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and José Antonio Gámez
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Abstract. The goal of the Label Ranking (LR) Problem is to learn pref-
erence models that predict the preferred ranking of class labels for a
given unlabelled instance. Different well-known machine learning algo-
rithms have been adapted to deal with the LR problem. In particular,
fine-tuned instance-based algorithms have exhibited a remarkable per-
formance, specially when the model is trained with complete rankings,
while model-based algorithms (e.g. decision trees) have been proved to
be more robust when some data is missing, that is, the model is trained
with incomplete rankings.

Probabilistic Graphical Models (PGMs, e.g. Bayesian networks) have
not been considered to deal with this problem because of the difficulty
to model permutations in that framework. In this paper, we propose a
Hidden Naive Bayes classifier (HNB) to cope with the LR problem. By
introducing the hidden variable we can design a hybrid Bayesian network
in which several types of distributions can be combined, in particular,
the Mallows distribution, which is a well-known distribution to deal with
permutations. The experimental evaluation shows that the HNB classifier
is competitive in accuracy when compared with Label Ranking (decision)
Trees, being, moreover, considerably faster.
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1 Introduction

Preferences are comparative judgments about a set of alternatives or choices.
The Label Ranking (LR) Problem [9] is a well-known non standard supervised
classification problem [7,17], whose goal is to learn preference models that predict
the preferred ranking over a set of class labels for a given unlabelled instance.

Formally, we consider a problem domain defined over n predictive variables
or attributes, X1, . . . , Xn, and a class variable C with k labels, dom(C) =
{c1, . . . , ck}. We are interested in predicting the ranking π of the labels for a
given unlabelled instance x = (x1, . . . , xn) ∈ dom(X1) × · · · × dom(Xn) from
a dataset D = {(xj

1, . . . , x
j
n, πj)}N

j=1 with N labelled instances. Hence, the LR
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problem consists in learning a LR-Classifier C from D which generalized well on
unseen data. In other words, the goal of the LR problem is to induce a model
able to predict permutations by taking advantage of all the available informa-
tion in the learning process. In the literature we can find different approaches to
tackle this problem:

– Transformation methods. They transform the whole problem into a set of
single-class classifiers: labelwise [29] and pairwise approaches [15,19], chain
classifiers [16], etc.

– Adaptation methods. They adapt well-known machine learning algorithms to
cope with the new class structure. Cheng et al. in [9] introduce a model-based
algorithm that induces a decision tree and a model-free algorithm which uses
k-nearest neighbors. Other techniques, like association rules [26] or neural
networks [25], have been also adapted.

– Ensemble methods. Recently, different tree-based aggregation approaches like
Random Forests [5] and Bagging predictors [4] have been successfully applied
to the LR problem [1,28,30].

In this paper we propose a new model-based LR-classifier focusing on adap-
tation methods. Our motivation is twofold:

– Although fine-tuned instance-based algorithms have exhibited a remarkable
performance, specially when the model is trained with complete rankings (i.e.,
permutations), model-based algorithms have been proved to be more robust
when some data is missing, that is, when the model is trained with incomplete
rankings.

– Probabilistic Graphical Models (PGMs), e.g. Bayesian networks [22], have not
been used in this problem because of the difficulty to model permutations in
this framework [8,9].

The proposed LR-classifier is modelled by using a hybrid Bayesian network
[12] where different probability distributions are used to conveniently model vari-
ables of distinct nature: multinomial for discrete variables, Gaussian for numeri-
cal variables and Mallows model for permutations [24]. The Mallows probability
distribution is usually considered for permutations, and is, in fact, the core of
the decision tree algorithm (Label Ranking Trees, LRT ) proposed in [9].

To overcome the constraints regarding the topology of the network when deal-
ing with different types of variables, we propose a Naive Bayes structure where
the root is a hidden discrete variable. In that way, only univariate probability dis-
tributions have to be estimated for each state of the hidden variable. We design
a learning algorithm based on the well-known Expectation-Maximization (EM)
estimation principle and we provide several inference schemes which combine
methods to tackle the Kemeny Ranking Problem (KRP) [21] with probabilistic
inference.

The rest of the paper is structured as follows. In Sect. 2 we review some
basic notions needed to deal with rank data. In Sect. 3 we formally describe the
proposed Hidden Naive Bayes (HNB) as well as the algorithms to induce it from
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data and carry out inference. In Sect. 4 we set forth the empirical study carried
out to evaluate the method designed in this paper. Finally, in Sect. 5, we provide
the conclusions and future research lines.

2 Background

In this section, we review some notions regarding the Kemeny Ranking Problem
[21], the Mallows probability distribution [24] and the Naive Bayes model [22].

2.1 Kemeny Ranking Problem

The Kemeny Ranking Problem (KRP) [21] consists in obtaining the consensus
permutation (mode) π0 ∈ Sk that best represents a sample with N permutations
Π = {π1, . . . , πN}, πi ∈ Sk. Here, Sk stands for the set of permutations of k
elements. Formally, the KRP looks for the consensus permutation π0 ∈ Sk that
minimizes

π0 = argmin
π∈Sk

N∑

i=1

D(π0, πi)

where D(π, τ), π, τ ∈ Sk, is a distance measure between two permutations π
and τ . Normally, the Kendall distance is taken, and the (greedy) Borda count
algorithm [3] is employed to solve the KRP, due to its trade-off between efficiency
and accuracy. Borda count algorithm basically assign n points to the item ranked
first, n − 1 to the second one and so on. Once all the input rankings have been
computed, the items are sorted according to the number of accumulated points.

2.2 Mallows Probability Distribution

The Mallows probability distribution (Mallows model) [24] is an exponential
probability distribution over permutations based on distances. The Mallows
model is parametrized by two parameters, the central permutation (mode)
π0 ∈ Sk and the spread parameter (dispersion) θ ∈ [0,+∞). Given a distance D
in Sk, the probability assigned to a permutation π ∈ Sk by a Mallows distribution
with π0 ∈ Sk and θ ∈ [0,+∞) is

P (π;π0, θ) =
e−θ·D(π,π0)

Ψ(θ)

where Ψ(θ) is a normalization constant. The spread parameter θ quantifies the
concentration of the distribution around π0. For θ = 0, a uniform distribution
is obtained, while for θ = +∞, the model assigns a probability equal to 1 to π0

and equal to 0 to the rest of the permutations. In our work, we take D as the
Kendall distance.

Parameter estimation can be done by using Borda count method for π0

and, although there is no closed form to estimate θ, numerical algorithms, e.g.
Newton-Raphson, can be used to accurately estimate it. Therefore, both param-
eters can be efficiently estimated (polinomial time) [20].
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2.3 Näıve Bayes

Naive Bayes models [22] are well-known probabilistic classifiers based on the con-
ditional independence hypothesis, that is, every pair of features are considered
conditionally independent given the class variable. As most of the probabilistic
classifiers, Naive Bayes models follow the maximum a posteriori (MAP) princi-
ple, that is, they return the most probable class for any input instance. Formally,
given an input instance x = (x1, . . . xn) ∈ dom(X1) × · · · × dom(Xn) and being
C the class variable with dom(C) = {c1, . . . , cn}, a Naive Bayes Classifier C
returns

C(x) = argmax
c∈dom(C)

P (c |x) = argmax
c∈dom(C)

P (x, c) = argmax
c∈dom(C)

n∏

i=1

P (xi|c) · P (c)

according to the Bayes’ theorem and the conditional independence hypothesis,
respectively. The conditional distributions above may be multinomial for discrete
attributes and Gaussian for continuous attributes.

3 Hidden Näıve Bayes LR-Classifier

This section presents the proposed model, defining the structure as well as the
parameter estimation process.

3.1 Model Definition

To overcome the constraints regarding the topology of the network when dealing
with different types of variables, the model proposed here is a mixture model
with the Naive Bayes assumption. The root element of the model is the discrete
hidden variable, which we will denote as z ∈ 1...Z, where Z is the total number
of mixture models. The rest of the variables are observed variables. We consider
two types of observed variables:

– The feature variables, observed both in the training and in the test phase. We
consider two kinds: discrete variables, denoted as dj , and continuous variables,
denoted as xk.

– The ranking variable, denoted as π, which is only present at training time.
This is the one to infer.

Figure 1 offers a representation of the model with the different types of vari-
ables described above. The model assumes that each of these variable types
follow a different conditional distribution given the root variable:

– Continuous variables follow a Gaussian distribution, P (xk|z) = N (xk;μz
k, σz

k)
– Discrete variables follow a Multinomial distribution, P (dj |z) = Mult(dj ;azj )
– The ranking variable follows a Mallows distribution, P (xk|z) = M (π;πz

0 , θ
z)

– The hidden variable follows a Multinomial distribution, P (z) = Mult(z;w)

The parameters for each of the conditional distributions need to be estimated
to perform inference using the model.



A PGM Approach for the Label Ranking Problem 355

z

x d π

K J

N

Fig. 1. The proposed Hidden Näıve Bayes model

3.2 Parameter Estimation

Due to the fact that the model has one hidden variable, we use the EM algorithm
to estimate jointly the parameters of both the observed and the hidden variables.
The EM algorithm consists of two steps: the Expectation step (E step), where
the value for the hidden variable is estimated; and the Maximization step (M
step), where the parameters for the conditional distributions are obtained.

E step. Under the assumption that the parameters of the model (μz
k, σz

k, azj ,
πz
0 , θz, w) are known, the probability of an example to be in a mixture is

P (zi|di,xi, πi) ∝ P (zi)P (di,xi, πi|zi) = P (z)P (πi|z)
∏

j

P (dij |zi)
∏

k

P (xik|zi)

Normalizing the above expression for all values of the hidden variable we obtain
the probability of an example to be in the mixture.

M step. Under the assumption that the probabilities of belonging to each mix-
ture for all examples are known, the parameters of the model can be estimated
as follows:

– Multinomial parameters for the discrete variables, P (dj |z). MLE estimation
is done, where the count for each instance is weighted by the probability of
that instance given a mixture z = zi.

– Gaussian distribution parameters for the continuous variables, P (xk|z). Anal-
ogous to the previous case but using a Gaussian distribution N (xk;μz

k, σz
k)

for each z = zi.
– Mallows distribution parameters for the ranking variable. For each z = zi

a Mallows distribution M (π;πz
0 , θ

z) must be estimated. In particular πzi
0 is

computed by applying a weighted version of Borda count algorithm (points
assigned to items are weighted by the probability of that instance given the
mixture zi), and θzi is calculated by using a numerical optimization process
(e.g. Newton-Raphson).

– The mixture model probabilities P (z) are computed according to the weights
P (z|di,xi, πi) for each mixture z = zi.
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Stop Condition. Although the model can easily be extended to use several
types of stop conditions, we propose to check the convergence on the probabilities
with which the samples belong to each mixture.

3.3 Learning Process

The learning procedure includes several executions of the EM algorithm with an
increasing number of mixtures. This process is based on the one proposed in [23].
The algorithm starts with a predefined number of mixtures (a hyperparameter),
and at each iteration the number of mixtures is increased according to a given
parameter (in our case, one by one).

For each of these iterations, the mixtures must be initialized as a previous step
to the EM algorithm. For each new mixture added, a sample with replacement of
the dataset is used for parameter estimation. The parameters for the conditional
probabilities given this mixture are calculated as if all the data points had a
probability of 1 to belong to the sample. After that, the data points which were
not used for the initialization of the new mixtures are used for the parameter
optimization procedure. If the solution obtained does not improve upon the
previous solution (using the Kendall coefficient τK as score over a validation set),
the algorithm returns the best solution. If the solution improves, the algorithm
continues adding new mixtures.

3.4 Inference

In the inference process, the method needs to predict the best consensus ranking
for a new data point. In our proposal we do that by marginalizing variables until
obtaining an expression for the probability of a ranking

P (πs|dr,xr) ∝
∑

zi

P (zi)P (πs|zi)
J∏

j

P (drj |zi)
K∏

k

P (xrk|zi)

To estimate the best permutation π̃, we take the one that maximizes the score

π∗ = argmax
πs∈Sk

P (πs|dr,xr)

However, due to the number of values of π, an approximation may be obtained
by aggregating the rankings weighted by the factor given by the marginalization

P (zi|dr,xr) ∝ P (zi)
J∏

j

P (drj |zi)
K∏

k

P (xrk|zi)

Then, we apply weighted Borda count by using the consensus permutation iden-
tified for each component zi of the mixture and using probabilities P (zi|dr,xr)
as weights.
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4 Experimental Evaluation

In this section we carry out an experimental evaluation to assess the performance
of the proposed algorithm. Next, we describe the employed datasets, the tested
algorithms, the methodology and the results.

4.1 Datasets

We used the 21 datasets proposed in [9,19]. The first 16 may be considered semi-
synthetic since they were obtained by transforming 8 multi-class (type A) and 8
regression datasets (type B) to the LR problem, while the last 5 correspond to
real-world biological problems. Table 1 provides the main characteristics of each
dataset. The columns #rankings and max #rankings correspond to the number
of different rankings in the dataset and the maximum number of rankings that
can be generated for such dataset, respectively.

Table 1. Datasets description.

Dataset type #instances #features #labels #rankings max #rankings

authorship A 841 70 4 17 4!

bodyfat B 252 7 7 236 7!

calhousing B 20640 4 4 24 4!

cpu-small B 8192 6 5 119 5!

elevators B 16599 9 9 131 9!

fried B 40769 9 5 120 5!

glass A 214 9 6 30 6!

housing B 506 6 6 112 6!

iris A 150 4 3 5 3!

pendigits A 10992 16 10 2081 10!

segment A 2310 18 7 135 7!

stock B 950 5 5 51 5!

vehicle A 846 18 4 18 4!

vowel A 528 10 11 294 11!

wine A 178 13 3 5 3!

wisconsin B 194 16 16 194 16!

spo - 2465 24 11 2361 11!

heat - 2465 24 6 622 6!

dtt - 2465 24 4 24 4!

cold - 2465 24 4 24 4!

diau - 2465 24 7 967 7!
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4.2 Algorithms

The algorithms involved in the experimental evaluation were the following ones:

– The model-based Label Ranking Trees (LRT ) algorithm [9], based on decision
tree induction [6]. To avoid overfitting, we fixed the minimum number of
instances for splitting an inner node to twice the number of class labels.

– The model-free Instance-Based Label Ranking (IBLR) algorithm [9], which
follows the nearest neighbors paradigm [10]. The nearest neighbors were iden-
tified by using the Euclidean distance. The number of nearest neighbors were
adjusted by applying an inner five-fold cross validation method (5-cv) over
the training fold.

– Our model-based proposal of Hidden Naive Bayes LR-classifier (HNB).

4.3 Methodology

We adopted the following design decisions:

– The algorithms were assessed by using a five repetitions of a ten-fold cross
validation method (5× 10-cv).

– The Kendall coefficient τK was used as goodness score (see [1] for details).
– The algorithms were implemented in Python 3.6.5 and the experiments exe-

cuted in computers running CentOS Linux 7 with CPU Intel(R) Xeon(R)
E5-2630 running at 2.40 GHz and 16 GB of RAM memory.

4.4 Results

Next, we provide the accuracy and time results, as well as their corresponding
statistical analysis.

The accuracy results are shown in Table 2. Each cell contains the mean and
the standard deviation of the Kendall coefficient τK for the test folds over the
5 × 10-cv. The boldfaced cells correspond to the algorithm(s) that obtain(s) the
best result for each dataset.

To properly analyze the results, we applied the standard statistical analysis
procedure for machine learning algorithms described in [11,14] by using the
exreport package [2]. This procedure can be divided in two steps:

– First, a Friedman test [13] was applied using a significance level of α = 0.05.
The obtained p−value was 3.253e−5, and so we rejected the null hypothesis
(H0) that all the algorithms were equivalent in terms of accuracy in favour
of the alternative (H1), that is, at least one of them was different.

– Second, taking as control the algorithm ranked first by the Friedman test
(IBLR), we performed a post-hoc test with the Holm’s procedure [18], also
using a significance level of α = 0.05. This test compares all the algorithms
with the one taking as control to discover the outstanding methods. The
results for the post-hoc test are shown in Table 3. The win, tie and loss
columns stand for the number of datasets in which the control algorithm
wins, ties and losses with respect to the one on the column Method.
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According to these results, we can conclude that:

– The Friedman test ranked first the IBLR algorithm, which was taken as con-
trol for the post-hoc test. LRT was ranked second, and HNB third.

– The post-hoc test revealed that the IBLR algorithm was statistically different
in terms of accuracy with respect to HNB and LRT.

– Regarding LRT and HNB, the pairwise Shaffer’s post-hoc test [27] (α =
0.05) obtained a p−value of 8.774e−1. Therefore, we can not reject the null
hypothesis (H0) that these algorithms were equivalent in terms of accuracy.

Table 2. Accuracy results for each algorithm.

Dataset IBLR LRT HNB

aut 0.932 (± 0.013) 0.862 (± 0.033) 0.918 (± 0.018)

bod 0.224 (± 0.067) 0.159 (± 0.070) 0.116 (± 0.073)

cal 0.337 (± 0.010) 0.340 (± 0.011) 0.183 (± 0.026)

cpu 0.501 (± 0.013) 0.445 (± 0.015) 0.429 (± 0.014)

ele 0.728 (± 0.007) 0.753 (± 0.008) 0.683 (± 0.021)

fri 0.975 (± 0.001) 0.893 (± 0.003) 0.747 (± 0.120)

gla 0.838 (± 0.072) 0.829 (± 0.064) 0.837 (± 0.077)

hou 0.721 (± 0.0339) 0.757 (± 0.033) 0.418 (± 0.255)

iri 0.955 (± 0.042) 0.924 (± 0.056) 0.958 (± 0.044)

pen 0.941 (± 0.002) 0.924 (± 0.003) 0.863 (± 0.006)

seg 0.951 (± 0.006) 0.943 (± 0.007) 0.773 (± 0.055)

sto 0.921 (± 0.011) 0.894 (± 0.018) 0.888 (± 0.018)

veh 0.854 (± 0.027) 0.811 (± 0.044) 0.805 (± 0.039)

vow 0.870 (± 0.016) 0.718 (± 0.037) 0.748 (± 0.039)

win 0.945 (± 0.039) 0.885 (± 0.071) 0.934 (± 0.049)

wis 0.491 (± 0.047) 0.373 (± 0.046) 0.386 (± 0.051)

spo 0.148 (± 0.017) 0.105 (± 0.016) 0.144 (± 0.018)

hea 0.061 (± 0.024) 0.035 (± 0.020) 0.052 (± 0.022)

dtt 0.127 (± 0.032) 0.075 (± 0.038) 0.117 (± 0.034)

col 0.076 (± 0.028) 0.051 (± 0.027) 0.065 (± 0.034)

dia 0.225 (± 0.027) 0.151 (± 0.025) 0.217 (± 0.028)

Table 3. Post-hoc test for the accuracy results.

Method Rank p−value Win Tie Loss

IBLR 1.19 - - - -

LRT 2.38 1.205e−4 18 0 3

HNB 2.43 1.205e−4 20 0 1
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In this work, we deal with model-free and model-based methods for the LR
problem, whose CPU requirements are clearly different. Therefore, to make a fair
comparison, the time for the whole process (learning with the training dataset
and validating with the test one) was gathered. The improvement ratios (time)
of HNB with respect to IBLR and LRT are shown in Table 4.

Table 4. Time results for each algorithm.

In light of these results, we can highlight that the HNB classifier is two times
faster than the IBLR algorithm for smaller datasets, while for larger ones this
value is multiplied by a factor of ten. Regarding the LRT method, we observe
that the HNB classifier is two and ten times faster for smaller and larger datasets,
respectively. Therefore, we may sacrifice a bit of time to improve the parameters
of the HNB model.

Finally, it should be remarked that there are some datasets (e.g., segment
or pendigits) where the HNB model fails in the prediction task when compared
with the IBLR and LRT algorithms. To find an explanation, we decided to apply
the corresponding algorithms for some of these datasets but in the classification
setup. When examining these results, we realized that the Naive Bayes algorithm
also failed, while decision trees and instance-based methods succeeded. Thus, we
think that the assumption that all the features follow a Gaussian distribution
restrict the predictive power of PGMs. Our suspicions were confirmed when we
observed that the results of the Naive Bayes model strongly improved when
the features were discretized. Therefore, we expect that the HNB model also
improves when we properly apply multinomial probability distributions instead
of Gaussian ones.

5 Conclusions

In this paper, we cope with the LR problem. Based on the EM estimation princi-
ple, we have defined a Naive Bayes structure where the root is a hidden discrete
variable, used to model the different probability distributions that must be man-
aged in such problem (multinomial and Gaussian for the features and Mallows
for the permutations).
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From the experimental evaluation, we can conclude that our proposal of
Hidden Naive Bayes is clearly faster than the LRT and IBLR methods while
being competitive in accuracy with the first one.

As future research we plan to introduce a discretization method to treat
as discrete variables those features that does not follow a Gaussian probability
distribution. Also, we will deal with a more general approach where incomplete
rankings are allowed on the training dataset.
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28. de Sá, C.R., Soares, C., Knobbe, A.J., Cortez, P.: Label ranking forests. Expert
Systems 34(1), e12166 (2017)
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