be 1 — (0.3413 + 0.3413) = 0.3174
(Fig. 1 right).

Normal Distribution

015 [0.04
A
L 0.03
L I
. 01 Y
S 1 =
7} \ £
g [20.02
3 o 8
0.05 \(!
\
I’ \ \ 0.01
N (\
o f APEIAL VNS N h
20 40 60 80 100 120 140 160 0
p-do u-3c n-20 p-o I pu+o pu+20 p+3c p+édo

Value

Fig. 1. Gaussian Mixture and Gaussian probabilities.

3.6 Probability Voting Scheme

The main point in this paper is the Feature Gaussian Mixture Probability Model
that is supposed to obtain the occurrence probability of a certain value of a fea-
ture in a given traffic vector. This is in fact a probabilistic statistical model
in which we expect that the normal values have a higher probability than the
anomaly ones. In order to make decisions we need a method that aggregates
all the features probabilities and applies a certain threshold so we can classify
the entire traffic vector as normal or anomalous. Taking in account this idea we
propose a simple voting scheme that evaluates each feature probability indepen-
dently and then estimates the nature of the traffic vector based on the number

Anomaly Detection Using Gaussian Mixture Probability Model 653

of independent positive evaluations. Our method needs two hyperparameters,
one for establishing the individual feature probability threshold and the other as
the minimum number of anomalous features to consider the whole vector as an
attack. We have called the first one as « and it is the percentage error we can
afford when classifying normal features. For every normal feature in our training
dataset, we compute the occurrence probability. The value of alpha represents
the percentage of the training normal feature probabilities that will be consid-
ered as anomalous for the model, so the decision threshold will be set as the
maximum occurrence probability in the 1 — o remaining percentage. For sim-
plicity this percentages are normalized from 0 to 1. We have called the second
one as consensus and it is just the number of positive (feature probability larger
than the threshold) evaluations needed to consider the whole traffic vector as
anomalous.

3.7 Other Machine Learning Algorithms

In order to compare the proposed methods, other state-of-art algorithms are
introduced.

K-Means is an unsupervised learning algorithm that is mostly used for
clustering. Given a set of data vectors with the same number of features (dimen-
sionality d) and a number of desired clusters c, the algorithm is able to seek
and find the optimum c points in the space d that minimize the sum of squared
distances of the whole set of data vectors to its closest point. At the end this
means that the algorithm can organize the data in ¢ groups or clusters making
use of its underlying structure. We use the algorithm to solve a binary classifi-
cation problem. Therefore, we could set the number of desired clusters to two.
However, normal traffic can be distributed in more than one cluster. We apply
the algorithm several times, varying the number of considered clusters, and then
define each cluster as normal or anomalous looking at the proportion of normal
and attack records that it contains. In our problem, K-Means is an appropriate
method for building up a classifier due to its unsupervised nature. However, as
we are trying to detect anomalies and we should not know how anomalies are
before we want to detect them, K-Means in its standard way can only be applied
for a reactive model and not for a predictive one. But we can use K-Means in
another way as well, instead of try to make different clusters with the whole set
of data and then try to identify which clusters are for each class we can only
give the algorithm the normal class data that we want to model. This produces
different clusters for only what we know it is normal traffic. Once we have these
clusters, we measure the distances from the normal records to the centroids of
the method and then the distances from the attacks to the same centroids. Ide-
ally, we should obtain larger distances for the attacks than the distances for
the normal traces, as we have built the algorithm to minimize the distances to
the normal traces. This is what we called in this paper the K-Means distance
method. It is a pure anomaly detection algorithm because it is unsupervised and
only needs one class to model the normal scenario.

654 R. Blanco et al.

Anomaly detection is very similar to novelty detection, which detects a sam-
ple that is different to an initial set of data. Considering novelty detection
algorithms, there is a well known method that is a variation of the Support
Vector Machine algorithm with the objective of obtaining a membership deci-
sion boundary for only one class of data. As SVMs are max-margin methods, this
algorithm does not model a probability distribution of the data. It only finds a
function that is positive for regions with high density of points and negative for
small densities. In this work, both SVM approaches are included, so the classifier
has been called SVM-2 and the novelty detector has been named as SVM-1.

A Decision Tree is a flowchart-like structure in which each internal node rep-
resents a “test” or a decision on an attribute. Each branch represents the outcome
of the test, and each leaf node represents a class label. The full paths from root to
leaf represent classification rules. We can train a decision tree structure with input
train data and a desired class or label output in a supervised learning framework
in order to adapt it to our problem. This simple algorithm is very convenient to
compare with in this paper because we propose a new voting scheme algorithm
which solution is in fact very similar to a decision tree structure.

A Multilayer Perceptron (MLP) is a type of feedforward artificial neural
network. It is typically composed by three different layers. The first layer is called
the input layer and it is fed with the numerical values that we want to be the
input of the network. The second layer is called the hidden layer and it usually
contains several nodes or neurons. Each neuron is fully connected to all of the
input values of the first layer and it applies a non-linear activation function to
a linear weighted combination of the inputs. The last layer is the output layer
and it has the same number of nodes as values we want to estimate. When
the network is used in a classification problem the output layer is supposed to
give an approximated probability for every class we want to distinguish. MLP
utilizes a supervised learning technique called backpropagation for training so
it is a supervised algorithm. Moreover, the nonlinear activation functions of the
layers make it able to distinguish data that is not linearly separable. Unlike the
Decision tree algorithm this is a parametric method, and once optimized it offers
a complex mathematical function that approximates the solution to the problem.

4 Experimental Setup

We conduct a set of experiments using the same original dataset described in
the proposal. We perform three different transformation techniques to the data
in order to cover all the possibilities. We contemplate all the combinations so at
the end we obtain eight different datasets that are just numerical transformed
versions of the original one. Figure2 shows the full decision diagram of data
transformations applied to the original dataset to obtain each of the used input
datasets. The normalization, principal component parameters and the Feature
Gaussian Mixture Probability Model latent components for each feature are
computed only with the information of the normal records in the training set.
Once adjusted, the three techniques are applied to our training and testing
dataset without changing any configuration.

Anomaly Detection Using Gaussian Mixture Probability Model 655

No FGMPM Yes No FGMPM Yes No FGMPM Yes No FGMPM Yes

l d_raw ‘ | d_raw_probs H d_raw_pca ‘ ‘d_raw_pca_probs | ld_norm ‘ | d_norm_probs [d_norm_pca ‘ [d_norm_pca_probs ‘

Fig. 2. Data transformation diagram

The eight generated datasets are:

d_raw: The original NSL dataset without any transformation of the numerical
values.

d_raw_probs: We apply the FGMPM to the original NSL dataset values and
change each feature value for the occurrence probability of each feature in the
normal model.

d_raw_pca: The uncorrelated version of the original NSL dataset with the
same number of features.

d_raw_pca_probs:We apply the FGMPM to the uncorrelated version of the
original dataset and obtain the occurrence probabilities for this uncorrelated
values of the features.

d_norm: The original NSL dataset with the normal training values normal-
ized to the range [0-1] and the remaining values normalized according to the
previous scaler.

d_norm_probs: We apply the FGPM to the normalized version of the
dataset.

d_norm_pca: The uncorrelated version of the normalized dataset.
d_norm_pca_probs: The occurrence probabilities of the uncorrelated fea-
tures of the normalized dataset.

For every mentioned dataset we build up six different models with the fol-

lowing algorithms:

Voting: Our proposed voting scheme method for anomaly detection that can
only be applied to the probability datasets.

KM-D: The well known K-Means algorithm using the anomaly detection
approach with the squared euclidean distances.

SVM: A one class SVM for novelty detection.

KM-C: K-Means algorithm in its standard clustering approach.

DT: A default decision tree classifier.

MLP: A simple multilayer perceptron with a hidden layer of 100 neurons
and an output layer with 2 cells: attack or non-attack.

656 R. Blanco et al.

The first three algorithms are trained using only the normal training data due
its anomaly detection objective and one class modeling capability. The KM-C
is trained in an unsupervised way but using the normal and attack records of
the training dataset. The DT and MLP are trained using the same data as the
KM-C but in a supervised manner with the labels given. All models are tested
with the whole NSL test dataset.

The experimental implementation has been developed using Python3.5 with
the following libraries: Scikit-learn [18] version 0.20.2, Numpy version 1.13.0,
Scipy version 0.19.0 and Pandas version 0.20.2. The FGMPM algorithm has been
developed by the authors using pure Python mixed scikit-learn, which provides
more flexibility in our research at the expense of less computational performance.

5 Results

We first introduce the set of metrics used to evaluate the performance of the
proposed models with state of the art algorithms. Although we are facing an
anomaly detection problem, our test can be considered as simple binary clas-
sification experiments: normal and attack traffic vectors. Therefore, we use the
four basic metrics of the binary confusion matrix: True Positives (TP) and True
Negatives (TN) for correctly classified records, and False Negatives (FN) and
False Positives (FP) for the misclassified samples. These four values lead us to
more interesting metrics in anomaly detection:

— Sensitivity: Positive detection rate.

— Positive Predictive Value (PPV): True positives vs predicted positives rate.

— Negative Predictive Value (NPV): True negatives vs predicted negatives rate.

— F1 Score (F1): Harmonic mean between PPV and Sensitivity.

— B: Attack percentage in the whole testing dataset.

— Intrusion Detection Capacity (CAP): A more complex and sensitive metric
that relates the PPV and NPV with B and gives a very accurate idea of the
complete performance of the model.

We select the three most interesting metrics for the anomaly detection systems
for the evaluation: Sensitivity, in order to compare the anomaly detection rate,
the F1-Score, as a measure of the test’s accuracy, and Intrusion detection capac-
ity (CAP), which best reflects the effectiveness of the models.

Table 1 shows the values obtained on the three selected metrics with every
algorithm on every generated dataset. The detection methods are sorted, begin-
ning with those who require less information to be trained. We highlight in
red the experiments in which the algorithm does not converge to a valid solu-
tion. Also we have placed ‘-’ where our proposed voting scheme makes no sense
because the dataset is not composed by probabilities.

The SVM and the K-Means algorithms, in its classical approach, generally do
not converge using not normalized data. It is an expected result, as both of them
rely on the distances among the data. The K-Means algorithm, in its anomaly
detection variant, does not converge well for the probabilities obtained after the
PCA transformation. In general, supervised learning algorithms perform worse

Anomaly Detection Using Gaussian Mixture Probability Model 657

Table 1. CAP, F1-Score and Sensitivity. E1 stands for d_norm, E2 for d_norm_probs,
E3 for d_.norm_pca, E4 for d_norm_pca_probs, E5 for d_raw, E6 for d_raw_probs, E7 for
d_raw_pca and finally E8 for d_raw_pca_probs. The best results are highlighted in bold,
whereas the experiments in which convergence was not achieved are in italic

E1l E2 E3 E4 E5 E6 E7 ES8
CAP Voting |- 0,4714 |- 0,4972 |- 0,4797 |- 0,4958
KM-D |0,45020,3897 |0,4502 0,0306 |0,2155 |0,4236 |0,2155 |0,0405
SVM-1 |0,3536 |0,2011 |0,3536 |0,3536 |0,0022 |0,3067 |0,0023 0,171
KM-C 0,42 0,5127/0,4215 |0,4097 |0,0005 |0,5118/|0,0005 |0,4772
DT 0,3801 |0,3456 0,3396 |0,3347 |0,39340,3659 |0,408 |0,3305
SVM-2 [0,3144 |0,3557 |0,3144 |0,3144 |0,3271 |0,3366 |0,2873 |0,3216
MLP |0,3505 0,305 |0,3572 |0,3318 |0,3401 |0,3027 |0,3136 |0,3333
F1 Voting | - 0,8703 |- 0,8838 |- 0,8715 |- 0,9061
KM-D |0,8558 |0,8499 |0,8558 |0,0163 |0,7169 |0,8475 |0,7169 |0,4066
SVM-1 |0,7729 |0,6255 |0,7729 10,7729 |0,7872 (10,7303 |0,7873 |0,6177
KM-C |0,8631|0,8976|0,8636 0,8826 |0,7369 0,8981|0,7369 |0,9054
DT 0,7766 |0,7504 |0,7429 |0,7458 |0,7877|0,7681 |0,8015/|0,7364
SVM-2 |0,7171 |0,7565 |0,7171 10,7171 |0,7568 |0,7382 |0,72 0,7678
MLP |0,7513 |0,7088 |0,7575 10,8151 |0,7796 |0,7025 |0,7972 |0,7967
Sensitivity | Voting |- 0,7952 |- 0,8184 |- 0,7944 |- 0,9032
KM-D |0,7692 |0,7865 |0,7692 |0,0088 |0,5946 10,7616 |0,5946 |0,2715
SVM-1 |0,6397 |0,4651 |0,6397 |0,6397 | 0,9934 10,5839 |0,9938 |0,4635
KM-C |0,8046|0,8512|0,8048 | 0,89130,9999 |0,8539|0,9999 | 0,9495
DT 0,6392 |0,6055 |0,5954 |0,6008 |0,6545 |0,6287 |0,6746 |0,5875
SVM-2 |0,5628 |0,6128 |0,5628 |0,5628 |0,6203 0,589 |0,5733 |0,5836
MLP |0,6059 10,553 |0,6139 |0,7323 |0,65550,5447 |0,7018]0,6911

than unsupervised algorithms in our experiment. This is because of the fact that
the testing dataset has different attacks than the training dataset, so the super-
vised algorithms cannot generalize as good as unsupervised ones. Although super-
vised algorithms seems to be always worse, they have a very high specificity, higher
than unsupervised algorithms. The best result in the table is achieved by the K-
Means clusters for the d_raw_pca_probs dataset. However, our voting scheme has
a higher CAP than KM-C with this data because the overall performance of the
model is better, although the KM-C has a higher anomaly detection rate. KM-
C and our Voting scheme are the best algorithms here, but we have to consider
that KM-C needs attacks in its training phase and does not provide a strictly nor-
mal model. On the other hand, our voting scheme offers a good normal model
but it always needs the occurrence probabilities to be computed. Regarding the
two hyperparameters of the Voting scheme, the best performance is achieved for
a value of alpha equal to 0,013 and a consensus of 5. It has been noticed that an
alpha increase can bee compensated with a consensus decrease and vice-versa in
order to achieve a good performance. The KM-D algorithm seems to be a good
alternative when we cannot normalize the data nor compute these probabilites.

658 R. Blanco et al.

6 Conclusions

Considering anomaly detection, unsupervised models are better suited to the real
scenario, with unknown or untagged attacks or anomalies in datasets. We evalu-
ate the impact of different preprocessing on the anomaly detection performance
of different algorithms. We consider normalization, PCA and the probabilities
of normal features with GMM. Moreover, we propose a Voting scheme algo-
rithm. We train and test our voting scheme and multiple known unsupervised
algorithms. The best results are obtained using KM-C and our Voting scheme,
although the latter requires less information than the former. Considering the
preprocessing, normalized data usually leads to a better performance. However,
using the probabilities of normal features with GMM in NIDS with NSL-KDD,
not normalized data generates more accurate probabilites and more sensitive
detection algorithms. The PCA slightly improves the sensitivity of the anomaly
detection algorithms, while it seems to have less effect with supervised algo-
rithms. Finally, we have proved that using the occurrence probabilities improves
the performance of the anomaly detection models and, specially, it allows the
usage of a simple voting scheme to achieve a very good detector with F1-scores
over 0.88 and CAP over 0.49, better than other more complex algorithms eval-
uated.

Acknowledgements. This work was supported by the Spanish Ministry of Economy
and Competitiveness under contracts TIN-2015-65277-R, AYA2015-65973-C3-3-R and
RTC-2016-5434-8.

References

1. Axelsson, S.: Intrusion detection systems: a survey and taxonomy. Chalmers Uni-
versity of Technology, Tech. rep. (2000)

2. Bahrololum, M., Khaleghi, M.: Anomaly intrusion detection system using Gaus-
sian mixture model. In: 2008 Third International Conference on Convergence and
Hybrid Information Technology, November 2008, vol. 1, pp. 1162-1167. https://
doi.org/10.1109/ICCIT.2008.17

3. Barkan, O., Averbuch, A.: Robust mixture models for anomaly detection. In: 2016
IEEE 26th International Workshop on Machine Learning for Signal Processing
(MLSP), September 2016, pp. 1-6. https://doi.org/10.1109/MLSP.2016.7738885

4. Breunig, M.M., Kriegel, H., Ng, R.T., Sander, J.: LOF: identifying density-based
local outliers. In: Chen, W., Naughton, J.F., Bernstein, P.A. (eds.) Proceedings of
the 2000 ACM SIGMOD International Conference on Management of Data, 16-18
May 2000, Dallas, Texas, USA, pp. 93-104. ACM (2000). https://doi.org/10.1145/
342009.335388

5. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. 13(2), 222—
232 (1987). https://doi.org/10.1109/TSE.1987.232894

6. Domingues, R., Filippone, M., Michiardi, P., Zouaoui, J.: A comparative evaluation
of outlier detection algorithms: experiments and analyses. Pattern Recogn. 74,
406-421 (2018)

https://doi.org/10.1109/ICCIT.2008.17
https://doi.org/10.1109/ICCIT.2008.17
https://doi.org/10.1109/MLSP.2016.7738885
https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/342009.335388
https://doi.org/10.1109/TSE.1987.232894

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Anomaly Detection Using Gaussian Mixture Probability Model 659

Dromard, J., Roudiere, G., Owezarski, P.: Online and scalable unsupervised net-
work anomaly detection method. IEEE Trans. Netw. Serv. Manage. 14(1), 34-47
(2017). https://doi.org/10.1109/TNSM.2016.2627340

Heady, R., Luger, G., Maccabe, A., Servilla, M.: The architecture of a network
level intrusion detection system. Tech. rep., Los Alamos National Lab., NM, United
States, New Mexico University, Albuquerque (1990)

Hock, D., Kappes, M.: A self-learning network anomaly detection system using
majority voting. In: Dowland, P., Furnell, S., Ghita, B.V. (eds.) Proceedings
Tenth International Network Conference, INC 2014, Plymouth, UK, 8-10 July
2014, pp. 59-69. Plymouth University (2014). http://www.cscan.org/openaccess/?
paperid=225

Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell.
Rev. 22(2), 85-126 (2004). https://doi.org/10.1007/s10462-004-4304-y

Kdd cup 1999, October 2007. http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html

Kim, J., Scott, C.D.: Robust kernel density estimation. J. Mach. Learn. Res. 13(1),
2529-2565 (2012). http://dl.acm.org/citation.cfm?id=2503308.2503323

Kukielka, P., Kotulski, Z.: Analysis of neural networks usage for detection of a new
attack in IDS. Ann. UMCS Inf. 10(1), 51-59 (2010)

Liu, D., Lung, C., Lambadaris, I., Seddigh, N.: Network traffic anomaly detec-
tion using clustering techniques and performance comparison. In: 2013 26th IEEE
Canadian Conference on Electrical and Computer Engineering (CCECE), May
2013, pp. 1-4. https://doi.org/10.1109/CCECE.2013.6567739

Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intru-
sion detection systems (UNSW-NB15 network data set). In: Military Communica-
tions and Information Systems Conference (MilCIS), pp. 1-6. IEEE Stream (2015)
Moustafa, N., Slay, J.: The evaluation of network anomaly detection systems: sta-
tistical analysis of the UNSW-NB15 data set and the comparison with the KDD99
data set. Inf. Secur. J. A Global Perspect. 25(1-13), 1-14 (2016)

NSL-KDD data set for network-based intrusion detection systems, March 2009.
http://nsl.cs.unb.ca/NSL-KDD/

Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825-2830 (2011)

Revathi, S., Malathi, A.: A detailed analysis on NSL-KDD dataset using various
machine learning techniques for intrusion detection. Int. J. Eng. Res. Tech. 2(12),
1848-1853 (2013)

Reynolds, D.D.: Gaussian Mixture Models. In: Li, S.Z., Jain, A. (eds.) Encyclopedia
of Biometrics. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-73003-5
Shahreza, M.L., Moazzami, D., Moshiri, B., Delavar, M.: Anomaly detection using
a self-organizing map and particle swarm optimization. Scientia Iranica 18(6),
1460-1468 (2011). https://doi.org/10.1016/j.scient.2011.08.025

Zhang, R., Zhang, S., Muthuraman, S., Jiang, J.: One class support vector machine
for anomaly detection in the communication network performance data. In: Pro-
ceedings of the 5th Conference on Applied Electromagnetics, Wireless and Optical
Communications, pp. 31-37. ELECTROSCIENCE’07, World Scientific and Engi-
neering Academy and Society (WSEAS), Stevens Point (2007)

https://doi.org/10.1109/TNSM.2016.2627340
http://www.cscan.org/openaccess/?paperid=225
http://www.cscan.org/openaccess/?paperid=225
https://doi.org/10.1007/s10462-004-4304-y
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://dl.acm.org/citation.cfm?id=2503308.2503323
https://doi.org/10.1109/CCECE.2013.6567739
http://nsl.cs.unb.ca/NSL-KDD/
https://doi.org/10.1007/978-0-387-73003-5
https://doi.org/10.1016/j.scient.2011.08.025

	Anomaly Detection Using Gaussian Mixture Probability Model to Implement Intrusion Detection System
	1 Introduction
	2 Related Work
	3 Materials and Methods
	3.1 Dataset Description
	3.2 Data Preprocessing
	3.3 Normalization
	3.4 Principal Component Analysis
	3.5 Feature Gaussian Mixture Probability Model
	3.6 Probability Voting Scheme
	3.7 Other Machine Learning Algorithms

	4 Experimental Setup
	5 Results
	6 Conclusions
	References

