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Abstract
Sporothrix schenckii is currently recognized as a species complex consisting of 
Sporothrix brasiliensis, Sporothrix schenckii sensu stricto, Sporothrix globosa, 
and Sporothrix luriei. Due to divergent evolutionary process, each species pos-
sesses different virulence profiles, that allow it to thrive and persist in its niche. 
Currently the disease in cats is primarily caused by S. brasiliensis, S. schenckii 
sensu stricto and S. globosa, with cat fights and direct inoculation of the agent in 
the skin as the main mode of disease transmission. Expression of putative viru-
lence factors, such as adhesins, ergosterol peroxide, melanin, proteases, extracel-
lular vesicles and thermotolerance, determines the clinical manifestation in the 
feline patient, with thermotolerant S. brasiliensis exhibiting the highest pathoge-
nicity, followed by S. schenckii sensu stricto, and S. globosa. Their ability to 
produce biofilm is documented, but their clinical significance remains to be elu-
cidated. Despite comprehensive descriptions of the pathogenicity of the agent 
and of the disease, its prognosis remains guarded to poor, due to issues pertaining 
to cost, protracted treatment course, zoonotic potential and low susceptibility of 
some strains to antifungals.

�Introduction

Sporothrix schenckii complex (also called S. schenckii sensu lato) causes a 
chronic, granulomatous, cutaneous or subcutaneous infection, mainly occurring 
in humans and cats. It has been recognised as an important cause of zoonotic 
subcutaneous mycosis since its description by Dr. Benjamin Schenk in 1896 [1]. 
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As a thermally dimorphic fungus, Sporothrix schenckii sensu lato exists as sap-
rophyte in plant debris or decaying organic soil matter in its asexual filamentous 
form (25–30 °C). With favourable temperature and environment (35–37 °C), it 
phase transitions into its yeast form, and complete growth inhibition is achieved 
at 40  °C, with no sexual reproduction observed to date [2]. This characteris-
tic underpins the epidemiology of clinical sporotrichosis where historically, the 
most common route of infection was reported to be the inoculation of conidia 
into broken skin via contaminated soil during horticultural activities. It is only in 
recent times that cats were perceived to be an important risk factor and disease 
propagators [3–7].

�Etiologic Agent

Sporothrix schenckii is currently recognized as a species complex consisting  
of Sporothrix brasiliensis, Sporothrix schenckii sensu stricto, Sporothrix globosa, 
and Sporothrix luriei (Clinical clade) based on DNA sequencing, with each species 
having its own distinct virulence profiles and geographical distribution [8, 9]. S. 
brasiliensis, S. s. sensu stricto and S. globosa, in order of virulence, are the main 
species identified to cause pathology in cats [9]. S. brasiliensis, currently region-
ally restricted to Brazil, is characterised by its inherent thermotolerability which 
is responsible for causing systemic spread. This species was identified as the main 
cause of sporotrichosis epidemics in Rio de Janeiro and Sao Paolo, alongside S. s. 
sensu stricto and S. globosa [10–12]. S. s. sensu stricto is the second most patho-
genic species with a worldwide distribution, especially in tropical or subtropical 
regions, with reports from the Americas, Africa, Australia and Asia. Zhou and col-
leagues demonstrated genetic diversity within this single species by subdividing S. 
s. sensu stricto into clinical clade C (most commonly isolated from Americas and 
Asia) and D (most commonly isolated from Americas and Africa), based on its 
internal transcribed spacer (ITS) [13]. The recent identification of a single clonal 
strain of S. s. sensu stricto clinical clade D from Malaysia (instead of the com-
monly isolated clinical clade C in Asia) suggests that this species is constantly 
evolving, with the ability to undergo a process of selection and subsequent popula-
tion expansion, depending on local environmental or host selection pressure [14, 
15]. S. globosa is commonly identified as the species responsible for sporotrichosis 
mainly in Asia and Europe, but is a rare cause in the Americas and Africa [11, 13, 
16–20]. Exept S. pallida, Environmental clade associated sporothrix species such 
as S.brunneoviolacea, S. lignivora, S. chilensis and S. mexicana (Sporothrix pal-
lida complex) have not been reported to cause disease in the feline patient at the 
time of writing [21]. These species are rare agents of sporotrichosis and normally 
causes low virulence, opportunistic infections from traumatic inoculation of fun-
gus from soil into host tissue. This is in contrast to sporothrix species within the 
Clinical clade that is transmitted from animals.
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�Pathogenesis

Upon inoculation, the expression of putative virulence factors, such as adhes-
ins, ergosterol peroxide, melanin, proteases, extracellular vesicles (EV) and 
thermotolerance, determines the pathogenicity and clinical presentation of 
sporotrichosis in the feline patient [22, 23]. The expression of adhesins and a 
70 kDa glycoprotein (Gp70) on the cell wall mediates adhesion of the fungus 
to fibronectin, type II collagen and laminin in the host [24]. Upon invasion, 
the fungal cell wall composed of glucans, galactomannans, rhamnomannans, 
chitin, glycoprotein, glycolipids and melanin provides the ability to survive 
within host tissues and aids evasion from host innate immune response [25–
27]. Melanin production in both mycelial and yeast form shields against a 
broad range of toxic insults. Melanin reduces susceptibility to antifungals and 
enzymatic degradation, and confers protection against oxygen nitrogen free 
radicals, macrophagic and neutrophilic phagocytosis [28]. The fungus readily 
produces ergosterol peroxide and proteinases (Proteinase 1 and 2), which allow 
it to evade phagocytosis and host immune response [29, 30]. EV (exosomes, 
microvesicles and apoptotic bodies) are membranous compartments com-
posed of lipid bilayers, released by all living cells to the extracellular medium, 
that contain cargos of lipids (neutral glycolipids, sterols and phospholipids), 
polysaccharides (glucuronoxylomannan, alpha-galactosyl epitopes), proteins 
(lipases, proteases, urease, phosphatase) and nucleic acids (RNA) [31]. These 
cargos represent virulence factors that contribute to drug resistance, facilitate 
cell invasion and are eventually recognized by the innate immune system. EV 
contribution to fungal virulence was described in Cryptococcus neoformans, 
Histoplasma capsulatum, Paracoccidioides brasiliensis, Malassezia sympodia-
lis, Candida albicans and, recently, also in Sporothrix brasiliensis [32–39]. 
Specifically, the EV cargos of Sporothrix brasiliensis, such as cell wall glu-
canase and heat shock proteins, were shown to increase phagocytosis but not 
pathogen elimination, stimulate cytokine production (IL-12p40 and TNFα) and 
favour the establishment of the fungus in the skin [38, 40, 41]. Current pro-
teomic analyses revealed that 27% of EV proteins in S. brasiliensis and 35% 
in S. schenckii remain to be characterized, including the identification of their 
assigned biological process [38].

Thermotolerance, the ability of a fungus to grow or not at 37  °C, is another 
important virulence factor that has been identified in Sporothrix spp. Isolates that 
are able to grow at 35 °C but not at 37 °C in humans cause fixed cutaneous lesions, 
but those that grow at 37 °C (a close approximation to human and animal core body 
temperature) produce disseminated and extracutaneous lesions. Pathogenic thermo-
tolerant species, such as S. brasiliensis have the ability to produce disseminated dis-
ease, compared to non-thermotolerant, less pathogenic species such as S. globosa. 
S. s. sensu stricto displays variable thermotolerability [14].
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The ability of Sporothrix schenckii complex to produce biofilm has recently been 
documented, and an early report suggests that biofilm production alters the fungus 
sensitivity to antifungals, however, the full extent of its clinical significance has yet 
to be elucidated [42].

Both innate and adaptive immune responses play important roles in the preven-
tion of disease progression. The first contact between fungal pathogen associated 
molecular pattern (PAMPs) and host pattern recognition receptors (PPRs) is medi-
ated by toll-like-receptors (TLR)-4 and TLR-2 [43, 44]. During the initiation of 
infection, these receptors recognize lipid extracts from yeast cells that lead to an 
increased production of tumour necrosis factor alpha (TNF-alpha), interleukin (IL)-
10 and nitric oxide (NO). While NO demonstrates antifungal activity in vitro, in vivo 
it is associated with immunosuppression during the initial and the terminal stages 
of the infection, due to its ability to increase apoptosis of immune cells [45]. The 
role of NO in the infection was also documented in histoplasmosis by Histoplasma 
capsulatum and paracoccidioidomycosis by Paracoccidioides brasiliensis [46, 47].

Yeast cells are also able to activate the antibody-dependent classical and alterna-
tive complement pathways [48, 49]. The main antigen recognized by antibodies is 
a 70 kDa cell wall glycoprotein, named Gp70 [50]. This protein plays a crucial role 
in fungal opsonisation, allowing macrophages to phagocytose and the production of 
pro-inflammatory cytokines [51]. Nevertheless, the cornerstone for an effective fun-
gal eradication is based on an effectively coordinated innate and adaptive immune 
response (humoral and cell mediated) [52]. Recently, the nucleotide-binding oligo-
merization domain-like receptor pyrin domain-containing 3 (NLRP3) inflamma-
some was shown to be critical to link the innate immune response to the adaptive 
arm, contributing to effective protection against this infection by promoting the 
production of pro-IL1β [53]. Fungal interaction with dendritic cells drives a mixed 
Th1/Th17 immune response that activates macrophages, neutrophils and CD4+ T 
cells, that release IFN-gamma, IL-12 and TNF-alpha that ultimately culminates in 
the reduction of pathogen burden [54, 55].

�Clinical Signs

Feline sporotrichosis occurs most commonly in young adult, free roaming intact 
male cats and is associated with fighting, with no known breed predisposition [4]. 
In the human patient, clinical signs of sporotrichosis may be classified into 3 forms: 
fixed cutaneous, lympho-cutaneous and disseminated forms, depending on the 
pathogenicity of the fungal species and the status of host immunity (Fig. 1). Such 
clear and distinct categorisation of clinical forms does not apply to cats and thus is 
seldom used.

In cats, chronic non-healing lesions such as nodules, ulcers and crusts are com-
monly found on the head, especially at the bridge of the nose (Fig. 2), on the distal 
limbs and tail base region (Fig. 3) and on the pinnae (Fig. 4). The majority of lesions 
occur in cooler regions of the host body such as at the nasal passages and ear tips. 
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Fig. 1  A human patient 
manifesting lymphocutaneous 
sporotrichosis after being 
bitten by a cat with 
sporotrichosis (nodule at base 
of thumb). Due to the lack of 
thermotolerability of the 
infectious agent, the lesion 
did not progress beyond the 
arm

Fig. 2  Classical 
presentation of feline 
sporotrichosis: chronic 
non-healing wounds 
affecting the bridge of the 
nose

Fig. 3  Chronic non-
healing wounds affecting 
the paws and the tail

Sporothrichosis
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If nasal passages are affected, extracutaneous signs such as sneezing, dyspnoea and 
respiratory distress are commonly reported in tandem with cutaneous manifestations 
[5]. Cutaneous screwworm myiasis as secondary infestation was recently reported 
[56]. The fatal disseminated form of the disease is associated with S. brasiliensis 
infection. Co-infection with either feline immunodeficiency virus (FIV) or feline 
leukaemia virus (FeLV) has no significant effect on the clinical manifestations or on 
the prognosis of the disease [57].

�Diagnosis

A definitive diagnosis of feline sporotrichosis requires the isolation and iden-
tification of the agent in culture. The species identification can be obtained by 
morphologic studies and physiologic phenotyping, as well as by polymerase 
chain reaction targeting the calmodulin gene [5]. At 25–30°, the fungus exists in 
its mycelial form and is seen as small and white or pale orange to orange-grey 
colonies with no cottony aerial hyphae. Later, the colony becomes black, moist, 
wrinkled, leathery or velvety with narrow white borders (Fig. 5). Some colonies 
are however black from the onset. At 35–37°, yeast colonies are cream or tan, 
smooth and yeast-like [2].

Cytologically, yeasts are found in abundance from cutaneous impression smears. 
They are located intra- and extracellularly, in pleomorphic shapes, ranging from 

a b

Fig. 4  (a and b) Concave and convex aspects, respectively, of the pinna of a cat with sporotricho-
sis presenting numerous ulcerated nodules
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the classical cigar-shaped to round or oval bodies, measuring 3–5 μm in diameter 
with a thin, clear halo around a pale-blue cytoplasm (Fig. 6) [58]. The sensitivity of 
cytology to detect Sporothrix yeasts in the feline patient is estimated to range from 
79% to 84.9% [59, 60].

On histology, a diffuse pyogranulomatous inflammation with large foci of necro-
sis is seen throughout the superficial and deep dermis, sometimes extending to the 
subcutis. There are abundant round to cigar-shaped organisms, 3–10 μm in length 
and 1–2 μm in diameter, seen both free and within macrophages. Commonly, organ-
isms in cytoplasm of macrophages create large clear pockets full of yeast due to 
poorly visualized yeast cell wall (Fig. 7) [61]. Periodic acid of Schiff (PAS) stain 
may also be utilized to visualize yeasts as magenta stained organism on histological 
preparation. Other diagnostic techniques such as serology (enzyme-linked immuno-
sorbent assay, ELISA) and polymerase chain reaction (PCR) may also be used for 
the diagnosis [62, 63].

Fig. 5  In its mature 
mycelial form the fungi 
becomes black, moist, 
wrinkled, leathery or 
velvety with narrow white 
borders

Fig. 6  Cytologically, the 
yeasts are found in 
abundance intra- and 
extracellularly in 
pleomorphic shapes, 
ranging from the classical 
cigar-shaped to round or 
oval, measuring 3–5 μm in 
diameter with a thin, clear 
halo around a pale blue 
cytoplasm (Diff Quick, 
1000×)
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�Treatment

Treatment of feline sporotrichosis requires several months and must be continued 
for at least 1 month beyond clinical cure. Luckily, despite a protracted treatment 
course, it is current understanding that the fungus does not develop resistance dur-
ing treatment [14].

Due to the high cost of treatment, high risk of therapeutic side effects and of 
zoonosis and existence of low susceptibility strains, feline sporotrichosis carries a 
guarded to poor prognosis. Currently, potassium iodide, azolic antifungals (keto-
conazole, itraconazole), amphotericin B, terbinafine, local heat therapy, cryosur-
gery and surgical resection have all been documented as treatment options in the 
feline patient. Potassium iodide has traditionally been the treatment of choice, 
either in its saturated form (saturated salt of potassium iodide, SSKI) or in its 
powder form re-packaged into capsules. Dosages range from 10 to 20  mg/kg 
every 24 hours [64, 65]. The powder form re-packaged into capsules is favoured 
over SSKI for the feline patient, due to the latter’s tendency to cause hypersali-
vation. From a report of 48 cats receiving potassium iodide, 23 (47.9%) patients 
achieved clinical cure with treatment failure in 18 cats (37.5%), two reported 
deaths (4.2%) and treatment period averaging from 4 to 5  months. The most 
commonly observed side effects were hyporexia, lethargy, weight loss, vomiting, 
diarrhoea plus an increase in the liver enzyme alanine transaminase. No signs of 
iodism (lacrimation, salivation, coughing, facial swelling, tachycardia) nor thy-
roid hormone abnormalities were observed in this study [64]. Due to its low cost, 
potassium iodide is still often used either singularly or in conjunction with azole 
antifungals to treat feline sporotrichosis [65].

Fig. 7  On histology there 
are abundant round to 
cigar-shaped organisms, 
3–10 μm in length to 
1–2 μm in diameter seen 
both free and within 
macrophages. Organisms 
in cytoplasm of 
macrophages create large 
clear pockets full of yeasts 
due to poorly visualized 
yeast cell wall
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Imidazoles such as ketoconazole and itraconazole currently represent the corner-
stone therapy for feline sporotrichosis. Itraconazole is favoured over ketoconazole 
as the latter is commonly associated with a higher rate of side effects, such a vomit-
ing, hepatic dysfunction and altered cortisol metabolism. Itraconazole at 5–10 mg/
kg has been used successfully to treat feline sporotrichosis, with a maximum plasma 
concentration of 0.7 ± 0.14 mg/L achieved after a 5 mg/kg oral dosing [66]. Based 
on the updated Clinical and Laboratory Standards Institute (CLSI) reference method 
for broth dilution antifungal susceptibility testing of filamentous fungi (document 
M38-A2), the minimum inhibitory concentration (MIC) of antifungals against S. 
brasiliensis, S. s sensu stricto and S. globosa is presented in Table 1 [14, 19, 20, 67, 
68]. Itraconazole may be the treatment of choice but there are isolates with MIC 
above 4  mg/L, the putative breakpoint for this antifungal agent. This variability 
in MIC values may reflect the extensive divergent evolutionary process within the 
Sporotrix complex, where each species developed its own repertoire of virulence 
factors allowing thriving and persisting in its niche. Clinically, this is reflected by 
the fact that some cases of feline sporotrichosis are refractory to treatment and thus 
protocols based on higher dosages of itraconazole and/or its combination with other 
antifungals have been explored to treat these refractory cases [65, 69]. Sporothrix 
schenckii sensu lato generally displays low susceptibility towards fluconazole and 
exhibits species-dependent susceptibility towards terbinafine and amphotericin B 
(Table  1). Despite reports of successful treatment of human sporotrichosis with 
terbinafine, results are still inconclusive for the feline patient [70, 71]. The recent 
description of the protective effects of pyomelanin and eumelanin, synthesized by 
S. brasiliensis and S. s. sensu stricto, against the antifungal terbinafine may partially 
explain why in vitro results do not always correlate with in vivo responses when 
patients are treated with this drug [72]. The administration of amphotericin B is 
associated with toxicity, high cost and side effects, such as localized sterile abscess 
formation from intralesional injections [5]. It is interesting to note that Sporothrix 
spp. displays variable susceptibility towards antifungals rarely used in veterinary 
medicine such as micafungin, 5-flucytosine and even posaconazole, highlighting 
the importance of susceptibility testing [14, 20, 68]. Resolving granulomas are 
visually and tactile-wise indistinguishable from normal adjacent healthy skin under 
normal room lighting, and may be better visualized when held against a bright light 
source (Fig. 8). Treatment should be continued for 1 month beyond the resolution 
of all granulomas. Localized heat therapy is based on the fact that the fungus does 
not grow at temperatures above 40 °C. This treatment modality, however, is associ-
ated with issues of practicality and perhaps welfare concerns in its application on 
animals and has not been pursued as a feasible treatment option in the feline patient. 
Cryosurgery, used in conjunction with itraconazole has been used successfully to 
treat and cure 11 of 13 cats with sporotrichosis, with treatment lasting 3–16 months 
and a median of 8 months [73]. Surgical resection is possible for localized singular 
lesions but unpractical for generalized, disseminated forms.
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�Conclusion

The prognosis of feline sporotrichosis remains guarded to poor due to cost, pro-
tracted treatment course, risk of zoonosis and low susceptibility of some strains. 
Despite the fact that antifungal susceptibility testing provides essential guidance for 
the treatment, its lack of commercial availability and validated breakpoints remains 
a stumbling block in the treatment of this disease. Unfortunately, the current reper-
toire of veterinary antifungals classes are inadequate to address the issue of fungal 
low fungal susceptibility.
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