
Manuel Mazzara
Jean-Michel Bruel
Bertrand Meyer
Alexander Petrenko (Eds.)

LN
CS

 1
17

71

51st International Conference, TOOLS 2019
Innopolis, Russia, October 15–17, 2019
Proceedings

Software Technology:
Methods and Tools

Lecture Notes in Computer Science 11771

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Manuel Mazzara • Jean-Michel Bruel •

Bertrand Meyer • Alexander Petrenko (Eds.)

Software Technology:
Methods and Tools
51st International Conference, TOOLS 2019
Innopolis, Russia, October 15–17, 2019
Proceedings

123

Editors
Manuel Mazzara
Innopolis University
Innopolis, Russia

Jean-Michel Bruel
IUT de Blagnac
Blagnac, France

Bertrand Meyer
Innopolis University
Innopolis, Russia

Alexander Petrenko
Ivannikov Institute for System Programming
Russian Academy of Sciences
Moscow, Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-29851-7 ISBN 978-3-030-29852-4 (eBook)
https://doi.org/10.1007/978-3-030-29852-4

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3860-4948
https://orcid.org/0000-0002-3653-0148
https://orcid.org/0000-0002-5985-7434
https://orcid.org/0000-0001-7411-3831
https://doi.org/10.1007/978-3-030-29852-4

Preface

Started in 1989, the TOOLS conference series has played a major role in the devel-
opment of object technology and has contributed in making it popular, mainstream, and
ubiquitous. The 50th edition of the series “The Triumph of Objects,” was held in
Prague in 2012 and was meant to be the closing edition for a conference that had
brought, to a large audience, ideas originally shared only by a niche. After an inter-
ruption of seven years, TOOLS now starts again with a scope extended to software
technologies and applications and all the modern approaches to software engineering,
robotics, and machine learning.

The edition 50th+1 was held at Innopolis University, the educational center of the
techno-city of Tatarstan, Russia. The numbering (50+1) is to emphasize the reopening
of the series and celebrate it. The venue, being one of the most recently established
universities in the world (2012), seemed to be the right place to celebrate a synergy
between tradition and future. This volume contains the papers presented at TOOLS 50
+1 during the period October 15–17, 2019. There were 62 submissions. Each sub-
mission was reviewed by at least three Program Committee members. The committee
decided to accept 32 papers, including long and short contributions. The program also
includes four invited talks.

The conference was made possible by the joint effort of several colleagues and
departments. We would like to thank Bertrand Meyer and Alexandr Tormasov in their
role as general chairs, as well as Inna Baskakova, Oksana Zhirosh, Sergey Masyagin,
Giancarlo Succi, Alberto Sillitti, Andrey Sadovykh, Mansur Khazeev, and Alexandr
Naumchev for supporting the creation and organization of the event. JooYoung Lee,
Adil Adelshin, and Sophie Ebersold were instrumental in promoting the conference in
Russia and abroad. Last but not least the Program Committee that operated effectively
in defining the program (a full list of names of additional reviewers is included in this
volume). The process of volume preparation was enabled and simplified by a funda-
mental tool like EasyChair. Financially, we have also received the support of Eiffel
Software, SOFTEAM, and Springer, which funded the Best Paper Awards.

July 2019 Manuel Mazzara
Jean-Michel Bruel

Bertrand Meyer
Alexander Petrenko

Organization

Program Committee

Muhammad Ahmad Messina University, Italy
Danilo Ardagna Politecnico di Milano, Italy
Marco Autili Università dell’Aquila, Italy
Sergey Avdoshin National Research University Higher School

of Economics, Russia
Luciano Baresi Politecnico di Milano, Italy
Alexandre Bergel University of Chile, Chile
Jean Bezivin Software Consultant, France
Judith Bishop University of Stellenbosch, South Africa
Jean-Michel Bruel IRIT, France
Antonio Bucchiarone FBK-IRST, Italy
Paolo Ciancarini University of Bologna, Italy
Salvatore Distefano Messina University, Italy
Nicola Dragoni Technical University of Denmark, Denmark
Catherine Dubois ENSIIE-Samovar, France
Schahram Dustdar Vienna University of Technology, Austria
Angelo Gargantini University of Bergamo, Italy
Adil Khan Innopolis University, Russia
Victor Kuliamin Institute for System Programming, Russian Academy

of Sciences, Russia
Cosimo Laneve University of Bologna, Italy
Jooyoung Lee Innopolis University, Russia
Manuel Mazzara Innopolis University, Russia
Hernan Melgratti Universidad de Buenos Aires, Argentina
Bertrand Meyer ETH Zurich, Switzerland
Raffaela Mirandola Politecnico di Milano, Italy
James Noble Victoria University of Wellington, New Zealand
Manuel Oriol ABB Corporate Research, Sweden
Richard Paige University of York, UK
Alexander K. Petrenko ISP RAS, Russia
Mauro Pezzè University of Lugano, Switzerland
Victor Rivera Australian National University, Australia
Andrey Sadovykh Softeam, France
Ebersold Sophie IRIT, France
Jan Vitek Northeastern University, USA
Jim Woodcock University of York, UK
Gianluigi Zavattaro University of Bologna, Italy

Additional Reviewers

Ali, Mohsin
De Sanctis, Martina
Giaretta, Alberto
Ivanov, Vladimir
Kumar, Devender
Ligozat, Anne-Laure
Missiroli, Marcello
Nibouche, Omar
Strugar, Dragos
Veschetti, Adele

viii Organization

Abstracts of Invited Talks

Science of Computing: From Functions
and Sequentiality to Processes

and Concurrency

Davide Sangiorgi

Focus Team, University of Bologna and Inria

Abstract. The first part of the talk will be about history: I will discuss the
origins of a few important concepts of concurrency theory, and how these
concepts have changed the meaning of ‘Science of Computing’.
The second part of the talk will focus on one of such concepts, namely

coinduction. Coinduction is the dual of induction – a pervasive tool in Computer
Science and Mathematics for defining objects and proving properties on them.
Today coinduction is widely used in Computer Science, but also in other fields,
including Artificial Intelligence, Cognitive Science, Mathematics, Modal Logics,
Philosophy, particularly for reasoning about objects that may be potentially
infinite or circular. If time permits I will show examples in which coinductive
techniques are combined with other techniques, such as inductive techniques or
type-based techniques or techniques based on unique-solution of equations [1–3].

References

1. Durier, A., Hirschkoff, D., Sangiorgi, D.: Eager functions as processes. In: 33nd Annual
ACM/IEEE Symposium on Logic in Computer Science. LICS 2018. IEEE Computer Society
(2018)

2. Pous, D., Sangiorgi, D.: Enhancements of the bisimulation proof method. In: Sangiorgi, D.,
Rutten, J. (eds.) Advanced Topics in Bisimulation and Coinduction. Cambridge University
Press (2012)

3. Sangiorgi, D.: Typed π-calculus at work: a correctness proof of Jones’s parallelisation
transformation on concurrent objects. Theory Pract. Object Syst. 5(1), 25–34 (1999)

Design and Assurance Methods for Dependable
Cyber Physical Systems

Sergey Tverdyshev

sergey.tverdyshev@sysgo.com

Abstract. Cyber-Physical Systems (CPS) control modern critical infrastructures
such as connected cars, train networks, airplanes. Nowadays these systems are
functioning in complex environments with mixed safety and security criticali-
ties. The design of these systems is the first important step to enable a trust-
worthy and affordable assurance for safety and security. We stress the word
“affordable”, in the both senses time and needed human resources, as one of the
ways for adoption and achieving impact. We cover the state of the art for
deployments for critical infrastructures and we present how a typical CPS is
built. To illustrate the nitty-gritty details, we show how a CPS can be attacked.
The main design challenges are introduced separately for safety and security
properties. We present a MILS framework for designing safety/security critical
systems with composable assurance. We discuss different types of assurances:
what has to be achieved and what are the challenges to solve.

Keywords: Cyber-physical-systems � Mixed-criticality � Safety � Security �
Assurance � Certification � MILS.

Kent Beck or Pablo Picasso? Speculations
of the Relationships Between Artists

in Software and Painting

Sergey Masyagin, Milana Nurgalieva, and Giancarlo Succi

Innopolis University, Innopolis, Russia
{s.masyagin,m.nurgalieva}@innopolis.ru

giancarlo.succi@gmail.com

Abstract. The way software is created is somehow similar to the process of
creating pieces of artwork. To consider this issue further we have considered the
similarities between the software development process and painting in the quest
for artistic practices that are transferable to software.

Towards an Anatomy of Software
Requirements

Bertrand Meyer1,2,3, Jean-Michel Bruel2, Sophie Ebersold2,
Florian Galinier2, and Alexandr Naumchev1,2

1 Innopolis University, Innopolis, Russia
2 University of Toulouse/IRIT, Blagnac Cedex, France

bruel@irit.fr
3 Schaffhausen Institute of Technology, Schaffhausen, Switzerland

Abstract. Requirements engineering is crucial to software development but
lacks a precise definition of its fundamental concepts. Even the basic definitions
in the literature and in industry standards are often vague and verbose. To
remedy this situation and provide a solid basis for discussions of requirements,
this work provides precise definitions of the fundamental requirements concepts
and two systematic classifications: a taxonomy of requirement elements (such as
components, goals, constraints…); and a taxonomy of possible relations
between these elements (such as ”extends”, “excepts”, ”belongs”…). The dis-
cussion evaluates the taxonomies on published requirements documents; readers
can test the concepts in two online quizzes. The intended result of this work is to
spur new advances in the study and practice of software requirements by clar-
ifying the fundamental concepts.

Contents

Invited Talks and Papers

Kent Beck or Pablo Picasso? Speculations of the Relationships Between
Artists in Software and Painting . 3

Sergey Masyagin, Milana Nurgalieva, and Giancarlo Succi

Towards an Anatomy of Software Requirements . 10
Bertrand Meyer, Jean-Michel Bruel, Sophie Ebersold, Florian Galinier,
and Alexandr Naumchev

Software Engineering and Programming Languages

Preferred Tools for Agile Development: A Sociocultural Perspective 43
Paolo Ciancarini, Marcello Missiroli, and Alberto Sillitti

Interpretizer: A Compiler-Independent Conversion of Switch-Based
Dispatch into Threaded Code . 59

Yauhen Klimiankou

Towards Static Verification of Clojure Contract-Based Programs. 73
Gheorghe Pinzaru and Victor Rivera

Problems in Experiment with Biological Signals in Software
Engineering: The Case of the EEG . 81

Herman Tarasau, Ananga Thapaliya, and Oydinoy Zufarova

Developing Medical Devices from Abstract State Machines
to Embedded Systems: A Smart Pill Box Case Study 89

Andrea Bombarda, Silvia Bonfanti, and Angelo Gargantini

The Impact of Dance Sport on Software Development 104
Irina Erofeeva

Proof Strategy for Automated Sisal Program Verification 113
Dmitry Kondratyev and Alexei Promsky

Assessing Job Satisfaction of Software Engineers Using GQM Approach. . . . 121
Aleksandr Tarasov

Software Development and Customer Satisfaction: A Systematic
Literature Review . 136

Rozaliya Amirova, Ilya Khomyakov, Ruzilya Mirgalimova,
and Alberto Sillitti

Object-Oriented Requirements: Reusable, Understandable, Verifiable 150
Alexandr Naumchev

Measurements for Energy Efficient, Adaptable, Mobile
Systems - A Research Agenda . 163

Vladimir Ivanov, Sergey Masyagin, Andrey Sadovykh, Alberto Sillitti,
Giancarlo Succi, Alexander Tormasov, and Evgeny Zouev

Complex Systems: On Design and Architecture of Adaptable Dashboards . . . 176
Dragos Strugar

Machine Learning

Human Activity Recognition Using Deep Models and Its Analysis
from Domain Adaptation Perspective. 189

Nikita Gurov, Adil Khan, Rasheed Hussain, and Asad Khattak

Spontaneous Emotion Recognition in Response to Videos 203
Alisa Gazizullina and Manuel Mazzara

CNN LSTM Network Architecture for Modeling Software Reliability 210
Kamill Gusmanov

An Intelligent Tutoring System Tool Combining Machine Learning
and Gamification in Education . 218

Riccardo Di Pietro and Salvatore Distefano

Early Within-Season Yield Prediction and Disease Detection Using
Sentinel Satellite Imageries and Machine Learning Technologies
in Biomass Sorghum . 227

Ephrem Habyarimana, Isabelle Piccard, Christian Zinke-Wehlmann,
Paolo De Franceschi, Marcello Catellani, and Michela Dall’Agata

Internet of Things

UniquID: A Quest to Reconcile Identity Access Management and the IoT . . . 237
Alberto Giaretta, Stefano Pepe, and Nicola Dragoni

Automated Composition, Analysis and Deployment of IoT Applications 252
Francisco Durán, Gwen Salaün, and Ajay Krishna

xvi Contents

Security

Applying Face Recognition in Video Surveillance Security Systems 271
Bauyrzhan Omarov, Batyrkhan Omarov, Shirinkyz Shekerbekova,
Farida Gusmanova, Nurzhamal Oshanova, Alua Sarbasova,
Zhanna Yessengaliyeva, Agyn Bedelbayev, Akmarzhan Maikhanova,
Nurzhan Omarov, and Daniyar Sultan

Cyber-Resilience Concept for Industry 4.0 Digital Platforms in the Face
of Growing Cybersecurity Threats . 281

Sergei Petrenko and Elvira Khismatullina

Method of Improving the Cyber Resilience for Industry
4.0. Digital Platforms. 295

Sergei Petrenko and Khismatullina Elvira

Computer Architectures and Robotics

Can We Rely on Smartphone Applications? . 305
Sonia Meskini, Ali Bou Nassif, and Luiz Fernando Capretz

Distributed Computing System on a Smartphones-Based Network 313
Hamza Salem

Above the Clouds: A Brief Study . 326
Subham Chakraborty and Ananga Thapaliya

Exploring IA-32: Lessons from Analysis and Experience 334
Yauhen Klimiankou

Continuous Integration and Continuous Delivery in the Process
of Developing Robotic Systems . 342

Vadim Rashitov and Mikhail Ivanou

Projects

VERCORS: Hardware and Software Complex for Intelligent Round-Trip
Formalized Verification of Dependable Cyber-Physical Systems
in a Digital Twin Environment (Position Paper) . 351

Alexandr Naumchev, Andrey Sadovykh, and Vladimir Ivanov

MELODIC: Selection and Integration of Open Source to Build
an Autonomic Cross-Cloud Deployment Platform . 364

Geir Horn, Paweł Skrzypek, Marcin Prusiński, Katarzyna Materka,
Vassilis Stefanidis, and Yiannis Verginadis

Contents xvii

Quality-Aware Rapid Software Development Project: The Q-Rapids Project . . . 378
Xavier Franch, Lidia Lopez, Silverio Martínez-Fernández, Marc Oriol,
Pilar Rodríguez, and Adam Trendowicz

MegaM@Rt2 Project: Mega-Modelling at Runtime - Intermediate
Results and Research Challenges. 393

Andrey Sadovykh, Dragos Truscan, Wasif Afzal, Hugo Bruneliere,
Adnan Ashraf, Abel Gómez, Alexandra Espinosa, Gunnar Widforss,
Pierluigi Pierini, Elizabeta Fourneret, and Alessandra Bagnato

REVaMP2 Project: Towards Round-Trip Engineering of Software
Product Lines - Approach, Intermediate Results and Challenges 406

Andrey Sadovykh, Tewfik Ziadi, Alessandra Bagnato, Thorsten Berger,
Jan-Philipp Steghöfer, Jacques Robin, Raul Mazo, and Elena Gallego

Author Index . 419

xviii Contents

Invited Talks and Papers

Kent Beck or Pablo Picasso?
Speculations of the Relationships Between

Artists in Software and Painting

Sergey Masyagin, Milana Nurgalieva, and Giancarlo Succi(B)

Innopolis University, Innopolis, Russia
{s.masyagin,m.nurgalieva}@innopolis.ru, giancarlo.succi@gmail.com

Abstract. The way software is created is somehow similar to the pro-
cess of creating pieces of artwork. To consider this issue further we have
considered the similarities between the software development process
and painting in the quest for artistic practices that are transferable to
software.

Keywords: Software development · Painting · Agile methods

1 Software and Art

We can have the fortune of seeing Kent Beck coding, unfortunately we cannot
any more see Pablo Picasso painting. Still, looking at the two there could be
some striking similarity, and this beyond the inevitable fashion that surround
them. This lead us to think that software is not only engineering but it has
components of art and craft. There are many reasons supporting this claim.

For instance, as in any artwork, at the very beginning, it is hard to say
exactly, what the final product will be, as aspects influencing development soft-
ware changes fluently. Hence, it is difficult to plan everything in advance or
even if any plan exists - it is always hard to follow. These circumstances make
the result of developing software application unpredictable and unique (which is
characteristic of artwork) and, of course, raise an issue of project management.

As another example, there is a similar step at the beginning of work for both
artists and software engineers: artists do a sketch before writing a picture and
developers do the design of the application before development is started. Also,
both painters and programmers often use an iterative and incremental approach
in their work: breaking down work into smaller chunks, work on them and only
after the main part complete do gradual refinement.

Existed approaches to manage software processes have almost never discussed
how to manage creative people, hence the question is whether we can find useful
approaches present in art that can be applied to software development.

Indeed, we need a starting point, so we focuses our attention to painting.

c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 3–9, 2019.
https://doi.org/10.1007/978-3-030-29852-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_1

4 S. Masyagin et al.

2 Background

The idea of linking software development and art has been already explored in
the past, though mostly superficially. In 1962 Donald Knuth started a series of
volumes titles “The Art of Computer Programming,” which started to be printed
from 1968 and which is mostly incomplete [11]. In the 80’s Sterling and Shapiro
wrote a book titled “The Art of Prolog” using the term “art” as a metaphor
for software development [18]. More recently Herlihy and Shavit published “The
Art of Multiprocessor Programming” [9].

There is also a book named “Hackers1 and Painters” written by Graham
[8], where the author considers some similarities between developers and visual
artists. He also suggests lessons, that software developers can learn from artists
(these lessons are presented below).

3 How We Are Progressing

Our work now focuses on investigating the similarities between software devel-
opment and painting, to verify that these areas have something in common, and
to support the hypothesis that software engineers really have something to learn
from artists.

To this end we care considering specific situations, like how artists create
paintings in pairs and explore other artistic practices to identify whether artistic
methods can be transferred into software. Doing this it is expected to select
appropriate techniques and determine how it could be applicable to software
development.

A similar approach is then linked to how art work is being licensed in com-
parison to software [6,12,15,16,19] or the overall ideas of transforming selfies
and images made from mobile devices forms of art [3–5].

Eventually expected to come out with methods that could be useful for soft-
ware developers to improve the process of creating an application.

Our idea is both to work at two levels:

1. studying the existing works via reading the literature, visiting exhibitions,
etc, and then formulating hypothesis and theses,

2. interviewing existing artists, also trying to verify our hypotheses and validate
our theses.

4 Early Results

At the moment intermediate results have been obtained, specifically: revealed
some similarities between software development and drawing, the literature
review has been conducted and several artists have been interviewed.

As mentioned, the starting point for the research was the ideas presented in
the mentioned book “Hackers and Painters” [8], namely:
1 by “hackers” the author refers to developers.

Kent Beck or Pablo Picasso? 5

Fig. 1. Various sketches of Leonardo with his comments

Fig. 2. A sketch by the Russian painter Repin to the Italian singer Eleonora Duse

– Painters and software developers “... are both makers”
– Painters and software developers both try to make good things.
– Painters and software developers in the course of trying to make good things

discover new techniques.
– “In hacking (programming), like painting, work comes in cycles.”
– Software like painting is intended for a human audience.

These findings support the hypothesis that developers have something to learn
from artists.

This can be elaborated further analyzing [13], where it is evidenced that the
way a painting is conceived and created is not simple, as it might seem. Each
painting requires a particular, individual approach, therefore, special methods
and techniques are required for its solution. There are no exact recipes for cre-
ating pictures. This is also true for software development.

6 S. Masyagin et al.

Fig. 3. A sketch of Picasso of his famous painting “Guernica”

Another similarity lies in the creation cycle of a picture: painters of most
styles of art have performed sketches, from Leonardo (Fig. 1), to Repin (Fig. 2),
to Picasso (Fig. 3), etc. Then, they divide the work in self-contained parts, like
in a spiral or agile approach, and then operate, and, when needed, they performs
changes [7,10]. This is really like software and if the reader had the privilege of
seeing Kent Beck at work, s/he would find a stunning similarity!

Another notable point is that other painters, like Serov, approach very sys-
tematically their work, fully involving prototyping and interaction with cus-
tomers, as it is evident in his masterpiece “Girl with Peaches” (see Fig. 4), coming
out of an intense interaction with the subject, ad discussed in wikipedia2. This
principle is especially familiar to agile software developers (“Customer collabo-
ration over contract negotiation” [2]) and to people employing domain analysis
techniques or software measurement approaches [17,20,21].

Also, there is a genre in painting, which is similar to what developers call a
technical assignments or software requirement specification. This genre is named
“Art by instruction” [1,22], it is characterized by the creation of a work of art
with the help of instructions written by the artist. The main objective of which
is to create an open work with a variable end with the possibility of different
interpretations of the author’s text-instructions.

Another analogy existed between painters and developers is that their work is
supported by best practices, rather than by formal methods, or how the learning
process occurs [7,14].

2 See URL https://en.wikipedia.org/wiki/Girl with Peaches, visited on May 20, 2019.

https://en.wikipedia.org/wiki/Girl_with_Peaches

Kent Beck or Pablo Picasso? 7

Fig. 4. The “Girl with Peaches” by Serov

4.1 Lessons

Literature review brings ideas about what artistic techniques could be applied
to software engineering and what lessons developers could learn from artists.
For example, P. Graham relying on observation on artists suggests the following
lessons [8]:

– Developers need to program to learn.
– Regularly start from scratch, instead of working on one project for years.
– Developers need to learn from the source code of good programs.
– Developers need to write programs in a way that allows specifications to

change on the fly.
– Right model for collaboration: “... when painters worked together on a paint-

ing, they never worked on the same parts. It was common for the master
to paint the principal figures and for assistants to paint the others and the
background. But you never had one guy painting over the work of another.”

To this end it is interesting to consider the work of Yakovleva [23], where
she analyses best practices for the success of the joint work of the two artists
Alexander Yakovlev and Vasily Shukhaev:

8 S. Masyagin et al.

– Division of work and doing your job in your own temp (the division of work
allows Shuhaev to accomplish picture 52 years later after Yakovlev finish his
part)

– Both painters studied in one academy of arts and had the same level of
training.

– The artists had a common vision and common methods of work.

This information is valuable and even could be projected onto the software devel-
opment domain.

5 Conclusion

In this document we have presented preliminary considerations on the similarities
between software development and painting. We have identified a high level of
congruence and claimed that specific methodologies coming from painting can
also be applied to software.

Our next step would be to move forward with this idea, exploring more in
deep the analogies and the differences and elaborating a pervasive and convincing
set of ideas and practices that could be beneficial for software.

Acknowledgments. The work presented in this paper was supported by the grant of
Russian Science Foundation No19-19-00623.

References

1. Altshuler, B.: Art by instruction and the pre-history of do it
2. Beck, K., et al.: Manifesto for agile software development (2001)
3. Corral, L., Georgiev, A.B., Sillitti, A., Succi, G.: A method for characterizing

energy consumption in Android smartphones. In: 2nd International Workshop on
Green and Sustainable Software (GREENS 2013), pp. 38–45. IEEE, May 2013

4. Corral, L., Sillitti, A., Succi, G.: Software development processes for mobile sys-
tems: is agile really taking over the business? In: 2013 1st International Workshop
on the Engineering of Mobile-Enabled Systems (MOBS), pp. 19–24, May 2013

5. Corral, L., Sillitti, A., Succi, G., Garibbo, A., Ramella, P.: Evolution of mobile
software development from platform-specific to web-based multiplatform paradigm.
In: Proceedings of the 10th SIGPLAN Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2011, pp. 181–183. ACM,
New York (2011)

6. Di Bella, E., Sillitti, A., Succi, G.: A multivariate classification of open source
developers. Inf. Sci. 221, 72–83 (2013)

7. Fronza, I., Sillitti, A., Succi, G.: An interpretation of the results of the analysis
of pair programming during novices integration in a team. In: Proceedings of the
2009 3rd International Symposium on Empirical Software Engineering and Mea-
surement, ESEM 2009, pp. 225–235. IEEE Computer Society (2009)

8. Graham, P.: Hackers & Painters: Big Ideas from the Computer Age. O’Reilly
Media, Newton (2004)

Kent Beck or Pablo Picasso? 9

9. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., San Francisco (2008)

10. Kivi, J., Haydon, D., Hayes, J., Schneider, R., Succi, G.: Extreme programming: a
university team design experience. In: 2000 Canadian Conference on Electrical and
Computer Engineering. Conference Proceedings. Navigating to a New Era (Cat.
No.00TH8492), vol. 2, pp. 816–820, May 2000

11. Knuth, D.E.: The Art of Computer Programming. Addison-Wesley Professional,
Boston (2011)

12. Kovács, G.L., Drozdik, S., Zuliani, P., Succi, G.: Open source software for the public
administration. In: Proceedings of the 6th International Workshop on Computer
Science and Information Technologies, October 2004

13. Ostrovskij, G.: In Russian: Kak sozdayetsya kartina. In English: How the picture
is created. Gosudarstvennaya Akademiya Hudozhestvennyh nauk (1962)

14. Pedrycz, W., Russo, B., Succi, G.: Knowledge transfer in system modeling and
its realization through an optimal allocation of information granularity. Appl. Soft
Comput. 12(8), 1985–1995 (2012)

15. Petrinja, E., Sillitti, A., Succi, G.: Comparing OpenBRR, QSOS, and OMM assess-
ment models. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey,
G.R., Noll, J. (eds.) OSS 2010. IAICT, vol. 319, pp. 224–238. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13244-5 18

16. Rossi, B., Russo, B., Succi, G.: Adoption of free/libre open source software in
public organizations: factors of impact. Inf. Technol. People 25(2), 156–187 (2012)

17. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Measures for mobile users: an archi-
tecture. J. Syst. Architect. 50(7), 393–405 (2004)

18. Sterling, L., Shapiro, E.: The Art of Prolog. MIT Press, Cambridge (1986)
19. Succi, G., Paulson, J., Eberlein, A.: Preliminary results from an empirical study

on the growth of open source and commercial software products. In: EDSER-3
Workshop, pp. 14–15 (2001)

20. Valerio, A., Succi, G., Fenaroli, M.: Domain analysis and framework-based software
development. SIGAPP Appl. Comput. Rev. 5(2), 4–15 (1997)

21. Vernazza, T., Granatella, G., Succi, G., Benedicenti, L., Mintchev, M.: Defining
metrics for software components. In: Proceedings of the World Multiconference on
Systemics, Cybernetics and Informatics, vol. XI, pp. 16–23, July 2000

22. Vladislava, R.: In Russian: Stanovleniye kontseptsii “iskusstva po-instruktsii”. In
English: Formation of the concept of “art on-instructions”. Art & Cult, pp. 72–77
(2017)

23. Yakovleva, E.: Russian: Eto bylo schastliveysheye vremya...(a.ye. yakovlev, v.i.
shukhayev i v.e. meyyerkhol’d. k istorii sozdaniya dvoynogo avtoportreta a. yakovl-
eva i v. shukhayeva arlekin i p’yero) english: It was the happiest time...(a.e.
yakovlev, v.i. shuhaev i v.eh. mejerhol’d. to the history of the creation of a double
self-portrait of a. yakovlev and v. shukhaev “harlequin and pierrot”), Neva, pp.
171–176 (1987)

https://doi.org/10.1007/978-3-642-13244-5_18

Towards an Anatomy of Software
Requirements

Bertrand Meyer1,2,3, Jean-Michel Bruel2(B), Sophie Ebersold2,
Florian Galinier2, and Alexandr Naumchev1,2

1 Innopolis University, Innopolis, Russia
2 University of Toulouse/IRIT, Blagnac Cedex, France

bruel@irit.fr
3 Schaffhausen Institute of Technology, Schaffhausen, Switzerland

Abstract. Requirements engineering is crucial to software development
but lacks a precise definition of its fundamental concepts. Even the basic
definitions in the literature and in industry standards are often vague
and verbose. To remedy this situation and provide a solid basis for dis-
cussions of requirements, this work provides precise definitions of the
fundamental requirements concepts and two systematic classifications:
a taxonomy of requirement elements (such as components, goals, con-
straints. . .); and a taxonomy of possible relations between these elements
(such as “extends”, “excepts”, “belongs” . . .). The discussion evaluates
the taxonomies on published requirements documents; readers can test
the concepts in two online quizzes. The intended result of this work is
to spur new advances in the study and practice of software requirements
by clarifying the fundamental concepts.

1 Introduction

A software system, like any other engineering construction, exists to satisfy cer-
tain human objectives, known as its requirements. The evolution of software
engineering has produced ample evidence that the quality of systems fundamen-
tally depends on the quality of their requirements.

It has also led to the realization that requirements are software: like code,
tests and other products of the software process, requirements for today’s ambi-
tious systems are software artifacts, susceptible to some of the same practices
(such as configuration management), and in need of theoretical studies. The
present discussion defines a standard framework for such studies.

Section 2 explains the scope of the discussion. Section 3 defines basic termi-
nology. The next two sections provide the principal contribution of this work in
the form of two taxonomies: a taxonomy of requirement elements themselves in
Sect. 4; and a taxonomy of relations between requirements in Sect. 5. The rest
of the discussion explores the application of these concepts: Sect. 6 applies the
taxonomies to analyze an extract from a representative requirements document;
Sect. 7 examines popular approaches to requirements engineering in light of the

c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 10–40, 2019.
https://doi.org/10.1007/978-3-030-29852-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_2

Towards an Anatomy of Software Requirements 11

taxonomies; after a discussion of related work in Sect. 8, Sect. 9 assesses the
applicability of the approach and prospects for future work, including automatic
analysis.

Two online quizzes [9,10] enable readers to test anonymously their under-
standing of the taxonomies of requirements and relations.

2 Scope

This presentation is descriptive rather than prescriptive. Textbooks are an exam-
ple of prescriptive presentation, stating how one should write requirements. Here
the intent is to study requirements as they are, which in the industry’s practice
does not always mean as they should be. For example, the relationship taxonomy
(Sect. 5) has a category for requirements that contradict each other, a case that
is obviously not desirable but occurs in practice. Prescriptive discussions will
benefit from the analysis, since they should be rooted in a precise understanding
of the concepts. Occasionally, as in Sect. 9, the discussion veers into prescriptive
territory.

The presentation is, however, normative, since it proposes standard defini-
tions and classifications of requirement concepts and terminology relevant to
requirements authors regardless of which methodology they follow.

Its ambition is also universal : we have tried to cover all possible properties
of requirements, with the understanding that this work should be revised if we
missed any. In this spirit, enumerations (see for example the list of activities in
the definition of “project” in Sect. 3.1) never end with such phrases as “etc.”,
useful to protect authors but detrimental to the quality of definitions. Here there
is no such protection; any omission is a mistake and will have to be corrected.

While Sect. 9 is the place for a more detailed analysis of the applicability of
this work, it is legitimate to ask at the outset for a general justification: why is
it worthwhile to engage in such an effort at precision (at the risk of pedantry) to
define and classify concepts that are widely used in practice with their intuitive
meaning?

The general justification is that requirements are a difficult concept to appre-
hend because they straddle the border between the formal and the informal, the
exact and the approximate, the technical and the human. Some software engi-
neering concepts are formal, exact and technical: programming languages, for
example, have precise definitions, and any single detail of a million-line program
may critically affect its correctness. At the other end of the spectrum, equally
important concepts of software engineering, such as methods of project manage-
ment, are informal, approximate and human.

Requirements bridge these two worlds. To be effective, they must cover the
needs of both. Insufficient rigor in the handling of requirements concepts ham-
pers this goal. As an example, there is wide disagreement in the field as to what
constitutes the difference between “functional” and “non-functional” require-
ments, to the point that some authors even reject this distinction altogether.
The rest of the literature treats it as a given, but without a generally agreed
precise definition.

12 B. Meyer et al.

A software system is often just one part of a larger system whose other
elements may be people and organizations, as in enterprise systems, or physical
devices, as in cyber-physical systems. While the authors’ primary interest and
the examples in this article are software-related, the intent of the definitions and
taxonomies is to encompass systems of any kind.

3 Underlying Concepts

To discuss requirements we need a set of basic concepts and their precise def-
inition. This section introduces the terminology that serves as a basis for the
rest of the discussion. It does not intentionally introduce any novel concept, but
gives precise definitions of known concepts. These definitions are not the most
general possible ones for the corresponding English words as used in an arbitrary
context; rather, they are tailored to the needs of this discussion of requirements.

3.1 General Concepts

Universe of Discourse. The assumed context for the present discussion is a
project to develop a system in a certain environment .

Comment : the definitions of project, system and environment follow.

Definition. A system is a set of related artifacts.
Comment : In the case of pure software systems, the artifacts are virtual:

programs, databases, design diagrams, test cases. . . In line with the goals stated
in Sect. 2, the definition is more general, encompassing enterprise and cyber-
physical systems. Even if the system involves only software, the project and the
environment may include material and human elements.

Definition. A project is the set of human processes involved in the planning,
construction, revision and operation of a system.

Comments:

– A project is, per this definition, applied to one system. While a project can
in practice involve the development of several systems, the definition loses no
generality since we can consider them, for the purpose of the definition, to be
subsystems of one larger system.

– A particular project may involve only some of the activities mentioned (plan-
ning, construction, revision, operation). In particular, the revision of a system
(which may also be called maintenance, reconstruction, redesign, evolution
and “brownfield development”) can be an extension of a previous project for
this system, or a new project.

Towards an Anatomy of Software Requirements 13

Definition. An environment for a project or system is the set of entities
(people, organizations, regulations, devices and other material objects, other
systems) external to the project or system but with the potential to affect it or
be affected by it.

Comments: the environment is also called, in classic Jackson-Zave terminol-
ogy [12], the “domain”. It includes all external elements constraining the project
or the system; “external” in the sense that unlike features of the system and
project they are imposed from the outside and not susceptible to decisions by
the project. As an example of the difference, “all accounts must maintain a non-
negative balance at all times” is an environment property (affecting the system);
“a withdrawal request for an amount greater than the balance shall produce an
error message and leave the balance unchanged” is a system property, devised to
enforce the preceding environment property. Similarly, “at least 50% of the code
shall be developed in-house” is an environment property (affecting the project);
“the implementation of the user interface module shall be outsourced to company
X ” is a project property, which should comply with the environment property.

Environment properties in requirements will be called constraints
(Sect. 4.1.F).

3.2 Properties and Their Statements

The definition of “requirement” will use the auxiliary concept of “statement”,
itself relying on the notion of “property” (a term already used informally). These
are general term, not specific to software or requirements; although they essen-
tially retain their ordinary meaning, it is useful for the purposes of the present
work to give them precise, slightly more restricted definitions.

Definition. A property is a boolean predicate.
Comments: an example of property is that today is Sunday, a predicate (true

or false in a given context). The properties of interest for this discussion will
apply to a project, system or environment. A system example is the property
that response time for a certain kind of query must not exceed one second. A
project example is the property that the project uses sprints (iterations) of one
month each. An environment example is the property that no more than 50
vehicles at a time are permitted in a tunnel.

Definition. A statement is a human-readable expression of a property.
Comments:

– Discussions of programming languages use the term “statement” to mean
“instruction”, a command to be executed by a computer (prescriptive).
Instead “statement” as used here retains the same connotation as in ordi-
nary English: a phrasing that “states” a property (descriptive).

– “Today is Sunday” and “query response time shall not exceed one second” are
statements. The difference between a property and a statement is that the

14 B. Meyer et al.

property is the abstract predicate and a statement its expression in a certain
notation. Different statements can express the same property; for example the
statement “c’est aujourd’hui dimanche” is a different statement (in French)
of the first example’s property.

– A statement, however, specifies just one property. This convention causes no
loss of generality since a property, being a predicate, can be built out of logical
combinators such as “and” and “or”, and hence arbitrarily complex. The next
definition will reflect this observation.

– Not all statements have to be expressed, like the preceding examples, in nat-
ural language: a statement could be a UML diagram specifying a system
property, a mathematical formula describing a constraint property, a PERT
diagram or (in agile development) a burndown chart specifying a task prop-
erty. For any statement, it should be clear what underlying notation it uses
(see the notion of “requirement type” in Sect. 3.5).

Definition. A property, and a statement expressing it, are composite if the
property is a logical combination of simpler properties, and elementary other-
wise.

Comments: since a property is a boolean predicate, it may result from apply-
ing boolean operators to one or more simpler properties, in which case we call
it composite.

Definition. A composite property, and a composite statement expressing it,
are homogeneous if the property combines properties of a similar nature, and
heterogeneous otherwise.

Examples: “customers will have access to customer functions, and employees
to both customer and flight management functions” (from [4]) is homogeneous.
“Error messages shall be recorded in a log” specifies both the presence of a
system component (if the log is not defined elsewhere) and a system behavior,
and hence heterogeneous.

Comments: from a prescriptive viewpoint (as discussed in Sect. 2), it is good
practice for requirements documents to avoid heterogeneous statements. The
second example would be better expressed, in a requirements document, by two
distinct requirements: one specifying the need for a log; the other stating that
error messages must be recorded in that log.

3.3 Relevant Properties

The definitions of “property” and “statement”, when applied to projects and
the associated system and environment, underlie the definition of “requirement”.
But many properties are not of interest as requirements, for example the system
property that the executable has a “load” instruction at offset 3FD04, or the
project property that no code was committed past 11:30 PM on December 31st.
We are interested in properties that are relevant to some stakeholder.

Towards an Anatomy of Software Requirements 15

Definition. A stakeholder for a project is a person who may affect or be
affected by the project or its associated system.

Comments:

– This definition is a considerably simplified version of the one on the IEEE
systems and software terminology standard [1]. The IEEE version talks of a
person or organization, but organizations can only be involved through their
(human) members. It specifies “individual or organization having a right,
share, claim, or interest in a system or in its possession of characteristics
that meet their needs and expectations”, “individual, group or organization
that can affect, be affected by, or perceive itself to be affected by, a risk”
etc., all possibly interesting but only adding musings to the simple definition
above. (The mention of perceiving to be affected is correct but not necessary:
if you believe you are affected by the system you are affected by it, if only
through the effect on your mindset.) There seems to be no need for such a
bloated definition for a clear and simple concept.

– Concretely, stakeholders may include users of the system, people responsible
for commissioning and accepting the system (such as “product owners” in
agile methods), developers, testers and many others as discussed in detail in
the software engineering literature, e.g. [13].

– The definition only mentions the project and system. Affecting or being
affected by the environment is not enough to make you a stakeholder. As
a taxpayer you are affected by the tax rules, but that does not make you a
stakeholder of a tax-related project if the resulting system does not apply to
your category of taxpayer.

Definition. A property of a project, system or environment, is relevant if it
is of interest to a stakeholder.

Comments: we saw above examples of non-relevant project and system prop-
erties. As an example of an environment property, knowing that the system
might be deployed in Costa Rica is relevant for a payroll system which must
take local regulations into account, but probably not for a computer game.

3.4 Requirement

Definition. A requirement is a statement of a relevant project, system or
environment property.

Comments:

– This definition introduces the central concept of the present discussion. From
the definition of “statement”, a requirement is a specification of a property
of a project, system or environment. (For simplicity we limit ourselves to
requirements characterizing only one of the three dimensions.)

– The classification of Sect. 4 defines what kinds of property are pertinent for
software requirements.

16 B. Meyer et al.

– Software engineering discussions often use the plural “requirements” as a
collective, as in “the requirements of a system”, a phrase that denotes a whole
(the specification of the system) beyond just the collection of its parts (the
individual requirements). To avoid any ambiguity, the present discussion only
uses “requirements” as the plural of “requirement”, as in “four requirements”,
meaning four statements of project, system or environment properties. For
the collective we can always use a more elaborate phrase such as (depending
on the exact meaning sought) “the requirements document” or “the overall
requirements for the system”, or “the Software Requirement Specification”,
often abbreviated SRS.

– The definition only says that a requirement specifies a property, and does
not specify a level of granularity for that property: it could characterize the
entire project, system or environment, one of its major components, or just an
elementary component. At one extreme, the entire SRS is “a requirement”;
so is, at the other extreme, the statement of a single elementary property,
such as “Clicking Exit shall result in termination of the session”. The next
definition addresses this variety.

– By specifying a boolean property, a requirement defines a criterion which an
actual environment, project or system either confirms or refutes. “Have the
test plan ready for next Monday!” is not boolean and hence not a require-
ment. (“The testing team shall produce the test plan in at most a week” is a
requirement.) When teaching requirements engineering we go further, telling
students that requirements must be verifiable: “the query shall be processed
in real time” is not good enough, “query response time shall be one millisec-
ond or less” is better (see e.g. [19] for such advice). Here again, the present
document is descriptive and taxonomic, not normative. Except in Sect. 9 it
does not discuss what makes requirements “good”, only what makes them
requirements.

3.5 Characterizing Requirements

Definition. A requirement is composite if it includes other requirements (its
sub-requirements) and elementary otherwise.

Comments: the distinction is the same as for “statements” in general
(Sect. 3.2) but introduces the notion of sub-requirement, which will become more
precise through the definitions of “component”, “sub-goal” etc. in Sect. 4.

Definition. The type of a requirement is the notation in which it states its
associated property.

Comments: the term “notation” is taken here in its ordinary meaning. Exam-
ples of notation are English text, a UML diagram type, a tabular format, a par-
ticular programming language, a (well-defined) mathematical notation. Since
requirements can be composite, the notion of “notation” must support the pos-
sibility of a combination of notations, as in the example of a requirements doc-
ument that contains both English text and graphical illustrations.

Towards an Anatomy of Software Requirements 17

Definition. A requirement R specifies a property P if P follows from the
property stated by R or a sub- requirement of R.

Comments: this definition is a bit of hair-splitting but reflects the different
nature of statements and properties. A property is just a predicate: the border of
a certain control on the screen is (or is not) black. A statement is an expression
of that property in some notation, for example “The border shall be black” or
“La bordure doit être noire”, both of which express the same property although
in different notations (types). Yet another way to specify that property would be
a figure, or an entry in a table listing attributes of UI elements. The definition
uses the informal term “follows from” since it cannot use “R implies P” unless
requirements are expressed in a formal mathematical notation.

4 Classification of Requirements

This section introduces the first of the two fundamental taxonomies proposed
by this article: the taxonomy of requirements themselves. Section 4.1 defines the
fundamental categories, disjoint from each other. Section 4.2 introduces other
categories, important in practice but defined as subcategories of the fundamental
ones.

4.1 Requirements Classification: Basic Categories

Classification. Every requirement states a property of one of the following
categories. Section 4.2 will introduce more categories as special cases of the fun-
damental ones given here.

A. Component: the property that the system, project or environment includes
a certain part.
Comments: a component can be material, virtual or human. A human com-
ponent can be a single person, group of persons, organization or category of
persons involved in the system, project or environment. A component of the
environment can be another system with which the given system must be
interfaced.
Examples: “the operating system is designed to run on the iPhone 8 and later
models” (system component, material); “database operations shall run in a
separate process” (system component, virtual); company CEO (if referenced
explicitly in the requirements, single person); reservation agents (category of
persons).

B. Goal: an objective of the project or system, in terms of their desired effect
on the environment.
Comments: Requirements documents often present goals at the beginning
of the text. The external entity could be a company (enterprise goals) or
a physical device such as a phone (cyber-physical goals). Having an effect
on the environment means having an effect on an external entity, such as a
company (enterprise goals, as in this example) or a physical device (cyber-
physical goals).

18 B. Meyer et al.

Example: “One of the advantages expected from the system is to reduce the
amount of fraudulent invoices”.

C. Behavior: a property of the results or effects of the operation of the system
or some of its components.
Comments: requirements in this category often get the most attention since
they describe elements of what the system will do. A behavior can charac-
terize the system as a whole or a specific component. Section 4.2 introduces
the classic distinctions of behaviors into functional and non-functional.
Example: “Display the list of available elements.”

D. Task: the property that the project includes a certain activity.
Examples: program coding, stakeholder interview, daily meeting.

E. Product: the property that a task uses or produces a material or virtual
object.
Examples: a test plan, a user story, a design document, a program module.

F. Constrain: an environment property that may affect components, goals,
behaviors, tasks or products.
Comments: it would seem enough to say “an environment property”, since
by definition the environment is (Sect. 3.1) the set of external entities that
have the potential to affect or be affected by the project (and hence the
system and the environment). But this does not work, since those entities
have other properties with no relation to the project. Hence the restrictive
formulation. Section 4.2 will distinguish between obligation and assumption
constraints.
Examples: “every transfer over EUR 10,000 requires authorization” (behavior
constraint); “testing shall use the JUnit framework” (task constraint).

G. Role: the property that a component carries some or all of the responsibility
for a behavior or task.
Example: “the Bangalore subsidiary shall be responsible for the implemen-
tation of the user interface subsystem” (task role, human component of the
project); “the reservation system’s UI shall be designed for operation by
railway-station booking agents” (behavior role, human component); “smart
contract computations shall be executed on the GPU” (behavior role, mate-
rial component).

H. Limit: the property that the project, system or environment does not include
a requirement of one of the preceding kinds.
Example: “Providing a interface to SAP accounting falls outside of the scope
of the present system” (component limit); Integration testing will be per-
formed in a follow-up project (project limit).

I. Lack: a property that should have a requirement, but does not.
Comments: this category is different from the others, and paradoxical since it
characterizes what is not in the requirements. Our discussions with require-
ments practitioners indicate that they spend a considerable part of their
efforts uncovering lacks. Human scrutiny is indeed usually required to find
lacks, although some automatic analysis is possible; for example, a term that
appears repeatedly in an SRS but not as an entry in the glossary (a list of def-
initions of project, system and environment concepts, which any SRS should

Towards an Anatomy of Software Requirements 19

include) may signal that the requirements are missing the specification of an
important property.

J. Meta-requirement: a property of requirements themselves (not the sys-
tem, project or environment).
Example: a section title in the requirements document (which does not
express any new property but helps structure and understand the actual,
non-meta properties); more generally, any observation intended to facilitate
the reading of an SRS, such as “the details will appear in Sect. 7”; a state-
ment of priority between requirements, such as a classification of components
into “critical”, “necessary” and “nice to have”; an explanation, such as “the
behavior in this case is specified by table 7.1” or “figure 7.2 illustrates the
concept”.

Comments: large composite requirements, for example an entire SRS, will
contain requirements in several of these categories. The classification is, how-
ever, designed with the intent that in practical usage it will be possible with-
out much hesitation to classify any elementary requirement (or small composite
requirement) into just one category.

The classification makes it possible to be more precise about the elements of
a composite requirement (a requirement made of other requirements):

Definition. A sub-goal , sub-component , sub-behavior etc. is a sub-
requirement of respectively a goal, component, behavior etc.

And consequently:

Definition. A goal, component, behavior etc. is elementary (non-composite)
if it has no sub-goal, sub-component, sub-behavior etc.

Comments: in principle, the definition of sub-requirement allows arbitrary
mixing of categories, for example a task as a sub-requirement of a goal. The
above definitions only cover sub-requirements that are of the same category as
the enclosing requirements.

4.2 Some Derived Categories

The following kinds of requirement are special cases, important in practice, of
the categories of Sect. 4.1.

An actor is a human component. Examples include the stakeholders of a
project as defined in Sect. 3.3 (project actors); and people involved in the oper-
ation of the system, such as an end-user or a system administrator (system
actors).

A justification is a meta-requirement explaining the rationale for a require-
ment (of any kind) in terms of a goal. As an example, if an SRS for a software
system does not specify Android among the platforms to be supported, it might
include the justification that the company has made the strategic decision to
equip its sales agents with iPhones.

20 B. Meyer et al.

A responsibility is a human role. (In the general case, roles can be defined
for components other than humans, e.g. software components.) The first two
examples in the above definition of “role” (Sect. 4.1.H) are responsibilities.

An obstacle is a goal defined as the need to overcome a negative property of
the environment, as in “with the current system, too many enquiries that could
lead to sales are missed”. KAOS [18] has a closely related definition.

A widely established terminology for behavior distinguishes between state-
ments of “what” and “how” properties:

– A functional behavior specifies results or effects of the system.
– A non-functional behavior specifies a property of how these results or

effects are to be achieved. Classical examples are timing limits and security
conditions.

The following subcategories exist for constraints (environment properties):

– A business rule is a constraint resulting from organizational practices.
Examples are the rules on bank accounts from Sect. 3.1 and Sect. 4.1.F.
Another is “delivery of phosgene [a chemical] requires that the recipient have
taken a refresher course in handling hazardous chemicals in the past twelve
months”. This example appears in [19], as the background for a system prop-
erty: the software must reject a request for chemical if the requester does not
meet the criterion.

– A physical rule is a constraint resulting from laws of nature. A typical
example is the application of the laws of mechanics to a satellite launching
system.

– An engineering decision is a constraint resulting from human choices.
Examples are the minimum and maximum bandwidths for a networking sys-
tem.

A separate classification of constraints is between:

– An obligation, describing a property that the environment is known to pos-
sess. Examples: the rules on bank transfer in Sect. 4.1.E; in a cyber-physical
system, limits (such as signal transmission speed, laws of mechanics, band-
width) imposed by physics and engineering.

– An assumption, describing a property that the environment may or may not
possess but which the project may assume to hold for the development of the
system. Example (in a system to control a railroad crossing): “cars travel at
no more than 200 km/h and trains at no more than 400 km/h”. Unlike the
absolute limits imposed by the laws of nature or by a choice of technology,
an assumption is the result of an explicit human decision, and might conceiv-
ably not hold, but may be needed for the requirements to guarantee certain
properties. In the example, it may be possible to make trains run faster than
400 km/h, but no railroad-crossing system can guarantee the avoidance of
collisions without assuming some upper limit on the speed of trains.

Towards an Anatomy of Software Requirements 21

– An invariant, describing a property that is both as an assumption and as a
behavior. Example (in a factory control system): “the system shall operate
between −30 and +50 ◦C”, which means both that the system’s operations
may assume they start within this temperature range and that they must
refrain from causing overheating or over-cooling.

While requirements of all three kinds cover properties of the environment,
the difference is important in practice since obligations make the work of system
developers harder and assumptions make it easier. (Invariants do both. To keep
the three categories disjoint we classify a constraint as an obligation if it is not
also an assumption, and conversely.)

The two classifications are orthogonal: for example, a business rule can be
an obligation (as the bank transfer example rule) or an assumption (the New
York Stock Exchange is closed on Labor Day). The same observation holds for
engineering decisions, which gave us an example of obligation (car and train
speeds) and an example of invariant (temperature limits).

The following table, intended for reference, includes all the categories in
alphabetical order, and their subcategories. Every requirement should fit into
exactly one category and at most one subcategory (except for constraints which
may belong to elements of the two orthogonal classifications) (Table 1).

Table 1. Categories and subcategories of requirements

Basic categories Subcategories Short definition (for full definition see text)

Behavior Property of an operation’s effects

Component Part of the project, environment or system

Special case: Actor Human component

Constraint Environment property

Classification

by nature

Assumption Assumed constraint

Obligation Imposed constraint

Invariant Both assumption and obligation

Classification

by source

Business rule Constraint due to organizational practices

Engineering

decision

Constraint due to human choices

Physical rule Constraint due to laws of nature

Goal Intended effect of project or system on

environment

Lack Missing requirement

Limit Property beyond scope of

project/system/environment

Meta-requirement Property of requirements but not of project,

system or environment

Special case: Justification Rationale expressed in terms of a goal

Product Material or virtual object used or produced

by a task

Role Component’s responsibility for behavior or

task

Task Project activity

22 B. Meyer et al.

An anonymous online quiz [9] invites readers to test the practicality of the
requirements classification and their understanding of it by classifying require-
ments elements from a sample requirements document [3], which also provides
the background for the discussion in Sect. 6.

5 Taxonomy of Inter-requirements Relations

With requirement elements sorted into categories, we proceed to a classification
of the relations that may hold between them.

Classification. A requirement Y may depend on another X in one of the follow-
ing ways, each given with: a name in upper case (a verb, such as “REPEATS”,
whereas names of requirement categories were nouns); a symbol (generally bor-
rowed from mathematics, for its mnemonic value only); a definition of its mean-
ing; a comment if necessary.

DISJOINS X Y Y and X are unrelated.
Comment : In this case, the most common for two ran-
domly selected statements in a requirements document,
there is no relation between the properties they specify.

BELONGS X Y X is a sub-requirement of Y.
Comment : this case corresponds to textual inclusion
(sub-section, sub-figure etc.), unlike inclusion of prop-
erties as in EXTENDS below.

REPEATS X Y X specifies the same property as Y.
Comment : this case is identity of the properties although
not necessarily of their statements (since they might use
different notations). See below for variants: EXPLAINS
(different notations), DUPLICATES (same notation).

CONTRADICTS X Y X specifies a property in a way not compatible with Y.
Comment : remember that this discussion is descriptive,
not prescriptive. No one would recommend writing con-
tradictory requirements. But existing SRS, especially
large ones, may contain contradictions; in some contexts
it might be crucial to detect them.

FOLLOWS X Y The property specified by X is a consequence of the prop-
erty specified by Y.
Comment : interesting in particular if Y is a goal and X
a behavior or task.

EXTENDS X Y X assumes Y and specifies a property not specified by
Y.
Comment : also called “refines”.

EXCEPTS X Y X changes or removes, for a specified case, a property
specified by Y.
Comment : this case is not the same as CONTRADICTS.
It is the explicit and often legitimate introduction of an
exception to a general property.

CONSTRAINS X Y X specifies a constraint on a property specified by Y.
CHARACTERIZES X Y X is a meta-requirement involving Y.

Towards an Anatomy of Software Requirements 23

The following derived cases are useful in practice:
DETAILS X Y X adds detail to a property specified by Y.

Comment : this is a case of X Y (EXTENDS). The
nuance is that in this case there is no fundamentally
new property, just more detail about an already speci-
fied property.

SHARES X Y X Y for some sub-requirements X’ and Y’ of X and
Y.

DUPLICATES X Y X Y , and X has the same type as Y.
Comment : also a case of REPEATS. This is the true re-
dundancy case. From a prescriptive viewpoint, it usually
reflects a deficiency in an SRS; compare with the next
case.

EXPLAINS X Y X Y , and X has a different type from Y.
Comment : again a case of REPEATS, but not necessarily
bad. Y introduces no new property but helps understand
Y. For example Y may describe a property textually, and
X may be a graphical illustration of that property.

Comments:

– As with the taxonomy of requirements, the intent is to ensure that given two
arbitrary requirement elements their relationship can be classified in at most
one of the primary relations and at most one of the derived ones. If two or
more categories appear to apply, one should clearly be more relevant than
the others.

– The mathematical symbols informally suggest the relations’ meaning, but
do not imply theproperties, such as associativity or commutativity, of their
ordinary mathematical counterparts. Further research should indeed study
(in the style of [15]) the mathematical properties of these relations.

– The relations may hold between requirements of any complexity. In practice,
one should first look for their occurrences between elementary requirements.

– SHARES is an example of a relation on composite requirements derived from
another (DUPLICATES) on their sub-requirements. It is possible to gener-
alize some of the other relations in the same way, or simply to accept, as a
small abuse of language, that for example Y > X holds if Y ′ > X ′ holds for
sub-requirements. Except for SHARES, we ignore this issue in light of the
preceding comment.

– An analysis examining how two given requirements are connected may in
principle identify more than one of the relations. For simplicity, it is advisable
to choose only one (from the complete list including derived relations); just
pick the relation that comes out as most relevant.

Like its counterpart for the first taxonomy, the following table provides a list
of all the categories and subcategories of the relation taxonomy (Table 2).

24 B. Meyer et al.

Table 2. List of all the categories and subcategories of the relation taxonomy

Basic categories Subcategories Symbol Short definition (for full
definition see text) – X is first
operand, Y second operand

Belongs ⊆ X textually included in Y

Characterizes → Meta-requirement X applies to
Y

Constrains � Constraint X applies to Y

Contradicts ⊕ X Properties specified by X and
Y cannot both hold

Disjoins ‖ Y and X are unrelated

Excepts \\ X specifies an exception to the
property specified by Y

Extends > X adds to properties of Y

Special case: Details � X adds detail to properties of Y

Follows � X is a consequence of Y

Repeats ⇔ X specifies the same property as
Y

Shares ∩ Some subrequirements are
common

Duplicates ≡ Same properties, same type
(notation)

Explains ∼= Same property, different type

As with the previous taxonomy, an anonymous online quiz [10] invites read-
ers to test the practicality of the requirements-relations classification and their
understanding of it by classifying requirements relations from a sample require-
ments document [3], which also provides the background for the discussion in
Sect. 6.

6 Dissecting an Example

[3] is an example requirements document, obviously inspired by industrial prac-
tice but devised for a course at Ohio State University. It provides a good testbed
for the concepts of this article since it is small enough to lend itself to analysis yet
large and realistic enough to be representative of the contents of requirements
for actual industry projects.

We analyzed the entire text and found that the taxonomies cover both all
requirements and all the relations we considered. Here we only show a few rep-
resentative samples of the analysis. The entire analysis is available as an online
complement to this article [8].

First, examples of classifying requirements according to the first taxonomy:

Towards an Anatomy of Software Requirements 25

Section 1. Introduction Meta-requirement

1.1 Purpose of Document Meta-requirement

This is a Requirements Specification document for a new web-
based sales system for Solar Based Energy, Inc. (SBE)

Goal

1.2 Project Summary Meta-requirement

Project Name: SBE Sales System Component

. . .
1.4 Project Scope

The scope of this project is a web-based system that supports
the marketing of SBE products directly to customers as well as
through the existing sales agent network.

Goal

Advertising of products, inventory control, and account billing
are not part of this project.

Limit

In addition, changes to the logical and physical design of the
current databases are expected.

Obstacle

The primary responsibilities of the new system: Meta-requirement

provide customers direct access to up-to-date, accurate product
information on which they can make a decision to buy

Behavior

. . .
Section 2. Functional Objectives

2.1. High Priority Meta-requirement

“The system shall allow for on-line product ordering by either
the customer or the sales agent”

Behavior

“For customers, this will eliminate the current delay between
their decision to buy and the placement of the order”

Goal

“This will reduce the time a sales agent spends on an order by
x%. The cost to process an order will be reduced to $y”

Goal

“The system shall display information that is customized based
on the user’s company, job function, application and locale”

Behavior

2.2 Medium Priority Meta-requirement

The system shall provide a search facility that will allow full-text
searching of all web pages that the user is permitted to access.

Goal

The system must support the following searches:

– find all words specified
– find any word specified
– find the exact phrase
– Boolean search

Behavior

. . .
Section 3: Non-Functional Objectives

3.1” Reliability” Meta-requirement

* “The system shall be completely operational at least x Constraint

* “Down time after a failure shall not exceed x hours” Constraint

26 B. Meyer et al.

. . .
Section 4: The Context Model

4.1 “Goal Statement” Meta-requirement

“The goal of the system is to allow SBE to increase sales revenue
by x% over the next y years with only a z% increase in sales and
customer service staff by”

Goal

“allowing complete and accurate customer and order informa-
tion to be captured directly from the customer as well as from
sales agents”

Goal

4.2 “Context Diagram” Meta-requirement

Behavior

4.3 “System Externals” Meta-requirement

“Customer” Actor

“A customer is any user of the system that has not identified
himself as an SBE employee”

Actor

“A customer may search for public product information by key-
word, access white papers for a particular product, order a prod-
uct or request assistance from a sales agent”

Role

“A customer who provides personal information will get search
and query results customized to his preferences”

Behavior

. . .
5.2 Use Case Descriptions (for selected cases)

“For all use cases, the user can cancel the use case at any step
that requires user input. This action ends the use case. Any data
collected during that use case is lost”

Behavior

“For all use cases that require a logged in user, the current login
session is updated during the use case to reflect the navigation
paths through the use case”

Behavior

Use Case Name: Login User Meta-requirement

Summary: In order to get personalized or restricted information,
place orders or do other specialized transactions a user must
login so that the system can determine his access level

Goal

Basic Flow Meta-requirement

1. The use case starts when a user indicates that he wants to
login.

Constraint

2. The system requests the username and password. Behavior

3. The user enters his username and password.Role

4. The system verifies the username and password against all
registered users.

Behavior

Alternative Flows Meta-requirement

Step 4: if username is invalid, the use case goes back to step 2. Behavior

Extension Points: none Component

Preconditions: The user is registered. Constraint

Postconditions: The user can now obtain data and perform func-
tions according to his registered access level.

Behavior

Business Rules: Some data and functions are restricted to certain
types of users or users with a particular access level”

Constraint

Towards an Anatomy of Software Requirements 27

Now, some examples of requirements relationships per the second taxonomy.
CONSTRAINS:

“Preconditions: The user is regis-
tered.”

“Postconditions: The user can now obtain data
and perform functions according to his registered
access level.”

EXCEPTS:

“if the password is invalid the sys-
tem requests that the user re-enter
the password. When the user enters
another password the use case con-
tinues with step 4 using the original
username and new password.”

“4. The system verifies the username and pass-
word against all registered users”.

BELONGS:

“A customer is any user of the sys-
tem that has not identified himself
as an SBE employee.”

“4.3 System Externals Customer A customer is
any user of the system that has not identified him-
self as an SBE employee. A customer may search
for public product information by keyword, ac-
cess whitepapers for a particular product, order a
product or request assistance from a sales agent. A
customer who provides personal information will
get search and query results customized to his
preferences. Sales Agent A sales agent is a user
who has been verified as an SBE employee. A sales
agent may access all available product information
and whitepapers, including the product owner. A
sales agent may place an order on behalf of a cus-
tomer. He will be informed by the system of any
customers in his region who have requested assis-
tance. Product Owner The product owner is a user
who has been verified as an SBE employee. The
product owner may update product information
and whitepapers for those products for which he is
responsible. Accounting The Accounting depart-
ment is responsible for all SBE financial transac-
tions. The Accounting department is informed of
all purchases and is responsible for later collection
of accounts receivable. Shipping The Shipping de-
partment is informed of purchases so that it can
process the order and update inventory. Market-
ing The Marketing department is responsible for
creating demand for SBE products. It will receive
website navigation data to use in planning mar-
keting strategies.”

28 B. Meyer et al.

DETAILS:

“The system shall be completely opera-
tional at least x% of the time”

“Down time after a failure shall not exceed
x hours”

CHARACTERIZES:

“2.1 High Priority” “The system shall allow for on-line product
ordering by either the customer or the sales
agent.”

DISJOINS:

“A sales agent may access all available
product information and whitepapers, in-
cluding the product owner. A sales agent
may place an order on behalf of a cus-
tomer”

“if the password is invalid the system re-
quests that the user re-enter the password.
When the user enters another password the
use case continues with step 4 using the
original username and new password.”

EXPLAINS:

“The goal of the system is to allow SBE to
increase sales revenue by x% over the next
y years with only a z% increase in sales and
customer service staff by

– - allowing complete and accurate cus-
tomer and order information to be
captured directly from the customer as
well as from sales agents

– - providing customers and sales agents
fast access to up-to-date and accu-
rate product information and whitepa-
pers.”

Towards an Anatomy of Software Requirements 29

7 Analyzing Available Requirements Methodologies

This section surveys a few important requirements methodologies, selected from
those covered in a recent survey involving some of the authors [6]. At this stage
we only consider the classification of requirements in well-known requirements
textbooks.

7.1 Wiegers-Beatty

Wiegers and Beatty (“WB”), include in [19], page 7, a table of requirements cat-
egories, with the following figure (page 8) illustrating their connections (Fig. 1):

Fig. 1. Categories and relationships (from [19])

The first two columns in the following table are reproduced from Wiegers
and Beatty; the third column gives in each case the corresponding category in
the present classification.

The classification of this article appears to cover the Wiegers-Beatty
categories.

30 B. Meyer et al.

WB category WB definition Category from
the present
discussion

Comment

Business
requirement

A high-level business objective of
the organization that builds a
product or of a customer who
procures it

Goal Can also
include limits

Business rule A policy, guideline, standard, or
regulation that defines or
constrains some aspect of the
business. Not a software
requirement in itself, but the origin
of several types of software
requirements

Constraint See also
business rule
subcategory
(Sect. 4.2)

Constraint A restriction that is imposed on
the choices available to the
developer for the design and
construction of a product

External
interface
requirement

A description of a connection
between a software system and a
user, another software system, or a
hardware device

Component

Feature One or more logically related
system capabilities that provide
value to a user and are described
by a set of functional requirements

Behavior From viewpoint
of actor (e.g.
user)

Functional
requirement

A description of a behavior that a
system will exhibit under specific
conditions

Behavior

Nonfunctional
requirement

A description of a property or
characteristic that a system must
exhibit or a constraint that it must
respect

Constraint on
the system

Quality
attribute

A kind of nonfunctional
requirement that describes a
service or performance
characteristic of a product

Constraint on
the system or
products

From viewpoint
of actor (e.g.
user)

System
requirement

A top-level requirement for a
product that contains multiple
subsystems, which could be all
software or software and hardware

Component

User
requirement

A goal or task that specific classes
of users must be able to perform
with a system, or a desired product
attribute

Goal

7.2 Van Lamsweerde

In the same style as Sect. 7.1, the following table considers the classification by
[17] (“AVL”) from which the first two columns are reproduced verbatim.

Towards an Anatomy of Software Requirements 31

AVL category AVL definition Category from
the present
discussion

Comment

Functional
requirements

Functional effects that the
software-to-be is required to
have on its environment

Constraint or
Behavior

Non-
functional
requirements

Constraints on the way the
software-to-be should satisfy its
functional requirements or on
the way it should be developed

Task Can also be
product

Quality
requirements

Additional, quality-related
properties that the functional
effects of the software-to-be
should have

Constraint Usually
engineering
decisions

Compliance
requirements

Prescribed software effects on
the environment to conform to
national laws, international
regulations, etc

Constraint Usually
business rule

Architectural
requirements

Imposed structural constraints
on the software to fit its
environment

Component

Development
requirements

Non-functional requirements on
the way the software-to-be
should be developed

Task Can also be
product

The following artifacts are not defined as requirements categories in [17], but
are important enough for inclusion here:

Goals Prescriptive statements of intent
that the system should satisfy
through the cooperation of its
agents (active system
components)

Goal

Expectations CPrescriptive statements of
intent that the system should
satisfy through the cooperation
of its agents (active system
components)

Goal

Domain properties NDescriptive statement about
the environment, expected to
hold invariably regardless of
how the system behaves

Constraint Or Component if
the property
holds on a
structural
description

Coverage again appears good.

32 B. Meyer et al.

8 Normative Work

This section considers some existing normative work on requirements.

8.1 IEEE Definition

The current version of the IEEE standard for software terminology [1], released
in 2010, offers a definition of “requirement”, retained and confirmed from a 1990
version. Under that definition, a requirement is:

1. A condition or capability needed by a user to solve a problem or achieve an
objective.

2. A condition or capability that must be met or possessed by a system, system
component, product, or service to satisfy an agreement, standard, specifica-
tion, or other formally imposed documents.

3. A documented representation of a condition or capability as in (1) or (2).
4. A condition or capability that must be met or possessed by a system, product,

service, result, or component to satisfy a contract, standard, specification, or
other formally imposed document. Requirements include the quantified and
documented needs, wants, and expectations of the sponsor, customer, and
other stakeholders.

That definition cannot be right. Its very length is just a symptom of the
problem: “requirement”, either in ordinary usage or as applied to software, is a
simple concept which merits a simple definition.

In clause 1, a requirement is a “condition or capability”, but it is not clear
what these terms mean and how the meanings differ; “capability” is not defined
in the standard, and “condition” is defined as “a description of a contingency
to be considered in the representation of a problem, or a reference to other
procedures to be considered as part of the condition”, where “contingency” is
not defined. This definition of “condition” is indefensible: it is again far too
complex and mysterious, especially in light of the ordinary- language meaning
of the term (as everyone knows, a condition is simply, a property that can be true
or false). That ordinary meaning would seem just right in a systems/software
context too. Coming back to the definition of “requirement”, the distinction
between “solve a problem” or “achieve an objective” seems spurious (solving a
problem is an objective, and reaching an objective raises problems).

The distinction between clause 2 and clause 1 is equally uninteresting, since
the definition of “user” in the standard, too long (18 lines!) to be reproduced
here, is broad enough to encompass anyone having an interest in an agreement,
standard etc. Worse, clause 2 makes the definition circular, since a “specification”
(defined as “a detailed formulation, in document form, which provides a definitive
description of a system for the purpose of developing or validating the system”)
certainly includes the description of all “conditions” and “contingencies” of the
system, whatever those may be; so a requirement is defined as a condition that
must be met to satisfy a specification of conditions!

Towards an Anatomy of Software Requirements 33

Viewed in light of the distinction between a property and a statement of
that property (Sect. 3.2), clause 3 commingles these two notions under the term
“requirement”, a source of confusion: a property is not the same thing as one
representation of that property in some notation such as English, UML or Telugu.

Clause 4 is entirely mystifying, since it is almost identical to clause 2 but not
quite, raising issues of consistency; in addition, the commingling of property and
statement of clause 3 does not apply to clause 4, leaving the reader wondering.

As to the last sentence, it is not in the form of a definition like the preceding
ones, but comments on what requirements may “include”; such sentences, inap-
propriate in a definition since they can only serve to confuse the reader further
(if the first four clauses, already lengthy and redundant, are supposed to define
requirements, what else is needed?); it sounds more like a “remorse”, a typical
flaw of definitions [14], trying to make up for an unsatisfactory definition by
adding a broad net of precautionary qualifications at the end.

Insistent as it is on including irrelevant and redundant details, the definition
manages to miss crucial aspects of requirements: it focuses on system require-
ments, but does not cover properties of the project, and may cover environment
properties only by a stretch of the imagination.

This addled attempt at a definition, which sounds like an attempt to integrate
the comments of everyone in a committee, is unlikely ever to have helped a
software practitioner. One should note here that such self-defeating pomposity
is inevitable neither for standards in general nor for IEEE standards. The 1998
IEEE requirements standard [2], long marked as obsolete but still widely used
in the industry (which prefers it to its successors, an understandable attitude
in light of the present discussion’s example), is a short, clear, no-frills standard,
and as a result remarkably useful in practice.

The IEEE-2010 definition does have one redeeming feature: its restriction to
properties “needed by a user”. Through this clause, the definition expresses that
not all properties (of a project, system or environment) are interesting as require-
ments only if they are of interest to someone. That someone should be defined
not as “a user” but as a stakeholder. (Many legitimate requirements are intended
for stakeholders other than users, for example to company management in the
case of requirements that the present discussion classifies as goals. A goal such
as “take market share away from competitor X” is relevant as a requirement, but
hardly “needed by a user”. It is needed by a stakeholder. This sloppiness in ter-
minology is all the more surprising that the standard does define “stakeholder”.)
Still, the underlying idea is correct: a requirement is not just any property of the
system (or project, or environment) but one that some stakeholder (e.g. a user)
finds important. The present article’s definition of requirement recognizes that
idea by defining the concept of a relevant property (Sect. 3.3) and including it
in the definition of “requirement” (Sect. 3.4).

34 B. Meyer et al.

8.2 SWEBOK

SWEBOK, the IEEE-originated Software Engineering Body of Knowledge [5], is
an effort to classify existing knowledge in software engineering, with numerous
elements in common with the IEEE standard discussed above.

SWEBOK defines a “requirement” as “a property that must be exhibited by
something in order to solve some problem in the real world”. This definition is
in part useless and in part wrong:

– It is grammatically challenged. As written, it implies that it is the “property”
that must “solve some problem”. Since properties do not solve problems, the
most reasonable interpretation, which we will assume, is that the definition is
incorrect English for “. . . in order for someone to solve some problem”. This
point of pure form is not just quibbling since a definition, particularly in a
document attempting to define best practices, is only useful if it is clear.

– On the substance: why the “real” world? What would be a “problem” in an
unreal world? “Real world” is informal language, not a concept for a standard
of industrial practice. SWEBOK uses it more than a dozen times but does
not define it. The intention seems to be that software should not exist just for
itself, and instead should be related to some issue in the non-software world,
like banks or airplanes. But this view, while common in simplistic discussions
of software engineering, is incorrect: requirements are defined and necessary
for systems that are entirely virtual and not part of the physical world, like
a compiler, an operating system, a Web browser...

– While too restrictive in its focus on the “real world”, the definition is too
general in other ways. “In order to solve” the “problem” of building a software
system, a “property” that must be “exhibited by” the building hosting the
team (“something”) is that it should not be on fire, and a property of the
team members (another “something”) is that they should be awake. Those
are hardly requirements in any meaning pertaining to software engineering.

After this useless definition, SWEBOK introduces some more relevant con-
cepts, such as “product requirement” and “process requirement” which, tellingly,
are defined without reference to it: respectively, “need or constraint on the soft-
ware to be developed” and “essentially” (?) “a constraint on the development
of the software”. The first of these definitions seems to confuse behaviors and
constraints, since it is illustrated by the example “The software shall verify that
a student meets all prerequisites before he or she registers for a course”. Such a
property is not “a need or constraint on the software” (which would be some-
thing like “registration to a course is conditional on satisfying the prerequisites”,
an environment property) but a property of the software (a behavior in the ter-
minology of the present work). The fundamental distinction between properties
of the environment and properties of the system is one of the insights gained in
the progress of software engineering over the past two decades, but SWEBOK is
not aware of it, other than in a brief mention of “business rules” in the section
on requirements elicitation.

Towards an Anatomy of Software Requirements 35

As these samples illustrate, SWEBOKS’s strength is not in definitions of
software engineering concepts, or more generally in precision and clarity (all
the more regrettable that many textbooks reverently cite SWEBOK as a font
of software engineering wisdom). It naturally tends to the prescriptive mode
and includes (aside from such time-wasting platitudes as requirements elicita-
tion being “fundamentally a human activity”) some reasonable advice, such as
ensuring “effective communication between the stakeholders” to guarantee good
requirements elicitation.

The aspect of SWEBOK most relevant to the present effort at taxonomy is
the attempt at requirements classification along “a number of dimensions”: func-
tional vs nonfunctional, single versus emergent, product versus process, higher
or lower priority, scope, volatility versus stability.

8.3 Essence

Essence [11], by the Semat consortium under the leadership of Ivar Jacobson, is
an effort to develop a systematic understanding of software engineering concepts
and best practices. Requirements appear as one of seven “alphas” (key elements)
of Essence, along with Software System, Team, Work, Way of Working, Oppor-
tunity (“The set of circumstances that makes it appropriate to develop or change
a software system”) and Stakeholders. Essence defines the role of requirements
as “what the software system must do to address the opportunity and satisfy the
stakeholders”. This definition is indefensible since it covers only one of the three
relevant aspects, the system (Sect. 3.4), missing the project and the environment.
(It fails to cover such typical requirement examples “version 1 shall be opera-
tional no later than September 2023” and “the social security number uniquely
identifies a person”, respectively project and environment properties.)

Like many software engineering discussions, Essence does not devote much
effort to defining basic concepts and instead veers quickly into prescriptive mode.
In fact, immediately after the preceding definition comes the prescriptive obser-
vation that “It is important to discover what is needed from the software system,
share this understanding among the stakeholders and the team members, and use
it to drive the development and testing of the new system.” The main contribu-
tion of the Essence discussion of requirements is indeed prescriptive: defining
a sequence of states through which requirements progressively become more
mature, including successively:

– Four states relative to the requirements just by themselves: Conceived (need
for a new system agreed), Bounded (purpose is clear), Coherent (consistent
description of system essentials), Acceptable (requirements are satisfactory
for stakeholders).

– Two states that also involve the implementation: Addressed (enough to satisfy
the need for a new system); Fulfilled (fully satisfies stakeholders).

Could Essence contribute to the present effort at taxonomy? Unfortunately
(and surprisingly for such a recent effort) Essence suffers from the same dated

36 B. Meyer et al.

view of requirements as SWEBOK, not integrating the progress of its under-
standing over the last two decades. The basic definition, as noted above, cov-
ers only the system part. Interestingly, the notion of environment does appear,
but only twice and without explanation, in the description of the Bounded
state (“constraints are identified and considered” and “assumptions are clearly
stated”). There is no mention of project aspects, other than a condition in the
Conceived state that “the stakeholders that will fund the initial work on the new
system are identified”. The early section on “Justification: Why requirements?”
starts: “the requirements capture what the stakeholders want from the system”;
this view is näıve since the requirements for a practical system requirements can-
not just consider what the stakeholders want but also what is possible. In fact,
out of the nine basic categories of requirements from Sect. 4.1 (ignoring meta-
requirements), an SRS capturing only “what the stakeholders want” would only
cover one, goals, and possibly part of another, behaviors.

Essence does introduce a concept useful to the discussion of requirements:
one of the alphas, “opportunity” defined (as noted) as “the set of circumstances
that makes it appropriate to develop or change a software system”. In relation
to the present work’s terminology, an opportunity is the basic reason behind
a goal. For example, if one of the goals of a project (back in the late 1990s)
was “make our billing system ready for the transition to the Euro”, that goal
only made sense because of the opportunity, in the Essence meaning, that some
European countries are replacing their separate currencies by a common one.
For the discussion of requirements, this notion is one level too far from software
development: a software system does not directly “address the opportunity”, as
the Essence definition of requirements (cited above) says: it addresses a goal.
Between the switch to the euro, an opportunity in Essence terms, and the soft-
ware update, a system effort, stands a goal: adapt the software to be ready
for the switch. The goal addresses the opportunity; the requirements address
the goal. Still, by highlighting the concept of opportunity Essence reminds us
that in the broader context of software engineering behind every goal stands an
opportunity.

The six stages in the Essence progression of requirements are also an inter-
esting contribution, but they belong to the prescriptive realm beyond the scope
of the present work.

The other way around in the relationship, we suggest that future versions
of Essence could take advantage of the present work. Essence is a commendable
effort to establish software engineering on a more solid basis, but cannot reach
this goal without precise definitions (which, as we saw, industry standards do
not provide) of the core concepts. In the case of requirements it needs to be
brought in line with the modern understanding of these concepts.

9 Assessment and Future Work

The expected contributions of this work include providing a basis for:

Towards an Anatomy of Software Requirements 37

1. Clarifying requirements concepts, through precise, non-bureaucratic, non-
pompous but effectively usable definitions.

2. Requirements methodology (“prescriptive” discussions of requirements).
3. The critical analysis of requirements documents, as part of a quality assurance

and improvement process.
4. Automatic processing of natural-language requirements documents.
5. Formal approaches to requirements (as discussed in a survey [6]).

On point 2, we may note that much of the existing literature on requirements
is prescriptive: textbooks tell students what distinguishes good requirements
from bad, and research articles propose new requirements methods meant to
improve on existing practices. This focus is understandable, particularly since
it is a widely shared assessment that the quality of requirements as actually
written in industry is overall not very good. The present work is at a different,
more basic level: providing fundamental definitions and taxonomies to enable
better understanding and discussions of requirements. As one of its applications,
it can help inform prescriptive discussions, and make them more effective, by
defining the framework precisely. We saw some examples of possible prescriptive
consequences of the descriptive approach of this work:

– The distinction between homogeneous and heterogeneous composite require-
ments (Sect. 3.2) leads to the observation that the second kind is to
be avoided. If a requirement is composite, it should bind together sub-
requirements of a similar nature and not, for example, a component and
a behavior, or a behavior (applying to the system) and a constraint (charac-
terizing the environment).

– The notion of component is closely connected to the advice (present in all
good requirements methods, going back to the venerable IEEE standard on
requirements [2]) to list and define all relevant concepts in a glossary. All
important components should appear in the glossary.

– The notion of lack directs requirements engineers and quality assurance teams
to look for requirement elements that have been overlooked. An example of
lack is a component that does not appear in the glossary.

– The notion of contradiction again provides guidelines for quality assurance
on requirements. Practical requirements document often contain a surprising
number of contradictions, arising in particular from long periods of require-
ments development and the intervention of many different people in the pro-
cess.

– The notion of repetition (REPEATS relation) is also important, in particu-
lar when distinguishing between two of the relation’s variants: EXPLAINS
is legitimate (provide different views of the same property, in different nota-
tions), although it is important to ensure consistency as in the “multire-
quirements” approach [16]; DUPLICATES, on the other hand, is in our view
always bad. (One could state that repeating the same information in different
ways but in the same notation can be harmless, but it is not: the duplication
contributes to requirements document bloat; it wastes the reader’s time; it
can confuse the reader who does not know which of different explanations of

38 B. Meyer et al.

the same property to believe; and it fares poorly in the context of software
evolution since it is easy to update one variant and forget the others.)

– The important recurring debate between traditional (“waterfall”) and agile
approaches to requirements can benefit from the precise analyses of the
present work.

On points 3 and 4 (analysis of SRS), the precision that we have tried to apply
to the definitions and taxonomies should help efforts to perform automatic NLP
(Natural-Language-Processing) analysis of requirements document. There has
been considerable research interest in this topic. NLP and more generally AI
techniques have made astounding advances, but they are better at inferring a
good-enough approximation of a considerable amount of information than at
inferring precise information. An example (hijacked from a discussion of agile
methods in [7]) is, in a requirements specification for a seminar scheduling sys-
tem, the property that “the hotel is booked”: it could mean that we have just
succeeded in booking the hotel, or that it was already booked by someone else
and hence that we have to look for another. While humans can handle this kind
of subtlety, it seems beyond the reach of algorithms. But automatic analysis
does not raise that level of difficulty if it focuses on structure rather than deep
semantics. Its goal then is to organize the requirements, decode (“parse”) the
structure of the project, system and environment, and identify relations. Such an
analysis could yield a first level of formalization of informal requirements, useful
by itself (and also as a starting point for finer semantic analysis, automatic or
partly manual). Building the corresponding tools, by relying on the concepts
developed in this article, seems a promising avenue of research with achievable
goals.

Such NLP processing based on the taxonomies of this article is part of our
current work. Other efforts in progress include:

– Exploring properties of requirements in relation to other software artifacts,
such as code, whereas the present discussion mostly considers requirements
by themselves.

– Validating the approach on many further examples, academic and industrial.
– Assessing its teachability, by using it in courses on software engineering and

requirements.
– Using it as a basis for a formal specification of requirements concepts. There

have been various attempts to describe software engineering concepts in for-
mal frameworks. (An early example was [15] which provides a mathematical
model for binary relations between program elements such a modules, express-
ing formal properties of these relations.) The present discussion provides a
solid basis for discussing requirements concepts, but it is still expressed in nat-
ural language rather than mathematics. We believe it provides an excellent
starting point for mathematical modeling of the concepts under discussion
and hope to develop the corresponding formal specifications, with a view to
uncovering laws of software engineering that admit rigorous mathematical
statements.

Towards an Anatomy of Software Requirements 39

Even without these further developments, we hope to have provided a clearly
defined framework that can serve as a reference for future work on requirements,
and help improve the state of the art in this critical area of software engineering.

Acknowledgements. We are grateful to Dr. Bettina Bair from Ohio State University
for writing the original (2006) version of the course project document [3] and providing
us with a more recent version.

Attendees of talks given on this work by some of the authors provided particularly
relevant feedback: at Politecnico di Milano (Meyer, March 2019), Elisabetta Di Nitto,
Carlo Ghezzi, Dino Mandrioli and Maurizio Patriarca; at the University of Toulouse
(Meyer, March 2019), Mamoun Filali Amine, whose comments led to a revision of the
classification of constraints; at Innopolis University (Meyer, March 2019); at the GDR
meeting, Génie de la Programmation et du Logiciel, also in Toulouse (Bruel, June
2019).

We are further indebted to Joëlle Guion for important comments on the concerns
of practicing requirements engineers.

References

1. IEEE 24765-2010. ISO/IEC/IEEE International Standard - Systems and software
engineering - Vocabulary (2010). https://standards.ieee.org/standard/24765-2010.
html

2. IEEE 830-1998. IEEE Recommended Practice for Software Requirements Specifi-
cations (1998). https://standards.ieee.org/standard/830-1998.html

3. Bair, B.: SBE Sales System (2006). Example requirements document for a course
at Ohio State University. http://bit.ly/2OsNdmN

4. Bandakkanavar, R.: Software Requirements Specification document with example
(2017). Technical paper. http://bit.ly/2XTSjOs

5. Bourque, P., Fairley, R.E., et al.: Guide to the Software Engineering Body of Knowl-
edge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press (2014)

6. Bruel, J.-M., Ebersold, S., Galinier, F., Naumchev, A., Mazzara, M., Meyer, B.:
Formality in Software Requirements (2019, to appear)

7. Cohn, M.: Succeeding with Agile: Software Development Using Scrum. Pearson
Education, London (2010)

8. Galinier, F., Ebersold, S., Bruel, J.-M., Meyer, B., Naumchev, A.: Detailed analy-
sis and classification of a requirements document, September 2010. http://bit.ly/
2F8NY2I

9. Galinier, F., Ebersold, S., Bruel, J.-M., Meyer, B., Naumchev, A.: Online quiz on
taxonomy of requirements, September 2010. http://bit.ly/2Ww1vYk

10. Galinier, F., Ebersold, S., Bruel, J.-M., Meyer, B., Naumchev, A.: Online quiz on
taxonomy of requirements relations, September 2010. http://bit.ly/2Ww7fBl

11. Object Management Group. Essence - Kernel and Language for Software Engi-
neering Methods, October 2018. http://semat.org/essence-1.2

12. Jackson, M., Zave, P.: Deriving specifications from requirements: an example. In:
1995 17th International Conference on Software Engineering, p. 15. IEEE (1995)

13. Laplante, P.A.: Requirements Engineering for Software and Systems, 3rd edn.
Auerbach Publications (2017)

14. Meyer, B.: On formalism in specifications. IEEE Softw. 3(1), 6–25 (1985)

https://standards.ieee.org/standard/24765-2010.html
https://standards.ieee.org/standard/24765-2010.html
https://standards.ieee.org/standard/830-1998.html
http://bit.ly/2OsNdmN
http://bit.ly/2XTSjOs
http://bit.ly/2F8NY2I
http://bit.ly/2F8NY2I
http://bit.ly/2Ww1vYk
http://bit.ly/2Ww7fBl
http://semat.org/essence-1.2

40 B. Meyer et al.

15. Meyer, B.: The software knowledge base. In: Proceedings of the 8th International
Conference on Software Engineering, pp. 158–165. IEEE Computer Society Press,
August 1985

16. Meyer, B.: Multirequirements. Modelling and Quality in Requirements Engineering
(Martin Glinz Festscrhift) (2013)

17. Van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-
els to Software, vol. 10. Wiley, Chichester (2009)

18. Van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements
engineering. IEEE Trans. Softw. Eng. 26(10), 978–1005 (2000)

19. Wiegers, K., Beatty, J.: Software Requirements, 3rd edn. Microsoft Press (2014)

Software Engineering and Programming
Languages

Preferred Tools for Agile Development:
A Sociocultural Perspective

Paolo Ciancarini1,2, Marcello Missiroli1(B), and Alberto Sillitti2

1 DISI, University of Bologna, Bologna, Italy
{paolo.ciancarini,marcello.missiroli}@unibo.it
2 Innopolis University, Innopolis, Russian Federation

a.sillitti@innopolis.ru

Abstract. Tools are of paramount importance in supporting software
development methods, Agile ones included. In this paper, we aim to
identify the most popular tools used by the Agile developers community,
studying whether there are shared opinions or there are discrepancies,
that could be related to cultural or geographical differences. The study
is based on the DESMET approach, enhanced with some additional con-
siderations.

Results show that Agilists are well integrated and tend to use the
same tools even if some regional differences exist. Moreover, they prefer
well-known and established products; interestingly, planning tools are
generally regarded as unsatisfactory. We list, classify, and discuss the
most popular tools.

1 Introduction

Every software development method carries its own set of tools. Traditional,
plan-based development approaches (e.g., Waterfall, V-shape, etc.) have estab-
lished the importance of project management tools (e.g., GANTT, PERT, etc.),
software estimation techniques (e.g., CoCoMo, function points, etc.), and testing
approaches (e.g., white, gray, and black box). Some of them have become part of
the standard set of tools that support and automate programmers’ tasks: IDEs,
build automation, testing frameworks, and more. Collectively named Computer-
Aided Software Engineering (CASE) tools, they encompass the entire production
cycle and have been in use for several decades.

When the Agile manifesto was published in 2001 [9], it proposed a radically
different approach to software development that included and combined several
practices and concepts developed and applied with success by some professional
developers of the time.

Beck, one of the signers of the Manifesto, for instance, claimed that contem-
porary tools were not suited for the Agile approach [8]. Therefore, developers
were urged to modify and adapt existing tools or to create their own to fit their
needs. As a result, the use of low-tech tools began to spread and become a syn-
onym of Agile development. To avoid the problems and distractions introduced

c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 43–58, 2019.
https://doi.org/10.1007/978-3-030-29852-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_3

44 P. Ciancarini et al.

by tools and to focus on the new approach, the preferred way to spread the agile
principles and practices was to use cheap low-tech solutions – pens, paper, and
sticky notes [27]. While being instrumental in teaching the new method and hav-
ing obvious relations with the Manifesto’s philosophy, such an approach was also
a response to the excessive use of cold tools and procedures which de-humanized
the coding practices over time.

Indeed, several professionals believe that physical tools are adequate for all
uses and disdain digital tools1 in all cases except for automating certain tasks
(e.g., continuous integrations and version control).

Limiting a team to just low-tech tools does not work, particularly when scal-
ing [26,32]. The Agile revolution calls for a different set of powerful tools that
either substitute or work alongside paper-and-pencil ones. We are aware that
analyzing and/or recommending tools is difficult, especially in this area: method-
ologies change rapidly [13], tool are frequently updated [29], developer are always
looking for new solutions [12], etc. However, we think that, for this very reason,
it is important to analyze the current situation to understand the limitations and
the advantages of the current tools. Moreover, it will be interesting to monitor
their evolution and relate them to the technological and methodological changes.

This work compares the software tools that are currently the most popular
and related to Agile development and classify them according to several user
categories, also highlighting differences due to employers, culture, and location.

The rest of this paper is organized as follows: Sect. 2 investigates related
research; Sect. 3 describes the overall structure of our investigation; Sect. 4 per-
forms a first screening survey based on publicly available information and focus
group reports; Sect. 5 refines results by performing a feature analysis survey on
the Agile Community; Sect. 6 analyzes the threats to validity; Sect. 7 discusses
the final results; finally, Sect. 8 draws the conclusions.

2 Related Work

Some investigations on agile tool usage are found in [14,19]. The most complete
report available is Forrester Wave, a comprehensive review of the Agile devel-
opment landscape [34], which includes some considerations on software tools.

There are two papers investigating a closely-related area: the reviews by
Azizyan et al. [5] and Gottstein et al. [16]; the latter notable for its rigorous
approach. These are both quite obsolete in the fast-changing world of software
development. Almost every product reviewed has virtually disappeared and the
tools used today did not even exist at that time.

Wang [33] reviews tools specifically aimed at distributed projects. This report
is outdated as well. The annual State of Agile report2 offers a listing of the
most used and recommended tool, but its findings may be biased due to the
involvement of VersionOne. The most recent independent work is [22] providing
some regional and qualitative data.
1 https://pragprog.com/magazines/2011-09/the-only-agile-tools-youll-ever-need.
2 https://stateofagile.versionone.com/.

https://pragprog.com/magazines/2011-09/the-only-agile-tools-youll-ever-need
https://stateofagile.versionone.com/

Preferred Tools for Agile Development: A Sociocultural Perspective 45

There are also some studies on specific tools such as the ones on Atlassian
Jira [15] and Confluence [11]; a specific work directly compares JIRA and Red-
mine [28]. Finally, even if systematic reviews exist, such as [24], they do not
focus specifically on Agile tools.

Moreover, while there are some works linking Agile success to cultural aspects
in companies [20], we found no works linking Agile tools usage and national
and/or language factors (with the possible exception of [1]).

3 Research Design

Our research is based on the Kitchenham’s DESMET Method for evaluat-
ing Software Engineering Methods and Tools [21], providing software develop-
ment organizations with a flexible research framework, also used in academic
research [4,18]. The main deviation we applied to the original method is in its
application to a self-defined community (the Agile Community) instead of a
formal organization or company.

The Agile movement began officially in 2001. Its practitioners started from
the very beginning to share ideas and information using the opportunity provided
by the Internet. As a result, with respect to traditional programmers, Agilists
tend to be more sociable, communicative, and united [35].

Unsurprisingly, in just a few years, a global Agile Community emerged.
Though not formally defined, it presents itself as a myriad of local user groups,
conferences, and very active online groups. In this perspective, we assume that
the Agile Community fits the general definition of an organization used in
DESMET [21]. Of course, a community lacks the internal structure and reliabil-
ity of a normal organization. However, Agile developers share the same vision
on practical problems, and this alleviates the differences, at least partially.

In this study we target the global Agile Community. This gave us the oppor-
tunity to compare some local communities identifying similarities and differences
due to cultural and linguistic differences.

We can now formalize the research goals as follows:

– RQ1: Which are the best and most widespread computer-based tools for the
Agile lifecycle (ASDLC [2]) used by the Agile Community?

– RQ2: Are there differences based on cultural or geographic location?
– RQ3: In this context, which are the common and different aspects of the Agile

Communities participating in this study?

To reach our goal, the instrument we chose is a Feature Analysis, which is
an “attempt to put a rationale on the gut feeling for the right product” [21].
We follow the DESMET methodology rather closely but using in a two-step
approach:

– First, we performed a Screening Survey based on available information, cre-
ating a shortlist of the most used tools.

– Then, using the information obtained, we performed a Feature Analysis Sur-
vey which produced the final results.

46 P. Ciancarini et al.

3.1 User Groups

Since the community is vast and diverse, it is important to identify a more spe-
cific user group, as stated in [21]; each group can have a different perception
of the concept of “best tool”. In this work, we consider two broad groups of
users: professional and education. The first includes people employed in the soft-
ware development industry, the latter people involved in learning and teaching
software development. Moreover, according to both our experience and avail-
able research [23], the company size affects the Agile projects success, far more
than domain or location. Therefore, we divided the professional group accord-
ing to the size of their companies. The cultural aspect, mainly defined by the
mother tongue language used, is used to partition answers and identify possible
trends. There are many other possible discriminating factors such as experi-
ence, level of implementation of the agile practices, team size, etc. Therefore,
we included them in the questionnaire. To summarize, the identified groups are
as follows: Micro enterprises (MiE), Small businesses (SB), Medium enterprises
(MeE), Large enterprises (LE), CS-oriented Educational Institutions (CSEI).

3.2 User Groups by Culture

Another important factor is the cultural-linguistic context of developers. It
is conceivable that results vary considerably in relation to location, language,
and cultural background. As a result, we prepared several localized versions of
the survey, to understand whether our intuition was correct. Localized version
include vehicular languages (English, French, Spanish, Arabic), widely spoken
but highly localized communities (Russian, Chinese) and middle-sized uniform
cultural environments (Italian, Japanese, Iranian).

3.3 Scope

According to the DESMET methodology, we performed comparative evaluation
of tools to understand how well they fit the need and culture of users group
within the target organization. Please note that DESMET only evaluates specific
methods and not their interaction. In case of tools providing multiple features
or even fully integrated system, they are rated separately. This is a well known
threat to validity of DESMET and it needs be taken into account.

3.4 Methodology

To correctly perform a review of the tools, it is necessary to identify which
categories of tools are used in an Agile development environment. As a starting
point, we used the list of Agile programming practices [7]. Taking the whole
lifecycle into account, we identified three main areas in which Agile practices
and values can benefit from software tools, namely (a) Project Management
& Strategic Planning, (b) Coding, Tactical Planning & Deployment
and (c) Communication & Collaboration:

In our work, we considered only tools that fulfill the following conditions:

Preferred Tools for Agile Development: A Sociocultural Perspective 47

1. They significantly impact one or more of these areas of interest.
2. They are targeted at the Agile Community, thus excluding IDEs, classic

project management tools (e.g., Microsoft Project); some general-purpose tool
that have large user base among Agilists were included as exceptions.

3. They have a sizable user base; we excluded niche, abandoned, or beta-quality
tools.

3.5 Assumptions and Confidence in Results

A major problem we have is the tool granularity. Some tools are vertical products
(or tightly integrated components) aiming to address all development needs.
Other tools focus on one or two aspects of the development cycle. For example,
Jira and the Microsoft suite belong to the first kind, while Toggl to the second
one. We considered the impact of each tool on the most relevant area (as defined
in Sect. 3.4), taking into account the ease of interaction with third party tools.
We evaluated only tools that have been available for at least two years. This
time is sufficient for the community to acquire experience and evaluate a tool in
production and not only in test projects.

4 Screening Survey

We can formalize the research question of this step as a sub-question of RQ1:

– RQ1.1 Currently, which are the most popular tools related to the Agile devel-
opment?

There is a large number of computer-based tools that are related to the Agile
development, so many that it is impossible to examine them all in a reasonable
amount of time. Therefore, the initial part of the work consisted in identifying the
most used tools by the Agile community. Though, this is different from finding
the best ones, we assume that the wisdom of the crowds principle [31] holds,
allowing us to include the best tools in the most used ones.

The evaluation method used is a Screening Survey, as defined by
DESMET [21]. It is used when “various tools have been used in a group organi-
zation” and executed by collecting information from a number of users.

4.1 Initial Product Selection

To build the initial list of tools, we analyzed a set of websites specialized in soft-
ware reviews. They included TrustRadius, Software Advice, BestVendor, Find-
TheBest, AppAppeal, Cloudswave, GetApp, Serchen, Alternativeto, SocialCom-
pare, Credii, IT Central Station, G2 Crowd, TopAlternatives, DiscoverCloud,
Project Management Zone. We also considered Wikipedia, looking for products
labeled as “Agile”. We built a list of all products that were mentioned or reviewed
at least twice.

Then, we created the list applying the following criteria [21]:

48 P. Ciancarini et al.

– Support of at least one of the following development areas: planning, com-
munication, coding (Mandatory).
Since we are considering very diverse tools, building and ranking a feature list
would be both impossible and pointless. Rather, we grouped tools into the
three mentioned areas of interest and considered tools that could be applied
to at least one of them.

– Established user base and support (Mandatory).
This excludes abandonware (defined in this context as software with no
updates in the last 24 months), beta-quality software, and products with-
out available support (either paid or community-based).

– Conceived for Agile development (Highly Desirable).
When starting to embrace Agile, many companies decided to adapt exist-
ing tools to the new methods instead of acquiring new ones. In fact, some
reviews [14] show that one of the most used Agile tools are spreadsheets as
Microsoft Excel. Since it is difficult to discriminate their use for common
tasks, plan-driven development and agile development, we decide to favor
Agile-specific tools, though not exclusively.

– Free/Open source software (Desirable).
This criteria is motivated by the fact that most top FLOSS developer-oriented
tools are high-quality, reliable, and long-lived. Moreover, their adoption has
frequently lower barriers since developers can often use them bypassing their
purchasing offices.

Before applying our criteria, we removed tools related to development in
general, such as IDEs, Version Control Systems (e.g., Subversion, Git, etc.) and
testing frameworks, since they are are ubiquitous, regardless the development
methodology adopted.

Applying such criteria, we built a list of 80 tools, partitioned in the three
areas defined in Sect. 3.4.

4.2 Popularity Filter

We had to narrow down the list according to popularity, an indication of market
share, renown and appreciation. Popularity is important for various reasons, such
as ease of personnel recruitment, continued and reliable support, and available
knowledge base in the community.

There is limited reliable information available on this matter, such as sale
figures, download data, user-based reviews. In many cases, software companies
are not interested in publishing such data. Since a worldwide survey is impossible
in a reasonable timescale, we defined a popularity index that allowed us to rank
and identify the most popular products based on several information sources
available on the Internet and the information provided by a focus group.

More specifically, the index was built by joining information from four dif-
ferent sources:

1. Google Trends
This tool is often used as a reliable source of information in academic
research [10], even in the software engineering field [25]. Google Trends gives

Preferred Tools for Agile Development: A Sociocultural Perspective 49

us an idea of the overall popularity of the product. Then, we ranked the
results and assigned points according to the following scale: 20 points for the
first place, 17 for the second, then 13, 10, 8, 6, 5, 4, 3, 2. Thereafter, 1 was
awarded if the result was at least 1, 0 otherwise. This sublinear scale was
devised after experimenting with linear and Fibonacci successions; it was the
best suited to achieve the following goals: (a) assign an equal weight to all
factors, since we did not have any a priori knowledge of relative reliability
and (b) give ranking leaders a substantial, but not overwhelming advantage
over the next in rank.

2. Stack Overflow
Stack Overflow is arguably the most popular Q&A website for developers.
It provides practical advice and can be used as an information source in
research [3,6]. We counted the number of questions tagged to specific prod-
ucts, as an indication of the interest within the programmers’ community.
Results were ranked and points assigned using the same scale as above.

3. Agile-oriented reviews websites
The importance of word-of-mouth has not been widely used in Computer
Science, though it has in other contexts [17]. We re-examined the reviews of
the websites used in Sect. 4.1, and we noted that only a fraction of them has
a significant presence of Agile-specific software reviews. In practice, only two
sites were considered as significant: Software Insider and G2crowds.
As the review quality is very different and sometimes of dubious reliability,
we used the number of reviews as a measure of the interest of the community.
Therefore, our metric was calculated by adding the numbers of reviews of
a given product from the two websites, then ranking results and assigning
points as above, assigning the same weight to both websites.

4. Agile expert group
We convened an expert group of about 20 developers and entrepreneurs with
a solid experience of Agile practices belonging to companies of various size.
They were asked to cite the most useful tools they actively use. Then, we
counted the number of occurrences that a product was listed and added the
number of times that a given product was cited in the following discussion.
Final results were also discussed online in specialized international mailing
lists, sometimes adding products that were not cited during the meeting.
Again, results were ranked and points assigned as above. In case of a tie,
we summed and averaged the points awarded rounding down. Note that nei-
ther Microsoft Excel nor Project were ever mentioned by the expert group,
supporting our intuition to exclude them in the early stages.

Table 1 shows the results of our popularity investigation. Since, some prod-
ucts are related to more areas and we are interested in identifying the most pop-
ular tools overall, the table shows such products only once, in the best-ranking
area.

The overall popularity score is the sum of the four scores, ±5% in case of
rising or falling Google Trend.

50 P. Ciancarini et al.

Table 1. Popularity evaluation: (1) Jira Agile results could be affected by the possible
overlapping searches of JIRA, Atlassian Jira, Agile Jira and Grasshopper, its previous
name. (2) Slack result do not include data from Screenhero, a Pair Programming tool
acquired. (3) Most of the results about Skype for Business were based on the program’s
former name, Lync. In addition, though slightly below the Confluence score, we took
into account the positive trend (in contrast to the Confluence’s negative one) and
awarded a better ranking. (4) Gitlab includes Gitlab and Gitlab-CI.

Program Mangement &

Strategic Planning

Overall Google

Trends

Points G2crowd

& Software

Insider

Points Stack

Overflow

Points Expert

Group

Points

Jira Agile (1) 67 1 20 794, 64 20 3817 17 3 10

Redmine 59 3 13 63, 96 8 1572 20 4 18

Trello 50 2 17 595, 59 13 315 10 3 10

Pivotal Tracker 41 4 10 69, 7 10 58 3 4 18

Trac 30 7 5 7 2 674 13 3 10

Wrike 23 6 6 661, 17 17 0 0 0 0

Toggl 19 5 8 37 6 0 0 2 5

Mylyn 18 12 1 17 4 204 8 2 5

Visual Paradigm 13 8 4 0 0 80 9 0 0

VersionOne 11 10 2 35, 48 5 130 4 0 0

Youtrack 10 11 1 9 3 193 6 1 0

IBM Jazz 9 9 3 1 1 149 5 0 0

Target Process 5 13 1 0 0 0 0 1 4

Coding & Tactical Planning

Github 80 1 20 311 20 20700 20 8 20

Jenkins 66 2 17 121 17 18358 17 6 15

Bitbucket 49 3 13 83 13 3210 8 6 15

Team Foundation Server 35 4 10 42 6 13881 13 1 6

Gitlab (4) 27 5 8 13 3 2667 6 3 10

Teamcity 27 6 6 39 5 4190 10 1 6

Travis CI 24 7 5 56 8 1923 5 1 6

Codeship 15 10 2 79 10 124 3 0

Bamboo 15 11 1 30 4 867 4 1 6

Concourse 6 8 4 0 0 18 2 0

Circle CI 3 9 3 0 0 0 0

Node-CI 1 12 1 0 0 0 0 0

Communication

Slack (2) 66 3 13 912 20 337 13 5 20

Skype 4 business (3) 57 4 10 432 17 502 17 2 13

Confluence 51 5 8 180 10 677 20 2 13

Google hangout 48 2 17 166 13 297 10 1 8

Teamviewer 46 1 20 98 13 0 0 2 13

Rational Jazz 21 7 5 4 8 149 8 0 0

Zoom.us 14 6 6 0 0 0 0 1 8

Hackpad 10 8 4 3 6 0 0 0 0

Floobits 3 9 3 0 0 0 0 0 0

Ideaboardz 2 10 2 0 0 0 0 0 0

Stormboard 1 11 1 0 0 0 0 0 0

Retrium 1 12 1 0 0 0 0 0 0

Preferred Tools for Agile Development: A Sociocultural Perspective 51

4.3 Analysis of the Results

In all areas, the five best ranked tools are the same, regardless of the inquiry
method. This indicates that the Community has a shared opinion on the subject.
After the top ones, things start to diverge. For example, Wrike has an excellent
score in reviews, but is ignored by experts and programmers. In the communi-
cation area, experts seem to rely on established, general-purpose tools instead
of specialized ones.

Said that, we consider the first ten products in each category to be included
in the subsequent section of our analysis. Programs appearing in more than a
category (such as Team Services and Github) were assigned to the best ranking
one.

5 Feature Analysis Survey

The screening survey provided us with a list of target tools, which we used to
prepare the survey targeted at the worldwide Agile Community.

Performing such a large-scale survey provided us a good opportunity to inves-
tigate something more about the Agile Community as a whole. For example,
whether their tools preferences are influenced by other factors, such as cultural
heritage and experience. We are aware that other similar surveys exists but they
only provide aggregated data.

5.1 Survey Distribution and Turnout

The survey was mainly performed via Google Forms. The link was distributed
on several social media. As we wanted to maximize the number of answers and at
the same time investigate on cultural differences, we prepared several localized
versions of the survey. The main rationale was that filling a form in one’s own
mother tongue language is easier that in any other one, even if used often. This
also allowed a conscious partition of the respondents according to their cultural
attachment. All links were provided via bit.ly, to obtain additional data about
the participants.

We addressed several LinkedIn, Google, and Yahoo groups as well as several
local Agile groups, but the response was limited. Unfortunately, a centralized
information hub does not really exist in this field. Scrum Alliance and Agile
Alliance do provide some pointers to groups and lists, but most information
is US-centric and/or outdated. Therefore, we had to perform a manual search,
addressing private mailing lists, Facebook pages, Twitter accounts, and in some
cases even emails of individuals.

We had a significant number of respondents, but their distribution was
uneven, as shown in Sect. 5.2. While a majority of Italian and Russian responses
was to be expected, due to our strong ties to these communities, we did not
expect such a low response from large communities such as: Chinese, Arabic,
and Japanese. Since we used the same communication channels, there are three
possible (non-exclusive) explanations of the phenomenon:

52 P. Ciancarini et al.

1. Different channels. These communities, due to cultural or political factors,
do not use the same social media used in the Western social landscape (Iran-
farsi would however be a notable exception).

2. Limited size. The Agile Community is not as large as expected in these
countries or cultural areas, severely limiting responses.

3. Reputation. The authors are relatively well-known in the Western Agile
Community, being active participants for more than 15 years. Reputation
and personal relations can have influenced the response rate.

The questionnaire was distributed as a standard Google Form link. Partici-
pation was anonymous and entirely voluntary.

From now on, we group results in three main categories: “Italy” (IT), “Russia
& Ukraine” (RU-UA), and “Rest of the World” (ROW). About the ROW, please
note that the majority of responses come from the western cultural environment
(Iran being the only exception).

5.2 Results

We are well aware that our analysis does not have the strength of a full statis-
tical and parametric analysis. However, opinion surveys used in DESMET, in
general, and Likert scale analysis, in particular, do not fit well a deep statistical
analysis [30]. Therefore, simple descriptive statistics is used to reveal trends and
overall attitudes. Our idea is reinforced by the fact that responses are clustered
along cultural differences.

Figure 1 shows the geographic location of the respondents (which might differ
form the language used to perform the survey).

0 10 20 30 40

Italy

Russia

Ukraine

Iran

Spain

Others

Germany

42
27

6

5

5

21

3

Fig. 1. Respondents location distribution

Tools Known and Used: Table 2 refers to the current use of tools in
various areas. “Current use” is the answer to the question: “Does your
company use computer-based tools that relate to PLANNING/CODING/
COMMUNICATION?”. “Need more” is the answer to the question: “Do

Preferred Tools for Agile Development: A Sociocultural Perspective 53

Table 2. Current tools use in organization

ITALY

Area PLANNING CODING COMMUNICATION

Question CURRENT MORE CURRENT MORE CURRENT MORE

Mean 3.31 2.74 3.89 3.63 3.00 3.26

Std. Dev. 1.35 1.58 1.28 1.31 1.28 1.09

RUSSIA & UKRAINE

Area PLANNING CODING COMMUNICATION

Question CURRENT MORE CURRENT MORE CURRENT MORE

Mean 3.56 2.53 4.06 3.65 4.35 2.71

Std. Dev. 1.21 1.28 0.95 1.37 1.07 1.62

REST OF THE WORLD

Area PLANNING CODING COMMUNICATION

Question CURRENT MORE CURRENT MORE CURRENT MORE

Mean 3.38 3.25 3.88 4.83 3.42 3.33

Std. Dev. 1.21 1.45 1.03 0.82 1.25 2.01

you think your company would work better, if tool usage in the PLAN-
NING/CODING/COMMUNICATION area increases?”. In all cases, we used
a standard 5-point Likert scale (1 = Strongly disagree; 5 = Strongly Agree). We
report here the mean and standard deviation for each category.

Results show that there is a significant tool use in the Agile Community,
especially in the coding area, and the general consensus is that more tool usage
would be beneficial. Italian and especially Russian respondents are less fond of
tools in the PLANNING section, but use tool more intensively in the CODING
area. Russians also seem to have more than enough tools related to COMMUNI-
CATION – though, in this area, results are more defined, especially considering
ROW developers.

Tool Evaluation Analysis: We can now consider the evaluation of tools.
The overall appreciation of tools is very low in the PLANNING section, with

only one product scoring above average (3.00). This is a clear indication that the
“killer application” in this field is yet to be discovered. It seems that the most
loved (or less hated) tools are Trello and Jira Agile. Trello has also a good
rating for a very specialized task. A slight positive difference in the Italian ratings
is to be noted. If we consider the company size, Micro Enterprises assigned lower
than average to almost all products, except Trello and Trac. Medium and Large
Enterprises prefer Wrike, Visual Paradigm, and Version One. In the case of
Education, there is almost no difference, except a marked negative score for
Trello.

54 P. Ciancarini et al.

CODING tools fare much better. Github, Jenkins, Gitlab and Bitbucket
– in this order – all score well above average. Both Italian and Russian Agilists’
opinions are very similar to their colleagues abroad, showing enthusiasm for sev-
eral tools, Gitlab and Teamcity in particular. Micro Enterprises seem to appre-
ciate the above products more, whereas educational institutions seem to have
difficulties with Github. Small and Large enterprises show particular interest for
Bamboo.

Several COMMUNICATION tools also have good average scores, in partic-
ular Slack, Teamviewer (Russia’s favorite), Skype for Business, and even
Confluence—almost. Again Italians and Russian speakers show more enthusi-
asm for these tools, especially for Zoom.it and Hackpad (not even mentioned
by ROW Agilists). Floobits and Ideaboardz have better scores in a corporate
environment, though they reach a sufficient score only among ROW respondents.

6 Validity

We evaluate the overall confidence in the results according to DESMET [21].
A Feature Analysis is associated with very high risk of incorrect conclusions.
However, Feature Analysis Surveys only have a Medium Risk. Since we combine
the results of the two methods, we assume that the overall risk of incorrect
results is Medium.

In the feature survey, we are aware that the limited size of the sample does
not allow a meaningful statistical analysis. However, this is counterbalanced by
the uniformity of the answers and the large amount of data provided by Google
Trends that provide the base of our analysis.

Threats to external validity are mainly due both due to the limited amount of
samples and their geographical distribution – specifically, the limited response
of North-Americans, that comprise a large percentage of the worldwide Agile
developer community. Given that, we can only assume that results apply to the
European community, and extension of validity is demanded to future work in
this area.

7 Results

7.1 RQ1: The Best and Widespread Tools

We provide the main research question by dividing results into three quality
tiers, regardless of cultural or language differences. This classification can orient
organizations and individuals in finding the most suited tools for their business.

Tier 1: these are products that combine a large user base in the Commu-
nity and positive overall reviews. They are to be considered a “safe choice” for
everyone, especially newcomers in the Agile field. The exact choice of tool (or
their combination) depends on the individual needs of the company or institu-
tion and cannot be examined in detail. Tools in this category are: Atlassian

Preferred Tools for Agile Development: A Sociocultural Perspective 55

Jira, Trello, Toggl for PLANNING; Github, Jenkins, Gitlab, for CODING;
Slack, Skype for Business, Teamviewer for COMMUNICATION.

Tier 2: these products have either a limited diffusion or are more appreciated
in specific contexts. These are Redmine and Trac for MiE, Bitbucket for Edu-
cation, Bamboo, Confluence, Wrike, Visual Paradigm and VersionOne
for Medium to Large Enterprises.

Tier 3: these products do not have a particular brilliant score or enjoy much
popularity but might be of interest in specific environments. For example, Team
Foundation Services could be a sound choice if the development of the company
is strongly Microsoft-oriented. These include: Confluence, Team Foundation
Services, Floobits, Ideabordz, Teamcity.

7.2 RQ2 Demographic Differences

According to our survey, the opinions of the overall Agile Community on tools
are rather similar. We can even use the demographic data acquired to define
the “Average Agilist” (or, better still, “EuroAgilist”, given the geographical
distribution of respondents). The average respondent is male (90%), generally
works in a country speaking his mother-tongue language (85%) and has and
university degree (70%) (mostly Bachelor in case of English and Spanish speaking
countries, Master in the other cases). He works for several types of companies
and customers, with a slight preference for middle-sized enterprises (ME - 35%).
When coding, generally prefers a complete IDE (75%). He has about 3 years
of Agile experience (Scrum - 80%, Kanban - 50%). However, the practices used
vary considerably from country to country. The lack of responses from a very
large population of programmers (Asian and most Arabic countries) does not
allow us to determine if the Agile Community is really “global” or rater limited
to the Western world - with some exceptions, such as Iran and Russia.

Almost everyone (95%) has some experience with Scrum; the second-favorite
method is more localized as Russians, Italians, and Spaniards tend to use Kan-
ban, whereas the rest of the world prefer hybrid methods. The practices used
are different. German, Farsi, and English-speaking Agilists tend to use many
of the recommended practices (even all of them), but Russians and Iranians
tend to be more selective, cherry-picking the ones that best suits them. Italians
do not show any particular tendency. The most used practices overall are Pair
Programming, TDD, and Small Releases; least used ones are On-site customer,
Continuous Integration, and System metaphor.

7.3 RQ3: Italian and Russian Communities

According to our survey, both the Italian and Russian-Ukranian Agile Commu-
nities are very similar to the ROW community, possibly more enthusiastic in tool
usage. In the case of Italy, considering all possible answers only in 8 cases the
difference with the ROW responses exceeds 0.5 in the Likert scale (either way).
Moreover, 5 of such cases are related to the Planning section. In the second case,
difference are definitely more relevant—Russian Agilists tend to be more extreme

56 P. Ciancarini et al.

in their evaluation but still following the ROW trends. Therefore, the Italian and
Russian-speaking Agile Communities can be considered well integrated in the
global Agile Community.

8 Conclusions

In this work, we examined the attitude of the Agile Community (in particu-
lar of the Italian and Russian ones) towards Agile tools using the DESMET
methodology. We found out that most of the opinions of these two localized
Agile Communities are in line with those of the global Agile Community. We
provide a ranked list of the current tools most favored by the Community, giving
indication on possible cases that might favor a tool over another. We also plan
to repeat the survey in the future to identify market trends, community needs
and focus on the US-Canada community.

Acknowledgements. We thank for the support from CINI/MANTIS and from CNR-
ISTC.

References

1. Stankovic, D., Nikolic, V., Djordjevic, M., Cao, D.B.: A survey study of critical
success factors in agile software projects in former Yugoslavia IT companies. J.
Syst. Soft. 86(6), 1663–1678 (2013)

2. Ambler, S.W., et al.: The agile system development life cycle (2010). http://www.
ambysoft.com/essays/agileLifecycle.html. Accessed 14 Aug 2019

3. Anderson, A., Huttenlocher, D., Kleinberg, J., Leskovec, J.: Discovering value from
community activity on focused question answering sites: a case study of stack
overflow. In: Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 850–858. ACM (2012)

4. Aversano, L., Canfora, G., De Lucia, A., Gallucci, P.: Integrating document and
workflow management tools using xml and web technologies: a case study. In: Pro-
ceedings of the 6th European Conference on Software Maintenance and Reengi-
neering, pp. 24–33. IEEE (2002)

5. Azizyan, G., Magarian, M.K., Kajko-Matsson, M.: Survey of agile tool usage and
needs. In: 2011 Agile Conference (AGILE), pp. 29–38. IEEE (2011)

6. Barua, A., Thomas, S.W., Hassan, A.E.: What are developers talking about? An
analysis of topics and trends in stack overflow. Empir. Softw. Eng. 19(3), 619–654
(2014)

7. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, Boston (2000)

8. Beck, K.: Tools for agility. Microsoft White Papers, pp. 1–12 (2008)
9. Beck, K., et al.: Manifesto for agile software development (2001)

10. Choi, H., Varian, H.: Predicting the present with google trends. Econ. Rec. 88(s1),
2–9 (2012)

11. Clarke, R.: Collaborative authorship with Atlassian confluence. GLiNTECH White
Paper, p. 10 (2007)

http://www.ambysoft.com/essays/agileLifecycle.html
http://www.ambysoft.com/essays/agileLifecycle.html

Preferred Tools for Agile Development: A Sociocultural Perspective 57

12. Coman, I.D., Sillitti, A., Succi, G.: Investigating the usefulness of pair-
programming in a mature agile team. In: Abrahamsson, P., Baskerville, R., Conboy,
K., Fitzgerald, B., Morgan, L., Wang, X. (eds.) XP 2008. LNBIP, vol. 9, pp. 127–
136. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68255-4 13

13. Corral, L., Sillitti, A., Succi, G.: Software development processes for mobile sys-
tems: is agile really taking over the business? In: International Workshop on the
Engineering of Mobile-Enabled Systems (MOBS 2013) (2013)

14. Dubakov, M., Stevens, P.: Agile Tools: The Good, the Bad and the Ugly. Report,
TargetProcess, Inc. (2008)

15. Fisher, J., Koning, D., Ludwigsen, A.: Utilizing Atlassian JIRA for large-scale soft-
ware development management. In: 14th International Conference on Accelerator
and Large Experimental Physics Control Systems (ICALEPCS) (2013)

16. Gottstein, D., Renè, A., Fechner, T.: Vergleich verschiedener Softwarewerkzeuge
zur agilen Softwareentwicklung (2011). http://winfwiki.wi-fom.de/index.php/
Vergleich verschiedener Softwarewerkzeuge zur agilen Softwareentwicklung

17. Gretzel, U., Yoo, K.H., Purifoy, M.: Online travel review study: role and impact
of online travel reviews (2007)

18. Hedberg, H., Lappalainen, J.: A preliminary evaluation of software inspection tools,
with the DESMET method. In: Fifth International Conference on Quality Software
(QSIC 2005), pp. 45–52. IEEE (2005)

19. Hunt, J.: Tools to help with agile development. Agile Software Construction, pp.
217–237 (2006)

20. Iivari, J., Iivari, N.: The relationship between organizational culture and the deploy-
ment of agile methods. Inf. Softw. Technol. 53(5), 509–520 (2011)

21. Kitchenham, B., Linkman, S., Law, D.: DESMET: a methodology for evaluating
software engineering methods and tools. Comput. Control Eng. J. 8(3), 120–126
(1997)

22. Kropp, M., Maier, A.: Swiss Agile Study (2014). http://www.swissagilestudy.ch/
files/2015/05/SwissAgileStudy2014.pdf

23. Kruchten, P.: Scaling down large projects to meet the agile sweet spot. IBM devel-
operWorks 13 (2004)

24. Portillo-Rodŕıguez, J., Vizcáıno, A., Piattini, M., Beecham, S.: Tools used in global
software engineering: a systematic mapping review. Inf. Softw. Technol. 54(7), 663–
685 (2012)

25. Rech, J.: Podcasts about software engineering. ACM SIGSOFT Softw. Eng. Notes
32(2), 1–2 (2007)

26. Reifer, D.J., Maurer, F., Erdogmus, H.: Scaling agile methods. IEEE Softw. 20(4),
12–14 (2003)

27. Rubin, K.S.: Essential Scrum: A Practical Guide to the Most Popular Agile Pro-
cess. Addison-Wesley, Boston (2012)

28. Sarkan, H.M., Ahmad, T.P.S., Bakar, A.A.: Using JIRA and Redmine in require-
ment development for agile methodology. In: 5th Malaysian Conference on Software
Engineering (MySEC), pp. 408–413. IEEE (2011)

29. Sillitti, A., Succi, G., Vlasenko, J.: Toward a better understanding of tool usage.
In: International Conference on Software Engineering (ICSE 2011) (2011)

30. Sullivan, G.M., Artino Jr., A.R.: Analyzing and interpreting data from likert-type
scales. J. Grad. Med. Educ. 5(4), 541–542 (2013)

https://doi.org/10.1007/978-3-540-68255-4_13
http://winfwiki.wi-fom.de/index.php/Vergleich_verschiedener_Softwarewerkzeuge_zur_agilen_Softwareentwicklung
http://winfwiki.wi-fom.de/index.php/Vergleich_verschiedener_Softwarewerkzeuge_zur_agilen_Softwareentwicklung
http://www.swissagilestudy.ch/files/2015/05/SwissAgileStudy2014.pdf
http://www.swissagilestudy.ch/files/2015/05/SwissAgileStudy2014.pdf

58 P. Ciancarini et al.

31. Surowiecki, J.: The Wisdom of Crowds. Anchor, Norwell (2005)
32. Tell, P., Babar, M.A.: Requirements for an infrastructure to support activity-based

computing in global software development. In: Proceedings of the 6th IEEE Inter-
national Conference on Global Software Engineering Workshop (ICGSEW), pp.
62–69. IEEE (2011)

33. Wang, X., Maurer, F., Morgan, R., Oliveira, J.: Tools for supporting distributed
agile project planning. In: Šmite, D., Moe, N., Ågerfalk, P. (eds.) Agility Across
Time and Space, pp. 183–199. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12442-6 13

34. West, D., Hammond, J.S.: The Forrester Wave: Agile Development Management
Tools. Forrester Research (2010)

35. Whitworth, E., Biddle, R.: The social nature of agile teams. In: Agile, vol. 7, pp.
26–36 (2007)

https://doi.org/10.1007/978-3-642-12442-6_13
https://doi.org/10.1007/978-3-642-12442-6_13

Interpretizer: A Compiler-Independent
Conversion of Switch-Based Dispatch

into Threaded Code

Yauhen Klimiankou(B)

Belarusian State University of Informatics and Radioelectronics,
6 P. Brovki Street, 220013 Minsk, Belarus

klimenkov@bsuir.by

Abstract. Performance of program bytecode interpretation depends
significantly from instruction dispatch technique implemented in the vir-
tual machine. Threaded code is a well-known approach of instruction
dispatch implementation of efficient interpreters. However, the plurality
of current high-level programming languages and popular compilers are
limited in support of threaded code and enforce designers of interpreters
to either stick to GCC compiler which supports “Labels as Values” cus-
tom C extension or to resort to the implementation of a dispatch loop in
assembler. In this work, we present the Interpretizer, a standalone tool
which can be integrated into arbitrary interpreter build toolchain readily
and transparently and which effectively converts switch-based dispatch
loops into efficient threaded code. Therefore, Interpretizer reverts to the
virtual machine designers flexibility of choice of programming language
and compiler while it preserves the efficiency of the produced interpreter.

Keywords: Threaded code · Switch-based dispatch · Dispatch loop ·
Object file

1 Introduction

Interpretation is one of the fundamental ways for implementation of program-
ming languages, as well as for the execution of programs. Bytecode interpreters
take a significant position between classical AST interpreters and compilers while
attempting to inherit the main benefits of both. On the one hand, like AST
interpreters, bytecode interpreters provide a secure and portable environment
for programs execution. On the other hand, bytecode interpretation is much
more efficient than AST interpretation (however, still much less efficient than
compiled code execution). Furthermore, bytecode interpreter is more suitable
for Just-In-Time compilation which can be seamlessly integrated into the inter-
preter, if the additional boost in program execution would outweigh the cost of
JIT-compiler implementation. Additionally, the efforts required for interpreter
design and implementation are significantly smaller than in the case of compiler

c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 59–72, 2019.
https://doi.org/10.1007/978-3-030-29852-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_4

60 Y. Klimiankou

goto Dispatch goto Dispatch goto Dispatch

Dispatch

Opera on A Opera on B Opera on C Opera on D

Fig. 1. Switch-based dispatch.

development. Due to this, interpretation is especially attractive for programming
language prototyping and in the case of small-scale domain-specific applications.

Instruction dispatch technique employed by the virtual machine is one of
the principal sources into the interpretation overhead. Furthermore, the type
of employed dispatch technique affects maintainability and portability of the
interpreter. There is two main instruction dispatch approach used in modern
bytecode interpreters: switch-based dispatch and threaded code.

In the case of switch-based dispatch, the dispatch loop of the interpreter is a
loop containing one huge switch statement that maps virtual instruction opcode
onto the defined behavior of virtual machine. Switch-based dispatch (Fig. 1) can
be implemented using standard primitives of high-level programming languages,
and due to this is language- and compiler-independent and hence is portable and
maintainable. However, switch-based dispatch is well-known for its inefficiency
appearing from the increased level of branching in the interpreter code and from
related branch misprediction performance penalty.

Threaded code (Fig. 2) is a well-known programming technique [3]. Switch-
based dispatch separates the instruction dispatch from the instruction implemen-
tation. In contrast, in threaded code, the instruction dispatch is embedded into
the end of each VM instruction implementation and thus replicated into them
all. Therefore it tends to be larger than the equivalent switch-based code. How-
ever, at the same time, it tends to be more efficient due to the reduced number of
branchings performed during bytecode interpretation (1 and 2+ branchings for
threaded and for switch-based codes respectively) and produces fewer mispredic-
tions in Branch Target Buffers of CPU [6]. The reported benchmarking results
show that for some architectures the performance difference between switch-
based code and threaded code can reach up to 2.02 times in favor of the last one
[10]. Due to such significant difference in the performance, VM developers focus-
ing interpretation efficiency tend to favor threaded code instead of switch-based
dispatch.

Unfortunately, current high-level programming languages do not provide con-
structions which allow native implementation of the threaded code. The notable
exception is GCC compiler which provides custom “Labels as Values” extension

Interpretizer 61

Dispatch Dispatch Dispatch

Dispatch

Opera on A Opera on B Opera on C Opera on D

Fig. 2. Threaded code.

to the C programming language [1]. This extension provides a means which
allow implementation of threaded code without resorting to assembler language.
Therefore, at present, VM developers striving for the efficiency of interpreta-
tion, are forced to adhere not only to the C programming language, but also to
the GCC compiler, or implement a dispatching loop and VM instructions with
extensive assembly language involvement. The second way is not only expensive
in terms of developer efforts but also seems to be limited in efficiency, because
modern compilers are much more efficient in optimization than humans espe-
cially in the case of such massive functions as dispatcher loops.

In this paper, we present an approach that solves the current limitations
on toolchains available for developers of threaded code based interpreters. We
present Interpretizer, a standalone tool that converts the switch-based dispatch
loop into the threaded code and does it transparently for the main toolchain
used for VM development. Interpretizer gives VM developers the freedom to
choose not only the programming language in general but also any compiler
in particular, as well as entire build toolchain, and allows to inherit almost
all optimizations made by the chosen compiler for dispatcher loop. Therefore,
Interpretizer can be considered to be an external compiler-independent VM-
specific binary code optimizer.

In summary, our contribution presented in this paper is the following:

– We propose a new approach to the development of efficient bytecode inter-
preters, which provides freedom of programming language and compiler
choices for the developers, while preserves the original optimizations per-
formed by a compiler and allows to produce an efficient threaded code based
bytecode interpreters.

– We present Interpretizer, a standalone tool for automatic conversion of switch-
based dispatch loops into the threaded code with an application of VM-
specific optimizations. Interpretizer transparently and straightforwardly inte-
grates into existing build toolchains.

– We provide results of Interpretizer evaluation from the viewpoint of impli-
cation on the interpretation performance of the produced virtual machine.
We report the comparison of different compilers from the viewpoint of the

62 Y. Klimiankou

efficiency of the code generating by them for the VM dispatch loop. According
to our knowledge, it is the first such publicly reported comparison results.

In the next section, we provide an overview of Interpretizer design and discuss
its implementation details. Then Sect. 3 presents an evaluation of the impact
producing by Interpretizer on the performance of the produced VM. Section 4
contains related works discussion. Finally, last section summarizes the work and
draws out appropriate conclusions.

2 Interpretizer

This section discusses the principal design of Interpretizer by illustrating its
architecture and role in the VM build toolchain as well as the expected way
of its usage. The general idea behind Interpretizer is to apply VM-specific opti-
mizations directly to the dispatch loop on the level of compiled binary code. Due
to this, Interpretizer can be integrated into any build toolchain, placing itself
in the workflow between compiler and linker and modifying the dispatch loop
function on the level of the object file. The successfully modified object file is
passed to the linker continuing a regular VM build-flow of the original toolchain.

Interpretizer accepts a set of the command-line arguments: paths to the
source and target object files, the symbolic name of the dispatch loop function
and the set of optimizations requested.

Interpretizer consists of three principal components:

– Object File Composer
– The Instructions Decoder
– Optimizer

Using Object File Composer, Interpretizer disassembles the source object file and
extracts specified function which contains dispatch loop. The extracted code
section is passing to Optimizer. In its turn, Optimizer, using the Instruction
Decoder constructs the control flow graph of the function. Then, on the control
flow graph, it looks up for a basic block (or group of basic blocks) which imple-
ments VM instructions dispatch. Using the knowledge about that basic block
and having a function control graph, Optimizer can apply three optimizations:

– Range Control Elimination
– Code Straightening
– Code Threading

The resulted control flow graph is serialized back into function code which Object
File Composer inserts back into the object file. The symbols and relocations in
the object file are fixed to adjust them to the updated function code. Finally,
resulted object file is assembled and stored into a file system.

Interpretizer 63

2.1 Object File Composer

Interpretizer currently supports only Common Object File Format (COFF)
object files.

COFF files contain three components: sections, relocations, and symbols. The
COFF section is continuous binary blob containing a single compiled code object
with explicitly defined dependencies and export points. Each section wires with
a variable-length set of relocations, each of which represents a dependency to
external compiled object and points to appropriate symbol. Symbols represent
the export points of the sections. They assign a symbolic name from the string
table to the export point of the section (in the form section:offset).

Interpretizer accepts through the command line arguments path to the source
object file and symbolic name of the method containing the dispatch loop. Using
them, Object File Composer disassembles the source file and finds the respective
symbol and hence object address in the form section:offset to which it points.
Knowing the location of dispatch loop function, Object File Composer extracts
the body of the function. Finally, the intra-function linkage is performed using
a list of relocations of the section to resolve absolute references in the body and
thus fill the dispatch table by relative addresses of the VM instruction handlers.
Linked function code is passed to Optimizer.

After accomplished optimization Object File Composer receives the modified
body of function and translation map generated by Optimizer. Translation map
maps the instruction offsets from the modified function body to the offsets of
the same instructions in the original function body. This map is needed to fix
symbols and relocations of the object file. While optimization does not generate
new symbols and only shifts already existing ones, it can massively create new
relocations due to the possible replication of instruction dispatch block. These
new relocations need to be added to the relocations list of the section to allow
the linker correctly assemble the final executable binary using optimized object
file. The corrected object file is reassembled and finally stored in the file system.

2.2 Instructions Decoder

Interpretizer employs Instruction Decoder mainly for control flow graph con-
struction. Due to this, the slightly extended version of the instruction length
decoder is enough for Interpretizer purposes. The required extension is the abil-
ity to decode control transfer, test and cmp instructions. Interpretizer needs
detection of test and cmp for Range Control Elimination optimization.

2.3 Optimizer

The Optimizer is a core of Interpretizer. Its purpose is to analyze input function
code and generate at the output the optimized version of the code as well as the
translation map which describes how the instructions from the original function
map to their equivalents in the modified version. Optimizer performs its work in
six steps:

64 Y. Klimiankou

1. Build Control Flow Graph of the function
2. Find Dispatch Basic Block
3. Apply Range Control Elimination
4. Apply Code Straightening
5. Apply Code Threading
6. Serialize Control Flow Graph to the plain binary code

Control Flow Graph construction is based on Instruction Decoder and in
general, uses the well-known techniques. During this process, Optimizer parses
the binary code, assembles basic blocks and establishes linkage between them.
For each basic block, it remembers the original address and size of each instruc-
tion but ignores its semantics. The only significant difference between the regular
assembling of Control Flow Graph and the implemented in Optimizer is a special
care about table-based dispatch instructions.

All optimizations applied by Interpretizer require knowledge about Dispatch
Block. Dispatch Block is a basic block (or a group of blocks) which exit point is
a table-based jump instruction (jmp dword ptr [imm + 4 · eax]). The entry point
to the Dispatch Block is the address to which the handlers listed in the table
pass control at their exit points. The correct dispatch loop function contains
exactly one table-based jump instruction. If no table-based jumps are present in
the code, then this is a regular function without a dispatch loop. If more than
one of them is present, then the dispatch loop is probably already threaded.
In both cases, Interpretizer discards further optimizations as inapplicable and
potentially unsafe.

Range Control Elimination. When a compiler translates switch statements
of a high-level programming language into machine code, it inserts range control
instructions in front of the table-based jump to handle the cases when the table
index goes out of table lengths. It is correct from the language semantics view-
point. However, in the case of interpreter dispatch loop, the instructions stream
is trusted in most cases, either due to the trusted code generator or due to the
verification of the code performed before its execution. Programming languages
provide no means to give the compiler a hint that the dispatch table index value
is guaranteed to be in the range of dispatch table length and hence the compiler
should not generate redundant range control instructions.

Range Control Elimination removes redundant dispatch table index control.
Knowing the dispatch block, and its exit point Optimizer looks at the instruc-
tions preceding table-based jump and checks for jcc instruction targeting the
entry point of dispatch block. Then it analyzes a few more previous commands
looking for cmp or test. In the case when both instructions are present, Opti-
mizer removes them and merges the basic block containing table-based jump
into its parent as depicted in Fig. 3.

Code Straightening. Modern compilers tries to generate compact code. In
the case of dispatch loop, this means that compiler can partially merge different

Interpretizer 65

jmp [DT_BASE + eax*4]

….
mov eax, ebx
cmp eax, 0x34
ja DBEP

….
mov eax, ebx
jmp [DT_BASE + eax*4]

Prior A er

Fig. 3. Range control elimination

jmp [DT_BASE + eax*4]

…
mov eax, ecx

….
mov eax, edx
jmp SBB

inc esi
jmp DBEP

Op1 Op2

SBB

jmp [DT_BASE + eax*4]

…
mov eax, ecx
inc esi
jmp DBEP

….
mov eax, edx
inc esi
jmp DBEP

Op1 Op2

Fig. 4. Code straightening

instruction handlers into a single basic block. In this scenario, compiler replaces
all replicated blocks of instructions by jump to a single instance of shared block
of instructions. While such optimization reduces the footprint of the generated
code, it introduces additional branching into intensively executed short instruc-
tion handlers, increases pressure on Branch Prediction Buffer and hence can
finally lead to increased overhead.

The aim of code straightening is the elimination of all unnecessary branching
by replication of shared basic blocks of the instruction handler bodies. To achieve
this goal optimizer, guided by found dispatch table, goes down for each instruc-
tion handler through its default path and replaces each unconditional branch
instruction found by basic block to which branch instruction points. Therefore,
the default control flow of the instruction handler becomes straight and fin-
ishes by a jump to the dispatch block. Figure 4 demonstrates the effects of Code
Straightening optimization.

Code Threading. Code threading is the central optimization applied by Inter-
pretizer and at the same time is the simplest in implementation.

To convert switch-based dispatch into threaded code, Optimizer locates the
dispatch block in the control flow graph. Then it iterates through all basic blocks
in the control flow graph and replaces jumps to dispatch block found in the code
by dispatch block body as depicted in Figs. 1 and 2. As a result, all instruction
handlers finish by direct dispatch to the next instruction instead of loop-based
iteration over the single shared dispatch block.

66 Y. Klimiankou

Despite the fact, that Range Control Elimination and Code Straightening
are valuable by themselves, in the Interpretizer they are considered mainly as
auxiliary optimizations which can improve the efficiency of the Code Threading.
Range Control Elimination prepares and optimizes dispatch block which Opti-
mizer then replicates during Code Threading. Code Straightening in its turn
increases the count of replication points which then will be replaced by Opti-
mizer during Code Threading.

Finally, once Optimizer has applied all optimizations on the Control Flow
Graph, it serializes function back into the binary body. Serialization is trivial
because applied optimizations do not change the Control Flow Graph structure
significantly and the original blocks order is preserved and can be reused. Opti-
mizer performs intra-function linkage on the serialized code by correction of the
offsets specified in the jump instructions. This is required because optimizations
change the sizes of control blocks due to the removal of instructions (Range Con-
trol Elimination) and replication of basic blocks (Code Straightening and Code
Threading) thus making the original offsets invalid. Finally, the dispatch table
is also serialized back to the disk with alignment to four bytes.

During serialization of the Control Flow Graph Optimizer creates the trans-
lation map which contains mappings between original instruction addresses and
their addresses in the optimized code. Take note, that due to the massive code
replication the single instruction from the original function can have multiple
counterparts in the optimized version of function.

All optimizations performed by Optimizer are not universal and strictly
interpreter-specific. In the general case, they either degrade the performance
and increase the footprint of the generated code (Code Straightening and Code
Threading) or break the semantics of the overlaying high-level programming
language (Range Control Elimination). However, they can significantly increase
throughput in the case of interpreters.

3 Evaluation

In this section, we evaluate the influence created by Interpretizer on the per-
formance of bytecode interpreter. In addition, we compare the level of impact
in dependence on the host CPU architecture. Finally, we evaluate and compare
multiple C++ compilers on their efficiency of interpreter code generation.

Figures 5, 6, 7 and 8 demonstrate execution time for benchmark applications
in dependency on the compiler and on set of optimizations applied by Inter-
pretizer integrated into bytecode interpreter build toolchain. We have used two
different benchmark applications, both based on the processing of typical data
structures like binary trees and linked lists. Both benchmarks was built on the
basis of real industrial-quality code extracted from the Linux kernel and con-
verted into KA-32 bytecode. Each evaluation was performed 10000 times and
the average result is reported in Figs. 5, 6, 7 and 8. Furthermore, we have run
the same set of evaluations on two different hardware platforms. One of them
is a computer system based on the AMD FX-8350 CPU. The second one is a

Interpretizer 67

 0

 100000

 200000

 300000

 400000

 500000

 600000

GCC LLVM MSVS ICC LAV

xxx
Rxx
xSx
RSx
xxT
RxT
xST
RST

-4.04%
-35.76%

-38.81%
+

28.3%
+

29.61%
+

30.14%
-26.55%

-41.11%
-7.91%

-0.04% +
22.28%

+
38.68%

+
23.09%

+
41.35%

+
64.71%
+

70.81%
+

77.32%
+

116.13%
+

121.92%
+

124.5%
+

121.38%

+
27.7%

Fig. 5. Benchmark A. AMD FX-8350.

laptop based on Intel i7-4600U CPU. In Figs. 5, 6, 7 and 8, the bar labeled as
“xxx” shows baseline execution time for low-level JVM-like bytecode interpreter
(KA-32 VM) compiled without Interpretizer usage. Other bars represent exe-
cution time of benchmark applications on the same interpreter compiled with
various sets of optimizations applied by Interpretizer. In the bar labels, R means
Range Control Elimination enabled, S – Code Straightening enabled, T – Code
Threading enabled, x means that respective optimization is disabled. Thus, bar
label “xSx” should be read as “Code Straightening enabled while Range Control
Elimination and Code Threading disabled”. Bar “ICC” shows the performance
produced by Intel C++ compiler and bar “LAV” – the performance of interpreter
compiled by GCC with usage “Labels As Values” C language extension. Inter-
pretizer is incompatible with ICC, because Intel compiler produces non-trivial
instruction dispatching code with dispatch table compaction and multi-stage
calculation of target jump address. We have compiled all variants of interpreters
with maximal optimization level provided by host compiler.

As can be seen from Figs. 5, 6, 7 and 8, the performance of bytecode interpre-
tation significantly depends on all components of the system: CPU microarchi-
tecture, compiler, workload and on the set of optimizations applied by Inter-
pretizer. Note that on more ILP-efficient processors the performance differ-
ence produced by different instruction dispatch techniques becomes smaller. For
example, while the highest speedup achieved on the AMD platform lies in the
range of 19.54–124.5%, on the Intel platform it falls into the range 5.21–20.07%.

68 Y. Klimiankou

 0

 50000

 100000

150000

 200000

 250000

GCC LLVM MSVS ICC LAV

xxx
Rxx
xSx
RSx
xxT
RxT
xST
RST

+
0.73%

-5.97%
+

1.54%
+

12.54%
+

19.54%
+

12.36%
+

15.22%

-19.52%
-13.01%

-8.71%
+

13.41%
+

15.55%
+

14.11%
+

16.57%

+
1.36%

+
1.18%

+
12.04%

+
8.04%

+
17.97%

+
12.43%
+

16.6%

+
9.5%

Fig. 6. Benchmark A. Intel i7-4600U.

These results agree with observations highlighted in [9]. GCC (v.8.2.0) and
LLVM (v.7.0.1) have proven to be efficient interpreter code generators. Microsoft
C++ (v.16.00.30319.01) has produced interpreter which is most efficient on Intel
platform and at the same time least efficient on AMD platform. Intel C++ com-
piler (v.19.0.0.117) according to the evaluation results is the wrong choice for
interpreters creation even for Intel platform. In general, the right choice of the
baseline compiler can lead to 19.97–64.41% speedup of the compiled interpreter.
Usage of “Labels As Values” extension of C language implemented in GCC can
produce speedup in the range from 0.29% and up to 27.7%. Finally, experiments
have demonstrated that integration of Interpretizer into bytecode interpreter
build toolchain not only provides freedom in choice of programming language and
compiler but also generates a significant speedup of produced code: 5.21–30.14%
for GCC, 1.67–41.35% for LLVM and 3.42–124.5% for MSVS. It is interesting to
note that interpreters produced by GCC with Interpretizer are 1.91–9.17% more
efficient than they analogs produced with the use of custom “Labels As Values”
extension of C programming language. On the other hand, the set of applied
optimizations leading to maximal efficiency of the produced interpreter is not
universal and should be carefully chosen with taking into account the compiler
used, the target hardware platform and typical workload expected. Application
of inappropriate set of optimizations can significantly degrade the performance
of the produced bytecode interpreter.

Interpretizer 69

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

GCC LLVM MSVS ICC LAV

xxx
Rxx
xSx
RSx
xxT
RxT
xST
RST

+
1.82%

+
2.01%
+

4.24%
+

13.39%
+

16.44%
+

16.62%
+

16.32%

-2.04%
-0.57%

-2.38% +
9.61%

+
9.17%

+
10.56%

+
7.37%

-1.82%
+

5.15%
-21.54%

+
17.88%
+

20.07%
+

18.46%
+

15.28%

+
12.75%

Fig. 7. Benchmark B. AMD FX-8350.

In our experiments, the most efficient versions of the interpreter for both plat-
forms were built using Interpretizer. For AMD platform using LLVM compiler
with a full set of optimizations enabled (15.68% more efficient than GCC with
LAV and 41.35% more efficient than LLVM-compiled VM without Interpretizer
involvement). For Intel platform using Microsoft C++ compiler with Code
Straightening disabled (10.35% more efficient than GCC with LAV and 17.97%
more efficient than MSVS-compiled VM without Interpretizer involvement).

4 Related Work

Most of the published works on the bytecode interpretation efficiency are either
describes design and implementation of a particular virtual machine [2,14] or
consider various optimization techniques which improve interpretation efficiency
[4,11,12]. A. Ertl in 2002 made the first proposal for instrumental support of the
development of virtual machines [7]. He proposed a “vmgen” generator of effi-
cient virtual machines. Vmgen transforms specification of bytecode passed to its
input into the C source code implementing interpreter engine which then com-
piled by GCC compiler. In contrast, Interpretizer works on the level of already
compiled but not yet linked binary code to apply interpretation-specific opti-
mizations. Thus, it allows developers to be stuck neither to C programming
language nor to GCC compiler.

70 Y. Klimiankou

 0

 2000

 4000

 6000

 8000

 10000

GCC LLVM MSVS ICC LAV

xxx
Rxx
xSx
RSx
xxT
RxT
xST
RST

-11.42% +
0.94%

+
1.35%
+

5.21%
-3.80%

-0.73%
-1.69%

+
1.67%

-1.9%
-17.02%

-0.7%
+

0.05%
-8.59% +

1.67%

-4.16%
-1.63%

+
3.42%

-4.05%
-2.2%
-1.95%

+
0.2% +

0.29%

Fig. 8. Benchmark B. Intel i7-4600U.

RPython [5] is a translation and support framework for producing imple-
mentations of dynamic languages. It can automatically generate a Just-in-Time
compiler. RPython toolchain takes an interpreter implemented in a high-level
domain-specific language and creates efficient VM for it using a tracing JIT
technique. RPython focuses on high-level virtual machines and forces developer
to describe (implement) the bytecode interpreter in domain-specific RPython
language, which then compiles into efficient VM. Interpretizer works as an opti-
mizer performing its job transparently to the target interpreter build toolchain
and can optimize low-level virtual machines.

Truffle [13] is another framework designed for the implementation of efficient
interpreters. In contrast to Interpretizer, which optimizes bytecode interpreters,
Truffle performs optimization of AST interpreters and thus dynamic languages
[15]. Furthermore, Truffle targets JVM.

Levis has proposed an Application Specific Virtual Machines, an architec-
ture which allows the user to tailor the VM to specific application domain [8].
Proposed Mate framework allows building VM extensions in conjunction with
application compilation and customizes the host VM on the fly. While Inter-
pretizer aims the maximization of VM throughput, the Mate framework aims
mainly bytecode compactness and relies on the specifics of the sensor networks.

Interpretizer 71

5 Conclusions

Bytecode interpreters continue to play an important role in application develop-
ment, distribution, and execution. In this paper, we have proposed an approach
of the interpreter-specific and compiler-independent optimization of dispatch
loop on the level of binary code. We have presented an Interpretizer, a com-
mand line tool which can be transparently integrated into any interpreter build
toolchain and perform selective interpreter specific optimizations on the level of
binary code. Interpretizer is capable apply to the interpreter dispatch loop three
optimizations: range control elimination, code straightening, and code threading,
and therefore converts inefficient switch-based instruction dispatch into efficient
threaded code. Interpretizer gives developers the freedom to use the program-
ming languages and compilers of their choice to develop performant bytecode
interpreters, breaking the long-term dependency on the GCC with its “Labels
As Values” C language extension. We have demonstrated that Interpretizer can
improve the efficiency of bytecode execution on the VM up to 124.5% and out-
perform GCC with “Labels As Values” enabled and used. Furthermore, we have
compared GCC, LLVM, MSVS, and ICC compilers, from the viewpoint of the
efficiency of bytecode interpretation on produced VMs. Finally, we have consid-
ered bytecode interpretation on processors with different microarchitectures and
have shown that for maximal efficiency the compiler, optimizations, and target
hardware architecture should be chosen in conjunction with each other.

References

1. Using the GNU Compiler Collection (GCC): Labels as Values. https://gcc.gnu.
org/onlinedocs/gcc/Labels-as-Values.html. Accessed 26 Feb 2019

2. Adams, K., et al.: The HipHop virtual machine. In: Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA 2014, pp. 777–790. ACM, New York (2014)

3. Bell, J.: Threaded code. Commun. ACM 16(6), 370–372 (1973)
4. Berndl, M., Vitale, B., Zaleski, M., Brown, A.: Context threading: a flexible and

efficient dispatch technique for virtual machine interpreters. In: Proceedings of the
International Symposium on Code Generation and Optimization, CGO 2005, pp.
15–26. IEEE Computer Society, Washington, DC (2005)

5. Bolz, C., Cuni, A., Fijalkowski, M., Rigo, A.: Tracing the meta-level: PyPy’s trac-
ing JIT compiler. In: Proceedings of the 4th Workshop on the Implementation,
Compilation, Optimization of Object-Oriented Languages and Programming Sys-
tems, ICOOOLPS 2009, pp. 18–25. ACM, New York (2009)

6. Ertl, A., Gregg, D.: Optimizing indirect branch prediction accuracy in virtual
machine interpreters. SIGPLAN Not. 38(5), 278–288 (2003)

7. Ertl, A., Gregg, D., Krall, A., Paysan, B.: Vmgen: a generator of efficient virtual
machine interpreters. Softw. Pract. Exper. 32(3), 265–294 (2002). https://doi.org/
10.1002/spe.434

8. Levis, P., Gay, D., Culler, D.: Bridging the gap: programming sensor networks with
application specific virtual machines. In: Submitted to Proceedings 6th Symposium
on Operating Systems Design and Implementation, OSDI 2004 (2004)

https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
https://doi.org/10.1002/spe.434
https://doi.org/10.1002/spe.434

72 Y. Klimiankou

9. Rohou, E., Swamy, B., Seznec, A.: Branch prediction and the performance of inter-
preters: don’t trust folklore. In: Proceedings of the 13th Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, pp. 103–114, CGO
2015. IEEE Computer Society, Washington, DC, USA (2015)

10. Romer, T., et al.: The structure and performance of interpreters. SIGOPS Oper.
Syst. Rev. 30(5), 150–159 (1996)

11. Savrun-Yeniçeri, G., et al.: Efficient interpreter optimizations for the JVM. In: Pro-
ceedings of the 2013 International Conference on Principles and Practices of Pro-
gramming on the Java Platform: Virtual Machines, Languages, and Tools, PPPJ
2013, pp. 113–123. ACM, New York (2013)

12. Shi, Y., Casey, K., Ertl, A., Gregg, D.: Virtual machine showdown: stack versus
registers. ACM Trans. Archit. Code Optim. 4(4), 2:1–2:36 (2008)

13. Würthinger, T., Wöß, A., Stadler, L., Duboscq, G., Simon, D., Wimmer, C.: Self-
optimizing AST interpreters. In: Proceedings of the 8th Symposium on Dynamic
Languages, DLS 2012, pp. 73–82. ACM, New York (2012)

14. Zaleski, M.: YETI: a gradually extensible trace interpreter. Ph.D. thesis, University
of Toronto, Toronto, Ont., Canada, Canada (2008). aAINR57946

15. Zhang, W.: Efficient hosted interpreter for dynamic languages. Ph.D. thesis, Uni-
versity of California, Irvine, Irvine, California, U.S. (2015)

Towards Static Verification of Clojure
Contract-Based Programs

Gheorghe Pinzaru and Victor Rivera(B)

Innopolis University, Innopolis, Russia
{g.pinzaru,v.rivera}@innopolis.ru

Abstract. Detecting possible weaknesses in a dynamically typed func-
tional programming language at compile time plays an important role
in the development of correct Software. Unfortunately, this is still an
open problem for some functional programming languages. This paper
proposes a translation of Clojure programs into Boogie. Thus, users can
write formal specifications of Clojure programs, using pre- and post-
conditions that are supported by the language, translate the code to
Boogie, and use Boogie’s automated theorem provers to formally check
the correctness of the code w.r.t. its specifications. This enables users to
formally prove Clojure programs enriched with pre- and post-conditions.
This paper shows the translation rules, its implementation and discusses
some of the challenges faced due to differences between the source and
the target languages.

1 Introduction

The correctness of a program is the ability of the program to run without errors
and to do as it is specified. One approach to specify programs is Design by con-
tract (DbC) which was initially introduced by Bertrand Meyer as a methodology
to ensure correctness and robustness of Object-Oriented programs [8]. Design by
contract relies on assigning contracts (in the form of pre- and postconditions) to
routines to ensure that all specifications are met: a precondition expresses how a
client should call a routine. A call without meeting the precondition makes the
program stops and arise an assertion; a postcondition expresses the semantics
of the routine (what the routine is supposed to do) if the precondition is met.
While a precondition is an obligation to the client caller, the postcondition is its
benefit. The main purpose of DbC is to help software developers to write correct
systems as it goes.

There exist several ways to make use of contracts. On one hand, contracts can
be checked during run-time, called Dynamic Checking. One can run the program
with specific inputs and check whether pre- or postconditions are violated. On
the other hand, contracts can be used to statically verify code, called Static
Checking. One can use different tools to translate the source code, along with its
specification, to an automatic theorem prover which is in charge to prove that
the code meets the specification.
c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 73–80, 2019.
https://doi.org/10.1007/978-3-030-29852-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_5

74 G. Pinzaru and V. Rivera

Clojure [5] is a dynamic, general-purpose programming language. Clojure
supports Design by Contract through pre- and post-conditions. Contracts in
Clojure are checked at runtime and when they are not met an AssertionError is
thrown. While it is true that this approach plays a crucial role in development
of correct software, it is also true that it is too limited, we need to run the
program on specific inputs to catch errors. Proving ahead errors for some mission-
critical programs is very important. This paper, proposes a way to statically
analyse Clojure programs, equipped with pre- and postconditions, in order to
find possible errors in the code at compilation time. The analysis is done by
automatically translating Clojure code to Boogie [6], and use Boogie’s theorems
provers to prove the correctness of the code.

This paper is organised as follows: Sect. 2 presents the translation rules from
Clojure programs to Boogie. Its implementation, the Speculator tool, is pre-
sented in Sect. 3. Section 4 discusses the related work and Sect. 5 is devoted to
conclusions and future work.

2 Translation Rules

The translation starts with a contracted Clojure program, a program with anno-
tated pre- and postconditions. The Clojure program is translated to the Boogie
(using the Speculator tool – implementation in Sect. 3). To help in the specifica-
tion and verification process, an additional mathematical model library (MM.bpl)
has been implemented in Boogie as a prelude. The generated Boogie code along
with the mathematical model is fed into Boogie. Boogie automatically trans-
lates the code to a Satisfiability Module Theories (SMT) prover for verification.
Finally, the output of the solver is fed-back to the Clojure program so users can
either continue with their implementation or correct the problems.

2.1 Rules

The translation is done with the aid δ : Clojure → Boogie. δ is defined as a total
function that maps contracted Clojure programs to Boogie implementations. δ
uses three helper functions: α translates arguments in Clojure to arguments in
Boogie; τ infers the type of Clojure variables and functions and translate them
into the corresponding Boogie type. No all types in Clojure has a correspond-
ing type in Boogie, see Sect. 3; and β translates Clojure expressions to their
counterpart in Boogie.

In Clojure, functions are defined using defn keyword. They are first-class
objects. Rule func, depicted in Fig. 1, shows the translation rule of Clojure
functions into Boogie procedures. We are not translating to Boogie’s functions
since they are side-effects free, so no change in the state is allowed. The name of
the function in Clojure is used as the name of the procedure in Boogie. In case
of name clashing, the implementation will add a unique identifier to the name.
Name clashing might happen in Boogie since Boogie does not allow users to
define procedures with the same name and different signature. This is possible

Towards Static Verification of Clojure Contract-Based Programs 75

in Clojure. For instance, in Clojure, function (defn foo [a](. . .)) might have a
different execution than function (defn foo [a b](. . .)), even though the names
are the same. In Boogie, it is recommendable to list all locations that the proce-
dure is allowed to modify. For this, rule func lists all variables in the modifies
clause. The operator Mod takes as input the body of the function and infers all
locations that are being modified. This operator, not implemented yet, could be
implemented using [16]. Pre- and postconditions in Clojure, if any, are translated
into Boogie using the clauses requires and ensures, accordingly. Both define
the same semantics as in Clojure.

τ(foo) = T β(exp1) = pre-exp β(exp2) = post-exp
α(args) = A δ(body) = B Mod(body) = lst

(func)
δ((defn foo args

{: pre [exp1]
: post [exp2]}

body)) =
procedure foo (A) returns (r: T)

modifies lst;
requires pre-exp;
ensures post-exp;

{
B

}

Fig. 1. Translation rule for functions.

Procedures in Boogie define a return local variable. This is done after the
keyword returns. In the func rule, the return local variable is r (that stands for
return) and has the type of the function in Clojure (in this case T, as given by the
operator τ). δ(body), as shown by the rule body in Fig. 2, takes each instruction
defined in the body of the Clojure function and returns the counter part in
Boogie. For the last instruction in Boogie (represented in Fig. 2 as (expn)), the
translation is assigned to the local variable return, r.

Arguments in Clojure can be defined as shown in rule n-arguments (Fig. 3).
The operator τ infers the type of each argument (attached information of the
argument – we assumed such an information). In Clojure, users can pass any
number of arguments to a function. In the body of the Clojure function, these
arguments can be referred using a vector of arguments. This is translated as
a Map of arguments in Boogie. Argument-less functions are also possible in
Clojure. They are translated as argument-less procedures in Boogie (the rule is
trivial, so we omit it).

do, in Clojure, evaluates the expressions in order and returns the value of
the last. This is translated in Boogie by unfolding the sequence of expressions
and assigning the result of the last element to return variable, as shown in rule
do in Fig. 4.

76 G. Pinzaru and V. Rivera

δ(exp1) = Exp1 δ(exp2) = Exp2
δ(expn) = Expn

(body)
δ (

(exp1)
(exp2)
. . .
(expn)) =

Exp1;
Exp2;
. . .
r := Expn;

Fig. 2. Translation of the body function.

τ (x) = T1 τ(y) = T2 τ (args) = T
(n-arguments)

δ(([x y & args])) = x : T1, y : T2, args : Map<T>

Fig. 3. n argument-passed definition rule.

δ(A) = A
δ(B) = B

(do)
δ((do A B)) =
A;
B;

Fig. 4. Translation rule for do evaluation.

2.2 Translation Issues

One of the main challenges of the translation is to cope with the different
paradigm that both the source and the target languages have: Clojure is a func-
tional programming language whereas Boogie is an imperative language.

In Clojure, everything is a s-expression, Symbolic Expression. All code is
written as an expression and when it is evaluated it returns a value which is
passed as an argument to parent node expression. Boogie does not allow such
behaviour, and each expression should be assigned to a variable. Furthermore,
only values can be passed as an argument to a procedure or function, since
functions in Boogie are not first-class citizens.

Another challenge is variadic functions. Variadic functions are functions that
take a varying number of arguments, some arguments are required and the oth-
ers are optional. A variadic argument can be a map or a vector, depending on
structure of the argument in the function definition. One approach to this prob-
lem is to store globally all variadic functions definitions and check for that on
every function call. The variadic argument can be replaced with a polymorphic
map in Boogie.

Towards Static Verification of Clojure Contract-Based Programs 77

Functions in Clojure are multi-arity. This raises a problem when translat-
ing to Boogie since Boogie does not allow users to define same name functions
with different signature. To solve this problem, the implementation generates a
procedure with different name for each arity. This way all procedures should be
outputted in a reversed order, so the scope of bigger arity is available for the
call inside procedure with smaller arities.

Local scoped functions are not allowed in Boogie. This, naturally, arises a
problem as nested functions can be defined in Clojure. To cope with the prob-
lem, the implementation transverses the source code twice: in the first pass,
the implementation stored all nested function definitions in the scope (the same
for variables); during the second pass, the implementation outputs all the inner
functions before the current function, thus, all scoped functions are available
to the translated function. For anonymous functions, a random global name is
generated.

3 Implementation

This section shows the implementation of the tool Speculator, a tool that imple-
ments the rules presented in Sect. 2.1. The translator takes as input Clojure
contracted programs and produces Boogie programs.

The translation is in its early stages, it is a proof of concept. Hence, there are
some limitations: the implementation takes into consideration the core part of the
source language, Clojure. The translation implements the fundamental library of
the Clojure language i.e., clojure.core; the implementation does not assume multi-
threading; finally, the translation does not assume any Java interoperability.
Clojure was designed to directly interoperates with the Java Virtual Machine
(JVM), for instance, for method calls on Java objects. The translation assumes
that no method calls on Java objects are being performed.

The translation starts by analysing Clojure code and generating the Abstract
Syntax Tree (AST). We use the Analyzer library in [9]. The implementation cov-
ers 66% of them. Most of the remaining nodes are used to access platform specific
code, which is outside our scope. The implementation transverses the tree using
multi-methods which are dispatched based on the type of the node. The tool is
publicly available at [10], It is fully written in Clojure and contains four main
namespaces, namely speculator.core, speculator.types, speculator.utils and spec-
ulator.flow. speculator.core contains the implementation of the translation rules
presented in Sect. 2.1. Traversing the tree is implemented using a multimethod
with dispatch on node type. The nodes that are not implemented will fallback
to a default method where the node will be outputted in a raw form; specula-
tor.types contains all methods in charge of types translations; speculator.utils
contains utility functions.

In order to assist the verification process, we have implemented a library in
Boogie that implements Clojure types, as data structures. We have also imple-
mented a mathematical model, along with its axioms and theorems (not yet
proven). These data types (along with the axioms and theorems) can be used by

78 G. Pinzaru and V. Rivera

the provers to verify the corresponding conditions. The implementation of the
library can be found in the namespace speculator.flow in [10].

The mathematical model is an implementation of structures such as sets,
relations, sequences, bags (multisets), and maps. It is implemented in Boogie as
a prelude library. The initial version is taken from Dafny [7] and modified in a
way to support Clojure data structures. A part of the Clojure core functions are
implemented and all axioms for them are provided.

Most of the Clojure datatypes can be mapped to Boogie using polymorphic
maps. Some basic data types like integer and boolean are directly mapped to
Boogie’s int and bool. The rest of the data types implementation was taken
from Joogie [1], a translation from Java to Boogie. It uses polymorphic maps
from a reference to values.

Boogie type system includes only primitive types, instantiated type con-
structors, and map. Primitive types are integers, reals, booleans and
bit-vectors. Type constructors are used to add parametric types. Map type
is polymorphic map which maps keys to values. Clojure offers a wide variety of
built-in types: Integers, Floating Point, Boolean, Char, String, Nil, Atom.
In addition, Clojure has all Java native types (Clojure inherits from Java type
system). These types are implemented in Boogie to ease the translation.

4 Related Work

An intermediate verification language embodies the subject of translation from
some high-level languages to logic which can be understood by SMT solvers.
Boogie and WhyML [4] are two of those languages that have gained popularity in
recent years. Dafny [7] is a programming language that uses Boogie as a verifier.
It is used to provide an interface for proving different programs and algorithms.
It is an imperative, class-based language which is directly encoded into Boogie.
Spec# [2] is a formal language which extends Microsoft C# program language.
It provides a sound programming methodology that allows writing specifications.
Thus, they want to provide a tool for a more cost-effective way to develop and
maintain high-quality software. Joogie [1] is a tool that aims to detect unfeasible
code in Java programs at the bytecode level. It is used to detect problems in
real-world Java applications.

On the other hand, there are tools that take advantage of Design by Contract
(DbC) methodologies (advocated by Boogie). The Eiffel programming language,
the pioneered in DbC, comes with Autoproof [18], an automatic verifier for Eiffel
code. It uses built-in DbC in Eiffel to provide a mechanism for reasoning about
code functional correctness. It allows developers to prove existing code without
extra annotations and work from developers. With the same spirit of taking
advantage of Design by Contract, [13,14] present a translation from Event-B
to Java (and its implementation [3,12]), annotating the code with JML (Java
Modelling Language) specifications (a way to encode Design by Contract in
Java), and [11,15] present a translation from Event-B to Eiffel.

All these tools aim at providing functional-correctness in an automatic form
which will be also easily used by end programmers: programmers will have no

Towards Static Verification of Clojure Contract-Based Programs 79

interaction with the solver but requires a more complete specification on the
language level. Our work is similar, however, the source language is different. we
translate Clojure annotated programs and use Boogie to take full advantage of
Design by Contract.

Spectrum [17] is a library for doing static analysis of Clojure code. It does
not prove the full correctness of programs. Spectrum is a tool which sacrifices
the full proof by giving an easy tool which finds just a big subset of errors. It
uses Clojure Spec to define specifications which will be checked on compile time.
It uses a different approach to code checking. The checking is based on Symbolic
Analysis and multiple optimisation and type checking strategies of the source
code.

5 Conclusion and Future Work

This paper presents a series of rules to transform a contracted Clojure program to
Boogie. The main idea of such a translation is to take full advantage of contracts
by verifying the code against them. It is important to perform this step statically
as one could discover errors at compilation time. We also presented Speculator,
a tool implemented in Clojure that implements the translation rules.

In order to be able to fully automate the translation, (i) the full syntax of
the language needs to be implemented. Speculator currently implements 66% of
the core functionality of Clojure. There is 33% remaining and all other libraries
attached to the language. (ii) Type inference needs to be implemented. Clojure
is a dynamically typed language in contrast to Boogie that needs types to be
specified. The current work assumes users to put type information, however,
this can be inferred automatically. (iii) The implementation needs to support
concurrency. For instance, the current implementation of Speculator treats
Atom type variables as regular variables due to the fact that it cannot deal with
concurrency. (iv) Finally, there is a need to provide a proof of soundness of the
translation.

Using Boogie as a tool for the static analysis of Clojure programs provides an
opportunity to have a mathematical proof by using SMT solvers. The automa-
tion of the process allows users to use these solvers without (or little) intervention
(users still need to provide the semantics of the program – pre- and postcondi-
tions), reducing the cost of development. The work presented here is still in the
initial stages of development, but it does give several steps towards the static
verification of Clojure contract-based programs.

References

1. Arlt, S., Rümmer, P., Schäf, M.: Joogie: from Java through Jimple to Boogie. In:
SOAP@PLDI, pp. 3–8. ACM (2013)

2. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9 3

https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3

80 G. Pinzaru and V. Rivera

3. Cataño, N., Rivera, V.: EventB2Java: a code generator for event-B. In:
Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 166–171.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40648-0 13

4. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

5. Hickey, R.: The Clojure programming language. In: Proceedings of the 2008 Sym-
posium on Dynamic Languages, DLS 2008, p. 1:1. ACM, New York (2008)

6. Rustan, K., Leino, M.: This is Boogie 2 (2008)
7. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.

In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

8. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992)
9. Hickey, R., Mometto, N.: clojure.tools.analyzer - analyzer for clojure code (2013).

https://github.com/clojure/tools.analyzer
10. Pinzaru, G.: Speculator (2019). https://github.com/Ferossgp/speculator
11. Reznikova, S., Rivera, V., Lee, J., Mazzara, M.: Translation from event-B into

Eiffel. MAIS 25(6), 623–636 (2018)
12. Rivera, V., Bhattacharya, S., Cataño, N.: Undertaking the tokeneer challenge in

event-B. In 2016 IEEE/ACM 4th FME Workshop on Formal Methods in Software
Engineering (FormaliSE), pp. 8–14, May 2016

13. Rivera, V., Cataño, N.: Translating event-B to JML-specified java programs. In:
Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC
2014, pp. 1264–1271. ACM, New York (2014)

14. Rivera, V., Cataño, N., Wahls, T., Rueda, C.: Code generation for event-B. Int. J.
Softw. Tools Technol. Transf. 19(1), 31–52 (2017)

15. Rivera, V., Lee, J.Y., Mazzara, M.: Mapping event-B machines into Eiffel program-
ming language. In: Ciancarini, P., Mazzara, M., Messina, A., Sillitti, A., Succi, G.
(eds.) SEDA 2018. AISC, vol. 925, pp. 255–264. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-14687-0 23

16. Rivera, V., Meyer, B.: Autoframe: automatic frame inference for object-oriented
languages. Under submission (2019). https://arxiv.org/pdf/1808.08751.pdf

17. Rohner, A.: Spectrum (2019). https://github.com/arohner/spectrum
18. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active

functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0 53

https://doi.org/10.1007/978-3-319-40648-0_13
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://github.com/clojure/tools.analyzer
https://github.com/Ferossgp/speculator
https://doi.org/10.1007/978-3-030-14687-0_23
https://doi.org/10.1007/978-3-030-14687-0_23
https://arxiv.org/pdf/1808.08751.pdf
https://github.com/arohner/spectrum
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-662-46681-0_53

Problems in Experiment with Biological
Signals in Software Engineering: The

Case of the EEG

Herman Tarasau, Ananga Thapaliya(B), and Oydinoy Zufarova

Innopolis University, 1 Universitetskaya, Innopolis 420500, Russia
{h.tarasau,a.thapaliya,o.zufarova}@innopolis.ru

Abstract. The electroencephalograph (EEG) signal is one of the most
widely used signal in the field of computer science to analyze the electrical
brain waves from software developers and students. In this paper we
present initial research results of an empirical study related to application
of EEG in measurement of software development activities. We discuss
existing methods and problems of running such experiments in future.
In particular, we focus on the different kinds of limitations implied by
modern EEG devices as well as the issues related to evaluation of the
collected data set.

Keywords: Empirical methods · Software experimentation

1 Introduction

Software developers have worked in multiple environment over the years and
these environments have different effect on their brain behaviour relations. As
an outcome, the perspective of developers assume a focal job in the quality and
the productivity of the produced software. Researchers have various method-
ologies available for the study of effect of environment external conditions in
brain-behaviour relations. The electroencephalogram (EEG) is considered by
numerous individuals to be a standout amongst the most proficient and mod-
erately inexpensive methodologies for analyzing these effects [2]. We prefer the
EEG since it additionally permits an examination of formative changes without
emotional impedance on typical progressing behaviours.

EEG estimates the electrical potential between two electrodes on the scalp,
with proof that the origin of this electrical signals is in the brain [1]. The EEG
signal is unconstrained however setting related; EEG produced amid calm rest is
quantitatively not the same as that created amid intellectual handling. The EEG
signal has temporal resolution on the order of milliseconds. Along these lines,
post-synaptic changes are promptly reflected in the EEG, making this strategy
remarkable for following quick moves in the functioning of brain “test subject”
or simply “subject”, so it should not be confused with any other meaning. We
explore whether the given different conditions (in this case: pair programming
c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 81–88, 2019.
https://doi.org/10.1007/978-3-030-29852-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_6

82 H. Tarasau et al.

and programming with (without music)) has an effect on the programming exper-
tise and the productivity of output. Also we will see that on a basic level of the
explained case, it must be underlined that brain wave measurements are firmly
influenced by an assortment of unspecific factors, for example, the thickness of
the skull or the volume of cerebrospinal liquid, by methodological and special-
ized factors(for instance interelectrode separation) yet additionally by increas-
ing explicit factors, for example, age, experience and the sort of psychological
requests amid actual task execution [4,5,15,17].

In a nutshell, our goal is first to assemble a superior comprehension of the
chances by examining how the given conditions and external factors affect the
productivity and quality of the software and then to understand the issues emerg-
ing when gathering and examining students and developers data utilizing EEG
in the desire for supporting and encouraging future research. In general, the
data accumulation process was time consuming and effort intensive. A few times
after running an experiment it was unrealistic to utilize the collected data, for a
number of factors, including the way that at first we needed to characterize our
very own test convention, since this is among the main investigations of this sort
and the current collection of knowledge in the literature is very constrained, as
examined underneath.

2 Methodologies

As it was mentioned earlier, there are several methodologies used in brain behav-
ioral study. We conducted experiments using two Mitsar SMART-BCI Bluetooth
devices. Test subjects involved in experiments belong mainly to three groups of
undergraduate students, graduate students and professional software developers.
They were assigned various tasks based on their experience and skills. Different
type of tasks, different participants and the required infrastructure for the exper-
iment is described as follows:

2.1 Test Subjects and Assigned Tasks

Several participants (subject) were involved in experiments using their own pro-
gramming language as desired [8,20]. Four types of experiments were held on
each participants as solo programmer (with and without music) and as pair
programmers (driver and navigator).

While programming, each undergraduate participant was assigned a simple
(according to the rating from the users) task from Codeforces. Graduate students
and software developers were implementing their ongoing projects (own industry
projects). As for the choice of music, participants has free will for their choice
of music while programming their respective tasks [19].

2.2 EEG and the Process

We utilized remote 24 channel Mitsar SMART-BCI flexible top for our experi-
ments. The arrangement of electrodes was based on standard 10–20 plot. One

Problems in Experiment with Biological Signals in SE: The Case of the EEG 83

of the significant steps of EEG recording is the readiness of the EEG cap. We
utilized the authoritative sort of cleaning before the trial which is cleaning with
spirit (mixture of ethyl alcohol and water).

The EEG device was used with more than one channel and the channels that
were chosen are the center of the processing. From one perspective, numerous
channels give a wide scope of data from the entire scalp. Then again, this data
can be excess [13]. We discovered that a signal from the frontal electrodes can’t
be cleaned with EEG inclining procedures like individual component analysis
and manual process of filtering. Therefore, we chose to investigate just focal
electrodes (Fz, F4, F3, Cz, C4, C3, Pz, P4, P3) since they give legitimate
quality information which can be utilized in further examination.

We were unable to collect clean data as the signals were disturbed by different
metal devices, the EEG device itself being old and imperfect, wireless networks,
the subjects themselves not being able to be still for a longer amount of time,
blinking of eyes and different noise from surroundings or the place where the
experiment was held [18].

There are many factors to consider, similar to the age, the gender, and other
physiological factors of the subject. So after the selection of proper electrodes
and channels, cleaning of data was done with the use of filters which are notch
filter used for removing noise, high and low pass filters used for filtering
range according to alpha and theta waves and amplitude filtering was used
to filter artifacts, the signals that were not in range [6,12].

2.3 Processing Tools

We chose to utilize just clean channels. The decision of clean channels was con-
templated by EEG artifacts that are difficult to be recouped to the original data.
Additionally, we used the tools such EEG official software tools and python MNE
library version 0.16.1 with libraries NumPy and SciPy.

2.4 Experiment Steps and Formula

Pair Programming

– Subject one and Subject two calibration: The calibration part comprises of
two sections. Initial one is when subjects sit with shut eyes before the com-
puter in a relaxing state and the second one is the equivalent however with
opened eyes. The required step is to quantify alpha and theta synchroniza-
tions amid quiet state.

– Subject one and subject two get started with solo programming with the
specific task assigned to them which ends after one hour.

– Now after finishing the solo mode, they get started with pair programming
in which subject one being the driver and subject two being the navigator.

– Break. In this state, subjects are not involved in any type of activities, they
are in relaxed and calm state.

– Again the pair programming starts, just with the reversed role of subject one
with subject two and vice versa.

84 H. Tarasau et al.

Programming with (Without) Music

– Subject one calibration: The calibration part comprises of two sections. Initial
one is when subjects sit with shut eyes before the computer in a relaxing state
and the second one is the equivalent however with opened eyes. As said before,
the required step is to quantify alpha and theta synchronizations amid quiet
state.

– Subject one gets started with programming with the specific task assigned to
them which ends after one hour, without music which ends after one hour.

– Break. In this state, the subject is not involved in any type of activities,
subject is in relaxed and calm state.

– Now the same subject starts programming with music, with the individual
choice of music. It also ends after one hour.

ERD is calculated with the given formula:

ERD =
(amplitude)rest − (amplitude)programming

(amplitude)rest
× 100%

Fast Fourier Transformation (FFT) is used for ERD calculation of 2000 ms
window of signal. Therefore, we get a period arrangement or circulation of ERD
for each sub-band for each programming movement difference.

3 Analysis

For our experiments we chose two popular software developing techniques: pair
programming (PP) and programming while listening to music (PM). We ran sev-
eral experiments and collected a dataset of 11 graduated students for PP analysis,
3 undergraduate students for PM and 3 software developers from industry.

Pair programming is an agile software development technique in which two
programmers work together at one workstation. There are two roles in PP. Driver
is the one who writes code while navigator coordinates the process and reviews
each type of code as it is typed in. PP has been picked for this experiment due
to it’s popularity among different studies. In our work we present two ways of
PP analysis and their results.

Software development while listening to music is very popular among pro-
grammers but very rarely investigated technique. During our experiments the
students were able to listen to music of their choice and the same as for PP, we
applied two ways of analysis for PM.

3.1 ERD (Event Related Desynchronization) Analysis

During the analysis we compared different values according to our dataset. For
this work we compared among each other, two groups of software developing
techniques. After that we checked the difference between the values using Mann-
Whitney test and determine the significance of the difference. We pay more

Problems in Experiment with Biological Signals in SE: The Case of the EEG 85

attention on theta waves as consider them to be connected to higher memory load
and on alpha waves as they have a strong dependence with attention level and
semantic memory processing. Using this information gives us an understanding
of how to compare sub-bands values.

3.2 Correlation Analysis

The correlation analysis was not applied for EEG data before, which means
that we applied this technique in order to understand if it might be used for
future research. Using correlation we compare Pearson’s correlation coefficients
between programming with (without) music and all the roles of PP. We con-
sider the difference between waves as the increment of neurons synchronization
which implies the increasing of attention and memory load processes. Using this
information we can calculate the correlation on some sub-bands and compare
the results with ERD analysis.

4 Results

The analysis shows us that in case of pair programming the ERD is higher
for pair-navigator mode and the values are equivalent for the other mode due to
the asynchronous lower alpha band. It might imply that pair programming in
navigator mode requires more consideration, and this mirrors the instinct that
the navigator part requires assessing and controlling the improvement, which
in turn instinctively requires a huge exertion of consideration, additionally due
to the fact that the navigator isn’t engaged with a physical contact with the
input device. As for the theta value, solo programming, navigator, and driver
have values in the descending order respectively. Thus we found out that theta
and alpha waves are inversely proportional to each other. In case of music
programming, we could not find out the specific patterns and result due to
lower number of participants (test subjects).

The investigation of the relationship for pair programming shows up some
way or another to help the cases made with the examination of ERD. In fact,
the small dataset isn’t indisputable, as yet observing a second analysis led with
an alternate methodology alluding to a similar pattern as the first which gives
some observational affirmation of the explanation that the navigator in pair pro-
gramming has more concentration. The investigation of correlation with music is
once more not indisputable, and again we can recreate the points of confinement
of the small set of data.

5 Limitations and Problems

As the objective of this paper is basically to give a reference to future encoun-
ters in utilizing biological sensors to recognize the conditions of brains of soft-
ware developers, it is imperative to underline the distinctive difficulties that rose
before the experiment, amid the experiment and after the experiment, with the
goal that future researchers can apply necessary precautions to attenuate the
problems or even remove them.

86 H. Tarasau et al.

5.1 Before the Experiment

– Regardless of the design of study utilized, researchers should design both the
acquisition of data and analysis of procedures totally at individual experiment
and different group of individuals before beginning the actual experiment [11].

– These analysis contemplation can possibly change how the stimuli really
should be conveyed or how troublesome the initiation task might be, e.g.,
to guarantee that there are sufficient preliminaries and ratio of signal to noise
in right conduct preliminaries [10].

– As this was significantly a new experiment in the field of software engineering,
there was an absence of different literature works due to which we had some
trouble for setting up our whole experiment which required an impressive
exertion to characterize a strong experiment convention.

– It required a significant amount of time to begin the experiment as the device
required an intricate arrangements of numerous electrodes around the head
with the utilization of various gels.

5.2 During the Physical Experiment (Data Collection)

– A lot of muscle movement was picked up during the data collection which
clouded our data. So subjects needed to remain as still as would be possible
and squint as least as would be possible [9].

– The skull carries on like a low-pass channel and misshapes the underlying
brain electrical action over an extensive zone of the scalp. Moreover, possibil-
ities recorded at the scalp are likely created by numerous groupings of cortical
and sub cortical generators spread over a moderately wide zone.

– Even the addition of extra gel, it was impossible to collect data from subjects
with thick hair.

– Substantial number of subjects were required and a tremendous number of
analyses were directed for extraction of useful data and information from
the device in light of the fact that the device had poor signal to noise ratio,
therefore, this approach is very time consuming and exhaustive.

5.3 After the Experiment (Phase of Analysis)

– A significant amount of time is required to process the EEG data and should
understand that it is a complex data analysis because of poor signal to noise
ratio.

– In the analyzing process we found out that EEG experiment was highly
impacted by environment conditions (for instance noises, squeaks) which lead
us to perform a lot of filtering to our data.

– It is troublesome to dispense with bits of the EEG record that are debased by
gross motor movements or eye blinks preceding to analysis of data as the EEG
signal is of very small amplitude due to which these gross motor movements
tend to suppress the EEG signal.

– EEG requires intense interpretation just to conjecture what areas are enacted
by a specific reaction as EEG shows very low spatial resolution on the scalp.

Problems in Experiment with Biological Signals in SE: The Case of the EEG 87

6 Conclusion

The objective of our work is to give a new commitment to individuals keen
on performing investigation of software development utilizing biological signals,
hence finding a totally different comprehension of the perspective of developers,
who are the fundamental asset in the field of software production. Although there
were some problems as discussed in Sect. 5, the methodology seems to work.
For the experiment including 10 subjects, we obtained some observational ends
affirming past proof that pair programming builds the dimension of consideration
from a reasonable biological viewpoint. We feel that this outcome is astounding.
As for the instance of programming with music, we did not accomplish any huge
outcome. We are not debilitated by this – it is an impact of the noteworthy
measure of work required to run such test and we believe that a bigger trial may
prompt progressively indisputable explanations.

7 Future Scope

There are a lot more acquisition techniques that are for the most part utilized
these days: (f)NIRS, (f)MRI, ECoG, PET and MEG [16]. These devices can have
less restrictions and issues making the research less tedious and less effort inten-
sive with increasingly solid outcomes. Our research will be based on progressively
focused experimentation with EEG as well as other accessible devices mentioned
above on explicit programming circumstances utilizing bigger datasets of stu-
dents and after that, without a doubt, attempting to move our investigation to
the industry in a bigger premise [14]. Thus with the concrete results, one can
apply this research to find out the better environment conditions that can be
used for software developers to get quality products and software.

References

1. Pizzagalli, D.A.: Electroencephalography and high-density electrophysiological
source localization. Handb. Psychophysiol. 3, 56–84 (2007)

2. Klimesch, W.: Memory processes, brain oscillations and EEG synchronization. Int.
J. Psychophysiol. 24(1–2), 61–100 (1996)

3. Sillitti, A., Succi, G., Vlasenko, J.: Understanding the impact of pair programming
on developers attention: a case study on a large industrial experimentation. In:
2012 34th International Conference on Software Engineering (ICSE), pp. 1094–
1101. IEEE, June 2012

4. Raziq, A., Maulabakhsh, R.: Impact of working environment on job satisfaction.
Proc. Econ. Finance 23, 717–725 (2015)

5. Doborjeh, Z.G., Kasabov, N., Doborjeh, M.G., Sumich, A.: Modelling peri-
perceptual brain processes in a deep learning spiking neural network architecture.
Sci. Rep. 8(1), 8912 (2018)

6. Keil, A., et al.: Committee report: publication guidelines and recommendations for
studies using electroencephalography and magnetoencephalography. Psychophysi-
ology 51(1), 1–21 (2014)

88 H. Tarasau et al.

7. Xu, J., Mitra, S., Van Hoof, C., Yazicioglu, R.F., Makinwa, K.A.: Active electrodes
for wearable EEG acquisition: review and electronics design methodology. IEEE
Rev. Biomed. Eng. 10, 187–198 (2017)

8. Delorey, D.P., Knutson, C.D., Chun, S.: Do programming languages affect produc-
tivity? A case study using data from open source projects. In: First International
Workshop on Emerging Trends in FLOSS Research and Development (FLOSS
2007: ICSE Workshops 2007), p. 8. IEEE, May 2007

9. Bell, M.A., Cuevas, K.: Using EEG to study cognitive development: issues and
practices. J. Cogn. Dev. 13(3), 281–294 (2012)

10. Wendel, K., et al.: EEG/MEG source imaging: methods, challenges, and open
issues. Comput. Intell. Neurosci. 2009, 13 (2009)

11. Puce, A., Hämäläinen, M.: A review of issues related to data acquisition and anal-
ysis in EEG/MEG studies. Brain Sci. 7(6), 58 (2017)

12. Jiang, X., Bian, G.B., Tian, Z.: Removal of artifacts from EEG signals: a review.
Sensors 19(5), 987 (2019)

13. Das, S., Tripathy, D., Raheja, J.L.: An insight to the human brain and EEG. In:
Real-Time BCI System Design to Control Arduino Based Speed Controllable Robot
Using EEG. BRIEFSAPPLSCIENCES, pp. 13–24. Springer, Singapore (2019).
https://doi.org/10.1007/978-981-13-3098-8 2

14. Bigdely-Shamlo, N., et al.: Hierarchical Event Descriptors (HED): semi-structured
tagging for real-world events in large-scale EEG. Front. Neuroinform. 10, 42 (2016)

15. Züger, M., Fritz, T.: Interruptibility of software developers and its prediction using
psycho-physiological sensors. In: Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, pp. 2981–2990. ACM, April 2015

16. Kosmyna, N., Lécuyer, A.: A conceptual space for EEG-based brain-computer
interfaces. PLoS ONE 14(1), e0210145 (2019)

17. Müller, S.C., Fritz, T.: Stuck and frustrated or in flow and happy: sensing devel-
opers’ emotions and progress. In: 2015 IEEE/ACM 37th IEEE International Con-
ference on Software Engineering, vol. 1, pp. 688–699. IEEE, May 2015

18. Chaparro, E.A., Yuksel, A., Romero, P., Bryant, S.: Factors affecting the perceived
effectiveness of pair programming in higher education. In: PPIG, p. 2, June 2005

19. Lesiuk, T.: The effect of music listening on work performance. Psychol. Music
33(2), 173–191 (2005)

20. Nanz, S., Furia, C.A.: A comparative study of programming languages in Rosetta
code. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering, vol. 1, pp. 778–788. IEEE, May 2015

https://doi.org/10.1007/978-981-13-3098-8_2

Developing Medical Devices from
Abstract State Machines to Embedded
Systems: A Smart Pill Box Case Study

Andrea Bombarda, Silvia Bonfanti, and Angelo Gargantini(B)

Department of Economics and Technology Management,
Information Technology and Production, University of Bergamo, Bergamo, Italy

{andrea.bombarda,silvia.bonfanti,angelo.gargantini}@unibg.it

Abstract. The development of medical devices is a safety-critical pro-
cess, because a failure or a malfunction of the device can cause serious
injuries to the patients whom use it. The application of a rigorous pro-
cess for their development reduces the risk of failures since validation
and verification activities can be performed in a objective, reproducible,
and documentable manner. In this paper we present an approach based
on the Abstract State Machine (ASM) formal method. Starting from the
model, validation and verification (V&V) techniques can be applied. Fur-
thermore, by step-wise refinement, a final model can be obtained, which
can be automatically translated to C++ code. The process is applied to
the smart pill box case study. Starting from the ASM model, we gen-
erate C++ code for the Arduino platform after the application of V&V
activities. Furthermore, we introduce regulation (IEC62304) and guide-
lines (FDA General Principles of Software Validation) that support the
developer in medical software development. In particular, we explain how
ASMs formal process can be compliant with them.

1 Introduction

Software is becoming an essential part of medical devices, so it is very important
that its development process adheres to certification standards. All the stan-
dards available provide only general description of common software engineering
activities, but nothing is said about the techniques that have to be used to
guarantee the safety of the devices and the correctness of their software. The
main references concerning the regulation of medical software are the standard
IEC 62304 (International Electrotechnical Commission) [12] (see Sect. 6.1) and
the FDA guidelines [15] in which several concepts that can be used as guidance
for software validation and verification are defined (see Sect. 6.2). The regulation
and the guideline aim for more rigorous approaches for software development and
validation, but neither of them recommend a particular method or technique.

In this paper we propose a formal approach that can be used to develop and
validate the software of an embedded medical device, in compliance with the
IEC regulation and FDA guidance for software validation as shown in Sect. 6.
c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 89–103, 2019.
https://doi.org/10.1007/978-3-030-29852-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_7

90 A. Bombarda et al.

State0 State1 StatenTransi on1 Transi on2 Transi onn

Fig. 1. An ASM run with a sequences of states and state-transitions (steps)

Our formal approach is studied over a simple example of a smart portable pill
box, called e-Pix (electronic PIll boX), modelled with Abstract State Machines
(ASM) by using the Asmeta framework. We have applied several validation and
verification (V&V) techniques [13], such as model simulation (see Sect. 4.3),
scenario-based testing (see Sect. 4.4) using the Avalla language, and property
verification (see Sect. 4.5). As final step, we have used Asm2C++ to generate the
C++ code to be executed by Arduino.

The paper is organized as follows. Section 2 introduces the ASMs and all the
tools provided by the Asmeta framework. In Sect. 3 we explain the e-Pix case
study. Section 4 presents modelling by refinement, validation, testing and verifi-
cation procedures applied to the case study. Section 5 explains how we have built
the prototype of e-Pix and generated C++ code. Section 6 gives a comprehen-
sive review about how our approach can be used to comply the main regulations
concerning the development of medical software. Section 7 presents works related
to the use of rigorous approaches in medical software development, and Sect. 8
concludes the paper.

2 Abstract State Machines and Asmeta Framework

Abstract State Machines (ASMs) [7] are an extension of Finite State Machines
(FSMs), where unstructured control states are replaced by states with arbitrarily
complex data. ASM states are mathematical structures, i.e., domains of objects
with functions and predicates defined on them. An ASM location - defined as
the pair (function-name, list-of-parameter-values) - represents the abstract ASM
concept of basic objects container. The ordered pair (location, value) represents
a machine memory unit.

Location values are changed by firing transition rules. They express the mod-
ification of functions interpretation from one state to the next one. Note that the
algebra signature is fixed and that functions are total (by interpreting undefined
locations f(x) with value undef). Location updates are given as assignments of
the form loc := v, where loc is a location and v is its new value. They are the
basic units of rule construction. There is a limited but powerful set of rule con-
structors to express: guarded actions, simultaneous parallel actions, sequential
actions, nondeterminism, and unrestricted synchronous parallelism.

An ASM computation or run is, therefore, defined as a finite or infinite
sequence of states s1, s2, . . . , sn, . . . of the machine. s1 is an initial state and
each si+1 is obtained from si by firing the unique main rule, which could fire
other transitions rules (see Fig. 1).

Developing Medical Devices from ASM to Embedded Systems 91

Modelling
Editor AsmetaL - AsmEE

Visualizer AsmetaVis

Refinement prover
AsmRefProver

ASM 0 ASM 1 ASM
final

Valida on and verifica on At
 a

ny

le
ve

l

Code Generator

Asm2C++ C++ Code

Abstract unit tests generator
Model-Based Tes ng

ATGT

Valida on Property Verifica on
Model Checking
AsmetaSMV

Model Review
AsmetaMA

Simula on
AsmetaS

Scenarios
AsmetaV

C++ Unit test

Animator
AsmetaA

Fig. 2. The ASM development process powered by the Asmeta framework

During a machine computation, not all the locations can be updated. Func-
tions are classified as static (never change during any run of the machine) or
dynamic (may change as a consequence of agent actions or updates). Dynamic
functions are distinguished between monitored (only read by the machine and
modified by the environment) and controlled (read in the current state and
updated by the machine in the next state). A further classification is between
basic and derived functions, i.e., those coming with a specification or computa-
tion mechanism given in terms of other functions.

An ASM can be nondeterministic due to the presence of monitored functions
(external nondeterminism) and of choose rules (internal nondeterminism).

Asmeta framework. The ASM method can facilitate the entire life cycle of
software development, i.e., from modeling to code generation. Figure 2 shows the
development process based on ASMs. The process is supported by the Asmeta
(ASM mETAmodeling) framework1 [4] which provides a set of tools to help the
developer in various activities:

– modeling: the system is modeled using the language AsmetaL. The user is
supported by the editor AsmEE and by AsmetaVis, the ASMs visualizer which
transforms the textual model into a graphical representation. The user can
directly define the last ASM model or s/he can reach it through refinement.
The refinement process is adopted in case the model is complex. In this case,
the designer can start from the first model (also called the ground model) and
can refine it through the refinement steps by adding details to the behavior of
the ASM. The AsmRefProver tool ensures whether the current ASM model
is a correct refinement of the previous ASM model.

– validation: the process is supported by the model simulator AsmetaS, the
animator AsmetaA, the scenarios executor AsmetaV, and the model reviewer
AsmetaMA. The simulator AsmetaS allows to perform two types of simulation:
interactive simulation and random simulation. The difference between the two
types of simulation is the way in which the monitored functions are chosen.

1 http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/

92 A. Bombarda et al.

During interactive simulation the user inserts the value of functions, while in
random simulation the tool randomly chooses the value of functions among
those available. AsmetaA allows the same operation of AsmetaS, but the states
are shown using tables which make the readability of the state easier. AsmetaV
executes scenarios written using the Avalla language. Each scenario contains
the expected system behavior and the tool checks whether the machine runs
correctly. The model reviewer AsmetaMA performs static analysis in order to
check quality attributes like minimality, completeness, and consistency.

– verification: the properties derived from the requirements document are
verified to check whether the behavior of the model complies with the intended
behavior. The AsmetaSMV tool supports this process.

– testing: the tool ATGT generates abstract unit tests starting from the ASM
specification by exploiting the counterexamples generation of a model checker.

– code generation: given the final ASM specification, the Asm2C++ automati-
cally translates it into C++ code. Moreover, the abstract tests, generated by
the ATGT tool, are translated to C++ unit tests.

3 The e-Pix Case Study

Adherence to pharmacological therapy [8] is one of the most well-known problem
in medical field. Sometimes it happens that the patient is not adherent to the
therapy because he does not remember to take the medicine or he does not
remember if he has already taken it. For this reason the patients have the need to
adopt a system that can help them to follow the therapy. The device introduced
in the market is the pill box, where pills are inserted based on the scheduled doses
of medications. The first pill boxes were simply multicompartment boxes where
each compartment was filled with the corresponding medicine. The simplest
boxes have one section for each day, while the most complicated have multiple
sections corresponding to different times of the day. The box helps the user
to prevent/reduce medication errors because once the pills are in the correct
section the user has only to remember to take it at the right time. With the
introduction of technology in the medical field, even the pill boxes have evolved.
They are integrated with electronic components that provide alerts to patients
when the time of medicine comes. Usually the pill box is provided with a memory
where the list of pills with the therapy time are saved and at the right time the
box notifies to the user. The notifications can take place with a sound/light
signal or, for smarter pill boxes, they can be displayed on the smartphone. In
this paper, we consider a pill box developed using Arduino2, an open-source
electronic prototyping platform. We were asked by a local company to re-engineer
the software of an existing pocket portable pillbox called e-Pix, following the
guidelines discussed in Sect. 6. In particular, the company wants to certify its
product w.r.t. the FDA guidelines and IEC regulation and, because of that, needs
to be sure it works properly. Furthermore, they have provided some functional

2 https://www.arduino.cc/.

https://www.arduino.cc/

Developing Medical Devices from ASM to Embedded Systems 93

requirements which the prototype has to satisfy, e.g. if the patient does not take
the pill in time the red light of the corresponding compartment has to blink.

Requirements. The existing e-Pix has an array of compartments each containing
an unique type of unpackaged pills and having a sensor able to signal the opening
of the related window. Each compartment is provided with a red led, used as
output to indicate which pill has to be taken (red led turns on until the patient
opens the compartment) and if the pill has been taken. When the pill time has
passed and the set timeout expires the red led starts to blink for a certain period
of time to attract patient’s attention because he forgot the pill.

{ ‘‘patient” : ‘‘patient name”,
‘‘pills” : [

{ ‘‘compartment” : ‘‘
compartment number”,

‘‘name” : ‘‘pillName”,
‘‘time consumption” :

[‘‘t1”, ‘‘t2”, ...],
},
{...}

]
}

Code 1. Example of the JSON
file containing the prescriptions

After that the red led is turned off and a
message is shown on the e-Pix display. In case
the patient takes the pill but he forgot closing
the compartment window, the red led starts to
blink for a certain period of time. The prescrip-
tion file is generated by the user by interact-
ing with some buttons on the e-Pix and stored
inside e-Pix as JSON file (see Code 1). It con-
tains for each pill the compartment in which it
is contained, the name of the pill and the time
at which the pill has to be taken (expressed as
the number of seconds passed since 01/01/1970). e-Pix loads the JSON file con-
taining the times at which the pills have to be taken during the initialization
phase and, following the schedule, indicates when the patient has to take the pill
from the compartment.

4 Modeling and V&V

Starting from the informal requirements of the e-Pix, we have applied the process
described in Fig. 2. Using the editor AsmEE we have implemented the AsmetaL
specifications3 with different refinement levels. Then validation and verification
tools have been used to validate and to verify the model.

Table 1. Refinement levels of e-Pix (0 compartments means only one type of pills).

Refinement Time management # compartments # controlled

functions

monitored

functions

Level 0 Monitored boolean function

that indicates the overpassing

of the time threshold

0 4 3

Level 1 Controlled by the system 0 8 1

Level 2 Controlled by the system 3 9 1

Level 3 Monitored function 3 8 2

3 The specifications are available at https://foselab.unibg.it/asmeta/PillboxASM.zip.

https://foselab.unibg.it/asmeta/PillboxASM.zip

94 A. Bombarda et al.

4.1 Modeling by Refinement

We have modeled e-Pix starting from a simple model and then applying step-
wise refinement. At each refinement step we have introduced some controlled
and monitored functions, we have gradually added compartments, and we have
managed the time differently - using some abstractions at level 0, having a
controlled time at levels 1 and 2, and as monitored value at the final level (see
Table 1).

In the following paragraphs we explain the main characteristics of each refine-
ment level and we analyze how we have modeled the switching on of the red led
when the time of a pill comes.

Level 0. In the first model, i.e. the ground model, we have considered only one
pill and no compartments. Instead of using an actual timer, a boolean moni-
tored function takeThePill reports when the pill has to be taken. Similarly,
the overpassing of all the timeouts (used to switch from a state of the LED to
another state) is indicated by the boolean function timeDiffOver600. The red
led is switched on when a pill has to be taken and it is managed by the following
AsmetaL rules:

main rule r Main =
[...]
if redLed = OFF and takeThePill then

r pillToBeTaken[] endif
if redLed = ON and not timeDiffOver600 and
opened and not openSwitch then

r pillTaken compartmentOpened[] endif
[...]

rule r pillToBeTaken =
par

redLed := ON
outMess := TAKE PILL

endpar
rule r pillTaken compartmentOpened =

par
redLed := OFF
outMess := NONE

endpar

Level 1. At this refinement level, we have continued considering only one pill and
no compartments. The time management has been realized using the function
systemTime as Natural, controlled by the system and increased at each machine
step. Also at this refinement level we have not considered the list of prescriptions,
but only a single deadline for the contemplated pill: we have used a boolean
function, requestSatisfied to check whether the pill has already been taken
or not. The possible output and log messages are taken from an enumerative
domain OutMessages. The condition according to which the red led is switched
on checks the value of the actual timer of e-Pix, whose value is controlled by the
system:

main rule r Main =
[...]
if redLed = OFF and (time consumption<=

systemTime and not requestSatisfied)
then r pillToBeTaken[]
endif
[...]

rule r pillToBeTaken =
par
if redLed != ON then
compartmentTimer := systemTime endif
redLed := ON
outMess := TAKE PILL
endpar

Level 2. The second refinement level introduces three compartments, each with
a single type of pill. Other features are similar to the previous level: we have used

Developing Medical Devices from ASM to Embedded Systems 95

a single deadline for each pill, the output and log messages come from the enu-
merative domain OutMessages, the timer systemTime is managed by the system
and takes value in a bounded range. Compared to the previous refinements, the
red led switch on condition is checked for each single compartment as follows:
main rule r Main =
[...]
if redLed($compartment) = OFF and

(time consumption($compartment)<=systemTime and not requestSatisfied($compartment)) then
r pillToBeTaken[$compartment]

endif
[...]

rule r pillToBeTaken($compartment in Compartment) =
par

if redLed($compartment) != ON then compartmentTimer($compartment) := systemTime endif
redLed($compartment) := ON
if ($compartment=compartment1) then

outMess($compartment) := TAKE TYLENOL
else if ($compartment=compartment2) then

outMess($compartment) := TAKE ASPIRINE
else

outMess($compartment) := TAKE MOMENT
endif endif

endpar

Level 3. The 3rd model we have considered has three compartments and we
have included all the features of the system:

– The systemTime is monitored from the machine and updated by the environ-
ment.

– Every string can be used as output and log message.
– It is possible to assign a list of time prescriptions for each compartment,

stored in the function time consumption.

The guard that makes the red led switch on, when it is time to take the
pill, has been modified with respect to the previous levels, because we have to
manage more prescriptions for each pill. The correct item in the sequence con-
taining the prescription times, i.e. the current time threshold to be considered,
is selected by the function drugIndex. Therefore, for the compartment d, when
systemTime passes time consumption(d) at position drugIndex(d), then the
pill in d should be taken.
main rule r Main =
[...]

if redLed($compartment) = OFF and
(at(time consumption($compartment),drugIndex($compartment))<systemTime) then

r pillToBeTaken[$compartment]
endif
[...]

rule r pillToBeTaken($compartment in Compartment) =
par

if redLed($compartment) != ON then
compartmentTimer($compartment) := systemTime endif

redLed($compartment) := ON
outMess($compartment) := ”Take ” + name($compartment)

endpar

96 A. Bombarda et al.

Fig. 3. Simulation steps with the animator AsmetaA at the last refinement level

4.2 Automatic Refinement Proof

To automatically prove the correctness of the model refinement process, used in
our ASM formal approach, we have employed the tool AsmRefProver, which is
based over the Satisfiability Modulo Theories (SMT). With the execution of this
software, presented in [3], one can specify two refinement levels and ensure that
an ASM specification is a correct refinement of a more abstract one.

In our case study we have proven the correctness of the refinement process.
To make this possible, since AsmRefProver maps refined functions to abstract
ones with the same name, we had to introduce in the refined level, some derived
functions representing predicates over the abstract or refined states. For example,
in the first refinement level, to prove the correctness of the refinement process,
we have added two derived functions: takeThePill that indicates if the patient
has to take the pill and timeDiffOver600 to represent if the patient has forgot
taking the pill within a certain time.
function takeThePill = (time consumption<=systemTime)
function timeDiffOver600 = (systemTime−compartmentTimer>tenMinutes)

4.3 Validation

Validation activity consists in the execution of different tools. Initially we
have validated the specification using the simulator AsmetaS and the anima-
tor AsmetaA. In particular we have intensively used the animator because it
provides a graphical interface which is more readable for the user during the
model execution.

In Fig. 3 we have reported some simulation steps using the animator AsmetaA.
Specifically, after the system initialization, we have simulated the scenario in
which the time is controlled by the ASM and we have only a pill in the first
compartment. The red led goes ON when it is time to assume the pill (systemTime
> time consumption) and turns to BLINKING when the timeout has passed.
When the compartment is closed the red led turns OFF. Also the display message
(outMess) changes according to the state of e-Pix.

4.4 Scenario-Based Testing

In the scenario-based testing activity we have checked the behaviour of e-Pix
against the expected one by simulating all the possible states, and transitions
between them.

Developing Medical Devices from ASM to Embedded Systems 97

// Setting−up the initial state
set openSwitch(comp1) := false;
set openSwitch(comp2) := false;
set openSwitch(comp3) := false;

step

check redLed(comp1) = OFF;
check outMess(comp1) = NONE;
check logMess(comp1) = NONE;

// Time to take the pill in comp1
step until systemTime = 2;

check redLed(comp1) = ON;
check outMess(comp1) =

TAKE TYLENOL;
check logMess(comp1) = NONE;

Code 2. Example of an Avalla
scenario for the e-Pix

We have written our scenarios using the
Avalla language [9] and tested each scenario
with the validator AsmetaV, which checks if
the machine runs as expected. We have also
checked, with the coverage evaluation tool
included into AsmetaV, that our scenarios exe-
cute all the rules of the ASM model. An exam-
ple of the tested scenarios is shown in Code 2.
Initially all the compartments are closed and
after the ASM step the red led is off and no
messages are shown. When the time to take
the pill is reached (step until command) the
state changes, the red led turns on and the
message shows which pill the patient has to
take.

4.5 Property Verification: AsmetaSMV

Once the modeler is confident enough that the model correctly reflects the
intended requirements, heavier techniques can be used for property verification.
In the proposed case study we have identified four CTL (Computational Tree
Logic) properties that we have tested in the refined models:

P1. If the pill has to be taken, red led must lights up.
P2. If the patient does not take the pill or the compartment has to be closed,

the red light has to blink.
P3. The red light has to change value after 10 min if the patient does not take

the pill.
P4. If the patient takes the pill and closes the compartment, red light becomes

off.

We have generated SMV models from the ASM specification using AsmetaSMV
and we have verified the properties by means of the model checker NuSMV4.
Table 2 reports the first property P1 verified in the models, all the others are
available online.

The property is different from one model to the other because we have man-
aged the time differently (initially it was a monitored function, then we have
used the function systemTime controlled by the system and increased at each
machine step). Furthermore, in the last case we have added more than one com-
partment, for this reason the property has been verified over each compartment.
It is not possible to test the property on Level 3 because the model contains
unlimited domains (like natural numbers and strings) which are not supported
by our model checker.

4 http://nusmv.fbk.eu/.

http://nusmv.fbk.eu/

98 A. Bombarda et al.

Table 2. The property P1 in different refinement levels

Level CTLSPEC

0 ag((takeThePill and redLed = OFF)implies ax(redLed = ON))

1 ag((takeThePill and not requestSatisfied and redLed = OFF)implies ax(redLed = ON))

2 (forall $d in Compartment with ag((time consumption($d)<systemTime and not requestSatisfied

($d)and opened($d)and not(openSwitch($d))and not(redLed($d)= OFF)and not(systemTime−
compartmentTimer($d)>=tenMinutes))implies ax(redLed($d)= OFF)))

5 From Asmeta Specification to C++ Code for Arduino

In addition to the validation and verification activities, we have created an hard-
ware prototype of e-Pix and we have automatically generated the C++ code. The
hardware used in our implementation is:

– Arduino Mega 2560
– 3 reed switches, used to signal the opening of each compartment
– 3 red LEDs to signal the state of each compartment
– 1 LCD (Liquid Crystal Display) to interact with the user
– 1 DS3231 module to get the current time
– Arduino SD card reader module, used to store the JSON prescription file and

the log ones
– Potentiometers and resistors.

#include”pillbox.h”
void setup(){
}

pillbox pillbox;

void loop(){
pillbox.getInputs();
pillbox.r Main();
pillbox.fireUpdateSet();
pillbox.setOutputs();

}

Code 3. Example of
the ino file containing
the implementation of the
ASM execution

Using the Asm2C++ tool, we have generated from
the last ASM refinement level the following files: the
ino, which contains the execution policy to run an
ASM on Arduino (see Code 3), the a2c and the hw.cpp
files that contain hardware information, the .h and
.cpp files, which contain the translation of the ASM
model into C++ code.

The a2c configuration file is automatically gener-
ated by the Asm2C++ tool to bind each ASM function
to an Arduino physical pin. The file must be com-
pleted by the user who has to insert the correspon-
dence between Arduino physical pins and functions
defined in the ASM model (see Code 4). Then the
hw.cpp file, which contains C++ code to load the inputs and set the outputs, is
automatically produced (see Code 5) to allow the interaction between the soft-
ware and Arduino physical pins.

6 IEC Regulation and FDA Guidance Application

As reported in Sect. 1, the main references concerning the development of medical
software are the IEC 62304 regulation [12] and the FDA General Principles of
Software Validation [15]. Afterwards, we map the two documents in the ASM
process using the Asmeta framework.

Developing Medical Devices from ASM to Embedded Systems 99

{
”arduinoVersion”: ”

MEGA2560”,
”stepTime”: 0,
”bindings”: [

{ ”mode”: ”DIGITAL”,
”function”: ”redLed(

comp1)”,
”pin” : ”D1”

},
{ ”mode”: ”DIGITAL”,

”function”: ”redLed(
comp2)”,

”pin” : ”D2”
},
[...]

]
}

Code 4. Example of the
a2c configuration file

#include ”pillbox.h”
#include <Arduino.h>
void pillbox::getInputs(){

openSwitch[comp1] = (digitalRead(7) == HIGH);
[...]
systemTime = analogRead(A1)∗(double)(1.0/1024.0);

}
void pillbox::setOutputs(){

if(redLed[1][comp1] == OFF)
digitalWrite(1, LOW);

else
digitalWrite(1, HIGH);

if(redLed[2][comp1] == OFF)
digitalWrite(2, LOW);

else
digitalWrite(2, HIGH);

[...]
}

Code 5. Example of the hw.cpp file

Fig. 4. IEC 62304 development process

6.1 IEC 62304 Standard

The standard IEC 62304 [12] does not prescribe a specific life cycle model, it
defines process, activities and tasks that the life cycle model has to follow. In
particular, we will focus on the characteristics of the software development pro-
cess (Fig. 4) described in Section 5 of the standard. We have identified how ASMs
can be used to satisfy the process.

– Step (5.1) consists in defining a life cycle model and planning all procedures.
ASMs can supply a precise iterative and incremental life cycle model, based
on model refinement. With the ASMs, the developers can perform modeling,
validation, verification and conformance checking, which we have performed
in Sect. 4 for the e-Pix.

– Step (5.2) consists in defining and documenting functional and non-functional
software requirements. ASMs can be used to define the system requirements
with a mathematical model that can be also analyzed and checked before the
implementation development. Informal requirements, which are the results of
the requirements gathering activity, are out of the scope of the ASM method.
ASMs do not deal natively with non-functional requirements like performance,
fault tolerance and reliability either. Thus complementary techniques should
be used for these purposes.

– Step (5.3) regards the specification of the software architecture from the soft-
ware requirements. In the e-Pix, the verification of software requirements is
executed along all the ASM development process using the property veri-
fication tool AsmetaSMV (see Sect. 4.5). Risk control can be performed also

100 A. Bombarda et al.

during this phase, by verifying the required functional safety properties and
executing critical scenario-based testing written in Avalla (see Sect. 4.4).

– Step (5.4) regards the refinement of the software architecture into software
units. The software refinement can be obtained by means of the model refine-
ment mechanism, typical of our ASM approach. We have applied the software
refinement to the e-Pix and we have checked the correctness of refinement
using the AsmRefProver tool (see Sect. 4.2).

– Steps (5.5)–(5.7) regard the refinement of the software architecture into soft-
ware units, software implementation and testing at unit, integration, and sys-
tem levels. With our ASM-based development process, the actual code can
be obtained by the automatic translator Asm2C++ as last model refinement
step, so if the model has been correctly tested, the developers can be sure
about the correctness of the C++ code. However the developer can change
something in the generated code, so the ASM process cannot fully cover these
development steps. For the e-Pix, in Sect. 5 we have automatically generated
the Arduino code that we have deployed on the real system.

– Step (5.8) includes the demonstration, by a device manufacturer, that software
has been validated and verified. If the development process adopts the ASM
process, demonstration that the software has been validated and verified is
straightforward, since V&V are continuous activities during all the process.

6.2 FDA General Principles of Software Validation

FDA accepts the standard IEC 62304 and pushes for an integration of software
life cycle management and risk management activities. The organization pro-
motes the use of formal approaches for software validation and verification, by
defining in [15] the list of general principles. For each FDA principle we have
identified how ASMs can be used to satisfy the requests.

– A documented software requirements specification should provide a baseline
for both V&V : in ASM it is provided by means of a chain of models (or single
model in case of simple specifications). The models are written using AsmetaL
language as partially reported in Sect. 4 for the e-Pix models.

– Developers should use a mixture of methods and techniques to prevent and
to detect software errors: in ASM safety properties are proved on models at
each modeling level. In particular Asmeta framework provides the AsmetaSMV
tool that verifies the properties defined by the developer showing if they are
satisfied or not. We have applied the property verification to the e-Pix models
as reported in Sect. 4.5.

– Software V&V should be planned early and conducted during all the soft-
ware life cycle; software V&V should take place within the environment of an
established software life cycle; software V&V process should be defined and
controlled through the use of a plan: as shown in Fig. 2 the V&V process can
be applied at each model. V&V activities can be integrated in the V model of
software development. In particular it is possible to insert them in the module
design, coding and unit testing phases.

Developing Medical Devices from ASM to Embedded Systems 101

– Software V&V process should be executed through the use of procedures: V&V
are supported by precise procedures defined for each tool which have been
followed during the application to the e-Pix.

– Software V&V should be re-established upon any software change: if software
changes do not affect the model, it is required to re-run unit tests on the
changed software and verify if the behavior has been modified or not. In
case the software changes have effects on the model V&V activities must be
re-executed.

– Validation coverage should be based on the software complexity and safety
risks: during validation activity of an ASM model, it is possible to provide
the coverage report in terms of rules, which points out how many lines of
code have been covered. It can be used by the designer to estimate if the
validation activity is commensurate with the risk associated with the use of
the software. The coverage of e-Pix models was 100%, all rules have been
covered using the validation activity, in particular the scenario-based testing,
as reported in Sect. 4.4.

– V&V activities should be conducted using the quality assurance precept of
“independence of review”: this can be obtained because V&V are performed
by exploiting unambiguous mathematical based techniques.

– Device manufacturer has flexibility in choosing how to apply these V&V prin-
ciples: all the presented V&V activities can be executed at the discretion of
the manufacturer because they can be executed independently of each other.
Even if the software has been developed by an external developer, the manu-
facturer can apply the activities presented to guarantee the correctness w.r.t.
the verified model.

7 Related Work

As shown by [6], formal methods are increasingly used in the development of
medical software and devices because human safety depends upon the correct
operation of the product. Even automatic code generation is already available
into commercial solutions (such as MATLAB/Simulink5) or UML-based solu-
tions but none of them is based on the ASM method and permits the verification
and validation of the written models. In [2], the ASM method has been used to
show how an hemodialysis machine can be designed providing a rigorous app-
roach for medical software validation and verification. Despite this, the code to
be executed by the final embedded system has not been produced.

The process that allows the automatic code generation has been described
into [5] where the car panel case study is analyzed.

Most of the other works related to the approach used into this paper are based
on Event-B [1]. These solutions use a multi-formal development paradigm: the
requirements are modeled by using UML-B [16] and then the verification is exe-
cuted into the framework of Event-B using theorems proving the model checking
or using model animation. This framework is used into [14] where a hemodialysis
5 https://it.mathworks.com/products/simulink.html.

https://it.mathworks.com/products/simulink.html

102 A. Bombarda et al.

machine is developed by specifying the requirements using a refinement-based
modeling approach. Subsequently model checking and animation techniques are
applied to check the consistency and the conformance to the formal require-
ments. A code generator produces, at the end, the code from the model. The
major cons of this solution are that the tool is able to translate only a limited set
of the B syntax and it lacks of a formal proof that the produced code maintains
all the safety properties of the initial requirements.

There are several papers presenting the design and development of pill box
or smart pill dispenser for individual use. Some of them, such as [10], are also
Arduino-based. However, no one at the best of our knowledge has adopted a
rigorous approach like ours. In [17], the authors present the architecture and
the implementation of an automatic medication dispenser. Part of the system
is actually generated from models that define user behavior. They have tackled
the problem of validating such models mainly by simulation. During simula-
tion, events in interactions of the user, controller and scheduler are registered
in a database. They then check the correctness by processing and analyzing the
logged events to find errors. A formal modeling has been applied to the design of
a mobile prescription application [11]. However, the author has used only UML
for modeling of the mobile application.

8 Conclusion

The development of a safe and reliable medical device can be very challeng-
ing because it is a safety-critical process. To address the software development
in a safer manner, different regulations have been released. However, all these
documents are limited to describe only general software engineering activities
that have to be executed but they do not require the use of specific method or
technique.

In this paper, we have applied the ASM based development process to the
smart pill box e-Pix case study. The approach consists in an iterative life cycle
model realized by model refinement: starting from a ground model, which con-
siders only the simplest features of the system, the developer can release many
incremental models, considering step by step all the characteristics. Along this
process, different validation and verification activities (such as model animation,
scenario-based validation and property verification) can be performed over each
refinement step, to prove the correctness of each produced model compared to
the requirements. The final model of the system can be seen as the last refinement
step, from which one can obtain the C++ code to be used in the embedded sys-
tem, thanks to Asm2C++ tool. In addition, we have developed a simple hardware
prototype using Arduino on which we have loaded the generated C++ code, the
hardware configuration file and the main Arduino file (all of them automatically
generated using the Asm2C++ tool).

Finally, we have shown how the proposed process aims to guarantee safety
and reliability of the final product by remaining compliant with the IEC 62304
regulation and FDA General Principle of Software Validation guidelines.

Developing Medical Devices from ASM to Embedded Systems 103

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Arcaini, P., Bonfanti, S., Gargantini, A., Mashkoor, A., Riccobene, E.: Integrat-
ing formal methods into medical software development: the ASM approach. Sci.
Comput. Program. 158, 148–167 (2018)

3. Arcaini, P., Gargantini, A., Riccobene, E.: SMT-based automatic proof of ASM
model refinement. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol.
9763, pp. 253–269. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41591-8 17

4. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Softw. Pract. Exp. 41, 155–166
(2011)

5. Bonfanti, S., Carissoni, M., Gargantini, A., Mashkoor, A.: Asm2C++: a tool for
code generation from abstract state machines to Arduino. In: Barrett, C., Davies,
M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 295–301. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57288-8 21

6. Bonfanti, S., Gargantini, A., Mashkoor, A.: A systematic literature review of the
use of formal methods in medical software systems. J. Softw. Evol. Process 30(5),
e1943 (2018)

7. Börger, E., Stark, R.F.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, New York (2003). https://doi.org/10.1007/978-3-
642-18216-7

8. Brown, M.T., Bussell, J.K.: Medication adherence: WHO cares? Mayo Clin. Proc.
86(4), 304–314 (2011)

9. Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: A scenario-based vali-
dation language for ASMs. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.)
ABZ 2008. LNCS, vol. 5238, pp. 71–84. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87603-8 7

10. Huang, S.-C., Chang, H.-Y., Jhu, Y.-C., Chen, G.-Y.: The intelligent pill box -
design and implementation. In: 2014 IEEE International Conference on Consumer
Electronics - Taiwan. IEEE, May 2014

11. Ikhu-Omoregbe, N.: Formal modelling and design of mobile prescription applica-
tions. J. Health Inform. Dev. Countries 2(2), 6–9 (2008)

12. Jordan, P.: Standard IEC 62304 - medical device software - software lifecycle pro-
cesses. In: 2006 IET Seminar on Software for Medical devices, pp. 41–47, November
2006

13. Kemmerer, R.A.: Testing formal specifications to detect design errors. IEEE Trans.
Softw. Eng. SE–11(1), 32–43 (1985)

14. Mashkoor, A., Biro, M.: Towards the trustworthy development of active medical
devices: a hemodialysis case study. IEEE Embed. Syst. Lett. 8(1), 14–17 (2016)

15. A. Ohne Autor Fd.: General Principles of Software Validation; Final Guidance for
Industry and FDA Staff, Version 2.0. FDA document formal, January 2002

16. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

17. Tsai, P.-H., Chen, T.-Y., Yu, C.-R., Shih, C.-S., Liu, J.W.S.: Smart medication
dispenser: design, architecture and implementation. IEEE Syst. J. 5(1), 99–110
(2011)

https://doi.org/10.1007/978-3-319-41591-8_17
https://doi.org/10.1007/978-3-319-41591-8_17
https://doi.org/10.1007/978-3-319-57288-8_21
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-540-87603-8_7
https://doi.org/10.1007/978-3-540-87603-8_7

The Impact of Dance Sport
on Software Development

Irina Erofeeva(B)

Innopolis University, Innopolis, Russia
i.erofeeva@innopolis.ru

Abstract. There are two general questions that the study follows: Can
a parallel be drawn between dance as a sport and software development?
And can the IT sphere borrow something from dance sports to improve
performance? But IT, indeed, is a broad area, to narrow down the scope
of study two more concrete paths were chosen: software development
methodologies and educational approach in IT.

Keywords: Software development · Development methodologies ·
Dancesport · Ballroom dancing

1 Introduction

Software development is one of the youngest scope of human activity, that was
built by people from elements of other spheres, it was noticed that it has fea-
tures that are similar to other, much older, disciplines practices by humans [7].
Currently the most popular software development methodology, Agile [17], actu-
ally also inspired by approaches originated outside IT [16]. The first time it was
used by the physicist and statistician Shewhart as the Plan-Do-Study-Act cycles
to improve products and processes, then his student Deming made it popular
this method during the reconstruction of Japan after the Second World War,
and finally transferred this method to the industry, which led to the creation
of the famous Toyota Production System, the primary source of modern lean
manufacturing.

Being a dancer and programmer, I conducted a study to find out if there
is a connection between areas of dancing and computer science and how this
connection could be useful. I selected dancesport because it gives a broader
landscape for discussion, as it includes both the sport industry and art [25].

From a sport perspective, it is possible to gain productivity, motivation and
passion, perseverance and ability to overcome fears, to expand barriers. From
art perspective also motivation, inspiration and creativity can be considered as
a source of innovative ideas for improving software development [14].

c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 104–112, 2019.
https://doi.org/10.1007/978-3-030-29852-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_8

The Impact of Dance Sport on Software Development 105

2 Necessary Background Information

Ballroom dancing is a set of partner dances that are performed both socially and
competitively around the world. While dancesport is more narrow and refers to
the five International Standard and five International Latin style dances.

The purpose of this work is to apply the theory of a conceptual blending, that
is according to Gilles Fauconnier and Mark Turner a deep cognitive activity that
“makes new meanings out of old.” [13], in comparison of software development
and dancing spheres and analyse how techniques coming from dancesport can
be used effectively in software development.

The example of this approach is present by Brenda Laurel “Computers as
Theatre” [19]. Based on the analysis of the form and structure of the drama of
Aristotle the author shows how similar principles can help to understand what
people experience when interfacing with computers.

While authority of facts in computer sciences is evidence based and research,
the dancing authority is performance based. People who work in dance, and
in performance art, understand that authority comes from being able to do
the performance. That is why some journalistic and informal sources are also
included as a literature background for the study.

During the process of reviewing of existing scopes on interests in this direction
within the academia, three of the most popular topics were defined: IT education,
software development methodologies and human computer interaction. Being
a part of a IT University community, I have chosen two of these fields - IT
education and software development methodologies.

IT Education

Dancing along with the visual arts and literature is a more high-level and
abstract level of information transfer comparing to a programming, and there-
fore more comprehensible to a wider audience. Therefore, such abstractions are
often used in preschool and school education. There a number of courses that
have been created, in which programming concepts are explained through dance.

There are courses for K-12 students with names like “Coding Choreography”
that offer learning programming using dancing. Abstracting to dance, students
study concepts such as algorithms, conditionals, functions, loops, patterns and so
on. “The students in this class move and create pieces for their virtual characters
to perform, bringing about connections between computational thinking and
what their bodies are doing” [4].

Daily et al. (2014) found that dancing helps to promote learning software
development in students of grades 5 and 6. They designed a special software for
ladies, which allowed them to sync their body movements with the computer.
Fifth- and sixth-grade girls were tested with the novel technology that required
them to create a virtual character in a three-dimensional environment. The girls
were required to think up new computer strategies to improve their dance chore-
ography, evaluate new animation algorithms, and align them with their own body
movements. “We want to understand how body syntonicity might enable young

106 I. Erofeeva

learners to bootstrap their intuitive knowledge in order to program a three-
dimensional character to perform movements,” the study’s coauthor Leonard
said in a press release. “Executing one bit of code or movement one after the
other exists in both programming and choreography. Likewise, loops or repeating
a set of steps, also occur in both contexts” [10].

The course “Dancing computer” by Dillon et al. [12] was prepared to teach
elementary school students both dance terminology and concepts of coding such
as sequencing and conditionals. One of the main goals of this course is to teach
children to read code before writing it.

Such courses exist not only for children, but for students, teams of students.
Faculty members from Clemson University also designed a program called VEnvI
(Virtual Environment Interactions) [26] that combines basic concepts of compu-
tational thinking and basic concepts from dance, so students can dance and pick
up key computational skills at the same time. Using VEnvI, students can learn
programming concepts like sequencing, looping and conditionals.

In addition to face-to-face courses, there are several online courses that also
turn to the dance field in order to simplify the learning process with the help
of visual dance examples. “Made with Code” is specially prepared for teaching
middle and high school girls programming skills. Among the projects presented
there you can find a section “Dance visualization” [2], which uses a simple gami-
fied, block-like interface to create a part of the program that will make a dancer
move. A similar approach is used in a lesson titled “Dance Moves” [1], which
introduces Python language course on the website Codesters, but instead of
block interface students have to write a real code.

Software Development Methodologies

This is not the first work on this subject. The author of “Agile dancing. Scrum
training. Is it even possible?” (2017) has already drawn a parallelism between
dancing and software development. In particular, she has analysed how to apply
the Agile methodology to her training process, considering time between com-
petitions as sprints, coach as a product owner, “who will know exactly what is
the main priority and he will also be able to tell if the sprint is finished with
success” [5].

Lee presented similar results in her work [20] - also being a dancer in the past
and a developer in the present, she drew several parallels between these areas,
here are the main points she highlighted as similarities between learning how to
code and learning how to dance:

1. Focus on the basics
2. Strive to be well-rounded
3. Collaboration is crucial for improvement
4. Step back and look at the Big Picture

Some new parallels were drawn at a seminar at Bilkent University in 2013 [3].
They looked at the methods and processes of software engineering by relating it
to the systematic structure of dance. Some common features were highlighted:

The Impact of Dance Sport on Software Development 107

– Processes employed in software engineering, such as analysis, design, imple-
mentation and testing were associated with the rules of professional dancing

– The Waterfall model examined the steps and the structure that dancers use
while preparing a dance performance as if they were a part of engineering.

– Importance of teamwork and professionalism was considered.

Perez superficially makes a reference a crucial reference to ballroom dancing
talking about interaction between team members. “Much like a ballroom dance,
the art of collaborative software development requires that the partners work
together for the harmony to come alive” [23]. The author compares the result of
this cohesive and harmonious work with a smooth dance.

Oliver expressed the idea of parallelism between dancing and computer sci-
ence through comparing modern dancing styles in terms of their movements,
music and composition to agile methodology, because of their freedom. He com-
pared on the other hand classical ballet to formal methods: “Formal methods
are computer science’s version of ballet: strict rules and technique and hard
to master but forming the basis for the rest of the subject, especially software
engineering [21].” This author admits that he was inspired by the work of Baez
[6] that contains evidence of interdisciplinary communication between various
scientific disciplines - Physics, Topology and Logic through category theory.

3 Methods and Data Collection

The collection of the relevant information from dancesport is organized in three
parts:

1. Review of the relevant literature on dancesport, on its regulations, on the
training processes, etc

2. Interviews with experts to identify aspects not (well) covered in the literature
3. Personal observation and experience§§§§§§§§

On the survey stage one of the main tasks was to develop a questionnaire.
The questions were divided into four sections according to their aims:

– Questions to analyse professional’s level
– Goals and challenges
– Relationships in a team
– Productivity and self-development

In order to motivate the respondents and direct the reasoning in the right
way for developers the goal of the survey was explained as an attempt to find
weaknesses and gaps in the current popular methods of development with further
attempts to introduce new strategies to eliminate these gaps. For dancers - as
an attempt to collect, analyze the best practices from their sphere.

The interviewees are 10 professional dancers and 10 developers from local
companies. The sample among dancers was very diverse: from the lowest class
(hobby) to the dancers of the highest class (M), performing for competitions

108 I. Erofeeva

from city to international level. Some had behind their back more than 10 years
of experience, some have already completed their careers and became coaches.

The programmers who participated in the survey also covered a wide range
of professions in this field, such as chief technical officer, tester, senior web-
developer, backend developer, team leader, analyst. All of them had an experi-
ence from 1 to more than 10 years.

The plan is to interview developers from the local companies for the vali-
dation of new techniques. Among them there are several startups created by
students that are looking for new methodologies that can be more convenient
and accurate, than already existing. Also there are a lot of developers working for
many years in different companies, so it will be also useful to hear the criticism
from such experienced professionals.

4 Collected Evidence

This section includes preliminary results of interviews, that are not categorised
by chosen direction. These are only some similarities that were discovered based
of literature review and specific interviews with professionals.

When you first and naively look at these two concepts - dancing and pro-
gramming - you can immediately notice that the dance, like the program, is
nothing more than an algorithm, a sequence of actions performed by the dancer
in dependence on various conditions such as rhythm, tempo, style of music,
personal experience and experience of the partner, the presence of each of the
dancing couples on the floor.

In dancing, people are organized based on their level, experience and achieve-
ments. The more advanced have the possibility to include some harder fig-
ures and poses in their performance, and also to add new dances. A similar
practice is present in the software industry, where specialists are divided into
“junior”,“intermediate”, and “senior” developers, with different sets of tasks
and responsibilities.

For those who start to dance and want to develop faster there is a chance to
practice with more experienced partner. There is a special category called Pro-
Am (Professional-Amateur), where the professionals dance with novices or with
much less experienced dancers. In this situation both, beginner and professional
dancer, gain something useful for their dancesport career: beginner gets a quick
start, professional gets a chance to consolidate his knowledge and understand
the material deeper during the explanation. In software development it is present
as one variation of pair programming, where a beginner and a more experienced
developer are working together. Beginner adopts the knowledge, experience and
habits of a more experienced specialist, which helps him to learn faster [15,31].

The leading role in the dance pair is always taken by the man, that is, he
is responsible for the safety of the pair on the dance floor and for the correct
execution of composition. If there is an obstacle in the way of the pair, the
partner can change the direction of the movement or dance a more convenient
and appropriate movement for this situation, and the girl must follow it. The

The Impact of Dance Sport on Software Development 109

appointment of a leader in a pair, who chooses strategy in a difficult situation,
helps prevent errors on the dance floor. Error prevention in the way of choosing
a leader in a team is present in software development in a role of team leader
and also project manager.

The most common practice in ballroom dancing is recording performances for
analyzing the mistakes and revealing the work front for the following workouts.
In software development it is called retrospective [27]. Not every team runs
retrospective sessions, but every team should, because this is the way to find out
what we can do to be better.

The software development methodology called Lean concentrates on minimiz-
ing the waste and autonomation of the process and widely used in companies in
form of Agile [16] also using significantly domain-centered approaches and met-
rics [28–30]. Its concept of elimination of waste appears in dancesport - after a
specific point in sportsman’s career, it is obligatory to choose only one program,
Standard or Latin, to develop only in one direction. It was noticed, that dancers,
who choose two programs are less successful, than those who were concentrated
on one goal.

During group practises, where participants have different levels and experi-
ence, the coach can mix partners to try different techniques with other partner,
this practice help to improve leading and following skills, and identify mistakes
that was not obvious with your own partner. In software development there are
equivalent situations, especially considering joint pair programming sessions, as
evidenced by the work of Succi and colleagues [15,22].

Table 1. Table of results

Software development Dancesport

Pair programming Pro-Am category

Project manager or team leader Man as a leader

Software design patters Books with steps and compositions

Testing with different inputs Exchanging partners during trainings to find gaps
in knowledge

Retrospective sessions Reviewing the tape

Elimination of waste Choosing and concentrating on one program

Gap Warm-up before each activity to perform better

Gap Constant work on basic movements, since they
represent the foundation of any composition

Gap Proper nutrition, so your main instrument - you
body works properly

Gap Proficiency in foundations of the classical dance as
the basis for the proper operation of all the
muscles of the body

110 I. Erofeeva

For now we saw a lot of similarities between spheres of dancing and software
development, but what are features, that take place in dancing and can be useful
in software, but not yet represented? There are also concepts commonly used
in the sphere of ballroom dancing, such as warm-up, constant work on basic
movements, proper nutrition, proficiency in foundations of the classical dance.
And these ideas will be the central for the further study. The preliminary results
of comparison is present in Table 1.

5 Conclusion

After analysing the similarities between dancing and software development we
will move on with the proposed plan - to analyse in deep features from dancesport
that are applied or applicable in software development and to see the extent to
which they can be concretely used, with the help and validation of interviews
with professionals. We are going to present several variations of adaptations of
new features borrowed from dancesport, validate and choose the most promising
and suitable ones with the help of software specialists from local companies.

Furthermore, in exploring this study further, it would be important to go
deeper into the analysis of the brain. For example, compare impulses during
dance classes, perform a learned composition and implement the algorithm just
explained. Give the past experience it is likely that a significant amount of
responses will be collected, so that suitable statistics could be built.

It would also be interesting to compare open performances with Open Source
approaches to software development [11,18,24] and to the fast-paced develop-
ment of apps for mobile systems [8,9]

References

1. Dance moves. Accessed 28 Oct 2018
2. Made with code. Accessed 28 Oct 2018
3. The meeting of software engineering and dancing, January 2012
4. Glowing coding and choreography (2013). Accessed 27 June 2018
5. Agile dancing: Scrum training. Is it even possible? December 2017. Accessed 28

June 2018
6. Baez, J., Stay, M.: Physics, topology, logic and computation: a rosetta stone. In:

Coecke, B. (ed.) New Structures for Physics. LNP, vol. 813, pp. 95–172. Springer,
Berlin (2010). https://doi.org/10.1007/978-3-642-12821-9 2

7. Baragry, J.: Understanding software engineering: from analogies with other disci-
plines to philosophical foundations, July 2000. Accessed 27 June 2018

8. Corral, L., Georgiev, A.B., Sillitti, A., Succi, G.: A method for characterizing
energy consumption in Android smartphones. In: 2nd International Workshop on
Green and Sustainable Software (GREENS 2013), pp. 38–45. IEEE, May 2013

https://doi.org/10.1007/978-3-642-12821-9_2

The Impact of Dance Sport on Software Development 111

9. Corral, L., Sillitti, A., Succi, G.: Software development processes for mobile sys-
tems: is agile really taking over the business? In: 2013 1st International Workshop
on the Engineering of Mobile-Enabled Systems (MOBS), pp. 19–24, May 2013

10. Daily, S.B., Leonard, A.E., Jörg, S., Babu, S., Gundersen, K., Parmar, D.: Embody-
ing computational thinking: initial design of an emerging technological learning
tool. Technol. Knowl. Learn. 20(1), 79–84 (2014)

11. Di Bella, E., Sillitti, A., Succi, G.: A multivariate classification of open source
developers. Inf. Sci. 221, 72–83 (2013)

12. D. C. O. M. E. D. K. D. W. S. B. W., Dillon, L.K., Dobbins, A.: Dancing computer
(2015). Accessed 28 Oct 2018

13. Fauconnier, G., Turner, M.: The way we think: conceptual blending and the mind’s
hidden complexities, May 2003. Accessed 28 June 2018

14. Fronza, I., Sillitti, A., Succi. G.: An interpretation of the results of the analysis
of pair programming during novices integration in a team. In: Proceedings of the
2009 3rd International Symposium on Empirical Software Engineering and Mea-
surement, ESEM 2009, pp. 225–235. IEEE Computer Society (2009)

15. Fronza, I., Sillitti, A., Succi, G.: An interpretation of the results of the analysis
of pair programming during novices integration in a team. In: Proceedings of the
2009 3rd International Symposium on Empirical Software Engineering and Mea-
surement, ESEM 2009, pp. 225–235. IEEE Computer Society (2009)

16. Janes, A., Succi, G.: Lean Software Development in Action. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-00503-9

17. Kivi, J., Haydon, D., Hayes, J., Schneider, R., Succi, G.: Extreme programming: a
university team design experience. In: 2000 Canadian Conference on Electrical and
Computer Engineering. Conference Proceedings. Navigating to a New Era (Cat.
No. 00TH8492), vol. 2, pp. 816–820, May 2000

18. Kovács, G.L., Drozdik, S., Zuliani, P., Succi, G.: Open source software for the public
administration. In: Proceedings of the 6th International Workshop on Computer
Science and Information Technologies, October 2004

19. Laurel, B.: Computers as theatre, September 2014
20. Lee, C.: Learning to code is just like learning to dance, May 2018. Accessed 28 Oct

2018
21. Oliver, I.: The ballet-software engineering “isomorphism”, March 2012. Accessed

11 Nov 2018
22. Pedrycz, W., Russo, B., Succi, G.: Knowledge transfer in system modeling and

its realization through an optimal allocation of information granularity. Appl. Soft
Comput. 12(8), 1985–1995 (2012)

23. Perez, J.C.: Collaboration and software development, September 2015. Accessed
20 Nov 2018

24. Petrinja, E., Sillitti, A., Succi, G.: Comparing OpenBRR, QSOS, and OMM assess-
ment models. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey,
G.R., Noll, J. (eds.) OSS 2010. IFIPAICT, vol. 319, pp. 224–238. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-13244-5 18

25. Predonzani, P., Succi, G., Vernazza, T.: Strategic Software Production with
Domain-Oriented Reuse. Artech House Inc., Norwood (2000)

26. Ravipati, S.: Students learn computer programming skills through dance, February
2016

27. Rubin, K.S.: Essential scrum: a practical guide to the most popular agile process
(2012). Accessed 27 June 2018

28. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Measures for mobile users: an archi-
tecture. J. Syst. Architect. 50(7), 393–405 (2004)

https://doi.org/10.1007/978-3-642-00503-9
https://doi.org/10.1007/978-3-642-13244-5_18

112 I. Erofeeva

29. Valerio, A., Succi, G., Fenaroli, M.: Domain analysis and framework-based software
development. SIGAPP Appl. Comput. Rev. 5(2), 4–15 (1997)

30. Vernazza, T., Granatella, G., Succi, G., Benedicenti, L., Mintchev, M.: Defining
metrics for software components. In: Proceedings of the World Multiconference on
Systemics, Cybernetics and Informatics, vol. XI, pp. 16–23, July 2000

31. Coman, I.D., Sillitti, A., Succi, G.: Investigating the usefulness of pair-
programming in a mature agile team. In: Abrahamsson, P., Baskerville, R., Conboy,
K., Fitzgerald, B., Morgan, L., Wang, X. (eds.) XP 2008. LNBIP, vol. 9, pp. 127–
136. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68255-4 13

https://doi.org/10.1007/978-3-540-68255-4_13

Proof Strategy for Automated Sisal
Program Verification

Dmitry Kondratyev(B) and Alexei Promsky

A.P. Ershov Institute of Informatics Systems, 630090 Novosibirsk, Russia
apple-66@mail.ru, promsky@iis.nsk.su

Abstract. The Sisal programming environment which is being devel-
oped in IIS also includes a verification module. The previously developed
C-light verification system serves as its base, since the C language repre-
sentations of Sisal programs are actually processed. At the moment we
concentrate our efforts on verification of Sisal loop expressions which are
translated into the C for-loops. Trying to avoid the well-known problem
of the loop invariants we apply a symbolic method of definite iterations.
This technique expresses the loop effect in symbolic form. However, the
Sisal loop expressions sometimes lead to peculiar C loops. The sym-
bolic forms of such loops in verification conditions are too complex to
be proved automatically. In this paper we represent a proof strategy for
such formulas. Our strategy introduces logical formula transformations
which, in general, do not maintain equivalence. However, the truth of
resulting formula guarantees truth of the original one. We proved the
soundness of this strategy. We also describe here a verification example.

Keywords: Automated theorem proof · Deductive verification · Sisal ·
C-light · C-lightVer · Definite iteration

1 Introduction

Programming environment for the Sisal language [7] is one of the urgent projects
in IIS. It aims mainly at efficiency, so the input program is translated into an
intermediate form which, in turn, can be aggressively optimized [7]. In addition,
intermediate form can be translated into the C language [6].

A more recent feature of the project relates to deductive program verifica-
tion, which traditionally rests on axiomatic semantics and verification condition
(VC) generation. However, at the moment we do not have a Hoare’s logics for
Sisal. And this is where translation into the C comes in handy. Another actual
project of IIS is the C-lightVer system for deductive verification of C-light
programs. Despite its name, the C-light is a quite representative subset of the
Standard C with a full operational semantics [13]. This project also involves a

This work was carried out with a grant from the Russian Science Foundation (project
18-11-00118).

c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 113–120, 2019.
https://doi.org/10.1007/978-3-030-29852-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_9&domain=pdf
http://orcid.org/0000-0002-9387-6735
http://orcid.org/0000-0002-5963-2390
https://doi.org/10.1007/978-3-030-29852-4_9

114 D. Kondratyev and A. Promsky

two-stage scheme, thus introducing a special core, the C-kernel language, which
possesses a sound axiomatic semantics. Another example of intermediate veri-
fication language is WhyML [10]. But the translation to subset (from C-light
to C-kernel) allows us to easily prove the preservation of semantics unlike the
translation from C to WhyML. Trying to mechanize the verification proofs we
experiment with popular tools. In this paper we address the interactive theorem
prover ACL2 [8].

Another approach to formal verification is the use of Constraint Logic Pro-
gramming [2,4]. It is based on modeling program by logic constructs. But it is
necessary to use special strategies for processing such model.

Among traditional woes of deductive verification, loop invariants begin to
play a crucial role here. Invariants are provided by user prior to verification
process. But the loop expressions of Sisal are translated on the fly into the C for-
loops, thus requiring automatic generation of appropriate invariants. This is a
very complex task, though some successes were demonstrated by researchers [3].
To avoid it we actually apply to the third actively developing project of our
institute. The symbolic method of verification of definite iterations over altered
data structures introduces a special replacement operation rep [9,12]. As name
suggests the idea is to represent the loop action in some symbolic form. The
well-known system for C program verification is the Frama-C. Its plugin Agen
provides loop invariant generation based on predicate abstraction [5]. But the
user should define these predicates in some cases using the construct for agen.

The recursive nature of rep requires induction over iteration numbers. Our
initial attempts to validate such induction in ACL2 were unsuccessful. So we need
to develop automatic proof strategies. Some of them were invented in adjacent
experiments. For example, a strategy from [11] defines lemmas satisfying certain
restrictions which, in turn, depend on VC structure. Unfortunately, that strategy
is only interactive. In this paper we represent a more recent strategy which allows
a fully automated proof in ACL2.

2 Preliminary Information

2.1 Symbolic Method of Verification of Definite Iterations

The general representation of definite iteration over data structure takes the form
for x in S do v := body(v,x) end. Here S is a data structure, x is a variable
of type element of S, v is a tuple of loop variables (excluding x) and body repre-
sents calculations within the loop which do not alter x. The loop body only allows
assignments, if statements (including nested ones) and break statements. Only
expressions without side-effects are allowed at right hand sides of assignments
and in conditions of ifs. Then the loop body consecutively iterates in such man-
ner that x equates to s1, s2, . . . , sn and body(v, sj) can modify s1, s2, . . . , sj−1.
Thus, v is a tuple of all objects that can be altered in loop body. Suppose v0
is a value of v before the loop and vi denotes the value of v after ith iteration.
Then vi = body(vi−1, si) for i = 1, ..., n. The main advantage of this approach
reveals itself in the proof of Hoare triples. It does not require loop invariant and

Proof Strategy for Automated Sisal Program Verification 115

does not split the proof tree. It simply introduces a linear replacement operation
rep(v, s, body) which expresses the value of v after iteration.

Let rep(0, v0) = v0 and rep(i, v0) = body(rep(i − 1, v0), si). Thus, the
main property of this operation is rep(i, v0) = vi. The recursive definition of
rep is built automatically by analysis of body [11]. If break was executed during
iteration j (0 < j ≤ n) we model it as if iterations still go on, but the value of
v does not change. I.e. for all k such that j ≤ k ≤ n rep(j, v0) = rep(k, v0). So
the inference rule for definite iteration takes the following form:

{P}A;{Q(v ← rep(n, v0))}
{P}A; for (i = 0; i < n; i + +) v := body(v, i) end{Q}

Here A is a context (i.e. all statements preceding iteration), ← denotes substi-
tution. Since the replacement operation returns vector v of length m, it may be
appropriate to define m replacement operations for each variable of vector v.

2.2 The Sisal Language and ACL2

The data structure handling in Sisal is based on loop expressions [7]. The loop
expression combines three parts: loop control, loop body and returns clause.
The heading loop control (denoted by keyword for) declares variables and their
ranges during iterations. Loop body consists of expressions modifying loop vari-
ables. The operator old returns argument value from the previous iteration.
The control expressions (the keyword while) can also take place. The falsity
of such expression results in abrupt termination. The returns clause is a list of
reductions. Every loop variable is associated with a reducible sequence of val-
ues corresponding to iterations. Reductions allow us to apply certain operations
to those sequences. For example, reduction value produced the last value of a
reducible sequence. This list of reduction itself is a value of whole loop.

On the contrary ACL2 prefers recursion to manipulate data structures. The
type checks in our examples will use special predicates. For instance, integerp
tests whether its argument is an integer, zp match its argument against zero and
integer-listp is satisfiable only by lists of integers. We use lists to model Sisal
arrays as well as intermediate C arrays. The function nth accesses list elements
while length returns the number of list elements.

2.3 Study Case

Consider the following Sisal program counting occurrences of some key in array:

function search_count (a: array of integer,

n, entr, key: integer returns integer)

for count := 0, result := 0; i in 1..n

while !(count = entr) do

count := if a[i]=key then old count + 1;

result := if count=entr then 1;

returns value of result end for end function

116 D. Kondratyev and A. Promsky

Its precondition (ACL2 syntax) looks like (and (integer-listp a) (integerp n)
(integerp key) (< 0 n) (<= n (length a))) whereas its postcondition is
(and (implies (=> entr (cnt 0 (− n 1) key a)) (equal result 1)) (implies (<
entr (cnt 0 (− n 1) key a)) (equal result 0))). The function cnt computes the
number of elements equal to key in the sublist from the i-th up to the j-th
element. Its definition can be found in repository [1]. The symbolic method
introduces logical functions representing substitution operation for the mutable
objects within loop body [11]. For the program under discussion function rep1
symbolically reflects changes of variable count:

(defun rep1(i key entr a) (if (zp i) 0

(if (= entr (rep1 (- i 1) key entr a)) (rep1 (- i 1) key entr a)

(if (= key (nth (- i 1) a)) (+ 1 (rep1 (- i 1) key entr a))

(rep1 (- i 1) key entr a)))))

while rep2 embodies the effect of assignments to result:

(defun rep2(i key entr a)

(if (zp i) 0 (if (= entr (rep1 i key entr a)) 1

(rep2 (- i 1) key entr a))))

However, ACL2 fails to prove such VC when it uses solely induction on n. This
answer of ACL2 was analyzed automatically resulting in automatic application
of the proof strategy from the following Section.

3 The Proof Strategy

What hints can be given to ACL2 in order to achieve the goal? The idea is as
follows: for a given VC φ we construct a logically stronger formula θ (though
inequivalent in general case). Strategy itself is based on a stepwise transformation
of formula φ. Every local rewriting gives a stronger (perhaps nonequivalent)
formula. When we have a choice, we prefer rewritings allowing to avoid problems
in ACL2. The arguments of the algorithm are formula φ, the sub-array length
n, functions repi (let k be their quantity), an underlying theory, initial values
of program variables (at loop entry point) and loop exit condition. Underlying
theory includes definitions of functions whose applications are sub-formulas in
φ as well as theorems about these functions. The result of this algorithm can be
“formula φ is valid” if ACL2 proves stronger formula θ or “unknown” otherwise.

Our algorithm consists of the following six steps:

1. Formula φ is being converted into equivalent clause conjunction.
2. For every clause we construct a graph of relations between variables and func-

tional applications in the clause premise. So, variables and function applica-
tions are the nodes. As long as clause premise is a conjunction of hypotheses
we analyze them to establish edges. Namely, the nodes a and b are joined by
the edge (a, b) with a label R where R ∈ {=, �=, <,>,≤,≥} iff either a or b is
variable and hypothesis R(a, b) exists in clause premise.

Proof Strategy for Automated Sisal Program Verification 117

For every clause, for every variable v and for every relation R ∈ {=, �=, <,>,
≤,≥} we define a special procedure which searches for the (nearest or corre-
sponding) function application and a list of hypotheses validating that appli-
cation. The returned value can either be message “corresponding function
application not found” or a function application accompanied by hypotheses
list. Depending on R this procedure can be defined as follows:
(a) if R is “=”, then let F be a set of nodes in G which are reachable from v

by transitive closure =∗;
(b) if R is ≤, then let F be a set of nodes reachable from v by (= ∪ < ∪ ≤)∗

(i.e. we traverse all edges labeled by either = or < or ≤);
(c) if R is ≥ then F combines all nodes reachable from v by (= ∪ > ∪ ≥)∗;
(d) if R is < then F is a set of all nodes reachable from v by relation

(= ∪ < ∪ ≤)∗ ◦ (<) ◦ (= ∪ < ∪ ≤)∗ (we traverse all edges labeled by =,
< or ≤ and one of them must be labeled by <);

(e) if R is > then let F be a set of nodes reachable from v by (= ∪ > ∪ ≥)∗

◦ (>) ◦ (= ∪ > ∪ ≥)∗ (one of the edges in the path must be >);
(f) if R is �= we define F as all nodes reachable from v by (=)∗ ◦ (�= ∪ <

∪ >) ◦ (=)∗ (again, there must be an edge labeled by �= or < or >);
Finally, if F contains at least one function application then procedure
returns the nearest one (by amount of used hypotheses) as well as a list
of equalities used along the corresponding path. Otherwise, procedure signals
“corresponding function application not found”.
Now that relation graph has been constructed for a clause, we begin to process
the conclusion of clause. Conclusion is a disjunction of goals, each of them
looks like R(c, d) where R ∈ {=, �=, <,>,≤,≥}, c and d are either constants,
variables or function applications. For a given R(c, d) we introduce auxiliary
variables v and w assigning them values of c and d respectively. Another pair
of auxiliary variables q and r is initialized with empty lists. In case that the
first argument c of relation R is a variable, the searching procedure starts.
If search is successful the discovered function application and list conjuncts
are assigned to variables v and q respectively. Next we analyze the second
argument d of relation R. If v is equal to c or R is not “�=” and d is a variable
then the search procedure looks for corresponding function application:

• if relation R is either “=” or “�=” then d and R are passed to the procedure
as its arguments;

• if relation R is either < or ≤ then d and an “opposite” relation (> or ≥
respectively) are passed to the procedure as its arguments;

• if relation R is either > or ≥ then d and an “opposite” relation (< or ≤
respectively) are passed to the procedure as its arguments.

In case of success the corresponding function application and conjunct list
are assigned to variables w and r respectively.
If the initial value of either v or w was changed the goal R(c, d) is replaced
by goal (= v w) within conclusion of the clause under consideration. In
the meantime, if R is = the premise of the clause is being stripped of all
hypotheses that occur in at least one of the lists q or r.

118 D. Kondratyev and A. Promsky

3. All repi that admit non-recursive redefinition are submitted to explicit sub-
stitution. It is sufficient to demonstrate that when the loop-exit condition is
false repi is equal to initial value of the corresponding program variable. For
every such function we create a tree representing its body. The internal nodes
of such tree are if statements and leaves are values returned by function.
The left descendant of a statement is its value when condition is true. The
corresponding edge is labeled by condition of the statement. Correspondingly,
the right descendant becomes the value when condition does not hold. The
edge is labeled by negation of condition then.

4. For every clause we process its conclusion which in effect is a disjunction of
individual goals. Let g be one of goals while c is an application of a non-
recursive function occurring in g. We replace g by a conjunction of special
implications. First, consider the set of interim implications. Every interim
implication corresponds to a leaf in function tree. Its premise represents con-
junction of all edge labels on the path from root to that leaf. Its conclusion
is the goal g in which every occurrence of c is replaced by leaf-value. For
every interim implication the replacement procedure substitutes the actual
arguments from invocation of c instead of variables within function body, thus
transforming interim implication into the special one. After substitutions each
conclusion needs to be transformed to fit the clause form. This step repeats
as long as conclusions in clauses contain non-recursive functions.

5. If the steps (1)–(4) resulted in modification of the formula we repeat them.
6. Finally, ACL2 is applied to prove the formula. Depending on its verdict the

answer of the whole algorithm is either “formula φ is valid” or “unknown”.

We believe this algorithm can be generalized even further to be applied in
SMT-solvers. The idea of the step (2) is replacement of variables by function
applications. Thus we can use induction on arguments of these applications. So
we also plan to generalize this strategy by using not only =, ≤, ≥, <, > but also
other transitive relations. Now we use the set of arithmetic relations because the
Sisal environment is frequently applied to computational mathematics tasks [7].

In order to derive benefit from strategy we must prove it is sound. First,
note that it always terminates. After each of the steps (2)–(4) the number of
invocations of functions that can be redefined in a non-recursive way strictly
decreases. Obviously, zero is the bottom element of this well-ordered chain of
numbers. Finally, using induction on strategy steps we proved the following

Theorem 1. The proof strategy is sound.

4 Applying the Proof Strategy to Study Case

The initial underlying theory in this case is the definition of cnt, rep1 and rep2.
Let A stand for the formula (and (integerp n) (integerp key) (integerp entr)

(integer-listp a)). Let B denote formula (and (< 0 n) (<= n (length a)) (<
0 entr)). The formula C stands for (<= entr (cnt 0 (− n 1) key a)). Another
abbreviation D stands for (= (rep2 n key entr a) 1). The formula E is negation

Proof Strategy for Automated Sisal Program Verification 119

of C. The formula stands for F (= (rep2 n key entr a) 0). The formula J
stans for (= entr (rep1 n key entr a)). The formula K stands for (zp n). Let
L ≡ A∧B ∧C and M ≡ A∧B ∧E. Just before the step (1) of our algorithm the
VC φ corresponds to the pattern A ⇒ (B ⇒ ((C ⇒ D)∧(E ⇒ F))). Let us omit
the detailed description [1] of results produced by each step (1)–(4). Enough to
say that after single iteration of those steps we obtain the formula φ′:

(L ⇒ (¬K ∨ (0 = 1))) ∧ (L ⇒ ((K ∨ ¬J) ∨ (1 = 1)))∧
(L ⇒ ((K ∨ J) ∨ (0 = 1))) ∧ (M ⇒ (¬K ∨ (0 = 0)))∧

(M ⇒ ((K ∨ ¬J) ∨ (1 = 0))) ∧ (M ⇒ ((K ∨ J) ∨ (0 = 0)))

Note that until this very step equivalence to the original φ is being kept. Since φ
has been changed we can repeat steps (1)–(4). The step (2) may transform the
following disjunct S ≡ (M ⇒ ((K ∨¬J)∨(1 = 0))). The relation graph has been
produced for S. Let us consider its component that consists of vertices “X” and
“Y ” and edge “<” that connects “X” and “Y ”.

The label X stands for (cnt 0 (− n 1) key a) whereas Y means entr. Remind
that this graph component is actually formula E. Which subgoal will lead to
modification of φ′? In fact it is ¬J corresponding to the pattern g(c, d) where
g is “�=”, c is entr and d is (rep1 n key entr a). So, the searching procedure
begins to look for a function application corresponding to the variable entr.
The search begins at node X. During the search a subgraph of the relation
graph emerges. This subgraph is exactly the component demonstrated above.
The expression (cnt 0 (− n 1) key a) is the function application we were looking
for. The conjunct E is the path we need. So, the expression (cnt 0 (− n 1) key a)
must be assigned to variable v, and E becomes the value of q. As a result we have
the new formula T ≡ (= (cnt 0 (− n 1) key a) (rep1 n key entr a)). Let Z denote
the disjunct S after replacement of the goal ¬J by T : (M ⇒ ((K∨T)∨(1 = 0))).
Note that Z �� S but the truth of S follows from the truth of Z. So we may
replace S by Z in φ′ which results in formula φ′′:

(L ⇒ (¬K ∨ (0 = 1))) ∧ (L ⇒ ((K ∨ ¬J) ∨ (1 = 1)))∧
(L ⇒ ((K ∨ J) ∨ (0 = 1))) ∧ (M ⇒ (¬K ∨ (0 = 0)))∧

(M ⇒ ((K ∨ T) ∨ (1 = 0))) ∧ (M ⇒ ((K ∨ J) ∨ (0 = 0)))

On the step (6) ACL2 is able to prove φ′′ by induction on n thus validating φ.

5 Conclusion

We described a new approach to verification of Sisal programs iterating over
data structures. The approach owes its success to integration of three projects.
First, question of the Sisal program soundness is reduced to soundness of a
corresponding C program. Second, C-lightVer is able to handle it. Finally, we
can facilitate verification of restricted loop cases by means of a symbolic method.

As a result of such integrating experiments we developed a proof strategy
for loops. This heuristic approach involves such formula rewritings that sound-
ness of resulting formula provides soundness of the original one. However, the

120 D. Kondratyev and A. Promsky

total equivalence may be lost during application of a procedure related to equal-
ity/inequality. The study case in this paper illustrates successful application of
the strategy. In general case our strategy does not guaranty success, even for a
true VC. Perhaps, it will require some revisions based on the main principle: the
truth of resulting formula implies validity of the original one.

Our future experiments will include less artificial study cases. The first goal is
verification of Sisal programs for sorting and linear algebra. Such programs imply
iterations over vectors and matrices, thus making them appropriate objects for
the symbolic verification method. A more distant task consists of developing of
axiomatic semantics for Sisal.

References

1. Automated Sisal program verification using proof strategy for ACL2. https://
bitbucket.org/Kondratyev/verify-sisal. Accessed 29 Apr 2019

2. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Verification of impera-
tive programs by constraint logic program transformation. In: Festschrift for Dave
Schmidt, SAIRP 2013. Electronic Proceedings in Theoretical Computer Science,
vol. 129, pp. 186–210 (2013)

3. Galeotti, J.P., Furia, C.A., May, E., Fraser, G., Zeller, A.: Inferring loop invari-
ants by mutation, dynamic analysis, and static checking. IEEE Trans. Softw. Eng.
41(10), 1019–1037 (2015)

4. Gotlieb, A.: Euclide: a constraint-based testing framework for critical C programs.
In: ICST, pp. 151–160. IEEE Computer Society (2009)

5. Kalyanasundaram, K., Marché, C.: Automated generation of loop invariants using
predicate abstraction. Research Report 7714, p. 32. INRIA (2011)

6. Kasyanov, V., Kasyanova, E.: A system of functional programming for supporting
of cloud supercomputing. WSEAS Trans. Inf. Sci. Appl. 15(9), 81–90 (2018)

7. Kasyanov, V., Kasyanova, E.: Methods and system for cloud parallel programming.
In: Proceedings of the 21st International Conference on Enterprise Information
Systems, vol. 1, pp. 623–629. SciTePress, INSTICC, Setubal (2019)

8. Kaufmann, M., Moore, J.S.: An industrial strength theorem prover for a logic based
on common lisp. IEEE Trans. Softw. Eng. 23(4), 203–213 (1997)

9. Kondratyev, D.: Implementing the symbolic method of verification in the C-light
project. In: Petrenko, A.K., Voronkov, A. (eds.) PSI 2017. LNCS, vol. 10742, pp.
227–240. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74313-4 17

10. Kosmatov, N., Marché, C., Moy, Y., Signoles, J.: Static versus dynamic verification
in Why3, Frama-C and SPARK 2014. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016. LNCS, vol. 9952, pp. 461–478. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47166-2 32

11. Maryasov, I.V., Nepomniaschy, V.A., Kondratyev, D.A.: Invariant elimination of
definite iterations over arrays in C programs verification. Model. Anal. Inf. Syst.
24(6), 743–754 (2017)

12. Nepomniaschy, V.A.: Symbolic method of verification of definite iterations over
altered data structures. Program. Comput. Softw. 31(1), 1–9 (2005)

13. Nepomniaschy, V.A., Anureev, I.S., Mikhailov, I.N., Promsky, A.V.: Towards veri-
fication of C programs. C-light language and its formal semantics. Program. Com-
put. Softw. 28(6), 314–323 (2002)

https://bitbucket.org/Kondratyev/verify-sisal
https://bitbucket.org/Kondratyev/verify-sisal
https://doi.org/10.1007/978-3-319-74313-4_17
https://doi.org/10.1007/978-3-319-47166-2_32
https://doi.org/10.1007/978-3-319-47166-2_32

Assessing Job Satisfaction of Software
Engineers Using GQM Approach

Aleksandr Tarasov(&)

Innopolis University, Innopolis, Russia
alxndrtarasov@gmail.com

Abstract. In this study, the Goals Questions Metrics (GQM) approach was
utilized to analyze the relationship between lifestyle and software process-
oriented factors and the job satisfaction level of Software Engineers. The author
organized the questionnaire that included questions addressing all the metrics
identified during GQM activities. Gathered metrics are analyzed on being cor-
related with workplace contentment of survived developers. The author found
ten statistically significant factors on a confidence interval of 95%. Those are
age, deadline pressure, personality, an average number of lines of code con-
tributed to a project weekly, relationships with peer colleagues and management,
an intensity of interaction with customers, sleep duration, quality of working
environment, and prevalence of agile methods in the development process in a
company. However, a number of factors, that are generally believed to influence
job satisfaction, were found to be insignificant. Overtime working, project
criticality were demonstrated to have no considerable effect on job satisfaction.
Multivariate regression was employed to build the model to recognize what
metrics are the most important to assess workplace contentment. The author
shows that depending on included factors it is possible to achieve R-square of
59–89%.

Keywords: Job satisfaction � Correlation coefficient � GQM approach �
Agile development

1 Introduction

When we talk about software project, people are usually seen as the primary factor
defining success or a failure. According to DeMarco & Lister [1], ‘‘Most software
development projects fail because of failures with the team running them’’. Software
development productivity and efficiency of resource allocation are highly dependent on
social and psychological factors [2]. In the research study [3], researchers found a
positive connection between company climate factors and the overall level of job
satisfaction in software development teams.

Psychological definition of job satisfaction is “present-oriented evaluation of the
job involving a comparison of an employee’s multiple values” [4]. The process of
industrial software development is mostly teamwork. Consequently, comprehension of
the metrics that influence or, at least, correlate with software engineers’ level of job
satisfaction is a pivotal concern in software development management.

© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 121–135, 2019.
https://doi.org/10.1007/978-3-030-29852-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_10

It is worth mentioning that it was shown in one of the recent studies that the level of
job satisfaction strongly affects the turnover intention of software programmers [5].
Another important reason to pursue a higher level of job satisfaction for all of the team
members is a dependency between it and professional burnout rate that was discovered
in [6]. Professional burnout is a widely accepted stress outcome. Since software
development is often strictly deadline-oriented process, the level of stress among
software engineers tends to be high (especially, it is stated to be common for less
experienced developers) which was found in [7]. Consequences of professional burnout
[8], depersonalization and reduced personal accomplishment specifically correlate with
SE sphere since the first one is decreasing communication efficiency, while the second
one may affect effort estimation.

Inspired by the work [9], this study is focused on finding the main factors and
metrics that influence the level of job satisfaction of software engineers. Data have been
collected through an online questionnaire. The question formulations can be found in
Sect. 3. This research contributes to a challenging open question on the effects of
practices of agile methods in industrial settings [10].

The rest of the paper is organized as follows. Related works are reviewed in Sect. 2.
In Sect. 3 the proposed approach is described in detail. Section 4 includes experimental
results, comparison of multivariate regression models including different combinations
of metrics to predict job satisfaction. Finally, in Sect. 5 the short summary and con-
cluding remarks are given.

2 Related Works

The field of study of factors related to job satisfaction has brought considerable
attention over the past three decades while the software development sphere was on the
rise.

2.1 Balance Between Personal Treatment and the Working Environment
Quality

Due to high demand, it is generally easier for software developers to change the job
[11]. That is why companies are constantly trying to improve their level of job satis-
faction to increase their loyalty. The most important conclusion was that general
companies’ effort to improve money-related welfare of employees and their working
environment can lead to lower employees’ job satisfaction and loyalty if personal
treatment for them is insufficient. It can be interpreted in the way that developers are
likely to think that an employer is trying to compensate for his poor personal treatment
to “buy” their loyalty. Such perception leads to a decrease in their job satisfaction
which makes a company’s effort counterproductive.

2.2 Effect of Employing Agile Approaches on Job Satisfaction

Another research checking dependency of software developers job satisfaction on using
agile approaches was conducted in 2015 [12]. Using data collected from 252 software-

122 A. Tarasov

development professionals, “a model of job design that connects agile development
practices to perceptions of job characteristics and, thereby, improve agile team mem-
bers’ job satisfaction” was tested. This model was representing agile project man-
agement (responsive to requirements changes and iterative) coupled with using special
software development practices that are usually associated with agile development such
as Test-Driven Development (TDD) [13], continuous integration [14], pair program-
ming [15], etc. The described model was found to have a positive impact on
employees’ level of job satisfaction. Job autonomy was another factor tested and
proven to be valuable for developers and consequently leading to higher satisfaction.
However, the inference about job autonomy to be helpful for getting your employees
happier should be taken very carefully. According to Maslach [8], those workers that
are spending a lot of working time unproductively tend to have symptoms of profes-
sional burnout.

2.3 The Controversial Question of Schedule Flexibility

Decision-making on how to do job and schedule flexibility are usually associated with
job autonomy and were tested on having a connection with job satisfaction in the
research conducted in China in 2018 [16]. The study made the conclusion that applying
work flexibility in a company is able to increase the employees’ appreciation of
organizational support. As a result, the employees will have better recognition to the
working place and tasks, and their job satisfaction level will increase accordingly.

While for those departments flexible schedule can have a definite positive impact,
software engineering companies have to adjust this model of a flexible schedule.
Research on workplace flexibility in the software development sphere was conducted
by Coenen in 2014 [17]. It was shown that face-to-face interaction cannot be com-
pletely replaced with virtual contact. Any form of interaction is enabling knowledge
sharing, cross-functional cooperation, however, the productivity of the team and the
quality of all these activities are higher when face-to-face contact is involved. Flexible
working schedules were found to make virtual interaction more frequent.

2.4 Pair Programming Analysis Regarding a Collaborative Environment

The impact of pair programming on job satisfaction of developers was analyzed by
professor Succi in 2002 [18]. Using the GQM approach [19], the questionnaire was
prepared to get answers on using pair programming. 108 replies were gathered, 54 of
developers using pair programming and 54 of developers not using pair programming.
Given the nominal and ordinal nature of the data, non-parametric tests were used.

It was found that pair programming has a notable, positive influence on the level of
job satisfaction of developers. It has identified a favorable side of pair programming.
However, it does not support or defy other opinions on pair programming, such as the
increased quality and reliability, the higher productivity, etc.

Another paper by the same authors [9] is also contributing to the theme of factors
on which job satisfaction is dependent. A model of job satisfaction of developers
working in the collaborative environment was suggested and analyzed. The study
found two primary causes of job satisfaction. Those are communication and work

Assessing Job Satisfaction of Software Engineers Using GQM Approach 123

sustainability. It was identified that the use of Pair Programming does not increase the
level of job satisfaction by itself. The final conclusion is that the combination of high
job satisfaction, well-organized meetings, good communication with the designers, and
a sustainable amount of work is much likelier with the adoption of Pair Programming.

It can be seen that dependency between using agile techniques and the higher level
of job satisfaction of software developers was identified in a substantial number of
scientific studies [9, 10, 12, 18, 20–22].

3 The Design of the Study

3.1 Factors Related to Job Satisfaction

To find out what exact factors are usually associated with job satisfaction, related
scientific studies were analyzed. The number of factors was extracted. In analyzed
literature, the focus of the study was not always on software engineering sphere. In this
proposed approach, the relation of those factors on job satisfaction level is studied with
respect to software developers, which additionally highlights the novelty of the study.

First identified factor was sports exercise activity. According to a recent study [29],
examined participants showed a higher level of job satisfaction and higher work per-
formance score after the workplace exercise intervention.

Another study [30] showed a strong connection between doing hobby activity and a
lower rate of professional burnout. Another theme of the study is that workers that
perceive their job as a hobby tend to be more satisfied with the workplace. That is why,
how often software developers are doing their hobbies and their attitude to program-
ming as an activity was picked as factors to analyze in the current research.

Another factor is the sleep shortage. It was perceived as common sense to add it to
analyzed components. Also, its connection with job satisfaction was confirmed by the
contemporary study [31]. It was shown that the attitude of workers towards their
workplace decreased as a result of sleep deprivation, which led to a lower overall level
of job satisfaction.

Personality type in terms of introversion/extraversion was discovered to be a sig-
nificant indirect predictor for turnover intention among IT specialists [32]. Another
study [5] showed that turnover intention can be a result of low level of job satisfaction.
Taking both findings into account, the chances of personality type to be one of the
factors related to perceived job satisfaction were considered high enough.

Apart of already discussed paper [11] showing the importance of the proper
working environment for business to have employees satisfied, there were a lot of
studies showing the same significance of job condition when we speak about per-
sonnel’s satisfaction [33–35]. Since the working environment is obviously a predicting
factor of staff contentment, it was analyzed in this research and became a part of the
analysis.

An agile development environment is a controversial theme when it comes to job
satisfaction. The capability to make an impact on decisions that influence you, the
chance to work on interesting projects and daily interaction with users were found to be
statistically significant satisfiers [20]. While a high level of uncertainty (that is common

124 A. Tarasov

for agile teams due to a commitment to welcome changing requirements [36]) is
associated with decreasing of employees’ job satisfaction [37]. Since the chance to
contribute to open question was discovered, usage of agile approaches was picked as
the factor to analyze in the survey.

Another disagreement is brought in the field of study of how job satisfaction is
related to workload in software engineering sphere. There were found no modern
scientific papers about it. However, the high workload is perceived to be a factor that
leads to professional burnout by psychologists [6, 8]. While Maslach discovered in one
of his contemporary studies [8] that those workers that are spending a lot of working
time unproductively also tend to have symptoms of professional burnout.

It was found by one of the classic studies [38] that the relationship between job
satisfaction and age is averagely U-shaped. Increase in job satisfaction level later
during life is explained by the fact that workers after the age of 30 are usually moving
to higher paying positions. Another suggestion is reduced aspiration, “due to a
recognition that there are few alternative jobs available once a worker’s career is
established”. Since the referenced study is investigating employees in general, addi-
tional research on how job satisfaction is related to the age of software engineers can
provide new insights and contributions to the theme.

To make an important inference about how often low level of job satisfaction leads
to employees’ intention to quit their current workplace, the corresponding question was
added to the survey.

3.2 GQM Design

Then the GQM approach [19] was used in order to come up with the way of measuring
these factors metrics and formulating questions for the online survey. The common
GQM template provides a sufficient definition of the overall goal, without any
inconsistencies and ambiguities. The list of questions was prepared to address all the
factors described in Sect. 3.1. The formulated overall goal is:

Analyze the lifestyle and working process-oriented factors
For the purpose of evaluating it
With respect to job satisfaction
From the viewpoint of software engineers
In the context of the development of software systems

In the proposed approach all the possible answers that examined developers can use
were formulated in such a way, so the data collected from it would be on an ordinal
scale [23]. To achieve it, most of the questions were formulated in a way to correspond
Likert scale [24]. It naturally provides answers in the form of data on the ordinal scale
since examined people have to show their level of agreement with the provided
statement.

To avoid the well-known tendency of survey participants, when having odd number
response variants, to choose medium one [25], the format of a typical five-level Likert
item was replaced with six-level one. All the variants of answer formulation (sorted by
level of agreement from low to high) are:

Assessing Job Satisfaction of Software Engineers Using GQM Approach 125

(1) Strongly disagree
(2) Disagree
(3) Rather disagree
(4) Rather agree
(5) Agree
(6) Strongly agree

Mapping for these answers to numbers was defined as from 1 (Strongly disagree) to
6 (Strongly agree). Ordinal scale usage allows employing Pearson’s correlation coef-
ficient computation for the means of measuring relations between factors and job
satisfaction.

The problem of using Pearson’s correlation coefficient for such form of studies was
discussed quite broadly [26–28]. The final takeaway from the corresponding literature
analysis is that the Pearson correlation coefficient is the most common to use. It shows
how strong the linear relationship between variables that have a normal distribution.

Questionnaire was answered by 59 software engineers. Figure 1 below represents
histogram obtained by analyzing collected answers about job satisfaction level. The x-
axis corresponds to the intervals of answers. Y-axis - to a number of people that used
the answer option from this interval. Since answers about job satisfaction level, as well
as the most of the collected data, can be classified as being normally distributed (which
is still an assumption to a certain extent, due to having not big enough dataset to make
clear prediction about distribution of the population), the decision was to employ
Pearson’s correlation coefficient.

The questions of GQM template associated with the corresponding questions in the
survey are presented below in the following form:

GQM-question/{question-marker (to simplify understanding of comparison tables
in result section of this study)} survey-question/with-respect-to-what-answer-options-
in-the-survey-were-prepared (complete list of answer options is not presented because
of space reasons).

Fig. 1. Histogram of job satisfaction level on the ordinal scale.

126 A. Tarasov

Q1. How job satisfaction is dependent on sports exercise activity?/{sport} How often
do you exercise (go to the gym, do running, workout, etc.)?/number of exercise
activities per week

Q2. How job satisfaction is dependent on hobby activity?/{hobby} How much time
do you spend doing your hobby?/hours per week

Q3. How job satisfaction is dependent on sleep shortage?/{sleep} How much hours
do you usually sleep?/hours per day

Q4. How job satisfaction is dependent on personality?/{personality} What is your
personality in terms of introversion/extroversion?/introversion-extroversion
ordinal scale

Q5. How job satisfaction is dependent on interest in programming?/{interest} Do
you agree with the following statement about yourself? “I love to code so much
that I can’t imagine my life without it”/Likert scale personal evaluation

Q6. How job satisfaction is dependent on the working environment?/{environment}
Do you agree with the following statement about yourself? “I find the working
environment in my previous (current) company very supportive”/Likert scale
personal evaluation

Q7. How job satisfaction is dependent on Agile methods using?/{agile} Do you
agree with the following statement? “My previous (current) company was using
only Agile-oriented approaches to development”/Likert scale personal
evaluation

Q8. How job satisfaction is dependent on communication activity while performing
work?/To answer it the separate block in the survey is prepared with respect to
differentiation between customer and colleagues communication and between
communication by messaging and face-to-face, which is hypothesized to pro-
duce a different effect on job satisfaction. It consists of questions:
(1) {customers messaging} How often did you usually communicate with the

customers by messaging during the development process?/times a week
(2) {customers face-to-face} How often did you usually communicate with the

customers face-to-face?/times a week
(3) {colleagues messaging} How often did you usually communicate with your

colleagues by messaging?/times a day
(4) {colleagues face-to-face} How often did you usually communicate with

your colleagues face-to-face?/times a day
Q9. How job satisfaction is dependent on relationships with colleagues?/To answer

it, the separate block in the survey is prepared with respect to differentiation
between peers and management relationships which are hypothesized to have a
different impact on job satisfaction. It consists of questions:
(1) {peers relationships} Do you agree with the following statement about your

relationships with peer colleagues? “My relationships with peer colleagues
were warm, respectful and enjoyable”/Likert scale personal evaluation

(2) {management relationships} Do you agree with the following statement
about your relationships with management? “My relationships with the
company management were warm, respectful and enjoyable”/Likert scale
personal evaluation

Assessing Job Satisfaction of Software Engineers Using GQM Approach 127

Q10. How job satisfaction is dependent on workload?/To answer it, the separate block
in the survey is prepared. It consists of questions:
(1) {overtime} Do you tend to work overtime?/working hours per week
(2) {weekends work} How often do you work at the weekends?/times it hap-

pened in the last year
(3) {LOC} How many lines of code were you contributing to the project

weekly? (If applicable, not required to answer)/a number of lines of code
contributed to the project weekly

Q11. How job satisfaction is dependent on deadline pressure?/{deadline pressure} Do
you agree with the following statement about yourself? “I was working under
constant unbearable deadline pressure”/Likert scale personal evaluation

Q12. How job satisfaction is dependent on an amount of unproductive activity during
the working process?/{unproductive activity} How many hours a day while
working did you usually spend unproductively (watching YouTube, surfing the
web, social networks, talking to peers about the themes not connected with your
job, etc.)?/hours per working day

Q13. How job satisfaction is dependent on project criticality?/{project criticality} Do
you agree with the following statement about yourself? “The project I was doing
was critical and meaningful for the company”/Likert scale personal evaluation

Q14. How job satisfaction is dependent on the individual feeling of usefulness?/
{usefulness} Do you agree with the following statement about yourself? “The
project successfulness was highly dependent on my performance and decision
making”/Likert scale personal evaluation

Q15. How job satisfaction affects people’s tendency to leave the company?/{quitting}
Was job dissatisfaction the primary reason for you to quit any of your previous
working places?/nominal scale (Yes/No, I didn’t quit/No, I quitted because of
another reason)

Q16. How job satisfaction is dependent on age?/{age} What is your age?/age
(number)

Associated metrics for each of the questions are Pearson’s correlation coefficients
of the collected values with the level of job satisfaction that is provided by survey
participant while answering the question “How would you characterize your level of
job satisfaction? Please, try not to take salary into account and think about the working
process, everyday routine”.

To shift the survey participants attention from money consideration while assessing
their job satisfaction, an ordering effect was employed [41]. It was done by placing
questions about job satisfaction at the end of the survey, after all the other questions
that are supposed to bring to mind other (different from money) factors related to job
satisfaction.

3.3 Data Collection and Analysis

For data collection, the prepared questionnaire was posted online. To avoid obvious
typos, misinterpreting, or misunderstanding of the questions in it, a prototype of the
survey was tested by 3 anonymous peer students.

128 A. Tarasov

Obtained results were used to calculate Pearson’s correlation coefficients for each
of the identified factors. Inferences regarding these values were made. To find out what
factors, that are believed to be related to job satisfaction, but do not have a tangible
impact on it, hypothesis testing on a confidence interval of 90% was used.

After this, the multivariate regression model was constructed to approximate what
part of random errors while predicting job satisfaction can be explained by adding
various combinations of identified factors in the model.

It allowed to come up with the list of factors for project managers and team leads to
measure in order to effectively make indirect conclusions about the level of job sat-
isfaction of developers.

4 Results and Discussion

4.1 Pearson’s Correlation Coefficients Analysis and Inferences

Calculated Pearson’s correlation coefficients, showing how strong the linear relation-
ship between the identified factors and job satisfaction level of developers and their
statistical significance levels, are presented in Table 1.

Table 1. Pearson’s correlation coefficients showing how strong the linear relationship between
the identified factors and job satisfaction level of developers

Factor marker Pearson’s correlation coefficient Statistical significance level

Environment 0.79089902 0.99999999
Peers relationships 0.65290516 0.999999963
Management relationships 0.6309429 0.99999986
Personality 0.58344614 0.99999809
Deadline pressure −0.5749865 0.9999971
Customers messaging 0.44999241 0.99955524
Age −0.3617873 0.9943124
LOC 0.32160939 0.98529236
Sleep 0.31746041 0.98388409
Agile 0.29748849 0.97538408
Sport 0.24506287 0.93383743
Customers face-to-face 0.2340725 0.92031095
Weekends work −0.2216921 0.90255156
Hobby 0.15457963 0.74907764
Unproductive activity −0.0582444 0.33306561
Colleagues messaging 0.04403495 0.25500734
Usefulness 0.02953528 0.17264399
Colleagues face-to-face 0.01098636 0.06464551
Project criticality 0.00428355 0.02522786
Overtime 0.00264184 0.01556065
Interest −0.0014406 0.00848553

Assessing Job Satisfaction of Software Engineers Using GQM Approach 129

Statistical significance level (1-p) can be interpreted as the probability of not
making a mistake about relationship direction. For example, having a factor with
positive linear relationship calculated using the sample of the study answers, we have
probability equals statistical significance level to have a positive relationship between
this factor and job satisfaction in real life (generalized for the whole population).

In this research, the significance level a is set to be 0.05. Which means that only 10
of 21 identified factors are statistically significant.

It can be easily noticed that working environment quality in the proposed experi-
ment showed by far the highest strength of the linear relationship with job satisfaction.
Its Pearson’s correlation coefficient was found to be 0.79. Moreover, it is hardly
interpretable as a consequence of the job satisfaction level. That is why the inference is
that working environment perception is the most powerful predictor of job satisfaction
of software engineers. It confirms the findings of the studies [11, 33–35] analyzed in
Sect. 3.

Relationships with both peers and management showed a high level of correlation
coefficients (more than 0.62 for both) with job satisfaction. There was no contradiction
with previous researches [9, 18] found at this point.

Inference about extroversive persons being more inclined to high turnover rate [32]
was not confirmed. Extroversion was found to be one of the most significant predictors
of a high level of job satisfaction with Pearson’s correlation coefficient of 0.58.

Deadline pressure with a correlation coefficient of −0.57 was found to be negatively
related to job satisfaction. It proves the inferences of previous studies [6, 8]. However,
the amount of lines of code committed to a project has a positive relation to con-
tentment. It can be explained by the assumed capability and desire of satisfied devel-
opers to produce more code. Which means that LOC factor is not a predictor for
contentment, rather it is depending on the level of a developer’s job satisfaction.

Another explanation may be that developers averagely tend to like to produce code
more than to do other software engineering activities. This inference was mention in the
classic study by Michael Jackson [39]. The inference could be that developers that are
overloaded by tasks connected with coding are not that inclined to have decreased level
of job satisfaction when compared to developers that are under the pressure of
paperwork or requirements management. Moreover, this overload may be a predictor of
higher contentment. However, this relation may be not linear but U-formed. Testing the
linearity of relationships was not part of the proposed approach.

Interaction with customers by messages is another significant factor that is posi-
tively related to job satisfaction. This factor is a novelty of the current study. While a
lot of attention was paid to a collaboration of developers inside the team [9, 10, 12, 18,
20–22], communication with customers was not specifically investigated in terms of its
connection with job satisfaction in modern science works.

What is interesting, face-to-face communication with the customers was found to
be insignificant on a confidence interval of 95%. It may be considered as evidence of
one of the main agile principles, namely “The most efficient and effective method of
conveying information to and within a development team is a face-to-face conversa-
tion.” [36], being incapable to increase developers’ level of job satisfaction. However,
the factor of face-to-face communication with the customers is significant on a confi-
dence interval of 90% and inference above may be a consequence of statistical error.

130 A. Tarasov

Age factor showed a significant negative relationship to job satisfaction. It confirms
the findings of the research [38] described in Sect. 3. Even though in this study, the
linear relationship between factors and job satisfaction is investigated, inferences about
age can be reconsidered. More than 95% of the survey respondents were 22 to 34 years
old. It is almost exactly that age when employees of any profession are experiencing a
decrease in their job satisfaction [38]. It means that the lack of older examined
developers did not let us observe the U-shaped relationship between age and workplace
contentment. However, even linear analysis corresponds to the previous discoveries in
this sphere.

Sleep duration was shown to be slightly positively related (0.32) to job satisfaction.
The attitude of workers towards their workplace tend to decrease as sleep is deprived,
which leads to a lower overall level of job satisfaction. This inference proves the
validity of another study [31] checking the connection between sleep shortage and
workers contentment. The same is true for the prevalence of agile approaches in
development cycles. Its Pearson’s correlation coefficient of 0.3 is significant on a
confidence interval of 95%.

The frequency of working on the weekends and sport exercise activities are con-
sidered significant only on a 90% confidence interval. Its correlation coefficients of
−0.22 and 0.25 respectively can be considered neither denials nor proofs for inferences
of previous scientific works [6, 8, 29].

Such factors as frequency of doing hobby activity, unproductive behavior during
working hours, project meaningfulness and criticality, and perception of the usefulness
of own working contribution are shown to be insignificant in terms of having an impact
on a level of job satisfaction of software engineers. These findings are pretty interesting
since all those elements are believed to have an effect on developers’ work contentment
[8, 20, 30].

Another important finding is that developers that were not satisfied with workplace
quitted the company in 74% of the cases. In 68% of cases, the primary reason for
quitting was job discontent.

4.2 Multivariate Regression Model Design

Multivariate regression was built to estimate what part of random errors while pre-
dicting job satisfaction can be explained by including different combinations of iden-
tified factors in the model. It allows to come up with the list of factors for project
managers and team leads to measure in order to make indirect conclusions about the
level of job satisfaction of developers. To estimate this part of explained random errors
the coefficient of determination (R squared) was used. In statistics, it is defined as the
proportion of the variance in the dependent variable that is predictable from the
independent variable(s).

The results demonstrated by different variants of the model are shown in Table 2.
Such metrics as age, deadline pressure (overtime hours a week before a deadline),

regularity of working on weekends, personality (by single time personnel assessment),
average number of lines of code contributed to a project weekly, can be obtained by
management without regular assessment of the developers which would make

Assessing Job Satisfaction of Software Engineers Using GQM Approach 131

employees less aware of the process of evaluation of their level of job satisfaction. It is
helpful to avoid counterfeit developers’ behavior.

It can be seen that only by observing the metrics described above, R squared of
59% was achieved. According to [40], any field that tries to predict human way of
behaving, such as psychology (and our experiment can be also considered psychology-
oriented), in most of the cases has R squared values lower than 60%. Humans are
simply more difficult to predict than general physical processes. That is why even the
simplest way of metrics collecting can be considered useful.

By adding to metrics described above other ones such as developer’s evaluation of
working environment, his relationships with peer colleagues and management, amount
of sleep, the frequency of interaction with customers, quality of prediction of his job
satisfaction can be increased. The coefficient of determination of the model combining
those factors is 85% which is 12% higher than R squared of the model including 6
factors with the highest absolute values of Pearson’s correlation coefficients. Moreover,
the model combining all the identified factors achieves R squared value that is only
about 4% higher, while it requires collecting 2.3 times more metrics.

The R squared score achieved by model allows considering obtained multivariate
regression model successful. It exceeds a threshold of the success of 60% for R squared
coefficients demonstrated in psychological sphere assessment by considerable 25–29%
(depending on the combination of factors added to the model).

5 Conclusions

In this paper, correlation of lifestyle and working process-oriented factors with the job
satisfaction level of Software Engineers is investigated. Statistically significant factors
on a confidence interval of 95% are identified. Those are age, deadline pressure,
personality, average number of lines of code contributed to a project weekly, rela-
tionships with peer colleagues and management, an intensity of interaction with cus-
tomers, sleep duration, quality of working environment, the prevalence of agile
methods in the development process in a company.

Other factors such as working overtime, criticality of the project on which devel-
oper is working, and being interested in programming as an activity, that are believed
to correlate with job satisfaction, were shown to not be related to workplace
contentment.

Table 2. R squared coefficients of different identified factors combinations

Factors included in the model R squared

All factors 0,89346994
Environment, deadline pressure, peers relationships, management
relationships, LOC, age, weekends work, sleep, customer interaction

0,84903521

Environment, deadline pressure, peers relationships, management
relationships, LOC, personality

0,73057786

age, deadline pressure, weekends work, personality, LOC 0,58865875

132 A. Tarasov

Multivariate regression model combining various combinations of factors was built
to find out what metrics should be evaluated to predict a level of employees’ job
satisfaction.

In future research, the sample size can be extended in order to make inferences
more robust. Special attention should be paid to calling developers older than 40 years
of age to participate in the survey. It would allow to further investigate the U-shaped
relationship between age and job satisfaction in software engineering sphere. Also,
answer options for the questions about communication with colleagues should be
revised. It may be worthwhile to conduct separate research on how job satisfaction is
related to interaction with customers. This theme was not explicitly investigated in
scientific works yet. Another topic of possible interest is the correlation between a
number of lines of code contributed to a project and developer’s contentment.

References

1. DeMarco, Lister: Productive Projects and Teams. Dorset House (1987)
2. Boehm, B., et al.: Cost Estimation with COCOMO II. Prentice-Hall, Upper Saddle River

(2000)
3. Acuña, S.T., Gómez, M.N., Hannay, J.E., Juristo, N., Pfahl, D.: Are team personality and

climate related to satisfaction and software quality? Aggregating results from a twice
replicated experiment. Inf. Softw. Technol. 57, 141–156 (2015)

4. Locke, E.A.: Job satisfaction. In: Gruneberg, M., Wall, T. (eds.) Social Psychology and
Organizational Behavior, pp. 93–117. Wiley, New York (1984)

5. Sukriket, P.: The relationship between job satisfaction and turnover intention of Thai
software programmers in Bangkok, Thailand. AU J. Manag. 12(2), 42–52 (2014)

6. Maudgalya, T., Wallace, S., Daraiseh, N., Salem, S.: Workplace stress factors and ‘burnout’
among information technology professionals: a systematic review. Theor. Issues Ergon. Sci.
7(3), 285–297 (2006)

7. Bingulac, S.P.: On the compatibility of adaptive controllers. In: Proceedings of the Fourth
Annual Allerton Conference on Circuit and System Theory, pp. 8–16 (1994). (Conference
Proceedings)

8. Maslach, C.: Burnout: a multidimensional perspective. In: Professional Burnout, pp. 19–32.
Routledge (2017)

9. Pedrycz, W., Russo, B., Succi, G.: A model of job satisfaction for collaborative development
processes. J. Syst. Softw. 84(5), 739–752 (2011)

10. Layman, L., Williams, L., Cunningham, L.: Exploring extreme programming in context: an
industrial case study. In: Agile Development Conference 2004, pp. 32–41. IEEE, June 2004

11. Zhu, Q., Yin, H., Liu, J., Lai, K.H.: How is employee perception of organizational efforts in
corporate social responsibility related to their satisfaction and loyalty towards developing
harmonious society in Chinese enterprises? Corp. Soc. Responsib. Environ. Manag. 21(1),
28–40 (2014)

12. Tripp, J.F., Riemenschneider, C., Thatcher, J.B.: Job satisfaction in agile development
teams: agile development as work redesign. J. Assoc. Inf. Syst. 17(4), 267 (2016)

13. Beck, K.: Test-Driven Development: By Example. Addison-Wesley Professional, Boston
(2003)

14. Fowler, M., Foemmel, M.: Continuous integration. Thought-Works, vol. 122, p. 14 (2006).
http://wwwthoughtworks.com/ContinuousIntegration.pdf

Assessing Job Satisfaction of Software Engineers Using GQM Approach 133

http://wwwthoughtworks.com/ContinuousIntegration.pdf

15. Beck, K.: Extreme Programming Explained – Embracing the Change. Addison Wesley,
Boston (2000)

16. Ma, X.: The effect mechanism of work flexibility on employee job satisfaction. In: Journal of
Physics: Conference Series, vol. 1053, no. 1, p. 012105. IOP Publishing, July 2018

17. Coenen, M., Kok, R.A.: Workplace flexibility and new product development performance:
the role of telework and flexible work schedules. Eur. Manag. J. 32(4), 564–576 (2014)

18. Succi, G., Pedrycz, W., Marchesi, M., Williams, L.: Preliminary analysis of the effects of
pair programming on job satisfaction. In: Proceedings of the 3rd International Conference on
Extreme Programming (XP), pp. 212–215, May 2002

19. Basili, V.R.: Applying the Goal/Question/Metric paradigm in the experience factory. Softw.
Qual. Assur. Meas.: Worldwide Perspect. 7(4), 21–44 (1993)

20. Melnik, G., Maurer, F.: Comparative analysis of job satisfaction in agile and non-agile
software development teams. In: Abrahamsson, P., Marchesi, M., Succi, G. (eds.) XP 2006.
LNCS, vol. 4044, pp. 32–42. Springer, Heidelberg (2006). https://doi.org/10.1007/
11774129_4

21. Biddle, R., Meier, A., Kropp, M., Anslow, C.: Sources of satisfaction in agile software
development. In: Proceedings of the 40th International Conference on Software Engineering:
Companion Proceedings, pp. 333–334. ACM, May 2018

22. Tessem, B., Maurer, F.: Job satisfaction and motivation in a large agile team. In: Concas, G.,
Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536, pp. 54–61. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73101-6_8

23. Agresti, A.: A model for agreement between ratings on an ordinal scale. Biometrics 539–548
(1988)

24. Allen, I.E., Seaman, C.A.: Likert scales and data analyses. Qual. Progress 40(7), 64–65
(2007)

25. Cox III, E.P.: The optimal number of response alternatives for a scale: a review. J. Mark.
Res. 407–422 (1980)

26. Norman, G.: Likert scales, levels of measurement and the “laws” of statistics. Adv. Health
Sci. Educ. 15(5), 625–632 (2010)

27. Hauke, J., Kossowski, T.: Comparison of values of Pearson’s and Spearman’s correlation
coefficients on the same sets of data. Quaestiones Geographicae 30(2), 87–93 (2011)

28. Newson, R.: Parameters behind “nonparametric” statistics: Kendall’s tau, Somers’ D and
median differences (2002)

29. Lai, W.P.B.: A workplace exercise intervention in China: an outcome and process evaluation
(Doctoral dissertation, University of Nottingham) (2018)

30. Rubino, C., Luksyte, A., Perry, S.J., Volpone, S.D.: How do stressors lead to burnout? The
mediating role of motivation. J. Occup. Health Psychol. 14(3), 289 (2009)

31. Kumari, K., Usmani, S., Siddiqui, S.J., Husain, J.: The effects of sleep deprivation on the job
performance of working mothers. J. Bus. Stud. 12(1), 95–120 (2016)

32. Eckhardt, A., Laumer, S., Maier, C., Weitzel, T.: The effect of personality on IT personnel’s
job-related attitudes: establishing a dispositional model of turnover intention across IT job
types. J. Inf. Technol. 31(1), 48–66 (2016)

33. Raziq, A., Maulabakhsh, R.: Impact of working environment on job satisfaction. Procedia
Econ. Finan. 23, 717–725 (2015)

34. Jain, R., Kaur, S.: Impact of work environment on job satisfaction. Int. J. Sci. Res. Publ. 4
(1), 1–8 (2014)

35. Duffy, R.D., Autin, K.L., Bott, E.M.: Work volition and job satisfaction: examining the role
of work meaning and person–environment fit. Career Dev. Q. 63(2), 126–140 (2015)

36. Beck, K., et al.: Manifesto for agile software development (2001)

134 A. Tarasov

http://dx.doi.org/10.1007/11774129_4
http://dx.doi.org/10.1007/11774129_4
http://dx.doi.org/10.1007/978-3-540-73101-6_8

37. Cullen, K.L., Edwards, B.D., Casper, W.C., Gue, K.R.: Employees’ adaptability and
perceptions of change-related uncertainty: implications for perceived organizational support,
job satisfaction, and performance. J. Bus. Psychol. 29(2), 269–280 (2014)

38. Clark, A., Oswald, A., Warr, P.: Is job satisfaction U-shaped in age? J. Occup. Organ.
Psychol. 69(1), 57–81 (1996)

39. Jackson, M.: The world and the machine. In: Proceedings of the 17th International
Conference on Software Engineering, pp. 283–292. ACM, April 1995

40. Cheung, G.W., Rensvold, R.B.: Evaluating goodness-of-fit indexes for testing measurement
invariance. Struct. Equ. Model. 9(2), 233–255 (2002)

41. Fan, W., Yan, Z.: Factors affecting response rates of the web survey: a systematic review.
Comput. Hum. Behav. 26(2), 132–139 (2010)

Assessing Job Satisfaction of Software Engineers Using GQM Approach 135

Software Development and Customer
Satisfaction: A Systematic

Literature Review

Rozaliya Amirova, Ilya Khomyakov, Ruzilya Mirgalimova,
and Alberto Sillitti(B)

Innopolis University, Innopolis, Russian Federation
{r.amirova,i.khomyakov,r.mirgalimova,a.sillitti}@innopolis.ru

Abstract. Background: Customer satisfaction is one of the vital compo-
nents of a successful software company. It is not possible to develop suc-
cessful products with functional and/or non-functional properties that
are not able to satisfy the customer’s needs. To this end, it is important
to identify factors that affect customer satisfaction and approaches to
measure them also in relation with the adopted development methodol-
ogy.

Goals: The purpose of this work is to provide an extensive investiga-
tion of the existing studies related to evaluation of customer satisfaction
and analyze them.

Method: The Systematic Literature Review approach was applied. We
have identified an initial set of 310 studies obtained from the three largest
digital libraries that was reduced to 34 after the application of a number
of filters. These studies were analyzed in depth in this paper.

Results: The analysis performed points out that in the majority of
the identified studies, one of the main factor that affects customer sat-
isfaction is related to the application of Agile Software Development
approaches due to their deep involvement of the customer in the devel-
opment process.

Keywords: Customer satisfaction · Agile ·
Systematic literature review

1 Introduction

Customer satisfaction is one of the most important aspects in any market since
it is able to make the customers loyal and generate recurrent revenues. In the
software domain, the development approaches have evolved over time center-
ing the overall process on customers needs. Agile methods have developed this
concept and made it common in almost any application domain [6,8–10].

Due to the increasing level of competition among software producers iden-
tifying approaches to attract more customers and improve their loyalty is of
paramount importance. Customer satisfaction provides a leading indicator of
c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 136–149, 2019.
https://doi.org/10.1007/978-3-030-29852-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_11

Software Development and Customer Satisfaction 137

consumer purchase intentions and loyalty [12]. When organizations attempt to
create a more customer-focused environment, they need to consider strategies
such as:

– Identifying the perceived role of customer.
– Collaborating with customer.
– Active involvement of customer in quality improvements.
– Customer integration in developing new products.
– Designing feedback loops between the customer and the engineering team.

These are just an example of possible strategies that can be implemented
to improve customer involvement but they can also include an analysis of how
developers approach the needs of the customer in the activities they perform
every day [5,7].

The main goal of this systematic literature review is to understand whether
there are common approaches to establish collaborations with customers, the
main challenges, the main factors that affect the customer satisfaction, and
whether the chosen software development methodology plays any role.

The paper is organized as follows: Sect. 2 and subsections describe the
adopted approach and protocol; Sects. 3 and 4 present and analyze the results
obtained; Sect. 5 discusses the threats to validity of the research; finally, Sect. 6
draws the conclusions and introduces future work.

2 Adopted Approach

2.1 Goals of the Research

Due to the increasing number of software producers, there is a need for them to
measure the degree of customers satisfaction and find ways to improve. For this
reason, it is important to understand the factors that affect customer satisfaction
and methods for measuring it. Literature in this field is both fragmented and
unvaried. In this paper, we look at how previous reviews within Agile Software
Development (ASD) and other software development methodologies considered
customer satisfaction and we use these insights to identify common aspects.

2.2 Research Questions

This study aims to answer two following questions:

– RQ1: Which are the factors that affect customer satisfaction?
– RQ2: How can we measure the factors that affect customer satisfaction?
– RQ3: How can we evaluate customer satisfaction for a project?

2.3 Search Process

This section describes the search process activities considering the resources and
keywords used, and example of search queries.

138 R. Amirova et al.

Resources. In our research, we used three largest digital libraries available:
ACM Digital Library, IEEE Xplore Digital Library, and Google Scholar. As
many other studies pointed out, we have realized that Google Scholar includes
all the publications listed in the other repositories considered here and in other
smaller ones such as the ones of Elsevier, Wiley, etc.

Keywords. We used research questions RQ1, RQ2 also to identify the search
keywords. Table 1 lists the keywords identified.

Table 1. Keywords identified.

Area Keywords

Factors that affect customer satisfaction Customer satisfaction

Customer satisfaction measurement

Software development methodology Software development, agile,
scrum, extreme programming, xp,
kanban, lean, plan based,
traditional, waterfall, rup, spiral,
iterative, v-shape

Queries. Proper search queries have been defined for each digital library. As an
example, one of the query defined for the ACM Digital Library is the following:

acmdlTit le : (so f tware development) AND
acmdlTit le : (customer s a t i s f a c t i o n) AND
acmdlTit le : (w a t e r f a l l a g i l e xp scrum extreme plan based
t r a d i t i o n a l kanban lean programming rup s p i r a l i t e r a r t i v e
v−shape) .

2.4 Selection Process

The following sections are used to determine which studies are included and
excluded through the definition of inclusion and exclusion criteria, an imple-
mentation of data extraction strategy, and data synthesis method.

Studies Selection Procedures. The selection criteria are applied to the iden-
tified papers by one author and then verified by the other authors in accordance
with the following criteria:

– Inclusion criteria
• Available online to ensure paper accessibility
• Focused on customer satisfaction factors to ensure its relevance

Software Development and Customer Satisfaction 139

• Focused on software development process to ensure its compliance with
the study

• Publication format of research paper (books, thesis, posts, videos, etc.
are not included)

• Written in English
– Exclusion criteria

• Any paper that does not satisfy any of the inclusion criteria.
• Papers written by the same authors describing the same factors.

Quality Assessment Procedures. The following aspects where considered
for assessing the quality of the individual studies:

– QA1: Is the study based on a focused question that is adequately formulated
and described?

– QA2: Were inclusion and exclusion criteria for investigated studies predefined
and specified?

The purpose of the quality assessment criteria is to develop a checklists to
define the inclusion or exclusion of the identified studies.

Data Extraction Strategy. To avoid errors and bias of the results, data
extraction forms are used. These forms include:

1. General information
– A date of Data extraction
– A title and authors
– Name of publication, year and other publication details

2. Study characteristics
– Study design
– Outcomes and interventions (if applicable)
– Comments on limitations and generalisability that reviewers can identity

after reading the paper.

Synthesis of the Extracted Data. The narrative synthesis includes:

– Study type (e.g., intervention, observational)
– Number and characteristics of participants (e.g., age, specialization, etc.)
– Description of interventions and/or outcome measures
– Study quality
– Discussion of heterogeneity (differences across studies).

140 R. Amirova et al.

1985-2005 2006-2009 2010-2013 2014-2018

6

8

10

Fig. 1. Distribution of papers over the years

3 Results

This section presents the quantitative results of this study. It starts with an
overview of the sources where the studies were found: 84% Google Scholar; 13%
ACM Digital Library; 3% IEEE Xplore. Then, it provides an overview of the
included studies according to the year of publication (Fig. 1). Finally, it discusses
the results of studies classification, which show numerical results our SLR.

Search was executed in January 2019 and covered the years between 1985–
2018. The final number of papers that were included for data analysis was 34
and a total of 276 papers were excluded (Table 2).

Table 2. Excluded papers.

Exclusion criterion Papers %

Lack of focus on customer satisfaction 99 34%

Lack of focus on software development 92 31%

Paper format 67 22%

Total 310 100%

Included 34 10%

4 Discussion

This section focuses on reporting the results of the SLR research questions. It
reports on factors that affect customer satisfaction and how customer satisfaction
is measured and evaluated.

Software Development and Customer Satisfaction 141

4.1 RQ1: Factors that Affect Customer Satisfaction

This section shows what factors affect the Customer Satisfaction in Agile, focus-
ing on SCRUM, ACRUM, and XP, and in traditional software development
processes.

ASD. One way to achieve a high level of customer satisfaction using Agile soft-
ware development methodology is to increase the level of customer confidence.
This can be done by:

– Clearly identifying the customer and their role [25].
– Characterising customers to enable the development team to manage better

their expectations [25].
– Active client participation during the project [1,14,17] and active communi-

cation with customers and team members [3]. This increases the satisfaction,
enhances the level of trust between the parties, and creates a feeling of “per-
sonal touch”.

– Introduce practices such as on-site customer, planning, small release, cus-
tomer usage test, etc. Where the customers can join the development process
and identify problems and the product is modified or rebuilt iteratively to
maximize its satisfaction with the final product [33].

– Ability to incorporate early and continuous customer feedback, thus better
tailoring to features that are really used by customers and not to the features
planned up-front [22].

– Ability to deliver meaningful functionality to the customer and get immediate
feedback [28,30,31].

– Strong support after delivery [17].
– Understand how customer use a feature [17].
– Ability to deliver what customers want when they want [17].
– Establishing long lasting relationships between the development team and the

customer [25]. [11] suggests also that a strong relationship has a long term
economic value in terms of continuity of cash flows and saving in time and
resources for starting new projects.

Several papers consider five characteristics of agile development (iteration,
continuous integration, test-driven design, feedback and collective ownership)
strictly linked to the customer satisfaction measuring satisfaction with the devel-
opment process and with the development outcome (Table 3).

All the five characteristics have strong direct effects on both process and
outcome customer satisfaction. According to [35], factors that affect customer
satisfaction are:

– Increase
• Focus on shortening overall project duration.
• Good communication (e.g., no last minute surprises).
• Collaboration.

– Decrease

142 R. Amirova et al.

Table 3. Development characteristics linked to customer satisfaction.

Characteristic Description Correlation
with process
satisfaction

Correlation
with
outcome

Iterative development Quick delivery of small working

(and tested) software releases at

regular intervals or cycles [2]

0.75 0.81

Continuous integration New code is integrated into the
production base code
continuously, ideally after each
task is completed [2,34]

0.65 0.74

Collective code ownership Any developer has the right to
add or maintain the code
anywhere in the system at any
time [2]

0.75 0.81

Test-driven development Developers write tests before
they code [2]

0.66 0.67

Feedback Frequent feedback loop with
customers allows developers to
ascertain the accuracy of the
functionality [15]

0.60 0.66

• Late delivery and long project duration.
• Defects.
• Issues with testing and deployment.
• Unclear requirements.
• Bad documentation.
• Hidden business rules.
• Bad communication.

Notably, the project cost seems not an important issue for customers.

SCRUM. There are mixed findings in this area. In [26], authors found that daily
SCRUM meetings and planning meetings are helpful since they keep customers
up-to-date and reduce the confusion about what should be developed increasing
customer satisfaction. However, [4] reports that it was not possible to establish
any evidence that using SCRUM may help to improve customer satisfaction and,
consequently, increase the success rates of software projects.

XP. All of the included papers dealing with XP show that introducing this
technique makes a good impact on customer satisfaction.

– Factors that increase Customer Satisfaction
• unit testing, refactoring, and feedback during the project [21].
• acceptance tests and tracking [21].

– Factors that decrease Customer Satisfaction

Software Development and Customer Satisfaction 143

• Attempting to increase customer satisfaction through marketing and
incentives, rather than based on true satisfaction with the product can
actually harm the organisation in the long term [13].

• The greater the customer involvement, the greater the potential for cus-
tomer dissatisfaction [13].

• Close customer involvement cannot make up for the failings of a devel-
opment team. Instead of the customer perceiving that the involvement
is helping the team meet the customer’s needs, the customer may feel
obliged to exert authority over internal development decisions and may
also feel mistreated by perceiving that the team is not delivering a valu-
able product [13].

As a separate factor, which negatively impact on customer satisfaction is
changing requirements. However, [33], propose Agile practices such as positive
work climate, final product adaptability, and willingness to change positively
could mitigate this negative effect.

4.2 RQ2: Measurement of Customer Satisfaction

This section describes the approaches used to measure customer satisfaction in
the included papers (Table 4).

Table 4. Measurement approaches for customer satisfaction.

Approach Description Study

Rates Evaluating the satisfaction
on a Likert scale

[23,29,34]

Interviews Semi-structured interviews
with open-ended questions

[14,17,24]

Web analytic tools Automatic mechanism for
the evaluation of customer
focus

[25,30,34]

Feedback reports Acquired rapidly and at
minimal cost

[25,27,29,30,35]

Meetings Face-to-face discussion
activities (often in a formal
setting)

[14,30]

Brainstorming A group creativity activity
to identify new features

[35]

Questionnaires and surveys Set of questions with
different formats

[18,27,29,32,34,35]

Consultants, representatives The most interested
persons are chosen

[25,29]

144 R. Amirova et al.

Customer satisfaction measurement activities are impossible without consid-
eration communication channels. [20] describes all common channels of commu-
nication and gives recommendations on their usage: Face-to-face communication
is the default communication method in agile development. It has proven to be
effective, so it should be applied whenever possible. Videoconferencing comes
second in richness and the study suggests using videoconferencing in situations
when effective customer communication and feedback is needed and the customer
is not available on-site. Phone is not capable of transmitting visual cues, but it
enables instant feedback. It can be useful for example for negotiating sched-
ules with the customer. Emails are suitable for communicating well-understood
issues.

4.3 RQ3: Evaluation of Customer Satisfaction

The most straightforward way for the evaluation of customer satisfaction is
through interrogating them in a direct way through popular approaches such
as interviews, questionnaires, meetings, and combinations of them. Within the
34 reviewed studies, we analyzed these approaches by the following criteria: the
way of defining questions, collecting and analyzing information. This allowed us
to define initial models for the evaluation of the customer satisfaction.

Interviews. [24] used subjective means – customer interviews and surveys –
which were structured to reduce the effect of influencing factors beyond the XP
practices as much as possible. [23] collected information based on on-site observa-
tions, a research diary, and interviews. [30] conducted semi-structured interviews
with open-ended questions. During 24 interviews, an interview guide consisting
of three predefined themes: an organisation and current way of working, a cus-
tomer interaction mechanisms/models and strengths & weaknesses in ways of
working. In [17], the authors interviewed the team leader, the system manager,
the system designer, and the function tester. At each customer unit they inter-
viewed the person with which the customer-specific teams interact, and who
has direct contact with the customer. Finally, they conducted interviews with
a program manager, a product manager and an integration leader at the main
development site to capture the context in which the customer-specific teams
operate. In [1], researchers collected information using interviews with repre-
sentatives of two North-European software companies: one is relatively young
company and the second one is plan-driven organization with a long business
history. They interviewed the developers and the project manager from the first
company and the lead architect and technical manager from the second company
in separate interviews that lasted about 60 min each. During the interviews, they
asked narrative-pointed questions related to client’s involvement and its impact
on it that both covered a longer period of time and focused on specific events.
The collected data were analyzed by means of thematic analysis techniques,
because of the flexibility it offers to researchers. In [23], in each company, the
project managers were questioned about their last completed projects, which

Software Development and Customer Satisfaction 145

had to be as the complete system for an external client or another department
inside the company. Data collection was carried out by phone interviews with a
web-aided questionnaire. Study participants were asked to rate the level of satis-
faction of the project’s customer using a 7-point Likert scale. In addition to the
quantitative research data, qualitative data was also used. In [29], the intervie-
wees were selected by key contact persons from each company, who were asked
to nominate experts from Product Management, R&D, Validation&Verification
and Sales&Marketing. All interviewees had a lot of experience in working in
companies for long periods of time and in multiple projects.

Questionnaires. In [11], to develop the survey instrument, the authors per-
formed an extensive literature review to derive an initial pool of scale items.
Then a structured questionnaire was constructed to capture information from
an appropriate key informant within each organisation. The key informant was
asked about the extent to which they agreed with a number of statements reflect-
ing the use of the five agile characteristics in their most recently completed soft-
ware development project, as well as the level of stakeholder satisfaction with
that project. The instrument used was a five-point Likert type scale. The ques-
tionnaire, accompanied by a covering letter, was emailed to the listed contact in
each organisation. A survey methodology to gather the information was used.
The target population of this study consists of firms that use agile software devel-
opment methodologies. The respondents was obtained from the social network
Linkedin. Then authors interviewed three experienced professionals working in
software development with agile methodologies and two experienced researchers.
The interviewees critiqued the questionnaire with regard to its clarity, complete-
ness and the appropriateness of its measures. Researchers collected 102 valid
questionnaires and analyzed them through hierarchical multiple regression. They
used two regression models. First model was created by entering five control vari-
ables: organization size, project size, agility, customer collaborative attitude, and
customer active participation. In the second model, they included the predictor
(control and independent) variables. The results of the regression analysis show
that the active participation of the customer was the most important factor. In
[27], a survey composed of rapid customer-focused iterations was used. This sur-
vey constituted a guideline on developing their application based on customers
feedback. The authors got in contact with 15 potential customers to gain insights
from their feedback. They used a questionnaire based survey on 204 respondents
to investigate Greek consumers’ familiarity with electronic food ordering and its
applications. Their main goal was to understand customer’s opinion on what
features an application should have so to increase their satisfaction.

Meetings. In [33], customer collaboration improved by continuous meetings.
In arranged meetings, customer represents or amends requirements. Also cus-
tomers themselves decide whether they should submit some important changes.
In [14], evolutionary project management is a highly scheduled process where
weekly iterations follow a fixed schedule that defines responsibilities per day.

146 R. Amirova et al.

For example, “on Fridays there is a management design review meeting for iter-
ation N, on Mondays stakeholders test the product of iteration N-1”. In [25],
the authors attended daily team meetings, iteration sessions and training ses-
sions. Such observations showed that there were large discrepancies between the
document the team were working on and the actual user stories being discussed
at these meetings. To establish the reliability and validity of the case study,
researchers followed the three principles of data collection: use multiple sources
of evidence, create a case study database, maintain a chain of evidence.

Combination of Methods. In [25], data were collected through a variety of
methods: unstructured and semi-structured interviewing, document review and
observation. In [35], the authors used a formal and informal channels of commu-
nication. Formal: letters and documentation exchanges. According to this chan-
nel, everyone could communicate regularly. So that the organizational structure
and management processes of the parties are well known to project developers.
Project progress were reported weekly. Customer satisfaction surveys were car-
ried out yearly. Then there is the informal communication way. The common
ways are after-meals dinner, send birthday gifts, and group activities. In these
ways, developers could understand customers situation, the progress of customer
care, customer satisfaction processes, and to understand the customer’s internal
culture.

5 Threats to Validity

Customer satisfaction and customer relationships tend to be a sorely unexplored
and largely misunderstood aspect of software engineering [13]. Here we list three
major threats, which can affect to our findings:

1. Papers sources: although the applied guideline recommends to consider
about seven digital libraries for performing an exhaustive search, in our case
only three beginning ones have been chosen. The reason of it is that the
rest sources contain quite few amount of unique papers, so majority of them
is overlapping in ACM DL and IEEE. Nevertheless, to extend the set of
publications, also Google Scholar was used.

2. Handling query results: a way of automatically merging the outcome lists
from that libraries is risky, because even single differing symbol in title might
affect a lot. For that reason, 310 repeating papers were identified and elimi-
nated manually for obtaining a merged list.

3. Keeping results up-to-date: it may happen that some information has not
been included in the final table concerning empirical studies either because
it was accidentally skipped or new studies appeared.

6 Conclusions

This SLR aimed to identify factors that affect customer satisfaction in Agile
Software Development and explore the ways to increase it. The SLR included a

Software Development and Customer Satisfaction 147

total of 34 papers and excluded 276 papers that were published from the year
1985 till 2018 (33 years). The findings were quantitatively classified. Industrial
practitioners can use the obtained information for their work to improve the level
of customer satisfaction and increase the demand for their products. This study
pointed out that there are a number of ways for measuring the level of customer
satisfaction (Table 4). However, there is a lack of a comprehensive framework for
measuring the different aspects of the customer satisfaction focusing also on the
practices and approaches that can be actually adopted by practitioners in real
projects.

References

1. Bakalova, Z., Daneva, M.: A comparative case study on clients participation in a
‘traditional’ and in an agile software company. In: 12th International Conference
on Product Focused Software Development and Process Improvement (PROFES
2011), Torre Canne, Brindisi, Italy (2011)

2. Beck, K.: Embracing change with extreme programming. IEEE Comput. 32(10),
70–77 (1999)

3. Bhalerao, S., Ingle, M.: Analysing the modes of communication in agile practices.
In: 3rd International Conference on Computer Science and Information Technology,
Chengdu, China (2010)

4. Cartaxo, B., Araújo, A., Sá Barreto, A., Soares, S.: The impact of scrum on cus-
tomer satisfaction: an empirical study. In: 27th Brazilian Symposium on Software
Engineering, Brasilia, Brazil (2013)

5. Coman, I., Sillitti, A.: An empirical exploratory study on inferring developers’
activities from low-level data. In: 19th International Conference on Software Engi-
neering and Knowledge Engineering (SEKE 2007), Boston, MA, USA, 9–11 July
2007

6. Coman, I.D., Sillitti, A., Succi, G.: Investigating the usefulness of pair-
programming in a mature agile team. In: Abrahamsson, P., Baskerville, R., Conboy,
K., Fitzgerald, B., Morgan, L., Wang, X. (eds.) XP 2008. LNBIP, vol. 9, pp. 127–
136. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68255-4 13

7. Coman, I., Sillitti, A.: Automated identification of tasks in development sessions.
In: 16th IEEE International Conference on Program Comprehension (ICPC 2008),
Amsterdam, The Netherlands, 10–13 June 2008

8. Corral, L., Sillitti, A., Succi, G.: Software development processes for mobile sys-
tems: is agile really taking over the business? In: 1st International Workshop on
Mobile-Enabled Systems (MOBS 2013) at ICSE 2013, San Francisco, CA, USA,
25 May 2013

9. Coman, I., Robillard, P.N., Sillitti, A., Succi, G.: Cooperation, collaboration and
pair-programming: field studies on backup behavior. J. Syst. Softw. 91(5), 124–134
(2014)

10. Corral, L., Sillitti, A., Succi, G.: Software assurance practices for mobile applica-
tions. Computing 97(10), 1–22 (2014)

11. Corvello, V., Verteramo, S.: The role of the customer in the adoption of agile
software development methodologies. In: 8th Mediterranean Conference on Infor-
mation Systems, Verona, Italy (2014)

https://doi.org/10.1007/978-3-540-68255-4_13

148 R. Amirova et al.

12. Farris, P.W., Bendle, N.T., Pfeifer, P.E., Reibstein, D.J.: Marketing Metrics: The
Definitive Guide to Measuring Marketing Performance. Pearson Education, Lon-
don (2010)

13. Grisham, P.S., Perry, D.E.: Customer relationships and extreme programming. In:
2005 Workshop on Human and Social Factors of Software Engineering, St. Louis,
MO, USA (2005)

14. Hanssen, G.K., Faegri, T.E.: Agile customer engagement: a longitudinal qualitative
case study. In: 2006 ACM/IEEE International Symposium on Empirical Software
Engineering, Rio de Janeiro, Brazil (2006)

15. Highsmith, J., Cockburn, A.: Agile software development: the business of innova-
tion. IEEE Comput. 34(9), 120–122 (2001)

16. Hollender, M., Rudin, M.: Customer focus, TQM and usability engineering in the
development of complex interactive software products. In: Conference TQM and
Human Factors, Linkoeping, Sweden (1999)

17. Holmstrom Olsson, H., Bosch, J., Alahyari, H.: Customer-specific teams for
agile evolution of large-scale embedded systems. In: 39th EUROMICRO Confer-
ence Software Engineering and Advanced Applications (SEAA), Santander, Spain
(2013)

18. Huijgens, H., van Deursen, A., van Solingen, R.: The effects of perceived value and
stakeholder satisfaction on software project impact. Inf. Softw. Technol. 89, 18–36
(2017)

19. Jeon, S., Han, M., Lee, E., Lee, K.: Quality attribute driven agile development. In:
9th International Conference on Software Engineering Research, Management and
Applications, Baltimore, MD, USA (2011)

20. Kautz, K.: Customer and user involvement in agile software development. In: Abra-
hamsson, P., Marchesi, M., Maurer, F. (eds.) XP 2009. LNBIP, vol. 31, pp. 168–173.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01853-4 22

21. Khalaf, S.J., Maria, K.A.: An empirical study of XP: the case of Jordan. In: Inter-
national Conference on Information and Multimedia Technology, Jeju Island, South
Korea (2009)

22. Klein, H., Canditt, S.: Using opinion polls to help measure business impact in
agile development. In: 1st International Workshop on Business Impact of Process
Improvements, Leipzig, Germany (2008)

23. Kohlbacher, M., Stelzmann, E., Maierhofer, S.: Do agile software development
practices increase customer satisfaction in Systems Engineering projects? In: IEEE
International Systems Conference, Montreal, QC, Canada (2011)

24. Layman, L.: Empirical investigation of the impact of extreme programming prac-
tices on software projects. In: 19th Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications, Vancouver, BC,
Canada (2004)

25. Lohan, G., Lang, M., Conboy, K.: Having a customer focus in agile software devel-
opment. In: Pokorny, J., et al. (eds.) ISD2010, pp. 441–453. Springer, New York
(2010). https://doi.org/10.1007/978-1-4419-9790-6 35

26. Mann, C., Maurer, F.: A case study on the impact of scrum on overtime and
customer satisfaction. In: Agile Development Conference, Denver, CO, USA (2005)

27. Nikou, A., Chatzigiannakis, I.: Applying a customer centric development approach
for web 2.0 applications. In: 19th Panhellenic Conference on Informatics, Athens,
Greece (2015)

https://doi.org/10.1007/978-3-642-01853-4_22
https://doi.org/10.1007/978-1-4419-9790-6_35

Software Development and Customer Satisfaction 149

28. Pagrut, D.S.: Testing of changing requirement in an agile environment - a case
study of telecom project. In: Testing: Academic and Industrial Conference Prac-
tice and Research Techniques - MUTATION (TAICPART-MUTATION 2007),,
Windsor, UK (2007)

29. Rushinek, A., Rushinek, S.: Order processing and inventory control software related
to computer user satisfaction: an interactive online evaluation system. ACM SIGS-
MALL Symposium on Small Systems, Danvers, MA, USA (1985)

30. Sauvola, T., et al.: Towards customer-centric software development a multiple-
case study. In: 41st Euromicro Conference on Software Engineering and Advanced
Applications, Funchal, Portugal (2015)

31. Trimble, J., Webster, C.: From traditional, to lean, to agile development: finding
the optimal software engineering cycle. In: 46th Hawaii International Conference
on System Sciences, Wailea, Maui, HI, USA (2013)

32. Vanhanen, J., Lehtinen, T.O.A., Lassenius, C.: Software engineering problems and
their relationship to perceived learning and customer satisfaction on a software
capstone project. J. Syst. Softw. 137, 50–66 (2018)

33. Wang, X., Wu, Z., Zhao, M.: The relationship between developers and customers
in agile methodology. In: International Conference on Computer Science and Infor-
mation Technology, Singapore (2008)

34. Welo, T., Ringen, G.: Customer-focused development practices in Systems Engi-
neering companies: a case study across industry sectors. In: Annual IEEE Systems
Conference (SysCon), Orlando, FL, USA (2016)

35. Xinhui, C., Zhanglin, Z.: On customer knowledge acquisition in agile development
method of software project (2012)

Object-Oriented Requirements:
Reusable, Understandable, Verifiable

Alexandr Naumchev1,2(B)

1 Innopolis University, Innopolis 420500, Russian Federation
a.naumchev@innopolis.ru

2 Paul Sabatier University, Toulouse, France

Abstract. Insufficient requirements reusability, understandability and
verifiability jeopardize software projects. Empirical studies show little
success in improving these qualities separately. Applying object-oriented
thinking to requirements leads to their unified treatment. An online
library of reusable requirement templates implements recurring require-
ment structures, offering a starting point for practicing the unified app-
roach.

Keywords: Object-oriented requirements · Reusable requirements ·
Understandable requirements · Verifiable requirements

1 Introduction

The industry is not actively applying requirements reuse [11], which is regret-
table: it might help, if practiced, not only to save resources in the requirements
specification phase, but also to obtain documents of better quality both in con-
tent and syntax. It might also decrease the risk of writing low quality require-
ments and lead to the reuse of design, code, and tests.

Meyer in 1985 described seven understandability problems common to
natural-language specifications [5] and proposed the process of passing them
through a formal notation to produce their more understandable versions. He
has more recently given a name to the approach – “The Formal Picnic App-
roach”1. The amount of requirements and their volatility have grown, and the
seven problems remain valid. Formal picnics should be practiced more actively
and should be reusable across projects.

The general problem of reuse finds itself in requirements’ verifiability too.
Requirements’ verifiable semantics follows several recurring patterns in most of
the cases [2]. If a pattern exists, it should be reused, and to be reused it should
be encoded as a template. The template should also be connected to the main
instruments of software verification – tests and contracts.

Applying object-oriented thinking to the problems of requirements reusabil-
ity, understandability and verifiability draws a new roadmap towards addressing
1 https://tinyurl.com/ycn526rm.

c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 150–162, 2019.
https://doi.org/10.1007/978-3-030-29852-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_12&domain=pdf
https://tinyurl.com/ycn526rm
https://doi.org/10.1007/978-3-030-29852-4_12

Seamless Object-Oriented Requirements 151

them simultaneously. A reusable library of requirement templates, taking the
familiar form of object-oriented classes, provides a starting point for practicing
the approach. Each template encodes a formal semantics pattern [2] as a generic
class reusable across projects and components, for verifying candidate solutions
through either testing or program proving.

2 The Problem Explained

2.1 Reusability

Reusability has become a success story in the reuse of code [16] and tests [13], but
not requirements. On that side too, many patterns recur again and again, caus-
ing undue repetition of effort and mistakes. The practice of industrial projects,
however, involves little reuse of requirements. Textual copy and subsequent mod-
ification of requirements from previous projects are still the most commonly used
requirements reuse techniques [11], which has already been long recognized as
deficient in the world of code reuse.

The most critical factors inhibiting the industrial adoption of requirements
reuse through software requirement patterns (SRP) catalogues are [11]:

– The lack of a well-defined reuse method.
– The lack of quality and incompleteness of requirements to reuse.
– The lack of convenient tools and access facilities with suitable requirements

classification.

Scientific literature studying requirements reuse approaches pays little atten-
tion to these factors when measuring the studied approaches [4]. The degree
of reuse is the most frequently measured variable, but it is measured under
the assumption that the evaluated approach is fully practiced. This assump-
tion does not meet the reality: most of the practitioners who declare to prac-
tice requirements reuse approaches, apply them very selectively [11]. Secondary
studies, which study other studies, equally ignore the factors that matter to
practitioners [4].

2.2 Understandability

Meyer, in his work “On Formalism in Specifications” [5], described “the seven
sins of the specifier” – a classification of the frequently recurring flaws in require-
ments specifications. Analyzing a specification of a well-known text-processing
problem illustrated that even a small and carefully written natural-language
requirements document may suffer from the following problems:

– Noise – the presence in the text of an element that does not carry information
relevant to any feature of the problem. Variants: redundancy; remorse.

– Silence – the existence of a feature of the problem that is not covered by any
element of the text.

152 A. Naumchev

– Overspecification – the presence in the text of an element that corresponds
not to a feature of the problem but to features of a possible solution.

– Contradiction – the presence in the text of two or more elements that define
a feature of the system in an incompatible way.

– Ambiguity – the presence in the text of an element that makes it possible to
interpret a feature of the problem in at least two different ways.

– Forward reference – the presence in the text of an element that uses features
of the problem not defined until later in the text.

– Wishful thinking – the presence in the text of an element that defines a feature
of the problem in such a way that a candidate solution cannot realistically be
validated with respect to this feature.

Identified in the times when software processes were following the Waterfall
model, which takes good care of every software development lifecycle phase,
these problems remain. Nowadays processes pursue continuity, and requirements
analysts have little time to process new requirements before passing them to the
developers. The processes are iterative and collecting requirements for another
iteration often starts before the current iteration finishes. The pace of work lowers
availability of expert developers for evaluating the new requirements’ verifiabil-
ity. The pervasiveness of Internet technologies like Google Search brings prob-
lems too. Many sources of unclear origins now offer tons of potentially unchecked
information, which is sometimes overly trusted.

Denying the progress makes no sense, however. Requirements engineering
tools should help the practitioners to improve the quality of information they
consume and rely on. The improved information should be reusable across
projects.

2.3 Verifiability

The reusability concern applies to requirements’ verifiability as well. Dwyer et al.
analyzed 555 specifications for finite-state verification from different domains
and successfully matched 511 of them against 23 known patterns [2]. The pat-
terns were encoded in modeling notations without a guidance on how to reuse
them across projects for verifying candidate solutions. The gap still exists, and
the state-of-the-practice [11] and literature reviews [4] of requirements reuse
approaches, as well as the studies they cite, do not evaluate requirements’ veri-
fiability in the studied approaches.

Requirements reuse approaches should properly address the verifiability
aspect: reusing non-verifiable requirements makes little sense. The approaches
should make it clear how to capture and reuse recurring verifiable semantics’
structures.

3 Running Example

Wikipedia represents a notable example of an intensely used and trusted Internet
resource. The rest of the discussion relies on a Wikipedia page describing a

Seamless Object-Oriented Requirements 153

24-h clock2 as a requirements document example. The “24-h clock” document is
prone to the seven requirements understandability problems [5]. It only has few
statements relevant to clock behavior:

1. The 24-h clock is a way of telling the time in which the day runs from midnight
to midnight and is divided into 24 h, numbered from 0 to 24.

2. A time in the 24-h clock is written in the form hours:minutes (for example,
01:23), or hours:minutes:seconds (01:23:45).

3. Numbers under 10 usually have a zero in front (called a leading zero); e.g.
09:07.

4. Under the 24-h clock system, the day begins at midnight, 00:00, and the last
minute of the day begins at 23:59 and ends at 24:00, which is identical to
00:00 of the following day.

5. 12:00 can only be mid-day.
6. Midnight is called 24:00 and is used to mean the end of the day and 00:00 is

used to mean the beginning of the day.

The rest of the text is noise. The “or” connective in Statement 2 results in wishful
thinking : is it acceptable to decide between the two options for every clock object,
or should the decision be taken once and uniformly applied to all objects? None
of the requirements after Statement 2 talk about seconds, from which it follows
that the author silently made the choice in favor of the “hours:minutes” format.
This “sin” falls into the silence category. The “usually” qualification introduces
the wishful thinking problem to Statement 3: how are the developers expected to
check candidate solutions against this requirement? Statements 4 and 6 result
in a contradiction each other: statement 4 says that midnight is 00:00, while
statement 6 defines 24:00 as midnight and 00:00 as the beginning of the day.
The contradiction may arise as a result of forward referencing : 24:00 and 00:00
are only defined in 6, while first used in 1 and 4. The last part of Statement 4 is a
remorse: the author implicitly admits that the first part of the statement was not
enough and adds the “which is. . . ” part. Statement 5 introduces an ambiguity,
since the document never defines the “mid-day”. Moreover, terms like “mid-day”,
“midnight”, “afternoon” should be defined through specific clock states; it is not
clear then what the author means by saying that a specific state can only be
mid-day/midnight/afternoon: it can be whatever, depending on the terminology.

The illustration of the object-oriented requirements approach handles a frag-
ment of Statement 1.: “the day runs from midnight to midnight”, referred to
as “Statement 1.1”. Understanding this requirement’s treatment will suffice to
understand the approach. A GitHub repository3 hosts the complete treatment
of the “24-h clock” example.

4 Reuse Methodology

Requirements reuse methodologies are essentially bidimensional [4]. The first
dimension, known as development for reuse, describes the procedure of
2 https://tinyurl.com/ybocy485.
3 https://tinyurl.com/y6w7nlcs.

https://tinyurl.com/ybocy485
https://tinyurl.com/y6w7nlcs

154 A. Naumchev

identifying and capturing new requirement patterns. The second dimension,
known as development with reuse, describes the process of searching and reusing
the captured patterns for specifying new requirements with lower efforts as com-
pared to specifying them without the patterns.

4.1 Development for Reuse

Given a collection of requirements:

1. Perform the standard commonality and variability analysis on the collection.
2. Capture the identified commonality in an object-oriented class.
3. Capture the semantical commonality through a contracted routine [7,13] to

support verification.
4. Capture the structural commonality through a string function to support

formal picnics.
5. Parameterize the identified variability points through abstraction and gener-

icity.

4.2 Development with Reuse

Given an informal requirement:

1. Analyze the requirement’s meaning and structure.
2. Find the most appropriate requirement template class through the IDE’s

search facilities.
3. Inherit from the found template in a new class representing the requirement.
4. Refine the abstractions into domain definitions.
5. Replace the genericity with the specified types and domain definitions.
6. Perform a formal picnic to see if the new string representation of the require-

ment has a different meaning from the original one.
7. Verify candidate solutions through running [13] or proving [7] the contracted

routine.

5 Technical Artifacts

Two major technical contributions support the method.

5.1 Library of Templates

A ready-to-use GitHub library4 of template classes captures known requirement
patterns [2]. The library represents a result of applying the development for
reuse process to the patterns and provides basis for development with reuse.
The library is written in Eiffel for readability, but the method scales to other
object-oriented languages with support for genericity.
4 https://tinyurl.com/ybd4b5un.

https://tinyurl.com/ybd4b5un

Seamless Object-Oriented Requirements 155

5.2 Library of Multirequirement Patterns

An online OneNote notebook5 rearranges the original collection of patterns6 in
the form of multirequirements [6] to support their understanding. Dwyer et al.
have initially developed the patterns in 5 notations: LTL, CTL, GIL, Inca, QRE.
Their online collection consists of 5 large pages corresponding to these notations.
The alternative collection consists of 23 pages making it possible to study indi-
vidual patterns in all the 5 notations simultaneously. The representations are
clickable and lead to their sources in the original repository developed by Dwyer
et al. Each page includes a link leading to the corresponding template in the
GitHub library.

6 Applying a Template

The following illustration handles the “Statement 1.1” requirement by applying
a reusable template class from the GitHub library. The requirement fits into the
“Global Response” pattern [2]. The pattern reads: “S responds to P globally”,
for events S and P. It is the most frequently used pattern: out of the 555 analyzed
requirements [2], 241 represented this pattern. For “Statement 1.1”, both S and
P map to the midnight event: “midnight responds to midnight globally”. This
new statement paraphrases the original one, “the day runs from midnight to
midnight”.

Class STATEMENT 1 1 (Fig. 1(a)) captures the requirement. The class
inherits from:

– A generic application of class RESPONSE GLOBAL to classes CLOCK and
MIDNIGHT, where RESPONSE GLOBAL is a generic template encoding
the “Global Response” pattern. The RESPONSE GLOBAL [CLOCK, MID-
NIGHT, MIDNIGHT] application reads: “for type CLOCK, MIDNIGHT
response to MIDNIGHT globally”.

– Class CLOCK REQUIREMENT recording domain information common to
all clock requirements: the fact that the tick routine advances a clock’s state,
and the start routine initializes a new clock.

The CLOCK class is a candidate solution implementing the “clock” concept,
and the MIDNIGHT class captures the definition of midnight through effecting
the deferred holds Boolean function inherited from generic class CONDITION
applied to the CLOCK class. The generic application emphasizes the fact that
the notion of midnight applies to the notion of clock.

The classes have something in common: the “note” section at the bottom
with Web links of two kinds. Links named “Source”, when followed, highlight
the fragments in the original requirements documents from which the enclosing
requirement classes were derived. Links named “GitHub”, when followed, lead

5 https://1drv.ms/u/s!AsXOYPvbmuEyh4IsDdYj-i6V5yX0OA.
6 http://patterns.projects.cs.ksu.edu.

https://1drv.ms/u/s!AsXOYPvbmuEyh4IsDdYj-i6V5yX0OA
http://patterns.projects.cs.ksu.edu

156 A. Naumchev

(a) EiffelStudio with the STATEMENT 1 1 class representing the “Statement 1.1” re-
quirement.

(b) Google document with the contents of the “24-hour clock” Wikipedia page.

Fig. 1. Requirement classes in EiffelStudio (a), and the contents of the “24-h clock”
Wikipedia page copied to a Google document (b). The “Source” link in the STATE-
MENT 1 1 class leads to the corresponding commented fragment in the Google doc-
ument. The comment contains the GitHub location of the fragment’s object-oriented
version, equal to the location in the “GitHub” EIS link in STATEMENT 1 1.

to the enclosing classes’ locations on GitHub. The “Source” link in STATE-
MENT 1 1, for example, highlights, when followed, the “the day runs from mid-
night to midnight” phrase in the Google document7, and brings the comment
on this phrase to the reader’s attention (Fig. 1(b)). The comment contains the
GitHub link leading back to the STATEMENT 1 1 class on GitHub; this link is
identical to the “GitHub” link in the STATEMENT 1 1 class’ “note” section.

7 https://tinyurl.com/y96rj2v3.

https://tinyurl.com/y96rj2v3

Seamless Object-Oriented Requirements 157

7 Formal Picnic

The RESPONSE GLOBAL class implements its string representation through
redefining the standard out function present in all Eiffel classes. Any instruction
that expects a string argument, such as print, automatically invokes this function
to get the argument’s string representation if the argument has a non-string type.

Fig. 2. The executable code (the upper window) outputs the automatically generated
string representation of the requirement to the console (the lower window).

Routine run of class TESTER (Fig. 2) is a configurable entry point of the
console application illustrating formal picnics and verification of object-oriented
requirements.

Line 11 of TESTER outputs the structured string representation of the
STATEMENT 1 1 object-oriented requirement. The .default expression returns
the default object of the STATEMENT 1 1 class, and the print instruction puts
the object’s string representation to the “Output” window below the “TESTER”
window. The requirement’s name, “STATEMENT 1 1”, goes before the colon
and its string representation goes after.

158 A. Naumchev

The requirements analyst now has two comparable string representations of
the requirement: the original and the generated one. Comparing them facilitates
analysis and may result in asking clarifying questions to the customer and in
additional communication.

8 Verification

The template classes, including RESPONSE GLOBAL, contain instruments of
their own verification in the form of a contracted routine called “verify”. The
run routine of the TESTER class may call verify to test a candidate solution.

Fig. 3. An exception caused by violating the requirement’s verification precondition.

Line 15 of the TESTER class (Fig. 3) tests class CLOCK as a candidate
solution of the STATEMENT 1 1 requirement. Line 13 instantiates a CLOCK
variable, while lines 14 and 15 use the variable as test input. The following
discussion explains the nature of line 14. The line is commented to illustrate the
problem that the line fixes when uncommented.

The verify routine has a precondition. For the STATEMENT 1 1 class, the
precondition becomes the holds Boolean function from the MIDNIGHT class.
This function returns True only for the 24:00 time, and the newly instanti-
ated clock variable is set to time 00:00. Line 14 fixes this mismatch, and its
removal crashes the execution. The “Call Stack” window provides information
related to the failure: a precondition tagged “p holds” is violated in STATE-
MENT 1 1, inherited from the RESPONSE GLOBAL template class. The test-
ing code should set the clock variable’s state to time 24:00 before testing STATE-
MENT 1 1 ; line 14 does exactly this. STATEMENT 0 is a requirement class
saying that the midnight state should be in principle achievable by CLOCK.
The EXISTENCE GLOBAL pattern [2] captures this semantics. Line 14 tests

Seamless Object-Oriented Requirements 159

CLOCK against STATEMENT 0 by trying to reach the midnight state on the
input variable. Uncommenting the line will remove the precondition violation.

The process of deriving STATEMENT 0 is an example of how the verification
process may help identify a new requirement and learn a new template.

Program proving and Design by Contract may be used instead of testing. The
automatic prover (AutoProof [14] in the context of Eiffel) should be applied to
the requirements classes, STATEMENT 0 and STATEMENT 1 1. The prover
will statically check the contracted verify routine according to the principles of
Hoare logic [3]. The prover will only accept the routine if the CLOCK class
has a strong enough and correct contract [7]. The illustration relies on testing
because AutoProof, in its current state, requires a lot of additional annotations
to check classes like STATEMENT 1 1, and explaining these annotations goes
beyond the object-oriented requirements idea’s essentials.

9 Assessment

The approach helps to fix the identified problems undermining the lack of
requirements reuse:

– The lack of a well-defined reuse method : the reuse method is object-oriented
software construction, which is a well-defined method.

– The lack of quality and incompleteness of requirements to reuse: the templates
library implements the existing collection of specification patterns proven to
cover most of the cases, which makes the library complete and quality in that
sense.

– The lack of convenient tools and access facilities with suitable requirements
classification: the tools and access facilities are object-oriented IDEs and
GitHub, with all their powerful features. The classification is that of the
Dwyer et al.’s collection, proven to be practically relevant.

The approach helps to fix the requirements understandability problems:

– Noise: only those requirements remain that fall into an existing verifiable
requirement template.

– Silence: an attempt to verify existing object-oriented requirements may
uncover missing requirements, as it was the case with STATEMENT 0.

– Overspecification: only those requirements remain that fall into an exist-
ing verifiable requirement template. Implementation details cannot map to
a requirement template.

– Contradiction: one notion may be defined in only one way, otherwise the IDE
will raise a compilation error. The contradiction caused by two inconsistent
definitions of midnight was resolved by defining this notion in the form of the
MIDNIGHT class.

– Ambiguity : little can be done to remove the possibility for different interpre-
tations – the requirements interpretation process is performed by a cognitive
agent anyway. If an interpretation is identified as erroneous, however, switch-
ing to another template will automatically update both the generated string

160 A. Naumchev

representation and the underlying verifiable semantics. In other words, the
templates may help to reduce the effort spent on fixing the consequences of
the misinterpretation.

– Forward reference: the approach removes this problem. There is no notion of
requirements’ order in the object-oriented approach, and meaningful state-
ments are connected by the standard “client-supplier” relationship, exten-
sively supported by the object-oriented IDEs.

– Wishful thinking : only those requirements remain that fall into an existing
verifiable requirement template. The compiler will not accept a template’s
application in which the verifiable semantics is not fully defined.

The approach helps to fix the requirements verifiability problem. The GitHub
library of classes fixes the lack of reusable templates covering the identified verifi-
able specification patterns. The approach makes it possible to capture and reuse
newly identified patterns using the existing object-oriented techniques comple-
mented with contracts.

Besides the benefits, the approach has some limitations:

– Requirements analysts’ familiarity with the principles of object-oriented anal-
ysis and design.

– Software developers’ familiarity with the principles of Hoare logic based rea-
soning.

10 Supporting Work

The idea to use a programming language as a requirements notation is not new
[6,8–10] and is well justified. Many groups of stakeholders prefer descriptions
of operational activity paths over declarative requirements specifications [12]. A
demand exists for educating developers capable of both abstracting in a problem
space and automating the transition to a solution space [15].

Other approaches to requirements reuse do not share the aspirations towards
connecting the requirements and the solution spaces, as follows both from the
state-of-the-practice [11] and the literature [4] studies. The studied approaches
focus on reusing natural language, use cases, domain models and several other
artifacts disjoint from the solution space.

The decision to express requirements in a programming language may bridge
the gap. It may also be the only way to bring the developers closer to the
requirements they implement: industry practitioners are generally not keen to
switching their tools [1]. The advanced state of code reuse has all chances to
skyrocket the state of requirements reuse if the requirements take the form of
code.

11 Future Work

Intelligent tools should be embedded into existing text editors for:

Seamless Object-Oriented Requirements 161

– Detecting known patterns in what requirements analysts specify manually.
– Proposing reusable templates corresponding to the identified patterns.
– Identifying new patterns in requirements that do not map to existing patterns.

Natural language processing (NLP) would be an appropriate instrument for
implementing these tools [1].

References

1. Dalpiaz, F., Ferrari, A., Franch, X., Palomares, C.: Natural language processing
for requirements engineering: the best is yet to come. IEEE Softw. (2018). https://
doi.org/10.1109/MS.2018.3571242

2. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering, ICSE 1999 (1999). https://doi.org/10.1145/302405.302672

3. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

4. Irshad, M., Petersen, K., Poulding, S.: A systematic literature review of software
requirements reuse approaches. Inf. Softw. Technol. 93, 223–245 (2018). https://
doi.org/10.1016/j.infsof.2017.09.009

5. Meyer, B.: On formalism in specifications. In: Colburn, T.R., Fetzer, J.H., Rankin,
T.L. (eds.) Program Verification. COGS, vol. 14, pp. 155–189. Springer, Dordrecht
(1993). https://doi.org/10.1007/978-94-011-1793-7 8

6. Meyer, B.: Multirequirements. In: Seyff, N., Koziolek, A. (eds.) Modelling and
Quality in Requirements Engineering (Martin Glinz Festscrhift). MV Wissenschaft
(2013)

7. Naumchev, A., Meyer, B.: Complete contracts through specification drivers. In:
Proceedings of the 10th International Symposium on Theoretical Aspects of Soft-
ware Engineering, TASE 2016 (2016). https://doi.org/10.1109/TASE.2016.13

8. Naumchev, A., Meyer, B.: Seamless requirements. Comput. Lang. Syst. Struct.
49, 119–132 (2017). https://doi.org/10.1016/j.cl.2017.04.001. http://linkinghub.
elsevier.com/retrieve/pii/S1477842416301981

9. Naumchev, A., Meyer, B., Mazzara, M., Galinier, F., Bruel, J.M., Ebersold,
S.: Expressing and verifying embedded software requirements. CoRR abs/1710.0
(2017). http://arxiv.org/abs/1710.02801

10. Naumchev, A., Meyer, B., Rivera, V.: Unifying requirements and code: an example.
In: Mazzara, M., Voronkov, A. (eds.) PSI 2015. LNCS, vol. 9609, pp. 233–244.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41579-6 18

11. Palomares, C., Quer, C., Franch, X.: Requirements reuse and requirement patterns:
a state of the practice survey. Empirical Softw. Eng. 22, 2719–2762 (2017). https://
doi.org/10.1007/s10664-016-9485-x

12. Sindre, G., Firesmith, D.G., Opdahl, A.L.: A reuse-based approach to determin-
ing security requirements. In: The 9th International Workshop on Requirements
Engineering: Foundation for Software Quality, REFSQ 2003, vol. 8, pp. 127–136
(2003)

13. Tillmann, N., Schulte, W.: Parameterized unit tests. ACM SIGSOFT
Softw. Eng. Notes 30(5), 253 (2005). https://doi.org/10.1145/1095430.1081749.
http://portal.acm.org/citation.cfm?doid=1095430.1081749

https://doi.org/10.1109/MS.2018.3571242
https://doi.org/10.1109/MS.2018.3571242
https://doi.org/10.1145/302405.302672
https://doi.org/10.1016/j.infsof.2017.09.009
https://doi.org/10.1016/j.infsof.2017.09.009
https://doi.org/10.1007/978-94-011-1793-7_8
https://doi.org/10.1109/TASE.2016.13
https://doi.org/10.1016/j.cl.2017.04.001
http://linkinghub.elsevier.com/retrieve/pii/S1477842416301981
http://linkinghub.elsevier.com/retrieve/pii/S1477842416301981
http://arxiv.org/abs/1710.02801
https://doi.org/10.1007/978-3-319-41579-6_18
https://doi.org/10.1007/s10664-016-9485-x
https://doi.org/10.1007/s10664-016-9485-x
https://doi.org/10.1145/1095430.1081749
http://portal.acm.org/citation.cfm?doid=1095430.1081749

162 A. Naumchev

14. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0 53

15. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven
engineering. IEEE Softw. (2014). https://doi.org/10.1109/MS.2013.65

16. Zaimi, A., et al.: An empirical study on the reuse of third-party libraries in
open-source software development. In: Proceedings of the 7th Balkan Conference
on Informatics Conference, BCI 2015 (2015). https://doi.org/10.1145/2801081.
2801087

https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1145/2801081.2801087
https://doi.org/10.1145/2801081.2801087

Measurements for Energy Efficient,
Adaptable, Mobile Systems -

A Research Agenda

Vladimir Ivanov(B), Sergey Masyagin, Andrey Sadovykh, Alberto Sillitti,
Giancarlo Succi, Alexander Tormasov, and Evgeny Zouev

Innopolis University, Innopolis, Russia
{v.ivanov,s.masyagin,a.sadovykh,a.sillitti,g.succi,

a.tormasov,e.zouev}@innopolis.ru

Abstract. Software systems are the enabling technology for the devel-
opment of sustainable systems. However, such devices consume power
both from the client side and from the server side. This scenario poses
to software engineering a new challenge that concerns the development
of software for sustainable systems i.e. systems that explicitly charac-
terize the resources under control, that dynamically evolve to maintain
an acceptable consumption of resources making the best possible trade-
off with user needs and that are opportunistic and proactive in taking
actions that can optimize future resource consumption based on context
and past experiences. This paper outlines a research agenda in this area.

Keywords: Energy-saving applications · Adaptable systems ·
Software metrics

1 Introduction

Software systems are the enabling technology for the development of sustainable
systems. Systems that pervade our everyday life are inherently dynamic since
they need to operate in a continuously changing environment and must be able
to quickly react and adapt to different types of changes, even unanticipated while
guaranteeing the efficient use of the available resources [23,26,41].

On one side, this need comes from the compelling necessity to use cautiously
the decreasing natural resources and to reduce the overall impact on the envi-
ronment. On the other side, these systems are more and more embedded in a
digital society, thus moving the user from the role of a passive consumer to the
role of active producer capable of changing the system itself by interacting with
it with distributed, possibly mobile, devices [18].

Along with this, the tendency to reduce power consumption gradually pene-
trates into the server segment due to the large-scale spread of virtualization and
the construction of cloud systems. This scenario poses to software engineering
a new challenge that concerns the development of software for sustainable sys-
tems i.e. systems that explicitly characterize the resources under control, that
c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 163–175, 2019.
https://doi.org/10.1007/978-3-030-29852-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_13

164 V. Ivanov et al.

dynamically evolve to maintain an acceptable consumption of resources making
the best possible tradeoff with user needs and that are opportunistic and proac-
tive in taking actions that can optimize future resource consumptions based on
context and past experiences.

The proposed agenda aims at building and validating a quantitative frame-
work to guide the development and the evolution of sustainable software systems
using a variety of metrics collected throughout the life-cycle of software systems,
from the initial concept to the deployment, execution, and maintenance, opti-
mizing the performances of the systems under a variety of nowadays relevant
factors, including quality, productivity, efficient use of resources.

This paper is organized as follows.

2 Background

Energy and mobility—power and movement—are essential for human society.
However, the global economy faces unprecedented challenges in meeting growing
energy and mobility demands, due to the clash between economic development
and resource limitations [16,22]. Every year, mobile device manufacturers seek
to expand the range of devices. The new devices require more energy, one of
the most urgent problems is to increase the number of hours of operation. An
important issue to reduce the energy consumption of mobile devices, the ability
of software components to adapt to their specific needs in order to minimize
energy consumption [16,17].

Mills, CEO of Digital Power Group and author of the report “The Cloud
Begins With Coal” [29] claims, that to use one iPhone spent about 361 kW per
year, taking into account the wireless connections, data transfer, and battery
charging. By comparison, for a medium-sized refrigerator, compliance with inter-
national standards of energy efficiency of consumer goods Energy Star, require
only about 322 kW per year.

Along with this, a great interest in energy efficiency arises in the develop-
ment of data centers. Currently, a large amount of computation is performed
on virtualized servers in the cloud. Which confirms the advisability of using
energy-efficient server solutions. Thus, the main task in the design of modern
processors has not achieved the highest possible productivity, but a high level
of performance in providing energy consumption at an acceptable level. The
need to use energy-saving technologies is dictated not only by the desire to save
resources, but also the inability to provide an acceptable battery life of mobile
devices. Today it is one of the driving forces behind the improvement archi-
tectures and technologies such as mobile processors and supercomputers and
servers. Fully cope with the problem, using only hardware solutions (increase the
battery capacity, optimization tools) is not possible, so it needs to use software
solutions and tools to assess, monitor and predict the values of key parameters.
Development of methods to address this problem is the main objective of the
proposed research.

Attention to low-power system design has been increasing due to the
widespread use of portable devices [20]. Excessive power consumption adversely

Measurements for Energy Efficient, Adaptable, Mobile Systems 165

impacts several key design metrics. First, the battery lifetime is shortened,
thus reducing the usefulness of the portable device. Second, heat dissipation
is increased proportionally to power consumption, thus packaging and cooling
cost is also increased and the system speed up and reliability is limited by this
factor. Third, the environmental impact is seriously raised due to the demand
for more electricity.

Software optimization is the key issue in low-power design because most large-
scale systems include processors and memories. These components are often
responsible for a large fraction of system power dissipation [7]. The software
running on a processor (and its memory system) determines, to a large degree, its
power dissipation. Clearly, the power consumption due to software execution is
tightly related to the target system architecture. For this reason, most of previous
research for software optimization has focused on low-level code optimization,
i.e. assembly or binary executable code, which is the most appropriate level to
have the most accurate software analysis model with the consideration of the
underlying hardware [7,20].

Optimization of energy consumption. Optimization of power consumption
in mobile devices can be performed both in hardware and software level.
Actively developed two main areas: Dynamic Power Management (DPM) [39]
and Dynamic Voltage Scaling (DVS) [45]. The main idea of the first direction is
that operations that do not require all the processing power of the CPU, per-
formed in more energy-efficient CPU states. The CPU may pass to a state in
which the performance is lowered, which in turn reduces power consumption.
The main challenge is to correctly predict the moment of transition into power
saving mode. Dynamic Voltage Scaling offers another approach, the idea is to
dynamically change the power supplied to the various hardware components
(such as CPU, RAM, and others.) depending on the requirements of the cur-
rently executing software. Based on DPM and DVS approaches are implemented
P-state- and C-state-processor status. P- state-status - active modes of the pro-
cessor, characterized by a combination of a clock signal and operating voltage.
For different models of CPU, these modes may differ. If the computing load is
reduced, the processor may adjust its clock signal and voltage. This process is
not much impact on performance but gives a considerable gain in efficiency. In
contrast, C-State indicates the degree of sleep processor during “idle” when it
does not execute instructions. Each state has a number. The larger number cor-
responds to the lower power consumption of the processor, but the more time
and energy required for the transition to an active state. An important role in
the design of energy efficient systems takes the analysis of values of the basic
parameters (metrics) of energy consumption. The use of a coherent system of
metrics to evaluate the energy consumption has been studied extensively in the
literature. To estimate the energy consumption can be used classical physical
characteristics: Watts, Watt * hours and Joules. Weiser et al. proposed to use a
new physical quantity: MIPJ (millions of instructions per joule) [44]. This value
characterizes the energy efficiency of the computing system. For a long time, this
metric is used to compare the energy efficiency of computing devices. Similarly

166 V. Ivanov et al.

to the Top500 most high- performance systems in the world has created a list of
the most energy-efficient systems - Green5003. In 2010 was offered an alterna-
tive metric – FTTSE (f(timetosolution) *energy) [6]. Thus, the question of the
definition and application of metrics to evaluate the energy consumption is the
great practical interest.

3 Proposed Approach

Given the sharp growth of IT systems and their impact on worldwide energy
consumption, energy efficiency is becoming a real concern. It is estimated that
the energy consumption of the ICT sector will reach 433 GW in 2020, meaning
more than 14.5% of worldwide power consumption. Of this, 57% will come from
PCs, peripherals, and printers. This is because of the highly increasing number
of machines used by individuals and businesses (4 billion PCs in the world by
2020). Therefore, it is essential to have precise figures of the current energy
consumption of computer and mobile devices and how much of this is due to the
software running on them, to understand how to reduce their power consumption
and design future energy efficient equipment.

Software measurement will thus play a central role in the process of engi-
neering sustainable software systems [10,15]. In this context, the measurements
have to address the quantification (and the satisfaction) of the sustainability
goals: the ability to measure and characterize the resources will play an impor-
tant role. Literature focuses in particular on memory and power consumption.
Existing static approaches address memory consumption in terms of both heap
[1], and stack requirements [11]. Model-based approaches have been proposed
for distributed systems to estimate the overall energy cost of each component
[28]. Other pieces of work successfully adapt profiling techniques to measure the
energy consumption of desktop [24] or mobile applications [9,25]. The experi-
ments conducted by [43] assess the impact of software over power consumption.

Autili et al. [5] proposed the combination of static analysis and profiling to
infer bounds on platform-dependent resource consumption, and used this infor-
mation to adapt applications to the execution environment provided by mobile
devices. In general, adaptive systems can use dynamic data collection mecha-
nisms to detect unexpected situations and adapt autonomously [4]. Data gath-
ering mechanisms can be grouped into three categories: logging, instrumentation
and event-based mechanisms. Logging is extensively used in software develop-
ment, to analyze data produced during system execution and support the iden-
tification of anomalies [40]. However, logging relies on dedicated code manually
inserted by developers, which is typically error prone and may lead to low quality
data [2,3]. Instrumentation techniques automatically insert probes at relevant
code locations to collect data. If extensively applied with fine granularity, instru-
mentation determines monitoring infrastructures with high runtime overhead,
which may reduce the effectiveness of the target system. Existing approaches
attempt to reduce this overhead by crossing data recorded at different locations
through different executions, adjusting the set of instrumented program points

Measurements for Energy Efficient, Adaptable, Mobile Systems 167

at runtime, or replacing complex monitoring infrastructures with simpler ones.
Event-based mechanisms address observing the behaviour of distributed systems
based on event-based middleware [8,30].

The analysis at design-time of a software system is commonly based on the
notion of software architecture [32]. Software architecture has emerged as an
important field of software engineering for managing the realm of large-system
development and maintenance [21]. The main intent of software architecture is to
provide intellectual control over a sophisticated system of enormous complexity.
Software architecture is developed during the early phases of the development
process; it hugely constraints or facilitates the achievement of specific functional
requirements, non-functional requirements, and business goals. Hence, reviewing
the software architecture represents a valid means to check the conformance of
the system and to reveal early any potentially missed objective including resource
allocation and performances [21]. Moreover, architectural models have a wide
spread use for supporting designers in providing recommendations based on the
analysis of structural metrics like coupling and cohesion.

Finally, a problem to consider in the development of sustainable systems
is that the software portfolio of many organizations consists mostly of legacy
systems that cannot be simply replaced, but need to be reengineered to make
their services available within new mobile and distributed infrastructures. This
requires that a balance between issues related to energy efficiency, usability, and
security, in addition to maintainability are taken into account within reengi-
neering processes. Research on dynamically adaptable and evolvable software
systems also became very active in recent years. The approach will exploit a
model-centric approach to adaptation, where system models (defined at design-
time) are kept alive at run time and used:

1. for reasoning about the application and,
2. for deciding when and how the application needs to adapt.

With respect to run-time self-adaptation problems, many approaches have
been proposed but the most famous is the top-down approach proposed by IBM
in which the system manages itself by using an external decision-making entity
(IBM), while there are other emerging bottom-up approaches that are currently
being investigated in the area. In bottom-up approaches the self-* properties
emerge at a global level through the interactions of the individual components,
similarly to what happens in biological social phenomena.

Adaptation refers to the actions taken at run time to react to the changing
context in which these systems operate. User tastes and profile, external envi-
ronmental factors, current trends and involved phenomena are today recognized
as parts of the notion of context. Modern applications adopt a context-aware
perspective to manage situation- awareness, like modelling location and envi-
ronment aspects (physical situation) or the current user activity (personal situa-
tion). Because the applications are different, context should be modelled in terms
of observable parameters that have a symbolic internal representation within a
context schema. At run time, the context is “sensed”, and then validated, when

168 V. Ivanov et al.

the discovered combinations of values constituting the current context are veri-
fied against the context schema. This can be achieved through monitoring, i.e.,
collecting and storing state data of such dynamic systems.

When dealing with portable devices and wireless sensors to collect data, the
designer faces main technological issue related to power amount. In software
systems a lot of work has been done to achieve power reduction at the device
level to extend battery life of mobile devices. Nowadays, low power techniques
and energy savings mechanisms are progressively introduced in server environ-
ments. All major industrial players are taking a position in the green IT arena,
while autonomic techniques have been developed to determine optimal trade-offs
between performance and energy costs.

4 Concrete Plan

As the main approach allows to measure the software will approach the goal-
question-metric (GQM method). We will define a measurement model on three
levels:

– Conceptual level (Goal). At this stage, will be described the main goals to be
achieved through the collection of metrics.

– Operational level (Question). We will use a set of questions to define models
of the object of study and then focus on that object to characterize the
assessment or achievement of a specific goal.

– Quantitative level (Metric) We will associate a set of metrics, based on the
models, with every question in order to answer it in a measurable way. At
this stage, on the basis of the issues, we will define metrics to describe, inter-
pret and measure the value of resources software components of adaptive
systems throughout their life cycle (design, implementation, operation). Will
be developed methods for calculating the values of metrics, methods, and
principles of integration of metrics in the development process software com-
ponents of adaptive systems. These metrics will correlate with specific mon-
itored resources, architectural elements and the behavior of the system as a
whole.

Non-invasive technology for data collection and monitoring of the software
development process. For the data collection process, we will use non-invasive
tools for monitoring the process of software development. This technology allows
with minimal interference to track a lot of factors clearly affecting the efficiency
of software development. Technology provides for the collection and calculation
of values of the key metrics in real time during development [36]. Non-invasive
measurement techniques have the potentials of overcoming the limitations of
manual data collection. Their aim is to collect data and to deduce measures
from such data with the minimal possible user intervention. The advantages of
this approach are [Johnson et al. 2003] [37]:

– the processes can be analyzed continuously and not on a punctual basis;

Measurements for Energy Efficient, Adaptable, Mobile Systems 169

– the level of detail can be increased compared to the manual data collection;
– the data collection process does not disturb or interrupt the users in their

work;
– the data can be collected more reliably.

A set of metrics for measuring software (source code), and the development pro-
cess can be adjusted [14,31,33]. The toolkit integrates with major software devel-
opment environment and office applications, so developers are not distracted
from the main workflow. This technology has been successfully tested for prob-
lem analysis methodologies pair programming on software quality [12,13].

Overall, the idea is to organize the project in 5 phases:

1. development of the reference scenario,
2. metrics definition,
3. data gathering,
4. development support,
5. experimentation and validation.

4.1 Development of the Reference Scenario

The goal of this phase is to analyze the state of the art related to the topics
addressed within the project and devise a set of scenarios guiding the work in
the technical phases.

State of the Art. While evaluating the state of the art, the research units will
perform a systematic literature review related to the main topics of the project:
i.e., resource-and sustainable-wise metrics, pervasive and non-invasive data col-
lection instruments, quality- oriented development support tools and methods,
self-adaptation techniques and policies.

As far as possible and depending on the characteristics of the available liter-
ature, this activity will provide an organized body of empirical evidence w.r.t.
to the main themes of concern for the project.

Definition of Scenarios. The technical tasks of the project, both theoretical and
practical, cannot be conducted without considering specific contexts. The most
evident example is the definition of metrics that typically involve a goal in its
essence. For these reasons, this preliminary activity consists of the definition of
a set of scenarios that will constitute the framework for guiding the work in the
technical WPs.

In particular, it is important to identify a set of sample-specific technolog-
ical infrastructure for which the resource awareness and sustainability can be
exploited (e.g., mobile devices, cloud computing, wireless sensor networks for
security and device control, etc.).

4.2 Metrics Definition

he second phase of the project provides a general framework of metrics and
models characterizing software entities and resources and integrating it into the
software production process.

170 V. Ivanov et al.

Definition of a Metrics Framework. This activity provides the general frame-
work, based on a GQM measurement plan, for definition and interpretation
of the measures for characterizing software entities and resources during both
design time evolution of systems and their run-time operation, e.g., code quality
measures and those needed for the quantification of resource usage and QoS [42].
The measures are theoretically validated to make sure that they are solid and
potentially useful in practice. The measures will be characterized in terms of
their applicability in the identified scenarios and the technological context (e.g.,
cloud, mobile, embedded, etc.). Attention is paid to existing quality models and
the integration in them of new measures for sustainability. In addition, it is nec-
essary to introduce a resource modeling framework that includes the relations
among resource-specific measures and both process and product specific mea-
sures. Finally, available tools are investigated for the computation of the metrics
and the relations in the framework, if possible, with an Open Source license,
and a suitable system is prototype on the basis of such tools [27,34,35,38], also
promoting a suitable creation of a community around it [19].

Integrating Metrics and Models in the Software Production Process. This activ-
ity defines models and methods for relating the measures defined previously with
specific resources, architectural elements, and the run-time behavior of systems.
These models and methods will form the basis to enrich the current develop-
ment and run-time processes from a practical point of view. This allow the
results previously obtained to be integrated into development processes so to
enable developers to perform practical resource- and QoS-aware design and pro-
gramming, execution and validation. To this end, new methodologies are defined
in support of developers during all the phases of the development process, from
requirements elicitation to testing.

4.3 Data Gathering

This phase deals with the definition of techniques for collecting data during
the lifecycle of a sustainable system. It is divided into two parts: one for data
gathering in early life cycle phases (before design), and one for data gathering
in late life cycle phases (from design onward).

Early Life Cycle Phases. This activity deals with collecting metrics during the
early life cycle phases of software development, that is, before development, with
the challenge of dealing with artifacts that are not always fully formalized in an
unambiguous way. On the basis of the framework previously defined this activity
leads to the definition of an approach to collect and provide the information
required by the metrics identified.

Late Life Cycle Phases. This activity is similar to the previous, but it focuses on
late lifecycle artifacts, from development onward. It starts on the same premises,
and, in addition to focusing on data collection for design, development, testing,
etc, tries to elaborate new analysis techniques that support, on the base of the

Measurements for Energy Efficient, Adaptable, Mobile Systems 171

work previously done, the inference of sustainability properties of the target
systems. Moreover, it identifies design patterns that will support re-design and
refactoring of software systems for increasing their sustainability.

4.4 Design and Development Support

The goal of this phase is to develop models and tools to support the evolution of
systems based on measures collected as early in the software lifecycle as possible,
with special emphasis on the design phase. This includes two major activities
about profiling the components and developing the experience factory.

Profiling Components. This activity concerns the development of methods and
tools to integrate metrics and models of software attributes (and specifically
attributes related to the efficient use of resources) defined previously in early
and late life cycles into a comprehensive view suitable for evaluation, monitor-
ing, and prediction of the overall software development. Specific attention is
paid to the definition of methods and tools for annotating analysis and design
models with measures, context attributes and other information that cannot
be directly derived through the data gathering processes defined in WP3. The
annotations allow developers/engineers to manually express context attributes
and constraints on the allocation of software components to resources and can
be used to guide (and constrain) run-time adaptation. Annotations can also be
used to suggest context-aware software composition and configuration and, when
used to tag resources, can contribute to the calculation of the trade-off between
the overall resource demand and the other nonfunctional aspects.

Experience Factory. Within this activity, the results of the data gathering pro-
cesses is be used to develop methods and tools that enact an experience factory
helping the software engineer during software design, development, and mainte-
nance activities. Particular attention is paid to predicting and alerting the soft-
ware engineer about potential problems related to the inefficient use of resources
and to suggest possible alternative design and refactoring solutions. However,
within the project, we will also consider other issues, such as predicting fault
proneness, impact analysis of changes, and software vulnerabilities.

4.5 Experimentation and Validation

The goal of this phase is to integrate methods and tools developed within the
previous phases inside software production and to evaluate them in empirical
studies for the evaluation of the overall approach. This phase has two major
activities, integration and empirical studies.

Integration. The goal of this task is to provide a coherent view of the results
of the technical work packages to allow software engineers and researcher to
effectively apply the techniques developed within the project. To this end the
task will go into two directions:

172 V. Ivanov et al.

1. exploiting the scenarios to identify complementary techniques working on
different application scenarios and interchangeable techniques working on the
same scenarios with different results

2. identification of software prototypes that can work in the same execution
environment without integration problems to form complex toolsets targeting
software sustainability

Empirical Studies. The case studies will start inside the different labs on “in
vitro” experiments and will move on “in vivo” in suitable partner companies.
For the analysis of the data coming form the case studies, statistical techniques
are used together with methods coming from data mining and big data, supple-
mented by meta-analysis for generalization of the results

5 Conclusion

In this paper we have presented a detailed research agenda to develop sustainable
and energy efficient software systems. Theoretical work and actual experimen-
tation are outlined.

Our future plan is to move ahead with this research and be effective in its
implementation.

Acknowledgments. The work presented in this paper was supported by the grant of
Russian Science Foundation No19 − 19 − 00623.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
object-oriented bytecode programs. Theor. Comput. Sci. 413(1), 142–159 (2012)

2. Andrews, D., Criscuolo, C., Gal, P.: Frontier firms, technology diffusion and public
policy: micro evidence from OECD countries. In: The Future of Productivity: Main
Background Papers, pp. 1–50 (2016)

3. Andrews, D., Criscuolo, C., Gal, P.: The global productivity slowdown, technology
divergence and public policy: a firm level perspective. In: The Future of Produc-
tivity: Main Background Papers, pp. 1–50 (2016)

4. Ardagna, D., et al.: MODAClouds: a model-driven approach for the design and
execution of applications on multiple clouds. In: Proceedings of the 4th Interna-
tional Workshop on Modeling in Software Engineering, MiSE 2012, pp. 50–56.
IEEE Press, Piscataway (2012)

5. Autili, M., Malavolta, I., Perucci, A., Scoccia, G.L.: Perspectives on static analysis
of mobile apps. In: Proceedings of the 3rd International Workshop on Software
Development Lifecycle for Mobile, DeMobile 2015, pp. 29–30. ACM, New York
(2015)

6. Bekas, C., Curioni, A.: A new energy aware performance metric. Comput. Sci.-
Res. Dev. 25(3), 187–195 (2010)

7. Benini, L., Micheli, G.: System-level power optimization: Techniques and tools.
ACM Trans. Des. Autom. Electron. Syst. 5(2), 115–192 (2000)

Measurements for Energy Efficient, Adaptable, Mobile Systems 173

8. Bertolino, A., Calabrò, A., Lonetti, F., Di Marco, A., Sabetta, A.: Towards a model-
driven infrastructure for runtime monitoring. In: Troubitsyna, E.A. (ed.) SERENE
2011. LNCS, vol. 6968, pp. 130–144. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-24124-6 13

9. Bhattacharya, P., Srivastava, P.R., Prasad, B.: Software test effort estimation using
particle swarm optimization. In: Satapathy, S.C., Avadhani, P.S., Abraham, A.
(eds.) INDIA 2012. AINSC, vol. 132, pp. 827–835. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-27443-5 95

10. Briand, L.C., Melo, W.L., Wüst, J.: Assessing the applicability of fault-proneness
models across object-oriented software projects. IEEE Trans. Softw. Eng. 28(7),
706–720 (2002)

11. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Enhancing modular OO verification
with separation logic. ACM SIGPLAN Not. 43(1), 87–99 (2008)

12. Coman, I.D., Sillitti, A., Succi, G.: Investigating the usefulness of pair-
programming in a mature agile team. In: Abrahamsson, P., Baskerville, R., Conboy,
K., Fitzgerald, B., Morgan, L., Wang, X. (eds.) XP 2008. LNBIP, vol. 9, pp. 127–
136. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68255-4 13

13. Coman, I.D., Sillitti, A., Succi, G.: A case-study on using an automated in-process
software engineering measurement and analysis system in an industrial environ-
ment. In: Proceedings of the 31st International Conference on Software Engineer-
ing, ICSE 2009, Vancouver, Canada, pp. 89–99. IEEE Computer Society, May 2009

14. Coman, I.D., Sillitti, A., Succi, G.: Ensuring continuous data accuracy in AISEMA
systems. In: Proceedings of the 23rd International Conference on Software Engi-
neering & Knowledge Engineering, SEKE 2011, Eden Roc Renaissance, Miami
Beach, USA, 7–9 July 2011, pp. 640–645. Knowledge Systems Institute Graduate
School (2011)

15. Corral, L., Georgiev, A.B., Sillitti, A., Succi, G.: A method for characterizing
energy consumption in Android smartphones. In: 2nd International Workshop on
Green and Sustainable Software, GREENS 2013, pp. 38–45. IEEE, May 2013

16. Corral, L., Georgiev, A.B., Sillitti, A., Succi, G.: Can execution time describe
accurately the energy consumption of mobile apps? An experiment in Android. In:
Proceedings of the 3rd International Workshop on Green and Sustainable Software,
pp. 31–37. ACM (2014)

17. Corral, L., Sillitti, A., Succi, G.: Software development processes for mobile sys-
tems: is agile really taking over the business? In: Engineering of Mobile-Enabled
Systems (MOBS), pp. 19–24, May 2013

18. Corral, L., Sillitti, A., Succi, G., Garibbo, A., Ramella, P.: Evolution of mobile
software development from platform-specific to web-based multiplatform paradigm.
In: Proceedings of the 10th SIGPLAN Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2011, pp. 181–183. ACM,
New York (2011)

19. Di Bella, E., Sillitti, A., Succi, G.: A multivariate classification of open source
developers. Inf. Sci. 221, 72–83 (2013)

20. Dürango, J., Dellkrantz, M., Maggio, M.: Control-theoretical load-balancing for
cloud applications with brownout. In: 53rd IEEE Conference on Decision and Con-
trol, pp. 5320–5327. IEEE (2014)

21. Falessi, D., Cantone, G., Kazman, R., Kruchten, P.: Decision-making techniques
for software architecture design: a comparative survey. ACM Comput. Surv. 43(4),
33:1–33:28 (2011)

22. Fiksel, J.: A framework for sustainable materials management. JOM 58(8), 15–22
(2006)

https://doi.org/10.1007/978-3-642-24124-6_13
https://doi.org/10.1007/978-3-642-24124-6_13
https://doi.org/10.1007/978-3-642-27443-5_95
https://doi.org/10.1007/978-3-540-68255-4_13

174 V. Ivanov et al.

23. Fronza, I., Sillitti, A., Succi, G.: An interpretation of the results of the analysis
of pair programming during novices integration in a team. In: Proceedings of the
2009 3rd International Symposium on Empirical Software Engineering and Mea-
surement, ESEM 2009, pp. 225–235. IEEE Computer Society (2009)

24. Kansal, A., Saponas, S., Brush, A.J., McKinley, K.S., Mytkowicz, T., Ziola, R.:
The latency, accuracy, and battery (lab) abstraction: programmer productivity
and energy efficiency for continuous mobile context sensing. In: Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, pp. 661–676. ACM (2013)

25. Kaur, A., Kaur, K.: Systematic literature review of mobile application development
and testing effort estimation. J. King Saud Univ.-Comput. Inf. Sci., November 2018

26. Kivi, J., Haydon, D., Hayes, J., Schneider, R., Succi, G.: Extreme programming: a
university team design experience. In: 2000 Canadian Conference on Electrical and
Computer Engineering. Conference Proceedings. Navigating to a New Era (Cat.
No.00TH8492), vol. 2, pp. 816–820, May 2000

27. Kovács, G.L., Drozdik, S., Zuliani, P., Succi, G.: Open source software for the public
administration. In: Proceedings of the 6th International Workshop on Computer
Science and Information Technologies, October 2004

28. Autili, P.I.M., Di Benedetto, P.: A hybrid approach for resource-based comparison
of adaptable Java applications. Sci. Comput. Program. 78, 987–1009 (2012)

29. Mills, M.P.: The cloud begins with coal. Technical report (2013). http://eduscol.
education.fr/sti/sites/eduscol.education.fr.sti/files/ressources/techniques/1751/
1751-cloud-begins-with-coal.pdf. Accessed 2 Apr 2019

30. Miranda, B., Bertolino, A.: An assessment of operational coverage as both an
adequacy and a selection criterion for operational profile based testing. Softw.
Qual. J. 26(4), 1571–1594 (2018)

31. Pedrycz, W., Iljazi, J., Sillitti, A., Succi, G.: Predicting the fate of requirements
in embedded domains. In: Ciancarini, P., Sillitti, A., Succi, G., Messina, A. (eds.)
Proceedings of 4th International Conference in Software Engineering for Defence
Applications. AISC, vol. 422, pp. 297–306. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-27896-4 25

32. Pedrycz, W., Russo, B., Succi, G.: Knowledge transfer in system modeling and
its realization through an optimal allocation of information granularity. Appl. Soft
Comput. 12(8), 1985–1995 (2012)

33. Pedrycz, W., Succi, G., Sillitti, A., Iljazi, J.: Data description: a general framework
of information granules. Knowl.-Based Syst. 80, 98–108 (2015)

34. Petrinja, E., Sillitti, A., Succi, G.: Comparing OpenBRR, QSOS, and OMM assess-
ment models. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey,
G.R., Noll, J. (eds.) OSS 2010. IAICT, vol. 319, pp. 224–238. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13244-5 18

35. Rossi, B., Russo, B., Succi, G.: Adoption of free/libre open source software in
public organizations: factors of impact. Inf. Technol. People 25(2), 156–187 (2012)

36. Scotto, M., Sillitti, A., Succi, G., Vernazza, T.: A non-invasive approach to product
metrics collection. J. Syst. Archit. 52(11), 668–675 (2006)

37. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Measures for mobile users: an archi-
tecture. J. Syst. Archit. 50(7), 393–405 (2004)

38. Succi, G., Paulson, J., Eberlein, A.: Preliminary results from an empirical study
on the growth of open source and commercial software products. In: EDSER-3
Workshop, pp. 14–15 (2001)

http://eduscol.education.fr/sti/sites/eduscol.education.fr.sti/files/ressources/techniques/1751/1751-cloud-begins-with-coal.pdf
http://eduscol.education.fr/sti/sites/eduscol.education.fr.sti/files/ressources/techniques/1751/1751-cloud-begins-with-coal.pdf
http://eduscol.education.fr/sti/sites/eduscol.education.fr.sti/files/ressources/techniques/1751/1751-cloud-begins-with-coal.pdf
https://doi.org/10.1007/978-3-319-27896-4_25
https://doi.org/10.1007/978-3-319-27896-4_25
https://doi.org/10.1007/978-3-642-13244-5_18

Measurements for Energy Efficient, Adaptable, Mobile Systems 175

39. Triki, M., Wang, Y., Ammari, A.C., Pedram, M.: Dynamic power management
of a computer with self power-managed components. In: Ayala, J.L., Shang, D.,
Yakovlev, A. (eds.) PATMOS 2012. LNCS, vol. 7606, pp. 215–224. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-36157-9 22

40. Vaarandi, R.: Methods for detecting important events and knowledge from data
security logs. In: Proceedings of the 2011 European Conference on Information
Warfare and Security (2011)

41. Valerio, A., Succi, G., Fenaroli, M.: Domain analysis and framework-based software
development. SIGAPP Appl. Comput. Rev. 5(2), 4–15 (1997)

42. Vernazza, T., Granatella, G., Succi, G., Benedicenti, L., Mintchev, M.: Defining
metrics for software components. In: Proceedings of the World Multiconference on
Systemics, Cybernetics and Informatics, volume XI, pp. 16–23, July 2000

43. Vetrò, A., Ardito, L., Procaccianti, G., Morisio, M.: IT power consumption in a
research center - seven facts. In: Proceedings of Energy 2011 (2011)

44. Weiser, M., Welch, B., Demers, A., Shenker, S.: Scheduling for reduced CPU energy.
In: Proceedings of the 1st USENIX Conference on Operating Systems Design and
Implementation, OSDI 1994. USENIX Association, Berkeley (1994)

45. Yun, H., Wu, P.-L., Arya, A., Kim, C., Abdelzaher, T., Sha, L.: System-wide energy
optimization for multiple DVS components and real-time tasks. Real-Time Syst.
47(5), 489 (2011)

https://doi.org/10.1007/978-3-642-36157-9_22

Complex Systems: On Design
and Architecture of Adaptable

Dashboards

Dragos Strugar(B)

Innopolis University, Innopolis, Russia
d.strugar@innopolis.ru

Abstract. Over the years dashboards have become an essential part of
managers’ toolkit. The recent developments in the field of IT allowed
companies to build complex monitoring and metric-driven solutions for
their business needs. The increasing amount of complexity in these dash-
boards resulted in the increased cost of maintenance and further devel-
opment. In addition, large corporations have experienced concerns with
designing dashboards that are suitable for multiple roles within the orga-
nization, i.e. showing the appropriate metrics to people at different posi-
tions. By having a self-adjusting, adaptable dashboard, businesses would
not only increase the productivity of their workers but could benefit from
a fully-fledged Adaptable System (AS) that requires little to no main-
tenance while performing better than a manually-built and maintained
dashboard. Nevertheless, such a system would have a broader set of addi-
tional requirements that will be discussed later. This paper presents the
design and the architecture of types of adaptable dashboards that address
the above-mentioned concerns.

Keywords: Adaptable Systems · Complex Systems · Dashboards

1 Introduction

We start by claiming that by coming up with a self-adjusting metric analysis
tool, organizations of all sizes would make more informed decisions in their own
use cases. More specifically, our aim was to come up with a tool that displays only
the relevant information to the person looking at it, taking into consideration
one’s position, the ongoing project that the dashboard is a part of, and much
more. The goal of our ongoing research is to verify the above-stated claim, as
well as to develop a solution that has the characteristics stated above, following
a long trend of research in this area [26,32].

1.1 Notions from Complexity Theory

In order to truly overcome the limitations imposed by non-self-adjusting dash-
boards, we shifted our research into making dashboards more self-sustainable and
c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 176–186, 2019.
https://doi.org/10.1007/978-3-030-29852-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_14

Complex Systems: On Design and Architecture of Adaptable Dashboards 177

more relevant to its users over time [8,9,15]. Advances in the field of Complex
Systems [4,12] have shown that by applying the common concepts from Com-
plexity Theory such as Non-linear Dynamics [30] and Dynamic Equilibrium [27]
it would lead to a more self-sustainable system that requires less maintenance
and is cost-effective.

1.2 Literature Review

As noted above, we have built an entire prototype featuring the ideas presented
in the next few sections. However, our use case was Software Development team
tracking, and thus the choices we made on the side should be covered, too [16,28].

Our work is primarily grounded on the works of Pishulin [13], Zorin and
Ivanov [14], who did the seminal work for the system that we are currently
developing. In addition, Sarikaya, Correll, Bartram, Tory, and Fisher in their
[25], performed an extensive systematic literature review on the design of dash-
boards for different domains. Their idea was to classify dashboards according
to their types, taking into account different criteria, and later went to explain
the common features and patterns for each of these classes. Lastly, our work is
based on the work of Yigitbasioglu and Velcu in their [33], who also reviewed
an extensive amount of papers on dashboard design. In addition, they suggested
the mechanism for decision-making in their functionality.

1.3 Structure Overview

We start by showcasing some of the important questions that helped us greatly
in our research in Sect. 2, we introduce Complex Adaptive Systems (CAS) in
Sect. 3 as potential solutions to metric relevance concerns. That section also
includes the supporting claims to justify the selection of using techniques from
Complexity Theory in our use case. To show that existing dashboards are not
capable of delivering the same results, in Sect. 4 we discuss the running time of
common operations on metrics inside the system. Section 5 applies the concepts
from Evolutionary Algorithms to the concepts from CAS (Non-linear Dynamics
and Dynamic Equilibrium). Section 6 gives the final thoughts and reflections.
Lastly, Sect. 7 highlights the new research milestones.

2 Three Metric Relevance Questions

According to Ivanov [13], the main challenge that goes into planning the dash-
board layout is to select the most appropriate metrics and to display them in a
structured way. That is, every dashboard should “provide intuitive, actionable,
flexible, and programmable visualization to support effective decision making”
also in the context of mobile development [5–7].

Additionally, effective representation of selected metrics in Valiullin’s previ-
ous work is also a great challenge that we were facing. By resolving this problem,

178 D. Strugar

we could allow users to easily notice and address the issues that may occur during
the agile development process [11,17,21,23,31].

To solve these problems and choose the most appropriate visualization tech-
niques for more effective representation, Brath and Peters in [2] argue that the
following three questions could lead dashboard designers in the right direction:

1. What metrics does the user need to see?
2. What context does each metric require to make it meaningful?
3. What is the visual representation that best communicates the metric?

Throughout our research, we have been focusing on these three questions,
and they have greatly helped us make strategic and long-term based decisions.

As a last point, we consider Open Source as a reference for our development
effort, to promote a wide diffusion of our ideas and also to promote the growth
of our platform, as widely discussed [10,18,20,22,24,29].

3 Complex Adaptive Systems (CAS)

The dynamic behavior that we want from our dashboard could be achieved
by using the techniques and concepts from Complexity Theory. However, not
all systems are complex, indeed. In literature, for a system to be complex, it
needs to have components whose behavior is intrinsically difficult to model. The
difficulty comes from the observation that components within the system may
be interacting with each other in various ways, or the system as a whole may be
interacting with its environment in an unstructured and stochastic manner.

3.1 Dashboards as CAS

We argue that dashboards, more and more, are becoming complex systems.
Dashboards consist of numerous metrics that need to be displayed to the end
user. If we represent each of these metrics as agents within the system, we can
more closely look at their relationships. We immediately noticed that almost no
agents are isolated, i.e. almost all agents are involved in complex relationships
to produce much more complex structures.

In our use case, a perfect example is the Iteration Burndown Chart, depicted
in Fig. 1. It is a graphical representation of work left (development) to do versus
time. It combines several less-complex metrics, like the number of story points
per developer, effort per developer, work done as a function of time, and software
development iterations (sprints) among others. And none of these metrics are
independent. A single metric such as the Iteration Burndown Chart we men-
tioned here is comprised of dozens of complex metrics. Practise has shown that
this chart is very useful to managers as they can see how fast their team is getting
the work done. One can notice that this gets drastically more complex as new
agents enter the system, i.e. as new metrics get introduced. To manually come
up with new metrics that may interest managers using the dashboard would
take a lot of time, and would require developer intervention. Furthermore, it is

Complex Systems: On Design and Architecture of Adaptable Dashboards 179

only by managers getting an idea of what could be useful that new metrics get
created. Our idea is to let the system decide which metrics are more relevant
than others, and only show these options to the end user. This all is possible due
to the feedback loop complex systems have - where end users would rate how
useful a particular metric is, and evolving based on that feedback.

Fig. 1. Iteration Burndown Chart

By embracing adaptation and the feedback loop, these agents are able to
synchronize their internal states with the other agents in the system. Addition-
ally, the system should be able to recognize these changes and self-adjust with
the emergence of globally coherent patterns of adjustment developing.

Then, the dashboard should be able to feed back this information to micro-
level agents. Preserving the relevance of certain metrics based on users’ feedback
is crucial. Therefore, the system should naturally select metrics based on their
fitness criteria, which we define in our use case as follows: “An agent has a higher
contribution/fitness to the overall system if and only if a slight change in that
specific metric would yield a significant change in the overall system fitness, the
difference between the expected value and the actual value is above average,
or a metric answers some custom questions that dashboard users may have”.
Contextualized to our use case, the metrics are more relevant if the current value
greatly differs from the expected one, or a slight change in a specific metric may
yield a substantial increase in the well-being of the entire system.

Such a system would embrace the complex dynamics between the micro-
level components (metrics) and the overall system (the dashboard). Interaction
between the differentiation of micro- and macro-level agents with different goals
and agendas creates the core dynamic of complexity in our system.

180 D. Strugar

4 Running Time Complexity Considerations

Intrinsic to the Complex Adaptive Systems is the concept of innovation; i.e.
ability to come up with novel outcomes that we could not have predicted before-
hand. We go on to argue that this is in fact, a decisive aspect of developing
a dashboard engineered to dynamically present the most useful metrics to all
users. However, introducing additional metrics to the system, as well as coming
up with new combinations of existing metrics are all very expensive operations
if implemented in traditional, deterministic ways. This section examines why
this is the case, and the next section presents how these limitations could be
addressed by applying the concepts from CAS.

4.1 Metric Insertion Running Time

In our use case, as well as in many other production environments, there are
hundreds and even thousands of metrics that the system is able to produce. One
can easily see that introducing new metrics that depend on other metrics would
be very time-consuming. Here we present intuitive reasoning on why this is the
case.

When it is decided that a new metric needs to be added to the system, it is
important to first identify if that metric is dependent on other, existing metrics.
If the metric has no relationships whatsoever we call it “isolated”. Inserting
isolated metrics is not an expensive operation, as none of the other metrics need
to be updated. However, when introducing a new metric which depends on other
metrics, not only does each of these dependencies have to be updated, but rather
all the composite structures including these dependencies have to be altered,
too. This operation introduces a well-known dependency cascading effect, aka
“avalanche”, where one change in the system causes many more changes and is
thus way more expensive than it should have been.

Thus, we observe the following: given a new metric a, the number of its
dependencies n, and the maximum number of the composite structures that
each of these dependencies make - m, the running time of the algorithm that
inserts a new metric to the dashboard is O(n ∗ m).

If we are inserting a new metric named a into the system, first we check
if there are functional dependencies with other metrics. If not, the insertion
operation runs in O(1) time. In contrast, if there are dependencies, we denote
them as ni and the total number of them as n. These metrics may have other
composite structures, too, i.e. designate nk where k ∈ N and k ≤ n, as the
metric with the maximum number of dependencies it is involved in. If we mark
that number of additional dependencies as m, we obtain a total running time of
the insertion algorithm which is O(n ∗ m).

In fact, such operations would have a running time of O(n ∗ m), where n is
the number of metrics the newly added metric depends on, and m is the number
of already existing dependencies.

Complex Systems: On Design and Architecture of Adaptable Dashboards 181

4.2 Metric Combinations Running Time

As stated earlier, one of the most important metrics we decided to show to man-
agers of Software Development teams is the Iteration Burndown Chart shown
on Fig. 1. It is a very complex metric, as it encapsulates many smaller struc-
tures. However, it was first created because managers came up with that idea
and communicated it to the developers who then made it work.

Our opinion is that new dashboard metrics should not only be created upon
the request from users. Rather, the system should be able to produce new metrics
periodically, and based on users’ feedback, past data, and much more decide
whether or not to keep the new metric for the next time period.

Such an approach has several benefits over the old-fashioned one:

1. system has the ability to come up with new metrics that dashboard users
would have never thought of

2. dashboard embraces change and further development
3. costs less to maintain.

The first point has been already discussed. To support our claim that the
dashboard embraces change, let us compare the non-adaptable dashboards to
the adaptable ones. A dashboard that has been built with adaptability in mind
increases its effectiveness when it receives more data. Whether the change is
referred to as the process of insertion or deletion, the system will quickly adjust
and evolve taking into account the new data that has been fed to the system.
On the other hand, introducing changes in non-adjustable dashboards usually
involves contacting the development team and handing them the requirements.
Such a process is typically time-consuming and the business expenses increase
over time.

Having discussed the benefits of combining metrics and coming up with novel
metrics that one would have otherwise never thought of, we proceed to argue on
the upper-bound of the running time of the brute-force algorithm that imple-
ments the combinations feature.

Therefore, we observe: given the number of existing metrics, n, and the num-
ber of composite structures these metrics make, m, the running time of the
algorithm that produces all the combinations is given by O(n ∗ m).

As the system we are trying to model is evolving over time, it is crucial to note
that this quadratic algorithm should be performed on each iteration of the system
life-cycle. This is quite an expensive operation and is thus infeasible to implement
the algorithm the brute force way. Therefore, to reduce the running time and
let the system be independently making its choices, we suggest combining some
of the techniques used in Evolutionary algorithms [1,3] with the notions like
Non-linear Dynamics [30] and Dynamic Equilibrium [19] from the Complexity
theory.

5 CAS and Evolutionary Algorithms

The last section examined how modern adaptable dashboards can benefit from
having novel metrics introduced by the system, i.e. how complex systems embrace

182 D. Strugar

the idea of innovation. This section dives deeper into the details suggesting a
way to implement these ideas using some of the concepts and techniques from
CAS and Evolutionary Algorithms (EAs). First, we examine the EA part and
then move on to Non-Linear Dynamics and Dynamic Equilibrium concepts. To
see why we chose these aspects of CAS specifically, reference the Sect. 7.

5.1 Evolutionary Algorithms

In order to achieve the self-organization and autonomy we want from our dash-
board, a mechanism that handles the selection of the fittest metrics is needed.
Section 3.1 covered in greater detail what do we mean by “fittest” in our case.
Fitness score is determined using the fitness function, and as it is a central
concept we will repeat our fitness function once again:

An agent has a higher contribution/fitness to the overall system if and only
if a slight change in that specific metric would yield a significant change
in the overall system fitness, the difference between the expected value
and the actual value is above average, or a metric answers some custom
questions that dashboard users may have.

By applying the fitness function from above to each of the metrics inside of
our system we would obtain a numeric value that represents how important is
it to show that particular metric to the user. Several key observations should be
pointed out:

– metrics that deviate from the mean are more likely to be shown to the user.
– metrics whose improvement may result in other metrics’ fitness are more likely

to be shown to the user.
– metrics of all sizes that indicate less important information to the user will

have a smaller chance of being shown to the user.

Taking these factors into consideration, the algorithm would run as follows:

1. assign a fitness score to each agent in the system
2. select members to act upon using some variation operators (crossover and

mutations)
3. replace certain members of the population with these children from variation

operators
4. keep some members from the previous population in the new population

(Table 1).

The major problem now is how to perform the selection between the agents.
We chose the technique often used in Genetic Algorithms that is based on natural
selection. The members with higher fitness would undertake a tournament-like
contest where the winner would continue to breed, and the loser would be elim-
inated, or considered for breeding later. Again, Sect. 7 showcases how we are
planning to expand on these ideas.

Complex Systems: On Design and Architecture of Adaptable Dashboards 183

Table 1. Definitions in our use case.

Population All metrics in the system

Sample A proper subset of the population

Agent A member of the population

Fitness score A real number

Fitness function Function from agent to fitness score

Crossover Combination of parents’ genetic information

Mutation Change in agent’s genetic information

Variation operators Crossover and mutation

In our concrete case, fitness is highly dependent on users’ feedback. To really
grasp which metrics are useful for dashboard users and which are not, we suggest
using feedback loops. The user would rate the usefulness of a particular metric
which would then allow us to assign fitness scores to each agent.

5.2 Non-linear Dynamics.

Due to the emergent complexity of CAS, managers, and stakeholders operating
such systems would have difficulties making decisions on which agent (metric) is
performing better than others. For example, a manager may spend a lot of time
looking at one metric that is showing that his/her team is doing very well, albeit
some of the other metrics indicate otherwise. This would result in a waste of
resources and confusion. Non-linear dynamics in adaptive systems is necessary
to constantly change the internal states of the agents within the system, resulting
in the change the entire system’s state.

It is the non-linear relationship between the agents that causes complex-
ity. Some metrics are not only linear functions of others, they are much more
advanced. Making manual decisions thus becomes infeasible, and states like
Dynamic Equilibrium should be achieved.

5.3 Dynamic Equilibrium

Utilizing the concept of the Dynamic Equilibrium allowed us to expand on our
previous research to come up with the state which has the following character-
istics:

– the current state is never in complete chaos, where there is nothing to bind
individual actors together

– the current state is never completely stable, which results in the full stagna-
tion

– the current state is always in a so-called “Dynamic Equilibrium” where all
actors are loosely bound to each other with the plethora of room to innovate
and improve

184 D. Strugar

Having such a system embraces innovation and allows for novel contributions
to the range of possible metrics to be displayed to users with various roles.

6 Conclusions

As businesses grow, so does their need to effectively manage their products and
services. Dashboards have greatly impacted the way corporations operate on a
global scale. They have enabled managers to not only have a useful overview of
the ongoing project but to make crucial decisions for their business. However, the
increasing amount of data and metrics that need to be tracked introduced several
challenges that need to be overcome to allow the normal dashboard functioning.
These challenges include, but are not limited to: choosing the right metrics to
display, handling the requirement changes, adapting the dashboard to users from
various positions. This work suggests that dashboards are becoming Complex
systems and that these challenges have become far more dangerous when dealt
with on a larger scale - not only does the maintenance cost increase, but the whole
operation process gets harder due to complex relationships between metrics in
the dashboard. We then went into more detail by explaining the algorithm which
would address the issues mentioned above.

Complex Adaptive Systems consist of many interacting entities. Some of
these entities, in our case metrics that we used to monitor the performance of
Software Development teams, may or may not be relevant to the user who is
using the dashboard at a given time. By utilizing the constant improvement
and self-adaptability based on users’ feedback, the relevancy of metrics that get
presented improves over time.

All this would not have been possible if there was no balance between the
chaos and the state of stagnation. That trade-off is essential to CAS as it allows
the system to be innovative while still performing well.

7 Future Work

The work presented here lays the ground to further research and development. It
serves as the starting point, and theory described here is going to be the blueprint
that we are going to follow. Concepts like Non-linear Dynamics and Dynamic
Equilibrium have been mentioned, although not thoroughly contextualized in
the use case of Software Development teams. Aspects of Complex systems and
Evolutionary Algorithms that we have not touched on, such as Game Theory,
Collective Behavior, and Pattern Formation among others are also a part of our
research agenda. What also follows is a working prototype implementing the the-
oretical aspects presented here on a real-world use case of Software development
team monitoring.

Acknowledgments. The work presented in this paper was supported by the grant of
Russian Science Foundation No19 – 19 – 00623.

Complex Systems: On Design and Architecture of Adaptable Dashboards 185

References

1. Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford
(1996)

2. Brath, R., Peters, M.: Dashboard design: why design is important. DM Direct 85
(2004)

3. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A., et al.: Evolutionary Algo-
rithms for Solving Multi-objective Problems, vol. 5. Springer, Heidelberg (2007)

4. Corrado, A.J.: Dynamics of Complex Systems. CRC Press, Boca Raton (2019)
5. Corral, L., Georgiev, A.B., Sillitti, A., Succi, G.: A method for characterizing

energy consumption in Android smartphones. In: 2nd International Workshop on
Green and Sustainable Software (GREENS 2013), pp. 38–45. IEEE, May 2013

6. Corral, L., Sillitti, A., Succi, G.: Software development processes for mobile sys-
tems: is agile really taking over the business? In: 2013 1st International Workshop
on the Engineering of Mobile-Enabled Systems (MOBS), pp. 19–24, May 2013

7. Corral, L., Sillitti, A., Succi, G., Garibbo, A., Ramella, P.: Evolution of mobile
software development from platform-specific to web-based multiplatform paradigm.
In: Proceedings of the 10th SIGPLAN Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2011, pp. 181–183. ACM,
New York (2011)

8. Danovaro, E., Remencius, T., Sillitti, A., Succi, G.: PEM: experience management
tool for software companies. In: Companion to the 23rd ACM SIGPLAN Con-
ference on Object-oriented Programming Systems Languages and Applications,
OOPSLA Companion 2008, pp. 733–734. ACM (2008)

9. Danovaro, E., Remencius, T., Sillitti, A., Succi, G.: PKM: knowledge manage-
ment tool for environments centered on the concept of the experience factory. In:
Companion of the 30th International Conference on Software Engineering, ICSE
Companion 2008, pp. 937–938. ACM (2008)

10. Di Bella, E., Sillitti, A., Succi, G.: A multivariate classification of open source
developers. Inf. Sci. 221, 72–83 (2013)

11. Fronza, I., Sillitti, A., Succi, G.: An interpretation of the results of the analysis
of pair programming during novices integration in a team. In: Proceedings of the
2009 3rd International Symposium on Empirical Software Engineering and Mea-
surement, ESEM 2009, pp. 225–235. IEEE Computer Society (2009)

12. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

13. Ivanov, V., Pischulin, V., Rogers, A., Succi, G., Yi, J., Zorin, V.: Design and
validation of precooked developer dashboards. In: Proceedings of the 2018 ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, 04–09 November 2018, pp. 821–826 (2018)

14. Ivanov, V., Rogers, A., Succi, G., Yi, J., Zorin, V.: Precooked developer dashboards:
what to show and how to use - poster. In: Proceedings of the 40th International
Conference on Software Engineering Companion, ICSE 2018, Gothenburg, Sweden,
May-June 2018. ACM (2018)

15. Janes, A., Sillitti, A., Succi, G.: Effective dashboard design. Cutter IT J. 26(1),
17–24 (2013)

16. Janes, A., Succi, G.: Lean Software Development in Action. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-00503-9

https://doi.org/10.1007/978-3-642-00503-9

186 D. Strugar

17. Kivi, J., Haydon, D., Hayes, J., Schneider, R., Succi, G.: Extreme programming: a
university team design experience. In 2000 Canadian Conference on Electrical and
Computer Engineering. Conference Proceedings. Navigating to a New Era (Cat.
No. 00TH8492), vol. 2, pp. 816–820, May 2000

18. Kovács, G.L., Drozdik, S., Zuliani, P., Succi, G.: Open source software for the public
administration. In: Proceedings of the 6th International Workshop on Computer
Science and Information Technologies, October 2004

19. Lajoie, Y., Teasdale, N., Bard, C., Fleury, M.: Attentional demands for static and
dynamic equilibrium. Exp. Brain Res. 97(1), 139–144 (1993)

20. Paulson, J.W., Succi, G., Eberlein, A.: An empirical study of open-source and
closed-source software products. IEEE Trans. Softw. Eng. 30(4), 246–256 (2004)

21. Pedrycz, W., Russo, B., Succi, G.: Knowledge transfer in system modeling and
its realization through an optimal allocation of information granularity. Appl. Soft
Comput. 12(8), 1985–1995 (2012)

22. Petrinja, E., Sillitti, A., Succi, G.: Comparing OpenBRR, QSOS, and OMM assess-
ment models. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey,
G.R., Noll, J. (eds.) OSS 2010. IAICT, vol. 319, pp. 224–238. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13244-5 18

23. Phaphoom, N., Succi, G., Vlasenko, J., di Bella, E., Fronza, I., Sillitti, A.: Pair pro-
gramming and software defects-a large, industrial case study. IEEE Trans. Softw.
Eng. 39(7), 930–953 (2013)

24. Rossi, B., Russo, B., Succi, G.: Adoption of free/libre open source software in
public organizations: factors of impact. Inf. Technol. People 25(2), 156–187 (2012)

25. Sarikaya, A., Correll, M., Bartram, L., Tory, M., Fisher, D.: What do we talk about
when we talk about dashboards? IEEE Trans. Vis. Comput. Graph. 25, 682–692
(2018)

26. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Measures for mobile users: an archi-
tecture. J. Syst. Architect. 50(7), 393–405 (2004)

27. Smith, W.K., Lewis, M.W.: Toward a theory of paradox: a dynamic equilibrium
model of organizing. Acad. Manag. Rev. 36(2), 381–403 (2011)

28. Succi, G., Benedicenti, L., Vernazza, T.: Analysis of the effects of software reuse
on customer satisfaction in an RPG environment. IEEE Trans. Softw. Eng. 27(5),
473–479 (2001)

29. Succi, G., Paulson, J., Eberlein, A.: Preliminary results from an empirical study
on the growth of open source and commercial software products. In: EDSER-3
Workshop, pp. 14–15 (2001)

30. Thompson, J.M.T., Thompson, M., Stewart, H.B.: Nonlinear Dynamics and Chaos.
Wiley, Hoboken (2002)

31. Valerio, A., Succi, G., Fenaroli, M.: Domain analysis and framework-based software
development. SIGAPP Appl. Comput. Rev. 5(2), 4–15 (1997)

32. Vernazza, T., Granatella, G., Succi, G., Benedicenti, L., Mintchev, M.: Defining
Metrics for Software Components. In: Proceedings of the World Multiconference
on Systemics, Cybernetics and Informatics, vol. XI, pp. 16–23, July 2000

33. Yigitbasioglu, O.M., Velcu, O.: A review of dashboards in performance manage-
ment: Implications for design and research. Int. J. Account. Inf. Syst. 13(1), 41–59
(2012)

https://doi.org/10.1007/978-3-642-13244-5_18

Machine Learning

Human Activity Recognition Using Deep
Models and Its Analysis from Domain

Adaptation Perspective

Nikita Gurov1(B), Adil Khan1, Rasheed Hussain1, and Asad Khattak2

1 Innopolis University, Innopolis, Russia
{n.gurov,a.khan,r.hussain}@innopolis.ru

2 College of Technological Innovation, Zayed University,
Abu Dhabi, United Arab Emirates

asad.khattak@zu.ac.ae

Abstract. Human activity recognition (HAR) is a broad area of
research which solves the problem of determining a user’s activity from a
set of observations recorded on video or low-level sensors (accelerometer,
gyroscope, etc.) HAR has important applications in medical care and
entertainment. In this paper, we address sensor-based HAR, because it
could be deployed on a smartphone and eliminates the need to use addi-
tional equipment. Using machine learning methods for HAR is common.
However, such, methods are vulnerable to changes in the domain of train-
ing and test data. More specifically, a model trained on data collected
by one user loses accuracy when utilised by another user, because of
the domain gap (differences in devices and movement pattern results in
differences in sensors’ readings.) Despite significant results achieved in
HAR, it is not well-investigated from domain adaptation (DA) perspec-
tive. In this paper, we implement a CNN-LSTM based architecture along
with several classical machine learning methods for HAR and conduct
a series of cross-domain tests. The result of this work is a collection of
statistics on the performance of our model under DA task. We believe
that our findings will serve as a foundation for future research in solving
DA problem for HAR.

Keywords: Human activity recognition · Domain adaptation

1 Introduction

Human activity recognition (HAR) is a problem of determining human activities
(walking, running, etc.) from a set of observations recorded on video or low-level
sensors. This issue is highly relevant to such real-world task as medical care
(constant monitoring of patients with severe motor diseases). That is why much
work exists on HAR which addresses the problem from different perspectives:
video [1–4], audio signal [5] and low-level sensors [6,7] based activity recognition.

c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 189–202, 2019.
https://doi.org/10.1007/978-3-030-29852-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_15

190 N. Gurov et al.

Unfortunately, most of the proposed methodology needs additional equip-
ment for data collection (video recording, wearable sensors). This greatly com-
plicates the possibility of their use in the real world. Works [8,9] use smartphones
as a framework for HAR task. These devices have all the necessary sensors (gyro-
scope, accelerometer and magnetometer) and they have become an inseparable
part of modern life.

Fig. 1. Accelerometer sensor readings for “walking” activity of the same person. Signals
were recorded simultaneously for 3 s from two positions: hand and hip. Though two
signals have some common patterns, there are many differences (for example different
mean values).

However, different devices have different sensors and as a consequence - spe-
cific data representations. People also have different behavioural patterns. The
result is that the model trained for one person or a particular position on the
body will lose performance when a user or position changes. Figure 1 illustrates
this situation. This difference in the source (train) and target (test) domains
is called domain gap. Despite the significant results in HAR, the problem of
domain adaptation (DA) in the context of activity recognition is not studied
thoroughly. There are few works on this problem: [10–13] which mainly exploit
deep learning techniques. However, the number of existing research studies is
too small to build a global understanding of what methodologies are suitable for
that problem.

In our work, we conduct a set of tests on the performance of different machine
learning (ML) methodologies in DA task. These approaches are divided into two
main groups: deep learning and classical ML. Most of the recent works use deep
learning, defining classical methods as less effective. However, such conclusions
for the DA problem are not supported by any specific tests.

The contributions of our work are the following.

HAR Using Deep Models and Its Analysis from DA Perspective 191

• We employ a variety of models for HAR: deep network and such models
from classical ML as Random Forest, multi-layer perceptron (MLP), logistic
regression and k nearest-neighbours (KNN).

• We conduct a set of tests for cross-domain and cross-position evaluation of
these models.

• The main contribution is a comprehensive, structured collection of perfor-
mance statistics for most of the traditional approaches to HAR.

We believe that the results of our work will provide a reliable foundation for
future research in this field. It will be a starting point for planning new studies
and designing novel architectures for HAR.

2 Related Work

In this work we address sensor based HAR because it is one of the most frequently
used and general HAR approaches. Sensor-based HAR is proposed in numerous
works: [6–9,14].

Activity recognition pipeline for time series sensor data involves sliding win-
dow segmentation, feature extraction, and activity classification [15]. There are
two main approaches to feature extraction. First is hand-craft feature extrac-
tion when data is preprocessed manually, representing the signal as its mean,
variance, deviation and many other statistical and wavelet features [16–18]. Clas-
sical models such as SVM [19], Decision Trees [20] or KNN [21] are trained to
make predictions based on extracted features. This methodology is extensively
explored as the traditional approach to HAR. However, it is a challenging task
and it requires a deep understanding of signal processing to design good features.

The second approach is based on deep learning. Deep neural networks
(DNNs) have had revolutionary impact on all kinds of ML problems: [22–24].
DNNs also provided good results in HAR task [25–27]. When applied to sensor-
based HAR, deep learning allows for automated feature extraction and thus,
eliminates the need for manual feature extraction. However, the traditional
DNNs fail to consider the order of time series signals. To solve this problem
long short-term memory (LSTM) proposed by Hochreiter and Schmidhuber [28]
is successfully applied in [29–31]. [29] Combine convolutional and LSTM layers
to provide good results in recognition performance.

Research in this area achieved impressive results, but most of the experiments
are provided on a single dataset, thus generalization is not guaranteed. These
models provide high accuracy classification only on a single domain and could
lose efficiency if tested on another domain because of the domain gap.

Cross-domain activity recognition is a real problem that prevents using pro-
posed methods in real life. A few works address this problem in HAR context.
[11–13] achieve DA with several deep learning techniques. For example, [12]
propose a method of adversarial knowledge transfer named SA-GAN (Subject
Adaptor GAN which utilizes Generative Adversarial Network) and [11] provides
Stratified Transfer Learning which uses major-voting for partial labelling of the
target data and trains the initial model with provided latent labels. [13] combine

192 N. Gurov et al.

the supervised convolutional neural network (CNN) and CNN-Encoder-Decoder
to perform semi-supervised learning for HAR.

3 Methods

We consider traditional approaches to a classification problem in HAR domain.
This includes such models as DNN, MLP, decision trees, KNN and logistic regres-
sion. We skip the support vector machine (SVM) in the context of our research
because of its high complexity, which makes it difficult to use in our experiments.

3.1 Deep Model

We propose a deep model, shown in Fig. 2, which is a pipeline of convolutional,
LSTM and dense layers. This is a general architecture which we use to pro-
vide an evaluation of the basic deep learning approach to HAR. Deep model is
assumed to extract features from signal automatically, and CNN have been used
to address this. Convolution through input with different kernels is a powerful
pattern detection technique, illustrated in Fig. 3.

The convolutional layer is followed by LSTM layers. Use of LSTM [32] is due
to the fact that sensor signal is a continuous stream of measurements and it is
important for the time-series classification method to have access to past data in
order to recognize long-time patterns. It is a recurrent network which is capable
of learning long-term dependencies. The detail algorithm description is depicted
in Fig. 4.

forgett = σ(WfΔ[ht−1, xt] + bf) (1)
inputt = σ(WiΔ[ht−1,xt] + bi) (2)

ˆcellt = tanh(WCΔ[ht−1, xt] + bC) (3)

Cellt = forgett ∗ Cellt−1 + inputt ∗ ˆcellt (4)
outputt = σ(WoΔ[ht−1, xt] + bo) ∗ tanh(Cellt) (5)

W and b are weights and biases learned during training. Last layers of the model
are standard fully-connected Dense layers for mapping results provided by the
deep model into output vector.

Fig. 2. Deep model architecture.

HAR Using Deep Models and Its Analysis from DA Perspective 193

Fig. 3. Convolution layer has a set of kernels (filters). Each kernel convolves through the
data with some window size and stride. In other words kernel calculates how different
data sections reflects its feature.

Fig. 4. LSTM structure. The key to this model is a cell state. It is a buffer which
stores data from previous iterations. It is used for generating an output of the layer.
LSTM can add (update) and remove (forget) information from it. Equation (1) is a
mathematical description of forget function. Equations (2–4) calculate updated Cell
state. Finally, Eq. (5) provides an output based on the relevant information.

3.2 Classical Methods

Classical methods and deep models are different in extracting features. While
a deep model extracts them automatically, the classical model requires manual
feature extraction before the classification step. That is why we first address the
feature extraction process.

Feature Extraction. We take 4 feature types described in [16–18]: Statisti-
cal, Time series, Frequency, and Wavelet. Statistical features extract general

194 N. Gurov et al.

parameters of the series such as mean and deviation. An autoregressive (AR)
model specifies how values depend linearly on previous values and on a stochas-
tic term, which model learns from a series. A detailed description of this method
is presented in [33]. Fourier spectral analysis provides measurements for the fre-
quency domain of the signal. And wavelet features represent basic parameters
of a wavelet oscillation. The full list of features and their dimensions is given in
Table 1.

Table 1. Features manually extracted from sensory data [16–18]

Type Feature Dimensions

Statistical Interquartile range 3

Partial auto-correlation 3

Mean 3

Median 3

Variance 3

Standard deviation 3

Time series AR model 9

Frequency FFT entropy 3

FFT energy 3

Wavelet Sum 6

Squared sum 6

Energy 6

Squared ratio 3

Dense Network Classifier. We provide a fully connected Dense network archi-
tecture in Fig. 5. Dense layers are traditionally used as last layers of deep models
to provide decision making step based on extracted features. We use it because
separate Dense model, trained with hand-crafted features will allow us to com-
pare the hand-crafted features with ones provided by the deep model.

Random Forest. Decision tree algorithms are successfully applied to various
classification tasks [34,35], including HAR [20]. However, if the dataset has a lot
of features, the decision tree algorithm usually overfits and makes the learning
process more complicated. We solve this issue by utilizing Random Forest clas-
sifier which is an improved version of the decision tree approach. The key idea
is to split feature set on random batches of features and apply decision trees
for each batch. Figure 6 illustrates this strategy. The ensemble of decision trees
makes the model more robust to noise and overfitting.

HAR Using Deep Models and Its Analysis from DA Perspective 195

Fig. 5. MLP with 3 hidden Dense (fully-connected) layers. Last output layer is a cat-
egorical vector (one-hot encoding of labels).

Logistic Regression. Regression techniques are frequently exploited in the
classification task [36,37]. We are interested in getting prediction accompanied
by its probability because some existing methodologies to HAR DA use majority-
voting for providing latent labels [11]. The performance of such unsupervised
methods could be increased if we support our decisions with probabilities and
skip candidates with low confidence. The logistic function is a sigmoid function,
which takes any real input, and outputs a value between zero and one, so it could
be used as a probabilistic measure for the confidence of the predicted label. The
logistic function σ(t) is defined as follows:

Fig. 6. Representation of the Random Forest model. Each decision tree provides its
candidate label. After majority-voting, model defines its final decision.

196 N. Gurov et al.

σ(t) =
1

1 + e−t
(6)

KNN classifier, also called the ‘lazy algorithm’, is one of the most naive and
computationally cheap approaches. It provides classification by analysing k near-
est neighbours and assigning the label with majority-voting. It assigns label
which is the most frequent among k neighbours. The advantage of this method
is that it could easily adapt to new data and don’t need any training and tuning.

4 Results and Evaluation

4.1 Datasets

In this work we used two different datasets for the model evaluation: SHL1

consists of 9 days of data collected by 3 users. Huawei Mate 9 was used as a
data collection device. The data was collected from 4 phone positions: Hips,
Bag, Torso and Hand. Dataset consists of 3 sensors’ readings (accelerometer,
gyroscope and magnetometer). It has 19 types of activities overall.

Sensors Activity Recognition DataSet (SAR) [38]2 is a collection of 3–4 min
recordings made by ten participants. The data was collected by the same set
of sensors (accelerometer, gyroscope and magnetometer) which are built in
Samsung Galaxy SII (i9100). The data was collected from 5 phone positions:
right/left hip pocket, belt, right upper arm and right wrist. This dataset pro-
vides seven types of activities.

For our evaluation purposes, we take two SHL subsets - SHL hip and hand
for one user. Dataset for right hip device position for one user is also taken
from SAR. In order to bring datasets to the same label domain, we left only
five activities, which they share: sitting, standing, walking, running and biking.
We also segmented datasets on 3 s windows with 50% overlap. Each sample
from these datasets is also processed for feature extraction, using methodology
provided in Sect. 3.2. After concatenating of all features for all axes (x, y, z) and
all sensors, resulting sample became a vector length 171. These datasets are not
of equal size. SHL data has about 60k samples after preprocessing. And SAR has
only about 300 samples. That should be taken into account when interpreting
the results.

4.2 Experimental Setup

Our main goal is to estimate the performance of proposed models in cross-domain
evaluation. We provide both cross-position (SHL hip - hand) and cross-domain
(SHL - SAR) evaluation in order to estimate the domain gap within a common

1 Sussex-Huawei Locomotion Dataset, http://www.shl-dataset.org/dataset/.
2 Sensors Activity Recognition Dataset, https://www.researchgate.net/publication/

266384007 Sensors Activity Recognition DataSet.

http://www.shl-dataset.org/dataset/
https://www.researchgate.net/publication/266384007_Sensors_Activity_Recognition_DataSet
https://www.researchgate.net/publication/266384007_Sensors_Activity_Recognition_DataSet

HAR Using Deep Models and Its Analysis from DA Perspective 197

environment (user, device) and within totally different domains. Cross-validation
accuracy was used as an evaluation metric for all tests.

In the first test, we train all the models on source data and evaluate it on
target. The idea is to collect the statistics of the models’ performance when the
training set is a composition of the source domain and of different amount of
data from target domain: source + target*(0, 0.001, 0.01, 0.1, 1). The hypothesis
is that if the training domain contains some portion of the target domain, per-
formance will be improved. We also suppose, that there is a threshold for ratio,
when the amount of target data added to the training set, raises the performance
to the maximum available values for the target domain.

The second test is a support to the first one. The logic is the same, we train
all models with different ratio of the target data, but without source at all. It
is important for making the right conclusions from the first test. There is no
way to figure out whether the source domain increases overall performance or
vice-versa decreases it only by first test results. Because of the small size of SAR
dataset, some ratios used in tests return an empty set of samples for it.

4.3 Implementation Details

Deep model is implemented using Python keras framework. In order to reduce
the model size and complexity, we replace the first convolutional layer with
Depth wise Separable Convolution [39]. A convolutional layer is followed by two
CuDNNLSTM layers with a number of units equal to 64. The model ends with
two Dense layers of 32 and 5 neurons respectively. After hyperparameter tun-
ing, the optimal parameters were defined as binary-cross-entropy loss, Rmsprop
optimizer and sigmoid activation.

Dense model is also implemented with keras. After iterating through a differ-
ent number of layers and the number of neurons in each, we came to the archi-
tecture proposed in Fig. 2 as an optimal one. The same hyperparameter tuning
algorithm as used for the deep model was applied to this network. The set of
optimal hyperparameters remains the same: binary-cross-entropy loss, Rmsprop
optimizer and sigmoid activation. All the other classifiers (KNN, Logistic regres-
sion, Random Forest) are implemented using the sklearn framework. Random
Forest has 50 estimators. That is the optimal time/performance value. Logistic
regression was used out of the box without any additional options. The KNN
algorithm work with 5 nearest-neighbours for classification. In order to provide
train/test sets, all datasets are shuffled and split as 1/4 for test/train. In this
work, we use only one fold for cross-validation. The reason is the small size of
SAR which makes several folds splitting meaningless. In order to remain the
same approach to each dataset, we left only one fold.

4.4 Results

Following figures represent the performance of the chosen methods. Each figure
contains results of three combinations of datasets used for cross-domain evalu-
ation: Figs. 7, 8, 9, 10 and 11(a) is when source data is full SHL hand dataset

198 N. Gurov et al.

and target domain is SHL hip. Figures 7, 8, 9, 10 and 11(b) is where Source is
SHL hip, and target is SHL hand. Finally, in Figs. 7, 8, 9, 10 and 11(c) source
is SHL hip, whereas target is SAR. The horizontal axis represents the ratio of
target data used in the experiment. For example, in the experiment represented
by Fig. 7a SHL hand data is the source and SHL hip is the target. Lines on the
chart represent results of two tests.

Fig. 7. Results for deep model.

Discussion. The results of the provided tests show that deep model is the most
resistant model from DA perspective. Its performance remains high even when
no target data was added to the training set. For example Fig. 7a: 89% out of
maximum 95% for that dataset. We also conclude that domains could be of
different complexity.

Dense network from Fig. 8 has a gap of 5–6% from the deep model. It means
that deep learning approach to feature extraction is more accurate. Despite this,
dense model’s performance under DA task is not inferior to the deep model. We
can conclude that network-based classification methods are better at learning
general information than other proposed approaches.

Logistic regression, Fig. 9, provides impressive results in activity classification
(up to 99%), however, it’s performance degrades when the amount of training

Fig. 8. Results for MLP model.

HAR Using Deep Models and Its Analysis from DA Perspective 199

Fig. 9. Results for Logistics regression.

Fig. 10. Results for Random Forest.

Fig. 11. Results for KNN.

data increases. That may be also the reason for poor performance in DA, as
this test assumes having one of SHL sets in full size. Random Forest, Fig. 10,
also provide good performance in classification, but accuracy on DA is low.
KNN Fig. 11, fails to perform high results in both classification and domain
adaptation. That is probably because of data is high dimensional (the curse of
dimensionality).

Deep model’s feature extraction is really more accurate than hand-crafted
features. Network-based architectures also show better resistance to domain gap,
than classical approaches. But, some classical approaches outperform deep model

200 N. Gurov et al.

in simple classification task. They are also more computationally inexpensive.
An interesting conclusion is that deep models could be used for creation latent
variables while classical models such as Random Forest and Logistic regression
will use provided labelled data for classification. Logistic regression is suitable
here because we have figured out that it performs better if the amount of training
data is not big.

5 Conclusion

In this work, we have provided detailed statistics on the performance of tradi-
tional approaches to human activity recognition both from classification and DA
perspectives. These results have shown that the deep model is the best approach
to solving the DA problem. However, other approaches have interesting features
too. This work can be used as reference material for future researches in HAR
DA. The testing methodology can also be used as a framework for evaluation
activity recognition models under DA task.

Based on the provided results, a new set of tests can be proposed for a more
specific evaluation of HAR methods. For example, Logistic regression from Fig. 9
did not perform well on DA test because it is sensitive to the size of training
dataset and in our framework it is large. The testing framework can be reviewed
and changed in order to take into account the specifics of every model.

References

1. Jasim, W.N., Harfash, E.J.: Human activity recognition system to benefit health-
care field by using hog and harris techniques with K-NN model. Int. J. Comput.
Appl. 975, 8887 (2018)

2. Barman, D., Sharma, U.M.: A study on human activity recognition from video. In:
2016 3rd International Conference on Computing for Sustainable Global Develop-
ment (INDIACom), pp. 2832–2835. IEEE (2016)

3. Sharma, C.M., Kushwaha, A.K.S., Nigam, S., Khare, A.: On human activity recog-
nition in video sequences. In: 2011 2nd International Conference on Computer and
Communication Technology, ICCCT 2011, pp. 152–158. IEEE (2011)

4. Wang, Y., Huang, K., Tan, T.: Human activity recognition based on r transform.
In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8.
IEEE (2007)

5. Giannakopoulos, T., Siantikos, G.: A ROS framework for audio-based activity
recognition. In: Proceedings of the 9th ACM International Conference on PEr-
vasive Technologies Related to Assistive Environments, p. 41. ACM (2016)

6. Asghari, P., Nazerfard, E.: Activity recognition using hierarchical hidden Markov
models on streaming sensor data. In: 2018 9th International Symposium on
Telecommunications (IST), pp. 416–420. IEEE (2018)

7. Chereshnev, R., Kertész-Farkas, A.: RapidHARe: a computationally inexpensive
method for real-time human activity recognition from wearable sensors. J. Ambient
Intell. Smart Environ. 10(5), 377–391 (2018)

HAR Using Deep Models and Its Analysis from DA Perspective 201

8. Khan, A.M., Tufail, A., Khattak, A.M., Laine, T.H.: Activity recognition on smart-
phones via sensor-fusion and KDA-based SVMs. Int. J. Distrib. Sens. Netw. 10(5),
503291 (2014)

9. Khan, A.M., Lee, Y.-K., Lee, S.-Y., Kim, T.-S.: Human activity recognition via
an accelerometer-enabled-smartphone using Kernel discriminant analysis. In: 2010
5th International Conference on Future Information Technology, pp. 1–6. IEEE
(2010)

10. Saputri, T.R.D., Khan, A.M., Lee, S.-W.: User-independent activity recognition via
three-stage GA-based feature selection. Int. J. Distrib. Sens. Netw. 10(3), 706287
(2014)

11. Wang, J., Chen, Y., Hu, L., Peng, X., Philip, S.Yu.: Stratified transfer learning
for cross-domain activity recognition. In: 2018 IEEE International Conference on
Pervasive Computing and Communications (PerCom), pp. 1–10. IEEE (2018)

12. Soleimani, E., Nazerfard, E.: Cross-subject transfer learning in human activ-
ity recognition systems using generative adversarial networks. arXiv preprint
arXiv:1903.12489 (2019)

13. Zeng, M., Yu, T., Wang, X., Nguyen, L.T., Mengshoel, O.J., Lane, I.: Semi-
supervised convolutional neural networks for human activity recognition. In: 2017
IEEE International Conference on Big Data (Big Data), pp. 522–529. IEEE (2017)

14. Wang, J., Chen, Y., Hao, S., Peng, X., Lisha, H.: Deep learning for sensor-based
activity recognition: a survey. Pattern Recogn. Lett. 119, 3–11 (2019)

15. Bulling, A., Blanke, U., Schiele, B.: A tutorial on human activity recognition using
body-worn inertial sensors. ACM Comput. Surv. (CSUR) 46(3), 33 (2014)

16. Khan, A.M., Lee, Y.-K., Lee, S.Y., Kim, T.-S.: A triaxial accelerometer-based
physical-activity recognition via augmented-signal features and a hierarchical rec-
ognizer. IEEE Trans. Inf. Technol. Biomed. 14(5), 1166–1172 (2010)

17. Khan, A., Siddiqi, M., Lee, S.-W.: Exploratory data analysis of acceleration signals
to select light-weight and accurate features for real-time activity recognition on
smartphones. Sensors 13(10), 13099–13122 (2013)

18. Preece, S.J., Goulermas, J.Y., Kenney, L.P.J., Howard, D.: A comparison of feature
extraction methods for the classification of dynamic activities from accelerometer
data. IEEE Trans. Biomed. Eng. 56(3), 871–879 (2008)

19. Chathuramali, K.G.M., Rodrigo, R.: Faster human activity recognition with
SVM. In: International Conference on Advances in ICT for Emerging Regions
(ICTer2012), pp. 197–203. IEEE (2012)

20. Fan, L., Wang, Z., Wang, H.: Human activity recognition model based on decision
tree. In: 2013 International Conference on Advanced Cloud and Big Data, pp.
64–68. IEEE (2013)

21. Paul, P., George, T.: An effective approach for human activity recognition on
smartphone. In: 2015 IEEE International Conference on Engineering and Technol-
ogy (Icetech), pp. 1–3. IEEE (2015)

22. Chorowski, J.K., Bahdanau, D., Serdyuk, D., Cho, K., Bengio, Y.: Attention-based
models for speech recognition. In: Advances in Neural Information Processing Sys-
tems, pp. 577–585 (2015)

23. Pandey, H.M., Windridge, D.: A comprehensive classification of deep learning
libraries. In: Yang, X.-S., Sherratt, S., Dey, N., Joshi, A. (eds.) Third International
Congress on Information and Communication Technology. AISC, vol. 797, pp. 427–
435. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1165-9 40

24. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

http://arxiv.org/abs/1903.12489
https://doi.org/10.1007/978-981-13-1165-9_40

202 N. Gurov et al.

25. Plötz, T., Hammerla, N.Y., Olivier, P.L.: Feature learning for activity recognition
in ubiquitous computing. In: Twenty-Second International Joint Conference on
Artificial Intelligence (2011)

26. Ronao, C.A., Cho, S.-B.: Deep convolutional neural networks for human activity
recognition with smartphone sensors. In: Arik, S., Huang, T., Lai, W.K., Liu, Q.
(eds.) ICONIP 2015. LNCS, vol. 9492, pp. 46–53. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-26561-2 6

27. Xue, L., et al.: Understanding and improving deep neural network for activity
recognition. arXiv preprint arXiv:1805.07020 (2018)

28. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

29. Ordóñez, F., Roggen, D.: Deep convolutional and lstm recurrent neural networks
for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

30. Hammerla, N.Y., Halloran, S., Plötz, T.: Deep, convolutional, and recurrent models
for human activity recognition using wearables. arXiv preprint arXiv:1604.08880
(2016)

31. Guan, Y., Plötz, T.: Ensembles of deep LSTM learners for activity recognition using
wearables. Proc. ACM Interact. Mob. Wear. Ubiquit. Technol. 1(2), 11 (2017)

32. Zeng, M., et al.: Understanding and improving recurrent networks for human activ-
ity recognition by continuous attention. In: Proceedings of the 2018 ACM Interna-
tional Symposium on Wearable Computers, pp. 56–63. ACM, (2018)

33. Khan, A.M., Lee, Y.-K., Kim, T.-S.: Accelerometer signal-based human activity
recognition using augmented autoregressive model coefficients and artificial neural
nets. In: 2008 30th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pp. 5172–5175. IEEE (2008)

34. Chatterjee, S.K., et al.: Comparison of decision tree based classification strategies
to detect external chemical stimuli from raw and filtered plant electrical response.
Sens. Actuators B: Chem. 249, 278–295 (2017)

35. Xiaowei, L.: Application of decision tree classification method based on information
entropy to web marketing. In: 2014 Sixth International Conference on Measuring
Technology and Mechatronics Automation, pp. 121–127. IEEE (2014)

36. Brzezinski, J.R., Knafl, G.J.: Logistic regression modeling for context-based classi-
fication. In: Proceedings of Tenth International Workshop on Database and Expert
Systems Applications, DEXA 1999, pp. 755–759. IEEE (1999)

37. Kang, K., Gao, F., Feng, J.: A new multi-layer classification method based on
logistic regression. In: 2018 13th International Conference on Computer Science &
Education (ICCSE), pp. 1–4. IEEE (2018)

38. Shoaib, M., Bosch, S., Incel, O., Scholten, H., Havinga, P.: Fusion of smartphone
motion sensors for physical activity recognition. Sensors 14(6), 10146–10176 (2014)

39. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017)

https://doi.org/10.1007/978-3-319-26561-2_6
https://doi.org/10.1007/978-3-319-26561-2_6
http://arxiv.org/abs/1805.07020
http://arxiv.org/abs/1604.08880
http://arxiv.org/abs/1704.04861

Spontaneous Emotion Recognition
in Response to Videos

Alisa Gazizullina(B) and Manuel Mazzara

Institute of Software Development and Engineering,
Innopolis University, Innopolis, Russia

{a.gazizullina,m.mazzara}@innopolis.ru

Abstract. In order to understand human emotions correctly taking into
account only facial expressions, we are conducting the experiments on
the spontaneous emotional facial videos of people watching musical video
clips from DEAP open source dataset. We are reporting the comparative
results of emotion recognition done in two ways: sequential extraction of
spatial and temporal features done by CNN-RNN, simultaneous extrac-
tion of both types of features performed by 3D convolutions in our C3D
networks architecture. In order to study the contribution of microex-
pressions to emotion recognition we are augmenting videos in two ways:
reducing to 1 fps, thus losing a significant amount of temporal informa-
tion, reducing to 10 fps, thus preserving most of the muscle movement
information.

Keywords: Emotion detection · Emotion detection from videos ·
DEAP dataset · Emotion prediction from DEAP dataset

1 Introduction

Emotion recognition research goes back to 1872 when Charles Darwin in his work
The Expression of the Emotions in Man and Animals [5] through the discovery
of the fact that humans and animals follow a similar pattern when expressing
emotions has suggested that emotions are universal. His ideas gave rise to the
emotion recognition research that seeks for a way for the machines to estimate the
psychological and physiological state of the person in order to provide a better
user experience. Besides its long history, there is still no 100% accurate model
determining exact emotions correctly. The reason is that the emotion recognition
experiment involves a lot of free variable: emotional theory used, discrete or
dimensional [2]; modalities studied [4], facial expressions, electroencephalogram
[18], galvanic skin response [6], voice [1], etc.; number of modalities analyzed,
unimodal, multimodal [12]; nature of emotions, spontaneous [19] or acted [7];
emotion elicitation techniques used to gather the data [3].

In the early research, emotion recognition frameworks were making their
focus on a single modality/measure. The tolerable prediction results, perfor-
mance and rather simple complexity of such an approach keeps uni-modal emo-
tion recognition relevant up to today. Facial expressions are generally assumed to
c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 203–209, 2019.
https://doi.org/10.1007/978-3-030-29852-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_16

204 A. Gazizullina and M. Mazzara

be the base modality for the emotion recognition system. Tomkins has reported
in his work [14] that emotional affects are closely linked to the face and motiva-
tion. He was the first to demonstrate that facial expressions were associated with
certain emotional states [15]. Thus, we are aimed to analyze a single frame dimen-
sion of multimodal video data, focusing on facial expressions to more broadly
investigate the role of human’s facial expressions to read the emotions.

We are also aimed to analyze the spontaneously expressed emotions as a
model trained on videos of people acting spontaneously will generalize with
stronger confidence for the real-life data. The data for spontaneous emotions is
specific, as it contains microexpressions. Microexpressions are conscious actions
of suppressing the facial expressions when they occur on the face inappropriately.
Paul Ekman in late 19’s discovered the importance of the ability to be able to
detect microexpressions from videos. He was analyzing a video of a patient suffer-
ing from depression, who attempted to commit a suicide [17]. Ekman recognized
brief and intense sadness of a patient that has quickly changed to the smile. This
was the starting point in microexpression recognition from facial expressions
research. Microexpressions contain a significant amount of information about
the true emotions. They are difficult to analyze due to the short duration and
brief nature of movements. Modern methods based on deep models achieve good
results analyzing microexpressions from facial videos. These models mostly rely
on the representative power features extracted by deep 3-dimensional convo-
lutional network (C3D) or by the hybrid of convolutional neural network and
recurrent neural network (CNN-RNN), as well as on the effectiveness of video
preprocessing steps, such as temporal and spatial frame normalization and rich
features extraction (optical flow, frame patching).

This research is aimed to construct a framework being able to map humans’
facial expressions to valence, arousal and dominance values responsible to rep-
resent a particular emotional state. Our networks designed to solve multitask
binary classification recognition task (i.e. prediction of valence, arousal, and
dominance as separate tasks). We base our experiments on two types of models:
CNN-LSTM and C3D network. Also, provide performance results of two models
on video data preprocessed spatially in two ways: either by aligning detected
faces and then cropping them or by just cropping faces with no alignment. We
also apply and report the affect of the use of different ways to do temporal
normalization: keyframe extraction to shorten original videos to 1 fps, frame
skipping to shorten videos to 10 fps.

2 The Dataset

In this research, we use a multimodal database for Emotion Analysis using
Physiological Signals DEAP [9]. The database consists of electroencephalogram
(EEG), galvanic skin response (GSR), electrooculography (EOG) and periph-
eral physiological signals of 32 participants. Also for the 22 participants, frontal
face videos were also recorded during the experiment session. The experiment
was constructed in such a way that while each of the participants was watching

Spontaneous Emotion Recognition in Response to Videos 205

40-min long excerpts of music video clip physiological signals, EEG, facial videos
were recorded and each participant also rated the videos. For this research, we
restrict ourselves to the facial videos only, as we want to asses the power of facial
expressions to represent humans emotions. For that purpose, we took the subset
of the DEAP dataset which consisted of facial videos for 22 participants labeled
their physiological and psychological states measured during the experimental
session. Each person took part in 40 trials, so in the dataset there are 40 videos
for each of 22 people, in total, we get about 22 × 40 = 880 videos in total. Each
video is labeled in terms of valence, arousal, dominance and liking with each
taking values in the 1–9 range.

3 Data Preprocessing

Videos on our dataset are converted to frame sequences and then undergo
one of the two types of preprocessing: normalization and alignment or go only
through normalization. Normalization is done in spatial as well as in temporal
domains [11]. For the spacial normalization we crop all the frames by contours
of the bounding boxes of detected faces to the sizes special for different types
of networks (i.e. ResNet-LSTM pre-trained on ImageNet2012 supports image
sizes of 224 × 224, C3D networks pre-trained on Sports1M support images of
size 112 × 112, and 95× 95 is the size of the images typical for face recogni-
tion pipeline that reduces the computation time and memory load). Faces are
detected by the Dlib’s DNN model. We have stopped on the two types of tem-
poral augmentations for the training videos: reduced to 1 fps using ffmpeg’s
keyframe extractor, reduced to 10 fps using frame skipping approach. We have
constructed two sets of videos DEAP CROPPED and DEAP ALIGNED
that are different by the spatial normalization applied. The last step of the
video normalization - face cropping, requires bounding box coordinates smooth-
ing across time, we have used approaches similar to SGD with momentum and
Mean Average Smoothing.

All the images are converted to grayscale, after that standard normalization
method using training dataset statistics (mean, standard deviation) are applied
to each frame in the resulting dataset.

4 The Proposed Methods

In this section we are going to describe the two architectures we constructed
for emotion recognition from videos: CNN-RNN, C3D network. Both networks
are trained end-to-end for the emotion recognition in the Valence-Arousal-
Dominance space and are optimized for multitask binary classification, predict-
ing classes for 3 categories: high or low for valence, arousal and dominance
(reconstructing original labels from 1–9 range to 1–0 range, using the ≥ 6 thresh-
olding).

CNN-RNN Network. Previous research shows that RNN models can achieve
good results in emotion recognition tasks [8,13],

206 A. Gazizullina and M. Mazzara

In our CNN-RNN hybrid model, we use CNN as a feature extractors which
act on videos at the frame level, learning features for each frame separately,
thus not taking into account temporal relationships between frames. ResNet-18
architecture is used as a backbone for the CNN part of our network. Prior to using
CNN model as a part of hybrid model we have pre-trained it on large emotional
datasets VGGFace2 and Facial Expression Recognition database (Fer2013+).
CNN receives as input images with a batch size equal the length of the sequence
(55 frames or 600 frames), then as all these features are extracted from one video
we stack them and pass to the LSTM for later classification.

C3D Network. Deep 3-dimensional convolutional networks are commonly
adopted for video classification tasks. C3D networks, unlike CNN-RNN mod-
els, can model appearance and motion information simultaneously.

1. C3D+Sport1M architecture. For the model used in our research, we took
the C3D network consisting of 8 convolutions, 5 max-pooling layers, and 3
Fully connected layers, followed by sigmoid for multitask binary classification.
As we use model pretrained on Sports1M, that contain videos of length 16
and 112×112 of width and height, we are randomly sampling 16 frames from
our training videos and cropping them to the corresponding spatial sizes.

2. C3D+1 fps / C3D+10 fps architecture. For the 3D CNN network trained
on longer sequences of images, we are using a slight modification of the C3D
network architecture described above. We resize images to 95 × 95 in order
to ensure adequate learning time. A number of convolutional, pooling lay-
ers their configurations, structure, and kernel sizes are the same as in the
C3D+Sport1M model. The only thing we have changed is that we replaced
the last three Fully connected layers to the global average pooling. Fully con-
nected layers end up having a very large number of weights. Thus, they require
a large amount of computational power, may cause overfitting by memoriz-
ing the training examples rather than generalizing from them. The use of
global average pooling serves as a regularization as well as allows to save the
computation. It completely replaces fully connected layers in the top of the
network by computing the mean value for each feature map and supplies it
to a softmax layer.

5 Evaluation and Discussion

In this section, we are going to describe the performance of our models on the
emotion recognition task. We train CNN-LSTM and C3D network models for
the multitask binary classification tasks separately to compare the performance
of two different deep architectures on the spontaneous emotion prediction when
dealing with microexpressions.

Experimental Setting. Our models were implemented on Pytorch [10] and
we used a GPU Server with NVIDIA Tesla V100 (16 GB) graphics proces-
sor for training and testing our models. Both CNN-LSTM and C3D net-
works are trained using Binary Cross Entropy (BCE) for the multi-label

Spontaneous Emotion Recognition in Response to Videos 207

Table 1. Comparative results of C3D and CNN-RNN models

Model F1 arousal F1 valence F1 dominance ROC-AUC

CNN-LSTM + 1 fps +
DEAP ALIGN

0.557 0.4 0.3 0.5

CNN-LSTM + 10 fps +
DEAP CROPPED

0.59 0.51 0.45 0.62

C3D + Sport1M +
DEAP CROPPED

0.609 0.5 0.54 0.56

C3D + 1 fps +
DEAP ALIGN

0.618 0.577 0.597 0.576

C3D + 10 fps +
DEAP ALIGN

0.75 0.69 0.7 0.8

Tripathi, Samarth, et al. 0.57 0.66 - -

Tripathi, Samarth, et al. refers to the model described in [16] based on the deep
convolutional neural network fitted on the same DEAP database videos. However, it
has to be noted that f1-score of the given model has to be even lower as we have put
to the current table the accuracy score measured by authors instead of f1-score which
is more accurate (authors did not report the results on f1-score).

multi-output classification. For the optimization technique, we use Stochas-
tic Gradient Descent (SGD) with the learning rate of 1e − 3, weight decay
5e − 4, momentum 0.9. In order to ensure that while optimizing the net-
work we did not miss local optimum and to make the model generalize bet-
ter to unseen data, we are using Cyclic learning rate scheduler. Training is
done in 100 epochs with batch sizes of 1 and 4 for the datasets of 10 fps
and 1 fps videos respectively. The input dimensions for LSTM-CNN network
are either 4 × 1 × 224 × 224 × 55 (1 fps) or 4× 1 × 224 × 224 × 600 (10 fps), and
for the C3D networks either 1× 1 × 112 × 112 × 16 or 1 × 1 × 95 × 95 × 55 or
1 × 1 × 95 × 95 × 600. Both of our models are trained on two versions of the same
DEAP dataset: DEAP ALIGN and DEAP CROPPED. The first one was con-
structed by applying face cropping and alignment, while the other constructed
to preserve the head rotations with no alignment applied.

Experimental Results. Table 1 makes come to the conclusion that C3D net-
works that perform temporal and sequential modeling subsequently are able to
learn more rich features compared to CNN-RNN models first operating on the
spatial level and then capturing the sequential nature of the data. While train-
ing the network with the videos reduced to 1 fps (i.e. sequences of 55 frames) by
keyframe extraction we have discovered that the network is not learning much
and nearly overfits. This happens as microexpressions are of short duration and
they might be lost with the interpolated or skipped frames. This leads us to give
up speed and stick to 10 fps.

208 A. Gazizullina and M. Mazzara

6 Conclusion

In this paper, we have designed two deep models for the task of spontaneous
emotion recognition. First one is based on the frame level features extraction
prior to extraction of video level features, while the second one extracts spatial
and temporal features simultaneously with the use of 3D convolutions over the
frame sequence. We have reported and compared the measures of the ability
of both approaches to recognize in the 3D Valence-Arousal-Dominance space
emotions from facial videos. We have discovered that C3D networks are bet-
ter suited for the micro-emotional nature of the DEAP dataset. Also, we have
conducted the experiments on different temporal and spatial augmentations of
videos varying the length, receptive field size and interest object’s orientation
to determine whether the microexpressions captured in a video augmented to
a longer duration or head movements affected by alignment are critical for the
emotion recognition from facial expressions. The conclusion we made is that
microexpressions and head rotations when preserved lead to better recognition
results.

References

1. Alu, D., Zoltan, E., Stoica, I.C.: Voice based emotion recognition with convolutional
neural networks for companion robots. Sci. Technol. 20(3), 222–240 (2017)

2. Barrett, L.F., Robin, L., Pietromonaco, P.R., Eyssell, K.M.: Are women the “more
emotional” sex? Evidence from emotional experiences in social context. Cogn.
Emot. 12(4), 555–578 (1998)

3. Braun, M., Weiser, S., Pfleging, B., Alt, F.: A comparison of emotion elicitation
methods for affective driving studies, pp. 77–81 September 2018. https://doi.org/
10.1145/3239092.3265945

4. Castellano, G., Kessous, L., Caridakis, G.: Emotion recognition through multiple
modalities: face, body gesture, speech. In: Peter, C., Beale, R. (eds.) Affect and
Emotion in Human-Computer Interaction. LNCS, vol. 4868, pp. 92–103. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85099-1 8

5. Darwin, C.: The Expression of the Emotions in Man and Animals (1872). The orig-
inal was published 1898 by Appleton, New York. Reprinted 1965 by the University
of Chicago Press, Chicago and London

6. Das, P., Khasnobish, A., Tibarewala, D.: Emotion recognition employing ECG
and GSR signals as markers of ANS. In: 2016 Conference on Advances in Signal
Processing (CASP), pp. 37–42. IEEE (2016)

7. Dhall, A., Goecke, R., Lucey, S., Gedeon, T., et al.: Collecting large, richly anno-
tated facial-expression databases from movies. IEEE multimedia 19(3), 34–41
(2012)

8. Fan, Y., Lu, X., Li, D., Liu, Y.: Video-based emotion recognition using CNN-
RNN and C3D hybrid networks. In: Proceedings of the 18th ACM International
Conference on Multimodal Interaction ICMI 2016, pp. 445–450. ACM, New York
(2016). https://doi.org/10.1145/2993148.2997632

9. Koelstra, S., et al.: Deap: a database for emotion analysis; using physiological
signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012). https://doi.org/10.1109/
T-AFFC.2011.15

https://doi.org/10.1145/3239092.3265945
https://doi.org/10.1145/3239092.3265945
https://doi.org/10.1007/978-3-540-85099-1_8
https://doi.org/10.1145/2993148.2997632
https://doi.org/10.1109/T-AFFC.2011.15
https://doi.org/10.1109/T-AFFC.2011.15

Spontaneous Emotion Recognition in Response to Videos 209

10. Paszke, A., et al.: Automatic differentiation in pytorch (2017)
11. Peng, M., Wang, C., Chen, T., Liu, G., Fu, X.: Dual temporal scale convolutional

neural network for micro-expression recognition. Front. psychol. 8, 1745 (2017)
12. Soleymani, M., Pantic, M., Pun, T.: Multimodal emotion recognition in response

to videos. IEEE Trans. Affect. Comput. 3(2), 211–223 (2011)
13. Sun, M.C., Hsu, S.H., Yang, M.C., Chien, J.H.: Context-aware cascade attention-

based RNN for video emotion recognition. In: 2018 First Asian Conference on
Affective Computing and Intelligent Interaction (ACII Asia), pp. 1–6. IEEE (2018)

14. Tomkins, S.S.: Affect, Imagery, Consciousness. Springer, Heidelberg (1962)
15. Tomkins, S.S., McCarter, R.: What and where are the primary affects? Some evi-

dence for a theory. Percept. Mot. Skills 18(1), 119–158 (1964). https://doi.org/10.
2466/pms.1964.18.1.119

16. Tripathi, S., Acharya, S., Sharma, R.D., Mittal, S., Bhattacharya, S.: Using deep
and convolutional neural networks for accurate emotion classification on DEAP
dataset. In: Twenty-Ninth IAAI Conference (2017)

17. Vrij, A.: Book review - ‘Telling lies: clues to deceit in the marketplace, politics, and
marriage’ by Paul Ekman. Int. J. Police Sci. Manag. 5, 209–210 (2003). https://
doi.org/10.1350/ijps.5.3.209.16063

18. Wu, S., Xu, X., Shu, L., Hu, B.: Estimation of valence of emotion using two frontal
EEG channels. In: 2017 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pp. 1127–1130. IEEE (2017)

19. Zeng, Z., Hu, Y., Roisman, G.I., Wen, Z., Fu, Y., Huang, T.S.: Audio-visual spon-
taneous emotion recognition. In: Huang, T.S., Nijholt, A., Pantic, M., Pentland,
A. (eds.) Artifical Intelligence for Human Computing. LNCS (LNAI), vol. 4451,
pp. 72–90. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72348-
6 4

https://doi.org/10.2466/pms.1964.18.1.119
https://doi.org/10.2466/pms.1964.18.1.119
https://doi.org/10.1350/ijps.5.3.209.16063
https://doi.org/10.1350/ijps.5.3.209.16063
https://doi.org/10.1007/978-3-540-72348-6_4
https://doi.org/10.1007/978-3-540-72348-6_4

CNN LSTM Network Architecture
for Modeling Software Reliability

Kamill Gusmanov(B)

Innopolis University, Innopolis, Russian Federation
k.gusmanov@innopolis.ru

Abstract. In this work, Convolutional Neural Network Long Short-
Term Memory (CNN LSTM) architecture is proposed for modelling soft-
ware reliability with time-series data. Evaluation of the model coming
from 2 open source datasets that describe the development and test-
ing of modern mobile operating systems - “Tizen” and “CyanogenMod”.
The results of the proposed model are compared with four parametric
Software Reliability Growth Models and simple Convolutional Neural
Network model using the Root Mean Squared Error (RMSE) metric.

Keywords: Neural Networks · CNN · LSTM ·
Software reliability modeling · Software Reliability Growth Models ·
Time-series forecasting

1 Introduction

Software reliability is directly connected to software failures because if a software
is not correctly functioning there is the assumption that a software failure has
occurred [1]. Typically, the reliability of software is measured with the number of
defects that exist in the source code of the released software or with failures that
happen during its execution [2]. Ability to model and predict software reliability
of the systems provides more effective management of the overall development
process [3–8]. This becomes even more important in nowadays environments,
characterised by agile processes [9,10] and other forms of structuring the devel-
opment process, like code reuse [11], and targeting a wide set of potentials users,
as it happens in mobile applications [12,13], where also energy efficiency becomes
of paramount importance [14].

In the previous work [15] software reliability approaches were classified as:
(a) software reliability growth models, (b) multiple linear regression models, (c)
Bayesian models, and (d) neural network models.

This work is based on the application of Convolutional Neural Network Long
Short-Term Memory architecture for software reliability modelling, due to ability
of CNN models for good feature extraction technique and LSTM models to
ability “of learning long-term dependencies” [16].

We thank Innopolis University for generously supporting this research.

c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 210–217, 2019.
https://doi.org/10.1007/978-3-030-29852-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_17

CNN LSTM Network Architecture for Modeling Software Reliability 211

This paper is organized as follows. Section 2 discusses the related work.
Section 3 details our approach and our experiments. Section 4 presents the results
that we have obtained so far and discusses them. Section 5 draws some conclu-
sions and outlines the lines of future research.

2 Related Works

Neural networks can be used to perform various tasks, as discussed extensively
by Gamboa [17] and evidenced in several other works [18–20].

Selvin et al. [21] compares Recurrent Neural Networks (RNN), Long Short-
Term Memory (LSTM) Networks and Convolutional Neural Networks (CNN) in
time-series forecasting using a sliding window method for creating training data.
Comparison of RNN and CNN for multivariate time-series data was made in the
work of Groß et al. [22].

Paper of Borovykh et al. [23] proposed application of WaveNet architecture
[24] for conditional time-series forecasting. The WaveNet architecture is based
on the dilated causal convolution layer, “which allows it to properly treat tem-
poral order and handle long-term dependencies without an explosion in model
complexity” [25].

CNN-LSTM architecture for time-series forecasting was proposed in works of
Wang et al. [26], Liu et al. [27], Lin et al. [28], Karim et al. [29], He [30]. There
CNN model was used for feature extraction from the input data. The results of
this model were fed to the LSTM model. Wang et al. [26] proposed CNN model
with 5 layers: an input layer, convolution layer, sampling layer, fully connected
layer and output layer. A paper of Liu et al. [27] based on the stock data and
proposed CNN model feature extraction and judging stock trends.

3 Experimentation

Proposed CNN LSTM architecture and simple CNN model were developed using
Keras Deep Learning Library [31].

3.1 Parametric SRGMs

Software reliability models can be classified into two types: (1) models that
predict from data configurations and (2) models that predict from provided
datasets of failures. One of the most frequently mentioned models is parametric
Software Reliability Growth Models. The performance of parametric SRGMs
strongly depends on prior assumptions about the data, i.e. software reliability
depends on the type of the dataset [32]. Thus, to apply parametric SRGMs
engineers have to manually select multiple software reliability models and apply
them in parallel. Although some of the models can give good results, no single
parametric SRGM can equally well perform on the different data [33].

We considered four well-known traditional parametric SRGMs: Goel-
Okumoto concave model, Goel-Okumoto S-shaped model, Logistic model and
Weibull model. We used 80% of every dataset to train our models and looked
how well the remaining part of the cumulative curve has been fitted.

212 K. Gusmanov

3.2 CNN Model

As CNN model a one-dimensional CNN was used. This model has a convolutional
hidden layer that operates over a 1D sequence and pooling hidden layer. These
layers are followed by a flatten layer to reduce the feature maps to a single
one-dimensional vector, which is feeding to a dense fully connected layer that
interprets the features extracted by the convolutional part of the model.

Mean Squared Error (MSE) metric was used as a loss function of the model
and Adam algorithm [34] as an optimizer.

3.3 CNN LSTM Model

LSTM is a recurrent neural network architecture that has been adopted for time-
series forecasting. Adding a convolutional layer at the top of LSTM layers can
be extremely helpful to capture local, temporal patterns. Convolutional part of
the model contains: a convolutional hidden layer, a pooling hidden layer, and a
flatten layer as a simple CNN model. The output of the flatten layer was fed to
the two stacked hidden LSTM models that followed by a dense layer to provide
the output.

3.4 Datasets

In this work, two open source datasets were extracted from open online resources
that describe the development and testing of modern mobile operating systems,
Tizen and CyanogenMod. For Tizen the data was collected from the corre-
sponding issue tracking system of the project. It based on 5590 bugs during
1327 days of development (Fig. 1). For CyanogenMod the data was collected
from the project’s issue tracking system. It based on 10674 bugs during 1040
days of development (Fig. 2).

The use of Open Source data is particularly important, as it promote the
comparison of these results, the replication of the experiments, and the creation
of a community around this area of science [35–39].

This work face with supervised learning for univariate time series data, where
only a single variable is observed at each time (in our case it is the number
of found bugs for every timestep). Thus, data transformation is needed. The
most common approach for time-series data is a sliding window method. For the
training set we do the following:

1. Take first N values (from 1 to N) of the cumulative number of failures as
input (X).

2. Take value with index N + 1 as the output (Y).
3. Move window of size N and take new input values from 2 to N + 1 index and

output from N + 2 index.
4. Repeat these steps and create two input and output vectors.

After fitting the model we need to make predictions of the future number of
bugs based on the previous data. For this the following steps are made:

CNN LSTM Network Architecture for Modeling Software Reliability 213

Fig. 1. Data from issue tracking system of the “Tizen OS” project

Fig. 2. Data from issue tracking system of the “Cyanogen” project

1. Feed the vector with last N values from the training data to the model as
input.

2. Take predicted value and add it to the end of the input vector (now vector
contains N+ 1 values).

3. Remove the first value from the input vector and feed a new vector of size N
as input to the model.

4. Repeat this process for generating predictions of the remaining 20% of the
original data.

4 Results and Discussion

In the previous section, we described models and datasets of this work. To com-
pare the fitting and predictive power of described models, meaningful perfor-
mance criteria is needed. In this experiment, we utilize the Root Mean Squared
Error (RMSE) metric.

214 K. Gusmanov

Table 1. Root Mean Squared Error results for CNN and CNN LSTM models for two
datasets.

Dataset Model RMSE

Tizen OS Goel-Okumoto 0.0265

Goel-Okumoto S-Shaped 0.01917

Logistic S-Shaped 0.00647

Weibull S-Shaped 0.04645

CNN 0.01667

CNN LSTM 0.00199

Cyanogen Goel-Okumoto 0.01502

Goel-Okumoto S-Shaped 0.02938

Logistic S-Shaped 0.0812

Weibull S-Shaped 0.03631

CNN 0.03153

CNN LSTM 0.00419

In Table 1 we can notice that the smallest RMSE-test values among all
datasets were achieved using CNN LSTM model. It is also noted that the fitting
power of such a combination is better than the CNN-based model for each of
the dataset.

(a) CNN model for “Tizen OS” project.
(b) CNN LSTM model for “Tizen OS”
project.

(c) CNN model for “Cyanogen” project.
(d) CNN LSTM model for “Cyanogen”
project.

Fig. 3. Comparisons of the real test data and predicted by models

CNN LSTM Network Architecture for Modeling Software Reliability 215

Figure 3a and b show plots of the real test data compared to the predicted
by CNN and CNN LSTM data of “Tizen OS” project. Figure 3c and d show the
same for the “Cyanogen” project.

5 Conclusion

In modern software engineering, reliability issues are very important. This paper
has proposed a Convolutional Neural Network Long Short-Term Memory archi-
tecture to modelling software reliability. Results show that that proposed model
works better with low RMSE values that simple Convolutional Neural Network
model. Next steps will update the neural network model by applying autoen-
coder networks and extend the results considering also additional data coming
from software metrics [40,41].

References

1. Kumar, A.: Software reliability growth models, tools and data sets-a review. In:
Proceedings of the 9th India Software Engineering Conference, pp. 80–88. ACM
(2016)

2. Wood, A.: Software reliability growth models. Tandem technical report, vol. 96,
no. 130056 (1996)

3. Succi, G., Pedrycz, W., Stefanovic, M., Russo, B.: An investigation on the occur-
rence of service requests in commercial software applications. Empir. Softw. Eng.
8(2), 197–215 (2003)

4. Rossi, B., Russo, B., Succi, G.: Modelling failures occurrences of open source soft-
ware with reliability growth. In: Ågerfalk, P., Boldyreff, C., González-Barahona,
J.M., Madey, G.R., Noll, J. (eds.) OSS 2010. IAICT, vol. 319, pp. 268–280.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13244-5 21

5. Ivanov, V., Mazzara, M., Pedrycz, W., Sillitti, A., Succi, G.: Assessing the pro-
cess of an Eastern European software SME using systemic analysis, GQM, and
reliability growth models: a case study. In: Proceedings of the 38th International
Conference on Software Engineering Companion (ICSE 2016), Austin, Texas, pp.
251–259. ACM, May 2016

6. Ivanov, V., Reznik, A., Succi, G.: Comparing the reliability of software systems: a
case study on mobile operating systems. Inf. Sci. 423, 398–411 (2018)

7. Succi, G., Ivanov, V.: Comparison of mobile operating systems based on models of
growth reliability of the software. Comput. Res. Model. 10(3), 325–334 (2018)

8. Moser, R., Pedrycz, W., Succi G.: Analysis of the reliability of a subset of change
metrics for defect prediction. In: Proceedings of the Second ACM-IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, pp.
309–311. ACM (2008)

9. Kivi, J., Haydon, D., Hayes, J., Schneider, R., Succi, G.: Extreme programming: a
university team design experience. In: 2000 Canadian Conference on Electrical and
Computer Engineering, Conference Proceedings, Navigating to a New Era (Cat.
No.00TH8492), vol. 2, pp. 816–820, May 2000

10. Fronza, I., Sillitti, A., Succi, G.: An interpretation of the results of the analysis
of pair programming during novices integration in a team. In: Proceedings of the
2009 3rd International Symposium on Empirical Software Engineering and Mea-
surement, ESEM 2009, pp. 225–235. IEEE Computer Society (2009)

https://doi.org/10.1007/978-3-642-13244-5_21

216 K. Gusmanov

11. Valerio, A., Succi, G., Fenaroli, M.: Domain analysis and framework-based software
development. SIGAPP Appl. Comput. Rev. 5, 4–15 (1997)

12. Corral, L., Sillitti, A., Succi, G., Garibbo, A., Ramella, P.: Evolution of mobile
software development from platform-specific to web-based multiplatform paradigm.
In: Proceedings of the 10th SIGPLAN Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2011, (New York, NY,
USA), pp. 181–183. ACM (2011)

13. Corral, L., Sillitti, A., Succi, G.: Software development processes for mobile sys-
tems: is agile really taking over the business? In: 2013 1st International Workshop
on the Engineering of Mobile-Enabled Systems (MOBS), pp. 19–24, May 2013

14. Corral, L., Georgiev, A. B., Sillitti, A., Succi, G.: A method for characterizing
energy consumption in Android smartphones. In: Green and Sustainable Software
(GREENS 2013), pp. 38–45. IEEE, May 2013

15. Gusmanov, K.: On the adoption of neural networks in modeling software reliability.
In: Proceedings of the 2018 26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
pp. 962–964. ACM (2018)

16. Understanding LSTM networks. https://colah.github.io/posts/2015-08-Under
standing-LSTMs. Accessed 01 May 2019

17. Gamboa, J.C.B.: Deep learning for time-series analysis. arXiv preprint
arXiv:1701.01887 (2017)

18. Pedrycz, W., Chun, M.-G., Succi, G.: N4: computing with neural receptive fields.
Neurocomputing 55(1), 383–401 (2003)

19. Pedrycz, W., Russo, B., Succi, G.: Knowledge transfer in system modeling and
its realization through an optimal allocation of information granularity. Appl. Soft
Comput. 12, 1985–1995 (2012)

20. Pedrycz, W., Succi, G., Sillitti, A. (eds.): Computational Intelligence and Quanti-
tative Software Engineering. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-319-25964-2

21. Selvin, S., Vinayakumar, R., Gopalakrishnan, E., Menon, V. K., Soman, K.: Stock
price prediction using LSTM, RNN and CNN-sliding window model. In: 2017 Inter-
national Conference on Advances in Computing, Communications and Informatics
(ICACCI), pp. 1643–1647. IEEE (2017)

22. Groß, W., Lange, S., Bödecker, J., Blum, M.: Predicting time series with space-time
convolutional and recurrent neural networks. In: Proceeding of European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine
Learning, pp. 71–76 (2017)

23. Borovykh, A., Bohte, S., Oosterlee, C. W.: Conditional time series forecasting with
convolutional neural networks. arXiv preprint arXiv:1703.04691 (2017)

24. Van Den Oord, A., et al.: WaveNet: a generative model for raw audio. In: SSW,
vol. 125 (2016)

25. Joseph eddy blog. https://jeddy92.github.io/JEddy92.github.io/ts seq2seq conv.
Accessed 01 May 2019

26. Wang, H., Yang, Z., Yu, Q., Hong, T., Lin, X.: Online reliability time series pre-
diction via convolutional neural network and long short term memory for service-
oriented systems. Knowl.-Based Syst. 159, 132–147 (2018)

27. Liu, S., Zhang, C., Ma, J.: CNN-LSTM neural network model for quantitative
strategy analysis in stock markets. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy,
E.S. (eds.) ICONIP 2017. LNCS, vol. 10635, pp. 198–206. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70096-0 21

https://colah.github.io/posts/2015-08-Understanding-LSTMs
https://colah.github.io/posts/2015-08-Understanding-LSTMs
http://arxiv.org/abs/1701.01887
https://doi.org/10.1007/978-3-319-25964-2
https://doi.org/10.1007/978-3-319-25964-2
http://arxiv.org/abs/1703.04691
https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_conv
https://doi.org/10.1007/978-3-319-70096-0_21

CNN LSTM Network Architecture for Modeling Software Reliability 217

28. Lin, T., Guo, T., Aberer, K.: Hybrid neural networks for learning the trend in time
series. Technical report (2017)

29. Karim, F., Majumdar, S., Darabi, H., Chen, S.: Lstm fully convolutional networks
for time series classification. IEEE Access 6, 1662–1669 (2017)

30. He, W.: Load forecasting via deep neural networks. Procedia Comput. Sci. 122,
308–314 (2017)

31. Keras homepage. https://keras.io. Accessed 01 May 2019
32. Lyu, M.R., et al.: Handbook of Software Reliability Engineering, vol. 222. IEEE

Computer Society Press, Los Alamitos (1996)
33. Su, Y.-S., Huang, C.-Y.: Neural-network-based approaches for software reliability

estimation using dynamic weighted combinational models. J. Syst. Softw. 80(4),
606–615 (2007)

34. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, arXiv preprint
arXiv:1412.6980 (2014)

35. Succi, G., Paulson, J., Eberlein, A.: Preliminary results from an empirical study
on the growth of open source and commercial software products. In: EDSER-3
Workshop, pp. 14–15 (2001)

36. Kovács, G. L., Drozdik, S., Zuliani, P., Succi, G.: Open source software for the pub-
lic administration. In: Proceedings of the 6th International Workshop on Computer
Science and Information Technologies, October 2004

37. Petrinja, E., Sillitti, A., Succi, G.: Comparing OpenBRR, QSOS, and OMM assess-
ment models. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey,
G.R., Noll, J. (eds.) OSS 2010. IAICT, vol. 319, pp. 224–238. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13244-5 18

38. Rossi, B., Russo, B., Succi, G.: Adoption of free/libre open source software in
public organizations: factors of impact. Inf. Technol. People 25(2), 156–187 (2012)

39. Di Bella, E., Sillitti, A., Succi, G.: A multivariate classification of open source
developers. Inf. Sci. 221, 72–83 (2013)

40. Vernazza, T., Granatella, G., Succi, G., Benedicenti, L., Mintchev, M.: Defining
metrics for software components. In: Proceedings of the World Multiconference on
Systemics, Cybernetics and Informatics, vol. XI, pp. 16–23, July 2000

41. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Measures for mobile users: an archi-
tecture. J. Syst. Architect. 50(7), 393–405 (2004)

https://keras.io
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-642-13244-5_18

An Intelligent Tutoring System Tool
Combining Machine Learning
and Gamification in Education

Riccardo Di Pietro1(B) and Salvatore Distefano2

1 Centro Informatico Ateneo di Messina - CIAM, University of Messina,
Piazza Pugliatti, 1, 98100 Messina, Italy

rdipietro@unime.it
2 MIFT Department, University of Messina,

Viale F.S. d’Alcontres, 31, 98166 S. Agata, Messina, Italy
sdistefano@unime.it,

http://mdslab.unime.it/rdipietro

Abstract. Technological development has brought about a profound
transformation of modern society. New technologies and media have com-
pletely redefined the way we communicate, inform, study, work, create
and disseminate knowledge, weaving social relationships, with signifi-
cant benefits in our daily lives. However, from an educational point of
view, the availability of unlimited knowledge did not correspond to an
improvement in school productivity of the new generation of learners.
The Intelligent Tutoring Systems (ITSs) promised the dream of defini-
tive learning experience almost 30 years ago but, nevertheless, promising
student learning results have not improved as expected. In this paper, we
briefly introduce the idea behind the “Virtual Study Buddy” tool that
represents our ITS project, and we discuss the reasons that led us to
its design and implementation. The solution integrates machine learning
and gamification concepts with Cloud technologies by exploiting personal
and mobile devices in a smart way.

Keywords: Intelligent Tutoring Systems · Gamification ·
Cloud computing · Machine learning · Virtual Study Buddy

1 Introduction

The spread of Information and Communication Technologies (ICT) has signif-
icantly impacted our day life: on the one hand, new opportunities have been
created, on the other, the relationships have changed. This phenomenon has cer-
tainly led to benefits and improvements in the way of communicating, allowing
to overcome time and space barriers, for example giving access to almost infinite
information sources. E-learning, webinars and online educational institutions are
now becoming increasingly common, indeed. Today it is possible to learn almost
everything thanks to online courses and MOOC, everything is just a “click”
c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 218–226, 2019.
https://doi.org/10.1007/978-3-030-29852-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_18

Virtual Study Buddy 219

away. The current trend in online learning of different disciplines can naturally
lead to better educational opportunities and consequently to work. With regard
to textbooks, on the other hand, e-books are becoming increasingly common,
leading to faster and easier availability of texts and a reduction in the produc-
tion of printed paper. Furthermore, the very way we think about textbooks is
now completely different. No longer just words and images, but specific web-
sites, evaluations, animations, additional materials and whatever else allows the
assimilation of new contents are offered alongside the more traditional reading
methods. No less important is the speed with which today we can find infor-
mation in a few seconds: up to a decade ago it was necessary to spend hours
in the library to find what we were looking for. Given these premises, it seems
that technological development has created a perfect world within the reach of
learners. The Intelligent Tutoring System (ITS) term refers to a computer
system used to support the student by a learning system that performs functions
similar to those of a human tutor. These technologies are designed to interact
with human learners in a natural adaptable way. The final goal of an ITS is to
analyze the competencies and behaviour of the student framed within a digital
learning system that is linked to a specific field of knowledge. The ITS is able
to assess the difference between the learner’s educational situation and the edu-
cational goals to be achieved. Normally, during the training activity, the ITS
gives learners proper comments and suggestions by selecting the most appropri-
ate contents and types of activities to help them correct themselves. Doing so, it
fills learner gaps and allows them to progress in the scheduled training process.
Despite literature show us that the ITSs have improved the learner achievement
and enhance learning, there are problems in their systemic use. On the one hand,
ITSs still have problems of a technical and organizational nature, of which we
will give some consideration in Sect. 2; on the other hand, ITSs have shown
problems of “longevity” in their use. These problems can be summarized both
in the lack of interest and in the boredom of performing repetitive actions by
learners. For this reason, the research is going in the direction of studying how
to use and integrate gamification concepts and mechanisms together with tradi-
tional ITSs. The Gamification term consists of the use of game mechanics to
influence performance and create accountability. These game mechanics satisfy
some basic human psychological needs like a sense of competence, autonomy and
relatedness. Gamification uses the “intrinsic motivation” which is the strongest
driver of long term engagement. Gamification uses sophisticated game mechanics
and takes a long term approach to behavioural changes and students work-habit
creation. Through its power to communicate goals and give real-time feedback
about learners achievement, gamification is an ideal tool for the creation of a
new identity of being a study participant, enabling smooth structural change. In
this paper, we briefly introduce our idea on an ITS that acts as a cognitive tool,
that is able to help learners in the development of the correct study method by
interacting with a digital virtual study partner that can assess and suggest them
how to improve their performance, also learning by such interactions.

220 R. Di Pietro and S. Distefano

The remainder of this paper is organized as follows. Section 2 describes
motivations, some choices and theoretical and technological considerations of
our proposal. Section 3 gives a brief overview of existing works in ITS and gam-
ification. The “Virtual Study Buddy” system, its features and usage scenario are
introduced in Sect. 4.1. Section 5 concludes this paper with some considerations
on planned improvements as future work.

2 Motivation

As stated in [8], ICT technologies can help create an education system based on
the principles that help teachers, students and administration to be effective in
what they do, improving the quality and relevance of teaching-learning process.
With this goal in mind, we started the design and development of our idea of
ITS, we called it “Virtual Study Buddy” or simply “VSB”. Initially, we focused
on digital native [10] needs, namely the generation of people who grew up in
the digital age, comfortable with technology and computers at an early age.
Digital natives who, from an educational point of view, have nevertheless shown
difficulties navigating this new world. As the first milestone of this research,
we have released a prototype that is freely available in beta version [14]. This
prototype is able to detect and process data obtained from a user’s teaching
activity during the learning of a theoretical concept taken from a written text
and, therefore, to return assessments on acquired skills and predictive analysis.
Currently, VSB is experimentally used in a class of a primary school in the
province of Messina (Italy). In this phase, we are collecting user experience
feedback in order to improve the system setup, the gamification process elements
we adopted, and the self-provisioning mechanism of the educational contents we
implemented.

2.1 Choices and Theoretical/Technological Considerations

Is it worth using ITS? Why didn’t they prospered? Does it still make
sense to talk about it in 2019? Although in the last 30 years there has been
a great research activity related to the development of ITS, with a large number
of projects funded, a lot of money spent, experiments well underway, the use
of these systems has never been started concretely, it never became systemic.
Why? The lack of use of ITS systems in the real world outside the univer-
sity research labs certainly does not depend on the lack of results obtained in
the various experimentation experiences described in the literature. All research
suggests that ITSs can achieve remarkable increases in student learning over
traditional education community. From a historical point of view, research on
ITS has the main aim to provide an advanced tutoring experience compara-
ble with that obtainable with a human tutor rather than the one achieved by
conventional computer-aided instruction (simple check on the correctness of the
answer given). From a strictly operational point of view, many ITSs were not
adopted by the education system in a definitive way because it was difficult

Virtual Study Buddy 221

to manage them from an educational point of view. Often it was not so sim-
ple and fast for instructors to create new teaching materials or updating the
existing ones. In most systems, the “knowledge maintenance” had to be done
by skilled programmers at great expense. In our opinion, this fact has led to
an increase in costs and time to be taken into account by the instructors and
by the educational institutions, effectively blocking their diffusion and actual
use. Reducing the costs of all aspects of implementation and management of
ITSs is the only way to make them systemic. In our proposal, we decided to
automate the phase of the “knowledge maintenance” by using artificial intelli-
gence techniques. VSB accepts input teaching materials in digital format that
does not require prior processing (e.g. the normal textbooks recommended in
class). This makes our “knowledge maintenance” economically sustainable. Fur-
thermore, considering this automatism together with those provided for return
assessments on acquired skills and predictive analysis, it appears clear how VSB
is easy to manage even for non-technical personnel.

Why Gamification? According to [6], good videogames are “machines for
learning” since they incorporate some of the most important learning principles
postulated by today’s cognitive science. In [15] the authors explain how a good
gamification process needs the presence of two essential components: the appli-
cation of effective dynamics and the use of the right technologies. Moreover, they
declare that “gamification is 75% Psychology and 25% Technology”.

From the psychological point of view, thanks to the model proposed in [5],
it is possible to identify three fundamental phases to effectively involve the par-
ticipants in the game:

Provide a Motivation. The starting point of each gamification activity is to give
people a reason to participate. The mechanism of the game and the challenge is
deeply rooted in the human mind and is a powerful stimulus but for it to work
at its best it is essential that the players have a prize in front of them, a goal,
an objective that attracts attention and increases determination. The choice of
benefits and prizes is very important because the more accurate it is, the greater
the drive to compete that will be generated in the group.

Provide Tools to Participate. In order for the gamification to work, it is necessary
that all the subjects involved have, at least at the outset, the same possibilities
and the same tools to scale the rankings. In order to adopt gamification to get
positive results, it is necessary to include one or more training and preparation
moments to avoid the possibility of insinuating among the participants that
someone could have been favoured by the organizer.

Offer a Starting Point. Every gamification activity needs a start-up moment
(also called Kickoff) that acts as a zero moment from which to start the chal-
lenge. This means, for example, in creating a dedicated event, a team building
activity, an official communication, and so on. In the case of long-term competi-
tions, intermediate stages must be planned in which to check the progress of the
activity, deliver special prizes, celebrate who is achieving results and motivate
participants in difficulty.

222 R. Di Pietro and S. Distefano

But the most important thing in gamification activity is the timing : if all the
mechanics of the game are not activated simultaneously and in a coordinated
manner the risk is that the participants quickly lose interest in what they are
doing. In Sect. 3 we give an overview of some experimental gamification tools
and technology which have positively contributed to learning and achievements.
In Sect. 4.2 we describe techniques and strategies discussed in [5] that we are
using in VSB experimentation with the aim to involve our participants.

3 Related Work

Some work in literature adopted gamification techniques to ITS solutions. In [7]
the authors present some empirical results on teaching basic Mandarin as a sec-
ond language to college students using a gamification approach. This study shows
some evidence that gamification outperforms non-gamification teaching method
in related to learning concentration, skills, feedback, and immersion. In [4] the
authors examine the benefit of an RPG (Role-Playing Game) to learn other
language and their complicated letters, in this case, Japanese kanji. Moreover,
the paper provides some suggestions with particular reference to how gamifi-
cation can bridge learning outcomes as well as a game-play experience. In [13]
the authors define the concept of gamification and introduce its elements. They
describe how the gamification model and how the connection between motiva-
tion and gamification works. They give some examples of applied gamification
in the focus of smartphone applications. In [1] the authors describe and analyze
some gamification methods used by Zagreb School of Economics and Manage-
ment (ZSEM) in different courses related to technologies and to legal discipline.
The results showed students’ satisfaction and an increase in their motivations
in their studies. In [11] the authors analyze how the application of gamifica-
tion strategies in MOOCs on energy sustainability affects participants’ engage-
ment and motivation in students. The results show the achievement of high
levels both of engagement and student motivation. In [3] the authors present the
integration ‘Gamification’ instructional strategy along with traditional teaching
modes for the final year of Computer Science and Engineering students for the
course of Information and Cyber Security. The results show that problem-solving
among students increased significantly. In [12] the authors applied gamification in
mobile learning for memorizing Alquran in order to increase the fun factor. The
test results showed that there were significant differences in learning outcomes
between the experimental group and the traditional group. In [9] the authors
carried out an exploratory study assessing the effect of using the gamification
of interactive digital storytelling on classroom dynamics and students’ interac-
tion. The results showed an increase in classroom discussions and in students’
engagement.

Virtual Study Buddy 223

Fig. 1. “Virtual Study Buddy” architecture general scheme.

4 The Virtual Study Buddy Tool

4.1 Scenario

Figure 1 shows the general architectural scheme of the Virtual Study Buddy sce-
nario. It consists of a client-server architecture that communicates via HTTP
through JSON files. In [2] we detailed the technological choices behind VSB.
The system offers two main ways to interact, one in which it is possible to cre-
ate knowledge and another one in which it is possible to exercise a particular
knowledge previously initialized in the system itself. As already mentioned, VSB
accepts input educational materials in digital format, labelled in topic and sub-
topic, which does not require previous processing. In particular, the educational
contents can be inserted using the keyboard, capturing it from an image (or
from a photo), or extracting it from a PDF file. After entering new knowledge
into the system, in a completely automatic and transparent way to the user,
the system proceeds with the extraction of the text and some “metrics” using
machine learning services. Texts and metrics will be stored in the system and
used for future comparisons during the users’ learning actions. As detailed in [2],
the metrics that the system is able to extract come from the following types of
analysis: Sentiment Analysis, Entity Analysis, Syntactic Analysis and Content
Classification. The user can decide at any time to exercise his knowledge on a
topic simply by selecting one of those available from the system and starting a
training session. During a training session, thanks to the features provided by
his own mobile device, the user records his speech on the topic he wants to train
and then sends it and to the system. Thanks the machine learning, the system is
able to understand the natural language of man. This means that the users can
present the topic orally in a very personal way and not strictly identical to the
text stored in the system. Once the speech is acquired, the system extracts text
and metrics in the same way as it does in the knowledge creation process. The
final step is to examine the equivalence, the conformity, the oral exposition and
the equal meaning between the text inserted during the knowledge creation and
the text coming from the transcription of the received vowel during the train-
ing session. The two texts are compared and analyzed structurally, syntactically

224 R. Di Pietro and S. Distefano

and semantically. The system analyzes each part of the speech by detecting the
morphology, the dependence on other words present and the taxonomy of the
text, in order to match arguments, concepts, and words present in both texts.
The training session ends with a score expressed in hundredths and in relative
percentages which refers to the oral exposure, the equivalence of the texts, the
similarity of the subject dealt with, the percentage of knowledge of the acquired
text, the time dedicated for oral repetition.

4.2 Techniques We Used to Involve Our Participants

VSB was designed to use gamification dynamics and mechanics in different mixes
and modes depending on the goal you want to achieve. Each user is associ-
ated with a profile in which it is possible to view its “carrier” in the system,
for example, points, levels, badges, rankings, missions, achievements, and so
on. VSB offers three learning methods: autonomous, cooperative and guided.
The autonomous one was explained in Sect. 4.1. The cooperative and guided
ones are based on the same operating principle as the autonomous one, it only
changes learners organization and educational goals. In the cooperative method,
the learners are grouped in open peer groups and all the participants can share
educational materials, goals to reach and results. All the learning activities are
public. In the guided method, there is a user who has the privilege of a “teacher”
that can create closed groups, invite learners, associate different educational
material and goals to learners of the same group, evaluate and reward progress
achieved by the learners with the possibility or not publish the results.

5 Conclusion

This work briefly introduces Virtual Study Buddy, our idea of ITS which uses
machine learning and gamification concepts with Cloud technologies using per-
sonal and mobile devices. We focused our initial efforts on digital natives because
they represent the weak link in this constantly changing world. Furthermore,
because they’re living the ICT technologies as an integral and necessary part of
their lives, digital natives represent a fertile and unexplored field of experimen-
tation for cognitive tools. VSB is currently used experimentally in a class of a
primary school in the province of Messina (Italy), and right now we are collect-
ing feedback and data on both learning and usage activities. As future work,
we planned to make changes and improvements. The data we will get at the
end of the experimentation will guide us in the direction of making VSB more
user-friendly, economically sustainable, easy to maintain even by non-technical
personnel, to encourage its adoption on a larger scale.

Acknowledgements. The work presented in this paper was partially supported by
the ERASMUS+ Key Action 2 (Strategic Partnership) project IOT-OPEN.EU (Inno-
vative Open Education on IoT: improving higher education for European digital global
competitiveness), reference no. 2016-1-PL01-KA203-026471. The European Commis-
sion support for the production of this publication does not constitute the endorsement

Virtual Study Buddy 225

of the contents which reflects the views only of the authors, and the Commission can-
not be held responsible for any use which may be made of the information contained
therein.

References

1. Aleksić-Maslać, K., Rašić, M., Vranešić, P.: Influence of gamification on student
motivation in the educational process in courses of different fields. In: 2018 41st
International Convention on Information and Communication Technology, Elec-
tronics and Microelectronics (MIPRO), pp. 0783–0787, May 2018. https://doi.org/
10.23919/MIPRO.2018.8400145

2. Di Pietro, R., Campanile, D.G., Distefano, S.: Virtual study partner: a cognitive
training tool in education. In: 2019 IEEE International Conference on Smart Com-
puting (SMARTCOMP), June 2019

3. Dixit, R., Nirgude, M., Yalagi, P.: Gamification: an instructional strategy to engage
learner. In: 2018 IEEE Tenth International Conference on Technology for Educa-
tion (T4E), pp. 138–141, December 2018. https://doi.org/10.1109/T4E.2018.00037

4. Fathoni, A.F.C.A., Delima, D.: Gamification of learning kanji with “Musou
Roman” game. In: 2016 1st International Conference on Game, Game Art,
and Gamification (ICGGAG), pp. 1–3, December 2016. https://doi.org/10.1109/
ICGGAG.2016.8052664

5. Fogg, B.: Persuasive technology. In: Fogg, B. (ed.) Persuasive Technology. Inter-
active Technologies, Morgan Kaufmann, San Francisco (2003). https://doi.org/10.
1016/B978-155860643-2/50001-9

6. Gee, J.: What video games have to teach us about learning and literacy. Comput.
Entertain. 1, 20 (2003). https://doi.org/10.1145/950566.950595

7. Heryadi, Y., Muliamin, K.: Gamification of M-learning mandarin as second lan-
guage. In: 2016 1st International Conference on Game, Game Art, and Gamifica-
tion (ICGGAG), pp. 1–4, December 2016. https://doi.org/10.1109/ICGGAG.2016.
8052645

8. Keswani, B., Banerjee, D., Patni, P.: Role of technology in education: a 21st century
approach. J. Commer. Inf. Technol. 8, 53–59 (2008)

9. Molnar, A.: The effect of interactive digital storytelling gamification on microbiol-
ogy classroom interactions. In: 2018 IEEE Integrated STEM Education Conference
(ISEC), pp. 243–246, March 2018. https://doi.org/10.1109/ISECon.2018.8340493

10. Prensky, M.: Digital natives, digital immigrants part 1. On Horiz. 9(5), 1–6 (2001).
https://doi.org/10.1108/10748120110424816

11. Romero-Rodŕıguez, L.M., Ramı́rez-Montoya, M.S., Gonzàlez, J.R.V.: Gamification
in MOOCs: engagement application test in energy sustainability courses. IEEE
Access 7, 32093–32101 (2019). https://doi.org/10.1109/ACCESS.2019.2903230

12. Rosmansyah, Y., Rosyid, M.R.: Mobile learning with gamification for Alquran
memorization. In: 2017 International Conference on Information Technology Sys-
tems and Innovation (ICITSI), pp. 378–383, October 2017. https://doi.org/10.
1109/ICITSI.2017.8267974

13. Tóth, Tóvölgyi, S.: The introduction of gamification: a review paper about the
applied gamification in the smartphone applications. In: 2016 7th IEEE Interna-
tional Conference on Cognitive Infocommunications (CogInfoCom), pp. 000213–
000218, October 2016. https://doi.org/10.1109/CogInfoCom.2016.7804551

https://doi.org/10.23919/MIPRO.2018.8400145
https://doi.org/10.23919/MIPRO.2018.8400145
https://doi.org/10.1109/T4E.2018.00037
https://doi.org/10.1109/ICGGAG.2016.8052664
https://doi.org/10.1109/ICGGAG.2016.8052664
https://doi.org/10.1016/B978-155860643-2/50001-9
https://doi.org/10.1016/B978-155860643-2/50001-9
https://doi.org/10.1145/950566.950595
https://doi.org/10.1109/ICGGAG.2016.8052645
https://doi.org/10.1109/ICGGAG.2016.8052645
https://doi.org/10.1109/ISECon.2018.8340493
https://doi.org/10.1108/10748120110424816
https://doi.org/10.1109/ACCESS.2019.2903230
https://doi.org/10.1109/ICITSI.2017.8267974
https://doi.org/10.1109/ICITSI.2017.8267974
https://doi.org/10.1109/CogInfoCom.2016.7804551

226 R. Di Pietro and S. Distefano

14. Virtual-Study-Partner: Virtual Study Partner - Istruzione (2019). https://play.
google.com/store/apps/details?id=com.knowledgepkg.domenicogiacomocampanile
.knowledgeapp

15. Zichermann, G., Cunningham, C.: Gamification by Design: Implementing Game
Mechanics in Web and Mobile Apps. O’Reilly Media, Inc., Sebastopol (2011)

https://play.google.com/store/apps/details?id=com.knowledgepkg.domenicogiacomocampanile.knowledgeapp
https://play.google.com/store/apps/details?id=com.knowledgepkg.domenicogiacomocampanile.knowledgeapp
https://play.google.com/store/apps/details?id=com.knowledgepkg.domenicogiacomocampanile.knowledgeapp

Early Within-Season Yield Prediction
and Disease Detection Using Sentinel Satellite
Imageries and Machine Learning Technologies

in Biomass Sorghum

Ephrem Habyarimana1(&), Isabelle Piccard2,
Christian Zinke-Wehlmann3, Paolo De Franceschi1,
Marcello Catellani1,4, and Michela Dall’Agata1

1 CREA Research Center for Cereal and Industrial Crops, Foggia, Italy
ephrem.habyarimana@crea.gov.it

2 Vlaamse Instelling voor Technologisch Onderzoek N.V., Mol, Belgium
3 Institute for Applied Informatics, Leipzig, Germany

4 Italian National Agency for New Technologies, Energy and Sustainable
Economic Development, Rome, Italy

Abstract. Sorghum is grown for several purposes including biomass for pro-
ducing energy and fodder, and grain for producing health-promoting foods.
Sorghum is a drought resistant cereal with low input requirements, making it
one of the most promising crops under the world’s tropics and higher latitudes.
Crop monitoring, one of the leading activities in smart farming, can help cut
production costs and more so under climate change. In this study, Sentinel 2A
and 2B-derived fAPAR and NDVI data were used to monitor sorghum phe-
nology, foliar diseases, and to predict aboveground biomass yields months
before harvest, using machine learning approaches including Bayesian methods
and region-convolutional neural network. The results obtained in this work were
encouraging. We were able to predict biomass yields up to 6 months before
harvest with mean absolute percentage error (MAPE) < 0.2, while diseases were
detected with accuracy up to 90%. The best machine learning algorithm was
Bayesian additive regression trees (bartMachine method), while the best bio-
mass yields prediction regressors were the days of year 150 and 165. These
results were achieved at a Pilot level and the technologies showed industrial
scale implementation potentials with tremendous benefits for the farmer,
extension services, policy makers, and other parties at interest.

Keywords: Sorghum biomass � Sorghum diseases � Prediction modeling �
Machine learning � Bayesian learning � NDVI and fAPAR � Satellite imagery �
Sentinel-2

1 Introduction

Sorghum crop (Sorghum bicolor (L.) Moench) is cultivated worldwide mainly for cost-
effectively producing feed, forage, fuel, and health promoting foods [1–3]. Crop yield
and disease forecasting is one of the most important strategies in agriculture which

© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 227–234, 2019.
https://doi.org/10.1007/978-3-030-29852-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_19

enables sustainable development and helps avoid famines and shortages in several
commodities. Many studies have shown that forecasting models based on remote
sensing satellite data can give similar or better performance compared to the more
sophisticated crop growth models [4]. The use of remote sensing parameters as proxies
for grain and biomass yields was documented in previous works, but their use in
biomass sorghum is very limited [5–12]. In addition, several machine learning tech-
niques were implemented in previous remote sensing predictive analytics [13], but, no
Bayesian inference approach was deployed, and this paper is therefore aimed at
addressing this gap. On the other hand, this work aims to make the Sentinel data usable
for the agricultural domain to support large-scale crop disease detection relying upon
chlorophyll dynamics [14, 15]. The specific objectives of this entire work are therefore
to develop machine learning models for within-season prediction of sorghum foliar
disease development based on Sentinel-derived NDVI (normalized difference vegeta-
tion index) and biomass yields before harvest based on fAPAR (fraction of absorbed
photosynthetically active radiation) measurements from Sentinel 2A and Sentinel 2B
satellite constellation images.

2 Materials and Methods

2.1 Open-Field Trials and Biomass Data Collection

Forty-three demonstration trials were run in this work 24 and 19 of which were
evaluated in 2017 and 2018, respectively. The field trial management was fully
described in Habyarimana et al. [1, 13]. The experimental fields were established in
commercial farmers’ fields in Mirandola, Nonantola, and Conselice, and in CREA’s
research station of Anzola. The fields areas ranged from 0.06 ha to 50 ha, with a mean
and median of 5.56 ha and 1.00 ha, respectively. The Biomass from Anzola was spread
over the producing fields, while for the other trials, chopped and baled biomasses were
supplied to private biogas and combustion bioreactors, respectively. Standard operating
procedures [13] were followed to derive dry mass fraction of the fresh materials and
dry mass yields of the trials.

2.2 Satellite Data Acquisition

The fields were geolocalized, geolocation data saved as kml files before they were
integrated into watchITgrow application (www.watchitgrow.be). Sentinel-2A and
Sentinel-2B images from tile 32TQQ (pilots in Conselice) and 32TPQ (pilots in
Anzola, Mirandola and Nonantola) were downloaded from ESA and processed through
atmospheric correction with iCOR [16], cloud and shadow detection using Sen2COR
v2.5.5 (ESA-STEP) and calculation of biophysical parameters using BV-NET (Bio-
physical Variable Neural Network) methodology [13, 17]. The fAPAR estimates were
generated at decametric spatial resolution (10 m pixel size), and a temporal resolution
of 5 days up to 2–3 days in those areas where the different satellite overpasses over-
lapped. Spatial resolution was represented by an individual pixel.

228 E. Habyarimana et al.

http://www.watchitgrow.be

2.3 Modelling Total Aboveground Biomass Yields

Four models assessed in this study included simple linear model (LM), Bayesian
additive regression trees (bartMachine method), Bayesian generalized linear model
(bayesglm method), and eXtreme Gradient boosting (xgbTree method). The simple
linear model was used as a benchmark to gauge the performance of the models
implemented. The models evaluated in this work were selected based on their
robustness as reported in previous studies [13, 18]. Fortnightly fAPAR values acquired
from late April to late August were used in this work, resulting in nine days of year
(DOY) that is, from DOY 120 in April to DOY 240 in August. These days of year were
used as explanatory (regressors) variables in successive predictive modelling of sor-
ghum biomass yields.

During data preparation, zero-variance predictors were removed and, those
remaining were centered and scaled in order to avoid predictors with zero or near-zero
variance which often constitute a problem and behave as second intercepts in predictive
models [18]. The dataset was randomly partitioned into training (80% of the entire
dataset) and testing set (20% of the entire dataset). The training set was used to run a
cross-validation experiment to train and assess the models using a 10x repeated
5-random fold cross-validation (CV), rendering a total of 50 estimates of accuracy and
prediction error. Models were validated on the testing set which was an external test
(validation) sample. The models were evaluated based on the coefficient of determi-
nation (R2), mean absolute error (MAE), mean absolute percentage error (MAPE), and
symmetrical mean absolute percentage error (SMAPE). The MAPE makes it possible
to compare the prediction of different dependent variables that were evaluated using
different scales. The MAE measured the average magnitude of the errors in the set of
predicted values without considering their direction. The MAE provides an unam-
biguous measure of the magnitude of the average error and is therefore more appro-
priate than the Root Mean Square Error (RMSE) for dimensioned evaluations of
average model performance error. The symmetrical MAPE (SMAPE) was used to deal
with some of the limitations of the MAPE. As in MAPE, SMAPE averages the absolute
percentage errors but these errors are computed using a denominator representing the
average of the forecast and observed values. SMAPE has an upper limit of 200%, that
is a 0 to 2 range that is useful to judge the level of accuracy and that should be
influenced less by extreme values. Furthermore, SMAPE corrects for the computation
asymmetry of the percentage error. The MAE built within the repeated cross validation
procedure was used to assess the dependability of the model performance. On the other
hand, all the above metrics as obtained on the testing set were used to assess the model
predictive ability. The importance of the explanatory variables (useful prediction times)
was determined using a 0 to 100 index, with 0 no effect and 100 the highest magnitude
of the regressor’s importance. All statistical analyses were carried out using R software
[19]; the predictive modeling was implemented using the caret R package.

Early Within-Season Yield Prediction and Disease Detection 229

2.4 Disease Detection

The large-scale sorghum disease monitoring experiments were carried out in Anzola,
Italy. The overall process proceeded with annotating and setting the regions of interests
(ROIs) before Sentinel data were downloaded and prepared to create a training set. The
Region-convolutional neural network (R-CNN) was trained and tested; R-CNN was
mainly used for object detection purposes, and a total of five training and test fields for
crop disease detection were identified. Within the diseased field, the most diseased area
of about 1000 m2 (*232 m of perimeter) was delimited within which leaf disease
occurred in about 60 to 70% of the plants. Two foliar diseases were observed, i.e.,
Anthracnose (Colletotrichum sublineolum, most prevalent) and Bacterial stripe
(Robbsia andropogonis). The results obtained on Anthracnose are presented in this
work. The primary hypotheses are that most crop diseases highly correlate with the
chlorophyll content of the crop, and that the content of this pigment can be measured
by multispectral images.

3 Results

3.1 Assessment and Validation of the Predictive Models

Four models implemented in this work were assessed using SMAPE, MAPE, MAE,
and the coefficient of determination (R2). MAE was used both on the testing and the
training set, while SMAPE, MAPE, and R2 were used on the testing set. During the
cross-validated training, MAE was used to assess model reliability (Fig. 1). A repeated
cross-validation was run resulting in MAE resample vectors, each with 50 elements, for
each model. The MAE dispersion during training was increasingly narrower in the
order LM > bayesglm > xgbTree > bartMachine methods. Over the months evaluated,
the prediction errors in the testing set were mostly higher with the linear model which
also displayed the least value of the coefficient of determination (Table 1). Overall, the
bartMachine method showed relatively high R2 values and least values of prediction
errors. The best regressors were D.150 (second half of May) and D.165 (first half of
June) (Fig. 1). D.240, D.195, D.210, and D.120 showed minor effects, while D.135,
D.180, and D.225 showed no prediction importance.

3.2 Foliar Disease

In the global monitoring of sorghum diseases, we were able to process the results for
Anthracnose that were presented in the below Fig. 2. The network worked as it should
and detected the fields of interest. The network was even able to detect the disease and
distinguished it from surrounding areas.

230 E. Habyarimana et al.

4 Discussion

In this work, high levels of model prediction performance (e.g., SMAPE < 0.2,
MAE * 2 t ha−1, R2 * 51%) were obtained from the best model. One of the moti-
vations for undertaking this work was to compare the performance of the recently
implemented machine learning techniques [13] with the Bayesian machine learning
methods. On account of the error metrics used in this work, the Bayesian additive
regression trees (bartMachine method) approach outperformed the other methods

Fig. 1. Left: visualization of models cross-validation MAE (t ha−1) dispersion using boxplot
approach and fAPAR acquired from April to August. LM, bartMachine, bayesglm, xgbTree,
respectively, simple linear model, Bayesian additive regression trees (bartMachine method),
Bayesian generalized linear model (bayesglm method), and eXtreme Gradient boosting (xgbTree
method). Right: Relative importance of regressors (day of year, D) on sorghum biomass yields
using bartMachine method.

Table 1. Model performance metrics.

Model SMAPE (%) MAPE (%) MAE (t ha−1) R2

LM 0.74 0.99 10.47 0.47
bartMachine 0.18 0.16 2.32 0.51
Bayesglm 0.74 0.98 10.34 0.48
xgbTree 0.44 0.36 4.07 0.62

SMAPE, MAPE, MAE, R2, respectively, symmetrical mean
absolute percentage error, mean absolute percentage error, mean
absolute error, and coefficient of determination. LM,
bartMachine, bayesglm, xgbTree, respectively, simple linear
model, Bayesian additive regression trees (bartMachine method),
Bayesian generalized linear model (bayesglm method), and
eXtreme Gradient boosting (xgbTree method).

Early Within-Season Yield Prediction and Disease Detection 231

including xgbTree. The later algorithm was the best method in Habyarimana et al. [13].
Several features can explain the higher performance observed in this work. Bayesian
Additive Regression Trees (BART) are similar to Gradient Boosting Tree
(GBT) methods as they sum the contribution of sequential weak learners. This is
opposed to Random Forests, which average many independent estimates.

But instead of multiplying each
sequential tree by a small constant (the
learning rate) as in GBT, the Bayesian
approach uses a prior. By using a prior and
likelihood to get a posterior distribution of
the prediction, BART gives a much richer
set of information than the point estimates
of classical regression methods. Further-
more, the Bayesian framework has a built-
in complexity penalty, meaning that we no
longer have to make empirical choices
about regularization, max tree-depth and
the plethora of other options we normally
tune via cross-validation. The performance
of bartMachine in this work is supported by
recent findings in scientific literature. As
Jost [20] put it, BART method outper-
formed all the others that were compared,
including gradient boosting machine and
Random Forests, on the 42 different data-
sets evaluated. The most important predic-

tion regressors were the DOYs 150 and 165, which supports the previous findings [13].
The months of May and July can therefore be recommended as the best time to predict
sorghum biomass yields in the Mediterranean region, which is in agreement with
Habyarimana et al. [13]. These favorable prediction times coincide with the fast growth
stage in sorghum grown in the Mediterranean region. In this region, sorghum is sown
mid-to-late April. Therefore, being able to perform accurate sorghum biomass yields
prediction in May-June, i.e., up to six months ahead of harvesting is a remarkable
opportunity for the farmer and farming cooperatives that can use this information for
several business-related purposes. The models developed in this work will also help the
extension services and other policy makers for strategic planning purposes including
assessing alternative means for energy supply and ways to avoid energy crises. As for
crop diseases, they not only reduce yields but also reduce the quality of the produce.
The encouraging results on disease modelling present therefore sorghum stakeholders
with interesting opportunity as they can be harnessed globally for crop protection
purposes.

Fig. 2. Sorghum foliar diseases detected
area with reliability of 0.925.

232 E. Habyarimana et al.

5 Conclusions

The importance of sorghum cannot be overemphasized. It is used for food, feed, and
biofuel and in other socioeconomic sectors. Biomass sorghum demonstrated higher
yields with better energy balance relative to major crops of agroindustrial interest.
Harnessing satellite technology is well poised to help sorghum biomass growers add
more value and stay longer in the business. Sentinel-2-derived fraction of absorbed
photosynthetically active radiation was found to explain primary productivity and was
used in this study as biophysical variable in the predictive modelling of aboveground
biomass yields in annual and perennial sorghums. Bayesian additive regression trees
(bartMachine method), a Bayesian machine learning approach, was found more
promising than recently implemented artificial intelligence approaches, and predicting
sorghum biomass yields using as regressors days of year 150 and 165 offered much
modelling performance.

Acknowledgments. Part of this work was supported (beneficiary: first author) by the project
Data-driven Bioeconomy (www.databio.eu), GA number: 732064 (H2020-ICT-2016-1—inno-
vation action), and the project Risorse GeneticheVegetali (RGV/FAO) 2014e2016 of the Min-
istero delle PoliticheAgricole, Alimentari e Forestali, Rome.

References

1. Habyarimana, E., Lorenzoni, C., Redaelli, R., Alfieri, M., Amaducci, S., Cox, S.: Towards a
perennial biomass sorghum crop: a comparative investigation of biomass yields and
overwintering of Sorghum bicolorx S. halepense lines relative to long term S. bicolor trials in
northern Italy. Biomass Bioenergy 111, 187–195 (2018)

2. El Bassam, N.: Handbook of Bioenergy Crops: A Complete Reference to Species,
Development and Applications. Earthscan Ltd., London (2010)

3. Stefaniak, T.R., Dahlberg, J.A., Bean, B.W., Dighe, N., Wolfrum, E.J., Rooney, W.L.:
Variation in biomass composition components among forage, biomass, sorghum-sudangrass,
and sweet sorghum types. Crop Sci. 52, 1949–1954 (2012)

4. Gallego, J., Kravchenko, A.N., Kussul, N.N., Skakun, S.V., Shelestov, A.Y., Grypych,
Y.A.: Efficiency assessment of different approaches to crop classification based on satellite
and ground observations. J. Autom. Inf. Sci. 44, 67–80 (2012)

5. Diouf, A.A., et al.: Fodder biomass monitoring in Sahelian rangelands using phenological
metrics from FAPAR time series. Remote Sens. 7, 9122–9148 (2015). https://doi.org/10.
3390/rs70709122

6. Shafian, S., et al.: Unmanned aerial systems-based remote sensing for monitoring sorghum
growth and development. PLoS ONE 13, e0196605 (2018)

7. Kross, A., McNairn, H., Lapen, D., Sunohara, M., Champagne, C.: Assessment of RapidEye
vegetation indices for estimation of leaf area index and biomass in corn and soybean crops.
Int. J. Appl. Earth Obs. Geoinf. 34, 235–248 (2015)

8. Panda, S.S., Ames, D.P., Panigrahi, S.: Application of vegetation indices for agricultural
crop yield prediction using neural network techniques. Remote Sens. 2, 673–696 (2010)

9. López-Lozano, R., Duveiller, G., Seguini, L., Meroni, M., García-Condado, S., Hooker, J.:
Towards regional grain yield forecasting with 1 km-resolution EO biophysical products:
strengths and limitations at pan-European level. Agric. For. Meteorol. 206, 12–32 (2015)

Early Within-Season Yield Prediction and Disease Detection 233

http://www.databio.eu
http://dx.doi.org/10.3390/rs70709122
http://dx.doi.org/10.3390/rs70709122

10. Kussul, N., Kolotii, A., Skakun, S., Shelestov, A., Kussul, O., Oliynuk, T.: Efficiency
estimation of different satellite data usage for winter wheat yield forecasting in Ukraine. In:
Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), Quebec City, Canada (2014)

11. Duveiller, G., López-Lozano, R., Baruth, B.: Enhanced processing of 1-km spatial resolution
fAPAR time series for sugarcane yield forecasting and monitoring. Remote Sens. 5(3),
1091–1116 (2013)

12. Yang, C., Everitt, J.H., Bradford, J.M., Escobar, D.E.: Mapping grain sorghum growth and
yield variations using airborne multispectral digital imagery. Trans. ASAE 43, 1927–1938
(2000)

13. Habyarimana, E., Piccard, I., Catellani, M., De Franceschi, P., Dall’Agata, M.: Towards
predictive modeling of sorghum biomass yields using fraction of absorbed photosynthet-
ically active radiation derived from Sentinel-2 satellite imagery and supervised machine
learning techniques. Agronomy 9, 203 (2019)

14. Rumpf, T., Mahlein, A.-K., Steiner, U., Oerke, E.-C., Dehne, H.-W., Plümer, L.: Early
detection and classification of plant diseases with Support Vector Machines based on
hyperspectral reflectance. Comput. Electron. Agric. 74(1), 91–99 (2010). https://doi.org/10.
1016/j.compag.2010.12.012

15. Yang, C., Everitt, J.H., Murde, D.: Evaluating high resolution SPOT 5 satellite imagery for
crop identification. Comput. Electron. Agric. 75(2), 347–354 (2011). https://doi.org/10.
1016/j.compag.2010.12.012

16. De Keukelaere, L., et al.: Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data
using iCOR algorithm: validation for coastal and inland waters. Eur. J. Remote Sens. 51,
525–542 (2018)

17. Weiss, M., Baret, F.: ATBD S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER
(Version 1.1). http://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf. Accessed 04
May 2019

18. Kuhn, M.: Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26
(2008)

19. R Core Team: R: A Language and Environment for Statistical Computing; R Foundation for
Statistical Computing, Vienna, Austria (2013)

20. Jost, Z.: “Bayesian Additive Regression Trees” paper summary. https://towardsdatascience.
com/bayesian-additive-regression-trees-paper-summary-9da19708fa71. Accessed 04 May
2019

234 E. Habyarimana et al.

http://dx.doi.org/10.1016/j.compag.2010.12.012
http://dx.doi.org/10.1016/j.compag.2010.12.012
http://dx.doi.org/10.1016/j.compag.2010.12.012
http://dx.doi.org/10.1016/j.compag.2010.12.012
http://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf
https://towardsdatascience.com/bayesian-additive-regression-trees-paper-summary-9da19708fa71
https://towardsdatascience.com/bayesian-additive-regression-trees-paper-summary-9da19708fa71

Internet of Things

UniquID: A Quest to Reconcile Identity
Access Management and the IoT

Alberto Giaretta1(B), Stefano Pepe2, and Nicola Dragoni1,3

1 Centre for Applied Autonomous Sensor Systems (AASS), Örebro University,
Örebro, Sweden

alberto.giaretta@oru.se
2 UniquID Inc., San Francisco, USA

pepe@uniquid.com
3 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

ndra@dtu.dk

Abstract. The Internet of Things (IoT) has caused a revolutionary
paradigm shift in computer networking. After decades of human-centered
routines, where devices were merely tools that enabled human beings to
authenticate themselves and perform activities, we are now dealing with
a device-centered paradigm: the devices themselves are actors, not just
tools for people. Conventional identity access management (IAM) frame-
works were not designed to handle the challenges of IoT. Trying to use
traditional IAM systems to reconcile heterogeneous devices and complex
federations of online services (e.g., IoT sensors and cloud computing solu-
tions) adds a cumbersome architectural layer that can become hard to
maintain and act as a single point of failure. In this paper, we propose
UniquID, a blockchain-based solution that overcomes the need for cen-
tralized IAM architectures while providing scalability and robustness.
We also present the experimental results of a proof-of-concept UniquID
enrolment network, and we discuss two different use-cases that show the
considerable value of a blockchain-based IAM.

Keywords: IAM · Identity management systems · Blockchain ·
Internet of Things · IoT · Machine-to-machine · M2M

1 Introduction

Information Technology (IT) has radically changed throughout history. In just a
few decades, with the advent of the Internet, computers evolved from standalone
machines to powerful devices capable of sharing information with other devices.
This explosion of capabilities has led to a concomitant expansion of complexity
in a variety of areas, including identity access management (IAM).

Conventional IAM systems are essential for traditional local networks and
businesses, but not well-suited for large networks of complex, highly distributed
devices, such as the combination of Internet of Things (IoT) and machine to

c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 237–251, 2019.
https://doi.org/10.1007/978-3-030-29852-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_20

238 A. Giaretta et al.

machine (M2M) communication. The main reason is that IAM systems were
designed for human beings, not devices. Until a decade ago, a typical scenario
involved a known number of terminals and a comparable number of human users
with well-defined roles. Accounts were issued for each person and access rights
stored on a central server, making access control (AC) relatively easy to manage.
Today, IT is much more complex than it once was.

The Internet of Things is causing the old user-centered paradigm to shift
toward a device-centered one. Previously, accounts were tied to human beings
and devices were just a means to the end of accomplishing all the tasks those
humans performed. Today, devices are increasingly becoming the actors them-
selves, with the tasks narrowed down from general purpose functions to very
specific operations. With this in mind, traditional IAM solutions are expensive,
make maintaining cross-domain consistency challenging, and represent a critical
single point of failure in organizations due to their centralized nature.

1.1 Contribution of the Paper

This paper describes UniquID1, a solution based on an infrastructure that takes
advantage of certificates and blockchain technology to overcome the difficulties
in reconciling IoT credentials and cross-domain IAM.

As we discuss in Sect. 2, UniquID delivers both agnosticism (with respect to
the underlying blockchain chosen) and full decentralization, characteristics that
other solutions cannot provide despite being blockchain-based. Indeed, we would
like to highlight that using the blockchain as part of an architecture does not
entail that the whole architecture is fully decentralized. We will show in the next
section a few examples of this concept.

Summing up, the goals of this paper include the following:

– Describing a cheaper and simpler alternative to traditional IAM systems.
– Illustrating the implementation of cross-domain identities for IoT devices to

circumvent account reconciliation.
– Showing how the proposed design removes single points of failure from the

trust structure.
– Demonstrating direct peer-to-peer (P2P) authentication and authorization

among IoT devices.
– Showing how an IoT device, empowered to locally confirm a smart transac-

tion, deals with partitioning issues as defined by the CAP Theorem.

1.2 Paper Outline

The paper is organized as follows. Section 2 briefly presents the main players
in the blockchain-based IAM landscape, how UniquID addresses some of the
distributed IoT challenges, and how it is linked to the CAP Theorem. Section 3
describes the general concepts behind UniquID, and Sect. 4 shows the experimen-
tal evaluation of an enrolment proof-of-concept. Section 5 describes two example
case studies, and Sect. 6 lays out the paper conclusions and discusses future work.
1 http://www.uniquid.com.

http://www.uniquid.com

UniquID: A Quest to Reconcile Identity Access Management and the IoT 239

2 Related Work

In the past, blockchain has already been advocated for more secure IAM systems.
For example, Kshetri [10] suggests that blockchain can help in strengthen the IoT
in different ways, such as preventing DDoS and IP spoofing attacks. Furthermore,
Gartner estimates that by 2020 the IoT will require up to 1000 times the 2016
network capacity [12]. This entails that the centralized IAM paradigm might not
scale enough to tolerate such requirements, and this is where the decentralized
IAM can provide both more security and scalability.

In Roman et al. [16], the authors lay out the main challenges of distributed
IoT. They argue that identity and authentication are primary concerns due
to the inherent dynamism introduced by device mobility, unstable connections,
and related problems. Throughout this paper, we show how UniquID provides
direct identification and authentication, which in turn enables efficient M2M
resource negotiation. Another issue raised is security, which UniquID ensures
through asymmetric encryption, adding symmetric cipher-based encryption for
larger data streams. Furthermore, depending on the chosen backbone, privacy
can be partially or even totally lost. In cases where privacy is needed, it can be
enforced through non-interactive zero-knowledge proofs such as zk-SNARKs [17]
and Bulletproofs [4], but this involves considerable overhead that may not be
appropriate for resource-constrained devices.

Several parallel projects have been proposed to address the problem of iden-
tity management over blockchain, yet most of them do not address the access
management part. For example, IBM Hyperledger Indy aims to provide an SDK
solution to manage identities over distributed ledgers [6]. Even though UniquID
similarly provides an SDK, our proposal addresses both the identity and the
access management parts of the equation, whereas Indy addresses only identity.

Scholars proposed some solutions as well. Le and Mutka propose
CapChain [11], a blockchain-based access control framework that enables IAM on
public blockchains, ensuring at the same time privacy. The authors built a proof-
of-concept over Monero source code and ran processing time local benchmarks.
However, as shown by the authors, CapChain takes Monero 13 KB transactions
and modifies them, obtaining 30 KB transactions. Therefore, their solution is
tied to a particular blockchain specification, meaning that a dedicated blockchain
should be deployed.

Ouaddah et al. [15] propose a blockchain-based access control named FairAc-
cess, and implemented a proof-of-concept which uses Bitcoin OP RETURN as a
storage field. However, their solution is not completely decentralized, since that
their architecture supposes that every local network has a dedicated centralized
point called authorization management point (AMP). Similarly, Novo [14] pro-
poses a blockchain-based access management that utilizes a management hub
(e.g., an edge node) as a middlepoint between IoT devices and the blockchain.

Even though all the aforementioned papers prove that blockchain-based IAM
is possible, none of them delivers a solution which is, at the same time, data-
storage agnostic and totally decentralized. Furthermore, none of such works
envisage a way to autonomously verify a policy without Internet connection,

240 A. Giaretta et al.

failing to take full advantage of the M2M paradigm. In particular, no one high-
lights the strong relationship between Brewer’s CAP Theorem and IAM solu-
tions, nor motivations and implications of choosing consistency over availability
(or vice-versa) in their proposals.

2.1 Consistency, Availability, and Partition Tolerance (CAP)

According to Brewer’s CAP Theorem [3], one cannot ensure all three of the
following in a system at any given time: consistency (C), availability (A) and
partition tolerance (P). CAP is often misunderstood, with people thinking that
a distributed system is always unable to assure all three requirements. In real-
ity, the choice is only between consistency and availability when a partition or
a failure occurs; under normal circumstances, all three can be assured simulta-
neously. Another misunderstanding is about consistent-available (CA) systems,
which are simply not possible in a distributed scenario. According to CAP, a
system could be designed to be CA, but it would require a network that ensures
no packet is ever dropped at any moment in time. For a fixed partition tolerance
requirement, the only real choice is between consistency and availability.

Consistency, which is a property related to read operation, can be either
strong or eventual. In a consistent-partition-tolerant (CP) scenario typical of
a relational database management system (RDBMS), the system ensures that
every commit to the database is propagated and kept consistent throughout all
database replicas, so that every read operation returns the most recently updated
result. In an available-partition-tolerant (AP) scenario typical of NoSQL, the
read operation does not ensure that the user receives the most up-to-date result.
But even though AP sounds problematic, consistency is eventually achieved,
and this approach is common in many non-critical applications due to its strong
support for partition tolerance and availability.

It is important to keep in mind that partitions and latency are strongly
related, to the point that we can define a partition as a function of latency: the
developer can decide the latency threshold beyond which partitioning occurs. By
indefinitely retrying communications, one is essentially choosing a CP solution
over an AP one, whereas replying right away to a user request means choosing
AP over CP, as the data might be stale (inconsistent with the current state).
The idea of selecting either CP or AP is a false dichotomy, however, as tuning
the time threshold makes it possible to switch from a CP solution to an AP one
after a chosen amount of time.

UniquID aims to provide similar flexibility depending on the application
domain. This can be easily done by deciding for how long an IoT device will try
to download an up-to-date smart contract from the blockchain (i.e., CP behav-
ior) before conceding the resources to the client based on the locally stored smart
contract (i.e., AP behavior). In this particular case, the IoT device is a Uniq-
uID node that can locally read a smart contract even though it does not store
the whole blockchain. The ability to locally read a smart contract means that
any network failure happening between the node and the rest of the UniquID

UniquID: A Quest to Reconcile Identity Access Management and the IoT 241

network is a partition. Therefore, the CAP theorem applies and a thoughtful
decision must be made between consistency and availability.

3 UniquID Overall Architecture

Figure 1 shows how different networks interact with each other in a traditional
IAM infrastructure. An IoT device in Network A must go through the IAM
platform to authenticate on a different IoT network, such as Network B. In the
event of network unavailability, a device cannot authenticate, showing that this
solution does not provide good availability.

Traditional IAM Platform

IoT Network B

IoT Device1 IoT Device2 IoT Devicen

Secure Gateway

IoT Network A

IoT Device1 IoT Device2 IoT Devicen

Secure Gateway

Fig. 1. Traditional IAM systems impose a hierarchical structure over managed devices.
This introduces potential single points of failure in the architecture and strongly
impedes direct M2M communications.

Furthermore, as shown in Fig. 2, this kind of architecture involves a consider-
able number of message exchanges. This overhead decreases the overall respon-
siveness of the system and means that it cannot ensure availability in the event
of network partitioning. Indeed, we can classify a traditional IAM architecture
as CP-compliant without any possibility of choosing an AP solution. This sys-
tem was acceptable in the old days of fixed and stable architectures, but IoT
networks require greater flexibility and interoperability.

A primary goal of UniquID is to replace traditional IAM structures with a less
expensive architecture that is more flexible and easier to manage. As shown in
Fig. 3, the system uses an infrastructure where devices can directly authenticate
each other without a trusted third party IAM platform, as envisioned by the
PGP Web of Trust [5,7].

Figure 4 shows the UniquID workflow, illustrating two main differences from
the IAM setup depicted in Fig. 2. First of all, fewer messages are required than

242 A. Giaretta et al.

EntityB AuthServerEntityA

 obtainResource1Token

obtainResource1

tokenRequired

giveResource1Token

giveResource1Token

giveResource1

Fig. 2. With traditional IAM systems, resource negotiation between a requestor
(EntityA) and a provider (EntityB) involves an additional exchange between EntityA
and an authentication server (AuthServer).

IoT Network A

IoT Device1 IoT Device2 IoT Devicen

Secure Gateway

IoT Network B

IoT Device1 IoT Device2 IoT Devicen

Secure Gateway

Fig. 3. UniquID removes the authentication server, which has two important implica-
tions. First, the potential single point of failure disappears from the network. Second,
scalability greatly improves, as M2M communication is possible and a central authority
is no longer essential for negotiation.

in a traditional approach, which entails that UniquID provides better perfor-
mances than a centralized IAM, assuming that AuthServer and Blockchain have
comparable response times. Second, and more important, the entities use smart
contracts stored in a tamper-proof public blockchain instead of tokens. This not
only ensures higher security but also enables Entity B to store the contract so
it can still authenticate Entity A in the event of a network failure.

This might pose some security issues. Suppose a malicious person M steals
Entity A, the laptop of an important CEO. The network administrator imme-

UniquID: A Quest to Reconcile Identity Access Management and the IoT 243

EntityB BlockchainEntityA

 obtainContractA,B

obtainResource1

giveContractA,B

giveResource1

Fig. 4. UniquID communication is more straightforward than in traditional IAM.
EntityA can negotiate for resources directly with EntityB, which can interrogate the
blockchain to confirm that the request is valid. But this interrogation is not mandatory,
since EntityB can store hash trees and locally confirm certificate validity thanks to the
Merkle tree data structure.

diately revokes all Entity A permissions by issuing a blockchain transaction.
If Entity B is instructed to allow authentication without double-checking the
currentness of the permission, M might try to gain as much time as possible
to cause damage by initiating a network fault that isolates Entity B from the
blockchain. This would enable M to authenticate despite the staleness of the
Entity A permissions stored within Entity B.

At the same time, the ability to verify a smart contract offline might be
invaluable for some other applications. Take as an example a public transporta-
tion service. Assume that user U pays for a one-hour ride ticket that allows him
to take any city bus line he likes. Assume that the city buses pull this ticket from
the blockchain, and temporarily store it locally. After U has done all his errands,
he goes to the bus stop and tries to get on the bus, but a network fault occurs. If
the buses have been configured to authenticate him without double-checking the
current status of the ticket on the blockchain, U will be able to board the bus.
If, on the other hand, the buses need to perform a double-check, U will be left
waiting until the network fault is resolved, which might take a long time. Again,
a malicious user M might isolate the bus he is boarding and extend his ticket for
some time. However, this is a small economic risk that the company would be
willing to take given the more serious consequences that a network fault would
have on all of its transportation infrastructure.

Each scenario has different requirements. One of the strengths of UniquID
is that the end users can decide whether a CP system or an AP system is best
suited to their needs.

244 A. Giaretta et al.

3.1 Imprinting Ceremony

With the goal of excluding any kind of PKI, we envision an approach similar to
the Web of Trust paradigm [5,7] for the node initialization phase. In UniquID,
the imprinting ceremony resembles a PGP key-signing party. To be enrolled in
UniquID, every node must be initialized, which happens in different phases. To
minimize the chances of man-in-the-middle (MitM) attacks, the following steps
should take place as soon as possible in the production chain.

First of all, each node generates its own public key, which is directly (i.e., not
through the Internet) exchanged with other devices in the same local network.
After this phase is complete, the identities are stored in a blockchain through
the imprinting process. An imprinter is a node designated to collect all the new
identities, and forward them to the blockchain of choice.

In details, the imprinter is appointed to perform some critical tasks. First,
the imprinter generates a special smart contract, the imprinting contract (IC),
which links the device to the public key of its administrator. Once the generation
is done, the imprinter collects the ICs and announces them to the blockchain, in
order to ensure data immutability. From this moment on, these enrolled devices
are able to interact with the UniquID infrastructure. If the device is transferred
to another entity (e.g., sold to a customer), the administrator (e.g., the man-
ufacturer) signs a contract and transfers the administrative rights by replacing
its public key with that of the new owner. Ideally, due to the critical role of the
imprinter, the manufacturer deploys a number of different imprinting nodes, to
both speed up the imprinting process, and to avoid single point of failures in the
architecture.

In Fig. 5, we show the main tasks performed during the imprinting phase.
After that a node has created its identity (i.e., the public key), it announces such
identity to the imprinter which is appointed to create the IC and to communicate
it to the blockchain. At that point, the IC will go under the underlying blockchain
processes, until it will be included in a new block and become almost immutable.

4 Experimental Evaluation

In this section, we present the experimental results of a UniquID enrolment
instance, executed on a cloud service. Even though we measured the performance
of the identity generation phase, as well as the imprinting phase, our goal is
not to assess the performance of such instance. Indeed, the system scalability
is tightly tied to the utilized resources, and the small setup we used for our
experiments cannot represent a fully operating UniquID network. The aim of
these experiments is to show that our solution is feasible, and that it successfully
stores immutable identities on a public blockchain. On a larger scale, this would
be enough to make PKIs, passwords, and certificates unnecessary.

To perform our experiments, we created 7 parallel clients, designated to gen-
erate 1000 virtual IoT identities and communicate such identities to 1 imprint-
ing node. Every identity is announced as soon as it is created, and the receiving
imprinting node is appointed both to create the IC transactions and forward

UniquID: A Quest to Reconcile Identity Access Management and the IoT 245

Imprinter BlockchainClient

generateIdentity

announceICs

generateIC

generateNewBlock

OtherUniquID
Nodes

exchangeKeys

announceIdentity

exchangeKeys

Fig. 5. Sequence diagram that depicts a standard imprinting ceremony.

them to the Litecoin Testnet blockchain (arbitrarily chosen for experimental pur-
poses). Imprinter and clients ran over AWS T2. Micro instances, burstable per-
formance instances equipped with 1 Gb of RAM. As a communication protocol
between the imprinter and the clients, we used MQTT (Message Queue Teleme-
try Transport), an ISO standard (ISO/IEC PRF 20922) publish-subscribe-based
messaging protocol [9], designed for lightweight communications.

As aforementioned, we chose Litecoin as a storing public blockchain, which
ensures one mined block every 2.5 min. Considering that a Litecoin block is
1 Mb and that a UniquID transaction is 400 byte, this design choice entails a
theoretical upper bound of 2500 enrolled devices per 2.5 min, or 1000 devices per
minute. More in general, we can define the theoretical upper bound of enrolments
per minute as follows:

Block Size (bytes)
400 (bytes) · Average Mining T ime (m)

, (1)

where 400 bytes are the size of a UniquID transaction, and the other parameters
depend on the underlying blockchain.

4.1 Identity Generation

In the first evaluation phase, we measured the time required to generate an
identity on a virtual client. As shown in Fig. 6a, on average it took 6.61±0.03 ms
to generate an identity.

As stated before, in our experiments we delegated the generation task to the
virtual clients. In an ideal scenario, the IoT devices would create and announce
their identity themselves, therefore we performed an additional experiment, in
order to evaluate the generation time on a low power device. The device we used

246 A. Giaretta et al.

was equipped with an arm926ejste CPU, 256 MB RAM, and a mlinux 3.3.6 OS.
On this IoT device, the generation process took 627 ms, 44.7% of CPU and 0.4%
of RAM. The footprint left on the device storage was 6.70 MB.

While the generation time of 627 ms is substantially higher than the one
obtained with a virtual client (6.61 ± 0.03 ms, as showed in Fig. 6a), generating
an identity well under 1 s is still an excellent result. Moreover, the resources
used by the whole process are reasonably low and the resulting footprint is
small enough to fit into any modern IoT device.

4.2 Imprinting

As a second part of our experiment, we analysed and measured the necessary
time to imprint new identities on a public blockchain. As aforementioned, our
experimental setup is composed by 6 clients that created 1000 identities, and
announced them to a single imprinter node. Again, the imprinter has the role to
create an IC transaction for each identity and submit all the transactions to the
blockchain. In Fig. 6b, we show that the average time to imprint one identity is
9.06 ± 0.35 min.

T
im

e
(m

s)

0

2

4

6

8

10

Generating Identity

(a) Time is in milliseconds, error bar
shows the Standard Error (SE).

T
im

e
(m

)

0

2

4

6

8

10

Imprinting

(b) Time is in minutes, error bar shows
the Standard Error (SE).

Fig. 6. Average times for generating and imprinting identities, respectively.

Our experiments clearly show that the imprinting phase took longer than
identity generation phase: the former took minutes, whereas the latter took
milliseconds. However, when we consider the imprinting time, we have to take
into consideration that a public blockchain has inherent delays. As an example,
Litecoin takes 2.5 min for generating a new block, and there is no guarantee
that every transaction is going to be included in the next block, since many
others might be waiting in the mining pool. Moreover, writing on the blockchain
happens only when an identity has to be imprinted, or when its access policy
has to be modified. Therefore, an average imprinting time of 9.06 ± 0.35 min is
a reasonable result.

UniquID: A Quest to Reconcile Identity Access Management and the IoT 247

4.3 Summing Up: Enrolment

Our experiments show that, in total, it took around 4.5 h to automatically enrol
(i.e., create, announce, and imprint) 1000 identities, without any human inter-
vention. We tried to isolate the issue and find the reason why this practical
result is considerably under the theoretical upper bound of 1000 enrolments per
minute. Identity generation and imprinting processes took, altogether, less than
10 min per device, therefore we focused on the time that it took the IoT devices
to announce their identity to the imprinter.

As we show in Fig. 7, we found out that generated identities were communi-
cated to the imprinter with considerable delays. As a matter of fact it took an
average time of 115.86± 2.19 min to announce a single identity, which is signifi-
cantly larger than the time for identity generation (6.61±0.03 ms) and imprinting
(9.06 ± 0.35 min). We investigated the problem and we found out that, due to
limitations in the Amazon AWS solution we used for the experiment, our virtual
clients could not open more than 5 concurrent sockets, per each. This is a huge
bottleneck that would not happen under normal conditions, as we show in the
next paragraph.

T
im

e
(m

)

0

25

50

75

100

125

150

Announcing Identity

Fig. 7. Average time to announce one identity. Announce time is in minutes, error bar
shows the Standard Error (SE).

Internal Experiment. In order to further investigate this communication bot-
tleneck, we ran some internal tests with exactly the same network setup. These
tests showed that we can easily run up to 50 concurrent threads per MQTT
client, overcoming the communication bottleneck and increasing our capacity to
400 enrolments per minute. Still, at the present stage UniquID does not enable
us to get near the theoretical upper bound, but this is purely due to software
limitations that are currently being addressed.

To sum up, our experiments successfully show that is possible to automati-
cally enrol IoT devices in a blockchain-based IAM. In practice, this means that
enrolled devices no longer need to rely upon PKIs, centralized CA authorities,
certificates, nor passwords. Moreover, our experiments lead to immutable iden-

248 A. Giaretta et al.

tities, publicly verifiable by anyone on the Litecoin Testnet2. Once showed that
our approach works in practice, the next step will be to optimise the performance
to get as close as possible to the theoretical upper bound.

5 Case Studies

In this section, we present a couple of case studies to highlight UniquID strengths
and variety of applications.

5.1 Smart Vehicle

Let us assume a connected vehicle with 3G cellular capability and a mobile app
designed to unlock the doors or start the engine. In a typical scenario, the smart-
phone app connects to a RESTful cloud service responsible for authenticating
the user and forwarding the command to the vehicle, leveraging an encrypted
session pushed through an available 3G connection. This architecture presents
three main issues:

– In the absence of 3G signal coverage, the cloud service cannot perform any
remote command and control of the vehicle, leaving the user locked out [2].

– In large-scale deployments, the cloud service becomes the main bottleneck of
the system, introducing latency and potential downtime during peak hours.

– Every vehicle-side application is exposed to Internet connectivity and thus
must be maintained against zero-day vulnerabilities and malware and ran-
somware attacks [8].

UniquID allows the two endpoints (i.e., the smartphone and vehicle) to
independently synchronize with the ledger, leveraging the hashcash PoW cost-
function [1] to verify the integrity of a new block. Moreover, transactions stored
as Merkle tree leaves allow efficient verification of the veracity of a new autho-
rization [13]. Once this information is locally stored on both ends, handshake and
authorization are performed through low-energy and proximity protocols (e.g.,
BLE) without relying on Internet connectivity or remote command-and-control
services, as previously shown in Fig. 4. Figure 8 shows the resulting architecture.

5.2 Industrial Sensor Network

Consider an industrial Internet application where a large network of remotely
installed, battery-operated sensors collect time series data in a low-connectivity
environment. These sensors do not have cellular signal coverage, and satellite
uplink is not a feasible option. The data from these sensors is periodically “har-
vested” by human operators through a portable device, such as a laptop or
rugged tablet, using an ad-hoc Wi-Fi connection to the sensors. This architec-
ture presents two main challenges:
2 For instance, the first enrolment is verifiable at: https://testnet.litecore.io/tx/

feac5a1dc645c701ea17ceb1657541d7094fbb43f18749cd9bd8a54014bd0197.

https://testnet.litecore.io/tx/feac5a1dc645c701ea17ceb1657541d7094fbb43f18749cd9bd8a54014bd0197
https://testnet.litecore.io/tx/feac5a1dc645c701ea17ceb1657541d7094fbb43f18749cd9bd8a54014bd0197

UniquID: A Quest to Reconcile Identity Access Management and the IoT 249

Smart Vehicle

Blockchain

Smartphone

Independent synchronization Independent synchronization

Offline Verification

Fig. 8. UniquID enables M2M offline verification of smart contracts, which makes
possible to start a loaned smart vehicle even in case of network failure.

– IAM for the sensors is achieved through Wi-Fi passwords, which require com-
plex maintenance and periodic rotation (e.g., in case of operator change).

– Multi-tenancy scenarios require an additional layer of authentication at the
application level, which needs to manage passwords stored on the sensor itself.

UniquID approach pushes the storage of these credentials onto the distributed
ledger, enabling a remotely controlled, asynchronous IAM solution. A typical
implementation leverages a central orchestration interface that sends microtrans-
actions containing the ACL between one sensor and its authorized users on the
distributed ledger. As a result, no passwords are needed: combining the ledger
pseudonymous identity from the wallets (installed on the operator’s device and
the sensor), and blockchain-stored transactions that contain the ACLs, a sen-
sor can recognize the operator’s device and provide the data that the user is
authorized to collect.

Furthermore, the operator acts as the dispatcher of the most recent blocks
on the ledger. PoW is sufficient to verify the integrity of any received block,
reducing the risk of forged blocks (which would require network consensus) and
removing the need for a trusted session between peers. In this way, even if
always disconnected from the Internet, sensors can be kept up to date with
the latest authorizations stored on the ledger. Figure 9 shows the resulting
architecture.

250 A. Giaretta et al.

Blockchain

Offline Communication

Human OperatorSensor2

Sensor1

Sensorn

Fig. 9. UniquID enables a human operator to authenticate against non-connected sen-
sors. Furthermore, the user dispatches to the sensors the latest blocks of the shared
ledger.

6 Conclusion

In this paper, we first briefly covered why current IAM systems and PKIs are
too cumbersome for the challenges posed by the IoT paradigm. We also showed
how the CAP theorem strongly applies to blockchain-based IAMs, and how
developers can independently decide how their applications react to network
partitions.

We illustrated the overall UniquID architecture and how its SDK aims to
simplify both the trust architecture as a whole and resource negotiation flows.
We also discussed in detail how the backbone architecture of a blockchain-based
IAM can be designed, as well as the benefits and drawbacks of each solution.

We provided an overview of the essential features that devices need to imple-
ment to participate in UniquID, as well as how the initial imprinting ceremony
of such devices happens. We performed a proof-of-concept experiment which led
to generating and imprinting 1000 identities on the Litecoin Testnet, virtually
immutable and publicly verifiable by anyone. Last, but not least, we provided
two relevant case studies that showed how UniquID could help unlock the poten-
tial of IoT. In future works we will conduct extensive experiments to assess the
robustness and responsiveness of UniquID under a number of adverse conditions,
such as man-in-the-middle and denial-of-service attacks.

Having shown the feasibility of our approach through practical experiments,
future work will focus on optimising the performance of the system to get as
close as possible to the theoretical upper bound of 1000 enrolled devices per
minute.

Acknowledgements. We would like to thank Charles Kozierok for his help to proof-
read the manuscript.

UniquID: A Quest to Reconcile Identity Access Management and the IoT 251

References

1. Back, A., et al.: Hashcash-a denial of service counter-measure (2002). http://www.
hashcash.org/papers/hashcash.pdf

2. Boyle, D.: Tesla driver gets stranded in the desert after leaving his keys behind
(2017). http://www.dailymail.co.uk/news/article-4128220/Tesla-driver-stranded-
desert-forgot-keys.html

3. Brewer, E.: Cap twelve years later: How the “rules” have changed. Computer 45(2),
23–29 (2012). https://doi.org/10.1109/MC.2012.37

4. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy (SP), pp. 319–338 (2018). https://doi.org/10.1109/SP.2018.
00020

5. Caronni, G.: Walking the web of trust. In: IEEE 9th International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises 2000, WET
ICE 2000, pp. 153–158. IEEE (2000)

6. Dhillon, V., Metcalf, D., Hooper, M.: The hyperledger project. In: Dhillon, V.,
Metcalf, D., Hooper, M. (eds.) Blockchain Enabled Applications, pp. 139–149.
Apress, Berkeley (2017). https://doi.org/10.1007/978-1-4842-3081-7 10

7. Grandison, T., Sloman, M.: A survey of trust in internet applications. IEEE
Commun. Surv. Tutor. 3(4), 2–16 (2000). https://doi.org/10.1109/COMST.2000.
5340804

8. Greenberg, A.: Hackers remotely kill a jeep on the highway with me in it (2015).
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

9. ISO/IEC: Iso/iec 20922:2016 - information technology - message queuing telemetry
transport (mqtt) v3.1.1 (2016). https://www.iso.org/standard/69466.html

10. Kshetri, N.: Can blockchain strengthen the internet of things? IT Prof. 19(4),
68–72 (2017). https://doi.org/10.1109/MITP.2017.3051335

11. Le, T., Mutka, M.W.: Capchain: a privacy preserving access control framework
based on blockchain for pervasive environments. In: 2018 IEEE International Con-
ference on Smart Computing (SMARTCOMP), pp. 57–64, June 2018. https://doi.
org/10.1109/SMARTCOMP.2018.00074

12. van der Meulen, R.: Gartner says 6.4 billion connected “things” will be in use in
2016, up 30 percent from 2015 (2015). www.gartner.com/newsroom/id/3165317

13. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

14. Novo, O.: Blockchain meets IoT: an architecture for scalable access management
in IoT. IEEE Internet Things J. 5(2), 1184–1195 (2018). https://doi.org/10.1109/
JIOT.2018.2812239

15. Ouaddah, A., Abou Elkalam, A., Ait Ouahman, A.: Fairaccess: a new blockchain-
based access control framework for the internet of things. Secur. Commun. Netw.
9(18), 5943–5964 (2017). https://doi.org/10.1002/sec.1748

16. Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security
and privacy in distributed internet of things. Comput. Netw. 57(10), 2266–2279
(2013). https://doi.org/10.1016/j.comnet.2012.12.018. http://www.sciencedirect.
com/science/article/pii/S1389128613000054

17. Sasson, E.B., et al.: Decentralized anonymous payments from bitcoin. In: 2014
IEEE Symposium on Security and Privacy, pp. 459–474, May 2014. https://doi.
org/10.1109/SP.2014.36

http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf
http://www.dailymail.co.uk/news/article-4128220/Tesla-driver-stranded-desert-forgot-keys.html
http://www.dailymail.co.uk/news/article-4128220/Tesla-driver-stranded-desert-forgot-keys.html
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-1-4842-3081-7_10
https://doi.org/10.1109/COMST.2000.5340804
https://doi.org/10.1109/COMST.2000.5340804
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.iso.org/standard/69466.html
https://doi.org/10.1109/MITP.2017.3051335
https://doi.org/10.1109/SMARTCOMP.2018.00074
https://doi.org/10.1109/SMARTCOMP.2018.00074
www.gartner.com/newsroom/id/3165317
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/JIOT.2018.2812239
https://doi.org/10.1109/JIOT.2018.2812239
https://doi.org/10.1002/sec.1748
https://doi.org/10.1016/j.comnet.2012.12.018
http://www.sciencedirect.com/science/article/pii/S1389128613000054
http://www.sciencedirect.com/science/article/pii/S1389128613000054
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36

Automated Composition, Analysis
and Deployment of IoT Applications

Francisco Durán1, Gwen Salaün2(B), and Ajay Krishna2

1 University of Málaga, Málaga, Spain
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, 38000 Grenoble, France

Gwen.Salaun@inria.fr

Abstract. Building IoT applications of added-value from a set of available
devices with minimal human intervention is one of the main challenges facing
the IoT. This is a difficult task that requires models for specifying objects, in
addition to user-friendly and reliable composition techniques which in turn pre-
vent the design of erroneous applications. In this work, we tackle this problem
by first describing IoT applications using abstract models obtained from existing
models of concrete devices. Then, we propose automated techniques for building
compositions of devices using a repository of available devices, and an abstract
goal of what the user expects from such compositions. Since the number of pos-
sible solutions can be quite high, we use both filtering and ranking techniques
to provide the most pertinent solutions to users. The provided solutions satisfy
the given goal and may be analysed with respect to properties such as deadlock-
freeness or unmatched send messages. Finally, the application can be deployed
using existing execution engines.

1 Introduction

The Internet of Things (IoT) is a network of physical devices and software entities that
interact together for fulfilling an overall objective. Although the devices are already
available and omnipresent in our daily lives, the software allowing us to easily connect
and manipulate those objects is still under development. Composition of devices and
objects is a difficult and error-prone task for several reasons. First, there is a need for
languages and models for describing (heterogeneous) objects or object interfaces. Sev-
eral levels of expressiveness can be considered depending on the characteristics of the
object (signature, behaviour, semantics, quality of service). Once a model of objects is
properly defined, one can design a composition by specifying how these objects inter-
act. This composition process should be as automated as possible to make it usable in
practice by any end-user. Moreover, when building such a composition, several kinds of
mismatch can arise resulting in an erroneous application. Finally, the goal is to deploy
and run IoT applications with minimal human intervention.

In this paper, we propose techniques for supporting end-users during the composi-
tion and deployment tasks. We have a specific focus in this work on behavioural models
for objects, that is, each object must exhibit the actions or messages it can execute as
well as the order in which these actions must be triggered. Given such models, our

c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 252–268, 2019.
https://doi.org/10.1007/978-3-030-29852-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_21

Automated Composition, Analysis and Deployment of IoT Applications 253

techniques aim at automatically building satisfactory compositions given a repository
of available objects and a description of the result that we call goal. The goal is an
abstract specification of what the user expects from the resulting composition. A com-
position is satisfactory if it conforms to the goal requirements. Moreover, a composition
can be analysed to check whether some additional correctness properties are verified.
For example, such a property can state that each reachable send message has a matching
receive message in another object. Finally, when a satisfactory composition is obtained,
it is deployed by relying on existing execution engines.

Our solution consists of several consecutive steps for computing satisfactory com-
positions. First, we extract from the repository relevant objects wrt. the goal of the
composition. For those objects, we compute all combinations and apply filtering tech-
niques for keeping only objects exhibiting expected interactions according to the goal.
We then check whether the remaining candidate compositions respect a defined com-
patibility notion. In this paper, we use a notion based on the equivalence of the intended
goal with a candidate composition of objects. Additional properties can be verified on
the resulting compositions, such as, e.g., the absence of deadlocks. If there are several
compositions that satisfy the goal, we use ranking techniques for presenting the results
in a specific order according to several possible relevance criteria.

The whole composition process is automated by an implementation in Maude [11].
We also propose full automation of the deployment of the designed application, which
allows our approach to support the development of IoT applications from the selec-
tion of a subset of satisfactory objects to their final deployment. In this work, we rely
on Mozilla Project Things as execution and deployment platform, although other IoT
platforms could have been used (Home Assistant, IFTTT, OpenHAB, etc.). We assume
that objects are described using the Web Thing Description format by Mozilla. We also
assume that the objects available in a given context (room, house, building, etc.) can be
discovered using a search service, resulting in what we call a repository of objects. The
goal provided by the end-user is described using a set of rules IF event THEN action
representing what is expected from the generated composition.

Our prototype tool was applied to several examples for validation purposes. Since
we target in this work applications at the level of a building (private house, office, nurse
home, etc.), we made experiments with repositories consisting of about one hundred
objects, for which the approach was able to compute compositions satisfying a given
goal within a reasonable amount of time.

The rest of this paper is organized as follows. Section 2 introduces the model we
use for objects and other notions (repository, goal, environment). Section 3 first presents
the different steps that constitute our approach for automated composition of objects,
and then describes our implementation and some experiments we carried out on sev-
eral examples. Section 4 presents how IoT applications can be deployed in practice.
Section 5 compares our approach to related work and Sect. 6 concludes the paper.

2 Models

In this section, we first introduce the model we use for describing devices and objects.
Note that in the paper, for the sake of simplicity, we mainly use object as a common

254 F. Durán et al.

term for both devices and software elements. A repository is a set of objects, each
object belonging to a family (TV, camera, light bulb, software app, window, etc.). We
then present our notion of composition, which relies on implicit bindings. Finally, we
define the notion of goal that is used in this work for guiding the composition process
and the notion of environment for modelling open systems.

In this work, we assume that objects are described using Mozilla’s Web Thing
Description format,1 which provides a vocabulary for describing objects in a machine
readable format with a JSON encoding. The description is complementary to the current
W3C Web of Things (WoT) Working Group’s abstract data model. WoT architectural
style uses foundations of Web technology to build IoT in a decentralised, inter-operable,
and scalable fashion [15]. Our choice of WoT-based description is guided by the fact
that things in WoT are backed by a standard data model and APIs which help in real-
world deployment of objects. However, for designing the composition, we prefer to rely
on an abstract model for objects, where we just keep the two most important attributes
from a composition perspective, namely Event and Action. An event is emitted by a
device (e.g., a room becomes too dark) whereas an action can be carried out on a device
(e.g., turn on a light). The properties attribute in a Thing Description provides infor-
mation on the type of event or action the device supports. Listing 1 shows an excerpt
of the Hue temperature sensor description which describes a temperature sensor prop-
erty. Since an order is possible between several events/actions (e.g., turn on a light and
then turn off the light), we also keep this order in the model. To sum up, we describe
an object using a Labelled Transition System (LTS) where labels either correspond to
events or actions.

Definition 1. An object is an LTS (S , s0, Σ,T) where S is a finite set of states, s0 ∈ S is
the initial state, Σ = Σ! ∪ Σ? ∪ {τ} is a finite alphabet partitioned into a set of events, a
set of actions, and the internal action τ, and T ⊆ S × Σ × S is a transition relation.

We write m! for an action m ∈ Σ! and m? for an event m ∈ Σ?. We also call them as
send and receive messages, respectively, for homogeneity reasons. We use the symbol
τ for representing internal activities (variable assignment, internal computation, local
decision, etc.). A transition is represented as s l−−→ s′ ∈ T where l ∈ Σ.

1 Project Things by Mozilla: https://iot.mozilla.org/wot/.

https://iot.mozilla.org/wot/

Automated Composition, Analysis and Deployment of IoT Applications 255

This abstract model presents two advantages. First, it allows us to support any con-
crete model for a Thing Description in a uniform way. Second, it is simple and expres-
sive enough for designing a composition consisting of several objects.

We assume that each object comes with a defined model that can be automatically
obtained from its JSON description. As far as the behavioural part is concerned (LTS),
this can be defined by an expert who has the knowledge of the device (i.e., device
manufacturers can provide the model along with the datasheet) or they can be built by
learning the behaviour of these devices [23].

We call repository a set of objects available, for example, in a room, a house or
a building, depending on the context of the application. In practice, these objects are
discovered using a search functionality that allows to identify all objects available on
a given network. Search can be implemented using the mDNS protocol on the network
or via Bluetooth Eddystone beacon for devices in close physical proximity. Each object
is defined by its concrete model in JSON format. As far as composition is concerned,
abstract models introduced before are enough, and therefore we assume that each object
is defined by its abstract model (LTS) and is associated to a family.

Definition 2. A repository is a set of couples (F,O) where F is a family name and O is
a set of objects defined by their abstract model.

A composition is defined as a set of objects described by their abstract models.
We assume the objects involved in a composition interact using binary communication.
This means that one interaction occurs between one send message (action) and one
receive message (event) of two different objects on the same message name. Addition-
ally, we consider a synchronous communication model, that is, two objects involved
in an interaction evolve at the same time when communicating (a.k.a. handshake com-
munication). Considering asynchronous communication (communication via message
buffers or publish-subscribe) is part of the perspectives of this work.

A goal is an abstract description of what the end-user expects from the composition-
to-be. To define this goal, we take inspiration into recent languages proposed for con-
necting devices and software (IFTTT) or for smart home software automation (Open-
HAB). A goal is thus defined as a set of rules IF x THEN y, where x and y correspond
to interactions between two objects. A goal is also defined by a set of family names,
which gives an information about the objects to participate in the composition. E.g.,
the user can write that she wants three objects in the composition: a TV, a camera and
a motion sensor. Family names can be derived from the @type member annotation of
the Web Thing Description model. This annotation describes the device capabilities and
required properties which is the basis for defining families. E.g., the Hue temperature
sensor description in Listing 1 belongs to the TemperatureSensor family of devices.

Definition 3. A goal is a couple (R, FS) where R is a set of rules and FS is a set of
family names.

Since a set of rules directly translates to an LTS (each rule transforms to a sequence
of two transitions outgoing from the initial state and coming back to it), goals can also
be designed as LTSs (as shown in the running example at the end of this section).

256 F. Durán et al.

Fig. 1. Running example: goal

Last, it is worth observing that, given the dynamicity of IoT applications, we cannot
assume that compositions of objects are built once and for all. They can evolve over
time and objects can be added/removed for several reasons (replacement, loss of con-
nectivity, upgrade, failure, etc.). Therefore, an IoT application can be seen like an open
system where all messages are not necessarily bound and can be kept open for further
addition of objects. Unbound messages can also correspond to external behaviours (a
motion or an action of a human being). In our approach, we consider these actions to be
part of the environment. The environment can be initially empty and enriched through-
out the composition process, if necessary.

Definition 4. An environment is a set of send and receive messages.

Example. As a running example, we use a smart home application, which aims at auto-
matically regulating the temperature and brightness in a house. To do so, we require
five objects, namely a temperature sensor, a connected window, a brightness sensor, a
light, as well as a piece of software, namely a smart home application running on a
smartphone and acting like an orchestrator. We now define the goal of the composition
using the rules (and corresponding LTS) given in Fig. 1. As described in this figure, the
end-user expects two behaviours from the composition-to-be: (i) when a temperature
sensor detects a too-high temperature with respect to human standards (say 20 ◦C), a
window should be opened; (ii) when a brightness sensor detects a too low level of lumi-
nosity, a light should be turned on. We will present in the next section the techniques
we propose for automatically computing compositions satisfying the goal from a set of
objects available in the repository.

3 Composition and Analysis

In this section, we present our techniques for automatically computing IoT applications
by composition of available objects. Figure 2 presents an overview of the different steps
of our approach, which takes as input a repository of objects, a goal and an environment.
As output, we generate a list of resulting compositions satisfying the goal (also called
compatible compositions) and possibly satisfying additional properties of interest such
as deadlock freeness. This list can be empty if there is no solution. If there is more
than a solution, the solutions are ranked with respect to some quality criterion. Note
that human intervention is required only at the beginning of the composition process to
define the goal and if necessary, the environment. Each step of our approach refines the

Automated Composition, Analysis and Deployment of IoT Applications 257

number of candidate compositions (C′ ⊆ C and C′′ ⊆ C′), but for the last step (ranking)
that only orders the compositions taken as input without discarding any of them.

Fig. 2. Overview of the approach

In the rest of this section, we first present with more details each step of the app-
roach. Then, we introduce the implementation of these techniques using Maude. Finally,
we describe some experiments we carried out for validating our approach.

3.1 Steps of Our Approach

Combine and Filter. The first step of our approach takes as input the part of the goal
corresponding to the set of family names and the repository, and generates all possi-
ble combinations. For example, if the composition needs a temperature sensor and a
connected window, and there are two different temperature sensors and three windows
in the repository, we generate all possible combinations (six possible couples in that
specific case). For each combination, we apply some filtering techniques to discard it if
we know beforehand that this composition will not be able to satisfy the given goal. To
do so, we rely on static analysis of the alphabets of the objects involved in a candidate
composition. We do not want to build the result of the composition (the LTS corre-
sponding to all possible executions of a set of interacting objects) because this would
be too costly computationally speaking. This composition LTS will be built in the next
step only for candidate compositions that are not discarded by the filtering process.

The filtering process aims at traversing the alphabet of the goal and at checking
whether, for each element of the goal alphabet, there are two objects in the composition
with matching messages on that message, that is, one send message and one receive
message with that label in two different objects. This is mandatory, otherwise no inter-
action would be possible on that message, resulting in a deadlock. This approach is
purely syntactic, so it is very efficient, but we may still have unsatisfactory candidate
compositions. The next step builds the behavioural composition for this set of candidate
objects and explores all possible executions to verify that the aforementioned interac-
tions can effectively occur according to the behavioural models of the involved objects.

Definition 5. Given a goal (G, FS) withG = (SG, s0
G, ΣG,TG) and a set of n object LTSs

(S i, s0
i , Σi,Ti) corresponding to a candidate composition according to the family names

258 F. Durán et al.

given in FS , this composition is not filtered out iff for each m ∈ ΣG, ∃i, j ∈ {1, . . . , n},
such that m ∈ Σ!

i and m ∈ Σ?
j .

Fig. 3. Running example: filtering techniques

Example. Let us illustrate filtering techniques on the running example, and more partic-
ularly on the bottom half of the goal given in Fig. 1, which focuses on temperature and
windows. In this part of the goal, we need one temperature sensor, one window and one
smart app. The smart app acts like an orchestrator and is usually defined by end-users
or reused from existing applications proposing common scenarios for them. The smart
app may provide many functionalities, but we focus on those of interest with respect
to the current goal. Figure 3 gives four possible objects that match the required family
names. Consider successively the two following combinations (temp. sensor, window
(v1), smartapp) and (temp. sensor, window (v2), smartapp). The first composition is
discarded by our filtering techniques, because there is one interaction appearing in the
goal (‘open’) that is not possible in the composition (missing ‘open?’ message). The
second composition is preserved by our filtering techniques because both ‘warm’ and
‘open’ interactions are possible.

Compose and Check Compatibility. This step takes as input all combinations of
objects obtained using the family names defined in the goal and the repository, which
have been kept after application of the filtering techniques. For each combination, we
first build the resulting LTS corresponding to the composition a.k.a. synchronous prod-
uct [2] in the automata-based terminology. This LTS is built independently of the goal.
It considers the objects involved in the combination and the environment. All synchro-
nize on the intersection of their alphabets (no independent evolution of observable mes-
sages). We recall that the communication model is synchronous, binary, and matches
two transitions with the same label and opposite directions (sender and receiver).

Definition 6. Given a set of n object LTSs (S i, s0
i , Σi,Ti), the synchronous composition

is the labelled transition system CLTS = (S c, s0
c , Σc,Tc) where:

– S c = S 1 × . . . × S n

– s0
c ∈ S c such that s0

c = (s0
1, . . . , s

0
n)

– Σc = ∪iΣi
– Tc ⊆ S c × Σc × S c, and for s = (s1, . . . , sn) ∈ S c and s′ = (s′1, . . . , s

′
n) ∈ S c:

Automated Composition, Analysis and Deployment of IoT Applications 259

(interact) s m−−→ s′ ∈ Tc if ∃i, j ∈ {1, . . . , n} where i � j : m ∈ Σ!
i ∩ Σ?

j where ∃
si

m!−−−→ s′i ∈ Ti, and s j
m?−−−→ s′j ∈ T j such that ∀k ∈ {1, . . . , n}, k � i ∧ k �

j⇒ s′k = sk
(internal) s τ−−→ s′ ∈ Tc if ∃i ∈ {1, . . . , n}, ∃ si τ−−→ s′i ∈ Ti such that ∀k ∈ {1, . . . , n}, k �

i⇒ s′k = sk

Fig. 4. Running example: composition and compatibility

Once the composition LTS is built, we first hide all interactions in the composition
LTS that do not belong to the alphabet of the goal. Then, we need to compare both
LTSs (goal LTS and composition LTS) to check if they produce the same observational
behaviours. Since there are possibly hidden (or τ) transitions in the composition LTS,
we need to use a comparison notion that takes these specific transitions into account.
This is the case of the branching bisimulation [25] (≡br), which is one of the finest
bisimulation notions to compare LTSs in presence of hidden actions.

Definition 7. Given a goal LTS G and a composition LTS CLTS build from a set of
object LTSs, these objects satisfy the goal iff: hideΣG (CLTS) ≡br G.

These two steps are applied to all candidate compositions issued from the combine
and filter step. Each composition respecting the above criterion is part of the resulting
set of compatible compositions.

Example. Going back to the running example and particularly to the result obtained in
the previous step to compose objects temp. sensor, window (v2), and smartapp (Fig. 3),
we first build the composition of those three objects. We assume the environment is
empty in that case. Figure 4 shows the resulting composition LTS where we can see
that there are four possible interactions in a loop. Note that this loop exists because the
window can alternatively be opened and closed in sequence. Moreover, there are two
other interactions (‘cold’ and ‘warm’) corresponding to messages exchanged between
the temperature sensor and the smart application. Therefore, as far as compatibility
is concerned, when we compare the goal (half of it to be precise) with the composi-
tion LTS where we hide interactions ‘cold’ and ‘close’ (dashed transitions) that do not

260 F. Durán et al.

Fig. 5. Running example: (left) temperature sensor (v2) and (right) composition and compatibility

belong to the alphabet of the goal, these two LTSs are not bisimilar and the candidate
composition is not a compatible composition.

Assume now a slightly different version of the temperature sensor where the model
actually alternates between warm and cold messages as shown in Fig. 5 (left). When
composing this temperature sensor with the connected window (v2) and the smart app
given in Fig. 3, we obtain the composition LTS given in Fig. 5 (middle) where only four
possible interactions in a loop are maintained. This LTS turns out to be bisimilar then
compatible when focusing on the goal alphabet only.

Check Properties. After compatibility checking, we keep only compositions that sat-
isfy the goal as explained beforehand. However, these compositions may not satisfy
additional properties. In this paper, we focus on properties that are independent of the
application. Properties that depend on the application (e.g., a specific message never
occurs after another one) can be specified using temporal logic and verified using model
checking techniques [4] for instance. As far as independent properties are concerned,
we present two examples of such properties in this paper, namely deadlock freeness and
unmatched send messages.

In our context, a deadlock occurs when there is a (global) state in the composition
LTS without outgoing transition and there is one object that could evolve independently
from its (local) state because in its own model there is an outgoing transition. If we put
it in another way, this object has a possible behaviour to move on in its model but this
transition cannot be executed in the context of the composition.

Definition 8. Given a set of object LTSs (S i, s0
i , Σi,Ti) and the corresponding compo-

sition LTS CLTS = (S c, s0
c , Σc,Tc), the composition is deadlocking if there is a global

state s = (s1, . . . , sn) ∈ S c such that �s l−−→ s′ ∈ Tc but ∃ j ∈ {1, . . . , n}, s j ∈ S j and
s j

l′−−→ s′j ∈ T j where l′ is either a send or receive message.

This notion of deadlock is quite strong, because we focus on global states without
outgoing transitions. There is another similar case in which there is a global state with
at least one outgoing transition, and there is one object with a local transition outgoing
from that state labelled with a send message that does not appear in the composition
LTS. This property allows one to detect unmatched send messages.

Definition 9. Given a set of object LTSs (S i, s0
i , Σi,Ti) and the corresponding com-

position LTS CLTS = (S c, s0
c , Σc,Tc), there is unmatched send messages if ∃s =

Automated Composition, Analysis and Deployment of IoT Applications 261

(s1, . . . , sn) ∈ S c, such that ∃s l−−→ s′ ∈ Tc and ∃ j ∈ {1, . . . , n}, s j ∈ S j and
s j

m!−−−→ s′j ∈ T j and ∀s l−−→ s′ ∈ Tc, l � m.

Example. For illustration purposes, let us focus on the part of the running example that
aims at lighting up/down the room depending on the level of brightness. To do so, we
present three objects in Fig. 6 (left) resulting in a compatible composition: the composi-
tion LTS (middle) and the goal (right) are bisimilar. The resulting composition (middle)
is free of deadlocks, but is not free of unmatched send messages because in both global
states in the composition, the brightness sensor can always send a ‘bright!’ message,
which is not caught in the composition because there is no counterpart (‘bright?’) in
any other object. In such a situation, the user can either decide to move on because this
is not a problem (can be amended, for example, by adding ‘bright?’ to the environment)
or to choose another compatible composition satisfying this property.

Fig. 6. Running example: (left) objects, (middle) composition and (right) goal

Rank. In its current version, we rank satisfactory compositions according to their com-
plexity. As complexity criterion, we consider the size of the composition LTS in terms
of number of transitions. The composition ranked first corresponds to the solution that
can satisfy the expected goal with the lowest number of interactions.

3.2 Implementation

We have developed the techniques presented in the former section using Maude’s rewrit-
ing logic framework [11]. We chose Maude for implementing the composition tech-
niques because its declarative style facilitates program writing, and specifically, it is
quite simple to implement filtering techniques, composition or compatibility analysis.
Moreover, Maude is adequate to specify concurrent systems and is equipped with a
large variety of analysis tools.

Maude is a high-level language and a high-performance system that supports mem-
bership equational logic, and rewriting logic specification and programming of systems.
Rewriting logic [20] is a logic of change that can naturally deal with state and with
highly nondeterministic concurrent computations. Rewriting logic is parameterised by

262 F. Durán et al.

an equational logic, and therefore, Maude integrates an equational style of functional
programming with rewriting logic computation. In the Maude implementation of rewrit-
ing logic, the equational logic is membership equational logic [7]. Membership equa-
tional logic is a Horn logic whose atomic sentences are equalities t = t′ and member-
ship assertions of the form t : S , stating that a term t has sort S . Such a logic extends
order-sorted equational logic, and supports sorts, subsort relations, subsort polymor-
phic overloading of operators, and the definition of partial functions with equationally
defined domains. Further details may be found in [11].

The Maude’s implementation consists of different modules. Unfortunately, for the
sake of space, we cannot present in detail the contents of these modules. The interested
reader should look at the Maude specification, together with a set of examples, which
is available online [13].

A first module defines all necessary data types presented in Sect. 2 (object model,
repository, goal, environment). Then, we have one module for each step of the approach
presented in Sect. 3.1 and summarized in Fig. 2. Finally, we use a couple of additional
modules for defining concrete objects grouped in a repository and several examples of
goals for making experiments that we will present in Sect. 3.3.

Let us illustrate our Maude implementation with the verification of compositions.
Listing 2 gives the equations used for identifying that a (global) state corresponds to a
deadlock state. The deadlock operation takes as input the composition LTS and the set
of device models. The first equation (line 6) applies when the composition LTS does not
contain any state. The second equation is the most interesting. It says that if there is one
global state (line 8) in the composition LTS corresponding to a deadlock state (line 11)
that is a state without outgoing transition, and if there is one device with one possible
transition from that local state (line 9), then this means that this behaviour cannot be
executed in the context of this composition, and the equation returns true (line 10). The
deadState operation (lines 14–20) takes a state and an LTS as input and checks whether
from that state there is an outgoing transition. The first equation (lines 14–15) applies
to simple devices. The second equation (line 16–19) applies to composition LTSs. Both

Automated Composition, Analysis and Deployment of IoT Applications 263

Table 1. Experimental results (∼0 for values smaller than 0.1 s)

Goal |Repo.| |Combinations| Time (s)

Ident. |O| |T| Combine Filter Compo/check Combine Filter Compo Check

G1 3 6 30 160 1 1 ∼0 ∼0 ∼0 ∼0

G1 3 6 80 220 1 1 ∼0 ∼0 ∼0 ∼0

G1 3 6 150 5,544 13 12 ∼0 ∼0 ∼0 ∼0

G2 5 4 30 288 18 1 ∼0 ∼0 ∼0 ∼0

G2 5 4 80 217,800 5,760 2 1.7 3.8 3.1 5.9

G2 5 4 150 401,544 11,000 2 3.3 8.3 14.8 10.9

G3 5 8 30 7 0 0 ∼0 ∼0 ∼0 ∼0

G3 5 8 80 119 0 0 ∼0 ∼0 ∼0 ∼0

G3 5 8 150 218 1 1 ∼0 ∼0 ∼0 ∼0

G4 8 10 30 336 0 0 ∼0 ∼0 ∼0 ∼0

G4 8 10 80 143,990 220 0 19.9 22.1 ∼0 ∼0

G4 8 10 150 374,088 220 0 54.5 49.1 ∼0 ∼0

G5 10 10 150 1,800 1 1 ∼0 0.1 ∼0 ∼0

G6 15 10 150 57,600 2 2 1.1 4.7 0.3 1.6

G7 20 20 150 225,792 1 1 5.9 28.5 0.1 12.6

equations correspond to the case in which there is such a transition and return false. The
final equation (line 20) applies otherwise and returns true.

3.3 Experiments

The final part of this section presents some experiments we carried out to see how our
approach scales with respect to the number of objects available in the repository and
with respect to the size of the goal. The experiments were run on a macOS Mojave
machine with a 2.8 GHz Intel Core i7 processor, 16 GB of DDR3 RAM and 256 GB
PCIe-based flash storage. We recall that our approach targets small to medium-size
applications, corresponding to a number of objects available in a smart home or build-
ing.

Table 1 presents the results obtained for seven different goals. G2 corresponds to
the goal of the running example given in Fig. 1. For the first four goals, we vary the
size of the repository, that is, the number of objects available in the repository. More
specifically, we use three repositories of different sizes (30 objects, 80 objects, and
150 objects). As for the three last goals (G5 to G7), we only use the largest one (150
objects). Table 1 then gives the number of possible combinations according to the list
of family names given in the goal (combine), the number of compositions selected after
application of the filtering techniques (filter), the number of compatible compositions
satisfying the goal (compose and check compatibility), and the time it takes to compute
all these steps. When a time is smaller than 0.1 s, we use ∼0.

264 F. Durán et al.

First of all, it is worth noting that for all these small and medium size (yet realis-
tic) compositions, the results are computed in a reasonable time (about a total of four
minutes for all the examples given in Table 1).

The increase in terms of computational time mainly comes from the number of pos-
sible combinations. It takes more time to compute and explore all possible combinations
to see whether they are possible candidates (kept after filtering) and finally solutions
wrt. the expected goal. The number of combinations augments for three reasons. The
first factor is the number of objects in the repository. When looking at G2 in the table
for instance, one can see that the number of combinations and the computation times
increase when considering a repository with 30, 80 or 150 objects. The second factor
is the number of objects involved in the composition. Goals G5, G6 and G7 show com-
positions involving 10, 15 and 20 objects. Here again, the number of objects induces a
larger number of combinations and an increase in computation time. The third reason
is not obvious because it concerns the number of objects in each family. If we look at
goals G2 or G4 in the table with a repository of 150 objects, we can see that even for a
limited number of objects (5 and 8), the number of combinations is rather high. This is
because in both cases, the families of objects specified in the goal have many instances
of objects in the repository (more than 10 concrete objects for each family), resulting in
many combinations. In contrast, if the goal has many objects, but families with fewer
instances, as it is the case for goal G5 for example, there are not so many combinations.

Once all combinations are computed, filtering is applied on all those combina-
tions. Obviously, the more combinations, the costlier is filtering. This is why these
two numbers (time for generating combinations and for applying filtering) are related
and usually quite close. The final step computes the synchronous composition of all
objects for each remaining combination and checks whether the resulting composition
LTS matches the goal. This step is definitely the costliest. As an example, for G2 (150
objects), after filtering there still are 11,000 possible candidates, and it takes about 25 s
to generate the compositions and analyse them, whereas it takes less than 10 s to gener-
ate all combinations (about 400,000) and apply filtering on them.

As a conclusion, it is worth noting the importance of the filtering techniques that can
avoid the unnecessary and costly computation of some candidate compositions as well
as their compatibility analysis. All the times given in the table are reasonable because
the filtering techniques return a low number of candidate compositions.

4 Deployment

This section details the real-world deployment of IoT devices using an execution plat-
form. We use the Mozilla Project Things as it is open-source and one of the feature-rich
implementations of WoT. However, any standard IoT platform, such as OpenHAB or
Home Assistant, can also be used for deployment. Specifically from our point of inter-
est, Things Gateway from Mozilla has a unified Web interface to monitor and control
devices. It also provides REST APIs to create and deploy rules.

Given a set of available objects (repository) and a set of abstract rules (goal), after
the application of the process presented in Sect. 3, we obtain a subset of these objects
satisfying the rules. This section explains how this application can be deployed on the

Automated Composition, Analysis and Deployment of IoT Applications 265

platform. Recall that the events and actions in the abstract rules are associated with
the properties attribute of the Thing Description. Therefore, in order to deploy each
abstract rule, we first map the events and actions of the abstract rules to its correspond-
ing properties in the JSON Thing Description. An action or an event relates to a change
in property values. Using this idea, we generate a rule in JSON format for each abstract
rule. Further, we use the gateway API provided by the platform, which takes a JSON
rule as input, to deploy each newly created rule.

Example. We have deployed our running example using the following devices: Philips
Hue Play Light, Philips Motion Sensor which has a built-in ambient light sensor and
a temperature sensor. As our device repository did not have smart window, we created
virtual Things adapters to emulate the smart window. We use the TemperatureProperty
of the Philips Hue temperature sensor as shown in Fig. 1 to build the concrete rule “IF
warm THEN open”. The deployable rule is shown in Listing 3, where we notice that
warm translates to temperature greater than 20 ◦C (value attribute set to 20). Users can
configure such constants or keywords to make the rules closer to the natural language.
The action in the rule is described in the effect attribute, where a boolean property is set
to on in the virtual environment thing.

5 Related Work

We discuss in this section some relate work on automated composition of Web services,
compatibility of behavioural models, and (automated) composition of IoT objects.

Automated composition was mainly studied in the Web services area. Several papers
have been published on that problem, see, e.g., [5,6,18,21]. Most of these techniques
rely on Web service languages, namely WSDL and BPEL, whereas we preferred to rely
on generic behavioural models to make our solution more easily reusable in other appli-
cation areas. These papers make use of existing planning techniques and tools. We pre-
ferred a different solution since we choose rule-based programming and rewriting logic
for computing the resulting compositions. Our approach also provides (automated) ver-
ification techniques to check for compatibility and other properties of interest.

As far as compatibility checking is concerned, several works have focused on
this problem assuming that entities are described using behavioural models, see,
e.g. [3,8,10,12,17,19,26]. [10] proposes the π-calculus as modelling language and
defines a compatibility relation taking inspiration into Milner’s bisimulation notion.

266 F. Durán et al.

[19] presents a framework for modelling Web service with Petri nets and for analysing
several properties on these models, the most important being the usability property,
which is verified using the soundness criterion for workflow modules. In [3], the authors
address the composability of components. They assume that two software components
are composable if their respective services are pairwise compatible, where service com-
patibility is understood as deadlock-freeness. [17] proposes an approach based on Sym-
bolic Observation Graphs (SOG) allowing one to decide whether two services can
cooperate safely. The compatibility between two services is defined by the well-known
soundness property on open workflow nets. Our approach proposes a notion of goal-
based compatibility for IoT applications obtained by composition of available devices
and its verification using rewriting logic and Maude’s framework.

We finally introduce recent results and tools for the composition and configuration
of IoT applications. From an industrial perspective, Node-RED [16] and IFTTT [22]
are two tools that provide graphical support for visually and manually building appli-
cations consisting of connected objects. We chose full automation and synthesis of the
object composition in our approach. [14] shows how to use Answer Set Programming
(ASP) techniques to represent configuration scenarios for basic applications in the IoT.
[1] proposes an approach that makes a set of things connect and cooperate temporar-
ily to achieve a user goal. [24] presents a formal approach for the decomposition of
process-aware applications to be deployed in IoT environments. These applications are
modelled using Petri nets and correctness of the decomposition is proved with respect to
language preservation. In [9], the authors present a solution to the dynamic composition
of services. To do so, they rely on stateful models of services, contextual information, a
goal description and planning techniques in order to generate automatically a resulting
composition of services. Similarly to [9,24], we rely on behavioural models of objects
with a specific focus here on the automated composition of objects. We provide addi-
tional techniques for facing the large number of solutions (filtering and ranking) as well
as automated verification techniques for ensuring compatibility and additional proper-
ties. Last but not least, we also support the deployment of concrete applications.

6 Concluding Remarks

We have presented some automated techniques for generating and deploying satisfac-
tory compositions given an abstract goal of the composition-to-be and a set of object
families. Our approach works applying successively different steps. First, from a reposi-
tory of available objects, we generate a set of candidate compositions statically filtering
those that cannot satisfy the goal. Then, we check if these candidates satisfy the given
goal and are therefore compatible compositions. The user can also decide to verify addi-
tional properties that are independent of the application such as deadlock freeness or the
absence of unmatched send messages. If there is more than one solution, we rank them
according to some complexity criterion. Finally, the resulting composition is deployed
using an existing execution engine. The composition and analysis process are supported
by an implementation in Maude. The deployment process is carried out using Mozilla’s
Project Things platform. We applied the whole approach on several case studies for
validation purposes.

Automated Composition, Analysis and Deployment of IoT Applications 267

The first perspective of this work is to consider location of objects in the object
model and composition goal. We believe that this information would allow us to make
our approach scalable in order to target larger applications (at the level of a campus or a
city for example). More precisely, this information would be used during the composi-
tion process for improving our filtering techniques and for finding the best combinations
without exhaustively producing and analysing all of them. Considering asynchronous
communication (communication via message buffers or publish-subscribe) is another
perspective of this work.

References

1. Alkhabbas, F., De Sanctis, M., Spalazzese, R., Bucchiarone, A., Davidsson, P., Marconi, A.:
Enacting emergent configurations in the IoT through domain objects. In: Pahl, C., Vukovic,
M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 279–294. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03596-9 19

2. Arnold, A.: Finite Transition Systems - Semantics of Communicating Systems. Prentice Hall,
Upper Saddle River (1994)

3. Attiogbé, C., André, P., Ardourel, G.: Checking component composability. In: Löwe, W.,
Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 18–33. Springer, Heidelberg (2006).
https://doi.org/10.1007/11821946 2

4. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
5. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic compo-

sition of E-services that export their behavior. In: Orlowska, M.E., Weerawarana, S., Papa-
zoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 43–58. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-24593-3 4

6. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of web services via planning in
asynchronous domains. Artif. Intell. 174(3–4), 316–361 (2010)

7. Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in membership equa-
tional logic. Theore. Comput. Sci. 236(1), 35–132 (2000)

8. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342
(1983)

9. Bucchiarone, A., Marconi, A., Pistore, M., et al.: A context-aware framework for dynamic
composition of process fragments in the internet of services. J. Internet Serv. Appl. 8(1),
6:1–6:23 (2017)

10. Canal, C., Pimentel, E., Troya, J.M.: Compatibility and inheritance in software architectures.
Sci. Comput. Program. 41(2), 105–138 (2001)

11. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework. LNCS, vol.
4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

12. Durán, F., Ouederni, M., Salaün, G.: A generic framework for N-protocol compatibility
checking. Sci. Comput. Program. 77(7–8), 870–886 (2012)

13. Durán, F., Salaün, G.: A note on automated composition, analysis and deployment of IoT
applications, April 2019. http://maude.lcc.uma.es/iotcompo

14. Felfernig, A., Falkner, A., Müslüm, A. et al.: ASP-based Knowledge Representations for IoT
Configuration Scenarios. In: Proceedings of the ICW 2017, p. 62 (2017)

15. Guinard, D., Trifa, V., Mattern, F., Wilde, E.: From the internet of things to the web of
things: resource-oriented architecture and best practices. In: Uckelmann, D., Harrison, M.,
Michahelles, F. (eds.) Architecting the Internet of Things, pp. 97–129. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19157-2 5

https://doi.org/10.1007/978-3-030-03596-9_19
https://doi.org/10.1007/11821946_2
https://doi.org/10.1007/978-3-540-24593-3_4
https://doi.org/10.1007/978-3-540-71999-1
http://maude.lcc.uma.es/iotcompo
https://doi.org/10.1007/978-3-642-19157-2_5

268 F. Durán et al.

16. JS-Foundation. Node-RED: Flow-based Programming for the IoT (2018)
17. Klai, K., Ochi, H.: Checking compatibility of web services behaviorally. In: Arbab, F., Sir-

jani, M. (eds.) FSEN 2013. LNCS, vol. 8161, pp. 267–282. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40213-5 17

18. Marconi, A., Pistore, M., Traverso, P.: Automated composition of web services: the ASTRO
approach. IEEE Data Eng. Bull. 31(3), 23–26 (2008)

19. Martens, A.: Analyzing web service based business processes. In: Cerioli, M. (ed.) FASE
2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005). https://doi.org/10.1007/
978-3-540-31984-9 3

20. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor. Comput.
Sci. 96(1), 73–155 (1992)

21. Narayanan, S., McIlraith, S.A.: Simulation, verification and automated composition of web
services. In: Proceedings of the WWW 2012, pp. 77–88. ACM (2002)

22. Ovadia, S.: Automate the internet with “This Then That”. Behav. Soc. Sci. Libr. 33(4), 208–
211 (2014)

23. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrapolating
behavioral models. STTT 11(5), 393 (2009)

24. Tata, S., Klai, K., Jain, R.: Formal model and method to decompose process-aware IoT appli-
cations. In: Panetto, H., et al. (eds.) OTM 2017. LNCS, vol. 10573, pp. 663–680. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69462-7 42

25. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation seman-
tics. J. ACM 43(3), 555–600 (1996)

26. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM Trans.
Program. Lang. Syst. 19(2), 292–333 (1997)

https://doi.org/10.1007/978-3-642-40213-5_17
https://doi.org/10.1007/978-3-540-31984-9_3
https://doi.org/10.1007/978-3-540-31984-9_3
https://doi.org/10.1007/978-3-319-69462-7_42

Security

Applying Face Recognition in Video
Surveillance Security Systems

Bauyrzhan Omarov1, Batyrkhan Omarov2,3(&),
Shirinkyz Shekerbekova4, Farida Gusmanova1,

Nurzhamal Oshanova4, Alua Sarbasova1, Zhanna Yessengaliyeva1,
Agyn Bedelbayev1, Akmarzhan Maikhanova1, Nurzhan Omarov5,

and Daniyar Sultan1

1 Al-Farabi Kazakh National University, Almaty, Kazakhstan
2 International Information Technology University, Almaty, Kazakhstan

batyahan@gmail.com
3 Kazakhstan Innovations Lab Supported by UNICEF, Almaty, Kazakhstan

4 Abay Kazakh National Pedagogical University, Almaty, Kazakhstan
5 Kazakh University of Railways and Communications, Almaty, Kazakhstan

Abstract. Face Detection and Recognition is an important surveillance prob-
lem to provide citizens’ security. Nowadays, many citizen service areas as
airports, railways, security services are starting to use face detection and
recognition services because of their practicality and reliability. In our research,
we explored face recognition algorithms and described facial recognition pro-
cess applying Fisherface face recognition algorithm. This process is theoretically
justified and tested with real-world outdoor video. The experimental results
demonstrate practically applying of face detection from several foreshortenings
and recognition results. The given system can be used in building a smart city as
a smart city application, also in different organization to ensure security of
people.

Keywords: Smart city � Video surveillance � Face recognition � Face detection

1 Introduction

If we talk about the concept of “smart city”, first and foremost, it is improving the
quality of life and creating comfortable living conditions for citizens. This is the
combination of various technologies, management of communications, infrastructure,
in the near future IOT.

The goal is the optimal use of modern technologies in each of the spheres of city
life for more rational use of resources and improving the quality of life, doing business,
etc. So, “Safe City” is the most important component of the “smart city” concept,
besides video surveillance as part of a safe city, the state is becoming “the eyes” of a
smart city.

Smart cities often intersect with a digital city, a wireless city, a safe city, an eco-
city, a city with low carbon monoxide emissions, architectural perfection and other
regional development concepts. This should be confused with the concepts of the

© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 271–280, 2019.
https://doi.org/10.1007/978-3-030-29852-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_22

industry of information technologies, electronic document management, electronic
reporting, intellectual transport and an intelligent urban water/gas/power supply net-
work. Smart City is sharing data over the Internet, cloud services, geospatial infras-
tructure, dedicated telecommunication channels and other new generations of
information technology. CCTV cameras, included in open or protected monitoring and
control systems, ensure broadband cross-border interaction of all municipal structures,
and facilitate the intellectual integration of applications into user innovations, open
innovations, public innovations, and joint innovations. The process of transition to a
smart city is characterized by a steady interest of both local enterprises and foreign
investors. In this process, there are no templates for the use of video surveillance and
network technologies. The main thing is an intelligent and cost-effective result. In
addition, of course, there are increased requirements to the processing of video data
streams, the quality of video surveillance equipment.

2 Literature Review

There are several approaches to create a face recognition algorithm.
The empirical approach was used at the very beginning of the development of

computer vision. It is based on some of the rules that a person uses to detect a face. For
example, the forehead is usually brighter than the central part of the face, which, in
turn, is uniform in brightness and color. Another important feature is the presence of
parts of the face in the image - the nose, mouth, eyes. To determine the faces, we did a
significant reduction of the image area, where the presence of a face was assumed, or
perpendicular histograms are constructed. These methods are easy to implement, but
they are practically unsuitable in the presence of a large number of foreign objects in
the background, several persons in the frame or when changing the angle.

The following approach uses invariant features characteristic of a face image. At its
core, as in the previous method, lies the empiricist, that is, the attempt of the system to
“think” as a person. The method reveals the characteristic parts of the face, its
boundary, change in shape, contrast, etc., combines all these signs and verifies. This
method can be used even when turning the head, but with the presence of other faces or
a heterogeneous background, recognition becomes impossible.

The following algorithm is the detection of faces using patterns that are specified by
the developer. A person appears to be a kind of template or standard, the purpose of the
algorithm is to check each segment for the presence of this pattern, and the check can
be made for different angles and scales. Such a system requires many time-consuming
calculations.

All modern facial recognition technologies use systems that learn through test
images. For training, bases with images containing faces and not containing faces are
used. Each fragment of the investigated image is characterized as a feature vector, with
which the classifiers (algorithms for determining an object in a frame) determine
whether this part of the image is a face or not.

Currently, several dozens of computer methods for face recognition are actively
used: methods based on neural networks [1]; the main components (own persons) [2, 3,
4]; based on linear discriminant analysis [5, 6]; elastic graph method [7]; a method

272 B. Omarov et al.

based on hidden Markov models [8–12]; method based on flexible contour models of
the face; method of comparison of standards; optical flux method; methods based on
lines of the same intensity; algebraic moments; Karunen-Loeve decomposition; fuzzy
logic; Gabor filters, etc. A good overview of these methods can be found in [13].

One of the first developed methods of facial recognition is the method of main
components (own faces). Its distinguishing feature is that the main components carry
information about the signs of a certain generalized face. Face recognition using linear
discriminant analysis is based on the assumption of linear separability of classes
(persons) in image space. Neural network methods have a good generalizing ability.

3 Facial Recognition Problem

Recognition of objects is an easy task for people, the experiments conducted in [14]
showed that even children aged one to three days are able to distinguish between
remembered faces. Since a person sees the world not as a set of separate parts, our brain
must somehow combine various sources of information into useful patterns. The task of
automatic face recognition is to isolate these significant features from an image,
transforming them into a useful presentation and producing some kind of classification.

The process of face recognition, which is based on geometrical features of the face,
is probably the most intuitive approach to the problem of face recognition [14, 15].
Experiments on a large data set have shown that, alone, geometric features cannot
provide enough information for face recognition.

In this work, we explore face detection and recognition process, describe their
mathematical representation and do experiments with facial recognition using Fisher-
face algorithm.

3.1 Development Overview

The solution as proposed in this research work consists of two parts as recovering low
resolution image and the identity of object using the recovered high resolution image.

Image restoration part consists of three subtasks as

1. Converting the low resolution image to digital form
2. Image enhancement and recovery
3. Converting to graphical image from digits.

3.2 Face Detection

At the first stage, the face is detected and localized in the image. At the recognition
stage, the image of the face is aligned (geometric and luminance), the calculation of the
signs and the direct recognition - the comparison of the calculated signs with the
standards embedded in the database. The main difference of all the algorithms pre-
sented will be the calculation of signs and the comparison of their aggregates among
themselves. Such face detection system types shown in Fig. 1.

Applying Face Recognition in Video Surveillance Security Systems 273

3.3 Face Recognition

There are several different face recognition algorithms as correlation, eigenfaces, linear
subspaces and fisherfaces. There were several experiments on identification the
effectiveness of those algorithms where the FisherFaces algorithm was chosen as the
best one with the lowest error rate in human face recognition. In accordance with
experiment results made before we decided to choose the FisherFaces algorithm for
face identification and recognition processes due to its fast and guaranteed recognition
of the human. Figure 2 shows the plot that illustrates the error rate depending on the
number of principal components.

As can be seen from the above graph, the FisherFace method learns the set of
projections which perform well over a range of lighting variation, facial expression and
even presence of glasses. Below, we explain the algorithmic description of the Fish-
erfaces method:

Fig. 1. Face detection architecture.

Fig. 2. Face detection architecture.

274 B. Omarov et al.

Let there be a random vector with samples drawn from classes: X ¼ fX1;X2; . . .;Xng

Xi ¼ fX1;X2; . . .;Xng ð1Þ

The scatter matrices SB and S_{W} are calculated as:

Sb ¼
Xc

i¼1

Niðli � lÞðli � lÞT ð2Þ

Pc

i¼1

P
xi2Xi

ðxi � liÞðxj � ljÞT , where l is the total mean:

l ¼ 1
N

XN

i¼1

xi ð3Þ

And li is the mean of class i 2 1; . . .; cf g:

li ¼
1
xij j

X
xj2Xj

xj ð4Þ

Fisher’s classic algorithm now looks for a projection that maximizes the class
separability criterion:

Wopt ¼ argmaxW
WTSBWj j
WTSWWj j ð5Þ

Following the method of Belhumer, Hespanha and Kriegman, a solution for this
optimization problem is given by solving the General Eigenvalue Problem:

S�1
W SBvi ¼ kivi ð6Þ

There’s one problem left to solve: The rank of SW is at most (N-c), with N samples
and classes. In pattern recognition problems the number of samples N is almost always
smaller than the dimension of the input data (the number of pixels), so the scatter
matrix SW becomes singular. In [BHK97] this was solved by performing a Principal
Component Analysis on the data and projecting the samples into the (N-c)-dimensional
space. A Linear Discriminate Analysis was then performed on the reduced data,
because SW isn’t singular anymore. The optimization problem can then be rewritten as:

Wfld ¼ argmaxW
WTWT

pcaSBWpcaW
���

���

WTWT
pcaSWWpcaW

���
���

ð7Þ

Applying Face Recognition in Video Surveillance Security Systems 275

The transformation matrix that projects a sample into the (c-1) dimensional space is
then given by:

W ¼ WT
fldW

T
pca ð8Þ

Face detection, recognition and gender classification experiments carried out on the
basis of facial images database [16]. Sample images are shown in Fig. 3. In the for-
mation of the database size of the images and the shooting conditions were the same.
They used a 24-bit JPEG format. The base [16] contains pictures of people, male and
female, of different nationalities and ages. It reflects changes in a person’s appearance:
different hairstyles, beards and glasses presence. In preparation for the experiment, two
training samples have been created. The first of them contains five images of each
person (only 5 � 395 = 1975 images). Second, 10 images of each person’s individual
learning (10 � 395 = 3950 images). In addition, the dataset has several datasets as
Face94, Face95, Face96, and Grimace that the characteristics are listed, below.

The approach that is used in this method finds out the facial features to discriminate
between the persons. The performance of the system that uses the FisherFaces algo-
rithm is highly depends on the input data. The FisherFaces provides a total recon-
struction of the projected image by normalizing processing of the image [5, 17–19].
The total set of procedures is given in the Fig. 4.

Fig. 3. Sample images of faces.

276 B. Omarov et al.

As can be seen from the Fig. 4, the process of face verification starts with the
detection stage, where the image is taken from the camera and is considered as an input
data. Then, there goes the normalization process in order to construct the proper image
that can be used in FisherFace algorithm. Face normalization actually consists of
geometry normalization, background removal and lighting normalization. The images
of the face are normalized to a fixed size. If the face was in a wrong angle this angle is
determined then is corrected in accordance with rules.

4 Facial Recognition Problem

Face recognition system generally involves two main stages as “Face Detection” and
“Face Identification”. First one is face detection, where the system is searching for any
faces then takes the image of this face. Following this, image processing cleans up the
facial image into black-white colors. In our research, face can be detected from several
foreshortenings. Implemented results are given in Fig. 5.

Fig. 4. Face detection architecture.

Applying Face Recognition in Video Surveillance Security Systems 277

After detecting face, next step will be executed. In this step, feature extraction and
verification process will be done. After recognizing the detected and processed facial
image is compared to a database of faces in order to decide who that person is, Fig. 6.

Fig. 5. Face detection from several foreshortenings.

Fig. 6. Face recognition. Identification of personal id

278 B. Omarov et al.

5 Conclusion

In this work, we applied Fisherface face recognition algorithm for facial recognition
problem as a video surveillance system of Smart City application. We used Fisherface
algorithm because of its practicality and high recognition rate. The mathematical
representation of facial recognition problem and Fisherface algorithm was investigated.
Experiment results demonstrate face detection and recognition results. Further, we are
going to use the proposed system as an application of a Smart City Platform and for
schools to identify pupils by faces.

References

1. Collins, R., et al.: A system for video surveillance and monitoring. Technical report. CMU-
RI-TR-00-12VSAM, Final Report. Carnegie Mellon University, Pittsburgh, May 2000

2. Haritaoglu, I., David, H., Larry, S.D.: W4: real time surveillance of People and their
Activities. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 809–830 (2000)

3. Remagnino, P., Jones, G.A., Paragios, N., Regazzoni, C.S.: Video Based Surveillance
Systems Computer Vision and Distributed Processing. Kluwer, Norwell (2002). https://doi.
org/10.1007/978-1-4615-0913-4

4. Stauffer, G.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal.
Mach. Intell. 22(8), 747–757 (2000)

5. VACE: Video analysis and content exploitation. http://www.ic-arda.org/InfoExploit/vace/
6. Jain, A.K., Bolle, R., Pankanti, S. (eds.): Biometrics: Personal Identification in Networked

Security. Kluwer Academic Publishers, Norwell (1999)
7. Wan, Q., et al.: Face description using anisotropic gradient: thermal infrared to visible face

recognition. In: Proceedings of Mobile Multimedia/Image Processing, Security, and
Applications 2018, SPIE, vol. 10668, p. 106680V, 14 May 2018. https://doi.org/10.1117/
12.2304898

8. Wolf, M.: Image and video analysis. Smart Camera Design, pp. 163–197. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-69523-5_5

9. Kumar, S., Pandey, A., Satwik, K.S.R.: Deep learning framework for recognition of cattle
using muzzle point image pattern. Measurement 116, 1–17 (2018)

10. Kumar, S., Tiwari, S., Singh, S.K: Face recognition for cattle. In: Proceedings of 3rd IEEE
International Conference on Image Information Processing (ICIIP), pp. 65–72 (2015)

11. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proceedings of IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1991),
pp. 586–591 (1991)

12. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition
using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720
(1997)

13. Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural
Comput. 12(10), 2385–2424 (2000)

14. Muller, K.R., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An introduction to kernel-
based learning algorithms. IEEE Trans. Neural Netw. 12(2), 181–201 (2001)

15. Kang, M.G., Park, S.C., Park, M.K.: Super-resolution image reconstruction: a technical
overview. IEEE Signal Process. Mag. 20, 21–36 (2013)

Applying Face Recognition in Video Surveillance Security Systems 279

http://dx.doi.org/10.1007/978-1-4615-0913-4
http://dx.doi.org/10.1007/978-1-4615-0913-4
http://www.ic-arda.org/InfoExploit/vace/
http://dx.doi.org/10.1117/12.2304898
http://dx.doi.org/10.1117/12.2304898
http://dx.doi.org/10.1007/978-3-319-69523-5_5

16. Suliman, A., Omarov, B.S.: Applying Bayesian regularization for acceleration of Levenberg-
Marquardt based neural network training. Int. J. Interact. Multimedia Artif. Intell. 5(1), 68–
72 (2018)

17. Omarov, B., Altayeva, A., Cho, Y.I.: Smart building climate control considering indoor and
outdoor parameters. In: Saeed, K., Homenda, W., Chaki, R. (eds.) CISIM 2017. LNCS, vol.
10244, pp. 412–422. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59105-6_35

18. Altayeva, A., Omarov, B., Cho, I.Y.: Towards smart city platform intelligence: PI
decoupling math model for temperature and humidity control. In: 2018 IEEE International
Conference on Big Data and Smart Computing (BigComp), pp. 693–696. IEEE January
2018

19. Altayeva, A., Omarov, B., Cho, I.Y.: Multi-objective optimization for smart building energy
and comfort management as a case study of smart city platform. In: 2017 IEEE 19th
International Conference on High Performance Computing and Communications; IEEE 15th
International Conference on Smart City; IEEE 3rd International Conference on Data Science
and Systems (HPCC/SmartCity/DSS), pp. 627–628. IEEE December 2017

280 B. Omarov et al.

http://dx.doi.org/10.1007/978-3-319-59105-6_35

Cyber-Resilience Concept for Industry 4.0
Digital Platforms in the Face of Growing

Cybersecurity Threats

Sergei Petrenko(&) and Elvira Khismatullina

Innopolis University, Universitetskaya 1, Innopolis 420500, Russia
s.petrenko@rambler.ru

Abstract. Modern cyber systems acquire the more emergent system properties,
as far as their complexity is being increased: cyber resilience, controllability,
self-organization, proactive cyber security and adaptability. Each of the listed
properties is the subject of the cybernetics research (comes from Greek
jtbeqmηsijή (kybernētikḗ) - the art of the governance) and each subsequent
feature makes sense only if there is a previous one.
This article presents a valuable experience and the exploratory study practical

results of the Innopolis University Information Security Center on the scientific
problem of the cyber-resilient critical information infrastructure organization
under the conditions of previously unknown heterogeneous mass cyber attacks
of intruders, based on similarity invariants. It is essential that the obtained results
significantly complement the well-known practices and recommendations of
ISO 22301 (https://www.iso.org), MITRE PR 15-1334 (www.mitre.org) and
NIST SP 800-160 (www.nist.gov) in terms of developing the quantitative
metrics and cyber resistance measures. This makes it possible for the first time to
discover and formally present the ultimate efficiency law of the cyber resilience
of modern Industry 4.0 systems under increasing security threats.

Keywords: Digital transformation � Digital economy � Cyber stability �
Manageability capability � Self-organization �
Proactive cyber security and adaptability �
Models and methods of artificial intelligence � Cognitive computing � Big data �
Robotics � Internet of things IIoT/IoT

1 Introduction

Firstly, we regard a number of so-called primary concepts: the cyber system, the
behavior of the cyber system, the intended purpose of the cyber system, the disturbance
of the behavior of the cyber system, and the state of the cyber system (Figs. 1 and 2).

A cyber system is understood as a certain set of hardware and software components
of a critically important information infrastructure with communications on control and
data between them, designed to perform the required functions. Therefore the cyber
system behaviour is understood as some algorithm introduction and implementation for
the system functioning in time. At the same time, the targeted corrective actions are
allowed ensuring the system behaviour cyber resilience. The cyber system mission is

© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 281–294, 2019.
https://doi.org/10.1007/978-3-030-29852-4_23

http://orcid.org/0000-0003-0644-1731
http://orcid.org/0000-0002-8765-1097
https://www.iso.org
http://www.mitre.org
http://www.nist.gov
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_23&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_23

called the mission; corrective measures are the cyber disturbance detection and neu-
tralization. In other words, a cyber system is designed for a specific purpose and may
have some protective mechanism, customizable or adjustable means to ensure cyber
resilience.

Fig. 1. Relationship of cyber resistance, cyber security and business sustainability concepts.

Fig. 2. Cybersecurity concept evolution

282 S. Petrenko and E. Khismatullina

A cyber system behaviour disturbance is a single or multiple acts of an external or
internal destructive impact of the internal and/or external environment on the system.
The disturbance leads to a change in the cyber system functioning parameters, prevents
or makes the system purpose difficult. A disturbance combination forms a disturbance
set. The cyber system state is a certain set of numerical parameter characteristics of the
system functioning in space. The numerical process characteristics depend on the
functioning conditions of the cyber system, disturbances and corrective actions to
detect and neutralize the disturbances and, in general, from time. The set of all cor-
rective actions for detecting and neutralizing the disturbances is called the corrective
action set; the set of all digital platform behaviour system states is called the state set.
Thus, we will assume that without disturbances, as well as the corrective measures for
the disturbance detection and neutralization, the cyber system is in an operational state,
and meets some intended purpose. As a disturbance result, the cyber system transits
into a new state, which may not meet its intended purpose.

In the conditions of the destructive disturbances, the two main tasks appear [1–5]:

(1) Detection of the disturbance fact and, possibly, changes made to the normal cyber
system functioning process;

(2) Setting the optimal (cyber-resilient) in a certain sense (based on a given priority
functional) organization of the cyber-system behaviour to bring the cyber system
to an operating state (including redesigning and/or restarting the system, if this
solution is considered the best).

2 Cyber Resilience Management

Now let us we reveal the content of the elementary, complex, and perturbed calcula-
tions in R.E. Kalman’ terms of the dynamic interrelationships [6–9].

Further, we will use the term “elementary cyber system behaviour”, considering the
structure, which input receives some input value at certain points in time and from
which some output value is derived at certain time points. The above concept of the
elementary cyber system behavior as a system R includes an auxiliary time point set
T. At each time point t 2 T , the system R receives some input value u(t) and generates
some output value y (t). In this case, the input variable values are selected from some
fixed set U, i.e. at any time moment t, the symbol u(t) belongs to U. The system input
value segment is a function of the form x: (t1, t2) ! U and belongs to some class X.
The output variable value y(t) belongs to some fixed set Y. The output values segment
represents a function of the form c: (t2, t3) ! Y.

The complex cyber system behaviour is understood as a generalized structure, the
components of which are elementary given system behaviours with communications on
control and data among themselves.

Now let us define the concept of the immunity pre history (memory) of the cyber
system behaviour to destructive influences. We assume that under group and mass
cyber-attacks, the output variable value of the system R depends both on the source
data and the system behavior algorithm and on the immunity pre history (memory)
destructive influences. In other words, the disturbed cyber system behavior is a

Cyber-Resilience Concept for Industry 4.0 Digital Platforms 283

structure in which the current output variable value of the R system depends on the R
system state with an accumulated immunity pre history (memory) to destructive dis-
turbances. In this case, we will assume that the internal R system state set allows
containing information about the R system immunity history (memory).

Let us note that the considered content of the disturbed cyber system behaviour
allows describing some “dynamic” self-recovery behaviour system of the above system
under disturbances, if knowledge of the x(t1) state and the restored computation seg-
ment x ¼ x t1t2ð � is a necessary and sufficient condition to determine the state x
(t2) = u(t2; t1, x(t1), x), where t1 < t2. Here the time point set T is orderly, i.e. it defines
the time direction.

Let us reveal the characteristic features of single, group and mass Industry 4.0
cyber system disturbances using the following definitions.

Now we define the concept of the immunity prehistory (memory) of the cyber
system behaviour to destructive influences. We assume that under group and mass
cyber-attacks, the output variable value of the system R depends both on the source
data and the system behavior algorithm and on the immunity prehistory (memory)
destructive influences. In other words, the disturbed cyber system behavior is a
structure in which the current output variable value of the R system depends on the R
system state with an accumulated immunity prehistory (memory) to destructive dis-
turbances. In this case, we will assume that the internal R system state set allows
containing information about the R system immunity history (memory).

Let us note that the considered content of the disturbed cyber system behaviour
allows describing some “dynamic” self-recovery behaviour system of the above system
under disturbances, if the knowledge of the x(t1) state and the restored computation
segment x = x is a necessary and sufficient condition to determine the state of x
(t2) = u(t2; t1, x(t1), x), where t1 < t2. Here the time point set T is in order, i.e. it
defines the time direction.

Let us reveal the characteristic features of single, group and mass Industry 4.0 cyber
system disturbances applying the following definitions.

Definition 1.1. The dynamic self-recovery cyber system behavior system under group
and mass cyber attacks R is called stationary (constant) if and only if:

(a) T is an additive group (according to the usual operation of adding real numbers);
(b) X is closed according to the shift operator zs: x ! x′, defined by the relation: x′

(t) = x(t + s) for all s, t 2 T ;
(c) u(t; s, x, x) = u(t + s; s + s, x, zsx) for all s 2 T;
(d) the mapping η(t, �): X ! Y does not depend on t.

Definition 1.2. A dynamic system of self-recovery cyber-system behavior under group
and mass cyber-attacks R is called a system with continuous time, if and only if
T coincides with a set of real numbers, and is called a system with discrete time, if and
only if T is an integer set. Here, the difference between systems with continuous and
discrete time is insignificant and, mainly, the mathematical convenience of the
development of the appropriate behavior models of the cyber systems under group and
mass disturbances, determines the choice between them. The systems of self-recovery

284 S. Petrenko and E. Khismatullina

cyber system behavior under group and mass cyber-attacks with continuous time
correspond to classical continuous models, and the mentioned systems with discrete
time correspond to discrete behavior models. An important cyber system complexity
measure in group and mass cyber-attacks is its state space structure.

Definition 1.3. The dynamic system of cyber system behavior in group and mass
cyber-attacks R is called the finite-dimensional if and only if X is a finite-dimensional
linear space. Moreover, dim R = dimXR. A system R is called finite if and only if the
set X is finite. Finally, a system R is called a finite automaton if and only if all the sets
X, U, and Y are finite and, in addition, the system is stationary and with discrete time.
The finite dimensionality assumption of the given system is essential to obtain specific
numerical results.

Definition 1.4. A dynamic system of cyber system behavior in group and mass cyber-
attacks R is called linear, if and only if:

(a) Spaces X, U, X, Y, and G are vector spaces (over a given arbitrary field K);
(b) Mapping u (t; s, �, �): X � X ! X is K-linear for all t and s;
(c) Mapping η (t, �): X ! Y is K-linear for any t.

If it is necessary to use the mathematical apparatus of differential and integral
calculus, it is required that some assumptions about continuity are included in the
system R definition. For this, it is necessary to assume that the various (T, X, U, X, Y,
G) sets are the topological spaces and that the mappings u and η are continuous with
respect to the corresponding (Tikhonov) topology.

Definition 1.5. The dynamic system of cyber system behavior in group and mass
cyber-attacks R is called smooth if and only if:

(a) T = R is a set of real numbers (with the usual topology);
(b) X and X are topological spaces;
(c) Transition mapping u has the property that (s, x, x) ! u(�; s, x, x) defines a

continuous mapping T � X � X ! C1(T ! X).

For any given initial state (s, x) and an input action segment x s;t2ð � of system R, the
system c s;t2ð � reaction is specified, i.e. the mapping is given: fs; x : x s;t2ð � ! c s;t2ð �.

Here, the output variable value at time tc 2 ðs; t1� is determined from the relation:
fs;x x s;t2ð �� �

tð Þ ¼ gðt;uðt; s; x;xÞÞ.
Definition 1.6. The dynamic system of cyber system behavior under group and mass
cyber-attacks R (in terms of its external behavior) is the following mathematical
concept:

(a) Sets T, U, X, Y, and G that satisfy the properties discussed above are given.
(b) A set that indexes a function family: F ¼ fa : T � X ! Y ; a 2 Af g, is defined,

where each family F element is written explicitly as fa(t, x) = y(t), i.e. it is the
output value for the input effect x obtained in the a experiment. Each fa is called
an input-output mapping and has the following properties:
(1) (The time direction.) There is a mapping i: A ! T, that fa(t, x) such that fa(t,

x) is defined for all t � i(a).

Cyber-Resilience Concept for Industry 4.0 Digital Platforms 285

(2) (Causality.) Let, t 2 T and s < t. If x, x′ 2 Ω and x(s, t] = x′(s, t], then fa(t,
x) = fa(t, x′), for all a for which s = i(a).

3 Cyber Resilient System Design

Let us define a hypervisor model (an abstract converter) of the cyber system behavior
under the group and mass cyber-attacks as follows.

Definition 1.7. The abstract mapping of the cyber system behavior under group and
mass cyber-attacks R is a complex mathematical concept defined by the following
axioms.

(a) T time points set, X computation states set, the instantaneous values set of U input
variables, X = {x: T ! U} set of acceptable input variables, the instantaneous
values set of output variables Y and G = {c: T ! Y} set of acceptable output
values are given.

(b) (Time direction) set Y is some ordered subset of the real number set.
(c) The input variable set X satisfies the following conditions:

(1) (Nontrivial) The set X is not empty.
(2) (Input variable articulation) Let us call the segment of input action x ¼ x s;t2ð �

for x 2 X, the restriction x to (t1, t2] \ T. Then if x, x0 2 X and t1 <
t2 < t3, then there x00 2 X, that x00 s;t2ð � ¼ x s;t2ð � and x00 s;t2ð � ¼ x0 s;t2ð �.

(d) There is a state transition function u: Т � Т � Х � X ! Х, the values of which
are the states x tð Þ ¼ u t; s; x;xð Þ 2 X, in which the system turns out to be at time
s 2 T if at the initial time s 2 T it was in the initial state x ¼ x sð Þ 2 X and if its
input received the input value x 2 X. The function u has the following
properties:
(1) (Time direction) The function u is defined for all t � s and is not necessarily

defined for all t < s.
(2) (Consistency) The equality u(t; t, x, x) = x holds for any t 2 T , any x 2 X,

and any x 2 X.
(3) (Semigroup property) For any t1 < t2 < t3 and any x 2 X and x 2 X, we have

u(t3; t1, x, x) = u(t3; t2, u(t2; t1, x, x), x).
(4) (Causality) If x, x00 2 X and x(s, t] = x′(s, t], then u(t; s, x, x) = u(t; s, x, x′).

(e) The output mapping η: T � X ! Y is given, that defines the output values y
(t) = η(t, x(t)). The mapping (s, t] ! Y, defined by the relation r 7! gðr;uðr;
s; x;xÞÞ, r 2 (s, t]), is called an input variable segment, i.e. the restriction c(s, t]
of some c 2 G on (s, t].

Additionally, the pair (s, x), where s 2 T and x 2 X, is called the event (or phase) of
the system R, and the set T 2 X is called the system R event space (or phase space).
The transition function of the states u (or its graph in the event space) is called a
trajectory or a solution curve, etc. Here, the input action, or control x, transfers,
translates, changes, converts the state x (or the event (s, x)) to the state u (t; s, x, x) (or

286 S. Petrenko and E. Khismatullina

the event (t, u (t; s, x, x))). The cyber system behavior motion is understood as the
function of states u.

Definition 1.8. In a more general form, the abstract converter model of the cyber
system behavior under disturbances with discrete time, m inputs and p outputs over
the field of integers K is a complex object (, ℘,), where the mappings : l ! l, ℘:
Km ! l, : l ! Kp are core abstract K - homomorphisms, l is some abstract vector
space is above K. The space dimension l(diml) determines the system dimension
(dim).
It is significant that the chosen representation allows formulating and proving the

statements, confirming the fundamental existence of the desired solution.

Definition 1.9. The cyber system behavior with memory is called the complex
mathematical concept of the dynamical system R, defined by the following axioms.

(a) A time point set T, a set of computational states X under intruder cyber-attacks, an
instantaneous value set of standard and destructive input actions U, a set of
acceptable input effects X = {x: T ! U}, an instantaneous value set of output
values Y and a set output values of the reconstructed calculations G = {c: T ! Y}.

(b) (Time direction) set Y is some ordered subset of the real number set.
(c) The set of the acceptable input actions X satisfies the following conditions:

(1) (Nontrivial) The set X is not empty.
(2) (Input variable articulation) Let us call the segment of input action x ¼ x t1;t2ð �

for x 2 X, the restriction x on (t1, t2] \ Т. Then if x, x0 2 X and t1 <
t2 < t3, then there x00 2 X, that x00 t1;t2ð � ¼ x t1;t2ð � and x00 t2;t3ð � ¼ x0 t21;t3ð �.

(d) There is a state transition function u: Т � Т � Х � X ! Х, the values of which
are the states x(t) = u(t; s, x, x) 2 Х, in which the system is at time t 2 Т, if at the
initial time s 2 Т it was in the initial state X ¼ X sð Þ 2 X and if it was influenced
by the input action x 2 X. The function u has the following properties:
(1) (Time direction) The function u is defined for all t � s and is not necessarily

defined for all t < s4.
(2) (Consistency) The equality u(t; t, x, x) = x holds for any t 2 T, any x 2 X,

and any x 2 X.
(3) (Semigroup property) For any t1 < t2 < t3 and any x 2 X and x 2 X, we have

u(t3; t1, x, x) = u(t3; t2, u(t2; t1, x, x), x).
(4) (Causality) If x, x″ 2 X and x(s, t] = x′(s, t], then u(t; s, x, x) = u(t; s, x,

x′).
(e) An output mapping η: T � X!Y is specified, which defines the output values y

(t) = η(t, x(t)) as a self-recovery result. The mapping (s, t] ! Y, defined by the
relation r 7! gðr;uðr; s; x;xÞÞ, r 2 (s, t]), is called a segment of the input
variable, i.e. the restriction c(s, t] of some c 2 G on (s, t].

Additionally, we introduce the following terms. A pair (s, x), where s 2 T and
x 2 X, is called the system R event, and the set T 2 X is called the system R event
space (or phase space). The transition function of states u (or its graph in the event
space) is called the trajectory of the cyber system self-recovery behavior. We assume

Cyber-Resilience Concept for Industry 4.0 Digital Platforms 287

that the input action, or the self-recovery control x, transforms the state x (or the event
(s, x)) into the state u(t; s, x, x) or in the event.

The above concept definition of the cyber system self-recovery behavior is still
quite general and is caused by the need to develop common terminology, explore and
clarify basic concepts. The further definition specification is presented below.

4 Behaviour Models

Imagine the cyber system behavior under the disturbances as the vector field in the
phase space. Here the phase space point defines the above system state. The vector
attached at this point indicates the system state change rate. The points at which this
vector is zero reflect equilibrium states, i.e. at these points; the system state does not
change in time. The steady-state modes are represented by a closed curve, the so-called
limit cycle on the phase plane (Fig. 3).

Earlier V.I. Arnold [9] showed that only two main options of restructuring the
phase portrait on the plane are possible (Fig. 4).

(1) When a parameter is changed from an equilibrium position, a limit cycle is born.
Equilibrium stability goes to the cycle; the very same equilibrium becomes
unstable.

(2) In the equilibrium position, an unstable limit cycle dies; the equilibrium position
attraction domain decreases to zero with it, after which the cycle disappears, and
its instability is transferred to the equilibrium state.

The catastrophe theory begins with the works of R. Tom and V.I. Arnold [9] and
allows analyzing the jump transitions, discontinuities and sudden qualitative changes in
the cyber system behavior in response to a smooth change in external conditions that
have some common features. It applies the “bifurcation” concept, which is defined as
forking and is used in a broad sense to denote the possible changes in the system

Fig. 3. Phase behavior of the cyber systems.

288 S. Petrenko and E. Khismatullina

functioning when the parameters on which they depend change. A bifurcation set is a
boundary separating the space domains of control parameters with a qualitatively
different system behavior under study.

In order to study the jump transitions in the cyber system behavior, we study the
critical points u 2 Rn of smooth real functions f: Rn ! R, where the derivative van-
ishes: ∂f/∂xi|u = 0, i = 1, n. The importance of such a study is explained by the fol-
lowing statement: if some system properties are described by a function f that has the
potential energy meaning, then of all possible displacements, there will be real ones for
which f has a minimum (the Lagrange fundamental theorem says that the minimum of
the full potential system energy is sufficient for stability).

The most common types of critical points for a smooth function are local maxima,
minima and inflexion points (Fig. 5).

Fig. 4. Cycle generation bifurcation.

Fig. 5. Critical points representation if n = 1.

Cyber-Resilience Concept for Industry 4.0 Digital Platforms 289

In a general case, in the catastrophe theory, the following technique is applied to
study the cyber system features: first, the function f is decomposed into a Taylor series
and then it is required to find a segment of this series that adequately describes the
system properties close to the critical point for a given number of control parameters.
The calculations are carried out by the correctly neglecting some Taylor series mem-
bers and leaving others that are the “most important” (Fig. 6).

Rene Tom, in his works, pointed out the importance of the structural stability
requirements or insensitivity to small disturbances. The “structural stability” concept
was first introduced into the differential equation theory by A.A. Andronov and L.S.
Pontryagin in 1937 under the name “system robustness” [9].

A function f is considered structurally stable, if for all sufficiently small smooth
functions p the critical points f and (f + p) are of the same type. For example, for the
function f(x) = x2 and p = 2ex, where e is a small constant, the disturbed function takes
the form: f(x) = x2+ 2ex = (x + e) – e2, i.e. the critical point has shifted (the shift
magnitude depends on e), but has not changed its type.

In the work of V.A. Ostreykovsky it is shown that the higher the degree of n, the
worse xn behaves: a disturbance f(x) = x5 can lead to four critical points (two maxima
and two minima), and this does not depend on how small the disturbance is (Fig. 7).

As a result, the catastrophe theory allows studying the Industry 4.0 cyber system
behavior dynamics under disturbances, like the disturbance simulation in living nature.
In particular, to put forward and prove the hypothesis that under mass disturbances, the
cyber system is in stable equilibrium if the potential function has a strict local mini-
mum. If the certain values of these factors are exceeded, the cyber system will
smoothly change its state if the critical point is not degenerate. With a certain increase
in the load, the critical point will first degenerate, and then, as a structurally unstable,
will be separated into non-degenerate or disappear. At the same time, the cyber system

Fig. 6. Critical points representation, if n = 2.

290 S. Petrenko and E. Khismatullina

behavior program will jump into a new state (abrupt stability, destruction, critical
changes in structure and behavior).

5 Cyber Resilience Management System Design

In order to design a cyber resilience control system, we use the theory of the multilevel
hierarchical systems (M. Mesarovic, D. Mako, Y. Takahara) [7–9]. In this case, we will
distinguish the following hierarchy types: “echelon”, “layer”, “stratum” (Fig. 8).

Fig. 7. Function behavior under disturbance.

Cyber-Resilience Concept for Industry 4.0 Digital Platforms 291

The main strata are listed below:

– Stratum 1 is a monitoring of group and mass cyber-attacks and an immunity
accumulation: the intruder simulation in the exposure types; modeling of the dis-
turbance dynamics representation and the scenario definition to return the cyber
system behavior to the equilibrium (stable) state; macro model (program) devel-
opment of the system self-recovery under disturbances (E),

– Stratum 2 is a development and verification of the cyber system self-recovery
program at the micro level: development of the micromodel (program) of the system
self-recovery under disturbances; modeling by means of denotational, axiomatic
and operational semantics to prove the partial correctness of the system recovery
plans (D),

– Stratum 3 is a self-recovery of the disturbed cyber-system behavior when solving
target problems at the micro level: output of operational standards for recovery;
model development for their presentation; recovery plan development and execu-
tion. Here (R) corresponds to the hierarchy levels of the given organization system.

Let us note that a certain step of some micro- and macro-program self-usable
translator (or intellectual controller, or hypervisor) to recover the cyber system
behavior under disturbances is consistently implemented here.

A possible algorithm fragment of the named system recovery is shown in Fig. 9.

Here, Sk ¼ Sk1; S
k
2; . . .; S

k
p; t

� �
is a state vector of the cyber system behavior; Z

(t) = (z1, z2, … , zm; t) are the parameters of the intruder actions; X(t) = (x1, x2, … , xn;
t) are the controlled parameters; V(R, C) are the control actions, where R is a set of
accumulated immunities to exposure; C is a variety of cyber behavior purposes.

The decision on the cyber system behavior self-recovery under disturbances is
based on the information (S) on the system state, the immunity presence to disturbances
®, taking into account the system functioning purposes ®. The indicators S are formed

Fig. 8. Resilience control unit

292 S. Petrenko and E. Khismatullina

based on the parameters X, which is input, intermediate and output data. The attacker
influence parameters Z are understood as values that are weakly dependent (not
dependent) on the system, ensuring the required cyber resilience. The Industry 4.0
cyber system behavior analysis under growing threats to cybersecurity makes it pos-
sible to present the above systems as a dynamic system, provided that knowledge of the
previous system state and the recovered system operation segment is a necessary and
sufficient condition to determine the next observed state. It also implies that the time
point set is ordered, i.e. it defines the time direction.

6 Conclusion

The selected abstract translator representation of the cyber system behavior with
memory based on the identified dynamic interrelations allows formulating and proving
statements, confirming the fundamental solution existence to self-recovery programs of
the Industry 4.0 cyber systems behavior under group and mass perturbations

The analysis shows the possibility of the catastrophe theory application to analyze
the Industry 4.0 cyber-system behavior dynamics under disturbances by analogy with
the disturbance simulation in wildlife. It is shown that under mass disturbances, the
cyber system is in stable equilibrium if the potential function has a strict local mini-
mum. If certain values of these factors are exceeded, the system will smoothly change
its state if the critical point is not degenerate. With a certain increase in the load, the
critical point will first degenerate, and then, as a structurally unstable, will decay into
nondegenerate or disappear. At the same time, the observed cyber system will abruptly
move into a new state (loss of cyber-resilience, destruction, critical changes in
structure and behavior, irreversible critical state).

The results of the cyber-resilience memory control system design allowed identi-
fying the following strata: monitoring of group and mass cyber-attacks and immunity
accumulation; self-recovery program development and verification of the disturbed

Fig. 9. Cyber system self-recovery algorithm fragment

Cyber-Resilience Concept for Industry 4.0 Digital Platforms 293

system behavior; recovery, which achieves cyber system self-recovery when solving
the target problems.

Acknowledgement. The publication was carried out with the financial support of Russian
Foundation for Basic Research (RFBR) and the Government of the Republic of Tatarstan in the
framework of the scientific project No. 18-47-160011 “Development of an early warning system
for computer attacks on the critical infrastructure of enterprises of the Republic of Tatarstan
based on the creation and development of new NBIC cybersecurity technologies”.

References

1. Bodeau, D., Graubart, R., Heinbockel, W., Laderman, E.: Cyber Resiliency Engineering Aid-
The Updated Cyber Resiliency Engineering Framework and Guidance on Applying Cyber
Resiliency Techniques, MTR140499R1, PR 15-1334, May 2015

2. Ross, R.S.: Risk Management Framework for Information Systems and Organizations: A
System Life Cycle Approach for Security and Privacy, 20 December 2018

3. ISO/TS 22318:2015: Societal security – Business continuity management systems –

Guidelines for supply chain continuity, ISO/TC 292 (2015)
4. ISO/IEC 27005:2018: Information technology – Security techniques, ISO/TC 292 (2018)
5. Kott, A., Linkov, I.: Cyber Resilience of Systems and Networks (Risk, Systems and

Decisions), p. 475. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77492-3
6. Mailloux, L.O.: Engineering Secure and Resilient Cyber-Physical Systems, Systems

Engineering Cyber Center for Research, US Air Force (2018)
7. NIST Special Publication 800-160 Volume 2: Systems Security Engineering. Cyber

Resiliency Considerations for the Engineering of Trustworthy Secure Systems (2018)
8. Petrenko, S.: Big Data Technologies for Monitoring of Computer Security: A Case Study of

the Russian Federation, 1st edn, p. XXVII, 249. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-79036-7

9. Petrenko, S.: Cyber Security Innovation for the Digital Economy: A Case Study of the
Russian Federation, River Publishers Series in Security and Digital Forensics, 1st edn, p. 490.
River Publishers, Gistrup (2018)

294 S. Petrenko and E. Khismatullina

http://dx.doi.org/10.1007/978-3-319-77492-3
http://dx.doi.org/10.1007/978-3-319-79036-7
http://dx.doi.org/10.1007/978-3-319-79036-7

Method of Improving the Cyber Resilience
for Industry 4.0. Digital Platforms

Sergei Petrenko(&) and Khismatullina Elvira

Innopolis University, Universitetskaya 7, Innopolis 420500, Russia
s.petrenko@rambler.ru

Abstract. Cyber resilience is the most important feature of any cyber system,
especially during the transition to the sixth technological stage, and related
Industry 4.0 technologies: Artificial Intelligence (AI), Cloud and foggy com-
puting, 5G +, IoT/IIoT, Big Data and ETL, Q-computing, Block chain, VR/AR,
etc. We should even consider the cyber resilience as primary one, because the
mentioned systems cannot exist without it. Indeed, without the sustainable
formation, made of the interconnected components of the critical information
infrastructure, it does not make sense to discuss the existence of 4.0 Industry
cyber-systems. In case when the cyber security of these systems is mainly
focused on assessment of the incidents’ probability and prevention of possible
security threats, the cyber security is mainly aimed at preserving the targeted
behavior and cyber systems’ performance under the conditions of known (about
45%) as well as unknown (the remaining 55%) cyber-attacks.

Keywords: Digital transformation � Digital economy � Cyber resilience �
Manageability capability � Self-organization �
Proactive cyber security and adaptability �
Models and methods of artificial intelligence � Cognitive computing � Big data �
Robotics � Internet of Things IIoT / IoT

1 Introduction

It should be noted that the modern cyber systems do not have the required cyber
resilience for targeted operation under conditions of heterogeneous mass cyber-attacks,
due to the high structural and functional complexity of these systems, the potential
danger of the existing vulnerabilities and “dormant” hardware and software tabs, the
so-called “digital bombs” [1–3]. Moreover, the modern cyber security tools, including
anti-virus protection, vulnerability scanners, as well as systems for detecting, pre-
venting and neutralizing computer attacks [4–8], are still not sufficiently effective. The
applied classical methods and means of ensuring reliability, response and recovery,
using the capabilities of structural and functional redundancy, N - multiple reservation,
standardization and reconfiguration, are no longer suitable for providing the required
cyber resilience and prevent catastrophic consequences [9–12].

© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 295–302, 2019.
https://doi.org/10.1007/978-3-030-29852-4_24

http://orcid.org/0000-0003-0644-1731
http://orcid.org/0000-0002-8765-1097
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_24

The results of the Ernst & Young (EY) international research on information
security1 evidence that the second year in a row 87% of World leading companies
executive board and management representatives are uncertain about the adequacy of
the taken cyber security measures. At the same time, the most part of managers seek to
increase the speed of rapid response to the emergence of new challenges and threats in
cyberspace. In particular, the public investments are made for the creation and
development of SOCs of the second and next generations. However, the main question
is: does the company have the required cyber resilience? Does it have enough capacity
to minimize the risks of business interruption? Apparently, high cyber resilience of
critical business information infrastructure is not solely limited to the prompt response
to new challenges and cyber threats. We need the fundamentally new ideas and new
approaches of ensuring the business sustainability.

Also, the results of the aforementioned research indicate the need for a paradigm
shift - from response and recovery to cyber resilience. Indeed, recently the issues of
building response and recovery corporate systems that can effectively withstand the
typical failures under normal operating conditions were among the top priorities.
However, it is no longer enough to limit ourselves to ensuring the response and
recovery under the conditions of an unprecedented increase in security threats. It
requires a new paradigm for building a corporate cyber-resilient system that will be
able to timely detect and prevent cyber-attacks, and in the case of cyber-attacks, it will
“soften” the blow, reduce the strength and nature of destructive impact, and minimize
the consequences [9, 10, 13–18]. Moreover, such a “smart” protection organization, if
necessary, should allow sacrificing some of the functions and components of the
protected infrastructure for the business resumption.

According to the CSIRT2 of Innopolis University, the average flow of cyber
security events in 2018 was 57 million events per day. The share of critical security
incidents exceeded 18.7%, i.e. every fifth incident had become critical. This dynamic
correlates with the results of cyberspace control and monitoring the cybersecurity
threats of leading international CERT/CSIRT in the United States and the European
Union, and also confirms the investigation results of the well-known cyber-attacks:
“STUXNET” (2010), “Duqu” (2011), Flame (2012), “Wanna Cry” (2017), “Indus-
troyer” and “TRITON / TRISIS / HATMAN” (2018), etc. At the same time, the
increasing concern has the number of unknown and, accordingly, undetectable cyber-
attacks is between 60% and 40% out of a possible. Collectively, this all suggests that
the known methods for ensuring cybersecurity, response and recovery are no longer
enough to provide the required cyber resilience and preventing the transfer of critical
information infrastructure to irreversible catastrophic states [4, 6, 7, 11, 12, 19–21].

The above mentioned poses a problematic situation that lies in the contradiction
between the ever-increasing need to ensure the cyber resilience of critical information
infrastructure under the conditions of destructive software impacts and the imperfection
of methods and means of timely detection, prevention and neutralization of cyber-
attacks. The removal of this contradiction requires the resolution of an urgent scientific

1 https://www.ey.com/en_gl/cybersecurity/global-information-security-survey.
2 https://university.innopolis.ru/research/tib/csirt-iu.

296 S. Petrenko and K. Elvira

https://www.ey.com/en_gl/cybersecurity/global-information-security-survey
https://university.innopolis.ru/research/tib/csirt-iu

and technical problem - the organization of the cyber resilience of information
infrastructure in terms of heterogeneous mass cyber-attacks, based on new models and
methods of similarity theory, Big data collection and processing and stream data
extract, transfer, load (ETL), deep learning, semantic and cognitive analysis.

2 Cyber Resilience Concept

The cyber resilience characteristic is a fundamental feature of any cyber system created
on the Industry 4.0 breakthrough technologies (Society 5.0–SuperSmart Society). The
characteristic can intuitively be defined as a certain constancy, the permanence of a
certain structure (static resilience) and behaviour (dynamic resilience) of the named
systems. As applied to technical systems, the resilience definition was given by an
outstanding Russian mathematician, Academician of the St. Petersburg Academy of
Sciences A. M. Lyapunov (1857–1918): “Resilience is a system’s ability to function in
conditions close to equilibrium, under constant external and internal disturbing
influences”.

It is proposed to clarify the above definition, since the cyber resilience of Industry
4.0 systems does not always mean the ability to maintain an equilibrium state. Initially,
the resilience feature was interpreted in this way, since it was noticed as a real phe-
nomenon, when studying homeostasis (returning to an equilibrium state when unbal-
ancing) of biological systems. The system analysis apparatus use implies a certain
adaptation of the term “resilience” to the characteristic features of the studied cyber
systems under information and technical influences, one of which is the operation
purpose existence. Therefore, the following resilience definition is proposed: “Cyber
Resilience is an ability of the cyber-system functioning, according to a certain algo-
rithm, in order to achieve the operation purpose under the intruder information and
technical influences”.

Indeed, according to Fleishman B.S., it is necessary to distinguish the active and
passive resilience forms. The active resilience form (reliability, response and recovery,
survivability, and etc.) is inherent in the complex systems, which behaviour is based on
the decision act. Here the decisive act is defined as the alternative choice, the system
desire to achieve its preferred state that is purposeful behaviour, and this state is its
goal. The passive form (strength, balance, homeostasis) is inherent in the simple sys-
tems that are not capable of the decision act.

Additionally, in contrast to the classical equilibrium approach, the central element
here is the concept of structural and functional resilience. The fact is that the normal
cyber system functioning is usually far from an equilibrium. At the same time, the
intruder external and internal information and technical influences constantly change
the equilibrium state itself. Accordingly, the proximity measure that allows deciding
whether the cyber system behaviour changes significantly under the disturbances, here,
is the performed function set.

After the work of Academician Glushkov V.M. (1923–1982), the researches of V.
Lipaev. (1928–2015), Dodonova A. G, Lande D. V, Kuznetsova M. G, Gorbachik E.S.,
Ignatieva M. B, Katermina T. S and other scientists were devoted to the resilience
theory development. However, the resilience theory in these works was developed only

Method of Improving the Cyber Resilience 297

in regards to the structure vulnerability of the computing system without taking into
account explicitly the system behaviour vulnerability under a priori uncertainty of the
intruder information and technical influences. As a result, in most cases, such a system
is an example of a predetermined change and relationships and connection preserva-
tion. This preservation is intended to maintain the system integrity for a certain time
period under normal operating conditions. This predetermination has a dual character:
on the one hand, the system provides the best response to the normal operating dis-
turbance conditions, and on the other hand, the system is not able to withstand another,
a priori unknown information and technical intruder influences, changing its structure
and behaviour.

3 Problem Solution

The design and development practice of Industry 4.0 cyber system indicates the fol-
lowing. The modern confrontation conditions in cyberspace assign these systems
features that exclude the possibility of designing cyber-resilient systems in traditional
ways. The following Table 1 gives the complexity factors arising at the same time, and
the generated difficulties.

Here the factors 1, 4 and 7 are determinant ones. They exclude the possibility to be
limited by the generally valid features of Industry 4.0 cyber systems in group and mass
cyber-attacks. However, traditional cyber security and resilience methods are based on
the following approaches:

Table 1. Complexity factors in ensuring cyber resilience

Complexity factors Generated difficulties

1 Complex structure and behaviour of the
automated systems of critically important in
objects (AS CIO)

Solved problem awkwardness and
multidimensionality

2 AS CIO behaviour randomness System behaviour description
uncertainty, complexity in the task
formulation

3 AS CIO activity Limiting law definition complexity of
the potential system efficiency

4 Mutual impact of the AS CIO data structures Cannot be considered by the known
type models

5 Failure and denial influence on the AS CIO
hardware behaviour

System behaviour parameter
uncertainty, complexity in the task
formulation

6 Deviations from the standard AS CIO
operation conditions

Cannot be considered by the known
type models

7 Intruder information and technical impacts on
AS CIO

System behaviour parameter
uncertainty, complexity in the task
formulation

298 S. Petrenko and K. Elvira

– Simplifying the behaviour of cyber systems before deriving generally valid algo-
rithmic features;

– Generalization of the empirically established specific behaviour laws of the named
systems.

The use of these approaches does not only cause a significant error in the results but
also has fundamental flaws. The lack of the analytical modelling of cyber system
behaviour, under group and mass cyber-attacks, is the difficulty of the transitioning
from the system behaviour class, characterized by the derivation of general algorithmic
features, to a single behaviour, which is additionally characterized by the operating
conditions under growing cyber threats. The empirical simulation disadvantage of the
cyber system behaviour is an inability to extend the results to other system behaviour
that differs from the studied one in the functioning parameters.

Therefore, in practice, the traditional cyber security and fault tolerance approaches
can only be used to develop systems for approximate forecasting of system cyber
resilience in group and mass cyber-attacks.

In order to resolve these contradictions, there is a proposed approach, based on the
dimension and similarity theory methods, which lacks these drawbacks and allows the
implementation of the so-called cyber-system behaviour decomposition principle under
group and mass cyber-attacks, according to the structural and functional characteristics.
In the dimension and similarity theory, it is proved that the relation set between the
parameters that are essential for the considered system behaviour is not the natural
studied problem property. In fact, the individual factor influences of the cyber system
external and internal environment, represented by various quantities, appear not sep-
arately, but jointly. Therefore, it is proposed to consider not individual quantities, but
their total (the so-called similarity invariants), which have a definite meaning for the
certain cyber system functioning.

Thus, an application of the method of the dimensions and similarity theory allows
formulating the necessary and sufficient conditions for the two-model isomorphism of
the allowed cyber system behaviour under group and mass cyber-attacks, formally
described by systems of homogeneous power polynomials (polynomials).

As a consequence, the following actions become possible:

– Producing an analytical verification of the cyber system behavior and check the
isomorphism conditions;

– Numerical determination of the certain model representation coefficients of the
system behavior to achieve isomorphism conditions.

This, in turn, allows the following actions:

– Controlling the semantic correctness of the cyber system behavior under exposure
by comparing the observed similarity invariants with the invariants of the reference,
isomorphic behavior representation;

– Detection (including in real time) the anomalies of system behavior resulting from
the destructive software intruder actions;

– Restoring the behavior parameters that significantly affect the system cyber
resilience.

Method of Improving the Cyber Resilience 299

4 Method of Improving the Cyber Resilience

A new Method of improving the Cyber Resilience consist of the following four stages.

The first stage is the p-analysis of the cyber system behavior models. The main stage
goal is to separate the semantic system behavior correctness standards, based on
similarity invariants.

The step procedure includes the following steps:

(1) Structural and functional standard separation;
(2) Time standard separation;
(3) Control relation development, necessary to determine the semantic system

behavior correctness.

The second stage is the algorithm development of the obtaining semantic cyber system
behavior correctness standards. Its main purpose is to obtain the system behavior
probabilistic algorithms of standards or similarity invariants in a matrix and a graphical
form.

The step procedure includes the following steps:

(1) Construction of the standard algorithm in the tree form;
(2) Algorithm implementations listing;
(3) Weighting of algorithm implementations (a probabilistic algorithm construction);
(4) Algorithm tree rationing.

The third stage is the standard synthesis of the semantic cyber-system behavior cor-
rectness, adequate to the application goals and objectives. Its main goal is to synthesize
algorithmic structures formed by a set of sequentially executed standard algorithms.

This procedure is carried out in the following steps:

(1) Structural and functional standard synthesis;
(2) Time standard synthesis;
(3) Symmetrization and ranking of matrices describing standards.

The fourth stage is the simulation of the stochastically defined algorithmic structures of
the semantic cyber system behavior correctness standards. The step procedure includes
the following steps:

(1) Analysis of the empirical semantic correctness;
(2) Determining the type of the empirical functional dependence;
(3) Control ratio development sufficient to determine the semantic system behavior

correctness and to ensure the required cyber resilience.

As a result, the method applicability of dimensions and similarity theory to
decompose Industry 4.0 cyber-systems behavior algorithms, according to functional
characteristics and the necessary invariants formation of semantically correct systems
operation, was shown. The self-similarity property presence of similarity invariants
allowed forming static and dynamic standards of the semantically correct system
behavior and uses them for engineering problem solution of control, detection, and
neutralization of intruder information and technical influences.

300 S. Petrenko and K. Elvira

5 Conclusion

It is significant that the proposed approach significantly complements the well-known
MITRE3 [8, 13, 14] and NIST SP 800-1604 [3, 23, 24] approaches and allows devel-
oping cyber resilience metrics and measures. Including engineering techniques for
modelling, observing, measuring and comparing cyber- resilience based on similarity
invariants.

Acknowledgement. The publication was carried out with the financial support of Russian
Foundation for Basic Research (RFBR) and the Government of the Republic of Tatarstan in the
framework of the scientific project No. 18-47-160011 “Development of an early warning system
for computer attacks on the critical infrastructure of enterprises of the Republic of Tatarstan
based on the creation and development of new NBIC cybersecurity technologies”.

References

1. Bodeau, D., Graubart, R., Heinbockel, W., Laderman, E.: Cyber Resiliency Engineering
Aid-The Updated Cyber Resiliency Engineering Framework and Guidance on Applying
Cyber Resiliency Techniques (MTR140499R1PR 15-1334), May 2015

2. Bodeau, D., Brtis, J., Graubart, R., Salwen, J.: Resiliency Techniques for System of Systems:
Extending and Applying the Cyber Resiliency Engineering Framework to the Space Domain
(MTR 130515, PR 13-3513), September 2013

3. Ross, R.S.: Risk Management Framework for Information Systems and Organizations: A
System Life Cycle Approach for Security and Privacy, 20 December 2018

4. NIST Special Publication 800-160 VOLUME 4. Systems Security Engineering. Hardware
Assurance Considerations for the Engineering of Trustworthy Secure Systems – (Draft), 20
December 2020

5. NIST SP 800-34. Rev. 1: Contingency Planning Guide for Federal Information Systems
Paperback, 18 February 2014

6. NIST, Framework for improving critical infrastructure cybersecurity, version 1.1, draft 2, 16
April 2018

7. Petrenko, S.: Big Data Technologies for Monitoring of Computer Security: A Case Study of
the Russian Federation. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79036-7

8. Petrenko, S.: Cyber Security Innovation for the Digital Economy: A Case Study of the
Russian Federation. River Publishers, Huddesfield (2018)

9. ISO/IEC 27002:2013, Information technology – Security techniques – Code of practice for
information security controls. https://www.iso.org/standard/54533.html

10. ISO/IEC 27005:2018, Information technology – Security techniques
11. Kott, A., Linkov, I. (eds.): Cyber Resilience of Systems and Networks. RSD. Springer,

Cham (2019). https://doi.org/10.1007/978-3-319-77492-3
12. Mailloux, L.O.: Engineering Secure and Resilient Cyber-Physical Systems (2018)
13. ISO 22301:2012. Societal security – Business continuity management systems –

Requirements
14. ISO 22313:2012. Societal security – Business continuity management systems – Guidance

3 www.mitre.org.
4 www.nist.gov.

Method of Improving the Cyber Resilience 301

http://dx.doi.org/10.1007/978-3-319-79036-7
https://www.iso.org/standard/54533.html
http://dx.doi.org/10.1007/978-3-319-77492-3
http://www.mitre.org
http://www.nist.gov

15. ISO/TS 22317:2015. Societal security – Business continuity management systems –

Guidelines for business impact analysis (BIA)
16. ISO/TS 22318:2015, Societal security – Business continuity management systems –

Guidelines for supply chain continuity
17. ISO/TS 22330:2018, Security and resilience – Business continuity management systems –

Guidelines for people aspects of business continuity
18. ISO/TS 22331:2018, Security and resilience – Business continuity management systems –

Guidelines for business continuity strategy
19. NIST Special Publication 800-160 VOLUME 2. Systems Security Engineering. Cyber

Resiliency Considerations for the Engineering of Trustworthy Secure Systems, March 2018
20. NIST Special Publication 800-160 VOLUME 3. Systems Security Engineering. Software

Assurance Considerations for the Engineering of Trustworthy Secure Systems, 20 December
2019

21. NIST Special Publication 800-160 VOLUME 4. Systems Security Engineering. Hardware
Assurance Considerations for the Engineering of Trustworthy Secure Systems, 20 December
2020

22. Graubart, R.: The MITRE corporation, cyber resiliency engineering framework. In: The
Secure and Resilient Cyber Ecosystem (SRCE) Industry Workshop Tuesday, 17 November
2015

23. Ross, R.S., McEvilley, M., Oren, J.C.: Systems Security Engineering: Considerations for a
Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems, 21 March
2018

24. The BCI Cyber Resilience Report, Business Continuity Institute (2018)

302 S. Petrenko and K. Elvira

Computer Architectures and Robotics

Can We Rely on Smartphone Applications?

Sonia Meskini1, Ali Bou Nassif2, and Luiz Fernando Capretz3(&)

1 Prophix Software, Mississauga, ON L5B 3J1, Canada
sonya.meskini@gmail.com

2 Department of Electrical and Computer Engineering, University of Sharjah,
27272 Sharjah, UAE

anassif@sharjah.ac.ae
3 Department of Electrical and Computer Engineering, Western University,

London, ON N6A 5B9, Canada
lcapretz@uwo.ca

Abstract. Smartphones are becoming necessary tools in the daily lives of
millions of users who rely on these devices and their applications. There are
thousands of applications for smartphone devices such as the iPhone, Black-
berry, and Android, thus their reliability has become paramount for their users.
This work aims to answer two related questions: (1) Can we assess the reliability
of mobile applications by using the traditional reliability models? (2) Can we
model adequately the failure data collected from many users? Firstly, it has been
proved that the three most used software reliability models have fallen short of
the mark when applied to smartphone applications; their failures were traced
back to specific features of mobile applications. Secondly, it has been demon-
strated that the Weibull and Gamma distribution models can adequately fit the
observed failure data, thus providing better means to predict the reliability of
smartphone applications.

Keywords: Smartphone applications � Software reliability � NHPP model �
Software Reliability Growth Models � SRGM

1 Introduction

Smartphones are now so useful that many people prefer them over desktop or laptop
computers. Hundreds of applications, usually suited to desktop or laptop computers,
have been adapted to and carried out by these smartphones. The high usage and trust
placed in these devices and their applications make their reliability a critically
important goal to achieve [1]. Thus, owing to their highly integrated software,
smartphones are far more advanced devices and their functionalities far exceed those of
the classic mobile phones. Therefore, increased attention is now being paid to the
reliability and security of these devices. Software Reliability Growth Models (SRGMs)
are among the tools that deal with the reliability of software applications; they have
been constructed and successfully applied to desktop (classic/standard) applications. In
recent work [2], we thoroughly investigated the applicability of these SRGMs to the
mobile area. We applied three of the most used SRGMs to the collected failure data of
three smartphone applications; our main conclusion was that none of the selected

© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 305–312, 2019.
https://doi.org/10.1007/978-3-030-29852-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_25&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_25

models was able to account for the observed failure data satisfactorily. Basically, we
addressed the following research questions:

(1) How do the existing successful reliability models, used to assess the
desktop/laptop applications, perform when applied to the mobile area?

(2) What are the best non-linear distributions that fit smartphone application failure
data?

(3) What useful information can be gained from this approach?

The rest of the paper is organized as follows: in Sect. 2 we provide a short list of
the existing models that we will use, we describe our dataset collection, and we test the
applicability of existing software reliability models. Finally, in Sect. 3, we carry out an
analysis of the failure data with model distributions followed by a discussion in Sect. 4.
We present our conclusions in Sect. 5 and outline future work possibilities.

2 SRGMs Applied to Smartphone Applications

The SRGMs used later in our experiments are: the NHPP – Crow – AMSAA model
(also termed the NHPP-Power Law model), the Musa-Basic execution time model (or
the exponential model), and the Musa-Okumoto model (or the Logarithmic Poisson
model). The applications that have been chosen are Skype, Vtok, and a private Win-
dows phone application. The relevant equations of these models are given in [3].

We present the procedure devised to collect the failure data for each application
followed by the results of the application of the chosen SRGM to failure data for each
application, and, finally, an analysis of the observed results.

2.1 Datasets and Experiments

We used Apple devices (iPhone, iPad and iPod Touch) crash files as well as a Windows
Phone crash file as our “experimental” data. These crash files are not public, but are
confidential.

The reliability demonstration of smartphone applications was carried out through
traditional testing, failure data collection, and the application of the most used SRGMs
for standard applications to observe and check the adequacy of these models in the
mobile area.

The first iPhone application studied was Skype, which had been tested and used for
one year (from November 1, 2011 to November 11, 2012). Hence, the data has been
collected during this year with some missing values due to the occasional non-use of
the application. We were, however, able to collect 39 data points for the Skype
application.

The second application studied was Vtok (an application for Google talk). This
application was used continuously every day for two months (from September 19, 2012
to November 25, 2012). Hence, we were able to collect failures every day (81 data
points).

During these periods, both the Skype and the Vtok applications were upgraded
when new versions were released.

306 S. Meskini et al.

On the other hand, the Windows phone application was used and tested continu-
ously for six months (from March 2012 to August 2012) by different users located in
different parts of the world (more than 100 users).

We used two Software Reliability tools for this application to double check the
results. The first tool is RGA 7 from ReliaSoft [4] and the second one is Statistical
Modeling and Estimation of Reliability Functions for Software (SMERFS).

2.2 Evaluation

Figure 1 presents the cumulative number of failures per time for the Skype application
when applying the NHPP model. The RGA tool indicates an evident failure. Moreover,
we tested the Vtok application and we found that the NHPP model also failed.

In order to confirm our results, we used a second tool, SMERFS, and we applied
the NHPP model to the same data points. The result was the same – the failure of the
model each time. This failure can be traced back to the main differences between the
desktop area and smartphones. One of the mobile application failure characteristics is
that they are application dependent, in the sense that they are dynamic and non-
homogenously spread in time. Moreover, they are unpredictable; sometimes they
decrease and sometimes they increase. One possible explanation is that reliability
depends on how the application is used, where it is used, and when it is used. The usage
may differ from one person to another, from one country to another, from one condition
and time to another, etc.; this explains the uncertainty of usage of the application in the
execution and release time because all these factors play an important role in the
reliability of the application.

Another reason is that the DLC (Development Life Cycle) of a mobile application
is short (up to 90 days) and the programmer aims to develop the application as fast as
possible to satisfy the time to market constraint, which leads to skip phases from the

Fig. 1. Cumulative number of failures per Time (Skype).

Can We Rely on Smartphone Applications? 307

DLC. The phase most often skipped is the design phase, which is the most important
phase in the DLC of the application [5]. Thus, it would be difficult to identify the
causes of errors during the execution time and to find a convenient solution to fix them.
Besides that, the failure or unreliability of the application may be caused by the
technology used during the development process. The skills of the developer and the
tester also play a huge role in the reliability of the application. Moreover, the device
itself and its hardware characteristics – such as the size of the screen, the performance,
the keyboard, etc. – can have a direct effect on the reliability of the application [6].

3 Failure Data Analysis Using Model Distributions

The preceding section was devoted to the application of the three most used SRGMs to
two common smartphone applications, Skype and Vtok, and one private Windows
phone application. The inputs to these models were the instantaneous failure data, i.e,
the failure number and its exact time of occurrence. Those models failed to describe
adequately the failure data. Having tried several non-linear models to better fit the
failure data, we found that Weibull and Gamma distributions can be used to model new
collected failure data of the same application after sorting them by version number and
grouping them in different time periods [7]. Therefore, we used the two mentioned
distributions and their particular cases, the Rayleigh and the S-Shaped models, and
compared their performances for each application. This study was carried out in two
steps: (1) the failure data for each application were sorted by version number and
(2) the data were grouped by larger time scales (days, weeks, and months). An esti-
mation of the total number of defects in each smartphone application version was
obtained.

The Weibull distribution [8] is a two parameter function whose expression is given
by:

f ðtÞ ¼ wblpdf t ; a; bð Þ ¼ b
a
� t

a

� �b�1
exp � t

a

� �b
� �

: ð1Þ

The parameters a and b take positive values as well as the variable t. If we define
A ¼ 1=ab and B = b, the expression simplifies to:

f tð Þ ¼ B A t B�1exp �A t B
� �

: ð2Þ

A maximum for this function occurs at time t = Tmax, such that

Tb
max ¼

B� 1
A B

: ð3Þ

The Gamma distribution is a two parameter function whose expression is given by:

308 S. Meskini et al.

f tð Þ ¼ gampdf t ; a; bð Þ ¼ 1
baC að Þ tð Þa�1exp � t

b

� �
: ð4Þ

for a, b and t taking positive values. The maximum of this function occurs at t = Tmax,
such that:

Tmax ¼ b a� 1ð Þ: ð5Þ

3.1 Results

This section presents a comparison and an evaluation of the use of the above mentioned
distributions to model the failure data of the Skype application, based on the usual
evaluation criteria: RMSE, Ad-R-Square, and MRE. Due to space limitation, only
Skype V1 will be presented from the versions we studied. The full and detailed results
are found in [3].

For each application, the four distributions used were compared on the basis of their
Root-Mean-Squared-Error (RMSE) and their Adjusted R-Square. The results of the
estimated total number of defects were evaluated using the Magnitude of Relative Error
(MRE). These statistical indicators are defined in [3].

Table 1 gives a compilation of all model parameters (a, b) along with the predicted
or estimated Tmax (time of maximum failure rate) and the expected proportion

(Y(t = Tmax)/C) of encountered failures by Tmax. It also gives results of RMSE, As-
R-Square, the estimated cumulative number of failures C, and the MRE shown by each
model. Only the best and the second best model distributions are given for each
application version.

Table 1. Skype version 1 – error evaluation and model comparison.

Skype V1 Weibull Gamma

Model parameters and deduced
estimated values

a = 6.17 (5.26, 7.09)
b = 2.82 (1.81, 3.84)
Observed Tmax = 6
Estimated Tmax = 5.98
Estimated (Y(t = Tmax)/
C) = 47%

a = 6.14 (1.84, 10.44)
b = 0.97 (0.21, 1.73)
Observed Tmax = 6
Estimated Tmax = 5.01
Estimated (Y(t = Tmax)/
C) = 38.5%

RMSE 2.1966 2.2305
Ad-R-Square 0.6374 0.6262
C: Estimated cumulative number of
failures or defects

50.54 (34.51, 66.58) 51.81 (34.32, 69.31)

MRE(%) 6.4 4

Can We Rely on Smartphone Applications? 309

Figure 2 portrays the results reported in Table 1. It can be noted from the figure that
the Weibull distribution is the closest to the actual behavior curve of the application
followed by the Gamma distribution.

4 Discussion and Answers to Research Questions

According to the preceding section, and as an answer to the first research question
raised in the abstract, it can be concluded that the most successful reliability models [9]
failed to account for the failure data and to predict the reliability of mobile applications.
This failure can be traced back to the following main reasons: (1) Operational Envi-
ronment and Usage Profiles of Smartphones Applications, (2) Hardware and Software
Limitations [10].

Assuming all of these uncertainties, at a second stage, and in order to answer the
second research question, we collected data from many users in different regions of the
world, sorted them by application versions, and grouped them in different time periods
(days, weeks, and months). Each application version failure data, when plotted in time
periods, shows the same pattern: an early “burst of failures”, due probably to the most
evident defects, followed by a steep decrease in failure rate. After trying several non-
linear models to fit the failure data, we found that the observed behavior is better
modeled by the Weibull or Gamma distributions.

To answer the third research question the main features of this approach can be
summarized as follows:

• For each application version, the model distributions are in fact distinguished by
tiny differences in the calculated errors RMSE and Ad-R-Squared. Nevertheless, it

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

Days

Fa
ilu

re
 c

ou
nt

s

Weibull
Rayleigh
Gamma
S-shaped
"Experiment"

Fig. 2. Skype version 1 – model comparison.

310 S. Meskini et al.

can be concluded that no one single distribution can fit the data of all applications or
even the different versions of the same application.

• As the parameters are given along with their 95% confidence intervals, it is to be
noted that parameter b of the Weibull distribution, which is fixed to the value b = 2
for the particular case of Rayleigh distribution, has confidence intervals that include
the value b = 2. The same can be noted for parameter a of the Gamma distribution,
which is fixed to the value a = 2 in the particular case of the S-shaped model
distribution. But most of the time, the general distribution models fit the failure data
better than the particular cases.

• Similar to the famous 40% rule of the Rayleigh distribution, and independent of any
application, the S-shaped distribution has a 26.4% rule. This means that by Tmax,
only 26.4% of the defects in a smartphone application will be uncovered. This can
be tested on larger datasets and across many applications.

5 Conclusions

Our work is a step toward the application and evaluation of traditional Software
Reliability models in the mobile area. We selected three of the most used models that
are known for their efficiency in the desktop area: the NHPP, Musa-Basic, and Musa-
Okumoto models. We examined two iPhone applications, Skype and Vtok, which were
used and tested differently to evaluate the models under different conditions, and one
Windows phone application. It turned out that none of the selected SRGMs was able to
account for the failure data satisfactorily.

Our study also highlighted the causes of the failure of the models and the need for a
meticulous SRGM for Smartphone applications, because the existing software relia-
bility approaches were developed for traditional desktop software applications that are
static and stable during their execution. This is not the case for smartphone applica-
tions, which have an unknown operational profile, a highly dynamic configuration, and
changing execution conditions. On a continuous background, the smartphone failures
come in relatively short bursts from time to time, which explain the abrupt in the
observed cumulative failure number curves. This particular feature cannot be accom-
modated by the SRGMs that were used. Thus, in order to evaluate the reliability of
smartphone applications, new models, principles, and tools are needed to incorporate
the underlying uncertainties of such applications [11–14].

Our investigation of smartphone application reliability through the use of well-
known available growth models suited primarily to desktop applications is twofold:
(1) highlight the versatile nature of mobile applications, their dynamic configuration,
unknown operational profile, and varying execution conditions in contrast to the static
and stable desktop ones, and (2) stress the need for the design of new reliability models
suited for mobile applications that take into account the inherent versatility of such
applications [15]. Our future work will focus on analyzing these selected SRGMs in
more depth and trying to modify the closest one to the data and adapt in to smartphone
applications. Moreover, we will check to find out if we need to have a specific model

Can We Rely on Smartphone Applications? 311

for each type of applications or if one model is applicable to all the categories, of
Smartphone applications, taking into consideration the severity of the failure.

References

1. Verkasalo, H., Lopez-Nicolas, C., Molina-Castillo, F.J., Bouwman, H.: Analysis of users
and non-users of smartphone applications. Telematics Inform. 27(3), 242–255 (2010)

2. Meskini, S., Nassif, A.B., Capretz, L.F.: Reliability models applied to mobile applications.
In: Proceedings of 7th IEEE International Conference on Software Security and Reliability
Companion, Washington, DC, USA, pp. 155–162 (2013)

3. Meskini, S.: Reliability Models Applied to Smartphone Applications, Master Thesis,
Western University, London, Ontario, Canada (2013)

4. ReliaSoft: Reliability Growth & Repairable System Data Analysis Reference (2010). http://
rga.reliasoft.com/

5. Wasserman, A.I.: Software engineering issues for mobile application development. In:
Proceedings of FSE/SDP Workshop on the Future of Software Engineering Research,
FoSER 2010, Santa Fe, NM, USA, pp. 397–400 (2010)

6. Jang, S., Lee, E.: Reliable mobile application modeling based on open API. In: Ślęzak, D.,
Kim, T.-h., Kiumi, A., Jiang, T., Verner, J., Abrahão, S. (eds.) ASEA 2009. CCIS, vol. 59,
pp. 168–175. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10619-4_21

7. Meskini, S., Nassif, A.B., Capretz, L.F.: Reliability prediction of smartphone Applications
through failure data analysis. In: Proceedings of 19th IEEE Pacific Rim International
Symposium on Dependable Computing, Vancouver, BC, Canada, pp. 124–125 (2013)

8. Murthy, D.N.P., Xie, M., Jiang, R.: Weibull Models. Wiley, Hoboken (2004)
9. Xu, J., Ho, D., Capretz, L.F.: An empirical validation of object-oriented design metrics for

fault prediction. J. Comput. Sci. 4(7), 571–577 (2008)
10. Mirvat, P., Marin, I., Ortin, F., Rodriguez, J.: Framework for the declarative implementation

of native mobile applications. IET Softw. J. 8(1), 19–32 (2014)
11. Capretz, L.F., Capretz, M.A.M.: Object-Oriented Software: Design and Maintenance, p. 263.

World Scientific, Singapore (1996). ISBN 981-02-2731-0
12. Raza, A., Capretz, L.F., Ahmed, F.: Users’ perception of open source usability: an empirical

study. Eng. Comput. 28(2), 109–121 (2012)
13. Nassif, A.B., Azzeh, M., Capretz, L.F., Ho, D.: Neural network models for software

development effort estimation: a comparative study. Neural Comput. Appl. 27(8), 2369–
2381 (2016)

14. Ahmed, F., Capretz, L.F., Babar, M.A.: A model of open source software-based product line
development. In: 32nd IEEE International Computer Software and Applications Conference
(COMPSAC), Turku, Finland, pp. 1215–1220 (2008)

15. Malek, S., Roshandel, R., Kilgore, D., Elhag, I.: Improving the reliability of mobile software
systems through continuous analysis and proactive reconfiguration. In: Proceedings of 31st
IEEE International Conference in Software Engineering, ICSE-Companion 2009, Vancou-
ver, BC, Canada, pp. 275–278 (2009)

312 S. Meskini et al.

http://rga.reliasoft.com/
http://rga.reliasoft.com/
http://dx.doi.org/10.1007/978-3-642-10619-4_21

Distributed Computing System
on a Smartphones-Based Network

Hamza Salem(B)

Innopolis University, Innopolis, Russia
h.salem@innopolis.university

Abstract. The number of Smartphone users in the world is expected to
pass the five billion in 2019. The major credit for this exponential growth
is the competition between Smartphones manufacturing companies and
increasing Internet availability in the world. Processing power considered
to be one of the most important features in Smartphones and it is evolv-
ing year by year. Until now, building a distributed computing system
done exclusively using PCs and other server infrastructure. In this paper
we will propose a new architecture for a distributed computing system
consists of a network of Smartphones and use their computation power to
execute machine learning models on each Smartphone. As proof of con-
cept, our solution will provide a stable layer to execute large data-sets
using common machine learning algorithms such as Linear Regression.

Keywords: Distributed system · Computation power · JS-Regression

1 Introduction

Latest industry forecasts indicate that the annual worldwide IP traffic con-
sumption will reach 3.3 Zetta-bytes (1015 MB) by 2021, S Smartphone traffic
exceeding PC traffic by the same year [1,2]. Smartphones companies compete
with each other by improving features such as processing power, memory, and
capacity. These features are improving exponentially every year. In the near
future, Smartphones will have better performance to compete with PCs and
other devices such as PlayStation and Xbox. Overall, the expansion of the net-
work scale and the diversification of services in the 5G [3,4] era will experience
an explosive growth, which can help these devices to be more powerful.

Machine learning is a computational process and machine learning algorithm
needs data-sets to train models. However, When the data-sets are big more com-
putational power is needed. In order to increase the accuracy of any machine
learning model, we need to provide more data. Also, in general data-sets are
constantly increasing in size and complexity. The main challenge is that com-
putational power will increase when the data-sets are increasing. One of the
main solutions is Distributed Computation [5]. It is a universal approach to deal
with large data-sets. When data-sets are partitioned across several machines (or
nodes), the machines perform computations locally and communicate only small
c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 313–325, 2019.
https://doi.org/10.1007/978-3-030-29852-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_26&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_26

314 H. Salem

bits of information with each other and they coordinate to compute the desired
quantity. This is the standard approach taken at large technology companies,
which routinely deal with huge data-sets spread over computer clusters.

Computer Cluster defined by Bader [6] as a set of loosely or tightly connected
computers that work together so that, in many respects, they can be viewed as
a single system. Additionally, according to Bakery and Buyya [7] computing
industry is one of the fastest growing industries and it is fueled by the rapid
technological developments. For example, chip development, fabrication tech-
nologies, fast and cheap microprocessors, as well as high bandwidth and low
latency interconnection networks. On one hand, creating a distributed system
cannot depend only on the hardware, the software is the other key for the pro-
cess. For example, in personal computers and servers, we have Apache Spark
[23] as a popular open-source platform for large-scale data processing that is
well-suited for iterative machine learning tasks. Mengy [8] defined Spark as a
fault-tolerant and general-purpose cluster computing system providing APIs in
Java, Scala, Python, and R, along with an optimized engine that supports general
execution graphs. As mentioned by Xiangrui, Spark can be efficient at iterative
computations and well-suited for the development of large-scale machine learn-
ing applications. On the other hand, software in Smartphones or (Applications)
has been improved to deal with complex computation too. From the beginning
of Smartphones era, we have seen a lot of operating systems like Android, iOS,
Blackberry can deal with complex computation processes. Nowadays, as men-
tioned by Bala et al. [9]. Smartphones provide a wide range of services such as
sending or receiving SMS, music, online shopping, playing games, web browsing,
messaging using different apps like Whats-App, Facebook or Telegram. However,
all these applications still did not use computation power inside the Smartphone
with machine learning processes.

Currently, every software in the world is a kind of distributed system. For
example, when we have a website connected to APIs, the source code can be
hosted on a static server, the database hosted on a different server and the
APIs also in a different server too. In this paper, we will focus on distributed
computing system only [21], and the implementation will be on a network of
Smartphones.

In order to understand how can machine learning processes work on Smart-
phones, we will divide it into three main parts. The first part is when machine
learning processes such as, training and predicting happen on Cloud and the
application access these models using APIs. For example, Snap-chat filters [10]
its combination of augmented reality and machine learning algorithms for com-
puter vision used in mobile devices. However, the main part of the process hap-
pens on Cloud so when the devices are connected to the Internet the application
will not work. The second part is when the prediction happens on the device
and the training on Cloud. For example, in Talos App [11] the authors developed
On-Device machine learning using Tensor Flow [24] to detect Android Malware.
The app aims to solve the problem of malware detection using “Requested Per-
missions” as the input parameters. And they declared that the entire detection

Distributed Computing System on a Smartphones-Based Network 315

process takes place on the mobile device, and it does not require an Internet
connection to work. The third part when both of the training and the prediction
running on the device as partial tasks from a distributed system with a network.
In this paper we will propose a new architecture for a distrusted system consists
network of Smartphones working together to train and predicate with a spe-
cific type of machine learning algorithm. The aim of this paper implement and
validate the new architecture and examines which machine learning algorithm
can fit with such a system. Also, what is the main conditions and circumstances
should be provided in the data to make sure the accuracy of the results.

2 Related Work

Distributed Computing is increasingly becoming one of the main hot topics to
researchers especially using mobile devices. Few researchers have addressed the
idea of converting cloud computing in the large environment into a mobile com-
puting environment. For example, in [30] the authors proposed Hyrax a platform
like Hadoop, but it supports cloud computing on Android Smartphones. Users
can conveniently utilize data and execute computing jobs on networks of Smart-
phones. However, in [31] the authors proposed a new architecture to accessing
and processing of data distributed across mobile devices without an external
communication infrastructure, all communication uses a local wireless network.
Both papers identified Mobile devices as resources for computing power on local
network and deal with regular jobs in computing. In our paper, we will dis-
cuss three different perspectives as follows: Smartphones, Statistical Analysis,
and Networks perspective. The first paper is a case study presented the predic-
tion process for machine learning models from Smartphones perspective. In the
second paper, Dobriban and Sheng [5] demonstrates the concept of “distributed
linear regression by averaging” and how the algorithm will work on a distributed
system. The third part focuses on the aspects of improving communication effi-
ciency and speeds up the federated learning system using the local network and
other devices that will have the processing power.

2.1 On-Device Machine Learning Using Tensor-Flow to Detect
Android Malware

The paper proposing a lightweight method of malware analysis. Talos appli-
cation [11] uses on-device machine learning and Tensor-Flow. It aims to solve
the problem of malware detection using ‘Requested Permissions’ as the input
parameters. The entire detection process takes place on the mobile device, and
it does not require an Internet connection to work. Talos has demonstrated an
accuracy of 93.2%. The authors claimed [11] that the app analyzes apps within a
second, even on low-end Android devices. Talos use Tensor-Flow for creating the
machine learning model but the training part is done on computers because this
process is very computed intensive. The authors described Smartphones as “very
low powered” for accomplishing this task. In the end, when the model is trained

316 H. Salem

then the weights and biases are frozen and the frozen model is exported on to
the device. It is then used on the Smartphone to deliver predictions [11]. From
Smartphones perceptive Talos [11] is one of the apps that integrated machine
learning model on a production product. However, the training part still is done
by computers. In order to take a further step in this field, Smartphones have
to develop more power in computing. Having said that, Smartphones becoming
more and more powerful in computing and the future of Smartphones computing
power still in the beginning.

2.2 Distributed Linear Regression by Averaging

Dobriban and Sheng [5] discuss one-step parameter averaging in statistical lin-
ear models under data parallelism. By doing linear regression on each machine,
and take a weighted average of the parameters and studying the performance
loss in estimation error, test error, and confidence interval length in high dimen-
sions, where the number of parameters is comparable to the training data size.
They introduced several key phenomena. First, averaging is not optimal, but
the results are simple to use in practice and compare. Second, different problems
area affected differently by the distributed framework. Estimation error and con-
fidence interval length increases a lot, while the prediction error increases much
less. From Statistical perspective, averaging is one of the ways to distribute the
load on different nodes in a system. However, using such as algorithms have some
restrictions and limitations. For example, you should work with normalized data
before distributing it because without normalization the results will be biased
depend on the data distributions. To put it another way, each node has to present
as a mini copy of the system from the perspective of the data-set. Despite that,
averaging is still one of the best practice to work with large data-sets especially
with linear regression algorithms.

2.3 Federated Learning via Over-the-Air Computation

Typical machine learning processes including the training and prediction done on
Cloud. For example, a centralized cloud data center with the broad accessibility
of computation, storage, and the whole data-set provide APIs for other devices
to use machine learning models. However, the emerging intelligent mobile devices
and high-stake applications such as drones, smart vehicles and augmented reality,
call for the critical requirements of low-latency and privacy. This makes cloud
computing based machine learning methodologies inapplicable [11]. Therefore,
it becomes increasingly attractive to possess data locally at the edge devices and
then performing training and prediction directly at the edge, instead of sending
data to the cloud or networks. In [12] the authors focus on designing the fast
model aggregation approach for the Federation Average algorithm to improve
communication efficiency and speed up the federated learning system. Global
model aggregation procedure consists of the transmission of locally predicted
values from each device, followed by the computation of their weighted average at
a central node. From the Network perspective, this paper split machine learning

Distributed Computing System on a Smartphones-Based Network 317

processes into two different components working together on the same network.
For example, the central node is like the computers on Talos [3] or the Cloud on
regular systems. In conclusion, this architecture focus on working with a wireless
local network only and the interpretation between it and our proposed system is
implemented the same system using the Internet as network and do the training
process for machine learning models on edge device through the network.

3 System Design and Development

3.1 System Design

In order to understand the system design for a distributed computing system
to execute machine learning models, we will demonstrate the architecture for a
typical centralized web application has the same functionality and after it, we
will compare with the proposed architecture. Figure 1 shows the 4-tier system
architecture and the connection between the components.

Fig. 1. 4-tier system architecture for centralized web application

Figure 1 represent a centralized web application working as a platform
between companies and data scientists. The system provides an environment
to execute machine learning models and provide predictions. One of the main
issues in this architecture is scalability. For example, in Business Logic Tier
the execution component is the main components for training machine learning
models and as mentioned in [11] training process is very computed intensive and
need a computation power. In other words, more users will join more compu-
tation power will be required. In order to mitigate this risk, the system should
increase the computation power per each user or limit the usage of the system
resources for all users.

318 H. Salem

Fig. 2. Data flow view architecture for centralized web application

Figure 2 represent the data-flow view architecture and the technology are
used in such a system. For example, Node Server represents the execution com-
ponent or (Business Logic Tier) in the 4-tier architecture. Also, Node Server can
be scaled-up by adding more instance to work parallel. However, every instance
means more resources. In other words, the cost will increase when you add more
resources. In this paper we propose a new architecture can scale up with such
system and provide more computation power for executing machine learning
models. Despite there are many alternative methods are available for solving this
issue, the proposed solution has only investigated to proof the concept that such
a system can be applied and implemented. To put it another way, will not discuss
the feasibility of the system or compare it to other centralized systems. The pro-
posed solution suggested replacing the execution component (Node Server) with
Smartphones connected together using Cloud Functions to organize the distri-
bution of the data-sets between all nodes on the network. Figure 3 show details
of data-flow view architecture and how the interaction between all components.

In this paper, we will focus on the execution component only. So, all the other
components in the system will stay the same from the centralized web applica-
tion architecture as seen in Fig. 3. For example, we have used Firebase services
(Authentication, Storage, NO-SQL Database) and in the proposed solution we
add new service (Cloud Functions). Figure 4 represent layered view architecture,
our goal form using this view is to describe the relationship between layers. For
example, Richards [25] described each layer in closed layered view architecture
can use the under-layer and not the opposite.

Distributed Computing System on a Smartphones-Based Network 319

Fig. 3. Proposed data flow view architecture for distributed web application

Fig. 4. Closed layered view architecture

320 H. Salem

Likewise, from Fig. 4 we conclude that the Distribution layer control and use
the App Layer. In other words, the Distributed Algorithm use all Smartphones
to execute the machine learning models and do the training and the prediction
on the device and send the results again to be calculated for all nodes together.

3.2 Development

As described, the Distribution layer is the component that controls the Applica-
tion layer. We have split the main functionality into two functions with one task.
As can be seen before, the main task for this layer is distributing the data-set
over all Smartphones and collect the results. This process covered by the “Dis-
tributor” function. However, in order to make the distribution more efficient,
we have implemented another function called the “Evaluator” to evaluate all
Smartphones before sending the data. For example, every Smartphone wants to
join the network have to install the application and give permission to evaluate
all characteristics such as Manufacturer, Model, Cores, Threads, Process (nm),
Graphics Card, and CPU. As a result, the function returns a value called Eval-
uation Number (EV) represent how much Smartphones has processing power
(min = 0, max = 10) to invest in the network. Furthermore, EV depends on other
two dynamic characteristics. First, the time for the Smartphone to be connected
to the network (Period in Seconds). Second, the percentage of usage in resources
during the process. For Example, the user can choose time to join in the night
during the sleeping hours and select the percentage of the resources used dur-
ing that period. Also, EV is always changing its value before the user joining
the network depending on these characteristics. For example, we can have two
nodes with Smartphone type (Samsung NOTE8) with the same features and
same characteristics [13]. However, both of the users have a different period to
join the network and different percentage of the usage of each device. Both of
the Smartphones will have different EV and it will be more for the user who
approves to put more time and resources for the network. In the same way, some
Smartphones will have fewer characteristics or features than others. However,
EV can be more than others that have more characteristics and best features.

In our solution, we are aiming to validate the idea of implementing a dis-
tributed system to execute both machine learning processes (training and pre-
dicting) on Smartphones. In order to implement the system, we have chosen
linear regression as one of the simplest algorithms in machine learning. Linear
Regression [26] is an approach to show the relationship between some depen-
dent variables and in our solution, we used a library that works on a mobile
device and web application called JS-Regression [27] to use this algorithm. Also,
we have used two main services from Google Firebase [28]. First, we have used
NO-SQL database [14] as the main database for all data inside the application.
Second, “Cloud Functions” to build both functions in the Distribution layer
(Evaluator and Distributor function). The main reason to choose NO-SQL Fire-
base database is the real-time database feature that achieves the synchronization
between Smartphones. However, there a lot of provider to this service, but we

Distributed Computing System on a Smartphones-Based Network 321

have chosen Google because they have a full platform integrated together and
Firebase working with cross-platform web or mobile easily.

On the application layer, we have worked with Smartphones that have
Android operating system only. The extension for the application file is APK
and it is containing all the libraries such as Dex files, manifest file, assets, and
resources for the application [11]. We have chosen the Android operating sys-
tem to deploy our solution because Android provides the freedom of using the
features on the Smartphones and there is no restriction on the permissions of
using it. In addition, at the bottom of the Software stack in Android, there is a
Linux kernel [11]. It acts as the heart of the whole system. It provides various
functionalities like memory management, process management, and device man-
agement. Linux kernel as open source project provides more flexibility to control
the resources on Smartphones for developers. For the application Framework,
we have used Cross-Platform called ionic framework [15]. It’s a framework build
on the top of the Web-View [16] in Android and it is not a good option for
processing based apps. However, ionic provide plugins called “ionic native” to
access all native libraries. That can enough to build our solution to achieve the
goal of the study.

The basic functionality for our solution is to execute and train the data
and provide results and send it to the Database. As a result, in this stage, we
did not use any new special kind of permission to access more features in the
device. We have used the requires permission to access the internet and Web-
View components only. JS-Regression library represents the core functionality
in the application, it is used to train and predicate results from the data that
comes from the distributor function. Also, the data type is JSON [29], because
Google Firebase Database is NO-SQL written using JSON schema and the result
will be written directly to the database when it is ready. We have used Cross-
Platform like Ionic to make the solution testable in all type of Smartphones. In
addition, we need to with web-based framework working with JavaScript support
JS-Regression too.

3.3 Proof of Concept

As mentioned before, JSON is the data type structure in our solution, because
it is compatible with the database base platform. For Example, [“height”: 181,
“weight”: 80, “shoesize”: 44, “Gender”: male] as JSON object is easy to read
and write and provide more control on data-sets instance. Every Smartphone
will receive data-set contains a number of JSON objects. This value will be
calculated from EV for each device. The process will start after the distributor
function send all data to all Smartphones that are connected to the network.
The training process will be held on every device separated. Inside every device,
the data will be split to (X, Y). X represents height, weight, shoe size and Y
represent Gender. When the process will finish Y-Predicate will be sent to the
database and the distributor function will calculate the result by taking the
average of Y-predicate for all results from all devices.

322 H. Salem

4 Discussion and Limitations

Our solution has tended to focus on implementing a distributed system to exe-
cute machine learning models on Smartphones rather than the efficacy and the
capacity of the process. We are aware that our solution has three main limita-
tions: Data Limitation, Study Design Limitation and Impact Limitation. These
limitations highlight some of the threats and requirements have to been achieved
during the process or it can be future work. In Data Limitation, for such system
deals with machine learning models on distributed system data normalization
can be the main threats for the prediction accuracy. Data Normalization [17]
is the technique applied as part of data preparation for machine learning and
the goal is changing the values of numeric columns in the data-set to a com-
mon scale, without distorting differences in the ranges of values. So, to have an
accurate prediction on each Smartphone, every data-set must be sample or small
copy from the main data-set. Without normalization, we could have the wrong
prediction depend on these de-normalized biased data-sets.

In Study Design Limitation, different operating systems for Smartphones
means different rules and permission on the usage of resources and features. For
example, IOS operation system in iPhone or iPod has a lot of restrictions on
using the device resources such as the processor or the memory. Also, Apple has
restrictions on their store to submit an application use some features such as
threads on background mode. However, if we will publish the application on the
Google store for Android only, the application will lose user-base that uses only
an iPhone. In 2018, 44.6% of smartphone users in the United States used an
iPhone, this share was expected to stay at around 45.2% in 2019 [18].

In Impact limitations, machine learning algorithms are very different. In our
solution, we have to choose one of the simplest algorithms to validate the pro-
posed solution. However, linear regression provides flexibility to support distri-
bution and collecting predictions using averaging between all nodes, but other
algorithms in machine learning need instance feedback inside the processing unit
itself. As a result, implementing other algorithms can be challenging in the future
of our solution. To sum up, data normalization can be suppressed by providing
normalized data from the beginning of the experiment. On Design Study Limita-
tions, Apple restrictions cannot be overcome easily, but as a mitigation strategy,
in the beginning, we can use only Android. Likewise, choosing the algorithm
can be overcome by working with machine learning algorithms that support
distributed systems and parallel processes.

5 Conclusion and Future Scope

Smartphones will be improved year after year and the competitions between
companies are focused on how to improve the features more and more. As a
smartphone user, in the next ten years, we will have in our pocket a device with
a huge amount of features. However, we will use less than 30% of such machine
during the period of owning it. This paper purposes a new architecture that

Distributed Computing System on a Smartphones-Based Network 323

allows users to monetizes their own Smartphones by providing their processing
power to a huge network that contains other Smartphones to share their process-
ing power and using it in execution and training machine learning model on the
device and provide the results for a central server. The paper aims to validate the
implementation for such a system using Ionic framework, JS-Regression and NO-
SQL database (Firebase). Future work will concentrate to extend the proposed
implementation to work with IOT system. For example, in regular IOT system,
sensors generate huge amounts of data and transfer that data to the cloud for
further processing. These data include structured data, such as temperature,
vibration or multimedia information, such as video, images, and sounds. By
using the processing power for the closest node on the network, IOT devices can
get the result fast and without any connection to the main server on the cloud.
However, there is research that proposed a new concept called “Edge comput-
ing” by moving computing ability from centralized cloud servers to edge nodes
near the user end [19]. Also, another research talking about the same concept in
machine learning specific “Edge Learning” by deploying machine-learning algo-
rithms at the network edge [22]. Both of these research provides the same idea of
using the processing power for each node on the network and reduce the usage
of the centralized cloud server. For example, our proposed solution can reduce
a huge amount of processing power in the main server and let the participant
in the network (Smartphones) share their execution power inside the network.
In addition, the process can be improved by adding payment form Machine to
Machine using IOTA [20]. IOTA is an emerging technology being developed by
the open source community based on a new distributed ledger technology called
the Tangle. So, Smartphones can receive payment using cryptocurrency from
the IOT component(sensors) direct after finishing the process of data training.
The main server will provide permission for the Smartphones to take the data
through WIFI from IOT components and the process will be organized on the
local network only. Our future tasks include the implementation of the proposed
architecture and create other use cases using IOTA and improve the performance
for the execution layer and build a stable solution.

References

1. Zhang, C., Patras, P., Haddadi, H.: Deep learning in mobile and wireless network-
ing: a survey. IEEE Commun. Surv. Tutorials. arXiv:1803.04311, March 2018

2. Cisco: Cisco visual networking index: forecast and methodology, June (2017).
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/white-paper-c11-741490.html

3. Sun, Y., Peng, M., Zhou, Y., Huang, Y., Mao, S.: Application of machine learning
in wireless networks: key techniques and open issues. arXiv:1809.08707, September
2018

4. Han, S., Chih-Lon, I., Li, G., Wang, S., Sun, Q.: Big data enabled mobile network
design for 5G and beyond. IEEE Commun. Mag. 55(9), 150–157 (2017)

5. Dobriban, E., Shengy, Y.: Distributed linear regression by averaging.
arXiv:1810.00412, October 2018

http://arxiv.org/abs/1803.04311
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
http://arxiv.org/abs/1809.08707
http://arxiv.org/abs/1810.00412

324 H. Salem

6. Bader, D.A., Pennington, R.: Applications. Int. J. High Perform. Comput. Appl.
15(2), 181–185 (2001)

7. Bakery, M., Buyya, R.: Cluster computing at a glance, Chapter One, p. 4, Septem-
ber (2000)

8. Mengy, X.: Machine learning in apache spark. J. Mach. Learn. Res. 17(34), 17
(2016)

9. Bala, K., Sharma, S., Kaur, G.: A study on smartphone based operating system.
Int. J. Comput. Appl. (0975–8887) 121(1) (2015)

10. Top machine learning mobile apps • appy pie. https://www.appypie.com/top-
machine-learning-mobile-apps. Accessed 16 Apr 2019

11. Takawale, H., Thakur, A.: Talos App: on-device machine learning using tensor flow
to detect android malware. In: MCSMS (2018)

12. Yang, K., Jiang, T., Shi, Y., Ding, Z.: Federated learning via over-the-air compu-
tation. arXiv 1812(11750) (2018)

13. Galaxy note features; Samsung phones. https://www.samsung.com/ph/Smart
phones/gal-axy-note8/. Accessed 16 Apr 2019

14. Burd, G.: NoSQL (2011)
15. What is ionic framework? http://ionicframework.com/. Accessed 16 Apr 2019
16. Ionic framework angular JS on the rise. https://blog.codecentric.de/en/2014/11/

ionic-angularjs-framework-on-the-rise/. Accessed 16 Apr 2019
17. Jin, J., Li, M., Jin, L.: Data normalization to accelerate training for linear neural

net to predict tropical cyclone tracks. Math. Probl. Eng. 2015, 8 (2014). Hindawi
Publishing Corporation

18. Percentage of US population that own an iPhone smartphone. https://www.
statista.com/statistics/236550/percentage-of-us-population-that-own-a-iphone-
smartphone. Accessed 16 Apr 2019

19. Sureddy, S., Rashmi, K., Gayathri, R., Nadhan, A.S.: Flexible deep learning in
edge computing for IoT. Int. J. Pure Appl. Math. 119(10), 531–543 (2018)

20. Strugar, D., Hussain, R., Mazzara, M., Rivera, V., Afanasyev, I., Lee, J.Y.: An
architecture for distributed ledger-based M2M auditing for electric autonomous
vehicles. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) WAINA 2019.
AISC, vol. 927, pp. 116–128. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-15035-8 11

21. Burns, B.: Designing Distributed Systems, pp. 80–81. O’Reilly Media Inc.,
Sebastopol (2018). ISBN: 9781491983638

22. Zhu, G., Liu, D., Du, Y., You, C., Zhang, J., Huang, K.: Towards an intelligent
edge: wireless communication meets machine learning. arXiv preprint 1809.00343
(2018)

23. Unified analytics engine for big data. https://spark.apache.org/. Accessed 6 June
2019

24. Guide to Tenserflow. https://www.tensorflow.org/guide/. Accessed 6 June 2019
25. Richards, M.: Software Architecture Patterns, pp. 54–55. O’Reilly Media Inc.,

Sebastopol (2015). ISBN: 9781491971437
26. Lunt, M.: Introduction to statistical modelling: linear regression. Rheumatology

54(7), 1137–1140 (2015)
27. Js-Regression. https://github.com/chen0040/js-regression. Accessed 6 June 2019
28. Firebase. https://firebase.google.com. Accessed 6 June 2019

https://www.appypie.com/top-machine-learning-mobile-apps
https://www.appypie.com/top-machine-learning-mobile-apps
https://www.samsung.com/ph/ Smartphones/gal-axy-note8/
https://www.samsung.com/ph/ Smartphones/gal-axy-note8/
http://ionicframework.com/
https://blog.codecentric.de/en/2014/11/ionic-angularjs-framework-on-the-rise/
https://blog.codecentric.de/en/2014/11/ionic-angularjs-framework-on-the-rise/
https://www.statista.com/statistics/236550/percentage-of-us-population-that-own-a-iphone-smartphone
https://www.statista.com/statistics/236550/percentage-of-us-population-that-own-a-iphone-smartphone
https://www.statista.com/statistics/236550/percentage-of-us-population-that-own-a-iphone-smartphone
https://doi.org/10.1007/978-3-030-15035-8_11
https://doi.org/10.1007/978-3-030-15035-8_11
https://spark.apache.org/
https://www.tensorflow.org/guide/
https://github.com/chen0040/js-regression
https://firebase.google.com

Distributed Computing System on a Smartphones-Based Network 325

29. JavaScript Object Notation (JSON). https://json.org. Accessed 6 June 2019
30. Marinelli, E.: Hyrax: cloud computing on mobile devices using mapreduce. Master’s

thesis, CMU, USA (2009)
31. Remédios, Diogo, Teófilo, António, Paulino, Hervé, Lourenço, João: Mobile Device-

to-Device Distributed Computing Using Data Sets. 12th EAI International Con-
ference on Mobile and Ubiquitous Systems: Computing, Networking and Services
(2015)

https://json.org

Above the Clouds: A Brief Study

Subham Chakraborty and Ananga Thapaliya(B)

Innopolis University, 1 Universitetskaya, Innopolis 420500, Russia
{s.chakraborty,a.thapaliya}@innopolis.ru

Abstract. Cloud Computing is a versatile technology that can sup-
port a broad-spectrum of applications. The low cost of cloud computing
and its dynamic scaling renders it an innovation driver for small com-
panies, particularly in the developing world. Cloud deployed enterprise
resource planning (ERP), supply chain management applications (SCM),
customer relationship management (CRM) applications, medical appli-
cations, business applications and mobile applications have potential to
reach millions of users. In this paper, we explore the different concepts
involved in cloud computing and we also examine clouds from techni-
cal aspects. We highlight some of the opportunities in cloud computing
underlining the importance of clouds showing why that technology must
succeed and we have provided additional cloud computing problems that
businesses may need to address. Finally, we discuss some of the issues
that this area should deal with.

Keywords: Cloud computing · IoT

1 Introduction

Cloud computing is a recently developing paradigm of distributed computing
though it is not a new idea that emerged just recently. In 1969 L. Kleinrock
anticipated that, “As of now, computer networks are still in their infancy” [24].
But as they grow up and become more sophisticated, we will probably see the
spread of ‘computer utilities’ which, like present electric and telephone utilities,
will service individual homes and oces across the country.” His vision was the
true indication of today’s utility based computing paradigm. One of the giant
steps towards this world was taken in mid 1990s when grid computing was rst
coined to allow consumers to obtain computing power on demand. The origin of
cloud computing can be seen as an evolution of grid computing technologies. The
term Cloud computing was given prominence rst by Google’s CEO Eric Schmidt
in late 2006 (maybe he coined the term). So the birth of cloud computing is
very recent phenomena although its root belongs to some old ideas with new
business, technical, social and architectural perspectives.

c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 326–333, 2019.
https://doi.org/10.1007/978-3-030-29852-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_27&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_27

Above the Clouds: A Brief Study 327

2 Essential Characteristics

In this section we describe the essential characteristics that a cloud must possess.
Any cloud is expected to have these five characteristics that are being described
below.

2.1 On-Demand Self-service

A consumer can unilaterally provision computing capabilities, such as server
time and network storage, as needed automatically without requiring human
interaction.

2.2 Broad Network Access

A consumer can unilaterally provision computing capabilities, such as server
time and network storage, as needed automatically without requiring human
interaction.

2.3 Resource Pooling

The provider’s computing resources are pooled to serve multiple consumers using
a multitenant model, with different physical and virtual resources dynamically
as-signed and reassigned according to consumer demand. There is a sense of loca-
tion independence in that the subscriber generally has no control or knowledge
over the exact location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state, or data center).
Examples of resources include storage, processing, memory, network bandwidth,
and virtual machines.

2.4 Rapid Elasticity

Capabilities can be rapidly and elastically provisioned, in some cases automat-
ically, to quickly scale out and rapidly released to quickly scale in. To the con-
sumer, the capabilities available for provisioning often appear to be unlimited
and can be purchased in any quantity at any time.

2.5 Measured Service

Cloud systems automatically control and optimize resource use by leveraging a
metering capability at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user accounts). Resource usage
can be monitored, controlled, and reported providing transparency for both the
provider and consumer of the utilized service.

328 S. Chakraborty and A. Thapaliya

3 Cloud Deployment Strategies

3.1 Public Cloud

In simple terms, public cloud services are characterized as being available to
clients from a third party service provider via the Internet. The term “public”
does not always mean free, even though it can be free or fairly inexpensive to use.
A public cloud does not mean that a user’s data is publicly visible; public cloud
vendors typically provide an access control mechanism for their users. Public
clouds provide an elastic, cost effective means to deploy solutions.

3.2 Private Cloud

A private cloud offers many of the benefits of a public cloud computing environ-
ment, such as being elastic and service based. The difference between a private
cloud and a public cloud is that in a private cloud-based service, data and pro-
cesses are managed within the organization without the restrictions of net-work
bandwidth, security exposures and legal requirements that using public cloud
services might entail.

3.3 Community Cloud

A community cloud is controlled and used by a group of Organizations that have
shared interests, such as specific security requirements or a common mission.
The members of the community share access to the data and applications in the
cloud.

3.4 Hybrid Cloud

A hybrid cloud is a combination of a public and private cloud that inter-operates.
In this model users typically outsource non business-critical information and
processing to the public cloud, while keeping business-critical services and data
in their control.

4 Cloud Delivery Models

This section of the paper describes the various cloud delivery models. Cloud can
be delivered in 3 models namely SaaS, PaaS, and IaaS.

4.1 Software as a Service (SaaS)

In a cloud-computing environment. SaaS is software that is owned, delivered and
managed remotely by one or more providers and that is offered in a pay-per-
use manner [8]. SaaS in simple terms can be defined as “Software deployed as a
hosted service and accessed over the Internet” [9]. SaaS clouds provide scalability
and also shifts significant burdens from subscribers to providers, resulting in a
number of opportunities for greater efficiency and, in some cases, performance.
The typical user of a SaaS offering usually has neither knowledge nor control
about the underlying infra-structure [10].

Above the Clouds: A Brief Study 329

4.2 Platform as a Service (PaaS)

This kind of cloud computing provides development environment as a service.
The consumer can use the middleman’s equipment to develop his own program
and deliver it to the users through Internet and servers. The consumer controls
the applications that run in the environment, but does not control the operating
system, hardware or network infrastructure on which they are running. The
platform is typically an application framework 4.3.

4.3 Infrastructure as a Service (IaaS)

Infrastructure as a service delivers a platform virtualization outsourced service
[15]. The consumer can control the environment as a service. Rather than pur-
chasing servers, software, data center space or network equipment, consumers
instead buy those resources as a fully operating system, storage, deployed appli-
cations and possibly networking components such as firewalls and load balancers,
but not the cloud infra-structure beneath them.

5 Opportunities

In this section we explain the vast opportunities the cloud computing field offers
to IT industry. Cloud Computing is concerned with the delivery of IT capabilities
as a service on three levels: infrastructure (IaaS), platforms (PaaS), and software
(SaaS). By providing interfaces on all three levels, clouds address different types
of customers [11]:

5.1 End Consumers

These consumers mainly use the services of the SaaS layer over a Web browser
and basic offerings of the IaaS layer as for example storage for data resulting
from the usage of the SaaS layer.

5.2 Business Costumers

These consumers access all three layers - the IaaS layer in order to enhance the
own infrastructure with additional resources on demand, the PaaS layer in order
to be able to run own applications in a Cloud and eventually the SaaS layer in
order to take advantage of available applications offered as a service [16].

5.3 Developers and Independent Software Vendors

Independent Software Vendors that develop applications that are supposed to
be offered over the SaaS layer of a Cloud. Typically, they directly access the
PaaS layer, and through the PaaS layer indirectly access the IaaS layer, and are
present on the SaaS layer with their application. From the perspective of the

330 S. Chakraborty and A. Thapaliya

user, the utility-based payment model is considered as one of the main benefits
of Cloud Computing. There is no need for up-front infrastructure investment:
investment in software licenses and no risk of unused but paid software [8]. Thus,
capital expenditure is turned licenses, and investment in hardware infrastructure
and related maintenance and staff into operational expenditure.

6 Challenges and Issues

In this section we explain the challenges and issues cloud computing has to face.
As a lot of economics is tied to this field it will be better that these issues are
resolved as early as possible. The following are the issues that a cloud computing
environment has to still resolve:

6.1 Security

When using cloud-based services, one is entrusting their data to a third-party
for storage and security. Cloud-sourcing involves the use of many services, and
many cloud based services provide services to each other, and thus cloud-based
products may have to share your information with third parties if they are
involved in processing or transferring of your information [12]. They may share
your information with advertisers as well. Security presents a real threat to the
cloud and some security concerns are such as lost in control of physical security,
damaged rules and regulations because of organizations, capacity inconsistency
between various cloud and administrations merchants [13] and no basic standard
to guarantee the information [14].

6.2 Performance

At the point when a business moves to the cloud it ends up depending on the
service providers. The following conspicuous difficulties of moving to cloud com-
puting develop this partnership. In any case, this partnership frequently gives
organizations inventive innovations they wouldn’t generally have the capacity to
get to. The cloud provider must ensure that the performance of the service being
provided re-mains the same all through [20].

6.3 Cost Management and Containment

The following part of our cloud computing challenge list includes costs. Generally
cloud computing can spare organizations money. In the cloud, an association can
undoubtedly increase its preparing abilities without making substantial interests
in new equipment. Cloud computing can have high costs due to its requirements
for both using a large amounts of data back in-house [21].

Above the Clouds: A Brief Study 331

6.4 Regulatory Requirements

What legislative, judicial, regulatory and policy environments are cloud-based in-
formation subject to? This question is hard to ascertain due to the decentralized
and global structure of the internet, as well as of cloud computing [22]. This is
complicated by the fact that some data in transit may also be regulated.

6.5 Bandwidth, Quality of Service and Data Limits

Cloud computing requires “b speed” Whilst many websites-broadband connec-
tions or slow broadband connections; cloud-based applications are often not
usable. Connection speed in kilobyte per second (or MB/s and GB/s) is impor-
tant for use of cloud computing services. Also important are Quality of Service
(QoS); indicators for which include the amount of time the connections are
dropped, response time (ping), and the extent of the delays in the processing of
network data (latency) and loss of data (packet loss) [18].

6.6 Lack of Resources/Suppliers

One of the cloud difficulties organizations and endeavours are confronting today
is absence of assets or potentially mastery. Associations are progressively setting
more workload in the cloud while cloud technologies continue to quickly advance.
Because of these components, associations are having an extreme time staying
aware of the instruments [17].

6.7 Integration with Internet of Things Security (IoT)

Each and every gadget and sensor in the IoT speaks to a potential hazard. How
certain can an association be that every one of these gadgets have the controls set
up to protect the privacy of the information gathered and the respectability of the
information sent [25]. Corporate frameworks will be bombarded by information
from all way of associated sensors in the IoT [7]. The information gathered
will enable us to settle on more brilliant choices. Yet, this will likewise affect
security desires [19]. We are as of now observing consumers place higher desires
on organizations and governments to defend their own data [23]. Subsequently,
a few difficulties about the security issue in the integration of IoT and cloud
computing are listed below:

– Heterogeneity: A major challenge in integration of cloud computing and IoT is
concerned with the wide heterogeneity of gadgets, working frameworks, stages
and administrations accessible and perhaps utilized for new and improved
applications [1].

– Performance: Frequently Cloud Computing and IoT mix’s applications
present explicit execution and quality of service prerequisites at a few dimen-
sions (for example for correspondence, calculation, and capacity angles) and
in some specific situations meeting prerequisites may not be effectively feasi-
ble [2,3].

332 S. Chakraborty and A. Thapaliya

– Reliability: At the point when Cloud Computing and IoT reconciliation is em-
braced for mission-basic applications, unwavering quality concerns normally
emerge e.g., with regards to keen versatility, vehicles are regularly progressing
and the vehicular systems administration and correspondence is frequently
discontinuous or temperamental [4].

– Big Data: With an expected number of 50 billion gadgets that will be arranged
by 2020, explicit consideration must be paid to transportation, stockpiling,
access, and preparing of the gigantic measure of information they will create
[5].

– Monitoring: As to a great extent archived in the writing, checking is a basic
movement in Cloud conditions for scope quantification, for overseeing assets,
service level agreements, execution and security, and for investigating [6].

7 Conclusion

We have a brief look at the basics of cloud. There are interests and concerns
in the cloud. From a technology point of view, there are interesting technical
problems to solve. From a service or consumer point of view, there are essential
usability, stability, and reliability problems to solve. We are at a crossroads with
cloud technology. On one hand, there are many stories of problems with clouds,
from data loss, to service interruption, to compromised sensitive data. To stay
relevant, to remain meaningful, to grow in the service space, the cloud providers
must step up their game and produce robust cloud implementations. On the
other hand, the world is poised to explode with a billion new devices that will
be desperate for the very technology that clouds almost offer today. It is possible
that the wave of users, applications and demand will just wash over the cloud
landscape, regardless of how robust they are. If the cloud providers are too
slow to provide safe, secure, reliable data storage and application services, they
“always on” connection, as well may miss one of the greatest opportunities of
this century.

References

1. Grozev, N., Buyya, R.: Inter-cloud architectures and application brokering: taxon-
omy and survey. Softw. Pract. Exp. 44(3), 369–390 (2014)

2. Jeffery, K.: Keynote: CLOUDs: a large virtualisation of small things. In: 2nd Inter-
national Conference on Future Internet of Things and Cloud, FiCloud-2014 (2014)

3. Rao, B.P., Saluia, P., Sharma, N., Mittal, A., Sharma, S.V.: Cloud computing
for Internet of Things & sensing based applications. In: 2012 Sixth International
Conference on Sensing Technology (ICST), pp. 374–380. IEEE, December 2012

4. He, W., Yan, G., Da Xu, L.: Developing vehicular data cloud services in the IoT
environment. IEEE Transact. Industr. Inf. 10(2), 1587–1595 (2014)

5. Dobre, C., Xhafa, F.: Intelligent services for big data science. Future Gener. Com-
put. Syst. 37, 267–281 (2014)

6. Aceto, G., Botta, A., De Donato, W., Pescapè, A.: Cloud monitoring: a survey.
Comput. Netw. 57(9), 2093–2115 (2013)

Above the Clouds: A Brief Study 333

7. Stergiou, C., Psannis, K.E., Kim, B.G., Gupta, B.: Secure integration of IoT and
cloud computing. Future Gener. Comput. Syst. 78, 964–975 (2018)

8. Aoun, R., Gagnaire, M.: Towards a fairer benefit distribution in grid environments.
In: 2009 IEEE/ACS International Conference on Computer Systems and Applica-
tions, pp. 21–26. IEEE, May 2009

9. Mertz, S.A., Eschinger, C., Eid, T., Pring, B.: Dataquest insight: SaaS demand
set to outpace enterprise application software market growth. Gartner RAS Core
Research Note, 3 (2007)

10. Moixe, M.: New tricks for defeating SSL in practice. In: BlackHat Conference,
USA, February 2009

11. Chong, F., Carraro, G.: Architecture Strategies for Catching the Long Tail, pp.
9–10. MSDN Library, Microsoft Corporation (2006)

12. Eymann, T.: Cloud Computing-Enzyklopaedie der Wirtschaftsinformatik (2008)
13. Patidar, S., Rane, D., Jain, P.: A survey paper on cloud computing. In: 2012 Sec-

ond International Conference on Advanced Computing & Communication Tech-
nologies, pp. 394–398. IEEE, January 2012

14. Mell, P., Grance, T.: The NIST definition of cloud computing (2011)
15. Garbacki, P., Naik, V.K.: Efficient resource virtualization and sharing strategies

for heterogeneous grid environments. In: 2007 10th IFIP/IEEE International Sym-
posium on Integrated Network Management, pp. 40–49. IEEE, May 2007

16. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: Vision,
hype, and reality for delivering it services as computing utilities. In: 2008 10th IEEE
international conference on high performance computing and communications, pp.
5–13. IEEE, September 2008

17. Aoun, R., Doumith, E.A., Gagnaire, M.: Resource provisioning for enriched services
in cloud environment. In: 2010 IEEE Second International Conference on Cloud
Computing Technology and Science, pp. 296–303. IEEE, November 2010

18. Roy, S., Bose, R., Sarddar, D.: A fog-based dss model for driving rule violation
monitoring framework on the internet of things. Int. J. Adv. Sci. Technol. 82,
23–32 (2015)

19. Kryftis, Y., Mastorakis, G., Mavromoustakis, C.X., Batalla, J.M., Pallis, E., Kor-
mentzas, G.: Efficient entertainment services provision over a novel network archi-
tecture. IEEE Wirel. Commun. 23(1), 14–21 (2016)

20. Rouse, M.: IoT security (Internet of Things security). IoT Agenda 1(11) (2015)
21. Gupta, B.B., Badve, O.P.: Taxonomy of DoS and DDoS attacks and desirable

defense mechanism in a cloud computing environment. Neural Comput. Appl.
28(12), 3655–3682 (2017)

22. Skourletopoulos, G., Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M., Saha-
los, J.N.: An evaluation of cloud-based mobile services with limited capacity: a
linear approach. Soft. Comput. 21(16), 4523–4530 (2017)

23. Salikhov, D., Khanda, K., Gusmanov, K., Mazzara, M., Mavridis, N.: Microservice-
based IOT for smart buildings. arXiv preprint arXiv:1610.09480 (2016)

24. Kleinrock, L.: A vision for the Internet. ST J. Res. 2(1), 4–5 (2005)
25. Dragoni, N., Giaretta, A., Mazzara, M.: The internet of hackable things. In: Cian-

carini, P., Litvinov, S., Messina, A., Sillitti, A., Succi, G. (eds.) SEDA 2016. AISC,
vol. 717, pp. 129–140. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
70578-1 13

http://arxiv.org/abs/1610.09480
https://doi.org/10.1007/978-3-319-70578-1_13
https://doi.org/10.1007/978-3-319-70578-1_13

Exploring IA-32: Lessons from Analysis
and Experience

Yauhen Klimiankou(B)

Belarusian State University of Informatics and Radioelectronics,
6 P. Brovki Street, 220013 Minsk, Belarus

klimenkov@bsuir.by

Abstract. IA-32 is ISA on which market of high-end computing, includ-
ing personal computers, laptops, workstation, and servers, had grown up
at the last three decades. This ISA, along with IBM PC architecture, was
one of the main drivers of the personal computer revolution and still is
one of the principal ISA on the microprocessor market. The long history
of the development of IA-32 and its widespread use in computing devices
makes it interesting to analyze and to extract lessons about ISA design
based on its current usage. This paper provides an analysis of such sort
and highlights conclusions made.

We have explored IA-32 ISA using statistical analysis of the compiler-
generated code of real-world application of industrial quality and level of
optimization. We demonstrate the presence of useless complexity burden
born by backward compatibility and speculating about the idea of the
design of a simplified version of IA-32 ISA.

Keywords: IA-32 · ISA · Code analysis · Statistical analysis

1 Introduction

x86 instruction set architecture originally was introduced in 1978 in the form
of 16-bit ISA. Over the years, three variants of x86 with many additions and
extensions have been provided: original 16-bit version of x86, IA-32 and x86-64.
Each of them came with a burden of almost complete backward compatibil-
ity with all previously existing predecessors. History of the development of x86
is tightly coupled with the history of IBM PC compatible personal computers
and with computer revolution that they had performed [11]. Today, x86 proces-
sors are ubiquitous in stationary and portable personal computers, workstations,
servers, and supercomputers. They also can be found in embedded devices and
even cell phones. In general, x86 is monopolist on markets that require intensive
computations, while ARM dominates on markets where low power consumption
is preferable to high performance. A large amount of software, including the long
list of operating systems and compilers, exist for x86 ISA.

This ISA is commonly considered a canonical example of CISC architec-
ture with variable instruction length from 1 and up to 15 bytes. In contrast to
c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 334–341, 2019.
https://doi.org/10.1007/978-3-030-29852-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_28&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_28

Exploring IA-32: Lessons from Analysis and Experience 335

load/store architecture widely adopted by RISC processors, most of the IA-32
instructions are capable directly address in-memory operands, as well as accept
immediate arguments encoded into instruction body. Like typical CISC, IA-
32 benefits from more dense code. The same program compiled for IA-32 will
contain fewer code bytes than program compiled for ARM. Current implementa-
tions of IA-32 represent one of the most complex processors which exploit many
computation acceleration features including complex CISC-to-RISC design with
pipelining, multilevel caches, extensive internal buffering, superscalar, out-of-
order and speculative execution, and µ-op fusion [10].

When initially programs for IA-32 were writing mostly directly by hands in
assembly language, currently a vast majority of IA-32 applications are writing
in high-level programming languages, and their machine code is generated by
compilers automatically. In this paper, we perform an attempt to analyze the
usage of the IA-32 ISA in the compiler-generated machine code and reevaluate
assumptions and design decisions made by IA-32 designers. Our goal is to obtain
simplified both execution- and interpretation-friendly high-performance version
of IA-32 free of backward compatibility burden and without all unused or rarely
used features, as well as to gain knowledge’s about ISA design principles came
from actual usage practice in modern applications.

In this paper, we provide the results of analysis about the intensity of use
of different features of IA-32 ISA in the code generated by current compilers
including but not limiting by the use frequencies of particular kinds of instruc-
tions, addressing modes and immediate arguments. The aim of the analysis is
understanding of how the IA-32 ISA used in the era of machine-generated pro-
grams. In other words, we want to understand how the current compilers use
IA-32 ISA.

2 Analysis of IA-32 Usage in the Code of Modern
Applications

IA-32 has more than 35 years of history and has been advanced many times
during that period. Furthermore, its actual usage could be changed over time too.
The analysis of IA-32 were done in past [2,12]. However, in contrast to previous
works, we are trying to understand how the IA-32 instruction set is using by
current industrial-quality software. To achieve some insight in that field we have
unpacked, parsed and analyzed the Linux kernel [1] binary of version 3.13.0-37-
generic extracted from Linux Mint 7.1 Rebecca distributive. We have chosen this
binary because it represents real-world complicated industrial-quality software.
Linux kernel is built using the widespread toolchain and therefore represents code
generation patterns of modern compilers. Finally, it has tremendous size and
thus provides a good source for statistics collection. We have collected statistical
data about IA-32 instruction set over code sections of kernel binary. We have
also considered Windows XP kernel binary to exclude the impact of a particular
compiler from the statistical data, but have obtained results similar to the data
captured for the Linux kernel.

336 Y. Klimiankou

Linux kernel binary contains 2141376 instructions in total in the 7082752
bytes of code. As was mentioned earlier IA-32 is an ISA with variable length
instructions starting from 1 byte and up to 15 bytes. At the same time, the
analysis demonstrates that the actual average instruction length is 3.31 bytes
per instruction.

IA-32 supports three types of instructions depending on the number of argu-
ments:

– Commands – instructions without arguments (nop, retn)
– Predicates – instructions accepting only one argument (call, pop)
– Operations – instruction accepting two arguments (mov, test)

Results of analysis demonstrate that almost every two out of three instructions
are operations (64.14%). Thirty percent of code are predicates (30.44%). Finally,
every twentieth instruction is a command (5.41%). We should note that more
than half of them (55.44%) is nop instructions which compilers usually insert
into the binary for code alignment purposes. Nevertheless, all three types of
instructions are in relatively extensive use.

IA-32 is a 32-bit architecture. However, in addition to the 32-bit data type,
it supports two auxiliary data types: 8-bit and 16-bit. Analysis results show that
most of the instructions found in program code are 32-bit instructions (71.8%),
while 16-bit and 8-bit instructions are rare (0.73% and 2.84% respectively). Data
type agnostic instructions like jmp imm occupy rest of code (24.64%). Thus,
instructions supporting not a native data type takes only 3.57% of the code.
Due to this, we can hypothesize that ISA supporting single data type can be
quite reasonable for industrial use.

IA-32 contains 8 general purpose registers, 6 segment registers, EFLAGS
register, Instruction Pointer (EIP) register and registers of ISA extensions like
FPU, SSE etc. EIP and EFLAGS are hidden and can be accessed only using
dedicated set of instructions. At the same time, the analysis shows that extension
registers are extremely rare in the real programs. That does not necessarily mean
that such registers are valueless in general because ISA extensions are usually
used only in special purpose software such as math applications, video decoders,
and others, where they boost calculations. Furthermore, floating point calcula-
tions are slow comparing to the integer calculations [3] and thus minimized in
high-performance kernel code. Because of this kernel developers tries to reduce
the number of floating point calculations to a minimum. Segment registers are
rarely used too, because of the flat memory model used by the Linux kernel.
The analysis shows that less than 2.5% of registers referenced in machine code
are not 32-bit registers. Furthermore, 16-bit and 8-bit registers used are limited
mostly by three pairs: AX /AL, CX /CL and DX /DL. 32-bit registers in its turn
can be split into two groups: primary (EDX /EBX /EBP/ESI) and secondary
(ECX /ESP/EDI) with an exception of EAX register which is referenced more
than two times frequently than any primary register.

IA-32 instruction set extensively uses immediate arguments. Such arguments
are constant integer numbers embedded into instruction body. We found that

Exploring IA-32: Lessons from Analysis and Experience 337

more than half of the instructions in machine code (60.12%) uses them. IA-
32 has instructions which have two immediate (for example mov [eax+0x1234],
0x5678). Due to this, the density of immediate arguments is even higher than
60% – 0.6473 immediate per instruction. 55.55% of such immediate arguments
are pure immediate (mov eax, 4), while the rest 44.45% of them are parts of
complex addressing modes (mov eax, [ecx+4]).

There are multiple addressing modes supported by IA-32 [8]. This feature
distinguishes IA-32 from the variety of RISC processors based on load/store
architecture [5] and significantly complicates its design and implementation. We
can see that despite a rich set of addressing modes available, only a few of them
are found extensive use in practice. Results of the analysis show that some types
of addressing mode are used more frequently than others. For example, the raw
register argument (inc eax) is the dominating type which covers more than half
of use cases. Raw immediate integer argument (call 0x1234) and register-offset
in-memory argument (inc [eax+0x1234]) form a second group of frequently used
types of arguments and together cover another 39% use cases. Therefore, all
these three argument types cover about 94.5% of use cases in total. Finally, raw
immediate address of in-memory variable (call [0x1234]) and in-register address
of in-memory variable (inc [eax]) form a third group of relatively frequently
used types of arguments and together cover additional 5.93% use cases. Thus,
in total, five most frequently used argument types cover more than 99.25% of
use cases. Thus, all other addressing modes are not used intensively in modern
industrial-quality machine-generated code. The analysis shows that all complex
addressing modes with the scale factor, which were introduced by Intel, specially
for high-level languages support, are not in demand in current compilers.

Modern variants of IA-32 ISA supports more than 330 types of instructions.
We have analyzed frequency of their usage in the code generated by nowadays
compilers. This analysis has shown that every third instruction facing in the code
is mov operation. At the same time, every second instruction in the code is from
group add, call, mov, test. In general, the 25 most frequently used instructions
cover more than 95% of the code while the rest instructions are rare and each of
them covers less than 0.25% of the code (less than 1 “rare” instruction per 400
instructions of code). 7% of available instructions (20 from more than 330 [9])
covers more than 93% of the industrial quality code.

Instructions supported by IA-32 can be grouped into families according to
their purpose. From the analysis results, we can see that almost 80% of them
in the IA-32 code is used for data management, control flow management, and
stack management, while less than 20% of them perform calculations.

At the same time, we found that machine-generated code of modern programs
does not use many kinds of instructions and even instruction families which were
the part of initial 8086 instruction set [7] and which has added to the IA-32 ISA
with the introduction of different generations of x86 processors. For instance, we
found that decimal arithmetic instructions (aaa, aad, aam, aas, daa and das) are
untapped by compilers. The same is true for segment register instructions (lss,
les, lds, lfs and lgs), which is not surprising due to the complete abandonment of

338 Y. Klimiankou

the segmentation memory model in favor of the flat memory model. Far jumps
and far returns are ignored by compilers too.

There is also a set of instructions which ISA designers have added to the
IA-32 intentionally for specific use cases. Their assumptions were wrong. Due to
this, both assembler programmers and compilers ignore these instructions. Such
instructions as rcr/rcl, jcxz/jecxz, lahf/sahf, bound, enter, xlat and entire family
of LOOPcc instructions represent this case.

IA-32 ISA includes the especial register EFLAGS which contains multiple
bits which are modified and tested as a side effect by a bunch of arithmetic
and control transfer instructions. However, we can see that modern code com-
pletely excludes from usage two bits: Parity Flag (PF) and Auxiliary Carry Flag
(AF). The compiler-generated code excludes all instructions using them includ-
ing those from families CMOVcc, SETcc and Jcc. As for the flags Overflow Flag
(OF) and Sign Flag (SF), although machine-generated code extensively uses
them, instructions which explicitly test them are not found in the code (except
cmovs/cmovns and js/jns). In addition, instructions for direct manipulation of
Carry Flag (CF) are also out of use (cmc, clc and stc).

IA-32 is a 32-bit ISA based on the original 16-bit 8086 architecture. Many
of its instructions are 8086 instructions with extended operand size (from 16-
bits up to 32-bits). However original 16-bit instructions are staying a part of
32-bit ISA. Nevertheless, the analysis shows that some of such original 8086
instructions, while being a part of ISA, drops out of actual use. For instance
pushf/popf instructions become unsafe in 32-bit environment. Instructions cwd,
cbw and cwde in their turn lose all their benefits in 32-bit environment.

Interestingly, but compilers intensively use string instructions from families
stos and movs. The compilers typically use first ones in automatically generated
default constructors, while the second ones they use for automatically generated
copy constructor implementations. Meantime, compilers do not employ other
string instructions (cmps, lods and scas), and they appear mostly in runtime
library implementations.

The nop instruction represents an interesting case in IA-32 ISA. The nop is
an auxiliary one-byte instruction which has distinct opcode and which execution
has no effect. Compilers typically use nop for two purposes: the creation of code
stubs for self-modifying code and the code alignment. IA-32 maintains multiple
variants of nop instructions which differ in size (starting by 1 byte and up to 15
bytes long) while there is no any significant reason to maintain multiple variants
of the instruction because each of them can be built using original one-byte
8086 nop. Moreover, there are many instructions like mov eax, eax, xchg ecx,
ecx, lea edx, [edx+0] which reproduces exactly the same behavior as an original
nop. Finally, mov eax, eax instruction has the same one-byte size. Due to this,
keeping the separate nop instruction in the ISA does not provide any benefits
but provides additional redundancy and complexity to the ISA.

Furthermore, the in-depth analysis focused on the use patterns of each partic-
ular instruction brings to light the extra insight. For example, some instructions
are used mostly with the same register used for both arguments. We found that

Exploring IA-32: Lessons from Analysis and Experience 339

test r32, r32 instruction in 99.6% of cases accepts the same register for both
operands. Similarly, xor r32, r32 instruction demonstrates the same use pat-
tern – in the 95% of use cases, xor receives the same register in both operands.
Some other instructions do not accept some registers for their parameters. For
example, we found that mov instructions which load esp and ebp registers are
extremely rarely faced in code, less than 0.01% of register load cases. The only
exception is mov ebp, esp and mov esp, ebp which are used by compilers for
stack frame creation and destruction. Many other instructions demonstrate the
same behavior of elimination of specific registers usage.

Finally, the detailed analysis of use cases of particular instructions reveals the
presence of ordering patterns. For example, there are patterns of an ordered set
of instructions used by the compiler to create function prolog and function epilog.
In the case of function prolog, the compiler issues a series of instructions which
stores on the stack the values of registers modified by function body and creates
the stack frame by preserving the value of stack pointer in register ebp. Similarly,
at the function end compiler restores the state of preempted function by series
of pop instructions, restoring the esp state from ebp register and ret instruction.
The prolog and epilog of function is very often faced patterns in the compiled
code. Another very constantly faced example of ordered instruction pairs are
pairs of test r32, r32/jz imm and test r32, r32/jnz imm where r32 represents
the same 32-bit register. Indeed, these pairs represents the classical programming
language construction if value is null/false and if value not null/true.

As can be seen from the analysis, the industrial-quality machine-generated
code uses different features of IA-32 with unequal intensity. Furthermore, it is
evident that a significant part of the ISA is out of use but still maintained by
processor designers for backward compatibility with legacy hand-written pro-
grams. It is easy to note that the easy-distinguishable core of extensively used
features presents in nearly every set of captured statistical data. IA-32 has an
intensely used ISA core while there is a broad set of instructions that are used
rarely or even not used at all in the actual machine-generated industrial code.
This observation makes valuable the idea about the radically simplified version
of IA-32, on which most of the original IA-32 programs could be migrated by in
a fairly straightforward way, but which will have lost the complexity introduced
by backward compatibility burden. Such redesigned IA-32 version, due to the
lower level of complexity, will make the processor design and implementation
cheaper, simplify the bunch of system software tools like assemblers, compilers,
binary code analyzers, and others while will be able to run IA-32 programs.

3 Lessons Learned

IA-32 is a canonical example of CISC architecture with a large number of two-
address instructions, the absence of limitations of load/store architecture and
the low number of general purpose registers [4]. As a result, a principal part
of the IA-32 application’s code devotes on data flow management, control flow
management, and stack management. While IA-32 has proved that CISC is an

340 Y. Klimiankou

appropriate architecture for performance-oriented computer markets, the IA-32
itself is over-complicated.

For example, the concept of variable length instructions based on 8-bit atomic
blocks leads to significant complexities in instruction decoding [6]. Furthermore,
instruction length cannot be determined based only on its first block. Special
complex state-machine based circuits with byte stream feeding become required
in the superscalar CISC processors with pipelines for the instruction length eval-
uation purposes. Reduction of instruction length variability level by rebasing ISA
on new strict instruction format could be beneficial. The new instruction format
can split instruction into two strictly separated blocks: fixed-size opcode and
variable length immediate arguments block, where opcode defines the size of the
second block. In this case, the decoder will be able to fetch each instruction in
two steps.

The concept of prefixes was the wrong design decision. Rejection of rarely
used features of ISA painlessly eliminates most of them. The only reasonable
and commonly used instruction prefix is lock.

Compilers tend to ignore a part of addressing modes supported by IA-32
and introduced especially for the support of high-level programming languages.
Hence, the simplified version of ISA can exclude them without significant losses.

Finally, decimal arithmetic instructions, segment register instructions, into,
bound and xlat and a lot of others are not used by modern software and could be
deprecated and removed from IA-32 ISA as well as nop instruction, which has the
same effect as a mov eax, eax. Some of them can be replaced (for example xor eax,
eax by null eax) and even compounded into new instructions (for example test
eax, eax; jz label; into jmpifnull eax, label). The distinguishable ISA core, found
in the statistical data collected over the industrial-quality machine-generated
code of real applications, provides an opportunity of deep RISCification of IA-
32. Such RISCified IA-32 could lead to reduced cost of processor development
and verification as well as significantly reduce the cost of development and main-
tenance of its software infrastructure.

Backward compatibility is a painful point of x86. While compatibility pro-
vides significant benefits in the short term perspective, at the same time, it
over-complicates ISA on the long-term run. After 35 years of development, IA-
32 pulls heavy baggage of useless features caused by backward compatibility.
We can suggest that periodical dramatic refreshes of ISA with the depreciation
of rarely used features can maintain the ISA complexity on a constant accept-
able level. At the same time, we can suggest that reasonably useful ISA can
be designed based on IA-32 using a radical simplification approach. Such ISA
can lead to reduced power consumption, silicon size, and maintenance cost while
benefit from the large code base collected in and inherited from IA-32 ecosystem.
In particular, the new ISA can be designed in such a way, which will allow it to
inherit not only existing software packages but also existing program develop-
ment toolchains. The benefits of reduced complexity gained through rejection of
rarely used features can outweigh the drawbacks of the partially broken back-
ward compatibility. The simplified version of IA-32 which will be able to run 99%

Exploring IA-32: Lessons from Analysis and Experience 341

of currently used x86 applications and, which is more important, will be able
to use existing toolchains for development of new software, can be attractive at
least for some applications and markets.

4 Conclusion

IA-32 is one of fundamental ISA in the computer industry that has made an
invaluable contribution to its development. Nevertheless, for more than 34 years
of development, it has accumulated tremendous baggage of complexity that cur-
rently does not carry any significant value. Based on its usage analysis in the
current applications, we came to the three main conclusions. Firstly, not all
assumptions made by ISA developers were right in strategic perspective. Sec-
ondly, IA-32 could be revised to produce straightforward and efficient ISA of the
second generation of IA-32. Finally, we can hypothesize that any big and com-
plicated architecture should experience revision every 10–20 years to validate
assumptions and design decisions made, to perform clean up of the design from
the useless features and complexity, and to identify right directions for future
development and advancement.

References

1. The Linux Kernel Archives. https://www.kernel.org/. Accessed 26 Feb 2019
2. Adams, T.L., Zimmerman, R.E.: An analysis of 8086 instruction set usage in MS

DOS programs. SIGARCH Comput. Archit. News 17(2), 152–160 (1989)
3. Bovet, D.P., Cesati, M.: Understanding the Linux Kernel - From I/O Ports to

Process Management: Covers Version 2.6, 3rd edn. O’Reilly, Sebastopol (2005)
4. Dandamudi, S.P.: Fundamentals of Computer Organization and Design. Springer,

Berlin (2002). https://doi.org/10.1007/b97279
5. Flynn, M.J.: Computer Architecture: Pipelined and Parallel Processor Design, 1st

edn. Jones and Bartlett Publishers Inc., USA (1995)
6. González, A., Latorre, F., Magklis, G.: Processor Microarchitecture: An Imple-

mentation Perspective. Synthesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, San Rafael (2010)

7. Intel Corporation: The 8086 Family User’s Manual. Intel Corporation (1979)
8. Intel Corporation: IA-32 Intel R© Architecture Software Developer’s Manual. Vol-

ume 1: Basic Architecture. Intel Corporation (2003). 245470–012
9. Intel Corporation: IA-32 Intel R© Architecture Software Developer’s Manual. Vol-

ume 2: Instruction Set Reference. Intel Corporation (2003). 245471–012
10. Intel Corporation: Intel R© 64 and IA-32 Architectures Optimization Reference

Manual. Intel Corporation, June 2016. 248966–033
11. Thome, A.: 25 years of PC history at BECKHOFF. PC-Control: New Autom.

Technol. Mag. (3), 6–9 (2011)
12. Wiecek, C.A.: A case study of VAX-11 instruction set usage for compiler execution.

In: Proceedings of the First International Symposium on Architectural Support for
Programming Languages and Operating Systems, pp. 177–184. ASPLOS I, ACM,
New York (1982)

https://www.kernel.org/
https://doi.org/10.1007/b97279

Continuous Integration and Continuous
Delivery in the Process of Developing

Robotic Systems

Vadim Rashitov(B) and Mikhail Ivanou

Robotics Institute, Innopolis University, Innopolis, Russia
{v.rashitov,m.ivanov}@innopolis.ru

Abstract. There are hundreds of companies out there that are bringing
new solutions in the field of robotics and trying to get rid of a thousand
problems they face. Nevertheless, most of their results do not leave the
doors of the lab and remain without any decent attention from society.
Institutions and companies require highly qualified personnel to acceler-
ate the development of new solutions and products. High expenses deter
broad masses from participating in this activity. It is not only the high
price that keeps people away from being a part of the community but also
a high entry level to the field. In our paper we consider an approach that
makes the process of developing and integration of robotic systems faster
and more accessible to the others. At first, the idea implies removing a
technical barrier between science labs and other individuals. Secondly, all
processes must be automatized by different tools to the greatest possible
extent. As a result, we get a cloud web application where anyone can add
or edit robotic systems algorithms. There are open technologies that can
help us to implement this solution: virtualization, dockerization, web 3d
simulator Gazebo, robot operation system (ROS).

Keywords: Docker · Virtualization · Cloud · CI/CD ·
Web application · Robot system

1 Introduction

The last decade has been marked by the rapid development of various fields of
robotics. As a result, many human activities have undergone robotization, from
heavy industry to households [2]. On the one hand, the process of development
and implementation of robotic systems is not going to stop, but its pace does not
meet the challenges of modernity in the form of economic and social problems
that need to be addressed as soon as possible. The current situation is charac-
terized by the weak involvement of society in this process. Due to high expenses,
the development of robotic systems is carried out by a narrow circle of scientific
laboratories and companies. In such a situation, highly qualified staff is required.
People that can quickly solve problems they face during development. But not
everyone can afford it for all sorts of reasons. As a result, it takes a long time
c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 342–348, 2019.
https://doi.org/10.1007/978-3-030-29852-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_29&domain=pdf
http://orcid.org/0000-0003-1431-2630
http://orcid.org/0000-0002-0119-2249
https://doi.org/10.1007/978-3-030-29852-4_29

CI and CD in the Process of Developing Robotic Systems 343

from prototype development to implementation of the final product and related
software.

The next point is that the introduction of robots into human life doesn’t
take a widespread character. There are several reasons here, but the main ones
are high price and insufficient development of the final product. In other words,
the quality of software and algorithms for robots. One of the solutions that can
change the current situation is a continuous process [5] of robotic systems devel-
opment. The process with the following characteristics: continuity, accessibility,
scalability.

Continuity means a continuous process of code writing, with automated func-
tional and security testing.

The accessibility of the system is determined by the guarantee that anyone
can join the robots development at any time. Development of robots requires
high-performance hardware and other equipment, which unaffordable for many
people. Also plays a role in a high entry level to the field. In some case, software
preparation takes an enormous amount of time. Eventually, the process becomes
more complicated.

The solution to the problem of the availability of necessary resources is to
rent them. It is not only hardware renting but also about using a pre-configured
robots software. It is the best way to achieve economic balance and reduce the
requirement for initial user skills.

Scalability means the ability to add a large number of new robot models to
the development process.

According to the trends, cloud technologies [1] fit well all these criteria. The
idea is to move the robot development of robot applications and algorithms to a
cloud platform. Virtual robot models are planned to be loaded to the simulator
Gazebo. ROS is used as a virtual robot control bus [4].

2 Application

For the current day, our standard process of robotic applications development
looks as follows:

1. Purchase of expensive hardware
2. Installation and configuration of the software
3. Robot modeling
4. Code development
5. Install additional packages
6. Recompile

In some cases, it is necessary to buy a physical robot.
These steps can be divided into two stages: preparation and application devel-

opment. There is a 4-level scheme of workplace preparation for the developer
below on the Fig. 1.

Hardware layer. As a rule, it is necessary to have high-performance hardware
for considerable computations volume. The price of the hardware can reach sev-
eral thousand dollars. The next layer is the operating system layer. Currently,

344 V. Rashitov and M. Ivanou

Fig. 1. A 4-level scheme of workplace preparation

the main operating system in robotic development is the Linux. On the one hand,
open source software support has a positive influence on the development of the
industry as a whole. But in this case, users of other operating systems such as
Windows, Mac OS are ignored. The third layer is an application layer. At this
level, the process of preparing the working environment can take a long time
and a lot of efforts for a developer starting with various packages installation.
The last layer is a model layer. A real physical robot is not always available, so
a virtual robot model needs to be prepared. It can take a long time to make a
3D robot model and create virtual environment in a simulator.

The next stage is application development. The first challenge to be met
is the development team expansion. Each team member should have hardware
and software with the same characteristics, settings, and packages. As the result
from above we have low amount of human resources and a chaotic development
process. There is a block diagram of robot software development process below
on the Fig. 2.

Fig. 2. A robot software development process

Cloud technology simplifies the development process. There is no need to
prepare the work environment and buy expensive hardware. It is possible to
start algorithm development at any time from anywhere in the world [8]. There
are a block diagrams of robot software development process in a cloud below on
the Figs. 3 and 4.

CI and CD in the Process of Developing Robotic Systems 345

Fig. 3. A robot software development process in a cloud.

Fig. 4. A robot software development process in a cloud.

The cloud application has two main components: a data repository and Web
interface to work with robots. The data repository includes a GIT repository, a
packages repository, and a repository for robot virtual images. A separate GIT
repository is provided for each robot model. The web interface has a graphical
simulator with a code editor.

There are two types of users in the application, a provider of robotic systems
in the form of scientific laboratories or companies, and a developer of applica-
tions and algorithms for robots. Users can easily access the application from any
computer connected to the Internet using a standard browser. An user creates
a project using service or connects to an existing one. The next thing the user
can do is to start his work, upload virtual robot, download necessary packages
and run algorithms. The developer focuses on his work on the robot application
as much as possible.

3 Architecture and Process Development

As mentioned in the previous section, the key components of the application are
the web interface and data repository.

Basically, the cloud application is server cluster. Resources of the cluster are
managed by XEN hypervisor. Based on the primary purpose of the application,
it needs a tool to virtualize robots model. Docker is used for this task [7]. The

346 V. Rashitov and M. Ivanou

Fig. 5. A development process of a provider.

virtual Robot model is packed inside a docker image and uploaded to Docker-
registry. Docker-registry is a part of the data repository. Besides a robot’s code
and ROS packages inside an image, there are also Gazebo server and Gazebo Web
client. Docker-registry consists of two parts. The first part is a repository for basic
images. These images are used to build virtual robot models. They have Gazebo,
ROS and additional libraries that are needed to build new images. The second
part is a repository for virtual robot models. The build and test code process is
performed on the Jenkins cluster (Jenkins Master and Jenkins Agents). Jenkins
Master transfers ready-made images from Jenkins Agent to the second section of
docker registry. To manage containers, there is a docker-compose tool. Also, there
are additional services such as GIT repository, package repository. All elements of
the system communicate with each other via Application Programming Interface
(API).

Depending on the type of user (developer or provider), different development
processes are possible. The provider builds a virtual robot model and the devel-
oper works on the robot application. Jenkins master checks updates in GIT
repository Fig. 5, if there is a new pull request in the master branch it starts
building process on the Jenkins agent. Jenkins agent downloads a base image
from docker-registry and builds code inside the image. It runs unit tests on the
correctness of the code afterwards. If all tests are successful, the image is marked
as the latest and uploaded to the Docker-regisrty. Application checks data repos-
itory for updates Fig. 6. If there is a new image with a virtual robot, the image

CI and CD in the Process of Developing Robotic Systems 347

Fig. 6. A development process of a developer.

becomes available to developers in the web user interface [3]. When a developer
runs a robot, two containers are used. One container from the base GZweb image
acts as the Gazebo Client, the second container is the Gazebo Server with the
robot [6]. The developer’s code is loaded into the GZweb container. Communi-
cation between containers is carried out through ROS and Gazebo sockets.

4 Conclusion and Suggestion for Further Work

In the current version of the platform, a full cycle of robot application devel-
opment is implemented. The application allows to launch simulation, write an
algorithm and immediately test it. It is possible to work simultaneously with
several users on a single project. However, the development process is realized
only in one lab. In the future, it is planned to create a universal pipeline and add
integration with other laboratories and companies. Upcoming work will describe
the implementation of container orchestration and system monitoring. It is also
necessary to solve the issues with platform scalability and security.

Acknowledgments. This work has been supported by the Ministry of Science
and Higher Education of the Russian Federation with the project “Development of
anthropomorphic robotic complexes with variable stiffness actuators for movement on
the flat and the rugged terrains” (agreement: 075-10-2018-010 (14.606.21.0007), ID:
RFMEFI60617X0007).

348 V. Rashitov and M. Ivanou

References

1. Ercan, T.: Effective use of cloud computing in educational institutions. Proc. Soc.
Behav. Sci. 2(2), 938–942 (2010)

2. Hajduk, M., Jenč́ık, P., Jeznỳ, J., Vargovč́ık, L.: Trends in industrial robotics devel-
opment. In: Applied Mechanics and Materials, vol. 282, pp. 1–6. Trans Tech Publi-
cation (2013)

3. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation (Adobe Reader). Pearson Education, Lon-
don (2010)

4. Linner, T., Shrikathiresan, A., Vetrenko, M., Ellmann, B., Bock, T.: Modeling and
operating robotic environment using Gazebo/ROS. In: Proceedings of the 28th inter-
national symposium on automation and robotics in construction (ISARC2011), pp.
957–962 (2011)

5. Shahin, M., Babar, M.A., Zhu, L.: Continuous integration, delivery and deployment:
a systematic review on approaches, tools, challenges and practices. IEEE Access 5,
3909–3943 (2017)

6. Sokolov, M., Lavrenov, R., Gabdullin, A., Afanasyev, I., Magid, E.: 3D modelling
and simulation of a crawler robot in ROS/Gazebo. In: Proceedings of the 4th Inter-
national Conference on Control, Mechatronics and Automation, pp. 61–65. ACM
(2016)

7. Turnbull, J.: The Docker Book: Containerization is the New Virtualization. James
Turnbull (2014)

8. Zhang, S., Zhang, S., Chen, X., Huo, X.: Cloud computing research and development
trend. In: 2010 Second International Conference on Future Networks, pp. 93–97.
IEEE (2010)

Projects

VERCORS: Hardware and Software
Complex for Intelligent Round-Trip

Formalized Verification of Dependable
Cyber-Physical Systems in a Digital Twin

Environment (Position Paper)

Alexandr Naumchev1,2(B), Andrey Sadovykh1, and Vladimir Ivanov1

1 Innopolis University, Innopolis 420500, Russian Federation
a.naumchev@innopolis.ru

2 Paul Sabatier University, Toulouse, France

Abstract. Formal specification, model checking and model-based test-
ing are recommended techniques for engineering of mission-critical sys-
tems. In the meantime, those techniques struggle to obtain wide adop-
tion due to inherent learning barrier, i.e. it is considered difficult to use
those methods. There is also a common difficulty in translating the spec-
ifications in natural language, a common practice nowadays, to formal
specifications. In this position paper we discuss the concept of an end-to-
end methodology that helps identify specifications from various sources,
automatically create formal specifications and apply them to verifica-
tion of cyber-physical systems. Thus, we intent to address the challenges
of creation of formal specifications in an efficient automated and tool-
supported manner. The novelty of the approach is analyzed through a
survey of state of the art. It is currently planned to implement this con-
cept and evaluate it with industrial case studies.

Keywords: Cyber-physical systems (CPS) · Digital twin ·
Verification · Model-based testing · Natural · Language processing ·
Formal specification · Traceability · Multi-modelling · Co-simulation

1 Motivation

Unmanned vehicles, drones and robots became mission-critical for many indus-
tries and society in general. These Cyber-Physical System (CPS) become more
and more complex, since they represent interconnection of thousands of soft-
ware and hardware components coming from multiple vendors and must work
in harmony with an uncertain physical environment to provide dependability
guarantees. Digital twin technologies help to accelerate the development and
start verification earlier in the development cycle using multi-models combined
with hardware-in-the-loop and software-in-the-loop co-simulations to reap most
of the cost reduction benefits. In the meantime, the verification of mission critical
systems is still very expensive and labor intensive.
c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 351–363, 2019.
https://doi.org/10.1007/978-3-030-29852-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_30&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_30

352 A. Naumchev et al.

The efforts may reach 80% of project costs. The automated verification with
test generation can dramatically accelerate the specification of test input. How-
ever, there is still a fundamental problem of the test oracle that should assess
results of test cases. Formal specification techniques have long been studied for
test input generation and as a remedy for the oracle problem. Nevertheless, they
could not gain a massive uptake due to overall complexity of the formalization
process. The modern methods for natural language processing and paraphrasing
provide opportunities to automate specification extraction and formalization.
It is thus becoming possible to enable digital twin platforms with automated
verification methods based on formal specifications in a cost effective manner
and address the dependability problem of the modern CPSs. The decision mak-
ers may have the dependability properties expressed in different forms starting
from informal ones in natural language collected during face-to-face meetings.
The challenge that the current work addresses is facilitating the translation
of these properties to the form understandable by the multi-model verification
environment through (1) extracting natural language specifications from avail-
able sources, (2) formalizing the extracted natural languages specifications, (3)
automatically generating test input and outputs from the generated oracles, (4)
tests execution in a co-simulation environment interplaying logical/cyber and
physical models.

2 The Solution

In this section we present the conceptual view of the solution that we think will
simplify the CPSs’ verification process.

Fig. 1. Top level view of the system. (Color figure online)

VERCORS: Intelligent Specification and Verification of CPSs 353

The resulting process will execute the following major activities (the boxes
with the blue dotted frames in Fig. 1):

1. Requirements extraction.
2. Requirements formalization.
3. Automated testing and co-simulation.

Each of these activities consumes on input the previous activity’s output. The
following human agents control execution of these activities:

– Domain expert controls requirements extraction and confirms the results of
requirements formalization.

– Formalization expert maintains the requirement patterns catalogue (RPC)
and supports instantiation of the patterns into requirements.

The agents will oversee producing the following artifacts (the green rectangles
in Fig. 1):

– Unstructured and semi-structured textual specifications.
– Formal specification.
– Test sets.

The VERCORS project has the objective to automate some of the human
agents’ tasks (the light green ellipses in Fig. 1):

– Extracting natural language requirements from available sources.
– Matching the extracted requirements against known patterns.
– Automatically generating test input and test oracles based on the formal

semantics encoded inside the patterns.
– Running the generated tests in a co-simulation environment, interplaying log-

ical/cyber and physical models.

Requirements extraction will analyze available information sources and pro-
pose candidate natural-language requirements. The proposed candidate require-
ments will be reviews by the domain expert Semi-automated requirements for-
malization will consume the extracted informal requirements and produce their
formalized versions along with more structured natural-language representa-
tions. The domain expert will evaluate the two natural-language representations
of the same requirement and decide whether to accept the formalization or make
the initial requirement more precise. As soon as the domain expert confirms the
formalization, it is submitted to automated testing; the domain expert will then
analyze failures and either correct the input requirements or file bug reports to
the development team.

3 State of the Art

As Sect. 2 states, the project will tool-support three major activities: (1) require-
ments extraction, (2) requirements formalization and (3) automated testing and
co-simulation. The present section describes the state of the art in these areas.

354 A. Naumchev et al.

3.1 Natural Language Processing for Requirements Extraction

As stated in [51], natural language processing (NLP) is a promising approach to
support the requirements engineering process due to the increasing complexity
of the systems to develop and hence of the requirements to manage. Some stud-
ies have adopted NLP to transform requirements into analysis models [45,66].
Others have analyzed requirements to identify textual ambiguity [27,63,64]. In
the current article we focus on and review the following directions of research:

– NLP techniques for extraction and/or recovery of requirements from unstruc-
tured texts.

– NLP techniques for requirements analysis with respect to ambiguity and/or
complexity.

NLP Techniques for Extraction and/or Recovery of Requirements
from Unstructured Texts. The problem of extraction or recovery of require-
ments has to be distinguished from the requirement elicitation problem. In
requirements extraction or recovery, we expect that a software system is already
developed (or at least the requirement elicitation process finished). Thus, there
is some textual corpus that has been collected. The text corpus contains unstruc-
tured text files that should be processed using NLP techniques in order to extract
a set of text segments (prototype requirements). It is also possible to use existing
specifications to facilitate the process.

In this research direction there are two main classes of techniques: rule-based
methods and statistical methods (or machine learning) techniques. Ferrari et al.
[16] collected and published online a public dataset of 79 software requirements
documents (47 pages of text per document). In [54] authors describe an NLP
pipeline to transform a set of heterogeneous natural language requirements into a
knowledge representation graph. Key steps of the pipeline are tokenizing, POS-
tagging and semantic role labeling. This article illustrates typical rule-based
approach [10]. Another approach is based on machine learning techniques that
have shown good performance in the past decade. A wide range of models are
applied in this direction to categorize requirements [29], to extract relevant text
segments and to assess quality of textual requirements [14,15,30].

NLP Techniques for Requirements Analysis with Respect to Ambigu-
ity and/or Complexity. Most of the software complexity measures are based
on code, but when we use the code for computing software complexity it is too
late. In [57] a method for measurement of The Requirement Based Complexity
based on text analysis of software requirements specifications. The authors con-
clude that the proposed measure follows the trend of all the other established
measures (code based and cognitive information complexity based) in a compre-
hensive manner. However, their measure applicable on the textual requirements
that comply to the IEEE standard (IEEE830:1993).

In [5] Antinyan et al. define a complexity measure for textual requirements.
They found that there is a significant agreement between the manual assessors

VERCORS: Intelligent Specification and Verification of CPSs 355

which means that the manual assessors significantly agree on the criteria of
requirements understandability.

3.2 Specification Formalization

Specification formalization can be broken into the following work packages:

– Matching the input specifications against known specification patterns to
reuse these patterns.

– Producing paraphrased requirements from the patterns for checking with the
human agent.

– Generating the formalization from the patterns marked by the human agent
as valid.

We expect the biggest amount of work in the first package – pattern matching. A
recent literature review by Irshad et al. [24] provides a comprehensive survey of
the existing body of knowledge in this field. Blok and Cybulski [9] used lexical
and semantic matching to identify and reuse the requirements represented in
UML. Paydar et al. [46] proposed to use matching of UMLs to identify the reuse
potential and this matching was done by using a metric for measuring the simi-
larity of UML-based use-cases. Niu et al. proposed requirements reuse approach
based on the lexical affinity to retrieve the reusable requirements [43]. Castano
et al. [11] describe requirements as conceptual components that facilitate the
requirements reuse by matching these conceptual components. Perednikas pro-
posed requirements reuse approach that works by forecasting of user needs [48].
Ryan et al. used conceptual graphs to develop a matching mechanism to identify
the similar cases for reuse [52]. Sutcliffe transforms the use-case scenarios into
a model and then compares the model with the library of existing models; the
requirements from the matching model are reused to develop new requirements
[58]. Biddle et al. derive scenarios from the use-cases and suggest the reuse cases
by matching with existing scenarios [8]. Periyasamy and Chidambaram com-
pare signatures of the requirements’ Z representations to identify reuse cases
[49]. The “Requirements Reuse Model for Software Requirements Catalogue”
[44] approach suggests the activities and a method that enable requirements to
reuse in requirements catalogue. Another approach [6] extracts high-frequency
words from the documents describing the natural language requirements and
identifies features for reuse based on the words’ frequencies. Bakar et al. [7]
demonstrated a reuse approach based on extracting frequently occurring words
in documents and used the statistical analysis, based on the distance measure,
to identify similar requirements.

3.3 Automated Testing for Multi-model Simulation Environments

Testing techniques relying on automated tests generation fit into the following
major categories:

356 A. Naumchev et al.

– Model-based testing.
– Search-based testing.
– Uncertainty-wise testing.

Model-based Testing (MBT) is a technique for performing software system
testing using models [56]. In MBT, models can be used to express the expected
behavior of the system under test, and/or its environment to be tested. The
feasibility and cost-effectiveness of MBT have been demonstrated by the inten-
sive research work and industrial practices [25,60]. The typical process of MBT
includes five steps: (1) construct models with respect to the system under test-
ing and/or its environment; (2) generate a set of abstract test cases based on
the constructed models according to the defined test selection criteria; (3) con-
cretize the abstract test cases to executable ones; (4) execute the test cases on
test infrastructures and assign verdicts; and (5) analyze execution results of the
test cases.

Search-based Software Testing (SBST) applies meta-heuristic optimizing
search techniques to tackle automatic generation of test data and other chal-
lenges of automated testing [19,21,22,31,32]. In SBST, these challenges are nor-
mally reformulated as search problems for seeking optimal or near-optimal solu-
tions in a search space. The process is guided by fitness functions that are defined
to evaluate the sought solution for seeking the better ones. The applicability and
effectiveness of SBST can be demonstrated by many successful works and related
surveys [3,4,20,26,65]. Multi-objective approaches are increasingly applied for
optimizing the testing process, such as test set selection, minimization and pri-
oritization [19,26].

Uncertainty is inherent in CPSs due to various reasons such as unpredictable
environment under which the CPSs are operated. It is crucial to identify uncer-
tainties in CPSs and test CPSs under the uncertainties. This process is called
uncertainty-wise testing. Walkinshaw and Fraser [62] proposed a black-box test-
ing framework to select test cases for execution to decrease uncertainty about
the correctness of a software system. Another work [18] focuses exclusively on
time-related uncertainty. David et al. [12] presented test generation principles
and algorithms (e.g., the online testing tool UPPAAL-TRON [23]) and discussed
the feasibility of applying them for testing timed systems under uncertainty, at
a high level of abstraction. In [50], the authors presented a solution to transform
UML use case diagrams and state diagrams into usage graphs appended with
probability information about the expected use of the software. Zhang et al. [67]
combined the benefits of model-based, search-based and uncertainty-wise testing
inside the UncerTest framework for testing CPSs under uncertainty.

Simulation on virtual models is the most cost, effort and time effective
method for verifying the correctness of complex embedded systems such as CPSs.
Moreover, the simulation environments often concentrate one type only of the
simulations: discrete-event or continuous. Furthermore, the available simulators
often require the complete set of binaries to be executed on each node. In addi-
tion, simulations are an important Intellectual Property, that many vendors
strive to preserve. The current trend is multi-model co-simulations based on the

VERCORS: Intelligent Specification and Verification of CPSs 357

Functional Mock-up Interface (FMI) technology. This technology allows packag-
ing simulators as binaries and run them in parallel on distributed nodes with an
orchestration engine [47] and [53]. Thus, the interplay of simulators of different
types are provided, while preserving the Intellectual Property of vendors. The
whole set of simulators may represent a digital twin of the developed system.

4 Expected Contributions to the State of the Art

We plan to make the following conceptual contributions to the state of the art:

1. In requirements extraction and classification task we will add a new value
by developing a system that combines the knowledge-based approaches to
information extraction with modern machine learning techniques to easily
transfer results to new domains.

2. In the specification formalization task, we will add value by embedding the
paraphrasing and formalization algorithms directly into the requirement pat-
terns. As the main consequence of this contribution, matching requirements
against the patterns will automatically imply choosing the most appropriate
paraphrasing and formalization.

3. For the automated testing and multi-model simulation, we want to com-
bine the cutting edge techniques of testing CPSs and model-based simula-
tion inside our requirement patterns-based framework. More precisely, the
patterns should include the mechanisms of their own automated testing in
automatically simulated environments.

The following technical artifacts will support the conceptual contributions:

1. Experimental environment for specification extraction from text.
2. Training and test sets for training and evaluation of the engine for require-

ments specification extraction, including analysis of specifications granularity
3. Templates catalogue for specification formalization.
4. Natural language pattern recognition engine for specification formalization.
5. formal specification generation engine.
6. Round-trip mechanism based on paraphrasing for validation of the formal

specification by the user and continuous adaptation.
7. Engine for generation of test input from formal specifications applying a set

of strategies such as automated random testing and boundary value analysis.
8. Engine for oracles generation for prediction of test outcomes from the formal

specifications.
9. Multi-model co-simulation engine for execution of generated test sets in

Hardware-In-The-Loop, Software-In-The-Loop modes for the digital twin
environment.

10. Traceability engine that collects the test verdicts, links them to the formal
specifications and enables the root cause analysis by the user.

11. Seamless framework applicable in several domains of cyber-physical systems.
12. End-to-end demonstrator to showcase the results of the project.

358 A. Naumchev et al.

5 Discussion

Developing high quality software amounts to the following major tasks:

– Implement correct requirements.
– Implement requirements correctly.

Checking that requirements are implemented correctly assumes their formal ver-
ification against the implementation, which assumes that the requirements are
formalized. Requirements, however, start their life cycle in the form of notes
recorded during early requirements elicitation sessions. When the informal-to-
formal transition happens, a mechanism should be in place to make sure that
the formalization does not alter the original meaning. The formalization process,
on the other hand, may reveal additional insights [33]; a mechanism should be
in place to “de-formalize” requirements for comparing them with their original
informal versions. The process of checking implementations against formalized
requirements should correctly reflect the requirements’ semantics. The VER-
CORS project will address these concerns in a unified fashion.

As the Sect. 3 suggests, a big corpus of knowledge covers the three major sep-
arate activities that constitute VERCORS. The project will unify these activities
inside a single framework with the help of seamless development [35,61]. More
specifically, through the notion of multirequirements – requirements expressed
in several notations, one of which is a programming language with contracts
[36]. Mutlirequirements seamlessly connect requirements and their implemen-
tations in the same programming language [42]. Automated program proving
[59] adds the possibility to formally reason about requirements’ completeness
and consistency [37,39]. Combining multirequirements with program proving
and development through Design by Contract (DbC) [34] makes it possible to
incrementally, in an agile fashion, develop formally verified software [40]. The
approach scales to specifying and verifying temporal and timing requirements for
control software, which is at heart of any cyber-physical system [17,41]. Trying
to make multirequirements reusable across software projects results in seam-
less object-oriented requirements (SOOR) and their templates (SOORT) [38].
SOORTs capture recurring requirement patterns in the form of object-oriented
classes. The VERCORS process will rely on an existing catalogue of SOORTs
that encode known patterns [13,28]. It maps to the “Pattern Catalogue” com-
ponent in Fig. 1). The catalogue will evolve during the framework’s operation. It
will support the VERCORS activities in the following way, given a requirement
provided by the extraction engine from the “Requirement extraction” package:

1. The pattern matching engine will identify SOORTs that are likely to cover
the provided requirement.

2. For each identified SOORT, the formalization expert will refine it into a
SOOR based on the expert’s understanding of the input requirement.

3. The SOOR will automatically generate a structured natural language version
of the requirement; it inherits the generation logic from the parent SOORT.

VERCORS: Intelligent Specification and Verification of CPSs 359

4. The domain expert will look at the structured version and either use it instead
of the input requirement or reject it.

5. If the domain expert rejects the structured version, the formalization expert
will continue with the next identified SOORT.

6. If the domain expert accepts the structured version, the formalization expert
will pass the SOOR to the “Automated testing” package.

7. The test case generation engine analyzes the predicates characterizing valid
test inputs; the SOOR inherits these predicates from the parent SOORT.

8. The test case generation engine generates test inputs that cover every disjunct
in the predicate’s disjunctive normal form.

9. The test execution engine runs the test for checking the requirement’s seman-
tics, providing the generated test inputs; the SOOR inherits the test from the
parent SOORT.

Seamless object-oriented requirements and their templates will become the
junction point of the whole process. Their multi-faceted project-agnostic nature
will support the various agents in their activities.

References

1. Proceedings of IEEE International Symposium on Requirements Engineering, RE
1993, San Diego, California, USA, 4–6 January 1993. IEEE Computer Society
(1993)

2. 25th IEEE International Requirements Engineering Conference, RE 2017, Lisbon,
Portugal, 4–8 September 2017. IEEE Computer Society (2017)

3. Afzal, W., Torkar, R., Feldt, R.: A systematic review of search-based testing for
non-functional system properties. Inf. Softw. Technol. 51(6), 957–976 (2009)

4. Ali, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K.: A systematic review
of the application and empirical investigation of search-based test case generation.
IEEE Trans. Softw. Eng. 36(6), 742–762 (2010)

5. Antinyan, V., Staron, M., Sandberg, A., Hansson, J.: A complexity measure for tex-
tual requirements. In: Heidrich, J., Vogelezang, F.W. (eds.) 2016 Joint Conference
of the International Workshop on Software Measurement and the International
Conference on Software Process and Product Measurement, IWSM-MENSURA
2016, Berlin, Germany, 5–7 October 2016, pp. 148–158. IEEE Computer Society
(2016)

6. Bakar, N.H., Kasirun, Z.M., Salleh, N.: Terms extractions: an approach for require-
ments reuse. In: 2015 2nd International Conference on Information Science and
Security (ICISS), pp. 1–4, December 2015. https://doi.org/10.1109/ICISSEC.2015.
7371034

7. Bakar, N.H., Kasirun, Z.M., Jalab, H.A.: Towards requirements reuse: identifying
similar requirements with latent semantic analysis and clustering algorithms. In:
Proceedings of the Second International Conference on Advances In Computing,
Communication and Information Technology-CCIT 2014, pp. 19–24 (2014)

8. Biddle, R., Noble, J., Tempero, E.: Supporting reusable use cases. In: Gacek,
C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 210–226. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46020-9 15

https://doi.org/10.1109/ICISSEC.2015.7371034
https://doi.org/10.1109/ICISSEC.2015.7371034
https://doi.org/10.1007/3-540-46020-9_15

360 A. Naumchev et al.

9. Blok, M.C., Cybulski, J.L.: Reusing UML specifications in a constrained applica-
tion domain. In: 5th Asia-Pacific Software Engineering Conference (APSEC 1998),
Taipei, Taiwan, ROC, 2–4 December 1998, pp. 196–202. IEEE Computer Society
(1998)

10. Caron, M., Bäumer, F.S., Geierhos, M.: Back to basics: extracting software require-
ments with a syntactic approach. In: Schmid et al. [55]

11. Castano, S., Antonellis, V.D.: Reuse of conceptual requirement specifications. In:
Proceedings of IEEE International Symposium on Requirements Engineering, RE
1993, San Diego, California, USA, 4–6 January 1993 [1], pp. 121–124 (1993)

12. David, A., Larsen, K.G., Li, S., Mikucionis, M., Nielsen, B.: Testing real-time
systems under uncertainty. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 352–371. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25271-6 19

13. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Boehm, B.W., Garlan, D., Kramer, J. (eds.) Proceed-
ings of the 1999 International Conference on Software Engineering, ICSE 1999, Los
Angeles, CA, USA, 16–22 May 1999, pp. 411–420. ACM (1999)

14. Ferrari, A., dell’Orletta, F., Spagnolo, G.O., Gnesi, S.: Measuring and improving
the completeness of natural language requirements. In: Salinesi, C., van de Weerd,
I. (eds.) REFSQ 2014. LNCS, vol. 8396, pp. 23–38. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-05843-6 3

15. Ferrari, A., Gnesi, S.: Using collective intelligence to detect pragmatic ambiguities.
In: Heimdahl, M.P.E., Sawyer, P. (eds.) 2012 20th IEEE International Require-
ments Engineering Conference (RE), Chicago, IL, USA, 24–28 September 2012,
pp. 191–200. IEEE Computer Society (2012)

16. Ferrari, A., Spagnolo, G.O., Gnesi, S.: PURE: a dataset of public requirements
documents. In: 25th IEEE International Requirements Engineering Conference,
RE 2017, Lisbon, Portugal, 4–8 September 2017 [12], pp. 502–505 (2017)

17. Galinier, F., Bruel, J., Ebersold, S., Meyer, B.: Seamless integration of multirequire-
ments in complex systems. In: IEEE 25th International Requirements Engineer-
ing Conference Workshops, RE 2017 Workshops, Lisbon, Portugal, 4–8 September
2017, pp. 21–25 (2017)

18. Garousi, V.: Traffic-aware stress testing of distributed real-time systems based on
UML models in the presence of time uncertainty. In: First International Confer-
ence on Software Testing, Verification, and Validation, ICST 2008, Lillehammer,
Norway, 9–11 April 2008, pp. 92–101. IEEE Computer Society (2008)

19. Harman, M., Jia, Y., Zhang, Y.: Achievements, open problems and challenges for
search based software testing. In: 8th IEEE International Conference on Software
Testing, Verification and Validation, ICST 2015, Graz, Austria, 13–17 April 2015,
pp. 1–12. IEEE Computer Society (2015)

20. Harman, M., Mansouri, S.A., Zhang, Y.: Search based software engineering: a com-
prehensive analysis and review of trends techniques and applications. Department
of Computer Science, King’s College London, Technical report TR-09-03, p. 23
(2009)

21. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends,
techniques and applications. ACM Comput. Surv. 45(1), 11:1–11:61 (2012)

22. Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search based software engi-
neering: techniques, taxonomy, tutorial. In: Meyer, B., Nordio, M. (eds.) LASER
2008–2010. LNCS, vol. 7007, pp. 1–59. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-25231-0 1

https://doi.org/10.1007/978-3-642-25271-6_19
https://doi.org/10.1007/978-3-319-05843-6_3
https://doi.org/10.1007/978-3-319-05843-6_3
https://doi.org/10.1007/978-3-642-25231-0_1
https://doi.org/10.1007/978-3-642-25231-0_1

VERCORS: Intelligent Specification and Verification of CPSs 361

23. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) Formal Methods and Testing. LNCS, vol. 4949, pp. 77–117. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78917-8 3

24. Irshad, M., Petersen, K., Poulding, S.M.: A systematic literature review of software
requirements reuse approaches. Inf. Softw. Technol. 93, 223–245 (2018)

25. Jorgensen, P.C.: The Craft of Model-Based Testing. Auerbach Publications (2017)
26. Khatibsyarbini, M., Isa, M.A., Jawawi, D.N.A., Tumeng, R.: Test case prioritiza-

tion approaches in regression testing: a systematic literature review. Inf. Softw.
Technol. 93, 74–93 (2018)

27. Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D.M.: Requirements for tools for ambi-
guity identification and measurement in natural language requirements specifica-
tions. Requir. Eng. 13(3), 207–239 (2008)

28. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Roman, G., Gris-
wold, W.G., Nuseibeh, B. (eds.) 27th International Conference on Software Engi-
neering (ICSE 2005), St. Louis, Missouri, USA, 15–21 May 2005, pp. 372–381.
ACM (2005)

29. Kurtanovic, Z., Maalej, W.: Automatically classifying functional and non-
functional requirements using supervised machine learning. In: 25th IEEE Inter-
national Requirements Engineering Conference, RE 2017, Lisbon, Portugal, 4–8
September 2017 [2], pp. 490–495 (2017)

30. Maalej, W., Nayebi, M., Johann, T., Ruhe, G.: Toward data-driven requirements
engineering. IEEE Softw. 33(1), 48–54 (2016)

31. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.
Verif. Reliab. 14(2), 105–156 (2004)

32. McMinn, P.: Search-based software testing: past, present and future. In: Fourth
IEEE International Conference on Software Testing, Verification and Validation,
ICST 2012, Berlin, Germany, 21–25 March, 2011, Workshop Proceedings, pp. 153–
163. IEEE Computer Society (2011)

33. Meyer, B.: On formalism in specifications. IEEE Softw. 2(1), 6–26 (1985)
34. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992)
35. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Upper

Saddle River (1997)
36. Meyer, B.: Multirequirements. In: Modelling and Quality in Requirements Engi-

neering: Essays dedicated to Martin Glinz on the occasion of his 60th birthday.
Verl.-Haus Monsenstein u. Vannerdat (2013)

37. Naumchev, A.: Detection of inconsistent contracts through modular verification.
In: Ciancarini, P., Mazzara, M., Messina, A., Sillitti, A., Succi, G. (eds.) SEDA
2018. AISC, vol. 925, pp. 206–220. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-14687-0 19

38. Naumchev, A.: Object-oriented requirements: reusable, understandable, verifiable.
CoRR abs/1903.04165 (2019)

39. Naumchev, A., Meyer, B.: Complete contracts through specification drivers. In:
10th International Symposium on Theoretical Aspects of Software Engineering,
TASE 2016, Shanghai, China, 17–19 July 2016, pp. 160–167. IEEE Computer Soci-
ety (2016)

40. Naumchev, A., Meyer, B.: Seamless requirements. Comput. Lang. Syst. Struct. 49,
119–132 (2017)

41. Naumchev, A., Meyer, B., Mazzara, M., Galinier, F., Bruel, J.M., Ebersold, S.:
Autoreq: expressing and verifying requirements for control systems. J. Comput.
Lang. 51, 131–142 (2019)

https://doi.org/10.1007/978-3-540-78917-8_3
https://doi.org/10.1007/978-3-030-14687-0_19
https://doi.org/10.1007/978-3-030-14687-0_19

362 A. Naumchev et al.

42. Naumchev, A., Meyer, B., Rivera, V.: Unifying requirements and code: an example.
In: Mazzara, M., Voronkov, A. (eds.) PSI 2015. LNCS, vol. 9609, pp. 233–244.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41579-6 18

43. Niu, N., Savolainen, J., Niu, Z., Jin, M., Cheng, J.C.: A systems approach to
product line requirements reuse. IEEE Syst. J. 8(3), 827–836 (2014)

44. Pacheco, C.L., Garcia, I.A., Calvo-Manzano, J.A., Arcilla-Cobián, M.: Reusing
functional software requirements in small-sized software enterprises: a model ori-
ented to the catalog of requirements. Requir. Eng. 22(2), 275–287 (2017)

45. Paech, B., Martell, C. (eds.): Monterey Workshop 2007. LNCS, vol. 5320. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89778-1

46. Paydar, S., Kahani, M.: A semantic web enabled approach to reuse functional
requirements models in web engineering. Autom. Softw. Eng. 22(2), 241–288 (2015)

47. Pedersen, N., Lausdahl, K., Sanchez, E.V., Thule, C., Larsen, P.G., Madsen, J.: Dis-
tributed co-simulation of embedded control software using INTO-CPS. In: Obaidat,
M.S., Ören, T., Rango, F.D. (eds.) SIMULTECH 2017. AISC, vol. 873, pp. 33–54.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01470-4 3

48. Perednikas, E.: Requirements reuse based on forecast of user needs. In: Proceedings
of the 20th EURO Mini Conference on Continuous Optimization and Knowledge-
Based Technologies, Neringa, Lithuania, pp. 450–455 (2008)

49. Periyasamy, K., Chidambaram, J.: Software reuse using formal specification of
requirements. In: Bauer, M.A., Bennet, K., Gentleman, W.M., Johnson, J.H.,
Lyons, K.A., Slonim, J. (eds.) Proceedings of the 1996 conference of the Cen-
tre for Advanced Studies on Collaborative Research, Toronto, Ontario, Canada,
12–14 November 1996, p. 31. IBM (1996)

50. Riebisch, M., Philippow, I., Götze, M.: UML-based statistical test case generation.
In: Aksit, M., Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591, pp.
394–411. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36557-5 28

51. Ryan, K.: The role of natural language in requirements engineering. In: Proceedings
of IEEE International Symposium on Requirements Engineering, RE 1993, San
Diego, California, USA, 4–6 January 1993 [1], pp. 240–242 (1993)

52. Ryan, K., Mathews, B.: Matching conceptual graphs as an aid to requirements
re-use. In: Proceedings of IEEE International Symposium on Requirements Engi-
neering, RE 1993, San Diego, California, USA, 4–6 January 1993 [1], pp. 112–120
(1993)

53. Sadovykh, A., et al.: SysML as a common integration platform for co-simulations:
example of a cyber physical system design methodology in green heating ventilation
and air conditioning systems. In: Proceedings of the 12th Central and Eastern
European Software Engineering Conference in Russia, CEE-SECR 2016, pp. 1:1–
1:5. ACM, New York (2016)

54. Schlutter, A., Vogelsang, A.: Knowledge representation of requirements documents
using natural language processing. In: Schmid et al. [55]

55. Schmid, K., et al. (eds.): Joint Proceedings of REFSQ-2018 Workshops, Doctoral
Symposium, Live Studies Track, and Poster Track co-located with the 23rd Inter-
national Conference on Requirements Engineering: Foundation for Software Qual-
ity (REFSQ 2018), Utrecht, The Netherlands, 19 March 2018. CEUR Workshop
Proceedings, vol. 2075. CEUR-WS.org (2018)

56. Shafique, M., Labiche, Y.: A systematic review of model based testing tool support
(2010)

57. Sharma, A., Kushwaha, D.S.: Complexity measure based on requirement engineer-
ing document and its validation. In: 2010 International Conference on Computer
and Communication Technology (ICCCT), pp. 608–615, September 2010

https://doi.org/10.1007/978-3-319-41579-6_18
https://doi.org/10.1007/978-3-540-89778-1
https://doi.org/10.1007/978-3-030-01470-4_3
https://doi.org/10.1007/3-540-36557-5_28

VERCORS: Intelligent Specification and Verification of CPSs 363

58. Sutcliffe, A.G., Maiden, N.A.M., Minocha, S., Manuel, D.: Supporting scenario-
based requirements engineering. IEEE Trans. Softw. Eng. 24(12), 1072–1088 (1998)

59. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0 53

60. Utting, M., Legeard, B.: Practical Model-Based Testing - A Tools Approach. Mor-
gan Kaufmann, Burlington (2007)

61. Walden, K., Nerson, J.: Seamless Object-Oriented Software Architecture - Analysis
and Design of Reliable Systems. Prentice-Hall, Upper Saddle River (1994)

62. Walkinshaw, N., Fraser, G.: Uncertainty-driven black-box test data generation. In:
2017 IEEE International Conference on Software Testing, Verification and Valida-
tion, ICST 2017, Tokyo, Japan, 13–17 March 2017, pp. 253–263. IEEE Computer
Society (2017)

63. Weber-Jahnke, J.H., Onabajo, A.: Finding defects in natural language confidential-
ity requirements. In: RE 2009, 17th IEEE International Requirements Engineering
Conference, Atlanta, Georgia, USA, 31 August–4 September 2009, pp. 213–222.
IEEE Computer Society (2009)

64. Yang, H., Willis, A., Roeck, A.N.D., Nuseibeh, B.: Automatic detection of nocu-
ous coordination ambiguities in natural language requirements. In: Pecheur, C.,
Andrews, J., Nitto, E.D. (eds.) ASE 2010, 25th IEEE/ACM International Con-
ference on Automated Software Engineering, Antwerp, Belgium, 20–24 September
2010, pp. 53–62. ACM (2010)

65. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Softw. Test. Verif. Reliab. 22(2), 67–120 (2012)

66. Yue, T., Briand, L.C., Labiche, Y.: A systematic review of transformation
approaches between user requirements and analysis models. Requir. Eng. 16(2),
75–99 (2011)

67. Zhang, M., Ali, S., Yue, T.: Uncertainty-wise test case generation and minimiza-
tion for cyber-physical systems. J. Syst. Softw. 153, 1–21 (2019). https://doi.
org/10.1016/j.jss.2019.03.011. http://www.sciencedirect.com/science/article/pii/
S0164121219300561

https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1016/j.jss.2019.03.011
https://doi.org/10.1016/j.jss.2019.03.011
http://www.sciencedirect.com/science/article/pii/S0164121219300561
http://www.sciencedirect.com/science/article/pii/S0164121219300561

MELODIC: Selection and Integration
of Open Source to Build an Autonomic

Cross-Cloud Deployment Platform

Geir Horn1(B), Pawe�l Skrzypek2, Marcin Prusiński2, Katarzyna Materka2,
Vassilis Stefanidis3, and Yiannis Verginadis3

1 University of Oslo, P.O. Box 1080, Blindern, 0316 Oslo, Norway
Geir.Horn@mn.uio.no

2 7Bulls.com, Al. Szucha 8, 00-582 Warsaw, Poland
{pskrzypek,mprusinski,kmaterka}@7bulls.com

3 Institute of Communication and Computer Systems (ICCS), Athens, Greece
{stefanidis,jverg}@mail.ntua.gr

Abstract. MELODIC is and open source platform for autonomic
deployment and optimized management of Cross-Cloud applications.
The MELODIC platform is a complete, enterprise ready solution using
only open source software. The contribution of this paper is the discus-
sion of approaches to integration and various options for large scale open
source projects and their evaluation showing that only a combination
of an Enterprise Service Bus (ESB) with Business Process Management
(BPM) for platform integration and control, and the use of a distributed
Event Management Services (EMS) for monitoring state and creating
context awareness, will provide the required stability and reliability. Con-
sequently, the selection, the evaluation, and the design process of these
three crucial components of the MELODIC platform are described.

Keywords: Open source · Integration · Cloud computing

1 The Challenge

Open source software is no longer an exotic activity or hobby for the passionate.
Open source software has become mainstream. Most of the advanced software
in big companies and organizations is already open source, using open source,
or it is based on open source components and frameworks. This trend continues.
Thus, the open source software ecosystem continuously expands by providing
building blocks for other, advanced open source software systems and platforms.
In this paper, we consider the case of a platform called Multi-cloud Execution

This work has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 731664 MELODIC: Multi-cloud
Execution-ware for Large-scale Optimised Data-Intensive Computing.

c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 364–377, 2019.
https://doi.org/10.1007/978-3-030-29852-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_31&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_31

MELODIC: Complex OSS Integration 365

ware for Large scale Optimised Data Intensive Computing (MELODIC)1 doing
optimised deployment and management of Cross-Cloud applications. We have
used two categories of software for building the MELODIC platform:

1. Tools and frameworks: applications, components, tools, libraries and frame-
works that are commonly available and have significant groups of users.

2. Cloud computing open source components: These are related functionally to
the MELODIC platform, of which some are developed in other European
Union research projects that are predecessors of MELODIC and some are
developed within the MELODIC project, and some are existing open source
solutions developed and maintained by the MELODIC team members.

Each of the categories has a different set of challenges which should be addressed
within the project. For the first category, commonly used tools and frameworks,
the key challenges to address within an integration project are:

1. To choose the right tool or framework. The process of choosing the right
software should be systematic and based on precisely defined requirements.

2. The design of an architecture using the chosen tools or frameworks where
the software capabilities, limitations, and specific functions must be prop-
erly handled during the design phase since different frameworks use different
integration methods, both in tools used and types of communication, i.e.
synchronous or asynchronous.

3. To integrate the tools or frameworks into the platform. The technical integra-
tion of the selected components is a very demanding process, which makes it
necessary to acquire deeper knowledge about the given tool or framework and
how to use it properly. The various modules of MELODIC could be imple-
mented in different languages and again include other open source libraries.
Choosing the proper license for the platform is therefore very important. The
compatibility of licenses is consequently a crucial element when selecting the
tools and frameworks.

4. To maintain the future development of the MELODIC platform and indepen-
dent upgrades of the third-party tools and frameworks. Maintainability is the
one of key aspects for the continued development of the MELODIC platform
in conjunction with the development of the tools and frameworks. It must be
properly planned and managed.

5. To identify bugs in the tools and frameworks, and to manage bug fixing and
workaround implementation. It is crucial for the maintainability to have a
plan for handling bugs discovered in the platform and in the underlying tools
and frameworks, especially with focus on preparing workarounds until the
bugs have been fixed by the third-party tool or framework developers.

Properly addressing the above challenges within the effort available is funda-
mental to the success of any large scale integration project. The architecture of
the MELODIC is provided in Sect. 2 to provide an understanding of the inte-
gration challenge and scope. The essential technologies for the integration in
1 https://www.melodic.cloud/.

https://www.melodic.cloud/

366 G. Horn et al.

MELODIC are described in Sect. 3 dealing with the requirements and the selec-
tion of an ESB for exchanging control data among components, and the BPM
for orchestrating the component composition using the control plane. Section 4
describes the EMS to support the monitoring of both the platform and the appli-
cation deployed through the MELODIC platform, which is necessary to create
the needed execution context awareness enabling the autonomic management of
the deployed application.

Furthermore, Sect. 2 describes the second software category, i.e. the specific
MELODIC Cloud computing open source components. Also for this integration
there are essential challenges that all large integration projects must manage:

1. To select the most appropriate components to be integrated with the platform
based on the requirements, capabilities, and technical limitations of both the
components and the MELODIC platform. It should also take into considera-
tion legal aspects like licensing.

2. To assess the quality of each component, its technical limitations, and poten-
tial compatibility issues.

3. To carefully design the integrated architecture of the platform including the
selected components based on the previous steps of selection and assessments.

4. To integrate and adapt the selected components into the platform. In some
cases the components should not only be integrated but included into the
MELODIC platform. In the latter case, the work then entails both adaptation
and customisation of the desired components. Hence, this challenge could be
the most demanding task that requires most of the integration effort.

5. Finally, one needs to maintain the further development of the MELODIC
platform in parallel to the continuous development of the selected and inte-
grated components.

2 MELODIC Architecture

2.1 Main Features

The MELODIC platform is an advanced autonomous middleware that acts as an
automatic DevOps [12] for one, managed Cloud application, and make the nec-
essary adaptations to the deployment configuration as the application’s running
context changes.

The fundamental MELODIC architecture is inherited from the PaaSage2

project [10]. The idea is that the application architecture, its components, the
data sets processed, and the available monitoring sensors can all be described
in a Domain Specific Language (DSL) [3]. The application architecture descrip-
tion will be coupled with the goals for the deployment, the given deployment
constraints, and monitoring information to allow the MELODIC platform to
optimise the deployment. MELODIC can therefore be seen as a particular imple-
mentation of the models@run.time [8] part of a Cloud Modelling Framework [15].

2 https://paasage.ercim.eu/.

https://paasage.ercim.eu/

MELODIC: Complex OSS Integration 367

The MELODIC architecture has three main layers: The application mod-
eling based on The Cloud Application Modelling and Execution Language
(CAMEL) [2]; the upperware solving the optimization problem and adapting
the deployment model; and the executionware based on the Cloudiator3 Cross-
Cloud orchestration tool responsible for the deployment of the solution prepared
by the upperware to the chosen Cloud providers. The MELODIC architecture
is presented in Fig. 1.

Fig. 1. High-level overview of the MELODIC platform architecture with blue elements
ensuring the integration, the red elements are the components of the upperware and
the yellow components belong to the executionware (Color figure online)

2.2 Upperware

The Upperware part of the MELODIC platform is responsible for modeling,
profiling, reasoning, and orchestrating the application deployment. CAMEL4 is
considered a super-DSL which includes multiple DSLs, each focusing on a par-
ticular aspect of application modeling. CAMEL has been designed based on
the Eclipse Modeling Framework (EMF) [4] and the Object Constraint Lan-
guage (OCL)5. EMF Ecore enables the specification of meta-models based on
the Unified Modeling Language (UML), while OCL constraints accompany these
meta-model specifications by introducing additional domain semantics. CAMEL
has been derived from several preexisting languages, including:
3 http://cloudiator.org/.
4 http://camel-dsl.org/.
5 https://www.omg.org/spec/OCL/About-OCL/.

http://cloudiator.org/
http://camel-dsl.org/
https://www.omg.org/spec/OCL/About-OCL/

368 G. Horn et al.

1. CloudML [15] for supporting the application deployment aspects;
2. Saloon feature meta-model [17], for the coverage of provider modelling; and
3. Common European Research Information Format (CERIF) [9], for supporting

the organization modeling aspects.

Other sub-DSLs, like the Scalability Rule Language (SRL) [11], were developed
during the PaaSage project to cover aspects about the desired reconfiguration
of the deployment topologies according to the incoming workload. All these sub-
DSLs where integrated by moving them into the same technical space but also
consolidating them to diminish their respective conceptual overlaps. Integration
was also supported through the use of OCL rules focusing on cross-model val-
idation. In the context of MELODIC, CAMEL has been significantly extended
to cover all the data management aspects considering, among other aspects, the
deployment modelling of applications based on big data frameworks. A com-
plete CAMEL model is first parsed to a distributed shared object model and
then stored in a Connected Data Objects (CDO) server6. The CP-Generator
converts the model to a Constraint Programming (CP) problem, and the Meta-
solver uses a solver to obtain a solution to this problem. The solvers, in turn, use
the Utility Generator returning the application utility of a proposed deployment
configuration as perceived by the application owner as the objective function
of the optimization problem. This utility incorporates the reconfiguration cost
computed by the Adapter and the data migration cost computed by the Data
Life-cycle Management System (DLMS). Once a deployment configuration offer-
ing better utility than the presently deployed application configuration has been
found, the Solver-to-deployment component converts the optimized configura-
tion to a deployment model maintained by the Adapter, which is the component
responsible for planning and orchestrating the subsequent deployment using the
Cloudiator executionware.

All components, except the DLMS and the Utility Generator, were proto-
typed in the PaaSage project. However, they have been significantly re-factored
by the MELODIC team, and each of them is maintained as a separate open
source project that can be reused in other applications, and each component
may further reuse other open source projects. Most components are written in
Java, but that is not a necessity. As an example, consider the LA-Solver [7]
written in C++ based on the Learning Automata (LA) framework7 and the
Theron++ actor framework8, and using the Nonlinear Optimization (NLopt)
library9. The developers of the LA-Solver must ensure that it remains compati-
ble with any changes in the underlying frameworks and libraries, and ensure the
compatibility of the involved licenses.

6 https://www.eclipse.org/cdo/.
7 https://bitbucket.org/GeirHo/la-framework/.
8 https://github.com/GeirHo/TheronPlusPlus/.
9 https://nlopt.readthedocs.io/en/latest/.

https://www.eclipse.org/cdo/
https://bitbucket.org/GeirHo/la-framework/
https://github.com/GeirHo/TheronPlusPlus/
https://nlopt.readthedocs.io/en/latest/

MELODIC: Complex OSS Integration 369

2.3 Executionware

The executionware consists of three main modules: The resource management
system to enact the reconfiguration commands planned by the adapter to create
and move components among Cloud providers and ensuring that the components
are correctly connected after the application reconfiguration. Application data
is managed, and potentially migrated, by the DLMS exploiting the features of
Alluxio10. The data processing layer is responsible for managing the computing
resources for big data processing frameworks like Hadoop11 and Spark12, and
scheduling processing jobs on these resources. Finally, the monitoring services
are collecting the measurements of the current execution context using a hier-
archical and distributed Esper13 Complex Event Processing (CEP) installation
for gathering and aggregating the context metric values. The latter is further
discussed in Sect. 4.

3 Integration and Control

Integrating components from different development teams into an easy to deploy
platform makes it mandatory to have high availability and reliability to ensure
a consistent flow of the invoked operations, with full control over an operation’s
execution and the results it returns. The integration framework must therefore
provide unified exception handling and retries of operations. This requires the
ability to monitor all operations invoked on the integration layer, with a config-
urable level of detail, and configurable and easy use of a single logging mechanism
for all the invoked operations.

The integration framework must also support flexible orchestration method
invocations of underlying components, with the ability to reconfigure this
method if needed. It should be possible to configure the orchestration without
the need to code and recompile the whole code base. This implies that the inte-
gration framework must have support for the most commonly used integration
protocols; at least the Simple Object Access Protocol (SOAP), the Representa-
tional State Transfer (REST) and the Java Messaging Service (JMS)14. It must
also support both synchronous and asynchronous communication methods with
an easy way to switch from one to the other. Ideally, it should also have the abil-
ity to perform complex data model transformations. In general there are three
ways to support communication:

10 https://www.alluxio.org/.
11 http://hadoop.apache.org/.
12 https://spark.apache.org/.
13 http://www.espertech.com/esper/.
14 https://www.techopedia.com/definition/4298/java-message-service-jms.

https://www.alluxio.org/
http://hadoop.apache.org/
https://spark.apache.org/
http://www.espertech.com/esper/
https://www.techopedia.com/definition/4298/java-message-service-jms

370 G. Horn et al.

1. Point to point integration provides the fastest and most resilient scalable
communication among the components, especially for large data volumes or
low latency applications. However, the effort to maintain the consistency of
the connection graph increases exponentially with the number of components
in the architecture, and it is impossible to monitor globally the transactions
to verify the correct sequence of interaction among the components.

2. Queue based integration requires a central message broker receiving messages
from publishers on a queue and pushing the messages to the subscribers of
the queue. The broker is a single point of failure and could be a perfor-
mance bottleneck, but it also provides functionality for persisting messages
for dynamically arriving subscribers, and monitor and log transactions on the
queues.

3. Using an ESB, which is a common integration method used to integrate enter-
prise grade systems. The bus provides support for both synchronous and
asynchronous communication, and support for most of the integration proto-
cols in use. Furthermore it provides a reliable and easy way to configure the
components with high availability support for the bus itself. It also has the
ability to integrate with other enterprise applications due to use Enterprise
Application Integration (EAI) standards.

For the Control Plane of Fig. 1, performance is not a critical issue as long as
the integration layer has sufficient performance for the needed orchestration. It is
more important that the it is possible to scale the integration layer both horizon-
tally and vertically, and the integration layer must support security mechanisms
with support for both authentication and authorization, as well as definition of
the access rights to invoke a given operation. Finally, integration layer should
be light weight and easy to use as the integration framework will be running
with the MELODIC platform for each deployed application. For the selection
of the most appropriate integration and adaptation strategy for MELODIC,
the following methodology has been used. This methodology has been devised
according to our experience and the actual objectives that must be fulfilled, and
the methodology consists of the following steps:

1. The first step is to identify the objectives and general requirements for the
integration and the adaptation strategy of the project, as well as the purpose
of the integration and the alignment of the components.

2. The second step is to research, review, and evaluate typical integration meth-
ods used. There are plenty of such methods but – based on our professional
experience and knowledge – the most typical and most suitable methods were
chosen. This second step is further broken down into the following sub-steps:

– A state-of-the-art analysis of available integration methods must be con-
ducted. A small set of the most suitable integration methods is then
selected for the shortlist.

– Each of the shortlisted integration methods is compared against the ful-
fillment of the integration requirements for MELODIC identified in the
first step of the methodology. For each method of integration an assess-
ment of the level of fulfillment for each requirement was conducted and

MELODIC: Complex OSS Integration 371

the results are presented in Table 1. The summary results calculated in
points are presented in Table 2.

Table 1. Summary of the fulfillment of integration requirements

Requirement
Point-to-
Point

Queue ESB ESB + BPM

Reliability Not OK Partially OK OK

Performance Partially OK OK OK

Scalability Not OK Partially OK OK

High availability Not OK Partially OK OK

Flexible orchestration Not OK Not OK Not OK OK

Synchronous + asynchronous Not OK Not OK OK OK

Security Not OK OK OK OK

Monitoring Partially Partially OK OK

Logging Partially Partially OK OK

Different integration protocols Not OK Not OK OK OK

Data model transformation Not OK Not OK Partially OK

Exceptions + retries Partially Partially Partially OK

Low resource usage OK OK Partially Partially

Easy to use OK OK Partially Partially

Based on the results presented in Table 2, the ESB with BPM method has
been chosen as integration method for the MELODIC platform as only an ESB
is able to satisfy all the requirements. Three possible open source solutions have
been evaluated as the framework to implement the ESB:

1. ServiceMix15 is a high performance and available integration solution, and
considered the most mature and stable.

2. MuleESB16 is the most innovative solution, especially in the Cloud computing
area, with an easy to use Graphical User Interface (GUI) and optional paid
support from the developer team at MuleSoft.

3. WSO217 ESB is a dynamically developed integration solution, supported by
the WSO2 technology provider, but is still not fully matured. Paid support
is offered.

After carefully evaluating each of these framework, the MuleESB was chosen as
the most suitable ESB implementation for the MELODIC platform. The method-
ology and details of ranking calculations for the various options are provided in
[21], and summarised in Table 3.
15 http://servicemix.apache.org/.
16 https://www.mulesoft.com/platform/soa/mule-esb-open-source-esb.
17 https://wso2.com/products/enterprise-service-bus.

http://servicemix.apache.org/
https://www.mulesoft.com/platform/soa/mule-esb-open-source-esb
https://wso2.com/products/enterprise-service-bus

372 G. Horn et al.

Table 2. Ease of use ranking of the different integration methods

Requirement Point-to-point Queue ESB ESB + BPM

Reliability 0 3 5 5

Performance 3 5 5 5

Scalability 0 3 5 5

High availability 0 3 5 5

Flexible orchestration 0 0 0 5

Synchronous + asynchronous 0 0 5 5

Security 0 5 5 5

Monitoring 3 3 5 5

Logging 3 3 5 5

Different integration protocols 0 0 5 5

Data model transformation 0 0 3 5

Exceptions + retries 3 3 3 5

Low resource usage 5 5 3 3

Easy to use 5 5 3 3

Sum of points 25 42 59 67

Table 3. Choosing the Enterprise Service Bus (ESB) platform

Criteria ServiceMix Mule ESB WSO ESB

Stable and reliable solution Yes Yes Yes

Cloud computing support No Yes Yes

Easy user interface Yes Yes Yes

Support of different integration patterns No Yes Yes

Integration goes beyond just enabling communication among the components
and surveillance of their operation. Orchestration of the components means that
one must start the components in certain orders, establish the right connections
once the components have started, and take corrective actions if something goes
wrong to ensure the high availability of the orchestrated components. Thus, this
goes beyond a simple work flow as a flexible logic implementation is needed that
supports most of the integration protocols and integration with other enterprise
applications using EAI. It is better to regard the orchestration as a process, and
hence use a BPM, which is a standard approach for describing and executing
business processes. For the BPM implementation, four possible solutions were
evaluated:

1. Activiti18 is one of the oldest and most mature open source BPM implemen-
tations.

18 https://www.activiti.org/.

https://www.activiti.org/

MELODIC: Complex OSS Integration 373

Table 4. Choosing the Business Process Management (BPM) platform

Criteria Activiti jBPM Camunda Flowable

Easy maintenance and deployment Yes No Yes Yes

REST support Yes Yes Yes Yes

Docker images availability No Yes Yes No

Easy upgrade and maintainability No No Yes No

2. jBPM19 is also a mature and stable BPM implementation, developed by
Jboss20, with integration support for the business rule server Drools21.
However, it requires the whole Jboss technology stack, which makes the
MELODIC platform unnecessary complicated.

3. Camunda22 is a mature and robust implementation of BPM. It does not
require the whole Jboss stack to work.

4. Flowable23 is the newest solution, and it is a fork developed by a team of for-
mer Activiti developers. However, the Flowable project is not yet mature, and
so it fails to satisfy the reliability requirements of the MELODIC platform.

The result of the evaluation was to use Camunda as the BPM implementation
for the MELODIC platform [21]. The summary evaluation is given in Table 4.

In PaaSage the actual deployment of the management platform was done
directly on server or Virtual Machine (VM) using shell scripts and the configu-
ration tool Chef24, but alternatively, one could have used Ansible25. The advan-
tages of deploying directly on the server or VM using configuration tools are
that they do not require creating additional artefacts during the build process,
and that they do not introduce additional virtualization layers. However, one
often faces a very complex configuration process with many dependencies, and
this leads to a fragile deployment process where one requires a certain version
of the operating system and the libraries used, and the deployed components
are not configured separately, but are dependent. In addition, direct deployment
requires knowledge about the specific configuration tool used in the process.

In contrast, the development and integration process can be significantly
simplified by the use of a container based technology like Docker26. The use
of containers allows the separation of components and run-time environments
created during the build process as there are no dependencies on the underly-
ing operating system and libraries since the complete run-time environment is

19 https://www.jbpm.org/.
20 https://www.jboss.org/.
21 https://www.drools.org/.
22 https://camunda.com/.
23 https://www.flowable.org/.
24 https://www.chef.io/chef/.
25 https://www.ansible.com/.
26 https://www.docker.com/.

https://www.jbpm.org/
https://www.jboss.org/
https://www.drools.org/
https://camunda.com/
https://www.flowable.org/
https://www.chef.io/chef/
https://www.ansible.com/
https://www.docker.com/

374 G. Horn et al.

included in the container image. This enables each component developer to be
responsible for his or her own component with minimal dependencies between
components at run-time level. Hence, the deployment, management and config-
uration processes are simplified, and the management and distribution of the
containers are facilitated by Docker Swarm27. The only disadvantage of using
containers is the introduction of an additional virtualization layer. It is not a
full virtualization like for a VM but light virtualisation, so the impact on per-
formance is minimal [6]. However, there may be a price to pay in terms of total
memory required or storage space as it will be additive with containers, whereas
resources could be shared under a direct deployment.

If particular components are not designed to run within containers, Docker
images can effectively be prepared even for these components. Also the ESB and
the BPM frameworks are prepared to run within containers. Finally, owing to
the use of Docker Swarm, it is possible to ensure high availability and resource
management for the MELODIC platform as it is possible to run MELODIC
platform components on separate servers or VMs. Consequently, all MELODIC
platform components are running in Docker containers, and we are currently
investigating how to make a lean integration using Docker containers.

4 Monitoring

A flexible monitoring mechanism is needed for the deployment and reconfigu-
ration of the modern, distributed IT systems [14]. The number of monitoring
events and the ability to process them efficiently is a critical issue for such sys-
tems, since it can reach more than 10 000 events per second for large scale, big
data, distributed systems [18]. The use of a central metric collection and pro-
cessing point may result in a high network bandwidth used just for monitoring
purposes. Last, but not least, the existence of only one event processing engine
represents a single point of failure [13].

On the other hand, the design and implementation of a Distributed Com-
plex Event Processing (DCEP) [20] approach provides concrete benefits such
as avoiding bottlenecks [19], and message flooding and information overload-
ing scenarios that can lead to significant delays in the processing of monitoring
data [16]. Consequently, as an initial approach, the DCEP mechanism of the
MELODIC platform is deployed in a three-layer architecture [20]:

1. Raw sensor values from the application or the computing platform are pro-
cessed first at the VM level;

2. Then there is another CEP layer performing event processing at the Cloud
Provider level; and Finally, there is a top-level CEP integrated with the
MELODIC platform providing the complete view of all events for a cross-
Cloud application deployment. Each level will gather, filter, and aggregate
sensor value messages and thereby effectively limit the number of messages
passed to higher layers.

27 https://docs.docker.com/engine/swarm/themanagement.

https://docs.docker.com/engine/swarm/themanagement

MELODIC: Complex OSS Integration 375

In the future, the number of layers may be configured according to the require-
ments of the particular system at hand, e.g. additional layers could be added
per Cloud availability zone or even region.

It is therefore paramount that the CEP engine is able to scale in order to
cope with a potential huge number of events generated by hundreds of sources;
to apply complex formulas for the aggregation of the metrics; and to detect and
publish complex events based on event algebra operators over the current global
or local application execution context, identified by the all or a subsets of the
metric values. Furthermore, the monitoring system must be flexible enough to be
able to efficiently handle metrics from a single application component up to huge
deployments with hundreds of VMs. Using a DCEP platform facilitates the Mon-
itoring Plane and the distribution of metric values to all the other MELODIC
components allowing them to create a situation awareness for the application’s
execution context and decide on necessary application and deployment adapta-
tions. However, at the same time the CEP engine must have low resource usage
since one instance will be deployed in each VM to realize the first level of the
layered DCEP architecture.

The Esper CEP engine was chosen because it offers a high availability option
in comparison to other CEP products, and its basic version can even cope with
500 000 events per second, and it supports a rich set of configurable data win-
dows that can be placed into intersection or union set-logic relationships, while
other engines provide a basic set of very simple rolling, sliding, or hopping win-
dows [5]. Esper also supports the expression of complex event patterns that allow
us to perform nested queries over a monitored data stream by using the Event
Processing Language (EPL) [1], which is an important advantage over even more
performance-oriented engines like Siddhi [5]. Finally, Esper supports all aspects
of object-oriented design as well as dynamic typing and it can therefore handle
schema evolution for adapting event processing rules28, and it is widely accepted
in the event processing community and well-known for its commercial use.

The distributed Esper CEP engines of MELODIC are currently connected by
a federation of ActiveMQ29 brokers with one instance per VM and one central
instance in the MELODIC platform. This architecture is easier to integrate and
control than a point-to-point communication; it presents sufficient performance
as each broker can efficiently cope with up to 22 000 messages per sec and per
topic30; and in addition it provides a lightweight, open-source JMS compliant
solution that offers high availability, high performance, and fault tolerance. In
fact, our decision to federate a number of ActiveMQ brokers present some addi-
tional advantages over other prominent, open-source distributed streaming plat-
forms like the Apache Kafka31. Specifically, using Kafka’s features for achieving
the required capabilities of our platform would lead to much more complicated
communication topologies. In particular, the need to interconnect and manage

28 http://www.espertech.com/esper/esper-faq/#comparison.
29 http://activemq.apache.org.
30 http://activemq.apache.org/performance.html.
31 https://kafka.apache.org/.

http://www.espertech.com/esper/esper-faq/#comparison
http://activemq.apache.org
http://activemq.apache.org/performance.html
https://kafka.apache.org/

376 G. Horn et al.

several Zookepers, and thus adding further network communication overhead.
In addition, since ActiveMQ is JMS compliant, the support and maintenance
of a distributed network of brokers together with several Esper engines become
efficient and feasible. On the other hand, using Kafka for achieving the same
integration would imply the use of dedicated Kafka adapters that have been
developed, so far, only for the commercial Enterprise Edition of Esper, which
is conflicting with our ambition to build MELODIC using only open source
technologies.

5 Conclusion

The MELODIC platform is based entirely on open source components, as this
is the only way to ensure further development and maintenance of the platform.
This paper has shown that it is possible to build complex, enterprise grade
solutions based on only open source, and it presented the work done for the
MELODIC platform and its open source components, frameworks and tools.
We hope that our considerations in this respect may enlighten the processes of
making similar selections and large scale integration, and that the overall results
of MELODIC may inspire the combination and reuse of open source solutions
to expand the offerings of high quality open source tools and infrastructures.

References

1. Albek, E., Bax, E., Billock, G., Chandy, K.M., Swett, I.: An event processing
language (EPL) for building sense and respond applications. In: 19th IEEE Inter-
national Parallel and Distributed Processing Symposium, pp. 5 pp.-, April 2005.
https://doi.org/10.1109/IPDPS.2005.97

2. Rossini, A., et al.: The cloud application modelling and execution language
(CAMEL), p. 39. Open Access Repositorium der Universität Ulm (2017). https://
doi.org/10.18725/OPARU-4339

3. Bergmayr, A., et al.: The evolution of CloudML and its applications. In: Paige,
R., Cabot, J., Brambilla, M., Hill, J.H. (eds.) Proceedings of the 3rd International
Workshop on Model-Driven Engineering on and for the Cloud and 18th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MoDELS
2015), vol. 1563, pp. 13–18. CEUR Workshop Proceedings (2015). http://ceur-ws.
org/Vol-1563/

4. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Part of the Eclipse Series series, 2nd edn. Addison-Wesley Professional,
Boston (2008)

5. Dayarathna, M., Perera, S.: Recent advancements in event processing. ACM Com-
put. Surv. (CSUR) 51(2), 33 (2018)

6. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance com-
parison of virtual machines and Linux containers. In: 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 171–
172, March 2015. https://doi.org/10.1109/ISPASS.2015.7095802

https://doi.org/10.1109/IPDPS.2005.97
https://doi.org/10.18725/OPARU-4339
https://doi.org/10.18725/OPARU-4339
http://ceur-ws.org/Vol-1563/
http://ceur-ws.org/Vol-1563/
https://doi.org/10.1109/ISPASS.2015.7095802

MELODIC: Complex OSS Integration 377

7. Horn, G.: A vision for a stochastic reasoner for autonomic cloud deployment. In:
Babar, M.A., Dumas, M., Solberg, A. (eds.) Proceedings of the Second Nordic
Symposium on Cloud Computing & Internet Technologies (NordiCloud 2013), pp.
46–53. ACM, Oslo, September 2013. https://doi.org/10.1145/2513534.2513543

8. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42(10), 22–27
(2009). https://doi.org/10.1109/MC.2009.326

9. Jeffery, K., Houssos, N., Jörg, B., Asserson, A.: Research information management:
the CERIF approach. Int. J. Metadata Semant. Ontol. 9(1), 5–14 (2014). https://
doi.org/10.1504/IJMSO.2014.059142

10. Jeffery, K., Horn, G., Schubert, L.: A vision for better cloud applications. In:
Ardagna, D., Schubert, L. (eds.) Proceedings of the 2013 International Workshop
on Multi-Cloud Applications and Federated Clouds, MultiCloud 2013, pp. 7–12.
ACM, Prague, April 2013. https://doi.org/10.1145/2462326.2462329

11. Kritikos, K., Domaschka, J., Rossini, A.: SRL: a scalability rule language for multi-
cloud environments. In: 2014 IEEE 6th International Conference on Cloud Com-
puting Technology and Science, pp. 1–9, December 2014. https://doi.org/10.1109/
CloudCom.2014.170

12. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. SEI
Series in Software Engineering, 1st edn. Addison Wesley, Boston (2015)

13. Mdhaffar, A., Halima, R.B., Jmaiel, M., Freisleben, B.: A dynamic complex event
processing architecture for cloud monitoring and analysis. In: 2013 IEEE 5th Inter-
national Conference on Cloud Computing Technology and Science, vol. 2, pp. 270–
275. IEEE (2013)

14. Munawar, M.A., Ward, P.A.: Adaptive monitoring in enterprise software systems.
SysML, June 2006

15. Ferry, N., Chauvel, F., Song, H., Rossini, A., Lushpenko, M., Solberg, A.: CloudMF:
model-driven management of multi-cloud applications. ACM Trans. Internet Tech-
nol. (TOIT) 18(2), 16:1–16:24 (2018). https://doi.org/10.1145/3125621

16. Paraiso, F., Hermosillo, G., Rouvoy, R., Merle, P., Seinturier, L.: A middleware
platform to federate complex event processing. In: 2012 IEEE 16th International
Enterprise Distributed Object Computing Conference (EDOC), pp. 113–122. IEEE
(2012)

17. Quinton, C., Haderer, N., Rouvoy, R., Duchien, L.: Towards multi-cloud configura-
tions using feature models and ontologies. In: Proceedings of the 2013 International
Workshop on Multi-Cloud Applications and Federated Clouds, MultiCloud 2013,
Prague, Czech Republic, pp. 21–26. ACM, New York (2013). https://doi.org/10.
1145/2462326.2462332

18. Reidemeister, T.: Fault diagnosis in enterprise software systems using discrete
monitoring data. Ph.D. thesis, University of Waterloo, Waterloo, Ontario, Canada
(2012)

19. Schultz-Møller, N.P., Migliavacca, M., Pietzuch, P.: Distributed complex event pro-
cessing with query rewriting. In: Proceedings of the Third ACM International Con-
ference on Distributed Event-Based Systems, p. 4. ACM (2009)

20. Stefanidis, V., Verginadis, Y., Patiniotakis, I., Mentzas, G.: Distributed complex
event processing in multiclouds. In: Kritikos, K., Plebani, P., de Paoli, F. (eds.)
ESOCC 2018. LNCS, vol. 11116, pp. 105–119. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99819-0 8

21. Verginadis, Y., et al.: D5.1 integration and adaptation strategy. Technical report,
The MELODIC project, February 2018. https://melodic.cloud/, http://www.
melodic.cloud/deliverables/D5.1

https://doi.org/10.1145/2513534.2513543
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1504/IJMSO.2014.059142
https://doi.org/10.1504/IJMSO.2014.059142
https://doi.org/10.1145/2462326.2462329
https://doi.org/10.1109/CloudCom.2014.170
https://doi.org/10.1109/CloudCom.2014.170
https://doi.org/10.1145/3125621
https://doi.org/10.1145/2462326.2462332
https://doi.org/10.1145/2462326.2462332
https://doi.org/10.1007/978-3-319-99819-0_8
https://doi.org/10.1007/978-3-319-99819-0_8
https://melodic.cloud/
http://www.melodic.cloud/deliverables/D5.1
http://www.melodic.cloud/deliverables/D5.1

Quality-Aware Rapid Software Development
Project: The Q-Rapids Project

Xavier Franch1, Lidia Lopez1, Silverio Martínez-Fernández2,
Marc Oriol1(&), Pilar Rodríguez3, and Adam Trendowicz2

1 Universitat Politècnica de Catalunya, Barcelona, Spain
{franch,llopez,moriol}@essi.upc.edu

2 Fraunhofer IESE, Kaiserslautern, Germany
{silverio.martinez,

adam.trendowicz}@iese.fraunhofer.de
3 University of Oulu, Oulu, Finland
pilar.rodriguez@oulu.fi

Abstract. Software quality poses continuously new challenges in software
development, including aspects related to both software development and sys-
tem usage, which significantly impact the success of software systems. The
Q-Rapids H2020 project defines an evidence-based, data-driven quality-aware
rapid software development methodology. Quality requirements (QRs) are
incrementally elicited, refined and improved based on data gathered from
software repositories, project management tools, system usage and quality of
service. This data is analysed and aggregated into quality-related key strategic
indicators (e.g., development effort required to include a given QR in the next
development cycle) which are presented to decision makers using a highly
informative dashboard. The Q-Rapids platform is being evaluated in-premises
by the four companies participating in the consortium, reporting useful lessons
learned and directions for new development.

Keywords: Software quality � Data-driven requirements engineering �
Software analytic tools � Software repositories � Quality models �
Agile software development � Rapid software development �
Quality requirements � Non-functional requirements

1 Introduction

The Q-Rapids project proposes a data-driven approach to the elicitation, prioritization
and management of quality requirements (QRs), see Fig. 1. Data comes from: the
organization, through software development repositories and project management
tools; the users, through explicit feedback and usage logs. This basic data is elaborated
into strategic indicators (e.g., team productivity, product quality) and presented to
decision-makers through a dashboard that also offers techniques as what-if analysis and
prediction. Expert-defined alerts inform about violations on quality thresholds, and QR
patterns are suggested to remedy them. The decision-maker can explore the effects of
applying them and eventually decide to include a QR in the backlog, closing the cycle.

© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 378–392, 2019.
https://doi.org/10.1007/978-3-030-29852-4_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_32&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_32

The project started in November 2016 and finishes in October 2019. The consor-
tium is composed of 3 research partners (UPC, U. Oulu and Fraunhofer-IESE) and 4
companies (Bittium, ITTI, Softeam and Nokia). The project URL is https://www.q-
rapids.eu/ and the software may be found at https://github.com/q-rapids.

The rest of the paper is organized as follows. Section 2 explains the first part of the
Q-Rapids cycle, namely data gathering and analysis. Section 3 introduces Q-Rapids
process related aspects, remarkably process metrics. Section 4 provides details on the
strategic dashboard fed by the result of the analysis. Section 5 presents the results of
the evaluation conducted so far. Then, Sect. 6 summarizes some lessons learned and
Sect. 7 finalizes the paper with the conclusions and related work.

2 Data Gathering and Analysis

The ultimate goal of data gathering and analysis is to gain relevant knowledge about
software quality (in particular at runtime) from the available software data, including
development and runtime data. To achieve this goal, several tasks must be accom-
plished. Figure 2 presents the Cross Industry Standard Process for Data Mining,
CRISP-DM [1], which Q-Rapids applied to guide analysis of software quality.

In the business understanding phase, the research goals of the project and business
expectations of the project partners were translated into the specific objectives of data
analysis. One of the analysis goals was to explore dependency between quality of
software during development and its runtime quality. The development quality was
represented by properties of software artifacts and development environment, in par-
ticular code, whereas runtime quality was represented by software misbehavior during
testing and operation (in particular user crash reports).

The data understanding phase aimed at identifying sources of relevant software
quality data available at application project partners and gaining first insights into the
data to better understand its meaning and potential usefulness for achieving project

Fig. 1. The Q-Rapids framework

Quality-Aware Rapid Software Development Project 379

https://www.q-rapids.eu/
https://www.q-rapids.eu/
https://github.com/q-rapids

objectives. In addition, this phase included an initial analysis of data quality as a critical
success factor for the analysis. To cope with various structures of the data at involved
project partners, that data from the source systems was imported as documents into a
distributed storage system supported by ElasticSearch (ES) and Kibana. The major
advantages of this solution include a powerful search functionality of ES and inter-
active visualizations offered by Kibana. Thanks to these features, initial insights into
data and its quality can be made without much effort. The main sources of data
included the software code repositories (e.g., Git, SVN), issue tracking systems (e.g.,
Jira, Mantis, Redmine), structural properties of software code (e.g., SonarQube) and
runtime issue reports (e.g., Hockeyapp).

The data preparation phase focused on handling data quality deficits and preparing
the data for specific data analyses. Data preparation tasks included: (1) integrating data
stored in different source systems and structures, (2) handling data quality deficits, such
as incomplete, inconsistent, and incorrect data, and (3) transforming data into the
format acceptable for specific methods and tools used during the analysis. The data
preparation phase is in practice the most challenging and the most expensive phase of
the entire data analysis cycle; Q-Rapids was not different in this matter. Table 1
summarizes the most relevant challenges and the associated lessons we learned in the
context of Q-Rapids. Summarizing, Q-Rapids replicates the experiences gained in
several other projects regarding relatively low usefulness of software engineering data

Fig. 2. CRISP-DM model used in Q-Rapids to guide the analysis of software quality

380 X. Franch et al.

for quantitative analysis of software quality. Analysis of dependencies between
development- and runtime-quality of software requires, on the one hand, complete and
consistent data on potentially relevant quality factors (product-, process- and context
characteristics); on the other hand, analysis of quality dependencies requires the data
from different sources can be connected to each other, i.e., be integrated. Unfortunately,
primary objectives of data collection do typically not include quality analysis and
modeling. For example, the primary objective of issue tracking is to record and monitor
progress of software issues, not to learn from issues, especially in connection with other
software development aspects such as properties of software artifacts issues refer to or
properties of the environment in which an issue occurred. In other words, quantitative
cause-effect analysis does typically not belong to primary objectives of data collection.

Table 1. Example challenges of data preparation and analysis in Q-Rapids

Challenge Recommendation

Availability/Accessibility: The required
quality data is not available because
appropriate data collection tools or/and
processes are missing or systems were data is
stored cannot be accessed. E.g., available
code measurement tool does not cover all
important base code metrics. For instance,
although SonarQube provides data on
violations of rules that are based upon
specific base metrics it does not provide raw
data for these metrics

Select and set up data collection tool based
on the explicitly defined business and
analysis objectives, and potentially relevant
data required for achieving these objectives.
Data analysis should always start with
business and data understanding (first two
phases of the CRISP-DM model)

Completeness: Issue and change tracking
data are incomplete, e.g., documented code
changes are not associated to any issue

Predefine orthogonal issue categories; use
them consistently to classify issues; ensure
every change can be associated to an issue

Correctness: Actual type (nature) of change
is not documented and cannot be recognized
automatically. In particular, file rename or
movement is recognized as deletion and
addition of an entire file

Label actual amount of change (e.g., in terms
of its labor cost) to distinguish between
changes that are or are not significant from
the perspective of their potential impact on
software quality

Consistency: Summary changes for multiple
issues of different type are documented in
single change tracking entry. So, the exact
amount of change per issue type is unknown

Collection of already aggregated data should
be avoided. Raw data on possibly atomic
level should be supported by data collection
tools (e.g., issue and change records)

Consistency: Inconsistent temporal
granularity of different data sets, e.g., code
changes and measurement data are recorded
per commit (e.g., several times per day) but
test and usage issues are recorded once a
week or on an irregularly basis

Associated data should be collected on a
consistent granularity level, i.e., one entry
per issue or issue type (e.g., new feature
development, bug fix) to support data
integration and cause-effect quality analyses

(continued)

Quality-Aware Rapid Software Development Project 381

The modeling phase various analysis and visualization techniques are applied on
the prepared data to explore and model software quality dependencies represented by
the data. Example analysis may investigate the probability (or frequency) of software
bugs of runtime issues (user issue reports) in association with structural properties of
software code and amount and type of software changes along its evolution. Figure 3
illustrates example quality analysis. Input data are gathered from multiple sources and
include software code quality metrics, which represent specific product factors, and
product quality data in terms of bug issues found in the software. The analysis provides
two outcomes: relevancy of individual metrics as predictors of product quality and a
quality model that captures quantitatively dependencies between the most relevant
metrics and the product quality.

In the evaluation phase the outcomes of the data analysis phases, incl. data
understanding, preparation, and modeling, are assessed from the perspective of busi-
ness expectations defined in the very first business understanding phase. In our case
these where to overall Q-Rapids research objectives and the specific business objec-
tives of project partners whose software project data were analyzed in the project.

Finally, during the deployment phase, models (e.g., quality forecasting) will be
integrated into the Q-Rapids tool to provide information to the strategies dashboard
(e.g., predicted evolution of software quality or indication of the most relevant factors
influencing software quality). For example, prediction models created in Python might
be deployed as REST API service. As soon as new project data are available in
ElasticSearch, Q-Rapids dashboard will call the Quality Model API with the required
input data (metrics) and receive the answer regarding the predicted quality (forecasted
number of bug issues to be found).

Table 1. (continued)

Challenge Recommendation

Precision: Data is collected on a granularity
level inappropriate for accomplishing
analysis objectives. An example are source
code measurements, collected on a file level.
In such case, fine-granular changes on class-
and function-level can compensate each
other within a file and be thus not visible in
the corresponding measurement data

Based on explicitly defined business and
analysis goals, specify precision (granularity)
requirements for the necessary data. Set up
tools that support collecting data with the
required precision

Redundancy: Issue tracking data contain
duplicated entries

Data collection and reporting tool should
support real-time checks for duplicated,
incorrect and inconsistent data entries

382 X. Franch et al.

3 The Q-Rapids Software Development Process

Q-Rapids provides solutions for quality management in the context of Agile and Rapid
Software Development. Under the umbrella of the Agile Manifesto, agile software
development methods, such as Scrum and XP, are already the most popular software
development approaches in industry [2]. Indeed, the tendency is towards reducing
development cycles more and more to achieve a continuous software development
flow, using principles from Lean thinking (e.g. lean software development [3]) and
methods such as Kanban [4]. This is commonly known as Rapid software development
[5, 6]. However, faster and more frequent release cycles should not compromise
software quality [7, 8]. Indeed, quality is essential to be able to satisfy customers,
which is, certainly, the ultimate goal of Agile and Rapid Software Development
processes.

The literature evidences that this is not often the case, though. For example,
technical debt (TD) has become a popular concept in Agile software development

Fig. 3. Example of data-driven quality model

Quality-Aware Rapid Software Development Project 383

owing to the specific characteristics of ASD that make it prone to incurring TD [9].
Moreover, in a software development approach driven by functionality, the way in
which QRs should be managed is unclear [10]. In this sense, the technical solutions
provided by Q-Rapids (the Q-Rapids data gathering and analysis engine - Sect. 3, and
the Q-Rapids dashboard - Sect. 5) aim to complement Agile and Rapid software
development processes by incorporating three key process characteristics: quality
awareness, data-driven decision making and rapid (lightweight) development.

3.1 Quality Awareness

In their current form, Agile methods such as Scrum, are mostly driven by functional
requirements. Functional requirements are usually specified as user stories in a product
backlog and prioritized using a customer perspective. This approach tends to naturally
favor functional requirements over QRs [10]. As a result, quality aspects such as
system security, performance or usability are often compromised [7]. The Q-Rapids
software development process provides support for:

• Continuous product quality assessment and monitoring. Quality, which is modeled
through a company specific quality model, is continuously monitored at different
organizational levels. Quality related metrics provide a (almost) real time under-
standing on product quality to individual developers and development teams.
Developers can check quality status at any time using the Q-Rapids and Kibana
dashboards. This information also feeds discussions in agile ceremonies such as
daily stand-up meetings or weekly (or bi-weekly) sprint meetings. In this way,
quality aspects are an important part of these ceremonies, making quality a primary
concern, and not an afterthought. Moreover, product quality is also continuously
assessed by strategic decision makers in release planning and review meetings (e.g.
once per month). Through quality-related key strategic indicators, decision makers
at business level (e.g. program and product managers) can understand the impli-
cations that their decisions will have upon product and process quality.

• Incremental elicitation of QRs: the Q-Rapids software development process pro-
vides incremental and semi-automatic elicitation of QRs based on the continuous
analysis of quality data [11]. Thus, product owners and development teams get
support when defining and prioritizing quality related backlog items. QRs are
explicitly included in product backlogs, decreasing the risk to overlook them during
sprint planning meetings. Moreover, Q-Rapids supports the tasks of refining and
improving QRs as the development progresses, using practices such as backlog
grooming and sprint planning.

• Continuous process quality assessment and monitoring: besides product quality,
Q-Rapids also offers support to continuously monitor the status of the process.
Through a complete set of process metrics, Q-Rapids supports ceremonies such as
Agile retrospectives, in which the way of working is discussed. Development teams
can use Q-Rapids to analyze trends and process metrics values. The hard evidence
reported by Q-Rapids motivates the team to find problems in order to resolve them
and improve their way of working. For example, Q-Rapids can be used to identify
process bottlenecks or improve estimation capabilities. Indeed, the Q-Rapids

384 X. Franch et al.

solutions and visualization of process metrics fill the current gap on tools related to
processes in Agile and Rapid software development. Most existing tools focus on
product quality or on continuous integration, without measures for the process (e.g.
SonarQube). Basically, GitLab Time Tracker is one of the few competing solutions
that could be used to analyze the process. However, Q-Rapids proposes a wider set
of calculated process metrics, better visualization as well as enhanced analysis
capabilities.

3.2 Evidence-Based, Data-Driven Software Development Process

Agile methods, such as Scrum, are founded on an evidence-based management style.
Instead of making long-term predictions, Agile methods embrace a learning culture in
which evidence drives decisions. However, to make accurate decisions, evidence must
be reliable as well. Software analytics play a key role in this context. Agile’s incre-
mental development and extensive use of automation produce enormous amount of
data that, properly used, can guide more accurate decisions. Quality related decisions in
the Q-Rapids software development process are based on the insights provided by the
Q-Rapids data gathering and analysis engine, which collects data from different sys-
tems such as software code repositories (e.g., Git, SVN), issue tracking systems (e.g.,
Jira, Mantis, Redmine), structural properties of software code (e.g., SonarQube) and
runtime issue reports (e.g., Hockeyapp).

3.3 Rapid Software Development Process

A key aspect of the Q-Rapids software development process is that it supports quality
management in a light-weight manner. Deploying the solution may be heavy at the
beginning (e.g. defining the quality model, searching for data sources,
customizing/defining connectors, etc.). However, once installed, quality support is
smoothly integrated into existing agile practices such as sprint planning and review
meetings, daily-stand up meetings and sprint retrospectives. Still, some extra practices
and roles are needed to maintain the system up and running and to ensure that data is
reliable and properly collected and analysed (e.g. data engineer).

The Q-Rapids software development process is being developed in close collab-
oration with the four companies participating in the consortium. It includes the use of
Q-Rapids solutions in software development practices, such as coding and testing, and
product management practices, such as sprint planning. It also includes the related
supporting processes needed to make sure that the Q-Rapids machinery is up and
running.

4 Strategic Decision Making Dashboard

The main goal of the strategic dashboard is twofold: (a) aggregating the gathered and
analysed data into strategic indicators (SIs) and (b) providing extra analysis techniques
that support decision-makers in their decisions.

Quality-Aware Rapid Software Development Project 385

Based on the quality factors resulting from the analysed data (see Sect. 2), the
process metrics (see Sect. 3), and in collaboration with the use cases, we defined the
following strategic indicators: Blocking (assessing when there is some problem that can
alter the regular process flow, identifying potential blocking situations) [12], Product
Quality (assessing the source code quality), Process Performance (assessing the ful-
fillment of the development process efficiently) [13], and On-Time Delivery (assessing
the capability of fulfilling the issues planned for a specific release meeting internal and
external delivery schedules) [14]. Although there is a generic definition for these
strategic indicators, they must be customised in each use case to adapt them to the
specific needs. For instance, for Process Performance, we have definitions from using
two quality factors (Testing Performance and Issues Velocity) to five (Testing Per-
formance, Issues Velocity, Development Speed, and Realized Requirements). Figure 4
includes the generic definition for the strategic indicators.

The list of strategic indicators has been extended by some use cases to support their
specific scenarios. E.g., Softeam defined Product Readiness and Quality Feedback
Loop, and Nokia defined Operational Quality and Hardware Reliability. In the case of
Softeam, it is worth mentioning that the Quality Feedback Loop is a strategic indicator
devoted to monitor the QRs generated by the dashboard (see below).

A brief description of the main features of the dashboard are as follows.

Quality Assessment Visualization. The dashboard includes several views to analyse the
status of the SIs, i.e. indicators meant to support decision-makers to analyse the
achievement of their strategic goals, such as product quality, customer satisfaction, or
process performance. These SIs are defined as an aggregation of quality factors

Fig. 4. Strategic indicators

386 X. Franch et al.

resulting from the data analysis, and these factors as an aggregation of quality metrics.
The dashboard allows the decision-maker to navigate through these aggregations to
have a deeper understanding of the assessment. Figure 5 depicts the different kinds of
charts and the navigational path.

SI Assessment. The dashboard provides two strategies to compute SIs: a quantitative
approach based on computing the average of the quality factors, and a qualitative
approach involving experts and historical data to define a Bayesian Network model
[15]. Figure 5 shows the BN model for the Product Quality strategic indicator,
impacted by Code Quality, Stability, and Testing Status quality factors. The proba-
bilities for quality factors are computed using historical data, and for the strategic
indicators we use domain experts.

Prediction. The dashboard provides several forecasting techniques that, applied over
the SIs, allow decision-makers to analyse trends and behavioral patterns. Among others,
it supports PROPHET, ARIMA, ETS, and THETA forecasting techniques [16, 17].

What-if Analysis. Decision-makers can simulate some scenarios in order to see how
different simulated values on metrics and factors would affect the assessment of their
strategic indicators.

QR Candidates. When the assessment values are below a given threshold, an alert is
automatically raised and the dashboard identifies QR candidates from a QR patterns
catalogue that, when implemented, would solve the alert [11]. For instance, if the
dashboard receive an alert because the testing performance factor (impacting the
process performance strategic indicator) assessment is below the defined threshold, the
dashboard would suggest to consider the following QRs: (QR1) the commit response
time should be at least X%, and (QR2) the error correction should be at least X%. The
decision-maker can simulate the impact of each QR on the strategic indicators (see
Fig. 6 for QR2). Then, the decision-maker can export the QR to the tool managing the
backlog (e.g. Jira, OpenProject).

Fig. 5. Quality assessment navigation

Quality-Aware Rapid Software Development Project 387

5 Evaluation of the Q-Rapids Solution

The aforementioned Q-Rapids components (the tool support for data gathering and
analysis, the software development process model, and the strategic dashboard), are
being transferred and evaluated in industry. The integration of these components
comprise the Q-Rapids solution, which consists of both tool support and its corre-
sponding process model. During the technology transfer of Q-Rapids, three releases
have been deployed by the four industry partners in the Q-Rapids project (Bittium,
ITTI, Nokia, and Softeam1) within their specific development environment, where
practitioners have given feedback of the Q-Rapids solution, and used it within pilot
projects for several months (since November 2018). It is worth mentioning that these
companies have different profiles (one large corporation, two large/medium companies,
one SME) and produce different types of systems (e.g., from modeling tools to
telecommunication software).

The technology transfer and evaluation of the Q-Rapids solution follows a multi-
staged process aligned with and supporting the iterative development process of the
Q-Rapids components and integrated solution (see Table 2). The multi-stage evaluation
process comprises two phases: formative and summative. First, the formative stage
focused on supporting the evolution of concepts and ideas mainly of research work.
Thus, we evaluated the first prototype and the intermediate version focusing on single
components and functionalities of the Q-Rapids solution in controlled environments.
We finished the formative stage with a static validation (i.e., presentation to prospective
users) [18]. After the formative stage, the ongoing summative stage consists of the real
use of the integrated Q-Rapids solution in under real settings of four pilot projects (i.e.,
dynamic validation with practitioners on-site).

Fig. 6. QR simulation view

1 https://www.q-rapids.eu/consortium.

388 X. Franch et al.

https://www.q-rapids.eu/consortium

• Formative evaluation on component level. These components have been the
incremental outputs of the scientific work packages, such as components imple-
menting an expert-based or data-driven quality model for actionable analytics,
company specific software development process models, and a strategic dashboard
for supporting decision-making. This formative evaluation took place at developer
sites for the first release of the Q-Rapids solution, and ended with a static validation
presenting the component’s capabilities to prospective users. The formative eval-
uation focused on technical aspects (e.g., general feasibility, scalability, and
appropriateness of the gathered and visualized data). It was helpful to identify
interweaved improvements of the components being developed for next releases.
Examples of identified and addressed suggestions for improvement from the
industrial context have been: explicitly linking the strategic indicators, quality
factors, and metrics with other information sources (e.g., source code, user stories,
and list of issues) in order to better support the decision making process with the
help of the strategic dashboard [19], include visualization of the raw data in the
quality model to facilitate decision-making [20], give a practitioner attractive
support to follow of the software development process model (e.g., available on an
interactive website rather than long documents2), and simplify the Q-Rapids solu-
tion installation and configuration process with easy deployment options such
dockers [21]. Despite these suggestions for improvement, initial results have been
promising in pilot projects, since participants agree on the understandability and
usefulness of the Q-Rapids solution components.

• Summative evaluation of the third and final release of the integrated Q-Rapids
solution. The summative evaluation is focusing on the application of the integrated
Q-Rapids solution under the realistic circumstances of four selected projects in
which the integrated Q-Rapids solution is being used. The Q-Rapids solution is
being evaluated by its impact on the selected projects where it is being used.
Preliminary results helped to characterize the value provided by the solution, since
Q-Rapids users have experienced benefits such as including the semi-automated
functionality of creating QRs, the improvement of product quality and process
performance, and an increased awareness of product readiness. Furthermore,
another goal is considering suggestions for the successful commercialisation of the
solution, such as looking for bilateral collaborations with industrial partners out of
the Q-Rapids consortium interested in the capabilities of the Q-Rapids solution, and
making effective the installation process (which currently it is one of the main
barriers for adoption).

2 https://www.oulu.fi/q-rapids/.

Quality-Aware Rapid Software Development Project 389

https://www.oulu.fi/q-rapids/

6 Lessons Learned

In [21], we have presented the most relevant lessons learned during the project on the
potential adoption of Q-Rapids by practitioners, based on the experiences of the
companies in the consortium. Some of them follow:

• Incremental adoption approach. Companies are advised to start using Q-Rapids in a
small product first in order to understand the solution and start to grow a base of
tailored connectors and a quality model fit for purpose.

• Transparency in the organizational culture. The visibility of all quality-related
issues managed in Q-Rapids provides confidence to decision-makers and other
involved stakeholders.

• Single access point to quality assessment. One advantage that was not really
foreseen in the conception of the project is the possibility to put together lots of
indicators that are normally managed through several tools.

• Tailoring to product and projects. Quality is an elusive concept that may change in
every single project, even in the same organization. It is important to tailor the
quality model and strategic indicators to the needs in each context.

• Expert involvement. The Q-Rapids solution requires the participation of several
experts in order to get the most, from developers to implement connectors up to data
scientists to analyse the collected data.

7 Conclusions

In this paper we have presented the highlights of the Q-Rapids project. We have
described the three major parts of the delivered solution (data gathering and analysis;
software development process with Q-Rapids; strategic dashboard) and shown the
evaluation done, as well as some lessons learned. More information is available in the

Table 2. Phases of the evaluation and technology transfer of Q-Rapids.

Characteristic Iteration 1 Iteration 2 Iteration 3

Q-Rapids
solution release

Proof-of-concept Consolidated version Final

Evaluation phase Formative
evaluation

Formative evaluation Summative
evaluation

Object of study Components of
the Q-Rapids
solution release

Components of the Q-
Rapids solution release

Integrated Q-Rapids
solution as a whole

Months within
the project

From month 7 to
month 15

From month 16 to
month 24

From month 25 to
month 33

Environment Controlled
environment

Static validation (i.e.,
presentation to
prospective users)

Dynamic validation
(i.e.,. pilot project
using the tool)

390 X. Franch et al.

project website, www.q-rapids.edu. Software components are available at https://
github.com/q-rapids.

At this point of time, very close to the completion of the project, we can say that we
have delivered a solution that fulfils most of the original objectives of the project.
However, there are many improvements that we plan to address in the near future. The
implementation of machine learning approaches to fine-tune and improve the strategic
indicators definition in every organization is one of the most challenging extensions.
Another important topic is the better definition of cost functions for the QR patterns,
which would allow to make decisions in a more informed manner.

Acknowledgements. This work is a result of the Q-Rapids project, which has received funding
from the European Union’s Horizon 2020 research and innovation programme under grant
agreement No. 732253.

References

1. Shearer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data Warehouse 5
(4), 13–22 (2000)

2. Rodríguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage in finnish
software industry. In: Proceedings of the ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM) (2012)

3. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit.
Addison-Wesley, Boston (2003)

4. Anderson, D.J.: Kanban: Successful Evolutionary Change for Your Technology Business.
Blue Hole Press, Sequim (2010)

5. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda. J. Syst.
Softw. 123, 176–189 (2017)

6. Rodríguez, P., et al.: Continuous deployment of software intensive products and services: a
systematic mapping study. J. Syst. Softw. 123, 263–291 (2017)

7. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and
challenges: an empirical study. Inf. Syst. J. 20(5), 449–480 (2010)

8. Guzmán, L., Oriol, M., Rodríguez, P., Franch, X., Jedlitschka, A., Oivo, M.: How can
quality awareness support rapid software development? – A research preview. In:
Grünbacher, P., Perini, A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 167–173. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-54045-0_12

9. Behutiye, W.N., Rodríguez, P., Oivo, M., Tosun, A.: Analyzing the concept of technical
debt in the context of agile software development: a systematic literature review. Inf. Softw.
Technol. 82, 139–158 (2017)

10. Behutiye, W., et al.: Management of quality requirements in agile and rapid software
development: a systematic mapping study. Submitted to IST

11. Franch, X., et al.: Data-driven elicitation, assessment and documentation of quality
requirements in agile software development. In: Krogstie, J., Reijers, H. (eds.) CAiSE 2018.
LNCS, vol. 10816, pp. 587–602. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
91563-0_36

12. Franch, X., et al.: Data-driven Requirements engineering in agile projects: the Q-rapids
approach. In: Proceedings of the International Workshop on Just-In-Time Requirements
(JIT-RE) (2017)

Quality-Aware Rapid Software Development Project 391

http://www.q-rapids.edu
https://github.com/q-rapids
https://github.com/q-rapids
http://dx.doi.org/10.1007/978-3-319-54045-0_12
http://dx.doi.org/10.1007/978-3-319-91563-0_36
http://dx.doi.org/10.1007/978-3-319-91563-0_36

13. Ram, P., Rodriguez, P., Oivo, M.: Software process measurement and related challenges in
agile software development: a multiple case study. In: Kuhrmann, M., et al. (eds.) PROFES
2018. LNCS, vol. 11271, pp. 272–287. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-03673-7_20

14. Manzano, M., et al.: Definition of the on-time delivery indicator in rapid software
development. In: International Workshop on Quality Requirements in Agile Projects
(QuaRAP@RE) (2018)

15. Manzano, M., Mendes, E., Gómez, C., Ayala, C., Franch, X.: Using Bayesian networks to
estimate strategic indicators in the context of rapid software development. In: Proceedings of
the International Conference on Predictive Models and Data Analytics in Software
Engineering (PROMISE) (2018)

16. Taylor, S.J., Letham, B.: Forecasting at scale. Am. Stat. 72(1), 37–45 (2006)
17. Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast package for

R. J. Stat. Softw. 27(3), 1–22 (2008)
18. Gorschek, T., Garre, P., Larsson, S., Wohlin, C.: A model for technology transfer in practice.

IEEE Softw. 23(6), 88–95 (2006)
19. López, L., et al.: Q-rapids tool prototype: supporting decision-makers in managing quality in

rapid software development. In: Mendling, J., Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol.
317, pp. 200–208. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92901-9_17

20. Martínez-Fernández, S., Jedlitschka, A., Guzmán, L., Vollmer, A.M.: A quality model for
actionable analytics in rapid software development. In: Proceedings of the Euromicro
Conference on Software Engineering and Advanced Applications (SEAA) (2018)

21. Martínez-Fernández, S., et al.: Continuously assessing and improving software quality with
software analytics tools: a case study. IEEE Access 7, 68219–68239 (2019)

392 X. Franch et al.

http://dx.doi.org/10.1007/978-3-030-03673-7_20
http://dx.doi.org/10.1007/978-3-030-03673-7_20
http://dx.doi.org/10.1007/978-3-319-92901-9_17

MegaM@Rt2 Project: Mega-Modelling
at Runtime - Intermediate Results

and Research Challenges

Andrey Sadovykh1,3(&), Dragos Truscan2, Wasif Afzal4,
Hugo Bruneliere5, Adnan Ashraf2, Abel Gómez6,

Alexandra Espinosa4, Gunnar Widforss4, Pierluigi Pierini7,
Elizabeta Fourneret8, and Alessandra Bagnato1

1 Research and Development Department, Softeam, Paris, France
{andrey.sadovykh,alessandra.bagnato}@softeam.fr

2 Åbo Akademi University, 20520 Turku, Finland
{dragos.truscan,adnan.ashraf}@abo.fi

3 Innopolis University, Innopolis, Russia
a.sadovykh@innopolis.ru

4 Mälardalen University, Västerås, Sweden
{wasif.afzal,alexandra.espinosa.hortelano,

gunnar.widforss}@mdh.se
5 IMT Atlantique, LS2N (CNRS) & ARMINES, Nantes, France

hugo.bruneliere@imt-atlantique.fr
6 Internet Interdisciplinary Institute, Universitat Oberta de Catalunya,

Barcelona, Spain
agomezlla@uoc.edu

7 Intecs Solutions S.p.A., Rome, Italy
pierluigi.pierini@intecs.it

8 Smartesting, Paris, France
elizabeta.fourneret@smartesting.com

Abstract. MegaM@Rt2 Project is a major European effort towards the model-
driven engineering of complex Cyber-Physical systems combined with runtime
analysis. Both areas are dealt within the same methodology to enjoy the mutual
benefits through sharing and tracking various engineering artifacts. The project
involves 27 partners that contribute with diverse research and industrial prac-
tices addressing real-life case study challenges stemming from 9 application
domains. These partners jointly progress towards a common framework to
support those application domains with model-driven engineering, verification,
and runtime analysis methods. In this paper, we present the motivation for the
project, the current approach and the intermediate results in terms of tools,
research work and practical evaluation on use cases from the project. We also
discuss outstanding challenges and proposed approaches to address them.

Keywords: Cyber-Physical systems � Model-Driven Engineering �
Runtime Analysis � Tools � Mega-Modelling � Traceability � ECSEL

© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 393–405, 2019.
https://doi.org/10.1007/978-3-030-29852-4_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_33&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_33&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_33&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_33

1 Introduction

Electronic systems are becoming more and more complex and software intensive.
This situation calls for modern software and systems engineering practices in order to
keep high productivity and quality levels. In the last decade, the ecosystem around
Model-Driven Engineering (MDE) has flourished, providing developers with a plethora
of tools. However, these tools need to be further developed to scale up for real-world
industrial applications. They also need to be enhanced in order to provide advantages at
runtime as well. This represents a real opportunity for achieving a complete continuous
systems engineering lifecycle, thus connecting together the design and runtime
phases [1, 2].

The MegaM@Rt2 project’s main goal is to create a framework incorporating
methods and tools for the continuous development and runtime support of complex
software-intensive systems. Our current architecture vision and development over the
MegaM@Rt2 framework integrate three main complementary big capabilities: systems
design engineering, runtime analysis, and global model & traceability management.
The project is organized around the research work and related technical developments
concerning the tool sets supporting those capabilities.

The research topics include holistic Systems Engineering covering design, verifi-
cation and validation; Runtime Analysis dealing with monitoring, online testing and
verification as well as models@runtime techniques; and so-called Mega-Modelling, i.e.
large-scale model and traceability management. The framework is under evaluation by
9 industrial case studies ranging from transportation - avionics, railway, automotive,
traffic monitoring; and telecommunications - short range communications, base
transceiver stations; to logistics - indoor positioning, smart warehouses domains.
Among the partners providing use cases in the project, we can cite Thales, Volvo
Construction Equipment, Bombardier Transportation and Nokia. These organizations
have different product management and engineering practices, as well as regulatory and
legal constraints. This results in a large and complex catalog of requirements to be
realized by the architecture building blocks at different levels of abstraction. Thus, the
development of the MegaM@Rt2 framework is based on a feature-intensive architec-
ture and on a related implementation roadmap that is kept up-to-date. A comprehensive
set of the project information, as well as the published deliverables, are all publicly
available from the project web site [3].

In this paper, we present the main project research and technological results after
two years, and outline the outstanding challenges and further work. To this intent, the
rest of the paper is structured as follows. Section 2 briefly describes the MegaM@Rt2

overall approach. Then Sect. 3 focuses on the three complementary tools sets that are
designed and developed in the project to support this MegaM@Rt2 approach in
practice. We notably insist on the main related research achievements we obtained so
far, as well as on still open research and technical challenges. Finally, Sect. 4 concludes
by summarizing the main results from this first phase of MegaM@Rt2 and by opening
on some future work to come during the second phase of the project.

394 A. Sadovykh et al.

2 Description of the Overall Approach

As stated in the Electronic Components and Systems for European Leadership pro-
gram’s Multi-Annual Strategic Plan [4], design methods and related technologies
should fully support the constant technology push and corresponding new user/society
demands of products/services based on more and more complex Electronic Compo-
nents and Systems (ECS). This is particularly true in the context of the involved
software components relying on hardware configurations and their interactions e.g.
with their underlying environment, being very often numerous, complex, heteroge-
neous and strongly interrelated. In the past, Model-Based Engineering principles and
techniques have already shown promising capabilities that have been experimented in
such context. However, they have generally failed in terms of (1) scalability to support
real-world scenarios implied by the full deployment and use of complex ECS and
(2) efficient traceability, integration and communication between two fundamental
system levels which are design time and runtime, notably as far as non-functional
properties and their verification & validation aspects are concerned.

As a consequence, the overall idea of MegaM@Rt2 is to scale up the use of model-
based techniques by offering scalable methods and related tools interacting between
both design time and runtime, as well as to validate the designed and developed
approach in concrete industrial cases involving complex ECS. To this intent,
MegaM@Rt2 proposes an overall model-based approach combining existing tech-
niques to be enhanced when relevant, and novel ones to be developed when needed.
A fundamental challenge notably resides in providing efficient traceability support
between the two levels i.e. from design models to runtime ones and back. In parallel to
these, modern large-scale industrial software engineering processes require thorough
configuration and model governance to provide the promised productivity gains. Thus,
a scalable mega-modelling approach is being designed and will be deployed to manage
all the involved artifacts e.g. the many different models, corresponding workflows,
configurations, etc. and to better tackle their large diversity in terms of nature, number,
size, complexity, etc.

To cover all these topics and deal with the complete value chain, MegaM@Rt2

brings together prominent tool developers and vendors and research organisations with
state-of-the-art methods and tools that are validated in highly relevant European
industry case studies. The end users from the space, naval, railway, smart grid, smart
warehouse and telecom industry domains are driving the project by providing real-
world requirements and case studies as well as by validating and endorsing the
MegaM@Rt2 results.

Figure 1 provides an overview of the MegaM@Rt2 global approach and empha-
sizes its key principles and concepts. Industries apply a set of current engineering
practices based on SysML, AADL, EAST_ADL, but also Matlab/Simulink, and
Method B, each one producing specific design models, requirement specifications and
resulting software and hardware artefacts. MegaM@Rt2 suggests to integrate those
artefacts into a global system model providing a complete view of the Cyber-Physical
System (CPS), and detailing the component, behaviour and desired quality properties
of the system. These properties are then an object of exhaustive continuous testing and

MegaM@Rt2 Project: Mega-Modelling at Runtime 395

monitoring in the runtime environment to detect deviations in real-time, thanks to the
configuration of the target platform and the injection of probes in the software. The
detected deviations plus all the traces information collected in the process are analyzed
to detect the impacted components in the integrated view of system models. When
possible, automatic repairing suggestions are provided to correct the issue and recon-
figure or redeploy the system to start the next iteration of the continuous integration
process. This approach was further developed in [5] where we defined the specific tool
sets - their requirements and features as well as outlined integration means.

The methods and tools provided by MegaM@Rt2 are evaluated and applied in
several industrial case studies. Each individual case study defines a set of key per-
formance indicators (KPIs) that are used to evaluate the improvement that the new
technologies provide. The case study specific KPIs are aggregated into project level
KPIs which provide a quantitative evaluation of the project goals.

The project has set challenging goals in terms of KPIs such as:

Fig. 1. Overall conceptual architecture of the MegaM@Rt project.

396 A. Sadovykh et al.

• Reduction of design time/design effort in the range of 10%–50% by design artefacts
reuse.

• Reduction of validation effort in the range of 10%–30% by automated trace col-
lection and analysis.

• Reduction 10%–50% in time/effort required for managing and handling all the
involved models (e.g. time for model retrieval and access).

• Reduction 10%–50% in time/effort required for tracing and handling all the
involved models at design and runtime levels (e.g. creation of and access to rela-
tions between system and traces models).

The above-mentioned KPIs are measured through out the project industrial case
studies. At the current stage the first evaluation phase has finished. The next sections
present the preliminary results.

3 Results of the First Evaluation Phase and Outstanding
Research Challenges

At the time of writing this paper, the MegaM@Rt2 project has entered its second half.
In the following sections, we provide an overview of the current achievements of the
project by focusing on research work and the corresponding results that we have
already obtained.

3.1 The MegaM@Rt2 System Engineering Tool Set

This tool set aims to support system design activities. It has been architected around
three main topics: (i) requirements analysis & specification, (ii) system modeling and
(iii) model verification & validation. The approach integrates up to 20 different open
source tools, mainly Eclipse-based, such as Modelio, developed by the consortium
research partners. These tools support a variety of current engineering practices based
on standard modelling languages, profiles and extensions like: UML, SysML, MARTE,
AADL, EAST_ADL, etc. The framework is designed to integrate additional “external”
tools like Matlab/Simulink, AUTOSAR, Modelica and others, based on specific needs
of the industrial partners.

Different techniques have been adopted to ensure the correctness of system models,
either in terms of verification of languages syntactic paradigms (e.g. using SAT- and
CP-solver technologies) and in terms of functional and non-functional validation of
system artefacts with respect of given requirements (e.g. through model simulation,
model testing, machine learning technique, etc.). For example, [6] proposes a frame-
work to reason about the satisfiability of class models described using the Unified
Modeling Language (UML). It allows to identify possible design flaws as early as
possible in the software development cycle, by annotating UML Class Diagrams with
Object Constraint Language (OCL) invariants. Then, the Constraint Logic Program-
ming (CLP) paradigm allows to reason about UML Class Diagrams modeling foun-
dations thanks to a translation to Formula.

MegaM@Rt2 Project: Mega-Modelling at Runtime 397

Several other research areas have been investigating. For instance, the current trend
on Internet-of-Things Systems of Systems (IoT-SoS) implies significant evolution of
modeling, analysis and design approaches [7].

Separation of concerns is one of the fundamental principles allowing to build well-
structured software and improving its maintainability/evolutivity. Executable models
are good candidates to capture the behavior of a software-intensive system using
separation of concerns approach. In [8], Domains Specific Languages (DSL) have been
exploited to create executable models when business operations are tied to specific
technological platforms. This method is applied both at design-time for creation of
executable models with EMF and at run-time by monitoring operation calls from the
deployed execution engine.

Another aspect investigated in [9, 10] is the availability of platform-independent
SW models and HW synthesis tools able to automatically produce efficient imple-
mentations based on performance predictions of the system model and this on many
different distributed and parallel computing resources.

Safety critical systems, e.g. as proposed by Bombardier Transportation and ClearSy
in the project, require specific support for safety analysis, assessment and certification.
The contract-based approach is adopted by some of the framework tools and is pre-
sented and discussed in [11]. It is based on finding static schedules relying on contracts
and using this information in the verification process to reduce the number of invariant
annotations needed. Moreover, contracts can be used to make compile-time scheduling
decisions, improving runtime performance.

A complementary research area is related to the application of the Aspect-Oriented
Methodologies focusing on the reduction of the modeling and verification effort by
applying aspect-oriented principles in model construction [12]. The industrial partners
have a preference for more classical and consolidated methodologies. However, such
capabilities are still available for possible future applications in case needed.

In the general case, a main achievement is the ongoing contribution to the MARTE
standard, as presented in [13] and responding to the Request for Information issued by
the OMG for a new MARTE 2.0. Partners proposals have been collected in an initial
survey, then an answer to the RFI has been prepared and sent back.

Finally, the last project period will focus on the exploitation, at design time, of the
runtime trace collection and analysis capability, in order to address possible model
refinements in the context of feedback loops. To this intent, the most promising
approach is the one provided by PADRE tool on performance anti-pattern detection
and model refactoring [14, 15]. Finally, as a part of an effort to automate system
engineering, [16] provides a systematic mapping study on published tools and
approaches that can be used for generating API documentation, or for assisting in the
API documentation process. the paper presents an overview of what kind of tools have
been developed, what kind of documentation they generate, and what sources the
documentation approaches require.

3.2 The MegaM@Rt2 Runtime (Trace) Analysis Tool Set

This tool set aims to define new methods and tools for creating and managing models at
runtime verification and testing, including automated runtime testing and monitoring as

398 A. Sadovykh et al.

well as a model-based log collection and analysis infrastructure supported by tools such
as PauWare or CertifyIt. This runtime tool set integrates 24 tools that further propose
automated code generation, model execution as a part of a system, runtime verification
and online testing, such as CompleteTest, JTL, PauWare, Smartesting tools, AIPHS,
Comformiq Designer, Modelio, etc. These tools within the MegaM@Rt2 approach
integrate with the analysis tools. The main ongoing activity is related to establishing a
smooth connection with the analysis tools, that will allow user-friendly and simple
inclusion within the continuous development process, addressed in MegaM@Rt2.

Several results have been published. In the context of testing and test generation
several papers address test generation using UPPAAL model checker and its exten-
sions. For instance, [17] outlines a method for testing energy consumption in embedded
systems using energy-related mutants for EAST-ADL architectural models, which are
converted to UPPAAL Timed Automata and used for test generation UPPAAL Sta-
tistical Model Checker (SMC). A complementary approach is presented in [18], where
we show how architectural models described in the EAST-ADL architectural language
can also be used for testing the energy consumption of embedded systems, after
transforming them into networks of formal models called priced timed automata.
A mutation testing approach for UPPAAL TA has been proposed in [19] to mutate
UPPAAL-TA models and use them for generating tests used for evaluating security
vulnerabilities of web services. Last but not least, in order to enable the analysis of
failed traces and quick fault localization, [20] proposes an approach that converts
concrete test sequences generated and executed by Uppaal Tron against the system
under test into symbolic traces that can be imported in the Uppaal tool and visualized in
the Uppaal simulator.

In the same context of testing, [21] presents an approach for testing of software
intensive safety-critical products to validate the hardware-in-the-loop simulation of a
safety-critical system, by executing test cases both in the control setting (lab) and on
the real product (train). The process is intended to be used when certifying the simu-
lation which is a necessary step in order to certify the complete system. In addition, in
[22], the authors propose an extension of base-choice criterion used for testing
software-based on its nominal choice of input parameters, which takes into account
time as another parameter when generating and executing tests by defining the timed
base-choice coverage criterion. In [23], the authors conducted a comparative study on
the cost and effectiveness of tests that are manually written versus those that are
automatically generated in the field of industrial control software, where strict
requirements on both specification-based testing and code coverage typically are met
with rigorous manual testing.

In order to explore the performance of deployed systems at runtime, [24] suggests a
performance space exploration approach for inferring the worst-case user scenario in a
given workload model. The goal of this work is to detect which configuration of the
load model has the potential to create the highest resource utilization on the system
under test with respect to a given resource so that performance tests can be run with that
configuration. An exact and an approximate method are suggested and compared.

Finally, in [25] we propose a marker design and an algorithm to detect the markers
under different ambient conditions, with a long range to be executed on embedded
systems with low computational requirements. The proposed method reduces the

MegaM@Rt2 Project: Mega-Modelling at Runtime 399

existing problems in the state-of-the-art related to the use of different environments and
conditions such as different distances or different illumination.

3.3 The MegaM@Rt2 Model and Traceability Management (MTM) Tool
Set

The Model and Traceability Management (MTM) tool set aims at providing generic
global model management and traceability capabilities, with a focus on the dedicated
support for creating and using feedback loops between design-time and runtime models
in the context of complex CPSs engineering. To this intent, the MTM tool set is
composed of 5 different complementary tools supporting the Eclipse [26] and Modelio
[27] technical modeling environments. These tools provide support for storing and
handling large EMF models (NeoEMF) [28], building and handling views integrating
different EMF models (EMF Views) [29], keeping consistency and traceability between
different EMF models (JTL) [30], detecting and refactoring performance antipatterns
(PADRE) [14] or organizing and managing Modelio-based models and their rela-
tionships (Modelio Constellation) [31]. In all cases, their main objective is notably to
leverage the different kinds of models resulting from the System Engineering and
Runtime Analysis tool sets, in order to handle and reuse these models altogether in a
coherent way as part of the continuous CPS engineering approach promoted by
MegaM@Rt2. During the first phase of the MegaM@Rt2 project, a significant research
effort has been conducted by the involved partners in order to provide these funda-
mental capabilities via the various tools of the MTM tool set. We summarize significant
related research achievements in what follows.

On one hand, we have worked on improving the general support for backward
traceability and change propagation between different kinds of models thanks to the
JTL tool [32]. We then used such a support in order to provide change propagation
capabilities at architectural (design) model-level, and illustrated it in a software
availability context [33]. We also used this same support in order to automate per-
formance improvements via the detection of architectural antipatterns using PADRE
and thanks to traceability with corresponding runtime data [15] (cf. also Sect. 3.1).

On the other hand, we have obtained interesting results in the model view area [34].
Notably, we have worked on supporting the creation and handling of scalable model
views combining different large-scale models together (including design and runtime
ones) via traceability links [35]. To this intent, we worked on providing the required
infrastructure to store, handle and trace efficiently very large models. This has been
implemented in practice by leveraging the EMF Views and NeoEMF tools from the
MTM tool set. This was a required achievement in order to be able to implement
runtime-to-design time feedback loops, which is one of the longer-term objectives of
MegaM@Rt2.

Interestingly, based on the two complementary efforts above-mentioned, we have
then been able to apply our model view approach - EMF Views, in combination with
our traceability capabilities in JTL, in order to provide a first concrete instantiation of
the MegaM@Rt2 runtime-to-design feedback loop in the context of a safety-critical
system from our partner ClearSy [36]. In the second phase of the project, we plan to

400 A. Sadovykh et al.

work on more practical instantiations of such a feedback loop by relying on tools from
the MTM tool set.

Nevertheless, there are still open challenges in these promising research areas. We
have already been able to discuss that within the Modeling community when orga-
nizing and running the first edition of the International Workshop on Model-Driven
Engineering for Design-Runtime Interaction in Complex Systems (MDE@DeRun
2018), co-located with STAF 2018 in Toulouse, France [37]. Notably, we identified
challenges related to the particularities of design-runtime traceability: e.g. which
semantics has to be given to the traceability information, in which contexts and how?
We also identified questions related to the analysis of the traced runtime information:
e.g. what kind of runtime data is actually needed, in which contexts and how to collect
it properly? Finally, we identified issues related to the overall objectives of such a
design-runtime traceability: e.g. which engineering purposes or activities do we intend
to address or cover thanks to such feedback loops?

3.4 Case Study Evaluation

A total of nine industrial case studies are used in the project in order to evaluate the
MegaM@Rt2 framework in practice. To provide measurable evidence on the extent to
which the framework fits and provides benefits to the industrial development process,
each case study defined a set of Key Performance Indicators (KPIs) that have been
measured at baseline (i.e. when the project started) and have been/will be measured
again after each of the two development phases of the project (i.e. at month 24 and
month 36 respectively). At the time of writing this paper, the first evaluation phase has
recently finished (at month 24).

During Phase 1, the case study providers have evaluated different scenarios using
the tools and technologies offered by the different tool sets previously presented in this
Sect. 3. The evaluation in terms of scenarios has put the focus on the benefits that
MegaM@Rt2 is expected to bring: (1) They allow to better understand the aspects that
the case study providers found most important for their industrial activities and
(2) They structure and organize the tools’ verification and validation, which are based
on the requirements and the KPIs defined by MegaM@Rt2. The case study providers
made some changes in the choice of the best scenario to validate a tool/technology and,
conversely, in the judgement of the best way for using a tool in a certain scenario;
many problems were encountered but solved thanks to the collaboration that the tool
providers fully offered.

The details on the case study results are provided in deliverable D5.5 as available
from the project website [38]. It is important to mention that case studies measure
differently the KPIs depending on their respective contexts and designed experiments.
Nevertheless, it is noteworthy to point out that the case studies succeeded to demon-
strate improvements significantly above targets, in particular, in:

• Time required for identification of design problems;
• Time/effort for requirements validation;
• Productivity improvements;
• Cost savings for development and maintenance of large complex systems.

MegaM@Rt2 Project: Mega-Modelling at Runtime 401

The project has also already demonstrated values close to the targets for the fol-
lowing set of KPIs:

• Reduction of validation effort by automated trace collection and analysis;
• Reduction in time/effort required for tracing and handling all involved models at

design and runtime levels;
• Quality improvement by improving predictability and conformance to

specifications.

4 Conclusions and Future Work

With a total of 40 deliverables and multiple tools provided via three complementary
tool sets [39], MegaM@Rt2 aims at improving the productivity and quality of the
system development and at reducing the time-to-market for complex systems, as well
as to reinforce the European scientific and technological leadership and competitive-
ness of the European market.

The project has already delivered a significant number of research approaches,
technical tools and methods spanning from system-level modeling to runtime analysis
and global traceability and model management. While the results are globally evaluated
as substantial, we face several open challenges towards our goal for scalable and
traceable model-driven engineering applicable to a variety of industrial domains. The
first phase of the project put in place the baseline methods that were assessed in the
industrial settings. We demonstrated the opportunities brought by the global trace-
ability and model management technologies resulting from research activities. In the
meantime, we identified several further challenges. One of them is the need for a
common runtime trace format, i.e. a shared representation for different types of runtime
(meta)data. Another challenge is the need for more automated inference methods that
could systematically relate these runtime traces (uniformly represented/modeled) to the
corresponding system design artifacts.

Therefore, during its last period, the project plans to concentrate on those open
areas by scheduling dedicated activities such as hackathons, demonstration session and
workshops. We would like to engage the project community, both case study providers
and technology providers to focus on a common agenda that would push the state-of-
the-art further (in these areas, but also in others of interest to the project). Moreover, we
plan activities to create awareness about the approaches and technologies developed in
the project, which have already been adopted and endorsed by the industrial partners.
Finally, an important aspect is about planning and preparing for the sustainability of the
project results by creating an ecosystem for all the tools and methods composing the
MegaM@Rt2 framework.

Acknowledgement. This project has received funding from the Electronic Component Systems
for European Leadership Joint Undertaking under grant agreement No. 737494. This Joint
Undertaking receives support from the European Union’s Horizon 2020 research and innovation
program and from Sweden, France, Spain, Italy, Finland and Czech Republic.

402 A. Sadovykh et al.

References

1. Afzal, W., et al.: The MegaM@Rt2 ECSEL project: MegaModelling at runtime – scalable
model-based framework for continuous development and runtime validation of complex
systems. Microprocess. Microsyst. 61, 86–95 (2018)

2. Sadovykh, A., et al.: Model-based system engineering in practice: document generation-
MegaM@Rt2 project experience. In: Proceedings of the 14th Central and Eastern European
Software Engineering Conference, pp. 9:1–9:6 (2018)

3. MegaMart2 - MegaModelling at runtime: MegaMart2 - MegaModelling at runtime. https://
megamart2-ecsel.eu/. Accessed 25 June 2019

4. ECSEL’s multi-annual strategic plan 2016. http://ec.europa.eu/research/participants/data/ref/
h2020/other/legal/jtis/ecsel-multi-stratplan-2016_en.pdf. Accessed 25 June 2019

5. Sadovykh, A., et al.: A tool-supported approach for building the architecture and roadmap in
MegaM@Rt2 project. In: Ciancarini, P., Mazzara, M., Messina, A., Sillitti, A., Succi, G.
(eds.) SEDA 2018. AISC, vol. 925, pp. 265–274. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-14687-0_24

6. Pérez, B., Porres, I.: Reasoning about UML/OCL class diagrams using constraint logic
programming and formula. Inf. Syst. 81, 152–177 (2019)

7. Villar, E.: Model-driven analysis and design of IoT systems. In: 1st International Workshop
on Embedded Software for Industrial IoT, Dresden, Germany (2018)

8. Cariou, E., Le Goaer, O., Brunschwig, L., Barbier, F.: A generic solution for weaving
business code into executable models. In MODELS 2018 ACM/IEEE 21th International
Conference on Model Driven Engineering Languages and Systems, Copenhagen, Denmark
(2018)

9. Muttillo, V., Valente, G., Pomante, L.: Design space exploration for mixed-criticality
embedded systems considering hypervisor-based SW partitions. In: 2018 21st Euromicro
Conference on Digital System Design (DSD) (2018)

10. Ciambrone, D., Muttillo, V., Pomante, L., Valente, G.: HEPSIM: an ESL HW/SW co-
simulator/analysis tool for heterogeneous parallel embedded systems. In: 2018 7th
Mediterranean Conference on Embedded Computing (MECO) (2018)

11. Wiik, J., Ersfolk, J., Walden, M.: A contract-based approach to scheduling and verification
of dynamic dataflow networks. In: 2018 16th ACM/IEEE International Conference on
Formal Methods and Models for System Design (MEMOCODE) (2018)

12. Vain, J., Truscan, D., Iqbal, J., Tsiopoulos, L.: On the benefits of using aspect-orientation in
UPPAAL timed automata. In: 2017 International Conference on Infocom Technologies and
Unmanned Systems (Trends and Future Directions) (ICTUS) (2017)

13. Medina, J.L., Villar, E.: Towards MARTE ++: an enhanced UML-based language to Model
and Analyse Real-Time and Embedded Systems for the IoT age. Presented at the Forum on
specification & Design Languages (FDL 2017), Verona, Italy (2017)

14. Arcelli, D., Cortellessa, V., Di Pompeo, D.: Automating performance antipattern detection
and software refactoring in UML models. In: 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER) (2019)

15. Arcelli, D., Cortellessa, V., Di Pompeo, D., Eramo, R., Tucci, M.: Exploiting
architecture/runtime model-driven traceability for performance improvement. In: 2019
IEEE International Conference on Software Architecture (ICSA) (2019)

16. Nybom, K., Ashraf, A., Porres, I.: A systematic mapping study on API documentation
generation approaches. In: 2018 44th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA) (2018)

MegaM@Rt2 Project: Mega-Modelling at Runtime 403

https://megamart2-ecsel.eu/
https://megamart2-ecsel.eu/
http://ec.europa.eu/research/participants/data/ref/h2020/other/legal/jtis/ecsel-multi-stratplan-2016_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/other/legal/jtis/ecsel-multi-stratplan-2016_en.pdf
http://dx.doi.org/10.1007/978-3-030-14687-0_24
http://dx.doi.org/10.1007/978-3-030-14687-0_24

17. Marinescu, R., Filipovikj, P., Enoiu, E.P., Larsson, J., Seceleanu, C.: An energy-aware
mutation testing framework for EAST-ADL architectural models. In: 29th Nordic Workshop
on Programming Theory, Turku, Finland (2018)

18. Marinescu, R., Enoiu, E., Seceleanu, C., Sundmark, D.: Automatic test generation for energy
consumption of embedded systems modeled in EAST-ADL. In: 2017 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW) (2017)

19. Siavashi, F., Truscan, D., Vain, J.: Vulnerability assessment of web services with model-
based mutation testing. In: 2018 IEEE International Conference on Software Quality,
Reliability and Security (QRS) (2018)

20. Iqbal, J., Truscan, D., Vain, J., Porres, I.: Reconstructing timed symbolic traces from rtioco-
based timed test sequences using backward-induction. In: Proceedings of the Fifth European
Conference on the Engineering of Computer-Based Systems – ECBS 2017 (2017)

21. Stratis, A., Causevic, A.: A practical approach towards validating HIL simulation of a safety-
critical system. In: 2017 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW) (2017)

22. Bergstrom, H., Enoiu, E.P.: Using timed base-choice coverage criterion for testing industrial
control software. In: 2017 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW) (2017)

23. Enoiu, E., Sundmark, D., Causevic, A., Pettersson, P.: A comparative study of manual and
automated testing for industrial control software. In: 2017 IEEE International Conference on
Software Testing, Verification and Validation (ICST) (2017)

24. Ahmad, T., Truscan, D., Porres, I.: Identifying worst-case user scenarios for performance
testing of web applications using Markov-chain workload models. Future Gener. Comput.
Syst. 87, 910–920 (2018)

25. Diaz, A., Pena, D., Villar, E.: Short and long distance marker detection technique in outdoor
and indoor environments for embedded systems. In: 2017 32nd Conference on Design of
Circuits and Integrated Systems (DCIS) (2017)

26. Gronback, R.: Eclipse modeling project | the eclipse foundation. https://www.eclipse.org/
modeling/emf/. Accessed 25 June 2019

27. Modelio open source - UML and BPMN modeling tool. https://www.modelio.org/. Accessed
25 June 2019

28. Daniel, G., et al.: NeoEMF: a multi-database model persistence framework for very large
models. Sci. Comput. Programm. 149, 9–14 (2017)

29. Bruneliere, H., Perez, J.G., Wimmer, M., Cabot, J.: EMF views: a view mechanism for
integrating heterogeneous models. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.
L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 317–325. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-25264-3_23

30. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: a bidirectional and change
propagating transformation language. In: Malloy, B., Staab, S., van den Brand, M. (eds.)
SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19440-5_11

31. Desfray, P.: Model repositories at the enterprises and systems scale: the Modelio
Constellation solution. In: 2015 International Conference on Information Systems Security
and Privacy (ICISSP) (2015)

32. Eramo, R., Pierantonio, A., Tucci, M.: Enhancing the JTL tool for bidirectional
transformations. In: Conference Companion of the 2nd International Conference on Art,
Science, and Engineering of Programming – Programming 2018 Companion (2018)

33. Cortellessa, V., Eramo, R., Tucci, M.: Availability-driven architectural change propagation
through bidirectional model transformations between UML and petri net models. In: 2018
IEEE International Conference on Software Architecture (ICSA) (2018)

404 A. Sadovykh et al.

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://www.modelio.org/
http://dx.doi.org/10.1007/978-3-319-25264-3_23
http://dx.doi.org/10.1007/978-3-642-19440-5_11
http://dx.doi.org/10.1007/978-3-642-19440-5_11

34. Bruneliere, H., Burger, E., Cabot, J., Wimmer, M.: A feature-based survey of model view
approaches. Softw. Syst. Model. 18(3), 1931–1952 (2019)

35. Bruneliere, H., Marchand, F., Daniel, G., Cabot, J.: Towards scalable model views on
heterogeneous model resources. In: ACM/IEEE 21th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2018), Copenhagen, Denmark,
pp. 334–344 (2018)

36. Eramo, R., et al.: Model-driven design-runtime interaction in safety critical system
development: an experience report. In: 15th European Conference on Modelling Founda-
tions and Applications (ECMFA), Co-located with STAF 2019, Eindhoven, The Netherlands
(2019)

37. Bruneliere, H., et al.: Model-driven engineering for design-runtime interaction in complex
systems: scientific challenges and roadmap. In: Mazzara, M., Ober, I., Salaün, G. (eds.)
STAF 2018. LNCS, vol. 11176, pp. 536–543. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-04771-9_40

38. Deliverables - MegaMart2 - MegaModelling at Runtime. https://megamart2-ecsel.eu/
deliverables/. Accessed 25 June 2019

39. MegaM@Rt2 tool box. http://toolbox.megamart2-ecsel.eu/. Accessed 25 June 2019

MegaM@Rt2 Project: Mega-Modelling at Runtime 405

http://dx.doi.org/10.1007/978-3-030-04771-9_40
http://dx.doi.org/10.1007/978-3-030-04771-9_40
https://megamart2-ecsel.eu/deliverables/
https://megamart2-ecsel.eu/deliverables/
http://toolbox.megamart2-ecsel.eu/

REVaMP2 Project: Towards Round-Trip
Engineering of Software Product Lines -

Approach, Intermediate Results
and Challenges

Andrey Sadovykh1,3(&), Tewfik Ziadi2, Alessandra Bagnato1,
Thorsten Berger4, Jan-Philipp Steghöfer5, Jacques Robin6,

Raul Mazo6,7, and Elena Gallego8

1 Research and Development Department, Softeam, Paris, France
{andrey.sadovykh,alessandra.bagnato}@softeam.fr

2 Sorbonne University, Paris, France
tewfik.ziadi@lip6.fr

3 Innopolis University, Innopolis, Russia
a.sadovykh@innopolis.ru

4 Chalmers University of Technology, Gothenburg, Sweden
thorsten.berger@chalmers.se

5 University of Gothenburg, Gothenburg, Sweden
jan-philipp.steghofer@gu.se

6 University Paris 1, Panthéon-Sorbonne, Paris, France
{jacques.robin,raul.mazo}@univ-paris1.fr

7 GIDITIC, Universidad Eafit, Medellin, Colombia
rimazop@eafit.edu.co

8 The REUSE Company, Leganés, Spain
elena.gallego@reusecompany.com

Abstract. The REVaMP2 Project is a major European effort towards Round-
Trip Engineering of Software Product Lines for software intensive systems.
Indeed, software is predominant in almost every modern industry. The impor-
tance of time-to-market has grown tremendously in many business domains.
Organizations are in a constant search for approaches for mass production of
highly customizable systems. The software product lines engineering approach
promises to provide up to 10� speed increase benefits in time-to-market. Tra-
ditionally, automated tools proposed a top-down approach, i.e., variants were
generated from a model of the product line. However, the industry used a
bottom-up approach that helped to re-create a product line out of various clones
of a system. This operation is very costly and error prone. The goal of
REVaMP2 is to automate the process of extracting a product line from various
system artifacts and help with verification and the co-evolution of the product
line. The project involves 27 partners that contribute with diverse research and
industrial practices to address case study challenges stemming from 11 appli-
cation domains. In this paper, we would like to present the motivation for the
project, the current approach, the intermediate results and challenges.

© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 406–417, 2019.
https://doi.org/10.1007/978-3-030-29852-4_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_34&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_34

Keywords: Software product lines engineering � Round-trip engineering �
Model-driven engineering � Extraction � Co-evolution � Verification � Tools �
ITEA3

1 Introduction

An ever-higher proportion of B2B and B2C products and services acquire leading
market positions by becoming more software-intensive. This trend is illustrated by
buildings and vehicles evolving from electro-mechanical systems into Cyber-Physical
Systems (CPS) and by services such as utilities and transportation evolving towards
personalized, adaptive offers based on analytics of data generated by the Internet of
Things (IoT). This technological trend reinforces with the shift away from traditional
product sales towards service subscription packages, which include leasing a product as
one item in a customized turn-key service offer. These Software-Intensive Systems and
Services (SIS) create and adapt to innovative market disruptions and customers’ whims
far quicker and at a lower cost than their less software based competitors. However,
they also raise new engineering challenges. In particular, they require more agile,
round-trip engineering processes that better leverage legacy assets, as well as a more
systematic and automated variability management. An engineering process is called
round-trip when it combines top-down steps that refine abstract assets such as
requirement specifications and high-level architectural patterns into more concrete ones
such as executable simulation models and source code, with bottom-up steps that
abstract such these more concrete assets into the more abstract ones. Variability
management refers to a method to systematically (a) reuse common assets shared by a
whole family (or line) of system (or product or service) variants on a common theme
and (b) organize and relate distinct assets proper to each variant along commercially
and technologically relevant characteristics and constraints.

In this paper, we first summarize the main variability management challenges that
SIS engineering companies face today, given the current State-of-the-Art (SotA
thereafter), when they attempt to round-trip engineer SIS families at optimal cost by
reusing legacy artifacts from past assets from their product or service portfolio. We
then overview the current status and different outstanding challenges of the REVaMP2 -
Round-trip Engineering for VAriability Management Platform and Process project [1].
This is a collaborative research and innovation project labeled by the Eureka program
ITEA-3 in a consortium of 27 partners in 5 European countries.

2 Motivation, Concept and Approach

Product Line Engineering (PLE) is a mature paradigm for variability management. It
enables defining a family of product configurations to satisfy different customer needs
and to later systematically generate the associated product variants by combining
predefined reusable components. Benefits of PLE include achieving large-scale pro-
ductivity gains and improving time-to-market and product quality. Reports describe
gains following PLE adoption by as much as tenfold in productivity and quality, cost

REVaMP2 Project: Towards Round-Trip Engineering of Software Product Lines 407

reduction by as much as 60%, decrease labour needs by as much as 87%, and decrease
time to market (new variants) by as much as 98% [2]. As all sorts of devices, systems
and services become more software intensive, the more they can benefit from PLE
adoption. Commercially successful implementations of the PLE paradigm can be found
in companies from domains ranging from avionics and automotive software, to
printers, mobile phones or web applications.

However, adopting a PLE approach is still a major challenge and represents a risk
for a company [3–6]. First, compared to single-system development, PLE variability
management implies a methodology that highly impacts the life cycle of the products as
well as the processes and roles inside the company. Second, adopting PLE from the
beginning, an approach called proactive PLE [5], is a subject to two main assumptions:
(1) the company must have, in advance, a complete understanding of the variability to
anticipate all possible variations; (2) the company should start from scratch to specify
the variability and implement the reusable assets.

Berger et al. showed in a survey with industrial companies that participated in
industrial PLE, that around 50% of them cannot adopt proactive PLE [7]. On the one
hand, the variability in these companies is discovered as customer needs emerge over
time; so, it is very difficult if not impossible, to anticipate all the variations from the
beginning. On the other hand, companies already have existing product variants that
were implemented using an opportunistic reuse in an ad-hoc way to quickly respond to
different customer needs. As mentioned by Dubinsky et al. [8], instead of adopting
PLE, many companies clone an existing product and modify it to fit the new customer
needs. This approach, called clone-and-own, is widely used because it is initially faster
to start with an already developed and tested set of assets [8].

Figure 1 illustrates, the three main PLE processes: proactive, extractive and round-
trip. Proactive PLE is shown on the left of the figure. It must start with the inception of
the project in a high-cost upfront investment step t0 called domain modelling. During
this phase, the requirements for the entire product line must be simultaneously elicited.
From the resulting PL, all product variants satisfying the variability model constraints
can then be automatically generated in a second step t1. In Fig. 1, the domain model
mandatory features are grey squares, the variant-specific features are coloured squares,
and constraints on features mutual exclusivity are annotated with the XOR operator. An
extractive PLE is illustrated on the right of Fig. 1. It starts by the rapid development of
a Minimal Viable Product (MVP). If this MVP fits its market, it is then followed by
sequentially and opportunistically cloning-and-owning variants to quickly target other
niches for which many common features from the initial product can be reused (steps t1
to t4). When these variants and the constraints among them become too numerous to be
efficiently managed without an explicit and systematic variability model, they are then
refactored and consolidated in bottom-up fashion into a PL (t5). Round-trip PLE
combine both approaches.

However, the industrial SotA in variability management is restricted to tools that
automate top-down product variant generation from a variability model and reusable
product assets, i.e. step t1 on the left of Fig. 1. No tool is currently available to
automate the bottom-up extraction of a variability model and reusable PL assets, i.e.
step t5 on the right of Fig. 1.

408 A. Sadovykh et al.

Companies thus face the software PL adoption dilemma: on the one hand, they are
aware that PL can enable them to achieve large-scale productivity gains, improve time-
to-market and product quality. On the other hand, however, these same companies
already have existing variants created using the clone-and-own approach. This dilemma
makes them practically unable to adopt PL. One solution to deal with this issue is to use
round-trip engineering approach for PL adoption that consists in migrating, automat-
ically or semi-automatically, the existing variants into a PL.

To conclude, innovative companies thus face the PLE adoption dilemma: the
Return on Investment (ROI) of the proactive PLE adoption process is too uncertain,
while the cost of late manual PLE is prohibitive. This dilemma considerably hinders
PLE adoption. Many organizations eschew it, missing out on the massive long-term
cost, robustness, customization, and competitiveness benefits that it would bring about
for maintaining and developing their product portfolio. The REVaMP2 project aims to
provide the first solution to this dilemma by developing and validating on diverse
industrial case studies, the first comprehensive round-trip engineering automation
platform and process to support extractive, bottom-up PLE adoption and maximize
reuse of legacy assets.

3 REVaMP2 Tool Chain

The REVaMP2 project develops a number of tool sets for Round-Trip Product Line
Engineering as shown in Fig. 2, including innovative tools and services for Legacy and
PL Asset Visualization, PL Asset Extraction Automation, PL Asset Verification
Automation and PL Asset Co-Evolution Automation.

The first and second classes address the need to automate the extraction and
visualization of product lines from legacy assets. This is needed because the extraction,
verification and refactoring tools will not simultaneously reach 100% automation and
quality. Human expertise will always be needed to adjust their parameters to trade-off
automation for quality, evaluate their results and manually edit them. The realistic goal
of REVaMP2 is to minimize such manual edition steps, not to entirely eliminate them.
The third class addresses the need to automate the formal verification of constraints on

Fig. 1. Round-trip PLE adoption process

REVaMP2 Project: Towards Round-Trip Engineering of Software Product Lines 409

product line variability models and assets. These constraints can be for example, inter-
feature consistency constraints, safety and real-time constraints that must hold for the
whole configuration space or the existence of a nonempty intersection of this space
with some business configuration goal. The fourth class addresses the need for PL
refactoring automation. Next paragraphs summarize the current stage of the tools and
services related to extraction and visualization and verification.

PL Asset Extraction and Visualization Automation. The tool sets related to
extraction and visualization take as inputs the legacy assets as illustrated in Fig. 3.
Input legacy assets refer to any artefact needed to create a product and which are
implemented without an explicit management of variability. For instance, systems that
are implemented using the clone-and-own ad hoc reuse technique. The objective of the
extraction and visualization tool sets is to analyse these legacy assets to extract the
common and variable parts. The extraction process provide as output an explicit
description of the variability in what is referred to as variability model eirshed with
constraints that describe dependencies between variations points. It can also refactor
the input asset to create reusable assets. Many challenges are identified in the context
including the need to analyse and compare legacy assets. In addition, the extraction
tools should support a variety of assets types ranging from textual requirements to the
source code assets (in many different languages). Another identified challenge is to
propose solutions to help and assist domain experts in the extraction process.
REVaMP2 aims implementing a tool chain including different tools to support the
different asset types and including visualization supports to assist domain experts in
this process (cf. Fig. 3).

At the current stage, many tools are implemented by the REVaMP2 partners. This
includes the following tool sets implemented by academics as well as industrial
companies participating to the REVaMP2 project: BUT4Reuse [9] framework from
partner Sorbonne University, VEXA from partner ForschungsZentrum Informatik - FZI,
KernalHaven [10] from partner University of Hildesheim, Jittac Feature Filter by
Karlstad University [11], Tom Sawyer Visualization from partner Scopeset [12],

Fig. 2. REVaMP2 tool sets for round-trip product line engineering.

410 A. Sadovykh et al.

FLiMEA from partner University San Jorge, pure::variants variability framework from
partner pure::systems [13], M-XRAY Architectural analysis from partner MES [14]. In
addition, to the variety and richness of the implemented tools, special attention is now
devoted to the integration aspect where the objective is to create a tool chain including
all the individual tools.

The PL Asset Verification team works on developing tools assisting the PL
engineering team verifying various kinds of PL artefacts using a variety of techniques.
The current tool set includes the following tools: Verification Studio from partner
Knowledge Centric Solutions, The Reuse Company [15], AssetVerifier from partner
Kungliga Tekniska Högskolan - KTH, KernelHaven from partner Stiftung Universität
Hildesheim - SUH [10], DragonflyME from partner ForschungsZentrum Informatik -
FZI and VariaMos from partner Université Paris 1 Panthéon-Sorbonne - UP1PS [16].

Verification Studio supports the verification of the individual correctness, global
consistency and completeness of requirement artefacts. It is part of KCS-TRC’s Sys-
tems Engineering Suite (SES) that also includes complementary tools allowing the
engineering team to specify an ontology of the PL domain model and associate with
each concept and relation of the ontology a set of natural language templates, each one
corresponding to a way to express it in a textual requirement specification. SES also
includes a requirement editor that leverages these templates to auto-complete
requirement specification sentence fragments thus insuring that the requirement text
only contains phrases which semantics is defined in the ontology. Verification Studio
provides as built-in the requirements quality metrics defined by the INCOSE Guide for
Writing Requirements.

AssetVerifier includes an editor for the formal specification in first-order logic of
individual requirements of an automotive system PL together with their dependencies,
variability model and required Automotive Safety Integrity Level (ASIL). AssetVerifier
relies on a Satisfiability Modulo Theory (SMT) solver to scalably verify for given target
PL configuration (a) the consistency of the requirement dependencies an (b) that the
ASIL are assigned in accordance with the rules mandated by the automotive industry
safety standard ISO26262. AssetVerifier also includes an editor to annotate C code

Fig. 3. PL asset extraction and visualization automation

REVaMP2 Project: Towards Round-Trip Engineering of Software Product Lines 411

functions with pre and post-conditions constraints in the same formal language used for
the requirements specification. It allows AssetVerifier to reuse its SMT solver to verify
that the annotated C code satisfies the corresponding requirements.

DragonflyME supports modeling using a UML profile a virtual prototype PL of a
real-time embedded system PL. The variability model of the PL is imported from an
external tool such as pure::variants from pure-systems. For a given PL configuration,
DragonflyME can generate the structural code of a virtual prototype allowing to run
performance tests of the configuration.

KernelHaven supports the incremental computation of a great variety of PL quality
metrics after each commit which affects the feature model and variable assets of the PL.
It also allows the verification of the consistency between an abstract feature model and
its operationalization in C code by #ifdef statements in C pre-processor files. It relies on
a SAT solver to perform this verification task.

VariaMos supports the computation of quality metrics defined over variability
models following an arbitrary meta-model. It also supports the detection of feature
model defects such as dead features, redundant features, false optional feature and false
and void feature models. For this task, it relies on a finite domain constraint solver.

The overall approach is supported modeling tools such as Modelio, requirements
tools including REUSE tool set, and commercial product line engineering tool -
pure::variants.

4 Results of the First Evaluation Phase and Outstanding
Challenges

The REVaMP2 project has provided the first set of results that were evaluated by the
industrial partners providing the Use Cases (UCs). The primary goal for this initial
evaluation was to depict the relationships between the different Use Case providers and
Technology providers to enhance the SIS PL methods and tools as we know them today
and to identify the gaps.

One of the main advantages that we could identify from the beginning of the project
is the variety of industrial contributors providing the needs of different industries such
as Aerospace, Automotive, Electronics. Those needs are addressed by a number of
service, technology providers from academia and industry. This variety provides
additional value to the solution that is to be applicable to any interested organization
outside the project.

The analysis performed during the project illustrates a solution addressing the most
common needs identified by the industry. The key assets that have been considered to
evaluate the framework status are two, firstly Use Case Software Demonstrators, in
which industry providers showcase the industrial challenges for PLE and possible
solutions implemented with the help of one or several REVaMP2 technology providers.

Use Case providers categorised their requirements into different typologies, so that
the requirements could be mapped to a related technology to address the PLE chal-
lenges. We have identified more than 150 requirements from the first evaluation of the
use cases, which has been continuously evolving to ensure the feasibility of the needs
established at first in each of the UC. In Fig. 4 the distribution of these requirements
among the most relevant typologies is illustrated.

412 A. Sadovykh et al.

The abovementioned distribution of requirements among the different types is the
starting point for the allocation of requirements from the UC into the different capa-
bilities covered by the technology providers. The results of this analysis is illustrated in
Fig. 5.

The requirements distribution clearly indicates the focus on challenges in extraction
of the PL. In addition, the modelling is second large category. The co-evolution, one of

Fig. 4. Distribution of the main type of requirements from Use Cases satisfied by the technology
demonstrators.

Fig. 5. Distribution of the main characteristics covered by Use Case technology demonstrators.

REVaMP2 Project: Towards Round-Trip Engineering of Software Product Lines 413

the axes in REVaMP2 project, was not highlighted by the requirements. However, it is
a global understanding that co-evolution, i.e. maintenance of the product line over time
is very important.

As a result of the integration of technologies to satisfy the different industry need,
partners developed several UC Demonstrators based on REVaMP2 tool chain. Figure 6
depicts a subset of tools used in several Use Cases in the first half of the project. The
tools such as Eclipse Capra, FLIMEA and Jittac are analysed to be used in the fol-
lowing stages of the project.

As it is indicated above, on overall, the Use Cases confirm the initial assumption on
the need for automation in a bottom-up PLE. The first evaluation results show interest
in industry for extraction, modelling and verification of PLs. The major challenge is the
need for integration of various tools for specific toolchains dedicated to Use Cases.

5 Conclusions

REVaMP2 has already delivered a number of artifacts that are in active use by the
partners within the project and outside of it. Importantly, many of the industrial tool
providers have already integrated concepts and technology developed within the pro-
ject into their offerings. Model Engineering Solutions MX-RAY [14] has, e.g., been
extended to automatically extract architectural assets from the analysed models.
Likewise, Siemens Industry Software has increased the technology readiness level of
the product line support in LMS Imagine.Lab [17] for mechatronic system simulation.

Fig. 6. Matrix on what technology providers cover for the different industry needs.

414 A. Sadovykh et al.

The partners within the project are also working on new offerings for their cus-
tomers or for internal use. ScopeSet is working on providing state-of-the-art feature and
feature dependency visualisation capabilities based on technology developed in
REVaMP2. Automotive and Industrial control partners have developed specialised
internal tools during the project that support engineers with constructing safety argu-
ments for a product line and with feature location in C/C++ codebases respectively.

Furthermore, work has been conducted on several open source projects that provide
reverse engineering capabilities or supporting functionality. One notable example is
BUT4Reuse [9] which provides commonality and variability analysis, feature identi-
fication, feature location, feature constraints discovery, feature model synthesis and
other functionality. KernelHaven [10] is a powerful tool suite for analysing product
lines that, among many other things, can identify unused code and configuration
mismatches. VariaMos [16] supports its users in the modeling of product lines and the
analysis of these models. Eclipse Capra [18] supports traceability between the assets of
a product line and thus ties feature, source code, models, and test together, thus
enabling change impact analysis and improved program comprehension.
Revamp2Plug-in [15] provides wide functionalities from identifying variability and
commonality in requirements to measuring Consistency and completeness quality of
the assets involved in the product.

REVaMP2 has also produced a number of notable project deliverables [19], for
instance an overview of the state of the art of practices and tools for product line
reengineering. Of course, the project partners are also very active in the scientific
community. With more than 50 publications, the project has had a significant impact on
the state of the art, with notable publications at ASE [20], Isola [21], MODELS [22] as
well as in IST [22, 23], TSE [24] and many others. Members of the project have also
organised the main scientific event of the product line engineering community, SPLC
in Gothenburg in 2018, with well over 100 participants and workshops and tutorials
geared directly towards the topics of the projects.

Finally, the REVaMP2 partners pure-systems, Thales, KTH, and Siemens are
driving the standardisation of the Variability Exchange Language (VEL) in the context
of OASIS [25]. They are joined by Dassault Systems, Intel, Accenture and PTC in the
preparation of a standardised way to exchange variability information between different
tools. This illustrates the relevance and impact of the results of REVaMP2 beyond the
project consortium and serves as an example of how the project results are dissemi-
nated to other interested parties.

Acknowledgement. This work was partially supported by the ITEA3 15010 REVaMP2 project:
FUI the Ile-de-France region and BPI in France, by Vinnova Sweden, and CDTI in Spain.

References

1. Sadovykh, A., Bagnato, A., Robin, J., Viehl, A., Ziadi, T., Martinez, J.: REVAMP:
challenges and innovation roadmap for variability management in round-trip engineering of
software-intensive systems. Revue Genie Logiciel 120, 32–36 (2017)

REVaMP2 Project: Towards Round-Trip Engineering of Software Product Lines 415

2. Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Le Traon, Y.: Bottom-up adoption of
software product lines. In: Proceedings of the 19th International Conference on Software
Product Line - SPLC 2015 (2015)

3. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product Lines:
Concepts and Implementation. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37521-7

4. Krueger, C.W.: Easing the transition to software mass customization. In: van der Linden, F.
(ed.) PFE 2001. LNCS, vol. 2290, pp. 282–293. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-47833-7_25

5. van der Linden, F. (ed.): PFE 2001. LNCS, vol. 2290. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-47833-7

6. Kastner, C., Dreiling, A., Ostermann, K.: Variability mining: consistent semi-automatic
detection of product-line features. IEEE Trans. Softw. Eng. 40(1), 67–82 (2014)

7. Berger, T., et al.: A survey of variability modeling in industrial practice. In: Proceedings of
the Seventh International Workshop on Variability Modelling of Software-intensive Systems
- VaMoS 2013 (2013)

8. Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S., Becker, M., Czarnecki, K.: An
exploratory study of cloning in industrial software product lines. In: 2013 17th European
Conference on Software Maintenance and Reengineering (2013)

9. BUT4Reuse. https://but4reuse.github.io/. Accessed 26 June 2019
10. KernelHaven. https://github.com/KernelHaven/KernelHaven. Accessed 26 June 2019
11. Buckley, J., Mooney, S., Rosik, J., Ali, N.: JITTAC: a just-in-time tool for architectural

consistency. In: 2013 35th International Conference on Software Engineering (ICSE) (2013)
12. Tom Sawyer Visualization. https://www.tomsawyer.com/products/visualization/. Accessed

26 June 2019
13. Pure-systems - product line and variant management tools. https://www.pure-systems.com/

products/pure-variants-9.html. Accessed 26 June 2019
14. MES M-XRAY: consistent metrics of models - MES. https://model-engineers.com/en/

quality-tools/mxray/. Accessed 26 June 2019
15. The REUSE company. https://www.reusecompany.com/
16. SPLA. https://github.com/SPLA/VARIAMOS. Accessed 26 June 2019
17. Simcenter system simulation. https://www.plm.automation.siemens.com/global/fr/products/

simcenter/simcenter-system-simulation.html. Accessed 26 June 2019
18. Swart, S.: Eclipse capra, 28 July 2016. https://projects.eclipse.org/projects/modeling.capra.

Accessed 26 June 2019
19. REVAMP2 projects public deliverables. http://www.revamp2-project.eu/publications/

public-project-results
20. Mukelabai, M., Nešić, D., Maro, S., Berger, T., Steghöfer, J.-P.: Tackling combinatorial

explosion: a study of industrial needs and practices for analyzing highly configurable
systems. In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering - ASE 2018 (2018)

21. Nyberg, M., Gurov, D., Lidström, C., Rasmusson, A., Westman, J.: Formal verification in
automotive industry: enablers and obstacles. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018.
LNCS, vol. 11247, pp. 139–158. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03427-6_14

22. Ballarín, M., Marcén, A.C., Pelechano, V., Cetina, C.: Measures to report the location
problem of model fragment location. In: Proceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems – MODELS 2018 (2018)

416 A. Sadovykh et al.

http://dx.doi.org/10.1007/978-3-642-37521-7
http://dx.doi.org/10.1007/978-3-642-37521-7
http://dx.doi.org/10.1007/3-540-47833-7_25
http://dx.doi.org/10.1007/3-540-47833-7_25
http://dx.doi.org/10.1007/3-540-47833-7
http://dx.doi.org/10.1007/3-540-47833-7
https://but4reuse.github.io/
https://github.com/KernelHaven/KernelHaven
https://www.tomsawyer.com/products/visualization/
https://www.pure-systems.com/products/pure-variants-9.html
https://www.pure-systems.com/products/pure-variants-9.html
https://model-engineers.com/en/quality-tools/mxray/
https://model-engineers.com/en/quality-tools/mxray/
https://www.reusecompany.com/
https://github.com/SPLA/VARIAMOS
https://www.plm.automation.siemens.com/global/fr/products/simcenter/simcenter-system-simulation.html
https://www.plm.automation.siemens.com/global/fr/products/simcenter/simcenter-system-simulation.html
https://projects.eclipse.org/projects/modeling.capra
http://www.revamp2-project.eu/publications/public-project-results
http://www.revamp2-project.eu/publications/public-project-results
http://dx.doi.org/10.1007/978-3-030-03427-6_14
http://dx.doi.org/10.1007/978-3-030-03427-6_14

23. El-Sharkawy, S., Yamagishi-Eichler, N., Schmid, K.: Metrics for analyzing variability and
its implementation in software product lines: a systematic literature review. Inf. Softw.
Technol. 106, 1–30 (2019)

24. Passos, L., et al.: A study of feature scattering in the Linux Kernel. IEEE Trans. Softw. Eng.
1 (2018)

25. OASIS Variability Exchange Language (VEL) TC | OASIS. https://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=vel. Accessed 26 June 2019

REVaMP2 Project: Towards Round-Trip Engineering of Software Product Lines 417

https://www.oasis-open.org/committees/tc_home.php%3fwg_abbrev%3dvel
https://www.oasis-open.org/committees/tc_home.php%3fwg_abbrev%3dvel

Author Index

Afzal, Wasif 393
Amirova, Rozaliya 136
Ashraf, Adnan 393

Bagnato, Alessandra 393, 406
Bedelbayev, Agyn 271
Berger, Thorsten 406
Bombarda, Andrea 89
Bonfanti, Silvia 89
Bruel, Jean-Michel 10
Bruneliere, Hugo 393

Capretz, Luiz Fernando 305
Catellani, Marcello 227
Chakraborty, Subham 326
Ciancarini, Paolo 43

Dall’Agata, Michela 227
De Franceschi, Paolo 227
Di Pietro, Riccardo 218
Distefano, Salvatore 218
Dragoni, Nicola 237
Durán, Francisco 252

Ebersold, Sophie 10
Elvira, Khismatullina 295
Erofeeva, Irina 104
Espinosa, Alexandra 393

Fourneret, Elizabeta 393
Franch, Xavier 378

Galinier, Florian 10
Gallego, Elena 406
Gargantini, Angelo 89
Gazizullina, Alisa 203
Giaretta, Alberto 237
Gómez, Abel 393
Gurov, Nikita 189
Gusmanov, Kamill 210
Gusmanova, Farida 271

Habyarimana, Ephrem 227
Horn, Geir 364
Hussain, Rasheed 189

Ivanou, Mikhail 342
Ivanov, Vladimir 163, 351

Khan, Adil 189
Khattak, Asad 189
Khismatullina, Elvira 281
Khomyakov, Ilya 136
Klimiankou, Yauhen 59, 334
Kondratyev, Dmitry 113
Krishna, Ajay 252

Lopez, Lidia 378

Maikhanova, Akmarzhan 271
Martínez-Fernández, Silverio 378
Masyagin, Sergey 3, 163
Materka, Katarzyna 364
Mazo, Raul 406
Mazzara, Manuel 203
Meskini, Sonia 305
Meyer, Bertrand 10
Mirgalimova, Ruzilya 136
Missiroli, Marcello 43

Nassif, Ali Bou 305
Naumchev, Alexandr 10, 150, 351
Nurgalieva, Milana 3

Omarov, Batyrkhan 271
Omarov, Bauyrzhan 271
Omarov, Nurzhan 271
Oriol, Marc 378
Oshanova, Nurzhamal 271

Pepe, Stefano 237
Petrenko, Sergei 281, 295
Piccard, Isabelle 227
Pierini, Pierluigi 393
Pinzaru, Gheorghe 73
Promsky, Alexei 113
Prusiński, Marcin 364

Rashitov, Vadim 342
Rivera, Victor 73

Robin, Jacques 406
Rodríguez, Pilar 378

Sadovykh, Andrey 163, 351, 393, 406
Salaün, Gwen 252
Salem, Hamza 313
Sarbasova, Alua 271
Shekerbekova, Shirinkyz 271
Sillitti, Alberto 43, 136, 163
Skrzypek, Paweł 364
Stefanidis, Vassilis 364
Steghöfer, Jan-Philipp 406
Strugar, Dragos 176
Succi, Giancarlo 3, 163
Sultan, Daniyar 271

Tarasau, Herman 81
Tarasov, Aleksandr 121
Thapaliya, Ananga 81, 326
Tormasov, Alexander 163
Trendowicz, Adam 378
Truscan, Dragos 393

Verginadis, Yiannis 364

Widforss, Gunnar 393

Yessengaliyeva, Zhanna 271

Ziadi, Tewfik 406
Zinke-Wehlmann, Christian 227
Zouev, Evgeny 163
Zufarova, Oydinoy 81

420 Author Index

	Preface
	Organization
	Abstracts of Invited Talks
	Science of Computing: From Functions and Sequentiality to Processes and Concurrency
	Design and Assurance Methods for Dependable Cyber Physical Systems
	Kent Beck or Pablo Picasso? Speculations of the Relationships Between Artists in Software and Painting
	Towards an Anatomy of Software Requirements
	Contents
	Invited Talks and Papers
	Kent Beck or Pablo Picasso? Speculations of the Relationships Between Artists in Software and Painting
	1 Software and Art
	2 Background
	3 How We Are Progressing
	4 Early Results
	4.1 Lessons

	5 Conclusion
	References

	Towards an Anatomy of Software Requirements
	1 Introduction
	2 Scope
	3 Underlying Concepts
	3.1 General Concepts
	3.2 Properties and Their Statements
	3.3 Relevant Properties
	3.4 Requirement
	3.5 Characterizing Requirements

	4 Classification of Requirements
	4.1 Requirements Classification: Basic Categories
	4.2 Some Derived Categories

	5 Taxonomy of Inter-requirements Relations
	6 Dissecting an Example
	7 Analyzing Available Requirements Methodologies
	7.1 Wiegers-Beatty
	7.2 Van Lamsweerde

	8 Normative Work
	8.1 IEEE Definition
	8.2 SWEBOK
	8.3 Essence

	9 Assessment and Future Work
	References

	Software Engineering and Programming Languages
	Preferred Tools for Agile Development: A Sociocultural Perspective
	1 Introduction
	2 Related Work
	3 Research Design
	3.1 User Groups
	3.2 User Groups by Culture
	3.3 Scope
	3.4 Methodology
	3.5 Assumptions and Confidence in Results

	4 Screening Survey
	4.1 Initial Product Selection
	4.2 Popularity Filter
	4.3 Analysis of the Results

	5 Feature Analysis Survey
	5.1 Survey Distribution and Turnout
	5.2 Results

	6 Validity
	7 Results
	7.1 RQ1: The Best and Widespread Tools
	7.2 RQ2 Demographic Differences
	7.3 RQ3: Italian and Russian Communities

	8 Conclusions
	References

	Interpretizer: A Compiler-Independent Conversion of Switch-Based Dispatch into Threaded Code
	1 Introduction
	2 Interpretizer
	2.1 Object File Composer
	2.2 Instructions Decoder
	2.3 Optimizer

	3 Evaluation
	4 Related Work
	5 Conclusions
	References

	Towards Static Verification of Clojure Contract-Based Programs
	1 Introduction
	2 Translation Rules
	2.1 Rules
	2.2 Translation Issues

	3 Implementation
	4 Related Work
	5 Conclusion and Future Work
	References

	Problems in Experiment with Biological Signals in Software Engineering: The Case of the EEG
	1 Introduction
	2 Methodologies
	2.1 Test Subjects and Assigned Tasks
	2.2 EEG and the Process
	2.3 Processing Tools
	2.4 Experiment Steps and Formula

	3 Analysis
	3.1 ERD (Event Related Desynchronization) Analysis
	3.2 Correlation Analysis

	4 Results
	5 Limitations and Problems
	5.1 Before the Experiment
	5.2 During the Physical Experiment (Data Collection)
	5.3 After the Experiment (Phase of Analysis)

	6 Conclusion
	7 Future Scope
	References

	Developing Medical Devices from Abstract State Machines to Embedded Systems: A Smart Pill Box Case Study
	1 Introduction
	2 Abstract State Machines and Asmeta Framework
	3 The e-Pix Case Study
	4 Modeling and V&V
	4.1 Modeling by Refinement
	4.2 Automatic Refinement Proof
	4.3 Validation
	4.4 Scenario-Based Testing
	4.5 Property Verification: AsmetaSMV

	5 From Asmeta Specification to C++ Code for Arduino
	6 IEC Regulation and FDA Guidance Application
	6.1 IEC 62304 Standard
	6.2 FDA General Principles of Software Validation

	7 Related Work
	8 Conclusion
	References

	The Impact of Dance Sport on Software Development
	1 Introduction
	2 Necessary Background Information
	3 Methods and Data Collection
	4 Collected Evidence
	5 Conclusion
	References

	Proof Strategy for Automated Sisal Program Verification
	1 Introduction
	2 Preliminary Information
	2.1 Symbolic Method of Verification of Definite Iterations
	2.2 The Sisal Language and ACL2
	2.3 Study Case

	3 The Proof Strategy
	4 Applying the Proof Strategy to Study Case
	5 Conclusion
	References

	Assessing Job Satisfaction of Software Engineers Using GQM Approach
	Abstract
	1 Introduction
	2 Related Works
	2.1 Balance Between Personal Treatment and the Working Environment Quality
	2.2 Effect of Employing Agile Approaches on Job Satisfaction
	2.3 The Controversial Question of Schedule Flexibility
	2.4 Pair Programming Analysis Regarding a Collaborative Environment

	3 The Design of the Study
	3.1 Factors Related to Job Satisfaction
	3.2 GQM Design
	3.3 Data Collection and Analysis

	4 Results and Discussion
	4.1 Pearson’s Correlation Coefficients Analysis and Inferences
	4.2 Multivariate Regression Model Design

	5 Conclusions
	References

	Software Development and Customer Satisfaction: A Systematic Literature Review
	1 Introduction
	2 Adopted Approach
	2.1 Goals of the Research
	2.2 Research Questions
	2.3 Search Process
	2.4 Selection Process

	3 Results
	4 Discussion
	4.1 RQ1: Factors that Affect Customer Satisfaction
	4.2 RQ2: Measurement of Customer Satisfaction
	4.3 RQ3: Evaluation of Customer Satisfaction

	5 Threats to Validity
	6 Conclusions
	References

	Object-Oriented Requirements: Reusable, Understandable, Verifiable
	1 Introduction
	2 The Problem Explained
	2.1 Reusability
	2.2 Understandability
	2.3 Verifiability

	3 Running Example
	4 Reuse Methodology
	4.1 Development for Reuse
	4.2 Development with Reuse

	5 Technical Artifacts
	5.1 Library of Templates
	5.2 Library of Multirequirement Patterns

	6 Applying a Template
	7 Formal Picnic
	8 Verification
	9 Assessment
	10 Supporting Work
	11 Future Work
	References

	Measurements for Energy Efficient, Adaptable, Mobile Systems - A Research Agenda
	1 Introduction
	2 Background
	3 Proposed Approach
	4 Concrete Plan
	4.1 Development of the Reference Scenario
	4.2 Metrics Definition
	4.3 Data Gathering
	4.4 Design and Development Support
	4.5 Experimentation and Validation

	5 Conclusion
	References

	Complex Systems: On Design and Architecture of Adaptable Dashboards
	1 Introduction
	1.1 Notions from Complexity Theory
	1.2 Literature Review
	1.3 Structure Overview

	2 Three Metric Relevance Questions
	3 Complex Adaptive Systems (CAS)
	3.1 Dashboards as CAS

	4 Running Time Complexity Considerations
	4.1 Metric Insertion Running Time
	4.2 Metric Combinations Running Time

	5 CAS and Evolutionary Algorithms
	5.1 Evolutionary Algorithms
	5.2 Non-linear Dynamics.
	5.3 Dynamic Equilibrium

	6 Conclusions
	7 Future Work
	References

	Machine Learning
	Human Activity Recognition Using Deep Models and Its Analysis from Domain Adaptation Perspective
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Deep Model
	3.2 Classical Methods

	4 Results and Evaluation
	4.1 Datasets
	4.2 Experimental Setup
	4.3 Implementation Details
	4.4 Results

	5 Conclusion
	References

	Spontaneous Emotion Recognition in Response to Videos
	1 Introduction
	2 The Dataset
	3 Data Preprocessing
	4 The Proposed Methods
	5 Evaluation and Discussion
	6 Conclusion
	References

	CNN LSTM Network Architecture for Modeling Software Reliability
	1 Introduction
	2 Related Works
	3 Experimentation
	3.1 Parametric SRGMs
	3.2 CNN Model
	3.3 CNN LSTM Model
	3.4 Datasets

	4 Results and Discussion
	5 Conclusion
	References

	An Intelligent Tutoring System Tool Combining Machine Learning and Gamification in Education
	1 Introduction
	2 Motivation
	2.1 Choices and Theoretical/Technological Considerations

	3 Related Work
	4 The Virtual Study Buddy Tool
	4.1 Scenario
	4.2 Techniques We Used to Involve Our Participants

	5 Conclusion
	References

	Early Within-Season Yield Prediction and Disease Detection Using Sentinel Satellite Imageries and Machine Learning Technologies in Biomass Sorghum
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Open-Field Trials and Biomass Data Collection
	2.2 Satellite Data Acquisition
	2.3 Modelling Total Aboveground Biomass Yields
	2.4 Disease Detection

	3 Results
	3.1 Assessment and Validation of the Predictive Models
	3.2 Foliar Disease

	4 Discussion
	5 Conclusions
	Acknowledgments
	References

	Internet of Things
	UniquID: A Quest to Reconcile Identity Access Management and the IoT
	1 Introduction
	1.1 Contribution of the Paper
	1.2 Paper Outline

	2 Related Work
	2.1 Consistency, Availability, and Partition Tolerance (CAP)

	3 UniquID Overall Architecture
	3.1 Imprinting Ceremony

	4 Experimental Evaluation
	4.1 Identity Generation
	4.2 Imprinting
	4.3 Summing Up: Enrolment

	5 Case Studies
	5.1 Smart Vehicle
	5.2 Industrial Sensor Network

	6 Conclusion
	References

	Automated Composition, Analysis and Deployment of IoT Applications
	1 Introduction
	2 Models
	3 Composition and Analysis
	3.1 Steps of Our Approach
	3.2 Implementation
	3.3 Experiments

	4 Deployment
	5 Related Work
	6 Concluding Remarks
	References

	Security
	Applying Face Recognition in Video Surveillance Security Systems
	Abstract
	1 Introduction
	2 Literature Review
	3 Facial Recognition Problem
	3.1 Development Overview
	3.2 Face Detection
	3.3 Face Recognition

	4 Facial Recognition Problem
	5 Conclusion
	References

	Cyber-Resilience Concept for Industry 4.0 Digital Platforms in the Face of Growing Cybersecurity Threats
	Abstract
	1 Introduction
	2 Cyber Resilience Management
	3 Cyber Resilient System Design
	4 Behaviour Models
	5 Cyber Resilience Management System Design
	6 Conclusion
	Acknowledgement
	References

	Method of Improving the Cyber Resilience for Industry 4.0. Digital Platforms
	Abstract
	1 Introduction
	2 Cyber Resilience Concept
	3 Problem Solution
	4 Method of Improving the Cyber Resilience
	5 Conclusion
	Acknowledgement
	References

	Computer Architectures and Robotics
	Can We Rely on Smartphone Applications?
	Abstract
	1 Introduction
	2 SRGMs Applied to Smartphone Applications
	2.1 Datasets and Experiments
	2.2 Evaluation

	3 Failure Data Analysis Using Model Distributions
	3.1 Results

	4 Discussion and Answers to Research Questions
	5 Conclusions
	References

	Distributed Computing System on a Smartphones-Based Network
	1 Introduction
	2 Related Work
	2.1 On-Device Machine Learning Using Tensor-Flow to Detect Android Malware
	2.2 Distributed Linear Regression by Averaging
	2.3 Federated Learning via Over-the-Air Computation

	3 System Design and Development
	3.1 System Design
	3.2 Development
	3.3 Proof of Concept

	4 Discussion and Limitations
	5 Conclusion and Future Scope
	References

	Above the Clouds: A Brief Study
	1 Introduction
	2 Essential Characteristics
	2.1 On-Demand Self-service
	2.2 Broad Network Access
	2.3 Resource Pooling
	2.4 Rapid Elasticity
	2.5 Measured Service

	3 Cloud Deployment Strategies
	3.1 Public Cloud
	3.2 Private Cloud
	3.3 Community Cloud
	3.4 Hybrid Cloud

	4 Cloud Delivery Models
	4.1 Software as a Service (SaaS)
	4.2 Platform as a Service (PaaS)
	4.3 Infrastructure as a Service (IaaS)

	5 Opportunities
	5.1 End Consumers
	5.2 Business Costumers
	5.3 Developers and Independent Software Vendors

	6 Challenges and Issues
	6.1 Security
	6.2 Performance
	6.3 Cost Management and Containment
	6.4 Regulatory Requirements
	6.5 Bandwidth, Quality of Service and Data Limits
	6.6 Lack of Resources/Suppliers
	6.7 Integration with Internet of Things Security (IoT)

	7 Conclusion
	References

	Exploring IA-32: Lessons from Analysis and Experience
	1 Introduction
	2 Analysis of IA-32 Usage in the Code of Modern Applications
	3 Lessons Learned
	4 Conclusion
	References

	Continuous Integration and Continuous Delivery in the Process of Developing Robotic Systems
	1 Introduction
	2 Application
	3 Architecture and Process Development
	4 Conclusion and Suggestion for Further Work
	References

	Projects
	VERCORS: Hardware and Software Complex for Intelligent Round-Trip Formalized Verification of Dependable Cyber-Physical Systems in a Digital Twin Environment (Position Paper)
	1 Motivation
	2 The Solution
	3 State of the Art
	3.1 Natural Language Processing for Requirements Extraction
	3.2 Specification Formalization
	3.3 Automated Testing for Multi-model Simulation Environments

	4 Expected Contributions to the State of the Art
	5 Discussion
	References

	MELODIC: Selection and Integration of Open Source to Build an Autonomic Cross-Cloud Deployment Platform
	1 The Challenge
	2 MELODIC Architecture
	2.1 Main Features
	2.2 Upperware
	2.3 Executionware

	3 Integration and Control
	4 Monitoring
	5 Conclusion
	References

	Quality-Aware Rapid Software Development Project: The Q-Rapids Project
	Abstract
	1 Introduction
	2 Data Gathering and Analysis
	3 The Q-Rapids Software Development Process
	3.1 Quality Awareness
	3.2 Evidence-Based, Data-Driven Software Development Process
	3.3 Rapid Software Development Process

	4 Strategic Decision Making Dashboard
	5 Evaluation of the Q-Rapids Solution
	6 Lessons Learned
	7 Conclusions
	Acknowledgements
	References

	MegaM@Rt2 Project: Mega-Modelling at Runtime - Intermediate Results and Research Challenges
	Abstract
	1 Introduction
	2 Description of the Overall Approach
	3 Results of the First Evaluation Phase and Outstanding Research Challenges
	3.1 The MegaM@Rt2 System Engineering Tool Set
	3.2 The MegaM@Rt2 Runtime (Trace) Analysis Tool Set
	3.3 The MegaM@Rt2 Model and Traceability Management (MTM) Tool Set
	3.4 Case Study Evaluation

	4 Conclusions and Future Work
	Acknowledgement
	References

	REVaMP2 Project: Towards Round-Trip Engineering of Software Product Lines - Approach, Intermediate Results and Challenges
	Abstract
	1 Introduction
	2 Motivation, Concept and Approach
	3 REVaMP2 Tool Chain
	4 Results of the First Evaluation Phase and Outstanding Challenges
	5 Conclusions
	Acknowledgement
	References

	Author Index

