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Abstract. Desirable properties of a normal form for conditional knowl-
edge are, for instance, simplicity, minimality, uniqueness, and the respect-
ing of adequate equivalences. In this paper, we propose the notion of
antecedentwise equivalence of knowledge bases. It identifies more knowl-
edge bases as being equivalent and allows for a simpler and more compact
normal form than previous proposals. We develop a set of transformation
rules mapping every knowledge base into an equivalent knowledge base
that is in antecedent normal form (ANF). Furthermore, we present an
algorithm for systematically generating conditional knowledge bases in
ANF over a given signature. The approach is complete in the sense that,
taking renamings and equivalences into account, every consistent knowl-
edge base is generated. Moreover, it is also minimal in the sense that no
two knowledge bases are generated that are antecedentwise equivalent or
that are isomorphic to antecedentwise equivalent knowledge bases.
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1 Introduction

A core question in knowledge representation and reasoning is what a knowl-
edge base consisting of a set of conditionals like “If A then usually B”, formally
denoted by (B|A), entails [20]. For investigating this question and correspond-
ing properties of a knowledge base, for comparing the inference relations induced
by different knowledge bases, for implementing systems realizing reasoning with
conditional knowledge bases, and for many related tasks a notion of normal
form for knowledge bases is advantageous. Desirable properties of a normal form
for conditional knowledge bases are, for instance, simplicity, minimality, unique-
ness, and the respecting of adequate equivalences of knowledge bases. Normal
forms of conditional knowledge bases have been investigated in e.g. [3,4]. In
this paper, we propose the new notion of antecedentwise equivalence of condi-
tional knowledge bases and the concept of antecedent normal form (ANF) of
a knowledge base. Antecedentwise equivalence identifies more knowledge bases
as being equivalent and allows for a simpler and more compact normal form
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G. Kern-Isberner and Z. Ognjanović (Eds.): ECSQARU 2019, LNAI 11726, pp. 175–186, 2019.
https://doi.org/10.1007/978-3-030-29765-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29765-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-29765-7_15


176 C. Beierle and S. Kutsch

than previous proposals. As an effective way of transforming every knowledge
base R into an equivalent knowledge base being in ANF, we develop a set of
transformation rules Θ achieving this goal. Furthermore, we present an algo-
rithm KBae

gen enumerating conditional knowledge bases over a given signature.
The algorithm is complete in the sense that every consistent knowledge base is
generated when taking renamings and antecedentwise equivalences into account.
Moreover, KBae

gen is also minimal: It will not generate any two different knowl-
edge bases R, R′ such that R and R′ or any isomorphic images of R and R′ are
antecedentwise equivalent. This algorithm is a major improvement over the app-
roach given in [9] because it generates significantly fewer knowledge bases, while
still being complete and minimal. Systematic generation of knowledge bases as
achieved by KBae

gen is fruitful for various purposes, for instance for the empirical
comparison and evaluation of different nonmonotonic inference relations induced
by a knowledge base (e.g. [5,17,20,22]) with the help of implemented reasoning
systems like InfOCF [6].

For illustrating purposes, we will use ranking functions, also called ordinal
conditional functions (OCF) [23,24], as semantics for conditionals. However, it
should be noted that all notions and concepts developed in this paper are inde-
pendent of the semantics of ranking functions we use in this paper. They also
apply to every semantics satisfying system P [1,17], e.g., Lewis’ system of spheres
[21], conditional objects evaluated using Boolean intervals [12], possibility dis-
tributions [10], or special classes of ranking functions like c-representations [15].
A common feature of these semantics is that a conditional (B|A) is accepted if
its verification A∧B is considered more plausible, more possible, less surprising,
etc. than its falsification A ∧ ¬B.

After recalling required basics in Sect. 2, antecedentwise equivalence and ANF
is introduced in Sect. 3. The system Θ transforming a knowledge base into ANF is
presented in Sect. 4. Orderings and renamings developed in Sect. 5 are exploited
in knowledge base generation by KBae

gen in Sect. 6, before concluding in Sect. 7.

2 Background: Conditional Logic

Let L be a propositional language over a finite signature Σ of atoms a, b, c, . . ..
The formulas of L will be denoted by letters A,B,C, . . .. We write AB for A∧B
and A for ¬A. We identify the set of all complete conjunctions over Σ with the
set Ω of possible worlds over L. For ω ∈ Ω, ω |= A means that A ∈ L holds
in ω, and the set of worlds satisfying A is ΩA = {ω | ω |= A}. By introducing
a new binary operator |, we obtain the set (L | L) = {(B|A) | A,B ∈ L} of
conditionals over L. For a conditional r = (B|A), ant(r) = A is the antecedent
of r, and cons(r) = B is its consequent. The counter conditional of r = (B|A) is
r = (B|A). As semantics for conditionals, we use ordinal conditional functions
(OCF) [24]. An OCF is a function κ : Ω → N expressing degrees of plausibility of
possible worlds where a lower degree denotes “less surprising”. At least one world
must be regarded as being normal; therefore, κ(ω) = 0 for at least one ω ∈ Ω.
Each κ uniquely extends to a function mapping sentences to N ∪ {∞} given by
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κ(A) = min{κ(ω) | ω |= A} where min ∅ = ∞. An OCF κ accepts a conditional
(B|A), written κ |= (B|A), if the verification of the conditional is less surprising
than its falsification, i.e., if κ(AB) < κ(AB); equivalently, κ |= (B|A) iff for every
ω′ ∈ ΩAB there is ω ∈ ΩAB with κ(ω) < κ(ω′). A conditional (B|A) is trivial
if it is self-fulfilling (A |= B) or contradictory (A |= B); a set of conditionals
is self-fulfilling if every conditional in it is self-fulfilling. A finite set R ⊆ (L|L)
of conditionals is called a knowledge base. An OCF κ accepts R if κ accepts all
conditionals in R, and R is consistent if an OCF accepting R exists [14]. We
use 	 to denote an inconsistent knowledge base. Mod(R) denotes the set of all
OCFs κ accepting R. Two knowledge bases R,R′ are model equivalent, denoted
by R ≡mod R′, if Mod(R) = Mod(R′). We say (B|A) ≡ (B′|A′) if A ≡ A′ and
AB ≡ A′B′. Example 1 presents a knowledge base we will use for illustration.

Example 1 (Rcar [4]). Let Σcar = {c, e, f} where c indicates whether something
is a car, e indicates whether something is an e-car, and f indicates whether some-
thing needs fossil fuel. The knowledge base Rcar contains seven conditionals:
q1: (f |c) “Usually cars need fossil fuel.”
q2: (f |e) “Usually e-cars do not need fossil fuel.”
q3: (c|e) “E-cars usually are cars.”
q4: (e|ef ) “E-cars that do not need fossil fuel usually are e-cars.”
q5: (ef |e) “E-cars usually are e-cars that do not need fossil fuel.”
q6: (e|�) “Usually things are no e-cars.”
q7: (cf ∨cf |ce ∨ce) “Things that are cars and e-cars or cars but not e-cars

are cars that need fossil fuel or are no cars but need fossil fuel.”

3 Antecedentwise Equivalence of Knowledge Bases

For comparing or generating knowledge bases, it is useful to abstract from merely
syntactic variants. In particular, it is desirable to have minimal versions and
normal forms of knowledge bases at hand. The following notion of equivalence
presented in [4] employs the idea that each piece of knowledge in one knowledge
base directly corresponds to a piece of knowledge in the other knowledge base.

Definition 1 (equivalence ≡ee [4]). Let R, R′ be knowledge bases.

– R is an elementwise equivalent sub-knowledge base of R′, denoted by R 
ee

R′, if for every conditional (B|A) ∈ R that is not self-fulfilling there is a
conditional (B′|A′) ∈ R′ such that (B|A) ≡ (B′|A′).

– R and R′ are strictly elementwise equivalent if R 
ee R′ and R′ 
ee R.
– R and R′ are elementwise equivalent, denoted by R ≡ee R′, if either both

are inconsistent, or both are consistent and strictly elementwise equivalent.

Elementwise equivalence is a stricter notion than model equivalence. In
[3], as a simple example the knowledge bases R1 = {(a|�), (b|�), (ab|�)} and
R2 = {(a|�), (b|�)} are given which are model equivalent, but not elementwise
equivalent since for (ab|�) ∈ R1 there is no corresponding conditional in R2.
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The idea of the notion of antecedentwise equivalence we will introduce here is
to take into account the set of conditionals having the same (or propositionally
equivalent) antecedent when comparing to knowledge bases.

Definition 2 (Ant(R), R|A, ANF). Let R be a knowledge base.

– Ant(R) = {A | (B|A) ∈ R} is the set of antecedents of R.
– For A ∈ Ant(R), the set R|A = {(B′|A′) | (B′|A′) ∈ R and A ≡ A′} is the

set of A-conditionals in R.
– R is in antecedent normal form (ANF) if either R is inconsistent and R = 	,

or R is consistent, does not contain any self-fulfilling conditional, contains
only conditionals of the form (AB|A), and

∣
∣R|A

∣
∣ = 1 for all A ∈ Ant(R).

Definition 3 (
ae, equivalence ≡ae). Let R, R′ be knowledge bases.

– R is an antecedentwise equivalent sub-knowledge base of R′, denoted by
R 
ae R′, if for every A ∈ Ant(R) such that R|A is not self-fulfilling there
is an A′ ∈ Ant(R′) with R|A ≡mod R′

|A′ .
– R and R′ are strictly antecedentwise equivalent if R 
ae R′ and R′ 
ae R.
– R and R′ are antecedentwise equivalent, denoted by R ≡ae R′, if either both

are inconsistent, or both are consistent and strictly antecedentwise equivalent.

Note that any two inconsistent knowledge bases are also antecedentwise
equivalent according to Definition 3, e.g., {(b|a), (b|b)} ≡ae {(b|b), (aa|�)},
enabling us to avoid cumbersome case distinctions when dealing with consis-
tent and inconsistent knowledge bases. In general, we have:

Proposition 1 (≡ae). Let R,R′ be consistent knowledge bases.

1. If R 
ae R′ then Mod(R′) ⊆ Mod(R).
2. If R ≡ae R′ then R ≡mod R′.
3. If R 
ee R′ then R 
ae R′.
4. If R ≡ee R′ then R ≡ae R′.
5. None of the implications (1.)–(4.) holds in general in the reverse direction.

Proof. (1.) If R 
ae R′, Definition 3 implies that there is a function f :
Ant(R) → Ant(R′) with R|A ≡mod R′

|f(A) for each A ∈ Ant(R). Thus,
R =

⋃

A∈Ant(R) R|A ≡mod

⋃

A∈Ant(R) R′
|f(A) ⊆ R′ implies Mod(R′) ⊆ Mod(R).

Employing (1.) in both directions, we get (2.).
(3.) If R 
ee R′, Definition 1 ensures a function f : R → R′ with

{(B|A)} ≡mod {f((B|A))} for each (B|A) ∈ R. Hence, A ≡ A′ must hold
if (B′|A′) = f((B|A)). Thus, {(B|A) | (B|A) ∈ R|A} ≡mod {f((B|A)) |
(B|A) ∈ R|A} for each A ∈ Ant(R). Together with R =

⋃

A∈Ant(R) R|A and
{f((B|A)) | (B|A) ∈ R|A} ⊆ R′ this implies R 
ae R′. Employing (3.) in both
directions yields (4.).

For proving (5.) w.r.t. both (1.) and (2.), consider R3 = {(c|a), (c|b)} and
R4 = {(c|a), (c|b), (c|a∨b)}. Then R3 ≡mod R4 and R3 
ae R4, but R4 �
ae R3

and therefore R3 �≡ae R4. For (5.) w.r.t. both (3.) and (4.), consider again
R1 = {(a|�), (b|�), (ab|�)} and R2 = {(a|�), (b|�)}. We have R1 ≡ae R2

because R1|� ≡mod R2|�, but R1 �
ee R2 and therefore R1 �≡ee R2. ��
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In the proof of Proposition 1 R1 �≡ee R2 and R1 ≡ae R2 holds, but also
R2 
ee R1. The following example shows that two knowledge bases may be
antecedentwise equivalent even if they are not comparable with respect to 
ee.

Example 2 (≡ae). Let R5 = {(bc|a), (cd|a)} and R6 = {(bd|a), (bcd|a)}. Then
R5 ≡ae R6, but R5 �≡ee R6, R5 �
ee R6, and R6 �
ee R5.

4 Transforming Knowledge Bases into ANF

In order to be able to deal with normal forms of formulas in L without having to
select a specific representation, we assume a function ν mapping a propositional
formula A to a unique normal form ν(A) such that A ≡ A′ iff ν(A) = ν(A′).
We also use a function Π with Π(R) = 	 iff R is inconsistent; Π can easily be
implemented by the tolerance test for conditional knowledge bases [14]. Using
Π and the propositional normalization function ν, the system Θ given in Fig. 1
contains four transformation rules:

(SF ) removes a self-fulling conditional (B|A) with A �≡ ⊥.
(AE ) merges two conditionals (B|A) and (B′|A′) with propositionally equiv-
alent antecedents to a conditional having this antecedent and the conjunction
of the consequents.
(NO) transforms a conditional (B|A) by sharpening its consequent to the
conjunction with its antecedent and propositionally normalizes the antecedent
and the resulting consequent.
(IC ) transforms an inconsistent knowledge base into 	.

Example 3 (N (Rcar )). Consider the knowledge base Rcar from Example 1.

(SF ) As ef |= e, q4 is self-fulfilling, and the application of (SF ) removes q4.
(AE ) Applying this rule to q3 and q5 yields q8 : (cef |e).

(SF ) self -fulfilling :
R ∪ {(B|A)}

R A |= B, A

(AE) antecedence equivalence :
R ∪ {(B|A), (B |A )}

R ∪ {(BB |A)} A ≡ A

(NO) normalization :
R ∪ {(B|A)}

R ∪ {(ν(AB)|ν(A))} A = ν(A) or B = ν(AB)

(IC ) inconsistency :
R R = , Π(R) =

Fig. 1. Transformation rules Θ and their applicability conditions for the normalization
of knowledge bases respecting antecedence equivalence; Π is a consistency test, e.g. the
tolerance criterion [14], and ν a normalization function for propositional formulas.
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(NO) Applying this rule to q1 or to q7 yields q̃1 : (ν(cf)|ν(c)) in both cases,
applying it to q2 or to q5 yields q̃2 : (ν(ef)|ν(e)), applying it to q3 yields
q̃3 : (ν(ce)|ν(e)), and applying it to q6 yields q̃6 : (ν(e)|ν(�)). Applying (NO)
to q8 : (cef |e) yields q̃8 : (ν(cef)|ν(e)); note that first applying (AE ) to q̃2
and q̃3 and then (NO) to the result also yields exactly q̃8.
(IC ) As Rcar is consistent, (IC ) can not be applied to Rcar .

Thus, applying Θ exhaustively and in arbitrary sequence to Rcar gives us the
knowledge base Θ(Rcar ) = {q̃1, q̃6, q̃8}. In contrast, the transformation system T
given in [4] would yield T (Rcar ) = {q̃1, q̃2, q̃3, q̃6} containing more conditionals.

Proposition 2 (properties of Θ). Let R be a knowledge base.

1. (termination) Θ is terminating.
2. (confluence) Θ is confluent.
3. (≡mod correctness) R ≡mod Θ(R).
4. (≡ae correctness) R ≡ae Θ(R).
5. (≡ae minimizing) If R is inconsistent then Θ(R) = 	. If R is consistent,

then for all knowledge bases R′ it holds that R′
� Θ(R) implies R′ �≡ae R.

6. (ANF) Θ(R) is in antecedent normal form.

Proof. (1.) (SF ), (AE ), and (IC ) remove at least one conditional, and (NO) can
be applied at most once to any conditional. Hence, Θ is terminating.

(2.) Since Θ is terminating, local confluence of Θ implies confluence of Θ;
local confluence of Θ in turn can be shown by ensuring that for every critical
pair obtained form superpositioning two left hand sides of rules in Θ reduces
to the same knowledge base [2,16]: Any critical pair obtained from (IC ) and
another rule in Θ reduces to 	 since all rules preserve the consistency status
of a knowledge base. Any critical pair obtained from (SF ) with (NO) reduces
to the same knowledge base since applying (NO) to a self-fulfilling conditional
yields again a self-fulfilling conditional. Regarding critical pairs with respect to
(NO), we observe that if R contains two distinct conditionals (B|A) and (B′|A′)
with (ν(AB)|ν(A)) = (ν(A′B′)|ν(A′)), then applying (NO) first to either of the
conditionals and second to the other one yields the same result. Critical pairs
between (AE ) and (NO) reduce to the same result because propositional nor-
malization commutes with (AE ). For a critical pair of (SF ) and (AE ) consider
R0 = R ∪ {(B|A), (B′|A′)} with A ≡ A′ and A′ |= B′. Applying (SF ) yields
R1 = R ∪ {(B|A)}, and applying (AE ) yields R2 = R ∪ {(BB′|A)}. Applying
(NO) to both R1 and R2 yields the same result because A ≡ A′, A′ |= B′ and
therefore AB ≡ ABB′. Thus, we are left with critical pairs obtained from (AE )
which arise from R∪{(B|A), (B′|A′), (B′′|A′′)} with A ≡ A′ ≡ A′′ so that (AE )
could be applied to {(B|A), (B′|A′)} and to {(B′|A′), (B′′|A′′)}. Applying (AE )
to the result followed by (NO) yields R ∪ {(ν(BB′B′′)|ν(A))} in both cases.

(3.) By Proposition 1, (3.) will follow from the proof of (4.).
(4.) We will show that ≡ae-equivalence is preserved by every rule in Θ.
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(IC ) Since Π is a consistency test, R ≡ae 	 because all inconsistent knowledge
bases are ≡ae-equivalent. Because all other rules preserve the consistency status of
R, we assume that R is consistent when dealing with the other rules in Θ. (SF ) By
Definition 3 we get R ∪ {(B|A)} ≡ae R. (AE ) This rule preserves ≡ae-equivalence
because A ≡ A′ implies {(B|A), (B′|A′)} ⊆ (R ∪ {(B|A), (B′|A′)})|A, (BB′|A) ∈
(R ∪ {(BB′|A)})|A, and Mod({(B|A), (B′|A′)}) = Mod({(BB′|A)}). (NO) This
rule preserves ≡ae-equivalence because (B|A) ∈ (R∪{(B|A)})|A, (ν(AB)|ν(A)) ∈
(R ∪ {(ν(AB)|ν(A))})|A, and Mod({(B|A)}) = Mod({(ν(AB)|ν(A))}).

(5.) The ≡ae-minimizing property will follow from the proof of (6.).
(6.) From (1.) and (2.) we conclude that Θ(R) is well defined. If Θ(R) was

not in ANF then at least one of the rules in Θ would be applicable to Θ(R),
contradicting that Θ has been applied exhaustively. ��

Proposition 2 ensures that applying Θ to a knowledge base R always yields the
unique normal form Θ(R) that is in ANF. This provides a convenient decision
procedure for antecedentwise equivalence and thus also for model equivalence.

Proposition 3 (antecedentwise equivalence). Let R, R′ be knowledge
bases. Then R ≡ae R′ iff Θ(R) = Θ(R′).

5 Orderings and Renamings for Conditionals

For developing a method for the systematic generation of knowledge bases in
ANF, we will represent each formula A ∈ L uniquely by its set ΩA of satisfying
worlds. The two conditions B � A and B �= ∅ then ensure the falsifiability and
the verifiability of a conditional (B|A), thereby excluding any trivial conditional
[8]. This yields a propositional normalization function ν, giving us:

Proposition 4 (NFC (Σ) [9]). For NFC (Σ) = {(B|A) | A ⊆ ΩΣ , B � A, B �=
∅}, the set of normal form conditionals over a signature Σ, the following holds:

(nontrivial) NFC (Σ) does not contain any trivial conditional.
(complete) For every nontrivial conditional over Σ there is an equivalent
conditional in NFC (Σ).
(minimal) All conditionals in NFC (Σ) are pairwise non-equivalent.

For instance, for Σab = {a, b} we have ({ab, ab}|{ab, ab}) ≡ ({ab}|{ab, ab})
where the latter is in NFC (Σab). Out of the different 256 conditionals over Σab

obtained when using sets of worlds as formulas, only 50 are in NFC (Σab) [9].
For defining a linear order on NFC (Σ), we use the following notation. For

an ordering relation � on a set M , its lexicographic extension to strings over
M is denoted by �lex . For ordered sets S, S′ ⊆ M with S = {e1, . . . , en} and
S′ = {e′

1, . . . , e
′
n′} where ei � ei+1 and e′

j � e′
j+1 its extension �set to sets is:

S �set S′ iff n < n′, or n = n′ and e1 . . . en �lex e′
1 . . . e′

n′ (1)

For Σ with ordering �, [[ω]]
�

is the usual interpretation of a world ω as a binary
number; e.g., for Σab with a�b, [[ab]]

�
= 3, [[ab]]

�
= 2, [[ab]]

�
= 1, and [[ab]]

�
= 0.



182 C. Beierle and S. Kutsch

Definition 4 (induced ordering on formulas and conditionals). Let Σ
be a signature with linear ordering �. The orderings induced by � on worlds
ω, ω′ and conditionals (B|A), (B′|A′) over Σ are given by:

ω
w
�. ω′ iff [[ω]]

�
� [[ω′]]

�
(2)

(B|A)
c
�. (B′|A′) iff ΩA

w
�set ΩA′ , or ΩA = ΩA′ and ΩB

w
�.

set ΩB′ (3)

In order to ease our notation, we will omit the upper symbol in
w
� and

c
�, and

write just � instead, and analogously �. for the non-strict variants. For instance,
for Σab with a � b we have ab � ab � ab � ab for worlds, and (ab|ab ∨ ab) �

(ab|ab ∨ ab) and (ab ∨ ab|ab ∨ ab ∨ ab) � (ab|ab ∨ ab ∨ ab ∨ ab) for conditionals.

Proposition 5 (NFC (Σ), � [9]). For a linear ordering � on a signature Σ, the
induced ordering � according to Definition 4 is a linear ordering on NFC (Σ).

Given the ordering � on NFC (Σ) from Proposition 5, we will now define a
new ordering ≺· on these conditionals that takes isomorphisms (or renamings)
ρ : Σ → Σ into account and prioritizes the �-minimal elements in each isomor-
phism induced equivalence class. As usual, ρ is extended canonically to worlds,
formulas, conditionals, knowledge bases, and to sets thereof. We say that X and
X ′ are isomorphic, denoted by X � X ′, if there exists a renaming ρ such that
ρ(X) = X ′. For a set M , m ∈ M , and an equivalence relation ≡ on M , the
set of equivalence classes induced by ≡ is denoted by [M ]/≡, and the unique
equivalence class containing m is denoted by [m]≡. For instance, for Σab the
only non-identity renaming is the function ρab with ρab(a) = b and ρab(b) = a,
[ΩΣab

]/� = {[ab], [ab, ab], [ab]} are the three equivalence classes of worlds over
Σab, and we have [(ab|ab ∨ ab)]� = [(ab|ab ∨ ab)]�.

Definition 5 (cNFC (Σ), ≺· [9]). Given a signature Σ with linear ordering
�, let [NFC (Σ)]/� = {[r1]�, . . . , [rm]�} be the equivalence classes of NFC (Σ)
induced by isomorphisms such that for each i ∈ {1, . . . , m}, the conditional ri is
the minimal element in [ri]� with respect to �, and r1 � . . .� rm. The canonical
normal form conditionals over Σ are cNFC (Σ) = {r1, . . . , rm}. The canonical
ordering on NFC (Σ), denoted by ≺·, is given by the schema

r1 ≺· . . . ≺· rm ≺· [r1]� \ {r1} ≺· . . . ≺· [rm]� \ {rm}

where r ≺· r′ iff r � r′ for all i ∈ {1, . . . , m} and all r, r′ ∈ [ri]� \ {ri}.

Proposition 6 (NFC (Σ), ≺· [9]). For a linear ordering � on a signature Σ, the
induced ordering ≺· according to Definition 5 is a linear ordering on NFC (Σ).

While NFC (Σab) contains 50 conditionals, there are 31 equivalence classes in
[NFC (Σab)]/�; hence cNFC (Σab) has 31 elements [9]. The three smallest ele-
ments in NFC (Σab) w.r.t. ≺· are ({ab}|{ab, ab}), ({ab}|{ab, ab}), ({ab}|{ab, ab}),
and their corresponding equivalence classes are [({ab}|{ab, ab}), ({ab}|{ab, ab})],
[({ab}|{ab, ab}), ({ab}|{ab, ab})], and [({ab}|{ab, ab})].
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6 Generating Knowledge Bases in ANF

The algorithm KBae
gen (Algorithm 1) generates all consistent knowledge bases

up to antecedentwise equivalence and up to isomorphisms. It uses pairs 〈R, C〉
where R is a knowledge base and C is a set of conditionals that are candidates
for extending R to obtain a new knowledge base. For extending R, conditionals
are considered sequentially according to their ≺· ordering. Note that in Line 3,
only the canonical conditionals (which are minimal with respect ≺·) are used
for initializing the set of one-element knowledge bases. In Line 3 (and in Line
11, respectively), a conditional r is selected for initializing (or extending, respec-
tively) a knowledge base. In Lines 4–6 (and in lines 13–15, respectively), in the
set D conditionals are collected that do not have to be considered as candidates
for further extending the current knowledge base: D1 contains all conditionals
that are smaller than r w.r.t. ≺·, D2 contains all conditionals having the same
antecedent as r (since R should be ANF), and r would make R inconsistent. The
consistency test used in Line 12 can easily be implemented by the well-known
tolerance test for conditional knowledge bases [14].

Proposition 7 (KBae
gen). Let Σ be a signature with linear ordering �. Then

applying KBae
gen to it terminates and returns KB for which the following holds:

1. (correctness) If R ∈ KB then R is a knowledge base over Σ.
2. (ANF) If R ∈ KB then R is in ANF.

Algorithm 1. KBae
gen – Generate knowledge bases over Σ up to ≡ae

Input: signature Σ with linear ordering �

Output: set KB of knowledge bases in ANF of over Σ that are consistent, pairwise
antecedentwise non-equivalent and pairwise non-isomorphic

1: L1 ← ∅
2: k ← 1
3: for r ∈ cNFC (Σ) do � only canonical conditionals for initialization
4: D1 ← {d | d ∈ NFC (Σ), d �· r} � conditional d can not extend {r}
5: D2 ← {(B|A) | (B|A) ∈ NFC (Σ), A = ant(r)} � (B|A) can not extend {r}
6: D ← D1 ∪ D2 ∪ {r} � r can not extend {r}
7: L1 ← L1 ∪ {〈{r}, NFC (Σ) \ D〉}
8: while Lk �= ∅ do
9: Lk+1 ← ∅
10: for 〈R, C〉 ∈ Lk do � R knowledge base, C candidates for extending R
11: for r ∈ C do
12: if R ∪ {r} is consistent then � extend R with conditional r
13: D1 ← {d | d ∈ C, d �· r} � conditional d can not extend R ∪ {r}
14: D2 ← {(B|A) | (B|A) ∈ C, A = ant(r)} � (B|A) can not extend R ∪ {r}
15: D ← D1 ∪ D2 ∪ {r} � r can not extend R ∪ {r}
16: Lk+1 ← Lk+1 ∪ {〈R ∪ {r}, C \ D〉}
17: k ← k + 1

18: return KB = {R | 〈R, C〉 ∈ Li, i ∈ {1, . . . , k}}
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3. (≡ae minimality) If R,R′ ∈ KB and R �= R′ then R �≡ae R′.
4. (� minimality) If R,R′ ∈ KB and R �= R′ then R �� R′.
5. (consistency) If R ∈ KB then R is consistent.
6. (completeness) If Ris a consistent knowledge base over Σ then there is

R′ ∈ KB and an isomorphism ρ such that R ≡ae ρ(R′).

Proof. The proof is obtained by formalizing the description of KBae
gen given above

and the following observations. Note that KBae
gen exploits the fact that every sub-

set of a consistent knowledge base is again a consistent knowledge base. Thus
building up knowledge bases by systematically adding remaining conditionals
according to their linear ordering ≺· ensures completeness; the removal of can-
didates in Lines 5 and 14 does not jeopardize completeness since Proposition 2
ensures that for each knowledge base an antecedentwise equivalent knowledge
base exists that for any propositional formula A contains at most one condi-
tional with antecedent A. Checking consistency when adding a new conditional
ensures consistency of the resulting knowledge base. ANF is ensured because all
conditionals in NFC (Σ) are of the form (AB|A). Because for all A, each gen-
erated R contains at most one conditional with antecedent A, ≡ae-minimality
is guaranteed, and �-minimality can be shown by induction on the number of
conditionals in a knowledge base. ��

Note that KBae
gen generates significantly fewer knowledge bases than the algo-

rithm GenKB given in [9]. For each formula A, each R ∈ GenKB(Σ) may
contain up to half of all conditionals in NFC (Σ) with antecedent A,1 while
R ∈ KBae

gen(Σ) may contain at most one conditional with antecedent A.
For instance, KBae

gen(Σab) will generate the knowledge base R7 =
{({ab}|{ab, ab}), ({ab}|{ab, ab, ab})}, but it will not generate the knowl-
edge base R8 = {({ab}|{ab, ab}), ({ab, ab}|{ab, ab, ab}), ({ab, ab}|{ab, ab, ab})}
which is antecedentwise equivalent to R7, i.e., R8 ≡ae R7. Further-
more, KBae

gen(Σab) will also not generate, e.g., the knowledge bases
R9 = {({ab, ab}|{ab, ab, ab}), ({ab}|{ab, ab}), ({ab, ab}|{ab, ab, ab})} or R10 =
{({ab}|{ab, ab}), ({ab}|{ab, ab, ab})} which are both antecedentwise equivalent
to R7 when taking isomorphisms into account; specifically, we have ρab(R10) =
R7, and ρab(R9) = R8 and hence also ρab(R9) ≡ae R7.

7 Conclusions and Further Work

Aiming at a compact and unique normal form of conditional knowledge bases,
we introduced the new notion of antecedentwise equivalence. We developed a
system Θ transforming every knowledge base into its unique antecedent normal
form. The algorithm KBae

gen is complete in the sense that it generates, for any
signature Σ, knowledge bases in ANF such that all knowledge bases over Σ are

1 Note that it can not be more than half of these conditionals with the same antecedent
because otherwise there would be a conditional together with its counter conditional,
leading to inconsistency of the knowledge base.
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covered up to isomorphisms and antecedentwise equivalence. Furthermore, the
set of knowledge bases returned by KBae

gen is minimal because no two different
knowledge bases are generated such that they or any isomorphic images of them
are antecedentwise equivalent. Currently, we are working with KBae

gen and the
reasoning system InfOCF [6] for empirically evaluating different nonmonotonic
inference relations induced by a conditional knowledge base and for computing
the full closures of such inference relations [18]. Another part of our future work
is the investigation of inferential equivalence of ANF (for another normal form
see [3,7]) with respect to semantics that are not syntax independent like rational
closure (cf. [11,13]), but that are syntax dependent like lexicographic closure [19].
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