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Abstract. Railway crew scheduling is the problem of generating feasi-
ble duties for the crews on a train to cover all trips at minimal cost.
In Germany, regional passenger transportation consists of many dis-
tinct but interlinked networks, each with own crews. For efficiency rea-
sons, we investigate the cost saving potential of scheduling crews col-
lectively across multiple networks operated by the same company. To
derive valid estimates, we develop a solution approach for the large-
scale multi-network crew scheduling problem considering the network-
specific constraints of attendance rates for conductors. Several studies
have shown that partitioning large-scale problems improves computa-
tional times. We discuss guidelines for a problem-specific decomposition
and derive three methods: a graph partitioning algorithm with adjusted
edge weights and two variants of a network-based greedy decomposi-
tion heuristic. We assess their performance with a 2-phase optimization
method using a hybrid column generation genetic algorithm and bench-
mark the results against a test run without decomposition. The tests
show that maintaining the network structure while considering the con-
nectivity between networks achieves the best results.

1 Introduction

Crew scheduling is an important step of the operational planning in railways. It
deals with generating duties to cover all trips at minimal cost while considering
numerous real-world requirements. This work deals with the problem of schedul-
ing conductors for multiple regional railway networks with the network-specific
constraints of attendance rates, a problem arising at a large railway company.

Railway passenger transportation on regional level connects smaller cities and
towns with each other and, if existing, with larger cities in the same area. It serves
the regional and local travel demand, e.g., for commuting, leisure activities,
or connection to larger cities and other transportation modes. The train lines
are typically designed for stopping at almost every station within the range
of a certain distance. In Germany, local state transport authorities plan these
railway networks for each geographical area. These separately defined networks
are interlinked to ensure travel connections as can be seen from Fig. 1.
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Fig. 1. Geographical extend of three regional passenger transportation networks with
15 important intersections

After defining a network by its train lines and corresponding timetable, the
authorities select an railway company by means of a public tender. The trans-
portation contract also formalizes service requirements such as the type and
quality of the rolling stock, the ticket pricing structure or attendance rates for
conductors. The latter is a special characteristic in the German regional rail-
way passenger transportation and has to be considered when scheduling con-
ductors to operate the network. Conductors’ work mainly consists of passenger
services (e.g., controlling tickets) and sometimes of operational tasks (e.g., secur-
ing departures). Hence, in contrast to drivers, they are not required on a train
during the total driving time. Mainly due to cost reasons, the state transport
authorities assign each train kilometer an attendance rate g which may vary
depending on product type, time of day and other factors. Attendance rate g is
satisfied when the g-share of all kilometers assigned to g is covered by at least
one conductor. It can be defined as

g ≤ train kilometersg,attended
train kilometersg,total

. (1)

Based on the terms of the transportation contract and further operational
and legal restrictions, the nominated railway company schedules its resources,
i.e. rolling stock and crews, to operate the network. The cost for rolling stock and
personnel are two main cost factors of railway operations. Since companies strive
for resource-efficient schedules, they commonly support these scheduling tasks
with software based on Operations Research techniques. Due to the public tender
process, companies plan each single network separately, even though schedules
that operate across multiple interlinked networks could achieve economies of
scale. Only in few cases, planners use their knowledge and experience to create
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duties across single networks manually. In our project, we investigate the cost
saving potential of planning crews across multiple networks with attendance
rates, a problem arising at the largest German railway operator.

Solving single networks with attendance rates has been extensively discussed
by [8,9]. Our solution approach for solving multiple networks with attendance
rates builds on the hybrid column generation genetic algorithm developed by [8].
In a previous study, we have shown that partitioning the original multi-network
problem into smaller sub-problems enables parallel computation and thus accel-
eration of the solution procedure. By sub-sequentially solving the original prob-
lem building on the solutions of the previous phase, the algorithm regains solu-
tion quality. With this approach, cost savings up to 2% for 12 networks with
a planning horizon of one day could be realized [6]. In this study, each single
network represented a sub-problem which led to two drawbacks: Firstly, the
needed CPU capacity for parallel computation increases proportionally with the
number of sub-problems to be solved. Secondly, the different sizes and com-
plexities of the sub-problems led to a high variance in computational times in
the partitioning phase. We aim for a limited use of CPU capacity and balanced
computational times by creating few sub-problems of similar size and complexity.
To achieve this, different decomposition strategies suitable for the multi-network
crew scheduling problem with attendance rates are investigated.

In this work, we describe the multiple network crew scheduling problem
with attendance rates and its size and complexity (Sect. 2). We discuss related
work (Sect. 3) and present an improved 2-phase optimization method based on
a hybrid column generation genetic algorithm (Sect. 4). In Sect. 5, we outline
problem-specific considerations to decompose the original problem which trans-
late into three different decomposition approaches. We assess their performance
with two real-world instances and benchmark the results against the solution
method without decomposition (Sect. 6). We conclude with a summary of our
findings and potential for further research (Sect. 7).

2 Problem Description

Crew scheduling is part of the planning process for tenders as well as the oper-
ational planning at a railway company. Its objective is to select a set of feasible
duties, a schedule, which covers all trips at minimum cost. A trip represents an
atomic unit of a train run and is characterized by a departure/arrival time and
a departure/arrival station (relief points). Relief points are stations where crew
members can change trains. Some of them are equipped for taking breaks. Trips
i and j can be combined into feasible duties, if

1. the starting relief point of trip j is the end relief point of trip i (geographical
condition) and

2. trip j starts after trip i with a maximum waiting time (chronological condi-
tion).

If the trips i and j are not on the same train run, the walking distance from
one train to the other must be considered. We set the maximum waiting time
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and the walking time to 120 and 5 min, respectively. Also, duties can only start
and end at a few defined stations (crew depots) which have to be identical (duty
symmetry). Further restrictions include additional operational conditions (e.g.,
break opportunities at relief points) and legal work regulations (e.g., maximum
working time, break time rules). A comprehensive discussion of all restrictions
that apply to our real-world problem for the single network case can be found
in [8,9].

2.1 Attendance Rates in the Multi-network Railway Crew
Scheduling Problem

For being able to schedule crews across multiple networks, it is necessary to
combine separately defined networks and their specific restrictions into a crew
scheduling problem (multi-network railway crew scheduling problem).

We define a single railway network as the entity of train lines and the cor-
responding parameters determined by a transportation contract. Obviously, it
is only reasonable to combine two single networks if they are interlinked, i.e.
the two networks share at least one relief point (an intersection of two or more
networks). Otherwise, crews cannot change between the trains of different net-
works. Combining two or more single networks results in a very large synthetic
network of trips and relief points with their corresponding characteristics and
restrictions.

Not all restrictions apply to every network. Attendance rates for conductors,
in particular, are defined for each network individually. However, other restric-
tions and characteristics such as the aforementioned operational conditions or
legal work regulations usually apply to a station (e.g., walking distances), to a
duty (e.g., maximum working time, break time rules, symmetry of starting/end
crew depot) or to the schedule in total (e.g., average working time). Hence, we
define the problem in such a way that attendance rates are the only network-
specific restrictions, i.e. must be satisfied for the set of trips of each network
individually.

2.2 Mathematical Formulation

We formulate the multi-network railway crew scheduling problem with attendance
rates (MNRCSPAR) as set covering model. Let M and N denote the set of trips
i and the set of duties k, respectively. Furthermore, we define R as the set of
networks r and Gr as the set of required attendance rates g per network r. The
binary decision variable xk indicates whether duty k is selected in the solution
schedule, i.e. xk = 1, 0 otherwise. Let yi be a binary decision variable such that
yi = 1 if trip i is covered by the schedule, 0 otherwise. We define the travel
distance of trip i which is assigned to attendance rate g as dig and the cost of
duty k as ck. The binary assignment matrix A indicates whether trip i is covered
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by duty k (aik = 1) or not (aik = 0). The model formulation is:

min
∑

k∈N

ckxk (2)

s.t.
∑

i∈Mr

digyi ≥ g
∑

i∈Mr

dig ∀g ∈ Gr,∀r ∈ R (3)

∑

k∈N

aikxk ≥ yi ∀i ∈ M (4)

yi ≥ aikxk ∀i ∈ M,∀k ∈ N (5)
xk, yi ∈ {0, 1} ∀i ∈ M,∀k ∈ N. (6)

The objective (2) is to minimize the total cost of all duties. Constraints (3)
ensure that the total distance of attended trips of network r with attendance
rate g satisfies the by attendance rate g defined minimum (see Eq. (1) in Sect. 1).
Constraints (4) and (5) link the trip coverage by the duties of the solution
schedule to the attendance rate constraints (cf. constraints (3)): if the minimal
attended distance for attendance rate g requires that trip i is covered, then at
least one duty k has to cover trip i. Vice-versa, constraints (5) ensure that if trip
i is covered by at least one duty of the solution schedule, its distance di adds to
the corresponding attendance rate fulfillment.

2.3 Size and Complexity of the MNRCSPAR

A MNRCSPAR is more complex than single network problems for two reasons.
First, the total number of trips to be covered is much larger since it consists
of the sum of all trips of each network plus additional trips. These are created
when a network serves a station which is not defined as relief point, but is a relief
point in another network. As a consequence, some trips are broken up into two
or more trips as compared to the single network case. This adds both restrictions
and variables, i.e. duties to cover all trips, to the problem.

Secondly, the total number of possible trip combinations, i.e. duties, increases
with the higher number of possible successors per trip. Figure 2 illustrates the
typical distribution of possible successors per trip for different network types.

Typical small to medium-size networks are composed of a low to medium
number of lines with a moderate frequency (e.g., every 60 min). Most trips can
be combined with 1 to 10 successors, the maximum ranges from 10 to 15. In
contrast, large and complex networks are characterized by a high number of
train lines and/or a high frequency of train services with a short average trip
duration. In our example, the distribution of the number of possible trip suc-
cessors shows the highest peak at 38. Those are trips which end at one of the
most important junction of the network where several train lines interconnect.
The service frequency of these lines is relatively high, every 20 or 30 min, and
remains constant throughout the day. Additionally, the frequencies of the train
lines are synchronized in such a way that passengers have enough time to change
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Fig. 2. Typical distribution of the number of possible successors per trip for a small
to medium-size network, a large and complex network and multiple networks

trains. Hence, each trip which ends at this junction shows the same pattern of
possible successors throughout the day.

If both of such network types are combined to multiple networks, the max-
imum number of possible trip successors increases, in this example up to 48.
The median is slightly reduced as compared to the large and complex single
network, but is higher than for the typical small to medium-size network. The
average trip duration in our real-case data set is about 18 min. As a consequence,
duties consist of 15 to 20 trips on average, in extreme cases up to 40. With the
higher number of potential successors, the possibilities for combining trips to
feasible duties increases to an even larger extend resulting an immense number
of variables in the MNRCSPAR.

Crew scheduling problems are known to be NP-hard and therefore require
high computational times for optimal solutions. This is not suitable for the plan-
ning tasks of our railway company. Its planners generate crew schedules for ten-
der offers and for the daily operations. Planning for tenders commonly occurs
every 10 years per network, depending on the duration of the transportation
contract, and is a complex task including many dependencies with the previous
planning steps. Typically, it takes several months until a tender offer is ready
for submission. Operational planning occurs more frequently but is a little less
extensive as it can build on the knowledge and experience of the previous sched-
ules. It is common to review and adjust the crew schedule for each network on
a yearly or half-yearly basis, following the changes of the time tables. However,
due to potential short-term changes (e.g., construction sites), intrayear adjust-
ments to the schedule might become necessary. For both planning tasks, the
planners test different schedule parameters and modify the data set in order to
improve the overall cost in a number of iterations. Hence, to support the planning
tasks, our software tool should generate feasible and high quality solutions which
achieve lower cost than the sum of the solutions of the single network problems
within less than a few days. These requirements necessitate a tailored method
to compute high quality results for the multi network railway crew scheduling
problem in reasonable time.
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3 Related Work

Researchers have dealt with crew scheduling problems in the transportation
industry since the 1950s. Originally, their focus was on problems in the public
transit and airlines industries which still are areas of high interest (see, e.g., the
recent surveys of [10,15]). In the 1990s, due to the advances of computational
power, research extended to the more complex problems of crew scheduling in
railway systems (e.g., see [2,7]). Since then, a large number of real-world applica-
tions have been studied varying in, among others, transportation modes, coun-
tries and their specific requirements, as well as the integration level of planning
stages.

Heuristic procedures and meta-heuristics are frequently employed to achieve
faster computational times. By far the most popular solution method is column
generation (see [18] for a methodological overview) with various forms and mod-
ifications to fit the specific real-world case. In the context of crew scheduling,
the problem of selecting duties for the best schedule starts with a small subset
of feasible duties (restricted master problem). It is stepwise enlarged by newly
generated duties, i.e. columns, which potentially improve the current solution.
Generating these duties is an optimization problem by itself (pricing problem).
Since the master problem is relaxed by linear or Lagrangean relaxation, integer
solutions are either generated by a branch-and-bound scheme (branch-and-price)
or in a subsequent step.

Due to its slow convergence, researchers investigate problem-specific tech-
niques to achieve better solutions in less time. In general, we distinguish between
acceleration techniques for the solution method itself, problem size management
by merging and restrictions and problem size management by decomposition. For
common acceleration techniques such as column deletion and column fixation,
[3] provide an comprehensive overview.

Problem size management by merging and restrictions includes approaches
to reduce the graph size of the original problem by dissolving defined parts of it
or to reduce the solution space by adding limits. [17] discuss three main ways of
controlling the search space to extend their column generation approach by iter-
atively deriving new sub-problems of manageable size for the commercial solver
(to continuously improve the current solution). These search space controllers
include, among others, dissolving relief opportunities using experienced-based
rules and limiting the number of trips per duty. Additional restrictions such
as a minimal threshold for the share of working time or minimal duty dura-
tion reduce the solution space further. Likewise, [5] add limits to the number of
possible connections per trip.

Problem size management by decomposition uses strategies to partition the
graph of the original problem into a number of smaller sub-graphs which are
solved either independently or remain linked to each other. Logical dimensions
to decompose a problem are time, geography, train lines and historical schedule
information (see [13]). [11] leverage the periodic element of a weekly RCSP to
transform it into smaller one-period problems using the concept of time frames.
Geographical and train line aspects are used by [16] who limit the trips for a
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problem instance to certain railway lines or train types or by a maximum distance
from a depot. Likewise, [19] formulate individual problems per geographical crew
district in order to cope with the large problem size. [4] develop two overlapping
sub-problems based on the geographical position of the origin and destination
of the trips. [1] experiment with all of the above mentioned partitioning dimen-
sions: weekday partitioning, geographical partitioning, line based partitioning
and partitioning based on information on good trip combinations from previous
optimization runs. They show that combining the partitioning methods with the
original solution procedure achieves a solution improvement by up to 2%. Some
researchers investigate the use of algorithms to decompose the problem. [20] use
a genetic algorithm to assign trips to depots and solve the smaller instances
independently. Extensive research to partition graphs for problems at a freight
railway operator was done by [12,13]. They explore and compare different edge
weights for a graph partitioning problem and solve the resulting sub-problems
dynamically using a divide-and-price algorithm.

With such problem size management approaches, computational times can
be reduced significantly, but with a trade-off between reduction of solution space
and loss of quality (see [17]).

4 Solution Approach

We build on the existing approach for the single network multi-day crew schedul-
ing problem with attendance rates: a hybrid column generation genetic algorithm
referred to as CGGA in the following (see [8] for a detailed discussion). In order
to accelerate computational time for the MNRCSPAR, we experiment with the
decomposition of the original problem into a number of sub-problems. Besides
reducing the problem size, this enables parallel computation. However, as we
aim for a better solution quality as the sum of the single network problems, it
seems not sufficient to only decompose the original problem into smaller sub-
problems and add up their solutions in the end. Instead, we expect to generate
more cost savings by solving the complete original problem in a later phase. As
a consequence, we suggest a 2-phase optimization method (see Fig. 3).

Phase 1 starts with the decomposition of the original problem into smaller
sub-problems which are solved in parallel thereafter. We discuss different decom-
position strategies and algorithms in Sect. 5. The sub-problems as well as the
original problem in the later phase are solved using CGGA modified for network-
specific constraints. Within CGGA, the linear relaxation at the root node of the
master problem is solved with column generation. It utilizes a genetic algorithm
for generating new duties, i.e. columns. The initial set of duties consists of effi-
cient trip combinations which are built by three different graph search strategies.
The column generation procedure applies column deletion to manage the size of
the master problem and ends as soon as no new column with negative reduced
cost could be generated by the genetic algorithm. Other stopping criteria such
as time limits or limiting the number of iterations can also be applied. Instead
of computing an integer solution for each sub-problem, we select every column
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Fig. 3. Framework of the 2-phase optimization method with variable selection between
phase 1 and 2

xk with a primal value greater than a defined threshold α and pass it on to
the second phase. Subsequently, in phase 2, we solve the original problem using
CGGA building on an initial set of duties which combines the selected duties
of each sub-problem and additional efficient trip combinations. In the last step,
the integer solution is generated using a commercial solver.

Note that the initial set of duties of the second phase does not necessarily
represent a feasible solution. The quality of the duty set per sub-problem highly
depends on the decomposition which affects the sub-problems structure and its
solvability, in particular with regard to the attendance rates requirements. Hence,
suitable decomposition strategies are required.

5 Decomposition Strategies

An essential characteristic of the MNRCSPAR is that some restrictions, i.e.
attendance rates, only apply to a subset of trips. Maintaining this structure of
restrictions might support the solvability of the sub-problems. Additionally, to
build a powerful initial set of duties to be further improved by the genetic algo-
rithm of CGGA in phase 2, it seems beneficial to combine two sets of duties:
duties which represent good solutions of the sub-problems considering atten-
dance rate restrictions and duties which are efficient trip combination across
all networks without considering attendance rate restrictions. The latter are
built from the in the first step of CGGA, while the first must be derived from
the sub-problem solutions using a suitable decomposition strategy. To test this
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assumption, we compare the performance of different strategies with the 2-phase
optimization method.

5.1 Guidelines for Decomposing the Graph of a MNRCSPAR

Our objective is to decompose the MNRCSPAR into a defined number of sub-
problems by cutting as few “good” trip combinations as possible.

The underlying structure of the MNRCSPAR can be interpreted as directed,
weighted graph G = (V,E) with vertices v ∈ V representing trips. An edge
(i, j) ∈ E ⊂ V × V with edge weight wij exists, if two trips i and j can
be connected in accordance with the geographical and chronological conditions
and the maximum waiting time (see Sect. 2). Finding a good decomposition is
a graph partitioning problem [1], [13]. It is formally described for a graph G to
find a partition of V into k equal-sized subsets V1, ..., Vk with minimum edge
cut wp, where

wp =
k∑

n=1

(
∑

(i,j)∈E:i∈Vn,j∈V \Vn

wij +
∑

(i,j)∈E:i∈V \Vn,j∈Vn

wij) (7)

In our case, the importance of an edge, represented by its weight, is deter-
mined by three factors (see [13] for a detailed discussion of the first two items):

• Cost efficiency - Unproductive times, e.g., crews waiting for the next trip,
increase the cost of an schedule and, therefore, should be minimized.

• Exclusiveness of a connection - With an increasing number of outgoing
edges of a vertex, the importance of one of these edges decreases as other
alternatives exist. However, if a connection between two trips is unique for
one of them, it should not been cut. Otherwise, the trip can only become the
first or last trip of a duty which might lead to an insolvable problem instance.

• Network or train run affiliation - Trips of the same network or train run
should be kept together in one sub-problem to reflect the problem structure
with attendance rates.

Furthermore, the decomposition method applied should generate an
adjustable number of sub-problem, e.g., ranging from 2 to 8 or more. The reason-
able number of sub-problems depends on the problem size, its network structure
and the available computational power for solving the MNRCSPAR.

5.2 Decomposition by a Graph Partitioning Algorithm

The NP-hard graph partitioning problem has been studied extensively. Various
heuristics have been proposed to generate good solutions in very short time. In
the context of railway crew scheduling problems, [13] show that adjusted edge
weights and subset size modifications improve the performance of their solution
method.
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For our purpose, we define problem-specific edge weights (cf. Eq. 8) to repre-
sent cost efficiency, exclusiveness of a connection and train run affiliation. Cost
efficiency is driven by the unproductive time, i.e. the waiting time tij in min-
utes, of a connection. We use the inverse of the waiting time as indicator (cf. first
addend of 8). The exclusiveness of an edge can be measured by the inverse of
the number of alternative edges. An edge eij is always both one of the outgoing
edges (eiv) of vertex i as well as one of the incoming edges (evj) of vertex j. It
will therefore be assigned two values of which the maximum is chosen (cf. second
addend of 8). Lastly, if the two vertices i and j belong to the same train run,
indicated by the train number tNo, the weight of their linking edge is increased
by a constant zij = 1 (cf. third addend of 8). With this, the addends are defined
in such way that all three factors are considered equally with a value range of
(0, 1] and [0, 1], respectively.

wij =
1
tij

+ max
{

1∑
v∈V evj

,
1∑

v∈V eiv

}
+ zij with zij =

{
1 if tNoi = tNoj

0 otherwise.
(8)

We use the algorithm developed by [14], a multilevel recursive-bisection which
has proven to achieve good and fast results. The algorithm and further improve-
ments are implemented in the open-source software tool METIS1, version 5.1.
It enables k-partitioning of an undirected, weighted graph into k subsets which
fits our purpose.

5.3 Decomposition by Network-Based Greedy Heuristics

As we assume that maintaining the single network structure supports our solu-
tion procedure, we also define a network-based greedy heuristic for decomposing
the MNRCSPAR. Next to maintaining the single network structure, we aim for
a balanced number of trips across the sub-problems in order to achieve com-
parable computational time and effort. The basic idea is that, given the trips
of the original problem and a target number of sub-problems, a set of trips of
a network is selected according to a defined rule and added to a sub-problem.
The number of trips per sub-problem is hereby limited to 110% of the average
number of trips per sub-problem.

Variant 1. First, we order the single networks by their count of trips. Then,
starting with the network with the highest count of trips, the sets of trips per net-
work are iteratively added to the sub-problem with the currently lowest number
of trips. If the limit for trips is exceeded after adding a set of trips to a sub-
problem, the sub-problem is “closed” and cannot be considered any further. The
procedure continues until all sets of trips, i.e. single networks, are assigned.

This variant considers only the number of trips in order to achieve balanced
sub-problem sizes. However, the degree of connectivity between single networks
1 METIS is a set of serial programs for, among others, partitioning graphs and parti-

tioning finite element meshes. See http://glaros.dtc.umn.edu/gkhome/metis/metis/
overviewformoreinformation.

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview for more information.
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview for more information.
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can vary significantly. For instance, if the MCRCSPAR includes more than two
networks, it is possible that some of them are only indirectly connected via
other networks. i.e. they do not share any edge. Since phase 1 of the solution
procedure should already generate feasible duties which potentially are part of
the final solution, considering connectivity between networks seems to be useful.

Variant 2. In the first step, we calculate the connectivity between all single
networks defined as the number of edges connecting the sets of trips of two net-
works. The connectivity values between each network and each sub-problem are
set to 0. We start with the highest connectivity value and add the trips of both
networks r1 and r2 to the same sub-problem sp1. It follows the update of the
connectivity values in such a way that the connectivity between a network r3
and sub-problem sp1 is updated to the sum of the connectivity values between
network r3 and the networks r1 and r2, respectively. The latter are set to 0
afterwards. We iterate this procedure of selecting the highest connectivity value,
assigning the trips to a sub-problem and updating the connectivity values until
all sets of trips are assigned. As soon as the limit number of trips is exceeded
after adding a set of trips to a sub-problem, all connectivity values of the cor-
responding sub-problem are set to 0 (“closing” of sub-problem). If a network
remains with connectivity values of 0 to all of the open sub-problems, its trips
are added to the sub-problem with the lowest number of trips.

6 Computational Results

We apply the decomposition strategies (see Sect. 5) to the partitioning step in
phase 1 of the 2-phase optimization method (2PH, see Sect. 4). As a result, three
alternative solution methods are derived: 2PH in combination with the graph
partitioning algorithm (2PH GP) and with the two variants of the network-
based greedy decomposition heuristic (2PH H1 and 2PH H2). We evaluate the
performance of the three alternatives with two real-world test instances (see
Table 1).

Table 1. Structure and size of two real-world test instances

Single networks
[#]

Planning period
[days]

Total
trips [#]

Relief points
[#]

Crew depots
[#]

Test instance 1 2 7 18.286 51 10

Test instance 2 11 1 6.364 136 29

All tests are executed on a Intel(R) Xenon(R) CPU E5-2630 with 3.3 GHz
clock speed (768 GB RAM) and 32 kernels. The linear and integer program-
ming problems within CGGA are solved using the commercial solver Gurobi,
version 8.1, restricted to maximal 6 kernels. We limit the computational time
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of each step in 2PH. Phase 1 is limited to 2 and 3 h for test instances 1 and
2, respectively. Phase 2 is limited to 9 h, thereof 3 h for the column generation
procedure and 6 h for computing the integer solution.

We benchmark the test runs against a run without decomposition (CGGA)
with the same time limits. For instance, the time limits of the column generation
procedure and the computation of the integer solution for instance 1 are set to
5 h (equals the time limits of phase 1 plus the column generation procedure in
phase 2) and 6 h, respectively.

Table 2 shows the minimum (Min.) and maximum (Max.) as well as the
median (Median) of the best objective value found (Obj.) and its gap to the
current lower bound (Gap) of 5 test runs per solution approach. We also include
the share of mixed duties covering trips of more than one network (MixD)
and the relative improvement of the objective value (ΔObj) in comparison to
the non-decomposition benchmark. If the solution of the best objective value
found includes infeasible duties, the value is marked with (*) and additional
penalty cost (500,000 per infeasible duty) are added to the objective value.
Test instance 1 consists of 2 networks. Hence, the number of sub-problems
for all decomposition approaches is set to 2. As H1 and H2 produce the same
decomposition, we only show the results for H1 in this case. Test instance 2
is decomposed into 4 sub-problems. Other experiments have shown that this
number of sub-problems provides a good trade-off between solution time versus
computational power consumption and solution quality in phase 1. The non-
decomposition benchmarks could not produce feasible solutions in the given time
limits. The best objective values found (with gaps) are 27, 315, 360(∗) (10.0%)
and 10, 171, 075(∗) (4.1%) for test instance 1 and 2, respectively.

Table 2. Computational results of three decomposition strategies with test instances 1
and 2

2PH GP 2PH H1 2PH H2

Obj Gap MixD ΔObj Obj Gap MixD ΔObj Obj Gap MixD ΔObj

Test instance 1

Min 26, 237, 050(∗) 9.3% 52.5%−3.9% 25,301,380 8.1% 30.9%−7.37% cf. 2PH H1

Median 26, 371, 780(∗) 9.6% 52.9%−3.5% 25,614,250 9.3% 29.5%−6.23% cf. 2PH H1

Max 27, 024, 370(∗) 11.4% 54.5%−1.1% 25,796,835 10.2% 29.7%−5.56% cf. 2PH H1

Test instance 2

Min 8, 399, 465(∗) 5.2% 58.5%−17.4% 7,728,480 4.4% 28.9%−24.0% 7,679,230 5.0% 43.7%−24.5%

Median 8, 427, 005(∗) 5.1% 62.3%−17.2% 7,780,030 4.7% 30.1%−23.5% 7,768,215 5.6% 52.4%−23.6%

Max 8, 469, 950(∗) 5.4% 62.4%−16.7% 8, 233, 580(∗) 4.2% 30.5%−19.1% 7,809,230 6.0% 46.8%−23.2%

It can be seen that all decomposition strategies lead to an improvement of
the non-decomposition benchmark. However, similar to CGGA, the 2PH GP
approach does not achieve a feasible solution within the given time limits for
both instances. In contrast, only one run of the network-based decomposition
heuristics, the maximum of 2PH H1 for test instance 2, produces an infeasible
duty. All other runs lead to feasible solutions which indicates that maintaining
the network structure during the decomposition supports the solution of the
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MNRCSPAR. Moreover, the minimum, maximum and median of 2PH H2 are
slightly better than the comparable results of 2PH H1 for instance 2 in terms of
best objective found the related gaps. It also results in a higher share of mixed
duties (43 up to 53%). Hence, considering the degree of connectivity between
the networks further improves the already good results of the network-based
decomposition without connectivity. Finally, the gaps of instance 1 of more than
8% indicate that great improvement of the best integer solution found is possible
with longer computational times.

7 Conclusion

This paper presents a multi-network railway crew scheduling problem with appli-
cation to the German regional passenger transportation and its specific require-
ment of attendance rates for conductors. We especially focus on the development
of a problem-specific solution approach with the aim to achieve high quality solu-
tions in reasonable time. Therefore, we develop a 2-phase optimization method
which builds on a hybrid column generation and genetic algorithm, an existing
solution approach for solving the single network case (see [8])). In the first phase,
sub-problems are built and solved in parallel. By a variable selection mechanism,
the duties of the solutions of the relaxed master problems are passed to the sec-
ond phase in which the original problem is solved and an integer solution is
generated.

We experiment with three different decomposition strategies: a graph parti-
tioning algorithm developed by [14] with problem-specific adjusted edge weights
and two variants of a network-based greedy decomposition heuristics. The deci-
sion rules build on the number of trips per network (variant 1) plus the degree
of connectivity between networks (variant 2). We test the decomposition strate-
gies with the 2-phase optimization method. The test results of two real-world
instances show that maintaining the network structure by using the network-
based greedy decomposition heuristics performs best within the given time lim-
its. Hereby, considering the connectivity degree between the networks, next to
keeping the number of trips across sub-problems balanced, achieves slightly bet-
ter results than the decomposition without connectivity. Moreover, we show that
feasible solutions for test instances with more than 18,000 trips can be generated
within less than 12 h, but with potential for further improvement.

A disadvantage of 2PH H1 and 2PH H2 is that they are very problem-specific
to the multi-network case and cannot be applied to a very large and complex
single network. Still, they work well for our purpose. Further research involves
testing the performance of 2PH H2 with even larger instances, in particular plan-
ning test instance 2 with 11 networks for one week which is the standard planning
period of the railway company. In this context, further solution method exten-
sions with focus on accelerating the integer solution generation (e.g., variable
fixing heuristics) should be investigated.



312 J. Heil

References

1. Abbink, E.J.W., Wout, J.V., Huisman, D.: Solving large scale crew scheduling
problems by using iterative partitioning. In: Liebchen, C., Ahuja, R.K., Mesa,
J.A. (ed.) ATMOS 2007. OASIcs 7, pp. 96–106. Dagstuhl Publishing, Saarbrücken
(2007)

2. Caprara, A., Kroon, L., Monaci, M., Peeters, M., Toth, P.: Passenger railway opti-
mization. In: Barnhart, C., Laporte, G. (eds.) Transportation, pp. 129–187. Else-
vier, Amsterdam (2007)

3. Desaulniers, G., Desrosiers, J., Solomon, M.: Accelerating strategies in column
generation methods for vehicle routing and crew scheduling problems. In: Ribeiro,
C.C., Hansen, P. (eds.) Essays and Surveys in Metaheuristics, pp. 309–324.
Springer, London (2002)

4. Fores, S., Proll, L., Wren, A.: Experiences with a flexible driver scheduler. In:
Voß, S., Daduna, J.R. (eds.) Computer-Aided Scheduling of Public Transport, pp.
137–152. Springer, Heidelberg (2001)

5. Freling, R., Lentink, R.M., Odijk, M.A.: Scheduling train crews: a case study for
the Dutch railways. In: Voß, S., Daduna, J.R. (eds.) Computer-Aided Scheduling
of Public Transport, pp. 153–165. Springer, Heidelberg (2001)

6. Heil, J.: A solution approach for crew scheduling with attendance rates for multiple
networks. In: Operations Research Proceedings. Springer (2018)

7. Huisman, D., Kroon, L.G., Lentink, R.M., Vromans, M.J.C.M.: Operations
research in passenger railway transportation. Stat. Neerl. 59(4), 467–497 (2005)

8. Hoffmann, K., Buscher, U., Neufeld, J.S., Tamke, F.: Solving practical railway crew
scheduling problems with attendance rates. Bus. Inf. Syst. Eng. 59, 147–159 (2017)

9. Hoffmann, K., Buscher, U.: Valid inequalities for the arc flow formulation of the
railway crew scheduling problem with attendance rates. Comput. Ind. Eng. 127,
1143–1152 (2019)

10. Ibarra-Rojas, O.J., Delgado, F., Giesen, R., Muñoz, J.C.: Planning, operation, and
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