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Abstract. We present an algorithm that can efficiently compute a broad
class of inferences for discrete-time imprecise Markov chains, a gener-
alised type of Markov chains that allows one to take into account par-
tially specified probabilities and other types of model uncertainty. The
class of inferences that we consider contains, as special cases, tight lower
and upper bounds on expected hitting times, on hitting probabilities and
on expectations of functions that are a sum or product of simpler ones.
Our algorithm exploits the specific structure that is inherent in all these
inferences: they admit a general recursive decomposition. This allows us
to achieve a computational complexity that scales linearly in the number
of time points on which the inference depends, instead of the exponential
scaling that is typical for a naive approach.
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1 Introduction

Markov chains are popular probabilistic models for describing the behaviour
of dynamical systems under uncertainty. The crucial simplifying assumption in
these models is that the probabilities describing the system’s future behaviour
are conditionally independent of its past behaviour, given that we know the
current state of the system; this is the canonical Markov property.

It is this Markov assumption that makes the parametrisation of a Markov
chain relatively straightforward—indeed, as we will discuss in Sect. 2, the uncer-
tain dynamic behaviour is then completely characterised by a transition matrix
T , whose elements T (xn, xn+1) = P(Xn+1 = xn+1|Xn = xn) describe the prob-
abilities that the system will transition from any state xn at time n, to any state
xn+1 at time n + 1. Note that T itself is independent of the time n; this is the
additional assumption of time homogeneity that is often imposed implicitly in
this context. An important advantage of these assumptions is that the resulting
matrix T can be used to solve various important inference problems, using one
of the many available efficient algorithms.
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In many cases however, the numerical value of the transition matrix T may
not be known exactly; that is, there may be additional (higher-order) uncertainty
about the model itself. Moreover, it can be argued that simplifying assumptions
like the Markov property and time homogeneity are often unrealistic in practice.
It is of interest, then, to compute inferences in a manner that is robust ; both to
violations of such simplifying assumptions, and to variations in the numerical
values of the transition probabilities.

The theory of imprecise probabilities allows us to describe such additional
uncertainties by using, essentially, sets of traditional (“precise”) models. In par-
ticular, such a set is comprised of all the models that we deem “plausible”;
for instance, we may include all Markov chains whose characterising transition
matrix T is included in some given set T of transition matrices. In this way
we can also include non-homogeneous Markov chains, by simply requiring that
their (now time-dependent) transition matrices remain in T . Moreover, we can
even include non-Markovian models in such a set. This leads to the notion of an
imprecise Markov chain. The robust inferences that we are after, are then the
tightest possible lower and upper bounds on the inferences computed for each
of the included precise models.

In this work, we present an efficient algorithm for solving a large class of
these inferences within imprecise Markov chains. Broadly speaking, this class
consists of inferences that depend on the uncertain state of the system at a finite
number of time instances, and which can be decomposed in a particular recursive
form. As we will discuss, it contains as special cases the (joint) probabilities of
sequences of states; the hitting probabilities and expected hitting times of subsets
of the possible states; and time averages of functions of the state of the system.

Interestingly, existing algorithms for some of these inferences turn out to
correspond to special cases of our algorithm, giving our algorithm a unifying
character. Time averages, for example, were already considered in [9], and some
of the results in [8]—a theoretical study of lower and upper expected hitting
times and probabilities—can be interpreted as a special cases of the algorithm
presented here. Readers that are familiar with recursive algorithms for credal
networks under epistemic irrelevance [1,2,4] might also recognise some of what
we do; in fact, many of the ideas behind our algorithm have previously been
discussed in this more general context [2, Chapter 7].

In order to adhere to the page limit, all proofs have been relegated to the
appendix of an online extended version [13].

2 Preliminaries

We denote the natural numbers, without 0, by N, and let N0 := N ∪ {0}. The
set of positive real numbers is denoted by R>0 and the set of non-negative real
numbers by R≥0. Throughout, we let IA denote the indicator of any subset
A ⊆ Y of a set Y ; so, for any y ∈ Y , IA(y) := 1 if y ∈ A and IA(y) := 0
otherwise.
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Before we can introduce the notion of an imprecise Markov chain, we first
need to discuss general (non-Markovian) stochastic processes. These are arguably
most commonly formalised using a measure-theoretic approach; however, the
majority of our results do not require this level of generality, and so we will keep
the ensuing introduction largely intuitive and informal.

Let us start by considering the realisations of a stochastic process. At each
point in time n ∈ N, such a process is in a certain state xn, which is an element
of a finite non-empty state space X . A realisation of the process is called a path,
and is an infinite sequence ω = x1x2x3 · · · where, at each discrete time point
n ∈ N, ωn := xn ∈ X is the state obtained by the process at time n, on the
path ω. So, we can interpret any path as a map ω : N → X , allowing us to
collect all paths in the set Ω := X N. Moreover, for any ω ∈ Ω and any m,n ∈ N

with m ≤ n, we use the notation ωm:n to denote the finite sequence of states
ωm · · · ωn ∈ X n−m+1.

A stochastic process is now an infinite sequence X1X2X3 · · · of uncertain
states where, for all n ∈ N, the uncertain state at time n is a function of the
form Xn : Ω → X : ω �→ ωn. Similarly, we can consider finite sequences of such
states where, for all m,n ∈ N with m ≤ n, Xm:n : Ω → X n−m+1 : ω �→ ωm:n.
These states are uncertain in the sense that we do not know which realisation
ω ∈ Ω will obtain in reality; rather, we assume that we have assessments of the
probabilities P(Xn+1 = xn+1|X1:n = x1:n), for any n ∈ N and any x1:n ∈ X n.
Probabilities of this form tell us something about which state the process might
be in at time n + 1, given that we know that at time points 1 through n,
it followed the sequence x1:n. Moreover, we can consider probabilities of the
form P(X1 = x1) for any x1 ∈ X ; this tells us something about the state
that the process might start in. It is well known that, taken together, these
probabilities suffice to construct a global probability model for the entire process
X1X2X3 · · · , despite each assessment only being about a finite subsequence of
the states; see e.g. the discussion surrounding [7, Theorem 5.16] for further details
on formalising this in a proper measure-theoretic setting. We simply use P to
denote this global model.

Once we have such a global model P, we can talk about inferences in which
we are interested. In general, these are typically encoded by functions f : Ω → R

of the unknown realisation ω ∈ Ω, and we collect all functions of this form in the
set L (Ω). To compute such an inference consists in evaluating the (conditional)
expected value EP(f |C) of f with respect to the model P, where C ⊆ Ω is an
event of the form Xm:n = xm:n with m,n ∈ N such that m ≤ n. In particular, if
P is a global model in the measure-theoretic sense, then under some regularity
conditions like the measurability of f , we would be interested in computing the
quantity EP(f |C) :=

∫
Ω

f(ω) dP(ω|C). For notational convenience, we will also
use X1:0 := Ω as a trivial conditioning event, allowing us to regard unconditional
expectations as a special case of conditional ones.

A special type of inferences that will play an important role in the remainder
of this work are those for which the function f only depends on a finite subse-
quence of the path ω, thereby vastly simplifying the definition of its expectation.
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In particular, if an inference only depends on the states at time points m through
n, say, then it can always be represented by a function f : X n−m+1 → R eval-
uated in the uncertain states Xm:n; specifically, the inference is represented by
the composition f ◦ Xm:n, which we will denote by f(Xm:n). In the sequel, we
will call a composite function of this form finitary. Moreover, for any n ∈ N,
we denote by L (X n) the set of all functions of the form f : X n → R, and we
write Lfin(Ω) ⊂ L (Ω) for the set of all finitary functions. For a finitary function
f(X1:n), the computation of its expected value reduces to evaluating the finite
sum

EP(f(X1:n)|C) =
∑

x1:n∈X n

f(x1:n)P(X1:n = x1:n|C) .

Let us now move on from the discussion about general uncertain processes,
to the special case of Markov chains. An uncertain process P is said to satisfy
the Markov property if, for all n ∈ N and all x1:n+1 ∈ X n+1, the aforementioned
probability assessments simplify in the sense that

P(Xn+1 = xn+1|X1:n = x1:n) = P(Xn+1 = xn+1|Xn = xn) .

A process that satisfies this Markov property is called a Markov chain. Thus,
for a Markov chain, the probability that it will visit state xn+1 at time n + 1 is
independent of the states X1:n−1, given that we know the state Xn at time n.
If the process is moreover homogeneous, meaning that P(Xn+1 = y|Xn = x) =
P(X2 = y|X1 = x) for all x, y ∈ X and all n ∈ N, then the parameterisation
of the process becomes exceedingly simple. Indeed, up to the initial distribution
P(X1)—a probability mass function on X —the process’ behaviour is then fully
characterised by a single |X |×|X | matrix T that is called the transition matrix.
It is row-stochastic (meaning that, for all x ∈ X , the x-th row T (x, ·) of T is
a probability mass function on X ) and its entries satisfy T (x, y) = P(Xn+1 =
y|Xn = x) for all x, y ∈ X and n ∈ N. The usefulness of this representation
comes from the fact that we can interpret T as a linear operator on the vector
space L (X ) 
 R

|X |, due to the assumption that X is finite. For f ∈ L (X ),
this allows us to write the conditional expectation of f(Xn+1) given Xn as a
matrix-vector product: for any x ∈ X , EP(f(Xn+1)|Xn = x) equals

∑

y∈X

f(y)P(Xn+1 = y|Xn = x) =
∑

y∈X

f(y)T (x, y) =
[
Tf

]
(x).

3 Imprecise Markov Chains

Let us now move on to the discussion about imprecise Markov chains. Here, we
additionally include uncertainty about the model specification, such as uncer-
tainty about the numerical values of the probabilities P(Xn+1|X1:n), and about
the validity of structural assessments like the Markov property.

We will start this discussion by regarding the parameterisation of such an
imprecise Markov chain. We first consider the (imprecise) initial model M;
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this is simply a non-empty set of probability mass functions on X that we will
interpret as containing those probabilities that we deem to plausibly describe
the process starting in a certain state. Next, instead of being described by a
single transition matrix T , an imprecise Markov chain’s dynamic behaviour is
characterised by an entire set T of transition matrices. So, each element T ∈ T
is an |X | × |X | matrix that is row-stochastic. In the sequel, we will take T to
be fixed, and assume that it is non-empty and that it has separately specified
rows. This last property is instrumental in ensuring that computations can be
performed efficiently, and is therefore often adopted in the literature; see e.g. [6]
for further discussion. For our present purposes, it suffices to know that it means
that T can be completely characterised by providing, for any x ∈ X , a non-
empty set Tx of probability mass functions on X . In particular, it means that
T is the set of all row-stochastic |X |×|X | matrices T such that, for all x ∈ X ,
the x-row T (x, ·) is an element of Tx.

Given the sets M and T , the corresponding imprecise Markov chain is
defined as the largest set PM,T of stochastic processes that are in a specific
sense compatible with both M and T . In particular, a model P is said to be
compatible with M if P(X1) ∈ M, and it is said to be compatible with T if,
for all n ∈ N and all x1:n ∈ X n, there is some T ∈ T such that

P(Xn+1 = xn+1|X1:n = x1:n) = T (xn, xn+1) for all xn+1 ∈ X .

Notably, therefore, PM,T contains all the (precise) homogeneous Markov chains
whose characterising transition matrix T is included in T , and whose initial
distribution P(X1) is included in M. However, in general, PM,T clearly also
contains models that do not satisfy the Markov property, as well as Markov
chains that are not homogeneous.1

For such an imprecise Markov chain, we are interested in computing infer-
ences that are in a specific sense robust with respect to variations in the set
PM,T . Specifically, for any function of interest f : Ω → R, we consider its
(conditional) lower and upper expectations, which are respectively defined by

EM,T (f |C) := inf
P∈PM,T

EP(f |C) and EM,T (f |C) := sup
P∈PM,T

EP(f |C) .

In words, we are interested in computing the tightest possible bounds on the
inferences computed for each P ∈ PM,T . These lower and upper expectations
are related through conjugacy, meaning that EM,T (f |C) = −EM,T (−f |C), so
it suffices to consider only the upper expectations in the remaining discussion;
any results for lower expectations follow analogously through this relation.

From a computational point of view, it is also useful to consider the dual
representation of the set T , given by the upper transition operator T with respect
to this set [5,6]. This is a (non-linear) operator that maps L (X ) into L (X );
it is defined for any f ∈ L (X ) and any x ∈ X as

[
Tf

]
(x) := sup

T (x,·)∈Tx

∑

y∈X

T (x, y)f(y).

1 Within the field of imprecise probability theory, this model is called an imprecise
Markov chain under epistemic irrelevance [5,6,9].



460 N. T’Joens et al.

So, in order to evaluate
[
Tf

]
(x), one must solve an optimisation problem over

the set Tx containing the x-rows of the elements of T . In many practical cases,
the set Tx is closed and convex and therefore, evaluating

[
Tf

]
(x) is relatively

straightforward: for instance, if Tx is described by a finite number of (in)equality
constraints, then this problem reduces to a simple linear programming task,
which can be solved by standard techniques. We will also make use of the con-
jugate lower transition operator T , defined by [T f ](x) := −[T (−f)](x) for all
x ∈ X and all f ∈ L (X ). Results about upper transition operators translate
to results about lower transition operators through this relation; we will focus
on the former in the following discussion.

Now, the operator T can be used for computing upper expectations in much
the same way as transition matrices are used for computing expectations with
respect to precise Markov chains: for any n ∈ N, any finitary function f(Xn+1)
and any x1:n ∈ X n it holds that

EM,T (f(Xn+1)|X1:n = x1:n) =
[
Tf

]
(xn) . (1)

Observe that the right-hand side in this expression does not depend on the
history x1:n−1; this can be interpreted as saying that the model satisfies an
imprecise Markov property, which explains why we call our model an “imprecise
Markov chain”. Moreover, a slightly more general property holds that will be
useful later on:

Proposition 1. Consider the imprecise Markov chainPM,T . For any m,n ∈ N

such that m ≤ n, any function f ∈ L (X n−m+1) and any x1:m−1 ∈ X m−1 and
y ∈ X , we have that

EM,T

(
f(Xm:n)

∣
∣X1:m−1 = x1:m−1,Xm = y

)
= EM,T

(
f(X1:n−m+1)

∣
∣X1 = y

)
.

Finally, we remark that, for any m,n ∈ N such that m ≤ n, a conditional
upper expectation EM,T

(
f
∣
∣Xm:n

)
is itself a (finitary) function depending on the

states Xm:n. Using this observation, we can now introduce the law of iterated
upper expectations, which will form the basis of the algorithms developed in the
following sections:

Theorem 1. Consider the imprecise Markov chain PM,T . For all m ∈ N0, all
k ∈ N and all f ∈ Lfin(Ω), we have that

EM,T

(
f
∣
∣X1:m

)
= EM,T

(
EM,T

(
f
∣
∣X1:m+k

)∣∣
∣X1:m

)
.

4 A Recursive Inference Algorithm

In principle, for any function f ∈ L (X n) with n ∈ N, the upper expectations
of f(X1:n) can be obtained by maximising EP(f(X1:n)) over the set PM,T of
all precise models P that are compatible with M and T . Since this will almost
always be infeasible if n is large, we usually apply the law of iterated upper
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expectations in combination with the Markov property in order to divide the
optimisation problem into multiple smaller ones. Indeed, because of Theorem 1,
we have that

EM,T (f(X1:n)) = EM,T

(
EM,T (f(X1:n)|X1:n−1)

)
.

Using Eq. (1), one can easily show that EM,T (f(X1:n)|X1:n−1) can be computed
by evaluating [Tf(x1:n−1·)](xn−1) for all x1:n−1 ∈ X n−1. Here, f(x1:n−1·) is
the function in L (X ) that takes the value f(x1:n) on xn ∈ X . This accounts
for |X |n−1 optimisation problems to be solved. With the acquired function
f ′(X1:n−1) := EM,T (f(X1:n)|X1:n−1), we can then compute the upper expecta-
tion EM,T (f ′(X1:n−1)|X1:n−2) in a similar way, by solving |X |n−2 optimisation
problems. Continuing in this way, we end up with a function that only depends
on X1 and for which the expectation needs to be maximised over the initial mod-
els in M. Hence, in total,

∑n−1
i=0 |X |i optimisation problems need to be solved

in order to obtain EM,T (f(X1:n)). Although these optimisation problems are
relatively simple and therefore feasible to solve individually, the total number of
required iterations is still exponential in n, therefore making the computation of
EM,T (f(X1:n)) intractable when n is large.

In many cases, however, f(X1:n) can be recursively decomposed in a specific
way allowing for a much more efficient computational scheme to be employed;
see Theorem 2 further on. Before we present this scheme in full generality, let
us first provide some intuition about its basic working principle.

So assumewe are interested inEM,T (f(X1:n)), which, according toTheorem1,
can be obtained by maximising EP(EM,T (f(X1:n)|X1)) over P(X1) ∈ M. The
problem then reduces to the question of how to compute EM,T (f(X1:n)|X1) effi-
ciently. Suppose now that f(X1:n) takes the following form:

f(X1:n) = g(X1) + h(X1)τ(X2:n), (2)

for some g, h ∈ L (X ) and some τ ∈ L (X n−1). Then, because EM,T is a
supremum over linear expectations, we find that

EM,T (f(X1:n)|X1) = g(X1) + h(X1)EM,T (τ(X2:n)|X1),

where, for the sake of simplicity, we assumed that h does not take negative
values. Then, by appropriately combining Proposition 1 with Theorem 1, one
can express EM,T (τ(X2:n)|X1) in terms of Υ : X → R, defined by

Υ (x) := EM,T (τ(X1:n−1)|X1 = x) for all x ∈ X .

In particular, we find that

EM,T (τ(X2:n)|X1) = EM,T

(
EM,T (τ(X2:n)|X1:2)|X1

)
= EM,T

(
Υ (X2)|X1

)

= [T Υ ](X1),

where the equalities follow from Theorem 1, Proposition 1 and Eq. (1), respec-
tively. So EM,T (f(X1:n)|X1) can be obtained from Υ by solving a single opti-
misation problem, followed by a pointwise multiplication and summation.
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Now, by repeating the structural assessment (2) in a recursive way, we can
generate a whole class of functions for which the upper expectations can be
computed using the principle illustrated above. We start with a function τ1(X1),
with τ1 ∈ L (X ), that only depends on the initial state. The upper expectation
EM,T (τ1(X1)|X1) is then trivially equal to τ1(X1). Next, consider τ2(X1:2) =
g1(X1) + h1(X1)τ1(X2) for some g1, h1 in L (X ). EM,T (τ2(X1:2)|X1) is then
given by g1(X1)+h1(X1)[T Υ 1](X1), where we let Υ 1(x) := EM,T (τ1(X1)|X1 =
x) = τ1(x) for all x ∈ X and where we (again) neglect the subtlety that h1 can
take negative values. Continuing in this way, step by step considering new func-
tions constructed by multiplication and summation with functions that depend
on an additional time instance, and no longer ignoring the fact that the functions
involved can take negative values, we end up with the following result.

Theorem 2. Consider any imprecise Markov chain PM,T and two sequences
of functions {gn}n∈N0 and {hn}n∈N in L (X ). Define τ1(x1) := g0(x1) for all
x1 ∈ X , and for all n ∈ N, let

τn+1(x1:n+1) := hn(x1)τn(x2:n+1) + gn(x1) for all x1:n+1 ∈ X n+1.

If we write {Υn}n∈N and {Υn}n∈N to denote the sequences of functions in L (X )
that are respectively defined by Υn(x) := EM,T (τn(X1:n)|X1 = x) and Υn(x) :=
EM,T (τn(X1:n)|X1 = x) for all x ∈ X and all n ∈ N, then {Υn}n∈N and
{Υn}n∈N satisfy the following recursive expressions:

⎧
⎪⎨

⎪⎩

Υ 1 = Υ 1 = g0;
Υn+1 = hnIhn≥0[T Υn] + hnIhn<0[T Υn] + gn for all n ∈ N;
Υn+1 = hnIhn≥0[T Υn] + hnIhn<0[T Υn] + gn for all n ∈ N.

Here, we used Ihn≥0 ∈ L (X ) to denote the indicator of {x ∈ X : hn(x) ≥ 0},
and similarly for Ihn<0 ∈ L (X ). Note that, because we now need to evaluate
both T and T for every iteration, we will in general need to solve 2(n − 1)|X |
optimisation problems to obtain EM,T (τn(X1:n)|X1) and EM,T (τn(X1:n)|X1)
for some n ∈ N. In order to obtain the unconditional inferences EM,T (τn(X1:n))
and EM,T (τn(X1:n)), it then suffices to respectively maximise and minimise
the expectations of EM,T (τn(X1:n)|X1) and EM,T (τn(X1:n)|X1) over all initial
models in M.

5 Special Cases

To illustrate the practical relevance of our method, we now discuss a number
of important inferences that fall within its scope. As already mentioned in the
introduction section, in some of these cases, our method simplifies to a compu-
tational scheme that was already developed earlier in a more specific context.
The strength of our present contribution, therefore, lays in its unifying character
and the level of generality to which it extends.
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Functions that depend on a single time instant. As a first, very simple
inference we can consider the upper and lower expectation of a function f(Xn),
for some f ∈ L (X ) and n ∈ N, conditional on the initial state. The expressions
for these inferences are given by Tn−1f and Tn−1f , respectively [5]. For instance,
for any x ∈ X , EM,T (f(X5))|X1 = x) = [T 4f ](x). These expressions can
also easily be obtained from Theorem 2, by setting g0 := f and, for all k ∈
{1, · · · , n − 1}, gk := 0 and hk := 1.

Sums of functions. One can also use our method to compute upper and lower
expectations of sums

∑n
k=1 fk(Xk) of functions fk ∈ L (X ). Then we would

have to set g0 := fn and, for all k ∈ {1, · · · , n − 1}, gk := fn−k and hk := 1.
Although we allow the functions fk to depend on k, it is worth noting that, if we
set them all equal to the same function f , our method can also be employed to
compute the upper and lower expectation of the time average 1/n

∑n
k=1 f(Xk)

of f over the time interval n. The subtlety of the constant factor 1/n does not
raise a problem here, because upper and lower expectations are homogeneous
with respect to non-negative scaling.

Product of functions. Another interesting class of inferences are those that can
be represented by a product

∏n
k=1 fk(Xk) of functions fk ∈ L (X ). To compute

upper and lower expectations of such functions, it suffices to set g0 := fn and, for
all k ∈ {1, · · · , n−1}, gk := 0 and hk := fn−k. A typical example of an inference
than can be described in this way is the probability that the state will be in a
set A ⊆ X during a certain time interval. For instance, the upper expectation
of the function IA(X1)IA(X2) gives us a tight upper bound on the probability
that the state will be in A during the first two time instances.

Hitting probabilities. The hitting probability of some set A ⊆ X over a
finite time interval n is the probability that the state Xk will be in A some-
where within the first n time instances. The upper and lower bounds on such a
hitting probability are equal to the upper and lower expectation of the function
f(X1:n) := IA′

n
∈ L (Ω), where A′

n := {ω ∈ Ω : (∃k ≤ n)ωk ∈ A}. Note that
f(X1:n) can be decomposed in the following way:

f(X1:n) = IA(X1) + IA(X2)IAc(X1) + · · · + IA(Xn)
n−1∏

k=1

IAc(Xk)

Hence, these inferences can be obtained using Theorem 2 if we let g0 := IA and,
for all k ∈ {1, · · · , n − 1}, gk := IA and fk := IAc . Additionally, one could also
be interested in the probability that the state Xk will ever be in A. Upper and
lower bounds on this probability are given by the upper and lower expectation
of the function f := IA′ ∈ L (Ω) where A′ := {ω ∈ Ω : (∃k ∈ N)ωk ∈ A}. Since
the function f is non-finitary, we are unable to apply our method in a direct
way. However, it is shown in [8, Proposition 16] that, if the set T is convex and
closed, the upper and lower bounds on the hitting probability over a finite time
interval converge to the upper and lower bounds on the hitting probability over
an infinite time interval, therefore allowing us to approximate these inferences
by choosing n sufficiently large.
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Hitting times. The hitting time of some set A ⊆ X is defined as the time τ until
the state is in A for the first time; so τ(ω) := inf{k ∈ N0 : ωk ∈ A} for all ω ∈ Ω.
Once more, the function τ is non-finitary, necessitating an indirect approach
to the computation of its upper and lower expectation. This can be done in a
similar way as we did for the case of hitting probabilities, now considering the
finitary functions τn(X1:n), where τn ∈ L (X n) is defined by τn(x1:n) := inf{k ∈
N : xk ∈ A} if {k ∈ N : xk ∈ A} is non-empty, and τn(x1:n) := n+1 otherwise, for
all n ∈ N and all x1:n ∈ X n. These functions correspond to choosing g0 := IAc

and, for all k ∈ {1, · · · , n − 1}, gk := IAc and fk := IAc . If the set T is convex
and closed, the upper and lower expectations of these functions for large n will
then approximate those of the non-finitary hitting time [8, Proposition 10].

6 Discussion

The main contribution of this paper is a single, unified method to efficiently com-
pute a wide variety of inferences for imprecise Markov chains; see Theorem 2. The
set of functions describing these inferences is however restricted to the finitary
type, and therefore a general approach for inferences characterised by non-finitary
functions is still lacking. In some cases, however, as we already mentioned in our
discussion of hitting probabilities and hitting times, this issue can be addressed by
relying on a continuity argument.

Indeed, consider any function f = limn→+∞ τn(X1:n) that is the pointwise
limit of a sequence {τn(X1:n)}n∈N of finitary functions, defined recursively as
in Theorem 2. If EM,T is continuous with respect to {τn(X1:n)}n∈N, meaning
that limn→+∞ EM,T (τn(X1:n)) = EM,T (f), the inference EM,T (f) can then be
approximated by EM,T (τn(X1:n)) for sufficiently large n. Since we can recur-
sively compute EM,T (τn(X1:n)) for any n ∈ N using the methods discussed at
the end of Sect. 4, this yields an efficient way of approximating EM,T (f). A
completely analogous argument can be used for the lower expectation EM,T (f).
This begs the question whether the upper and lower expectations EM,T and
EM,T satisfy the appropriate continuity properties for this to work.

Unfortunately, results about the continuity properties of these operators are
rather scarce —especially compared to their precise counterparts—and depend
on the formalism that is adopted. In this paper, for didactical reasons, we have
considered one formalism: we have introduced imprecise Markov chains as being
sets of “precise” models that are in a specific sense compatible with the given
set T . It is however important to realise that there is also an entirely different
formalisation of imprecise Markov chains that is instead based on the game-
theoretic probability framework that was popularised by Shafer and Vovk; we
refer to [10,11] for details. It is well known that the inferences produced under
these two different frameworks agree for finitary functions [3,9], so the method
described by Theorem 2 is also applicable when working in a game-theoretic
framework. The continuity properties of the game-theoretic upper and lower
expectations, however, are not necessarily the same as those of the measure-
theoretic operators that we considered here. So far, the continuity properties
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of game-theoretic upper and lower expectations are better understood [10–12],
making these operators more suitable if we plan to employ the continuity argu-
ment above.
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