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Abstract. A Bayesian Belief Network is a diagrammatic way to reason prob-
abilistically and understand causal inference in complex systems. We propose
using Bayesian Belief Networks (BBN) in the early stages of design projects to
highlight components with high risk of failure. Identifying these components of
high risk can inform how resources should be best used on costly modelling
tasks. In addition, high risk components may impose functional modelling
requirements, which in turn will inform the design of flexible systems for critical
areas. This approach has the potential to significantly reduce risk by focusing
and informing modelling efforts, which in turn increases the chance of success
of the project and lowers costs for all stakeholders involved.

Using a prototype software application developed to quickly create BBNs and
calculate a final probability value of a specific outcome (the “work product”), we
test different project scenarios collected through three interviews with industry
professionals. In each case, we identify an aspect of the project that changed
during the course of the project with far reaching implications. By adjusting the
values and structure of these networks we formulate specific functional
requirements for digital models and in some cases, the associated construction
systems. We find that these requirements would have increased the overall value
of their respective projects by directly addressing the areas of strong influence
and uncertainty identified in the BBN.

Keywords: Bayesian Networks - Architecture + BIM - Management *
Modelling

1 Introduction

The design and construction industry today has access to an unprecedented amount of
digital technology. From artificial intelligence based simulation engines to augmented
reality helmets for construction workers, the range and depth of technological inno-
vation in digital design is astounding (Umetani and Bickel 2018). The availability of
this technology combined with a growing shift in the makeup of a professional design
office towards staff with software engineering skills, both formal and self-taught, means
that virtually anything can be modelled, documented, published and shared. Yet all
design concepts that are intended to be realized as physical objects (buildings, con-
sumer products) must be ushered through a series of stages involving design iteration,
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expert consultation, value engineering, quantity estimation, shipping, manufacturing, to
name a few. In contrast to the automotive or aerospace industries, the architecture,
engineering, and construction (AEC) industry is confounded by the prototypical nature
of their work product: rarely are two buildings exactly alike. Without the ability to
incrementally improve the production process of any individual building project,
stakeholders face many difficult decisions that, especially in the early stages of concept
design, can have far reaching and often unexpected implications.

The pressure to reduce the amount of uncertainty during the initial phases of an
architecture project is enormous. This challenge is addressed by vast amounts of
modelling and documentation work (Building Information Modelling (BIM)) with the
goal of creating a complete picture of every aspect of a project. Although daunting in
its complexity, BIM has proved itself to be a positive and unifying force in the AEC
industry. What remains difficult, however, is how to identify what to model, when to
model it, and in how much detail. In the initial stages of design, the need to iterate
quickly and test many design alternatives is at odds with the pressure to understand the
implications of each of those iterations. In this paper, we propose Bayesian Belief
Networks (BBN) as a lightweight but complete framework for directly engaging all
project stakeholders during the design process.

A Bayesian Belief Network is a diagrammatic way to reason probabilistically and
understand causal connections between different factors, models or stages of a project.
Through a series of case studies with building professionals, we find that Bayesian
Belief Networks are a useful tool for highlighting critical stages of the design process.
They provide a systematic approach to project level optimization without detailed
models or documentation. The use of Bayesian Networks to represent the design
process may decrease the cost of modelling by focusing on areas of strong influence
over the success or failure of the project. By highlighting areas of high risk, Bayesian
Networks produce functional requirements on models, which in turn inform the design
of flexible systems in critical areas. This has the potential to substantially decrease the
cost and risk of a project, which increases the overall value of a building project.

2 Background and Related Work

A Bayesian Network (or Bayesian Belief Network) is a way of diagrammatically
representing a set of factors and their influence on one another. The factors are rep-
resented by elliptical nodes, and their relationships to one another are indicated by
arrows (directed edges). Formally, a Bayesian Network is a directed acyclic graph in
which the nodes represent random variables and the directed edges represent condi-
tional dependence. Each node has an associated conditional probability table (CPT),
which describes the likelihood of various outcomes resulting from the different influ-
ences upon it (the upstream nodes in the Bayesian Network) (Constantinou and Fenton
2018). A strength of Bayesian Networks is that once constructed, the conditional
probabilities may be easily updated as new information is added.

For example, consider a system that controls the brightness in a room. Room
brightness is dependant on the lighting system and also daylight. However, the lighting
system itself also depends on daylight. To complete the BBN, we fill out a conditional
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probability table (CPT) for each node. Each entry in the table corresponds to a distinct
combination of conditional probability scenarios and depends on the number of
dependent nodes and outcomes at each node. The value, or probability, associated with
each scenario is then used to compute the posterior probability table (the conditional
probability of the parameter of interest given the evidence of connected nodes).

2.1 Example: A Simple Bayesian Belief Network

Consider the network below which illustrates the likelihood that a room is bright
(illuminated) given two possible causal factors: it is daytime, or the lighting is on

(Fig. 1).

It is Daytime
Room is bright

Fig. 1. A simple Bayesian Belief Network

Using the connectivity of the resulting BBN, we can work through the CPT for
each node. The values for the CPT can be generated by expert knowledge or previously
collected data. In this paper, we focus on the knowledge driven approach. Notice that
the CPT for “Room is Bright” has four entries, covering all possible states of the
connected nodes (Table 1).

With the CPTs complete, we can compute the posterior probability table for the
“Room is Bright” node by means of an inference algorithm, specifically the junction
tree algorithm. For a full discussion of this algorithm and other inference approaches,
such as Markov Chain Monte Carlo (MCMC), (Barber et al. 2004). In this example,
note that the probability of success for “Room is Bright” is good but by no means
assured. Strategies for improving the performance of the target node can be quickly
hypothesized and simulated by updating the values of the CPTs or the connectivity of
the network (Table 2).

Judea Pearl developed the term “Bayesian Network”, and established their rele-
vance to probabilistic reasoning throughout the 1980s (see e.g. (Pearl 1985)). Because
Bayesian Networks capture the relationships between variables under causal influence,
they are a critical tool to facilitate the distinction between correlation and causation.
Pearl describes the relevance of Bayesian Networks to the topic of causation and
outlines the history of the study in “The Book of Why”, his recent book for a popular
audience (Pearl and MacKenzie 2018). Pearl developed the theory of Bayesian
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Table 1. Example of conditional probability tables

303

It is Daytime Reasoning
0 1
0.5 0.5 Assume night and day are equally long
The light is on Reasoning
It is daytime P(node=0) P(node=1)
0 0.15 0.85 If it is not daytime, light is very likely on
1 0.40 0.60 If it is daytime, it is possible light is on
Room is bright Reasoning
It is daytime The light is on | P(node=0) P(node=1)
0 0 1.0 0.0 If it is not day and lighting is off,
room is not bright
1 0 0.4 0.6 If it is day, and light is off, it is pos-
sible room is bright
0 1 0.1 0.9 If not day, and light is on, room is
very likely bright
1 1 0.1 0.9 If both day and light is on, room is
very likely bright
Table 2. Example posterior probability table of a single node
P (node = 0) P (node = 1) Conclusion
0.2275 0.7725 It is possible for room to be incorrectly lit.
Lighting system could be improved

Networks in the study of artificial intelligence, specifically attempting to address the
question: how do machines reason? This is a response to the fact that prior to Bayesian
Networks, scientists lacked a language for codifying the process through which humans
reason about seemingly intuitive questions. For instance, achieving the most com-
fortable balance between daylight and lighting system is not all obvious and is
something that every office worker is quite familiar with.

Pearl outlines a “Ladder of Causation” (Pearl and MacKenzie 2018), which he
asserts is the pathway to achieving true artificial intelligence: The first rung is statistical
associations (correlations that can be learned from observational data), the second rung
is interventions (if-then reasoning), and the third consists of counterfactuals (the “what
if” rung). These could also be expressed as “seeing”, “doing” and “imagining”. The
goal of Bayesian Networks is to move beyond the first rung into questions of causation
and counterfactuals. These distinctions are critical for progressing beyond an analysis
of what happened to a prediction of what could be.

The construction of Bayesian Belief Networks may be approached in two ways:
either taking a data-driven approach in which the network defines its structure through
machine learning on data; or the BBN can be constructed by collecting information
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from domain experts (the knowledge-driven approach) (Constantinou and Fenton
2018). It is also possible to use a mix of these two approaches. Once constructed, the
key benefit of BBNs is their ability to support complex decision problems under
uncertainty. For this reason, BBNs have been utilized in a variety of contexts, from
generic project management to highly specialized tasks, for instance the diagnosis of
medical disorders (Onisko et al. 1999).

Bayesian Belief Networks have been applied in several areas related to architecture,
engineering and design. A literature review of this application can be found in (Okhoya
2015). The author describes two main application areas for BBNs in architecture:
construction management, e.g. logistics, performance, project cost and safety; and
building performance, e.g. thermal comfort, operational costs and energy consumption.
An overview of artificial intelligence models in construction more broadly, including
BBN approaches, appears in (Kulkarni et al. 2017).

(Cardenas et al. 2012) consider Bayesian Belief Networks applied to risk control in
construction projects. The authors note that failures occur “in situations in which tacit
or explicit information, such as risks and uncertainties, technological knowledge,
design assumptions, monitoring records, thresholds and tolerances, was either ignored,
improperly used, rejected or not passed on by someone in the project.” (Cardenas et al.
2012, p. 340). This observation suggests that if a BBN is able to codify some of these
assumptions, it may act as a unifying communication tool for project stakeholders. The
paper sets up a rather detailed BBN, but stops short of a robust analysis of its utility.
The authors also note that cost information could be layered on the network to capture
broader project information.

Another approach is (Chen and Liu 2015), who consider a Bayesian Belief Net-
work representing elements of construction safety in urban subway engineering. They
use a mixed approach of data and expert knowledge to construct the Bayesian Network.
One of the key findings of the study is that investing in BIM leads to a high chance of
success of a project. In the present paper we hope to draw out this observation and
further utilize Bayesian Belief Networks to determine where and when modelling is
most crucial to the success of a project.

3 Case Studies

To understand how an BBN might be constructed and used in a production setting, we
conducted a series of case studies with industry professionals.

3.1 Methodology

Each case study is taken from a completed or ongoing project that the interviewees had
expert knowledge of. Our interview process was structured around a set of questions
ranging from estimations on the total cost of modelling for the project to specific
questions on fabrication technology. In particular, we were interested in finding aspects
of the projects that changed substantially during the design and construction phases and
what effect those changes had. Once we had identified such an aspect, we conducted an
interactive session with the interviewee with the goal of collaboratively creating a
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BBN. To minimize the friction of this process, we used pen and paper to sketch a few
iterations of the actions (nodes) and causal relations (links) of the BBN. Once we had a
good candidate BBN, we worked through the conditional probability tables (CPTs)
with the interviewees, placing more emphasis on coarse estimates and plausible relative
values than accurately sourced data. We then entered this data in to our prototype
application (see below) and computed the probability of the final “work product”.
Where possible, we presented an interpretation of the results to the interviewee and
suggested where more focused modelling efforts might have minimized the negative
impact of the scenario, or how certain functional requirements, either digital or
physical, could have had an impact.

3.2 Qrisko - Quick Risk Operations Application

To facilitate the creation of Bayesian Belief Networks in a design setting, we created a
simple prototype application. Written in C++ and using Dlib (King 2009), Qrisko is
capable of setting up and analyzing BBNs of arbitrary complexity. A minimal interface
allows the user to graphically define nodes and links. When a node is selected, the CPT
is generated with default values which are then modified by the user. When all the
CPTs are complete, all prior probabilities are calculated and presented alongside the
CPT.

3.3 Case Study 1: Roof System

This study concerns a multi-layer roof system that is installed on a timber structure that
is shaped by a doubly curved design surface. This project is confidential and we have
therefore anonymized any identifying information and omitted images. Nonetheless,
the structure of this network should be quite familiar as it represents a common
approach for creating models that involve different construction systems; that of using
the output of one model as input to another. Although a rational approach, and one that
captures the dependency relations well, it creates a causal chain (variables that have a
knock-on effect on one another) (Fig. 2).

s
Node label: [ Work Product
Numberof vaves: [

I is evidence

Conditional probability table Posterior probability table ]
F(node=0)  F(node=1) |
0296284 | 0.703716

Design Surface Timber Model Roof System 1 Roof System 2 Panels Work Product

Fig. 2. A causal chain of models

Taking the design surface as the starting point, the timber model is created. The
timber model is then used as the basis for the roof system models, which in turn creates
the facade panel model. We assume that upon receipt of the upstream model, each
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intermediate model has a very high chance of success, in this case 0.9. Since the
dependencies in this network are quite simple, it is straightforward to compute the final
probability of the work product which is 0.7. It is worth emphasizing this result: despite
each stage having a high chance of success, the combined chance of success is much
lower. We find that this simple fact suggests that this way of organizing such models
can be improved.

A possible scenario is when the output of an intermediate stage is found to have
failed. For example, the roof system might have a physical limitation that makes its
application to some design surfaces impossible. We can simulate this with our BBN by
providing evidence of failure to one of the roof system nodes and updating the com-
putation. Not surprisingly, we find that the chance of success of the work product to fall
dramatically to 0.18. Not only does this network yield a much lower chance of success
for the work product than its intermediate stages, but it is also highly susceptible to
failure (Fig. 3).

| index: 5
Node label: [ Work Product
Numberof values: [

P
Design Surface Timber Model Roof System 1 Roof System 2 Panels ‘Work Product B b eEse

eviencevaue: [
3
Conditional probability table Posterior probability table |

P(node=0)  P(node=1)
0520098 | 0179302

Fig. 3. Causal chain with evidence of failure

Prior to installing the roof system, a laser scan study showed that the as built
condition of the timber structure deviated substantially from the digital model. The
amount of this deviation varied across the structure but ranged from 100 mm to
500 mm and had the primary effect of increasing the curvature of the roof surfaces.
Given that the model of the roof and panel systems were based off of the design
surface, this meant that the impact of this change in curvature had to be assessed,
quantified and applied to the model. We can capture this scenario in the following BBN
(Fig. 4).

JRpe——
1| index: 7.

Node label: | work Product
lues:

I is evidence

evidence vae: [
Conditional probabilty table Posterior pmhahmyiablgl .
Work Product P(node=0) Jp(noum)

0565323 | 0414671

Model Panels

Build Roof

Fig. 4. The as built condition diverges from model, leading to a masked dependency.
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Once the as-built condition diverges from the design model, the causal chain
network is incorrect. The problem lies in the fact that what is being modelled is
different from what is being built, creating uncertainty in the model. For instance, in the
network above, the success of installing the panels is now dependent on both the model
of the panels and the built condition. In the CPT for this network, we maintain the same
high probabilities for creating the models as in the first study, however the additional
dependency on the built condition dominates the behaviour of the final chance of
success. To see this, we simulate the findings of the laser scan study by providing
evidence of failure to the “Verify Timber”. Between the additional dependency on the
built condition and the fact that there is a lower chance of creating a viable model of the
roof system from the information provided by the scan data, the chance of success for
the work product falls to 0.4.

The sensitivity of this system to any deviation between the design model and the as
built condition suggests two ways to improve this situation. First, we could try to
improve the predictions for how the design model will behave over the course of
construction. In theory, a complete understanding of this behaviour would allow any
problematic scenarios to be identified and dealt with. This would require at best a large
increase in modelling efforts, and at worst simply be not possible due to intractable
nature of complex physical processes. Secondly, we could make the roof system less
sensitive to changes in the timber system. In the context of this project, a roof system
and an associated model that was designed to accommodate a range of surface con-
ditions would improve or possible remove the dependency on the as-built condition and
also make the “Verify Timber” action much more likely to succeed.

3.4 Case Study 2: KPSB Public Art

The KPSB Public Art installation was a competition that ran during 2018 in Kelowna,
BC, Canada. MAKE Studio won the competition with their “Canopy of Columns”
proposal: a tall, curved timber structure. The team is currently in the production phase
of the project with a target installation date of October 2019. In addition to the design,
The firm is committed to manufacturing all components of the structure and installing
them on site. This full-service approach, the ambitious design and the tight budget
make this project an excellent study in uncertainty in the business of design (Fig. 5).

As the team progressed through the detail design, they received the results of a
geotechnical report conducted at the site. The report determined that the ground con-
dition was poor and required significant changes to the foundation design of the
structure. The team had to choose between maintaining their original design intent and
adjusting the foundations or maintaining the proposed foundation and adjusting their
design. In both cases, the team faced a considerable amount of additional model. We
created the following BBN with MAKE Studio co-founder Mani Mani during the
interactive session of the interview to capture, in a very general sense, this situation
(Fig. 6).

Although only four nodes, this BBN captures the “masked” dependency of the
design model on the site condition. Often when creating a parametric model, some
aspects of the design are assumed to have a certain state. In this case, instead of creating
a model of the site that is able to somehow model changes to soil condition, it is
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Height and Enclosure 77e scuppiure
is made from entangled wooden columns
to compliment the timber elements of the
building beyond and to celebrate Kelowna's
prosperity and growth attribute to Forestry.

Fig. 5. Winning entry of the KPSB public art competition

Estination Node label: [ork Product
Nemberofvales: [

I" s evidence.
Detailed Model evidence uu-

Conditional probabilty table Posterior probability table |

Work Product
0345083 | 0654317

Fig. 6. Design is dependent on estimation and site condition

Site Condtion

assumed that the site condition is favourable. This is even more deceptive than the
causal chain above since not only does it create a dependency, but it also assigns a
biased probability value to the Site Condition node. As more things are omitted from
the model, more causal relations are masked, leading to a design model that is a very
idealized version of the work product. In our BBN, we can simulate the results of the
geotechnical report by finding evidence of failure in the Site Condition (Fig. 7).

The effect is that the chance of success of the final work product is 0.3. Like the
causal chain example, this situation is very common. Specifically, all of the profes-
sionals that we interviewed state that their current modelling process failed to capture
various aspects of the project and that on most if not all of their projects, new infor-
mation is obtained during the lifetime of the project. The question is, what specific
recommendations can we make to increase the chance of a successful work product in
this case? Setting aside the role of the “Estimation” node here, we can improve the
value of this project by making the design model more robust to changes in the site
condition. A concrete way to do this is to obtain a geotechnical report before any
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Detailed Model

Conditionsl probasilty table. Posterior rababily table | |

Work Product P(10de=0) _ P(node=1)
0670055 | na2isas

site Condition

Fig. 7. The results of a geotechnical report should the site condition to be significantly different
than expected and had serious implications on foundation design.

significant modelling effort. Unfortunately, the timing of this request is often not
feasible, as was the case here, but for larger commercial projects, this is often standard
procedure. A more relevant recommendation would be to impose the functional
requirement on the design model that would allow it to be adjustable in height. Ranging
from a simple scaling to more complex operations involving ratios of beam sizes and
variations in design intent, such a feature would allow the design model to accom-
modate different soil conditions by requiring less or more foundation structure. Indeed,
this is the path that was selected by the design team and has allowed them to move past
this unexpected constraint.

3.5 Case Study 3: Toronto Centre for the Arts

As part of a larger renovation of the Toronto Centre for the Arts, Eventscape Inc. was
contracted to design, detail, and build a multifaceted wall treatment of the Lyric theatre
with the goal of creating a more intimate and dramatic space. Although integral to the
design from the start, the architect felt that significant input from Eventscape was
required in order to push the development of the wall system forward. To this end,
Eventscape proposed a framing system that would follow a conceptual design surface
and serve as the structure for the panelization. The panels themselves house lighting
and perform acoustically by being reflective in some parts of the theatre and absorptive
in other parts. Leading this effort was Eric Bury and Jonathan McGregor, who were the
participants of this interview and case study (Fig. 8).

At a design review with their client, an unlikely actor emerged that had far reaching
implications: the vastly complex pulley mechanism found above the stage. The func-
tion of the pulley system is to create different environments on stage and is therefore
fundamental to the theatre. The difficulty lay in understanding the impact that the full
range of set designs might have on the design surface for the panel system. As the
conceptual design surface was updated to accommodate a new configuration of the
pulley system, so too was the model of the framing and panels. At this stage in the
project, propagating these changes through the different models being maintained by
Bury and McGregor was no small task. With this situation in mind, we created the
following BBN during the interactive part of the interview (Fig. 9).

Here we see that the Panels node is strongly influenced by two factors: Conceptual
Mass and Installation. The Conceptual Mass is further influenced by a number of
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Site Condtion

Work Product

Fig. 9. The BBN of the panel design and installation

factors, but of note is the Client Requirements node, which represents the different set
designs that the pulley system must accommodate. The dependency of a successful
Work Product on Installation is clear: if the panels cannot be installed, the project
cannot be completed. Finding evidence of failure to install in this BBN yields a final
probability of 0.001, which is no surprise. Of note is that finding evidence of successful
installation yields a final probability of 0.7 (Fig. 10).

This suggests that while installation is required, it is not sufficient for further
increasing of the value of the project. To do this, we must look at the Conceptual Mass
node. Firstly, we note the high degree of dependency of this node. Site Condition,
Client Requirements, Estimation, and Installation are all factors in creating a viable
conceptual mass. Specifically, the CPT for the Conceptual Mass node contains sixteen
elements, each of the representing a different scenario and having distinct implications
on the conceptual mass. Since the values of the CPT depend on how well these
relationships are understood, a clear way to increase the overall value of the project
would be to spend more time modelling and refining the behaviour of the conceptual
mass. Secondly, we note that finding evidence of a viable conceptual mass results in a
target probability of 0.98, whereas finding failure results in a target probability of 0.5.
This reinforces the well-known design principle that understanding the needs of the
client is fundamental to a successful project. It also suggests that this discussion has
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Number of values:

Conceptual Mass Pansis Work Product Conditonal probabily tae. Posteio probabily able |
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0010989 | 0983011

Client Req

A\

stallatigh

Fig. 10. With successful conceptual mass and installation is the work product probability very
high.

hard boundaries: not every configuration or requirement is viable and too many con-
straints at that programmatic stage has real impact on the final work product. It is
simply not always possible to “make it so”.

4 Discussion

A theme of the case studies is that current practices often mask dependencies, hiding
modes of failure (e.g. lack of understanding of the site condition in Case Study 2, or the
divergence of the as-built condition from the design model in Case Study 1). Even
simple BBNs can highlight important dependencies and strong actors. In this way,
BBNs may decrease the cost of modelling by focusing on areas of strong influence.
Moreover, once a BBN is created and the areas of strong influence identified, it
becomes much easier to propose specific functional requirements on the modelling
approach and even the modelling technology itself. An example of this is the role of
laser scanning as-built conditions. Combined with robust procedural modelling capa-
bilities, laser scanning could provide a way to break the causal chain model illustrated
in Case Study 1. Instead of relying on the idealized output of another stakeholder, it
would be possible to continuously refine each distinct model based on the physical
measurements obtained by laser scanning. In this way, these functional requirements
revealed by the BBN would have significant and measurable effects on model
robustness and efficiency, further increasing overall project value. These requirements
might also help to guide firms looking to develop new, in-house capabilities. Rather
than another productivity tool or generic design option generator, firms could allocate
resources on targeted features whose value has been established through examination
of the BBN.

We find the implications to design very compelling. The functional requirements
that emerge from a Bayesian Belief Network can extend to physical construction
systems and not just digital tools. Most construction systems have some degree of
tolerance. For instance the holes for screws are a little bit larger than the screw
diameter, or perhaps there are multiple possible assembly configurations of a facade
system. This generic approach can be insufficient for more complex designs, in
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particular designs involving any amount of curvature. In those cases, there is a strong
coupling between the limitations of the hardware components and the degree of cur-
vature that can be accommodated. This suggests that the flexibility of a system (the
ability of a system to adapt to a range of conditions) might be more relevant than
modularity. Bayesian Belief Networks can establish where such dependencies lie and
how important might be to the success of the project. Engaging the experts with
relevant knowledge at key points in the lifetime of a project is critical for success and
BBNSs can create a framework for achieving this success.

In all of the studies we conducted, we were able to quickly create a coarse but more
or less complete pictures of the project not by sophisticated modelling machinery, but
by using the framework of Bayesian Belief Networks for industry professionals to more
directly apply their expertise. We believe this approach can substantially increase the
overall value of the project. This value would be distributed to all stakeholders, but the
owner of the project would likely benefit most of all.

5 Further Work

A key step in future work is to apply this methodology to a new project. This in turn
would be facilitated by the extension of our prototype software to a web application for
the development of Bayesian Networks. This could be targeted to the design and
architecture industries by the inclusion of common templates (such as those seen in the
case studies above). Because we view BBNs are a useful communication tool for
different stakeholders in a project, this application would allow multiple users to
interact with the network.

Discussion of Bayesian Networks often focuses on the data-driven approach to their
construction. In our case studies, we rely exclusively on the expert knowledge method
of construction. It is possible, however, that combining expert knowledge with a
machine learning approach on certain areas could be beneficial. This would likely
involve the creation of a larger and more detailed BBN, which could include collected
data about some of the less prototypical aspects of the project pipeline, for instance data
about average material wastage by material type.

A further extension of this work would be to explicitly codify the decisions
involved in the scenarios captured by the BBN. A Bayesian Decision Network
(BDN) is an extension of a Bayesian Network which includes additional nodes called
decision nodes (Constantinou and Fenton 2018). These nodes do not have conditional
probabilities associated with them. BDNs have the potential to further support complex
decision making under uncertainty. While BDNs may further clarify pathways of
causality, they are also more time-consuming to create, and would depend heavily on
the input of multiple stakeholders in a project.
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